
EY-2280E-SG·OOO 1

VAX/VMS
INTERNALS II

Student Workbook

Prepared by Educational Services
of \

Digital Equipment Corporation

Second Edition, October 1986

Copyright© 1986 by Digital Equipment Corporation

All Rights Reserved

The reproduction of this material, in part or whole, is strictly prohibited.
For copy information, contact the Educational Services Department,
Digital Equipment Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital EquJpment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may not be used or copied except in accordance with the terms of
such license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by Digital.

The manuscript for this book was created using DIGITAL Standard
Runoff. Book production was done by Educational Services
Development and Publishing in Nashua, NH.

The following are trademarks of Digital Equipment Corporation:

mnmnomoTM DECtape Rainbow
DATATRIEVE DEC US RSTS
DEC DECwriter RSX
DECmate DIBOL UNIBUS
DECnet MASSBUS VAX
DECset PDP VMS
DECsystem-10 P/OS VT
DECSYSTEM-20 Professional Work Processor

SG STUDENT GUIDE

INTRODUCTION
• GOALS.

NON-GOALS.
PREREQUISITES.
RESOURCES.
COURSE MAP
COURSE OUTLINE

•

•

1 SYSTEM PROCESSES

INTRODUCTION
OBJECTIVES
RESOURCES.

Reading.
Source Modules • •

TOPICS

•

OVERVIEW OF SYSTEM PROCESSES
THE JOB CONTROLLER •

Job Controller Functions
SYMBIONTS. •

Output Symbionts
Symbiont Services.
User-Supplied Symbionts.

THE ERROR LOGGER •
Error Logging.
Waking the Error Logger.

OPERATOR COMMUNICATION
SUMMARY.

•
• •

• •

• •

• •

• •

•
• • •

•
•

•
•

• •

2 FORMING, ACTIVATING AND TERMINATING IMAGES

INTRODUCTION
OBJECTIVES
RESOURCES.

Reading.
Source Modules

TOPICS •
FORMING AN IMAGE

•
•

Program Sections •

•

•

Format of an Image File. •
Image Section Descriptor Formats
Format of the Image Header

IMAGE ACTIVATION AND START-UP.

•

•

•

•

•
Mapping an image to Virtual Address Space.
Bringing Pages of Image into Physical Memory

iii

•

•

•

•

CONTENTS

.•

•

•

•
•

•

•

• • •

•

.SG--3

.SG-4

.SG-5

.SG-5

.SG-5

.SG-6

.SG-7

1-3
1-3
1-4
1-4
1-4
1-5
1-7

.1-10

.1-11

.1-13

.1-14

.1-17

.1-18

.1-19

.1-20

.1-21

.1-23

.1-25

2-3
2-3
2-4
2-4
2-4
2-5
2-7
2-7
2-8
2-9

.2-10

.2-11

.2-12

.2-13

Translating Virtual to Physical Addresses.
Locating Image Pages on Disk
Summary of Image Formation and Activation.
Image Start-Up
Installing Files
The Known File Entry

IMAGE EXIT AND RUNDOWN
Exit System Service.
Termination Handlers
DCL Operation.

SUMMARY.
APPENDIX - LINKER CLUSTERS

3 PAGING

INTRODUCTION
OBJECTIVES
RESOURCES.

Reading.
Additional Suggested Reading
Source Modules

TOPICS
BASIC VIRTUAL ADDRESSING

•

•

•

• Virtual Address Space.
Associating Virtual and Physical
SO Virtual Address Translation •
Hardware Checks.

Addresses

• • •
Process Headers in SO Space.
Page Tables.
Page Table Mapping
Referencing a PO Virtual Address

OVERVIEW OF PAGE FAULT HANDLING.
Working Set List • •
Image Section Descriptor Formats
Process Section Table (PST) ••
Process Section Table Entry.

HOW PTEs, PSTEs ARE FILLED IN.
Process Header
Sample Program •

•

•

•
Template for Process Paging Example.

MORE ON PAGING • •
Different Forms of Page Table Entry.
The Paging File. •

PFN DATABASE
Using a Process CRF Page • • •

•

•

•

Initial Status of Process CRF Page •
Page Fault on Process CRF Page (Step 1).

iv

•

•

. .
•

•

•
• •

•

• •
•

• •

• •

.2-14

.2-15

.2-16

.2-17

.2-18

.2-19

.2-20

.2-20

.2-21

.2-22

.2-23

.2-24

3-3
3-3

• 3-4
3-4
3-4
3-4
3-5
3-7
3-8
3-9

.3-10

.3-11

.3-12

.3-13

.3-14

.3-15

.3-16

.3-17

.3-18

.3-19

.3-20

.3-21

.3-22

.3-24

.3-25

.3-26

.3-27

.3-28

.3-29

.3-30

.3-31

.3-32

Page Fault on Process CRF Page (Step 2) •••••••
Page Fault on Process CRF Page (Step 3) •••••••
Removing Process CRF Page from Working Set • • • • •
Process CRF Page Moved from MPL to FPL • • • • • • •
Removing Process CRF Page from Memory. • • •••

DATA STRUCTURES USED BY THE PAGER. • • • • • • • • •
GLOBAL PAGING DATA STRUCTURES. • • • • • • • • •

Global Page Table ••••••••••••••••••
Relationship Among Global Section Data Structures. •
Using a Global Read/Write Page •••••••••••
Initial Status of Global Read/Write Section Page ••
Adding Global Read/Write Section Page to Working Set
Initial Status of PTE of Second Process. • • • • ••
Adding Global Read/Write Section Page

• • • 3-33
• • • 3-34
• • • 3-35
• • • 3-36

.3-37
••• 3-38
• • • 3-39
• • • 3-39

.3-40
• • • 3-41
• • • 3-42

.3-43

.3-44

to Second working Set • • • • • • • • • • • • • •
Removing Global Read/Write Section Page from Working Set
Removing Global Read/Write Section Page from Memory. • •

SUMMARY OF THE PAGER • • • • • • • • • • • • • • • •
APPENDIX - SUPPLEMENTARY INFORMATION • • • • • • • • • • • •

.3-45

.3-46
• 3-47
.3-48
.3-51
.3-51
• 3-52

PROCESS VIRTUAL ADDRESS TRANSLATION. • •••••••••
PHYSICAL ADDRESS SPACE • • • • • • • ••.
IMAGE ACTIVATOR AND PROCESS HEADER • • • • • • • • • • •

Image Activator. • • • • • • • • • • • •••
PAGE READ CLUSTERING • • • • • • • • • • • • •

Why Cluster Pages. • • • • • • • • • • • • •
How a Cluster is Made. • • • • • • • • • • •••
Maximum Cluster Size Determination • • • • • • •
Changing/Controlling Cluster Size. • • • ••

4 SWAPPING

• • • 3-53
• • • 3-53

.3-54
• •• 3-54
••• 3-54

.3-55
••• 3-56

INTRODUCTION • • • • • • • • • • • • • 4-3
OBJECTIVES • 4-4
RESOURCES. • • • • • • • • • • • • • • • • • • 4-5

Reading. • • • • • • • • • •••••••••••• 4-5
Additional Suggested Reading • • • • • • • • • • • • • 4-5
Source Modules • • • • • • • • • • • • • • • • 4-5

TOPICS • 4-7
COMPARISON OF PAGING AND SWAPPING. • • • • • • • • • • • • •• 4-9

Similarities • • • • • • • • • • ••••••••• 4-9
OVERVIEW OF THE SWAPPER, THE SYSTEM-WIDE MEMORY MANAGER •••• 4-10

Swapper Main Loop. • • • • • • • • •••••••• 4-11
MAINTAINING THE FREE PAGE COUNT. • • • • • •••••••• 4-12

How Modified Page Writer Gathers Pages • • • .4-13
Modified Page Write Clustering • • • • • • • • • .4-14
Trimming and Swapping Working Sets • • • • • • • • 4-15
Expanding and Shrinking Working Sets ••••••••••• 4-18

WAKING THE SYSTEM-WIDE MEMORY MANAGER. • • • • • • • • • • 4-19

v

OUTSWAPPING A PROCESS.
Outswap Rules.
Locating Disk Files for Swap •
How Swapper's PO Page Table is Used to Speed Swap I/O.
Swapper's Pseudo Page Tables
Partial Outswaps and the Process Header.

INSWAPPING A PROCESS
INSWAP RULES
SUMMARY.
APPENDIX - SWAPPER MAIN LOOP

S I/O CONCEPTS AND FLOW

INTRODUCTION
OBJECTIVES
RESOURCES.

•

Reading.
Source Modules

TOPICS

•

OVERVIEW OF I/O COMPONENTS AND
COMPONENTS OF THE I/O SYSTEM
THE I/O DATABASE •
METHODS OF DATA TRANSFER •
SUMMARY.

•

FLOW.

6 RMS IMPLEMENTATION AND STRUCTURE

INTRODUCTION •
OBJECTIVES
RESOURCES. •

Reading.
Source Modules

TOPICS

•

• •

•

USER-SPECIFIED DATA STRUCTURES
RMS INTERNAL DATA STRUCTURES

Process I/O Segment.

•

•

The Overall Control Information Areas.
Impure Data Areas. •

Process Impure Data Area (PIO$GW PIOIMPA).
Image Impure Data Area (PIO$GW IIOIMPA).

•

• •

File-Oriented and Record-Oriented Data Structures.
RMS PROCESSING • • • •
SUMMARY. • •
APPENDIX - RMS FUNCTIONS AND MODULES •

vi

•

•

•

.4-20

.4-21

.4-22

.4-23

.4-24

.4-25

.4-26

.4-27
•.• 4-29
• .4-31

•
•

5-3
5-3
5-4
5-4
5-4
5-5
5-7
5-9

.5-14

.5-16

.5-16

6-3
6-3
6-4
6-4
6-4
6-5
6-7
6-9

.6-10

.6-11

.6-12

.6-12

.6-12

.6-13

.6-17
• 6-21
.6-23

7 VMS IN A MULTIPROCESSING ENVIRONMENT

INTRODUCTION
OBJECTIVES
RESOURCES.

Reading.
Source Modules

TOPICS

•

MULTIPROCESSING ENVIRONMENTS
NETWORKS
THE VAX-11/782

Definitions.
VAXclusters.

•

VAXcluster Benefits.
SUMMARY.
GLOSSARY

•

APPENDIX THE VAX-11/782.
Definitions.
Initialization
Hooks into VMS
SCB Changes.

•

•

Secondary Processor States
Exceptions for CPU2.
MA780.
Faults
Restrictions

•

•

8 VMS IN A VAXcluster ENVIRONMENT

INTRODUCTION
OBJECTIVES
RESOURCES.

Reading.
Source Modules

TOPICS
OVERVIEW OF VAXcluster FEATURES.

•

System Processes in a VAXcluster
Cache Server Process
Cluster Server Process
Configure Process.
The Connection Manager
Distributed Lock Manager
Distributed File System.
Record Management Services (RMS)
Class Driver •

•

•

SCS (Systems Communications Services).
Port Drivers
Distributed Batch and Print Services
I/O in a VAXcluster Environment.

vii

• •

•

•

•

•

•

7-3
7-3
7-3
7-3
7-3
7-5
7-7
7-9

.7-10

.7-11

.7-15

.7-15

.7-17

.7-19

.7-21

.7-21

.7-23

.7-24

.7-24

.7-25

.7-26

.7-26

.7-27

.7-27

8-3
8-3
8-4
8-4
8-4
8-5
8-6

.8-10

.8-11

.8-11

.8-11

.8-13

.8-14

.8-15

.8-15

.8-16

.8-16

.8-16

.8-17

.8-18

JOINING A VAXcluster •
LEAVING A VAXcluster • •
ADDITIONAL CONSIDERATIONS IN A VAXcluster ENVIRONMENT.
SUMMARY.
APPENDIX - VAXcluster SYSGEN PARAMETERS.

EXERCISES. • •

TESTS.

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3

Communication with the Job Controller •
Job Controller Code Flow.
Output Symbiont Flow Diagram.
User Symbiont Flow Diagram.
Overview of Error Logging •
Code Flow for Error Logger Wake •
Code Flow for Error Logger.
Overview of OPCOM • •

Creating an Image File.
Image Section Descriptor Formats.
The Image Header. •
Mapping to Virtual Address Space.

•

•

Bringing Pages into Physical Memory • • •
Translating Virtual to Physical Addresses •
Locating Image Pages on Disk.
Summary of Image Formation and Activation •
Transfer Address Array Formats.
The Known File Database •
KFE with a Resident Header.
Exit System Service ••
Termination Handlers.
DCL Operation •
Linker Clusters •

•

Physical and Virtual Memory •
Virtual Address Space • •

•

Associating Virtual and Physical Addresses.

viii

•

•

.8-24

.8-25

.8-27

.8-29
• .8-31

.EX-3

.TP-3

FIGURES

•

•

•

•

•

•

•

•
•

•

.1-10

.1-12

.1-14

.1-16

.1-19

.1-21

.1-22

.1-23

2-8
2-9

.2-10

.2-12

.2-13

.2-14

.2-15

.2-16

.2-17
• 2-18
.2-19
.2-20
.2-21
.2-22
.2-26

3-7
3-8
3-9

4 SO Virtual Address Translation •••••••••••••• 3-10
5 Hardware Checks if Access Allowed • • •••••••• 3-11
6 PHDs and SO Page Table in SO Space. • •••••••• 3-12
7 Page Table Mapping. • • • • • • • • • •••••• 3-14
8 Referencing a PO Virtual Address. • • •••• 3-15
9 Resolving Page Faults • • • • • • • • •••••••• 3-16
10 Working Set List ••••••••••••••••••••• 3-17
11 Image Section Descriptor Formats ••••••••••••• 3-18
12 Process Section Table • • • • • • • • •••••• 3-19
13 Process Section Table Entry ••••••••••••••• 3-20
14 How PTEs, PSTEs are Filled In • • • • • • • • •• 3-21
15 The Process Header. • • • • • • • • • • • • • • ••• 3-22
16 Overview of Page Fault Handling • • • • • • • •• 3-23
17 Template for Process Paging Example ••••••••••• 3-25
18 Free and Modified Page Lists. • • • • • • • .3-26
19 Different Forms of Page Table Entry • • • • • • • •• 3-27
20 Page File Control Block • • • • • • • • • • ••• 3-28
21 PFN Database. • • • • • • • • • • • ••••• 3-29
22 Initial Status of Process CRF Page. • • • • • • ••• 3-30
23 Page Fault on Process CRF Page (Step 1) ••••••••• 3-31
24 Page Fault on Process CRF Page (Step 2) ••••••• 3-32
25 Page Fault on Process CRF Page (Step 1) • • • • .3-33
26 Removing Process CRF Page from Working Set •••••••• 3-34
27 Moving Pages from MPL to FPL. • • • • • • • • •• 3-35
28 Removing Process CRF Page from FPL •••••••••••• 3-36
29 Data Structures Used by the Pager •••••••••••• 3-37
30 Process PTEs Map to Global PTEs ••••••••••••• 3-38
31 Relationship Among Global Section Data Structures •••• 3-40
32 Initial Status of Global Read/Write Section Page. • .3-42
33 Adding Global Read/Write Section Page to Working Set ••• 3-43
34 Initial Status of PTE of Second Process Mapping

the Same Global Section. • • • • • • • • • • .3-44
35 Adding Global Read/Write Section Page to

Second Working Set •••••••••••••••••• 3-45
36 Removing Global Read/Write Section Page

from Working Set ••••••••••••••••••• 3-46
37 Removing Global Read/Write Section Page from Memory ••• 3-47
38 Summary of the Pager. • • • • • • • • •••••••• 3-48
39 Process Virtual Address Translation • • • • • • ••• 3-51
40 Physical Address Space. • • • • • •••••••••• 3-52
41 Image File and Process Header •••••••••••••• 3-53

1 Swapper Main Loop •••••••• ~ • • • • • • • • .4-11
2 How Modified Page Writer Gathers Pages. • • • • • • .4-13
3 Expanding and Shrinking Working Sets. • • • ••••• 4-18
4 Locating Disk Files for Swap ••••••••••••••• 4-22
5 How Swapper's PO Table is Used to Speed Swap I/O ••••• 4-23
6 Swapper's Pseudo Page Tables ••••••••••••••• 4-24
7 Overview of Swapper Functions •••••••••••••• 4-29

ix

1 Input/Output Flow (Brief)
2 Input/Output (Full)
3 RMS Interfaces.
4 $QIO and FDT Routines
5 XQPs.
6 ACPs.
7 Components of Device Drivers.
8 Summary Layout of I/O Database.
9 Buffered I/O.
10 Direct I/O.

1 Virtual Address Space •
2 Process I/O Segment in Pl Space •
3 IFAB and !RAB Tables.
4 IFAB and Associated Blocks.
5 RMS Interfaces.
6 RMS Dispatching •
7 RMS Components in a GET Operation •

1 Relationship Between Different
Multiprocessing Configurations •

2 Relationship Between Different
Multiprocessing Configurations •

3 Sample VAX-11/782 Configuration •
4 Secondary Processor States.
5 MP.EXE in Nonpaged Pool •
6 VAXcluster Hardware Configuration •
7 Sample VAX-11/782 Configuration •
8 Secondary Processor States ••
9 MP.EXE Loaded into Nonpaged Pool.

1 Relationships Between Different
Multiprocessor Configurations.

2 Sample VAXcluster Hardware Configuration.
3 VAXcluster Software Components.
4 Cluster I/O Database.
5 VAXcluster Hardware/Software Block Diagram.
6 Flow of Standard I/O Operations • •
7 Cluster I/O Available on Version 4.0
8 Data Flow for an MSCP Request •
9 VAXcluster System Start-Up Flow •

1
2

1

VMS System Processes.
Processes Created by STARTUP.COM.

PSECT Attributes. •

x

5-7
5-8
5-9

.5-10

.5-11

.5-12

.5-13

.5-15

.5-16

.S-16

6-8
6-9

.6-15

.6-16

.6-17

.6-18

.6-19

. 7-7

. 7-8

.7-12

.7-13

.7-14

.7-16

.7-22

.7-25

.7-28

8-7
8-8

.8-12
• .8-18

.8-19

.8-20

.8-22

.8-23

.8-24

TABLES

•

1-8
1-9

2-7

2

3

4

1
2
3

1
2
3
4

5
6

7

1

1
2

1
2
3

1
2
3
4

1
2
3

1

1

1
2
3

How Termination Handlers are Established
for Each Access Mode ••••••••••••••••• 2-21

Summary of Image Formation, Activation,
and Termination •••••••••••••••••••• 2-23

SYSGEN Parameters Related to Image
Formation, Activation, and Termination •2-23

Where Memory Management Information is Stored •••••• 3-38
SYSGEN Parameters Related to Paging • • • •••••• 3-49
Cluster Sizes and Where They are Stored • • • • .3-55

Differences Between Paging and Swapping • • • • • • • • • 4-9
Order of Search for Trim and Swap Candidates ••••••• 4-16
Description of Special Swapper Flags ••••••••••• 4-17
Selected Events that Cause the Swapper or

Modified Page Writer to be Awakened. • • • • • • .4-19
Rules for Scan of Working Set List on Outswap •••••• 4-21
Rules for Rebuilding the Working Set List and the

Process Page Tables at Inswap. • • • • • ••••• 4-27
SYSGEN Parameters Relevant to the Swapper •••••••• 4-30

The I/O Database. ' . . .5-14

RMS Calling MACROS and the Resulting Code
RMS Functions and Primary Module Names •• ••• 6-20

• • 6-23

Different Multiprocessing Implementations •••
Different Multiprocessing Implementations ••
System Locations and the Resulting MP Locations •

• • • 7-8
• • • • 7-17

• • 7-29

Different Multiprocessing Implementations ••
System Processes Specific to a VAXcluster ••
VAXcluster Processes Created by STARTUP.COM •
Selected VAXcluster SYSGEN Parameters • • • •

SHOW SYSTEM Output ••••••••••••••
Listing Buffer Declarations for Error Logger.
OPCOM Main Code • • • • • • • • • • • • • •

MACRO Program with Four PSECTs.
Swapper - Main Loop • • . . .

• • • • • • 8-7
• • • .8-10

•••• 8-10
•••••• 8-29

EXAMPLES
• • • • • • 1-7
• • • • • • 1-20

••• 1-24

.
. .

.3-24

.4-31

SHOW SYSTEM Output for a VAXcluster •
Booting a VAXcluster System • • • • •
Leaving a VAXcluster. • • • • • • •

• • • • • • • • • • 8-9

xi

• • • • • • • • • • 8-26
• • • • • • • • • 8-26

Student Guide

STUDENT GUIDE

INTRODUCTION
The VAX/VMS Operating System Internals course is intended for

the student who requires an extensive understanding of the
components, structures, and mechanisms contained in the VAX/VMS
operating system. It is also an aid for the student who will go
on to examine and analyze VAX/VMS source code.

This course provides a discussion of the interrelationships
among the logic or code, the system data structures, and the
communication/synchronization techniques used in major sections of
the operating system.

Technical background for selected system
application programmer topics is also provided.
information include: •

management and
Examples of this

• The implications of altering selected system parameter
values

• The implications of granting privileges, quotas, and
priorities

• How selected system services perform requested actions.

Information is provided to assist in subsequent syst~m-related
activities such as:

• Writing privileged utilities or programs that access
protected data structures

• using system tools (for example, the system map, the
system dump analyzer, and the MONITOR program) to examine
a running system or a system crash.

This course concentrates on ·the software components included
in (and the data structures defined by) the linked system image.
Associated system processes, utilities, and other programs are
discussed in much less detail.

SG-3

STUDENT GUIDE

GOALS

• Describe the contents, use, and interrelationship of
selected VAX/VMS components (job controller, ancillary
control processes, syrnbionts), data structures (SCB, PCB,
JIB, PHO, Pl space), and mechanisms (synchronization
techniques, change mode dispatching, exceptions and
interrupts).

• Describe and differentiate system context and process
context.

• Discuss programming considerations and system management
alternatives in such problems as:

Assigning priorities in a multiprocess application
Controlling paging and swapping behavior for a process
or an entire system
Writing and installing a site-specific system service

• Use system-supplied debugging tools
example, SDA, XDELTA) to examine
observe a running system.

and utilities (for
crash dumps and to

• Describe the data structures and software components
involved when a process is created or deleted, an image is
activated and rundown, and the operating system is
initialized.

• Describe how the following interrupt service routines are
implemented:

AST delivery
Scheduling
Hardware clock
Software timers

• Briefly describe the components of the I/O system,
including system services, RMS, device drivers and XQPs.

• Briefly describe how RMS processes I/O requests, including
the user-specified and internal data structures involved.

• Describe certain additional VMS mechanisms used on a VAX
system in a cluster (for example, synchronization and
communication mechanisms).

SG-4

STUDENT GUIDE

NON-GOALS

• Writing device drivers (see the VAX/VMS Device Driver
course)

• Writing ancillary control processes, ACPs (see the VAX/VMS
Device Driver course)

• Comprehensive understanding of RMS internals

• DECnet internals (see the DECnet courses)

• Layered product internals

• Command language interpreter internals

• System management of a VAXcluster

PREREQUISITES

• Ability to program in at least one VAX native language.
This may be obtained through language programming
experience and completion of an appropriate language
programming course (for example, Assembly Language
Programming in VAX-11 MACRO). In addition, completion of
the Introduction to VAX-11 Concepts course is recommended.

• Ability to read and comprehend programs written in VAX-11
MACRO is required. In additi~n, ability to program in
VAX-11 MACRO or BLISS is recommended.

• Completion of one of the Utilizing VMS Features courses.

RESOURCES
1. VAX/VMS Internals and Data Structures

2. VAX/VMS System Dump Analyzer Reference Manual

3. VMS Internals I and II source Listings

SG-5

STUDENT GUIDE

COURSE MAP

MKV84-2242

SG-6

STUDENT GUIDE

COURSE OUTLINE

I. System Components

A. How VMS Implements the Functions of an Operating System

B. How and When Operating System Code is Invoked

c. Interrupts and Priority Levels

D. Location of Code and Data in Virtual Address Space

E. Examples of Flows for:

1. Hardware clock interrupt
2. System event completion
3. Page fault
4. RMS request for I/O
5. $QIO request for I/O

F. Exampies of System Processes

1. Operator Communication (OPCOM)
2. Error logger (ERRFMT)
3. Job controller (JOB CONTROL)
4. Symbionts (SYMBIONT n)

G. Software Components of DECnet-VAX

SG-7

STUDENT GUIDE

II. The Process

A. Process vs. System Context

B. Process Data Structures Overview

1. Software context information
2. Hardware context information

c. Virtual Address Space Overview

1. SO space (operating system code and data)
2. PO space (user image code and data)
3. Pl space (command language interpreter, process data)

D. SYSGEN Parameters Related to Process Characteristics

III. System Mechanisms

A. Hardware Register and Instruction Set Support

B. Synchronizing System Events

1. Hardware Interrupts
2. Software Interrupts

Example: Fork Processing
3. Requesting Interrupts
4. Changing IPL
5. The Timer Queue and System Clocks

c. Process Synchronization Mechanisms

1. Mutual Exclusion Semaphores (MUTEXes)
2. Asynchronous System Traps (ASTs)
3. VAX/VMS Lock Manager

D. Exceptions and Condition Handling

E. Executing Protected Code

1. Change Mode Dispatching
2. System Service Dispatching

F. Miscellaneous Mechanisms

1. System and Process Dynamic Memory {Pool)

G. SYSGEN Parameters Controlling System Resources

SG-8

STUDENT GUIDE

IV. Debugging Tools

A. VAX/VMS Debugging Tools

B. The System Dump Analyzer (SDA)

1. Uses
2. Requirements
3. Commands

C. The System Map File

D. Crash Dumps and Bugchecks

1. How bugchecks are generated
2. Sample stacks after bugchecks
3. Sample crash dump analysis

E. The DELTA and XDELTA Debuggers

v. Scheduling

A. Process States

1. What they are (current, computable, wait)
2. How they are defined
3. How they are related

B. How Process States are Implemented in Dat~ Structures

1. Queues
2. Process data structures

C. The Scheduler (SCHED.MAR)

D. Boosting Software Priority of Normal Procepses

E. Operating System Code that Irnple~ents Process
Changes

1. Context switch (SCHED.MAR)
2. Result of system event (RSE.MAR)

F. Steps at Quantum End

1. Automatic working set adjustment

G. Software Priority Levels of System Processes

SG-9

State

STUDENT GUIDE

VI. Process Creation and Deletion

A. Process Creation

1. Roles of operating system programs
2. Creation of process data structures

B. Types of Processes

c. Initiating Jobs

1. Interactive
2, Batch

D. Process Deletion

E. SYSGEN Parameters Relating to Process
Deletion

VII. System Initialization and Shutdown

A. System Initialization Sequence

B. Function of initialization programs

c. How memory is structured and loaded

D. Start-up command procedures

E. How hardware
initialization

differences between

F. Shutdown procedures and their functions

G. Auto-restart sequence

H. Power-fail recovery

SG-10

Creation and

CPUs affect

STUDENT GUIDE

VIII. System Processes

A. For selected VAX/VMS processes:

1. Job controller
2. Symbionts
3. Error Logger
4. OPCOM

We will be describing their:

1. Primary Functions
2. Implementation
3. Methods of communication with other VMS components
4. Basic internal structure (on a module basis)

IX. Forming, Activating and Terminating Images

A. Forming an Image

1. PSECTs in source/object modules
2. Format and use of the image header

B. Image Activation and Start-Up

1. Mapping virtual address space
2. Overview of related data structures
3. Image start-up (SYS$IMGSTA)
4. Installing Known Files

C. Image Exit and Rundown

1. $EXIT system service
2. Termination Handlers
3. DCL Sequence

D. SYSGEN parameters relating to image formation, activation
and termination

SG-11

STUDENT GUIDE

x. Paging

A. Basic Virtual Addressing

1. Virtual and physical memory
2. Page table mapping

B. Overview of Page Fault Handling

1. Resolving page faults
2. Data structures in the process header

C. More on Paging

1. Free and modified page lists
2. The paging file
3. Cataloging pageable memory (the PFN database)

D. Global Paging Data Structures

E. Summary of the Pager

XI. Swapping

A. Comparison of Paging and Swapping

B. Overview of the Swapper, the System-Wide Memory Manager

C. Maintaining the Free Page Count

1. Write Modified Pages
2. Shrink Working Sets
3. Outswap Processes

D. Waking the System-Wide Memory Manager

E. Outswapping a Process

1. Swap files
2. Scatter/Gather
3. Partial Outswaps

F. Inswapping a Process

SG-12

STUDENT GUIDE

XII. I/O Concepts and Flow

A. Overview of I/O components and flow

B. Components of I/O system

1. RMS
2. I/O system services
3. XQPs, ACPs
4. Device drivers

C. The I/O database

1. Driver tables
2. IRPs
3. Control blocks

D. Methods of data transfer

XIII. RMS Implementation and Structure

A. User-specified data structures (FABs, RABs, and so on)

B. RMS Internal Data Structures

1. Process I/O Control Page (for example, default values,
I/O segment area)

2. File-Oriented and Record-Oriented Data Structures
(IFAB, !RAB, BufDescBlk, I/O Buffer)

C. RMS Processing

1. RMS Dispatching
2. RMS routines and data structures
3. Examples of flows of some common operations

SG-13

STUDENT GUIDE

XIV. VMS in a Multiprocessing Environment

A. Loosely coupled processors

B. Tightly coupled processors (11/782)

1. MP.EXE structures
2. Scheduling differences
3. Startup /shutdown

c. Clustered processors

xv. VMS in a VAXcluster Environment

A. Cluster synchronization and communication mechanisms

1. Distributed lock manager
2. Distributed job controller
3. Interprocessor communication

B. System initialization and shutdown differences

1. VMB, INIT and SYSINIT differences
2. Joining a cluster
3. Leaving a cluster

c. SYSGEN parameters relevant to the VAXcluster environment

D. Relevant system operations

SG-14

System Processes

SYSTEM PROCESSES

INTRODUCTION
VMS consists of many pieces all working together to perform

specific functions. Some parts of VMS work in user process
context (such as System Services) or in system context (such as
Scheduling). There are still other duties that must be performed
in process context but are not 'called' by the user. T~ese parts
run in the context of their own process. They are known as
"System Processes."

We will be exam1n1ng several of these processes in this
module, including:

• Job Controller (JOB CONTROL)
• Print Symbiont (SYMBIONT n)
• Error Format (ERRFMT) -
• Operator Communications (OPCOM)

OBJECTIVES
1. To describe, for selected VAX/VMS processes, their

Functions, primary and otherwise

Implementation

Methods of communication with other VMS components

2. To describe, for certain VAX/VMS processes, their internal
structure (on a module basis)

1-3

SYSTEM PROCESSES

RESOURCES

Reading

• VAX/VMS Internals and Data Structures, chapters on Error
Handling plus Interactive and Batch Jobs.

Source Modules

Facility Name

JOBCTL

ERRFMT

SYS

OP COM

PRTSMB

1-4

Module Name

CONTROL
SCHEDULER
UNSOLICIT

ERRFMT

ERROR LOG

OPCOMMAIN
OPCOMINI

PRTSMB
SMBSRVSHR

SYSTEM PROCESSES

TOPICS

I. For selected VAX/VMS processes, describe their

A. Primary Functions

B. Implementation

C. Methods of communication with other VMS components

D. Basic internal structure (on a module basis)

II. The selected system processes are:

B.

Job Controller • ~
0

.,,. 1-&,J ~ a~.., h . ({. ~- ~ .
Symb1onts ~AP~"' -P .. L .j;."'. /b ~4' JM v~-
Error Logger ·. (

A.

c.

D. OPCOM

1-5

SYSTEM PROCESSES

OVERVIEW OF SYSTEM PROCESSES

VAX/VMS V4.0 on node COMICS 6-NOV-1984 10:40:57.65 Uptime 0 02:22:14
Pid Process Name State Pri I/O CPU Page fl ts

00000080 NULL COM 0 0 0 00:18:42.40 0
00000081 SWAPPER HIB 16 0 0 00:00:21.10 0
00000103 MARSH CUR 4 213 0 00:00:04.59 849
00000085 ERRFMT HIB 7 1165 0 00:00:09.92 140
00000087 OPCOM LEF 8 202 0 00:00:02.15 181
00000088 JOB CONTROL HIB 8 2336 0 00:00:36.37 188
0000008A VAXsim Monitor HIB 7 483 0 00:00:06.00 315
00000080 SYMBIONT 0001 COM 4 1377 0 00:08:26.51 2613
0000008E SP I DERMAN LEF 4 2412 0 00:00:34.72 699
00000090 NETACP HIB 9 2835 0 00:00:53.49 5800
00000091 EVL HIB 4 79 0 00:00:02.52 2138
00000092 REMACP HIB 9 74 0 00:00:00.56 123
00000094 THE FLASH LEF 7 947 0 00:00:15.53 2886
0000009A BATMAN LEF 7 6659 0 00:02:20.76 8142
0000009B CAPT MARVEL LEF 7 13420 0 00:08:46.85 32485
0000009D DR STRANGE LEF 4 11665 0 00:04:05.12 23536
000000A3 SILVER SURFER LEF 4 923 0 00:00:30.45 2075
OOOOOOBC KAL-EL LEF 4 3879 0 00:01:46.67 9493
OOOOOOC6 MR FANTASTIC LEF 4 6042 0 00:01:07.37 6730
OOOOOOC7 SYSTEM LEF 4 3998 0 00:00:44.44 2375
OOOOOOCO DR XAVIER LEF 4 702 0 00:00:19.65 2671
00000009 BATCH 891 COM 4 4033 0 00:03:25.23 13888
OOOOOOE6 BRUCE-BANNER LEF 4 259 0 00:00:05.79 952
OOOOOOE7 JON JONES LEF 4 1030 0 00:00:16.58 2718
OOOOOOED BATCH 924 COM 4 862 0 00:00:36.38 2646

Example 1 SHOW SYSTEM Output

1-7

Process Name

NULL

SWAPPER

ERRFMT

OPCOM

JOB CONTROL

SYMBIONT n

NETACP

EVL

REMACP

SYSTEM PROCESSES

Table 1 VMS System Processes

Base
Priority

16

7

6

8

4

Image Name

part of SYS.EXE

part of SYS.EXE

ERRFMT

OPCOM.EXE

JOBCTL.EXE

PRTSYMB.EXE

NETACP.EXE

EVL.EXE

REMACP.EXE

1-8

Comments

System-wide memory
manager

Cleans up error log
buff er

Operator communication
manager

Queue and accounting
manager

Output symbionts

DECnet ACP

Network event logger

Remote ACP

SYSTEM PROCESSES

Table 2 Processes Created by STARTUP.COM

Process Name Base
Image Error Log File Priority Privileges

ERRFMT

ERRFMT errfmt error 7 BYPASS, CMKRNL,
WORLD

OP COM

OP COM opcom_error 6 CMKRNL,EXQUOTA,
OPER,SYSPRV,
WORLD,NETMBX,
SETPRV

JOB CONTROL

JOBCTL job_control_error 8 SETPRV

e All images reside in SYS$SYSTEM
Of

• All error log files reside in SYS$~

1-9

UIC

[1,6]

[1,4]

[l, 4]

THE JOB CONTROLLER

p~
SUBMIT

PER-PROCESS

SYSTEM SPACE

I

SYSTEM PROCESSES

JOB
CONTROLLER

PRINT
SYMBIONT

I .&~/'.°'1 DEVICE I@~~ 7~ DRIVER

I I ~!~~~
_____ _L_ _____ L ____ _

TK-9177

Figure 1 Communication with the Job Controller

• Job Controller is a full process

Event-driven

Responds to information placed in mailbox

Outstanding $QIO on mailbox

• Mailbox communication with

user processes

Card readers

Symbionts

1-10

SYSTEM PROCESSES

Job Controller Functions

• Interactive and Batch Jobs

•

Creation

Responds to unsolicited input message
Process created running LOGINOUT.EXE (for terminals)
and INPSMB.EXE (for cardreaders)

Activities

Responds to messages from CL! (for example, PRINT,
SUBMIT)

Deletion

Records accounting information

r
.d~-- J J i.ctl

Symbiont ~anager./\ 11iJ o 0"'

- Creation

Symbionts created by means of operator action

Activities

Mailbox messages sent to symbiont assign jobs to
print; symbionts do not see queue

Deletion

Symbionts deleted by means of operator action

• Accounting Manager

Activities

Interactive or batch job termination
Print job completion
Login failure

Additional DCL commands ($SET ACCOUNTING) invoke the
Accounting Manager

1-11

SYSTEM PROCESSES

CONTROL:

Image initialization and
basic setup

$010 to Mailbox

Main loop
$WAKE~ Remque and process work

$HIBER

ASTDEL--+I MAILBOX_AST:

If MSG_W_ TYPE equals unsolicited,
CALL UNSOLICITED_INPUT
otherwise
CALLSCHEDULE_NONAST

$010 to Mailbox

l T
UNSOLICITED_INPUT:

If Terminal,
then $CREPRC (LOGINOUT.EXE)

IF Card Reader,

SCHEDULE NONAST:

Based on the MSG_W_ TYPE, queue
work for the accounting or the
symbiont manager

$WAKE

then $CREPRC (INPSMB.EXE)

MKV84-2778

Figure 2 Job Controller Code Flow

• Initialization

• Main Routine Loop

e Mailbox AST

If unsolicited TTY or CR, issue $CREPRC

Else issue $WAKE

1-12

SYSTEM PROCESSES

SYMBIONTS

• VAX/VMS transfers data between slow devices and high-speed
devices

Card Reader ---> Disk

Disk ----> Line Printer

• Controlled by a process called a symbiont.

• The creation, task scheduling, and dismissal of symbionts
is controlled by the VMS Job Controller.

• There are three types of symbionts

1.

2.

3.

input symbionts

output symbionts ,U
server symbionts),...---~

VMS supplies no server symbionts.

• Print Symbiont facility is bundled with VMS and packaged
as a shareable image and an executable symbiont.

• It is designed to allow programmers to implement
synchronous single-threaded symbionts using any high-level
language that supports the VAX-11 calling standard.

• It also allows asynchronous, multi-threaded symbionts to
be implemented.

1-13

SYSTEM PROCESSES

Output Symbionts

-
Disk
File

SPRINT User Request

!<D
Job

Controller

t@

@

Queue File

Job Controller/Symbiont Interface
(Shared Routines and Mailboxes)

@
PRTSMB.EXE

Standard Printer

®

-
Disk
File

Figure 3 Output Symbiont Flow Diagram

Standard Printer

• JOB_CONTROL process receives "PRINT" command

• Task(s) given to symbiont

• Symbiont reports to JOB CONTROL process when finished

1-14

®

SYSTEM PROCESSES

Notes on Figure 3

1. Issue a PRINT request.

2. The Job Controller enters the print request in the
appropriate queue and assigns the request a job number.

3. The Job Controller breaks the print job into a number of
tasks.

4. PRTSMB inteprets the information it receives from the
interface.

5. PRTSMB locates the file it is to print.

6. PRTSMB submits the file to the printer device driver.

7. The file is printed.

8. If written properly, the symbiont can be multi-streamed.

1-15

-
Disk
File

SYSTEM PROCESSES

$PRINT User Request

@

! <D
Job

Controller

t@

GRAPHICS.EXE

@

Queue File

Job Controller /Symbiont lnterf ace
(Shared Routines and Mailboxes)

I

Disk
File

t@
PRTSMB.EXE I

Graphics Printer Standard Printer

Figure 4 user Symbiont Flow Diagram

• The user symbiont GRAPHICS.EXE is "connected" to the graphics
device with the DCL command

$ INITIALIZE/QUEUE/START/PROCESSOR=GRAPHICS.EXE device

• The GRAPHICS.EXE symbiont is written using
routines.

1-16

VMS-supplied

SYSTEM PROCESSES

Symbiont Services

Services supplied by the VMS shared symbiont include:

• A message interface between a symbiont process and its
controlling process.

• A set of routines that implement the message interface.

• A set of routines to control and support a multi-streamed,
asynchronous symbiont environment.

• A standard print symbiont allowing user-supplied routines
for common functions.

1-17

SYSTEM PROCESSES

User-Supplied Symbionts

• user-supplied output symbionts replace or
standard symbionts.

• user-supplied input symbionts are not supported.

• There are two ways of creating user symbionts

1. user-modified symbionts

2. user-written symbionts

complement

• You choose between user-written symbionts and
user-modified symbionts based on how closely the standard
symbiont matches your needs.

• Since user-modified symbionts are generally easier to
write and debug than user-written symbionts, it is
advisable to choose this technique when possible.

1-18

THE ERROR LOGGER

RECORDS
ERRORS IN
BUFFER

SYSTEM
ROUTINES

ERRFMT
(Process)

WRITES BUFFER
TO FILE

SYSTEM PROCESSES

ERROR LOG BUFFER
(IN SYSTEM SPACE)

REPORT

[SYSERR] ERRLOG.SYS

Figure 5 Overview of Error Logging

• Events are reported to VMS

• The information is stored in memory

• The ERRFMT process moves the information to disk when

the buffer contains 10 messages
the buffer is full
30 seconds has elapsed

1-19

SYSTEM PROCESSES

Error Logging

• System-wide buffers store the logged information

BUFFl:
BUFF2:

.blkb 512

.blkb 512

ERL$AL_BUFADDR:
.long BUFFl
.long BUFF2

Example 2 Listing Buffer Declarations for
Error Logger

• ERRORLOG Portion of the VMS Executive

VMS has programs called by drivers and other programs to log
error$.

DEVICE TIMEOUT

DEVICE ERROR

ERL$WAKE

ERL$ALLOCEMB

ERL$RELEASEMB

Called by drivers
to log a device timeout

Called by drivers

Called by EXE$TIMEOUT
to see if the ERRFMT process should
be awakened

Called by programs
to allocate a portion of the
message buffer

Called by programs
to release the message buffer

1-20

SYSTEM PROCESSES

Waking the Error Logger

Permanent TOE

Once per second

EXE$TIMEOUT

ERL$WAKE:
DECB
BNEQ
BICB
MOVB
MOVL
BSBW
RSB

..,_ ___________ _,,,,...._ EXE$TIMEOUT:

• • • •
BSBW ERL$WAKE

ERL$GB BUFTIM ; DECREMENT 30 SECOND TIMER
1~ - ;
#ERLM_TIMER,ERLGB_BUFFLAG;CLEAR TIMER ACTIVE FLAG
#MAXTIM,ERL$GB_BUFTIM ;RESET TIMER VALUE
ERL$GL_ERLPID,R1 ;GET ERROR LOG PROCESS ID
SCH$WAKE ;WAKE ERROR LOG PROCESS

MKV84-2706

Figure 6 Cod~ Flow for Error Logger Wake

• EXE$TIMEOUT runs once every second

• ERL$WAKE is called by EXE$TIMEOUT

• If necessary, ERRFMT is awakened to flush the buffer(s)

1-21

PO,P1
PROCESS
CONTEXT

SYSTEM PROCESSES

Process ERR FMT

Header
Information

PO Buffer

so
PROCESS
CONTEXT

so
SYSTEM
CONTEXT

Error Log File in
SYS$ERRORLOG

Buffer 1 Buffer 2

MKV84-2705

Figure 7 Code Flow for Error Logger

• ERRFMT will transfer the information from the correct SO
buffer to its own PO buffer space

• Add information to the messages

• If the file is open, use it

• If the file is not open, open it and use it

• If not available, open a new version

• Send the information to the ERRLOG.SYS file

1-22

SYSTEM PROCESSES

OPERATOR COMMUNICATION

PER PROCESS
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
SYSTEM
CONTEXT

Process A Process B

Figure 8 Overview of OPCOM

• Event-driven

• Commu.nication with user processes

1-23

SYSTEM PROCESSES

!Necessary Initialization
OPCOM !NIT ()

!Enter main loop
!Issue time stamp if pending
TIME_STAMP ()

!Issue $QIOW to mailbox
STATUS= $QIOW(••••••••••••)

!CASE on message type
CASE RQSTCODE

!End loop

Example 3 OPCOM Main Code

• Process start-up goes through initialization

e $QIOW to OPCOM's mailbox

• Case/Select to routine based on message type

• OPCOM Functions

Enable/Disable operator terminals

Handle user requests and operator replies

Device messages

Security messages

1-24

SYSTEM PROCESSES

SUMMARY

• Overview of System Processes

• Job Controller

Communication by means of mailboxes

Primary functions

Creation of interactive and batch jobs
Symbiont manager
Accounting manager

• Symbionts

Workhorses for the job controller

uses:

Input
output
user-selectable (user symbionts)

• Error- Logger

Format and store error information

Interacts with other VMS components

• OPCOM

Communication between users, operators, and the syste:rp

1-25

Forming, Activating and

Terminating Images

FORMING, ACTIVATING, AND TERMINATING IMAGES

INTRODUCTION
An image consists of procedures and data bound together by the

linker. Each image executes within the context of a process, and
performs various operations for a user.

This module discusses how images are formed on VMS systems.
Understanding how images are built can help you create images that
execute more efficiently.

The steps in image activation and termination and the related
data structures are also discussed. If an image is frequently
used, and the speed of its activatio.n is important, the INSTALL
utility can be used to partially activate the image in advance.

OBJECTIVES
To write programs that execute more efficiently, the student

must understand:

1. How an executable image is formed from source code,
especially the structures that are built by the linker.

2. How an image is mapped into the virtual address space of a
process, and how it is invoked.

3. The steps in image termination.

2-3

FORMING, ACTIVATING, AND TERMINATING IMAGES

RESOURCES

Reading

1. VAX/VMS Internals and Data structures, chapter on image
activation and termination.

2. VAX/VMS Linker Reference Manual,
operations and shareable images.

chapters on

Source Modules

Facility Name

DCL

IN STAL

SYS

2-4

Module Name

HANDLE
IMAGECTRL, IMAGEXECT
COMMAND

INSMAIN
INS CREATE
and others

SYSIMGACT
SYSIMGSTA
SYSEXIT
SYSRUNDWN

linker

FORMING, ACTIVATING, AND TERMINATING IMAGES

TOPICS

I. Forming an Image

A. PSECTs in source and object modules

B. Format and use of the image header

II. Image Activation and Start-Up

A. Mapping virtual address space

B. Overview of related data structures

C. Image start-up (SYS$IMGSTA)

D. Installing known files

III. Image Exit and Rundown

A. $EXIT system service

B. Termination handlers

c. DCL sequence

IV. SYSGEN Parameters Relating to Image Formation, Activation,
and Termination

2-5

FORMING, ACTIVATING, AND TERMINATING IMAGES

FORMING AN IMAGE

Program Sections

• Object code is organized into program sections (PSECTs)

By VAX-11 MACRO assembler

By high-level language compilers

Depending on properties of the code, or explicit PSECT
directives

• PSECT attributes are assigned by

MACRO programmers

Some defaults applied by the MACRO assembler

High-level language compilers

Table 1 PSECT Attributes

Mnemonic Attribute Mnemonic Attribute

WRT
RD
EXE
PIC
LCL
CON
SHR
VEC

Writable
Readable
Executable
Position-Independent
Local
Concatenated
Potentially Shareable
Protected (vector)

2-7

NOWRT
NORD
NO EXE
NOP IC
GBL
OVR
NOS HR
NOVEC

Not Writable
Not Readable
Not Executable
Not Position-Independent
Global
Overlaid
Not Shareable
Nonprotected

FORMING, ACTIVATING, AND TERMINATING IMAGES

Format of an Image File

MODULE1 (.OBJ) IMAGE FILE (.EXE)

.PSECT A CON, EXE,NOWRT I R/O NOE XE

A1 II R/W C/R NO EXE

.PSECT B CON,NOEXE,NOWRT Ill R/0 EXE

I B1 I IV R/W C/R EXE

.PSECT c CON,NOEXE, WRT v R/W DZRO NO EXE

I C1 I 9 .PSECT D OVR,NOEXE, WRT

D1 I

VI R/0 GBL EXE

VII R/OC/R GBL NOE XE

B1, B2

.PSECT E CON, EXE,NOWRT

I E1 I
II C1

D1, D2
MODULE2 (.OBJ)

.PSECT A CON, EXE,NOWRT

I A2 I Ill
.PSECT B CON,NOEXE,NOWRT

A1, A2
E-'f·

I B2 I
.PSECT D OVR,NOEXE, WRT IV

I D2 I
Fixup Vectors

Figure 1 Creating an Image File

• Image sections stored in the image file

I •
II.

III.
IV.

Read-only data
Read/write data (copy-on-reference)
Executable code
Fixup vectors

• user stack is demand zero (image section V)

>

<

.J

IMAGE
SECTION
DESCRIPTORS

IMAGE
SECTIONS

MKV84-2396

• Additional image sections because LIBRTL shareable image was
referenced

VI. Transfer vectors and code
VII. Private impure data (copy-on-reference)

2-8

FORMING, ACTIVATING, AND TERMINATING IMAGES

Image Section Descriptor Formats

end of demand

number of pages
in this section

size of ISO
(in bytes)

page fault starting virtual page
cluster number for this section

type section flags

zero section descriptor --)•t----------------t
base virtual block number

end of process in image file for this section
private section descriptor~...,__ _____________ ____,.

ident for global section

count

global section name

end of global
section descriptor ---....)~-----------------'

Figure 2 Image Section Descriptor Formats

• Image section descriptors (ISDs) are built by the linker

• One ISD for each image section

• Three kinds of ISDs

• Stored in the image header

e Common TYPE field values are ISDK_NORMAL, ISDK_USRSTACK
and ISD$K_SHRPIC

*SYSGEN -

PFCDEFAULT

2-9

FORMING, ACTIVATING, AND TERMINATIN~ IMAGES

Format of the Image Header

,
;

.#

Image Header

~
\
\

Image Itself \
\

Debug and
Other Symbol
Tables

Fixup Vector

Image File

, ,
,.

,' @

\
\

®

©

®

\ ®
\

'®
\

,

Fixed Portion of
Image Header

\
Transfer Address
Array

Debug and Global
Symbol Table Offsets

Image Name and
IDENT Strings

Patch Data

Image Section ,..v ~

\\~~~~D-e-s-cr-•p_t-or~s~~--~
Image Header

,

\
\

,

\

\

, , , ,

\
\
\
\

\
\

,.

\

'

Figure 3 The Image Header

Offset to@ Size of Header

Offset to@ Offset to©

1--

Spare Offset to@

minor ID major ID

Spare image I Header
type Blocks

Requested

--1

Privilege Mask

Image 1/0 1/0
Seg. Pages Channels

Image Flags

Global Section ID

System Version Number

Fixed Portion of
Image Header

• Image header is at beginning of
block}

.EXE file (usually 1

• Contains a description of the image

• Information is used when activating the image

2-10

FORMING, ACTIVATING, AND TERMINATING IMAGES

IMAGE ACTIVATION AND ST ART-UP

1. DCL RUN command issued

Calls the image activator (SYS$IMGACT)

Calls the image

2. Image activator

Executive mode system service

Opens image file

Reads image header

Maps image to virtual address space

Returns to caller (DCL in this case)

3. Pages of image are brought into physical memory by the'VMS
pager, as needed

*SYSGEN -

IMGIOCNT

2-11

FORMING, ACTIVATING, AND TERMINATING IMAGES

Mapping an Image to Virtual Address Space

I
II
Ill
IV
v
VI
VII

II

Ill

IV

IMAGE FILE (.EXE)

R/0 NOEXE
R/W C/R NOEXE
R/0 EXE
R/W C/R EXE
R/W DZRO NO EXE
R/0 G8L EXE
R/0 C/R GBL NOEXE

81, 82

C1
D1, D2

A1, A2
E1

Fixup Vectors

II

Ill
}---- LIBRTL.EXE

a---{~
VII

v

VIRTUAL
ADDRESS

SPACE

NO ACCESS

81,82

t---
C1 -

D1, D2

t--- A1, A2 _
E1

Fix up

Ll8RTL 001

Ll8RTL 002

STACK

Figure 4 Mapping to Virtual Address Space

PO

I
P1

I
• Image activator maps image to process virtual address

space

• Code for any shareable images is located

• DCL calls entry point of image

• Program references virtual addresses

• Pages of code brought into physical memory by the pager

2-12

FORMING, ACTIVATING, AND TERMINATING IMAGES

Bringing Pages of Image into Physical Memory

EXCEPTION SCB

Figure 5 Bringing Pages into Physical Memory

PHYSICAL
MEMORY

MKV84-2384

• Referencing image page not in physical memory generates an
exception

• Hardware locates address of pager routine via the SCB

• Pager brings pages of image into physical memory

• Image instructions now execute

• Image references virtual addresses

2-13

FORMING, ACTIVATING, AND TERMINATING IMAGES

Translating Virtual to Physical Addresses

VIRTUAL
ADDRESS

SPACE

NO ACCESS

81, 82

C1
D1, D2

PHYSICAL

PO A1, A2 MEMORY
E1 PAGE TABLE

Fixup 0

LIBRTL_001

LIBRTL_002

•
•
•

I
P1

STACK

MKV84-2381

Figure 6 Translating Virtual to Physical Addresses

• Hardware uses page tables to translate virtual addresses

• Page tables are filled in by the image activator

• One page table entry maps one virtual page to one physical
page

• High bit of PTE determines whether page is in memory

2-14

FORMING, ACTIVATING, AND TERMINATING IMAGES

Locating Image Pages on Disk

PROCESS HEADER

FILE ON DISK
Process Section Table

PSTE2 PHYSICAL
MEMORY

IMAGE.EXE

~

I
1

P1 Page Table I
J

Figure 7 Locating Image Pages on Disk

MKV84-2385

• Process Section Table {PST) locates image sections on disk

• PST entries are built by the image activator

• Most PST entry information is copied from ISDs

*SYSGEN -

PROCSECTCNT

2-15

FORMING, ACTIVATING, AND TERMINATING IMAGES

Summary of Image Formation and Activation

FILE.OBJ

---$LINK

VIRTUAL
ADDRESS SPACE
r----1
I I

I PO I
I I
I I

FILE.EXE t- - - - - -i
#I I

Header ' I P1 I
, I I

Image
Sections

'MAP I I
L ____ J

PROCESS
HEADER

PST

POPT

P1PT

PHYSICAL
MEMORY

Figure 8 Summary of Image Formation and Activation

2-16

FORMING, ACTIVATING, AND TERMINATING IMAGES

Image Start-Up

$LINK

or

$LINK/DEBUG

or

$LINK/DEBUG= filespec

$LINK/NOTRACEBACK

SYS$1MGSTA

Transfer address of
user image

0

0

Transfer address of
user image

0

0

0

MKV84-2382

Figure 9 Transfer Address Array Formats

• SYS$IMGSTA system service

Map the debugger, if referenced
Establish traceback handler
Alter argument list to point to next transfer vector
address

e LIB$INITIALIZE

• Transfer address obtained from image header

2-17

FORMING, ACTIVATING, AND TERMINATING IMAGES

Installing Files

EXESGL_KNOWN _FILES - J -
KNOWN FILE

.... POINTER BLOCK
KFE - - HASH TABLE - p -- KFE KFE - -- -- - - - - --

KFELINK KFELINK

-- -

KFD KFD
~

~~
Figure 10 The Known File Database

• Can INSTALL a file with various attributes

• one Known File Entry (KFE) for each file

• One KFD for each unique device, directory, and tile-type
combination

*SYSGEN -

GBLSECTIONS
GBLPAGES

2-18

FORMING, ACTIVATING, AND TERMINATING IMAGES

The Known File Entry

KNOWN FILE ENTRY
HSHLNK KNOWN FILE
KFELINK RESIDENT HEADER

HSHIDXI TYPE T SIZE BUFEND

KFD ~ ALIAS

GBLSECCNT I FLAGS - HDRVERI TYPE SIZE

USECNT -- IHD
WCB/File ID

IMGHDR -- _.-.jl,,

PROCPRIV T
AMECOD r><1 MATCH

CTL

IDENT

lFILNAMLENJ SH RC NT

......w FILNAM v
(39 byte maximum) ::r

Figure 11 KFE with a Resident Header

• KFE contains information about the installed
attributes

• If header-resident, KFE points to the image header

2-19

...........

T

file's

FORMING, ACTIVATING, AND TERMINATING IMAGES

IMAGE EXIT AND RUNDOWN

Exit System Service

$EXIT

YES

YES

YES

YES

REITO
CORRESPONDING
MODE

CALL
CORRESPONDING
HANDLERS LIFO

TK-8970

Figure 12 Exit System Service

2-20

FORMING, ACTIVATING, AND TERMINATING IMAGES

Termination Handlers

0 ~ --~ --
(exec) (exec)

L
~ -------

::CTL$GL_THeXEC

::CTL$GL_THSUPR

E F ---(first) (second)

0 I~
(super)

D , ,;
forward Ii , nk

, .. "'
exit handler a , ddress , ,

..,,,£ -- ..,,,£ -- L 0
0 ~ - ~ - ~

N

address in whic h to store
(user) (user) (user) reason for exit

A B c r additional arg
(first) (second) (third) (if any)

- - - - -

uments

Figure 13 Termination Handlers

Table 2 How Termination Handlers Are Established
for Each Access Mode

Mode Established By

User user image

Supervisor DCL (or other CL!)

Executive PROCSTRT for RMS rundown

Kernel (No h~ndlers: EXIT causes
process deletion)

2-21

T

FORMING_, ACTIVATING, AND TERMINATING IMAGES

DCL Operation

DEBUG Command

Generate
SSS_ DEBUG
signal

STOP Command

EXIT Command

CONTINUE
Command

CLI Initialization
Code

Beginning of CLI
Command
Processing Loop

~ '-...._ External
~ ~mage -------

Service internal
commands

.Portion . of CLI that
activates and calls
external images

$EXIT

System
Service

Supervisor Mode
Termination Handler
Declared by CLI

(CTRL-Y) AST transfer-address LOGINOUT

CALL image

Image Code

Figure 14 DCL Operation

• Glorified exit handler
• Main command loop

Prompts for command
Uses DCL tables to decide image or internal routine

• Command code

Images run in PO space
Internal routines run in Pl space

• CTRL/Y AST
e $EXIT {image)
e LOGOUT {LOGINOUT.EXE)

2-22

FORMING, ACTIVATING, AND TERMINATING IMAGES

SUMMARY

Table 3 Summary of Image Formation, Activation,
and Termination

Operation Component

Form image from object modules

Map image to virtual address space
(create page tables, PST)

Partially activate known images

Establish default condition handlers

Bring image pages into physical memory

Invoke termination handlers; eventually
cause image to be removed

Linker

Image Activator
(SYS$IMGACT)

INSTALL

SYS$IMGSTA

Pager

SYS$EXIT

Table 4 SYSGEN Parameters Related to Image
Formation, Activation, and Termination

Function

Maximum number of global pages (size of
Global Page Table)

Maximum number of global sections that can
be made known to system (size of GST)

Default page fault cluster factor for images

Determine size of process section table (PST)

Default amount of image I/O address space
used by the image activator

(*) special parameter

2-23

Parameter

GBLPAGES

GBLSECTIONS

PFCDEFAULT

PROCSECTCNT

IMGIOCNT (*)

FORMING, ACTIVATING, AND TERMINATING IMAGES

APPENDIX
LINKER CLUSTERS

• All input files (object, library, and shareable images)
are organized into clusters.

• By default

All object files are put in the default cluster

Separate cluster for each shareable image

• Cluster for a shareable image only contains descriptor for
the image, not the whole image (conserve disk space).

• Linker writes contents to image file a cluster at a time.

• Programmer can control linker organization of image

Use CLUSTER and/or COLLECT option on LINK command

Possibly creates images that execute more efficiently

Most effective with large programs (larger
process working set)

2-25

than

FORMING, ACTIVATING, AND TERMINATING IMAGES

OBJECT MODULES

A

B

c

D

E

F

VIRTUAL ADDRESS SPACE

CLUSTER
ONE

CLUSTER
TWO

$LINK A.OPT/OPTIONS

CLUSTER=ONE,, ,A,D,E
CLUSTER=TWO,, ,B,C,F

EACH CLUSTER MAY
CONSIST OF SEVERAL
SECTIONS, EACH
WITH DIFFERENT
ATTRIBUTES.

TK-8962

Figure 15 Linker Clusters

2-26

Paging

PAGING

INTRODUCTION
There are two functions required of the memory management

subsystem of the operating system. The first gives each user
program the impression that it is running in contiguous physical
memory, starting at address zero.. · The second divides the
available physical memory equitably among the users of the system.

The first function requires that the user's virtual address be
translated to a physical address. If the data is already in
memory, the translation is done by hardware. When a program
refers to data that is on disk, software is invoked to bring the
data into memory. This software is an exception service routine
called the pager.

VMS implements the second function by using working sets and
paging. Each process is required to execute with a limited amount
of its data in memory. To avoid fragmentation of physical memory,
this data is divided into 512 byte pieces, called pages. The
valid pages a process has in memory at any time are called the
working set.

Because the working set limit represents the amount of
physical memory "owned" by a process, processes at their working
set limits must replace pages in the working set with newly
demanded ones (rather than simply acquiring more physical memory).
This replacement is performed by the pager.

OBJECTIVES
To understand, and make efficient use of, the Paging system on

VMS, the student must be able to:

• Describe the effects of changing working set size,
creating and deleting virtual address space, and creating
and mapping a global section.

• Discuss the programming considerations that affect paging
overhead.

• Given a set of initial conditions and a page request,
describe the changes in the status and locations of pages
and the changes in process states.

• Discuss the effects of
governing paging.

3-3

altering SYSGEN parameters

PAGING

RESOURCES
Reading

1. VAX/VMS Internals and Data Structures, chapters on memory
management data structures, paging dynamics, and memory
management system services.

Additional Suggested Reading

1. VAX/VMS Internals and Data Structures, chapter on image
activation and termination.

Source Modules

Facility Name

SYS

RTL

Module Name

PAGEFAULT
ALLOCPFN
SVAPTE

SYSADJWSL,SYSLKWSET,
SYSPURGWS
SYSCRMPSC,SYSDGBLSC
SYSCREDEL
RSE
IOCIOPOST

LIBVM

3-4

PAGING

TOPICS

I. Basic Virtual Addressing

A. Virtual and physical memory

B. Page table mapping

II. Overview of Page Fault Handling

A. Resolving page faults

B. Data structures in the process header

III. More on Paging

A. Free and modified page lists

B. The paging file

c. Cataloging pageable memory (the PFN database)

IV. Global Paging Data Structures

v. Summary of the Pager

3-5

BASIC VIRTUAL ADDRESSING

PHYSICAL MEMORY

PFN 0

PFN 1

PFN n

PAGING

VIRTUAL MEMORY

VPN 0

VPN 1

VPN i

T VPN j T
MKV84-2383

Figure 1 Physical and Virtual Memory

• Physical memory is divided into 512-byte page frames

• Virtual memory is divided into 512-byte pages

• Virtual memory has three areas (PO, Pl, SO)

3-7

PAGING

Virtual Address Space

VIRTUAL ADDRESS SPACE

VIRTUAL VIRTUAL PAGE
ADDRESS (VA) NUMBER (VPN)

00 000 000 § 000 000
00 000 200 000 001

00 000 400 000 002 40 000 400

"""t-- ""')..-
40 000 401-

3F FFF AOO 1 FF FFD
3F FFF coo
3F FFF EOO

40 000 000

40 000 200

40 000 400

1FF FFE/

t_ •
3 2 1 0

1FF FFF
7 6 5 4

000 000
• • • 8

000 001 - BYTE WITHIN PAGE
000 002 (BWP)

7F FFF AOO

7F FFF coo
7F FFF EOO

~~ ~ ~ \j 503 • • •
1FF FFD

507 506 505 504
1 FF FFE

511 510 509 508
1FF FFF • • 80 000 000 000 000

80 000 200 000 001 '-40 000 5FE

80 000 400 000 002 40 000 5FF

~~ ~~
BF FFF AOO 1 FF FFD

BF FFF coo 1FF FFE

BF FFF EOO 1FF FFF

co 000 000 000 000

>

I ,.I

VIRTUAL PAGE
NUMBER 000 002
IN P1 SPACE

co 000 200 000 001 32-BIT VI RTUA L ADDRESS

co 000 400 000 002

:: ::: ~~~ tl ::: ::~
FF FFF EOO D 1FF FFF

..... \,,. """--
3130 29

I I I
0 0-PO
0 1 - P1
1 0-SO
1 1 -S1

VPN

Figure 2 Virtual Address Space

3-8

09 08 00
I BWP I

TK-8958

PAGING

Associating Virtual and Physical Addresses

Virtual page number 0

Virtual page number 1

Virtual page number 2

PROCESS A
VIRTUAL MEMORY

Virtual page number 0

Virtual page number 1

Virtual page number 2

Virtual page number 3

PROCESS B
VIRTUAL MEMORY

---....

---.........

... --..-

PROCESS A
PAGE
TABLE

PROCESS B
PAGE

TABLE

Page frame number 1

Page frame number 2

Page frame number 3

Page frame number 4

Page frame number 5

Page frame number 6

Page frame number 7

Page frame number 8

Page frame number 9

PHYSICAL
MEMORY

Figure 3 Associating Virtual and Physical Addresses

• Process A has allocated
PFN 1
PFN 4
PFN 6

• Process B has allocated
PFN 4
PFN 5
PFN 7
PFN 8

• PFN 4 is being shared by Process A and Process B

• Translation from virtual to physical address is done using
page tables

3-9

PAGING

SO Virtual Address Translation

SO VIRTUAL ADDRESS
31 29 9 8 0

l~ VIRTUAL PAGE NO. BYTE IN
PAGE

~ ~

l
PAGE TABLE

"

PTE 20 0
_..,,,, I II PAGE FRAME NO. -

IV p M
:;;ti

R
0
T

, ' ,,
29 98 0
~,

PAGE FRAME NO. BYTE IN
PAGE

PHYSICAL ADDRESS

Figure 4 SO Virtual Address Translation

3-10

PAGING

Hardware Checks

PTE
3130 27 0

I[_]
Protection Code

Allowed

Access Request -...

NOT Allowed (Access Violation Fault)"

31
~rrentMode

0

I I I I
PSL 00 - Kernel

01 - Executive
10 - Supervisor
11 - User

Figure 5 Hardware Checks if Access Allowed

Before address translation occurs, the hardware checks the type of
request (read or modify/write) against:

• The protection field of the corresponding page table entry
(PTE)

• The current access mode field of the processor status
longword (PSL)

If access is denied, no address translation occurs and an access
violation condition is signaled.

3-11

PAGING

Process Headers in SO Space

SYSTEM SPACE (SO)
-----S-Y-S.-E-X_E ____ 8000 0000

RMS.EXE

.
SYSTEM CONTROL BLOCK

HARDWARE PCB
WORKING SET LIST .

PO PAGE TABLE

P1 PAGE TABLE

HARDWARE PCB
WORKING SET LIST .

PO PAGE TABLE

P1 PAGE TABLE

SO PAGE TABLE

Process Header
for

Process BACH

Process Header
for

Process CHOPIN

BALANCE
SLOTS

MKV84-2380

Figure 6 PHDs and SO Page Table in SO Space

3-12

PAGING

Page Tables

• All page tables are mapped into system space

• Each page table has

Processor base register

Processor length register

• System Page Table (SPT) is

Permanently resident in memory

Located by a physical address in System Base Register
(SBR)

3-13

Page Table Mapping

VIRTUAL ADDRESS

PO SPACE

MAPPED
PAGES

UNMAPPED
PAGES

P1 r--~___.

UNMAPPED
PAGES

UNMAPPED
PAGES

PAGING

SO REGION

POPT

t21 r
..,

2

I :~NONEXISTENT 1
~ L PTEs I ________ .J

SPT

t
2 I NONEXISTENT
~

1
PTEs I

L-- j
PHYs1cA1
MEMORY

3-14

LengthO

__ L_en~gt:.:.:..:h 2:___JO

PAGING

Referencing a PO Virtual Address

Virtual Address

PO I 0 I 0 I VPN I BWP I
Disk

P1 G
so PAGER

Physical
Process Header Memory

l 1 Hardware PCB PFN 0

PFN 1

,,I'-' ,,I'-' PFN 2

PTE

PO Page Table

P1 Page Table

VIRTUAL ADDRESS SPACE STORAGE DEVICES

MKV84-2378

Figure 8 Referencing a PO Virtual Address

3-15

PAGING

OVERVIEW OF PAGE FAULT HANDLING

PER PROCESS
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
PROCESS
CONTEXT

PAGE FAULT

Process

USER
CODE

PAGER

VIRTUAL ADDRESS SPACE

Image File(s)

•••

Physical
Memory

STORAGE DEVICES

Figure 9 Resolving Page Faults

• Pager is an exception service routine executing within the
context of the process that incurred the page fault

• Page not in memory - read I/O issued to image file or page
file

• Page in memory - taken from free or modified page list, or
valid global page

3-16

Working Set List

PCB SL-PHO
(PHO)

WSLIST

WSLOCK

WSDYN

WSNEXT

WSLAST

WSOUOTA

WSEXTENT

PAGING

__,,,, ..

~ -
~ -
~ -
~ -
~ -
~ -

• PAGES LOCKED IN
WORKING SET BY VMS

• PAGES LOCKED BY
USER

• WORKING SET LIST
DYNAMIC SPACE

•
ROOM FOR EXPANSION OF WSL

•
•

Figure 10 Working Set List

• WSLAST can move to

LOCKED
PAGES

CURRENT
WORKING SET
LIST

ROOM FOR
EXPANSION

WSQUOTA if few free pages (free page count <BORROWLIM)

WSEXTENT if many free pages
>BORROWLIM)

(free

• WSNEXT - latest entry put in working set list

page count

• Page replacement scheme is close to first-in/first-out

*SYSGEN -

BORROWLIM
WSMAX
PQL_DWSDEFAULT, PQL_MWSDEFAULT
PQL DWSEXTENT, PQL MWSEXTENT
PQL DWSQUOTA, PQL_MWSQUOTA
MINWSCNT

3-17

PAGING

Image Section Descriptor Formats

number of pages
in this section

size of ISO
(in bytes)

page fault
cluster

starting virtual page
number for this section

type section flags
end of demand
zero section descriptor--)••---------------......

base virtual block number
end of process in image file for this section
private section descriptor~~--------------....

ident for global section

count

global section name

end of global
section descriptor ---~~~~-~-------------~

Figure 11 Image Section Descriptor Formats

3-18

PAGING

Process Section Table (PST)

PCB$L_PH
(PHO)

D

End of Process Section Tab le

s Proces

Section
Table

pHO~ .. P'-'1,8P69Ff "t)

... -

.... , ...

''" _,..,,,,,...

l11~ 12

Working Set List

Room for Expansion of PST or WSL

Last Allocated PSTE

PSTE

PO Page Table, P1 Page Table

Process Section Table

1(-- M
bet

PS TX

_J

• Contains entries that locate image sections on disk

• Grows toward lower offsets in the variable portion of the
process header

*SYSGEN -

PROCSECTCNT

3-19

Process Section Table Entry

POINTER TO CHANNEL CONTROL BLOCK

PAGE STARTING VIRTUAL
FAULT

CLUSTER PAGE NUMBER (22 BITS)

ADDRESS OF WINDOW CONTROL BLOCK

BASE VIRTUAL BLOCK NUMBER
FOR THIS SECTION

CONTROL
FLAGS

NUMBER OF PAGES IN
THIS SECTION

PAGING

~

' '

/
/

l/

' ' '
/

/
/

' /

PROCESS HEADER

PROCES-S SECTION
TABLE

PSTE

Figure 13 Process Section Table Entry

• Relates virtual pages to virtual blocks in image file

• Is filled in using linker information in Image Section
Descriptor (ISD)

• Has control flags to describe attributes of the section
(GBL, CRF, DZRO, WRT, etc.)

3-20

PAGING

HOW PTEs, PSTEs ARE FILLED IN

DEMAND ZERO SECTION

IMAGE SECTION DESCRIPTOR

NUMBER OF PAGES I SIZE= 12

PAGE FAULT
BASE VIRTUAL PAGE NUMBER CLUSTER

TYPE SECTION FLAGS

NUMBER
OF
PAGES

PROCESS PRIVATE SECTION

IMAGE SECTION DESCRIPTOR

NUMBER OF PAGES I SIZE= 16

PAGE FAULT
BASE VIRTUAL PAGE NUMBER

CLUSTER

TYPE SECTION FLAGS

BASE VIRTUAL BLOCK NUMBER
IN IMAGE FILE

PROCESS PAGE TABLE

r--
0 DEMAND ZERO

0 DEMAND ZERO

0 DEMAND ZERO

0 DEMAND ZERO

0 DEMAND ZERO

PROCESS SECTION
TABLE

• • •
PROCESS SECTION
TABLE ENTRY

PO PAGE
TABLE

0 PSTX

NUMBER [0 PSTX
OF PAGES

0 PSTX

GLOBAL SECTION

IMAGE SECTION DESCRIPTOR PO PAGE TABLE GLOBAL PAGE TABLE

NUMBER OF PAGES l SIZE= VARIABLE

PAGE FAULT
BASE VPN CLUSTER

0 GPTX

0 GPTX GPTE

TYPE SECTION FLAGS 0 GPTX GPTE

0 GPTX GPTE
BASE VIRTUAL BLOCK NUMBER 0 GPTX GPTE

T
MINOR ID MAJOR ID I 0 GPTX GPTE

J.

IMAGE SECTION NAME
1 COUNT

0 GPTX GPTE

0 GPTX GPTE

NUMBER OF PAGES

MKV84-2397

Figure 14 How PTEs, PSTEs Are Filled In

3-21

PAGING

Process Header

Fixed Portion of Process Header

Working Set List

~

Process Section Table

Empty Pages

Arrays for Process Header Pages

PO Page Table

~

P 1 Page Table

Figure 15 The Process Header

Four major areas of the process header are used in paging
operations:

Area SYSGEN Parameters

• PO page table

~ VIRTUALPAGECNT

• Pl page table

• Process Section Table PROCSECTCNT

• Working set list WSMAX

3-22

PO

P1

so

PAGING

Virtual Address

lolol VPN I awP

Process Header
Fixed Part El WSL

PST t1f¥

P1PT

VIRTUAL ADDRESS SPACE

Disk

ISDs

Image
Sections

FOO.EXE

Phy-sical Memory
PFNO
PFN 1

PFNx

PFN n

STORAGE DEVICES

Figure 16 Overview of Page Fault Handling

3-23

PAGING

Sample Program

.
I

;

AA:
BB:

CC:
DD:

EE:

.TITLE testing
program to illustrate memory management topics
it doesn't do much

RD,NOWRT, NOEXE ~l)~t \ .PSECT

.LONG

.LONG

.PSECT

.LONG

.LONG

.PSECT

.BLKB

.PSECT

.ENTRY
MOVL
MOVL
MOVL
MOVL
RET

.END

RO

10

RD, WRT, NOEXE yr;~<t-1.,-

25

RW

~
~ ~~Jl

RD, WRT, NOEXE \) ~

15
0

$RWDZRO$

6*512

$CODE$ RD, NOWRT, EXE
foo, ~M<R3, R4 >
AA, R4
CC, R3
#10, EE
#SS$_NORMAL, RO

f oo

Example 1 MACRO Program with Four PSECTs

3-24

PAGING

Template for Process Paging Example

POBR

Process Header

Fixed Part

-----------~-}Wot~ Set
Pages Base VPN Base VBN

PSTE 3 / }
PSTE 2 ~~~~~~ _---'.....____________ Table

0 - 1FF

200 - 3FF

400 -5FF

600 - 7FF

800 - 9FF

AOO - BFF

COO - OFF

Image.EXE

Pages Base VPN Base VBN

10

CC: .LONG 15

PJ: wif/IJ.ei ~
t • ~,,,,. •

Figure 17 Template for Process Paging Example

3-25

II

Ill

MKV84-2379

MORE ON PAGING

PHYSICAL MEMORY'

Balance
Slots

PHD

PHD

Working Set

PAGING

Modified Free
Page Page
List List

Figure 18 Free and Modified Page Lists

3-26

DISK

IMAGE
FILE

PAGE
FILE

MKV84-2377

PAGING

Different Forms of Page Table Entry

Yalld PT£

Oltterent
Form• of
lrtwelld PT£•

--------i•Modify Bit - Set by Hardware on Write or
Modify Access to Page

__,Window Bit- Indicates Page Mapped by PFN
21 aa 24 23 22 I 20 19 1e 11 1e 15 31 30 0

l_1..._l _p_,o_t 1 M 1 1 Mo_d_•l ____ H __ P_a_g_e_F_r_a_m_e_N_u_m_b_e_r_(_P_F_N_l _____ I :.:::.~.:c""

0 Prot 0 Mode 0 0 Demand Zero
Page

... :-+--:-~-:-+-:-+--4:-:-:-: ... :-+----:-~o-9b_e_a_~-:-:-:-:-:-:-~-1e_b_~-:-~-:-:-N_, ____ --t:;~~·r ~
0 Prot 1 Mode 0

0 Prot 1 Mode 1

Figure 19

Paging File Virtual Block Number

ent Forms of Page Table Entry

3-27

0

Page I• In
Paging File

Page ls In
Image Fil•

The Paging File

l::~MG$GL_PAGSWPVC

PAGING

CONTROL BLOCK FOR
SHELL

CONTROL BLOCK FOR
SWAPFILE.SYS.

• • •

I
I

I

PAGE FILE CONTROL BLOCK

~

PAGE l l FAULT TYPE SIZE
CLUSTER

SWAPFILE # M
M:SWPFILCNT POINTER TO WINDOW CONTROL BLOCK

CONTROL BLOCK
FOR PAGEFILE.SYS

• • •
PAGE FILE# N
N=PAGFILCNT ' ' ' \J

~

~

Figure 20 Page File Control Block

(!PL)
Control Block

• Address of bitmap
• Page fault cluster
• Pointer to window control block
• Base virtual block number
• Pages that may be allocated

Bitmap

• One bit per block in the page file
• Bit set implies block available

*SYSGEN -

SWPFILCNT
PAGFILCNT

3-28

.

BITMAP .

PAGING

PFN DATABASE

Au(~ ~t~ge in Process
l!Jf 'VD Working Set

Figure 21 PFN Database

free or modified
page list

BAK where page should go if it must leave

WSLX, BLINK index into working set list,

SHRCNT,FLINK number of processes sharing page

PTE ~ virtua~ddress of PTE that maps this page

REFCNT number of reasons not to put page o~~~or)
modified page list ~('ftp v..-....· __

1
);,...uJS•••

STATE specifies list or activity

SWPVBN virtual block number in swap file or page file

TYPE type of page - for example, process, system global

Note: PFN is index into arrays.
FLINK and BLINK arrays may be longwords for large
physical memory.

3-29

PAGING

Using a Process CRF Page

• Contains read/write data, for example

• Initial copy of page is from image file

• If leaves working set, placed on MPL

• Backed up to paging file

3-30

PAGING

Initial Status of Process CRF Page

Process Header

PFN Database Arrays
WSL

WSLX
~----------------·
~----------------· BAK

Somewhe re

PST
"""'-- -- _. Else PTE

~----------------
..

Locates Image '
FREE PAGE

LIST STATE

Section on Disk
~----------------~ REFCNT

Page Table

~-,,--1--P"sfx--:~
~---- ---------~

Figure 22 Initial Status of Process CRF Page

Page is invalid and

• PTE has index into Process Section Table

e CRF bits are set in PTE and PSTE

• No connections as yet to PFN database

3-31

PAGING

Page Fault on Process CRF Page (Step 1)

Process Header

PFN Database A rrays
WSL

B © -
~----------------

""""'- ---- ~

® WSLX

~----------------· BAK

-
PST -- PTE

~----------------~ ® VALID
Locates Image

STATE

Section on Disk
~----------------~ REFCNT

Page Table
--"'-

----I---------~ ..,
...,,,,,_

~---- ---------· --
~AGEFI~

Figure 23 . Page Fault on Process CRF Page (Step 1)

A. PFN PTE array points to the Page Table Entry

B. WSLE is filled with pointer to PTE

c. PFN WSLX array entry contains PHD$W_WSNEXT

3-32

PAGING

Page Fault on process CRF Page (Step 2)

Process Header

PFN Database A rrays
WSL

..-

~----------------
"""'-- ---- """"'

WSLX

'": __ -------------· --
@

BAK

--
PST

PTE

® In
~----------------~ Transition Locates Image

STATE

Section on Disk
1 ~----------------~ REFCNT

@
Page Table

--"- ----I---------· ,
~-9__ ---~'=~---·

,J

® ~ w

~GEFll=-1

Figure 24 Page Fault on Process CRF Page (Step 2)

E. Increment PFN REFCNT to represent I/O in progress

F. PTE represents a page in transition

G. PFN BAK array is filled with Page File pointer

H. PFN STATE array represents page in transition

3-33

PAGING

Page Fault on Process CRF Page (Step 3)

Process Header

PFN Database A rrays
WSL

-
"""- -

~---------------- --
wsuc

~:---------------· --- BAK

-
PST - PTE

~----------------~ ® VALID
Locates Image

STATE

Section on Disk
0 ~----------------~ REFCNT

Q)
Page Table

.llo.

----I---------~ . ,
~ - _1_ - - - -~'=~---~ """"-

<D """ "
~GEFl'=-1

Figure 25 Page Fault on Process CRF Page (Step 3)

When page read completes:

I. PTE is made valid

J. PFN REFCNT is decremented (I/O complete)

K. PFN STATE is changed to valid

3-34

PAGING

Removing Process CRF Page from Working Set

Process Header

PFN Database A rrays
WSL

@ © MPL

~----------------· Back Link

~----------------~

WSLX

--- BAK

-PST - PTE

® MODIFIED
~----------------~ PAGE LIST Locates Image

STATE

Section on Disk
0 ~---------------·~ REFCNT

Page Table

~-<,--I---PFN- - - . ,J

~---- ---------· ""'I(" w ®
PAGE FILE

Figure 26 Removing Process CRF Page from Working Set

Page is placed on Modified Page List (MPL)

A. PTE is invalid, but retains PFN

B. PFN STATE array shows page on MPL

C. PFN WSLX array entry has MPL backward pointer

D. Working Set List entry is freed

3-35

PAGING

Process CRF Page Moved from MPL to FPL

Process Header

PFN Database A
WSL

to----------------·
to----------------~

PST

to----------------~ Locates Image
Section on Disk

~----------------·

Page Table

®

®

~----I- -- ------· t-_9__ ---~Ett __ ~~-----~,~---

I PAGEFI~ ©

FPL
Back Link

--~

--~
FREE

PAGE LIST

0

Figure 27 Moving Page from MPL to FPL

A. PFN database contains FPL pointers

B. PFN STATE array shows page on FPL

opy of modified page was written to page file

3-36

rrays

WSLX

BAK

PTE

STATE

REFCNT

PAGING

Removing Process CRF Page from Memory

Process Header

PFN Database Arrays
WSL

? WSLX

? BAK

PST PTE

----------------Locates Image
Section on Disk

? STATE
Somewhere t------1

Else ? REFCNT

Page Table
@

Figure 28 Removing Process CRF Page from FPL

A. Backing store is copied to PTE (and TYPl bit set)

B. All links to PFN database are broken

3-37

PAGING

DATA STRUCTURES USED BY THE PAGER

PER PROCESS
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
PROCESS
CONTEXT

PAGE FAULT

Process

USER
CODE

PAGER
Process

WSL
PST

Header

POPT

P1PT

System
SWSL Header
GST

SPT

GPT

Database
VIRTUAL ADDRESS SPACE DPFN

STORAGE DEVICES

Figure 29 Data Structures Used by the Pager

Table 1 Where Memory Management Information is Stored

Memory Management
Information

Process (PO and Pl space)

System (SO space)

Global Sections

Physical Memory

Data Structure

Process Header - Process Section Table
- Page Tables
- Working Set List

System Header - System Page Table

System Header - Global Page Tables
- Global Section Table

PFN Database

3-38

PAGING

GLOBAL PAGING DATA STRUCTURES

MMG$GL_GPTBASE:: •• -----------1••

Process Page Table

0 GPT Index

0 GPTlndex

0 GPT Index

0 GPT Index

0 GPTlndex

0 GPT Index

0 GPT Index

0 GPTlndex

Global Page Table

+
N Entries

Global Page Table Entry

GPTE

GPTE

GPTE

GPTE

GPTE

GPTE

GPTE

Figure 30 Process PTEs Map to Glopal PTEs

Global Page Table

• Central location for global page information

• Mapped into SO space (Sr/Pl)

*SYSGEN -

GBLPAGES
GBLPAGFIL

3-39

PAGING

Relationship Among Global Section Data Structures

f-

f-

Global Section
Table Entry

l 1

Section
Name

' ' '

... .,

~

-I

-I

-

Global Section Descriptor

' ' '

., .,

' ' ' '
... ., ...

System Header

I-
Global

Section Table

~1- - - - -- - - - -- -- - - - -. GSTE
1-----------------

Global
Page Table

-

t----------------"
" " "
"

" " "

" " "

"" ---------------·t- -------

GPTE
GPTE
GPTE
GPTE
GPTE
GPTE

Global
Page
Table

Entries

Figure 31 Relationship Among Global Section Data Structures

Three data structures contain global section information:

1. Global page table

2. Global section table (similar to process section table)

3. Global section descriptors (allow the location of global
section information by name)

GSDs are placed in either a system queue or a group queue

*SYSGEN -

GBLSECTIONS

3-40

PAGING

Using a Global Read/Write Page

• Result of a $CRMPSC (global), for example

• Higher probability of "cheap" page faults on global pages

• uses global structures in the system header

3-41

PAGING

Initial Status of Global Read/Write Section Page

Process Header A System Header

WSL PFN Database Arrays

~----------------
~---------------- Global

Section Table

SHRCNT
PAGE TABLE ----------------· l+-i

@ Locates Global

~·cf_ I_ .. GPT·x ·-;-~ Section on Disk
I"----------------· ---- -----------~

BAK

PTE

STATE

®

Global
Page Table

..... ~ --0·1 ·--Gsfit- - ~ -- ,. ____ ----------

Figure 32 Initial Status of Global Read/Write Section Page

A. Process A PTE points to the Global Page Table Entry (GPTE)

B. GPTE points to Global Section Table Entry (page is not in
physical memory)

3-42

PAGING

Adding Global Read/Write Section Page to Working Set

Process Header A System Header !
WSL © PFN Datab ase Arrays

Global
Section Table ©

1 SH RC NT
PAGE TABLE -r.<>e:a-tes-Gioi>ai- h GSTX Section on Disk

~----------------~ ®
~ r-GPTE

BAK

PTE

VALID STATE

Global
Page Table

~:t:i:::J>J:~:::
""""'-.... ""'l""

Figure 33 Adding Global Read/Write Section Page to
Working Set

When Process A faults the global page:

A. Both the process PTE and the GPTE contain the page frame
number

B. The PFN database points only to the system header data­
structures (GSTE and GPTE)

C. The SHRCNT is initialized to 1

3-43

PAGING

Initial Status of PTE of Second Process

Process Header A System Header J
WSL PFN Datab

~----------------·
~ -~---------------. Global

Section Table
1

PAGE TABLE ~----------------~ ~ Locates Global GSTX Section on Disk t · -r · 1---PF~f- -:- . ~----------------~
~---- -----------· ~GPTE

VALID

Process Header B

WSL

~----------------~ Global

~----------------~
Page Table

~T-1----PF_N _ -- --= --... ---- ----------~ PAGE TABLE ®
~ -cf -I- -G i>Yx. - :. - ~
~---- -------·---~

Figure 34 Initial Status of PTE of Second Process
Mapping the Same Global Section

ase Arrays

SH RC NT

BAK

PTE

STATE

A. When Process B maps the same global section, its PTE
contains the GPTX.

3-44

PAGING

Adding Global Read/Write Section Page to Second Working Set

Process Header A System Header n
WSL PFN Datab

~----------------·
~:---------------· Global @

Section Table

2
PAGE TABLE r----------------· ~ Locates Global

GSTX Section on Disk ~ -1--1- --PFN---:-.
., ________________ ,

---- -----------· ~GPTE
VALID

Process Header B

WSL

~---------------- Global

~=--------------- Page Table

-~T-r---p-,:ti--; """-

., ____ ----------
PAGE TABLE

~I ., -y-1 · --PFtf. - --~ ., ____ -------·---~

@

Figure 35 Adding Global Read/Write Section Page to
Second Working Set

ase Arrays

SH RC NT

BAK

PTE

STATE

A. When Process B faults the same global page as Process A,
the PTE of Process B also points to the page frame.

B. The only change in the system data structures is the
incrementing of the SHRCNT value to two.

3-45

PAGING

Removing Global Read/Write Section Page from Working Set

Process Header A System Header l
WSL PFN Datab ase Arrays

~----------------i ________________ ,
Global

Section Table
© 0 SH RC NT

PAGE TABLE ----------------· ~ Locates Global GSTX Section on Disk
~ -,,--1- -CiF>Yx--;-i ---------------- ® ~---- -----------~ f--e GPTE ~

BAK

PTE

FREE PAGE
LIST STATE

Process Header B

WSL

~---------------- Global

~----------------
Page Table

~,--1---------- --~ __ Q._ _ __ _PJ:.~- -- ~
"""'Ill""

PAGE TABLE
® t--o--r-CiF>Yx·-:..-·

t----- -----------·

Figure 36 Removing Global Read/Write Section Page
from Working Set

Eventually both processes release the global pages from their
working sets.

A. As each process loses page from working set, the PFN in
the process PTE is overwritten by GPTX.

B. The relationships between the system header data
structures and the PFN database are similar to those for a
process private page on the free list.

c. The global page is placed on the free or modified page
list only after SHRCNT is decremented to zero.

3-46

PAGING

Removing Global Read/Write Section Page from Memory

Process Header A System Header Somewhere
se El

WSL '~ a a PFN D t base Arrays

~----------------· Global

Section Table

?
PAGE TABLE ~----------------Locates Global I+

~-cf_ I_ -Ci'Pr-x--:-i Section on Disk
~----------------·

~---- ----------- ®

?

Process Header B

.WSL

~----------------i Global
~----------------i Page Table

~ ~--o-r--GSTX--;.. i--
r' ---- ----------· ©

PAGE TABLE

~-cf_ I_ -G'PYx· -:.-i
~---- ___________ ,

Figure 37 Removing Global Read/Write Section
Page from Memory

SHRCNT

BAK

PTE

STATE

When the page is allocated to another process from the head of the
free list:

A. The system header data structures are returned to their
initial states.

B. All links to the PFN database are destroyed.

3-47

SUMMARY OF THE PAGER

PER PROCESS
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
PROCESS
CONTEXT

PAGE FAULT

Process

USER
CODE

PAGER

VIRTUAL ADDRESS SPACE

PAGING

Process_ _ ___.
::; Header

POPT

P1PT

SWSL
GST

SPT

System
Header

~--------1 GPT

Database DPFN

Image File(s)

•••

STORAGE DEVICES

Figure 38 Summary of the Pager

3-48

PAGING

Table 2 SYSGEN Parameters Related to Paging

Function Parameter

Number of pages required on FPL for processes BORROWLIM
to grow beyond WSQUOTA (checked at quantum end)

Maximum number of global pages (size of GBLPAGES
Global Page Table)

Maximum number of global pages with page file GBLPAGFIL
backing store

Maximum number of global sections that can GBLSECTIONS
be made known to system (size of GST)

Number of pages required on FPL for processes GROWLIM
to grow beyond WSQUOTA (checked on page fault)

Minimum number of fluid pages in a working set MINWSCNT

Inhibits all page read clustering NOCLUSTER (*)

Maximum number of paging files PAGFILCNT

Default page table page fault cluster size PAGTBLPFC (*)

Default page fault cluster factor for images PFCDEFAULT

Determine size of process section table (PST) PROCSECTCNT

Default working set size for processes PQL_DWSDEFAULT

Minimum default working set size PQL_MWSDEFAULT

Default working set extent for processes PQL_DWSEXTENT

Minimum default working set extent PQL_MWSEXTENT

Default working set quota PQL_DWSQUOTA

Minimum default working set quota PQL_MWSQUOTA

(*) special parameter

3-49

PAGING

Table 2 SYSGEN Parameters Related to Paging (Cont)

Function Parameter

Quota for the size of system working set

Maximum number of working set list entries
that may be skipped while freeing an entry

Number of pages in process virtual address
space (PO plus Pl)

Maximum number of pages in a working set

(*) special parameter

3-50

SYSMWCNT

TBSKIPWSL (*)

VIRTUALPAGECNT

WSMAX

PAGING

APPENDIX
SUPPLEMENTARY INFORMATION

PROCESS VIRTUAL ADDRESS TRANSLATION

SO Space

Virtual
Memory

PO
Virtual Address ,--""-")

I 0 I 0 I VPN I BWP I

POBR

SBR

VPN BWP

PAGE
CONTAINING OPERAND

POPT

Physical
Memory

SPTE

MKV84-2376

Figure 39 Process Virtual Address Translation

3-51

PHYSICAL ADDRESS SPACE

00 000 000

MEMORY

1F FFF FFF
20 000 000------....

ADAPTERS,
1/0 DEVICES,
ETC.

3F FFF FFF ------.....
PHYSICAL ADDRESS
SPACE

PAGING

512-BYTE
PAGES

1-----1

.....----1

PAGE FRAME NUMBER (PFN)

000 000

000 001

000 002

• • •

• • •
1 FF FFD

1FF FFE

1 FF FFF

TK-8961

Figure 40 Physical Address Space

*SYSGEN -

PHYSICALPAGES

3-52

PAGING

IMAGE ACTIVATOR AND PROCESS HEADER

I

II

111

IV

v
VI

VII

II

Ill

IMAGE Fl LE (.EXE)

R/O NOE XE

R/W C/R NOE XE

R/O EXE IMAGE
R/W DMZ NOE XE > SECTION

R/0 EXE DESCRIPTORS

R/O EXE

R/W C/R NOE XE

DD
O_GJ IMAGE >

SECTIONS

GJ

w
ACTIVATOR
($RUN)

PROCESS HEADER

WSL
t

1
PSTE

PSTE

PSTE

POPT

l
f

P1PT

I

II

111
}

PROCESS
SECTION
TABLE

TK-8959

Figure 41 Image File and Process Header

Image Activator

• Fills in Process Section Table entries from the image
section descriptors.

• Fills in the Page Table entries.

• Resolves any shared addresses.

3-53

PAGE READ CLUSTERING

Why Cluster Pages

• More efficient $QIO.

PAGING

• Brings into worki~g set pages that potentially will be
referenced.

How a Cluster is Made

Pager scans successive PTEs for the same backing store address.

Examples:

• PSTX {~~P~-)
• Consecutive pagefile VBNs (#i.

t'
• Consecutive GPTEs with same GSTX (

'I.

Pager scans until:

• No more WSLEs are available

• No physical pages available

• Page table page for PTE not valid

• Maximum cluster size reached

If no page can be clustered, previous PTEs are scanned using above
rules.

3-54

PAGING

Maximum Cluster Size Determination

Table 3 Cluster Sizes and Where They are Stored

Page

Global Page Tables
Process Page Tables
Paging File Pages
Process, Global Sections

Changing/Controlling Cluster Size

• SYSGEN parameters

PFCDEFAULT
PAGTBLPFC

Cluster Size

1
PAGTBLPFC
PFL$B PFC/PFCDEFAULT
SEC$B-PFC/PFCDEFAULT

e PFC argument in $CRMPSC

• Linker option
(cluster=cluster_name,[base_adr] ,[pfc] ,file_spec[, •••]

• Inhibit all page read clustering

NOCLUSTER SYSGEN parameter

3-55

Swapping

SWAPPING

INTRODUCTION
The swapper is a process. The code of the swapper is part of

the system image and executes in kernel access mode in SO space.

The swapper is responsible for memory management on a
system-wide basis. While the pager is the component servicing the
demands within a process, the swapper balances the demands for
physical memory by all of the processes in the system and the
pageable portion of the operating system. To accomplish this,
three operations are performed by the swapper:

• Inswap ~nd outswap

• Modified page writing

• Shrinking working sets

Inswap and outswap operations are transfers of entire working
sets between memory and disk.

Outswapping operations typically release over 100 pages at a
time, and provide a rapid way to replenish the free page list.
Included in these transfers are:

• The PO and Pl space pages that are memory-resident and
valid

• The process headers (including the hardware context,
accounting information, and all of the memory management
data structures of the process).

The only information normally retained in physical memory
after a process has been outswapped is found in data structures
allocated from nonpaged dynamic memory, particularly the software
process control block (P~B) and the job inform~tion block (JIB).

Modified page writing is also performed by the swapper
process. When pages are needed, they are always allocated from
the free page list.

Pages are provided for allocation by writing modified pages to
their backing storage locations ano then inserting the pages on
the free page list.

Before the swapper outswaps a process, it will attempt to
replenish the free page list by recovering pages from a process by
shrinking the working set.

4-3

SWAPPING

The swapper is also involved in both process creation and
system initialization.

OBJECTIVES
To properly manage system-wide memory usage, the student must

be able to:

1. Explain why swapping and paging are both implemented in
VAX/VMS.

2. Describe the swapping operation (inswap/outswap, handling
I/O in progress, and global pages).

3. Discuss the effects of altering SYSGEN parameters relating
to swapping.

4-4

SWAPPING

RESOURCES
Reading

1. VAX/VMS Internals and Data Structures, chapter on swapping

Additional Suggested Reading

1. VAX/VMS Internals and Data Structures, chapters on memo'ry
management data structures, paging dynamics, and memory
management system services

Source Modules

Facility Name

SYS

Module Name

PAGEFILE
SWAPPER
OSWPSCHED
SDAT
SHELL
WRTMFYPAG

IOCIOPOST
SYSUPDSEC

4-5

SWAPPING

TOPICS

I. Comparison of Paging and Swapping

II. Overview of the Swapper, the System-Wide Memory Manager

III. Maintaining the Free Page Count

A. Write modified pages

B. Shrink working sets

c. Outswap processes

IV. Waking the System-Wide Memory Manager

v. Outswapping a Process

A. Swap files

B. Scatter/gather

c. Partial outswaps

VI. Inswapping a Process

4-7

SWAPPING

COMPARISON OF PAGING AND SWAPPING

Table 1 Differences Between Paging and Swapping

Paging

Function Supports programs with
very large address
spaces.

Implementation Moves pages into and
out of process
working sets.

How Invoked Exception service
routine that executes
in the context of the
process that incurred
the page fault.

Unit The page

Similarities

Swapping

Supports a large
number of con­
currently active
processes.

Moves entire processes
into and out of
physical memory.

Separate process that
is awakened from its
hibernating state by
components that detect
a need for swapper
activity.

A process working
set

1. The pager and swapper work from a common database.

2. The pager and swapper do conventional I/O.

3. Both components attempt to maximize the number of blocks read
or written with a given I/O request.

4-9

SWAPPING

OVERVIEW OF THE SWAPPER, THE SYSTEM-WIDE MEMORY MANAGER

• Description of Code

Located in SO space

Separate process

Part of system image (SYS.EXE)

Executes in kernel mode only

• Primary function is to control memory for the entire
system through:

Modified page writing

Shrinking of working sets

Inswapping and outswapping of working sets

• Also involved in process creation

Swaps in SHELL of a process

• One-time initialization code executes
initialization

Creates SYSINIT process

4-10

during system

SWAPPING

Swapper - Main Loop

*SYSGEN -

FREELIM
MPW ff !LIMIT
MPW-LOLIMIT

Wake Swapper_.. __ _..

No

Maintain Free
Page Count

Write Modified
Pages

OUTSWAP/
INSWAP

Give Requested
Power Fail Asts

Hibernate

Yes

Figure 1 Swapper - Main Loop

4-11

SWAPPING

MAINTAINING THE FREE PAGE COUNT

To maintain at least FREELIM free pages, swapper will attempt to:

1. Reclaim pages from deleted process headers .

2. Write modified pages

• If modified page write alone will satisfy need for
free pages

If (FREEGOAL minus number on free list) <
(number on modified list minus MPW_LOLIMIT)

If at least MPW_THRESH pages on modified list

e Will stop writing at MPW_LOLIMIT

3. Shrink working sets to SWPOUTPGCNT pages

4. Outswap processes

*SYSGEN -

FREEGOAL
FREELIM
MPW LOLIMIT
MPW THRESH
SWPOUTPGCNT

4-12

SWAPPING

How Modified Page Writer Gathers Pages

Modified
Page List

PTE
A
B
c
D
E
F
• • •

~I

Balance Slot
Area

transition PTE (free List)

0 PFN D

i
0 PFN A

• • •
0 PFN C

1 PFN (valid)

• • •
process section table index

0 PFN E

• • •
0 PFN B

• • •
0 PFN F
correct PGFLX but cluster
full

!..-

!..-

" ,,,,"I
I

I
I

V'
I

I
I

I
V'

I
1 PFN A

• • •
1 PFN C

1 PFN E

• • •
1 PFN B

• •
1 PFN F

Figure 2 How Modified Page Writer Gathers Pages

Gathers pages around selected PTE from modified pages list until
PTE is:

Free page PTE
Valid PTE
PSTX in PTE
PGFLX in PTE but cluster is full

*SYSGEN -

MPW WRTCLUSTER

4-13

SWAPPING

Modified Page Write Clustering

• Scans PTEs in reverse order from page read clustering

• Can write clusters to

Page file
Image file
Mapped data file

• If SWPVBN > O, page going to swap file, no clustering.

• When building clusters

Cluster size
MPW WRTCLUSTER

determined by

Scan terminated if:

SYSGEN parameter

1. PTE indicates page not on modified page list

2. PTE points to page in shared memory, or page
mapped by PFN

3. PSTX or GSTX does not match that of first PTE in
scan

• When writing to page file

Build up several mini-clusters into one larger cluster

Use one I/O to write larger cluster to disk

Note that on later page read, mini-clusters may be
read separately.

4-14

SWAPPING

Trimming and Swapping Working Sets

• If modified page writing does not gain enough free pages,
swapper will trim and swap working sets.

• Outswap is expensive, so try trimming first

• swapper uses a table for deciding which processes to trim
and swap (in module OSWPSCHED)

• Processes on the system are divided into groups depending
on

Their scheduling state
Special swapper considerations, for example, whether
or not

Experienced initial quantum
Have direct I/O in progress

• General steps for trimming and swapping:

Trim all processes in all groups to WSQUOTA (call in
"loans")

For each group of processes:

Perhaps trim each process to SWPOUTPGCNT
Then outswap each process

• Swapper goes on to next task when sufficient free pages on
free page list

4-15

SWAPPING

Table 2 Order of Search for Trim and Swap Candidates

Group Process State Special Flags for Swapper

I SUSP SWAP ASAP

II COM DORMANT, SWAPASAP, COMPUTE

III HIB LONGWAIT, SWPOGOAL
LEF NDIOCNT, LONGWAIT, SWPOGOAL

IV CEF NDIOCNT, SWPOGOAL, CEF

v HIB SHORTWAIT, SWPOGOAL
LEF NDIOCNT, SHORTWAIT, SWPOGOAL

VI FPG PRIORITY
COL PG PRIORITY

VII MWAIT

VIII CEF PRIORITY, INQUAN, DIOCNT, CEF
LEF PRIORITY, INQUAN, DIOCNT

IX PFW PRIORITY, INQUAN
COM INQUAN, COMPUTE

4-16

Table 3 Description of Special Swapper Flags

Flag Description

CEF Marks the CEF state (queues are different from
other wait states)

COMPUTE Marks the computable (COM) state

DIOCNT Process must have nonzero direct I/O count

DORMANT Only consider process if dormant

INQUAN Ignore process if PCB$V_INQUAN is set

LONGWAIT Only consider processes in a long wait

NDIOCNT Process must have zero direct I/O count

PRIORITY Observe priority of process relative to inswap
candidate

SHORTWAIT Only consider processes in a short wait

SWAPASAP Swap process right after trimming to WSQUOTA

SWPOGOAL Reduce process past WSQUOTA before swapping

• Characteristics of a DORMANT process

*SYSGEN -

DEFPRI
DORMANTWAIT
LONGWAIT
SWPFAIL

Computable state
Current priority less than or equal to DEFPRI
Has not had a significant event in DORMANTWAIT seconds

4-17

SWAPPING

Expanding and Shrinking Working Sets

@f
BORROWLIM

FREELIM I
®+

FREE GOAL
GROWLIM

Number of Pages
on Free Page List

WSEXTENT

WSQUOTA

®

SWPOUTPGCNT

MINWSCNT

Number of Pages
in Working Set

Figure 3 Expanding and Shrinking Working Sets

1. If free page count > BORROWLIM, working set may grow past
WSQUOTA to WSEXTENT.

2. If free page count < FREELIM, swapper will attempt to

- Shrink working sets from WSEXTENT to WSQUOTA

- Shrink working sets from WSQUOTA to SWPOUTPGCNT

. 4-18

SWAPPING

WAKING THE SYSTEM-WIDE MEMORY MANAGER

Table 4 Selected Events That Cause the Swapper or
Modified Page Writer to Be Awakened

Event Module

Process that is RSE
outswapped becomes
computable

Quantum end RSE

CPU time expiration RSE

Modified page list ALLOCPFN
exceeds upper limit
threshold

Free page list drops ALLOCPFN
below low limit
threshold

Balance slot of deleted SYSDELPRC
process becomes
available

Process header reference PAGEFAULT
count goes to zero

System timer subroutine TIMESCHDL
executes

4-19

Additional Comments

Swapper will attempt to make
this process resident

Outswap previously blocked by
initial quantum flag setting
may now be possible

Process may be deleted,
allowing previously blocked
inswap to occur

Modified page writing is
performed by swapper

Swapper must balance free
page count

Previously blocked inswap may
now be possible

Process header can now be
outswapped to join previously
outswapped process body

The swapper is potentially
awakened every second if there
is any work for it to do

SWAPPING

OUTSWAPPING A PROCESS

• Outswap a process for two reasons

Reclaim free pages
Free up a balance slot

• Processes are moved from physical memory to the swap file
(or paging file)

• Outswap a process in two stages

Process body (PO and Pl pages)
Process header

• More difficult to outswap process header

4-20

SWAPPING

Outswap Rules

Table 5 Rules for Scan of working Set List on outswap

Type of Page

1. Process
Page

2. System
Page

3. Global
Read-Only

4. Global
Read/Write

5. Page Table
Page

Valid

Valid

Valid

Action of Swapper for This Page

Outswap page.

If there is outstanding I/O and
the page is modified, load SWPVBN
array element with block in
swap/page file where the updated
page contents should be written
when the I/O completes.

Impossible for system page to be
in process working set. Swapper
generates an error.

If SHRCNT = 1, then outswap.

If SHRCNT > 1, DROP from working
set. It is highly likely that
process can fault page later
without I/O. This check avoids
multiple copies of same page in
swap page file.

DROP from working set. It is
extremely difficult to determine
whether page in memory was
modified after this copy was
written to the swap page file.

Not part of process body.
However, while scanning process
body, VPN field in WSL is
modified to reflect offset from
beginning process header because
page table pages will probably
be located at different virtual
addresses following inswap.

The scan of the working set list on outswap is keyed off a
combination of the physical page type (WSL<3:1>) and the valid bit
(PTE<31>).

4-21

Locating Disk Files for Swap

PROCESSES X, Y
ALREADY EXIST
AND ARE
CURRENTLY
OUTSWAPPED

PCB
for

Process X

WSSWP

PCB
for

Process Y

WSSWP

SWAPPING

Entry 1
Locates SWAPFILE.SYS

• • •

Entry SWPFILCNT + 1
Locates PAGEFILE.SYS

• • •

~
lswap Slot

for Process X

~
L Swap Slot

for Process Y

Figure 4 Locating Disk Files for Swap

• Choice of swap file or page file is determined by a field
in the PCB called WSSWP

• Swap slots are assigned dynamically in increments of
SWPALLOCINC, up to WSQUOTA pages

• If swapping is occurring on system, more efficient to swap
file than page file

*SYSGEN -

SWPFILCNT
PAGFILCNT

If sufficient memory, may not need separate swap file

On small systems, may not want separate swap file

MPW WRTCLUSTER
SWPALLOCINC

4-22

SWAPPING

How Swapper's PO Page Table is Used to Speed Swap 1/0

Process'
Virtual

Address
Space

2

3

CD

Swapper's
Virtual PO
Address
Space

@

VAX
Physical
Memory

@

SWAP SLOT

©

Figure 5 How Swapper's PO Table is Used to Speed Swap I/O

1. Working set pages usually virtually discontiguous in
process address space.

2. Mapped to virtually contiguous addresses in swapper's PO
space.

3. Both virtual pages correspond to same PFNs in physical
memory.

4. $QIO on swapper's contiguous virtual addresses --> one I/O
to disk (QIO issued with base virtual address and byte
count).

4-23

SWAPPING

Swapper's Pseudo Page Tables

SWP$GL-MAP:: e •
(This address is stored
in the swapper's PO
base register.)

Swapper's
1/0

Page Table
Entry

Array of
Longwords WSMAX

elements
(This number is stored in
the swapper's PO length
register.)

MPW$AL-PTE::•e~~•• ..._. :: MPW$AW-PHVINDEX

Modified
Page Writer's

1/0
Page Table

Entry
Array of

Longwords

MPW -WRTCLUSTER
elements

MP W's
Process
Header
Vector
Index
Array

of
Words

Figure 6 Swapper's Pseudo Page Tables

Swapper can have one swap I/O and one modified page write
in progress at the same time.

*SYSGEN -

MPW PRIO
SWP-PRIO

4-24

I/O

SWAPPING

Partial Outswaps and the Process Header

• In partial outswap, process body outswapped, process
header remains resident

• Reason for partial outswap - pages locked in memory

$LCKPAG or direct I/O

Locked pages and PHD stay in memory

• Note that $LKWSET has no effect on PHD being outswapped

• Effects of partial outswap

Balance slot still occupied, preventing another
process getting inswapped (BALSETCNT = maximum number
of resident processes, MAXPROCESSCNT >= BALSBTCNT)

On inswap, if PHD still resident, only process body is
inswapped, so process page tables are rebuilt, but not
system page table entries mapping PHD.

• PHD size depends on

PHD$K_LENGTH

WSMAX

PROCSECTCNT

VIRTUALPAGECNT

4-25

SWAPPING

INSWAPPING A PROCESS

• Inswap is the opposite of outswap

• Inswap in two stages

Process header
Process body

• Only inswap from computable outswapped {COMO) state

4-26

SWAPPING

INSWAP RULES

Table 6 Rules for Rebuilding the Working Set List and the
Process Page Tables at Inswap

Type of Page Table Entry

1. PTE is valid

2. PTE indicates a transition
page (probably due to
outstanding I/O when proc­
ess was outswapped)

3. PTE contains a global page
table index (GPTX)

(Page must be global read­
only because global read/­
write pages were dropped
from the working set at
outswap time)

Action of Swapper for this Page

Page is locked into memory and
was never outswapped.

Add transition page to process
working set. Release
duplicate page that was just
swapped in.

Swapper action is based on the
contents of the global page
table entry (GPTE).

a. If the global page table
entry is valid, add the
PFN in the GPTE to the
process working set and
release the duplicate page.

b. If the global page table entry
indicates a transition page,
make the global page table
entry valid, add that physical
page to the process working
set, and release the duplicate
page.

c. If the global page table entry
indicates a global section

4-27

table index, then keep the page
just swapped in, and make that
the master page in the global
page table entry, as well as the
slave p~ge in the process page
table entry.

SWAPPING

Table 6 Rules for Rebuilding the Working Set List and the
Process Page Tables at Inswap (Cont)

Type of Page Table Entry

4. PTE contains a page file
index or a process section
table index

Action of swapper for this Page

This is the usual content for
pages that did not have out­
standing I/O or other page ref­
erences when the process was
outswapped.

The PFN in the swapper map is
inserted into the process page
table. The PFN arrays are
initialized for that page.

At inswap time the swapper uses the contents of the page table
entry to determine what action to take for each particular page.

4-28

SUMMARY

User Process

E1
Control
Region
Data

Per-Process Space
Process Context

System Space
System Context

Process}
Header

SWAPPING

Swapper Process
Pseudo POPT

I SWAPPER

Modified Free
Page Page
List List

Figure 7 Overview of Swapper Functions

outswap
a PO and Pl pages are "adopted" into swapper's PO space
d Process outswapped to swap file/page file
b PHO pages are "adopted" into swapper's PO space
d PHO outswapped to swap file/page file

In swap
d Reverse of outswap

Modified Page Writing
e Selected modified pages "adopted" to swapper's PO space
f Modified pages written to page file
g "Modified" pages transferred to free page list

Process Creation
c SHELL copied to swapper's PO space
a,b SHELL code and data transferred to Pl and PHO

of new process

4-29

SWAPPING

Table 7 SYSGEN Parameters Relevant to the Swapper

Function Parameter

Number of pages required on free page list for
processes to grow beyond WSQUOTA (checked at
quantum end)

Base default process priority

Real time that must elapse before swapper
considers a COM process dormant

Swapper's goal for pages on free page list

Low threshold of free page list

Number of pages required on FPL for processes
to grow beyond WSQUOTA (checked by the pager)

Real time that must elapse before swapper
considers a process temporarily idle

Upper limit for modified page list

Low limit for modified page list

P~iority of modified page write I/O

When regaining free pages, minimum number of
pages on modified page list before swapper
can write modified pages

Maximum number of pages in one MPW I/O

Maximum number of paging files

Priority of swap I/O

Swap file allocation increment value

Maximum number of processes swapper will skip
when searching for a trim/swap candidate

Maximum number of swap files

Number of pages swapper tries to trim a process
to before outswapping it

(*) = special parameter

4-30

BORROWLIM

DEFPRI

DORMANTWAIT

FREEGOAL

FREEL IM

GROWL IM

LONGWAIT

MPW HILIMIT

MPW LOLIMIT

MPW_PRIO (*)

MPW THRESH (*)

MPW WRTCLUSTER

PAGFILCNT .

SWP_PRIO (*)

SWPALLOCINC (*)

SWPFAIL (*)

SWPFILCNT

SWPOUTPGCNT

1
2

;++

.SBTTL

SWAPPING

SWAPPER - MAIN LOOP

APPENDIX
SWAPPER - MAIN LOOP

3
4
5
6

FUNCTIONAL DESCRIPTION:

7
8
9

10
11 LOOP:
12
13
14
15
16
17
18
19
20
21
22
23
24
25

15$:

20$:

THE MAIN LOOP OF THE SWAPPER IS EXECUTED WHENEVER THE SWAPPER IS AWAKENED
FOR ANY REASON. EACH OF THE FUNCTIONAL ROUTINES WILL CHECK TO SEE IF
THEY HAVE ANY ACTION TO PERFORM.

.PSECT $AEXENONPAGED NON-PAGED PSECT
BSBB BALANCE BALANCE FREE PAGE COUNT
BSBW MMG$WRTMFYPAG WRITE MODIFIED PAGES
BSBW SWAPSCHED SCHEDULE SWAP
TSTL WAEXE$GL PFATIM CHECK FOR POWER FAIL TIME
BEQL 15$ - BRANCH IF NO POWERFAIL
JSB EXE$POWERAST GIVE ANY REQUIRED POWER FAIL ASTS
MOVL WASCH$GL CURPCB.R4 GET PROPER PCB ADDRESS
MOVAQ WASCH$GQ-HIBWQ~R2 AND ADDRESS OF WAIT QUEUE HEADER
SETIPL #IPL$ SYNCH ; BLOCK SYSTEM EVENTS WHILE CHECKING
BBSC #PCB$V WAKEPEN,PCB$L STS(R4),20$; TEST AND CLEAR WAKE PENDING
PUSHL #0 - - NULL PSL
BSBW SCH$WAITK WAIT WITH STACK CLEAN
SETIPL #0 DROP IPL
BRB LOOP CHECK FOR WORK TO DO
.DISABLE LSB

Example 1 Swapper - Main Loop

4-31

1/0 Concepts and Flow

I/O CONCEPTS AND FLOW

INTRODUCTION
When attempting to understand how input and output are handled

under VMS, it is necessary to examine a series of sources
including the code itself. Prior to reading the code, you must
understand the steps that are taken to handle an I/O operation.
Before reading the code, the names of the modules must also be
known.

This module will illustrate and define the concepts and flow
of how I/O is handled under VMS. It will also outline the pieces
of VMS code that are involved in I/O, and how they are related.

OBJECTIVES
To trace a given I/O function through the VMS system, the

student must be able to:

e Briefly describe the components of the I/O system,
including system services, RMS, drivers, and XQPs.

• Describe the elements of, and uses of, the database
maintained by the I/O system.

5-3

I/O CONCEPTS AND FLOW

RESOURCES

Reading

• Guide to Writing a Device Driver for VAX/VMS, chapters on
I/O overview and driver functions.

• VAX/VMS Internals and Data Structures, chapters on · I/O
System Services and device drivers.

Source Modules

Facility Name

SYS

FllX

5-4

Module Name

SYSQIOREQ
IOCIOPOST

FllXQP

I/O CONCEPTS AND FLOW

TOPICS

I. Overview of I/O Components and Flow

A. Example of flow for $QIO request

II. Components of the I/O System

A. RMS

B. I/O system services

c. XQPs, ACPs

D. Device drivers

III. The I/O Database

A. Driver tables

B. IRPs

c. Control blocks

IV. Methods of Data Transfer

5-5

I/O CONCEPTS AND FLOW

OVERVIEW OF 1/0 COMPONENTS AND FLOW

Per Process
Space

Process
Context

System
Space

Process
Context

System
. Space

System
Context

Process A

Figure 1 Input/Output Flow (Brief)

• Initiated by user Process

• Preprocessed by

RMS

Process B

[]

0

$QIO _,-- /.#
FDT (Driver-related routines) f~f)~ I~

•

•

ACP

Disk Structure (ODS-1)
Tape Structure

XQP for ODS-2 Disks

5-7

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

I/O CONCEPTS AND FLOW

Figure 2 Input/Output (Full)

DEVICE
INTERRUPT
IPL 20·23

• Preprocessing done by RMS, $QIO and FDT routines

• Device control and data manipulation done by driver

• Final clean up done by I/O post and I/O completion
routines

5-8

I/O CONCEPTS AND FLOW

COMPONENTS OF THE 1/0 SYSTEM

MACRO and
BLISS

High-Level
Languages

l
Compiler ---RTL Routines

RMS Entry Routines

RMS Sequential, Relative
!SAM and other support
routines

System Services

Figure 3 RMS Interfaces

• MACRO and BLISS programs can:

Call RMS directly

MKV84-2707

Access RMS data structures directly

• High-level language programs:

use language I/O statements, which the
translates to RMS calls

compiler

Call Run-Time Library routines (which translate to RMS
calls)

Most languages cannot access RMS data structures
directly

5-9

$010

• $QIO

I/O CONCEPTS AND FLOW

@
$010 SYSTEM
SERVICE

EXE$010::

RET

JSB

Figure 4 $QIO and FDT Routines

FDT

FDT

FDT

JMP

OUEUEIRP

JMP

010 RETURN

Handles device-independent $QIO parameters

Selects and JSB's to the proper FDT routines

• FDT Routines

Handle the device-dependent $QIO parameters

RSB to $QIO if other FDT coutines are needed

@

@

JMP to system routines when FDT routines are finished

5-10

I/O CONCEPTS AND FLOW

P1 Space

XQP Queue:

DISPATCH:
...... ~---::::::_•·---~I CTL$G~F 11BXQP

~AST address

SO Space

EXE$QIO::
DRIVER

FDT ROUTINES

Figure 5 XQPS

• Reside in Pl space

• Are used in process Context

IRP

D

EXE$QXQPPKT

Queue
Kernel Mode
AST

UCB

• FDT routines JSB to EXE$QXQPPKT (AT IPL$_ASTDEL)

• EXE$QXQPACP invokes the XQP by means of an AST

e When finished, XQP queues !RP to the driver's Unit Control
Block (UCB)

5-11

I/O CONCEPTS AND FLOW

User Process ACP Process
PO Space

P1 Space

so Space

EXESQIO::

User Code

PO Space

P1 Space

DRIVER
FDT ROUTINES

IRP

AQB
... IRP IRP

D
---------.....1~ LM_?LJ

Figure 6 ACPS

• Are separate processes

ACPCode

EXESQIOACPPKT

QueuelRP

Wake ACP

UCB

e FDT routines JSB to EXE$QIOACPPKT (=< IPL$_SYNCH)

e EXE$QIOACPPKT queues IRP to ACP Queue Block (AQB) and
wakes ACP

• When finished, ACP queues IRP to proper UCB

5-12

I/O CONCEPTS AND FLOW

DRIVER PROLOGUE TABLE (DPT)
Driver Name, size, etc

DRIVER DISPATCH TABLE (DDT)
Entry points to various non-FDT

routines

FUNCTION DECISION TABLE (FDT)
Lists $010 functions/FDT routines

DRIVER ROUTINES

Driver Specific FDT Routines

Start I/ 0 Routine

Interrupt Handling Routine

Error Reporting Routine

Device Initialization Routine

Figure 7 Components of Device Drivers

• Driver Tables

Used by SYSGEN
tables
used by VMS to
Used by $QIO
associated FDT

• Driver Routines

to load in the driver and set up the

get to the correct routine
to find valid functions and their

routines

FDT routines written for this driver, called by $QIO
START I/O routine to initiate the I/O when proper
Interrupt routine for the driver
Error routine for reporting problems to VMS
Initialization routine on the device or the
controller, called by VMS.

5-13

I/O CONCEPTS AND FLOW

THE 1/0 DAT ABASE

Name

!RP

CCB

DDB

UCB

DDT

FDT

CRB

IDB

ADP

Table 1 The I/O Database

Function

Carries information for
a specific I/O request

Links a 'channel' to a
specific device unit

Contains information common
to all devices on a controller

Contains information for a
device unit. Used as a listhead
for storage by the driver

Contains entry point addresses
for driver routines

Contains list of valid functions
and their FDT routine addresses

Contains information and listheads
for a particular controller

Contains information including a
table of UCB addresses for units
under a controller

Contains information including
mapping registers and data paths

5-14

Comments

Created by $QIO in
nonpaged pool

Created by $ASSIGN in
Pl space

One per device type
(one for DBA, etc.)

One per device unit
(one for DBAl:, etc.)

Used by VMS to select
the correct routine

Used by $QIO to select
routines for the prope
I/O functions

Used especially by
devices that share a
controller (for exampl
DBAl: and DBA2: share
the controller DBA)

Used by drivers and VM

Used by drivers and VM

IOC$GL_DEVLIST

CCB

P1 SPACE

CCB

I/O CONCEPTS AND FLOW

IN DRIVER

NEXT DOB

CURRENT
___ _. 1/0 PACKET

CURRENT
.___~1/0 PACKET

Figure 8 Summary Layout of I/O Database

5-15

TK-4872

I/O CONCEPTS AND FLOW

METHODS OF DATA TRANSFER

• Buffered I/O

Data is transferred through an 'intermediate' buffer
in SO space.

User process is completely swappable

Normally used with slow
terminals)

User's PO Space SO Space

devices (for

DEVICE

I BUFFER I 1---+j I BUFFER I 1---+j

MKV84-2708

Figure 9 Buffered I/O

• Direct I/O

example,

Data is transferred directly between the user's buffer
and the device

Buffer pages are locked down until I/O completes

User's PO Space

Device

I BUFFER I i----.

MKV84-2704

Figure 10 Direct I/O

5-16

I/O CONCEPTS AND FLOW

SUMMARY

• Overview of I/O components and flow

Example of flow for $QIO request

• Components of the I/O system

RMS

I/O system services

XQPs, ACPs

Device drivers

• The I/O database

Driver tables

IRPs

Control blocks

• Methods of data transfer

5-17

~etailed Sequence of VAX/VMS 1/0 Processing

USER'S SYSTEM SERVICE
PROGRAM VECTOR ------CALL SYSSOIO::

010

RET

IPLSJOPOST
SOFTWARE INTERRUPT

IOC$10POST:.

queue special
kernel AST

.
REI

CHMK
RET

TO
IOC$1NITIA TE

CHANGE MOOE
DISPATCHER

EXESCMODKRNL:: .
.

CASE ----SRVEXIT:

REI

DRIVER

10 STARI:

.
WFIKPCH

REOCOM

IOC$REOCOM:: .
special kernel
AST:

· set event flag

JMP SOFTINT #IPLSJOPOST
if more IRPs

· wrne IOSB
·copy data
· update quotas

else

•DRIVER CONTENT SAVED IN FORK BLOCK OF UCB

(CALU

JMP

RSB

$010 SYSTEM
SERVICE

EXESQtO::

RET

RSS

JSB

RSB

JMP

EXESOIORETURN

ORI VER
INTSERV:

---­.
.

REI

FORK OISPA TCHER
._J_s_B __ .,. EXESFORKDSPTH:. .

.
---..r- - - .- -

REI

UCB

FORK BLOCK
FR3
FR4 *
FPC

JSB

RSB EXESINSIOO

DEVICE
INTERRUPT

FORK IPL
SOFTWARE
INTERRUPT

Process 1/0 Channel Assignment
The first step in preprocessing an I/O request is to verify that the I/O reque~
specifies a valid process I/O channel. The process I/O channel is an entry
in a system-maintained process table that describes a path of reference from
a process to a peripheral device unit. Before a program requests I/O to a
device, the program identifies the target device unit by issuing an Assign­
I/0-Channel ($ASSIGN) system service call. The $ASSIGN system service
performs the following functions:

• Locates an unused entry in the table of process 1/0 channels

• Creates a pointer to the device unit in the table entry for the channel

• Returns a channel-index number to the program

When the program issues an 1/0 request, EXE$QIO verifies that the channel
number specified is associated with a device and locates the unit-control bloc
associated with the specified channel using the field CCB$L _UCB.

FDT Routines and 1/0 Preprocessing

QIO DETERMINES
FUNCTION

CODE VALUE

CHECK FOR
BUFFERED

1/0

ADVANCE
TO

NEXT
ENTRY

CALL
SUBROUTINE

SUBROUTINE PERFORMS
1/0 PREPROCESSING

AND RETURNS OR
CALLS TO QUEUE

PACKET OR TERMINATE

RETURN TO QIO

NO

NO

CALL VAX/VMS
ROUTINE TO

QUEUE PACKET
FOR DRIVER

CALL VAX/VMS
ROUTINE TO

COMPLETE OR
ABORT 1/0

TERMINATE
REQUEST AND

RETURN TO
USER

ZK-922-82

Creating a Driver Fork Process to Start 1/0
EXESINSIOQ creates only one driver fork process at a time for each device

. unit on the system. /u a result,. only one IRP pei: device unit is serviced at
one time. EXESINSIOQ detemunes whether a driver fork process exists for
the target device, as follows:

• If the device is idle, no driver fork process exists for the device; in this
case, the EXESINSIOQ immediately calls IOCSINITIATE to aeate and
transfer control to a driver fork process to execute the driver's start-1/0
routine.

• If. the device is busy, a driver fork process already exists for the device,
servicing some other 1/0 request. In this case, EXESINSIOQ calls
EXESINSERTIRP to insert the IRP into a queue of IRPs waiting for the
device unit. The routine queues the IRP according to the base priority of
the caller. Within each priority, IRPs are in first-in/first-out order. The
completion of the current 1/0 request triggers the servicing of the 1/0
request that is first in the queue, according to the procedure desaibed in
Section 12.1.2.3.

In the latter case, by the time the driver's start-1/0 routine gains control to
dequeue the IRP, the originating user's process context is no longer available.
Because the context of the process initiating the 1/0 request is not guaranteed
to a driver's start-1/0 routine, the driver must execute in the reduced context
available to a fork process.

IOCSINITIATE always initiates the driver's start-1/0 routine with a context
that is appropriate for a fork process. VAX/VMS establishes this context by
performing the following steps:

1 Raising IPL to driver fork IPL (UCBSLFIPL)

2 Loading the address of the IRP into R3

3 Loading the address of the device's UCB into RS

4 Transferring control (with a JMP instruction) to the entry point of the
device driver's start-1/0 routine

The newly activated driver fork process executes under the following
constraints:

• It cannot refer to the address space of the process initiating the 1/0
request

• It can use only RO through RS freely. It must save other registers before
use and restore them after use.

• It must clean up the stack after use. The stack must be in its original state
when the fork process relinquishes control to any VAX/VMS routine.

• It must execute at IPLs between driver fork level and IPLS_pOWER. It
must not lower IPL below fork IPL, except by creating a fork process at a
lower IPL.

Each driver fork process executes until one of the following events occurs:

• Device-dependent processing of the 1/0 request is complete.

• A shared resource needed by the driver is unavailable, as described in
Section 3.3.

• Device activity requires the fork process to wait for a device interrupt.

CALLS __ --

USER

PROGRAM

Inserting a UCB into the Channel-Wait Queue

010
JSB_

FDT ~

JMP
_,.

JSB_....

OIODRVPKT INSIOO -- RSB
0

JMP

••
RET QIORETURN

- ·-

JSB - INITIATE

JMP

••
DRIVER

JSB

J•

RSB I REOCHAN ~ ...

CHANNEL
WAIT

QUEUE

UCB
-- ADDRESS

ZK-928-8:

Activating a Device and Waiting for an Interrupt
Depending on the device type supported by the driver, the start-I/O routine
performs some or all of the following steps: ·

1 Analyzes the 1/0 function and branches to driver code that prepares the
UCB and the device for that 1/0 operation

2 Copies the contents of fields in the IRP into the UCB

3 Tests fields in the UCB to determine whether the device and/or volume
mounted on the device are valid

4 If the device is attached to a multiunit controller, obtains the controller
data channel

5 If the 1/0 operation is a OMA transfer, obtains a I/O adapter resources
such as mapping registers and a UNIBUS adapter data path

6 Loads all necessary device registers except for the device's control and
status register (CSR)

7 Raises IPL to IPL$JOWER (saving the value of fork IPL on the stack)
and confirms that a power failure that would invalidate the device
operation has not occurred

8 Loads the device's CSR to activate the device

9 Invokes a VAX/VMS routine (using either the WFII<PCH or WFIRLCH
macro) to suspend the driver fork process until a device interrupt or
timeout occurs

As it suspends the driver, IOC$WFII<PCH or IOC$WFIRLCH saves the
driver's context in the UCB. This context consists of the following information

• A description of the I/O request and the state of the device

• The contents of R3 and R4 (UCB$LJR3, UCB$LJ'R4)

• The implicit contents of RS as the address of the UCB

• A driver return address (UCBSLJ'PC)

• The address of a device timeout handler (.at UCB$LJ'PC)

• The time at which the device will time out (UCB$L_DUETIM)

Buffered and Direct I/ 0
Because the buffer specified in the original user 1/0 request is in process
space, it is not automatically accessible to the driver fork process that executes
in system context. As a result, for any function that involves data transfer,
the driver must select a strategy that supplies a buffer that the fork process
can address. The VAX/VMS operating system allows FDT routines a choice
between allocating a system buffer (buffered 1/0) or locking the process
buffer (direct 1/0).

A driver employs buffered 1/0 to allocate a buffer from nonpaged pool. It can
later refer to the buffer using addresses in system space. For a write request,
the driver FDT routine must move data from the user buffer to the allocated
system buffer. For a read request, the system ultimately delivers the data
from the system buffer to the user buffer by means of a special kernel-mode
AST at driver postprocessing. Drivers most often use buffered 1/0 for PIO
devices such as line printers and card readers.

With direct 1/0, the driver locks the pages of the user buffer in physical
memory and refers to them using page-frame numbers (PFNs). Normally, a
driver uses direct 1/0 for OMA transfers.

The trade-off between buffered I/0 and direct 1/0 is the time required to
move the data into the user's buffer versus the time required to lock the buffer
pages in memory. Sections 7.3.2 and 8.4 provide additional information.

Programmed 1/0
Drivers for relatively slow devices, such as printers, card readers, terminals,
and some disk and tape drives, must transfer data to a device register a
byte or a word at a time. These drivers must themselves keep a record of
the location of the data buffer in memory, as well as a running count of
the amount of data that has been transfened to or froin the device. Thus,
these devices perform programmed 1/0 (PIO) in that the transfer is largely
conducted by the driver program. This type of transfer is also known as
buffered 1/0 because the data registers of certain PIO devices can buffer
several b•tes or words and transfer those bytes to the device as a group.
When this is the case, the driver monitors a device status register to detennirl
when the device buffer is full.

Examples of UNIBUS devices that do PIO transfers are the LPl 1 and the
DZl 1. Corresponding Q22 bus devices that perform PIO transfers are the
LPVl 1 and the DZVl 1.

Section 2 outlines the action of the LPl 1 driver. The LPl 1 driver transfers
data from a system buffer to the line printer data buffer register a byte at
a time, while maintaining a count of the number of bytes left to transfer.
When the line printer data buffer is full, the line printer sets a •not ready"
bit in its status register. If the driver, while examining this register, sees tlili
bit set, it enables interrupts from the printer, and then suspends itself in the
expectation that the printer will post an interrupt to the processor. While
the driver remains suspended, the printer prints the data from its buffer and
interrupts the processor when it is done. With the interrupt handled by the
system interrupt dispatcher and the driver interrupt-servicing routine, driver
execution resumes. The driver repeats both its byte-by-byte transfer to the
printer data buffer, as well as the entire routine desaibed above, until it
determines that all the data has been transferred as requested.

Drivers performing PIO transfers ate generally not concerned with the
operation of 1/0 adapters. However, drivers that perform direct-memory­
access (OMA) transfers must take into account 1/0 adapter· functions, as
discussed below.

Buffered Data Paths
In contrast to the direct data path, the buffered data paths transfer data much
more efficiently between the UNIBUS and the backplane interconnect by
decoupling the UNIBUS transfer from the backplane interconnect transfer.
Buffered data paths read or write multiple words of data in a transfer, and
buffer the unrequested portions of the data in UNIBUS adapter buffers. Thus,
several UNIBUS read functions can be accommodated with a single backplane
interconnect transfer.

A UNIBUS device may choose to use a buffered data path rather than a direct
data path to perform the following functions:

• Fast OMA block transfers to or from consecutively increasing addresses

• Word-oriented block transfers that begin and end on an odd-numbered
byte of memory; note, however, that these transfers can be quite slow
because the UNIBUS adapter might need to perform multiple transfers to
complete a one-word transfer

• 32-bit data transfers from random longword-aligned physical addresses

A single buffered data path cannot be assigned to more than one active
transfer at a time. When a driver fork process is preparing to transfer data
to or from a UNIBUS device on a buffered data path, it performs a sequence
of steps similar to those performed by a driver that uses the direct data path,
with the exception that it uses a macro that calls a VAX/VMS routine that
allocates a free buffered data path. The following are among the actions of
the driver fork process:

1 Uses the REQMPR macro to allocate a set of mapping registers.

2 Uses the REQDPR macro to ~Hocate a free buffered data path.

3 Uses the LOADUBA macro to load the mapping registers with physical
address mapping data and the number of the allocated buffered data path.
The VAX/VMS routine called in the expansion of the LOADUBA macro
(IOC$LOADUBAMAP) also sets the valid bit in every mapping register
except the last, which remains invalid to prevent a wild transfer.

4 Load the starting address of the transfer in a device register.

5 Load the transfer byte or word count in a device register.

6 Set bits in the device control register to initiate the transfer.

The UNIBUS adapter hardware of certain processors restricts normal buffered
data paths to referring only to consecutively increasing addresses. Through
a special mode of operation, these UNIBUS adapters can also refer to 32-bit
data at randomly-ordered, longword-aligned locations in physical memory.
Other processors do not impose this restriction. In order for a device driver to
run on both types of processors, it must observe three rules:

• All transfers within a block must be of the same function type (DAT! or
DATO /DATOB).

• Normal buffered data paths must always transfer data to consecutively
increasing addresses.

• To reference 32-bit data at random, longword-aligned locations in physical
memory, the longword-access-enable bit (LWAE) must be set.

A buffered data path stores data from the UNIBUS in a buffer until multiple
words of data have been transferred (except in longword-aligned, 32-bit,
random-access mode as discussed in Section 4.3.5). Then, the UNIBUS
adapter transfers the contents of the buffer to the appropriate physical address
in a single backplane interconnect operation. The procedure for a UNIBUS
write operation that transfers data from a device to memory is broken into
individual steps.

1 The UNIBUS device transfers one word of data to the buffered data path.

2 The buffered data path stores the word of data and completes the UNIBUS
cycle.

3 The buffered data path sets its buffer-not-empty flag to indicate that the
buffer contains valid data.

4 The UNIBUS device repeats the first three steps until the buffer is full.

5 When the UNIBUS device addresses the last byte or word in the buffer,
the UNIBUS adapter recognizes a complete data-gathering cycle.

6 The buffered data path requests a backplane-interconnect-write function to
write the data from the buffered data path to memory.

7 When the backplane interconnect transfer is complete, the buffered data
path dears its flag to indicate that the buffer no longer contains valid data.

The procedure for a UNIBUS read operation that transfers data from main
memory to a device varies according to the type of UNIBUS adapter. Those
adapters that can perform a prefetch function complete UNIBUS reads
from memory more quickly than those that cannot. The prefetch feature
accomplishes this improved performance by automatically filling the data
path buffer after the buffer's contents are transferred to the UNIBUS.

The following paragraphs discuss the UNIBUS read operation with and
without the prefetch function. Device drivers that adhere to the conventions
outlined in this manual will execute properly whether or not the device is
associated with a UNIBUS adapter that provides prefetch functionality.

1 The UNIBUS device initiates a read operation from a buffered data path.

2 The buffered data path checks to see if its buffers contain valid data.

3 If the buffers do not contain valid data, the buffered data path initiates a
read function to fill the buffers with data from main memory. The transfer
completes before the UNIBUS adapter begins a UNIBUS transfer.

4 The buffered data path transfers the requested bytes to the UNIBUS. Bytes
of data that were not transferred to the UNIBUS remain in the buffer.

5 The buffered data path sets its buffer-not-empty flag to indicate that the
buffers contain valid data. ·

6 When the UNIBUS device empties the buffers of the buffered data path
with a UNIBUS read function that accesses the last word of data, the
buffered data path clears the buffer-not-empty flag to indicate that the
buffer no longer contains valid data.

7 The buffered data path then initiates a read function to prefetch data from
memory.

8 When the prefetch is complete, the buffered data path sets the buffer-not­
empty flag to indicate that the buffers now contain valid data.

The prefetch might attempt to read data beyond the address mapped by the
final mapping register. To avoid referring to memory that does not exist, the
VAX/VMS routines that allocate and load mapping registers always allocate
one extra mapping register and clear the mapping-register-valid bit before
initiating the transfer. When the UNIBUS adapter notices that the mapping
register for the prefetch is invalid, the UNIBUS adapter aborts the prefetch
without reporting an error.

The steps of a UNIBUS read function without prefetch are listed below.

1 The UNIBUS device initiates a read operation from a buffered data path.

2 The buffered data path checks to see if its buffers contain valid data.

3 If the buffers do not contain valid data, the buffered data path initiates a
read function to fill the buffers with data. The transfer completes before
the UNIBUS adapter begins a UNIBUS transfer.

4 The buffered data path transfers the requested bytes to the UNIBUS. Bytes
of data that were not transferred to the UNIBUS remain in the buffer.

Direct Data Path
Since the direct data path performs a backplane interconnect transfer for
every UNIBUS transfer, it can be used by more than one UNIBUS device
at a time. The UNIBUS adapter arbitrates among devices that wish to use
the direct data path simultaneously. The device driver is unaffected by this
UNIBUS adapter arbitration.

The direct data path is slower than buffered data paths because each UNIBUS
transfer cycle corresponds to a backplane interconnect cycle. One word or
byte is transferred for each backplane interconnect cycle. On some hardware
configurations, the direct data path is unable to transfer a word of data to an
odd-numbered physical address. Therefore, an FDT routine for a OMA device
that uses the direct data path should check that the specified buffer is on a
word boundary.5

A UNIBUS device may choose to use a direct data path rather than a buffered
data path to perform the following functions:

• Execute an interlock sequence to the backplane interconnect (DATIP­
DATO /DATOB)

• Transfer to randomly ordered addresses instead of consecutively increasing
addresses

• Mix read and write functions

The direct data path is the simplest data path to program. Since the direct
data path can be shared simultaneously by any number of If O transfers, the
device driver does not need to call the VAX/VMS routine that allocates the
data path. It performs the following actions:

1 Uses the REQMPR macro to allocate a set of mapping registers

2 Uses the LOADUBA macro to load the mapping registers with physical
address mapping data and the number of the direct data path (0). The
VAX/VMS routine called in the expansion of the LOADUBA macro
(IOC$LOADUBAMAP) also sets the valid bit in every mapping register
except the last, which remains invalid to prevent a wild transfer.

3 Loads the starting address of the transfer in a device register.

4 Loads the transfer byte or word count in a device register.

5 Sets bits in the device control register to initiate the transfer.

5 The MicroVAX II and MicroVAX I implementations of the Q22 bus provide no byte-offset register. As a result, on Q22 bus devices that are
only capable of word-aligned transfers, only word-aligned transfers are possible.

1/0 Adapter Functions

Mapping a UNIBUS Address to• Physical Address

18-BIT UNIBUS ADDRESS

map register number longword
offset

UNIBUS
adapter

scatter-gather
map

32-BIT MAP REGISTER

_.,,,
~-- page frame number -

,r ,~

page frame number longword
offset

PHYSICAL ADDRESS
ZK-915-84

MicroVAX 11 ·
scatter-gather

map

Mapping a 022 Bus Address to a Physical Address

22-BIT 022 BUS ADDRESS

map register number byte offset

32-BIT MAP REGISTER

page frame number

page frame number byte offset

24-BIT PHYSICAL ADDRESS
ZK~'

Processor

VAX-11/780
VAX-11/782
VAX-11/785
VAX 8600
VAX 8650

VAX-11/750

Features of the 1/0 Bus Adapters of the VAX Processors

Memory
References
(Physical Direct

Adapter Address) Data Path

UBA 30-bit (via 1,
SBI) no byte-

aligned
transfers

UBI 24-bit (via 1,
CMI) byte-

aligned
transfers

Buffered Data
Paths

15,
8-byte buff er,
byte-aligned
transfers,
LWAE,3

pref etch

3,
4-byte
buffer,2

byte-aligned
transfers,
LWAE,3
no prefetch

Mapping
Registers

496

5124

Interrupt
Dispatcher

Nondirect vectc

Direct vector

2Buffered data paths on the VAX-11 /750 only buffer four bytes of data. Because the data paths do not
perform a prefetch, they can always reference longwords at random.

3LW AE (longword access enable) refers to the capability to reference random longword aligned data in a
bus transfer.
4 The VAX/VMS operating system makes only 496 of these mapping registers available.

f>rocessor

IAX-11/730
/AX-11/725

/AX 8200
/AX 8800

VlicroVAX I

VlicroV AX II

Features of the 1/0 Bus Adapters of the VAX Processors

Memory
References
(Physical

Adapter Address)

UBA 24-bit

BUA 30-bit (via
VAXBI)

22-bit

24-bit

Direct
Data Path

1,
byte-
aligned
transfers

1,
byte-
aligned
transfers

1,
no
restrictions
on data
alignment 1

1,
no
restrictions
on data
alignment 1

Buffered Data Mapping Interrupt
Paths Registers Dispatcher

None 5124 Direct vector

5, 5124 Direct vector
8-byte buffer,
byte-aligned
transfers,
LWAE,3

no prefetch

None None Direct vector

None 81924 Direct vector

1The MicroVAX II and MicroVAX I implementations of the 022 bus provide no byte-offset register, so, on
l22 bus devices that are only capable of word-aligned transfers, only word-aligned transfers are possible.

iL W AE (longword access enable) refers to the capability to reference random longword aligned data in a
:>us transfer.
'The VAX/VMS operating system makes only 496 of these mapping registers available.

Competing for a Controller's Data Channel
A controller's data channel is a VAX/VMS synchronization mechanism that
guarantees for multiunit controllers that one unit uses the controller at a time.
A device's fork process can read and write a device's registers whenever the
device unit owns the controller's data channel.

Devices that share a controller, such as disk units, own the controller's data
channel only when a VAX/VMS routine assigns the channel to the unit's
fork process. In contrast, a single device unit on a controller always owns the
controller's data channel. Therefore, if VAX/VMS transfers control to such
a driver's start-1/0 routine, the driver can immediately address the device's
registers without first obtaining the controller's data channel.

An LPl 1 printer, such as the one discussed in Section 2, has a dedicated
(single-unit) controller attached to the UNIBUS. When VAX/VMS finds the
device idle and creates a printer driver's fork process to write data to the
printer's data buffer, the controller's data channel is guaranteed not to be
busy. Because the data channel is not busy, the driver's start-I/O routine can
perform the following:

1 Retrieve the virtual address of the data to be written and the number of
bytes to transfer from the device's UCB

2 Retrieve the virtual address of the device's CSR from the IDB

3 Calculate the address of the line printer's data buffer register by adding a
constant offset to the CSR address ·

4 Write data, one byte at a time, to the line printer's data buffer until all
bytes of data have been written

In contrast, a device unit on a multiunit controller must compete for the
controller's data channel with other devices attached to that controller.

Synchronization of 1/0-Request Processing

An RK611 controller, for example, controls as many as eight RK06/RK07
devices. The disk driver's fork process must gain control of the controller's
data channel before starting an 1/0 operation on the unit associated with the
fork process. The disk driver.'s start-1/0 routine uses the following sequence
to start a seek operation on an RK07 device:

1 The start-1/0 routine requests the controller's data channel by invoking a
VAX/VMS channel arbitration routine.

2 The VAX/VMS routine tests the CRB mask field to determine whether the
controller's data channel is available.

3 If the channel is available, the VAX/VMS routine allocates the channel to
the fork process and returns the address of the device's CSR to the fork
process.

If the channel is busy, the VAX/VMS routine saves the driver fork context
in the UCB fork block and inserts the fork block address in the controller's
channel-wait queue.

4 When the fork process resumes execution, the process owns the controller
channel. The fork process can then modify the device's registers to
activate the device.

5 The driver's start-1/0 routine then requests the VAX/VMS operating
system to suspend driver processing in anticipation of an interrupt or
timeout and to release the channel.

6 The VAX/VMS channel-releasing routine assigns channel ownership to
the next fork process in the channel-wait queue, loads the CSR address
into a general register, and reactivates the suspended fork process.

7 The reactivated fork process continues execution as though the channel
had been available in the first place.

The VAX/VMS channel-arbitration routines keep track of controller
availability using a flag field in the CRB. The fork process must always
request and release the controller's data channel by invoking these routines.
Once the driver owris a controller's data channel, the driver is free to read
and modify the device's registers.

The CRB's interrupt-dispatching field (CRB$L-1NTD+2) contains
executable code that the driver-loading procedure has associated with
the interrupting vector. Interrupt-dispatching fields for nondirect vectors
contain the following executable instruction:

JSB Gladdress-of-clriver-isr

On a configuration that uses direct vector interrupts-such as the MicroVAX
I, MicroVAX II, VAX 8200, VAX 8800, VAX-11/750, and VAX-11/730-the
following sequence occurs:

1 The processor saves, on the interrupt stack, the PC and PSL of the
currently executing code and acknowledges the device's interrupt.

2 The device supplies its vector address, which the processor uses as
an index into a table in the second (or third) page of the SCB

This table contains a list of addresses in the CRB that
point to the interrupt-servicing routines for devices attached to the first
UNIBUS or an optional second UNIBUS (for the VAX-11/750). ·

3 When the processor locates the address in the SCB that corresponds to the
vector address, it transfers control to an interrupt-dispatching field in the
CRB.

4 The CRB's interrupt-dispatching field (CRB$L-1NTD) contains executable
code that the driver-loading procedure has associated with the interrupt
vector. Interrupt-dispatching fields of direct vectors contain the following
executable instructions:

PUSHR <RO.R1,R2,R3,R4,R5>
JSB Gladclress-of-clriver-isr

The driver-loading procedure determines how many interrupt-dispatching
fields to build within the CRB from the number of vectors specified
in the /NUMVEC qualifier to the SYSGEN command CONNECT

The driver-loading procedure obtains the address of the
interrupt-servicing routine for each interrupt-dispatching field from the
reinitialization portion of the driver-prologue table This
section of the DPT contains one or more DPT_STORE macros that identify
the addresses of the interrupt-servicing routines. The number of DPT_
STORE macros that identify interrupt-servicing routines must equal the
number of vectors given in the /NUMVEC qualifier to avoid errors in device
initialization or interrupt handling.

Immediately following the JSB instruction in the CRB is the address of
the interrupt-dispatch block (IDB) associated with the CRB. When the JSB
instruction executes, a pointer to the address of the IDB is pushed onto the
top of the stack as though it were a return address. The driver interrupt­
servicing routine can use this IDB address as a pointer into the 1/0 database.
Figure 11-2 illustrates the portion of a CRB that contains the address of the
interrupt-servicing routine.

Channel-Request Block
The channel-request block (CRB) allows the operating system to manage the
controller data channel. Among its contents are:

• Code that transfers control to a driver's interrupt-servicing routine
(CRB$L--1NTD)

• Addresses of a driver's unit and controller initialization routines
(CRB$L--1NTD+VEC$L_UNITINIT, CRB$L--1NTD+VEC$L--1NITIAL)

• A pointer to the interrupt-dispatch block (IDB), which further describes
the controller (CRB$L--1NTD+VEC$L--1DB)

Controllers can be either multiunit or dedicated.

All UCBs describing device units attached to a single multiunit controller
contain a pointer to a single CRB (UCBSL-CRB). For these controllers, a
VAX/VMS routine uses fields in the CRB (CRBL_WQFL, CRBB_MASK)
and IDB (IDB$L_OWNER) to arbitrate pending driver requests for the
controller. When the system grants ownership of a multiunit controller
data channel to a driver fork process, the fork process can initiate an I/O
operation on a device attached to that controller. Figure 5-3 illustrates the
data structures required to describe three devices on a multiunit controller.

Data Structures for Three Devices on One Controller

CAB

UCB UCB UCB

ZK-920-82

The VAX/~MS operatin~ system does not use the CRB to synchronize
l(O opera~ons for a dedicated controller, as the controller manages but a
single .device. Nevert~eless, the CRB still is present and used by drivers and
operating system routines.

IDB

CAB

UCB

1/0 Database for Two Controllers

UCB

DDT

DEVICE
DRIVER

IDB

CAB

UCB

ZK-1765-84

Interrupt-Dispatch Block
The CRB contains a pointer to an interrupt-dispatch block (IDB)
(CRB$L-1NTD+VEC$L--1DB). The IDB contains the addresses of these three
critical data structures:

• The UCB of the device unit, if any, that currently owns the controller data
channel (IDB$L_OWNER)

• The control and status register (IDB$L _CSR); it is the key to access to
device registers

• The adapter-control block (IDB$L-ADP) that describes the adapter of the
1/0 bus to which the controller is attached

A detailed description of the fields in the IDB appears in Table A-9;
Figure A-9 shows its structure.

Figure 5-4 illustrates the relationship between the data structures that
describe a group of equivalent devices on two separate controllers. In this
figure, one controller has a single device unit, and the other controller has
two device units. Devices on both controllers share the same driver code.

Completing an I I 0 Request
Once reactivated, a driver fork process completes the 1/0 request as follows

1 Releases shared driver resources, such as 1/0 adapter mapping registers,
UNIBUS adapter data path, and controller ownership

2 Returns status to the VAX/VMS 1/0 completion routine

The IjO-completion routine perfonns the following steps to start
postprocessing of the 1/0 request and to start processing the next 1/0 reque
in the device's queue:

1 Writes return status from the driver into the IRP

2 Inserts the finished IRP in the 1/0-postprocessing fork-queue and reques
an interrupt at IPL$-10POST

3 Creates a new fork process for the next IRP in the device's pending 1/0
queue

4 Activates the new driver fork process

Reactivation of a Driver Fork Process

DEVICE
GENERATES
INTERRUPT

DRIVER SOFTWARE
SERVICES INTERRUPT

INTERRUPT OCCURS

DRIVER
FORKS

~
Lower IPL to fork level

FORK DISPATCHER
CALLS DRIVER

't , .
DRIVER DRIVER

DISMISSES COMPLETES
INTERRUPT REQUEST

FORK
DISPATCHER

DISMISSES
INTERRUPT

Creating a Fork Process After

DEVICE DRIVER'S - JSB
GENERATES - INTERRUPT- DRIVER

SERVICING -
INTERRUPT -- REI ROUTINE

0
JSB

0

RSB
IOFORK

ZK-923-82

from Interrupt to Fork Process Context
To lower its priority, the driver calls a VAX/VMS fork proc~ss queuing routi1
(by means of the IOFORK macro) that performs the following steps:

1 Disables the timeout that was specified in the wait-for-interrupt routine

2 Saves R3 and R4 (these are the registers needed to execute as a fork
process) (UCB$LJR3, UCB$LJR4)

3 Saves the address of the instruction following the IOFORK request in thE
UCB fork block (UCBSLJPC)

4 Places the address of the UCB fork block from RS in a fork queue for the
driver's fork level

5 Returns to the driver's interrupt-servicing routine

The interrupt-servicing routine then cleans up the stack, restores registers,
and dismisses the intenupt. Figure 5-7 illustrates the flow of control in a
driver that creates a fork process after a device interrupt.

Fork Dispatching Queue Structure

IPL 15 RESERVE.D

IPL 14 RESERVED

IPL 13

IPL 11
FORK QUEUE ~ FORK

~ RESERVED -- -- BLOCK
LISTHEAD

IPL 12 RESERVED

IPL 11

IPL 10

FORK LEVEL ~ IPL 10

I -- FORK QUEUE
LISTHEAD

FORK LEVEL

IPL 9 FORK LEVEL l IPL 9
.- FORK QUEUE --

IPL 8 FORKLEVEL t-- LISTHEAD

IPL 7 TIMERFORK

IPL 6
IPL 8 FORK

FORK LEVEL ~
_.

FORK QUEUE a

~ ~

BLOCK
LISTHEAD

IPL 5 XDELTA

IPL 4 1/0 POSTING IPL 6
FORK -- FORK QUEUE ~ ~

BLOCK LISTHEAD
IPL 3 PROCESS SCHEDULING

IPL 2 AST DELIVERY

IPL 1 RESERVED

IPLO PROCESS EXECUTION

ZK-584-81

Activating a Fork Process from a Fork Queue
When no hardware interrupts are pending, the software interrupt priority
arbitration logic of the processor transfers control to the software interrupt
fork dispatcher. When the processor grants an interrupt at a fork IPL, the

· fork dispatcher processes the fork queue that corresponds to the IPL of the
interrupt. To do so, the dispatcher performs these actions:

1 Removes a driver fork block from the fork queue

2 Restores fork context

3 Transfers control back to the fork process

Thus, the driver code calls VAX/VMS code that coordinates suspension and
restoration of a driver fork process. This convention allows VAX/VMS to
service hardware device interrupts in a timely manner and reactivate driver
fork processes as soon as no device requires attention.

When a given fork process completes execution, the fork dispatcher removes
the next entry, if any, from the fork queue, restores its fork process context,
and reactivates it. This sequence is repeated until the fork queue is empty.
When the queue is empty, the fork dispatcher restores RO through RS from
the stack and dismisses the interrupt with an REI instruction.

Postprocessing
When processor priority drops below the 1/0 postprocessing IPL, the
processor dispatches to the 1/0 postprocessing interrupt-servicing routine.
This VAX/VMS routine completes device-independent processing of the 1/0
request.

Using the IRP as a source of information, the IPL$-10POST dispatcher
executes the sequence below for each IRP in the postprocessing queue:

1 Removes the IRP from the queue

2 If the IjO function was a direct 1/0 function, adjusts the recorded use of
the issuing process' direct 1/0 quota and unlocks the pages involved in
the I/O transfer

3 If the 1/0 function was a buffered 1/0 function, adjusts the recorded use
of the issuing process' buffered 1/0 quota and, if the 1/0 was a write
function, deallocates the system buffers used in the transfer

4 Posts the event flag associated with the 1/0 request

5 Queues a special kernel-mode-AST routine to the process that issued the
$QIO system service call

The queuing of a special kernel-mode-AST routine allows 1/0 postprocessing
to execute in the context of the user process but in a privileged access mode.
Process context is needed to return the results of the 1/0 operation to the
process' address space. The special kernel-mode-AST routine writes the
following data into the process' address space:

• Data read in a buffered 1/0 operation

• If specified in the 1/0 request, the contents of the diagnostic buffer

• If specified in the·1;0 request, the two longwords of 1/0 status

If the 1/0 request specifies a user-mode-AST routine, the special kernel­
mode-AST routine queues the user-mode AST for the process. When
VAX/VMS delivers the user-mode AST, the system AST delivery routine
deallocates the IRP. The first part of an IRP is the AST -control block for user
requested ASTs.

RMS Implementation and Structure

RMS IMPLEMENTATION AND STRUCTURE

INTRODUCTION
Programmers on VAX/VMS can access the I/O system on a variety

of levels. One method of performing I/O is through the Record
Management Services (RMS). RMS provides greater flexibility than
most high-level language I/O statements, and can be easier to use
than the I/O system services.

RMS may be invoked directly by a programmer, or indirectly
through high-level language statements. It is important for the
Internals student to understand the module structure and flow of
the RMS routines.

Some RMS data structures, such as the record access block
(RAB), can be specified by the user, and RMS uses additional
internal data structures. This invisible part of RMS affects both
the process and the system. Understanding some of the details of
RMS implementation enables a better understanding of your process
and the system as a whole.

OBJECTIVES
1. To trace a standard RMS read or write through the proper

code modules.

2. To describe RMS's entry and exit points as seen by other
VMS facilities.

6-3

RMS IMPLEMENTATION AND STRUCTURE

RESOURCES

Reading

• VAX Record Management Services Reference Manual

Source Modules

Facility Name

SYS

RMS

6-4

Module Name

SHELL

all RMSOxxx modules

RMS IMPLEMENTATION AND STRUCTURE

TOPICS

I. User-Specified Data Structures (FAB, RAB, etc.)

II. RMS Internal Data Structures

A. Process I/O control page (for example, default values,
I/O segment area)

B. File-oriented and Record-oriented data
(IFAB, !RAB, BufDescBlk, I/O Buffer)

III. RMS Processing

A. RMS dispatching

B. RMS routines and data structures

C. Example - flow of a GET operation

6-5

structures

RMS IMPLEMENTATION AND STRUCTURE

USER-SPECIFIED DATA STRUCTURES

e File Access Block (FAB) j__ r p­
File organization
File access
Pointers or indices to other data blocks
Space allocation

• Record Access Block (RAB) J_-j;vv ~---~
Record size
Block length -~
Pointers or indices to other data blocks --7> ~~ f'fl/>
Buffer address 1~~ [1)

11

• Name Block (NAM)

•

File name information
Di'rectory ID
File ID and sequence number
Additional file information

Extended Attribute Blocks (XAB) Jr~

They carry additional information on:

Header characteristics
Allocation
Date/time
Protection
Terminal control

6-7

RMS IMPLEMENTATION AND STRUCTURE

PO SPACE

User formatted, User specific

P1 SPACE

System formatted, User specific

SO SPACE

System formatted, System used

MKV84-2776

Figure 1 Virtual Address Space

• PO Space

User program
User data structures
User buffers, FABs, RABs, NAMs, XABs

• Pl Space

Code (DCL)
Data

DCL symbols
Process logical name tables
RMS data structures

• so Space

SYS.EXE
RMS.EXE
SYSMSG.EXE
Paged pool
Nonpaged pool
RMS shared file data structures

6-8

RMS IMPLEMENTATION AND STRUCTURE

RMS INTERNAL DATA STRUCTURES

l
')...- USER STACK ,..,,I""' t 1

PER-PROCESS MESSAGE SECTION(S)

CLI SYMBOL TABLE

CLllMAGE

FI LES-11 XQP

IMAGE 1/0 SEGMENT

PROCESS 1/0
PAGES

PROCESS ALLOCATION REGION

CHANNEL CONTROL BLOCK TABLE

P1 WINDOW TO PHD

PROCESS 1/0 SEGMENT

Overall Control Area
Process 1/0 Impure Area
Image 1/0 Impure Area

PER-PROCESS COMMON AREA

,....'- • ,....'-

1 J
MKV84-2774

Figure 2 Process I/O Segment in Pl Space

RMS stores some of its information in the Process I/O Segment.
The area consists of:

• overall Control Area

• Process I/O Impure Area

• Image I/O Impure Area

6-9

RMS IMPLEMENTATION

~\~~
AND STRUCTURE

Process 1/0 Segment

• Overall Control Area

Listheads for free space

Default values

RMS status flags

• Process I/O Impure Area

Pointers to process I/O structures

Buffer page protection information

Status Flags

..r
•~I/O Impure Area

Pointers to image I/O structures

Buffer page protection information

Status flags

6-10

RMS IMPLEMENTATION AND STRUCTURE

The Overall Control Information Area

• Free memory listhead

• Free list header for image I/O segment
(2 longwords)

• RMS overall status

• End of data string

• Default Information

File protection
Multiblock count
Multibuffer counts for

Sequential disk files
Magtape files
Unit record devices
Relative files
Indexed files

• Network block count transfer size

• Structure level for RMS files

• Extend quantity for RMS files

• Directory cache list head

• Free list for directory cache nodes
(Singly linked list)

• List of locks held
(Singly linked list)

• Next sequence number for IRB$L_IDENT

6-11

RMS IMPLEMENTATION AND STRUCTURE

Impure Data Areas

Process Impure Data Area (PIO$GW_PIOIMPA)

e I/O buffer protection (PRT$C_UREW)

• Process I/O segment

Set up by PROCSTRT

• Free page listhead

• Free list header

• SP saved longword

• IFAB table address

• IRAB table address

e Number of slots per table (IMP$C_NPIOFILES)

Image Impure Data Area (PIO$GW_llOIMPA)

• Protection set on pages

• Length of image I/O segment in bytes

• IFAB table address

• !RAB table address

e Number of slots per table (IMP$C_ENTPERSEG)

• IFAB table slots

Length is IMP$C_ENTPERSEG longwords

• !RAB table slots

Length is IMP$C_ENTPERSEG longwords

6-12

RMS IMPLEMENTATION AND STRUCTURE

File-Oriented and Record-Oriented Data Structures

e IFAB

e !RAB

Contains pointers to all data structures associated
with a file

Many user FAB fields duplicated here but protected
user read, executive write

Performs similar functions to the IFAB

Record pointer (RP) and next record pointer (NRP)
stored here

• Buffer Descriptor Block

One required for each buffer

Contains:

Status information
Address fields
Pointer to associated !RAB
Pointer to queue of other BDBs

• I/O Buff er

used as the actual source/destination of memory-device
transfers

The storage is used directly with $GET and LOCATE mode

6-13

•

RMS IMPLEMENTATION AND STRUCTURE

Asynchronous Context Block

One is associated temporarily with each IFAB and
permanently with each !RAB

Contains fields corresponding to the caller's argument
list (if the caller is also asynchronous) and register
and stack contents

• Record Lock Block

One RLB for each record locked at any one time

Stores the owner process of a record and the record
address (RFA)

6-14

RMS IMPLEMENTATION AND STRUCTURE

I FAB Index Table --
Link to next segment ~

1/0 Control Area IFAB address

I FAB address

T T
pointer .,.____.....

pointer

I RAB Index Table ---
Link to next segment

I RAB address

I RAB address

,...~ ,...

T T
MKV84-2773

Figure 3 IFAB and !RAB Tables

• IFAB is found by indexing into the IFAB table with the IFI
(IF! = Internal File Identifier stored in the FAB)

• IRAB is found by indexing into the IRAB table with the ISI
(ISI = Internal Stream Identifier stored in the RAB)

6-15

RMS IMPLEMENTATION AND STRUCTURE

IFAB

R LB address

BDB address

I RAB address

BDB

IRAB

Link to next segment 1------1~

MKV84-2775

Figure 4 IFAB and Associated Blocks

The IFAB contains pointers to:

• Record Lock Block (RLB)

• Buffer Descriptor Block (BDB)

• Internal Record Access Block (!RAB)

6-16

RMS IMPLEMENTATION AND STRUCTURE

RMS PROCESSING

MACRO and High-Level
BLISS Languages

+
Compiler ___..,..RTL Routines

~ l /
RMSOx

RM 1x,RM2x, RM3x,NTO

Other Support Routines

•
System Services

!
MKV84-2772

Figure 5 RMS Interfaces

• MACRO and BLISS programs can:

Call RMS directly
Access RMS data structures directly

• High-level language programs:

use language I/O statements, which the
translates to RMS calls

compiler

Call Run-Time Library routines (which translate to RMS
calls)

Most cannot access RMS data structures directly

VAX-11 PASCAL can access RMS data structures directly

6-17

RMS IMPLEMENTATION AND STRUCTURE

PO I P1 I
Space I Space I System Space

I I Change
Mode Dispatcher

I 01
EXE$CMODEXEC : :

1) Build Call Frame

I
2) Check Argument

RMS Service Vector List

CA SEW

01 SYS$service : :

I
. .

User Program
entry mask offsets
CHME #code I

. .
BRB JSB

I CALLx

0 ©I
I Common Exit Path

~RVEXIT:

REI

RMS Synchronization
Routine

RMSCHK_STALL:

RET

Figure 6 RMS Dispatching

• RMS dispatches through executive mode

• System service-like vectors

• A common exit path

• Synchronization routines

6-18

RMS Dispatcher

RMS$DISPATCH:

CASEW--+--. . .
offsets

. .
RSB

©

RMS Service Specific
Procedure

R MS$service : :

entry mask~ -

RET

MKV84-2770

RMS IMPLEMENTATION AND STRUCTURE

PO $GET

Call SYS$GET t---

P1

L--. SYS$GET::

CHME code-number EXCEPTION

so
SCB

EXCEPTION
t---

EXEC and RMS
Dispatchers

~ EXE$xxxxx::

RMS Code

L--. RMS$GET::

Other
RMS Code

.....__..

$010
CODE

L...+-1

MKV84-2771

Figure 7 RMS components in a GET Operation

• Dispatcher (CMODSSDSP.MAR)

• RMS$GET (RMSOBLKIO.MAR)

• EXE$QIO (SYSQIOREQ.MAR)

6-19

RMS IMPLEMENTATION AND STRUCTURE

Table 1 RMS Calling MACROS and the Resulting Code

RMS Macro Pl Entry vector RMS Module

$CLOSE SYS$CLOSE RMSOCLOSE
$CONNECT SYS$CONNECT RMSOCONN
$CREATE SYS$CREATE RMSOCREAT

$DELETE SYS$DELETE RMSODELET
$DISCONNECT SYS$DISCONNECT RMSODISC
$DISPLAY SYS$DISPLAY RMSODISPL

$ERASE SYS$ERASE RMSOERASE
$EXTEND SYS$EXTEND RMSOEXTEN

$PINO SYS$FIND RMSOFIND
$FILESCAN SYS$FILESCAN RMSOFSCN
$FREE SYS$FREE RMSOMISC
$FLUSH SYS$FLUSH RMS OM I SC

$GET SYS$GET RMSOGET

$MODIFY SYS$MODIFY RMSOMODFY

$OPEN SYS$0PEN RMSOOPEN

$PUT SYS$PUT RMSOPUT

$READ SYS$READ RMSOBLKIO
$RELEASE SYS$RELEASE RMSOMISC
$RENAME SYS$RENAME RMSORENAM
$REWIND SYS$REWIND RMSOREWIN

$SPACE SYS$SPACE RMSOMAGTA

$TRUNCATE SYS$TRUNCATE RMSOTRUNC

$UPDATE SYS$UPDATE RMSOUPDAT

$WAIT SYS$WAIT RMSOWAIT
$WRITE SYS$WRITE RMSOBLKIO

6-20

RMS IMPLEMENTATION AND STRUCTURE

SUMMARY

• user-specified data structures (FAB, RAB, XAB, NAM)

• RMS internal data structures in Process I/O Segment

Overall control area

Process I/O impure area

Image I/O impure area

File-oriented and record-oriented data structures

• RMS processing

RMS dispatching

RMS routines and data structures

6-21

RMS IMPLEMENTATION AND STRUCTURE

APPENDIX
RMS FUNCTIONS AND MODULES

Table 2 RMS Functions and Primary Module Names

Function Entry Module

High use Record Operations

DELETE
FIND
FREE
GET
PUT
READ
RELEASE
UPDATE
WAIT
WRITE

RMSODELET
RMSOFIND
RMS OM I SC
RMSOGET
RMSOPUT
RMSOBLKIO
RMSOMISC
RMSOUPDAT
RMSOWAIT
RMSOBLKIO

Low use Record Operations

CLOSE
CONNECT
CREATE
DISCONNECT
DISPLAY
ERASE
EXTEND
FLUSH
MODIFY
NXTVOL
OPEN
REWIND
SPACE
TRUNCATE
ENTER
PARSE

RMSOCLOSE
RMSOCONN
RMSOCREAT
RMS OD I SC
RMSODISPL
RMSOERASE
RMSOEXTEN
RMS OM I SC
RMSOMODFY
RMSOMAGTA
RMSOOPEN
RMSOREWIN
RMSOMAGTA
RMSOTRUNC
RMSOENTER
RMSOPARSE

Comments

;DELETE A RECORD
;FIND RECORD
;RELEASE LOCK ON ALL RECORDS
;GET A RECORD
;PUT A RECORD
;READ A BLOCK
;RELEASE LOCK ON NAMED RECORD
;REWRITE EXISTING RECORD
;STALL FOR RECORD OPERATION COMPLETE
;WRITE BLOCK

;CLOSE FILE
;CONNECT RAB
;CREATE FILE
;DISCONNECT RAB
;DISPLAY FILE INFORMATION
;ERASE (DELETE) FILE
;EXTEND FILE ALLOCATION
;FINISH I/O ACTIVITY FOR STREAM
;MODIFY FILE ATTRIBUTES
;'NEXT VOLUME
;OPEN FILE
;REWIND FILE
;POSITION-FOR TRANSFER
;TRUNCATE FILE
;ENTER FILENAME INTO DIRECTORY
;PARSE FILENAME SPECIFICATION

6-23

RMS IMPLEMENTATION AND STRUCTURE

Table 2 RMS Functions and Prima~y Module Names (Cont)

Function Entry Module

Low use Record Operations (cont)

Comments

;REMOVE FILENAME FROM DIRECTORY
;RENAME A FILE
;SEARCH A FILE DIRECTORY
;SET DEFAULT DIRECTORY
;SET DEFAULT FILE PROTECTION MASK
;PERFORM RUNDOWN ON RMS FILES
;RMS Recovery Unit Handler

REMOVE
RENAME
SEARCH
SETDDIR
SETDFPROT
RMSRUNDWN
RMSRUHNDLR
FILE SCAN

RMSOSRCH
RMSORENAM
RMSOSRCH
RMSOSETDD
RMSOSDFP
RMSORNDWN
RMSORUHND
RMSOFSCN

j

;Perform syntax check for file spec1

SSVEXC ;GENERATE SYS SERV EXCEPTION

Function Names are used for several symbols

• SYS$function - the symbol used for the RMS vector entry
point in Pl space

• RMS$function - the symbol used for the RMS code entry
point in SO space

6-24

r A 8
+---+

FA8$8_ BID I I 0 0)
+---+---+

FAB$B_BLN I I 1 (1)
+-------+---+

FAB$W_ IFI I I 2 2)
+-------+-------+

. FAB$L FOP I I 4 4) - +---------------+
FAB$L_ STS I I 8 8)

+---------------+
FAB$L_ STV I I c 12)

+---------------+
FAB$L_ALQ I I 10 16)

+-------+-------+
FAB$W_DEQ I I 14 20)

+---+-------+
FAB$B FAC I I 16 22) - +---+---+
FAB$B_ SHR I I 17 23)

+---+-----------+ .FAB$L CTX I - I 18 24)
+-----------+---+

FAB$B_ RTV I I 1c 28)
+---+---+

FAB$B_ ORG f I 10 29)
+---+---+

FAB$8 RAT I I lE 30) - +---+---+
FAB$8 RFM I I . lF 31)

+---+ +---+
FAB$B JOURNAL I I 20 32) - +---+---+
FAB$B_ RU FACILITY I I 21 33)

+-------+---+
unused I I 22 34)

+-------+-------+
FAB$L XAB I I 24 36)

+---------------+
FAB$L NAM I I 28 40)

+---------------+
FAB$L_ FNA I I 2C 44)

+---------------+
FAB$L_ DNA I I 30 48)

+-----------+---+
FAB$8 FNS I I 34 (52) - +---+---+
FAB$B_DNS I I 35 53)

+-------~---+
FAB$W_MRS I I 36 54)

+-----~-+-------+
FA8$L_MRN·. I I 38 56)

+-------+-------+
FA8$W_BLS I I 3C 60)

+---+-------+
FAB$B BKS I I 3E 62) - +---+---+
FAB$B_ FSZ I I 3F 63)

+---+-----------+
FAB$L - DEV I I 40 64)

+---------------+
FA8$L SDC I I 44 68) - +-------+-------T
FA8$W_GBC I I 48 72)

+---+-------+
FAB$8_ACMODES I I 4A 74)

+---+---+
FAB$B RCF I I 48 75)

- +---+

VAX-11 RMS OVERVIEW

Units of Input/Output
A. Blocks
B. Multiblocks
c. Buckets

Terminology
A. Multiple Buffers
B. Global Buffers
C. Window Size

CONTENTS

D. READ/AHEAD and WRITE/BEHIND
E. Deferred Write
F. Prologues
G. Fill Factor
H. Bucket Split
I. Segmented Keys
J. Key of Reference
K. Record Stream

RMS Utilities
A. EDIT/FOL
B. CONVERT
C. CONVERT/RECLAIM
D. CREATE/FOL
E. ANALYZE/RMS
F. RMSSHARE

Common Problems and Questions
A. Prologue 3 Indexed File Corruption
B. Global Buffers Cause Performance Degradation
c. Multiple CONVERT's From Same Directory
D. CONVERT/NOFAST Takes Too Long
E. Corrupted Output Files From CONVERT/FAST/NOSORT With Unsorted
F. Meaning of CONVERT/NOSORT
G. SORT Problems With CONVERT's
H. Numeric Sequence Is Not Maintained For Integer Fields Defined as

String Keys
I. Convert of Multiple ~ixed-Length Inputs Fails With RTB Error
J. CONVERT With Segmented Keys Fails With SEQ or DUP Errors
K. Assorted EDIT/FOL Bugs
L. The RMSSHARE Utility is Obsolete on V4
M. CONVERT/RECLAIM May Corrupt ISAM Files
N. Global Buffers May Cause File Corruption
o. V4 CONVERT Does Not Reduce an ISAM File's Size
P. EDIT/FOL Shows Different Number of Areas Than Final FOL
Q. FDL CONNECT Clauses Do Not Establish Permanent File Attributes
R. EDIT/FOL Does Not Allow Description of Segmented Keys

Units of Input/Output

A. Blocks
A block consists of 512 contiguous bytes. It is the basic unit of
disk I/O. Although a program may request a single small record,
VAX-11 RMS does not access units smaller than a block. The block
is the default I/O unit for sequential files.

B. Multiblocks
A multiblock is two or more blocks that VAX-11 RMS treats as a
single I/O unit. Multiblocks are only used by files with sequenti
organization. Multiblock count is a run-time attribute. It is se
via the SET RMS DEFAULT/BLOCK COUNT• comamnd or via the MBC field
of the RAB. - -

c. Buckets
The bucket is the I/O unit for relative and indexed files. A buck
consists of from 1 to 32 blocks for V3 releases or from 1 to 63
blocks for V4 releases. Bucket size is set at file creation time
by the FOL attributes FILE BUCKET SIZE or AREA BUCKET SIZE. Bucke
size for a particular file cannot-be changed without re-writing th
file.

Terminology

A. Multiple Buffers
VAX-11 RMS allows you to use multiple I/O buffers to form a cache
memory. The number of I/O buffers is a run-time parameter. It is
set via the SET RMS DEFAULT/BUFFER COUNT• command or via the MBF
field of the RAB. - -

B. Global Buffers
A global buffer is an I/O buffer that two or more processes can
access. If two or more processes are requesting the same
information from a file, each process can use the global buffers
instead of allocating its own. Global buffers are a creation-time
attribute of the file itself. The FOL attribute FILE
GLOBAL BUFFER COUNT sets the number of global buffers. The
SET FILE/GLOBAL_BUFFERS• command also allows the setting of the
global buffer count.

C. Window Size
A disk file may be comprised of a variable number of non-contiguou
extents. A pointer to each extent resides in the file header. Fo
retrieval purposes, the pointers are gathered together in a
structure called a window. The default window size is 7 pointers,
but it can be set as high as 127 pointers. When an extent is.
accessed whose pointer is not in the current window, the system ha
to read the file header and fetch a new window. This is c~lled a
window turn, and requires an I/O operation. Window size is a
run-time parameter. It can be set via the RTV field of the FAB.
The window size is charged to your buffered I/O byte count quota.

D. READ/AHEAD and WRITE/BEHIND
READ/AHEAD and WRITE/BEHIND operations can be used with sequential
files. These operations require two I/O buffers. This allows RMS
to overlap processing in one buffer with an I/O request for anothe
buffer. These operations ar~ run-time options and can be set via
the RAH and WBH options in the ROP field of the RAB.

E. Deferred Write
Deferred write operations are applicable to relative and indexed
files. In a deferred write, VAX-11 RMS delays the writing to disk
of a modified bucket until the buffer is needed by another bucket.
If a subsequent operation makes further modifications to the same
buffer while the buffer remains in the cache, performance will
improve because fewer I/O operations will occur.

F. Prologues
VAX-11 RMS places certain information about an indexed file in· the
prologue. The information includes file attributes, key
descriptors, and area descriptors. There are three types of
prologues--Prologue 1, Prologue 2, and Prologue 3. Prologue 1 fil
may have multiple string-type keys. Prologue 2 files also may hav
multiple keys, but not all are string keys. Prologue 3 files can
have only a primary string-type key on V3 releases but can have al
key types on V4 releases. Prologue 3 files allow for file
compression.

G. Fill Factor
When an indexed file is loaded, space can be reserved for future
record insertions by specifying a fill factor. A fill factor of
less than 100% will cause part of each bucket to be left vacant by
the initial load operation. The intent is to reduce bucket splits

H. Bucket Split
With indexed files, an attempt to insert a record into a full buck
causes a bucket split. RMS tries to keep half of the records in t
original bucket and moves the other records to a newly created
bucket. Each of the moved records leaves behind a pointer to the
new bucket. These pointers are called Record Reference Vectors
(RRV). When the system searches for one of the records that moved
it must first go to the bucket where the record used to reside, re
the RRV, and then move to the new bucket. Bucket splits cause ext
I/O operations to retrieve records, and the RRV's may use
significant disk space.

I. Segmented Keys
A key which is composed of two or more non-contiguous sub-fields i
a segmented key. Each key may have up to eight segments. Segment
keys must be string type.

J. Key of Reference
The key of reference is indicated in the KRF field of the RAB. It
is only applicable to indexed files. It specifies the key-(primar
first alternate, etc.) to which the operation applies.

K. Record Stream
A record stream is the logical association of a RAB with a FAB. T
record stream is established by storing the address of the FAS in
the RAB and issueing a $CONNECT macro.

c. RMS Utilities

A. EDIT/FOL
EDIT/FOL creates and modifies FOL files. FOL files provide
specifications for VAX-11 RMS data files; these specifications can
then be used by certain utilities to create data files.

B. CONVERT
The CONVERT utility copies records from one or more files to an
output file, changing the record format and file organization to
that of the output file as specified by an FOL. CONVERT does not
change file data. Since a new file is written, RFA access is not
preserved.

C. CONVERT/RECLAIM
The CONVERT/RECLAIM utility reclaims empty buckets in Prologue 3
indexed files so that new records can be written in them. Since
no new file is written, RFA access to the file is preserved.

0. CREATE/FOL
The CREATE/FOL utility uses the specifications in an existing FOL
file to create a new, empty data file.

E. ANALYZE/RMS
The ANALYZE/RMS FILE utility provides a· set of facilities for
analyzing the internal structure of a VAX-11 RMS file. The
following four functions are available: ·
1. Check the structure of a file for errors.
2. Generate a statistical report on the file's structure and

use.
3. Enter an interactive mode through which the file structure

can be explored.
4. Generate an FOL file from an existing data file.

F. RMSSHARE
The RMSSHARE utility was available on V3 releases; it is no longer
available on V4 releases. It is used prima~ily as a system
management tool to perform the following functions:
1. Enable the VAX-11 RMS file sharing capability by initializing

file sharing structures in paged dynamic memory and set the
maximum number of pages that the structures can occupy. The
file sharing capability must be enabled each time the system
is booted.

2. Display figures on allowable and actual usage and increase the
maximum number of pages that the file shad.tvJ str.uct11r 1"S ,·;:rn
occupy.

Common Problems and Questions

A. Prologue 3 Indexed File Corruption
When RMS attempts to add a record into a Prologue 3 data bucket, i
seeks to avoid a bucket split by retrieving space within the bucke
This space retrieval is performed by compressing the bucket to
recover space occupied by deleted records. When
DATA_KEY_COMPRESSION is enabled, the size of the compressed keys m
vary among records. This possible size difference is not taken in
account, and as a result, the bucket compression can result in fil
corruption. The most common symptom is that ANALYZE/RMS reports
"Data record spills over into free space of bucket." The problem
can be avoided either by disabling DATA KEY COMPRESSION or by
converting to a Prologue 1 file. - -

B. Global Buffers Cause Performance Degradation
A frequent complaint is that after enabling global buffers, system
performance suffers. Most frequently this is observed as increase
system-wide paging. It is possible to dedicate so much memory to
global buffers that system performance suffers. In such case the
customer will have to compromise between what he would like to hav
and what his hardware complement will accomodate.

c. Multiple CONVERT's From Same Directory
CONVERT creates a workfile (CONVWORK.TMP) in the default directory
for the process. The file is used to communicate with SORT-32.
When SORT-32 is finished, it uses the file to communicate with
CONVERT. SORT-32 does not return either a file ID or a complete
filespec to CONVERT. If multiple CONVERT's are being run
simultaneously using the same default directory, there will be
multiple versions of the workfile. After the SORT completes,
CONVERT may access the wrong version of the workfile. Symptoms
are BADLOGIC, ISI, and IFI errors. This problem was corrected by
V4.

D. CONVERT/NOFAST Takes Too Long
CONVERT/FAST loads a file by building a complete bucket in memory
and then issueing block I/O writes to the file. This saves time b
reducing the number of I/0 requests necessary to load the file. A
CONVERT/NOFAST operation actually adds records to a file using RMS
calls to add each record. The number of I/O's required is much
higher for a /NOFAST operation. The difference in time required f
the two techniques differs by a factor of 10. Customers will
frequently feel that something is wrong because a /NOFAST operatio
takes so long.

E. Corrupted Output Files From CONVERT/FAST/NOSORT With Unsorted
Input
File corruption will result when CONVERT/FAST/NOSORT is specified
if the input is not sorted in ascending sequence by primary key.
The resulting file will have a corrupted index structure.

F. Meaning of CONVERT/NOSORT
The /NOSORT qualifier on the CONVERT command applies only to the
primary key. This can cause confusion when CONVERT/NOSORT is run
against a file with multiple keys. There is no way to specify tha
sorting will not be done on alternate keys.

G. SORT Problems With CONVERT's
CONVERT invokes SORT-32. A CONVERT may fail with sort errors. In
this case the problem should be treated as a SORT problem. There
a SID entry which discusses reasons for SORT failures and suggeste
approaches for resolution.

H. Numeric Sequence Is Not Maintained For Integer Fields Defined as
String Keys
Customers will sometimes define an integer field as a string key o
define a string key that overla~s an integer field. This is
acceptable to RMS. However, records will not be retrieved accordi
to the numeric sequence as may be expected. The reason is that th
most significant byte of an integer field is the leftmost byte whi
the most significant byte of an ASCII string is the rightmost byte

I. Convert of Multiple Fixed-Length Inputs Fails With RTB Error
On V4.0 and V4.1 releases, CONVERT may fail with an RTB error when
it should not. The problem is always seen when multiple input
files have been provided for the CONVERT. The record format is
fixed-length records. Use of the /TRUNCATE qualifier on the CONVE
command will allow the CONVERT to succeed without lost data. The
problem is corrected in the V4.2 release.

J. CONVERT With Segmented Keys Fails With SEQ or DUP Errors
A CONVERT to a prologue 1 or 2 file format will usually fail with
SEQ or DUP errors if the output file has segmented keys. The
problem occurs because CONVERT compares each key segment seperatel
without considering the result of comparisons on previous key
segments. A workaround is to use prologue 3 output causing CONVER
to use different code for the key comparisons. The problem is
corrected in V4.2.

K. Assorted EDIT/FOL Bugs
The EDIT/FOL utility contains many errors and frequently does not
behave as expected. In general, the DESIGN scripts are reliable,
but much of the rest of the utility is not reliable. The utility
is being completely re-written.

L. The RMSSHARE Utility is Obsolete on V4
The RMSSHARE utility is no longer used on V4 releases.· The lock
manager has been re-written to accomodate cluster-wide locking.
The new lock manager uses whatever it needs from dynamic memory.
It doesn't require RMSSHARE to establish limits for it. As far
as I know, there is no documentation explaining this.

M. CONVERT/RECLAIM May Corrupt ISAM Files
The CONVERT/RECLAIM utility·may cause corruption of prologue 3
ISAM files with DATA KEY COMPRESSION enabled. The utility does
not fully understand-the-DATA KEY COMPRESSION algorithm. This
problem was first discovered on vl releases but apparently existed
on V3 releases also. The problem is corrected in V4.2.

N. Global Buffers May Cause File Corruption
The use of global buffers may result in corrupted files. The
problem can occur when RMS needs to copy a global buffer to a
process local buffer. RMS releases the lock on the global
buffer before moving the data. It is possible that the buffer
will be re-used and the data modified before it is copied.
Later, data from the corrupted buffer can be written back to the
file. The problem is corrected on V4.2.

o. V4 CONVERT Does Not Reduce an ISAM File's Size
On V3 releases, the CONVERT utility could re-organize an ISAM file
into a smaller file if the original file had unused space. This
was often the desired behavior. The V4 CONVERT behaves different!
It produces an output file the same size as the input file. The
behavior can be avoided by generating an FOL, deleting or adjustin
the allocation clauses, and using CONVERT/FOL to re-organize the
file.

P. EDIT/FOL Shows Different Number of Areas Than Final FOL
After designing an ISAM file, the resulting FOL may be viewed
within the EDIT/FDL utility. The FOL displayed will indicate 2
areas per key. However, the FOL file that is written by the utili
may have a different number of areas. This is the result of the
GRANULARITY setting in the EDIT/FOL session. By default it will
cause an FOL with 3 areas to be written. It is reasonable _to expe
that the FOL written to the disk is identical to the one displayed
at the end of the DESIGN script. However, this is apparently
intentional behavior and is not regarded as a bug.

Q. FOL CONNECT Clauses Do Not Establish Permanent File Attributes
The file definition language for V4 includes a CONNECT section whi
allows the FOL to specify runtime parameters for the program using
the FOL. This has caused confusion with customers who thought the
CONNECT section was specifying permanent file attributes.

R. EDIT/FOL Does Not Allow Description of Segmented Keys
The EDIT/FOL DESIGN script does not allow the description of
segmented keys. The workaround is to describe the key as though i
is not segmented and then use EDT to add the segment descriptions
to the resulting FOL.

gg"i-1' Buffer, Volume 772, 14 February 1985
-.

INTERNAL DIGIT AL USE ONL y

VAX/VMS V4.0 Page l of 7
PAUL SENN, VMS PERFORMANCE GROUP, ZKOl-1/019, 264-8312

RMS FILE AND RECORD PROCESSING OPTIONS WRICH AFFECT BUFFER FLUSHING

nte following is a summary of the way various RMS features interact to
determine when RMS buffers are flushed. 'nle relevant RMS options (bits
in the FOP and the ROP) with with a short definition are listed below.
Some examples are also presented that illustrate how these options
interact.

Read-ahead/Write-behind

o Applies only to sequential files

o Set by RAH and WBB bits in the ltOP

Read-ahead :

When the user issues a request that causes RMS to switch to a
new I/ 0 buffer (for instance, a $GET for a record that is not
currently buffered), RMS issues asynchronous QIOa to read data
into as many available buffers aa the user haa. 'lbus, the
user is allowed to proces~ ehe records in the first buffer
while reada into the othe~ buffers are completing.

Write-behind:

When the user isauea·a request that results in RMS writing a
buffer to diak, RMS isauea an asynchronous QIO to do the
write. 'Dlia allowa the user to begin proceaain1 on a second
buffer while the fir1t_buffer write is completing.

Asynclaroaoua I/ O

o Appliaa to all file organization•

o Set by ASY bit in the ROP

Settina thia bit allowa. the user to a•t control back
1.-diately froa RMS, . rather than IMS •it101 for I/0
completion before ret~rning to· the user. Notic• that
write-behind and read-ahead also cause a1ynchronou1 I/O.

13

Small Buffer, Volume 772, 14 February 1985

Page 2 of 7

Except for some special cases, when write-behind and
read-ahead are enabled, setting the ASY bit has no effect,
since asynchronous I/O is taking place anyway. The
relationship between WTite-behind and the ASY bit is further
explained later in the sequential file example.

Deferred-write

o Set by DFW bit in the FOP for relative and indexed files

o Always enabled for sequential files (the DFW bit has no
effect)

o 'nle meaning of deferred WTite is
sequenUal files than it is
files, as described below:

slightly different for
for relative and indexed

Deferred write allows the user to take maximum advantage of
the IMS I/O buffers when performin1 operation• that add,
delete, or modify recorda. Without deferred write, every
$PUT, $UPDATE, or $DELETE results in at leaat one direct I/O
operation. If deferred WTite is turned on, it is poaaible for
the user to, for instance, perform multiple sequential $PUT•
while incurring only one direct 1/0 (assuming that multiple
records can fit in one I/O buffer).

If deferred write i• turned on, RMS must make a decision as to
when to write modifi•d !/O buffer• to disk. In general, for
any file organization, modified buffer• are written to disk
if:

o User i11uea a $FLUSH .

o ·File i• cloaed

'1'ha other condition• under which buffer• are written vary,
clepeadiq OD the file organization. For (iequential filej, a
mdifiecl buffer ie writttp &8 SOOD aa IMS 110V8S OD froa that
&iffer to a pay bufftr. Por in1tance 1 if the uaer i• dotn1
sequential $PUT•, aa aoon •• IMS find• the f1 rat buffer ia
full and it 1• neceaaary to start uain1 the seconcl buffer, the
firat buffer i• writteD out. Fortii•ilimvnenn-r.mrna--nrea.)
on the other hancl, a aodified buffer 1• not
unti he buffer i• needed or o rat n. 'nle
exaaplea below c r y t •· 10, a modifiecl buffer can be
written to disk •• a result of a blockin1 AST being delivered,
in the caae of shared filea.)

Small Buffer, Volume 772, 14 February 1985

Page 3 of 7

Deferred write can result in substantial performance gains,
and it is usually best that it be turned on. However, it is
not always appropriate. For example, in a high-contention""" '- ,'
environment where frequent concurrent updating is occurring, I ~· 'j
turning on deferred write can actually cause a performance 1 ~
degradation because of the extra load introduced by blocking)
AST activity. 'nlere is also an interaction between the_, .,, _ _}-\
~se of global buffers and

1
the use of deferred write. EnabUn f .. ,,

de erre write causes oca rather t lobal r, t_ ""'. • • .- • :..

uffers to be used for modified buck.a.ta. This introduces s· .:... l' ;'; (. -

extra processing overhead, and turning on deferred write with ~· ~ t'1- L(
global buffers can cause a performance degradation for ~j I 1 , I·~ ·
processes which do not frequently r8'-ccess buffers after ~J
modifying them. Those who are afraid of losing data as a
result of a system crash might want to turn off deferred write
(for relative and indexed filea), thereby ensuring that every
update to the file is written to disk i11111ediately. For
sequential files, the same effect can be achieved by issuing a
$FLUSH, which causes all modified I/O buffers to be written
out. 'nle effect of having deferred ·write enabled when a
system crash occurs is further discussed in the indexed file
examples below.

The following examples all assume that eight records can fit
in one RMS I/O buffer. Also, a multibuffer count of two is
assumed, unless otherwise stated.

Sequential File Examples

o $PUTs to a sequential file

No write-behind, synchronous:

After eight $PUTs, the first buffer is full (assuaing block
spanning isn't allowed). The ninth record added goes into the
second buffer. At thi• ti .. , the first buffer is written out.
RMS doea not return control to the user until the write is
complete. 1.'h• next eight $PUT• 10 into the second buffer,
witb no direct I/O taking place. On th• 17th $PUT, RMS aovea ·
back to the first buffer and write• the second buffer out,
aaaia not returning control until the write is coaplete.

Write-behind, synchronous:

Thia scenario 1• the •• as above, except that on the ninth
and 17th $PUT•, RMS return• control to the ua•~- i~diately,

15

Small Buffer, Volume 772, 14 February 1985

Page 4 of 7

instead of waiting for the write to complete. Tilis allows the
user to begin filling a new buffer while a buffer write is
completing behind his back. Note that for this example,
turning on W?'ite-behind means that the user never has to stall
for I/0 completion (as long as the I/O device is fast enough
and the system load is such that the buffer writes can
complete before the buffers need to be reused).

Write-behind, asynchronous:

- Because W?'ite-behind causes asynchronoua I/O, setting the ASY
bit in this example has no effect, except for one special
case. 'nlis is the case where the write of an I/O buffer is
not coapleted before the buffer needs to be reused. Referring
to the example above, after eight $PUT1, the first buffer is
fulf. 'lbe ninth $PUT goes into the second buffer. At this
tiae, an asynchronous request is issued to write the ·first·
buffer out. After eight more $PU're, the second buffer is
full, and RMS issues another aaynchronoua requeat to write
this buffer out. 'lbe 17th record need• to go back into the
first buffer. But, because of the speed of the I/0 device or
the system load, suppose the first asynchronoue buffer write
is not yet completed. In this case, there is no place for the
17th record to go, since I/O is in progress on both buffers.
the setting of the ASY bit affects what action RMS takes in
this situation. If the ASY bit ia set, RMS returns control to
the user immediately, even though the 17th $PUT is not yet
completed. Note that the burden is on the user to refrain
from.modifying the local storage (containing the data for the
17th record) until the aaynchronoue $PUT completes. If the
ASY bit· is not set, the user does not get control back until
the 17th record is successfully moved into the I/O buffer.

No write-behind, asynchronous:

In thi• caae, after eiaht $PUT•, RMS issue• a request to write
the first buffer ancl retuna ~oatrol imaediately to the user.
Ho r, becauae write-behinc!.-is not turned on, th• user is
noc,; et.le to beain fillina the. second buffer until th• firet
buf~ write coapletaa. If another $PUT ia issued before th•
write complete•. IMS return• a "Record Streaa Active" error
code. This illustrates the conceptual difference between
write-behind and the ASY bit. The purpoae of write-behind is,
for a given record streaa, to allow the user to make use of
one IMS buffer at the sa.. tia• ae I/0 is la proaresa on

16

·.

Small Buffer, Volume 772, 14 February 1985

Page 5 of 7

another buffer. Setting the ASY bit does not provide this
capability. Instead, setting the ASY bit gives the user the
chance to perform operations totally unrelated to the record
stream, such as computation or reads of other files, while I/O
is in progress. ~ ::a:.·, .. \

o $GETs from a sequential file

Read-ahead, synchronous:

8 i,H_S:_ .-- . . ~I= ~l '
--t-----~2 --··-· ._ .. --~ ·- :._

I

nte first $GET causes· eight records to be read into the first
buffer. RMS stalls until this read is complete. On the ninth
$GET~ RMS reads records 9 to 16 into the second buffer. Again
RMS stalls until the read is complete. However, in addition
to this synchronous read that occurs on the ninth $GET, RMS
also performs an asynchronous read to fill the fitst buffer.
This request completes while the user is readin1 the second
buffer, so that by the time the user does the 17th $GET, the
read into the first buffer is completed and the record is
available to- the user. The only SGET• the user has to...llai.t
for in this example are the first two that are needed to fill
the buffers initially); °the rest of the I/0 can be done
asynchronously while the user is reading another buffer (as in
the case of write-behind, this is assuming the I/O device is
fast enough and the system load is such that the reads
complete before the buffers are needed)

Tt(e relationship between read-ahead and ASY is analogous to
that of write-behind and ASY· •. lf. read-ahead is set, only in
special cases will 1ettin1 the ASY bit make a difference.
These case• are the initial two buffer reada, for which RMS
stalls unless the ASY_bit is set. and where the user returns
to a buffer before the asynchronous read into the buffer 1&
completed. In this ca••• similarly to write-behind, if the

CASY bit 1 • ••Q the uaer gets cgptrol blck iaediately, even
though the $GIT 1• not complete. Again, like write-behind,
the purpoH of read-ahead is for a given record streaa, to
allow the uaer to •ke uae of one RMS buffer at the sa• time
•• I/O 1• la proar••• on another buffer. Normlly read-ahead
ancl write-behind are enabled together.

Relative File Example•

o Sequential $PUTs to a relative file

17

Small Buffer, Volume 772, 14 February 1985

Page 6 of 7

Synchronous, no deferred write:

After each $PUT, RMS writes the modified buffer to disk.
Control does not return to the user after the $PUT until the
write is complete.

Asynchronous, no deferred write:

After each $PUT, RMS writes the modified buffer to disk, as in
the example above. However, rather then wa!~ing for the write
to complete before returning to the user, RMS returns control
immediately.

Synchronous, deferred write:

After~a total of 16 $PUTs, both buffers are full. At this
point, nothing is yet written to diak--all 16 records are
sitting in the two RMS buffers. On the 17th $PUT, the first
buffer needs to be reused. Therefore, at this time, it is
written out. The user does not get control back from the 17th
$PUT until the wr~te to disk completes.

Asynchronous, deferred write:

. 'nlis is identical to the example above, except that on the
17th $PUT, rather then waiting for the write to coaplete
before returning to the user, RMS returns control immediately.
Again, as in the asynchronous, write- behind se.quential file
example above, the burden is on the user to refrain from
modifying the local storage (containing the data for the 17th
record) until the user's asynchronous $PUT completes.

Indexed File Example•

In terms of the interaction of tha ASY bit and deferred write, the
e.xample above for relative files applies to indexed files also. But the
choice of which I/O buffer to fluab is made more complicated by the
presence af· index aa well as data bucket•. The followina example gives
some id ... of the extra consideration• involved in indexed file buffer
fluahiq•

o Sequential $PUT• (on the key of reference) to an indexed file

o Multibuffer count • 3

o The index structure required for the transaction can fit in one
bucket,· no sharing

18

Buffer, Volume 772, 14 February 1985
s--11

synchronous, deferred write:

Page 7 of 7

Assume that the file was previously loaded with a low fill
factor, so now no bucket splits are occurring. Also assume
that because of previous activity, the index bucket necessary
for the transaction is already cached. (Once read in, the
index bucket remains cached for the rest of the transaction,
since index buckets are less likely to be thrown out than data
buckets.) Buffer 1 contains the index, and buffers 2 and 3 are
used for data. After eight $PUTs, buffer 2 is full. The
ninth record added goes into buffer 3. After a total of 16
$PUTs, all buffers are full• At this point, nothing is
written to disk yet; the modified index bucket and the 16
records are sitting in three RMS buffers. On the 17th $PUT, a
buffer needs to be reused. Therefore, at this time, buffer 2
is written out (not butfer 1 since this is an index bucket).
control is not returned to the user froa this $PUT until the
buffer is Wl'itten. Note that in this example, the index
buck.et ia not written to disk until the file is closed, since
the caching algorithm prevents it froa being th~own out of the
cache as long as a data bucket is available to be thrown out.
However, even if the system crashes befo.re the index bucket is
written out, file integrity is maintained because of the
existence of pointers at the data ~ucket level.

19

VAX RMS File Sharing Internals

VAX/VMS Development
Digital Equipment Corporation
110 Spit Brook Road
Nashua, New Hampshire 03062

WHY FILE SHARING?

- goal: to allow multiple accessors of a file, where at
least one accessor is modifying the file, to
obtain a consistent view of the file at all times

- RMS objects locked for file sharing

normal

file
bucket
record

w/global buffers

global section
global buffer

- backround: read Chapter 6, "File Sharing and Buffering",
in Guide to VAX/VMS File Applications

VMS V4.4 ENHANCEMENTS

- full support for shared sequential files

- pre-V4.4: .fixed, 512-byte sequential files only

- V4.4: any type of sequential file

- includes multiple appenders

- improved file and global buffer section locking performance

- reduced lock manager usage

OVERVIEW OF RMS SOURCE FILES

- conventions for code modules (RMxxxxxxx.MAR/.832)

RMSO RMS service entry· points (RMSSxxx)
RMO org.-independent support routines
RMl sequential file organization
RM2 relative file organization
RM3 indexed sequential file organization
NTO network support (NTSxxx)

e.g. RMSOPUT.MAR, RMlPUT.MAR, RM2PUT.MAR, RM3PUT.B32

- in-memory data structure definitions

RMSINTSTR.SDL
RMSSHR.SDL
RMSFWADEF.SDL
DAPDEF.SDL

general internal structures
file sharing structures
filename processing structures
OAP support structures

- on-disk structures (internal file formats)

RMSFILSTR.SDL RMS on-disk f il~ structures

- RMS user interface (part of STARLET)

RMS32MAC.MAR
RMSCALLS.MAR
RMSMAC.REQ
RMSUSR.SDL

- message files

RMSOEF.MSG
RMSFALMSG.MSG

MACR0-32 macros
"" ""

BLISS-32 macros
RMS user structures

(FAS, RAB, XAB, etc.)

general RMS error message
OAP error messages

- miscellaneous internal definition files

RMSIDXDBP.Rl2
RMSIDXLNK.R32
RMSIDXMAC.R32
RMSMSCMAC.MAR

RMS FILE SHARING MODULES

RMOSHARE.MAR (.832 for V4.4)

RMOCACHE.MAR

file sharing routines

bucket cache routines

RMORELEAS.MAR bucket release routines

RMORECLCK.MAR record locking support

RMORCLCK2.B32 " " ""

FILE LOCKING

- what it is and why it's there

- to synchronize FILE level operations

- relevant user interface fields

FABSB_SHR

FAB$8_PAC

- when is sharing done?

SHR read

SHR write

SHRGET - allow readers
SHRPUT,SHRUPO,SHROEL - allow writers
NIL - prohibit sharing by others
UPI - user provides interlocking (no sharing)
MS! - multistreaming

GET,PUT,UPD,DEL,TRN

FAC read

NO

YES

FAC write

YES

YES

3

FILE LOCK DETAILS

- root resource

- resource name

RMS$ + file-id + OEVLOCKNAM (unique volume id)

- RMS$
facility code - convention for all resource names

- file-id
unique file identification across a volume set

- DVI$_DEVLOCKNAM
16-byte cluster-wide unique name for a volume set

- lock modes used

PW exclusive access to file (open,
close, extend, truncate)

CR (currently) read access to file
NL (V4.4)

concurrency:
- sequential and relative lock file for all operation
- indexed files only lock file around extends

- data structures

SFSB (shared file syn.chronization block)

- allocated at $0PEN/$CRBATB time

- how to examine SFSB

SDA> SHOW PROCBSS/RMS•IFB

••• get SFSB address from IFB$L_SFSB_PTR above

SDA> RIAD SYS$SYSTEM:RMSDEF.STB

SDA> PORMAT/TYPB•SFSB address

s
FILE LOCK VALUE BLOCK

+------------------+----------+---------+
future use MSC I LVB_VER I 0

+------------------+----------+---------+
LRL FFB 4

+---------------------------------------+
I HBK - Hi VBN allocated 8
+---------------------------------------+
I EBK - end of file VBN 12
+---------------------------------------+
- contents (16 bytes)

- critical file header information (HBK/EBK/FFB/LRL)

- shared sequential file common multi-block count value (MSC)

- file lock protocol version number (LVB_VER)

- how used:

1) raise to PW - current value block returned

2) modify file (write, extend)

3) lover to CR (NL in V4.4) - new value block stored

- V4.4 enhancement

- file lock NOT lowered -- held with blocking AST

- blocking AST routine gives up lock if not in use
else marks file lock "wanted•

- benefit: reduced lock manager operations (in most cases)

- example:
- process A holds file lock in PW
- process B requests file lock in PW

1. blocking AST occurs in process A
2. if A is done, converts file lock to NL
3. process B's.PW lock is granted

- if value block is zero, must be first accessor

- fill in lock value block: HBK, EBK, etc.

APPEND LOCK

- what it is and why it's there

- new in V4.4

- append = $PUT to EOF on a stream SCONNECTed to EOF

- used only for shared sequential files

- synchronizes append operations:

- helps ensure temporal ordering of records

- avoids wasted bucket locking:

- lock usage

process B holds bucket lock on EOF bucket

process A
requests file lock; determines EOF
requests bucket lock -- waits

process B writes records past EOF, releases bucket lo

process A gets file lock, finds EOF has moved,
now must release old bucket lock and
get new one

- sublock of file lock

- resource name: "APPENDER"

- lock modes: EX, NL

- no value block

- how/when used

- created on first append

- when done, held with blocking AST (like file lock in V4.4)

1. acquire file lock·

2. acquire append lock

(may stall here, causing file lock to be lowered to NL)

3. re-acquire file lock

4. based on current EOF, acquire bucket lock

I
~

EXTEND LOCK

- what it is and why it's there

- synchronizes file extend operations

- needed because file lock cannot be held during
stall for $EXTEND I/O

- must prevent other extenders

- lock usage

- special convention: uses standard bucket lock, VBN=l

- how/when used

- RMSCACHE request for a lock, no read, no buffer on VBN l

- allocates a BLB, but no BOB

- VBN 1 (prologue) bucket cannot be previously locked

(ISAM and relative ensure this)

BUCKET LOCKING

- synchronizes access to buckets

- relevant user interface fields

RABSB_MBF multi-buffer count

- data structures

BOB (buffer descriptor block) - one per I/O buff er

BLB (buffer lock block) - one per bucket lock

- IBLB • #BOB + l (+ #GBPS]

- allocated at $CONNECT time

- bucket lock details

- resource name is VBN of bucket (4 bytes)

- when modifying, held in EX

- when done, lowered to NL

- value block is cache sequence number

+

BUCKET CACHE

- each bucket in cache has a sequence number

- to get a bucket

1) search local cache for bucket

2) enqueue for bucket lock in EX
- sequence # returned in value block

3) if found, then
if sequence #'s match
then use it
else read new copy from disk

- goal: keep index buckets in cache

- each bucket has a cache nvalue"

- derived from depth of bucket in index structure

- if cache flush required, data buckets thrown out first

DEFERRED WRITE

- buffer written if owner process needs the buffer
or when another process needs the bucket

- incompatible lock retained on dirty buffers

- when done with a bucket, lower to PW with a blocking AST

- blocking AST causes writeback and then lock lowered to NL

RECORD LOCKING

- synchronizes access to records

- relevant user interface fields

RAB$B_ROP RLK, REA, RRL, ULK, NLK

- data structures

RLB (record lock block)

- describes one locked r~cord

- allocated on demand (demand usually = l unless ULK)

- record lock details

- resource name is RFA
(plus 2 bytes pad to longword align)

- no value block

- lock modes

EX exclusive access to record (default)
PW lock record for write, allow readers (RLK)
PR lock record for read, allow readers (REA)
CR used for query locking

GLOBAL BUFFERS

- shared, processor-wide RMS buffer cache

- buffers shared by processes on that node

- transparent to application program

- how to use

- mark file: SET FILE/GLOBAL_BUFFERS•n MYFILE.OAT

- specify count in FAS$W_GBC at $CONNECT

GLOBAL BUFFER CACHE

- one global buffer cache per file, per CPU

- implemented as a read/write, system page file global section

- created (using $CRMPSC) by first (shared) accessor to file
(see RMlCONN.MAR)

- section name is "RMS$" + virt. address of FCB of file

e.g. RMS$804038AO

- data structures

GBH (global buffer header)

- one per section

GBD (gloQal buffer descriptor)

- buffer flush

- one per buffer in section

linked list (self-relative)

- uses "short scan"

- scans 8 buffers; lowest cache value kicked out

- last buffer is "aged" (cache value decremented, min=O)

- no unowned dirty buffers exist in global cache

- high update environment may lose

- however, if request is to cache a bucket for update,
and bucket not in global cache, local cache is used

GLOBAL SECTION LOCK

- parallel of file lock

- if global buffers specified, enqueue for global section lock

- resource name, lock modes same as file lock

- child of EXESGL_SYSID_LOCK

- if lock value block zero, must be· first accessor

- create global buffer section

- process FILE lock converted to a system lock

- used as parent for global buff er system locks

- process acquires a new file lock in PW

- two different resources, (# processes * 2) + 1 locks

l. global section, child of CPU-specific resource

1 lock per process accessing section

2. file

1 lock per process accessing file
plus l system lock to act as parent for global buff er

- global section lock value block

+------------------·--------------------+
I GBC I GBREP
+------------------+--------------------+ I GS_SIZB - size of GS in bytes
+---------------------------------------+ spare
+---------------------------------------+

spare
+---------------------------------------+
- number of global bu~fers in section (QBC)

- number of accessors to global section (GBREP)

- size of global section in bytes (GB_SIZE)

- data structures

GBSB (global buffer synchronization block)

- parallel to SFSB

I l

GLOBAL BUFFER LOCKING

- parallel to bucket locks

- same resource name, lock modes, value block

- but, when first released, converted to system lock

- data structures

GBPS (global buffer pointer block)

- parallel to BOB (looks like one)

- 2 allocated per stream at $CONNECT time

BLB - same as for local buffer locking

- caching a bucket in the global buffer cache

1. enqueue for global section lock in PW

- scan global buffer cache

- if bucket in cache
then

else
increment use count in GBD

find a free bucket in cache (may have to flus
initialize GBD

2. lower global section lock to NL

3. initialize GBPS from GBO

4. enqueue for bucket lock in EX
- note: if bucket was in cache, 2 locks now exist

5. read bucket from disk into global buffer if not in cache

- release of_ bucket to cache

if first accessor
then

else

convert process bucket lock to system lock in NL,
parent • system file lock

simply dequeue process lock on buff er
(NL system lock remains)

GLOBAL BUFFER STATISTICS

- find some process with file marked for global buffers open

SDA> SHOW PROCESS/RMS=GBH

- cache hits, misses, reads, writes

- see RMSINTSTR.SDL for details

GLOBAL BUFFER QUOTA

- why needed?

- global buffers use system locks

- no quota on system locks

- nev SYSGEN parameter: RMS_GBLBUFQUO

- total number of global buffers allowed to be cached at once
(a # of system locks used by global buffers)

- decremented when a nev buffer is released to cache (RM$RBLEASE)

- incremented when a buff er is kicked out of cache (RM$CACHE)

- maintained with ADAWI instruction (so it works v/multi-processors)

3

FA I LOVER

- failure case: change on disk completes, then node fails

- lock value block not yet written

- hence, data in lock value block not valid

- next enqueue for file lock gets SSS_VALNOTVALID

- file lock

- re-read file header and maximizes with lock value block

- correct value written to value block when file locked lower

- sununary: no loss of file integrity

- bucket lock

- don't use cached bucket

- forces a re-read from disk

- global section lock: cannot occur

- record locks: don't have a value block

DEADLOCKS

- file and global section locks: cannot occur

- bucket locks: RMS retries

- record locks

- RMS$_DZADLOCK returned to user

- can only happen with manual record locking

VMS in a Multiprocessing Environment

VMS IN A MULTIPROCESSING ENVIRONMENT

INTRODUCTION
VAX/VMS systems have evolved from a single DECnet node system

to a complex set of multiprocessor computers. DIGITAL offers two
such multiprocessor systems:

1. VAX-11/782

2. VAXcluster

Each configuration offers a different set of features and
environments. In this module we will discuss these two types of
multiprocessors, their primary hardware components, and an
overview of how VMS operates in each.

OBJECTIVES
1. To describe the different multiprocessing implementations.

2. To describe the trade-offs for each environment.

Reading

• Guide to VAXclusters

Source Modules

Facility Name

MP

7-3

Module Name

MP I NIT
MPSCBVEC
MP LOAD

RESOURCES

VMS IN A MULTIPROCESSING ENVIRONMENT

TOPICS

I. Loosely Coupled Processors

II. Tightly Coupled Processors (VAX-11/782)

A. MP.EXE structures

B. Scheduling differences

C. Start-up/shutdown

III. Clustered Processors

7-5

VMS IN A MULTIPROCESSING ENVIRONMENT

MULTIPROCESSING ENVIRONMENTS

TIGHTLY COUPLED LOOSELY COUPLED

VAX-11/782 Network

VAXcluster

MKV84-2732

Figure 1 Relationship Between Different Multiprocessing
Configurations

Loosely Coupled:

Tightly Coupled:

VAXcluster:

Each processor executes a separate copy of the
operating system.

Both processors share the same copy of the
operating system.

Each processor executes its own copy of the
operating system but is coordinating certaih
activities with the other processors.

7-7

VMS IN A MULTIPROCESSING ENVIRONMENT

TIGHTLY COUPLED LOOSELY COUPLED

VAX-11/782 Network

VAXcluster

MKV84-2732

Figure 2 Relationship Between Different Multiprocessing
Configurations

Table 1 Different Multiprocessing Implementations

System
Characteristic

CPU booting

CPU failure

CPU cabinet
location

Security/Man­
agement domain

File system

Growth potential

VAX-11/782

Together

Together

Single or
adjacent

Single

Integrated

Limited

VAXcluster Network

Separate Separate

Separate Separate

Same compu- Can be widely
ter room separated

Single Multiple

Integrated Separate

Very great very great

7-8

VMS IN A MULTIPROCESSING ENVIRONMENT

NETWORKS

• Each system in a network is an independent system: it
boots and fails separately from the other systems in the
network.

• Failure to enter the network does not effect the system's
ability to perform local processing.

• Systems in a network are in a separate protection and
management domain.

• Systems on a network have their own file system.

• Networks have a powerf_ul growth potential. You can
generally add many, many additional nodes in a network,
very loosely coupled to each other.

7-9

VMS IN A MULTIPROCESSING ENVIRONMENT

THE VAX-11/782

• Systems boot and fail together

• A single protection and management domain

• No concept of assigning a different UIC to a user based on
which processor they are actually running on

• Integrated file system

• Limited growth potential

• The processors tend to be a single cabinet or several
cabinets near each other in one machine room.

7-10

VMS IN A MULTIPROCESSING ENVIRONMENT

Definitions

Loosely Coupled: Each processor executes a separate copy of
the operating system. This is good for
high-availability.

Tightly Coupled: Both processors share the same copy of the
operating system.

Symmetric: All processors execute all the operating system
code.

Asymmetric: All processors cannot execute all the operating
system code.

Primary Processor: The CPU that executes kernel mode code as well
as executive, supervisor, and user.

Secondary
Processor:

The CPU that cannot execute kernel mode code.
It executes executive, supervisor, and user
mode code.

The VAX-11/782 is a tightly coupled multiprocessing system
that is asymmetric for kernel mode and symmetric for the other
modes.

7-11

VMS IN A MULTIPROCESSING ENVIRONMENT

PROCESSOR
A

Primary
(/)

::::>
co
z
<(

a: 2
w _______,.1-

UNIBUS OR MASSBUS ~
0
<(

shared
memory

(/)

::::>
co
z
<(
2

PROCESSOR
B

Secondary

TK-9021

Figure 3 Sample VAX-11/782 Configuration

• Initialization

Start primary processor.

After the normal
program (MP.EXE)
file. MP.EXE is
command.

system is booted, a privileged
is run in the site-specific command
activated by the START/CPU DCL

Start secondary processor. Accomplished by booting
with an abbreviated command file in CSAl.

7-12

VMS IN A MULTIPROCESSING ENVIRONMENT

p
<INIT>

p
<DROP>

l 1 p ls
<STOP>

p
<IDLE> <EXEC>

l p
ls

•<BUSY>

p PRIMARY MAKES TRANSITION
s SECONDARY MAKES TRANSITION

TK-9013

Figure 4 Secondary Processor States

<INIT> Processor state when MP.EXE runs.
I
v

<IDLE> After MP.EXE (initialization code runs)
I
v

<BUSY> When a process is found for CPU2
I
v

<EXECUTE> After a LDPCTX instruction is issued
I
v

<DROP> At quantum· end or kernel mode request
by CPU2, a SVPCTX issued, the state
changed to DROP, interrupt primary.

v
<IDLE> After CPU! takes back process

<STOP> Requested by system manager ($STOP/CPU)
Requested by CPU!

7-13

VMS IN A MULTIPROCESSING ENVIRONMENT

-----------------Page Boundary~
EXE$GL_MP::

• • •
header page data

• • •
-----------------Page Boundary­

SCB$AL_BASE::
(Attached's SCB)

• • •
pointers to code below

• • •
t------------------Page Boundary-

CODE
CODE
CODE

MKV84-2731

Figure 5 MP.EXE in Nonpaged Pool

CODE section from figure contains:

• Addresses being pointed to by almost all of the SCB
vectors

• System locations that are jumped to as a result of
being modified by the MP.EXE code.

7-14

VMS IN A MULTIPROCESSING ENVIRONMENT

V AXclusters

• A new system organization that combines features of both
multiprocessors and networks.

• A system organization that is positioned in the middle of
the spectrum, in between tightly coupled systems and
loosely coupled systems.

• Systems boot and fail separately.

• A single protection and management domain.

• The SYSUAF.DAT files must be coordinated.

• VAXclusters have a powerful growth potential.

• Typically in a single computer room, due to the hardware
restrictions on the length of a Computer Interconnect (CI)
cable.

V AXcluster Benefits

• Incremental system expansion

• System availability

• Data Sharing

Public Volumes shared across the cluster

• Broader cost/performance range

• Usage of existing equipment

7-15

VMS IN A MULTIPROCESSING ENVIRONMENT

VAX

Cl
HSC-50

VAX
Cl

HSC-50
Cl

VAX

MKV84-2734

Figure 6 VAXcluster Hardware Configuration

• Two or more VAXen connected together

• CI cables connect each VAX ., Star Coupler

• HSC-50

• RA Disks

• Local Disk(s)

7-16

VMS IN A MULTIPROCESSING ENVIRONMENT

SUMMARY

Table 2 Different Multiprocessing Implementations

System
Characteristic

CPU booting

CPU failure

CPU cabinet
location

Security/Man­
agement domain

File system

Growth potential

VAX-11/782

Together

Together

Single or
adjacent

Single

Integrat~d

Limited

7-17

VAXcluster Network

Separate Separate

Separate Separate

Same compu- Can be widely
ter room separated

Single Multiple

Integrated Separate

Very great very great

VMS IN A MULTIPROCESSING ENVIRONMENT

GLOSSARY

CLUSTER

This term is commonly used in the VMS context in an imprecise
manner to denote a VAXcluster.

VAXcluster

Loosely coupled collection of VMS Systems and HSC-50s where the
entire VMS Cluster forms a single domain for the purposes of
integrity and security. A high degree of coordination and sharing
is supported across nodes in the VAXcluster. A VAXcluster
contains two types of nodes. An "active node" is a VAX/VMS System
that is cognizant of its membership in the VAXcluster. A "passive
node" is exemplified by an HSC-50 that is not cognizant of the
VAXcluster.

ACTIVE NODE

Node participating in cluster connection management, therefore
having knowledge of the VAXcluster. This is in contrast to a
Passive Node which has no knowledge of the VAXcluster.

CI (Computer Interconnect)

High-speed (70 megabits/second), highly
system for interconnecting up to 16
VAX-11/750, HSC-50.

CLUSTER NODE

The unit of a VAXcluster.

HSC-50 (Hierarchical Storage Controller)

available communications
VAX-11/780, VAX-11/782,

Intelligent disk and tape controller interfaced to the CI. This
controller supports the MSCP protocol for access to these devices.

MSCP (Mass Storage Control Protocol)

Protocol for logical/physical access to disks
implemented in the HSC-50 and the VMS MSCP server.

7-19

and tapes

VMS IN A MULTIPROCESSING ENVIRONMENT

MSCP SERVER

VMS component that supports VAXcluster access to disks
to a VAX using the MSCP protocol from any node
VAXcluster.

NETWORK

connected
within a

Loosely coupled collection of machines (nodes) where each network
node is an independent domain for the purposes of integrity and
security.

NETWORK NODE.

The unit of a network.

PASSIVE NODE

Node not participating in cluster connection management. A
passive node has no knowledge of the VAXcluster. This is in
contrast to an active node that is aware of the VAXcluster.

VMS SYSTEM

A single VAX CPU (including VAX-11/782) running under the control
of the VAX/VMS operating system.

7-20

VMS IN A MULTIPROCESSING ENVIRONMENT

Definitions

Loosely Coupled:

Tightly Coupled:

Symmetric:

Asymmetric:

Primary Processor:

Secondary
Processor:

APPENDIX
THE VAX-11/782

Each processor executes a separate copy
of the operating system. This is good for
high-availability.

Both processors share the same copy of the
operating system.

All processors execute all the operating
system code.

All processors cannot execute all the
operating system code.

The CPU that executes kernel mode code as
well as executive, supervisor, and user.

The CPU that cannot execute kernel-mode
code. It executes executive, supervisor,
and user mode code.

The VAX-11/782 is a tightly coupled multiprocessing system
that is asymmetric for kernel mode and symmetric for the other
modes.

7-21

VMS IN A MULTIPROCESSING ENVIRONMENT

PROCESSOR
A

Primary
en
:::::>
al

z
~

a: ~
w

--~~~~~~ r
UNIBUS OR MASSBUS ~

Cl
<(

shared
memory

en
:::::>
al

z
<(
~

PROCESSOR
B

Secondary

TK·9021

Figure 7 Sample VAX-11/782 Configuration

• Two VAX-ll/780s connected to the same shared memory.

• The primary (on the left) has the I/O devices. The secondary
or attached processor (on the right) has just the CPU.

• Minimum local physical memory (256Kb) on each CPU for
diagnostics only.

• All information in the shared memory.

• Eight Meg maximum physical memory for the shared memory.

• Primary processor runs all interrupt and kernel mode code.
Both processors run executive, supervisor, and user mode code.

• Multiprocessing code takes approximately 8K bytes (16 pages)
in nonpaged pool.

7-22

VMS IN A MULTIPROCESSING ENVIRONMENT

Initialization

• Start primary processor.

The DEFBOO.CMD file used to boot the primary processor
"requests" that the MA780 memory be used instead of the local
physical memory. The memory on MA780 #1 starts at physical
address O.

• After the normal system is booted, a privileged program
(MP.EXE) is run in the site-specific command file. MP.EXE is
activated by the START/CPU DCL command. MP.EXE does the
following:

Allocates nonpaged pool and loads in the MP code.

Connects the 'hooks' into the VMS code (discussed later).

New SCB initialized for the secondary CPU.

Primary SCB slightly modified to handle

Scheduling code for secondary processor
MA780 interrupt communfcation

• Start secondary processor. Accomplished by booting with an
abbreviated command file in CSAl. This results in:

Initialization of memory configuration
Starting execution at address in RPB.

7-23

VMS IN A MULTIPROCESSING ENVIRONMENT

Hooks into VMS

• Naming Conventions.

MPH$samename

Indicates a routine that will be entirely replaced by a MP
routine of the same name.

MPH$newnameHK

Indicates a location of a hook to additional MP code
(instead of a replacement).

MPH$newnameCONT

Indicates a location where additional MP code will return
to normal flow of code.

Locations of Hooks (Executive Module Names)

AS TD EL
BUGCHECK
PAGE FAULT
SCHED

AST delivery and queuing
BUGCHECK for both processors
Translation buffer invalidations
Process scheduling and rescheduling

SCB Changes

• CPU2

New SCB created for the secondary processor in nonpaged pool.
This SCB points to different routines than those used by the
primary CPU.

e CPUl

MA780 vectors redirected to point to new MP primary CPU
interrupt routine.

IPL=S SCB interrupt vector now contains address of MP
secondary scheduling routine.

XDELTA interrupt is moved from IPL=S to IPL=F.

7-24

VMS IN A MULTIPROCESSING ENVIRONMENT

Secondary Processor States

P PRIMARY MAKES TRANSITION
S SECONDARY MAKES TRANSITION

TK-9013

Figure 8 Secondary Processor States

The current state of the secondary processor is recorded in the
state variable in nonpaged pool. The contents of this variable
(the state) is used by the primary processor to determine whether
to schedule work for the secondary processor or not.

<INIT> Processor state when MP.EXE runs.
I
v

<IDLE> After MP.EXE (initialization code runs)
I
v

<BUSY> When a process is found for CPU2
I
v

<EXECUTE> After a LDPCTX instruction is issued
I
v

<DROP> At quantum end or kernel mode request
by CPU2, a SVPCTX issued, the state
changed to DROP, interrupt primary.

v
<IDLE> After CPUl takes back process

<STOP> Requested by system manager ($STOP/CPU)
Requested by CPUl

7-25

VMS IN A MULTIPROCESSING ENVIRONMENT

If there is no process for CPU2 to run, an AST is used to indicate
when a process falls below the kernel mode level. The AST
delivery is turned into a rescheduling interrupt.

Exceptions for CPU2

• If there is a transition to kernel mode:

A SVPCTX is issued

Process is "handed" to CPUl

• AST delivery and quantum end both execute special code.

• A separate SCB for the secondary processor allows the
enforcement of the rules.

MA780

• Has the ability to interrupt either processor.

• Reasons for CPUl to interrupt CPU2

To request an invalidation of a System Virtual Address

AST has arrived for process on CPU2

BUGCHECK

• Reasons for CPU2 to interrupt CPUl

To request rescheduling

Log an error

Request a BUGCHECK

7-26

VMS IN A MULTIPROCESSING ENVIRONMENT

Faults

• POWERFAIL

If CPU2 goes, CPUl continues

If CPUl goes, CPU2 waits

• BUGCHECK

If a BUGCHECK occurs, CPU2 goes IDLE while CPUl writes the
sysdump file and reboots.

e MACHINE CHECK

Like normal VMS

Restrictions

• The processors must be "twins" (ECO,WCS level, FPA)

• First MA780 must be at physical address 0

• Same TR # for the MA780s on both CPUs

e No DR780

• No high-speed RP07s (2.2 MB), 1.3 MB allowed

NOTE
Before MP.EXE runs, the RPB contains a
self-jump loop. After MP.EXE runs, RPB
contains the address of the secondary CPU
start-up code. In this way the secondary CPU
(CPU2) can be started before the primary CPU
(CPUl) is finished booting.

7-27

VMS IN A MULTIPROCESSING ENVIRONMENT

EXE$GL MP::
MPS$GL=ISP
MPS$GL SCBB
MPS$GL-STRTVA
MPS$G L-MPMBASE
MPS$GL-CURPCB
MPS$GL=STATE

SCB$AL BASE::
(Attached's SCB)

(Relocated initial ISP address)
(Physical address of attached's SCB)
(SVA of starting instruction address)
(SV A of shared memory control I er regs)
(Attached's current process PCB addr)
(Attached processor's state)

other header page data

: pointers to code below
•

vector 44 (CHME - EXE$CMODEXEC)
vector 48 (CHMS - EXE$CMODSUPR)
vector 4C (CHMU - EXE$CMODUSER)

• • pointers to code below •

MPS$AL_INTSTK (1024 byte interrupt stack for attached)

CODE
CODE
CODE

(see next page)

MKV84-2730

Figure 9 MP.EXE Loaded into Nonpaged Pool

7-28

VMS IN A MULTIPROCESSING ENVIRONMENT

CODE Section from figure on previous page contains:

1. Addresses being pointed to by almost all of the SCB vectors

2. System locations that are jumped to as a result of being
modified by the MP.EXE code (See Table 3).

Table 3 System Locations and the Resulting MP Locations

System Locations MP Locations

SCH$SCHED SCH$MSCHED

SCH$RESCHED sca$MRESCHED

MPtt$QAST MPS$QAST

MMG$INVALIDATE MPS$INVALID

MPH$BUGCHKH MPS$BUGVHECK

MPH$ASTDELHK MPS$ASTSCHEDCHK

MPH$NEWLVLHK MPS$ASTNEWLVL

7-29

VMS in a V AXcluster Environment

VMS IN A VAXcluster ENVIRONMENT

INTRODUCTION
VAXclusters, like DECnet, give a whole new dimension to

VAX/VMS. This module gives an overview of the important topics in
a VAXcluster. It also discusses how some of the VMS features
covered earlier in this course are extended to the VAXcluster
environment, including:

• Cluster processes

• Cluster synchronization and communication mechanisms

• Cluster start-up

• Cluster shutdown

We do not propose to cover the internals of a VAXcluster in
this section.

OBJECTIVES
To assist in managing a VAXcluster, the student must understand:

1. The differences between performing operations, such as the
following, on a single VAX system, and performing them on
a VAX in a cluster:

• System start-up

• System shutdown

2. The additional VMS synchronization and communication
mechanisms used on a system in a VAXcluster.

8-3

VMS IN A VAXcluster ENVIRONMENT

RESOURCES

Reading

• VAX/VMS Cluster Technical Summary

• Guide to VAXclusters

Source Modules

Facility Name

SYS LOA

OP COM

8-4

Module Name

CLUSTRLOA
SCSLOA

OPCCRASH

VMS IN A VAXcluster ENVIRONMENT

TOPICS

I. Cluster Synchronization and Communication Mechanisms

A. Distributed lock manager

B. Distributed Job Controller

c. Interprocessor communication

II. System Initialization and Shutdown Differences

A. VMB, !NIT and SYSINIT differences

B. Joining a cluster

C. Leaving a cluster

III. Additional Considerations in a VAXcluster Environment

IV. SYSGEN Parameters Relevant to a VAXcluster

8-5

VMS IN A VAXcluster ENVIRONMENT

OVERVIEW OF VAXcluster FEATURES

TIGHTLY COUPLED LOOSELY COUPLED

VAX-11/782 Network

VAXcluster

MKV84-2732

Figure 1 Relationships Between Different Multiprocessor
Configurations

Table 1 Different Multiprocessing Implementations

System
Characteristic

CPU booting

CPU failure

CPU cabinet
location

Security/Man­
agement domain

File system

Growth potential

VAX-11/782

Together

Together

Single or
adjacent

Single

Integrated

Limited

VAXcluster Network

Separate Separate

Separate Separate

Same compu- Can be widely
ter room separated

Single Multiple

Integrated Separate

Very great very great

8-7

VMS IN A VAXcluster ENVIRONMENT

VAX

Cl
HSC-50

VAX
Cl

HSC-50
Cl

VAX

MKV84-2734

Figure 2 Sample VAXcluster Hardware Configuration

8-8

VMS IN A VAXcluster ENVIRONMENT

VAX/VMS V4.0 on node COMICS 6-0CT-1984 10:40:57.65 Uptime 0 02:22:14
Pid Process Name State Pri I/O CPU Page fl ts

20800080 NULL COM 0 0 0 00:18:42.40 0
20800081 SWAPPER HIB 16 0 0 00:00:21.10 0
20800085 ERRFMT HIB 7 1165 0 00:00:09.92 140
20800086 CACHE SERVER HIB 16 213 0 00:00:04.59 56
20800087 CLUSTER SERVER HIB 10 23 0 00:00:00.34 133
20800088 OPCOM LEF 8 202 0 00:00:02.15 181
20800089 JOB CONTROL HIB 8 2336 0 00:00:36.37 188
20800088 CONFIGURE HIB 9 55 0 00:00:00.44 137
2080008D SYMBIONT 0001 COM 4 1377 0 00:08:26.51 2613
2080008E SP I DERMAN LEF 4 2412 0 00:00:34.72 699
20800090 NETACP HIB 9 2835 0 00:00:53.49 5800
20800091 EVL HIB 4 79 0 00:00:02.52 2138
20800092 REMACP HIB 9 74 0 00:00:00.56 123
20800094 THE FLASH LEF 7 947 0 00:00:15.53 2886
2080009A BATMAN LEF 7 6659 0 00:02:20.76 8142
20800098 CAPT MARVEL LEF 7 13420 0 00:08:46.85 32485
2080009D DR STRANGE LEF 4 11665 0 00:04:05.12 23536
208000A3 SILVER SURFER LEF 4 923 0 00:00:30.45 2075
208000BC KAL-EL LEF 4 3879 0 00:01:46.67 9493
208000C6 MR FANTASTIC LEF 4 6042 0 00:01:07.37 6730
208000C7 SYSTEM LEF 4 3998 0 00:00:44.44 2375
208000CD DR XAVIER LEF 4 702 0 00:00:19.65 2671
208000D9 BATCH 891 COM 4 4033 0 00:03:25.23 13888
208000E6 BRUCE-BANNER LEF 4 259 0 00:00:05.79 952
208000E7 JON JONES LEF 4 1030 0 00:00:16.58 2718
208000ED BATCH 924 COM 4 862 0 00:00:36.38 2646

Example 1 SHOW SYSTEM Output for a VAXcluster

• Additional system processes

CACHE SERVER
CLUSTER SERVER
CONFIGURE

• In a VAXcluster, high bits of PIDs are nonzero

8-9

VMS IN A VAXcluster ENVIRONMENT

System Processes in a V AXcluster

Table 2 System Processes Specific to a VAXcluster

Process Name Priority Image Name Comments

CACHE SERVER 16 FILESERV.EXE Flushes the system-
wide caches

CLUSTER SERVER 8 CSP.EXE Envelope for cluster
jobs

CONFIGURE 8 CONFIGURE.EXE Dynamic device
configuration
manager

Table 3 VAXcluster Processes Created by STARTUP.COM

Process Name Error Log File Privileges UIC

CACHE SERVER cache server error all [1,4]

CLUSTER SERVER cluster server error all [1,4]

CONFIGURE conf igure_error CMKRNL,PRMMBX,
BYPASS,SHARE [1,4]

• CACHE SERVER and CLUSTER SERVER are only created if system
is member of a VAXcluster

• CONFIGURE is only created if device PAAO: exists

• All images reside in SYS$SYSTEM

• All error log files reside in SYS$MANAGER

8-10

VMS IN A VAXcluster ENVIRONMENT

Cache Server Process

• Agent to flush the system-wide XQP caches

• Cache flush must be done by a process because XQPs execute
in process context.

Cluster Server Process

• Provides a process context for use by other systems in the
VAXcluster

• Can be used by any application

• Currently used to do cluster operator
(OPCOM), and cluster broadcast

Configure Process

• Created if there is a CI780/CI750 on your VAX

communication

• Configures the I/O data base on-line, if and when disks
are added to your HSCs

8-11

VMS IN A VAXcluster ENVIRONMENT

CONNECTION
MANAGER

(CLUSTRLOA)

$ENO/
$DEQ

TAPE
CLASS
DRIVER

(TU)

G
FILE
SYSTEM

G
DISTRIBUTED
LOCK
MANAGER

DISK Q_ECnet
CLASS CLASS
DRIVER DRIVER

(DU) (CN)

SYSTEM COMMUNICATION SERVICES (SCS)
(SCSLOA)

UDA PORT
DRIVER

(PU)

Cl PORT
DRIVER

(PA)

EJ

MSCP
SERVER
DRIVER

(MSCP)

MASS BUS
OR
UNIBUS

Figure 3 VAXcluster Software Components

• Connection manager

• Distributed lock manager

• File system and RMS

• Class driver

• scs

• Port driver

8-12

COMM
DRIVERS

(DMC, DMR,
ETHERNET,
ETC.)

MKVB4-2737

VMS IN A VAXcluster ENVIRONMENT

The Connection Manager

• Part of the executive but is loadable code

• Primary purpose is to determine and maintain cluster
membership

• Synchronizes state changes

• Provides an acknowledged message delivery service

• Prevents partitioning

• Also provides a cluster system ID (CSID)

• No user level access to the connection manager, only an
internal interface

8-13

VMS IN A VAXcluster ENVIRONMENT

Distributed Lock Manager

• Provides cluster-wide synchronization
components

for many

• The lock manager implements the ENQ and DEQ services ·

• used by:

File system

RMS

Job controller

Some system services (ALLOCate, MOUNT, ASSIGN)

• Also available to user applications

8-14

VMS

VMS IN A VAXcluster ENVIRONMENT

Distributed File System

• Allows files to be accessed on any system as if they were
local to that system

• Files-11 ODS-2 ACP is procedure based and called XQP

Resides in Pl space

No context switches required for file operations

Some additional overhead for ENQ and DEQ

File system becomes multithreaded

File caches are now perprocess

Record Management Services (RMS)

• All file sharing capabilities available on a Version 3
system are now available in a VAXcluster

• RMS uses the lock manager for its synchronization

8-15

VMS IN A VAXcluster ENVIRONMENT

Class Driver

• A class driver is a device-independent driver that has
been written for a particular series of devices (for
example, disks, tapes, terminals}. It contains the user
interface to the $QIO routines.

SCS (Systems Communications Services)

• SCS provides the process and system addressing, connection
management, and flow control necessary to multiplex the
basic port-to-port data services among multiple users.

Port Drivers

• A port driver contains the device-specific portions of the
driver. It is written to communicate with a specific
device under the class it is in (for example, Disks DR,
DB, DM}.

8-16

VMS IN A VAXcluster ENVIRONMENT

Distributed Batch and Print Services

• The Job Controller is now distributed across the cluster

• Job controllers in a VAXcluster coordinate operations
using the lock'manager

• Batch and print services are distributed
VAXcluster

• Queue file is implemented as an RMS shared file

across a

• Can have a generic cluster print queue that feeds specific
printer queues on different systems

• Can also have a generic cluster batch queue

Batch queue chosen is the one that will have the
lowest percentage of jobs_running/job_limit

8-17

VMS IN A VAXcluster ENVIRONMENT

1/0 in a V AXcluster Environment

SCS$GO_CONFIG

~

' -- SCS$GA_ LOCA LSB SB -- T ~

"MOE"

...- IOC$GL_DEVLIST
SB$L_DDB l

DOB DOB
"OBA" "OMA"

$L_SB $L_SB i---.

~ SB ~ "LAA RY"

SB$L_DDB

-] --
DOB

"DUA"

$L_SB

MKV84-2738

Figure 4 Cluster I/O Database

• Each cluster node has a System Block (SB)

• Local SB points to regular I/O database

• Remote SBs point to remote rmBs that are locally
accessible

8-18

VMS IN A VAXcluster ENVIRONMENT

r---------------------1
I (System Communication Services (SCS) I I
I MASS BUS Communications I
I or Drivers I

UDA Port Cl Port UNIBUS I Software Driver Driver I
I Hardware UDA Cl Communication I

Interface Interface M BA/U BA Interface

I I
I I
I I
L________ --------- -~

HSC-50

VAX

HSC-50

VAX ETHERNET

or other comm line

MKV84-2733

Figure 5 VAXcluster Hardware/Software Block Diagram

8-19

VMS IN A VAXcluster ENVIRONMENT

FILE
SYSTEM

,....___j
$ENO/
$DEQ

USER

RMS

$010

MASS BUS
OR
UNIBUS

8 9

DECnet

®

COMM
DRIVERS

(DMC,
DMR,
ETHERNET,
ETC.)

(MBA,UBA) (COMMUN !CATIONS
INTERFACE)

MKV84-2735

Figure 6 Flow of Standard I/O Operations

8-20

VMS IN A VAXcluster ENVIRONMENT

Notes on Figure 6

The "normal" connection is from the USER to RMS, letting RMS take
care of all the work.

1. USER to ENQ/DEQ Services

2. RMS to ENQ/DEQ Services

3. RMS to File System Access

Under Version 3, this is the Disk ACP

For version 4.0, the ACP is now an XQP that resides in
Pl space

4. File System to ENQ/DEQ Services

5. File System to $QIO Service

Under V3, the ACP sends the !RP directly to the driver

6. RMS to $QIO Service

7. USER to $QIO Service

8. RMS to DECnet (NETDRIVER and NETACP)

9. USER to DECnet (NETDRIVER and NETACP) via $QIO

10. $QIO to Drivers

11. DECnet to Communication Drivers

8-21

VMS IN A VAXcluster ENVIRONMENT

FILE
SYSTEM
F 11 BXQP

$ENQ/
$DEQ

DISTRIBUTED
.--~~~~~~~LOCK

CONNECTION
MANAGER

(CLUSTRLOA)

TAPE
CLASS
DRIVER

(TU)

MANAGER

DISK
CLASS
DRIVER

(DU)

DECnet
CLASS
DRIVER

(CN)

SYSTEM COMMUNICATION SERVICES (SCS)
(SCSLOA)

UDA PORT
DRIVER

(PU)

Cl PORT
DRIVER

(PA)

RMS

$010

MSCP
SERVER
DRIVER

(MSCP)

MASSBUS
OR
UNIBUS

Figure 7 Cluster I/O Available on version 4.0

8-22

9

DECnet

COMM
DRIVERS

(DMC,
DMR,
ETHERNET,
ETC.)

MKV84-2729

VMS IN A VAXcluster ENVIRONMENT

System A System B

User

t
$010

~
DUDRIVER

~
scs
~

PAD~IVER

I~ t DRIVER
PADRIVER

~

er MBA

MKV84-2736

Figure 8 Data Flow for an MSCP Request

MSCP Server

• HSC emulator

• Queues directly to driver

• Pool requirements - buffers and control blocks

• Structure and control flow

8-23

VMS IN A VAXcluster ENVIRONMENT

JOINING A VAXcluster

VMB

T
SYS BOOT

l
<Cluster?>-Yes- Load in CLUSTRLOA

i I l·
MKV84-2739

Figure 9 VAXcluster System Start-Up Flow

• Searches for the start-up files first in [SYSn.SYSEXE]
then looks in [SYSn.SYSCOMMOM.SYSEXE]; this allows both
nonshared and shared file systems to function

• Identifies all NEXUS adapters (including the CI)

• If CI port found CI microcode loaded

SYSBOOT

!NIT

• Based on the existence of a CI, SYSBOOT verifies need for,
allocates nonpaged pool, and loads SCSLOA.EXE and
CLUSTRLOA.EXE.

• Connects the self-relative vectors from CLUSTRLOA to the
system-side vectors and JSBs to CNX$INIT

SYSINIT

• Output message indicating node is waiting to join cluster

• Set cluster initialization flag

• Loops until cluster is formed

8-24

VMS IN A VAXcluster ENVIRONMENT

LEAVING A V AXcluster

SYS$SYSTEM:SHUTDOWN.COM

• If system is a member of a cluster, ask for shutdown
options

REMOVE NODE
CLUSTER SHUTDOWN
REBOOT CHECK

• Quorum disk (if used) is not dismounted

• Define logicals used by OPCCRASH.EXE

OPC$UNLOAD
OPC$REBOOT
OPC$CLUSTER SHUTDOWN
OPC$REMOVE_NODE

• RUN SYS$SYSTEM:OPCCRASH.EXE

Flush caches for system disk (mark it for dismount)

set reboot flag according to the logical OPC$REBOOT

If member of a VAXcluster

If OPC$SHUTDOWN defined,
SETIPL to IPL$ SYNCH
JSB G~CNX$SHUTDOWN

If OPC$REMOVE_NODE defined,

SETIPL to IPL$ SYNCH
Calculate new quorum value
JSB G~CNXCHANGE QUORUM
When quorum is reset, BUGCHECK

8-25

VMS IN A VAXcluster ENVIRONMENT

waiting to, form or join VAXcluster
%CNXMAN, Discovered system MOE
%CNXMAN, Established connection to system MOE
%CNXMAN, Sending VAXcluster membership request to system MOE
%CNXMAN, Now a VAXcluster member -- system LARRY
%PAAO, HSC Error Logging Datagram Received - REMOTE PORT 0

%%%%%%%%%%% OPCOM 2-SEP-1984 21:01:31.46 %%%%%%%%%%%
Logfile has been initialized by operator LARRY$LPAO:
Logfile is SYS$SYSROOT:[SYSMGR]OPERATOR.LOG;50

Example 2 Booting a VAXcluster System

%CNXMAN, Lost connection to system MOE
%CNXMAN, Timed-out lost connection to system MOE
%CNXMAN, Proposing reconfiguration of the VAXcluster
%CNXMAN, Removed from VAXcluster system MOE
%CNXMAN, Quorum lost, blocking activity
%CNXMAN, Completing VAXcluster state transition
%PAAO, HSC Error Logging Datagram Received - REMOTE PORT 0

%PAAO, HSC Error Logging Datagram Received - REMOTE PORT 0

%PAAO, HSC Error Logging Datagram Received - REMOTE PORT 0

%CNXMAN, Quorum regained, resuming activity

Example 3 Leaving a VAXcluster

• Unexpected node crash

• Expected node shutdown using SHUTDOWN.COM

8-26

VMS IN A VAXcluster ENVIRONMENT

ADDITIONAL CONSIDERATIONS IN A VAXcluster ENVIRONMENT

• Coordination of

SYSUAF.DAT

NETUAF.DAT

VMSMAIL.DAT

RIGHTSLIST.DAT

JBCSYSQUE.DAT (the queue file)

• Shared Disks ($SET DEVICE/SERVED)

• $MOUNT/CLUSTER disk .

8-27

VMS IN A VAXcluster ENVIRONMENT

SUMMARY

Table 4 Selected VAXcluster SYSGEN Parameters

Function Parameter

used to give a unique name to devices that are
accessible from more than one node or HSC.

ASCII name of the quorum disk, if one is used.
Example, 255DUAO, where $255 is the allocation
class and DUAO is an HSC disk.

Minimum number of CI nodes (VAXen and HSC)
needed to make up a given VAXcluster.

The ID number used by SCS to identify the node.
Must be the same as the DECnet node number.

The name of the node used by scs. Must be the
same as the DECnet node name.

Controls the start-up actions of the system.

- If 0, do not participate in a cluster.
- If 1, should participate in a cluster if

hardware exists
- If 2, should participate in a cluster

The number of votes this node has in the
VAXcluster.

8-29

ALLOCLASS

DISK_QUORUM

QUORUM

SCSSYSTEMID
SCSSYSTEMIDH

SCSNODE

VAXCLUSTER

VOTES

ALLOCLASS

DISK_QUORUM

QDSKVOTES

QDISKINTERVAL

QUORUM

RECNXINTERVAL

VMS IN A VAXcluster ENVIRONMENT

APPENDIX
VAXcluster SYSGEN PARAMETERS

Specifies a numeric value to be assigned as the
allocation class for the ,node.

The name, in ASCII, of an optional quorum disk.
ASCII spaces indicate that no quorum disk is being
used.

Specifies the number of votes contributed to the
cluster votes total by a quorum disk. The maximum
is 127, the minimum is 0, and the default is 1.

Specifies the disk quorum polling interval, in
seconds. The maximum value is 32767, the minimum
value is 1, and the default is 10. Lower values
trade increased overhead cost for greater
responsiveness.

DIGITAL recommends that this parameter be set to
the same value on each cluster node.

Specifies an initial setting for the dynamic quorum
value. This setting is a numeric value that is an
estimate of the correct quorum value to be used and
should be greater than half of the total expected
votes.

By default, the value is 1.

Specifies in seconds the interval during which the
connection manager attempts to reconnect a broken
connection to another VMS system. If a new
connection cannot be established during this period,
the connection is declared irrevocably broken, and
either this system or the other must leave the
cluster. This parameter trades faster response to
certain types of system failures against the ability
to survive transient faults of increasing duration.

DIGITAL recommends that this parameter be set to
the same value on each cluster node.

8-31

VAXcluster

VOTES

PANUMPOLL

PASTIMOUT

PASTDGBUF

VMS IN A VAXcluster ENVIRONMENT

Controls whether the system should join or form a
VAXcluster. This parameter accepts the following
three values:

• 0 -- Specifies that the system will not
participate in a VAXcluster.

• 1 -- Specifies that the system should
participate in a VAXcluster if hardware
supporting SCS is present (CI, UDA, HSC-50).

• 2 -- Specifies that the system should
participate in a VAXcluster.

You should always set this parameter to 2 on
systems intended to run in a VAXcluster, 0 on
systems that boot from a ODA and are not intended
to be part of a VAXcluster, and 1 (the default)
otherwise.

Specifies the number of votes towards a quorum
to be contributed by the node. By default, the
value is 1.

Specifies the number of ports to poll at each
interval. DIGITAL recommends that this parameter
be set to the same value on each cluster node.

Specifies the basic interval at which the CI
port driver wakes up to perform time-based
bookkeeping operations. It is also the period
after which a start handshake datagram is
assumed to have timed out. Note that the value
obtained by multiplying the values of PASTRETRY
and PASTIMOUT must be greater than, or equal to,
the value of PAPOLLINTERVAL.

Normally the default value is adequate. DIGITAL
recommends that this parameter be set to the same
value on each VAXcluster node.

Specifies the number of datagram receive buffers
to queue for the CI port driver's configuration
poller; that is, the maximum number of start
handshakes that can be in progress simultaneously.

Normally the default value is adequate. DIGITAL
recommends that this parameter be set to the same
value on each cluster node.

8-32

PAMAXPORT

PANOPOLL

PAPOLLINTERVAL

PAPOOLINTERVAL

VMS IN A VAXcluster ENVIRONMENT

Specifies the maximum number of CI ports the CI
port driver polls for a broken port-to-port
virtual circuit, or a failed remote node.

You can decrease this parameter in order to
reduce polling activity if the hardware
configuration has fewer than 16 ports. For
example, if the configuration has a total of
five ports assigned port numbers 0-4, then you
should set PAMAXPORT to 4. Note that ports
should be assigned contiguously starting at o.

The default for this parameter is 15 (poll for
all possible ports 0 through 15). DIGITAL
recommends that this parameter be set to the
same value on each cluster node.

Disables polling if set to 1 (the default is 0).
Disabling polling enables you to boot a system
from a private system disk and isolate it from
CI activity. you may want to do this following
repairs to verify that the system runs properly
before introducing it into the hardware cluster.
Never set PANOPOLL to 1 while a system is
participating in a cluster, if a system is being
booted from an HSC, or if it is being booted in
order to join a cluster.

Specifies in seconds the polling-interval the
Compu~er Interconnect (CI) port driver uses to
poll for a newly booted system, a broken port­
to-port virtual circuit, or a failed remote node.

This parameter trades polling overhead against
quick response to virtual circuit failures.
DIGITAL recommends that you use default value
for this parameter.

PAPOLLINTERVAL is a dynamic parameter with a
minimum value of 1, a m-aximum value of 32767,
and a default value of 15.

DIGITAL recommends that this parameter be set to
the same value on each cluster node.

Specifies in seconds the interval at which the
PA port driver checks for available nonpaged pool
after a failure to allocate.

Normally the default value is adequate.

8-33

PASANITY

PRCPOLINTERVAL

SCSBUFFCNT

SCSCONNCNT

SCSFLOWCUSH

VMS IN A VAXcluster ENVIRONMENT

Controls whether the port sanity timer is
enabled to permit remote systems to detect a
system that has been halted or hung at IPL 7
or above for 99 seconds. This parameter is
normally set to 1 and should only be set
to 0 when debugging with XDELTA.

PASANITY is a dynamic parameter (altered the
next time the port is initialized) and has a
default value of 1.

Specifies in seconds the polling interval used
to look for SCS applications, such as the
Connection Manager and MSCP disks, on other nodes.
Each node is polled, at most, once each interval.

This parameter trades polling overhead against
quick recognition of new systems or.servers as
they appear. DIGITAL recommends that you set this
parameter to 15, which is the default.

Specifies the number of computer interconnect
(CI) buffer descriptors configured for all CI
ports on the system.

Specifies the total number of SCS connections
that are configured for use by all System
Applications, including the one used by the
directory service listen.

Normally, the default value is adequate.

Specifies a lower limit for receive buffers
at which point SCS starts to notify the remote
SCS of new receive buffers. For each connection,
SCS tracks the number of receive buffers
available. scs communicates this number to the
SCS at the remote end of the connection. However,
SCS does not need to do this for each new receive
buffer added. Instead, SCS notifies the remote
SCS of new receive buffers if the number of
receive buffers falls as low as the SCSFLOWCUSH
value.

Normally the default value is adequate.

8-34

SCSSYSTEMID

SCSSYSTEMIDH

SCSNODE

SCSRESPCNT

VMS IN A VAXcluster ENVIRONMENT

Specifies the low-order 32 bits of the 48-bit
system identification number. This parameter is
not dynamic and must be the same as the DECnet
node number.

The high-order 16 bits of the 48-bit system
identification number. This parameter is not
dynamic and must be the same as the DECnet node
number.

Note that once a node has been recognized by
another node in the cluster, you cannot change
the SCSSYSTEMIDH or SCSNODE parameter without
changing both.

Specifies the SCS system name. This parameter
is not dynamic. You should use a name that is
the same as the DECnet node name (limited to six
characters) since the name must be unique among
all systems in the cluster.

Note that once a node has been recognized by
another node in the cluster, you cannot change
the SCSSYSTEMIDH or SCSNODE parameter without
changing both.

Specifies the total number of response
descriptor table entries configured for use by
all System Applications.

8-35

EXERCISES

System Processes.

EXERCISES

1. List three functions of the Job Controller.

2. How do print symbionts receive their information from the Job
Controller?

3. How much does a VMS print symbiont understand about print
queues?

4. What VMS component transfers errors logged in system memory to
disk?

EX-3

System Processes

SOLUTIONS

1. The Job Controller performs these functions:

• Manages batch queues and batch jobs

• Symbiont manager

• Has a part in creation of interactive process initiated by
unsolicited terminal input

• Accounting manager

2. Print Symbionts receive their information from the Job
Controller through mailboxes.

3. A VMS print symbiont knows nothing about print queues. A
print symbiont is concerned with its current file and nothing
else.

4. The ERRFMT process transfers errors logged in system memory to
disk.

EX-4

System Processes

EXERCISES

VMS provides places where users or layered products can hook
into pieces of VMS software. The code for the ERRFMT process
is one of these places.

Write a program that obtains a copy of all errors handled by
ERRFMT (and ERF), and displays them on the terminal.

To determine how to hook into the ERRFMT process, examine the
code for ERRFMT provided in Example 1.

;++
FACILITY: ERROR LOG FORMAT PROGRAM

.
I

ABSTRACT: THIS PROGRAM EMPTIES THE ERROR LOG BUFFERS AND CREATES
A FILE, ERRLOG.SYS, IN A FORMAT ACCEPTABLE TO ERF •

MACROS:

EQUATED SYMBOLS:

$PRDEF
$DCDEF
$DIBDEF
$DVIDEF
$EMBETDEF
$EMBDEF
$EMBTSDEF
$ERFHDDEF
$ERFTSDEF
$ERFVMDEF
$ERLDEF
$0PCDEF
$PCBDEF
$SSDEF

ERM$C FORMAT = 2
ERF$C-LOOP CNT = 255
ERF$K-DLTA-STMP = <60*10>
ERF$K-CLK_TICK = -<10*1000*1000>
;

OWN STORAGE:

DEFINE PROCESSOR REGISTERS
DEFINE DEVICE CLASS TYPES
DEVICE INFORMATION BUFFER
$GETDVI MESSAGE CODES
ERROR MESSAGE ENTRY TYPES
DEFINE ERROR MESSAGE BF HDR
DEFINE TIME STAMP DEFINITION
ERROR FORMAT HEADER DEFINIT
ERROR FORMAT TIME STAMP DEF
ERROR FORMAT VOLUME MOUNT D
SYSTEM ERROR LOGGING DEFINI
OPERATOR MESSAGE DEFINITION

; PROCESS CONTROL BLOCK DEFIN
DEFINE STATUS CODES

FORMAT NUMBER FOR VAX · ..
TIMES TO WAIT FOR BUFFER
TIME STAMP DELTA IN SECS

; CONVERSION TO CLOCK TICKS/S

Example 1 Selected ERRFMT source Code (Sheet 1 of 11)

EX-5

System Processes

EXERCISES

.PSECT DATA,RD,WRT,NOEXE,PAGE

INBUF: • BLKB
OUTFAB:

OUTRAB:

NAMEBLOCK:
$NAM

OUTFID:
LASTENTRY:
SID:
ERF$W MBXCHN:
ERF$W-MBXSIZ:
ERF$W MBXUNT:

512
$FAB
FAC=<PUT,UPD>,­
FNA=OUTNAM,­
FNS=OUTNAMSZ,­
NAM=NAMEBLOCK, -
RFM=VAR, -
FOP=CIF, -
SHR=<GET,UPI>, -
ORG=SEQ,-
MRS=O

$RAB
ROP=<EOF,WBH>, -
MBC=l, -
MBF=2, -
RAC=SEQ, -
FAB=OUTFAB

.WORD 0[3]
.BYTE 0
.LONG 0
.WORD 0
.WORD 0
.WORD 0

DEVFAO: .ASCID /_!AC!UW:/

INPUT BUFFER
; RECORD ACCESS BLOCK

; PUT AND UPDATE FILE ACCESS
FILE NAME ADDRESS
LENGTH OF FILE NAME
ASSOCIATED NAME BLOCK

SEQUENTIAL ORGANIZATION
; MAX RECORD SIZE UNSPECIFIED

; RECORD ACCESS BLOCK
; OPEN TO END OF FILE

FILE ACCESS BLOCK ADDR

; NAME BLOCK ASSOCIATED WITH

SAVED FILE ID
ENTRY TYPE OF LAST RECORD W
SYSTEM ID #
DIAGNOSTIC MAILBOX CHANNEL
DIAGNOSTIC MAILBOX SIZE
PREVIOUS DIAG MBX UNIT #

$FAO control string to form

MESSAGE SENT TO OPERATOR UPON FAILURE TO WRITE TO ERROR LOG FILE.
;
OPRMSG DSC:
OPRMSG-LEN:

.LONG

.LONG
ROMSG DSC:

.LONG

.LONG
OPRMSG:

.LONG

OPRMSG END-OPRMSG
OPRMSG

ROMSG END-ROMSG
RO MSG-

OPC$ RQ RQST!­
<<OPC$M-NM_CENTRL@8>>

SIZE OF OPERATOR MESSAGE BF
ADDRESS OF OPERATOR MESSAGE

TYPE OF MESSAGE
OPERATOR TO INFORM

Example 1 Selected ERRFMT Source Code (Sheet 2 of 11)

EX-6

.LONG

.ASCII
OPRMSG END:

ROMSG:
.BLKB

ROMSG END:
ROMSG-LEN:

.LONG
;

System Processes

EXERCISES

0 ; NOBODY TO RESPOND TO
/ERRFMT - ERROR ACCESSING ERROR LOG FILE/<13><10>

256 HOLDS TRANSLATED STATUS ME

HOLDS TRANSLATED MESSAGE L
0

; MESSAGE SENT TO OPERATOR WHEN WE'VE FAILED TOO MANY TIMES TO WRITE
; TO ERROR LOG FILE • . ,
BYEMSG DSC:
BYEMSG-LEN:

.LONG

.LONG

BYEMSG:
.LONG

.LONG

.ASCII

.ASCII
.ASCII

BYEMSG END:
;

BYEMSG END-BYEMSG
BYEMSG-

MESSAGE DESCRIPTOR

LENGTH
ADDRESS

MESSAGE
OPC$ RQ RQST! - TYPE OF MESSAGE
<<OPC$M-NM CENTRL@8>> OPERATOR TO INFORM
0 - - ; NOBODY TO RESPOND TO
/ERRFMT - DELETING ERRFMT PROCESS/<13><10>
/ERROR LOG FILE UNWRITABLE/<13><10>
/TO RESTART ERRFMT PROCESS, USE "@SYS$SYSTEM:STARTUP

; MOUNT AND DISMOUNT MESSAGE STRINGS
;
MOUNT FAO:

.LONG MOUNT

.ADDRESS
END-MOUNT MSG

MOUNT. MSG
LENGTH OF CONTROL STRING
ADDRESS OF CONTROL STRING

MOUNT MSG:
.LONG
.LONG
.ASCII

OPC$_RQ_RQST TYPE OF MESSAGE (OPERATOR
0 ; NOBODY TO REPLY TO
\Volume "!AD"!ASmounted, on physical device !AS\

MOUNT END:

MOUNT DSC:
.LONG 128
.ADDRESS

MOUNT BUF:
.BLKB 128

MOUNT MNT:
.ASCID \ \

MAX SIZE OF THE MESSAGE
MOUNT BUF ; ADDRESS OF THE MESSAGE BUF

; STORAGE FOR FORMATTED MESS

; FOR VOLUME MOUNTED MESSAGE

Example 1 Selected ERRFMT Source Code (Sheet 3 of 11)

EX-7

System Processes

MOUNT DMT:
.ASCID \ dis\

ERROR COUNTERS
;
ERF$B ERRCNT:

- .BYTE 0
ERF$B MAXERRCNT:

- .BYTE 20

EXERCISES

; FOR VOLUME DISMOUNTED MESS

; COUNT ERRORS IN WRITING TO
; ERRORLOG FILE

MAXIMUM # ERRORS BEFORE DE
; THIS PROCESS

Data structures needed to get the version number and expanded file
a newly created SYS$ERRORLOG:ERRSNAP.LOG (Venus-specific) •

• ALIGN
ERRSNAP FAB:

$FAB

ERRSNAP XAB:
$XABDAT

ERRSNAP NAM:
$NAM

ERRSNAP RSA:
.BLKB

PAGE

; File Access Block.
FNM=<SYS$ERRORLOG:ERRSNAP.LOG>, - ; File name.
NAM=ERRSNAP NAM, - ; Associated NAM block.
XAB=ERRSNAP-XAB ; ASSOGiated XAB block.

RSA=ERRSNAP RSA, -
RSS=NAM$C_MAXRSS

NAM$C_MAXRSS

; Declare date/time XAB.

; Name block.
; Resultant string area addr
; use maximum length of resu

Resultant string will be r

Data structures used when SPAWNing a sub-process to execute ERRSNA
;
ERRSNAP COM:

.ASCID
ERRSNAP LOGl:

; Descriptor for command pro
/SYS$ERRORLOG:ERRSNAP.COM/

:ASCID /$ FILENAME
ERRSNAP LOG2:

; Initial DCL command if cop
:= SNAPl.DAT/

Initial DCL command if cop
.ASCID /$ FILENAME :=

ERRSNAP FLAGS:

;
SNAP2.DAT/

; Set NOCLISYM and NOWAIT fl
:LONG 6

ERRSNAP STATUS:
7LONG 0

Store the exit status of t
command procedure here.

Example 1 Selected ERRFMT Source Code (Sheet 4 of 11)

EX-8

System Processes

EXERCISES

; Definitions needed to communicate with 11/790 logical console inte
;
CON$C_REQERL = AX30

CON$C INVSNPl = AX31
CON$C=INVSNP2 = AX32
ERRSNAP CONCMD:

:-BYTE 0
ERRSNAP DATA:

:-LONG 0

Console command to request
; snapshot file status.

Console command to invalid
Console command to invalid
Store command to be sent t

Store returned data from 1
console interface here.

PURE DATA - KEPT IN CODE PSECT FOR LOCALITY

.PSECT CODE,RD,NOWRT,EXE

ARGUMENT LIST FOR FILE CREATE TIME STAMP ENTRY
;
FILCRE:

.LONG
.LONG 1
EMB$K_NF

; ONE ARGUMENT
NEW FILE TYPE MESSAGE

ERF$Q_DELTA: TIME BETWEEM TIME MARKS

*** .LONG ERF$K_CLK_TICK*ERF$K_DLTA STMP&AXOFFFFFFFF

.LONG AX09A5F4400 ; LOW 1/2 OF DELTA TIME

; *** .LONG ERF$K_CLK_TICK*ERF$K_DLTA STMP@-32

.LONG AXOFFFFFFFE HIGH 1/2 OF DELTA TIME

ERF$Q_WAIT: .LONG
.LONG
.ASCII
OU TN AM

-<10*1000*500> ; # OF 10 MILLISEC INTERVALS
-1 ; TO WAIT FOR BUFFER COMPLET

OUTNAM:
OUTNAMSZ =

\SYS$ERRORLOG:ERRLOG.SYS\ OUTPUT FILE NAME
; LENGTH OF OUTPUT NAME

.SBTTL ERRFMT
;++

FUNCTIONAL DESCRIPTION:
;

THIS PROGRAM IS AWAKENED FROM HIBERNATION BY THE ERROR LOGGE
WHENEVER AN ERROR LOG BUFFER BECOMES FULL. THE ERROR FORMAT
PROGRAM READS THE FULL BUFFER AND THEN RELEASES IT FOR RE-US
THE ERROR LOGGER PROGRAM. THE DATA JUST READ IS RE-ORGANIZE
AND WRITTEN TO A FILE CALLED "ERRLOG.SYS" IN A FORMAT ACCEPT
TO SYE.

Example 1 Selected ERRFMT Source Code (Sheet 5 of 11)

EX-9

;

. , . ,
;

System Processes

EXERCISES

THE ERROR FORMAT PROGRAM ALSO PLACES TIME STAMP ENTRIES INTO
ERROR LOG BUFFER. THESE TIME STAMPS ARE PLACED INTO THE BUF
AT REGULAR INTERVALS. HOWEVER, SEQUENTIAL TIME STAMPS ARE N
WRITTEN INTO THE FILE, "ERRLOG.SYS" •

; THE FILE, "ERRLOG.SYS", IS UPDATED, OR A NEW VERSION CREATED
; THE MOST RECENT VERSION IS BEING ACCESSED OR DOES NOT EXIST.
;--

.PSECT CODE,RD,NOWRT,EXE

.ENABL LSB

.ENTRY ERF$START,O
$CMKRNL S w-ERF$INIT
CMPB -#PR$ SID TYP790, -

G-EXE$GB-CPUTYPE
BNEQ PRCBUF -
CALLS #O,W-ERF$ERRSNAP

;
; INITIALIZE THE ERR FORMATE
; ARE WE EXECUTING ON A VENU
;
; BRANCH IF NO

PRCBUF: $CMKRNL S w-ERF$GETBUF
; CALL VENUS-SPECIFIC ERROR
; GET THE FULL ERROR LOG BUF
; BR IF MESSAGE(S) TO PROCES
; CLOSE THE OUTPUT

. ,

BLBS RO,PRCNXT
$CLOSE FAB=W-OUTFAB
$BIBER S
BRB - PRCBUF

; WAIT FOR SOMETHING TO DO
;

PROCESS NEXT MESSAGE - COME HERE WHEN A BUFFER HAS BEEN COPIED FRO
; THE SYSTEM INTO THE LOCAL BUFFER. IF THE FILE IS NOT OPEN,
; OPEN THE OUTPUT FILE OR CREATE ONE IF MOST RECENT IS BEING ACCESSE
;
PRCNXT: CLRL

PRCNXTl:

2$:

MOVAB
ADDB3
BEQL
ADDL
MOVAB
TSTW
BEQL
BRW

CLRL
TSTL
BNEQ
$OPEN
BLBC

R3 ; R3=0 => OPEN EXISTING FILE
; R3~=0 => CREATE NEW ERRLOG

w-INBUF,R8 ; GET ADDR OF FIRST MSG
ERL$B BUSY(R8),ERL$B MSGCNT(R8),R6 ; GET COUNT OF ME
PRCBUF - ; BR IF NO MESSAGES TO PROCE
#ERL$C LENGTH,R8 ; POINT TO START OF MESSAGES
w-ouTFAB,R2 ; SET ADDRESS OF FAB
FAB$W IFI(R2) ; IS THE FILE OPEN?
2$ - ; BRANCH TO OPEN OR CREATE F
NXTMSG ; FILE ALREADY OPEN; CONTINU

FAB$L ALQ(R2)
R3 -
5$
FAB=(R2)
R0,4$

CLEAR ALLOCATION
; OPEN OR CREATE ERRLOG.SYS?

BR TO CREATE NEW FILE
; OPEN MOST RECENT VERSION
; OPEN FAILED; GO CREATE A N

Example 1 Selected ERRFMT Source Code (Sheet 6 of 11)

EX-10

System Processes

EXERCISES

IF THE OPEN WAS SUCCESSFUL, CHECK THAT THIS IS THE SAME ERRLOG.SYS
; ONE WE WROTE TO LAST TIME. IF NOT, CREATE A NEW VERSION OF ERRLOG .
I

3$:

4$:

5$:

10$:

12$:

TSTL
BEQL
MOVAL
CMPL
BNEQ
CMPW
BEQL

WAOUTFID HAS SYSTEM JUST RE-BOOTED?
10$ YES; DON'T CREATE A NEW ER
W~NAMEBLOCK,R4 GET ADDRESS OF NAME BLOCK
NAM$W FID(R4),WAOUTFID CHECK FIRST TWO WORDS OFF
3$ - ; FIDS DIFFER; CREATE A NEW
NAM$W FID+4(R4),WAOUTFID+4 ; CHECK 3RD WORD OF
10$ - FIDS MATCH; GO CONNECT RAB

$CLOSE FAB=(R2) CLOSE OLD FILE AND CREATE

INCL R3 SIGNAL CREATING NEW FILE

$CREATE FAB=(R2) CREATE NEW VERSION
BRANCH ON SUCCESS BLBS R0,10$

BRW WRITE FAILURE NOTIFY OPERATOR OF CREATE
SET ADDRESS OF OUTPUT RAB
PERFORM A FAST DISCONNECT
CONNECT RAB TO FAB

MOVAB W~OUTRAB,R9

CLRW RAB$W ISI(R9)
$CONNECT RAB=(R9)
BLBS R0,12$ BRANCH ON SUCCESS
BRW WRITE FAILURE ELSE BRANCH ON FAILURE

TSTL
BEQL
CLRL

CLRB
MOVAL
MOVL
MOVW
SUBL
MOVL
MOVL
MOVW
MOVL
MOVW
MOVQ

CLRW
$PUT
BLBS
BRW

Example 1

R3
NXTMSG
R3

WAS A NEW FILE JUST CREATE
BR IF NOT NEW FILE
SIGNAL SUCCESSFUL FILE CRE
AND INITIALIZATION

WALASTENTRY CLEAR SAVED MESSAGE ENTRY
WANAMEBLOCK,R4 GET ADDRESS OF NAME BLOCK
NAM$W FID('R4),W~OUTFID ; SAVE FIRST TWO WORDS OF FI
NAM$W-FID+4(R4),WAOUTFID+4 ; SAVE 3RD WORD OFF
#EMB$K HD LENGTH,SP ; ALLOCATE A BUFFER (ONLY HE
SP,R2 - - ; COPY ADDRESS OF BUFFER
R2,RAB$L RBF(R9) ; SET BUFFER ADDRESS IN RAB
#EMB$K HD LENGTH,RAB$W RSZ(R9) ; AND SET LENGTH FOR
WASID,EMB$L HD SID(R2)- ; SET SYSTEM !DENT
#EMB$K NF,EMB$W HD ENTRY(R2) ; SET ENTRY TYPE
EMB$Q HD TIME+EMB$K LENGTH(R8),- ; COPY TIME AND DAT
EMB$Q-HD-TIME(R2) - ; FIRST ENTRY IN THE ERROR L
EMB$W-HD-ERRSEQ(R2) ; SET ERROR SEQUENCE NUMBER
RAB=(R9)- ; WRITE FILE CREATED MARK
R0,15$; BR IF SUCCESSFUL
WRITE FAILURE ELSE BRANCH ON FAILURE

Selected ERRFMT Source Code (Sheet 7 of 11)

EX-11

15$:

.
I

ADDL

System Processes

EXERCISES

#ERF$K_TS_LENGTH,SP CLEAR THE STACK

; PROCESS A MESSAGE IN THE ERROR BUFFER.

; R6 = NUMBER OF MESSAGES IN THE BUFFER
; R7 = IS USED TO HOLD THE FORMATTED RECORD

R8 = THE START OF THE NEXT MESSAGE IN THE LOCAL BUFFER
; R9 = ADDRESS OF THE OUTPUT RAB .
I

NXTMSG: DECB
BGEQ

20$: BRW
ASSUME
ASSUME
ASSUME

30$: ADDL
MOVZWL
SUBL
MOVW
MOVAL
TSTB
BNEQ
BISB

40$: MOVL
ADDL

.DSABL

R6 ; IS THERE ANOTHER MSG?
30$; BRANCH TO FORMAT ANOTHER M
PRCBUF ; TRY FOR ANOTHER BUFFER
EMB$W HD ENTRY EQ ERF$W HD ENTRY
EMB$Q-HD-TIME EQ ERF$Q-HD-TIME
EMB$W-HD-ERRSEQ EQ ERF$W-HD-ERRSEQ
#EMB$K LENGTH,R8 T POINT PAST MESSAGE HEADER
EMB$W SIZE(R8),Rl GET SIZE OF MESSAGE TEXT
#EMB$K LENGTH,Rl SUBTRACT SIZE OF MESSAGE H
Rl,RAB$W RSZ(R9) AND SET INTO RAB
(R8),RAB$L RBF(R9) AND THE ADDRESS OF THE BUF
EMB$B VALID(R8) ; IS RECORD VALID?
40$ - ; BRANCH ON YES
#ERF$M HD INVALD,ERF$W HD ENTRY(R8) ; FLAG INVALID B
R8,R7 - - - ;-COPY START OF CURRENT RECO
Rl,R8 ; ADVANCE TO NEXT RECORD

LSB

OUTPUT ERROR MESSAGE. Rl=SIZE.
;
MSGOUT: CMPB

BNEQ
CMPB
BNEQ
MOVB
$FIND
MOVB
BLBC
$UPDATE
BLBC
BRW

10$: MOVB
CMPB
BEQL

Example 1

W~LASTENTRY,#EMB$C TS ; LAST REC = TIME STA
10$ - ; BRANCH ON NO
ERF$W HD ENTRY(R7),#EMB$C TS ; THIS REC= TIME STAMP?
10$ - - ;-BRANCH ON NO
#RAB$C RFA,RAB$B RAC(R9) ; SET RANDOM FILE ACCESS
RAB=(R9) - ; FIND LAST RECORD WRITTEN
#RAB$C SEQ,RAB$B RAC(R9); SET TO SEQUENTIAL ACCESS
RO,WRITE FAILURE- BR IF ERROR
RAB=(R9)- UPDATE LAST RECORD
RO,WRITE FAILURE BR IF ERROR
MBX - ; BRANCH TO MAILBOX PROCESS!
ERF$W HD ENTRY(R7) ,W~LASTENTRY ; SAVE MSG ENTRY TYPE
ERF$W-HD-ENTRY(R7),#EMB$C VM ; VOLUME MOUNTED?
20$ - - ; -XFER IF SO

Selected ERRFMT source Code (Sheet 8 of 11)

EX-12

System Processes

EXERCISES

CMPB ERF$W_HD_ENTRY(R7},#EMB$C_VD ; OR VOLUME DISMOUNT
BNEQ 30$ XFER IF NOT

20$: PUSHL R7 ELSE SAVE ADDRESS OF THE B
CALLS #l,ERF$MOUNT GO FORM OPERATOR MESSAGE A

30$: $PUT RAB=(R9} OUTPUT MSG
BLBS RO,MBX BR IF SUCCESSFUL $PUT

COME HERE IF AN ACCESS TO THE ERRORLOG FILE FAILED.

WRITE FAILURE:

10$:

MBX:

$GETMSG S -
-MSGID=RO, -

MSGLEN=W-ROMSG LEN, -
BUFADR=W-ROMSG-DSC

MOVL WAOPRMSG LEN,R4 ;
ADDL2 wAROMSG LEN,w-oPRMSG LEN;
$SNDOPR S - - -

-MSGBUF=W-OPRMSG DSC
MOVL R4,w-oPRMSG LEN-
$CLOSE FAB=WAOUTFAB
ACBB WAERF$B MAXERRCNT,#1, -

WAERF$B=ERRCNT,10$
$SNDOPR S -

-MSGBUF=W-BYEMSG DSC
BRB MBX

INCL R3
MOVAB WAOUTFAB,R2
CLRW FAB$W IFI(R2}
$FAB STORE - -

BRW

- FAB= (R2} , -
ORG=SEQ, -
MRS=#O, -
FOP=CIF, -
SHR=<GET,UPI>, -
RFM=VAR
PRCNXTl

TRANSLATE REASON FOR FAILU

SAVE BASIC MESSAGE LENGTH
COMBINE OPRMSG WITH STATUS
INFORM OPERATOR OF ERROR I
WRITING ERRORLOG FILE
RESTORE BASIC MESSAGE LENG
CLOSE FILE AS CAN'T WRITE
INC ERROR COUNT AND BRANCH
<= MAX ERROR COUNT.
ELSE NOTIFY OPERATOR THAT
PROCESS WILL BE DELETED.
BRANCH TO MAILBOX PROCESS!
ERROR COUNT <= MAX ERROR C
SIGNAL ACCESS FAILURE
MUST CREATE NEW FILE
CLEAR INDICATOR TO OPEN NE
REINITIALIZE FAB

SEQUENTIAL ORGANIZATION
NO MAX ON RECORD SIZE

VARIABLE LENGTH RECORDS
GO TRY TO OPEN A NEW FILE

; MAILBOX MESSAGES
MOVL
MOVZWL
BEQL
CMPW
BEQL

SP,Rll MARK THE STACK
w-ERF$W MBXCHN,RO MBX CHANNEL ALREADY?
30$ - ; BRANCH ON NONE
G-EXE$GQ ERLMBx,w-ERF$W MBXUNT ; SAME AS LAST TIME?
50$ - -; YES, GO MAIL THE MSG

Example 1 Selected ERRFMT Source Code (Sheet 9 of 11)

EX-13

30$:

System Processes

EXERCISES

$DASSGN S CHAN=RO
CLRW -WAERF$W_MBXCHN

; NO, DEASSIGN OLD CHANNEL
; CLEAR OLD CHANNEL

MOVZWL GAEXE$GQ ERLMBX,RO ; GET NEW MAIL BOX UNIT
MOVW R0,WAERF$W MBXUNT ; SET NEW UNIT TO USE
BEQL 40$ - ; BRANCH IF NONE
SUBL #32-4,SP ; ALLOCATE BUFFER IN THE STA
MOVL SP,R2 ; MARK START OF MAIL BOX UNI
PUSHL #AA/ MBA/ ; SET PROTOTYPE NAME
PUSHL SP - ; SET START OF BUFFER
BSBW 100$; SET UNIT OF MAILBOX
SUBL3 (SP),R2,-(SP) ; FIND LENGTH OF NAME
MOVL SP,R2 ; SAVE POINTER TO NAME
$ASSIGN_S DEVNAM=(R2),- : ASSIGN A CHANNEL TO

CHAN=WAERF$W MBXCHN; THE DIAGNOSTIC MAILBOX
BLBS R0,45$ - ; BRANCH ON SUCCESS

40$: BRW 65$; SKIP THE QIO IF FAILED
45$:

MOVL #32,(SP) ; RESET LENGTH OF BUFFER
$GETCHN_S CHAN=WAERF$W MBXCHN,-; GET SIZE OF MAILBOX

PRIBUF=(R2) - ; I.E., THE MAXIMUM MSG SIZE
MOVL 4(R2),R2 ; GET ADDRESS OF DEV CHAR BU
MOVW DIB$W DEVBUFSIZ(R2),WAERF$W MBXSIZ ; GET MAILBOX SIZ

50$: MOVZWL RAB$W-RSZ(R9),RO ; GET SIZE OF MESSAGE
CMPW RO,W-ERF$W MBXSIZ ; MSG TOO LARGE?
BLEQU 55$ - ; BRANCH ON OK
MOVW WAERF$W MBXSIZ,RO i TRUNCATE MSG

55$: $QIO_S CHAN=WAERF$W MBXCHN,- ; CHANNEL FOR DIAG MBX
FUNC=#<IO$ WRITEVBLK!IO$M NOW>,- i DONT WAIT FOR sue
Pl=(R7),- - ;-ADDR OF ERROR MSG
P2=RO ; SIZE OF MSG

CMPB W-ERF$B ERRCNT, - ; HAVE WE EXCEEDED THE ERROR
WAERF$B-MAXERRCNT i THRESHHOLD?

BLEQ 65$ - ; BRANCH IF NO
MOVZWL w-BYEMSG LEN,RO ; GET LENGTH OF GOODBYE MESS
CMPW R0,ERF$W-MBXSIZ ; MESSAGE TOO LARGE?
BLEQU 60$ - : BRANCH ON OK
MOVW w-ERF$W_MBXSIZ,RO ; TRUNCATE MESSAGE

60$:
$QIO_S - ; NOTIFY MAILBOX THAT PROCES

CHAN=W-ERF$W MBXCHN, - ; BEING DELETED.
FUNC=#<IO$ WRITEVBLK!IO$M NOW>, -
Pl=W-BYEMSG, - -
P2=RO

Example 1 Selected ERRFMT Source Code (Sheet 10 of 11)

EX-14

65$: MOVL
CMPB

BGTR
BRW

System Processes

EXERCISES

Rll,SP
W~ERF$B ERRCNT, -
W~ERF$B-MAXERRCNT
70$ -
NXTMSG

RESET THE STACK POINTER
HAVE WE EXCEEDED THE ERROR
THRESHHOLD?
BRANCH IF YES
ELSE GO PROCESS NEXT MESSA

; IF ERRCNT > MAXERRCNT, DELETE THIS PROCESS TO PREVENT INFINITE LOO
THE ERRFMT PROCESS CAN BE RESTARTED VIA AN OPERATOR COMMAND FILE • .

I

70$: $DELPRC_S ; DELETE THIS,PROCESS

LOCAL SUBROUTINE TO CONVERT BINARY TO ASCII AND STORE RESULT
; IN BUFFER POINTED TO BY R2 .
I

100$:
110$:

120$:

CLRL
EDIV
ADDL
TSTL
BEQL
BSBB
CVTLB
RSB

Example 1

Rl
#10,RO,RO,-(SP)
#~A/0/, (SP)
RO
120$
110$
(SP)+,(R2)+

Selected ERRFMT Source

EX-15

ZERO HI 1/2 OF QUADWORD
GET NEXT DIGIT
FIND THE DIGIT IN ASCII
ANY THING LEFT
BR IF NO MORE TO CONVERT
GET NEXT DIGIT
STORE A BYTE

Code (Sheet 11 of 11)

System Processes

SOLUTIONS

To obtain a copy of the errors handled by ERRFMT, create a mailbox
and place its unit number in EXE$GQ ERLMBX. Then continuously
read the mailbox and output the information from ERRFMT (see
Example 2).

.TITLE GETERROR
$DVIDEF

SYSPLABl.MAR

BUFSIZ=512

This program obtains a copy of the errors handled by
ERRFMT and displays them on the terminal.

.PSECT
STAT BLOCK!:

NONSHARED DATA PIC, NOEXE, LONG
.BLKW 1- ;Status Block

LENl:
INFOl:
BUF 1:
TTCHAN:
TTDEV:

.BLKW 1

.BLKL 1
.BLKB BUFSIZ

.BLKW 1
.ASCID \SYS$COMMAND\

;Error record buffer
;Terminal channel

;Terminal Device
GET LIST:

MBX UNIT:

.PSECT
CHANNEL:
MAILBOX NAME:

.PSECT

.ENTRY

4 ;Item list for Unit No. .WORD
.WORD
.LONG
.LONG
.LONG

DVI$ UNIT
MBX UNIT
0
0

.BLKL 1
NONSHARED DATA
.BLKW 1
.ASCID /ERROR/

CODE
BEGIN M<>

;MBX Unit Number
PIC, NOEXE, LONG

PIC, SHR, NOWRT, LONG

Open a channel to the terminal
$ASSIGN_S CHAN=TTCHAN,DEVNAM=TTDEV

Create mailbox
$CREMBX S CHAN=CHANNEL, LOGNAM=MAILBOX NAME,-

- MAXMSG = #512, BUFQUO = #4096
BLBC RO,ERRl

Example 2 Solution to Lab Exercise (Sheet 1 of 2)

EX-16

System Processes

SOLUTIONS

; Get the unit number for the mailbox

ERRl:

MORE:

$GETDVIW_S CHAN=CHANNEL, IOSB=STAT BLOCKl,-
ITMLST=GET LIST -

BLBC RO,ERRl
BRW MORE

BRW ERR

$CMKRNL S GETINFO
BLBC -RO,ERRl

Read message from the mailbox
$QIO S EFN=#l, CHAN=CHANNEL,-

;Record MBX Unit Number

- FUNC=#I0$ READVBLK,IOSB=STAT BLOCKl,-
Pl =BUF_T, P2 = #256 -

BLBC RO, ERR

Wait for information
$SYNCH S EFN=#l,IOSB=STAT_BLOCKl
BLBC RO, ERR

Output info to terminal
$QIO_S EFN=#l, CHAN=TTCHAN,-

FUNC=#I0$ WRITEVBLK,IOSB=STAT BLOCKl,­
Pl =BUF_l, P2 = #256,P4 = #32

BLBC RO, ERR
40$: BRW MORE

MOVL #SS$ NORMAL, RO
ERR: RET -

.ENTRY GETINF0,0
30$:

MOVW MBX_UNIT,G~EXE$GQ_ERLMBX SET MBX UNIT NUMBER

40$: RET
.END BEGIN

Example 2 Solution to Lab Exercise (Sheet 2 of 2)

EX-17

Forming, Activating, and Terminating Images

EXERCISES

1. Explain how each of the following INSTALL options affects the
start-up time in using an image.

a. INSTALL

b. INSTALL/OPEN

c. INSTALL/OPEN/HEADER

2. Using the linker map in Example 1 below, answer the following
questions about the executable image named CALC.

a. How many image sections are in this image (including
sections for the user stack and any shareable images)?

b. What is the base virtual address of the PSECT named
MAIN CODE?

c. In which module is the symbol LIB$GET_INPUT defined?

d. In which module is the symbol SUBTRACT defined?

EX-19

Forming, Activating, and Terminating Images

EXERCISES

e. How many pages of PO virtual address space, excluding the
pages for the RTL, will this image use?

f. One of the image sections starts at virtual address 400
(hex). List the PSECTs that contribute to this image
section.

EX-20

Module Name

CALCULATOR
SYS$P1 VECTOR
LIBRTL-

I dent

0
V04-000
V04-000

25-0CT-1984 14:02 VAX-11 Linker V04-00

+------------------------+
! Object Module Synopsis !
+------------------------+

Bytes File

1048 [HUNT.OSI.MODS.IMAGE)CALC.OBJ;2
0 SYS$SYSROOT:[SYSLIB)STARLET.OLB;2
0 SYS$SYSROOT:[SYSLIB]LIBRTL.EXE;1

Creation Date

25-0CT-1984 12:49
16-SEP-1984 00:40
16-SEP-1984 04:00

Creator

VAX/VMS Macro V04-00
VAX/VMS Macro V04-00
VAX-11 Linker V04-00

Page

DEMON$DUA3:[HUNT.OSI.MODS.IMAGE]CALC.EXE;3 25-0CT-1984 14:02 VAX-11 Linker V04-00 Page 2

+------------------------+
! Image Section Synopsis !
+------------------------+

Cluster Type Pages Base Addr Disk VBN PFC Protection and Paging
--------- -------- --- ---------------------

DEFAULT -

Ll8RTL

CLUSTER a 00000200
0 00000400
0 1 00000800

253 20 7FFFD800

3 111 00000000-R
4 1 OOOOOEOO-R

Key for special characters above:
+------------------+
! R - Relocatable !
! P - Protected
+------------------+

2 0 READ WRITE COPY ON REF
3 0 READ ONLY
5 0 READ WRITE FIXUP VECTORS
0 0 READ WRITE DEMAND ZERO

0 0 READ ONLY
0 0 READ WRITE DEMAND ZERO

Global Sec. Name Match Major id

LI8RTL - 001 LESS/EQUAL
Ll8RTL -002 LESS/EQUAL

DEMON$0UA3:[HUNT.OSI.MOOS.IMAGE)CALC.EXE;3 25-0CT-1984 14:02 VAX-11 Linker V04-00

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module Name Base End Length Align Attributes
---------- ----------- ----------
MAC PSECT 00000200 000002FE OOOOOOFF 255.) LONG 2 NOPIC,USR,CON,REL,LCL, SHR,NOEXE, - CALCULATOR 00000200 000002FE OOOOOOFF 255.) LONG 2

MAIN_OATA 000002FF 0000039C 0000009E 158.) BYTE 0 PIC,USR,CON,REL,LCL,NOSHR,NOEXE,
CALCULATOR 000002FF 0000039C 0000009E 158.) BYTE 0

AOO_CODE 00000400 00000409 OOOOOOOA 10.) BYTE 0 PIC,USR,CON,REL,LCL,NOSHR, EXE,
CALCULATOR 00000400 00000409 OOOOOOOA 10.) BYTE 0

DIV_COOE 0000040A 00000413 OOOOOOOA 10.} BYTE 0 PIC,USR,CON,REL,LCL,NOSHR, EXE,
CALCULATOR 0000040A 00000413 OOOOOOOA tO.) BYTE 0

MAIN_ CODE 00000414 00000666 00000253 595.) BYTE 0 PIC,USR,CON,REL,LCL,NOSHR, EXE,
CALCULATOR 00000414 00000666 00000253 595.) BYTE 0

MULT_COOE 00000667 00000670 OOOOOOOA 10.) BYTE 0 PIC,USR,CON,REL,LCL,NOSHR, EXE,
CALCULATOR 00000667 00000670-0000000A 10.) BYTE 0

SUB_CODE 00000671 0000067A OOOOOOOA 10.) BYTE 0 PIC,USR,CON,REL,LCL,NOSHR, EXE,
CALCULATOR 00000671 0000067A OOOO-OOOA 10.) BYTE 0

Example 1 Full Linker Map of CALC.EXE
(Sheet 1 of 3)

Minor id

11
11

Page 3

RO, WRT,NOVEC

RO, WRT,NOVEC

RO,NOWRT,NOVEC

RO,NOWRT,NOVEC

RO,NOWRT,NOVEC

RO,NOWRT,NOVEC

RO,NOWRT,NOVEC

,,
0 ...
3 :;·

c.a ...
)>
() ... :c·
D>
~. m :::I

>< c.a
m ...
:a D>
0 :::I

CL u;
-I m C1)

fn ...
3 :;·
D> ... s·

c.a -3
D>

c.a
C1)
fA

DEMON$DUA3:[HUNT.OSl.MODS.IMAGE)CALC.EXE;3

Symbol

ADD
BEGIN
DIVIDE
LIB$GET INPUT
LI B$PUT-OUTPUT
MULTIPLY
OTS$CVT L TI
OTS$CVT-Tl L
STR$CONCAT­
SUBTRACT
SVSSIMGSTA

Value

00000400-R
00000414-R
0000040A-R
00000854-RX
00000858-RX
00000667-R
0000084C-RX
00000850-RX
00000848-RX
00000671-R
7FFEDF68

Defined By

CALCULATOR
CALCULATOR
CALCULATOR
LIBRTL
LIBRTL
CALCULATOR
LIBRTL
LIBRTL
LIBRTL
CALCULATOR
SVS$P1_VECTOR

DEMON$DUA3:(HUNT.OSI.MODS.IMAGE]CALC.EXE;3

25-0CT-1984 14:02

+------------------------+
! Symbol Cross Reference !
+------------------------+

Referenced By ...

CALCULATOR
CALCULATOR

CALCULATOR
CALCULATOR
CALCULATOR

25-0CT-1984 14:02

+------------~-----+
! Symbols By Value !
+------------------+

Value Symbols ...

00000400
0000040A
00000414
00000667
00000671
00000848
0000084C
00000850
00000854
00000858
7FFEDF68

R-ADD
R-DIVIDE
R-BEGIN
R-MULTIPLV
R-SUBTRACT

RX-STR$CONCAT
RX-OTS$CVT L TI
RX-OTS$CVT-Tl L
RX-LI B$GET-I NPUT
RX-LIB$PUT-OUTPUT

SVSSIMGSTA

Key for special characters above:
+------------------+
! • - Undefined
! U - Universal
! R - Relocatable !
! X - External
+------------------+

VAX-11 Linker V04-00

VAX-11 Linker V04-00

Example 1 Full Linker Map of CALC.EXE
(Sheet 2 of 3)

Page 4

.,,
0 ...
~.
:::::s

'° ...
l>
(') ...
:er
m
=::!". m :::::s

Page >< '° m ...
:D D>
0 :::::s

c;; Cl.

-I m CD en ...

5

3 s·
m ... s·
'° -3
D>

'° CD
fA

DEMON$DUA3:[HUNT.OSI.MODS.IMAGE]CALC.EXE;3

Virtual memory allocated:
Stack size:
Image header virtual block limits:
Image binary virtual block limits:
Image name and identification:
Number of files:
Number of modules:
Number of program sections:
Number of global symbols:
Number of cross references:
Number of image sections:
User transfer address:
Debugger transfer address:
Number of code references to shareable images:
Image type:

25-0CT-1984 14:02 VAX-11 Linker V04-00

+----------------+
! Image Synopsis !
+----------------+

00000200 000009FF 00000800 (2048. bytes, 4. pages)
20. pages

1. 1. (1. block)
2. 5. (4. blocks)

CALC 0
4.
3.

11.
251.

16.
6.

00000414
7FFEDF68

5.
EXECUTABLE.

Page

Map format:
Estimated map length:

FULL WITH CROSS REFERENCE in file DEMON$DUA3:[HUNT.OSI.MODS.IMAGEJCALC.MAP;3
59. blocks

Performance Indicators

Command processing:
Pass 1:
Allocation/Relocation:
Pass 2:
Map data after object module synopsis:
Symbol table output:

Total run values:

+---------------------+
! Link Run Statistics !
+---------------------+

Page Faults CPU Time

96 00:00:00.14
182 00:00:00.77
32 00:00:00.16

108 00:00:00.36
15 00:00:00.22

5 00:00:00.03
438 00:00:01 .68

Elapse<1 Time

00:00:02.66
00:00:03.89
00:00:00.66
00:00:01.67
00:00:00.27
00: 00: 00. 15
00:00:09.30

Using a working set limited to 300 pages and 49 pages of data storage (excluding image)

Total number object records read (both passes): 136
of which 19 were in libraries and 2 were DEBUG data records containing 266 bytes

235 bytes of DEBUG data were written.starting at VBN 6 with 1 blocks allocated

Number of modules extracted explicitly = 0
with 1 extracted to resolve undefined symbols

0 library searches were for symbols not in the library searched

A total of 0 global symbol table records was written

LINK/MAP/FULL/CROSS CALC

Example 1 Full Linker Map of CALC.EXE
(Sheet 3 of 3)

6

"Tl
0 ..
3 -· ::I

(Q ..
)>
n ...
<" m
=::!'.

m ::I
>< (Q

m ..
:a m
Q ::I

Cl.
en -I m CD en ..

3 :;·
m
=::!'.
::I

(Q

-3
m

(Q
CD
fA

1.

2.

Forming, Activating, and Terminating Images

EXERCISES

a. INSTALL allows a file to be opened by file ID and sequence
number. This improves the speed of the OPEN operation
since directory lookup I/O operations need not be
performed.

b. INSTALL/OPEN makes the file permanently opened. There is
no wait for the OPEN operation, since a channel to the
file has been created, and I/O can be issued immediately.

c. INSTALL/OPEN/HEADER makes the file open and the file
header permanently resident. Not only is there no OPEN
processing, but one less disk read operation is required
during the image activation.

a. This image has 6 image sections; 4 in the default cluster
and 2 in the cluster for LIBRTL.

b. The base virtual address of the PSECT named MAIN CODE is
414 (hex).

c. The symbol LIB$GET_INPUT is defined in module LIBRTL.

d. The symbol SUBTRACT is defined in module CALCULATOR.

e. This image will use 4 pages of PO virtual address space.
(The pages for the user stack are not included in this
count because they are Pl pages.)

f. The PSECTs that contribute to the image section with base
address 400 are:

ADD CODE
DIV CODE
MAIN CODE
MULT-CODE
SUB CODE

EX-24

Forming, Activating, and Terminating Images

EXERCISES

1. The DCL ANALYZE/IMAGE command formats and displays the
information in an image header. Analyze the image
SYS$SYSTEM:MONITOR.EXE and answer the following questions.

a. How large is the header for this image (in blocks)?

b. There may be 1 to 3
array. How many
image, and why?

addresses in the transfer address
transfer addresses are there for this

c. The third image section descriptor (ISD) is only 12 bytes
long. Explain the purpose of this type of ISD.

d. How many pages will be mapped for the user stack when this
image is activated? (Remember~ One of the image sections
describes the user stack.)

e. Some of the ISDs are between 26 and 64 bytes long.
Explain the purpose of this type of ISD.

EX-25

Forming, Activating, and Terminating Images

EXERCISES

2. The known file database describes the installed files on a
system. use the System Dump Analyzer to obtain the following
information about the known file database on the system
recorded in the dump file OSI$LABS:CRASH1.DMP.

It will be helpful to read the file OSI$LABS:GLOBALS.STB into
your SDA session.

You may also want to obtain copies of the .PIC (picture) files
for the known file data structures (KFPB, KFD, and KFE).

a. Because the DCL SHOW command is issued frequently, the
image that implements this command is installed
/OPEN/HEADER/SHARE to improve performance. In addition,
the image is installed with privileges.

To find the Known File Entry (KFE) describing the SHOW
image, first calculate the index into the KFE hash table
for SHOW.

Consult your instructor for the hash algorithm, and
calculate the hash index.

b. Locate the KFE hash table.

(HINTS: There is a pointer to the KFE hash table in the
KFPB, and the KFPB can be located with a global system
symbol.)

EX-26

Forming, Activating, and Terminating Images

EXERCISES

c. Locate the first KFE in the hash chain containing the KFE
for the SHOW image. (The hash index from part (a) is the
number of longwords you should off set into the KFE hash
table.)

Search the singly linked hash chain until you find the KFE
for the SHOW image.

(NOTE: When you format a KFE, the last field, containing
the ASCII file name string, is not shown. To examine that
field, examine the bytes after the last field formatted -­
KFE$B_FILNAMLEN.)

d. Locate the mask of privileges with which
installed, and verify that it is non-zero.

SHOW is

e. Give the device, directory, and file type for the SHOW
image.

(HINT: This information is stored in another data
structure for the image, called the KFD. Locate the KFD
using the address at offset KFE$L_KFD in the KFE.)

f. Some images are installed from different directories than
the SHOW image. List at least two of these different
device/directory/file-type combinations.

EX-27

Forming, Activating, and Terminating Images

SOLUTIONS

1. Analyze the monitor image with the command:

$ ANALYZE/IMAGE SYS$SYSTEM:MONITOR

a. The image header is 1 block long.

b. There is only one transfer address for this image. It is
the entry point of the image.

The other two possible entries in the transfer address
array are SYS$IMGSTA and LIB$INITIALIZE. Image start-up
is not required for this image, therefore, the address of ~
SYS$IMGSTA does not appear in the transfer address array. ~

LIB$INITIALIZE is not referenced by MONITOR, therefore,
there is only one transfer address for this image.

c. The third image section descriptor (ISD) describes a
demand-zero section. Note that the ISD flag ISD$V_DZRO is
set.

Demand-zero (DZRO) sections of a program consist of ~
uninitialized pages that do not reside in the disk file.
Rather, they are allocated from physical memory as needed.

Because the DZRO pages do not take up space in the disk
file, there is no starting virtual block number (VBN) for
a DZRO section. Therefore, a DZRO ISD is 12 bytes long,
as compared to a 16-byte ISD for a process private
section.

d. Twenty (20) pages will be mapped for the user stack when ~
this image is activated.

(You can find the ISD that describes the user stack by
locating the ISD whose section type is ISD$K_USRSTACK.)

e. An ISD that is 26-64 bytes long describes a global image
section. A global ISD contains the !DENT and name of the
global section.

EX-28

Forming, Activating, and Terminating Images

SOLUTIONS

2. Enter SDA with the command ANAL/CRASH OSI$LABS:CRASH1.DMP.

a. Consult your instructor for the hash index for the SHOW
image.

b. The following command displays the address of the KFE hash
table:

SDA> EXAMINE @EXE$GL_KNOWN_FILES + KFPB$L_KFEHSHTAB

The symbol EXE$GL KNOWN FILES locates the Known File
Pointer Block (KFPB). The address of the KFE hash table
is stored at offset KFPB$L_KFEHSHTAB in the KFPB.

c. First locate the hash chain containing the KFE for the
SHOW image.

Take the address of the KFE hash table from part (b), and
offset n longwords, where n is the hash index from part
(a). That entry in the hash table contains the address of
the first KFE in the hash chain. Format the first KFE
with a command such as:

SDA> FORMAT @(tableaddr_from b + index from a * 4)

Examine the ASCII string at offset KFE$T FILNAM in the
KFE. If the value of the string is wSHOW", you have
located the KFE for the SHOW image.

If the ASCII string is something other than SHOW, you must
search the hash chain. The value at offset KFE$L HSHLNK
is the address of the next KFE in the chain.

d. The mask of privileges with which SHOW is installed is
located at offset KFE$Q_PROCPRIV in the KFE.

e. SHOW is normally installed from SYS$SYSROOT:[SYSEXE] with
the file type .EXE.

This information is stored at the end of the KFD for SHOW.
Locate the KFD using the value at offset KFE$L_KFD in the
KFE.

f. Locate the other device/directory/file-type combinations
by searching the list of KFDs. Two of the combinations
will be:

SYS$SYSROOT:[SYSLIB] .EXE
SYS$SYSROOT: [SYSMSG] .EXE

EX-29

Paging

EXERCISES

1. What is the page replacement algorithm used by the pager?

2.

Explain how this algorithm combines with the page cache (free
and modified page lists) to effectively implement a
least-recently-used algorithm.

What limitation is imposed on the size
memory management data structures?
limitation at the present time?

EX-31

of a page file by
Is this a restrictive

Paging

EXERCISES

3. The VAX/VMS operating system uses page table entries of
invalid pages to locate those pages in secondary storage. In
view of the sequence of steps followed in address translation,
what must the contents of PTE<30:27> be? Why?

4. A common programming error involves inadvertently transferring
control to location o. This problem is neatly caught in VAX
native images using the memory management protection
mechanism. What is the mechanism used? How can the
programmer distinguish this exception from other problems?

EX-32

Paging

EXERCISES

5. In translating a process virtual address, two address
translations are potentially involved, and thus, two distinct
translation-not-valid faults can occur.

a. What are the translations?

b. Why are two translations not always required?

c. How can one distinguish the two faults?

d. What is the difference between the state of the stack in
the two cases?

6. Explain how the VAX hardware uses the modify bit in the page
table entry.

7. State one instance when the VAX/VMS operating system must
invalidate a single entry in the translation buffer.

EX-33

Paging

EXERCISES

Questions 8 through 12 represent a
involving the interactions among
VAX/VMS. The processes have
characteristics:

Process
Name

LOW
MEDIUM
HIGH

Software
Priority

4
10
15

sequence of operations
three user processes and
the following initial

Scheduling
State

CUR
LEF
LEF

8. Process LOW causes a page fault in referencing a page in
VAX-11 RMS (a mapped system section in the system region).
The corresponding page table entry (PTE) points to the image
file (SYS$SYSTEM:RMS.EXE).

a. What is the action of the pager?

b. Into what scheduling state is process LOW placed?

c. Into what page state is the physical page (PFN databas~
entry) placed?

9. While the paging operation is in progress, Process HIGH
becomes computable and also makes a reference to the same page
in RMS as Process LOW referenced.

a. Into what scheduling state is process HIGH placed?

b. What page state is the physical page (PFN database entry)
in now?

EX-34

Paging

EXERCISES

10. While the paging operation continues, process MEDIUM also
becomes computable and also refers to the same RMS page as
processes HIGH and LOW.

a. Into what scheduling state is process MEDIUM placed?

b. What page state is the physical page (PFN database entry)
in now?

11. The paging read operation completes. Further processing is
performed at IPL 4 by the I/O post processing routine.

a. Into what scheduling state is process LOW placed?

b. Into what scheduling state is process MEDIUM placed?

c. Into what scheduling state is process HIGH placed?

d. Into what page state is the physical page (PFN database
entry) placed?

EX-35

Paging

EXERCISES

12. IOPOST completes its processing and dismisses the IPL 4
interrupt. A scheduling interrupt (IPL 3) occurs as a result
of the IOPOST operations.

a. Which of the three processes will be scheduled first?

b. Why is this process selected for execution?

13. Several components and utilities of VAX/VMS are required to
cooperate in the implementation of shared sections.

a. How does this feature contribute to reducing the
consumption of disk storage and physical memory?

b. A shareable image requires the use of the global page
table and the global section table to resolve page faults
within the image. What does this fact imply about the
speed of an individual page fault resolution within a
global section? What is the implication of page fault
resolution considering all of the processes on the system?
Why?

EX-36

Paging

EXERCISES

14. To answer the following question, you will need access to a
set of VMS Version 4.x microfiche. See your instructor for
the microfiche and a microfiche reader.

a. The code for the pager is part of the SYS facility.
Locate the module on the fiche that contains the pager
code, and record the name of the module below.

b. If a process incurs a page fault when its working set is
full, the pager must remove a page from the working set to
make room for the new page.

Locate the routine within the pager that is responsible
for freeing a working set list entry.

c. If a faulted page is not resident, the pager queues a read
request for the page. Locate the section of code in the
pager that queues a page read request.

d. In the routine mentioned in part (c), the pager

Queues an I/O request

Puts the process on the PFW state queue

Issues a SVPCTX instruction

Branches to SCH$WAITM

The module that defines SCH$WAITM is part of the SYS
facility.

using the symbols cross-reference section
determine the name of the module that
SCH$WAITM routine.

EX-37

of SYS.MAP,
defines the

Paging

EXERCISES

e. Locate the SCH$WAITM routine in the microfiche. After
doing some bookkeeping, the routine branches to SCH$SCHED.

What is the name of the module that defines SCH$SCHED?

f. The pager is invoked as the result of an exception. If
the pager queues a page read request, it branches to
SCH$WAITM. SCH$WAITM branches to the scheduling code, and
does not return to the pager.

How is the page fault exception dismissed?

EX-38

Paging

SOLUTIONS

1. The pager replaces the oldest page in the process working set.
The process working set list is a circular buffer, with a
single pointer advancing to the next replacement candidate.

The contents of the physical page are not discarded when the
page is removed from the working set. Rather, the physical
page is placed on either the free page list or the modified
page list. If a page fault occurs while the page is on either
of these lists, the pager simply removes the page from the
list and puts it back into the process working set.

Virtual pages that are frequently referenced will occasionally
be removed from the process working set. However, it is
highly likely that the page will still be on one of the lists
when a subsequent page fault occurs.

2. The page file control block imposes no limitation on the size
of the page file. The form of page table entry that indicates
that a virtual page is in the page file allows 22 bits for
virtual block number. This requires that the page file be
less than four megablocks. Because disks do not normally
exceed one megablock, the maximum size of a single page file
is much larger than the available disks. No limitation is
currently imposed by the data structures.

3. PTE<30:27> must contain a protection code, even for invalid
pages. Because the access check is performed before the valid
bit is tested, the PTE for each page in process or system
virtual space (specified by the contents of the appropriate
region length register) must contain a protection code in
these four bits.

4. The VAX linker sets up the first page of a native image as NO
ACCESS for any access mode (PTE<30:27> = O). A transfer of
control to location 0 (via a CALLX, JMP, BRx, JSB, or BSBx
instruction) causes a protection code access violation.

The top two longwords on the stack will both be zero. The
reason mask is a zero and the virtual address causing the
exception is also a zero. This is the key to this type of
programming error.

The third longword on the stack is the PC of the of fending
instruction; the fourth longword is the PSL at the time of
the exception.

EX-39

5.

Paging

SOLUTIONS

a. Both the process virtual address and the system virtual
address of the corresponding PxPTE must be translated.

b. If a translation buffer hit occurs on the process page
table entry, the physical address can be formed
immediately.

Note that if a translation buffer hit occurs on the SPTE
that maps the PxPTE, two translations are still required.

c. If the translation-not-valid fault occurs on the
associated page table entry, bit 1 in the reason mask (on
the top of the kernel stack) will be set. The second
longword will contain the process virtual address in both
cases.

d. The only difference in the state of the stack is bit 1 in
the reason mask. The faulting virtual address is the
process virtual address in both cases.

6. When a page is brought into a process working set, the modify
bit is initially clear. Each time a write or modify access is
made to a page, the modify bit is checked. If the bit is
clear, it will be set by hardware both in the translation
buffer and in the page table entry in physical memory.

Thus, the first write or modify access will cause the bit to
be set. All subsequent accesses (until the page is removed
from the working set) will have no effect on the modify bit.

The state of the modify bit will be checked when the page is
removed from the working set. If the bit is set, the page
must be put on the modified page list and written to secondary
storage before the physical page can be reused by another
process.

EX-40

Paging

SOLUTIONS

7. The most common example of invalidating a single page table
entry in the translation buffer is when the page is removed
from the working set. If virtual addresses are deleted from a
process (as a result of $CNTREG, $DELTVA, $DGBLSC system
services, or at image exit) their associated translation
buffer entries must be invalidated.

8.

9.

If page protection is changed
service, the corresponding
invalidated.

a. The pager

by using
translation

the $SETPRT system
buffer entries are

• Determines that the page is in an image file

• Allocates a physical page

• Allocates a working set list entry (WSLE) from the
system working set list

• Initiates the read operation

• Sets the process scheduling state to page fault wait
(PFW).

b. Page fault wait state (PFW) (see question 9)

c. Read-in-progress

a. Collided page wait state (COLPG)

b. Read-in-progress (as in question 8) but with the collided
page bit set

EX-41

10.

11.

12.

13.

Paging

SOLUTIONS

a. Collided page wait state (COLPG)

b. No further change from answer 8b. The collided page bit
is already set.

a. Computable (COM)

b. Computable (COM)

c. Computable (COM)

d. Active and valid

a. Process HIGH

b. Scheduling is based strictly upon the relative priorities
of computable processes, and not upon circumstances such
as which process caused the initial page fault. Thus,
although process LOW caused the initial page fault, and
most of the work was performed by the pager in its
context, process HIGH is likely to be the first process to
use the valid page as a result of its higher priority.

a. Disk storage is reduced because each image file does not
require a separate copy of the shared sections. Physical
memory requirements are reduced because only one copy of a
shared section needs to exist in the system (and only
those pages of a section actually used by one or more
processes occupy physical memory).

EX-42

14.

Paging

SOLUTIONS

b. Although there is an additional level of indirection
involved in resolving addresses within a shared image,
address resolution only seems longer. With several
processes referring to the section, there is a higher
probability that the global page table entry (GPTE) is
active and valid. If this is the case, page fault
resolution is rapid. The working set list must be
modified, the contents of the GPTE copied into the process
PxPTE, and the share count for the physical page
incremented in the PFN database.

a. Using the index page of the microfiche, locate the
directory for the SYS facility, and the entry for
PAGEFAULT.LIS. use the page number and page coordinates
on the directory entry to locate the page(s) of fiche
containing PAGEFAULT.LIS.

b. The routine responsible for freeing a working set list
entry is called MMG$FREWSLE. If you are not sure of the
name of a routine in a piece of code, the Table of
Contents at the beginning of the listing may be helpful.

MMG$FREWSLE is listed in the Table of Contents of
PAGEFAULT.LIS. The second column in the contents contains
the starting line number of the routine.

c. The piece of code in the pager that queues a page read
request is listed as "Page Not Resident, Queue a Read
Request" in the table of contents.

d. The SCH$WAITM routine is defined in the module SYSWAIT.

e. The SCHED module defines the routine SCH$SCHED.

f. The REI done by the scheduler dismisses the page fault
exception, in this case. Note that the scheduler is
invoked with a branch instruction, not with an interrupt.
Therefore, the number of exceptions/interrupts equals the
number of REis, which is as it should be.

EX-43

Paging

EXERCISES

Use the system recorded in the dump file OSI$LABS:CRASH1.DMP to
answer the following questions.

1. The working set list, located in the process header, is one of
the perprocess memory management data structures.

a. Locate the process header of the current process, and
record its address.

b. Locate the top of the working set list for the current
process.

c. The entries at the top of the working set list catalog
pages that are locked in the working set.

Verify that the first few entries in the working set list
for the current process catalog pages locked in the
working set. (Consult Figure 14-5 in
VAX/VMS Internals and Data Structures for the format of a
working set list entry.)

2. Virtual address space is implemented with page tables.

a. Locate the process header for the JOB CONTROL process, and
record its address.

EX-45

Paging

EXERCISES

b. Obtain the contents of the PO base register for the job
controller. (Remember that the process memory management
registers, including the POBR, are stored in the hardware
PCB, which is part of the process header.)

c. Using the value in the POBR, display the first 20 page
table entries in the job controller's PO page table. You
should be able to do this with one SDA command.

Look over the page table entries, and choose a valid entry
(the high bit is set). Record the address of the entry
and its contents below.

d. What is the protection code in the PTE you chose in part
(c)?

(HINTS: The protection code is stored in bits 27-30 of
the PTE. Use Table 14-1 in VAX/VMS Internals and Data
Structures to decipher this 4-bit code.)

e. Extract the PFN from the PTE in part (c). Display the PFN
database information for this page frame using the SDA
command

SDA> SHOW PFN DATA your_pfn

EX-46

Paging

EXERCISES

f. One of the pieces of information displayed by SHOW
PFN DATA is the address of the PTE mapping the page.

Does the PTE address displayed in part (e) match the
address of the PTE you chose in part (c)?

3. Sam Wizard was analyzing a crash dump and located a page table
entry for a valid page. The PTE was at address 8026302C. He
examined the contents of the PTE, and displayed the PFN data
for the mapped page frame. A portion of his output is shown
below.

SDA> EXAMINE 8026302C
8026302C: F9800523 "# •• <U'>"

SDA> SHOW PFN DATA 523

PFN PTE ADDRESS BAK

0523 8032B6FC 0040FE70

STATE

07 ACTIVE

REFCNT FLINK BLINK TYPE

1 0005 0000 02 GLOBAL

The PTE address in the PFN database does not point back to
Sam's page table entry. Why?

EX-47

Paging

EXERCISES

4. Using the System Dump Analyzer (optional)

a. Using a copy of the system page table obtained via SDA,
construct a map of the actual placement in physical memory
of the components of the permanently resident portion of
the executive. These include:

the system page table itself
the PFN database
the system header
the nonpaged executive code and data
the interrupt stack
nonpaged dynamic memory

HINT

The table in VAX/VMS Internals and Data Structures
that details the layout of system virtual address
space gives the memory access codes for these
components. These can be used to identify which
pages in the SPT are associated with each
component. You might find it easiest to work from
the end of the SDA listing of the system page
table. The components listed in the table are in
the order that they will appear in the SPT. The
actual page frame for each page is also listed in
the SPT.

b. Using a copy of the PFN database obtained by using SDA,
determine how many pages of physical memory are available
for paging. Determine how much memory must be used by the
permanently resident executive. Go back to the system
page table and determine how many pages are required by
each component from question (a) above, and add the values
together. Does this agree with the value (computed above)
from the PFN database? It should.

EX-48

1 •

2.

Paging

SOLUTIONS

a. Locate the process header of the current process by
either:

Issuing the SHOW SUMMARY command and noting the PHD
address of the process in the CUR state.

Issuing the SHOW PROCESS command and noting tHe PHD
address.

b. The address of the top of the working set list is stored
at offset PHD$L_WSL in the process header.

c. To determine whether or not a working set list entry
catalogs a page locked in the working set, examine bit 5
of the entry.

The first few pages at the top of the process working set
list are locked in the working set. These WSLEs catalog
such pages as the kernel stack pages and the Pl pointer
page.

a. /To locate the address of the process header for the
JOB CONTROL process, issue the SHOW SUMMARY command. The
PHO-address will appear in the display.

b. The contents of the PO base register for the job
controller are at offset PHD$L_POBR in the process header.

c. To display the first 20 page table entries in the job
controller's PO page table, use the POBR value from
question (b) and issue the following command:

SDA> EXAMINE POBR_value_from_b ; 50

This command will display the first 80 bytes (20
longwords) of the PO page table. Remember that SDA will,
by default, interpret the "50" in the above command as a
hexadecimal number.

EX-49

Paging

SOLUTIONS

d. Many of the pages in PO space will have the protection
code "0100", which means user mode read and write.

e. The PFN is stored in the low 21 bits of a valid PTE.
Extract this PFN and issue the SHOW PFN DATA command.

f. In most cases, the PTE address in the PFN database will
match the address of your PTE. If not, see the answer to
the next question.

3. The PTE address in the PFN database does not point back to
Sam's page table entry. This is because Sam's page table
entry maps a global page, as reflected in the TYPE array of
the PFN database.

If a page is global, the PFN PTE array contains the address of
the global page table entry mapping the page, not the address
of any one process page table entry.

4. See your instructor for the solution to this question.

EX-50

Swapping

EXERCISES

1. The following figures show the state of the data structures
related to a sample process working set at various times
during outswap.

The working set contains the following four virtual pages:

Y - Global read-only (GRO), in only this process working set
Z - Process page (PPG), direct I/O in progress
W - Global read/write (GRW), in four process working sets
X - Process page (PPG)

using the outswap scan table in your student workbook, and the
template data structures provided, outswap the process body.

EX-51

Swapping

EXERCISES

a. Scan the working set list and decide which pages to write
to the swap file. Record those pages in the swapper's I/O
map, and drop the others from the working set.

vpnW

vpn X

vpn Y

Process Header for
swapped process

Working Set List

vpn y GRO
vpn z PPG
vpn w GRW
vpn x PPG

... -
PO Page Table

1 pfn 8

1 pf n D

1 pfn A

wsle 1
wsle 2
wsle 3
wsle 4

pte W

pte X

pte Y

1 pfn C vpn Z pte Z

A

B

c

D

gpte Q

gpte R

WSLX PTE BAK STATE TYPE other

gpte Q gstx ~ lGROI lsHRCNT: 11

gpte R gstx ~ lGRwl lsHRCNT: 41

wsle 2 pte Z pg fix ~ lPPGI IREFCNT = 21

wsle 4 pte X pstx ~ lPPGI

FN Database Arrays

global page table

valid, pfn A .,._ ______________ ...
valid, pfn B .,._ ______________ ...

SWPSGL_llAP " 1:J
Swapper's
1/0 Map

Figure 1 Template for Working Set List Outswap Scan

EX-52

b.

vpn W

vpn X

vpn Y

vpn Z

Swapping

EXERCISES

Figure 2 shows the state of the data structures after
working set list outswap scan.

the

Record the state of the data structures after the swap I/O
completes.

Process Header for
swapped process

WSLX PTE BAK STATE TYPE other

A
Working Set List

gpte a gstx B IGRol I SHRCNT = 1 I
vpn y GAO

B gpte R gstx B IGRwl I SHRCNT = 31 wsle 1

vpn z PPG wsle 2 B I PPG I I REFCNT = 2 I wsle 3 c wsle 2 pte Z pg fix

vpn x PPG wsle 4 B I PPG I 0 wsle 4 pte X pstx

PFN Database Arrays

... -
PO Page Table

0 gptx (R) pte W

1 pfn 0 pte X global page table SWPSGLMAP " =i-:J
1 pfn A pte Y

Swapper's
1/0 Map

gpte Q .._ __ v_a_lid_._P_fn_A __ __,

gpte R,_ ___ va_ii_d_. p_t_n_e __ --1
1 pfn A

1 pfn C pte z 1 pfn c

1 pfn 0

Figure 2 Template for Data Structures After Swap I/O

EX-53

Swapping

EXERCISES

2. The following figures show the state of the data structures
related to a sample process working set. The process header
is in memory; the process body needs to be inswapped.

This is not necessarily the same working set as in the
previous exercise.

The working set contains the following four virtual pages:

X - Global read-only page (GRO), not in memory
W - Process page (PPG), not in memory
Y - Global read-only page (GRO), copy in memory (valid GPTE)
z - Process page (PPG), on free page list

Using the inswap table in your student workbook, and the
template data structures provided, inswap the process body.
First allocate physical pages for the inswap, then rebuild the
process body.

EX-54

Swapping

EXERCISES

a. Allocate physical pages for the inswap using the PFN
database, and record the PFNs in the swapper's I/O map.

Process Header for
swapped process WSLX PTE BAK STATE TYPE other

Working Set List
A BLINK pte Z pgflx I tree I D

vpn x GRO wsle 1
B gpte S gstx Gill IGROI lsHRCNT = 31

vpn w PPG
vpn y GRO

wsle 2 D D wsle 3 c
vpn z PPG wsle 4 D D D

E D D
~ -1

PO Page Table F D D
vpn W 0 pstx pte W PFN Database Arrays

vpn X 0 gptx (T) pte X global page table SWP$GL_MAP " 1-:J
0 gptx (S) vpn Y

gpte S valid, pfn B Swapper's

pte Y 1/0 Map

gpte T gstx

vpn Z 0 pfn A pte Z

Figure 3 Template for Inswap I/O

EX-55

Swapping

EXERCISES

b. Rebuild the process working set, recording the PFNs in the
PO page table, and adjusting the global page table and the
PFN database fields accordingly.

Process Header for
swapped process WSLX PTE BAK STATE TYPE other

Working Set List
A BLINK pte Z pg fix I tree I D

vpn x GRO w~le 1
B gpte S gstx ~ IGRol lSHRCNT: 31

vpn w PPG
vpn y GRO

wsle 2 c 0 ~ D wsle 3
vpn z PPG wsle 4

~ D D 0

E 0 ~ D
~ -

PO Page Table F 0 ~ D
vpn W 0 pstx pte W · PFN Database Arrays

vpn X 0 gptx (T) pte X global page table SWPSGLMAP" ~

0 gptx (S) vpn Y

Swapper's
1/0 Map pte Y

gpte S valid, pfn B

gpte T gstx
1 pfn D

vpn Z 0 pfn A pte Z 1 pf n c
1 pfn E

1 pin F

Figure 4 Template for Rebuilding Process Body on Inswap

EX-56

Swapping

EXERCISES

3. To answer this question, you will need access to a set of VMS
Version 4.x microfiche. See your instructor for the
microfiche and a microfiche reader.

VMS allows for dynamic adjustment of the working set list,
within defined bounds, using the $ADJWSL system service.
Adjustment may be performed by the user, and automatic
adjustment is often performed by VMS at quantum end.

When the working set list is extended, the swap slot currently
allocated for the process may need to be traded for a larger
slot.

Find the VMS code responsible for allocating a larger swap
slot for processes whose working set has expanded. List the
name of the VMS source module, and the name of the routine
below.

(HINT: The code is in the SYS facility.)

4. Describe the special treatment given to pages with direct I/O
in progress both at outswap and inswap times. Be sure to
include the special case of the inswap occurring before the
read or write operation completes.

EX-57

Swapping

EXERCISES

5. Discuss the special treatment given global pages by the
swapper. Include both global read-only and global read/write
pages in your discussion.

6. Why is there a need for a swapper in addition to a. pager on
VMS?

EX-58

Swapping

EXERCISES

Questions 7 through 10 describe the interaction of two
real-time processes and the swapper over an interval of time.
Each question describes a particular event. For each process,
indicate which process state will be occupied by that process.
If a process does not exist, indicate this instead of a
process state.

The initial process characteristics are:

Name

SWAPPER
LOW
HIGH

Priority

16
20
22

State

HIB
CUR
not yet
created

7. Process LOW issues a $CREPRC system service request to create
process HIGH, and continues to execute.

a. SWAPPER

b. LOW

c. HIGH

EX-59

Swapping

EXERCISES

8. Process LOW issues a $HIBER system service request.

a. SWAPPER

b. LOW

c. HIGH

9. The inswap operation completes and is reported to the
scheduler. Assume that the SWAPPER performs further
operations at IPL SYNCH before dropping the interrupt priority
level.

a. SWAPPER

b. LOW

c. HIGH

10. The SWAPPER drops the interrupt priority level from IPL SYNCH
to IPL O.

a. SWAPPER

b. LOW

c. HIGH

EX-60

1.

Swapping

SOLUTIONS

a. Figure 5 shows the state of the data structures after
scanning the working set list.

CD

vpn W

vpn X

vpn Y

vpn Z

Process Header for
swapped process

WSLX PTE BAK STATE TYPE other

A
Working Set List

gpte Q gstx B IGRol I SHRCNT = 1 I.
B gpte R gstx B IGRwl I SHRCNT = 31

wsle 1 vpn y GRO

wsle 2 B IPPG I I REFCNT = 2 I wsle 3 c wsle 2 pte Z pg fix
vpn z PPG

wsle 4 B I PPG I D wsle 4 pte X pstx
vpn x PPG

PFN Database Arrays

r- -
PO Page Table

0 gptx (RI pte W

1

1

1

pfn D pte X global page table SWPSGLMAP "~

pfn A pte Y

gpte a
1------------------1

valid, pfn A Swapper's
1/0 Map

gpte R valid, pfn B

~----------------- 1 pfn A

pfn C pte Z 1 pfn c ®
1 pfn D

Figure 5 Working Set List After Outswap Scan

1. The.global read/write page is removed from the working
set.

2. The remaining elements of the working set are mapped
by the I/O map, and then the I/O request is made.

EX-61

Swapping

SOLUTIONS

b. Figure 6 shows the state of the data structures after the
swap I/O completes.

vpn W

vpn X

vpn Y

I-

Process Header for
swapped process

Working Set List

vpn y GRO
vpn z PPG

vpn x PPG

PO Page Table

0 gptx (R)

0 pstx

0 gptx (Q)

CD A

wsle 1
B

wsle 2 @c wsle 3
wsle 4 @o

-
pte W

pte X

gpte Q
pte Y

gpte R

WSLX PTE BAK STATE TYPE other

BLINK gpte Q gstx B jGRol I SHRCNT = 0 I
gpte R gstx B jGRWI I SHRCNT = 3 l

wsle 2 pte Z pg fix B lPPG I I REFCNT = 1 I
BLINK 0 B lPPG I

PFN Database Arrays

global page table

trans, pfn A t-----------------1
valid, pfn B t-----------------1

SWP$GL~MAP "=j'-::1
Swapper's
1/0 Map

0 pfn C vpn Z pte Z

Figure 6 Data Structures After Swap I/O Completes

1. The global read-only page and the process page without
I/O are placed on the free list.

2. Same as one.

3. The remaining process page (with I/O) has
decremented by one.

EX-62

its REFCNT

2.

Swapping

SOLUTIONS

a. Figure 7 shows the data structures after physical pages
are allocated for the inswap.

Process Header for
swapped process WSLX PTE BAK STATE TYPE other

Working Set List
A BLINK pte Z pg fix I free I D

vpn x GRO wsle 1
B gpte s gstx [!ill IGRol lsHRCNT: 31

vpn w PPG
vpn y GRO

wsle 2 c [!ill D wsle 3 0

vpn z PPG wsle 4 [!ill D D 0

CD
E 0 [!ill D

~ -I

PO Page Table F 0 [!ill D
vpn W 0 pstx pte W PFN Database Arrays

vpn X 0 gptx (T) pte X global page table SWPSGL-MAP " 1-:::J
0 gptx (S) vpn Y

Swapper's
1/0 Map pte Y

gpte S valid, pfn B

1----------------~

gpte T gstx
1 pfn D

vpn Z 0 pf n A pte Z 1 pfn c
1 pfn E

1 pfn F

Figure 7 Data Structures After Physical Page Allocation

1. Swapper allocates pages from the free page list for
every page in the process working set.

2. Swapper copies PFNs into its PO space.

Swapper issues read from disk which copies swapped
working set into physical memory.

EX-63

Swapping

SOLUTIONS

b. The process working set is rebuilt.

vpn W

vpn X

vpn Y

vpn Z

Process Header for
swapped process

Working Set List

vpn x GRO
vpn w PPG
vpn y GRO
vpn z PPG

t- -I
PO Page Table

1 pfn C

1 pfn D

1 pfn B

1 pfn A

Figure 8 Working Set List and Rebuilt Page Tables

1. PFN A still on free list so made valid.
- PFN F released to the free page list.

2. PFN B still valid so SHRCNT increased to 4
PFN copied to PTE Y
PFN E released to free page list

3. PFN c copied to PTE w

4. PFN D copied to PTE X
SHRCNT = 1

The actual order of operations is 4,3,2,1.

EX-64

3.

Swapping

SOLUTIONS

The code responsible for allocating a
processes whose working set has
PAGEFAULT, routine MMG$FREWSLX.

larger
expanded

swap
is

slot for
in module

It is more efficient to have the pager allocate a larger slot,
rather than a component such as $ADJWSL, because $ADJWSL only
increases the size of your working set list. The pager is the
code that actually adds pages to your-w0rking set. In this
way, a larger swap slot is not allocated until the process has
actually outgrown the current swap slot.

4. For either read-in-progress or write-in-progress, the pages in
question are written to the swap file with the rest of the
working set. However, because the reference count will not go
to zero at outswap completion if the read or write is still
outstanding, the pages will not be released to the free page
list.

If the read or write is still outstanding when the process is
swapped back into memory, the swapper will take this into
account by putting the page left behind into the rebuilt
working set of the process and releasing the page frame from
the swapper's special I/O page table.

If the operation in progress was a write, the contents of the
swap file are accurate, and the page is released to the free
page list when the write operation completes.

If the operation in progress was a read, the contents of the
swap file are out of date. The write of the page to the swap
file merely served to reserve a place in the swap file. This
block is noted in the SWPVBN array in the PFN database. When
the read operation completes, the page will be released to the
modified page list. Subsequently, the modified page writer
will write this page not to the page file but to its reserved
location in the swap file. (If the inswap occurs before the
modified page writer writes this page to the swap file, the
page is simply faulted in from the modified page list while
the swapper rebuilds the working set.)

EX-65

Swapping

SOLUTIONS

Note that the only I/O that is relevant here is direct I/O
because only direct I/O locks pages in the working set until
I/O completion. Buffered I/O uses an intermediate buffer in
system virtual address space (nonpaged dynamic memory). Thus,
buffered operations do not require the user buffer to be in
memory while the request is being processed. On a buffered
write, the appropriate FDT routine transfers data (perhaps
with modification) from the user buffer to a system buffer.
On a buffered read, the I/O completion special kernel mode AST
routine transfers the data from the system buffer into the
specified user buffer.

s. At outswap time, each global read/write page is removed from
the working set of the process. Each page must be refaulted
into the working set after inswap only if it is referenced
after inswap.

Each global read-only page is written to the swap file if the
PFN database SHRCNT value is one (only this process is using
this page). Otherwise, the global page is removed from the
working set and will need to be refaulted if it is referenced
after inswap.

At inswap time, global read-only pages are read along with the
rest of the working set of the process. If the corresponding
global page table entry (GPTE) is either valid or in
transition, then the PxPTE points to the existing physical
page, and the duplicate page is released to the free page
list. If the GPTE is pointing to the global section table
entry, the page is retained and both the PxPTE and GPTE are
made valid.

6. The swapper manages physical memory on a system-wide basis,
whereas the pager manages memory on a perprocess basis.

EX-66

7.

8.

9.

10.

Swapping

SOLUTIONS

a. COM process creation will awaken the swapper process.

b. CUR the stated assumption.

c. COMO -- the initial process state for every process.

a. CUR the highest priority computable process.

b. HIB the stated assumption.

c. COMO -- still in the initial state.

a. CUR the swapper is still executing.

b. HIB the stated assumption.

c. COM the purpose of the inswap operation is to make this
process computable.

a. COM -- dropping IPL will enable an IPL 3 scheduling
interrupt to occur.

b. HIB the stated assumption.

c. CUR the highest priority computable process.

EX-67

Swapping

EXERCISES

1. The values for SYSGEN parameters are stored in SO space in the
system image. These values can be accessed from a program.

Write a program to modify
FREEGOAL SYSGEN parameters.

the values of the
The program should:

FREEL IM

• Obtain and display the current value of each parameter.

and

• Prompt the user for new values for the parameters, and
modify them accordingly.

• When the user desires, restore the original values of the
parameters.

If you need to use an elevated access mode, be aware of the
dangerous implications of program errors.

EX-69

Swapping

EXERCISES

2. All students in the class should work together on this
exercise.

The purpose of the exercise is to analyze the
interrelationships between memory management data structures,
the swapper, the pager, and SYSGEN parameters.

You will modify some SYSGEN parameters governing the fre~ page
list, and analyze the effects on the system.

Please read through the entire exercise before beginning.

a. Choose a few terminals close to each other to be used as
monitoring stations.

From one terminal, watch the activity of the swapper
process (using the SHOW PROCESS/CONTINUOUS command).

Note that the PC of the swapper is always in SO space.
The swapper is a process, but its image resides in
system space.

Note also that the swapper spends most of its time in
the HIB state.

From a second terminal, watch the processes
consuming most of the CPU. (Use
PROCESSES/TOPCPU)

that are
MONITOR

On a third terminal, watch the sizes of the free and
modified page lists (MONITOR PAGE).

Note the average size of each page list.

b. Run your program from exercise (1).

Increase the values of FREELIM and FREEGOAL so they
are within 100 pages of the average size of the free
page list.

The swapper should spend considerably more time in the
CUR state than before you started the program. Why?

Restore the original values of the FREELIM and
FREEGOAL parameters.

EX-70

Swapping

SOLUTIONS

1. Example 1 shows a program that modifies the values of FREELIM
and FREEGOAL •

• TITLE SWAPLABl
;++

ABSTRACT:

.; This program allows you to change the values of
the FREELIM and FREEGOAL sysgen parameters.

ENVIRONMENT:

Changes mode to exec. and to kernel.
CMKRNL privilege required.

Linked with SYS.STB:
$ LINK SWAPLABl, SYS$SYSTEM:SYS.STB/SELECTIVE

SIDE EFFECTS:

The above mentioned sysgen parameters are changed, and
restored to their original values before program exit.

;--
.LIBRARY /OSI$LABS:OSIMACROS/ ; for I/O

.PSECT

ASCII DESC:

ASCII STR:
DYNDESC:

CONCAT DESC:

CONCAT STR:
FREELIM STR:
FREEGOAL STR:
FREELIM PROMPT:

Example 1

DATA NOEXE,WRT,NOSHR

.LONG 10

.ADDRESS ASCII STR

.BLKB 10

.WORD 20

.BYTE 14,2

.LONG 0

.LONG 80

.ADDRESS CONCAT STR

.BLKB 80

fixed length string
descriptor

; dynamic string for
converting integers
to strings; and dummy

descriptor for
concatenating strings

.ASCID /The value of FREELIM is: /

.ASCID /The value of FREEGOAL is: I

.ASCID /Enter new value for FREELIM: I

Program to Modify Value of Some Parameters
(Sheet 1 of 3)

EX-71

Swapping

SOLUTIONS

FREEGOAL PROMPT:.ASCID /Enter new value for FREEGOAL: /
RESTORE PROMPT:

.ASCID /Press RETURN to restore
.LONG 2

original parameter values:/
for $cmexec call. E ARG LIST:

K ARG LIST:

.ADDRESS OLD FREELIM

.ADDRESS OLD FREEGOAL

.LONG 2

.BLKL 1

.BLKL 1

2 writeable arguments,
passed by reference

for $cmkrnl call
FREELIM, passsed by value
FREEGOAL, passsed by value

OLD FREELIM: .LONG 0
OLD-FREEGOAL: .LONG 0
NEW FREELIM: .LONG 0
NEW FREEGOAL: .LONG 0
. *** I

.PSECT CODE EXE,NOWRT,PIC,SHR
START: .WORD ~M<R3,R4,R5,R6>

;

;
20$:

read current values of parameters in exec. mode
$CMEXEC S routin= 100$, arglst= E_ARG_LIST
CHECK STATUS

convert and display old freel.im and freegoal values
CONV BIN INT
CONCAT2
DISPLAY

CONV BIN INT
CONCAT2
DISPLAY

OLD FREELIM, ASCII DESC
CONCAT_DESC, FREELIM_STR, ASCII DESC
CONCAT DESC

OLD FREEGOAL, ASCII DESC
CONCAT DESC, FREEGOAL STR, ASCII DESC
CONCAT-DESC -

prompt for, and convert to binary, new freelim value
PUSHAL FREELIM PROMPT
PUSHAL DYNDESC-
CALLS #2, G~LIB$GET INPUT
CHECK STATUS -
CONV INT BIN DYNDESC, NEW_FREELIM

prompt for, and convert to binary, new freegoal value
PUSHAL FREEGOAL PROMPT
PUSHAL DYNDESC
CALLS #2, G~LIB$GET_INPUT
CHECK STATUS
CONV INT BIN DYNDESC, NEW FREEGOAL

Example 1 Program to Modify Value of Some Parameters
(Sheet 2 of 3)

EX-72

Swapping

SOLUTIONS

put new values in k_arg_list and write to sO space
MOVL NEW FREELIM, K ARG LIST+4
MOVL NEW-FREEGOAL, K ARG LIST+8
$CMKRNL_S - routin=-200$, arglst= KARG LIST
CHECK STATUS

; stall until ready to restore old parameter values
PUSHAL RESTORE PROMPT
PUSHAL ASCII DESC ; dummy value, never used
CALLS #2, G~LIB$GET INPUT
CHECK STATUS -

; put OLD values in k arg list and write to so space
MOVL OLD FREELIM~ K ARG LIST+4
MOVL OLD-FREEGOAL, K ARG LIST+8
$CMKRNL S - routin=-200$, arglst= K ARG LIST
CHECK STATUS

MOVL
RET

#SS$_NORMAL, RO set normal completion
; all done

; ***************** executive mode code *********************
100$: .
I

.WORD ""'M<>

Obtain current values of FREELIM and FREEGOAL
Executes in exec. mode to r~ad SGN fields.

MOVL
MOVL
MOVL
RET

G""'SGN$GL FREELIM, @4(AP)
G""'SGN$GL-FREEGOAL, @8(AP)
#SS$_NORMAL, RO

finished in exec. mode

; ***************** kernel mode code ***********************
200$: .WORD ""'M<> .
I

Modify FREELIM and FREEGOAL parameters in SO space.
Must be done in kernel mode.

MOVL
MOVL
MOVL
RET

4(AP), G""'SGN$GL FREELIM
8(AP), G""'SGN$GL-FREEGOAL
#SS$_NORMAL, RO-

.END START

; finished in kernel mode

Example 1 Program to Modify Value of Some Parameters
(Sheet 3 of 3)

EX-73

2.

Swappi.ng

SOLUTIONS

a. At the first terminal, enter the command:

$ SHOW PROCESS/CONTINUOUS swapper-pid

At the second terminal, enter the command:

$ MONITOR PROCESSES/TOPCPU

At the third terminal, enter the command:

$ MONITOR PAGE

b. When the values of FREELIM and FREEGOAL are increased to
almost match the average number of free pages, the swapper
is forced to work furiously to maintain the free page
count.

EX-74

1/0 Concepts and Flow

EXERCISES

1. Briefly describe the functions of ~the following components of
the I/O system.

a. Record Management Services (RMS)

b. I/O System Services

c. FDT routines

d. Extended QIO Procedures (XQP)

2. Listed below are acronyms for some data structures in the I/O
database. For each structure, give its full name and briefly
describe its function.

a. UCB

b. CCB

c. DDB

EX-75

1.

2.

1/0 Concepts and Flow

SOLUTIONS

a. The Record Management Services (RMS) consist of file and
record handling routines. All high-level language I/O
operations go through RMS.

b. The I/O System Services, for example $ASSIGN and $QIO, are
the most primitive I/O routines that have a user
interface. These routines create and pre-process the data
structures necessary for performing I/O operations.

c. FDT routines process the device-dependent parameters on a
call to $QIO. They are written (or selected) by the
author of a device driver.

FDT routines execute in process context, which enables
them to access the caller's PO and Pl space.

d. The Extended QIO Procedures (XQP) interpret and maintain
the Files-11 on-disk structure. Prior to Version 4.0
these functions were handled by disk Ancillary Control
Processes (ACPs).

a. UCB - The Unit Control Block contains information for a
device unit. It is also used as a listhead for storage of
IRPs by the driver.

b. CCB - The Channel Control Block links a 'channel' to a
specific UCB by storing the virtual address of the UCB.
It also contains other channel-related information.

c. DOB - The Device Data Block contains information common to
all devices on a controller.

EX-76

1/0 Concepts and Flow

EXERCISES

The purpose of the following exercises is to learn how to find
drivers _and their data structures in system space. When a system
crash occurs, it may be necessary to trace through the I/O
database to find information to help debug the crash.

1. The SYSGEN utility is used for several purposes:

• To configure the I/O database for the known devices on the
system, and load in the VMS driver code

• To configure and load user-written drivers

• As an editor, to examine and modify the dynamic system
parameters, and to create a new set of parameters to be
used on the next reboot

NOTE: You will need CMEXEC privilege to do this exercise.

a. Enter SYSGEN with the following command:

$ RUN SYS$SYSTEM:SYSGEN

and examine the.HELP for the SET and SHOW commands.

b. Issue the SHOW/DEVICES command, and compare the names of
the drivers with the names of the devices they handle.

c. Using the SHOW commands, examine some of the system
parameters discussed thus far in the course.

EX-77

1/0 Concepts and Flovv

EXERCISES

2. Analyze the current system (ANALYZE/SYSTEM) to answer the
following questions.

NOTE: You need CMKRNL privilege to do this exercise.

a. Starting with IOC$GL_DEVLIST, find the UCB for the
terminal you are on.

You may want to read a symbol table file into
session so you can access $DDBDEF and
SYS$SYSTEM:SYSDEF.STB or OSI$LABS:GLOBALS.STB
provide those symbols.

your SDA
$UCBDEF.

should

Note that when you format a UCB, SDA does not translate
any of the data into ASCII.

b. Find the UCB for your default disk.

EX-78

1/0 Concepts and Flow

SOLUTIONS

1.

a. Enter SYSGEN with the following command:

$ RUN SYS$SYSTEM:SYSGEN

b. SYSGEN> SHOW/DEVICES

c. Issue commands such as SYSGEN> SHOW BORROWLIM.

2. $ ANALYZE/SYSTEM

a. Starting with IOC$GL DEVLIST, search the DDBs until you
find the DDB that describes the controller for your
terminal. Then search the UCBs off that DDB until you
find the UCB for your terminal.

b. First locate the DDB for the controller for your default
disk. Then search the UCBs off that DDB until you find
the UCB for your disk.

EX-79

RMS Implementation and Structure

EXERCISES

1. Using the information in your student workbook, your Source
Listings book, and the code in Examples 1 and 2, trace an OPEN
operation through the relevant code modules.

Assume it is an open on an existing relative file that is not
installed.

a. The OPEN operation is initiated with a call to SYS$0PEN.
In which area of virtual address space does the RMS vector
SYS$0PEN reside?

b. Execution of the CHME instruction in the SYS$0PEN vector
causes an exception. The system vectors through the SCB
to the executive change mode dispatcher (EXE$CMODEXEC).

What is the name of the routine that gains control in
executive mode?

c. Using RMS.MAP, determine the RMS code module that contains
the routine from part (b).

d. The routine from part (b) appears in Example 1. After the
routine performs the common setup, it dispatches to
organization-dependent routines.

Which organization-dependent routine will be invoked for
this file OPEN?

e. Using RMS.MAP, determine the RMS code module that contains
the organization-dependent routine for this file OPEN.

2. When processing files, RMS copies the FAB information into an
IFAB. Why does it make a copy of this information?

EX-81

RMS Implementation and Structure

EXERCISES

$BEGIN RMSOOPEN,OOO,RM$RMS,<DISPATCH FOR OPEN OPERATION>
;++

Facility: RMS32

Abstract:
This module is the highest level control routine
to perform the $open function.

;--

.
'

.SBTTL DECLARATIONS

Include Files:

Macros:

$ARMDEF
$CCBDEF
$CHPCTLDEF
$DEVDEF
$FABDEF
$FCBDEF
$FIBDEF
$FWADEF

· $IFBDEF
$IPLDEF
$KFEDEF
$NAMDEF
$PCBDEF
$PRDEF
$PSLDEF
$RJBDEF
$RJRDEF
$RMSDEF
$UCBDEF
$WCBDEF
$XABALLDEF
$XABKEYDEF
$XABSUMDEF

Equated Symbols:

FOP=FAB$L_FOP*8

Own Storage:

bit offset to fop

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 1 of 16)

EX-82

RMS Implementation and Structure

EXERCISES

RM$XABOPN ARGS::
.BYTE XAB$C SUM,XAB$C SUMLEN,XBC$C OPNSUM3
.BYTE XAB$C-KEY,XAB$C-KEYLEN V2,XBC$C OPNKEY3
.BYTE XAB$C-ALL,XAB$C-ALLLEN~XBC$C OPNALL3
.BYTE 0 - - -

.SBTTL RMS$0PEN - $OPEN ROUTINE
;++ .
I

; RMS$0PEN -- Open routine.
;
; This routine performs the highest level $open processing.
; Its functions include: .
I

; 1. Common setup.
; 2. Dispatch to organization-dependent code.
; 3. 'Dispatch to the display routine • .
I .
I

; Calling Sequence:
;

Entered from exec as a reult of user's calling sys$open
; (e.g., by using the $open macro) • .
I

; Input Parameters:
;

AP user's argument list addr .
I

; Implicit Inputs: .
I

; The contents of the fab and possible related user interface
; blocks.
;
; Output Parameters:
;
;

;

RO
Rl

status code
destroyed

; Implicit Outputs:
;
; The various fields of the fab are filled in to reflect
; the status of the open file. (see rms functional spec for
; a complete list.)
; An ifab is initialized to reflect the open file.

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 2 of 16)

EX-83

RMS Implementation and Structure

EXERCISES

A completion ast is queued if so specified by the user.

Completion Codes:

Standard rms (see functional spec for list).

Side Effects:

none
;--

.
I

$ENTRY
$TSTPT
BSBW

RMS$0PEN
OPEN
RM$FSETI ; do common setup

; note: does not return on

Alternate entry point for open. Called from create when the ere
was a restart operation •

RM$0PEN_ALT::

An ifab has been set up

10$:
20$:

CLRL
BSBW

BBC
CSB

BLBC
BBC
MOVL
BSBW
BLBC
BBS
BBS

RlO
RM$PRFLNM

#FAB$V BRO,IFB$B FAC(R9),10$
#FAB$V=BIO,IFB$B=FAC(R9)

R0,50$
#FAB$V KFO+FOP,(R8),22$
FAB$L NAM(R8),R7
RM$CHKNAM
R0,22$
#FWA$V NODE,(Rl0),25$
#FWA$V=EXP_VER,(Rl0),25$

no FWA to start w
process file name

branch if bro not
clear bio (implie

by bro without r
exit on error fro
branch if kfo not
get name block
can we use it?
nope
branch on network
explicit version,

INS$KF_SCAN returns RO:

SS$ NORMAL
RMS$ KFF
RMS(~FNF

- known file found but not open
- known file found and it was open
- known file not found

PUSHAL FAB$L CTX(R8)
PUSHL R7 -

return KFE in f ab
filled in name bl

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 3 of 16)

EX-84

RMS Implementation and Structure

22$:

CALLS
BLBC

CMPL
BNEQ

EXERCISES

#2,INS$KF SCAN
RO, 30$ -

#RMS$ KFF,RO
40$ -

PUSHL RO
$CMKRNL S -

MOVL
BLBC
MOVL
BRW

BRB

-ROUTIN=RM$KNOWNFILE
(SP)+,Rl
R0,30$
Rl,RO
RM$CREATEXIT

100$

; Couldn't find this file spec as a known file,
; try to get another if searchlist is present .
I

25$:
30$:

;

RMS ERR
BBC
BSBW
BLBS
BLBC
BSBW
CSB
BRB

FNF
#FWA$V SLPRESENT,(Rl0),100$
RM$CHK-SLIST
R0,20$-
Rl,60$
RM$DEALLOCATE FWA
#FAB$V KFO+FOP,(R8)
RM$0PEN_ALT

go try known file
not installed

was the file inst
installed, but no

preserve status
kernel mode routi
modify system ref
recover status
can't access this
set appropriate s
exit from open im
if found/open or

helper branch

setup appropriate
if no searchlist
try again
did it work?
should we try aga
release exhausted
Make sure not KFO
try for non-KFO o

Try to open the knownfile normally; if this fails, then go thru t
file searchlist lookup logic .

I

40$:

60$:

SSB
BSBW
BLBC
BSBW
BLBC
BRB

BRW

#FAB$V NAM+FOP,(R8)
RM$SETDID
R0,30$
RM$ACCESS
R0,30$
RM$0PEN_CIF

ERROR

Force NAM block o
process the direc
check search list
access the file
check search list
continue with ope

; no, return error

There was a problem with the file spec, try to get another if sea
are present

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 4 of 16)

EX-85

50$: TSTL
BEQL
BBC
BSBW
BLBC

100$: BSBW
BLBC
BSBW
BLBC

RMS Implementation and Structure

RIO
60$

EXERCISES

#FWA$V SLPRESENT,(Rl0),60$
RM$CHK-SLIST
R0,60$-

RM$SETDID
R0,50$
RM$ACCESS
R0,50$

have a FWA?
if not don't chec
if no search list
try again
did it work?

process the direc
check search list
access the file
check search list

Return point for create turned into open via 'cif' bit.
;
RM$0PEN CIF::

BLBC
BSBW
BLBC

RO,ERROR
RM$FILLNAM
RO,ERROR

exit on error
fill in nam block
exit on error

Copy the DID from the NAM block into the FIB if this is an OPEN

BBC
TSTL
BEQL
MOVL
BEQL
TSTW
BNEQ
MOVL
MOVW

#FAB$V NAM+FOP,(R8),5$
R7 -
5$
FWA$Q FIB+4(Rl0) ,Rl
5$ -
FIB$W DID(Rl)
5$ -
NAM$W DID(R7),FIB$W DID(Rl)
NAM$W=DID+4(R7),FIB$W_DID+4(Rl)

skip if not open
have a NAM block
ce la vie'
get addr of FIB
no FIB, no DID
have a DID?
continue if so
copy DID
copy DID last wor

; Make sure eof info is in "eof blk + 1, O ~ffset" form • .
I

5$:

10$:

CMPW

BLSSU
INCL
CLRW
BBS

IFB$W FFB(R9),­
IFB$L-DEVBUFSIZ(R9)
10$ -
IFB$L EBK(R9)
IFB$W-FFB(R9)
#IFB$V_DAP,(R9),DAPRTN

Dispatch to organization-dependent open code.

BBC #DEV$V SQD,IFB$L PRIM DEV(R9),-
20$ - - -

is last block ful

branch if not
bump eof block
and zero off set
branch if network

branch if not mag

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 5 of 16)

EX-86

BBC

BBS

20$: CASE

;++

RMS Implementation and Structure

EXERCISES

#DEVV_MNT,IFBL_PRIM_DEV(R9),­
ERRDNR
#DEVV_DMT,IFBL_PRIM_DEV(R9),-
ERRDNR .

error, if magtape

error, if magtape

TYPE=B,- pick up correct r
SRC=IFB$B ORGCASE(R9),­
DISPLIST=(RM$0PEN1,RM_OPEN2_BR,RM$0PEN3>

Error returns
;--

Unknown file organization verify bio (or bro) accessed.

RMS ERR ORG org not supported
BITB #FAB$M BIO!FAB$M BRO,- either bio or bro

IFB$B_FAC(R9)
BEQL ERROR branch if not (er
RMSSUC
BRW RM$COPRTN all finished open

RM OPEN2 BR:
JMP RM$0PEN2 . branch aid I-

ERRRFM: RMS ERR RFM bad rfm field
BRB ERROR

ERRDNR: RMS ERR DNR device not mounte
BRB ERROR

ERRIRC: RM SERR IRC illegal fixed rec

ERROR: CSB #IFB$V ACCESSED,(R9) don't write file
CMPB #IFB$C=IDX,IFB$B_ORGCASE(R9) indexed file?
BNEQ 5$ branch if not ••• c
BBS #IFB$V_DAP,(R9),5$ branch if network
PUSHL RO push error code o
MOVL R9,Rl0 RM$CLOSE3 expects
JSB G"'RM$CLOSE3 close indexed f il
POPL RO pop error code fr

5$: BRW RM$CLSCU clean up and retu

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 6 of 16)

EX-87

RMS Implementation and Structure

EXERCISES

: Return here from org-dependent routines.
:
RM$COPRTN: :

BLBC
BBS

RO,ERROR
#IFB$V_DAP,(R9),DAPRTN : branch if network

Now handle summary, allocation, and key xab's.

.
I

.
I

MOVAB
BSBW
BLBC

RM$XABOPN ARGS,AP
RM$XAB SCAN
RO,ERROR

: move addr of xab
scan the xab chai
get out on error

Override run-time deq with user value, if any •

DAPRTN: MOVW FAB$W DEQ(R8),IFB$W RTDEQ(R9)
BNEQ
MOVW

5$ - - : branch if speced
IFB$W_DEQ(R9),IFB$W RTDEQ(R9) : otherwise pick up

From file header.

:
5$:

7$:

MOVW IFB$W_DEQ(R9),FAB$W_DEQ(R8) : and put in fab

Return bdb and i/o buffer to free space and page lists.

BBC
BSBW
BSBW

#IFB$V AT,IFB$B JNLFLG(R9),7$
WRITE AT JNL -
RM$RELEASALL

Validate rfm.

ASSUME IFB$V RFM
ASSUME IFB$S RFM

EQ
EQ

BICB2 #~XFO,IFB$B_RFMORG(R9)

Check for rfm in supported range.

0
4

BBS
CMPB
BGTRU

#IFB$V BIO,IFB$B FAC(R9),10$
IFB$B RFMORG(R9}~#FAB$C MAXRFM
ERRRFM -

: skip if not AT jo
: write AT record -
: return bdb and bu

leave only rfm in

don't check if bi

If fixed length record format, then set mrs from lrl in case this
is an fcs-11 file.

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 7 of 16)

EX-88

10$:

.
'

CMPB
BNEQ
MOVW
BLEQ

RMS Implementation and Structure

EXERCISES

IFB$B RFMORG(R9),#FAB$C FIX
20$ -
IFB$W LRL(R9),IFB$W MRS(R9)
ERR I RC -

fixed len rec?
; branch if not
; set record length

branch if invalid

; force stream format files to appear to have RAT non-null,
; even if they don't.

ASSUME FAB$C STM
ASSUME FAB$C-STM

LT
LT

FAB$C STMLF
FAB$C STMCR

20$: CMPB IFB$B RFMORG(R9),#FAB$C STM stream format?
BLSSU RM$COPRTN1 - . nope

' BITB #<FAB$M CR!FAB$M FTN!FAB$M PRN>,-
IFB$B RAT(R9) - - ; carriage control

BNEQ RM$COPRTN1 ok
BISB2 #FABM_CR,IFBB_RAT(R9) force RAT= CR

;
Return point for indirect open of process permanent file.

; Set the rfm, rat, org, and mrs fields into the fab.
;
RM$COPRTN1::

MOVB
MOVB

IFB$B RFMORG(R9),FAB$B RFM(R8) ; set rfm
IFB$B-RAT(R9),FAB$B_RAT(R8) set rat

Return point for indirect open of process permanent file and rfm
; rat already set.
;
RM$COPRTN2::

INSV

BBC

IFB$B ORGCASE(R9),­
#FAB$V ORG,#FAB$S ORG,-
FAB$B ORG(R8) -
#IFB$V_SEQFIL,(R9),10$

ASSUME FAB$C_SEQ EQ 0

10$:

CLRB

MOVW
MOVW

FAB$B_ORG(R8)

IFB$W MRS(R9),FAB$W MRS(R8)
IFB$W GBC(R9),FAB$W GBC(R8)

set org

branch if not seq

this is really a
Orgcase says rel

set mrs
; set gbc

If vfc record format, check for 0 fixed header size and if
; found make it 2 bytes.

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 8 of 16)

EX-89

RMS Implementation and Structure

EXERCISES

CMPB IFB$B_RFMORG(R9),#FAB$C VFC
BNEQ 20$; omit check if not
TSTB IFB$B_FSZ(R9) ; check for default
BNEQ 30$. branch if value s I

MOVB #2,IFB$B_FSZ(R9) set default value
BRB 30$ continue

20$: CLRB IFB$B_FSZ(R9) guarantee 0 fsz f . (note: fixes rms I

30$: RMSSUC ; indicate successf

;++

Common exit for $create and $open.

·--'
CREOPEN EXIT:

BLBS R0,2$
1$: BRW ERROR

; branch if no erro
otherwise go to e

;
2$:

Save the various close option bits in ifab

If

CSB
BBS

ASSUME
ASSUME
ASSUME
ASSUME

EXTZV

ASSUME

ASSUME
ASSUME

INSV

this is

#IFB$V CREATE,(R9)
#IFB$V_PPF_IMAGE,(R9),5$

FAB$V RWC+l
FAB$V-OMO+l
FAB$V-SPL+l
FAB$V=SCF+l

EQ
EQ
EQ
EQ

; clear the "doing
don't save option

FAB$V OMO
FAB$V-SPL
FAB$V-SCF
FAB$V-OLT

#FAB$V_RWC+FOP,#5,(R8),Rl ; get option bits

IFB$V_RWC+l EQ IFB$V_ OMO

IFB$V SPL+l EQ IFB$V SCF
IFB$V=SCF+l EQ IFB$V_DLT

Rl,#IFB$V_RWC,#5,(R9) and save them

foreign magtape, rewind the tape if rwo is set.

BBC #DEV$V FOR,IFB$L PRIM DEV(R9),5$; branch if not for
BBC #DEV$V-SQD,IFB$L-PRIM-DEV(R9),5$; or if not magtape
BBC #FAB$V-RWO+FOP,(R8),5$ or if rwo not spe

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 9 of 16)

EX-90

RMS Implementation and Structure

.
I

Set
;

BSBW
BLBC

EXERCISES

RM$REWIND MT
R0,1$ -

'blk' bit in ifab for magtape.

rewind the tape
branch on error

5$: BBC
BISB2

#DEV$V SQD,IFB$L PRIM DEV(R9),8$; branch if not mag
#FAB$M=BLK,IFB$B=RAT(R9) ; set no spanning b

. Set I the fsz, bks, stv, alq, dev, and sdc fields into fab •.
;
8$:

9$:

MOVB
MOVB
BBC
CLRB
MOVW
MOVL

IFB$B FSZ(R9),FAB$B FSZ(R8)
IFB$B-BKS(R9),FAB$B-BKS(R8)
#IFB$V SEQFIL,(R9),9$
FAB$B BKS(R8)
IFB$W-CHNL(R9),FAB$L STV(R8)
IFB$L-HBK(R9),FAB$L_ALQ(R8)

set fsz
set bks
branch not seq f i
always zero for s
set stv to chan #
set alq

Move device characteristics bits into the fab.

BSBW RM$RET_DEV_CHAR

Check for user file open option.
;
20$: BBS

BRW
#FAB$V UFO+FOP,(R8),40$
RM$EXRMS

Leave file open for user but remove ifab

; set DEV and SDC f

branch if ufo opt
return to user

(no further rms operations available on this file).
;
40$: BRW RM$RETIFB

Common create clean up and exit
; Return all bdb's and buffers to free space list, causing unlock

RM$CREATEXIT::
PUSHL RO save status code

; Entry point with status already pushed on the stack.
;
RM$CREATEXIT1::

10$:

BBC
BSBW
BSBW
POPL
BRW

#IFB$V AT,IFB$B JNLFLG(R9),10$
WRITE AT JNL -
RM$RELEASALL
RO
CREOPEN EXIT

; skip if not AT jo
write AT record -

; release all bdb's
restore status
join open finish

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 10 of 16)

EX-91

RMS Implementation and Structure

EXERCISES

.SUBTITLE RM$CHK_SLIST - Process the searclist loop
:++ .
' : These routines are called when a file access failed and a s
: is present. It evaluates whether the error allows the list

continue and updates the list to the next searchlist elemen

:
:
:

RM$CHK SLIST
RM$CHK=SLIST1

- Normal file access failures can continue
- File access failures that create-if can c

Inputs:
RO - failure status of previous access operation.

Outputs:
: RO - success/fail
: (if searchlist is exhausted, status is previous access
: Rl - undefined if RO = success
: if RO = fail, success if processing may continue, fail

: Implicit inputs:
: Rll - impure ptr

RIO - FWA ptr
R9 - IFB ptr
R8 - FAB ptr

: Implicit outputs:
: FWA and IFB fields modified.

: Saved stack:

.
' .
'

:--

ERR(SP) =>
STV(SP) =>
FNB(SP) =>
RSL(SP) =>
ESL(SP) =>

RO error code
FAB$L STV(R8)
NAM$L-FNB
NAM$B-RSL
NAM$B=ESL

: Stack offsets for saved context .
' ESL = 0
RSL = 1
FNB = 4
STV = 8
ERR = 12
STACK SIZE = 16

NAM$B ESL
NAM$B-RSL
NAM$L-FNB
FAB$L-STV
RO
Size of stack to allocate

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 11 of 16)

EX-92

RMS Implementation and Structure

EXERCISES

; Errors that searchlist processing should continue from
;
RM$SLIST ERRS::

RMSERR WORD
RMSERR WORD
RMSERR WORD
RMSERR WORD
RMSERR WORD

DEV
DNF
DNR
FNF
NMF

RM$SLIST_ERR_CNT1 ==
RMSERR WORD
RMSERR-WORD
RMS ERR-WORD

.-RM$SLIST_ERRS
ACC
FND
PRV

RM$SLIST_ERR_CNT == .-RM$SLIST_ERRS

RM$CHK SLISTl::
-PUSHL S~#<RM$SLIST ERR CNTl/2>

BRB CHK SLIST - -

RM$CHK_SLIST::
PUSHL S~#<RM$SLIST_ERR_CNT/2>

CHK SLIST:
MOVL

10$: CMPW
BNEQ
BSBB
BLBS
BLBC

30$: MOVL
ADDL2
RSB

40$: SOBGTR
ADDL2
RSB

S LOOP: SSB
PUSHL
PUSHL
CLRQ
MOVL
BEQL
BSBW
BLBC

(SP) ,Rl
RO,B~RM$SLIST ERRS-2[Rl]
40$ -
S LOOP
R0,30$
Rl,CHK SLIST
#1,Rl -
#4,SP

Rl,10$
#4,SP

#FWA$V SL PASS,(RlO)
RO - -
FAB$L STV(R8)
-(SP)-
FAB$L NAM(R8),R7
22$ -
RM$CHKNAM
R0,22$

invalid device na
directory not fou
device not ready
file not found
no more files fou

ACP file access e
ACP file lookup e
privilege violati

get number of err
and check

get number of err

get count
continue from thi

; nope
try next element
got a good one
get any kind of e
processing can co
discard count
return

try another
discard count
return don't cont
previous input st

.flag search list
save error status
save stv secondar
room for NAM bloc
get nam address
branch if none
check nam validit
branch if illegal

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 12 of 16)

EX-93

22$:

25$:

30$:

MOVL
CLRL
MOVB
CLRB
MOVB
CLRB
CLRB

RMS Implementation and Structure

EXERCISES

NAM$L FNB(R7),FNB(SP)
NAM$L-FNB(R7)
NAM$B-RSL(R7),RSL(SP)
NAM$B-RSL(R7)
NAM$B-ESL(R7),ESL(SP)
NAM$B-ESL(R7)
NAM$T DVI(R7)

ASSUME NAM$W_DID EQ NAM$W_FID+6

CLRQ
CLRL

NAM$W FID(R7)
NAM$W_DID+2(R7)

BBCC #IFB$V ACCESSED,(R9),25$
BSBW RM$DEACCESS
$DASSGN S CHAN=IFB$W CHNL(R9)
CLRW -IFB$W CHNL(R9) -
BSBW RM$PRFLNMALT
BLBS R0,30$
TSTL RO
BEQL 40$
CLRL Rl
ADDL2 #STACK_SIZE,SP
RSB

save file name st
clear file name s
save result strin
clear size

and expanded str
clear size
clear device ID

and file IDs

deaccess any open
network links
deassign old chan
clear it
try again
try next element
end of list?
no, so return the
found an element
discard saved con

XPFN exited with RMS$ NOMLIST, no more search list to parse, so ,r
the original error code and name block string lengths

i
40$:

42$:

MOVL
BEQL
BSBW
BLBC
MOVB
MOVB
MOVL
ADDL2
MOVL
MOVL
MOVL
RSB

FAB$L NAM(R8),R7
42$ -
RM$CHKNAM
R0,42$
ESL(SP),NAM$B ESL(R7)
RSL(SP),NAM$B-RSL(R7)
FNB(SP),NAM$L-FNB(R7)
#8,SP -
(SP)+,FAB$L STV(R8)
(SP)+,RO -
#1,Rl

get nam address
branch if none
check nam validit
branch if illegal
restore expanded

and result strin
restore file name
discard NAM space
set stv secondary
restore error sta

; end-of-list encou
exit

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 13 of 16)

EX-94

;++

RMS Implementation and Structure

EXERCISES

.SUBTITLE RM$KNOWNFILE - Kernel Mode Known FILE Support

This routine is called, in kernel mode, when an open known
is found. The following operations are performed:

1. Check the volume and file protection to see if the user
; has access to the file.

2. If the user has read access in addition to execute,
; report that fact as well.
; 3. Increment the refcnt on the shared file

window and to set the channel appropriately.

; These operations must be interlocked against process deleti
; by executing at IPL 2.
;
; Inputs:
; none

; Outputs:
; RO SS$_NORMAL if access allowed . SS$ NOPRIV if access denied I

;
; Implicit inputs:
; Rll - impure ptr . RIO - FWA ptr I

R9 - IFB ptr
R8 - FAB ptr

;
; Implicit outputs:

channel and window control blocks modified.
;--

ASSUME
ASSUME
ASSUME

Example 1

CHPCTL$L ACCESS EQ 0
CHPCTL$L-FLAGS EQ 4
CHPCTL$B MODE EQ 8

Excerpt from RMSOOPEN.MAR (Sheet 14 of 16)

EX-95

RM$KNOWNFILE::
.WORD
PUSHL
PUSHL
PUSHL
MOVL
BBC
BISL2
XORL2

10$:

i

SETI PL
MOVL
MOVL
MOVL
CLRL

RMS Implementation and Structure

EXERCISES

-M<R2,R3,R4,R5> ; save registers
#0 ; null access mode
#<CHPCTL$M READ!CHPCTL$M USEREADALL> ; set CHPCTL f
#ARM$M READ - ; set CHPCTL access
SP,R2 - ; point to CHPCTL
#IFB$V WRTACC,(R9),10$; write access?
#ARM$M-WRITE,CHPCTL$L ACCESS(R2); check for it too
<CHPCTL$M WRITE! CHPCTL$M US.EREADALL>, -
CHPCTL$L_FLAGS(R2) - ; set WRITE and cle

#IPL$ ASTDEL
FAB$L-CTX(R8),RO
KFE$L-WCB(RO),R5
@#CTL$GL PCB,R4
R3 -

; prevent process d
; get KFE
; get WCB
; get PCB addr
; no CHPRET

Check the volume protection in the UCB.

MOVL
MOVL
MOVL
JSB
BLBC

WCB$L ORGUCB(R5),Rl
UCB$L-ORB(Rl),Rl
PCB$L-ARB(R4),RO
G""EXE$CHKPRO INT
R0,100$ -

get UCB
get ORB addr
get ARB addr
check for volume
give up if no ace

Now see if the user has requested access (READ implies EXECUTE)

MOVB

MOVL
PUSHL
MOVAL
MOVL
JSB
BLBC
BISB2
BRB

IFB$B MODE(R9),­
CHPCTL$B MODE(R2)
WCB$L FCB(R5),Rl
FCB$L-FILESIZE(Rl)
FCB$R-ORB(Rl),Rl
PCB$L-ARB(R4),RO
G""EXE$CHKPRO INT
R0,20$ -
#FAB$M GET,FAB$B FAC(R8)
30$ - -

set CHPCTL access
get FCB
save high block f
get ORB addr
get ARB addr
check for read ac

; nope
tell user if so
and continue

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 15 of 16)

EX-96

RMS Implementation and Structure

EXERCISES

;
See if the user has execute-only access

;
20$: BBC #FAB$V EXE,IFB$B FAC(R9),100$ execute access?

BBS #IFB$V-WRTACC,(R9),100$ no special check
CMPB IFB$B_MODE(R9),#PSL$C_SUPER can he ask for ex
BGTRU 100$; nope
MOVL #ARM$M EXECUTE,-

CHPCTLSL ACCESS(R2) try execute-only
MOVL PCB$L ARB(R4),RO get ARB addr
JSB G""EXESCHKPRO_INT check for execute
BLBC R0,100$ nope, then return

30$: MOVZWL IFB$W CHNL(R9),RO get channel numbe
JSB G""IOC$VERIFYCHAN ; Rl contains CCB a
MOVL R5,CCB$L WIND(Rl) store WCB address
INCW WCB$W REFCNT(RS) and count this us
MOVL (SP),IFB$L_HBK(R9) stuff high block
MOVL #1,RO ; success!

100$: SETI PL #0 restore IPL
RET

.END

Example 1 Excerpt from RMSOOPEN.MAR (Sheet 16 of 16)

EX-97

RMS Implementation and Structure

EXERCISES

$BEGIN RM20PEN,OOO,RM$RMS2,<RELATIVE SPECIFIC OPEN>

; Facility: RMS32 .
I

Abstract:
; this module provides the organization-specific
; open processing for relative files.

·--' .SBTTL DECLARATIONS .
I

; Include Files:
;

Macros:
$BDBDEF
$FABDEF
$IFBDEF
$PLGDEF
$RMSDEF

Equated Symbols:
;
; Own Storage:

.SBTTL RM$0PEN2 - PROCESS RELATIVE FILE PROLOG
;++
; RM$0PEN2
;
; this routine performs the file open functions that are
; specific to the relative file organization, including:
;

1
;

2
;

3

verify inter-process record locking not specified
since not yet implemented
reading in the prolog and setting the ebk,dvbn,
and mrn ifab fields based upon its contents.
setting the mrn fab field.

; Calling sequence:

entered via case branch from RMS$0PEN. returns by
jumping to RM$COPRTN.

Example 2 Excerpt from RM20PEN.MAR (Sheet 1 of 4)

EX-98

RMS Implementation and Structure

EXERCISES

Input Parameters:

Rll impure area address
R9 ifab address
R8 f ab address

Implicit Inputs:

the contents of the ifab

; Output Parameters:

.
I

;

RO
RlO
Rl-RS,AP

Implicit Outputs:

status code
ifab addr
destroyed

various fields in the ifab and fab are initialized.

Completion Codes:

standard rms, in particular suc,plg,shr,rpl, and ver.

Side Effects:

; may wait quite some time for prolog to become
free initially. leaves prolog locked.

;-­
RM$0PEN2::

TSTB
BEQL
BITB

BEQL

IFB$B BKS(R9)
ERRIFA
#FAB$C REL,­
IFB$B RFMORG(R9)
EXIT -

make sure bks nonzero
if yes, is error
really relative?

aha - a bogus seq file p
as relative for sharing

if bio access, then prolog read is not required.

Example 2 Excerpt from RM20PEN.MAR (Sheet 2 of 4)

EX-99

RMS Implementation and Structure

;

;

BBS

EXERCISES

#IFB$V BIO,­
IFB$B_FAC(R9) ,SEXIT

read and process prolog

MOVL
MOVZWL
BSBW
BLBC
INCW
$CACHE

BSBW
BLBC
CMPW

BNEQ

R9,Rl0
#512,RS
RM$ALDBUF
RO,EXIT
IFB$W AVLCL(R9)
VBN=#l ,­
SIZE=#512 ,­
FLAGS=LOCK,­
ERR=ERRRPL
RM$CHKSUM
RO,EXIT
PLG$W VER NO(R5),­
#PLG$C VER NO
ERRPLV- -

set up ifab values

MOVL PLG$L EOF(R5),-
IFB$L-EBK(R9)

MOVZWL PLG$W-DVBN(R5),­
IFB$L-DVBN(R9)

MOVL PLG$L-MRN(R5),-
IFB$L-MRN(R9)

CLRW IFB$W=FFB(R9)

set mrn, gbc in fab

SET: MOVL IFB$L MRN(R9),­
FAB$L_MRN(R8)

SEXIT: RMSSUC
EXIT: JMP RM$COPRTN

; leave successfully

set ifab addr
ask for one block to read
allocate bdb and buffer
get out on error
count BDB & buffer
read the prolog
(RS=buffer addr)

validate its checksum
get out on error
supported version?

branch if not

copy eof vbn

copy vbn of first data bu

copy max. record number

set blk of fset=O

set mrn

; show success
& rejoin common open code

; note: the bdb will
; be released there

Example 2 Excerpt from RM20PEN.MAR (Sheet 3 of 4)

EX-100

RMS Implementation and Structure

EXERCISES

handle errors .
I

ERRIFA:

ERRORG:

ERRRPL:

MOVL
RMS ERR
BRB

RMS ERR
BRB

TSTL
BNEQ
BISL3

#RMS$ BKS,FAB$L STV(R8) ;
IFA - -
ERRXIT

ORG
ERRXIT

set secondary error info
illegal file attributes

trying to open a ppf

FAB$L STV(R8) do we have an stv?
10$ - ; okay use it
#~Xl000,RO,FAB$L STV(R8); else set the RMS error t

10$: RMSERR RPL - prolog read error .
I

; (stv has ss error code)

ERRXIT: JMP RM$COPRTN

ERRPLV:
RMSERR PLV
BRB ERRXIT

.END

; go clean up

unsupported prolog versi

Example 2 Excerpt from RM20PEN.MAR (Sheet 4 of 4)

EX-101

1.

RMS Implementation and Structure

SOLUTIONS

a. The RMS vector SYS$0PEN resides in Pl space.

b. Execution of the CHME instruction in the SYS$0PEN vector
causes an exception. The system vectors through the SCB
to the executive change mode dispatcher (EXE$CMODEXEC).

The routine named RMS$0PEN gains control in executive
mode.

c. The Symbol Cross-Reference section of RMS.MAP indicates
that module RMSOOPEN contains the routine RMS$0PEN.

d. RM$0PEN2 will be invoked for this file OPEN.

The file organization stored in the IFAB is 2 (meaning
relative), so RMS$0PEN cases to label RM OPEN2 BR. That
label is simply a branch aid to the routine RM$0PEN2.

The CASE macro used
SYS$LIBRARY:LIB.MLB.

here can be

e. Module RM20PEN contains the routine RM$0PEN2.

found in

2. RMS wants to be sure the information accurately reflects the
file being processed, so it copies the FAB information into an
IFAB. The user has read and write access to the FAB, but the
IFAB is protected against user write.

EX-102

RMS Implementation and Structure

EXERCISES

1. Analyze the crash dump in OSI$LABS:CRASH1.DMP and gather some
information about the RMS internal data structures being used
in the JOB_CONTROL process.

a. Set process context to that of the JOB CONTROL process.

b. Display information about the RMS data structures for
JOB CONTROL using the command SHOW PROCESS/RMS.

c. What is the address of the IFAB for the file with Internal
File Identifier (IFI) 01?

d. What is the address of an !RAB for the file with IFI 01?

EX-103

RMS Implementation and Structure

SOLUTIONS

1. Issue the DCL command ANALYZE/CRASH OSI$LABS:_CRASH1.DMP.

a. SDA> SET PROCESS JOB CONTROL

b. SDA> SHOW PROCESS/RMS

c. The address of the IFAB for the file with !FI 01 appears
in the subheading and is labeled "IFAB address: ."

d. The address of the !RAB for
appears in the description
"IRAB LNK: "

EX-104

the first record stream
of the IFAB, and is labeled

VMS in a Multiprocessing Environment

EXERCISES

1. Complete the table below describing the characteristics of the
different multiprocessor implementations.

System
Characteristic

CPU booting

CPU failure

CPU cabinet
location

Security/Man­
agement domain

File system

Growth potential

VAX-11/782 VAXcluster Network

Separate

Separate

Can be
widely
separated

Multiple

Separate

Very great

2. What piece of hardware is the high-speed, highly available
communications medium for connecting VAXcluster nodes?

3. What VAXcluster software component can provide access from any
VAXcluster node, to a disk connected to one VAX (in other
words, not connected to an HSC)?

4. What piece of hardware is the central connection point for all
nodes in a VAXcluster?

5. What is the difference between an active node and a passive
node in a VAXcluster? Give an example of each kind of node.

EX-105

VMS in a Multiprocessing Environment

EXERCISES

6. Why is i~ useless to run ANALYZE/MEDIA on a disk connected to
an HSC-50 or UDA? ~

7. What is the maximum number of HSC-SOs and VAXen that can be
connected in a VAXcluster?

8. The HSC-50 is called a "disk server." Explain what this term
means.

EX-106

1.

VMS in a Multiprocessing Environment

System
Characteristic

CPU booting

CPU failure

CPU cabinet
location

Security/Man­
agement domain

File system

Growth potential

SOLUTIONS

VAX-11/782

Together

Together

Single or
adjacent

Single

Integrated

Limited

VAXcluster

Separate

Separate

Sarne compu­
ter room

Single

Integrated

very great

Network

Separate

Separate

Can be
widely
separated

Multiple

Separate

Very great

2. The Computer Interconnect (CI) provides a high-speed, highly
available communications medium for connecting VAXcluster
nodes.

3. The MSCP Server can provide access from any VAXcluster node,
to a disk connected to one VAX (in other words, not connected
to an HSC).

4. The Star Coupler is the central connection point of all nodes
in a VAXcluster.

5. An active node, such as a VAX system, actively participates in
cluster connection management, and therefore knows the current
configuration of the VAXcluster.

A passive node, such as an HSC, is connected to the cluster,
but does not actively participate in cluster connection
management.

EX-107

6.

VMS in a Multiprocessing Environment

Disks that are
disks. These
and therefore
ANALYZE/MEDIA,
RA-type disks.

SOLUTIONS

connected to an HSC-50 or a UDA are RA-type
disks have automatic revectoring of bad blocks,

provide a contiguous perfect LBN space.
which locates bad blocks, need not be used on

7. On VMS version 4.0 the total number of nodes in a VAXcluster,
HSC-50s plus VAXen, must be less than or equal to 16.

8. As a disk server, the HSC-50 knows nothing about the ODS-2
file system. It is only concerned about reading and writing
logical disk blocks.

EX-108

VMS in a Multiprocessing Environment

EXERCISES

There are no lab exercises for this module.

EX-109

VMS in a V AXcluster Environment

EXERCISES

1. For each of the following system processes, specify whether it
is created on any VAX system, or only created on a system in a
VAXcluster. ~-

a. ERRFMT

b. CACHE SERVER

c. CLUSTER SERVER

d. OPCOM

e. SWAPPER

2. Briefly describe the functions of the following software
components of a VAXcluster.

a. Distributed Lock Manager

b. Connection Manager

c. Distributed File System

EX-111

1.

2.

VMS in a V AXcluster Environment

SOLUTIONS

a. ERRFMT - created on any VAX

b. CACHE SERVER - only created on system in a VAXcluster

c. CLUSTER SERVER - only created on system in a VAXcluster

d. OPCOM - created on any VAX

e. SWAPPER - created on any VAX

NOTE: The above is not necessarily true for a MicroVAX
system.

a. The Distributed Lock Manager provides cluster-wide

b.

synchronization for many VMS components through the $ENQ
and $DEQ system services. It is also available to user
applications.

The primary function of the Connection Manager is
determine and maintain VAXcluster membership.
connection managers in a VAXcluster work together
synchronize state changes and prevent partitioning.

to
The
to

The connection manager also provides cluster system IDs
(CSIDs), and an acknowledged message delivery service.

c. The Distributed File System allows files to be accessed on
any system in a VAXcluster as if they were local to that
system.

The Files-11 ODS-2 XQP is procedure-based, and mapped into
Pl space.

EX-112

VMS in a VAXcluster Environment

EXERCISES

There are no lab exercises for this module.

EX-113

Tests

VMS Internals II

PRE-TEST

Circle the best choice for each of the following questions.

1. Which stack is being used when code is running in system
context?

a. User stack
b. Kernel stack
c. Interrupt stack
d. Could be any stack

2. Which of the following is a characteristic of an exception?

a. Asynchronous to the execution of a process
b. Changes the IPL to that of the interrupting device
c. Serviced on the process local stack in process context

3. Which of the following components maintains disk and file
structure for Files-11 ODS-2 disks?

a. Job Controller
b. XQP
c. ACP
d. Pager

4. How is the software timer implemented?

a. Interrupt service routine
b. Exception service routine
c. Process
d. User-level routine

5. Which interprocess communication technique is used between
device drivers and the Error Logger?

a. Mailbox
b. Buffer in memory
c. Common event flags
d. Locks

TP-3

VMS Internals II

PRE~TEST

6. Symbols for locations in Pl space ·typically start with a
prefix of:

a. EXE$
b. MMG$
c. SCH$
d. CTL$

7. In which data structure is the hardware PCB located?

a. JIB
b. Software PCB
c. PHD
d. IRP

8. Which of the following types of information would NOT be found
in a process header?

a. Working set list
b. PO and Pl page tables
c. Process section table
d. Process scheduling state

9. Into which section of virtual address space is the - Files-11
XQP mapped?

a. PO
b. Pl
c. so

10. Forking is used by system routines and drivers to:

a. Lower IPL
b. Select which routine to transfer control to next
c. Respond to exceptions or interrupts
d. Start up several independent concurrent operations

TP-4

VMS Internals II

PRE-TEST

11. AST control blocks that are waiting to be delivered to a
process are queued to which of the following data structures?

a. JIB
b. Software PCB
c. PHD
d. !RP

12. Which of the following operations is NOT performed by the
hardware clock interrupt service routine?

a. Update quantum information for current process
b. Check for device timeouts
c. Update system time
d. Check timer queue to see if software timer interrupt

service routine needs to be invoked

13. What mechanism is used to go from a more privileged access
mode to a less privileged access mode?

a. CHMx instruction
b. REI instruction
c. Change mode system service
d. MOVPSL instruction

14. Which data structure contains the information that tells the
system how to respond to every possible exception or
interrupt?

a. System Header
b. SCB
c. RPB
d. PCB

15. What IPL value is used to synchronize access
scheduler's database?

a. IPL$ ASTDEL
b. IPL$-SCHED
c. IPL$-SYNCH
d. IPL$_POWER

TP-5

to the

VMS Internals II

PRE-TEST

16. Why does the SRVEXIT section of the change mode dispatcher
issue an REI instruction?

a. To match the CHMx instruction in the SYS$service code
b. To match the CALLX instruction to the system service in

the user's program
c. To match the CASE instruction in the change mode

dispatcher
d. To signal that an error has occurred in the execution of

the system service

17. What does G mean in SDA or XDELTA?

a. Go to a particular location
b. Add 80000000 hex
c. Repeat the previous command
d. Display a global symbol

18. Which SDA command(s) can be used to duplicate the information
found on a console bugcheck output?

a. SHOW CRASH and SHOW STACK
b. SHOW SUMMARY
c. SHOW CRASH and SHOW SUMMARY
d. SHOW PFN and SHOW STACK

19. What information is usually placed in the first two longwords
of system data structures?

a. Forward and backward links
b. Structure size and type
c. ASCII representation of structure name
d. Access mode and IPL at which synchronization should occur

on the data structure

20. Which of the following tools would you use to change the
contents of a field in a data structure?

a. SDA
b. INSTALL
c. MONITOR
d. XDELTA

TP-6

VMS Internals It

PRE-TEST

21. Which of the following tools would be the easiest to use to
examine the value of the symbolic location EXE$GL_SITESPEC?

a. SDA
b. INSTALL
c. MONITOR
d. XDELTA

22. Process FRED has a base priority of 4. It is currently
executing at a priority of 8. An event occurs that has an
associated priority boost of 2. What will be the resulting
priority of Process FRED?

23.

a. 4
b. 6
c. 8
d. 10

Process LIZ and Process MO both want to access the
routine. Process LIZ references the routine first,
a page fault. Then Process MO references the page
not yet been read into memory (i.e., faults the
What scheduling state will Process LIZ and Process

a. Process LIZ = PFW, Process MO = PFW
b. Process LIZ = PFW, Process MO = COLPG
c. Process LIZ = COLPG, Process MO = COLPG
d. Process LIZ = COLPG, Process MO = PFW

same RTL
and causes
which has

same page).
MO be in?

24. Which component is responsible for moving processes into and
out of wait states?

a. RSE
b. Scheduler
c. Swapper
d. Pager

TP-7

VMS Internals II

PRE-TEST

25. Which component is responsible for building most of the
virtual address space of a new process?

a. $CREPRC system service
b. Swapper process
c. PROCSTRT routine
d. A user routine

26. Which component is responsible for allocating a PCB for a new
process?

a. $CREPRC system service
b. Swapper process
c. PROCSTRT routine
d. A user routine

27. From which state is a process deleted?

a. CUR
b. COMO
c. PFW
d. MWAIT

28. Which of the following pieces of information can the extended
PID contain?

a. Process index into PCB and sequence vectors
b. Process sequence number
c. Cluster node index
d. Node sequence number
e. All of the above

29. In the system initialization sequence, which component is
responsible for sizing SO space and setting up the system page
table?

a. VMB
b. SYSBOOT
c. INIT
d. CONSOLE.SYS

TP-8

VMS Internals II

PRE-TEST

30. During the execution of which software component is VMS memory
management enabled during system initialization?

a. VMB
b. SYSBOOT
c. !NIT
d. CONSOLE.SYS

TP-9

VMS Internals II

SOLUTIONS TO PRE-TEST

1. Which stack is being used when code is running in system
context?

a.
b.

~
User stack
Kernel stack
Interrupt stack
Could be any stack

2. Which of the following is a characteristic of an exception?

a. Asynchronous to the execution of a process
b. Changes the IPL to that of the interrupting device €) Serviced on the process local stack in process context

3. Which of the following components maintains disk and file
structure for Files-11 ODS-2-disks?

a. Job Controller
€) XQP
c. ACP
d. Pager

4. How is the software timer implemented?

c.
d.

Interrupt service routine
Exception service routine
Process
user-level routine

5. Which interprocess communication technique is used between
device drivers and the Error Logger?

a. Mailbox @ Buffer in memory
c. Common event flags
d. Locks

TP-11

VMS Internals II

SOLUTIONS TO PRE-TEST

6. Symbols for locations in Pl space typically start with a
prefix of:

a. EXE$
b. MMG$
c. SCH$
@ CTL$

7. In which data structure is the hardware PCB located?

a.

!!:-\
~
d.

JIB
Software PCB
PHD
!RP

8. Which of the following types of information would NOT be found
in a process header?

a. Working set list
b. PO and Pl page tables
c. Process section table
@) Process scheduling state

9. Into which section of virtual address space is the Files-11
XQP mapped?

a.
@
c.

PO
Pl
so

10. Forking is used by system routines and drivers to:

c.
d.

Lower IPL
Select which routine to transfer control to next
Respond to exceptions or interrupts
Start up several independent concurrent operations

TP-12

VMS Internals II

SOLUTIONS TO PRE-TEST

11. AST control blocks that are waiting to be delivered to a
process are queued to which of the following data structures?

a. JIB
@ Software PCB
c. PHO
d. IRP

12. Which of the following operations is NOT performed by the
hardware clock interrupt service routine?

~
c.
d.

Update quantum information for current process
Check for device timeouts
Update system time
Check timer queue to see if software timer
service routine needs to be invoked

interrupt

13. What mechanism is used to go from a more privileged access
mode to a less privileged access mode?

a. CHMx instruction @ REI instruction
c. Change mode system service
d. MOVPSL instruction

14. Which data structure contains the information that tells the
system how to respond to every possible exception or
interrupt?

a. System Header
{§) SCB
c. RPB
d. PCB

15. What IPL value is used to synchronize access
scheduler's database?

a.
b.

~
IPL$ ASTDEL
IPL$-SCHED
IPL$-SYNCH
IPL$=POWER

TP-13

to the

VMS Internals II

SOLUTIONS TO PRE~ TEST

16. Why does the SRVEXIT section of the change mode dispatcher
issue an REI instruction?

@ To match the CHMx in$truction in the SYS$service code
n. To match the CALLx instruction to the system service in

the user's program
c. To match the CASE instruction in the change mode

dispatcher
d. To signal that an error has occurred in the execution of

the system service

17. What does G mean in SDA or XDELTA?

a. Go to a particular location
€) Add 80000000 hex
c. Repeat the previous command
d. Display a global symbol

18. Which SDA command(s) can be used to duplicate the information
found qn a console bugcheck output?

@ SHOW CRASH and SHOW STACK
B. SHOW SUMMARY
c. SHOW CRASH and SHOW SUMMARY
d. SHOW PFN and SHOW STACK

19. What information is usually pl.aced in the first two longwords
of system data structures?

~ Forward and backward links
n. Structure size and type
c. ASCII representation of structure name
d. Access mode and IPL at which synchronization should occur

on the data structure

20. Which of the following tools would you use to change the
contents of a field in a data structure?

a. SDA
b. INSTALL
c. MONITOR
@) XDELTA

TP-14

VMS Internals II

SOLUTIONS TO PRE-TEST

21. Which of the following tools would be the easiest to use to
examine the value of the symbolic location EXE$GL_SITESPEC?

~ SDA
15. INSTALL
c. MONITOR
d. XDELTA

22. Process FRED has a base priority of 4. It is currently
executing at a priority of 8. An event occurs that has an
associated priority boost of 2. What will be the resulting
priority of Process FRED?

23.

a.

~
d.

4
6
8
10

Process LIZ and Proc~ss MO both want to access the
routine. Process LIZ references the routine first,
a page fault. Then Process MO references the page
not yet been read into memory (i.e., faults the
What scheduling state will Process LIZ and Process

a. Process LIZ = PFW, Process MO = PFW
@ Process LIZ = PFW, Process MO = COLPG
c. Process LIZ = COLPG, Process MO= COLPG
d. Process LIZ, = COLPG, Process MO = PFW

same RTL
and causes
which has

same page).
MO be in?

24. Which component is responsible for moving processes into and
out of wait states?

~ RSE
B. Scheduler
c. Swapper
d. Pager

TP-15

VMS Internals II

SOLUTIONS TO PRE-TEST

25. Which component is responsible for building most of the
virtual address space of a new process?

a. $CREPRC system service
{€) Swapper process
c. PROCSTRT routine
d. A user routine

26. Which component is responsible for allocating a PCB for a new
process?

@ $CREPRC system service
o. Swapper process
c. PROCSTRT routine
d. A user routine

27. From which state is a process deleted?

@ CUR
o. COMO
c. PFW
d. MWAIT

28. Which of the following pieces of information can the extended
PID contain?

a. Process index into PCB and sequence vectors
b. Process sequence number
c. Cluster node index
d. Node sequence number
€) All of the above

29. In the system initialization sequence, which component is
responsible for sizing SO space and setting up the system page
table?

a. VMB
@ SYSBOOT
c. !NIT
d. CONSOLE.SYS

TP-16

VMS Internals II

SOLUTIONS TO PRE-TEST

30. During the execution of which software component is VMS memory
management enabled during system initialization?

a. VMB
b. SYSBOOT
6J !NIT
d. CONSOLE.SYS

TP-17

VMS Internals II

POST-TEST

Circle the best choice for each of the following questions.

1. All of the following are functions of the Job Controller
EXCEPT

a. Manages batch queue and batch jobs
b. Has a part in creating interactive processes associated

with terminals
c. Accounting manager
d. Issues $QIOs to print files

2. Which interprocess communication technique is used between the
Job Controller and symbionts?

a. Global sections
b. Mailboxes
c. Common event flags
d. Locks

3. How much does a VMS print symbiont understand about print
queues?

a. Nothing
b. Knows how many print queues there are on the system
c. Understands the structure of JBCSYSQUE.DAT

4. Which software component is responsible for logging/reporting
device errors?

a. RSE
b. ERRFMT
c. Device drivers
d. Oscar the Grouch

5. A command language interpreter (CL!) is essentially

a. A condition handler
b. An exit handler
c. An interrupt service routine
d. A procedure called by the operating system

TP-19

VMS Internals II

POST-TEST

6. All of the following are valid types of image section
descriptors EXCEPT

a. Demand zero section
b. Process private section
c. Global section
d. Paging file section

7. What information in the image file tells the image activator
where to map each portion of an image into process virtual
address space?

a. Base VPN in image section descriptor
b. Base VBN in image section descriptor
c. Size of image section descriptor
d. VBN of block on disk

8. Which data structure entry in the PHD tells the pager where to
find a process private page on disk?

a. Page table entry
b. Process section table entry
c. Working set list entry

9. Which element of the PFN database indicates where a page
should be placed if it has to leave physical memory?

a. PTE
b. STATE
c. BAK
d. TYPE

10. A page table entry can contain each of the following EXCEPT

a. Physical page frame number (PFN)
b. Process section table index (PSTX)
c. Page file virtual block number
d. Swap file virtual block number

TP-20

VMS Internals II

POST-TEST

11. Which SYSGEN parameter limits the size of the PO and Pl page
tables?

a. NPAGEDYN
b. WSMAX
c. VIRTUALPAGECNT
d. PROCSECTCNT

12. Where is the protection code for a page of physical memory
stored?

a. In the first four bits of the physical page
b. In the PFN database
c. In the PTE(s) mapping the page
d. In a file on the system disk

13. When a page is removed from a process working set, it does not
leave memory right away. If that page was written to, it will
go to the

a. Free page list
b. Modified page list
c. Bad page list
d. Home for wayward pages

14. The swapper must be involved in all of the following system
activities EXCEPT

a. Modified page writing
b. Process creation
c. System initialization
d. Process scheduling

15. The swapper is able to issue a single $QIO to read/write
entire process working sets because it makes the pages appear
virtually contiguous using:

a. An intermediate buffer in system space
b. Modifications to the process's page table entries
c. Its own PO page table
d. The SWPVBN elements in the PFN database

TP-21

VMS Internals II

POST-TEST

16. In its attempts to regain free pages, the swapper will do all
of the following EXCEPT

a. Write modified pages
b. Delete processes of low priority
c. Shrink working sets
d. Outswap processes

17. Which of the following components consists of the most
primitive I/O routines that have a user interface?

a. RMS
b. I/O system services
c. FDT routines
d. Device drivers

18. Which of the following components processes the device­
dependent parameters on a call to $QIO?

a. RMS
b. I/O system services
c. FDT routines
d. Device drivers

19. Which of the following data structures contains information
common to all devices on a controller?

a. UCB
b. CCB
c. DDB
d. IRP

20. Which of the following data structures contains information
for a device unit?

a. UCB
b. CCB
c. DDB
d. IRP

TP-22

VMS Internals II

POST-TEST

21. Process-specific RMS internal data structures are stored in
which area of Pl space?

a. Image I/O segment
b. Process I/O segment
c. Pl window to the PHD
d. Per-process common area

22. What software component is used just before you enter the RMS
specific procedure?

a. EXE$CMODEXEC
b. RMS$DISPATCH
c. RMS synchronization routine

23. What data structures used by RMS are stored in Pl space?

a. FAB and RAB
b. DDB and UCB
c. IFAB and !RAB
d. MIC and KEY

24. Which of the following is a characteristic of a tightly
coupled VAX-11/782 configuration?

a. The file systems are separate
b. It is a multiple management domain
c. The CPUs boot and fail together
d. The CPU cabinets can be widely separated

25. Which piece of hardware is the high-speed, highly available
communications medium for connecting VAXcluster nodes?

a. Computer interconnect (CI)
b. MSCP server
c. Star coupler
d. HSC-50

TP-23

VMS Internals II

POST-TEST

26. What VAXcluster software component can provide access from any
VAXcluster node, to a non-HSC disk connected to just one VAX?

a. Computer interconnect (CI)
b. MSCP' server
c. Star coupler
d. HSC-50

27. What piece of hardware is the central connection point for all
nodes in a VAXcluster?

a. Computer interconnect (CI)
b. MSCP server
c. Star coupler
d. HSC-50

28. Which of the following processes is present on a system in a
VAXcluster, and NOT on a single, non-clustered VAX?

a. SWAPPER
b. OPCOM
c. JOB CONTROL
d. CACHE SERVER

29. Which of the following VAXcluster components provides cluster­
wide synchronization for many VMS components?

a. Distrubuted lock manager
b. Connection manager
c. Distrubuted file system
d. Systems communications services (SCS)

30. Which of the following VAXcluster components determines and
maintains VAXcluster membership?

a. Distrubuted lock manager
b. Connection manager
c. Distrubuted file system
d. Systems communications services (SCS)

TP-24

VMS Internals II

SOLUTIONS TO POST-TEST

1. All of the following are functions of the Job Controller
EXCEPT

a. Manages batch queue and batch jobs
b. Has a part in creating interactive processes associated

with terminals
c. Accounting manager
~ Issues $QIOs to print files

2. Which interprocess communication technique is used between the
Job Controller and symbionts?

a. Global sections
@ Mailboxes
c. Common event flags
d. Locks

3. How much does a VMS print symbiont understand about print
queues?

~ Nothing
o. Knows how many print queues there are on the system
c. Understands the structure of JBCSYSQUE.DAT

4. Which software component is responsible for logging/reporting
device errors?

a.
b.

2
RSE
ERRFMT
Device drivers
Oscar the Grouch

5. A command language interpreter (CL!) is essentially

a. A condition handler @ An exit handler
c. An interrupt service routine
d. A procedure called by the operating system

TP-25

VMS Internals II

SOLUTIONS TO POST-TEST

6. All of the following are valid types of image section
descriptors EXCEPT

a. Demand zero section
b. Process private section
c. Global section
@ Paging file section

7. What information in the image file tells the image activator
where to map each portion of an image into process virtual
address space?

~ Base VPN in image section descriptor
o. Base VBN in image section descriptor
c. Size of image section descriptor
d. VBN of block on disk

8. Which data structure entry in the PHD tells the pager where to
find a process private page on disk?

a. Page table entry @ Process section table entry
c. Working set list entry

9. Which element of the PFN database indicates where a page
should be placed if it has to leave physical memory?

a.

~
d.

PTE
STATE
BAK
TYPE

10. A page table entry can contain each of the following EXCEPT

a. Physical page frame number (PFN)
b. Process section table index (PSTX)
c. Page file virtual block number @ Swap file virtual block number

TP-26

VMS Internals II

SOLUTIONS TO PRE-TEST

11. Which SYSGEN parameter limits the size of the PO and Pl page
tables?

a. NPAGEDYN
b. WSMAX
Q VIRTUALPAGECNT
a-:' PROCSECTCNT

12. Where is the protection code for a page of physical memory
stored?

a. In the first four bits of the physical page
In the PFN database

-In the PTE(s) mapping the page
In a file on the system disk

13. When a page is removed from a process working set, it does not
leave memory right away. If that page was written to, it will
go to the

a. Free page list @ Modified page list
c. Bad page list
d. Home for wayward pages

14. The swapper must be involved in all of the following system
activities EXCEPT

a. Modified page writing
b. Process creation
c. System initialization
@:) Process scheduling

15. The swapper is able to issue a single $QIO to read/write
entire process working sets because it makes the pages appear
virtually contiguous using:

a. An intermediate buffer in system space
b. Modifications to the process's page table entries
6) Its own PO page table
d': The SWPVBN elements in the PFN database

TP-27

VMS Internals II

SOLUTIONS TO POST-TEST

16. In its attempts to regain free pages, the swapper will do all
of the following EXCEPT

a. Write modified pages
@ Delete processes of low priority
c. Shrink working sets
d. Outswap processes

17. Which of the following components consists of the most
primitive I/O routines that have a user interface?

a. RMS @ I/O system services
c. FDT routines
d. Device drivers

18. Which of the following components processes the device­
dependent parameters on a call to $QIO?

a. RMS
I/O system services
FDT routines
Device drivers

19. Which of the following data structures contains information
common to all devices on a controller?

a.
b.

~
UCB
CCB
DDB
!RP

20. Which of the following data structures contains information
for a device unit?

~ UCB
l5. CCB
c. DDB
d. !RP

TP-28

VMS Internals II

SOLUTIONS TO POST-TEST

21. Process-specific RMS internal data structures are stored in
which area of Pl space?

a. Image I/O segment
@ Process I/O segment
c. Pl window to the PHD
d. Per-process common area

22. What software component is used just before you enter the RMS
specific procedure?

a. EXE$CMODEXEC @ RMS$DISPATCH
c. RMS synchronization routine

23. What data structures used by RMS are stored in Pl space?

a.
b.

~
FAB and RAB
DDB and UCB
IFAB and !RAB
MIC and KEY

24. Which of the following is a characteristic of a tightly
coupled VAX-11/782 configuration?

a.
b.

~
The file systems are separate
It is a multiple management domain
The CPUs boot and fail together
The CPU cabinets can be widely separated

25. Which piece of hardware is the high-speed, highly available
communications medium for connecting VAXcluster nodes?

€3 Computer interconnect (CI)
o. MSCP server
c. Star coupler
d. HSC-50

TP-29

VMS Internals II

SOLUTIONS TO POST-TEST

26. What VAXcluster software component can provide access from any
VAXcluster node, to a non-HSC disk, connected to just one VAX?

a. Computer interconnect (CI)
~ MSCP server
c. Star coupler
d. HSC-50

27. What piece of hardware is the central connection point for all
nodes in a VAXcluster?

a. Computer interconnect (CI)
b MSCP server -0 Star coupler
d. HSC-50

28. Which of the following processes is present on a system in a
VAXcluster, and NOT on a single, non-clustered VAX?

a.
b.

SWAPPER
OPCOM
JOB CONTROL
CACHE SERVER

29. Which of the following VAXcluster components provides cluster­
wide synchronization for many VMS components?

~ Distrubuted lock manager
b. Connection manager
c. Distrubuted file system
d. Systems communications services (SCS)

30. Which of the following VAXcluster components determines and
maintains VAXcluster membership?

a. Distrubuted lock manager @ Connection manager
c. Distrubuted file system
d. Systems communications services (SCS)

TP-30

