
EY-2279E-SG-0002

VAX/VMS
INTERNALS I

Student Workbook

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright© 1986 by Digital Equipment Corporation

All Rights Reserved

Second Edition, October 1986

The reproduction of this material, in part or whole, is strictly prohibited.
For copy information, contact the Educational Services Department,
Digital Equipment Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for- any errors that may appear in this document.

The software described in this document is furnished under a license
and may not be used or copied except in accordance with the terms of
such license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by Digital.

The manuscript for this book was created using DIGITAL Standard
Runoff. Book production was done by Educational Services
Development and Publishing in Nashua, NH.

The following are trademarks of Digital Equipment Corporation:

~D~DD!D™ DECtape Rainbow
DATATRIEVE DEC US RSTS
DEC DECwriter RSX
DECmate DIBOL UNIBUS
DECnet MASSBUS VAX
DEC set PDP VMS
DECsystem-10 P/OS VT
DECSYSTEM-20 Professional Work Processor

SG STUDENT GUIDE

INTRODUCTION
GOALS.
NON-GOALS.
PREREQUISITES.
RESOURCES.
COURSE MAP
COURSE OUTLINE

•

•
•

1 SYSTEM COMPONENTS

INTRODUCTION
OBJECTIVES
RESOURCES ••

Reading.

•

Additional Suggested
Source Modules •

TOPICS •
THREE MAIN PARTS OF VMS.

•

•

• •
•

• • •
Reading

•
Scheduling and Process Control
Memory Management. •
I/O Subsystem. •

•

•
•

•
•

•
•

The Parts of the Operating System.
Functions Handled "Below" User Level

INVOKING SYSTEM CODE •
Interrupts vs. Exceptions.

HARDWARE MAINTAINED PRIORITY LEVELS.
Two Types of Priority.
Interrupt Servicing Sequence

ACCESS MODES AND COMPONENTS.
LOCATION OF CODE AND DATA. •

Entry Paths Into VMS Kernel.
THREE TYPES OF SYSTEM COMPONENTS
INTERACTION OF VMS COMPONENTS.

Hardware Clock Interrupt

•

•
•

Periodic Check for Device Timeout.
Periodic Wake of Swapper, Error Logger
System Event Reporting
Page Fault
Data Transfer Using RMS.
File Manipulation Using RMS.
Data Transfer Using $QIO
$QIO Sequence of Events.

EXAMPLES OF SYSTEM PROCESSES
OPCOM, Error Logger.

iii

•

• •

•

•
•

•
•

•
• •
•
• •

•

•

•
•

•

• •

• •

• •

•
•

•

CONTENTS

•

•
•

•

•
• •

•
•

•
•

•

•

•

•

•

•

•

•

SG-3
SG-4
SG-5
SG-5
SG-5
SG-6
SG-7

.1-3

.1-4

.1-4

.1-4

.1-4

.1-4

.1-5

.1-7

.1-7

.1-7

.1-7

.1-8

.1-9
1-10
1-11
1-12
1-13
1-14
1-16
1-17
1-18
1-20
1-21
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-29
1-30
1-31
1-31

Print Jobs
Batch Jobs
Terminal Input

• • •
• •

Card Reader Input. • •

•

SOFTWARE COMPONENTS OF DECnet-VAX.
Data Link Device Drivers •
NETDRIVER and NETACP • •
RMS, DAP Routines, and FAL n •
RTTDRIVER, REMACP, and RTPAD •

•

•

•

•
•

• •
• •

• .. . •
•

•
Netserver. • • • • •
Special DECnet Components. • •
EVL. • • • • • • • •
SERVER n Process • • • •
NCP, NML, MOM, MIRROR, NDDRIVER. • •
DECnet Remote File Access. • •

SUMMARY. • • • • • • • •
APPENDIX: ADDITIONAL DECnet-VAX INFORMATION •

2 THE PROCESS

INTRODUCTION
OBJECTIVES •

•

RESOURCES. •
Reading. • • •
Additional Suggested Reading
Source Modules •

TOPICS • • • •
PROCESS VS. SYSTEM CONTEXT • •

Process Context. • •

•
•

•

•
•

• •

System Context • • • •

•

•
•
•
•

PROCESS DATA STRUCTURES OVERVIEW • • •
Software Process Control Block (PCB)
Process Header (PHD) • • •
Hardware Process Control Block • •
Privileged vs. General Registers
Privileged • • •
General. • • •

•
•

Job Information Block. • • •••
VIRTUAL ADDRESS SPACE OVERVIEW • •

Process Virtual Address Space ••••
• •

SO Virtual Address Space •
PO Virtual Address Space •
Pl Virtual Address Space

SUMMARY. • • • •

3 SYSTEM MECHANISMS

INTRODUCTION
OBJECTIVES •
RESOURCES.

• •
• •

• •
•

• •

•

•

iv

• •
• •

• • • •
• • •

• •
• •

•

• •
• •

•
• • •
• •

•
• •
• • •

•
• •
• •

•
•

• •
• •
• •
• • •

• •
• • •
• •
• •

• •
•

•
• • •

• •
• •

• •
•

• • • •
• • •

•
•

• • •
• •

•
• • •
• • •

•
•

• •
• • • •

• • •
• • •

• • • •
• • • •

• • • •
• • • •

• • • •
•

•
• • •

• • •
• • • • •
• • • • •
• • • • •

• • • • • •
• • • •

•
• • • • • •

• • •

•
• • • • • •

• • • •

1-32
1-33
1-34
1-35
1-36
1-36
1-36
1-36
1-36
1-36
1-37
1-37
1-37
1-37
1-38
1-39
1-41

.2-3

.2-4

.2-5

.2-5

.2-5

.2-5

.2-7

.2-9

.2-9

.2-9
2-10
2-11
2-12
2-13
2-14
2-14
2-14
2-15
2-16
2-16
2-17
2-19
2-20
2-23

.3-3

.3-4

.3-5

Reading.
Additional Suggested Reading •
Source Modules •

•

TOPICS • • • • •

•
•

•
HARDWARE REGISTER AND INSTRUCTION SET SUPPORT ••••

Processor Status Word (PSL). •
Processor Status Longword. • •
Hardware Context • • • •

SYNCHRONIZING SYSTEM EVENTS. • •
Hardware Interrupts and the SCB ••
Hardware Interrupts and IPL. •
Software Interrupts and the SCB.
Software Interrupts and IPL. •
Example of Fork Processing •
Software Interrupt Requests.
Blocking Interrupts. • • •

•

•

Summary of IPL Mechanism • •

•

• •
•
•
•

Using IPL to Synchronize System Routines •
System Tier Queue and System Clocks. •
Clocks and Timer Services. •
Summary of System Synchronization Tools. •

PROCESS SYNCHRONIZATION.
Mutual Exclusion Semaphores (MUTEXes).
Obtaining and Releasing Mutexes. •
Asynchronous System Traps (ASTs)
AST Delivery • • • •
AST Delivery Sequence.

•

•
•

•
• •

•
•
•

•
•

•

•
•

• •
•

•

•
•
•

Synchronizing Access Using the VAX/VMS Lock Manager.
EXCEPTIONS AND CONDITION HANDLING.

Exception and Interrupt Dispatching.
HOW A USER EXECUTES PROTECTED CODE •

Access Mode Transitions.
CHMx and REI Instructions.
REI Is Used in Various Situations.
Path to System Service • •
Return from System Service •
Nonprivileged System Service •
Path to RMS. • • • •
Return from RMS. •
Path to User-Written Service (1)
Path to User-Written Service (2)
Return from User-Written Service •
Two Dispatchers ••

MISCELLANEOUS MECHANISMS • •
Dynamic Memory • • •

•

Allocating Nonpaged Pool • •

•
•

•

•
•

•

Relevant SYSGEN Parameters for Nonpaged Pool •
SUMMARY OF SYSTEM MECHANISMS • • • •

•
•
•

SYSGEN Parameters Related to System Mechanisms •
APPENDIX A: COMMONLY USED SYSTEM MACROS • •
APPENDIX B: PRIVILEGE MASK LOCATIONS ••
APPENDIX C: THE REI INSTRUCTION •

v

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•

•
•

.3-5

.3-5
~3-5
.3-6
.3-7
.3-8
.3-9
3-10
3-11
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-33
3-34
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-50
3-51
3-52
3-54
3-56
3-57
3-60
3-61

4 DEBUGGING TOOLS

INTRODUCTION
OBJECTIVES
RESOURCES.
TOPICS
VAX/VMS DEBUGGING TOOLS.
THE SYSTEM DUMP ANALYZER (SDA)

SDA Functions and Commands
Examining an Active System •

THE SYSTEM MAP FILE.
Overview •
Sections of
SYS.MAP and
SYS.MAP and

CRASH DUMPS.

SYS.MAP.
Crash Dumps.
Source Code.

Causes of Crash Dumps.
BUGCHECKS.

The Two Types of Bugchecks
How Crash Dumps are Generated.
How Bugchecks are Generated.

SAMPLE STACKS AFTER BUGCHECKS.
Access Violation
Page Fault Above IPL 2
Reserved Operand Fault
Machine Check in Kernel Mod~ (CPU Timeout)
Sample Crash Dump Analysis •

DELTA AND XDELTA •
DELTA Debugger •
CHMK Program • •
DELTA and XDELTA Functions and Commands.

APPENDIX A: BUGCHECK FLOW OF CONTROL. •
APPENDIX B: PATCH

5 SCHEDULING

INTRODUCTION
OBJECTIVES
RESOURCES ••

Reading.

•
•

•
•
•

Additional Suggested Reading
Source Modules

TOPICS • • •
THE PROCESS STATES • • • •

Process Wait States. • •

•

•
• •

•
•

•

Ways to Leave the Current State. •
Ways to Become Computable (Inswapped).
Inswapped to Outswapped Transitions.
Ways to Become Computable (Outswapped)

HOW PROCESS STATES ARE IMPLEMENTED • •
Queues • • •

vi

•

•

•

•

•

• •
•

•
•

•

•

•
•

•
•
•

. ..

•

•

•

•

•

•

•
•

•
•

•

.4-3

.4-3

.4-3

.4-4

.4-5

.4-6

.4-8
4-11
4-16
4-16
4-16
4-17
4-17
4-18
4-18
4-19
4-19
4-19
4-20
4-22
4-22
4-23
4-24
4-25
4-26
4-30
4-31
4-32
4-34
4-37
4-41

.5-3

.5-3

.5-4

.5-4
• 5-4
.5-4
.5-5
.5-7
.5-8
.5-9
5-10
5-11
5-12
5-13
5-13

Implementation of COM and COMO States. •
Example of Computable Queues • • •
Implementation of Wait States. • • •
Implementation of CEF State. • • •
Summary of Scheduling States • • • •
Process Data Structures Related to Scheduling.
Saving and Restoring CPU Registers • • ••

THE SCHEDULER (SCHED.MAR).
BOOSTING SOFTWARE PRIORITY OF NORMAL PROCESSES •

Example of Process Scheduling. •
IMPLEMENTATION OF PROCESS STATE CHANGES. • •

Report System Event Component (RSE.MAR). •
STEPS AT QUANTUM END • • • •

Real-Time Process. •
Normal Process • • • • •
Automatic Working Set Adjustment • •
Rules for Working Set Adjustment ••
Example of Working Set Size Variation.
Forcing Processes to Quantum End •

SOFTWARE PRIORITY LEVELS OF PROCESSES.
SUMMARY.

6 PROCESS CREATION AND DELETION

INTRODUCTION •
OBJECTIVES •
RESOURCES.

Reading.
Source Modules •

TOPICS • •
PROCESS CREATION •

•

•

•

•
•

Creation of PCB, JIB, and PQB.
Relationships Between PCBs and JIB •
PCB Vector •
PID and PCB, Sequence Vectors.
Process IDs. •
Swapper's Role in Process Creation •
PROCSTRT's Role in Process Creation.

TYPES OF PROCESSES •
The LOGINOUT Image •

INITIATING JOBS.
• Initiating an Interactive Job.

Initiating Job using $SUBMIT •
Initiating Job Through Card Reader •

PROCESS DELETION •
Process Deletion Sequence. •

SUMMARY.

vii

•
•

•

•

•
•

•
•

•

•
•

•

•

•
•

•
•

•

•
•

•

•
•

•
• •

• •
•

•

•

•
•

•

•

•

•
•
•

•
•

•
•

•

•

•

5-14
5-15
5-16
5-17
5-18
5--19
5-20
5-21
5-23
5-24
5-29
5-31
5-32
5-32
5-32
5-33
5-35
5-36
5-37
5-38
5-39

.6-3

.6-3

.6-4

.6-4

.6-4

.6-5

.6-7

.6-8

.6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-17
6-18
6-18
6-19
6-20
6-21
6-22
6-23

7 SYSTEM INITIALIZATION AND SHUTDOWN

INTRODUCTION . • .7-3
OBJECTIVES • • • • .7-3
RESOURCES. • • • • .7-4

Reading. • • • • • • .7-4
Source Modules • • • .7-4

TOPICS • .7-5
VAX-11/780, 11/750, 11/730 CONSOLE DIFFERENCES • • • .7-7

780 and 730. • • • • • .7-7
750. • • • • .7-7

SYSTEM INITIALIZATION. • • • • • • 7-8
SYSTEM INITIALIZATION SEQUENCE • • • 7-9
INITIALIZATION PROGRAMS. • • • • 7-10
PHYSICAL MEMORY DURING INITIALIZATION. • • • • 7-12
PHYSICAL MEMORY LAYOUT AFTER SYSBOOT ENDS. • • • • • 7-13
TURNING ON MEMORY MANAGEMENT • • 7-14
SYSINIT. • • • • • • 7-16
START-UP . • • • • 7-17

Start-Up Process • • • 7-17
STARTUP.COM. • • 7-17
SYSTARTUP.COM. • 7-17
SYSBOOT AND SYSTEM PARAMETERS. • • • • 7-18
SYSGEN AND SYSTEM PARAMETERS • • • • • • • 7-19
VAX-11/780 PROCESSOR . • • • • 7-20
VAX-11/750 PROCESSOR • • • • • • • • • • • 7-21
VAX-11/730 PROCESSOR • • • • • • 7-22
VAX FRONT PANELS • • • • • • • • • • 7-23
SHUTDOWN OPERATIONS. • • • • • • 7-25
SHUTDOWN PROCEDURES. • • • • • • • • • • • 7-26
AUTORESTARTING THE SYSTEM. • • • • • • 7-27
REQUIREMENTS FOR RECOVERY AFTER POWER-FAIL . • • • 7-28
SUMMARY. • • • • • • • • • 7-20

8 USING THE LINKER

INTRODUCTION . • • • • • • .8-3
OBJECTIVES • • • • • • • • • • .8-3
RESOURCES. • • • • • • • • .8-3

1 Linking Object Modules to Form an Image. • • .8-5
1.1 Using the LINK Command . • • • • • • • • .8-5
1. 2 Program Sections • • • • • • • • • • .8-6
1.3 Linker Clusters. • • • • • .8-7
1.4 Image Sections • • • • • • • • • 8-10

2 Mapping an Image to the Virtual Address Space
of a Process . • • • • • • • • • • • 8-11

2.1 Linker Assigns Virtual Addresses • • • • 8-11
2.2 Image Activator Maps Image to Virtual Address Space. 8-13

3 Creating and Reading a Linker Map. • • 8-15
3.1 Creating a Linker Map. • • • • • • • • • • • • 8-15
3.2 Using a Linker Map to Debug Run-Time Errors. • • 8-15

viii

Linker Options Files • • • • • • • • • •
Creating and Using Linker Options Files.

. . . . • 8-16 . . • 8-17
4

4.1
4.2
4.3

Linker Options Records • • • • • • • • • • • • • • • • 8-18
Using the Cluster Option to Create
More Efficient Images. • • • • • • • • • • • • • • 8-18

EXERCISES

TESTS

FIGURES
1 Invoking System Code • • • • • • • • • • • • • • • • •• 1-10
2 Two Types of Priority. • • • • • • • • • • • • • 1-13
3 Example of Interrupt Servicing • • • • • • • • • • • 1-14
4 Access Modes and Components. • • • ••••••• 1-16
5 Location of Code and Data In Virtual Address Space ••• 1-17
6 Entry Paths into VMS Kernel. • • • • • • • • • • • • • • 1-18
7 Three Types of System Components • • • • • • • • 1-20
8 Hardware Clock Interrupt • • • • • • • • • • • • 1-21
9 Periodic Check for Device Timeout. • •••••••• 1-22
10 Periodic Wake of Swapper, Error Logger ••••••• 1-23
11 System Event Reporting • • • • • • • • • • • • • • • 1-24
12 Page Fault • 1-25
13 Data Transfer Using RMS. • • • • • • • • • • • • 1-26
14 ODS-2 File Manipulation Using an ACP • • • • • • • • 1-27
15 File Manipulation Using an ACP • • • • • • • •• 1-28
16 Data Transfer Using $QIO • • • • • • • • • • • • • • • • 1-29
17 $QIO Sequence of Events. • • • • • • • • • • •••• 1-30
18 OPCOM, Error Logger. • • •••••••••••••• 1-31
19 Print Jobs • 1-32
20 Batch Jobs • • • • • • • • • • • • • • • • • • • 1-33
21 Terminal Input • • • • • • • • • • • • • • • • • • • 1-34
22 Card Reader Input. • • • • • • • • • • • • • •• 1-35
23 DECnet Remote File Access ••• ~ .•••••••••••• 1-38
24 DECnet Protocol Layers • • • • • • • • • • • • • 1-41
25 DECnet Task-to-Task Communication. • • • • • • • • • • • 1-42
26 Performing Set Host Ope.ration. • • • • • • • • • • • • • 1-44

1 Process Data Structures. • • • • • • •••••••• 2-10
2 Software Process Control Block (PCB) • • • • • • 2-11
3 Process Header (PHD) •••••••••••••••••• 2-12
4 Hardware Process Control Block • • • • • • • • • • • • • 2-13
5 Job Information Block (JIB) ••••••••••••••• 2-15
6 Virtual Address Space. • • • • • • • • • • • • • • • • • 2-16
7 SO Virtual Address Space - Low Addresses •••••••• 2-17
8 SO Virtual Address Space - High Addresses. • • • • • • • 2-18
9 PO Virtual Address Space • • • • • • • • • • • • • • 2-19
10 Pl Virtual Address Space - High Addresses. • • • • • 2-20
11 Pl Virtual Address Space - Low Addresses • • • • • • 2-21

ix

1 Processor Status Word. • .3-8
2 Processor Status Longword (PSL). • • .3-9
3 Hardware Context . • 3-10
4 Hardware Interrupts and the SCB. • • 3-11
5 Software Interrupts and the SCB. 3-13
6 Fork Queue • • • • • • • 3-15
7 Software Interrupt Requests. 3-16
8 Raising IPL to SYNCH . • 3-19
9 Timer Queue Element. • • • 3-20
10 Clocks and Timer Services. • • •. 3-21
11 A Mutex. • • 3-24
12 AST Queue Off the Software PCB • 3-26
13 AST Delivery Order . • • • 3-27
14 AST Delivery Sequence. • • 3-28
15 Relationships in the Lock Database • • 3-31
16 Relationships Between Locks and Sub locks . 3-32
17 Exceptions and the SCB . • • 3-33
18 Exception and Interrupt Dispatching. 3-34
19 Condition Handler Argument List. • • 3-36
20 Access Mode Transitions. • • 3-38
21 Stack After CHMx Exception . 3-39
22 Path to System Service . 3-41
23 Return from System Service • • • • 3-42
24 Nonprivileged System Service • • 3-43
25 Path to RMS. 3-44
26 Return from RMS. • • • 3-45
27 Path to User-Written System Service (Part 1) • 3-46
28 Path to User-Written System Service (Part 2) 3-47
29 Return from User-Written System Service. • • 3-48
30 Two Dispatchers. • • • • 3-49
31 Paged Dynamic Memory . 3-50
32 Allocating Nonpaged Pool • • • 3-51

1 Stack After Access Violation Bugcheck. • 4-22
2 Stack After Page Fault .Above IPL-2 • • • 4-23
3 Stapk After Reserved Operand Fault • • • •c• • 4-24
4 Stack After Machine Check in Kernel Mode . • • 4-25
5 Bugcheck Flow of Control . • • 4-37

1 Process States • • • • • • • • .5-7
2 Process Wait States. • • • • • • .5-8
3 Ways to Leave Current State. • .5-9
4 Ways to Become Computable (Inswapped). 5-10
5 Inswapped to Outswapped Transitions. • • • 5-11
6 Ways to Become Computable (Outswapped) 5-12
7 A State Implemented by a Queue . • • • • • 5-13
8 Implementation of COM and COMO States. • • • 5-14
9 Example of .Computable Queues • • • • • • • 5-15
10 Wait State Listhead. • • • • 5-16

x

11 Implementation of Wait States. • • • • • • • • • • • • • 5-16
12 Implementation of CEF State. • • • • • • • • • • • • 5-17
13 Scheduling Fields in Software PCB •••••••••••• 5-19
14 Saving and Restoring CPU Registers • • • • • • ••• 5-20
15 Scheduling Example Symbols • • • • • • • • • • • • • • • 5-24
16 Example of Process Scheduling - Part 1 • • • • • 5-25
17 Example of Process Scheduling - Part 2 • • • • • • • • • 5-26
18 Example of Process Scheduling - Part 3 • • • • • • • 5-27
19 Example of Process Scheduling - Part 4 ••••••••• 5-28
20 Interaction of Scheduling Components • • • • • • • • • • 5-30
21 Automatic Working Set Adjustment • • • • • • • • • • • • 5-34
22 WSSIZE Variation Over Time • • • • • • • • • • • 5-36
23 Use of the IOTA System Parameter • • • • • • • • • • 5-37

1 Creation of PCB, JIB and PQB ••••••••••••••• 6-8
2 Relationships Between PCBs and JIB • • •••••••• 6-9
3 PCB Vector • 6-10
4 PID and PCB, Sequence Vectors. • •••••••••• 6-11
5 Swapper's Role in Process Creation ••••••••••• 6-13
6 PROCSTRT's Role in Process Creation. • ••••••• 6-14
7 Initiating an Interactive Job. • • • • • • • • • • • 6-18
8 Initiating Job Using $SUBMIT • • • • • ••••••• 6-19
9 Initiating Job Through Card Reader ••••••••••• 6-20
10 Process Deletion • 6-22

1 System Initialization. • • • • • • • • • • • • • • •• 7-8
2 System Initialization Sequence •••••••••••••• 7-9
3 Physical Memory During Initialization. • • • • • • • • • 7-12
4 Physical Memory After SYS BOOT. • • • • • • • • • • • 7-13
5 Turning on Memory Management • • • • • • • • • • • • 7-14
6 SYSBOOT and System Parameters. • • • • • • • • • • • • • 7-18
7 SYSGEN and System Parameters • • • • • • • • • • •••• 7-19
8 VAX-11/780 Processor • • • • • • • • • • • • • • • • •• 7-20
9 VAX-11/750 Processor • • • • • • • • • • • • • • • • 7-21
10 VAX-11/730 Processor.. • • • • • • • ••••• 7-22
11 VAX Front Panels • • • • • • • • • • • • 7-23
12 Autorestarting the System. • • • • • • • • • • • • • 7-25

1 Organization of Source Files into Program Sections • .8-6
2 Organization of Input Files into Clusters. • • • • • • • • 8-8
3 Routines for Transaction Processing Application •••••• 8-8
4 Placement of Program Sections in Clusters ••••••••• 8-9
5 Organization of PSECTS into Image Sections • • ••••• 8-11
6 Mapping an Image into Process Virtual Address Space. • • 8-14
7 Clustering Related Code in an Executable Image • • • • • 8-19

1
2

Differences Between Interrupts and Exceptions.
Summary of System Components and Functions • •

xi

TABLES
. . • • • 1-11 . . • • • 1-19

1 Function of Pl Space • • • • • • • • • • • • • • • • • • 2-22
2 SYSGEN Parameters Relevant to Process Structure. • ••• 2-23

1 Keeping Track of CPU, Process State. • • • •••••• 3-7
2 Hardware Interrupts and IPL. • • • • • • • • • • • • • • 3-12
3 Software Interrupts and IPL. • • • • • • • • • • • • 3-14
4 Blocking Interrupts ••••••••••••••••••• 3-17
5 Summary of System Synchronization Tools ••••••••• 3-22
6 Process Synchronization Mechanisms • • • • • • • • • • • 3-23
7 Rules for Selection of ASTs. • • • • • • • • • • • • • • 3-28
8 Data Structures Supporting the Lock Manager. • • • • • • 3-30
9 Executing Protected Code • • • • • • • • • • • • • • • • 3-37
10 SYSGEN Parameters for Nonpaged Pool ••••••••••• 3-52
11 Function and Implementation of System Mechanisms • • • • 3-54
12 SYSGEN Parameters Related to System Mechanisms • • ••• 3-56
13 Privileged Mask Locations •••••••••••••••• 3-60

1 Environment vs. Debugging Tools. • • • • • • • • • • • • • 4-5
2 Examining Crash Dump or Current System •••••••••• 4-7
3 SDA Functions and Commands •••••••••••••••• 4-8
4 SDA Commands Used to Display Information • • • •••• 4-9
5 Symbols and Operators. • • • • • • • • • • • • • • • • • 4-10
6 Common Command Usage • • • • • • • • • • • • • • • • • • 4-10
7 Sample BUGCHECKS • 4-20
8 Comparison of DELTA with XDELTA ••••••••••••• 4-30
9 DELTA and XDELTA Functions and Commands. • • • • • • • • 4-34
10 PATCH Commands • 4-41

1 Initial Conditions for Scheduling Example •••••••• 5-24
2 Operating System Code for Scheduling Functions • • • • • 5-29
3 Reasons for Working Set Size Variations. • • • ••••• 5-36
4 Software Priority Levels of Processes on VMS • • • • 5-38
5 SYSGEN Parameters Relevant to Scheduling • • • • • • • • 5-39

1 Steps in Process Creation and Deletion •••••••••• 6-7
2 Three Contexts Used in Process Creation •••••••••• 6-7
3 Routines for Manipulating P!Ds • • • • • • • • • • • • • 6-12
4 Types of Processes • • • • • • • • • • • • • • • • • • • 6-15
5 PCB Fields Defining Process Types •••••••••••• 6-16
6 Restrictions on Process Creation • • • • • • • • • • • • 6-16
7 Steps in Process Creation and Deletion • • • • • • • • • 6-23
8 SYSGEN Parameters Relating to Process Creation

and Deletion • 6-23

1 Initialization Programs ••••••••••••••
2 Switches on the VAX-11/780, /730, /750 ••••••
3 Shutdown Operations. • • • • • • • • • • • • • • •
4 Shutdown Procedures. • • • • • • • • • • • • • • •

xii

• .
• •
.. •
• •

• 7-10
• 7-24
• 7-25
• 7-26

1 Commonly Used Qualifiers for the LINK Command ••••••• 8-5
2 File Qualifiers Commonly Used with the LINK Command •••• 8-5
3 ·PSECT Attributes ••••••••••••••••••••• 8-6

EXAMPLES
1 Sample SHOW SYSTEM Output ••••••••• •• 1-8

1 IPL Control Macros • • • • • • • • • • • • • • • • • • • 3-57
2 Argument Probing Macros ••••••••••••••••• 3-58
3 Privilege Checking Macros •••••••••••••••• 3-59

1 Examining an Active System • • • • • • • • • • • •• 4-11
2 Sample Console Output After Bugcheck • • • • • • • • • • 4-21
3 Sample Crash Dump Analysis • • • • • • • • • • • 4-26
4 The CHMK Program • 4-33

1 The Scheduler (SCHED.MAR) •• • • 5-21

xiii

Student Guide

STUDENT GUIDE

INTRODUCTION
The VAX/VMS Operating System Internals course is intended for

the student who requires an extensive understanding of the
components, structures, and mechanisms contained in the VAX/VMS
operating system. It is also an aid for the student who will go
on to examine and analyze VAX/VMS source code.

This course provides a discussion of the interrelationships
among the logic or code, the system data structures, and the
communication/synchronization techniques used in major sections of_
the operating system.

Technical background for selected system
application programmer topics is also provided.
information include:

management and
Examples of this

• The implications of altering selected system parameter
values

• The implications of granting privileges, quotas, and
priorities

• How selected system services perform requested actions.

Information is provided to assist in subsequent system-related
activities such as:

• Writing privileged utilities or programs that access
protected data structures

• Using system tools (for example, the system map, the
system dump analyzer, and the MONITOR program) to examine
a running system or a system crash.

This course concentrates on the software components included
in (and the data structures defined by) the linked system image.
A$sociated system processes, utilities, and other programs are
discussed in much less detail.

SG-3

STUDENT GUIDE

GOALS

• Describe the contents, use, and interrelationship of
selected VAX/VMS components (job controller, ancillary
control processes, symbionts), data structures (SCB, PCB,
JIB, PHO, Pl space), and mechanisms (synchronization
techniques, change mode dispatching, exceptions and
interrupts).

• Describe and differentiate system context an~ process
context.

• Discuss programming considerations and system management
alternatives in such problems as:

Assigning priorities in a multiprocess application
Controlling paging and swapping behavior for a process
or an entire system
Writing and installing a site-specific system service

• use system-supplied debugging tools
example, SDA, XDELTA) to examine
observe a running system.

and utilities (for
crash dumps and to

• Describe the data structures and software components
involved when a process is created or deleted, an image is
activated and rundown, and the operating system is
initialized.

• Describe how the following interrupt service routines are
implemented:

AST delivery
Scheduling
Hardware clock
Software timers

• Briefly describe the components of the I/O system,
including system services, RMS, device drivers and XQPs.

• Briefly describe how RMS processes I/O requests, including
the user-specified and internal data structures involved.

• Describe certain additional VMS mechanisms used on a VAX
system in a cluster (for example, synchronization and
communication mechanisms).

SG-4

STUDENT GUIDE

NON-GOALS

• Writing device drivers (see the VAX/VMS Device Driver
course)

• Writing ancillary control processes, ACPs (see the VAX/VMS
Device Driver course)

• Comprehensive understanding of RMS internals

• DECnet internals (see the DECnet courses)

• Layered product internals

• Command language interpreter internals

• System management of a VAXcluster

PREREQUISITES

• Ability to program in at least one VAX native language.
This may be obtained through language programming
experience and completion of an appropriate language
programming course (for example, Assembly Language
Programming in VAX-11 MACRO). In addition, completion of
the Introduction to VAX-11 Concepts course is recommended.

• Ability to read and comprehend programs written in VAX-11
MACRO is required. In addition, ability to program in
VAX-11 MACRO or BLISS is recommended.

• Completion of one of the Utilizing VMS Features courses.

RESOURCES
1. VAX/VMS Internals and Data Structures

2. VAX/VMS System Dump Analyzer Reference Manual

3. VMS Internals I and II source Listings

SG-5

STUDENT GUIDE

COURSE MAP

SG-6

STUDENT GUIDE

COURSE OUTLINE

I. System Components

A. How VMS Implements the Functions of an Operating System

B. How and When Operating System Code is Invoked

c. Interrupts and Priority Levels

D. Location of Code and Data in Virtual Address Space

E. Examples of Flows for:

1. Hardware clock interrupt
2. System event completion
3. Page fault
4. RMS request for I/O
5. $QIO request for I/O

F. Examples of System Processes

1. Operator Communication (OPCOM)
2. Error logger (ERRFMT)
3. Job controller (JOB CONTROL)
4. Symbionts (SYMBIONT n)

G. Software Components of DECnet-VAX

SG-7

STUDENT GUIDE

II. The Process

A. Process vs. System Context

B. Process Data Structures Overview

1. Software context information
2. Hardware context information

c. Virtual Address Space Overview

1. SO space (operating system code and data)
2. PO space (user image code and data)
3. Pl space (command language interpreter, process data)

D. SYSGEN Parameters Related to Process Characteristics

III. System Mechanisms

A. Hardware Register and Instruction Set Support

B. Synchronizing System Events

1. Hardware Interrupts
2. Software Interrupts

Example: Fork Processing
3. Requesting Interrupts
4. Changing IPL
5. The Timer Queue and System Clocks

c. Process Synchronization Mechanisms

1. Mutual Exclusion Semaphores (MUTEXes)
2. Asynchronous System Traps (ASTs)
3. VAX/VMS Lock Manager

D. Exceptions and Condition Handling

E. Executing Protected Code

1. Change Mode Dispatching
2. System Service Dispatching

F. Miscellaneous Mechanisms

1. System and Process Dynamic Memory (Pool)

G. SYSGEN Parameters Controlling System Resources

SG-8

STUDENT GUIDE

IV. Debugging Tools

A. VAX/VMS Debugging Tools

B. The System Dump Analyzer (SDA)

1. Uses
2. Requirements
3. Commands

c. The System Map File

D. Crash Dumps and Bugchecks

1. How bugchecks are generated
2. Sample stacks after bugchecks
3. Sample crash dump analysis

E. The DELTA and XDELTA Debuggers

v. Scheduling

A. Process States

1. What they are (current, computable, wait)
2. How they are defined
3. How they are related

B. How Process States are Implemented in Data Structures

1. Queues
2. Process data structures

C. The Scheduler (SCHED.MAR)

D. Boosting Software Priority of Normal Processes

E. Operating System Code that Implements Process
Changes

1. Context switch (SCHED.MAR)
2. Result of system event (RSE.MAR)

F. Steps at Quantum End

1. Automatic working set adjustment

G. Software Priority Levels of System Processes

SG-9

State

STUDENT GUIDE

VI. Process Creation and Deletion

A. Process Creation

1. Roles of operating system programs
2. Creation of process data structures

B. Types of Processes

c. Initiating Jobs

1. Interactive
2. Batch

D. Process Deletion

E. SYSGEN Parameters Relating to Process
Deletion

VII. System Initialization and Shutdown

A. System Initialization Sequence

B. Function of initialization programs

C. How memory is structured and loaded

D. Start-up command procedures

E. How hardware
initialization

differences between

F. Shutdown procedu~es and their functions

G. Auto-restart sequence

H. Power-fail recovery

SG-10

Creation and

CPUs affect

STUDENT GUIDE

VIII. System Processes

A. For selected VAX/VMS processes:

1. Job controller
2. Symbionts
3. Error Logger
4. OPCOM

We will be describing their:

1. Primary Functions
2. Implementation
3. Methods of communication with other VMS components
4. Basic internal structure (on a module basis)

IX. Forming, Activating and Terminating Images

A. Forming an Image

1. PSECTs in source/object modules
2. Format and use of the image header

B. Image Activation and Start-Up

1. Mapping virtual address space
2. Overview of related data structures
3. Image start-up (SYS$IMGSTA)
4. Installing Known Files

c. Image Exit and Rundown

1. $EXIT system service
2. Termination Handlers
3. DCL Sequence

D. SYSGEN parameters relating to image formation, activation
and termination

SG-11

STUDENT GUIDE

x. Paging

A. Basic Virtual Addressing

1. Virtual and physical memory
2. Page table mapping

B. Overview of Page Fault Handling

1. Resolving page faults
2. Data structures in the process header

c. More on Paging

1. Free and modified page lists
2. The paging file
3. Cataloging pageable memory (the PFN database)

D. Global Paging Data Structures

E. Summary of the Pager

XI. Swapping

A. Comparison of Paging and Swapping

B. Overview of the Swapper, the System-Wide Memory Manager

C. Maintaining the Free Page Count

1. Write Modified Pages
2. Shrink Working Sets
3. Outswap Processes

D. Waking the System-Wide Memory Manager

E. Outswapping a Process

1. Swap files
2. Scatter/Gather
3. Partial Outswaps

F. Inswapping a Process

SG-12

STUDENT GUIDE

XII. I/O Concepts and Flow

A. Overview of I/O components and flow

B. Components of I/O system

1. RMS
2. I/O system services
3. XQPs, ACPs
4. Device drivers

c. The I/O database

1. Driver tables
2. !RPS
3. Control blocks

D. Methods of data transfer

XIII. RMS Implementation and Structure

A. User-specified data structures (FABs, RABs, and so on)

B. RMS Internal Data Structures

1. Process I/O Control Page (for example, default values,
I/O segment area)

2. File-Oriented and Record-Oriented Data Structures
(IFAB, !RAB, BufDescBlk, I/O Buffer)

C. RMS Processing

1. RMS Dispatching
2. RMS routines and data structures
3. ·Examples of flows of some common operations

SG-13

STUDENT GUIDE

XIV. VMS in a Multiprocessing Environment

A. Loosely coupled processors

B. Tightly coupled processors (11/782)

1. MP.EXE structures
2. Scheduling differences
3. Startup /shutdown

c. Clustered processors

xv. VMS in a VAXcluster Environment

A. Cluster synchronization and communication mechanisms

1. Distributed lock manager
2. Distributed job controller
3. Interprocessor communication

B. System initialization and shutdown differences

1. VMB, INIT and SYSINIT differences
2. Joining a cluster
3. Leaving a cluster

c. SYSGEN parameters relevant to the VAXcluster environment

D. Relevant system operations

SG-14

System Components

SYSTEM COMPONENTS

INTRODUCTION
This module introduces the major software components supplied

in or with the VAX/VMS operating system. As an overview of the
operating structure, it gives a review of facilities introduced in
previous VAX/VMS courses. New terms and logic components are
introduced, but detailed discussion of them is generally deferred
until later modules of this course.

This module does not provide a complete catalog of all
facilities, modules, and programs in the operating system. It
provides an understanding of the relationships and coordination
among the various software components.

Software components can be classified by several attributes,
including:

• Implementation form (service routine, procedure, image, or
process)

• "Closeness" to the linked system image (part of SYS.EXE,
linked with system symbol table, privileged known ima9e,
and so forth)

• Access mode (kernel, executive, supervisor, or user)

• Address region (program, control or system)

• Memory-resident characteristics (paged, swapped or shared)

1-3

SYSTEM COMPONENTS

For each selected VAX/VMS
describe:

1. Its primary function

software

OBJECTIVES
component, briefly

2. Its implementation (process,
procedure; in which address
access modes it uses)

service routine,
region it resides;

or
what

3. The method or
communication

Reading

methods by which it accomplishes

RESOURCES

• VAX/VMS Internals and Data Structures, System Overview

Additional Suggested Reading

• VAX/VMS Internals and Data Structures,
System Services, Interactive and
Miscellaneous System Services.

Source Modules

Facility Name

SYS
DCL,CLIUTL
DEBUG
RTL
RMS
FllA,FllX,MTAACP
REM,NETACP
JOBCTL,INPSMB,PRTSMB
OP COM
ERRFMT

. 1-4

Chapters on
Batch Jobs,

I/O
and

SYSTEM COMPONENTS

TOPICS

I. How VMS Implements the Functions of an Operating System

II. How and When Operating System Code Is Invoked

III. Interrupts and Priority Levels

IV.

v.

Location of Code and Data in Virtual Address~~e

Examples of Flows for: 1 ~~,~J:>
A. Hardware clock interrupt ~¥-'1\'J

B. System event completion ictU, ' g...-9J'Y.t0';;)

c. Page fault ~
D. RMS request for I/O ~~ \!
E. $QIO request for I/O r

VI. Examples of System Processes

A. Operator Communication (OPCOM)

B. Error logger (ERRFMT)

C. Job controller (JOB_CONTROL)

D. Symbionts (SYMBIONT_n)

VII. Software Components of DECnet-VAX

1-5

SYSTEM COMPONENTS

THREE MAIN PARTS OF VMS

Scheduling and Process Control

Functions

• Assign processor to computable process with
priority

• Attend to process state transitions
• Facilitate synchronization of processes
• Perform checks and actions at timed intervals

Code and Data

Scheduler interrupt service routine

highest

•
• •

Report system event code (_!Pt..'3) ·
Hardware clock and software timer interrupt service
routines J:Pi, 'Z.2..dt. 2.'f 1HL HATJvJe ~ {!PL 7 ./,,, S/:wG.~

• System services ($WAKE)1r- f

Memory Management

Functions

• Translate virtual addresses to physical addresses
• Distribute physical memory among processes
• Protect process information from unauthorized access
• Allow selective sharing of information between processes

Code and Data

• Pager fault service routine and swapper process
• PFN database, page tables
• System services ($CRETVA)

1/0 Subsystem

Functions

• Read/write devices on behalf of software requests
• Service interrupts from devices
• Log errors and device timeouts

Code and Data

• Device drivers, device-independent routines
• I/O data structures
• System Services ($QIO)

1-7

SYSTEM COMPONENTS

The Parts of the Operating System

VAX/VMS 'J4. 0 on node COMICS 26-SEF'-1984 13:34:35+10 UP time 0 11:13:52
Pid Process Name State F' T' i IIO CPU Pase fl ts F'h+M~~ITI

00000080 NULL COM 0 0 0 09:10:38."72 0 0
00000081 SWAPPER HIB 16 0 0 00:01:08.46 0 0
00000084 ERRFMT HIB 8 834 0 00:00:07.34 67 88
00000085 OPCOM LEF 8 133 0 oo:oo:oi.62 6r)c:-.... \J 58
00000086 JOB_CONTROL HIB 9 4110 0 00:00:45.73 155 299
00000088 SYMBIONL0001 HIB 6 1161 0 00!01:19.87 7514 45
00000109 SOUZA LEF 7 87"/7 0 oo:oo:so.47 14077 445
0000008B NET ACF' HIB 10 3~~/'5 0 00:01:25.81 4121 1500
0000008C EVL HIB 6 32 0 00:00:00.73 265 44 N
0000008D REMACF' HIB 9 111 0 00:00:00.ss .. , r)

I.._ 41
0000018F HANDEL LEF 7 2631 0 00:00:31.96 14528 150
00000110 BACH LEF 6 15106 0 00:01:58.01 2op4 400
00000191 STRAVINSKY LEF 9 6689 0 00:01:14.64 16548 372
00000096 OPERATOR LEF 7 122767 0 00!19!34.03 6974 499
00000197 CHOPIN LEF 4 4140 0 00:00:43.43 9015 129
00000218 MARSH LEF 4 17492 0 00:04:25.90 59864 150
0000019E BATCH-509 COM 4 1076 0 00:00:16.36 7318 312 B
000001AA SCOTT _KEY LEF 4 2788 0 00:00:48.76 11152 127
000001211 HUNT CUR 4 17262 0 00:02:22.36 23639 D'S
0000013A _ TTA3: LEF 4 1'765 0 00:00:32.21 9565 l.38

Example 1 Sample SHOW SYSTEM Output

• List of processes on the system

• Images running in process context

• Only the "upper layer"

• Notice lack of:

Scheduling program

I/O handling programs

System service code

1-8

SYSTEM COMPONENTS

Functions Handled "Below" User Level

• Scheduling of processes for CPU time

Highest-priority process

• Memory management within a process

• System services

$CREPRC
$GETxxx
$CREMBX

• Record Management Services (RMS)

OPEN
GET, PUT
CLOSE

• I/O Code to handle peripherals

• Time Management

• Basic resource management

1-9

SYSTEM COMPONENTS

INVOKING SYSTEM CODE

EVENT -•t TABLE -•t EXECUTED CODE

PAGE
FAULT

~q/ INTERRUPT

}-~\..~
II

111

Figure 1

•
•
•

POINTER TO
PAGE FAULT

.... -
CODE

POINTER TO
SCHEDULER ~ -CODE

•
•
•

Invoking System Code

• VAX/VMS driven by interrupts and exceptions

PAGE
FAULT
CO,DE
~\

SCHEDULER
CODE

it1

• On interrupt or exception, hardware vectors to correct
code

• Example, page fault

Page fault occurs
Hardware vectors through table
Page fault code executes

1-10

SYSTEM COMPONENTS

Interrupts vs. Exceptions

Table 1 Differences Bet,een Interrupts and Exceptions

I Exceptions Interrupts

Asynchron-0us to the execution
of a process

Serviced on the system-wide
interrupt stack in system-
wide context

Change the interrupt
priority level to that
of the interrupting device

Cannot be disabled, although
lower-priority interrupts
are queued behind higher-
pr ior i ty interrupts

{

(

Caused by process instruction
execution

Serviced on the process local
stack in process context

(

Does not alter
priority level

f
Some arithmetic traps can
be disabled

Jibl!Jr-b~

(
Mt- l<e~ra/Je
ti~ J1e~t 1'wt~

(D:-1by<f)

/11~-t /lec.MJel"~/,/t!

1-11

SYSTEM COMPONENTS

HARDWARE MAINTAINED PRIORITY LEVELS

• Processor is always operating at one of 32 possible
hardware-maintained priority levels (O - 31).

• Operating at a
interrupts at
serviced.

higher level causes
the same and lower

hardware to
levels from

block
being

• Hardware determines which code will execute after an
interrupt occurs.

• How to get into and out of different levels:

1. Interrupt

Into - Hardware requests interrupt (for example,
from a terminal). Levels 16 through 31.
Software requests interrupt (uses MTPR
instruction). Levels 0 through 15.

Out of - use REI instruction.

2. Block Interrupt

Into - Software raises priority level (uses MTPR).
Out of - Softwara lowers priority level (uses MTPR).

• These hardware-maintained priority levels are
Interrupt Priority Levels (IPLs).

1-12

called

SYSTEM COMPONENTS

Two Types of Priority

IPL
31

! requested by
hardware Hardware

Maintained
16 31

15 l Real time
process

requested by
software 16

15

1 Software 0
Maintained ~ormal

7) DfCo process

0

Figure 2 Two Types of Priority

1-13

SYSTEM COMPONENTS

Interrupt Servicing Sequence

•

•

CODE

J -

IPL

PSL

PC

PSL

. ADDRESS• ---- --

User program being executed.

PC= address of next instruction
to be executed.

PSL =general status information.

Interrupt occurs. Associated IPL
must be greater than current I PL
in PSL, else interrupt not serviced.

Hardware saves current PC and
PS L on stack.

:--;tJ< I ~11) I/>1.>3

k -s {;)<. .;; ,, ;) I1'l 5 ~

Hardware indexes into table of
service routine addresses to get
new PC, and builds new PSL.

NEW PC

SYSTEM CONTROL BLOCK

MKV84·2234

Figure 3 Example of Interrupt Servicing
(Sheet 1 of 2)

1-14

SYSTEM COMPONENTS

• NEw~~..,:~~~~--

PC l

•
REI

INTERRUPT SERV!CE
ROUTINE

CODE

Pc----1-.-.

l

Interrupt service routine executes
at new I PL.

At end, interrupt dismissed with
REI instruction (making sure old
PC and PSL are at top of stack).

REI

- Pops PC, PSL from stack . • 1_..r,...,,q)
Checks PSL /~ ~~

- Moves PC, PSL to CPU registers

- Transfers control to PC

Interrupted program continues
exectution.

MKV842235

Figure 3 Example of Interrupt Servicing
(Sheet 2 of 2)

1-15

SYSTEM COMPONENTS

ACCESS MODES AND COMPONENTS

Runtime
Library

Program
Development

Tools

RMS

1/0
SCHEDULING

MEMORY
MANAGEMENT

Figure 4 Access Modes and Components

User
Images

• Kernel of the operating system is protected from user by
several layers of access protection

• User normally accesses protected code and data through the
Command Language Interpreter (CLI), Record Management
Services (RMS), and system services

• System services - routines in operating system kernel that
may be called by the user by means of a well-defined
interface

1-16

SYSTEM COMPONENTS

LOCATION OF CODE AND DATA

Process A

NATIVE MODE IMAGE

RUN-TIME LIBRARY

DEBUGGER CODE

Process B

COMPATIBILITY
MODE IMAGE

APPLICATION MIGRATION
EXECUTIVE (NATIVE)

PER
PROCESS
ADDRESSES

PROGRAM REGION (PO)

COMMAND LANGUAGE
INTERPRETER

COMMAND LANGUAGE
INTERPRETER

DATA -- SYMBOL TABLE
CODE

DATA -- SYMBOL TABLE -­
CODE

SYSTEM
ADDRESSES

DEBUGGER DATA -­
SYMBOL TABLE

Figure 5

CONTROL REGION (P1)

SYSTEM SERVICES

RECORD MANAGEMENT SERVICES

SYSTEM REGION (SO)

Location of Code and Data in
Virtual Address Space

• Images running within processes use several different
types of software components

• P0 space (program region) - user's code and data

• Pl space (control region) - process-specific information;
stored by the operating system

• P0 space and Pl space are mapped differently for native
and compatibility mode images

• S0 space (system space) - operating
one copy shared by all processes

1~~i~
1-1 7

system code and data;

SYSTEM COMPONENTS

. Entry Paths Into VMS Kernel

External Device J Hardware Interrupts

Translation - not - Valid
Fault
(Page Fault)

,/
Device Driver
Fork Processing
Software Interrupts

.__. 1/0 Postprocessing / 11)\t ~
Software Interrupt l!' l

Rescheduling
Software Interrupt

~ AST Delivery

Hardware Clock
Interrupt

Software Timer
Interrupt

Software Interrupt

Figure 6 Entry Paths into VMS Kernel

Memory Management

• Brings virtual pages into memory

Process and Time Management

• Saves and restores context of process
• Updates system time
• Checks timer queue entries (TQES), quantum end
• Causes events to be processed

I/O Subsystem

• Reads/writes device
• Finishes I/O processing

1-18

SYSTEM COMPONENTS

Table 2 Summary of System Components and Functions

Function System Component

Assigns CPU to highest-priority 7rp
1
t.Sfl

computable process

Moves working set between disk 5~ 9r0Gt~'7
and memory J

SCHEDULER

SWAPPER (Mf ~ fllhl)

PAGER (~'"")

J:PL 3

iPL f {rIPiJ-9A/d,

Moves pages from disk to memory 5¢; ~'1{{
Updates system clock and quantum~r
field, check for servicing at

HARDWARE CLOCK ISR 'f Pl 2~2. f

intervals ero..e,)
Performs servicing at intervals~f SOFTWARE TIMER ISR !Pl 7

• Checks for quantum end
• Causes events to be posted

tY Jc;• Checks device timeout
~ i• Wakes swapper and error logger
II"'

Handles requests to/replies from p;J D~ OPCOM
operator r

Writes errors to error log file ff) Pf1&lfb ERROR LOGGER

Maintains vo~~f~ structures for Pf;!"ll«G7ANCILLARY CONTROL~~~
driver~ - ~~}~ PROCESS ~
Maintains disk and file structurepi FILES-11 XQP
for Files-llbODS-2 disks

Creates processes for print jobs,f; Pfl~~JOB CONTROLLER JIJ$c,-n,E.te
batch jobs, interactive jobs {~~)

Controls devices, service device SlfJ ~P~IVERS
interrupts, check for and report
device errors

Handles printing of files

Handles process state transitions
resulting from event completion

Yf)~RlNT SYMBIONTS [..,iPv~)
µoaUtllREPORT SYSTEM EVENT

R5E

1-19

SYSTEM COMPONENTS

THREE TYPES OF SYSTEM COMPONENTS

~fr) --
/ -~ '----- ~

\ i ___ J_O_B-CO_N_T-RO_L_L-ER--1 I OPCOM y ".f'
< ~ . ~ (;ti -...----- " I ERRFMT I /~~pv ·
04..'J·~\.f& "- "'- '--~ I SYMBIONTS I

~? '(S Jftf<W f ,c. o 'fVI

PAGER

\)'f'l. .{ t~
,__ ___ __,,,fin ~r~,.,,,a

DRIVERS I
EXCEPTION AND INTERRUPT SERVICE ROUTINES:

SCHEDULER .!PL'I

HARDWARE CLOCK.IA 21/tj I ~,c~i'Jl
t~s::3tfj~=//

SOFTWARE TIMERJPL 1 I

ROUTINES:

REPORT SYSTEM EVENT

SYSTEM SERVICES

MKV84-2236

~:t~' I(~- Figure 7 Three Types of System Components

1-20

SYSTEM COMPONENTS

INTERACTION OF VMS COMPONENTS

Hardware Clock Interrupt

Process A Process B Process C

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

1. Clock

B

Figure 8 Hardware Clock Interrupt

Updates system time and quantum field
Checks first timer queue entry

2. Timer
Checks for quantum end
Causes events to be processed

3. Report system event
Changes process state
May request scheduler interrupt

4. Scheduler
Current <----> Computable

@

CONTEXT SWITCH
REI

swapper c_.//_) ~Se,
- Inswaps computable process "'":? .j5e/? .V

5. ---------- ---~ ~/
6. Scheduled user program runs

1-21

SYSTEM COMPONENTS

Periodic Check for Device Timeout

Process A

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process B

/HARDWARE CLOCK(
I IPL 24 SOFTWARE _____ __, TIMER

CD /\ -ro ~)., _ v J r.J..~

Process C

USER
PROGRAM

CONTEXT SWITCH
REI

'---' .I\'\ {'l\'(;
Figure 9 '-I?eriodic Check for Device Timeout

I

\
'

1. Hardware clock interrupt.

2. Once every second, a timer queue entry
causes a system subroutine to execute.

This system subroutine checks for device
drivers to handle timeouts.

1-22

becomes due that

timeouts, calls

SYSTEM COMPONENTS

Periodic Wake of Swapper, Error Logger

Process A

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

SWAPPER

DEVICE
DRIVER

HARDWARE CLOCK
IPL 24

Process B

DEVICE TIMEOUT
JSB
IPL 20-23

CLOCK
INTERRUPT

SERVICE
ROUTINE

Process C

USER
PROGRAM

CONTEXT SWITCH
REI

Figure 10 Periodic Wake of Swapper, Error Logger

4. The same system subroutine can wake the swapper process
and the error logger process.

5. Scheduler interrupt is requested.

6,7. Swapper and error logger will eventually run.

1-23

SYSTEM COMPONENTS

System Event Reporting

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process A

USER
PROGRAM A

PAGER

TIMER
1/0 COMPLETION
SET EVENT FLAG
WAKE
RESUME

Process B

REPORT
SYSTEM
EVENT

Figure 11 System Event Reporting

1-24

Process C

SCHEDULER
INTERRUPT

SERVICE
ROUTINE

Page Fault

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process A

USER
PROGRAM A

SYSTEM COMPONENTS

Process B

USER
PROGRAM B

1/0 COMPLETION REPORT
SYSTEM
EVENT @

Figure 12 Page Fault

1-25

Process C

SWAPPER
CODE

SCHEDULER
INTERRUPT

SERVICE
ROUTINE

SYSTEM COMPONENTS

Data Transfer Using RMS

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process A

Figure 13 Data Transfer Using RMS

1-26

SYSTEM COMPONENTS

File ·Manipulation Using RMS

Per Process
Space

Process
Context

System
Space

Process
Context

Process A

System 0
Space

System
Context

Figure 14 ODS-2 File Manipulation Using RMS

When the ODS-2 file structure is imposed on a disk volume, the
following operations require the intervention of the extended QIO
Procedures (XQP) to interpret or manipulate the file structure.

• File open
• File close
• File extend
• File delete
• Window turn (for read or write)

1-27

SYSTEM COMPONENTS

File Manipulation Using RMS

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process A Process B

Figure 15 File Manipulation Using an ACP

Ancillary Control Processes (ACPs) help drivers implement:

• Magnetic Tape File Structure

• Network Operations

• ODS-1 On-Disk File Structure

1-28

SYSTEM COMPONENTS

Data Transfer Using $QIO

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

Process

Figure 16 Data Transfer Using $QIO

1-29

DEVICE
INTERRUPT
IPL 20-23

SYSTEM COMPONENTS

$QIO Sequence of Events

YES

YES

USER
ISSUES
$010

$010 CHECKS
DEVICE INDEPENDENT
PARAMETERS

FDT CHECKS
DEVICE DEPENDENT
PARAMETERS

RETURN WITH
ERROR MESSAGE

NO

DRIVER REQUESTS
DEVICE ACTIVITY

DEVICE INTERRUPTS
CPU IPL 20-23

INTERRUPT
SERVICE ROUTINE
IPL 20-23

DRIVER DOES
FURTHER PROCESSING
IPL 8-11

DEVICE INDEPENDENT
PROCESSING
IPL 4

AST ROUTINE
INVOKED
IPL 2

USER
CONTINUES
EXECUTING

TK-8968

Figure 17 $QIO Sequence of Events

1-30

SYSTEM COMPONENTS

EXAMPLES OF SYSTEM PROCESSES

OPCOM, Error Logger

PER PROCESS
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
PROCESS
CONTEXT

SYSTEM
SPACE
SYSTEM
CONTEXT

Process A Process B

Figure 18 OPCOM, Error Logger

OPCOM Process

Process C

El
3

ERROR
MESSAGE
BUFFER

• Handles requests to, and responses from, the system
operator

Error Logger

• Has buffers in memory in which detected errors are
recorded

• Writes to the error log file

1-31

Print Jobs

I
$PRINT A I

I
I

G) I

SYSTEM COMPONENTS

A.LIS

LINE PRINTER

©

PRINT
SYMBIONT

®

l
JOB CONTROLLER

.l.
PROCESS SYMBIONT

Figure 19 Print Jobs

1-32

Batch Jobs

$SUBMIT A

PROCESS

I
I
I
I

CD I

J_

SYSTEM COMPONENTS

A.COM

JOB CONTROLLER

Figure 20 Batch Jobs

1-33

J_

BATCH
JOB

IMAGE

©

BATCH PROCESS

SYSTEM COMPONENTS

Terminal Input

I ® I
I I IMAGE

I
($CREPRC) I I

® I ®

SERVICE ROUTINE
j_

JOB CONTROLLER
j_

PROCESS

Figure 21 Terminal Input

1-34

SYSTEM COMPONENTS

Card Reader Input

I ®
CARD I READER

DRIVER I
($CREPRC) I I

® I ®

SERVICE ROUTINE
J_

JOB CONTROLLER
J_

PROCESS

Figure 22 Card Reader Input

1-35

SYSTEM COMPONENTS

SOFTWARE COMPONENTS OF DECnet-VAX

Data Link Device Drivers

e XMDRIVER, XDDRIVER, XGDRIVER - handle synchronous DDCMP
links (DMRll, DMPll, DMF32)

e XEDRIVER - for DIGITAL Ethernet UNIBUS Adapter ('DEUNA)

e XQDRIVER - for DIGITAL Ethernet Q-bus Adapter (DEQNA)

• CNDRIVER - handles Computer Interconnect (CI)

• NWDRIVER - for X.25 (used for datalink mapping)

• Terminal drivers
protocol)

for asynchronous DECnet (DDCMP

NETDRIVER and NET ACP

• Implement routing, and End Communications Layer (ECL)

e NETDRIVER handles the time-er i tical
example, transmit or receive data).

• NETACP handles the non-time-critical
example, setting up logical link).

RMS, OAP Routines, and FAL._n

functions

functions

(for

(for

• Implement application layer for file transfer operations

RTTDRIVER, REMACP, and RTPAD

• Implement application layer for remote terminal access

Netserver

• Collection of programs used to start up a network user
process on a remote node

1-36

SYSTEM COMPONENTS

Special DECnet Components

EVL

• Event logger process - collects and filters network event
information; passes it to the correct destination

• Created at network start-up if event logging enabled

SERVER_n Process

• Process ready to handle a logical link

NCP, NML, MOM, MIRROR, NDDRIVER

• For network management

• For special functions (down-line load, up-line dump,
device loopback tests)

1-37

SYSTEM COMPONENTS

DECnet Remote File Access

LOCAL(SOURCE)NODE
USER LEVEL

1-
REMOTE(TARGET)NODE

USER LEVEL

NORMAL
USER
TASK
E.G.,

DCL COMMANDS
GET, PUT, OPEN

SOPHISTICATED
USER
TASK
E.G.,
SQIO

SASSIGN
SDASSGN

RTPAD

1 F11BXQP
I MTAACP

I
RMS

OAP

I
I
I
I
I
I
I
I
I
I

NETACP

Ill

R
E
M
A
c
p

F11BXQP
MTAACP

RMS

OAP

N
E
T
D
R
I
v
E
R

R
T
T
D
R
I v
E
R

Figure 23 DECnet Remote File Access

• User issues DCL command, such as:

FAL

TARGET
USER
TASK

PROCESS
_RT An:

TYPE NODEB"NAME PASSWORD"::DISK$: [DIRECTORY]FILENAME.TYP

• RMS detects "::" in file specification

e RMS and NETDRIVER use internal $QIOs,

• NETACP process on each node sets up data structures to
support logical link

• FAL n process issues requests to RMS on remote node

1-38

SYSTEM COMPONENTS

SUMMARY

• How VMS Implements the Functions of an Operating System

• How and When Operating System Code is Invoked

• Interrupts and Priority Levels

• Location of Code and Data in Virtual Address Space

• Examples of Flows for:

Hardware clock interrupt

System event completion

Page fault

RMS request for I/O

$QIO request for I/O

• Examples of System Processes

Operator Communication (OPCOM)

Error logger (ERRFMT)

Job controller (JOB_CONTROL)

Symbionts (SYMBIONT_n)

• Software Components of DECnet-VAX

1-39

DECnet Protocols

I ROUTING I

SYSTEM COMPONENTS

APPENDIX

ADDITIONAL DECnet-VAX INFORMATION

I DATA I User data

Handled by network
application components

Handled by NETDRIVER
and NET ACP for data
transfer via logical link

Handled by NETDRIVER
and NETACP to determine
routing

to transfer data across IDATA LINK! I DATA I Handled by data link layer

_P_R_o_T_o_c_o_L _______________ c_H_E_c_K_ physical link

MKV84·2237

Figure 24 DECnet Protocol Layers

1-41

SYSTEM COMPONENTS

DECnet Task-to-Task Communication

LOCAL(SOURCE)NODE
USER LEVEL

NORMAL
USER
TASK
E.G.,

DCL COMMANDS
GET, PUT, OPEN

SOPHISTICATED
USER
TASK
E.G.,
SQIO

SAS SIGN
SDASSGN

RTPAD

I
I
I
I
I
I
I

F11BXQP
MTAACP

OAP

I
I
I
I
I
I
I
I
I
I
I

REMOTE(TARGET)NODE
USER LEVEL

R
E
M
A
c
p

F11BXQP
MTAACP

R
T
T
D
R
I
v
E
R

TARGET
USER
TASK

PROCESS
_RT An:

Figure 25 DECnet Task-to-Task Communication

1-42

SYSTEM COMPONENTS

Transparent Task-to-Task Communication

• For example, on the source node, the user issues:

$DEF xxx NO DEB" II "USER ID PASSWORD" II":: II II "TASK=YYY" "II

and in the program:

OPEN (NAME=XXX ••.•.•.•••.•.•)

• The OPEN command is passed to RMS.

• RMS checks the translation and sets up a logical link with
the remote program YYY.

• The procedure is similar to remote file access with the
following differences:

The command procedure YYY.COM must reside on the
directory of USERID on NODEB (SYS$LOGIN).

The remote program uses the logical name SYS$NET to
accept connection.

for example, OPEN (NAME=SYS$NET ••••.••..••••.)

The two programs must cooperate. For example, when
one program issues a Read, the other issues a Write.

Nontransparent Task-to-Task Communication

• Bypass RMS and issue $QIOs directly to the NETDRIVER.

1-43

SYSTEM COMPONENTS

DECnet Performing Set Host Operation

LOCAL(SOURCE)NODE
USER LEVEL

REMOTE(TARGET)NODE
USER LEVEL

NORMAL
USER
TASK
E.G.,

DCL COMMANDS
GET, PUT, OPEN

SOPHISTICATED
USER
TASK
E.G.,
SQIO

SAS SIGN
SDASSGN

RTPAD

F11BXQP
MTAACP

~
EJ

I
I
I
I
I
I
I
I
I
I
I

F11BXQP
MTAACP

8
B

N . .------.•~·'
NETACP

D
R
I v
E
R

! !
R

R l
E .. D
M R
A I
c v
p E

R

Figure 26 Performing Set Host Operation

e $SET HOST invokes RTPAD program

TARGET
USER
TASK

PROCESS
-RT An:

• Process is created on remote system to handle requests

• Local terminal appears to be connected to remote system

1-44

The Process

THE PROCESS

INTRODUCTION
This module details a familiar part of VAX/VMS: the process.

The definition of a process is fundamental to understanding the
operating system. The process is the representation of each user
of the system. Several of the software components of the system
itself are also processes.

The process is the basic scheduling entity of VAX/VMS. A
group of one or more processes forms the basic accounting entity
of VAX/VMS: the job. Some features and resources are only
defined for each process, while others are shared among all the
processes in a job. Three major classes of attributes and
resources can define a process and the operations performed within
it.

•
•

Hardware process context (&PP..}j /Iii~"":,)
Software process context (Pce/P#O/j!6)

• Virtual address space (and associated memory management
data)

Hardware context includes the contents of the hardware
processor registers that contain perprocess values (separate from
system-wide ones). Examples of these registers include:

•
•

•

The general-purpose registers (RO through Rll)
~'"" fll'Z..

The frame pointer (FP), argument pointer (AP),
perprocess stack pointers (KSP,ESP,SSP,USP),
current stack pointer (SP)

J(t'\
The processor status longword (PSL) and the
counter (PC)

the four
and the

program

• Hardware registers that define the state of the AST queue
and the locations and sizes of the process page tables.

p~$- A?1L.VL
:t. fl j(.i'~1'

I ~:i~
t Vf'f?1 .

i-no f\711~~

2-3

THE PROCESS

Software context defines the resources and attributes used by
the VAX/VMS software but not used by the VAX-11 hardware.
Examples of this type of information include:

• Resource quotas, privileges, and accumulated accounting
values

• Scheduling or software priority

• Link fields to operating system data structures and queues

• Identification fields such as user name, UIC, process
name, and process ID.

Virtual address space includes the mapping information for,
and the contents of, the perprocess address regions, the program
(or PO) region, and the control (or Pl) region. In addition, all
processes implicitly share the system region. Software executing
in any of the three address regions, but using the hardware and
software context of a process is said to be "executing in the
context of the process." Software components using only system
address space and the interrupt stack execute in system context
(outside process context). Examples include interrupt service
routines and device drivers.

OBJECTIVES
1. Describe the similarities and differences of

context and process context.
system

2. Using the System Dump Analyzer on either a crash dump file
or the current system, examine and interpret the software
process control block, process header, job information
block, and control region of a specified process.

3. Describe how the various process data structures are used.

4.

When the structures are modified

Which structures are reset to default or initial
values

Discuss the SYSGEN
characteristics,
parameters.

parameters that
and the effects

2-4

relate to process
of altering those

THE PROCESS

RESOURCES
Reading

• VAX/VMS Internals and Data Structures, system overview,
chapters on use of listing and map files, and naming
conventions.

Additional Suggested Reading

• VAX/VMS Internals and Data Structures, chapters on
executive data areas, data structure definitions, and size
of system virtual address space.

• VAX/VMS System Dump Analyzer Reference Manual

Source Modules

Facility Name

SYS

Module Name

SHELL
SYSIMGACT
SYSBOOT
SCHED
PAGEFAULT
SWAPPER

SYS.MAP

2-5

THE PROCESS

TOPICS

I. Process vs. System Context

II. Process Data Structures Overview

A. Software context information

B. Hardware context information

III. Virtual Address Space Overview

A. S0 space {operating system code and data)

B. P0 space (user image code and data)

c. Pl space (command language interpreter, process data)

IV. SYSGEN Parameters Related to Process Characteristics

2-7

THE PROCESS

PROCESS VS. SYSTEM CONTEXT

Process Context

• Software Context, including

Privileges

Quotas

Scheduling priority

IDs (user name, UIC, Process ID)

• Hardware Context, including

General Purpose Registers (R0- Rll, AP, FP, PC)

Stack pointers (4)

Processor Status Longword (PSL)

• Virtual Address Space

Program region (P0)

Control region (Pl)

System region (S0)

System Context
• System virtual address space (S0)

• The interrupt stack

2-9

THE PROCESS

PROCESS DATA STRUCTURES OVERVIEW

S0 SPACE

JOB
INFORMATION

BLOCK
(JIB)

SOFTWARE
PROCESS
CONTROL

BLOCK
(PCB)

PO PAGE
TABLE

~
t

P1 PAGE
TABLE

PROCESS
HEADER (PHO)

Figure 1 Process Data Structures

• Software Process Control Block (PCB)

HARDWARE
PROCESS
CONTROL

BLOCK

Holds process-specific data that must always be
·available (for example, process state, priority).
Contains pointers to other process data structures
Not paged, not swapped

• Process Header (PHD)

Contains process memory management information
Contains hardware process control block

• Hardware Process Control Block

Contains saved hardware context

• Job Information Block (JIB)

Keeps track of resources for a detached process and
all its subprocesses.

2-10

THE PROCESS

Software Process Control Block (PCB) [ft°IZL. J:pstn)

\riv
;~~k \
~

STATE QUEUE FORWARD LINK.......,_~• VMS standard queue

~--1 .. STATE QUEUE BACKWARD LINK header
• Size of nonpaged

PHP

J J:

TYPE SIZE pool allocation

SCHEDULING
INFORMATION

RESOURCES

POINTERS TO
OTHER DATA
STRUCTURES

LISTHEADS

Scheduling Information
• Priority 4 tR' if !;)
• Status '-Y. (/

Resident/ outswapped
Swap/noswap

• State w Z ~L I pm$)
Resources

• 1/0 limits
• Subprocess count

Pointers to:
• Process header(!' It)
• Hardware PCB
• JIB(vA)
• Event flag clusters (1.E~/CG.1')

Listheads AS
• T queue
• Lock queue

NAMES AND PRIVILEGES
Names and Privileges

• Process ID (PIO)
• Login UIC
• Privilege mask

MKV84-2152

Figure 2 Software Process Control Block (PCB)

2-11

la v'

THE PROCESS

(fr 11.'l f.i>~
Process Header (PHO)

'jl.l,q,A'J'C-
,~ 0~/

FIXED AREA

...

CATALOG WORKING SET PAGES

USED TO LOCATE IMAGE
SECTIONS IN IMAGE FILES

VIRTUAL TO PHYSICAL
ADDRESS MAPPING

• Privilege mask
• Hardware process control

block

• Working set list

• Process section table

~~CM

• PO page table
• P1 page table

MKV84-2153

Figure 3 Process Header (PHD)

2-12

THE PROCESS

Hardware Process Control Block (P., PH D)

--~
•

STACK POINTERS

GENERAL PURPOSE •
REGISTERS

• OTHER REGISTERS
STATUS INFORMATION

•

•
MEMORY MANAGEMENT

REGISTERS

PR$_PCBB

p ointers to:

Kernel stack) 11/ J:r;{:? f j_~ -
-
-
-

Executive stack aftLf' r

Supervisor stack
User stack

R 0, R1, ... , R11

A
F

rgument Pointer (AP)
rame Pointer (FP)
ogram Counter (PC) Pr

Pr ocessor Status Longword (PS L)

p 0 base register
base register P1

p
p
0 length register
1 length register

MKV84-2148

Figure 4 Hardware Process Control Block

• PR$ PCBB contains the physical address of the hardware PCB
for-the current process.

2-13

THE PROCESS

Privileged vs. General Registers

Privileged

• Can only be accessed in kernel mode using MTPR, MFPR
instructions

• Types:

General

Pointers to Data Structures

Hardware Process Control Block (PR$ PCBB)
System Control Block Base (PR$_SCBB)

Hardware Error Registers

SB! Error on VAX-11/780 (PR$ SBIER)
Cache Error on VAX-11/750 (PR$_CAER)

Clock Registers

Time of Year on VAX-11/730 (PR730$ TODR)
Interval Count on VAX-11/780 (PR780$_ICR)

Other Registers

Interrupt Priority Level (PR$ IPL)
Software Interrupt Summary (PR$_SISR)

• Can be accessed in any access mode using most instructions

• RO-Rll,AP,FP,SP,PC

2-14

Job Information Block

DETACHED

PCB

SUB

PCB

THE PROCESS

SUB

PCB

LIST OF
AVAILABLE
RESOURCES
& LIMITS

JOB INFORMATION
BLOCK (JIB)

TK-8947

Figure 5 Job Information Block (JIB)

• Job consists of a detached process and its subprocesses.

• Job information block (JIB) keeps track of resources
allotted to a job, such as:

Limit on number of subprocesses (PRCLIM)
Open File Limit (FILLM)

2-15

THE PROCESS

VIRTUAL ADDRESS SPACE OVERVIEW

PO

P1

so

SEPARATE MAPPING
FOR EACH PROCESS

}

ONE MAPPING FOR
ALL PROCESSES

TK-8942

Figure 6 Virtual Address Space

~r~c~ss Virtual Address Space

~~0 - Image, Run-Time Library, Debugge~
--~(()S1f.)
..,,~ --- P! - Command L.anguage Interpreter,

---~------~J:-~~K§__,_f.i1-ELS¥Stem- XQP, ~eas
AMAf~;j' S0 - System services, Record Management
~fr - Services, other executive code and

data

2-16

THE PROCESS

SO Virtual Address Space

SYSTEM SERVICE VECTORS

ERROR MESSAGE TEXT

DESCRIPTION OF PAGES
IN PHYSICAL MEMORY

SHARED DYNAMIC
DATA STRUCTURES

SHARED DYNAMIC
DATA STRUCTURES

DRIVERS

• System service code
• Scheduler
• Report System Event

• RMS.EXE

• SYSMSG.EXE

• PFN database •• 1 f!~lf>f1V

• Paged pool
• Global section descriptors

• Non-paged pool
• Software process control

blocks
• Unit control blocks

• Lookaside list
• I /0 request packets
• Timer queue elements

MKV84-2150

Figure 7 S0 Virtual Address Space - Low Addresses

2-1 7

THE PROCESS

STACK USED WHEN
INTERRUPTS OCCUR

'l~ •• L'7#"~-~'!
- ~·TABLE FO VECTORll\TG - I-

BY HARDWARE TO
SERVICE ROUTINES

STORAGE FOR
PROCESS HEADERS

LOCATIONS OF VALID
SYSTEM VIRTUAL ADDRESSES

DATA STRUCTURES USED
TO LOCATE GLOBAL SECTIONS

~ LOCATION OF EACH
PAGE OF SYSTEM

VIRTUAL ADDRESS SPACE

LOCATIONS OF
GLOBAL PAGES

• Interrupt stack

• System Control Block (SCB)

Br::!;>~' (8'&~s 8~ ~ 1:
78'0 ~..t.
7 3f/St> =;:>

• Balance slots

• System header (~~P#t>_)
- System working set list
- Global section table

• System page table

• Global page table

MKV84-2149

Figure 8 S0 Virtual Address Space - High Addresses

2-18

THE PROCESS

PO Virtual Address Space

Native Mode Image

Native Mode Image

Run Time Library

Debugger

Traceback

not mapped

Compatibility Mode Image
0

POLR Pages

3FFFFFFF

Compatibility
Mode Image

not mapped

RSX-11M AME

Native Mode Image

not mapped

0

End of Compatibility
Mode Image

1777778 = FFFF15

POLR Pages

3FFFFFFF

Figure 9 P0 Virtual Address Space

2-19

THE PROCESS

P1 Virtual Address Space

Image-Specific 2/)~ t 40000000
User Stack ------- Per-Process Messa e Section s +- CTL$GL_CTLBASVA

CLI Symbol Table
+- CTLSAG_CLIMAGE

CLI Image
+- CTL$GL_F11BXQP

Process Specific

+- PIOSGW_PIOIMPA+
IMPSL_IOSEGADDR

+- CTLSGL_ALLOCREG
Process Allocation Region

Channel Control Block Table +- CTLSGL_cceeASE -------
P 1 Window to Process Header

~egment (~ru~
+- PIOSGL_FMLH

Static }1rr-Per Process Common Area

Per Process Common Area

Figure 10 Pl Virtual Address Space - High Addresses

Pl space is built from high addresses toward low addresses.

2-20

THE PROCESS

+-CTL$GL_CMCNTX
Compatibility Mode Data Page

Security Auditing
+-NSA$T_IDT

Impure Data Table c v
Image Activator Context

+-CTL$GL_JAFLINK

Generic CLI Data Pages
+-CTL$AL_CLICALBK

Image Activator Scratch Pages

Debugger Context
+-CTL$A_DISPVEC

Vectors for Meaaeges end Uaer-Wrltten System Services

Image Header Buff er
+-MMG$GL_IMGHDRBUF

ll'\.; ~ Kernel Stack Kw
+-CTL$AL_STACKLIM

Executive Stack f_W

Static

~
Supervisor Stack sw

+-P1SYSVECTORS
System Service Vectors

P 1 Pointer Page
+-CTL$GL_VECTORS ~1#

Debugger Symbol Table

7FFFFFFF

Figure 11 Pl Virtual Address Space - Low Addresses

Image-Specific - Deleted on image exit
Process-Specific - Changes according to SYSGEN parameters

and CLI used
Static - Does not change

2-21

THE PROCESS

Table 1 Function of Pl Space

Function

Images

Symbol tables

Pointers

l. ~ 'ffJ!''
Stacks L7J}¥-iiif ;pl'l-

RMS data

File system code

Error message text

Storage area

• Data stays around
between images

• Logical names

Other data areas

Pl Area

Command Language Interpreter
(DCL, MCR, user-written)

Symbolic Debugger
Command Language Interpreter

System service vectors
user-written system service
vectors

Pl window to process header
(maps to PHD in SO space)

Pl pointer page (i.e.,
CTL$GL CTLBASVA; addresses
of exception vectors)

Perprocess message vectors

Kernel, executive, supervisor,
user

Image I/O segment
Process I/O segment

Files-11 XQP

Perprocess message section

Perprocess Common Area
(LIB$GET_COMMON)

Process allocation region

Generic CLI data pages
Image activator scratch pages
Image header buffer
Compatibility mode data page
(used by AME)
Channel control block table
(links process to device)

2-22

THE PROCESS

SUMMARY

Table 2 SYSGEN Parameters Relevant to Process Structure

Function Parameter

Size of the CLI symbol table

Limit on use of process allocation region by
images

Number of pages in the process allocation
region

Default number of pages created by the image
activator for the image I/O segment

Number of pages for the process I/O segment
mapped by PROCSTRT

(*) = special SYSGEN parameter

2-23

CLISYMTBL

CTLIMGLIM (*)

CTLPAGES (*)

IMGIOCNT (*)

PI OPAGES (*)

System Mechanisms

SYSTEM MECHANISMS

INTRODUCTION
Many of the operations associated with an operating system can

be described in terms of software components manipulating data
structures. A variety of control mechanisms must be established
to ensure that components competing for common resources do not
interfere with each other or cause a system "deadlock." Several
hardware instructions provide support for these software
mechanisms. Additional mechanisms control the accessibility of
data structures.

The implementation of an interrupt priority structure provides
a hardware-arbitrated mechanism for synchronizing device requests,
some software component requests (such as scheduling and AST
delivery), and synchronizing the accessibility of some protected
data structures. Interrupts are the result of asynchronous events
occurring within VMS and the hardware configuration.

Available mechanisms for synchronizing the activities of
processes include:

• Interrupt Priority Levels (IPL)

• The System Timer Queue

• Mutual Exclusion Semaphores (MUTEXes)

• Asynchronous System Traps (ASTs)

• The VAX/VMS Lock Manager

Exceptions are another mechanism used by VMS. Exceptions are
synchronous events that result from actions within a particular
process. Common examples include:

• Translation-not-valid fault (page fault)

• Divide-by-zero trap

Execution of most system services and record management
services occurs as a result of change mode to kernel and change
mode to executive exceptions (CHMK and CHME instructions).

3-3

SYSTEM MECHANISMS

Dynamic memory (pool) is used to provide storage for various
classes of VMS data structures. Process data structures are
allocated from a dynamic memory area in the control (Pl) region.
System-wide data structures are allocated from either paged or
nonpaged pools depending on the types of system components
accessing them.

OBJECTIVES
To understand the operations of VMS, and to write system-level

programs, the student must be able to:

1. Describe how the various VAX/VMS protection,

2.

communication, and synchronization mechanisms are
implemented, and why each of them is used.

Discuss the SYSGEN parameters controlling
resources (for example, memory), and
altering those parameters.

3-4

various system
the effects of

SYSTEM MECHANISMS

RESOURCES
Reading

• VAX/VMS Internals and Data Structures, chapters on
condition handling, system service dispatching, software
interrupts, AST delivery, the lock manager,
synchronization techniques and dynamic memory allocation.

Additional Suggested Reading

• VAX/VMS Internals and Data Structures, chapters on
hardware interrupts, and timer support

• VAX-11 Architecture Handbook, chapters on special
instructions, and exceptions and interrupts

• VAX-11 Hardware Handbook, chapters on privileged registers

Source Modules

Facility Name

SYS

SYS$EXAMPLES

Macros

RTL

3-5

Module Name

ASTDEL,SCHED
CMODSSDSP
EXCEPTION,SYSUNWIND
MEMORYALC
MUTEX
SYSENQDEQ
TIMESCHDL
SYSSCHEVT,SYSCANEVT
FORKCNTRL
IOCIOPOST

USSDISP.MAR,USSLNK.COM
USSTEST.MAR,USSTSTLNK.COM

IFWRT,IFNOWRT,IFRD,IFNORD
IFPRIV,IFNPRIV
SETIPL,DSBINT,ENBINT,SAVIPL

LIBSIGNAL

SYSTEM MECHANISMS

TOPICS

I. Hardware Register and Instruction Set Support

II. Synchronizing System Events

Hardware Interrupts
Software Interrupts

Example: Fork Processing
Requesting Interrupts
Changing IPL
The Timer Queue and System Clocks

III. Process Synchronization Mechanisms

Mutual Exclusion Semaphores (MUTEXes)
Asynchronous System Traps (ASTs)
VAX/VMS Lock Manager

IV. Exceptions and Condition Handling

v. Executing Protected Code

Change Mode Dispatching
System Service Dispatching

VI. Miscellaneous Mechanisms

System and Process Dynamic Memory (Pool)

VII. SYSGEN Parameters Controlling System Resources

3-6

SYSTEM MECHANISMS

HARDWARE REGISTER AND INSTRUCTION SET SUPPORT

Table 1 Keeping Track of CPU, Process State

Function

Store processor
state

Save, restore
process state

Implementation

Register

Instruction

3-7

Name

Processor Status
Longword (PSL)

SVPCTX, LDPCTX

SYSTEM MECHANISMS

Processor Status Word

15 8 7 6 5 4 3 2

NOT USED

DECIMAL OVERFLOW TRAP ENABLE t t
FLOATING UNDERFLOW TRAP ENABLE

INTEGER OVERFLOW TRAP ENABLE

TRACE TRAP ENABLE ---------------
NEGATIVE CONDITION CODE-------------...

ZERO CONDITION CODE ------------------­
OVERFLOW CONDITION CODE-------------------

1 0

CARRY (BORROW) CONDITION CODE---------------__..

Figure 1 Processor Status Word

• Low-order word of Processor Status Longword (PSL)

• Writable by nonprivileged users through:

Special Instructions
Entry masks
Results of most instructions

3-8

SYSTEM MECHANISMS

Processor Status Longword (PSL)

I I I
20 16 15 0

111 . I . II I I I I PROCESSOR STATUS WORD

~ '--v I

t t L INTERRUPT PRIORITY LEVEL

- PREVIOUS ACCESS MODE

CURRENT ACCESS MODE

EXECUTING ON THE INTERRUPT STACK

INSTRUCTION FIRST PART DONE

TRACE PENDING

COMPATABILITY MODE

Figure 2 Processor Status Longword (PSL)

• High-order word of most interest to system programmers

Contains processor status information
Read-only to nonprivileged users
Changed as a result of REI and MTPR instructions
May be changed as a result of interrupts and
exceptions

• PSL is part of process hardware context

3-9

SYSTEM MECHANISMS

Hardware Context

Process Header

Hardware PCB ------

• Working Set List

• Process Section
Table

• Accounting Info

PO Page Table

(Virtual
Address Space

Description)

P1 Page Table·

\
\

PRLPCBB

Hardware Process
' -... Control Block ________________ ___

\
\

\
\

\
\

\

• General Registers
•PC, PSL
• Per Process

Stack Pointers
•Memory

Management
Registers

• ASTLVL
(Hardware Context)

Figure 3 Hardware Context

• Hardware PCB contains hardware contex.t while process not
current

• VAX instructions for saving and restoring hardware context
(SVPCTX and LDPCTX)

3-10

SYSTEM MECHANISMS

SYNCHRONIZING SYSTEM EVENTS

Hardware Interrupts and the SCB

Exceptions

Processor Faults

Software Interrupts

System Control Block

PR$_SCBB

Figure 4 Hardware Interrupts and the SCB

:: EXE$GL_SCB

• System Control Block (SCB) - physically contiguous area of
system space

• Hardware register PR$ SCBB contains physical address of
SCB

• Hardware gets service routine address from longword in SCB

• Size of SCB is CPU-specific.

3-11

SYSTEM MECHANISMS

Hardware Interrupts and IPL

Table 2 Hardware Interrupts and IPL

FUNCTION VALUE NAME (decimal)

Power Fail Interrupt 30

Clock Interrupts 24 IPL$_HWCLK

Device Interrupts 20-23 UCB$B_DIPL *

* Offset into Device's Unit Control Block

• Interrupt Priority Levels (IPLs) above 15 reserved for
hardware interrupts

• Peripheral devices interrupt at IPL 20 to 23

e IPL$_xxxx - IPL level (see $IPLDEF)

3-12

SYSTEM MECHANISMS

Software Interrupts and the SCB

PR$_SCBB

Exceptions

Processor Faults

Clock and Console

Device Interrupts
:: EXE$GL_SCB

System Control Block

Figure 5 Software Interrupts and the SCB

• Hardware gets service routine address from longword in
SCB.

3-13

SYSTEM MECHANISMS
411 ;;...T: tip

~7?H

>) "?P/£ J'f c
Software Interrupts and IPL

Table 3 Software

FUNCTION

(unused)
Fork Dispatching
Fork Dispatching
Fork Dispatching
Fork Dispatching

Software Timer Interrupt
Fork Dispatching
Used to Enter XDEL TA
1/0 Post-Proces·sing

>>'> c

7
6
5
4

ts and IPL

IPLS_MAILBOX

IPLS_TIMER
IPLS_SYNCH
IPL$ TIMERFORK

t Ex €$DEJJ t.wo/J)

IPLS_IOPOST

- - - -

l Rescheduling Interrupt 3 IPLS_SCHED
AST Delivery Interrupt 2 IPLS_ASTDEL

· ~.,) (unused) 1-0
(1(7 ...___ _ ____.____.... _ _____,

• Interrupt Priority Levels (IPLs) 1 through 15 reserved for
software interrupts

• Driver fork level stored at offset UCB$B_FIPL in UCB (see
$UCBDEF)

3-14

SYSTEM MECHANISMS

Example of Fork Processing

r. IPL 23 interrupt occurs

2. Driver interrupt service routine executes

Processing done at IPL 23

Queue 'context block' (UCB) to fork dispatcher (block
contains PC)

Request IPL 8 interrupt

Continue processing at IPL 23

REI when done at IPL 23

3. IPL 8 interrupt is recognized

4. Fork dispatcher service routine executes

If queue empty, REI

Dequeue UCB

JSB to PC in UCB

PC is usually in driver code
Routine exits with RSB when done

Loop back

FORK·
QUEUE

LISTHEAD
PC

UCB

Figure 6 Fork Queue

3-15

PC

UCB
TK-8943

SYSTEM MECHANISMS

Software Interrupt Requests

31 4 3 0

IGNORED I REQUEST I

PR$_SIRR Software Interrupt Request Register
(Write Only)

31

MBZ

16 15 1 0

PENDING SOFTWARE INTERRUPTS M
B

F E D C B A 9 8 7 6 5 4 3 2 1 Z

PR$_SISR Software Interrupt Summary Register
(Read/Write)

Figure 7 Software Interrupt Requests

• Software Interrupt Summary Register

Bits 1 through 15 correspond to IPLs 1 through 15.

Bit set indicates pending software interrupt request.

Interrupt is serviced as IPL drops below specified
level, when REI is issued.

• Software Interrupt Request Register

To set bit in SISR, write IPL value to SIRR.

Use SOFTINT macro:

.MACRO SOFTINT IPL
MTPR IPL,SA#PR$_SIRR

.ENDM SOFTINT

3-16

Reactivation of • Driver Fork Process

DEVICE
GENERATES
INTERRUPT

DRIVER SOFTWARE
SERVICES INTERRUPT

INTERRUPT OCCURS

I

0 j

DRIVER
FORKS

~

Lower IPL to fork level ---------
FORK

..... DISPATCHER
CALLS DRIVER

., ,,
DRIVER DRIVER

DISMISSES COMPLETES
INTERRUPT REQUEST

',
FORK

DISPATCHER
DISMISSES
INTERRUPT

Creating a Fork Process After

DEVICE DRIVER'S - JSB
GENERATES - INTERRUPT- DRIVER -

SERVICING -
INTERRUPT

~

- REI ROUTINE

0
JSB

0

RSB
IOFORK

ZK-923·82

from Interrupt to Fork Process Context
To lower its priority, the driver calls a VAX/VMS fork proc~ss queuing routine
(by means of the IOFORK maao) that performs the following steps:

1 Disables the timeout that was specified in the wait-for-interrupt routine

2 Saves R3 and R4 (these are the registers needed to execute as a fork
process) (UCB$LJR3, UCB$LJR4)

3 Saves the address of the instruction following the IOFORK request in the
UCB fork block (UCB$LJPC)

4 Places the address of the UCB fork block from RS in a-fork queue for the
driver's fork level

5 Returns to the driver's interrupt-servicing routine

The interrupt-servicing routine then cleans up the stack, restores registers,
and dismisses the interrupt. Figure 5-7 illustrates the flow of control in a
driver that creates a fork process after a device interrupt.

Fork Block

Fork Queue Forward Link

Fork Queue Backward Link

Fork IPL Type Size

Saved PC

Saved R3

Fork Dispatching Queue Structure

IPL 15 RESERVED

IPL 14 RESERVED

IPL 13

IPL 11
FORK QUEUE - FORK r-. RESERVED

LISTHEAD BLOCK

IPL 12 RESERVED

IPL 11

IPL 10

FORK LEVEL ~ IPL 10
- FORK QUEUE

r
.....

LISTHEAD
FORK LEVEL

IPL 9 FORK LEVEL -

l IPL 9
- FORK QUEUE

IPL 8 FORK LEVEL ~ LISTHE.~D

IPL 7 TIME RF ORK

IPL 6
IPL 8 FORK

FORK LEVEL ~ - FORK QUEUE --- ~ -- BLOCK
LISTHEAO

IPL 5 XDELTA

IPL 4 1/0 POSTING IPL 6 FORK - FORK QUEUE - ~
BLOCK LISTHEAD

IPL 3 PROCESS SCHEDULING

IPL 2 AST DELIVERY

IPL 1 RESERVED

IPL 0 PROCESS EXECUTION

ZK-584-81

Activating a Fork Process from a Fork Queue
When no hardware interrupts are pending, the software interrupt priority
arbitration logic of the processor transfers control to the software interrupt
fork dispatcher. When the processor grants an interrupt at a fork IPL, the

· fork dispatcher processes the fork queue that corresponds to the IPL of the
interrupt. To do so, the dispatcher performs these actions:

1 Removes a driver fork block from th_e fork queue

2 Restores fork context

3 Transfers control back to the fork process

Thus, the driver code calls VAX/VMS code that coordinates suspension and
restoration of a driver fork process. This convention allows VAX/VMS to
service hardware device interrupts in a timely manner and reactivate driver
fork processes as soon as no device requires attention.

When a given fork process completes execution, the fork dispatcher removes
the next entry, if any, from the fork queue, restores its fork process context,
and reactivates it. This sequence is repeated until the fork queue is empty.
When the queue is empty, the fork dispatcher restores RO through RS from
the stack and dismisses the interrupt with an REI instruction.

The 1/0 Database

Unit-Control Block (UCB)

uC6S1.. FQFv

ucesi.._ r:oeL·

1 JCBSB _ ':"YPE·] ucesw s1ZE·

UCBSL __ FPC

UCBSL _ c;:<3

l 1
UCBSL_ 0Cl8·

uCBSL_ 1..0CK1D·

;.;CSS~_DDB·

uCBSL_ DEV CHAR

l ucese __ OEV.,.YPE ' _·cese_DEVCLASS

UCBSL-DEVDEPND2

UC8$L __ 1QQr:L·

UCBS~ 100BL·

I UC SSW_ U"'JiT ·

UC8$L_. l~P

:...csse _AMOD· J ucese __ 01PL J

UC8$L_STS

JCBSW __ QLEN I
UCBSL_OUE":':M·

UC6$L_OPCNT •

UCBSL-SllAPTE

'JC6SW _ 6Cfl,T I JCBSW _BOH'

I UCBSB_ERTMAX 1 UC6$6_EP":'C'IT

UC6$L_POT•

UCBSL-DOT•

rese•ved

SYSTEM MECHANISMS

Blocking Interrupts

Table 4 Blocking Interrupts

WHAT TO BLOCK RAISE IPL TO NAME (decimal)

All Interrupts 31 IPL$_POWER

Clock Interrupts 24 IPL$_HWCLK

Device Interrupts 20-23 UCB$B_DIPL *
Access to 8 IPL$_SYNCH
Scheduler's Data
Structures

Delivery of ASTs 2 IPL$_ASTDEL
(Prevent Process
Deletion)

* Offset into Device's Unit Control Block

• Can use IPL to block interrupt servicing

• For example, to block AST delivery, raise to IPL$_ASTDEL

• IPL$_SYNCH used to coordinate access to scheduler's
database

3-1 7

SYSTEM MECHANISMS

Summary of IPL Mechanism

• IPL determines which component gets the CPU

IPL of interrupt determines which service routine is
called

• Can alter current IPL

To raise, use SETIPL or DSBINT

To lower:

If at original level (IPL has
request interrupt at lower
then REI

not been raised) ,
level with SOFTINT,

If at elevated level, lower to original level with
SETIPL or ENBINT

REI enforces the rules

• Altering of IPLs can be used to synchronize system
routines and processes

Current IPL blocks interrupts at same and lower IPLs

Convention: Raise IPL to IPL$ SYNCH
system-wide database (PCBs, PHDs, etc.)

to access

.Convention: Raise to IPL$_ASTDEL to prevent process
deletion

3-18

SYSTEM MECHANISMS

Using IPL to Synchronize System Routines

• 23 DRIVER

IPL • • • 8 I SW TIMER I I SW TIMER I • DRIVER • 7 I SW TIMERI I SW TIMER I

TIME

MKV84-2240

Figure 8 Raising IPL to SYNCH

1. .Software timer invoked at IPL$_TIMERFORK (IPL 7)

2. Software timer raises to IPL$_SYNCH (IPL 8) to synchronize

3. Device interrupt - driver code at IPL 23

Driver requests interrupt at IPL 8 and issues REI

4. Software timer resumes at IPL$_SYNCH

5. Software timer lowers IPL back to IPL$_TIMERFORK

6. Driver code executes at IPL 8

3-19

SYSTEM MECHANISMS

System Timer Queue and System Clocks

TQFL
TQBL

RQTYPE TYPE SIZE

7 6

PID/FPC
AST/FR3

ASTPRM/FR4

TIME

DELTA

EFN RMOD
RQPID

543210

I I I ; I
L{!

--•o 1
._ __ .o

1

-rof. ,..
'~ 9(6\~ ... Ai'~ --

Process timer request (AriC f!>) \~
System subroutine request ffJt IJ,..}. J ~
Scheduled wake request f~~J
One-time request
Repeat request

Relative time request
Absolute time request

Figure 9 Timer Queue Element

• Timer queue is ordered by absolute expiration time.

• Scheduled wake-up and system subroutine requests may have
a delta time specified for recurring events.

• The AST routine, AST parameter, and event flag fields are
filled from the system service argument list.

3-20

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800

: +

. -,

.SBTTL INSERT ENTRY IN TIME DEPENDENT SCHEDULER QUEUE

EXESINSTIMQ - INSERT ENTRY IN TIME DEPENDENT SCHEDULER QUEUE

THIS ROUTINE IS CALLED TO INSERT AN ENTRY IN THE TIME DEPENDENT SCHE~U
QUEUE. THE ENTRY IS THREADED INTO THE QUEUE ACCORDING TO ITS DUE TIME.
THE QUEUE IS ORDERED SUCH THAT THE MOST IMMINENT ENTRIES ARE AT THE FR
OF THE QUEUE.

INPUTS:

RO = LOW ORDER PART OF EXPIRATION TIME.
Rl = HIGH ORDER PART OF EXPIRATION TIME.
RS = ADDRESS OF ENTRY TO INSERT IN TIME QUEUE.

IPL MUST BE IPLS TIMER.

OUTPUTS:

SPECIFIED ENTRY IS INSERTED INTO THE TIME DEPENDENT SCHEDULER QU
ACCORDING TO ITS DUE TIME.

.PSECT
EXES INSTIMQ:: ;INSERT ENTRY IN TIME QUEUE

MOVQ
MOVAL
MOVL

10$: MOVL
CMPL
BEQL
CMPL
BLSSU
BGTRU
CMPL
BLSSU

20$: INSQUE
RSB

RO,TQESQ TIME(R5) ;SET ABSOLUTE DUE TIME
WAEXESGL-TQFL,R3 ;GET ADDRESS OF TIME QUEUE LISTH
R3,R2 - ;COPY ADDRESS OF TIME QUEUE LIST
TQESL TQBL(R2),R2 ;GET ADDRESS OF NEXT ENTRY
R3,R2- ;END OF QUEUE?
20$;IF EQL YES
Rl,TQESQ TIME+4(R2) ;COMPARE HIGH ORDER PARTS OF TIM
10$ - ;IF LSSU NEW ENTRY MORE IMMINENT
20$;IF GTRU NEW ENTRY LESS IMMINENT
RO,TQESQ TIME(R2) ;COMPARE LOW ORDER~PART OF TIME
10$ - . ;IF LSSU NEW ENTRY MORE IMMINENT
TQE$L_TQFL(R5),TQESL_TQFL(R2) ;INSERT NEW ENTRY IN TIME

Example 3 EXE$INSTIMQ (from module EXSUBROUT)

29

e MAKETOE

Allocates two blocks from nonpaged pool

Places code to execute periodically in first block

Makes second block TOE that invokes code in first
block

Records address of TOE block in site-specific longword

After program run, user can log out

Code will still be executed periodically

No process overhead involved

Independent of CURRENT process

TOE
EXESG L_SITESPEC:: ---

CODE -- PC
BLOCK

REPEAT
REQUEST

DELTA
TIME

TK~188

Figure 2 Sample System Programs

• STOPTOE

Removes TOE from queue

Deallocates TOE and code block

Clears site-specific longword

25

;++

.TITLE MAKETQE -- Inserts TQE into timer queue

.!DENT /VOl/

ABSTRACT:

This program places a segment of code into nonpaged pool,
and then establishes a TQE which invokes that routine
every tenth of a second.

SIDE EFFECTS:

Non-paged pool is used to hold the TQE, and the code that
executes.

; PROGRAMMER:

;--

Vik Muiznieks

External symbols
$IPLDEF
$TQEDEF

Local symbols
HEADER = 12
DYN C MY TYPE = 120

Local storage

15-MAY-1980

.PSECT NONSHARED DATA PIC, NOEXE, LONG

IPL definitions
; TQE definitions

size of header
; my block type

DELTA: .LONG 10000*100 delta repeat time

;

.LONG 0 of .1 seconds

This is the code that executes every .1 seconds in response to
the TQE. The timer interrupt service routine transfers control
to the code with a JSB instruction at IPL$ TIMER (7). Note that
the code must be PIC (position independentT since it is being COPIED
to the system buffer (and executes at arbitrary system addresses).

COPY START: start of code to be
copied into pool
This is where the
routine could do
useful work

INCL @UPDATE

RSB

UPDATE: .LONG 0

COPY LEN = . - COPY START
;

Program entry point
;

.PSECT CODE PIC, SHR, NOWRT
START: .WORD -o

10$:

$CMKRNL S ROUTIN=10$
RET -

.WORD

.ENABL
TSTL
BEQLU

"M<R2,R3,R4,R5>
LSB
G"EXE$GL SITESPEC
15$ -

return control to
timer interrupt
service routine
will hold address of
location to be incremented
size of copied code

null entry mask
enter kernel mode
all done

save registers used
enable local symbol block
if in use, error

MOVL
RET

#SS$ IVMODE,RO

; Allocate pool to hold code. Code must be placed in system
space so that it can execute in ANY process context. HEADER extra
bytes will be allocated for a header (since the code block may

; later be deleted by running program STOPTQE). The program will
use the first word in the third longword to store the size of

; the block. Normally the system uses the first two longwords
; for forward and backward links. In this case, the first
; longword will be incremented each time the routine specified
; by the TQE executes. The second longword will not be used.
; Note that IPL is raised to IPL$ ASTDEL before the block of pool
; is allocated. This is done so that the process can not be
; deleted while it has the address of the block in a register
; (and no other record of the block is maintained elsewhere in
; the system).
;
15$:

20$:

;

MOVL
SETI PL
JSB

#COPY LEN+HEADER,Rl
#IPL$-ASTDEL
GAEXE$ALONONPAGED

size of pool needed
so process not deleted
allocate pool

The above routine destroys R0-R3, and returns in R2 the
address of the allocated block of pool.

BLBS
SETI PL
MOVZWL
RET
MOVL
CLRQ

MOVW
MOVZBW

PUSHL
MOVC3

R0,20$
#0
#SS$ INSFMEM,RO

R2,UPDATE
(R2)+

Rl,(R2)+
#DYN C MY_TYPE,(R2)+

R2
#COPY LEN,COPY START,(R2) -

proceed if no error
lower IPL before exiting
indicate error
return error code
save address of block
clear location to be update
point R2 to 3rd longword
fill in size field
fill in type field and
point R2 to start of code
save address of code
copy code to buffer
NOTE -- RO-RS altered

Allocate a TQE. Note that the routine allocates the TQE at
IPL$ SYNCH, but returns control at IPL$ ASTDEL (so process

; cannot be deleted before it can deallocate pool used for TQE).
; The routine destroys R0-R4, and returns the address of the TQE
; block in R2.
;

;
;
;
;

;
;
;
; . ,

JSB
BLBS
MOVL

SUBL
JSB
MOVZWL
BRB

GAEXE$ALLOCTQE
R0,40$
(SP)+,RO

#HEADER,RO
GAEXE$DEANONPAGED
#SS$ NOSLOT,RO
SO$ -

allocate TQE block
continue if no error
else, get code address
and clean up stack
account for header
deallocate code block
return error code
and exit

Initialize TQE and insert TQE into queue (using system routine).
The routine expects the TQE address in RS. It copies the
due time into the TQE, and inserts the TQE in the queue at
the appropriate point. Since the current time is passed
(in RO and Rl) as the due time, the TQE should be placed
at the head of the queue, and delivered after the next
timer interrupt.

The address of the TQE is also stored in a global location

;
40$:

in the executive reserved for site-specific use.

MOVB

MOVQ
MOVL

MOVL

#TQEC_SSREPT,TQEB_RQTYPE(R2)

DELTA,TQE$Q DELTA(R2)
(SP)+,TQE$L=FPC(R2)

R2,GAEXE$GL_SITESPEC

indicate system sub.
; and repeat request

set repeat time-.1 sec
starting address of code;
also cleans up stack
save TQE address for
program that will
cancel TQE request

ASSUME IPL$ SYNCH EQ IPL$ TIMER
LOCK START:

50$:

;

SETI PL
MOVQ
MOVL
JSB
MOVZWL
SETI PL
RET
.DSABL

SYNCH
GAEXE$GQ SYSTIME,RO
R2,R5 -
GAEXE$INSTIMQ
#SS$ NORMAL,RO
#0 -

LSB

accessing system data base
get current abs. time
copy TQE address for
queuing routine
set success status

; lower IPL
all done
disable local symbol block

By placing the SYNCH label after the code that must execute
at IPL$ SYNCH, the page with the SETIPL SYNCH instruction and
the page with the SYNCH label are guaranteed to be in the
process's working set. Since the code will not span more
than 2 pages, there is no way to have a page fault above IPL 2,
even though the pages have not been locked into the working
set (with the $LKWSET system service).

SYNCH: .LONG IPL$ SYNCH
LOCK END:

ASSUME LOCK END-LOCK START LE 512

.END START

S set process/priv=cmkrnl
s
S RUN/NODEEUG MAKETQE
s
$ RUN/NODEEUG MAKETQE
%SHR-F-IVMODE, invalid mode for requested function
s
S RUN/NODEEUG STOPTQE
Value in EXESGL SITESPEC = 801FEA00
Value in field ~ OOOOOlOF
Value in field = OOOOOlOF
Value in field = OOOOOlOF
s
S RUN/NODEEUG STOPTQE
.MAKETQE program has not been run.
s
$ RUN/NODEEUG MAKETQE
s
$ R~N/NODE9UG STOPTQE
Value in EXESGL SITESPEC 80205A00 -Value in field 0000003A
Value in field C000003A
Value in field 0000003A

Example 6 Sample Run

33

.TITLE STOPTQE -- Removes TQE from timer queue

.!DENT /VOl/
;++

ABSTARCT:

This program displays the contents of the location being updated
by the routine specified in a TQE (thrice). It then cancels the
TQE request, and deallocates the block of pool being used to
contain the TQE routine.

SIDE EFFECTS:

Non-paged pool is returned to the system.

PROGRAMMER:

;--

;

Vik Muiznieks

External symbols
$IPLDEF
$TQEDEF

Local symbols
HEADER = 12
LOOP CNT = 3

Local storage

15-MAY-1980

.PSECT NONSHARED DATA PIC, NOEXE, LONG
LKWSET: .ADDRESS START LOCK

.ADDRESS END LOCK
TTCHAN: .WORD 0
TT: .ASCID /SYS$COMMAND/
CTR: .LONG STR END - STRING

.ADDRESS STRING
CTRl: .LONG STRl END - STR

.ADDRESS STR- ;
STR: .ASCII *Value in EXE$GL_SITESPEC = !XL*;
STRl END:
STRING: .ASCII *Value in field = !XL*
STR END:
FAOLEN: .LONG
OUT: .LONG 35

.ADDRESS BUFF

IPL definitions
TQE definitions

header size for code block
loop counter

starting address
ending address
TT channel
descriptor for terminal
$FAO control string
descriptor
$FAO control string
descriptor
converts to hexadecimal

converts to hexadecimal

$FAO output length
Output string desc.

BUFF: .BLKB 35 Actual output string
; used in case MAKETQE

/MAKETQE program has not been run./ ; not yet run
BAD MESSAGE:

.ASCII
BAD SIZE = • - BAD MESSAGE

; Entry point for routine
.PSECT CODE PIC, SHR, NOWRT

START: .WORD 0 ; null entry mask
$CMKRNL S ROUTIN=10$. ; enter kernel mode
Note that most of the work being done in kernel mode by this
example really could be done in user mode. There is not much
need to enter kernel mode before label START LOCK.
RET all done

10$: .WORD AM<R2,R3,R4,R5,R6> save registers used
$LKWSET s INADR=LKWSET lock pages in working set
BLBS -R0,15$ proceed on success
RET stop on error

15$:

20$:

25$:
30$:

40$:

$ASSIGN S DEVNAM=TT,CHAN=TTCHAN
BLBC -R0,25$
MOVL . GAEXE$GL_SITESPEC,R2

get channel to terminal
exit on error
get TQE address
if negative, system address

BLSS 30$; stop if not negative
$OUTPUT CHAN=TTCHAN,LENGTH=#BAD SIZE,BUFFER=BAD MESSAGE
$DASSGN S CHAN=TTCHAN - deassTgn terminal channel
RET - all done
BRW ERROR solve BLBC byte displacemen
MOVL TQE$L FPC(R2),R6 get code address
SUBL2 #HEADER,R6 point to update location
MOVZBL #LOOP CN~,R4 set loop count
$FAO_S CTRSTR=CTRl,OUTLEN=FAOLEN,- format EXE$GL SITESPEC

OUTBUF=OUT,Pl=R2 for debugging-
BLBC R0,25$; test for errors
$OUTPUT CHAN=TTCHAN,LENGTH=FAOLEN,BUFFER=BUFF ; print value
BLBC R0,25$; test for errors
$FAO_S CTRSTR=CTR,OUTLEN=FAOLEN,- ; format counter which

OUTBUF=OUT,Pl=(R6) ; changes every .1 seconds
BLBC R0,25$; check for error
$OUTPUT CHAN=TTCHAN,LENGTH=FAOLEN,BUFFER=BUFF ; display counter
BLBC RO,ERROR check for error
SOBGTR R4,40$ loop a few times

START LOCK: ; code must be locked in

SETI PL
REM QUE
JSB
MOVL
JSB
CLRL

#IPL$ SYNCH
(R2),RO
GAEXE$DEANONPAGED
R6,RO
GAEXE$DEANONPAGED
GAEXE$GL_SITESPEC

SETIPL #0

working set so no page
faults above IPL 2
raise IPL to synch
remove TQE from queue
deallocate TQE
get address of code block
deallocate code block
clean-up location so this
program cannot be rerun
until MAKETQE rerun
enable interrupts

END LOCK: end of locked down code
deassign terminal channel
return success status

$DASSGN S CHAN=TTCHAN
MOVZWL -#SS$ NORMAL,RO
RET -

ERROR: MOVL R0,R6
$DASSGN S CHAN=TTCHAN
MOVL -R6,RO
RET
.END START

all done
save exit status code
deassign terminal channel
restore exit status code
all done

SYSTEM MECHANISMS

Clocks and Timer Services

TIMER QUEUE (ELEMENTS ORDERED BY EXPIRATION TIME)

EXE$GL_TOFL

CURRENT SYSTEM TIME

t-------11 EXE$GQ_SYSTIME

TIME OF DAY CLOCK

I PRxxx$_ TOD R
---- (xxx=number associated with processor)

INTERVAL CLOCK

___ ___.I PRxxx$_NICR (NEXT INTERVAL COUNT)

___ ___.I PRxxx$_1CR (INTERVAL COUNT)

Figure 10 Clocks and Timer Services

3-21

MKV84-2238

SYSTEM MECHANISMS

Summary of System Synchronization Tools

Table 5 Summary of System Synchronization Tools

Function

Arbitrate interrupt
requests

Service interrupts
and exceptions

Synchronize execu­
tion of system
routines

Request software
interrupt

Synchronize sys­
tem's access to
scheduler data
structures

Continue execution
of code at lower
priority

Implementation

Hardware-maintained
priority

Table of service
routine addresses

Interrupt service
routines

MACRO

MACRO - raise IPL to
IPL$_SYNCH

Queue request,
SOFTINT, REI

3-22

Name

Interrupt priority
level (I PL)

System control
block (SCB)

Timer, SCHED, etc.

SOFT INT

SETIPL or DSBINT

FORK

SYSTEM MECHANISMS

PROCESS SYNCHRONIZATION

Table 6 Process Synchronization Mechanisms

Function

Synchronize certain
system-level
activities of
processes

Allow process to
request action at a
certain time

Synchronize access
to data structures
by processe~

Implementation

Adjust IPL
(SETIPL macro)

Queue of requests and
hardware and software
clock interrupts

Semaphore

Allow process to REI
execute procedure on IPL 2 interrupt ser­
completion of event vice routine

Allow processes to
synchronize access
to resources

$ENQ(W) and $DEQ
system services

3-23

Name

IPL

Timer queue

Mutex

Asynchronous system
trap (AST)

VMS lock manager

SYSTEM MECHANISMS

Mutual Exclusion Semaphores (MUTEXes)

31

Status

17 16 15

i I Ownership Count

L Write-in-Progress or
Write-Pending Flag

Figure 11 A Mutex

0

• Protect data structures against conflicting accesses by
multiple processes

• One writer or multiple readers are allowed

• Examples:

Group logical name tables
System logical name table

• To access the data structure, first place a lock on the
mutex

• Mutex locking is only possible in process context

3-24

SEMAPHORE

For anicles on related subjects stt Co11o,;et:UENT

PlOCUMMING: DEADLOCK; LOCKOL. i; MONITOU;

PARALLEL hOCESSING; and PEn1 ~ETS.

Semaphores arc synchronization primitives used to
coordinate the activities of two or more proarams or pr~
cesses that arc running at the same time and sharing in·
formation. They are used for elementary interprocess
communication, to 1uarantee uclusive access to shared
data. to protect a section of code that must be executed
without certain kinds of interruptions (such a code seg·
mcnt is called a critical rtgion or critical srction). or to
allocate a set or identical scarce resources.

Two operations are defined on semaphores: P. or
wait. and V. or proceed. The usage protocol for a shared
resource is as follows: A process that needs control of a
resource c1ecutes a P operation on the semaphore asse>
ciated with that resource. The system suspends the pr~
cess until the resource is available. and then allows it to
proceed. When the process is finished with the resource.
it executes a V operation on the semaphore to release the
resource for use b)· another process. The resource may be
any hardware or software component. including data
structures. physical devices. or code segments. A sema·
phorc may also be used to indicate when it is safe for ex·
ecution to proceed past 1 cert~in p.>int in the program.
The usage protocol is slightly diff'erent when a semaphore
is used to coordinate interprocess communication. For ex·
ample. if process A requires data produced by process B
before it can c1ecute further. a semaphore can be used to
block A until B provides the data and releases A with a
V operation.

One case or special interest is the mwtu (for mutual
exclusion) semaphore. which allows onl)' one process to
u.sc the resource at once. This is panicu1arly useful ror
protectin& I dall Structure (rom bcin& updated Simulta•
neously by more than one process.

Semaphores arc ortcn implemented with counten.
For e11mplc4 a typical implementation of a semaphore
(call it SEM) miaht involve:

• Initialization of SEM. (Set the counter or SEM
to the total number or instances or the resource;
e.g .• for a mu tu semaphore. to 1.)

• P(SEM). (If the counter of SEM is greater than
zero. decrement it by one and allo~ the calling
process to proceed; otherwise. block the calling
process and switch to another-unblocked­
process.)

• V(SE M). (I(there is a blocked process waitina
on SEM. then select and awaken some blocked
process: otherwise. increment the counter of SEM
by one.)

The bodies of these routines must be indivisible (un­
interruptible operations). The P and V notation is due to
Dijkstra. who. motivated b> the counter implementation,
used his native Dutch to act p from proJ,,rrrr It wrlop'1
(''to try to decrcuc") and y from wrltopn r·to in­
crease").

REFUE~CE

1968 Dijkstra. Ecb1cr W. ""The Structure of the 'THE'·Multi·
proarammina Sy•tcm," Comm. ACM 11. No. $: 341-3'6
(May).

M. SH4'1t

List of Dita Structures Protected by Mutnes

Dau Structurt

Loglca.l l'\i.me T ib1e

110 Oat.tNle 2

Coi:runon Event B!oc.k List

P&g@d Dyn~uruc Muno ry

Global SKt1on Descr:ptor U.St

S~ed Memory Gloti.i Section Descriptor Tible

SN.red Memory Ma.Llbox Descriptor Table

(not C"Uire.nUy used)

'..me Printer t.:rut Control Biod: 3

(not curre.nU~· u.sedl

System Ir. truder L.i.sts

Obj«"t Rights Block AccKS Control tut 4

Cl<>Nl ~amt
of Mutn 1

L"iMSAL.Mt.'TEX

IOCSCL_Ml 'TEX

EXESCL_ CEBMTX

EXESGL. PGOr.--.. ·Mn

EXESCL. GSDMn

EXESGL.SHMCSMTX

EXESGL_ SHMMB MTX

EXESGL_E~QMTX

t.JCBSL. LP. ML TIX

EXESGL. ACLMTX

ClASCL. Ml.. 'TEX

ORBSGL.ACL.Mt.'TEX

lWhen a process LS pticed into an MV\'AIT st.ate waiting for a cnutu. the address at the mutu
iJ pLlced mto the PCBSL. EF\1\ 'M held ot the PCB The syrnboi.lc contents ot PCBst. Ern'M will
probably reI:'\.a.ln the s.ame frotr\ release to relea.se but the nw:umc contents d\ang'f. The nume.nc
,·..iue are i\.iilable trcin the system map SYSSSYSTEM SYS MAP

21'hl! znut6 LS use<l by ti'.e .4.ss1gr. Chan!iel and Allocate Device syste?r, !ervtces when searching
thro~ &,e lm•ed list of aevict da:.a t-locks ond urut .::ontrol blocla 1 CCBsl for a de-l'lc-e ft ia

..ao u.ted whenever CCBs •re adaed or ~elet~ :or example. dunng the cruuon oi zrw.lboxes And
network ~&ces.

3The mut.ex a.ssocated with each hne pn.nter ur11t d0f9 not ~ve a fued location l.ille the other
Enutexes As • field in the 1m1t control block (lJCBl. its iocatJon And value depend on where the
l.'CB for tNt wut is ..i.located.

4The mutex usoc::ated with uch ob)ect rights block \ORBl does not ~ve a fixed lcxiuon li.ke the
other mute.xes As • held U\ the object rights block. 1t.s location And va.lue depend on ~-h~e the
ORB is illcated

The mutex itself consists of a single longword that contains the number of
owners of the mutex (MTXSW _ OWNCNT) in the low-order word and status
flags (MTXSW_STS) in the high-order word (see Figure 2-1). The owner count
begins at -1 so that a mutex with a zero in the low-order word has one owner.
The only flag currently implemented indicates whether a write operation is either
in progress or pending for this mutex (MTXSV _ WR'D.

MUTEX
Table of contents

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

43
61
83

121
169
205
252
288
355
381
410

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00

HISTORY ; DETAILED
DECLARATIONS
SCH$RWAIT - RESOURCE WAIT
SCH$LOCKWNOWAIT - LOCK MUTEX FOR WRITE WITHOUT WAITING
SCH$IOLOCKW - LOCK I/O DATA BASE MUTEX FOR WRITE
SCH$LOCKW - LOCK MUTEX FOR WRITE
SCH$IOLOCKR - LOCK I/O DATABASE MUTEX FOR READ
SCH$LOCKR - LOCK MUTEX FOR READ
SCH$RAVAIL - DECLARE RESOURCE AVAILABILITY
SCH$IOUNLOCK - UNLOCK I/O DATABASE MUTEX
SCH$UNLOCK - UNLOCK MUTEX

0

MUTEX
X-1

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 1

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

1
2
3
4
5
6
1
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

18-JUN-1985 07:53:25 _11DUA75:[SYS.SRC]MUTEX.MAR;l (1)

.TITLE MUTEX - MUTEX WAIT ROUTINES

.IDENT 'X-1'

**
* *
*
*
*
* •
*
*
*
*
*
*

COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
* CORPORATION.
*
*
*
*
*

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

++
FACILITY: EXECUTIVE, SCHEDULER

ABSTRACT:
THIS MODULE CONTAINS THE ROUTINES WHICH IMPLEMENT THE MUTEX
LOCK AND UNLOCK SERVICES FOR INTERNAL EXECUTIVE USE.

ENVIRONMENT:
MODE = KERNEL

.PAGE

.SBTTL HISTORY ; DETAILED

AUTHOR: R. HUSTVEDT CREATION DATE: 25-AUG-76

MODIFIED BY:

V03-003 SSA0022 Stan Amway 2-Apr-1984
Backed out SSA0005. It was temporary.

V03-002 SSAOOOS Stan Amway 10-Jan-1984
Added code to maintain PMS MWAIT transition counters.
The counters (in MDAT) and supporting code will be removed
before V4 release.

V03-001 ROW0168 Ralph 0. Weber 3-MAR-1983

MUTEX
X-1

- MUTEX WAIT ROUTINES
HISTORY DETAILED

0000
0000

58 ;
59 ;

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 2
18-JUN-1985 07:53:25 _11DUA75:{SYS.SRC]MUTEX.MAR;l (1)

Change WA references to GA.

MUTEX - MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Paqe 3
X-1 DECLARATIONS 18-.JUN-1985 07:53:25 11DUA75:(SYS.SRC)MUTEX.MAR;l (l) -

0000 61 .SBTTL DECLARATIONS
0000 62
0000 63
0000 64 INCLUDE FILES:
0000 65
0000 66
0000 67 $DYNDEF STRUCTURE TYPE DEFINITIONS
0000 68 $IPLDEF IPL DEFINITIONS
0000 69 $MTXDEF MUTEX DEFINITIONS
0000 70 $PCBDEF PCB DEFINITIONS
0000 71 $PRDEF PROCESSOR REGISTER DEFINITIONS
0000 72 $PRIDEF PRIORITY INCR CLASS DEFS
0000 73 $PSLDEF PSL DEFINITIONS
0000 74 $SSDEF SYSTEM STATUS CODES
0000 75 $STATEDEF SCHEDULER STATE DEFS
0000 76 $WQHDEF WAIT QUEUE HEADER DEFS
0000 77
0000 78 EQUATED SYMBOLS
0000 79
0000 80

00000000 81 .PSECT AEXENONPAGED,BYTE NONPAGED EXEC

MUTEX
X-1

00 OOOOOOOO'GF 50
7E

- MUTEX WAIT ROUTINES
SCH$RWAIT - RESOURCE WAIT

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 4
18-JUN-1985 07:53:25 _11DUA75:(SYS.SRC]MUTEX.MAR:l (1)

0000 83
0000 84
0000 85
0000 86
0000 87
0000 88
0000 89
0000 90
0000 91
0000 92
0000 93
0000 94
0000 95
0000 96
0000 97
0000 98
0000 99
0000 100
0000 101
0000 102
0000 103
0000 104
0000 105
0000 106
0000 107
0000 108
0000 109
0000 110
0000 111
0000 112
0000 113
0000 114
0000 115
0000 116

E6 0000 117
11 0008 118

OOOA 119

.SBTTL SCH$RWAIT - RESOURCE WAIT

;++
FUNCTIONAL DESCRIPTION:

SCH$RWAIT SUSPENDS THE EXECUTION OF A PROCESS UNTIL REQUIRED
RESOURCES ARE AVAILABLE.

CALLING SEQUENCE:
SETIPL/DSBINT #IPL$_SYNCH
PUSHL <PSL>
BSB/JSB SCH$RWAIT

INPUT PARAMETERS:
RO - RESOURCE NUMBER FOR WHICH TO WAIT
R4 - PCB ADDRESS
OO(SP) - PC AT WHICH TO RESUME
04(SP) - PSL WITH WHICH TO RESUME

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF-CURRENT PROCESS

OUTPUTS:
RO-R3 PRESERVED

IMPLICIT OUTPUTS:
*** TBS ***

SIDE EFFECTS:
*** TBS ***

;--

SCH$RWAIT: :
BBSSI R0,GASCH$GL RESMASK,10$

10$: BRB WAI TR -

RESOURCE WAIT ENTRY POINT
SET WAITING FLAG
AND ENTER WAIT STATE

MUTEX
X-1

OB 60 10
60
OS

so 01
32
60
50

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 5
SCH$LOCKWNOWAIT - LOCK MUTEX FOR WRITE W 18-JUN-1985 07:53:25 _11DUA75:[SYS.SRC]MUTEX.MAR;l (1)

OOOA 121
OOOA 122
OOOA 123
OOOA 124
OOOA 125
OOOA 126
OOOA 127
OOOA 128
OOOA 129
OOOA 130
OOOA 131
OOOA 132
OOOA 133
OOOA 134
OOOA 135
OOOA 136
OOOA 137
OOOA 138
OOOA 139
OOOA 140
OOOA 141
OOOA 142
OOOA 143
OOOA 144
OOOA 145
OOOA 146
OOOA 147
OOOA 148
OOOA 149
OOOA 150
OOOA 151
OOOA 152
OOOA 153
OOOA 154
OOOA 155
OOOA 156
OOOA 157
OOOA 158

E6 OOOD 159
86 0011 160
12 0013 161
3C 0015 162
11 0018 163
87 OOlA 164
D4 001C 165

OOlE 166
05 0021 167

.SBTTL SCH$LOCKWNOWAIT - LOCK MUTEX FOR WRITE WITHOUT WAITING

;++
FUNCTIONAL DESCRIPTION:

SCH$LOCKWNOWAIT LOCKS THE SPECIFIED MUTEX FOR EXCLUSIVE WRITE ACCESS
TO THE PROTECTED STRUCTURE. IF ANOTHER PROCESS HAS ALREADY CLAIMED
THE MUTEX, THEN THIS ROUTINE RETURNS A FAILURE INDICATION.

CALLING SEQUENCE:
BSB/JSB SCH$LOCKWNOWAIT

INPUT PARAMETERS:
RO - ADDRESS OF MUTEX
R4 - PCB ADDRESS OF CURRENT PROCESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF-CURRENT PROCESS
MUTEX LOCATED BY RO

OUTPUTS:
RO LOW BIT SET IF LOCKED SUCCESSFULLY

LOW BIT CLEAR IF MUTEX IN USE
Rl-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
*** TBS ***

SIDE EFFECTS:
*** TBS ***

~~$LOCKWNOWAIT::
SETIPL #IPL$ SYNCH
BBSSI #MTX$V WRT,(R0),20$
INCW MTX$W 'O'WNCNT(RO)
BNEQ 10$ -
MOVZWL #SS$ NORMAL,RO
BRB LKEX-

10 $: DECW MTX$W OWNCNT(RO)
20$: CLRL RO -

SETIPL #IPL$ ASTDEL
RSB -

RAISE TO SYNCH IPL
SET WRITE PENDING
RAISE OWNER COUNT
RETURN FAILURE IF BUSY
INDICATE SUCCESSFUL COMPLETION
AND MERGE WITH COMMON EXIT CODE
CORRECT COUNT
SET FAILURE RETURN INDICATION

; LOWER TO ASTDEL
AND RETURN

MUTEX
X-1

50 OOOOOOOO'EF

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Paqe 6
SCH$IOLOCKW - LOCK I/O DATA BASE MUTEX F 18-JUN-1985 07:53:25 _11DUA75:(SYS.SRC]MUTEX.MAR;l (1)

0022 169
0022 170
0022 171
0022 172
0022 173
0022 174
0022 175
0022 176
0022 177
0022 178
0022 179
0022 180
0022 181
0022 182
0022 183
0022 184
0022 185
0022 186
0022 187
0022 188
0022 189
0022 190
0022 191
0022 192
0022 193
0022 194
0022 195
0022 196
0022 197
0022 198
0022 199
0022 200
0022 201
0022 202

9E 0022 203

.SBTTL SCH$IOLOCKW - LOCK I/O DATA BASE MUTEX FOR WRITE
;++

FUNCTIONAL DESCRIPTION:
SCH$IOLOCKW RETURNS TO THE CALLER WHEN THE I/O DATABASE MUTEX
HAS BEEN LOCKED FOR WRITE ASSURING EXCLUSIVE ACCESS.

CALLING SEQUENCE:
BSB/JSB SCH$IOLOCKW

INPUT PARAMETERS:
R4 - PCB ADDRESS OF CURRENT PROCESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF-CURRENT PROCESS
I/O DATABASE MUTEX

OUTPUTS:
RO = ADDRESS OF I/O DATABASE MUTEX
Rl-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
*** TBS ***

SIDE EFFECTS:
*** TBS ***

;--

SCH$IOLOCKW::
MOVAB IOC$GL_MUTEX,RO

LOCK I/O DATA BASE FOR WRITE ACCESS
GET ADDRESS OF I/O DATABASE MUTEX

MUTEX
X-1

08 60 10
60
02
16

60
43
ED

- MUTEX WAIT ROUTINES
SCH$LOCKW - LOCK MUTEX FOR WRITE

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Pa9e 7
18-JUN-1985 07:53:25 _11DUA7S:(SYS.SRC)MUTEX.MAR;l (1)

0029 205 .SBTTL SCH$LOCKW - LOCK MUTEX FOR WRITE
0029 206 ;++
0029 207 FUNCTIONAL DESCRIPTION:
0029 208 SCH$LOCKW RETURNS TO THE CALLER WHEN THE SPECIFIED MUTEX
0029 209 HAS BEEN LOCKED FOR WRITE ASSURING EXCLUSIVE ACCESS TO THE
0029 210 PROTECTED STRUCTURE.
0029 211
0029 212
0029 213
0029 214 CALLING SEQUENCE:
0029 215 BSB/JSB SCH$LOCKW
0029 216
0029 217
0029 218 INPUT PARAMETERS:
0029 219 RO - ADDRESS OF MUTEX
0029 220 R4 - PCB ADDRESS OF CURRENT PROCESS
0029 221
0029 222 IMPLICIT INPUTS:
0029 223 SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
0029 224 PCB OF-CURRENT PROCESS
0029 225 MUTEX LOCATED BY RO
0029 226
0029 227 OUTPUTS:
0029 228 R0-R3 PRESERVED
0029 229 IPL = AS TD EL
0029 230
0029 231 IMPLICIT OUTPUTS:
0029 232 *** TBS ***
0029 233
0029 234 SIDE EFFECTS:
0029 235 *** TBS ***
0029 236
0029 237 ·--,
0029 238
0029 239 SCH$LOCKW: : LOCK MUTEX FOR WRITE
0029 240 10$: SETI PL UPL$ SYNCH RAISE TO SYNCH IPL

E6 002C 241 BBSSI #MTX$V WRT,(R0),30$ SET WRITE PENDING
86 0030 242 INCW MTX$W O'WNCNT(RO) RAISE OWNER COUNT
12 0032 243 BNEQ 20$ - WAIT IF BUSY
11 0034 244 BRB LKEX MERGE WITH COMMON EXIT CODE

0036 245
0036 246 20$: , , MUST WAIT FOR EXCLUSIVE USE

B7 0036 247 DECW MTX$W OWNCNT(RO) , , CORRECT COUNT
10 0038 248 30$: BSBB WAI TM- , , AND WAIT FOR MUTEX
11 003A 249 BRB 10$ REPEAT LOCK ATTEMPT WHEN

003C 250 RESCHEDULED

MUTEX
X-1

50 00000000'EF

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 8
SCH$IOLOCKR - LOCK I/O DATABASE MUTEX FO 18-JUN-1985 07:53:25 _11DUA75:[SYS.SRC]MUTEX.MAR;l (1)

003C 252
003C 253
003C 254
003C 255
003C 256
003C 257
003C 258
003C 259
003C 260
003C 261
003C 262
003C 263
003C 264
003C 265
003C 266
003C 267
003C 268
003C 269
003C 270
003C 271
003C 272
003C 273
003C 274
003C 275
003C 276
003C 277
003C 278
003C 279
003C 280
003C 281
003C 282
003C 283
003C 284
003C 285

9E 003C 286

.SBTTL SCH$IOLOCKR - LOCK I/O DATABASE MUTEX FOR READ
;++

FUNCTIONAL DESCRIPTION:
SCH$IOLOCKR RETURNS TO THE CALLER WHEN NO WRITERS OWN THE I/O
DATABASE MUTEX THUS ASSURING THE I/O DATABASE WILL REMAIN UN­
CHANGED UNTIL THE MUTEX IS RELEASED. IPL IS RAISED TO PREVENT
AST DELIVERY WHILE THE MUTEX IS OWNED AND THE PROCESS WILL NOT
BE OUTSWAPPED.

CALLING SEQUENCE:
BSB/JSB SCH$IOLOCKR

INPUT PARAMETERS:
R4 - CURRENT PROCESS PCB ADDRESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF-CURRENT PROCESS
I/O DATABASE MUTEX

OUTPUTS:
RO = ADDRESS OF I/O DATABASE MUTEX
Rl-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
*** TBS ***

SIDE EFFECTS:
*** TBS ***

;--

SCH$ IOLOCKR: :
MOVAB IOC$GL_MUTEX,RO

LOCK I/O DATABASE FOR READ ACCESS
GET ADDRESS OF I/O DATA BASE MUTEX

MUTEX
X-1

28
29

30 60

OA A4

01

A4
A4
OB A4

OB A4
2F A4

10

60
oc
25

OE _;4
OE _;4

18
OB rt4
2F A4

10
08
OF
OF

oo.;c

C6 .;F

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 9
SCH$LOCKR - LOCK MUTEX FOR READ 18-JUN-1985 07:53:25 _11DUA75:[SYS.SRC)MUTEX.MAR;l (1)

0043 288
0043 289
0043 290
0043 291
0043 292
0043 293
0043 294
0043 295
0043 296
0043 297
0043 298
0043 299
0043 300
0043 301
0043 302
0043 303
0043 304
0043 305
0043 306
0043 307
0043 308
0043 309
0043 310
0043 311
0043 312
0043 313
0043 314
0043 315
0043 316
0043 317
0043 318
0043 319
0043 320
0043 321
0043 322

EO 0046 323
004A 324

B6 004A 325
91 004C 326
12 0050 327
B6 0052 328
Bl 0055 329
12 0059 330
90 OOSB 331
90 0060 332
91 0065 333
lA 0069 334
90 0068 335
90 006F 336

0073 337
05 0076 338
31 0077 339

007A 340
007A 341

OF 007A 342
0070 343
0070 344

.SBTTL SCH$LOCKR - LOCK MUTEX FOR READ
;++

FUNCTIONAL DESCRIPTION:
SCH$LOCKR RETURNS TO THE CALLER WHEN NO WRITERS OWN THE
SPECIFIED MUTEX. THUS THE STRUCTURE PROTECTED BY THE MUTEX
WILL REMAIN UNCHANGED UNTIL THE MUTEX IS RELEASED. IPL IS
RAISED TO PREVENT AST DELIVERY WHILE THE MUTEX IS OWNED AND
THE PROCESS WILL NOT BE OUTSWAPPED.

CALLING SEQUENCE:
BSB/JSB SCH$LOCKR

INPUT PARAMETERS:
RO - ADDRESS OF MUTEX
R4 - CURRENT PROCESS PCB ADDRESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF-CURRENT PROCESS
MUTEX

OUTPUTS:
R0-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
*** TBS ***

SIDE EFFECTS:
*** TBS

SCH$LOCKR: :

LKEX:

10$:

20$:

RDWAIT:

WAITM:

SETI PL
BBS

INCW
CMPB
BNEQ
INCW
CMPW
BNEQ
MOVB
MOVB
CMPB
BGTRU
MOVB
MOVB
SETI PL
RSB
BRW

PUS HAL

#IPL$ SYNCH
#MTX$V_WRT,(RO),RDWAIT

LOCK MUTEX FOR READ
RAISE TO SYNCH IPL

; WAIT IF WRITE PENDING OR
; IN PROGRESS

MTX$W OWNCNT(RO) ; ; INCREASE OWNER COUNT
#DYN$~ PCB,PCB$B TYPE(R4) ; CHECK FOR PCB
20$ - - ; BUG CHECK IF NOT PCB
PCB$W MTXCNT(R4) ;;; NOTE IN PCB ALSO
PCB$~XCNT(R4),#1 ; IS THIS THE FIRST MUTEX IT OWNS?
10$ - ; BR IF OWNS MORE THAN 1 MUTEX
PCB$B PRI(R4),PCB$B PRISAV(R4); SAVE CURRENT PRIORITY
PCB$B-PRIB(R4),PCB$~ PRIBSAV(R4) ; SAVE BASE PRIORITY
#16,P~$B PRI(R4) - ; IS THIS A REAL TIME PROCESS?
10$ - ; BR IF SO
#15,PCB$B PRI(R4) ; ELSE FORCE TO LOWEST RT PRIORITY
#15,PCB$B-PRIB(R4) ; AND SET PRIORITY BASE TO RT
#IPL$ AST~EL ,,, DROP TO ASTDEL IPL

- I I • AND RETURN
NOTPCB

SCH$LOCKR
MUST WAIT FOR READ
RETRY AFTER WAIT

WAIT FOR MUTEX TO FREE

MUTEX
X-1

6£
04 AE

04 AE 05 10 02
4C A4 50

OOOOOOOO'GF 64
00000008'GF

2C A4 02
FF60'

- MUTEX WAIT ROUTINES
SCH$LOCKR - LOCK MUTEX FOR READ

DD
DC
FO
DO
OE
B6
BO
31

007D
007F
0082
0088
008C
0093
0099
0090
OOAO

345
346
347
348 WAITR:
349
350
351
352
353

PUSHL
MOVPSL
INSV
MOVL
INS QUE
INCW
MOVW
BRW

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 10
18-JUN-1985 07:53:25 _11DUA75:(SYS.SRC)MUTEX.MAR;l (1)

(SP) ,,, FORM PC, PSL ON STACK
4(SP) ;;; BUILD PSL
#IPL$ ASTDEL,#PSL$V IPL,#PSL$S IPL,4(SP) ;;; SET IPL TO ASTDEL
R0,PC~$L EFWM(R4) - ;;; SAVE ADDRESS OF MUTEX
(R4),GAS'Ol$GQ MWAIT ,,, INSERT AT HEAD OF WAIT QUEUE
GASCH$GQ MWAIT+WQH$W WQCNT ,,, INCREMENT COUNT IN QUEUE
#SCH$C MWAIT,PCB$W STATE(R4) ;;; SET STATE
SCH$WATTL - ;;; WAIT WITH STACK CLEAN, STATE SET

MUTEX
X-1

70 OOOOOOOO'GF 50

45

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 11
SCH$RAVAIL - DECLARE RESOURCE AVAILABILI 18-JUN-1985 07:53:25 _11DUA75:[SYS.SRC]MUTEX.MAR;l (1)

OOAO 355
OOAO 356
OOAO 357
OOAO 358
OOAO 359
OOAO 360
OOAO 361
OOAO 362
OOAO 363
OOAO 364
OOAO 365
OOAO 366
OOAO 367
OOAO 368
OOAO 369
OOAO 370
OOAO 371
OOAO 372
OOAO 373
OOAO 374
OOAO 375
OOAO 376

E7 OOAO 377
OOA8 378

11 OOAE 379

.SBTTL SCH$RAVAIL - DECLARE RESOURCE AVAILABILITY

;++
FUNCTIONAL DESCRIPTION:

SCH$RAVAIL IS CALLED TO SIGNAL THE AVAILABILITY OF THE SPECIFIED
RESOURCE AND RELEASE ANY WAITING PROCESSES.

CALLING SEQUENCE:
BSB/JSB SCH$RAVAIL

INPUT PARAMETERS:
RO - RESOURCE NUMBER

IMPLICIT OUTPUTS:
*** TBS ***

SIDE EFFECTS:
*** TBS ***

;-

SCH$RAVAIL: : ; DECLARE RESOURCE AVAILABILITY
BBC CI
DSBINT
BRB

R0,GASCH$GL RESMASK,EXIT ; CLEAR AND TEST WAITING FLAG
#IPL$ SYNCH- ,,, BLOCK SYSTEM EVENTS
UNLOCK ; ; ; MERGE WITH COMMON CODE

MUTEX
X-1

50 OOOOOOOO'EF

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Paqe 12
SCH$IOUNLOCK - UNLOCK I/O DATABASE MUTEX 18-JUN-1985 07:53:25 _11DUA75:{SYS.SRC)MUTEX.MAR;l (1)

OOBO 381 .SBTTL SCH$IOUNLOCK - UNLOCK I/O DATABASE MUTEX
OOBO 382 ;++
OOBO 383 FUNCTIONAL DESCRIPTION:
OOBO 384 SCH$10UNLOCK RELEASES OWNERSHIP OF THE 1/0 DATABASE MUTEX AND
OOBO 385 RE-ACTIVATES ANY WAITING PROCESSES IF THE MUTEX HAS BECOME
OOBO 386 AVAILABLE AS A CONSEQUENCE OF THIS UNLOCK REQUEST.
0080 387
OOBO 388 CALLING SEQUENCE:
0080 389 BSB/JSB SCH$IOUNLOCK
0080 390
0080 391 INPUT PARAMETERS:
0080 392 R4 - PCB ADDRESS OF CURRENT PROCESS
OOBO 393
OOBO 394 IMPLICIT INPUTS:
0080 395 SCH$GQ MWAIT - MUTEXT WAIT QUEUE HEADER
0080 396 PCB OF-CURRENT PROCESS
0080 397 I/O DATABASE MUTEX
OOBO 398
OOBO 399 IMPLICIT OUTPUTS:
OOBO 400 *** TBS ***
OOBO 401
0080 402 SIDE EFFECTS:
0080 403 *** TBS ***
OOBO 404
OOBO 405 ·--
OOBO 406
OOBO 407 SCH$IOUNLOCK:: UNLOCK 1/0 DATABASE MUTEX

9E 0080 408 MOVAB IOC$GL_MUTEX,RO GET ADDRESS OF I/O DATABASE MUTEX

MUTEX
X-1

52

DA A4 oc
63

OE A4
25

2F A4 29 A4
51 28 A4
OB A4 51

OOOOOOOO'GF 51
OOOOOOOO'GF 20 00

52 51
03

60
31

2D 60 10

11
53 OOOOOOOO'GF

54 63
52 02
54 53

:7
4C A4 6E

oc
64

FEEC'
08 :;J

1.0

- MUTEX WAIT ROUTINES
SCH$UNLOCK - UNLOCK MUTEX

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 13
18-JUN-1985 07:53:25 _11DUA75:(SYS.SRC)MUTEX.MAR;l (1)

OOB7 410
00B7 411
OOB7 412
OOB7 413
00B7 414
OOB7 415
OOB7 416
OOB7 417
OOB7 418
OOB7 419
OOB7 420
OOB7 421
OOB7 422
OOB7 423
0087 424
OOB7 425
OOB7 426
OOB7 427
OOB7 428
OOB7 429
0087 430
0087 431
00B7 432
OOB7 433
OOB7 434
00B7 435
00B7 436
OOB7 437
OOB7 438

91 OOBD 439
12 OOCl 440
B7 00C3 441
12 OOC6 442
90 ooca 443
90 OOCD 444
90 OODl 445
90 OOD5 446
EA oooc 447
91 ODES 448
lB DOES 449

OOEA 450
B7 ODED 451
18 OOEF 452
E7 OOFl 453

OOF5 454
BB 00F5 455
DE OOF7 456
DO OOFE 457
9A 0101 458
Dl 0104 459
13 0107 460
Dl 0109 461
12 OlOD 462
DD OlOF 463
30 0111 464
B7 0114 465
BA 0117 466

.SBTTL SCH$UNLOCK - UNLOCK MUTEX
;++

FUNCTIONAL DESCRIPTION:
SCH$UNLOCK RELEASES OWNERSHIP OF THE SPECIFIED MUTEX AND
RE-ACTIVATES ANY WAITING PROCESSES IF THE MUTEX HAS BECOME
AVAILABLE AS A CONSEQUENCE OF THIS UNLOCK REQUEST.

CALLING SEQUENCE:
BSB/JSB SCH$UNLOCK

INPUT PARAMETERS:
RO - MUTEX ADDRESS
R4 - PCB ADDRESS OF CURRENT PROCESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEXT WAIT QUEUE HEADER
PCB OF-CURRENT PROCESS
MUTEX

IMPLICIT OUTPUTS:
*** TBS ***

SIDE EFFECTS:
*** TBS ***

;--

SCH$UNLOCK::
DSBINT
CMPB
BNEQ
DECW
BNEQ
MOVB
MOVB
MOVB
MOVB
FFS
CMPB
BLEQU
SOFT INT

10$: DECW
BGEQ
BBC CI

UNLOCK: PUSHR
MOVAL
MOVL
MOVZBL

10$: CMPL
BEQL
CMPL
BNEQ
PUSHL
BSBW
DECW
POPR

; UNLOCK MUTEX
#IPL$ SYNCH ;;; RAISE TO SYNCH IPL
IDYN$~ PCB,PCB$B_TYPE(R4); STRUCTURE MUST BE PCB
NOTPCB- ,
PCB$W MTXCNT(R4) ;;; NOTE UNLOCK IN PCB
10$ - ;;; MORE STILL OWNED
PCB$B PRIBSAV(R4),PCB$B PRIB(R4) ; RESTORE SAVED BASE PRIORITY
PCB$B-PRISAV(R4),Rl - GET ORIGINAL PRIORITY
R1,PC~$B PRI(R4) RESTORE IT
Rl,GASCH~GB PRI ; AND ANNOUNCE IT
#0,#32,GASCR$GL COMQS,R2; FIND PRIORITY OF NEXT COMPUTABLE PROCESS
Rl,R2 - CHECK FOR DELAYED PREMPTION
10$ NO, CONTINUE
#IPL$ SCHED ELSE RESCHEDULE WHEN IPL DROPS
MTX$W-OWNCNT(R0) DECREMENT OWNERSHIP COUNT
EXITrr- EXIT IF NOT LAST
#MTX$V_WRT,(RO),EXITN EXIT IF NO WRITE IN PROGRESS

OR PENDING
AM<RO ,R4>
GASCH$GQ MWAIT,R3
(R3),R4 -
#PRI$ RESAVL,R2
R3,R4-
30$
(SP),PCB$L EFWM(R4)
20$ -
(R4)
SCH$CHSE
WQH$W WQCNT(R3)
#AM<R'if>

SAVE PCB ADDRESS
GET ADDRESS OF WAIT QUEU
AND HEAD PCB
SET PRIORITY INCREMENT CLASS
CHECK FOR END OF QUEUE
YES, DONE
IS PROCESS WAITING FOR THIS MUTEX
NO, SKIP IT
SAVE FLINK
CHANGE TO EXECUTABLE STATE
DECREASE QUEUE LENGTH
RESTORE FLINK

MUTEX - MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 14
X-1 SCH$UNLOCK - UNLOCK MUTEX 18-.JUN-1985 07:53:25 _11DUA75:[SYS.SRC]MUTEX.MAR;l (1)

$9 11 0119 467 BRB 10$ AND CONTINUE
54 '14 DO OllB 468 20$: MOVL (R4) ,R4 FLINK ON TO NEXT PCB

c;4 11 OllE 469 BRB 10$ AND CONTINUE
11 BA 0120 470 30$: POPR #AM<R0,R4> RESTORE REGISTERS

0122 471 EXITN: ENBINT ; ENABLE INTERRUPTS
05 0125 472 EXIT: RSB AND RETURN

0126 473
0126 474 NOTPCB: BUG CHECK NOTPCB,FATAL STRUCTURE NOT PCB
012A 475 .E?m

MUTEX
Symbol table

BUG$ NOTPCB
DYN$~ PCB
EXIT -
EXITN
IOC$GL MUTEX
IPL$ AnDEL
IPL$-SCHED
IPL$-SYNCH
LKEX-
MTX $ V WRT
MTX$W-OWNCNT
NOT PCB'
PCB$B PRI
PCB$B-PRIB
PCB$B-PRIBSAV
PCB$B-PRISAV
PCB$8--r'YPE
PCB$L-EFWM
PCB$lVMTXCNT
PCB$W-STATE
PR$ Il"L
PR$-SIRR
PRI'$' RESAVL
PSL$'S' IPL
PSL$V-IPL
RDWAI11'
SCH$CHSE
SCH$C MWAIT
SCH$GB' PRI
SCH$GL-COMQS
SCH$GLllESMASK
SCH$GQ!-tWAIT
SCH$IOI;OCKR
SCH$IOLOCKW
SCH$IOUNLOCK
SCH$LOCKR
SCH$LOCKW
SCH$LOCKWNOWAIT
SCH$RAVAIL
SCH$RWAIT
SCH$UNLOCK
SCH$WAITL
SS$ NORMAL
UNL?f CK
WAI TM
WAI TR
WQH$W_WQCNT

PSECT name

• ABS
ABS
AEXENONPAGED

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Paqe 15

= oooooooc

00000125 R
00000122 R
******** = 00000002

= 00000003
00000008
0000004C R

= 00000010
= 00000000

00000126 R
00000008
0000002F
00000029
00000028
OOOOOOOA
0000004C
OOOOOOOE
0000002C
00000012
00000014
00000002
00000005
00000010
0000007A R

00000002

0000003C RG
00000022 RG
OOOOOOBO RG
00000043 RG
00000029 RG
OOOOOOOA RG
OOOOOOAO RG
00000000 RG
000000B7 RG

00000001
OOOOOOF5 R
00000070 R
00000088 R
00000008

Allocation

00000000
00000000
0000012A

x

x

x
x
x
x
x

x

02

02
02
02

02

02

02
02

02
02
02
02
02
02
02
02
02
02
02
02
02
02

02
02
02

+----------------+
! Psect synopsis !

+----------------+

18-JUN-1985 07:53:25 _11DUA75:{SYS.SRC)MUTEX.MAR;l (1)

PSECT No. Attributes

0.)
0.)

298.)

00 (
01 (
02 (

0.)
1.)
2.)

NOP IC
NOPIC
NOP IC

USR
USR
USR

CON
CON
CON

ABS
ABS
REL

LCL NOSHR NOEXE NORD
LCL NOSHR EXE RD
LCL NOSHR EXE RD

NOWRT NOVEC BYTE
WRT NOVEC BYTE
WRT NOVEC BYTE

MUTEX - MUTEX WAIT ROUTINES
VAX-11 Macro Run Statistics

Phase

Initialization
Command processing
Pass 1
Symbol table sort
Pass 2
Symbol table output
Psect synopsis output
Cross-reference output
Assembler run totals

Page faults

33
874
392

0
26

6
4
0

1338

The working set limit was 1650 pages.

+---------~~~-~---~-+
! Performance indicators !

+------------~---~-----+

CPU Time

00:00:00.03
00:00:00.22
00:00:01.87
00:00:00.25
00:00:00.43
00:00:00.01
00:00:00.01
00:00:00.00
00:00:02.82

Elapsed Time

00:00:00.33
00:00:01.66
00:00:07.71
00:00:00.27
00:00:00.87
00:00:00.25
00:00:00.01
00:00:00.00
00:00:11.12

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 16
18-JUN-1985 07:53:25 _11DUA75:[SYS.SRC]MUTEX.MAR;l (1)

49006 bytes (96 pages) of virtual memory were used to buffer the intermediate code.
There were SO pages of symbol table space allocated to hold 889 non-local and 12 local symbols.
475 source lines were read in Pass 1, producing 13 object records in Pass 2.
22 pages of virtual memory were used to define 21 macros.

Macro library name

11DUA75:[SYS.OBJ]LIB.MLB;l
-11DUA75:[SYSLIB]STARLET.MLB;2
~OTALS (all libraries)

993 GETS were required to define 18 macros.

+----------------------~~+
! Macro library statistics !
+--------------------------+

Macros defined

12
6

18

There were no errors, warnings or information messages.

MACRO/LIS=LIS$:MUTEX/OBJ=OBJ$:MUTEX TMP$:MUTEX.MAR+EXECML$/LIB

SYSTEM MECHANISMS

Obtaining and Releasing Mutexes

• Example - to obtain the paged pool mutex

In your routine

MO VAL
MOVL
JSB

JSB

GAEXE$GL PGDYNMTX,R0
GASCH$GL-CURPCB,R4
GASCH$LO~KR ;read

or
GASCH$LOCKW ;write

When returns, process has mutex

Process should remain at IPL 2 or greater while it
owns a mutex

• Example - to release the paged pool mutex

In your routine

MOVAL GAEXE$GL PGDYNMTX,R0
MOVL GASCH$GL-CURPCB,R4
JSB GASCH$UNLOCK
SETIPL #0 ; if no longer hold any mutexes

All mutex symbols defined in module SYSCOMMON, except
for line printer mutex in LPDRIVER.

3-25

SYSTEM MECHANISMS

Asynchronous System Traps (ASTs)

Software Proceas Control Block (PCB)

[ASTEN] ASTACT
ASTQFL

-.;;: -
_~

AST Control Block (ACB) ASTQBL
ASTQFL
ASTQBL

RMOD] TYPE 1 SIZE

[ASTCNT

PID
AST

ASTPRM
KAST

RMOD bits:
7 6 5 4 1 0

1111 ~

l l l L MODE
PKAST

NODELETE acb
QUOTA

KAST

Figure 12 AST Queue off the Software PCB

,,
--:;;;;;;: - ·-

• Provide an asynchronous tool for
synchronization

communication

• AST Control Block (ACB) built when AST requested

• ACBs are queued to the software PCB when the AST is due

Queue is ordered by access mode

3-26

~ --,

and

ASYNCHRONOUS SYSTEM 7RAPS (ASTS)

1 MECHANISM TO INITIATE THREAD CF EXECUT:CN

WITHIN A PROCESS
ASYNCHRONOUSLY TO OTHER ACTIVITY WITHIN PROCESS
FREQUENTLY TO NOTIFY PROCESS OF SOME EVENT
SOMETIMES TO EXECUTE PIECE OF SYSTEM CODE IN PROCESS'S CON7~XT

1 THREAD OF EXECUTION INITIATED

AT A PARTICULAR ACCESS MOOE
FREQUENTLY AS CALLED PROCEDURE
SOMETIMES AS SUB~OUTINE OF IPL2 ASTDEL SERVICE ROUTINE

I "INTERRUPT• MOST PROCESS WAIT STATES

I DELIVERY TO ALL ACCESS MODES ENABLED BY DEFAULT

I ONLY ONE AST ACTIVE PER PROCESS PER ACCESS MOOE

t ASSOCIATED SYSTEM SERVICES

SDCLAST
SENQ(W]
SGETOVI
SGETJPI
SGETSYI
SQIO(WJ
SSETIMR
SSETAST
SSETPRA
SUPDSEC'

DECLARE AST
ENQUEUE LOCK REQUEST
GET DEVICE/VOLUME INFORMATION
GET JOB/PROCESS INFORMATION
GET SYSTEM INFORMATION
QUEUE I/O REQUEST.
ENQUEUE TIMER REQUEST
ENABLE/DISABLE AST DELIVtRY
SPECIFY POWER RECOVERY AST
UPDATE SECTION FILE ON DISK

ARCHITECTURE FEAiURES

I PRS_ASTLVL

I PHOSB_ASTLVL

I LDPCTX

I REI

SOFTWARE PCB FIELDS ASSOCIATED WITH ASTS

PCBSL_ASTQFL

PCBSL_ASTQBL

PCBSW_ASTCNT

PCBsB_ASTACT

PCBsB_ASTEN

L!ST HEADER FOR

ENQUEUED ASTs

AVAILABLE AST QUOTA

1 BIT FOR EACH ACCESS MODE

(1 •AST ACTIVE)

1 BIT FOR EACH ACCESS MODE

(1 • AST DELIVERY ENABLED)

ACBs ARE ENQUlU[O IN ACCESS MODE ORDER

"""'I

-------- -

PC Ii

',.-- - '{_ ,, ,--------- -----,l
-~ ~-~ ' ~

I\ ACB ~ ACB ~ ACB ~ 4 ACB I\ l
ACB

rKOI 0 [l] [il CD -
'>0 so 50 !10 ~o so

t------- ---
..___

------....------- -
~

AST CONTROL BLOCK

!
! ASTQFL
!
!--
!
! ASTQBL
!

,-----~~~~--r--~~~~------,--------~~;~-------.
-~--

PIO

--
AST .

--!
!

ASTPRM

--
KAST

+--+

ACBSB_RMOD

7 6 5 4 1 0

+---~-~+--~---+------+------+--------------------·---·---+

_ACBSV_PKAST

___ ACBSV_NODELETE

______ ACBSV_QUOTA

________ ACBSV_KAST

l 1

TARGET
ACCESS

MODE

SPEClAL KERNEL MODE ASTS

1 CANNOT BE DISABLED THROUGH SSETAST

1 QUEUED AT FRONT OF AST QUEUE

1 DELIVERED THROUGH JSB AT IPL 2

t USED BY VMS EXEC AND UTILITIES

SGETJPI - READ INFORMATION ABOUT TARGET PROCESS

IOCSIOPOST - POST I/O COMPLETION IN PROCESS CONTEXT

EXESPOWERAST - QUEUE PROCESS-REQUESTED AST NOTIFICATION OF
POWER RECOVERY

DELTA - READ/WRITE VIRTUAL MEMORY OF TARGET PROCESS

SDA <ONLINE> - READ VIRTUAL MEMORY OF TARGET PROCESS

AST ROUTINE CALL FRAME

!
! 0 :FP:S?
;---------------------[·----------~----------
! MASK PSW , _____________________ ----------------------

' .
! SAVED AP ! , __ ,
. i
. SAVED FP ! , __ ,
' i

SAVED PC
!-------------------------~------------------!

REGISTERS
SPECIFIED BY
ENTRY MASK

---------------------------------------[~---~

--------------------------------------- ---- I I

AST PARAMETER
I

-----------------~-~------------------------

SAVED RO

SAVED Rl

-------------~~-~~-~~!-~~!~~~~~!(~-----.
PSL OF AST INTERRUPT !

ARGUMENT

LI ST

REI Return Erom Exception or !nterrupt

Operati~n:

tmpl <- (SP)+;
tmp2 <- (SP)+;

l Pick up saved PC
! and PSL

if rt~p2<!S> EOLU 1 AND tmp2<IPL> EOLU OJ OR
f t~p2<IPL> GTRU 0 AND tmp2<CUR MOD>! NEOU Ol OR
[tmp2<PRV MOO> LSSU tmp2<CUR ~OO>l OR
rtmp2<PSL-~BZ> NEOU OJ OR -
[tmp2<CUR-~OO> LSSU PSL<CUR MOD>1 OR
[tmp2<IS>-EQLU l AND PSL<IS) EOLU 0} OR
[t~p2<IPL> GTRU PSL<IPL>l then !reserved operand fault:

if !compatibility mode implemented} then
begin

end
else iE

if f t~p2<C~> EQL~ lJ AND
f [tmp2<FPD,rS,DV,FU,IV> NEQU OJ OR
r~mp2<CUR_MOD> ~EQU 3Il t~an [reserved operand fault;

f t~p2<C~> EOLU 11 then f reserv~d operand fault;

if PSL<IS> EOLU lI then IS? <- S? !save old stack pointer
else PSL<CUR MOD> S? <- SP;

if PSL<TP> EOtU l then tmp2<TP>-<- lT !TP <- !? or stack TP
PC <- tmpl;
PSL <-tmp2;
if PSL<IS> EOLU 0 then

begin
SP <- PSL<CUR MOO> SP; !switch stack
if PSL<CUR MOD> GEQU ASTLVL !check for AST delivery

tnen {request interrupt at I?L 2!;
end:

!check for software interrupts};
[clear instru:tl~n look-ahead}

SYSTEM MECHANISMS

AST Delivery

SPECIAL K
AST

KERNEL
AST ~~~
~ ~ ~

KERNEL EXEC SUPER USER

MKV84-2239

Figure 13 AST Delivery Order

• Delivery of an AST depends on:

The current access mode of the process
Whether the access mode of the AST is enabled
Whether an AST is already active in the same access
mode.

• Certain system ASTs have special precedence (special
kernel ASTs)

I/O completion
$GETJPI on another process

• REI checks for deliverability of pending ASTs

• Deliverability of ASTs is recorded in ASTLVL

• ASTLVL contains

Access mode of first deliverable AST in queue
(for example, ASTLVL = 1 for executive mode AST)

or, the value 4 if:

1.
/) 2.
\ 3.

There are no ASTs in the queue
AST delivery is disabled
An AST is active in the· same access mode

'

3-27

SYSTEM MECHANISMS

AST Delivery Sequence

Ex ceptlon/lnterrupt
Service Routine
(I.e. Scheduler)
e
e
REI

a,c,d No Ast
Delivered

IPL 2 INT
Generated

SCHSASTDEL:

(Recompute ASTLVL)
REI

Special K
AST

IPL:2

USER
AST

IPL:O

Figure 14 AST Delivery Sequence

Table 7 Rules for Selection of ASTs

Rule Example

a) ASTLVL > new access User AST (3) > kernel
mode

b) ASTLVL < new access Super AST (2) < - super
mode

c) Interrupt stack active (IS) bit set in PSL

access

access

d) Final IPL > 2 Process code at elevated IPL

3-28

mode (0)

mode (2)

(~2)

LOC~

• S1NCttl'ON%~&S Si.AfUNG 01'' Rt~OU"'t.'Si

• R!~O\J9'.C.I. - AN'fTM~Nc;. THAT C,.M 6£. G%VfN A N~/l\E...

• C l v t.T a.1t De." x c e NAM£.
' 0 E R z. v e.. 0 F Ro"' ,. Hr. p ATN w "~ ro T,. i. 0 E \/% 'c:

NOOE. $ Oe\I:

. s MAR! Q RE sou l\C & • Tl\U~T ., A" E.. UN% q" I N,. Ml.

A c ao ss T H !. c L " s T ! R

• C'1AA. Poci ED De" z c.! - ""'~,. 11Av1. r >'e s ~Ma NAM a
AC-.,O&S lH l C: 4.\J ST I~

THE DISTRIBUTED LOCK MANAGER

RESOURCES AND RESOURCE LOCKING

Definition of resources -- Any entity on VAX/VMS -- for example

o Files

o Data structures

o Data bases

o Anything that can be given a name and shared

Definition of locking

o Lock -- a process's request to access a resource

o Locks may be granted -- access permitted

o Locks may be waiting -- access pending (while access is
granted to another process)

o Used to prevent such things as one process reading from a
file while another is writing to it.

Program 1 Pr09f1m 2 Pr°""" 3

ZK-157·12

Figure 4-l Several Programs Sharing a File

4-7

•

•

•

THE DISTRIBUTED LOCK MANAGER

Lock Management System provided by VMS (Lock manager)

o Allows cooperating processes to synchronize access to
shared r~sources

o Provides a a queuing mechanism

o Consists of System Services

SENQ enqueue a lock, return, notify caller when
lock is granted by ~ST or Event f tag

SENQW -- enqueue a lock and wait until it is granted
(LEF)

$0EQ -- dequeue a lock

SGETLKI -- get lock information

Requirements to enqueue a lock

LKSB:

l. Resource name -- indicates which resource is to be locked

2. Lock mode -- indicates how the resource may be shared

3. Address of lock status block
status and lock identification
references to lock)

.BLKQ l

receives completion
(used for all future

quadword to contain
the lock status block

RESOURCE:
.ASCIO /MY_FILE/ the name of the resourc

•

$ENQW S LKMOOE•#LCKSR PRMOOE, -
LKSB•LXSB, - -

protected read mode

RESNAM•RESOURCE

Example 4-l A Simple Lock Request

4-8

THE DISTRIBUTED LOCK MANAGER

Operation of the lock manager

The lock manager compares the lock mode of newly requested lock to
the lock mode of other locks with the same resource name.

o If no other lock on same resource -- lock is granted

o -rf another process has compatible lock lock is granted

o If another process has incompatible lock
placed in a wait queue for the resource

lock is

o A process can change lock mode with SENQ.
conversion.

Called lock

Lock queues

If requested conversion is compatible with existing
locks -- conversion is granted

If requested conversion is incompatible with existing
locks lock is place in a conversion queue until
the existing incompatible lock is dequeued

o GRANTED

Contains those locks that have been granted

o WAITING

Contains those locks that are waiting to be granted

o CONVERSION

Contains those locks that are granted at one mode and
are vaiting to be converted to higher leek mode

4-10

41

MOde name

LCKSK_NLMOD!

LCKSK_CRMOD!

LCKSK_CWMODE

LCKSK_PRMOD!

LCKSK_PWMODE

LCK$K_EXMODB

THE DISTRIBUTED LOCK MANAGER

Table 4-1 The Six Lock Modes

Description

NULL MOD!. No access granted
to the resource. Serves as an
indicator of interest in a
resource and is converted to
higher.modes before for access.
It is quicker to convert an
existing lock than to
create a new lock.

CONCURRENT READ. Grants r'ead
access to resource. Permits
others to read and write at
same time.

CONCURRENT WRITE. Grants write
access to resource. Permits
others to read and write at
same time.

PROTECTED READ. Grants read
access to resource. Permits
others to read. No writers
are allowed. nshare lock"

PROTECTED WRIT!. Grants write
access to the resource. Allows
it to be shared with concurrent
read mode. No other writers
are allowed access. nupdate lockn

EXCLUSIVE. Grants write access
to the resource and prevents it
from being shared. "exclusive lockn

4-9

THE.DISTRIBUTED LOCK MANAGER

Table 4-2 Compatibility of Lock Modes

lllede •f Curr•ntly
Granted t.ck•

llL Cl c:w •• PW

., ye• yea yea yea Y••
Cl Y•• ye• yea yea yea

.... of Of yea yea yea no no

.. ., •• t ..
Loe•

••r to

NL --
Cl --
cw --•• --
PW --
IX --

•• yea

PW yea

II yea

C.cls llod••
Null lock
Concurrent read
Concurrent writ•
Protected read
Protected writ•
bcluaiv• .lock

COHVIMIOHI
QAAHTID

, ..
y••

no

NIW
LOCIC

QMHTID

WAITING LOCQ
QMNTID

NIW LOCK OUeJID

no yea

ftO no

"• no

WA.IT1HG

no

no

no

COWAT1ILI
CONVIMIOHI

CONVIMIONI
THAT AM

INCOWAT1ILI

Figure 4-2 Three Lock Queues

4-11

!X

yea

ftO

no

no

no

no

IMITlll
~llOURCI IYITIM
FU I A
JU2 I
DATAIAll 1 C

Resource trees -- the set of locks and resources that are common
to a given root. Resource trees describe a root resource, related
resources, and all locks on them.

!zample -- on systea A

l. FILE_l is locked

2. RECORD 1 and RECORD_2 are locked under FILE_l

3. FIELD l is locked under RZCORD 2 - -
This entire structure is called a resource tree. Any given
resource tr•• is entirely located on one system vhich is called
th• •••t•r syat••· (ie. It la said that this system is
•aasterin; the resource•)

This tend• to distribute the lockin9 activitf throughout the
cluster.

0--

Onlr one •r•tea (the resource master) maintains complete
information about a resource tree. All other systems only
aalntain infonaation about locks that they have an interest in.

lauple

1. System A ls dolng all locking 1ervic11 for entire cluster
on the r1aourc1 tr•• that lt la mastering. It holds the
aaater coples of ·locks held by reaote systems.·

2. Systems I and C only maintain information about locks
that they have acquired. They have the local copies of
locks that they hold. The resource master, if it is
another •r•t••· hold• a corresponding copy of that lock
called th~ •••t•r copf.

System A
M.ttet of
the rHource

System I
• Owec1ory for

Aetourct .Fiie 1 •
• Knowliedge

of wn.cn
1y1eem 11 ,,,.,,.,.,,.
IN retown ""

Syetem •• director,., .. .,,,
for thtl ~c

""-"•

The knowledge of vhich system is the master of a resource is
distributed in the VAXclust·er.

Each system maintains a partial directory that identifies ~hich
srste• is the master of certain resource trees.

A hashing algoritha i• used to convert a resource name into the
identity of the system that should be the directory system for
that resource.

The hashing algorithm is chosen at the time of cluster formation
and vhen nodes are added or removed from the VAXcluster. It must
be the same on all nodes.

It provides a distributed lookup point to identify vhich system is
mastering any given resource.

This directory is held in the lock database in memory and is not
to be confused vith a directory on • dlak.

,· 0

System I

THE DISTRIBUTED LOCK MA.NAGER

EXAM~L! LOCKING O~EU TtONS

Functillft

<) Loe:& F*t 1 -------­
@ Lodl "-cord 2

Function
Loci F-. 1

Loe& Record 1

Figure 4-8 Example of Locking Operations

4-22

-
f

THE DISTRIBUTED LOCK MANAGER

Annotation for Figure 4-8

A. PILB 1 locked on SYSTEM A
l. -Request for a lock on FILE l, the hash alglorithm

indicates that SYSTEM B shou!d be the directory system
for FILE l. - '

2. Message to Directory system -- "Who is mastering FILE l?"
3. No system is mastering FILE_l so SYSTEM_A is entered into

the root directory as master of FILE 1
4. Message to SYSTEM A "You are now mastering FILE l"
5. SYSTEM_A locks FILE_l -

B. RECORD l locked on SYSTEM A
6. Request for a lock on RECORD l
7. Lock is granted -- no CI -traffic since SYSTEM A is

mastering the resource

C. FILE 1 locked on SYSTEM C
8. -Request for lock on FILE l, the hash alglorithm indicates

that SYSTEM B should be the directory system for FILE l.
9. Message to Directory system -- "Who is mastering FILE-l?~

10. Message to SYSTEM c "SYSTEM A is mastering FILE i·-
ll. Message to SYSTEM-A -- "Could y lock FILE l?~ -
12. Lock is granted - -
13. Message to SYSTEM C -- "Lock is granted"
14. Lock data is also-kept locally

D. RECORD 2 locked on SYSTEM C
15. Request for lock on RECORD 2
16. SYSTEM C goes directly to SYSTEM A, since C already knows

that A-is mastering the resource-
17. Lock is granted
18. Message to SYSTEM C -- "Lock is granted"
19. ~ock data is also-kept locally

4-23

SYSTEM MECHANISMS

Synchronizing Access Using the VAX/VMS Lock Manager

• Allows cooperating processes to synchronize access to
shared resources

• Can be used system-wide or group-wide

• Lock manager is invoked with system services

$ENQ(W) [efn], lkmode, lksb, [flags], [resnam], [parid],
[astadr], [astprm], [blkast], [acmode], [nullarg]

$DEQ lkid, [valblk], [acmode], [flags]

• Provides a queuing mechanism

• To allow for maximum sharing

Locking at various levels of granularity
Provides several lock modes

• Lock manager uses event flags to signify completion

• Lock manager uses ASTs

Kernel ASTs to perform asynchronous operations in
context of the caller

Normal ASTs to notify of completion

• Detects locking deadlocks

• Limit on number of locks per process (ENQLM)

• used by

VAX-11 RMS to implement file and record locking

Image activator and INSTALL utility to synchronize
access to the known file database

Files-11 ODS-2 file system

3-29

SYSTEM MECHANISMS

Table 8 Data Structures Supporting the Lock Manager

Purpose

Describe a lock on the
system (owner PIO,
address of lock status
block)

Catalog all locks on the
system

Describe a resource
being locked (resource
name, lock queues, lock
value block, etc.)

Given a resource name,
locate the resource
block

Hold the listhead for
the process lock queue

Data
Structure

Lock Block
(LKB)

Lock ID Table

Resource
Bloc~ (RSB)

Resource Hash
Table

Software PCB

When
Created

When lock
requested

At !NIT

When first
lock placed
on resource

At !NIT

Process
creation

Can access the lock database in several ways:

Size

Fixed

LOCKIDTBL
LOCKIDTBL MAX

Fixed

RESHASHTBL

Fixed

• Given a resource name, use the resource hash table

• Given a lock ID, use the lock ID table

• · To access all locks of a process, use the lock queue on
the software PCB

3-30

SYSTEM MECHANISMS

Lock ID Table

LKB ::;o.-
.

RSB
• f+i.-

..... •
.... State Q ~ r -.

Granted
..._
....... ~OwnerQ~ ~

Conversion
Waltlna

:a RSB -

PCB

~ Owner Q

Figure 15 Relationships in the Lock Database

3-31

SYSTEM MECHANISMS

Reaource H••h
T•ble Lock ID T•ble

LKB --_....
:I :I

RSB
• !+, __: . "'" .. •

_..
_lt•t• Q -I

G~nted r+ ~Owner_g_-.....
Conversion
W•ltl~

~ ASB

·ri RSB -- LKB
• ... -- ::.-

_... --- • I I

--~ P•rent

W•ltlna
=t:t•t• :_g_ -..... : -. ~wner:_g_-t+- PCB

~ _l_arent

- RSI

~ Owner Q

Figure 16 Relationships Between Locks and Sublocks

3-32

38 VMS Level 2 for Field Service

3 ERROR HANDLERS {USER-SPECIFIED)

3.2 Search Sequence

l. PRIMARY EXCEPTION VECTOR for the MODE of the exception

2. SECONDARY EXCEPTION VECTOR for the ~ODE of the exception

3. All CALL FRAMES in the stack of the MODE of the exception

4. LAST CHANCE EXCEPTION VECTOR for the MODE of the exception

3.2.1 Setting up a Vector Address

Use the following system service macro call to set up an address in any of the three vector
locations for one mode.

SSETEXV_S vector. addres. (acmode]. [prvhnd]

Where the (] around an item means you do not have to specify a value because the macro
definition provides a default for you.

Vector= #0 to specify Primary Vector
1 to specify Secondary Vector
#2 to specify Last Chance Vector

Address = The address of your error handling routine.
The routine must have an entry mask because
the system is going to CALLG to it.

Ac mode = The mode you want to set the vector for.
This mode is maximized with the mode
you called the system service in.

Prvhnd = The location to store the previous contents of the vector.

3.2.2 Setting up a Call Frame Address

Use the following instruction to fill in the first location in the currently active call frame.

MOVAL address. (FP)

Address = The address of your error handling routine.
The routine must have an entry mask.

Internal Use Only

•

•

••

18 • Hardware-Detected Exception•
3.2 Search Sequence

3.3 Primary and Secondary Exception Vectors

Kernel Primary
Kernel Secondary
Executive Primary
Executive Secondary
Supervi1or Primary
Supervi1or Secondary
User Primary
User Secondary

0
0
0
0
0
0
0
0

of flet
CTLtAQ_!XCVEC:: 00

04
08
oc
10
14
18
lC

Figure 11: Primary and Secondary Exception. Vectors

3.4 Call Frame Specifying a Handler Address

SP G 0
1:0 s

R11 if Bit 11 i• Set in Entry Mask
\

RO if Bit 0 i• Set in Entry Mask

Updated PC After CALLx Instruction
FP (Address of Pr•vioua Call Frame)
AP Prior to the CALLx Instruction

::Initial SP Value

ENTRY MASK
11 :0>

PSL Prior to the CALLx Inst. PLW:
<16:0>

User Specified Handler Address Not Equal to Zero FP:

31302928 27 16 15 0

Figure 12: Call Frame

The Debugger creates a call frame with a handler before calling your image.
DCL also creates a call frame with EXE$CATCH _ALL as the handler address.

3.5 Last Chance Exception Vectors

of faet
CTLSAL_FINALEXC:: 00 Bugcheck, Fatal

39

Kernel Last Chance
Executive Last Chance
Supervisor Last Chance
User Last Chance

EXESEXCPTN
EXESEXCPTNE

0
EXESCATCH_ALL

04 Bugcheck, Nonfatal
08
OC Exit Image

Figure 13: Last Chance Exception Vectors

Internal Use Only

12 VMS Level 2 for Field Service
2 SYSTEM COMPONENTS

2.2.2 System Control Block and Addresses

VECTORS (BITS 1:0)

00 SERVICE ON KERNEL STACK UNLESS RUNNING ON INTERRUPT STACK
01 SERVICE ON INTERRUPT STACK

• • 10 SERVICE IN WCS, PASS BITS 15:2 TO MICRO PC
11 HALT

SYSTEM CONTROL BLOCK (SCSI

0
... 4

···8
c
10
14
18
lC
20
24
28
2C
30
34
38-3F
40
44
48
4C

UNUSED, RESERVED
MACHINE CHECK
KERNEL STACK NOT VALID
POWER FAIL
RESERVED/PRIVILEGED INSTRUCTION
CUSTOMER RESERVED INSTRUCTION
RESERVED OPERAND
RESERVED ADDRESSING MOOE
ACCESS CONTROL VIOLATION
TRANSLATION NOT VALID
TRACE (TP)
BREAKPOINT
COMPATIBILITY
ARITHMETIC
UNUSED, RESERVED
CHMK
CHME
CHMS
CHMU

SBI SILO COMPARE
CAD/RDS
SBIALERT
SBI FAU.LT

ABORT/FAULT/TRAP, PROCESSOR & ERROR.INFO PUSHED ON.SP
ABORT
INTERRUPT
FAULT.OP-CODES RESERVED TO DEC & PRIVILEDGEDllNST.
FAULT
FAULT/ABORT
FAULT
FAULT, VA CAUSING FAULT IS PUSHED ONTO STACK, REASON MASK
FAULT. VA CAUSING FAULT IS PUSHED ONTO STACK, REASON MASK
FAULT, ENABLED BY TON PREVIOUS INSTRUCTION
FAULT
TRAP, TYPE CODE PUSHED ON STACK (TABLE Al
TRAP. TYPE CODE PUSHED ON STACK (TABLE Bl

TRAP OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED
TRAP'. OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED
TRAP OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED
TRAP: OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED

EXESAL_ LOAVEC
EXESKERSTKNV
EXESPOWERFAIL
EXESOPCDEC
EXESOPCCUS
EXESROPRAND
EXESRADRMOD
E XESACVIOLAT
MMGSPAGEFAUL T
EXESTBIT
EXESBREAK
EXESCOMPAT
EXESARITH

EXESCMODKRNL
EXESCMODEXEC
EXESCMODSUPR
EXESCMUDOSER

so
54

·s8
·sc
·so

61-83
CPU TIMEOUT (VMS: ASYNCHRONOUS WRITE TIMEOUT)
UNUSED. RESERVED

84
88-BC
90-BC
co
C4-E4

°F8
°FC

FF
• 100.13c
•140.17C
• 1so.1Bc
•1CQ.1FC

SOFTWARE LEVEL 1
SOFTWARE LEVEL 2·3
SOFTWARE LEVEL 4-F
INTERVAL TIMER
UNUSED, RESERVED
CNSL RECEIVE INTR
CNSL TRANSMIT INTR
UNUSED, RESERVED
SBI REC 4
SBI REQ 5
SBI REQ 6
SBI REQ 7

• These offsets are 11/780-specific.
••interrupt serviced in WCS.

Go to 10EO which contains a RETURN 1 unless changed.
... Vector must select interrupt stack

REASON MASK BIT BREAKDOWN

BIT

0

2

VALUE

0
1

NA

MEANING

PROTECTION VIOLATION
LENGTH VIOLATION
NOT USED ON TRANSLATION
NOT VALID (PAGE FAULT)

0 NORMAL MEMORY
REFERENCE
REFERENCE TO A PTE

0 READING

WRITING

TABLE B

VAX· 11 N1tlve Mode Codes

CODE CONDITION

1 INTEGER OVERFLOW TRAP
2 INTEGER DIVIDE BY ZERO TRAP
3 FLOATING OVERFLOW TRAP
4 FLOATING DIVIDE BY ZERO TRAP
5 FLOATING UNDERFLOW TRAP
6 DECIMAL STRING OVERFLOW TRAP
7 DECIMAL STRING DIVIDE av ZERO TRAP

8 • 7 6 4 • 3 2 0

BR TR 00

PERIPHERAL INTERRUPT VECTOR

Figure 5: System Control Block and Addresses

Internal Use Only

TABLE A

Competlbillty Mode Codes

CODE CONDITION

0 RESERVED OP-CODE
1 BREAKPOINT
2 IOT
3 EMT
4 TRAP
5 ILLEGAL INSTRUCTION
6 ODD ADDRESS

MKVIM-2M3

•

•

•

SYSTEM MECHANISMS

EXCEPTIONS AND CONDITION HANDLING

PR$_SCBB

Software Interrupts

Clock and Console

:: EXE$GL_SCB

Device Interrupts

System Control Block

Figure 17 Exceptions and the SCB

• Exceptions are serviced by system routines

• Exception Service Routines (ESRs) are dispatched through
the SCB

3-33

SYSTEM MECHANISMS

Exception and Interrupt Dispatching

(
SOFTWARE)
DETECTED

EXCEPTION
DISPATCHER LIB$SIGNAL

(
HARDWARE)
DETECTED

EXCEPTION
MODULES

® SCB ---~·I @
©

~
• • •
~ ~1 ___ ----

® :

®

SEARCH ROUTINE

CONDITION
HANDLERS

Figure 18 Exception and Interrupt Dispatching

3-34

@

SYSTEM MECHANISMS

Notes on Figure 18

A. PSL, PC and 0 to 2 longwords pushed onto stack

B. Exceptions and interrupts always handled by VMS (for
example, page fault)

C. Exceptions that user may handle (for example, access
violation)

D. These exception routines complete the signal array by
pushing "SS$exception name" and "N" (total of longwords
now in signal array) onto the stack.

E. Detected and signaled by executive

F. The exception dispatcher

1. Builds mechanism array and argument

2. Invokes the search routine. Search order is:

a. Primary exception
b. Secondary exception
c. Call frames
d. Last chance

G. Alternate condition-handling mechanism

1. Signaled by RTL or a user calling LIB$SIGNAL or
LIB$STOP

2. Search mechanism - same as (F)-2.

3-35

SYSTEM MECHANISMS

ARGUMENT LIST SIGNAL ARRAY --l 2

.
] n

ADDRESS OF SIGNAL ARRAY CONDITION NAME

ADDRESS OF MECHANISM
FIRST SIGNAL ARGUMENT ARRAY

11ADDITIONAL ARGUMENTS FOR I.I
,,,CONDITION HANDLER, ,.,

IFANY

PC

PSL

MECHANISM ARRAY
--- l 4

ESTABLISHER FRAME

DEPTH

RO

R1

TK-5058 .

Figure 19 Condition Handler Argument List

3-36

SYSTEM MECHANISMS

HOW A USER EXECUTES PROTECTED CODE

Table 9 Executing Protected Code

Function Implementation

Protect memory from Hardware-maintained
read/write access modes

Change access mode Instruction

Enter system service, Call --> instruction
RMS, user-written
system service

3-37

Name

Kernel, executive,
supervisor, user

CHMx, REI

CALL x --> CHMx

SYSTEM MECHANISMS

Access Mode Transitions

CHMx:

REI:

Kernel

Figure 20 Access Mode Transitions

• Only way to move from less privileged to more privileged
access modes

• Only way to move from more privileged to less privileged
access modes

• Checks for illegal or unauthorized transitions

3-38

SYSTEM MECHANISMS

CHMx and REI Instructions

CHMx code-number

REI

• Stack pointer switches to new mode

• PSL, PC and sign-extended code-number pushed onto stack

Sign-extended code-number I+-- SP

PC of next instruction

Old PSL

MKV84-2241

Figure 21 Stack After CHMx Exception

• PSL zeroed (except for IPL, Current Mode, Previous Mode)

• Current mode of PSL moved to previous mode field

• Current mode changed to new mode

• New PC taken from system control block (SCB)

• Code-number determines routine to execute in new mode

• Replaces current PC and PSL with two longwords popped from
the stack. Before doing so,

Various checks are made to protect the integrity of
the system.

Checks for pending ASTs.

Checks for pending software interrupts.

After placing the PC and PSL in temporary registers,
the SP is switched to the appropriate access mode
based on the PSL current mode field.

3-39

SYSTEM MECHANISMS

REI Is Used in Various Situations

• To provide user-initiated access to system code and data:

CHMx code-number

REI

• To switch to compatibility mode:

PUSHL PSL (Bit 31 set)
PUSHL PC
REI

• TO dismiss any other exception

• To service and dismiss a hardware interrupt:

Hardware Interrupt (I PL 16 through 31)

REI

• To service and dismiss a software interrupt:

Software Interrupt (IPL 1 through 15)

REI

3-40

D •A AIJ~'
SYSTEM MECHANISMS ~ lUJt'.1

? ~-n:----'l
PO

Space
P1

Space
System Space

User Program

•
CALLx

• I •
•

I
I
I
I
I
I

System
Service Vector

SYS$service ::

entry mask

CHMx #code

I RET

I
I
I
I
I
I
I

Change
Mode Dispatcher

EXE$CMOOxxxx ::

1) Build call frame
2) Check argument

list

CA SEW
• • • offsets
• • •

process ille~al
g~~~ie mo e

Common Exit Path

Figure 22 Path to System Service

Service Specific
Procedure

EXE$service ::

entry mask

•

RET

System services that execute in kernel
modes are invoked by:

or executive access

1. A call to a system service vector.

2. A change mode instruction.

3. Dispatching through a CASE instruction in the CMODSSDSP
module.

3-41

SYSTEM MECHANISMS

Return From System Service

PO P1
I

Space Space I System Space

I
I

Change
Mode Dispatcher

System

I EXE$CMODxxxx ::
Service Vector

1) Build call frame Service Specific

User Program SYS$service ::

I
2) Check argument Procedure

entry mask list

• CHMx #code CA SEW
• I • • EXE$service ::

• CALLx offsets

I • entry mask
• • • • process ille~al

I
change mo e
codes

@
RET

I
I

•
REI

Figure 23 Return from System Service

4. Return through a common code sequence (SRVEXIT)

Checks return status code

Causes system service failure exception if service
failed and that feature was enabled

5. REI from CHMx exception service routine

6. RET for original CALL

3-42

SYSTEM MECHANISMS

· Nonprivileged System Service

PO
Space

User Program

•
•

CALLx

•
•

I
I
I
I
I
I

P1
Space

System
Service Vector

SYS$service ::

entry mask

JMP

@
I
I
I
I
I

System Space

Service Specific

Procedure

EXE$service ::

entry mask

RET

Figure 24 Nonprivileged System Service

1. Invoked with a CALL statement.

2. System services that do not require a change of access
mode have a simpler control passing sequence.

$FAO
Timer conversion services

3. These services are not checked by SRVEXIT for error status
codes.

3-43

SYSTEM MECHANISMS

Path to RMS

PO I P1 I
Space I Space I

I I
I I EXE CMODEXEC ::

RMS Service Vector

®
1 Build C•ll Fr•m•

I) Check Argument
Uat

Uaer Progr•m
SYSSHrvlc• ::

CA SEW

(j)I entry m .. k I • • • CHME •code • • I
OffHta

• BRB • • CALLx •
• I I

JSB

•
•

I I ommon Exit P•th

I I
I I
I

RMS Synchronlz•tlon

I Routine

I I
I I

Figure 25 Path to RMS

1. Same path as executive mode system service

2. Same as 1

RMS Dlap•tcher

RMSSDISPATCH:

CASEW--...
• • •

OffHta
• • •

S Service Specific
Procedure

RMS$Hrvlce ::

entry m••k

• •
• •
• •

RET

3. Falls off end of system service case table, so JSB to RMS
case table

4. Dispatch to RMS procedure

3-44

SYSTEM MECHANISMS

Return from RMS

PO
Space

Uaer Program

• • •
CALLx

•
•
•

@

P1
Space

RMS Service Vector

SYSSHrvlce ::

MS Synchronization
Routine

RMSCHK_STALL: -~ .
• • ._ ... ___ .._ __ RET

I
I
I
I
I
I
I

®I
I Com n Exit Path

""' SRVEXIT: '--
• • • REI

Figur~ 26 Return from RMS

5. Same path as system service

6. Same as 1

RMS Service Specific
Procedure

RMSS1ervlce ::

eJ1try ma.all

•
•
•

RET

7. Extra step to manage the synchronous nature of most RMS
I/O operations

8. RET for original CALL

3-45

SYSTEM MECHANISMS

Path to User-Written Service (1)

VECTORS

DISPATCH ER

PO
SPACE

User Program

•
•
•

CALLx

•
•
•

f;.. .ENTRY
CHMX
RET

• • •
CASE . . .
offsets . . .

RSB

. ENTRY . .

I
I
I
I
I
....
I

I
I
I

I

P1
SPACE
JSB A

RSB

@

I I
l
I
I
I
I
I
I
I

SYSTEM
SPACE

Change Mode
Dispatcher

~ EXE$CMODxxxx ::
1 l Build call frame
2) Check argument

list
. CASEW

• • •
offsets

• • •
JSB
process illegal
change mode codes

• • •
Common Exit Path

SRVEXIT:

• • •
REI .

I I ES RET PROCEDUR

1.

. . .
I I

Figure 27 Path to User-Written System Service
(Part 1)

To find the appropriate
program calls a global
vector.

user-written service, a user
symbol defining a service entry

2. A change mode instruction with a negative code causes the
change mode dispatcher to look for system service
dispatchers that were linked with the image.

3-46

SYSTEM MECHANISMS

Path to User-Written Service (2)

VECTORS

PO
SPACE

User Program

•
•
•

CALLx

•
•
•

. ENTRY
CHMX
RET

• • •
CASE .

©

P1
SPACE
JSB A

RSB

+-
I
I
I

3

I
@

I
1
T

I

SYSTEM
SPACE

Change Mode
Dispatcher

EXE$CMODxxxx ::
1) Build call frame
2) Check argument

list
CA SEW

•
•
•

offsets

•
•
•

JSB
process illegal
change mode codes

•
•
• DISPATCHER offsets . I Common Exit Path .

® .
RSB

. ENTRY .
SRVEXIT:

I • • •
REI

PROCEDURES RET I
I

3.

Figure 28 Path to User-Written System Service
(Part 2)

Code for user-written system service causes JSB at end
case table to be executed.

of

4. When a request
dispatcher passes
the routine.

can be
control

serviced, the user-written
through a CASE instruction to

5. Same as 4.

3-47

SYSTEM MECHANISMS

Return from User-Written System Service

®

VECTORS --
DISPATCHER

PROCEDURE s

PO
SPACE

User Program

•
• •

__.. CALLx ,... •
•
•

. ENTRY
CHMX

lo- RET ~

• • •
CASE .

• • offsets
• • •

RSB

. ENTRY . .
•

RET . . .

I
I
I
I
I
I

f
I
I
I

I

I

®

P1
SPACE
JSB A

RSB I I
I
I
I
I
I
I
I
I
l
I

SYSTEM
SPACE

Change Molj1e
Dispatcher

EXE$CMODxxxx ::
1) Build call frame
2) Check argument

list
CASEW

• • •
offsets

• • •
JSB
process illegal
change mode codes

•
• •

Common Exit Path

~ SRVEXIT:

• • •
REI

Figure 29 Return from User-Written System Service

6. When· the user-written routine exits, it passes control to
SRVEXIT, as the supplied system services do.

7. The rest of the return path to the user program is similar
to the steps for the supplied system services.

8. Same as 7.

3-48

Two Dispatchers

VECTORS

DISPATCHER

PROCEDURES

VECTORS

DISPATCHER

PROCEDURES

PO
SPACE

User Program

•

. ENTRY
CHMX
RET
• • •

CASE
• • • offsets
• • • RSB

. ENTRY
• • •

RET .
• •

•
•

CALLx

•
•
•

SYSTEM MECHANISMS

P1
SPACE
JSB A

JSB 8

RSB

Figure 30 Two Dispatchers

SYSTEM
SPACE

Change Mode
Dispatcher

EXE$CMODxxxx ::
1) Build call frame
2) Check argument

list
CA SEW

•
• •

offsets

• • •
JSB
process illegal
change mode codes

• • •
Common Exit Path

SRVEXIT:

• • •
REI

• Multiple dispatchers can be linked to an image.

• Dispatchers are searched in order activated.

• Duplicate CHMx code numbers possible.

Only first occurrence recognized.

3-49

SYSTEM MECHANISMS

MISCELLANEOUS MECHANISMS

Dynamic Memory

USED

Size of this Block

r::

First Unused
Block

USED

Next Unused
Block

~---:1--.

Beginning of Pool Area
(Fiiied In When
System Is lnltlallzed)

0

Address of First
Free Block
(Modified by Allocation
and Deallocation Routines)

(Zero In Pointer
Signifies End of List)

Figure 31 Paged Dynamic Memory

• Used for the management of data structures that must be
allocated and deallocated after the system or process is
initialized.

• Free blocks are stored in order of ascending addresses.

• Number of bytes allocated for paged pool determined by
SYSGEN parameter PAGEDYN.

3-50

Allocating Nonpaged Pool

Rest of
Nonpaged
Pool

•••

•••

•••

Figure 32

SYSTEM MECHANISMS

4 e:: MMG$GL_NPAGEDYN

:: EXE$GL-NONPAGED +4

:: IOC$GL_LRPFL

:: IOC$GL_IRPFL

:: IOC$GL_SRPFL

Allocating Nonpaged Pool

3-51

SYSTEM MECHANISMS

Relevant SYSGEN Parameters for Nonpaged Pool

Table 10 SYSGEN Parameters for Nonpa9ed Pool

Function Parameter

Number of bytes preallocated for the nonpaged NPAGEDYN
dynamic pool, exclusive of the lookaside lists

Number of bytes to which the nonpaged pool may NPAGEVIR
be extended.

Number of large request packets preallocated for LRPCOUNT
the LRP lookaside list.

Number of LRPs to which the LRP list may be LRPCOUNTV
extended.

Number of bytes to allocate per LRP, exclusive of LRPSIZE
header. Number of bytes actually allocated per
packet is LRPSIZE + 64.

Size of minimum allocation request for LRP (bytes) LRPMIN

Number of I/O request packets preallocated for IRPCOUNT
the IRP lookaside list.

Number of IRPs to which the !RP list may be IRPCOUNTV
extended.

Number of small request packets preallocated for SRPCOUNT
the SRP lookaside list.

Number of SRPs to which the SRP list may be SRPCOUNTV
extended.

Number of bytes to allocate per SRP. SRPSIZE

3-52

SYSTEM MECHANISMS

Notes on Table 1 O

• System page table entries are reserved and physical memory
preallocated for NPAGEDYN, LRPCOUNT, IRPCOUNT, and
SRPCOUNT.

• System page table entries are reserved but no physical
memory preallocated for NPAGEVIR, LRPCOUNTV, IRPCOUNTV,
and SRPCOUNTV. Physical memory is allocated on demand
from the free page list if there is enough excess memory.

• Size of IRPs is 208 bytes.

• LRPMIN is a special parameter.

3-53

SYSTEM MECHANISMS

SUMMARY OF SYSTEM MECHANISMS

Table 11 Function and Implementa~ion of System
Mechanisms

Function Implementation

Keeping Track of CPU, Process State

Store processor
state

Store, restore
process state

Register

Instruction

Handling and Uses of Interrupts

Arbitrate interrupt
requests

Service interrupts
and exceptions

Synchronize execu­
tion of system
routines

Request an interrupt

Synchronize system's
access to system
data structures

Continue execution
of code at lower-
pr ior i ty

Hardware-maintained
priority

Table of service
routine addresses

Interrupt service
routines

MACRO

MACRO-raise IPL to
IPL$_SYNCH

Queue request,
SOFTINT, REI

How User Executes Protected Code

Protect memory from
read/write

Change access mode

Hardware-maintained
access modes

Instruction

Enter system service, Call --> instruction
RMS, user-written
system service

3-54

Name

Processor status
longword (PSL)

SVPCTX, LDPCTX

Interrupt priority
level (I PL)

System control block
(SCB)

Timer, SCHED, IOPOST ••

SOFT INT

SETI PL

FORK

Kernel, Executive,
Supervisor, User

CHMX I REI

CALL x --> CHMx

SYSTEM MECHANISMS

Table 11 Function and Implementation of System
Mechanisms (Cont)

Function

Process Synchronization

Synchronize certain
system-level
activities of
processes

Allow process to
request action at
a specific time

Synchronize access
to data structures
by processes

Allow process to
execute procedure
on completion of
event

Allow processes to
synchronize access
to various resources

Implementation

Adjusting IPL
(SETIPL macro)

Queue of requests and
hardware and software
timer interrupts

Semaphore

REI
IPL2 interrupt
service routine

$ENQ(W) and $DEQ
system services

3-55

Name

IPL

Timer queue

MUTEX

Asynchronous
system trap (AST)

VMS lock manager

SYSTEM MECHANISMS

SYSGEN Parameters Related to System Mechanisms

Table 12 SYSGEN Parameters Related to System Mechanisms

Function Parameter

Size of

Initial

Maximum

Initial

Maximum

the interrupt stack (in pages)

size of non paged pool (no lookaside

size of non paged pool

number of LRPs

number of LRPs

lists)

INTSTKPAGES

NPAGEDYN

NPAGEVIR

LRPCOUNT

LRPCOUNTV

Bytes in LRP (exclusive of header) LRPSIZE

Size of minimum allocation request for LRP (bytes) LRPMIN (*)

Initial number of IRPs IRPCOUNT

Maximum number of IRPs IRPCOUNTV

Initial number of SRPs SRPCOUNT

Maximum number of SRPs SRPCOUNTV

Number of bytes to allocate per SRP SRPSIZE (*)

Initial size of Lock ID Table LOCKIDTBL

Maximum size of Lock ID Table LOCKIDTBL MAX

Max. number of entries in Resource Hash Table RESHASHTBL

Deadlock detection timeout period DEADLOCK WAIT

Number of retries for multiprocessor lock LOCKRETRY (*)

(*) = special SYSGEN parameter

3-56

SYSTEM MECHANISMS

APPENDIX A

COMMONLY USED SYSTEM MACROS

IPL Control Macros

.MACRO

.ENDM

.MACRO

.ENDM

.MACRO

.ENDM

• MACRO

.ENDM

SETIPL IPL
• IF NB IPL
MTPR IPL,SA#PR$_IPL
.IFF
MTPR #31,SA#PR$_IPL
.ENDC
SETI PL

DSBINT IPL,DST
.IF B DST
MFPR SA#PR$_IPL,-(SP)
.IFF
MFPR
.ENDC
.IF B
MTPR
.!FF
MTPR
.ENDC
DSI;HNT

SA#PR$_IPL,DST

IPL
#31,SA#PR$_IPL

IPL,SA#PR$_IPL

ENBINT SRC
• IF B SRC
MTPR (SP)+,SA#PR$_IPL
.IFF
MTPR
.ENDC
ENBINT

SRC,SA#PR$_IPL

SOFTINT IPL
MTPR IPL,SA#PR$_SIRR
SOFT INT

Example 1 IPL Control Macros

3-57

SYSTEM MECHANISMS

Argument Probing Macros

.MACRO IFRD SIZ,ADR,DEST,MODE=#0
PROBER MODE,SIZ,ADR
BNEQ DEST

.ENDM IFRD

.MACRO IF NORD SIZ,ADR,DEST,MODE=#0
PROBER MODE,SIZ,ADR
BEQL DEST

.ENDM IF NORD

.MACRO IFWRT SIZ,ADR,DEST,MODE=#0
PROBEW MODE,SIZ,ADR
BNEQ DEST

.ENDM IFWRT

• MACRO IF NOW RT SIZ,ADR,DEST,MODE=#0
PROBEW MODE,SIZ,ADR
BEQL DEST

.ENDM IF NOW RT

Example 2 Argument Probing Macros

3-58

SYSTEM MECHANISMS

Privilege Checking Macros

.MACRO IFPRIV PRIV,DEST,PCBREG=R4
.IF DIF <PRIV>,<Rl>
.IF DIF <PRIV>,<R2>
BBS #PRV$V_'PRIV,@PCB$L_PHD(PCBREG),DEST
.IFF
BBS
.ENDC
.IFF
BBS
.ENDC

PRIV,@PCB$L_PHD(PCBREG) ,DEST

PRIV,@PCB$L_PHD(PCBREG) ,DEST

.ENDM IFPRIV

.MACRO IFNPRIV PRIV,DEST,PCBREG=R4
.IF DIF <PRIV>,<Rl>

.ENDM

.IF DIF <PRIV>,<R2>
BBC #PRV$V_'PRIV,@PCB$L_PHD(PCBREG),DEST
.!FF
BBC PRIV,@PCB$L_PHD(PCBREG),DEST
.ENDC
.IFF
BBC
.ENDC
IFNPRIV

PRIV,@PCB$L_PHD(PCBREG) ,DEST

Example 3 Privilege Checking Macros

3-59

Table 13

Symbol Name

CTL$GQ_PROCPRIV

PCB$Q_PRIV

PHD$Q_PRIVMSK
(PHD base address)

PHD$Q_IMAGPRIV

PHD$Q_AUTHPRIV

SYSTEM MECHANISMS

APPENDIX B

PRIVILEGE MASK LOCATIONS

Privilege Mask Locations

use

Process permanent mask
Altered by SET PROCESS/PRIV= command
Used to reset current masks

Current mask, permanently resident
Altered by known image activation
Altered by $SETPRV system service
Reset by image rundown

Current mask, swappable
Altered by known image activation
Altered by $SETPRV system service
Reset by image rundown
Used by IFPRIV, IFNPRIV macros

Mask of installed known image
ORed with CTL$GQ PROCPRIV to
produce current masks

Mask defined in authorization file
Not changed during life of process

3-60

SYSTEM MECHANISMS

APPENDIX C

THE REI INSTRUCTION

The REI instruction results in a reserved operand fault if any
one of the following operations is attempted:

1. Decreasing the access mode value (to a more privileged
access mode). (This is a comparison of the current mode
fields of both the present PSL and the saved PSL on the
stack.)

2. Switching to the interrupt stack from one of the four
perprocess stacks.

3. Leaving the processor on the interrupt stack in other than
kernel access mode.

4. Leaving the processor on the interrupt stack at IPL 0.

5. Leaving the processor at elevated IPL (IPL > 0) and not in
kernel access mode.

6. Restoring a PSL in which the previous mode field is more
privileged than the current mode field (previous mode <
current mode) •

7. Raising I PL.

8. Setting any of the following bits - PSL<29:28> or PSL<21>
or PSL<l5:8>.

When the processor attempts to enter compatibility mode, the
following checks are made:

1. The first-part-done bit must be clear.

2. The interrupt stack bit must be clear.

3. All three arithmetic trap enables (DV, IV, and FU) must be
clear.

4. The current mode field of the saved PSL must be user
access mode.

3-61

SYSTEM MECHANISMS

If all the preceding checks are performed without error, the
REI microcode continues by:

1. Saving the old stack pointer (SP register) in the
appropriate processor register (KSP, ESP, SSP, or USP).

2. Setting the trace pending bit in the new PSL if the trace
pending bit in the old PSL is set.

3. Moving the contents of the two temporaries (note 1 above)
into the PC and PSL processor registers.

If the target stack is a perprocess stack:

1. Getting the new stack pointer from the corresponding
processor register (KSP, ESP, SSP, or USP)

2. Checking for potential deliverability of pending ASTs.

3-62

Debugging Tools

DEBUGGING TOOLS

INTRODUCTION
Since VMS runs in executive and kernel modes and at elevated

interrupt priority levels, any error is considered serious, and
can cause a system crash.

VMS offers several tools to aid in debugging system level
code. These tools are:

• SDA - a symbolic dump analyzer

• DELTA - a debugger for code running in operating modes
from user to kernel.

• XDELTA - a debugger for kernel mode code running at
elevated IPLs.

OBJECTIVES
1. To use various system-supplied debugging tools and

utilities (for example, SDA, DELTA, XDELTA) to examine
crash dumps and to observe a running system.

2. To use the system map file as an aid in reading source
code, and identifying the source of system crashes.

RESOURCES
1. VAX/VMS System Dump Analyzer Reference Manual

2. VAX/VMS Internals and Data Structures, chapter on Error
Handling

3. VAX/VMS PATCH Utility Reference Manual

4. VAX Hardware Handbook

5. Guide to Writing a Device Driver for VAX/VMS

4-3

DEBUGGING TOOLS

TOPICS

I. VAX/VMS Debugging Tools

II. The System Dump Analyzer (SDA)

A. Uses

B. Requirements

C. Commands

III. The System Map File

IV. - Crash Dumps and Bugchecks

A. How bugchecks are generated

B. Sample stacks after bugchecks

C. Sample crash dump analysis

v. The DELTA and XDELTA Debuggers

4-4

DEBUGGING TOOLS

VAX/VMS DEBUGGING TOOLS

Table 1 Environment vs. Debugging Tools

Problem/Environment Method of Analysis

Program IPL=O,
user mode
Examine perprocess memory

Program IPL = O,
user to kernel mode

Examine process
and system memory

Examine active
system

Examine a Crash file

Program IPL > 0

VAX/VMS Symbolic Debugger
(Linked with image or
included at run time)

DELTA debugger
(Linked with an image or
included at run time)
Nonsymbolic

System Dump Analyzer (SDA)
Activated from DCL

System Dump Analyzer (SDA)
Activated from DCL

XDELTA DEBUGGER
(Linked with VMS, run from
console terminal only)
Nonsymbolic

• VAX/VMS provides several debugging tools

• Method of analysis depends on

Program environment

Nature

4-5

DEBUGGING TOOLS

THE SYSTEM DUMP ANALYZER (SDA)

• The System Dump Analyzer (SDA) is used to examine:

The system dump file (SYS$SYSTEM:SYSDUMP.DMP)

A copy of the dump file containing previous crash
information

The active system

• Through the SDA, information can be:

Displayed on a video terminal

Printed on a hard-copy terminal

Sent to a file or line printer

• Requirements for running SDA

VIRTUALPGCNT must be size of SYSDUMP.DMP plus 3000
{pages)

PGFLQUOTA must be size of SYSDUMP.DMP plus 2000
{pages)

To examine the active system, the CMKRNL privilege is
needed

To examine a dump file, read access to the file is
needed

4-6

DEBUGGING TOOLS

Table 2 Examining Crash Dump or Current System

To Examine

Current System

System Dump File
or
Other Dump File

Command

$ ANALYZE/SYSTEM

$ ANALYZE/CRASH_DUMP

• SDA Functions

Restrictions

CMKRNL priv
needed

Read access to
file needed

Examine locations by address or symbol

Displays process/system data

Formats and displays data structures

Assigns values to symbols as requested

• Command Format

SDA> command [parameter] [/qualifier]

4-7

DEBUGGING TOOLS

3DA Functions and Commands

Table 3 SDA Functions and Commands

Function Command

Information

Provides help using SDA

Displays specific
data/information

Formats and displays
data structures

Displays contents of
location(s)

Manipulation

Preserves second copy
of dump file

Creates and defines symbols

Performs computations

Sets/resets defaults

Defines other VMS symbols

Repeats last command

HELP

SHOW

FORMAT

EXAMINE

COPY

DEFINE

EVALUATE

SET

READ

REPEAT
or
<Keypad

4-8

O>

DEBUGGING TOOLS

Table 4 SDA Commands Used to Display Information

Function

The last crash

I/O data structure

Contents of dump
file header

Resource locks

System page table

PFN database

Dynamic pool

Process-specific
information

Lock manager
resource database

Command

SHOW CRASH

SHOW DEVICE

SHOW HEADER

SHOW LOCK

SHOW PAGE TABLE

SHOW PFN DATA

SHOW POOL

SHOW PROCESS

SHOW RESOURCE

RMS display options SHOW RMS

Stacks

Summary of all
processes

Symbol table

SHOW STACK

SHOW SUMMARY

SHOW SYMBOL

4-9

Comments

Dump file only

Device name parameter
optional;
/ADDRESS=n

/ALL

/GLOBAL, /SYSTEM
/ALL (D)

/FREE, /MODIFIED
/SYSTEM, /BAD
/ALL (D)

/IRP, /NONPAGED
/PAGED, /SUMMARY,
/ALL (D)

/PCB (D), /ALL,
/CHANNEL, /INDE.X=n,
/LOCKS, /PO, /Pl,
/PAGE TABLES, /PHD,
/PROCESS SECTION TABLE,
/REGISTERS, /RMS~
/SYSTEM, /WORKING_SET

/ALL, /LOCKID=nn

/INTERRUPT, /KERNEL
/EXECUTIVE, /SUPER
/USER

/IMAGE

Symbol-name parameter
optional; /ALL

DEBUGGING TOOLS

Table 5 Symbols and Operators

Function

Contents of location

Add 80000000 (S0 base)
to address

Add 7FFE0000 (Pl
stacks) to address

Current location

Hexadecimal number
radix

Octal number radix

Decimal number radix

Symbol or
Operator

@

G

H

"o

"D

Register symbols R0-Rll, AP, FP,
KSP, ESP, SSP, USP,
P0BR, POLR, PlBR,
PlLR, PC, PSL

Example

Examine @8000045A

G45A

H7A4

Format •

"020

"Dl6

Table 6 Common Command Usage

Function

Examine
location(s)

Examine address
at location

Format data

Define symbol

Command Comment

EX . One location
EX Gl4:G74 Several locations

EX @USP Examine address found
contained in given
location

Format addr Format at given location
Format @addr Format at contents addr

Define BEGIN = G580

4-10

DEBUGGING TOOLS

Examining an Active System

$ ANALYZE/SYSTEM

VAX/VMS S~stem Anal~zer

SDA> EVALUATE G+<S0*4>-C412>+~07

He~-: = 80000145
SDA>

Decimal = -2147483323

SDA> EXAMINE G25CO
SCH$GL_NULLPCB+118t OOOOE274
SDA>
SDA> EXAMINE
SCH$GL_NULLPCB+11C: 00000000
SDA>
SDA> EXAMINE ! used ke~Pad
SCH$GL_NULLPCB+120: FFFFFFFF
SDA>
SDA> EXAMINE ! used ke~Pad
SCH$GL_NULLPCB+124: FFFFFFFF
SDA>
SDA> EX IOC$GL-DEVLIST
IOC$GL_DEVLIST: 80000F5C
SDA>
SDA> EX RO
RO: 00000020 ...
SDA>
SDA> EX/PSL PSL

O t6 repeat last command
••• +

0 to repeat last command

CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C
0 0 0 0 USER USER 00 0 0 0 O 0 1 0 O

SDA>
SDA> EVALUATE/CONDITION C
ZSYSTEM-F-ACCVIQ, access violation, reason mask=!XB,
virtual address=!XL, PC=!XL, PSL=!XL
SDA>
SDA> EX G100tG140
00040019 8FBCOOFC 00040018 8FBC003C <.< ••••• !.<+••••
0004001B 8FBC07FC 0004001A BFBCOOFC l.< ••••• 1.<•••••
0004001D 8FBCOFFC 0004001C BFBCOOFC 1.< ••••• 1.<•••••
0004001F ~FBC003C 0004001E BFBC01FC I.<•••••<•<•••••
00040021 8FBC01FC 00040020 BFBC0010 •• < ••••• 1.<.! •••

80000100
80000110
80000120
80000130
80000l.40

Example 1 Examining an Active System (Sheet 1 of 5)

4-11

DEBUGGING TOOLS

SDA> SHOW PROCESS
Process index: 0044 Name: HUNT Extended PID: 00000144

Process status: 02040001 RESrPHDRES

PCB address
PHii address
Master internal PID
Internal PIII
Extended PII•
State
Current Priorit~
Base Priorit~
UIC
Mutex count
Waitins EF cluster
Startins wiit time
Event f las wait mask
Local EF cluster 0
Local EF cluster 1
Global cluster 2 Pointer
Global cluster 3 Pointer

SDA>
SDA> SHOW LOCK
Lock database

80126730
80507800
00020044
00020044
00000144

CUR
7
4

[011'140]
0
0

1B001B1B
DFFFFFFF
E0000023
I!8000000
00000000
00000"000

JIB address
SwaPfile ~isk address
Subprocess count
Creator internal PID
Creator extended PID
Termination mailbox
AST's enabled
AST '.s active
AST's remainins
Buffered I/O count/limit
Direct I/O count/limit
BUFIO b~te count/limit

B02001DO
01001C81

0
00000000
00000000

0000
KESU
NONE

7
6/6
6/6

t open files allowed left
Timer entries allowed left
Active PaSe table count

7840/7840
36
10

0
Process WS PaSe count
Global WS Pase count

250
50

Lock id:
Par. id:

00010001
00000000

0

PHI: 00000000
Granted at EX

Fl ass: NOQUEUE SYNCSTS SYSTEM
CVTSYB

S1JblocY..s:
LKB:
Reso1Jrce:

Lensth

80257540
5F535953

16
Exec. mode
s~stem

00000000
00000000
00000000

Local COP~

24535953
00004449
00000000
00000000

SYS$SYS_
ID ••• • • ·•

Lock id:
Par. id:

00020002
00000000

0

P ID: 000·00000
Granted at CR

Fl ass:

S•Jbloclt~s:
LKB: 80257A80 BLKAST
Resource:

Lensth 18
Kernel mode
s~stem

Local COP~

41566224 42313146
20334C52 534D5658
00000000 00002020
00000000 00000000

F11B$bVA
XVMSRL3

Status: NOQUOTA

CONVERT NOQUEUE SYNCSTS
NOQUOTA CVTSYS

Status: NOQUOTA

Example 1 Examining an Active System (Sheet 2 of 5)

4-12

DEBUGGING TOOLS

SDA> READ OSI$LABS:GLOBALS
SDA>
SDA> FORMAT @EXE$GL_TQFL
80108524 TGE$L_TQFL
80108528 TQE$L_TQBL
8010852C TQE$W_SIZE
8010852E TQE$B_TYPE
8010852F TQE$B_RQTYPE
80108530 TQE$L_FPC

80108534

80108538

8010853C.
80108540
80108544
80108548
8010854C
8010854D
8010854£
80108550

SDA>

TQE$L_F'HI
TGE$L_AST
TQE$L_FR3
TQE$L_ASTPRM
TGE$L_FR4
TGE$Q_ TIME

TGE$Q_DELTA

TGE$B_RMOD
TGE$B-EFN

TGE$L_RQPID
TGE$C_LENGTH

SDA> FORMAT @.
8011B040 TQE$L_TQFL
8011B044 TQE$L_TQBL
8011B048 TQE$W_SIZE
8011B04A TQE$B_TYPE
8011B04B TQE$B_RQTYPE
8011B04C TQE$L_FPC

8011B050

8011B054

8011B058
8011B05C
8011B060
8011B064
8011B068
8011B069
8011B06A
8011B06C

TQE$L_PIIt
TGE$L_AST
TGE$1--FR3
TQE$L_ASTf'RM
TGE$L_FR4
TGE$Q_ TIME

TQE$G:...DELTA

TGE$B_RMOD
TGE$B-EFN

TGE$L_RQf'IIl
TGE$C_LENGTH

8011B040
80002B58

0030
OF

05
80107F36

802002B4

802002AO

90DE[l860
008D1C99
00989680
00000000

00
00

000()
00000000

80106918
80108524

0000
OF

05
80118£11

00000000

8011AE10

924[10E60
008D1C99
00989680
00000000

00
00

0000
00000000

Example 1 Examining an Active System (Sheet 3 of 5)

4-13

5DA> SHOW POOL/IRP

CONF 801ED600

FCB 801ED940

IRP 801EDA10

FCB 801EDC80

JIB 801EDil50

Example 1

208

208

208

208

208

DEBUGGING TOOLS

IlumP of blocks allocated from IRP lookaside list

28106COO 0763009C 00000000 00000000
80029200 00380000 00002020 00000000
8002C800 80029800 80029600 80029400
8002DOOO 8002CEOO 8002CCOO 8002CAOO
8002F400 8002F200 8002FOOO 8002EOOO
00000000 80030AOO 8002F800 8002F600
00000000 00000028 00000010 0000006C
00000020 00000000 00000000 00000000
00000000 00000000 00000000 00000020
00000000 00000000 00000038 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

••••••••••c •• 1.(
•••• 8 •••••

•••••••••••••H••
.J ••• L ••• N •• ,p,.
•'••+P+++r+++t+•
+V+++!·~++++••••••

1 ••••••• (•••.••••
+ • • • • • • • • • • • • + •
•••• a •••••••••••
+ + ...

·············••t
•••••••••••• + •• t

00000000 000700CO 801FC5BO
00010001 00010001 80259340
00000001 00000000 002E08ED
00000001 00000002 0003DAD9
000008ED 00000000 00000000
00000000 00010004 00000000
FFFFFFFF FFFFFFFF 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000

801EF5BO· O•J• +OE •• @ •• ,, •••

80259340 @.r..@.r. •••••••••
00000000 •••• m •••••••••••
00000000 •••• vz ••••••••••
00000000 •••••••••••• m •••
00000000 ••••••••••••••••

00030029 410AOOC4
8010AAEO 00000000
80121BFO 0003FFBO
11010001 00000000
00000000 802575AO
4946204E 801159F4
0003002A 20020000
00000000 00000000
2061206F 74206465
00000004 00000200
00208001 00000000
00000000 00000201
00000000 00000000

00000000
00000000
00000001
00000040
OOOOOOD7
00000000
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
·00000000

000700CO
00010001
00000000
00000040
00000000
00010004
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000

05490058
OOOOEAOO
00000000
00000000
00000000
00000000
00000000

X • I •••••••••••••
• j ••••••••••••••
••••••••••••••• +

••••••• + ••••••••
80002A58 801F59AO .v •• x* .. D •• A> •••
7FFC6928 800394E8 h ••• < i I •• , •• '*,.
7FFC6934 1B1ItCOOO .@. +4i I .o. • +P+ • •
00000000 0100014F O+••••••••••••••
00900820 00001200 t t t t + t t t IJY. t t t t t

244C4C41 0003520F .R •• ALL$tY •• N FI
8011F470 0000454C LE++Pt ••••• *•••
7FFBOOCO 7FFBOCF8 x.{.@,{,, •••••••
FA081603 03030000 ••••••• zed to a
08020054 4E495250
02000000 00000003
OOOOFFFF 64280100
00000000 00000000

80202B40 801EDEFO
80261D40 80261D40
00060007 00000001
0003D2C3 00000000
00000000 00000000
00000000 00000000
00000000 05490058
00000000 OOOOAOOO
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

PRINT •••• ••.• •••
• • • • • • • • • • • • • • +

•• (d ••••••••••••
•••••••• + •••••••

p"', .@+ .@ •••••••

@.&.@.& •••••••••
•••• w •••••••••••
• • •• CR •• @ ••• @ •• •

•••••••••••• w • ••
X. I •••••••••••••
••• + ••••••••••••

4F56414C ~02F0080 801EDD50 801EDil50 PJ,,pJ,,,,/,LAVO
20202020 20202020 20202020 20204549 IE

Examining an Active System (Sheet 4 of 5)

4-14

DEBUGGING TOOLS

SDA>
SDA> SHOW STACK/USER
Process stacks

Current oPeratin~ stack <USER>:

SP =>

7FF31A44
7FF31A48
7FF31A4C
7FF31A50
7FF31A54
7FF31A58
7FF31A5C
7FF31A60

7FF31A64
7FF31A68
7FF31A6C
7FF31A70
7FF31A74
7FF31A78
7FF31A7C
7FF31A80
7FF31A84
7FF31A88
7FF31A8C
7FF31A90
7FF31A94
7FF31A98
7FF31A9C
7FF31AAO
7FF31AA4
7FF31AA8
7FF31AAC
7FF31ABO
7FF31AB4
7FF31AB8
7FF31ABC
7FF31ACO
7FF31AC4
7FF31AC8
7FF31ACC

00000000
000011F8
00000001
00000000
00001017
0001F5C2
00001D23
0001ED74

00001D1B
00000000
00000000
2FFCOOOO
7FF31AEB
7FF31ACC
000070E3
000013AF
00001D17
00000000
00000000
oooooooc
00001D17
0001EE56
00001023
7FFEDDD4
00001D2B
00000003
00001D17
0001EDD4
0001E926
OOOOOOOF
00000600
00000000
00000000
00000000
0001FE56

SGN$C_MAXPGFLt1F8

CTL$C_CLIDATASZt773

CTL$C_CLIDATASZt77F

CTL$C_CLIDATASZt777

SGN$C_NPAGEDYN+BE3
SGN$C_MAXPGf Lt3AF
CTL$C_CLIDATASZ+773

CTL$C_CLIDATASZt773

CTL$C_CLIDATASZt77F

CTL$C_CLIDATASZ+787

CTLSC_CLIDATASZt773

BUG$_NQHDJMT

Example 1 Examining an Active System (Sheet 5 of 5)

4-15

DEBUGGING TOOLS

THE SYSTEM MAP FILE

Overview

• MAP of linked executive

• Available on every VMS system
SYS$SYSTEM:SYS.MAP

• Useful in debugging crash dumps and when reading source
code

Sections of SYS.MAP

1. Object module synopsis

• Listed in order processed by linker
• Includes creation data and source language

2. Image section synopsis

• Lists base virtual address

3. Program section synopsis

• Lists PSECTs by base virtual address
• Includes PSECT size and attributes

4. Symbol cross-reference

• Lists global symbols alphabetically
• Includes symbol value, module(s) that define and

reference it

5. Symbols by value

• Lists global symbols by hexadecimal value
• Multiple symbols have same value

6. Image synopsis

• Miscellaneous information about the output image

7. Link run statistics

• Miscellaneous information about the link run that
produced the image.

4-16

DEBUGGING TOOLS

SYS.MAP and Crash Dumps

1. Information in crash dumps given by value

• Virtual address of code (PC)
• Contents of data structures

Virtual address references
Symbolic references (for
process)

example, State of

2. SYS.MAP can be used to translate numbers to meaningful
information.

• Program section synopsis (virtual address to source
code module)

• Symbols by value (value to symbol name)

SYS.MAP and Source Code

1. Layout of linked executive in S0 space

• Program section synopsis

2. Interrelationship of modules ("who references whom")

• Symbol cross-reference

3. Module entry points and global data locations

4-17

DEBUGGING TOOLS

CRASH DUMPS

• Generated when the system decides that it cannot continue
normal flow of work

• System attempts to copy all the information in physical
memory to a special file on a disk

Causes of Crash Dumps

• Fatal error or inconsistency (fatal bugcheck) recognized
and declared by a component of the operating system

• Bugcheck is declared by referencing a central routine

• Some reasons for declaring a fatal bugcheck:

Exception at elevated IPL
Exception while on interrupt stack
Machine check in kernel mode
BUG CHECK .macro issued
HALT instruction restart
Interrupt stack invalid restart
Kernel or executive mode exception without
handler

4-18

exit

DEBUGGING TOOLS

BUGCHECKS

The Two Types of Bugchecks

• Fatal - system must be taken down; no recovery possible

• Continue - nonfatal; the system may attempt recovery

How Crash Dumps Are Generated

• Written by the fatal bug~heck code

• For a dump to be written

Bugcheck must be fatal

If nonfatal bugcheck, all bugchecks must be declared
fatal (done by setting BUGCHECKFATAL = 1)

DUMPBUG (a SYSGEN parameter) must be set (= 1).
DUMPBUG is set by default.

SYS$SYSTEM:SYSDUMP.DMP must be the correct size
file size = physical memory plus 4 (in pages)

Console must be allowed to finish printing the
bugcheck output

4-19

DEBUGGING TOOLS

How Bugchecks Are Generated

BUGCHECKS are generated using the BUG CHECK macro.

BUG CHECK

generates

.WORD

.WORD

QUEUEMPTY,FATAL

.,XFEFF
BUG$QUEUEMPTY!4

Bugchecks are generated by system components (EXEC, RMS, ACP, and
so on) after detecting an internal (software) error.

Name

BADRSEIPL

FATALEXCPI

NOT PCB

UNABLCREVA

Table 7 Sample BUGCHECKS

Module Type Description

RSE Fatal Bad IPL at entrance to RSE

EXCEPTION Fatal Fatal executive or kernel mode
exception

MUTEX Fatal Structure is not a PCB

EXCEPTION Cont. Unable to create virtual
sp.ace

NOTE
When looking at the crash dump, PC minus 4 is
that address at which the BUG CHECK macro is
referenced.

4-20

address

DEBUGGING TOOLS

**** FATAL BUG CHECKv VERSION V4.0 SSRVEXCEPTv Unexpected system service exception

CURF<ENT PF<OCE!:lS

REG I STE!=< Dl.JMP

1=rn 00000000
F< 1 BOOOFDD2
R2 00000040
F<~5 7FFA!'.'iOAF
F~4 BOU. 7F60
R~5 7FFE64B4
f~6 7FFED7Bf.~
R7 7FFED78A
F~8 000000!'.50
F~9 /'FFED2!'.'if.~
R10:::: ?FFEDDf.14
f~1 :1.:::: 7FFE3:"5DC
AP 7FFE7D8C
FP :::: 7FFE7D74
SP :::: 7FFE7D6C
PC :::: 8000FDDB
PSI ... "" 00000000

KERNEL/INTERRUPT STACK

7FFE7D74
?FFE7D7B
?FFE7D?C
?FFE?D80
7FFE7D84
7FFE?DB8
?FFE7D8C
7FFE7D<?O
7FFE?D94
7FFE7D98
/'FFE7D9C
7FFE7DA0
7FFE7DA4
?FFE'?DAB
?FFE?DAC
7FFE?DBO
?FFE7DB4
?FFE7DBB
?FFE?DBC
7FFE?DCO
7FFE7DC4
7FFE7DC8
7FFE7DCC
7FFE?DDO
7FFE?DD4
7FFE7DD8
?FFE?DDC
7FFE7DEO
7FFE?DE4
7FFE7DE8
7FFE7DEC
7FFE7DFO
?FFE7DF4
'?FFE7DF8
7FFE7DFC

00000000
00000000
00000000
/FFE7DCB
BOOOOOl.4
B001.'?F1.6
00000002
?FFE7DHO
7FFE71:198
()()()()()0()4
7FF7~.5:360

FFFFFFFD
()()()()()():I. 4
)()()()()0~5(

OOOOOBFf:l
()()()()()00!7i
oooooooc
()()()()()()()()
()()()()()0:1. 4

00()00222
oocooooo
()()() () ()()()()

O :I. O 4 0000
7FF?~i:378

7FFE7DE4
f:l000940C
()()()()()()()4

7FFED0!:)2
()()()()()()()()

()()()()()()()()

7FF7~'i37B
7FF7~:i~560

f:lOOOFDCE
7FFEDE<J6
03COOOOO

MECHANISM ARRAY

.,._SIGNAL ARRAY

..- SS$_ACCVIO
~ REASON MASK
~FAULTING V.A.
.-pc
.-PSL

Example 2 Sample Console Output After Bugcheck

4-21

DEBUGGING TOOLS

SAMPLE STACKS AFTER BUGCHECKS

Access Violation

SP --+ 4

7 F F E C D E 4 ESTABLISHER FRAME

F F F F F F F D DEPTH = -3 LAST CHANCE

14 RO

0 R1

5

c SS$_ACCVIO

1 REASON

12 VA

8 0 0 5 2 1 8 4 PC

1 c 8 0 0 0 0 0 PSL

• •
•

TK-8966

Figure 1 Stack After Access Violation Bugcheck

Probable Causes:

• Blown register
• Incorrect data structure field
• Improper synchronization

4-22

DEBUGGING TOOLS

Page Fault Above IPL 2

SP --+ R4

R5

1 REASON

314 VA

80050200 PC

150000 PSL

•
•
•

TK-8967

Figure 2 Stack After Page Fault Above IPL-2

Probable Causes:

• Blown register in fork interrupt routine
• Improper start I/O routine design

4-23

DEBUGGING TOOLS

Reserved Operand Fault

SP ____., 4

ESTABLISHER FRAME

DEPTH

RO

R1

3

454 SS$_ROPRAND

80051234 PC

00070000 PSL

• • •
TK-8964

Figure 3 Stack After Reserved Operand Fault

Probable Causes:

• REI failure

IPL problems (allocate memory at wrong IPL)
Blown stack

• RET failure

4-24

DEBUGGING TOOLS

Machine Check in Kernel Mode (CPU Timeout)

28

0 REASON= CPU TIMEOUT

80014300 VA

TIMEOUT SBI ADDR

80053210 PC

1C150000 PSL

TK-8963

Figure 4 Stack After Machine Check in Kernel Mode

Reasons:

• Accessing nonexistent UBA or SBI address
• Corrupted page tables
• Processor device or bus failure

4-25

DEBUGGING TOOLS

Sample Crash Dump Analysis

'$ ANALYZE/CRASH SYS$SYSTEM:SYSDUMP.DMP
VAX/VMS S~stem dump anal~zer

Dump taken on 3-0CT-1984 12:26:20.27
SSRVEXCEPT, Unexpected s~stem service exception

SDA> she crash
s~stem crash information

Time of s~stem crash: 3-0CT-1984 12l26l20.27

Version of s~stem: VAX/VMS VERSION V4.0

Reason for BUGCHECK excePtion: SSRVEXCEPT, Unexpected s~stem service excePtion

Process currentl~ executins: SYSTEM

Current imase file: DRAO:CSYSO.JCSYSMGRJCRASHAST.EXE;3

Current IPL: 0 (decimal>

General resisters:

RO = 00000000 R1 = 8000FDD2 R2 00000004 R3 7FFA501~F

R4 = 80106EBO R5 = 00000000 R6 = 7FFED78A R7 7FFED78A
RS = 7FFEII052 R9 = 7FFED25A R10 7FFEDDD4 R11 7FFE33DC
AP = '7FFE7D88 FP 7FFE7D70 SP = 7FFE7D70 PC 8000FDD8
PSL = 00000000

Processor resisters:

POBR = 8024B600 PCBB 006CC478 ACCS 00000000
POLR 00000003 SCBB = 007EFEOO SB IFS 00040000
P1BR = 7FA5E600 ASTLVL 00000004 SB I SC 00000000
P1LR 001FFB96 SISR = 00180000 SB I MT 00200400
SBR 007F2000 recs 800000C1 SB I ER 00008000
SLR 00003800 !CR FFFFEC69 SB IT A 20000000

TODR 9E670C51 SBIS 00000000

ISP = 8022EAOO
KSP = 7FFE7D70
ESP 7FFE9EOO
SSP 7FFED04E
USP = 7FF75360

Example 3 Sample Crash Dump Analysis (Sheet 1 of 4)

4-26

DEBUGGING TOOLS

SDA> sho stack
Current operatins stack

Current operatins stack <KERNEL>:

SP =>

/FFE7D50
7FFE7D54
7FFE7D58
7FFE7D5C
7FFE7D60
7FFE7D64
?FFE7D68
7FFE7D6C

7FFE7D70
7FFE7D74
7FFE7D78
7FFE7D7C
7FFE7DBO
7FFE7D84
7FFE7D88
7FFE7D8C
7FFE7D90
7FFE7D94
7FFE7D98
7FFE7D9C
7FFE7DAO
7FFE7DA4
7FFE7IIA8
7FFE7DAC
7FFE7DBO
7FFE7DB4
7FFE7DB8
7FFE7DBC
7FFE7DCO
7FFE7DC4
7FFE7DC8
7FFE7DCC
7FFE7DDO
7FFE7DD4
7FFE7DD8
7FFE7DDC
7FFE7DEO
7FFE7IIE4
7FFE7IIE8
7FFE7DEC
7FFE7IIFO
7FFE7DF4
7FFE7I•F8
7FFE7DFC

7FFED2!:iA
7FFEDDD4
7FFE33IIC
7FFE7D88
7FFE7D70
7FFE7D68
8000FDD8
00000000

00000000
00000000
00000000
7FFE7DC8
80000014
80017Fl6
00000002
7FFE7DAC
7FFE7D94
00000004
7FF75360
FFFFFFFD
OOC00009
00000002
000008F8
00000005
oooooooc
00000000
oooooooc
80009F68
OOC00004
00000220
00000000
00240000
7FF75378
7FFE7DE4
8000940C
00000004
7FFE64B4
00000000
00000000
7FF75378
7FF75360
8000FIICE
7FFEDE96
03COOOOO

CTL$AG_CLIDATAtl80
CTL$GL_KSTKBASt588
CTL$GL_KSTKBASt570
CTL$GL_KSTKBASt568
EXE$EXCF'TNt006

CTL$GL-KSTKBASt5C8
SYS~CALL_HANDLt004

EXE$CONTSIGNALt07C

CTL$GL_KSTKBASt5AC
CTL$GL_KSTKBASt594

SS$_ENDOFFILEt088

MF'H$QAST

BUGLMODRELNBAI\

CTL$GL_KSTKBASt5E4
EXE$CMKRNL+OOD

MMG$IMGHDRBUFtOB4

EXE$CMODEXEC+176
SYS$CMKRNLt006

Example 3 Sample Crash Dump Analysis (Sheet 2 of 4)

4-27

_255DUA28:ESYS.OBJJSYS.EXE;1 16-SEP-1984 04:oo VAX-11 Linker V04-00 Pa!1.le 7

Psect Name Module Name Base End Lensth AliSn Attributes

$0SWPSCHED 800087CE 80008A76 000002A9 681.) BYTE 0 NOPICrUSRrCONrRELrLCLrNOSHRr EXEr RDr WRTrNOVEC
OSIJPSCHED 800087CE 80008A76 000002A9 681.) BYTE 0

$ZBUGFATAL BOOOBA78 80008A78 00000000 o.) WORD 1 NOPIC,USR,CON•REL•LCL,NOSHR• EXEr RDr WRTrNOVEC
BUGCHECK 80008A78 80008A78 00000000 o.) WORD 1

• BLANK • 80008A78 80009D8D 00001316 4886.) BYTE 0 NOPIC,USR,CON,REL•LCL•NOSHR• EXEr RDr WRT,NOVEC
EXSUBROUT 80008A78 80008B10 00000099 153.) BYTE 0
FORKCNTRL 80008B11 80'008B1E OOOOOOOE 14.) BYTE 0
NULLPROC 80008B1F 80008B20 00000002 2.) BYTE 0
SYSACPFDT 80008B21 8000925B 0000073B 1851.) BYTE 0
SYSASCEFC 8000925C 8000927A OOOOOOlF 31.) BYTE 0
SYSCANCEL 8000927B 800093B5 0000013B 315.) BYTE. 0 0
SYSCANEVT 800093B6 800093EE 00000039 57.) BYTE. 0 t'1j

SYSCHGMOD 800093EF 8000941F 00000031 49.) BYTE 0 tJj

SYSDERLMB 80009420 8000945A 0000003B 59.) BYTE 0 c
G)

ii:=.
SYSFORCEX 8000945B 8000949F 00000045 69.> BYTE 0 G)

I
SYSlHOFDT 800094AO 80009741 000002A2 674.) BYTE 0 1-1
SYSSCHEVT 80009742 800098A9 00000168 360.) BYTE 0 z tv SYSIHOREG 800098AA 80009CDB 00000432 1074.) BYTE 0 G) 00 SYSSETPRI 80009CDC 80009D6F 00000094 148.) BYTE 0
SYSMTACCESS 80009D70 80009[179 OOOOOOOA 10.> BYTE 0 t-3
MTFDT 80009D7A 80009D8D 00000014 20.) BYTE 0 0

0
A$EXENONPAGED 80009[190 BOOOA37C 000005E[I 1517.) LONG 2 NOPIC,USRrCON,RELrLCL,NOSHR, EXEr RDr WRTrNOVEC t'1

ASTDEL 80009[190 8000A040 000002B1 689.) LONG 2 tll

FORKCNTRL 8000A044 8000AOC4 00000081 129.) LONG 2
TIMESCHDL 8000AOC8 8000A37C 000002B5 693.) LONG 2

AESl 8000A37D 8000A675 000002F9 761.) BYTE 0 NOPIC,USR,CONrREL•LCL,NOSHRr EXE, RD, WRT,NOVEC
RSE 8000A37D 8000A675 000002F9 761.) BYTE 0

AES2 8000A676 8000A6A1 0000002C 44.) BYTE 0 NOPIC,USR,CON,REL•LCL,NOSHR, EXE, RDr WRTrNOVEC

Example 3 Sample Crash Dump Analysis (Sheet 3 of 4)

01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01C6
01CB
01CE
01D1
01D6
01D8
01D8
01Il8
01D8
OHIC
01E2
01E8
01Ert
01EF

DEBUGGING TOOLS

+SBTTL SCH$QAST - ENQUEUE AST CONTROL BLOCK FOR P
;+t

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484 ;
485.;
486
487
488
489
490
491
492
493
494
495

FUNCTIONAL DESCRIPTION:
SCH.GAST INSERTS THE AST CONTROL BLOCK SUPPLIED IN
POSITION BY ACCESS MODE IN THE AST QUEUE OF THE PR
BY THE PID FIELD OF THE AST CONTROL BLOCK. AN. AST
IS THEN REPORTED FOR THE PROCESS TO REACTIVATE FRO
IF APPROPRIATE. THE AST CONTROL BLOCK WILL BE REL
IF THE PID SPECIFIES A NON-EXISTENT PROCESS.

LOADABLE MULTI-PROCESSING CODE WILL.REPLACE THIS R
ENTIRELY NEW CODE, AT MPH$QAST.

CALLING SEQUENCE:
BSB/JSB SCH$GAST

INPUT PARAMETERS:
R2 - PRIORITY INCREMENT CLASS
R5 - POINTER TO AST CONTROL BLOCK

IMPLICIT INPUTS:
PCB OF PROCESS IDENTIFIED BY PID FIELD

OUTPUT PARAMETERS:
RO - COMPLETION STATUS CODE
R4 - PCB ADDRESS OF PROCESS FOR WHICH AST WAS QUEU

496 SIDE EFFECTS:
497 THE PROCESS IDENTIFIED BY THE PID IN THE AST CONTR
498 WILL BE MADE EXECUTABLE IF NOT SUSPENDED.
499
500 COMPLETION CODES:
501 SS$_NORMAL NORMAL SUCCESSFUL COMPLETION STATUS
502 SS$_NONEXPR NON-EXISTENT PROCESS
503 ;--
504 .ENABL LSB
505 QNONEXPR:
506 DEALLOCATE THE ACB AS LONG AS THE NODELETE BIT .I
507 ; THIS REALLY SHOULDN'T HAPPEN, BUT IF IT DOES, WE
508 ; TO POSSIBLY LOSE POOL OVER POSSIBLY CORRUPTING I
509
510
511
512
513
514
515

BBS
MOUL
BSBW
MOVZWL
BRB

516 MPH$QAST::
517 SCH$QAST::
518 MOVZWL
519 DSBINT
520 MOVL
521 CMPL
522 BNEG
523 CLRL

tACB$V_NODELETE,ACB$B_RMODCR5),5$; BR IF N
R5,RO RELEASE AST CONT
EXE$DEANONPAGED IF NO SUCH PROCE
tSS$_NONEXPR,RO SET ERROR STATUS
QEXIT AND EXIT

MULTI-PROCESSING
ENQUEUE AST FOR

ACB$L_PIDCR5),R0 GET PROCESS INDE
tIPL$_SYNCH DISABLE SYSTEM E
@w-sCH$GL_PCBVEC[ROJ,R4 ; LOOK UP PCB ADDR
ACB$L_PIDCR5>,PCB$L_PIDCR4> ; CHECK FOR MA
GNONEXPR ; PID MISMATCHES
RO ; ASSUME KERNEL MO

Example 3 Sample Crash Dump Analysis (Sheet 4 of 4)

4-29

DEBUGGING TOOLS

DELTA AND XDELTA

Table 8 Comparison of DELTA with XDELTA

Factors

Usage

Terminal used
for control

IPL

DELTA

User images

Any TTY

= 0

How activated Linked or included
at run time

Access mode All modes

Both debuggers are:

• Nonsymbolic

• Use name command syntax

• No visible prompt

• Error message is "Eh?"

4-30

XDELTA

Operating System Drivers

Console only (OPA0:)

>0

Included at boot time

Kernel mode only

DEBUGGING TOOLS

DELTA Debugger
To use the DELTA debugger, assemble and link a program in the

following fashion:

1. $ MACRO prog nameSYS$LIBRARY:LIB/LIB
2. $ LINK/DEBUG-prog_name, SYS$SYSTEM:SYS.STB/SELECT
3. $ DEFINE LIB$DEBUG DELTA
4. $ RUN prog_name

Steps:

1. Assembles the program allowing system macros to be defined
(SYS$LIBRARY:LIB/LIB).

2. Links the program with a debugger and resolving any system
symbols (SYS$SYSTEM:SYS.STB).

3. Define the debugger used to be DELTA.

4. Activate the program mapping in DELTA.

4-31

DEBUGGING TOOLS

CHMKProgram

It is often convenient to observe data structures changing
dynamically. One way to gain access to kernel mode data
structures is to run the CHMK program. This program allows any
privileged process (with CMKRNL privilege) to change mode to
kernel, and enter DELTA commands (for example, to look at system
data structures).

NOTE
Extreme caution should be exercised that data
structures not be modified, since such
modification could lead to a system crash.

Perform the following steps to use the CHMK program.

1. Assemble CHMK.
2. Link CHMK.
3. Indicate the DELTA debugger.
4. Run the CHMK program.
5. Enter a breakpoint in the program and tell it to proceed.

The Corresponding Commands are:

1. $ MACRO CHMK SYS$LIBRARY:LIB/LIB
2. $ LINK/DEBUG CHMK, SYS$SYSTEM:SYS.STB/SELECT
3. $ DEFINE LIB$DEBUG DELTA
4. $ RUN CHMK
5. 215;B;P

Note that at step 4, no prompt from DELTA is given.

After you receive the "stopped at breakpoint" message, you are
in kernel mode, and may proceed to examine system data structures.
To leave the program, type ';P', followed by EXIT. (If you just
type EXIT, you will be logged off, since kernel mode exit implies
process deletion.)

4-32

DEBUGGING TOOLS

; This program gets you into kernel mode.

GO:

10$:

Use with DELTA debugger to examine system locations.

.WORD 0
$CMKRNL_S
RET
.WORD 0
NOP
NOP

ROUTIN = 10$

MOVZBL #SS$_NORMAL, RO
RET
.END GO

Null entry mask
Enter kernel mode
all done
Null entry mask
Where BPT instruction

is placed (215;B)
Return success status
All done in kernel mode

Example 4 The CHMK Program

4-33

DEBUGGING TOOLS

DELTA and XDELTA Functions and Commands

Table 9 DELTA and XDELTA Functions and Commands

Function

Display contents
of given address

Replace contents
of given address

Display contents
of previous
location

Display contents
of next location

Display range of
locations

Display indirect

Single step
command

Set breakpoint

Display breakpoint

Command

address/

addr/contents new

<ESC>

addr/contents <LF>
addr/contents

addr,addr/contents

<TAB>

or
I

s

addr,N;B <RET>
{N is a number 2-8)

;B

4-34

Example

GA88/00060034

GA88/00060034 GA88

GA88/00060034 'A'
{Replace as ASCII)

80000A88/80000BE4 <ESC>
80000A84/00000000

80000004/8FBC0FFC
80000008/50E9002C

G4,GC/8FBC0FFC
80000008/50E9002C
8000000C/00000400

80000A88/80000BE4 <TAB>
80000BE4/80000078

80000A88/80000BE4/80000078

1 brk at 8000Bl7D
s
8000Bl7E/9A0FBB05

800055F6,2;B

;B
1 8000Bl7D
2 800055F6

DEBUGGING TOOLS

Table 9 DELTA and XDELTA Functions and Commands (Cont)

Function

Clear
breakpoint

Proceed fr om
breakpoint

Set base
register

Display base
register

Display general
register

Show value

Executing stored
command strings

Change display
mode

Command

0,N;B <RET>

;P

'value' ,N;X

Xn <RET>
or
Xn=

Rn/
(n is in
Hexadecimal)

expression=

addr;E <ret>

[B
[W
[L
["

4-35

Example

0,2;B

;P

80000000,0;X

X0
00000003

X0=00000003

R0/00000003

1+2+3+4=0000000A
(+,-,*,%{divide})

80000E58;E

Byte width
Word width
Longword width
ASCII display

DEBUGGING TOOLS

SYSTEM
COMPONENT
INVOKES
BUG_CHECK
GENERATES
EXCEPTION

SYSTEM
DISPATCHES
(THROUGH SCB)
TO
EXE$0PCDEC

JUMP TO
EXE$BUG_CHECK

APPENDIX A
BUGCHECK FLOW OF CONTROL

HANDLE IN
TRADITIONAL
WAY
(EXCEPTION
DISPATCHER,
ETC.)

TK-9009

Figure 5 Bugcheck Flow of Control (Sheet 1 of 3)

4-37

READ FATAL
BUG
CODE FROM
SYS.EXE

JUMP TO
BUG$FATAL

DEBUGGING TOOLS

EXE$BUG_CHECK

READ
BUG$_XXXX
CODE
FOLLOWING
FF, FE OR FF, FD

$EXIT_S­
#SS$_BUGCHECK

WRITE
ERROR LOG
ENTRY

RETURN
(REI)

TK-9010

Figure 5 Bugcheck ~low of Control (Sheet 2 of 3)

4-38

PRINT
INFO
ON
CONSOLE

WRITE
DUMPFILE

BUG$FATAL

BUILD
DUMPFILE
HEADER

DEBUGGING TOOLS

CALL
XDELTA
(BREAKPOINT)

PRINT
SHUTDOWN
MESSAGE ON
CONSOLE

LOOP
FOREVER

TK-9011

Figure 5 Bugcheck Flow of Control (Sheet 3 of 3)

4-39

DEBUGGING TOOLS

APPENDIX B

PATCH

The patch utility enables a user to 'edit' an image file.
Patch is intended to be used on non-DIGITAL software. Application
of patches to DIGITAL software, other than those that are
DIGITAL-supplied, invalidate the warranty.

Table 10 PATCH Commands

Function Command

Display contents of one Examine
or more locations

Store new contents in Deposit
one or more locations

Insert one or more
symbolic instructions

Verify the replace
contents of location

Display various
information (e.g.,
module names)

Alter default settings
(e.g., module name
referenced) .

Insert

Replace

SHOW parameter

SET parameter

4-41

Scheduling

SCHEDULING

INTRODUCTION
Scheduling is the selection of a process for a particular

action or event. The scheduler, a software interrupt service
routine at IPL 3, is responsible for selecting which
memory-resident, executable process will be the next one to use
the CPU. The scheduler code performs the exchange of hardware
process contexts between the set of resident, computable processes
and the currently executing process.

The swapper, a system process, selects processes for removal
from, or placement in, memory. Outswap operations move processes
in memory-resident states to corresponding outswapped states.
Inswap operations transform executable, nonresident processes into
executable, resident ones.

Additional support routines provide the logic to establish and
satisfy a range of conditions for which processes may wait.
Examples of these conditions include system service requests (such
as $HIBER, $RESUME, or $WAITFR) and resource waits (such as mutex
wait or depleted system dynamic memory).

OBJECTIVES
1. For each process state, describe the properties of a

process in the state, and how a process enters and leaves
the state.

2. Given a set of initial conditions and a description of a
system event, des~ribe the operation of the scheduler.

3. Assign priorities for a multiprocess application.

4. Discuss the effects of altering SYSGEN parameters related
to scheduling.

5-3

SCHEDULING

RESOURCES

Reading

• VAX/VMS Internals and Data Structures, the
Scheduling.

Additional Suggested Reading

chapter on

• VAX/VMS Internals and Data Structures, the chapters on
Software Interrupts, Process Control and Communication,
Timer Support, Swapping, and Synchronization Techniques.

Source Modules

Facility Name

SYS

Module Name

SCH ED
RSE
SYSWAIT
SDAT
SWAPPER (local
label SWAPSCHED)
OSWPSCHED
SYSPCNTRL

5-4

SCHEDULING

TOPICS

I. Process States

A. What they are (current, computable, wait)

B. How they are defined

c. How they are related

II. How Process States are Implemented in Data Structures

A. Queues

B. Process data structures

III. The Scheduler (SCHED.MAR)

IV. Boosting Software Priority of Normal Processes

v. Operating System Code that Implements Process State Changes

A. Context switch (SCHED.MAR)

B. Result of system event (RSE.MAR)

VI. Steps at Quantum End

A. Automatic working set adjustment

VII. Software PriQrity Levels of System Processes

5-5

SCHEDULING

THE PROCESS STATES

DELETE ~CREA TE

(SCHEDULER) (SWAPPER)

Figure 1 Process States

1. CURRENT .- executing

2. WAIT - removed from execution to wait for event completion

3. COMPUTABLE - ready to execute

4. WAIT OUTSWAPPED

5. COMPUTABLE OUTSWAPPED

5-7

SCHEDULING

Process Wait States

DELETE

Figure 2 Process Wait States

5-8

SCHEDULING

Ways to Leave the Current State

Figure 3 Ways to Leave Current State

1. Wait for common event flag(s) set ($WAITFR)
2. Wait for local event flag(s) set ($WAITFR)
3. Hibernate until wake-up ($HIBER)
4. Suspended until resume ($SUSPND)
5. Removed from execution-quantum end or preempted
6. Page read in progress
7. Wait for free page available
8. Wait for shared page to be read in by another process
9. Wait for miscellaneous resources or mutex

10. Deletion

5-9

SCHEDULING

Ways to Become Computable (lnswapped)

10

Figure 4 Ways to Become Computable (Inswapped)

1. Common event flag(s) set
2. Local event flag(s) set
3. Wake-up ($WAKE)
4. Resume ($RESUME)
5. Removed from execution-quantum end or preempt
6. Page read complete
7. Free page available
8. Shared page read complete
9. Miscellaneous resources available or mutex available

10. Outswapped computable process is inswapped

5-10

SCHEDULING

lnswapped to Outswapped Transitions

8------------8
8------------8
8------------8
8------------8

8------------------------...... ·~8
e------------8
0------------8
e------------8
e------------8

Figure 5 Inswapped to Outswapped Transitions

5-11

SCHEDULING

Ways to Become Computable (Outswapped)

Figure 6 Ways to Become Computable (Outswapped)

5-12

SCHEDULING

HOW PROCESS STATES ARE IMPLEMENTED

Queues

Pointer --.1 ------t

state
"lis the ad"

SOFL
SOBL

PCB PCB

Figure 7 A State Implemented by a Queue

• The state of a process is defined by:

The value in the PCB$W STATE field

PCB

The PCB being in the corresponding state queue

• State qJeues are circular

• The current state is not implemented as a queue

Just a longword pointer (SCH$GL CURPCB)
Queue structure not necessary because only one process
in the current state

• VAX instructions for manipulating queues:

INS QUE
REMQUE

new_entry, predecessor
out_entry, return address

5-13

SCHEDULING

Implementation of .COM and COMO States

. FOR STATE COM f
,. BITMAP (1 EACH FOR COM, COMO)

•· BITS 31 00

(k~I ~ 11 ~II 1~11 l__,...11 ~II 1~11 11"""'1-T""ll __..., 11-,-.,....il 11....,.......11....-.--.-111~111 ~~~~;,~~go~ucisuE BIT MAP
i . PRIORITIES 0 31

QUEUE 0

PRIORITY 31

1

30

LISTHEADS (32 EACH FOR COM, COMO)

QUEUE HEADERS
.--------------------------------------

: :SCH$AQ_COMH
: :SCH$AQ_COMT

....-~~~~~~~~~~~~~~~~~--1

• t--~~~~~~~~~~~~~~~~~--1

Figure 8 Implementation of COM and COMO States

• COM state implemented as a collection of queues

TK-8974

• Designed to speed scheduler's search for highest-priority
computable process ·

A queue for each software priority
Summary longword records nonempty COM queues
Internally, software priority stored as inverted value
(as 31 minus priority)

• COMO state is implemented like COM state

32 more queues
Another summary longword

5-14

SCHEDULING

Example of Computable Queues

BITS 31 0

1111 H l1l I I I I I I I I I I I l I I l I I I I I I I I I I
PRIORITIES 0 31

QUEUE 25
PRIORITY 6

PRIORITY 61---------------------1

PRIORITY 5 PCB PCB
'

PRIORITY 4

PCB

TK-8975

Figure 9 Example of Computable Queues

• COM processes at priorities 4 and 6

Bit 25 in summary longword is set

Queue for priority 6 has entries

Bit 27 in summary longword is set

Queue for priority 4 has an entry

5-15

SCHEDULING

Implementation of Wait States

I ~

-E I

State Count

Figure 10 Wait State Listhead

HISER 2

HIBERNATE
LISTHEAD

HISER

PCB

HIBER

PCB

TK-8952

Figure 11 Implementation of Wait States

5-16

SCHEDULING

Implementation of CEF State

SCH$GQ_CEBHD::

CEB ..
~I Ii

Wait Queue • PCB PCB

I CEB Name

CEB
_lio...

7

....
Wait Queue .J.

7
PCB ~

CEB

""' -,
.... _lo,

Wait Queue .J
--,

PCB """'--
--,

PCB ~

CEB

~ --,

Wait Queue

Figure 12 Implementation of CEF State

• CEB created when event flag cluster created
• CEB contains the cluster, CEF state queue listhead, and

other information about the cluster
• One CEF state queue for each CEF cluster

5-1 7

SCHEDULING

Summary of Scheduling States

• Current

Implemented with one longword pointer

Contains at most one process

• Computable and computable-outswapped

Each consists of a summary longword, and 32 queues

e Voluntary wait (LEF, LEFO, SUSP, SUSPO, HIB, HIBO)

One queue for each state

e Involutary wait (PFW, PFWO, FPG, FPGO, COLPG, COLPGO,
MWAIT, MWAITO)

In four queues

Resident and outswapped in same queue (differentiate
with resident bit in PCB$L_STS)

Usually not in these states very often

5-18

SCHEDULING

Process Data Structures Related to Scheduling

SOFL

SOBL

PRI 1

PHY PCB

STS

PRIB] r STATE

Figure 13 Scheduling Fields in Software PCB

• SQFL, SQBL - state queue forward, backward links, link
PCBs in a given state

• STATE - process state
• PR! - current software priority
• PRIB - base software priority
• PHYPCB - physical address of hardware PCB
• STS - process status

5-19

SCHEDULING

Saving and Restoring CPU Registers

PR$_PCBB+ ST ACK POINTERS

•

•

•

KESU

General Purpose
Registers RO-R 11

AP

FP

PC

PSL

POBR

lAST LVLT l POLR

P1BR

l P1LR

Figure 14 Saving and Restoring CPU Registers

Process-specific CPU registers saved/restored during
context switch . ~ ~/§J

~I • ,~ \~_, 1/~
SVPCT. X inst~ucption) l'tO (~ 1,:-?1\i.... .vU

4vl]:JY' re 5 L N\tW'- <- ';) ,, lJ 11 .I'

r:" Copies r~gisterls to hardware PCB \
Switches to Interrupt Stack \
Does not save P0BR, P0LR, PlBR, PlLR, ASTLVL

LDPCTX instruction)

Restores registers (except PC, PSL) from hardwar~ PCB
Pushes PC, PSL on kernel stac~REI removes them)

~ ~, /I
'-...._~ _____/

....._____~------

5-20

SCHEDULING

THE SCHEDULER (SCHED.MAR)

1 SCH$RESCHED - RESCHEDULING INTERRUPT HANDLER
2
3 THIS ROUTINE IS ENTERED VIA THE IPL 3 RESCHEDULING INTERRUPT.
4 THE VECTOR FOR THIS INTERRUPT IS CODED TO CAUSE EXECUTION
5 ON THE KERNEL STACK.
6
7
8
9

ENVIRONMENT: IPL=3 MODE=KERNEL IS=O
INPUT: OOCSP>=PC AT~ESC INTERRUPT

04<SP>=PSL AT INTERRUPT.
10 ;--
11 .ALIGN LONG
12 MPH$RESCHED::
13 SCH$RESCHED::

;MULTI-PROCESSING CODE HOOKS IN HERE
;RESCHEDULE INTERRUPT HANDLER

14 SETIPL tIPL$_SYNCH ;SYNCHRONIZE SCHEDULER WITH EVENT REPORTING
15 SVPCTX ;SAVE CONTEXT OF PROCESS
16 MOVL L-SCH$GL_CURPCB,Rl ;GET ADDRESS OF CURRENT PCB
17 MOVZBL PCB$B_PRI<R1),R2 ;CURRENT PRIORITY
18 BBSS R2,L-sCH$GL-COMOSr10$;MARK QUEUE NON-EMPTY
19 10$: MOVW tSCH~C-COM,PCB$W_STATE<R1> ;SET STATE TO RES COMPUTE
20 MOVM SCH$AQ_COMT[R2J,R3 ;COMPUTE ADDRESS OF QUEUE
21 INSQUE CR1),@(R3>+ ;INSERT AT TAIL OF QUEUE
22 ;+
23 SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION

25 ; THIS ROUTINE SELEtTS THE HIGHEST PRIORITY EXECUTABLE PROCESS
26 ; AND PLACES IT IN EXECUTION.
27 ;-
28 MPH$SCHEit::
29 SCH$SCHEit::

;MULTI-PROCESSING CODE HOOKS IN HERE
;SCHEDULE FOR EXECUTION

30 SETIPL tIPL$_SYNCH ;SYNCHRONIZE SCHEDULER WITH EVENT REPORTING
31
32
33
34
35
36
37
38 20$:
39
40
41
42
43
44
45
46
47
48 30$:
49
50
51
52

FFS
BEOL
MOVAQ
REMCWE
BVS
BNEG
BBCC

CMPB
BNEQ
MOVW
MOVL
CMPB

BEQL
BBC
INCB
MOVB
MTPR
LitPCTX
REI

53 SCH$IDLE:
54 SETI PL
55 MOVB
56 BRB
57
58 QEMPTY:
59
60 • END

t0rt32,L-SCH$GL_COMQS,R2 ;FIND FIRST FULL STATE
SCH$IDLE ;NO EXECUTABLE PROCESS??
SCH$AQ_COMH[R2J,R3 ;COMPUTE QUEUE HEAD ADDRESS
@<R3>trR4 ;GET HEAD OF QUEUE
QEMPTY ;BR IF QUEUE WAS EMPTY <BUG CHECK>
20$;QUEUE NOT EMPTY
R2,L-SCH$GL-COMQS,20$;SET QUEUE EMPTY

tDYNC_PCB,PCBB_TYPE<R4> ;MUST BE A PROCESS CONTROL BLOCK
QEMPTY ;OTHERWISE FATAL ERROR
tSCHC_CUR,PCBW_STATE<R4> ;SET STATE TO CURRENT
R4rL-sCH$GL-CURPCB . ;NOTE CURRENT PCB LOC
PCB$B_PRIB<R4>,PCB$B_PRI<R4> ;CHECK FOR BASE

;PRIORITY=CURRENT
30$;YES, DONT FLOAT PRIORITY
t4,PCB$B_PRICR4),30$;noNT FLOAT REAL TIME PRIORITY
PCB$B_PRI<R4> ;MOVE TOWARD BASE PRIO
PCB$B_PRI<R4)rL-sCH$GB-PRI ;sET GLOBAL PRIORITY
PCB$L_PHYPCBCR4>rtPR$_PCBB ;SET PCB BASE PHYS ADDR

tIPL$_SCHED
t32rL-SCH$GB_PRI
SCH$SCHED

;RESTORE CONTEXT
;NORMAL RETURN

;NO ACTIVEr EXECUTABLE PROCESS
;DROP IPL TO SCHEDULING LEVEL
;SET "PRIORITY TO -1(32> TO SIGNAL IDLE
;AND TRY AGAIN

BUG-CHECK QUEUEMPTY,FATAL ;SCHEDULING QUEUE EMPTY

Example 1 The Scheduler (SCHED.MAR)

5-21

SCHEDULING

Comments on SCHED.MAR:

1. Current process ---> computable resident

a. Entry point

b. Synchronize access to scheduler database

c. Save hardware context of current process in hardware
PCB

d. Insert PCB at tail of COM queue

2. Highest-priority computable resident process ---> current

a. Entry point

b •. Synchronize access to scheduler database

c. Remove PCB from head of COM queue

d. Restore hardware context, push PC and PSL onto stack

e. Transfer control to current process

5-22

SCHEDULING

BOOSTING SOFTWARE PRIORITY OF NORMAL PROCESSES

• Usually normal interactive process has base priority 4

• To help interactive processes compete with compute-bound
processes

Boosts applied upon certain events (I/O completion,
resource available)

Different boosts for different events

Current priority equals greater of:

• Current priority
• Base priority plus boost

Lowering of priority

• Each time process scheduled, decrement priority
(until reach base priority)

• Return to base priority at quantum end if COMO
process exists

Not allowed to boost above normal priority range
(0-15)

5-23

SCHEDULING

Example of Process Scheduling

Table 1 Initial Conditions for Scheduling Example

Process Type Base Priority Priority State

Swapper System 16 16 HIB

Null Compute Bound 0 0 COM

A Compute Bound 4 9 CUR

B I/O Bound 4 10 COMO

c Real-Time 18 18 HIB

Symbol Event

8 1/0 Request

0 Preemption

0 Quantum End

MKV84-2151

Figure 15 Scheduling Example Symbols

5-24

SCHEDULING

QUANTUM

I I

20

18

16 FwAPPE3 ------------
14

SOFTWARE
PRIORITY 12
LEVELS

10

8

6

4

2

0

o o e o
TIME~

Figure 16 Example of Process Scheduling - Part 1

1. Process C becomes computable. Process A is preempted.

2. C hibernates. A executes again, one priority level lower.

A experiences quantum end and is rescheduled at its base
priority. B is computable outswapped.

The swapper process executes to inswap B. B is scheduled
for execution.

5-25

SCHEDULING

QUANTUM

I I

20

18

16 E•APPE3 ------------
14

SOFTWARE
PRIORITY 12
LEVELS

10

8

6

4

2

0

0 •• 00 000 0
TIME --+

Figure 17 Example of Process Scheduling - Part 2

5. B is preempted by C.

6. B executes again, one priority level lower.

7. B requests an I/O operation (not terminal I/O). A
executes at its base priority.

8. A requests a terminal output operation. The null process
executes.

9. A executes following I/O completion at its base priority
plus 3. (The applied boost was 4.)

5-26

SCHEDULING

QUANTUM

I I

20

18

16 -----
14

SOFTWARE
PRIORITY 12
LEVELS

10

8

6

4

2

0

0 0 0 00 000 0 G> 8 8 e CD
TIME --+

Figure 18 Example of Process Scheduling - Part 3

10. A is preempted by C.

11. A executes again, one priority level lower.

12. A experiences quantum end and is rescheduled at one
priority level lower.

13. A is preempted by B.
to B because the
priority.

14. B is preempted by C.

A priority boost of 2 is not applied
result would be less than the current

5-27

SCHEDULING

QUANTUM

I I

20

18

16 -- --
14

SOFTWARE
PRIORITY 12
LEVELS

10

8

6

4

2

0

••• 00 000 0 0 CD 8 8 CD CD CD CD CD
TIME~

Figure 19 Example of Process Scheduling - Part 4

15. B executes again, one priority level lower.

16. B requests an I/O operation.
priority.

A executes at its base

17. A experiences quantum end and is rescheduled at the same
priority (its base priority).

18. A is preempted by C.

5-28

SCHEDULING

IMPLEMENTATION OF PROCESS STATE CHANGES

Table 2 Operating System Code for Scheduling Functions

Function Module Routines

Change between CUR and COM SCHED.MAR SCH$RESCHED
SCH$SCHED

Move between resident and SWAPPER.MAR SWAPSCHED
outswapped IN SWAP

OUT SWAP

Move in and out of wait RSE.MAR SCH$RSE
states SCH$UNWAIT

(and others)

Quantum end processing RSE.MAR SCH$QEND

5-29

Per Process
Space

Process
Context

System
Space

Process
Context

System
Space

System
Context

SCHEDULING

Process A Process B

USER
PROGRAM A

PAGER

TIMER
1/0 COMPLETION
SET EVENT FLAG
WAKE
RESUME

REPORT
SYSTEM
EVENT

Process C

SCHEDULER
INTERRUPT

SERVICE
ROUTINE

Figure 20 Interaction of Scheduling Components

5-30

SCHEDULING

Report System Event Component (RSE.MAR)

1. , System events cause transitions between process states.
I

2. These transitions are accomplished by the code in RSE.MAR.

3. Inputs to RSE

a. PCB address

b. Event number (number for WAKE, CEF SET, and so on)

4. RSE flow

a. Event checked for significance (for example, WAKE only
if in HIBER state).

b. PCB removed from wait queue and wait queue header
count decremented.

c. PCB inserted on COM or COMO state queue after priority
adjustment, and summary bit set.

d. Swapper process can be awakened (if PCB was inserted
on COMO queue) •

e. Scheduler interrupt at IPL 3 requested if the new
computable process has software priority greater than
that of current process.

5-31

STEPS AT QUANTUM END

Real-Time Process

SCHEDULING

1. Reset PHD$B_QUANT to full quantum value.

2. Clear initial quantum bit PCB$V_INQUAN in PCB$L_STS.

Normal Process

1. Reset PHD$B_QUANT to full quantum value.

2. Clear initial quantum bit PCB$V_INQUAN in PCB$L_STS.

3. If any outswapped process computable, set current software
priority PCB$B_PRI to base priority PCB$B_PRIB.

4. If SWAPPER needed, wake SWAPPER.

5. If CPU limit imposed, and limit has expired, queue AST to
process for process deletion.

6. If not, then calculate automatic working set adjustment.

7. Request scheduling interrupt at IPL 3.

5-32

SCHEDULING

Automatic Working Set Adjustment

• Goal: optimal working set size

Large enough to allow good program performance

Small enough to optimize overall memory usage

• Adjustment calculated at quantum end

If high paging rate, want to increase working set size

If low paging rate, may want to decrease working set
size, (take back some physical memory)

• Usually gives large increases, small decreases

• Only affects the list size, not the number of entries in
use

• No adjustment done for real-time processes

• Can disable adjustment for normal processes

Perprocess:

System-wide:

$ SET WORKING_SET/NOADJUST

SYSGEN> SET WSINC 0

5-33

SCHEDULING

Automatic Working Set Adjustment

PAGE
FAULT
RATE

PF RATH

PFRATL

t t AWSMIN

MINWSCNT

WORKING SET SIZE

LwsMAX

Figure 21 Automatic Working Set Adjustment

5-34

TK-9008

SCHEDULING

Rules for Working Set Adjustment

1. If PFRATL < PFRate < PFRATH, no adjustment is necessary.

2. If PFRate > PFRATH then perhaps WSSIZE = WSSIZE + WSINC.

WSSIZE can grow to WSQUOTA anytime

WSSIZE can grow to WSEXTENT if free pages > BORROWLIM

3. If PFRate < PFRATL then perhaps WSSIZE = WSSIZE - WSDEC.

WSSIZE can shrink to AWSMIN (no smaller)

Example 2 Working Set Adjustment Algorithm

5-35

SCHEDULING

Example of Working Set Size Variation

l
w
N
en
~

WSMAX

WSEXTENT

WSOUOTA

AWSMIN

MINWSCNT

@ ® © @ ©

TIME •

Figure 22 WSSIZE variation Over Time

Table 3 Reasons for Working Set Size Variations

Time Reason for WSSIZE Change

a Page faults > PFRATH
Free page count > BORROWLIM

b Page faults < PFRATL

c Page faults < PFRATL

d Page faults > PFRATH
Free page count < BORROWLIM

e Page faults > PFRATH
Free page count > BORROWLIM

5-36

TK-9012

SCHEDULING

Forcing Processes to Quantum End

Program B $010

-----,
I
I

Prog. $WAITFR I
B I

I
I

..._ _______ __._ ___ __._ __ .__ __ ___.II- - - - - - .J

.,_IOTA-I

Context
Switch

Program A

Figure 23 Use of the IOTA System Parameter

• IOTA - special system parameter (in 10 ms uni ts)

• Deduct IOTA units from time quantum when process
wait state

• Used to force processes to quantum end

• Not charged to process CPU limit

5-37

enters

SCHEDULING

SOFTWARE PRIORITY LEVELS OF PROCESSES

Table 4 Software Priority Levels of Processes on VMS

Process

NULL

default user

SYMBIONT n

OPCOM

Base
Priority

4

4

6

Purpose

Consume idle CPU time

User activities

Input/output symbiont

Operator communications

ODS-1 disk ACPs 8 ODS-1 disk file structure

Tape ACPS

ERRFMT

JOB CONTROL

NETACP

REMACP

SWAPPER

8

7

8

8

8

16

Tape file structure

Write error log buffers

Queue and accounting manager

DECnet ACP

Remote ACP

System-wide memory manager

• Base priority of process determined by argument to $CREPRC
system service

• Base priority of system processes

Most are established during system initialization

Base priority of ACPs is controlled by ACP BASEPRIO
system parameter

• Normal processes receive priority boosts

5-38

SCHEDULING

SUMMARY

Table 5 SYSGEN Parameters Relevant to Scheduling

Function Parameter

Base priority for Ancillary Control Processes

Minimum number of working set pages

Minimum amount of time that must elapse for
significant sample of a process page fault rate

Minimum number of pages required on free page
list before working sets are allowed to grow
beyond WSQUOTA (checked at quantum end)

Base default priority for processes

Time alloted to each of a process's exit
handlers after CPU limit expires

Amount of time to deduct from process quantum
for each voluntary wait

Minimum number of fluid working set pages

Page fault rate above which VMS attempts
to increase the process working set size

Page fault rate below which VMS attempts
to decrease the process.working set size

Maximum amount of CPU time a normal process can
receive before control passes to a computable
process of equal priority

Number of pages for working set size decrease

Number of pages for working set size increase

Maximum number of pages for any working set

(*) = special SYSGEN parameter

5-39

ACP BASEPRIO

AW SM IN

AWSTIME

BORROWLIM

DEF PR I

EXT RAC PU

IOTA (*)

MINWSCNT

PF RATH

PFRATL

QUANTUM

WSDEC

WSINC

WSMAX

Process Creation
and Deletion

PROCESS CREATION AND DELETION

INTRODUCTION
This module discusses the operations required to create and delete
processes under VAX/VMS.

Process creation and deletion involve several different components
of VMS. Discussion in this module focuses on the process context
of each component. Some operations execute in the context of the
process that requests the particular action, while others execute
in the context of the target process.

Interactive and batch processes involve additional components such
as command language interpreters (CLis), the job controller, and
possibly the input symbiont process. In addition, interactive and
batch processes may require execution of the LOGINOUT image· for
such functions as mapping the CLI.

The discussion of the·life cycle of processes should contribute to
a better understanding of the implications of multiprogramming
application designs.

OBJECTIVES
1. To assist in the design of efficient multiprogramming

applications, the student must understand how the
following kinds of processes are created and deleted:

user-created processes
Interactive processes
Batch processes

2. To alter process characteristics (beyond the functionality
provided by DCL), the student must know how process
context is built.

3. To assist in managing processes, the student must
understand the effects of altering SYSGEN parameters
related to process creation and deletion.

6-3

RESOURCES
Reading

PROCESS CREATION AND DELETION

1. VAX/VMS Internals and Data Structures, chapters on process
creation, process deletion, and interactive and batch
jobs.

Source Modules

Facility Name

SYS

LOGIN
JOBCTL
INPSMB

Module Name

SHELL
PROCSTRT
SYSCREPRC, SYSDELPRC

6-4

PROCESS CREATION AND DELETION

TOPICS

I. Process Creation

A. Roles of operating system programs

B. Creation of process data structures

II. Types of Processes

III. Initiating Jobs

A. Interactive

B. Batch

IV. Process Deletion

v. SYSGEN Parameters Relating to Process Creation and Deletion

6-5

PROCESS CREATION AND DELETION

PROCESS CREATION

Table 1 Steps in Process Creation and Deletion

Action

Creating process

Inswap a process

Process startup

Process deletion

Code

SYS$CREPRC

SWAPPER

PROCSTRT

SYS$DELPRC

Table 2 Three Contexts Used in Process Creation

Creator's
Context

$CREPRC

e PCB

e JIB

• PQB (temp)

SW priority
boost

Process re­
turned COMO

Swapper's
Context

From SHELL

PHD filled in

COMO --> COM

New Process's
Context

PC= EXE$PROCSTRT

PSL= K mode, IPL=2

Sets up:

- logical names (sys$input •••)
- Catch-all cond. handler
- RMS dispatcher
- XQP merged in
- Image name moved to PHO
- Image activated

6-7

PROCESS CREATION AND DELETION

Creation of PCB, JIB, and PQB

JIB
,,,,£_

"""' Creator
(Pooled
Quotas)

PCB
N ew Process

$CREPRC
arguments

Control
Region

Process
Header

PCB

--..;;:
~

-~

Process
Quota
Block

(PQB)

Figure 1 Creation of PCB, JIB and PQB

1. $CREPRC allocates new data structures

PCB
JIB (if new process is detached)
PQB (temporary)

2. These new data structures are filled from:

*SYSGEN -

$CREPRC arguments
Creator's PCB
Creator's control region
Creator's process header
System defaults

PQL_xxxx parameters

6-8

I~

PROCESS CREATION AND DELETION

Relationships Between PCBs and JIB

name w
PIO 001A5

® PRCCNT 2

OWNER 0

JIB ---
©"" JIB for , all proceaaea

name x name y In thla job
~----------1

PIO 0081E PIO 00824 MPIO = 001A5

@
~----------!

PRCCNT 0 PRCCNT 1 pooled
OWNER 001A5 OWNER 001A5 quota•
JIB -- JIB

...... - -

name z
PIO 0073F

PRCCNT 0

OWNER 00824

JIB
~ -

Figure 2 Relationships Between PCBs and JIB

1. All PCBs point to JIB

W created X and Y

2. W's PRCCNT is 2

3. X and Y owner PIO is W PIO

Y created Z

No pointers from creator to subprocess

6-9

PROCESS CREATION AND DELETION

PCB Vector

[0]::scH.GL..PCBVEC

..,,,£

NULL "'""' ~ PCB ""'11£.

~

--,.
of

SWAPPER --, PCB NULL
ERRFMT ~ of PROCESS --,

~ SWAPPER
OPCOM ,.

JoB_coNTROL ~
--,

NULL ~
ISYllBIONT_0001 ~ ,,,..

PIPPIN

~
NULL ~

BATCH_195 ~ ,.
NULL ~

MERRY ~ ,. PCB
FRO DO ~ of ,

MERRY
SAM ~ PCB

of
SAM

Figure 3 PCB vector

• On process creation, search for unused vector

• Unused vectors point to Null's PCB

• Table of pointers to all PCBs

• Index into table is contained in PID

e SCH$GL_PCBVEC points to start' of table

*SYSGEN -

MAXPROCESSCNT

6-10

PROCESS CREATION AND DELETION

PID and PCB, Sequence Vectors

NULL

SWAPPER

II SCHSGL..PCBYEC

..__,,. __ I:: SCHSQL_JEQYEC

PROCESS
INDEX

--~'

.._ ... ~ toPCBof
new proceaa

Ex tended PIO

•

•
•
•

ce Vectors

t~'M~1~~

Process index into PCB and sequence
Process sequence number

vectors'J3t5)
< 20:1'f ')
<t tat> Cluster node index

Node sequence number
<.:Jo;2q >

PIO formed at process creation

Sequence number incremented each time vector slot re-used

SCH$GL_SEQVEC points to start of sequence vector ;)

. _<;;;;) !/ IJ l '/
~ ~ i(-;::-/f,- .

6-11

PROCESS CREATION AND DELETION

Process IDs

• There are actually two PIDs for a process

• Extended PID

Visible at the user level

Uniquely identifies a process on a single system, and
on a VAXcluster

Displayed by VMS utilities and system services

Stored in PCB at offset PCB$L EPID

Format is very subject to change

• Internal PID

Only visible through SDA, and in VMS source code

Stored in PCB at offset PCB$L_PID

Only contains process index and sequence
(original pre-v4 PID)

Used by most kernel-mode code

number

Some privileged data structures contain internal PIDs
(for example TQEL_PID, ACBL_PID, and LKB$L_PID)

• Several routines available for manipulating PIDs

Table 3 Routines for Manipulating PIDs

Operation Mechanism

Convert an extended PIO to an internal PID

Convert an internal PID to an extended PID

Return the PCB address given an
extended PID

Return the PCB address given an
internal PID

6-12

EXE$EPID_TO_IPID

EXE$IPID_TO_EPID

EXE$EPID_TO_PCB

EXE$IPID_TO_PCB

PROCESS CREATION AND DELETION

Swapper's Role in 'Process Creation

•
•
•

+ Slot # VBN

WSSWP

PCB

Figure 5 Swapper's Role in Process Creation

PcJ?4L..-
For new process, WSSWP is less than or equal to zero

WSSWP less than or' equal to zero causes SHELL to be copied

Swapper µ~1
Stores SYSGEN parameters in PHO
Initializes pointers, counters in PHO
Initializes system page table entries

6-13

PROCESS CREATION AND DELETION

PROCSTRT's Role in Process Creation

New Process

PCB

Process
Quota
Block

, (POB)

JIB

Control
Region

Process
Header

Figure 6 PROCSTRT's Role in Process Creation

• Hardware PCB defined in SHELL

e PC and IPL invoke PROCSTRT at IPL 2

• Code located in SYS.EXE

• Functions

PQB information moved to PHO and Pl
Create logical name tables
Change to user mode, IPL 0
Map in FllBXQP
Call SYS$IMGACT
Call image at transfer vector

6-14

PROCESS CREATION AND DELETION

TYPES OF PROCESSES

Batch

Detached

Network

Table 4 Types of Processes

Created
By

Job Controller

Another
process

Network ACP
(result of DCL
command with
node name)

Creating
Code

SUBMIT,
$SNDJBC,
$CREPRC

RUN, $CREPRC

$CREPRC

Special
Properties

- Deleted upon logout,
or at end of command
stream

- No password check

- Survives deletion of
its creator

- May be interactive
or not

- Deleted when no more
logical links to
service

Subprocess Another
process (the
owner)

RUN, SPAWN,
LIB$SPAWN,
$CREPRC

- Cannot survive
deletion of owner

- Quotas are pooled
with owner

e RUN and SPAWN call $CREPRC

• After system initialization

- May be interactive
or not

A process is created by another process
Process creation is done by $CREPRC

• An interactive process has:

PCB$V_INTER bit set in PCB$L_STS field
Non-file-oriented SYS$INPUT

6-15

PROCESS CREATION AND DELETION

Table 5 PCB Fields Defining Process Types

PCB$V_ BATCH PCB$V_NETWRK PCB$V_INTER PCB$L OWNER -
Network 0 1 0 0

Batch 1 0 0 0

Detached 0 0 0 or 1 0

Subprocess 0 0 0 or 1 non-zero

• PCB$V_xxx symbols represent bits in PCB$L_STS longword

• These bits in the status longword

Are intended ONLY for use by the system (for example, the
job controller or SPAWN)
Can be set using STSFLG argument to $CREPRC

• Interactive processes have the PCB$V_INTER bit set

Quota/Limit

MAXJOBS

MAXDETACH

PRCLM

Privilege

DETACH or
CM KR NL

Table 6 Restrictions on Process Creation

Meaning

Maximum number of interactive, detached, and batch
processes a user may create

Maximum number of detached processes a process
may create

Limit on number of subprocesses a process may
create

Required for

Creation of a detached process with a different
UIC than the creator

6-16

PROCESS CREATION AND DELETION

The LOGINOUT Image

• Initialize the process permanent data region
SYS$INPUT value, etc.)

(store

• Perform initializations specific to the type of process

Network process

Validate user name and password
Map CLI if necessary

Batch process

Obtain job parameters from job controller

Subprocess

No special initialization

Interactive process (only if initiated by unsolicited
terminal input)

Ensure that SYS$INPUT is non-file-oriented
Process system password (if ne essary)
Write SYS$ANNOUNCE {~~tp
Verify user name and password
Check for re-connections
Ensure that interactive job quota not exceeded

Detached process

Store user name (no need to verify password)

• Check job limits, account and password expiration, and

•
•
•

hourly restrictions

If interactive process, write welcome message c;/:;,h~#
(i

Initialize CLI if not activating a single image

Alters process characteristics to match UAF record

privileges
quotas

• Pass control to CLI or to image

6-1 7

PROCESS CREATION AND DELETION

INITIATING JOBS

Initiating an Interactive Job

Job
Controller

LOGINOUT.EXE

• If not aubproceea

- Verify Uaername,
PaHword

- Set quotaa, prlvllegH, UIC and
uaemame from UAF record

• Set up proceH permanent file•

Context of Job
Controller Process

Context of Newly
Created ProceH

Figure 7 Initiating an Interactive Job

• Initiated by unsolicited input at a free terminal

Job controller notified by driver
Creates process with user name equal to terminal name

• LOGINOUT
1

runs

• DCL mapped (or alternate CLI)

• SPAWN creates an interactive or non-interactive subprocess
(no need to verify user name, etc.)

6-18

PROCESS CREATION AND DELETION

Initiating Job Using $SUBMIT

S SUBMIT X.COM

CLI ectlvetH
SUBMIT uttllty

SY SS INPUT

SYSSCOMMAND

SYSSOUTPUT
SY SS ERROR

CreetH
prOCHa

Job
ControHer

LOGINOUT.EXE

1) No userneme/peHword
verlflcetlon

2) SYSllNPUT end SYSIOUTPUT
ere different

Figure 8 Initiating Job Using $SUBMIT

o Similar to interactive process, except

Job controller notified by DCL ($SUBMIT)

user already validated

Files are assigned:

SYS$INPUT to batch stream
SYS$0UTPUT to log file

6-19

PROCESS CREATION AND DELETION

Initiating Job Through Card Reader

$SUBMIT X.COM

C LI activates
SUBMIT utility

SUBMIT utility
notifies Job
Controller

Job
Controller

Job
Controller

Creates
process

SYS$1NPUT
SYS$COMMAND

Figure 9

LOGINOUT.EXE

1) No username/password
verification

2) SYS$1 NPUT and SYS.$0UTPUT
are different

Initiating Job Through Card Reader

1. Job controller notified by card reader driver

2. Job controller creates input symbiont process

User authorization
Read cards into command file
Submit as batch job

3. Sarne as for $SUBMIT

6-20

MKV84-27~7

PROCESS CREATION AND DELETION

PROCESS DELETION

• After image runs and exits, process deleted

Unless running with a CLI

• All traces of process removed from system

• All system resources returned

• Accounting information passed to job controller

• For subprocess, all quotas and limits returned to creator

• Creator notified of deletion

6-21

PROCESS CREATION AND DELETION

Process Deletion Sequence

name OTG

PIO 003AE

PRCCNT 2

OWNER 0

name BERT name

PIO 00423 PIO

PRCCNT 0 PRCCNT

OWNER 003AE OWNER

0

0

Figure 10 Process Deletio~ ;{ Q\.. q
Deleted by kernel AST while CURRENT \.:) y

Sequence

Delete any subprocesses
Accounting information to job controller
Call SYS$R-UNDOWN
Delete Pl space
Free PCBVEC and SWAP slots, page file space
Decrement counts

Balance set
Total~processes

Jump to SCH$SCHED

6-22

ERNIE

00518

0

003AE

PROCESS CREATION AND DELETION

SUMMARY

Table 7 Steps in Process Creation and Deletion

Action

Creating process

Inswap a process

Process startup

Process deletion

Code

SYS$CREPRC

SWAPPER

PROCSTRT

SYS$DELPRC

Table 8 SYSGEN Parameters Relating to Process Creation
and Deletion

Function Parameter

Maximum number of processes allowed on the
system

System default values for some process limits
and quotas

System minimum values for some process limits
and quotas

6-23

MAXPROCESSCNT

PQL_Dxxx

PQL.,,_Mxxx

System Initialization
and Shutdown

SYSTEM INITIALIZATION AND SHUTDOWN

INTRODUCTION
The study of the initialization of a VAX/VMS system provides a

convenient summary of many of the topics previously discussed in
this course. It is during initialization that the structures,
mechanisms, and other features of the VMS environment are
established.

Each component of the initialization sequence is discussed
from turning on the power to the final start-up command procedure
and the enabling of logins. Included is an explanation of:

• Why each component executes in its particular environment

• Why it executes at its
initialization sequence.

position in the overall

Hardware differences between VAX systems, especially the
components of the console subsystem, have an effect on the initial
stages of system initialization. The basic configurations of the
VAX-11/730, VAX-11/750 and VAX-11/780 are described, highlighting
the effects of the differences on. the initialization sequence.

In addition, some time is spent discussing the shutdown and
recovery sequences involved in power failure and bugcheck.

OBJECTIVES
1. Describe, in general terms, the sequence of operations

involved in:

• Initial bootstrap
• Powerfail and recovery
• Bugcheck and reinitialization

2. Describe the differences between console subsystems of the
VAX family systems, and the effects on system
initialization.

3. Discuss the effects of altering SYSGEN parameters relating
to system initialization.

7-3

SYSTEM INITIALIZATION AND SHUTDOWN

RESOURCES
Reading

1. VAX/VMS Internals and Data Structures, chapters on error
handling, bootstrap procedures, operating system
initialization, and powerfail recovery.

Source Modules

Facility Name

BOOTS

SYS

SYSINI

Hardware Microfiche

Module Name

SYSBOOT, SYSGEN
VMB
!NIT
SYSPARAM
POWERFAIL
BUGCHECK, BUGCHKMSG
SYSINIT

CONSOLE.SYS
Memory ROM program

7-4

SYSTEM INITIALIZATION AND SHUTDOWN

TOPICS

I. Initialization

A. System initialization sequence

B. Functions of initialization programs

C. How memory is structured and loaded

D. Start-up command procedures

E. SYSBOOT, SYSGEN

F. VAX-11/780, VAX-11/750, and VAX-11/730 hardware
differences and how they affect initialization

II. Shutdown and Restart

A. Front panel switches

B. Shutdown procedures and their functions

C. Autorestart sequence

D. Powerfail recovery

7-5

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/780, 11/750, 11/730 CONSOLE DIFFERENCES

780 and 730

750

Contain a console microprocessor

780 - LSI-11
730 - 8085

Boot/restart information available on console media

780 - floppy
730 - TU58

No console microprocessor

Boot/restart information in ROM (normally) or on disk

7-7

SYSTEM INITIALIZATION AND SHUTDOWN

SYSTEM INITIALIZATION

TEST

LOAD INITIAL
PROGRAM

OBTAIN SYSTEM
PARAMETERS

LOAD OPERATING
SYSTEM

RUN INITIALIZATION
CODE

ACTIVATE STANDARD
COMMAND PROCEDURE

ACTIVATE SITE'S
COMMAND PROCEDURE

Figure 1 System Initialization

7-8

SYSTEM INITIALIZATION AND SHUTDOWN

SYSTEM INITIALIZATION SEQUENCE

11/750

' CONSOLE PROGRAM

' DEVICE SPECIFIC
INFORMATION

!
·~· VMS.EXE
~

SYSBOOT.EXE
~

SYS.EXE
~

SYSINIT.EXE
~

STARTUP.COM

11/780, 11/730
t

MICROPROCESSOR
STARTS UP

+
BOOT BLOCK

PROGRAM
~

CONSOL.SYS

+

@

~
SYSTARTUP.COM

Figure 2 System Initialization Sequence

1. Bootstrap computer using ROMs in CPU

2. Bootstrap computer using LSI-11 (780) or 8085 (730)

3. Finish system initialization

• Finish preparing system
• Load operating system
• Run operating system initialization code

®

• Activate VMS standard and site-specific DCL procedures

7-9

SYSTEM INITIALIZATION AND SHUTDOWN

INITIALIZATION PROGRAMS

Program

CONSOLE.SYS
(CONSOLE.EXE
on 730)

VMB.EXE

SYSBOOT.EXE

INIT
(in SYS.EXE)

SYSINIT

Table 1 Initialization Programs

Function

Loads VAX writable diagnostic control store
Acts as monitor for console terminal commands
On boot command loads, passes control to
VMB.EXE

Sizes and tests physical memory, discovers
external a~a~t~rs
Sets up pr1m1t1ve SCB
Locates, loads, and passes control to
SYSBOOT.EXE

Locates and loads SYS.EXE
Loads SYSBOOT parameters
Opens and stores location of dump file
Se ts up ful 1 SCB
Sizes system space, sets up system page table
Maps nonpaged pool into high end of physical
memory
Loads terminal driver and system disk driver
Sets up P0 page table
Passes control to INIT in SYS.EXE

Turns on memory management
Maps and initializes the I/O adapter
Maps paged pool
Initializes several scheduling and memory
management data structures
Invokes SCHED.MAR

Opens and stores locations of page files
and swap files
Maps RMS and system message file as system
sections
Mounts system disk

7-10

Environment

LSI (780)
8085 (730)
CPU (750)

VAX memory
Physical
address

VAX memory
Physical
address

VAX memory
Physcial
address/
Virtual
address

Process

Program

STARTUP.COM

SYSTEM INITIALIZATION AND SHUTDOWN

Table 1 Initialization Programs (Cont)

Function

Creates several system logical names
Creates job controller, error log formatter,
OPCOM processes
Invokes INSTALL
Invokes SYSGEN for autoconf igure
Invokes SYSTARTUP.COM

SYSTARTUP.COM Site-specific, such as:

• Create logical names
• Load user-written device drivers
• Install privileged and shareable images
• Set up queues and terminal characteristics

7-11

Environment

Process

Process

SYSTEM INITIALIZATION AND SHUTDOWN

PHYSICAL MEMORY DURING INITIALIZATION

ON ENTRY TO VMS.EXE

Restart Parameter
Block (RPB)

Primary
Bootstrap
Program

VMB

• SP

ON ENTRY TO SYSBOOT.EXE

Restart Parameter
Block (RPB)

Primary
Bootstrap
Program

VMB

System Control Block (SCB)
for VMB

PFN Bitmap

Bootstrap Stack

Secondary
Bootstrap
Program

SYSBOOT

~RPB$L.BASE
+""X200

~PRS-SCBB

~SP

Figure 3 Physical Memory During Initialization

• Console or ROM programs have located 64K bytes of good
contiguous memory.

e On entry to VMB.EXE

Console program has loaded VMB into the known good memory,
leaving 512 bytes for the Restart Parameter Block.

e On entry to SYSBOOT.EXE

VMB has loaded

Restart Parameter Block with values from R0-R5

System Control Block with vectors pointing to one
routine

PFN Bitmap with map of error-free pages in physical
memory

SYSBOOT.EXE

VMB has also allocated Bootstrap Stack, used by VMB and
SYSBOOT.

7-12

SYSTEM INITIALIZATION AND SHUTDOWN

PHYSICAL MEMORY LAYOUT AFTER SYSBOOT ENDS

Dynamic Pages

PFN Database

Nonpaged Executive
Code and Data

Nonpaged Dynamic Memory

Interrupt Stack

System Control Block

System Header

System Page Table

+-0

+- MMG$GL_MAXPFN
(Physical Page Number)

+-PR$_SCBB
(Physical Address)

+-PR$-SBR
(Physical Address)

+-Largest PFN

Figure 4 Physical Memory After SYSBOOT

SYSBOOT has

• Sized the pieces of memory shown above

• Filled in the SCB and part of the system header

• Mapped and read in SYS.EXE (Executive code)

7-13

SYSTEM INITIALIZATION AND SHUTDOWN

TURNING ON MEMORY MANAGEMENT

PO
Region

@

@
System
Space

Virtual Address Space
From SYSBOOT L Physical Address Space

EXE$1NIT:: EXE$1NIT:: G)
MOVL RPBSL-BOOTRS(R 11).FP MOVL RPBSL-BOOTRS(R 11),FP

MTPR # 1.S"#MAPEN MTPR # 1.S"#PR$_MAPEN @
j ..

JMP @)# 10$ JMP @#10$
~ ~

10$: 10$:

MOVL EXESGL_INTSTK.SP MOVL EXE$GL_INTSTK,SP
• • • • •

•

EXE$1NIT::

MOVL RPBSL-BOOTRS(R 11).FP

MTPR #1,S"#MAPEN

JMP @#10$

10$: + I--
MOVL EXESGL_INTSTK,SP

• • •

Figure 5 Turning on Memory Management

7-14

SYSTEM INITIALIZATION AND SHUTDOWN

Turning on Memory Management

e Done by INIT in SYS.EXE

• Physical to virtual transition:

1.

2.

• All address references
addresses

treated as physical

• INIT page table entries set up so P0 virtual
address
equals physical address

• S0 and P0 page table entries for INIT contain same
PFNs

Writing a
following
addresses

1 to processor register MAPEN causes
address references to be treated as virtual

3. Next instruction is found in P0 space

4. When INIT was linked, base was in S0 space, so JMP
@#10$ causes jump to address in S0 space

7-15

SYSTEM INITIALIZATION AND SHUTDOWN

SYSINIT

• Created by swapper as part of one-time initialization
routine

• Selected from COM queue after SWAPPER goes into normal HIB

• Major functions:

Opens and records locations of page and swap files

Maps RMS and system message files

Creates XQP global section

Mounts system disk

Creates start-up process

7-16

SYSTEM INITIALIZATION AND SHUTDOWN

START-UP

Start-Up Process

• Runs as final part of initialization

• Runs using DCL command procedures

STARTUP.COM

SYSTARTUP.COM

STARTUP.COM

• Assigns logical names

• Installs VMS images

• Creates system processes

ERRFMT

JOB CONTROL

OPCOM

• Autoconf igures all devices

SYSTARTUP .COM

• Mounts volumes other than the system disk

• Assigns site-specific logical names

• Sets up site-specific

Terminal characteristics

Print and batch queues

• Installs site-specific images

• Starts DECnet

• Loads user-written device drivers

7-17

SYSTEM INITIALIZATION AND SHUTDOWN

SYSBOOT AND SYSTEM PARAMETERS

USE
DEFAULT

Default
Parameter

Settings
Internal

to
SYSBOOT

Parameter
Settings

in Memory
Image of
Executive

Figure 6 SYSBOOT and System Parameters

SYSBOOT executes as part of system initialization.

1. Automatically brings in current parameters

2. Allows changes if conversational boot requested

• Valid commands are USE, SET, CONTINUE, EXIT
• Can alter all parameters used in present system
• Cannot create alternate parameter files

3. Writes parameters to copy of SYS.EXE in memory

4. Later in initialization sequence, parameter values are
copied to VAXVMSSYS.PAR for subsequent boots

7-18

SYSTEM INITIALIZATION AND SHUTDOWN

SYSGEN AND SYSTEM PARAMETERS

Default
Parameter
Settings
Internal

to
SYSGEN

Parameter
Settings

In Memory
Emage of
Executive

SYSGEN
Table

of
Working
Values

• ~meter

WRITE f llespec •
Figure 7 SYSGEN and System Parameters

SYSGEN runs as an editor-like utility under VMS

Parameter
Settings

in Memory
Image of
Executive

1. SYSGEN copies active system parameters into its buffer

2. Can replace all values with current, default or active
values, or with values in an alternate file

3. Can alter individual parameters in SYSGEN buffer

4. Use WRITE command to record new values:

• Can create alternate parameter files
• Can alter dynamic parameters on present system
• Can alter parameters used on next system boot

7-19

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/780 PROCESSOR

FLOPPY
DISK

LA120

FPA UCS

SYSTEMS
CONSOLE VAX-11/780

CPU MEMORY MEMORY MUL Tl PORT MUL TIPORT
CONTROLLER CONTROLLER MEMORY MEMORY

REMOTE
DIAGNOSIS

MEMORY
CACHE

1/0 ADAPTORS

MASSBUS,,

~
1 STANDARD 4 OPTIONAL

3 OPTIONAL

Figure 8 VAX-11/780 Processor

DR780

• 1 OPTIONAL

• Program on ROM causes CONSOLE.SYS to be loaded from floppy
into LSI-11 memory

e CONSOLE.SYS runs on LSI-11

Loads diagnostic control store

Causes ROM in memory controller to find 64K good bytes

Loads VMB.EXE from floppy disk to VAX memory

7-20

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/750 PROCESSOR

TU58

LA120

SYSTEMS
CONSOLE

REMOTE
DIAGNOSIS

ucs

VAX-11/750
CPU

CACHE

MEMORY
CONTROLLER

MEMORY

1/0 ADAPTORS

UNIBUS MASSBUS,,

• ~
1 STANDARD 3 OPTIONAL

Figure 9 VAX-11/750 Processor

• Console program stored in ROM with CPU

Locates 64K good bytes

Passes control to device ROM

• Device ROM

Reads boot block from device

• Boot block program

Loads VMB.EXE from specified system device

7-21.

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/730 PROCESSOR

Dua1TU58s

RD

LA120

Console
Subsystem

FPA

COMBO
Board

Data Path

Control Store

Memory Controller I
Input/ Output

IDC

Figure 10 VAX-11/730 Processor

4-RL02s
or,

3-RL02s
& 1-RSO

• Program on ROM causes CONSOLE.EXE to be loaded from TU58 into
8085 memory

e CONSOLE.EXE runs on 8085

Loads microcode into CPU from TU58

Execut~s DEFBOO - loads registers of CPU, finds 64K good
bytes

Loads VMB.EXE from TU58

7-22

SYSTEM INITIALIZATION AND SHUTDOWN

VAX FRONT PANELS

CPU STATE

POWER RUN

0 0
ERROR INITIALIZE

0 0

VAX-11/780 Panel

BOOT DEVICE POWER ON ACTION

BOOT~
RESTART

HALT .

RESTART

VAX-11/750 Panel

KEY SWITCH

LOCAL

DISABLE ~ DISABLE LOCAL @REMOTE

OFF 0 REMOTE

KEY SWITCH
LOCAL/

SECURE~REMOTE/ SECURE

OFF 6 REMOTE

RUN DC ON BATT R/D ~D~Dl!D VA'C1V730 0 0 0 0 LOCAL \ I LOC DSBL
AUTO RESTART BOOT '8"REMDSBL ON STD BY

11 lM II
OFF REMOTE

VAX-11/730 Panel

Figure 11 VAX Front Panels

7-23

SYSTEM INITIALIZATION AND SHUTDOWN

Table 2 Switches on the VAX-~1/780, /730, /750

11/780 11/750

OFF OFF

LOCAL/DISABLE SECURE

LOCAL LOCAL

REMOTE REMOTE

REMOTE/DISABLE REMOTE/SECUR~

11/730 Effects on Console
Terminal and System

STANDBY Power partially off

LOCAL/DISABLE Local terminal-program
I/O mode only. Remote
disabled.

LOCAL Local terminal-program
I/O mode and console
I/O mode. Remote dis-

REMOTE

abled.

Local terminal disabled.
Remote-console I/O
mode and program I/O
mode.

REMOTE/DISABLE Local terminal disabled.

OFF

7-24

Remote-program I/O
mode only.

Power completely off

SYSTEM INITIALIZATION AND SHUTDOWN

SHUTDOWN OPERATIONS

Action

Clean shutdown

Quick shutdown

Forced crash

Halt system

Table 3 Shutdown Operations

Operation

$ @SYS$SYSROOT: [SYSEXE]SHUTDOWN

$ RUN SYS$SYSTEM:OPCCRASH

Control/P
>>>@CRASH
>>>E p
>>>E/G F
>>>E/I 0
>>>E/I 1
>>>E/I 2
>>>E/I 3
>>>E/I 4

(onOPA0:)
(780/730 only)
(750 only)

>>>D/G F FFFFFFFF
>>>D P 001F0000
>>>C

Control/P
>>>H

7-25

(on OPA0:)
(7 80/7 3 0 only)

SYSTEM INITIALIZATION AND SHUTDOWN

SHUTDOWN PROCEDURES

Procedure

SHUTDOWN.COM

OPCCRASH

CRASH.CMD

Table 4 Shutdown Procedures

Function

- Warns users of shutdown
- Stops queues
- Removes installed images
- Stops processes
- Dismounts disks
- Runs OPCCRASH

- Marks system disk for dismount (to force
cache flushing)

- Flushes modified page list
- Requests "operator" BUGCHECK

- Halts CPU
- Examines PSL and all SPs
- Deposits -1 in PC

1F000 in PSL
- Continues

7-26

SYSTEM INITIALIZATION AND SHUTDOWN

AUTORESTARTING THE SYSTEM

START

TURN MEM. MANAGE­
MENT ON

RESTORE INTERRUPT
STACK

CALCULATE NEW
SYSTEM TIME

SCAN TIMER QUEUE

MAKE ERROR LOG
ENTRY

INITIALIZE
ADAPTERS

NOTIFY DEVICE
DRIVERS OF POWER
FAIL

RESTORE REGISTERS

REBOOT VMS

TK-8973

Figure 12 Autorestarting the System

7-27

SYSTEM INITIALIZATION AND SHUTDOWN

REQUIREMENTS FOR RECOVERY AFTER POWER-FAIL

• Battery backup

• Memory valid (battery not run down)

• RPB and memory valid and warm restart flag cleared

• VAX-11/780 - Autorestart On

RESTART.CMD on console floppy

RESTART.CMD contains right TR
number for system disk adapter

• VAX-11/750 Power action SW on
'Restart/Halt'

• VAX-11/730 - Enable restart

7-28

'Restart/Boot' or

SYSTEM INITIALIZATION AND SHUTDOWN

SUMMARY

• Initialization

System initialization sequence

Functions of initialization programs

How memory is structured and loaded

Start-up command procedures

SYSBOOT, SYSGEN

VAX-11/780, VAX-11/750, and VAX-11/730 hardware
differences and how they affect initialization

• Shutdown and Restart

Front panel switches

Shutdown procedures and their functions

Autorestart sequence

Powerfail recovery

7-29

Using The Linker

Using the Linker 8-3

Introduction
The linker binds object modules, together with any other necessary information, into executable
and shareable images. Most linker operations are transparent to the user, but a basic understanding
of these operations allows a user to write programs that execute more efficiently.

An optional output file produced by the linker, called a linker map, can be particularly helpful in
locating and debugging run-time errors.

This module provides an overview of the linker's processing of input files, along with the qualifiers
available with the LINK command. These qualifiers and options control the execution
characteristics of the images produced.

Objectives
1. To build images that execute efficiently, a programmer must be able to:

• Describe the manner in which the linker arranges the contents of object modules to form
images.

• Use the qualifiers and options available with the LINK command.

2. To locate certain types of run-time errors, a programmer must be able to produce and read a
linker map.

Resources
1. VAX/VMS Linker Utility Reference Manual

2. VAX/VMS DCL Dictionary

Using the Linker 8-5

I Linking Object Modules to Form an Image

The linker accepts object modules, shareable images, and libraries as input, and creates executable
and shareable images. When an image is executed, the image activator uses information placed in

'the image file by the linker to map the image into the virtual address space of a process.

I.I Using the LINK Command

The VAX/VMS DCL Dictionary describes the LINK command and its command and file qualifiers.
The LINK command has the following format:

$LINK file-spec [,file-spec .•.]

The default file type for input object files is .OBJ. Input files that are not object files (shareable
images), are indicated by a file qualifier, and have different default file types.

Tables 1 and 2 list some of the most frequently used qualifiers. The default qualifiers are labeled
with a (D).

Table 1 Commonly Used Qualifiers for the LINK Command

Operation Qualifier

Create an executable image /EXECUTABLE (D)

Include a debugging module /DEBUG

Create a full linker map /FULL and /MAP

Create a shareable image /SHAREABLE

Search the default system libraries to resolve undefined references /SYSLIB (D)

Table 2 File Qualifiers Commonly Used with the LINK Command

Operation Qualifiel'

Include one or more modules from a library /INCLUDE

Specify that the input file is a library /LIBRARY

Specify that the input file is an options file /OPTIONS

8-6 Using the Linker

1.2 Program Sections

The V AX-11 MACRO assembler and high-level language compilers translate source code into
object code. Different parts of a source file have different properties (for example, code is
executable; data is not). Table 3 lists some of the properties that might describe different segments
of source code. In creating an object file, the compiler (or assembler) divides the code into
program sections (PSECTs). Each PSECT contains code with similar properties; the properties
of a particular PSECT are called its PSECT attributes.

Table 3 PSECT Attributes

WRT
RD
EXE
PIC
LCL
CON
SHR
VEC

Writeable
Readable
Executable
Position-Independent
Local
Concatenated
Potentially Shareable
Protected (vector)

NOWRT
NORD
NO EXE
NOPIC
GBL
OVR
NOSHR
NOVEC

Not Writeable
Not Readable
Not Executable
Not Position-Independent
Global
Overlaid
Not Shareable
Nonprotected (vector)

Figure 1 shows the organization of a sample source file into various program sections. All
executable code is gathered into a PSECT named CODE, which has the attributes EXE and
NOWRT.

SOURCE FILE

DATA DECLARATIONS

CONSTANT DECLARATIONS

DATA DECLARATIONS

CODE

CODE

Figure 1 Organization of Source Files into Program Sections

PROGRAM SECTIONS IN
OBJECT FILE

PDATA NOEXE, NOWRT

LOCAL NOEXE, WRT

CODE EXE, NOWRT

TK-8367

Using the Linker 8-7

MACRO programmers can assign attributes to different sections of a program. PSECT attributes
for high-level language programs, however, are assigned by the compiler. High-level language
programmers can determine the PSECT attributes given to a program by examining the listing file
produced when the program is compiled using both the /MACHINE_CODE and /LIST qualifiers.
Any programmer can alter the attributes of a PSECT using a linker options file, discussed later in
the module.

1.3 Linker Clusters

The linker must first collect all files specified as input for an image. As the linker collects the input
files, it organizes them into clusters, and stores the clusters in a buffer. A cluster is the unit in which
the linker handles your program. The input is processed and written to the image file, cluster-by­
cluster.

It is sometimes beneficial to have certain segments of code close to each other in an executable im­
age. Since the placement of input modules in clusters defines the order of the code in an image, it is
useful to know how the linker clusters input modules.

An executable image is mapped into the virtual address space of a process at run time, but may not
fit into the physical memory allocated to the process (the process working set). In this case,
segments of the program are paged into the working set as needed. If related segments of the pro­
gram are close to each other in an executable image, they will be paged into the working set
together, which can improve program performance. You can ensure that related segments of code
are near each other in an executable image by controlling their placement in clusters.

By default, the linker places all input object modules in a default cluster. Even if the object modules
are stored in different files, they are placed in the same default cluster. In addition, a separate cluster
is created for each shareable image referenced by the program, as in Figure 2. The code for a
shareable image is not copied into the image file (to conserve disk space), rather, a descriptor for the
shareable image is included in the executable image file.

8-8 Using the Linker

.. -A

FILE1.0BJ B

c

~
FILE2.0BJ

D

E

VMSRTL.EXE----------<-:...m

Figure 2 Organization of Input Files into Clusters

A

B

c
D

E

SHAREABLE
IMAGE
DESCRIPTOR

DEFAULT
CLUSTER

}

CLUSTER
TWO

TK-8368

Options on the LINK command allow you to control placement of program sections within
clusters. (Linker options are discussed in more detail later in the module.) Take, for example,
a transaction processing application that collects and processes data input to a terminal. One set
of routines displays three different forms on the terminal, and another set collects and processes
the data input for each form. Because the screen formatting routines are similar to each other,
they are stored in the same subdirectory. Similarly, the processing routines are stored together
in another subdirectory, as in Figure 3. To place the form and processing routines for each screen
next to each other in the final image, you might specify the files on the LINK command in the
following order:

$LINK MAIN, [.FORMS]FORMl, [.PROCESSRS]PROCESSl, -
[.FORMS]FORM2, [.PROCESSRS]PROCESS2, -
[.FORMS]FORM3, [.PROCESSRS]PROCESS3

[PROGRAM] [PROGRAM.FORMS]

I FORM1.0BJ I
[PROGRAM.PROCESSORS]

I PROCESS1 .OBJ I
MAIN.OBJ

FORM2.0BJ PROCESS2.0BJ

FORM3.0BJ PROCESS3.0BJ

TK-8369

Figure 3 Routines for Transaction Processing Application

Using the Linker 8-9

The organization of input files into clusters, however, is not d~fined by the order of the files on the
LINK command. Rather, the linker gathers similar PSECTS from the input files, so the routines are
ordered in the final image, as shown in section A of Figure 4. To ensure that the related routines are
near each other in the final image (as shown in section B of Figure 4), use the CLUSTER option of
the linker. This is discussed later in this module.

Small programs that fit into the working set of a process need not be too concerned with the location
of related code in an image. For large programs, the advantages of clustering are three-fold:

• Faster image activation

• Improved program performance (less paging I/0)

• Improved system performance (decreased paging activity)

A. Default placement B. User-defined placement

FORM1 .1
CLUSTER{ I FORM1

ONE
FORM2 I PROCESS1

CLUSTER { I FORM3 FORM2

TWO

DEFAULT PROCESS1 I PROCESS2

CLUSTER

PROCESS2 {' FORM3
CLUSTER

PROCESS3
THREE I

PROCESS3

B DEFAULT[B
CLUSTER MAIN

TK-8366

Figure 4 Placement of Program Sections in Clusters

LEARNING ACTIVITY

1. (OPTIONAL) See the VAX/VMS Linker Utility Reference Manual for a more com­
plete description of the way the linker organizes input into clusters.

8-10 Using the Linker

1. 4 Image Sections

Once the linker has located all modules needed to create an image, and has organized them into
clusters, the modules are processed on a cluster-by-cluster basis to form the final image. This
processing has three parts:

1. Organize the PSECTS into image sections.

2. Assign virtual addresses to the image sections.

3. Write image sections to the image file.

The linker must organize your image into image sections because that is the unit in which the
image activator handles your program. Your image is mapped to your virtual address space an
image section at a time.

The following paragraphs describe the creation of image sections by the linker. The allocation
of virtual memory is discussed in the next section.

For each cluster, the linker gathers PSECTs with similar attributes and organizes them into image
sections. When creating image sections, the linker only looks at certain relevant PSECT at­
tributes. For all images, the WRT/NOWRT, EXE/NOEXE, and VEC/NOVEC attributes are
considered. When creating shareable images, the PIC/NOPIC and SHR/NOSHR attributes are
also considered.

Figure 5 shows the creation of image sections for a typical default cluster. This default cluster
contains object modules from three separate input files. All PSECTS with both the NOEXE and
NOWRT attributes are collected into the first image section. The rest of the image sections are
created similarly.

PSECTS

PDATA1

FILE1.0BJ LOCAL 1 -----------...--
CODE 1

PDATA2 NOEXE,NOWRT
FILE2.0BJ ------------

CODE2 EXE,NOWRT

PDATA3 NOEXE,NOWRT

FI LE3.0BJ LOCAL3 NOE XE, WRT

CODE3 EXE, NOWRT

Figure 5 Organization of PSECTs into Image Sections

When the linker creates image sections:

Using the Linker 8-11

IMAGE SECTIONS

NOEXE, NOWRT

NOEXE, WRT

LOCAL1
LOCAL2

EXE, NOWRT

CODE1
CODE2
CODE3

TK-8365

• PSECTs are alphabetized by name within each image section.

• Image sections are organized within a cluster in a predefined order (see the VAX/VMS Linker
Utility Reference Manual).

2 Mapping an Image to the Virtual Address Space of a Process

The linker and the image activator work together to assign virtual addresses to executable code. The
code is mapped to these addresses in the virtual address space of a process at run time.

2.1 Linker Assigns Virtual Addresses

On a cluster by cluster basis, the linker assigns virtual addresses to the image sections. The image
file is mapped to these addresses in process virtual address space when the RUN command is issued.
An executable image file is always mapped to the same virtual addresses each time it is run.

In most cases, virtual addresses are assigned to shareable images at run time, rather than when they
are created by the linker. This avoids addressing conflicts. If, for example, virtual addresses are
assigned at creation, then two shareable images could both be assigned to start at address 200. They
could not both be included in the same program. To avoid such addressing conflicts, the image
activator assigns virtual addresses to position-independent shareable images at run time.

8-12 Using the Linker

Sometimes it is necessary to include data definitions which contain virtual addresses in a
shareable image (for example, a character string descriptor). An address must be assigned to this
code for it to }ink successfully. The correct address will not be known until run time, when
addresses are assigned to the rest of the image. To satisfy the need for an address and preserve
the position independence of the shareable image, the linker assigns an offset to the code. The
offset is translated to the correct address at run time by the image activator.

The linker performs this special action for:

• .ADDRESS and .ASCID directives in a shareable image.

• General addressing mode (G~) references to a location in a shareable image.

General addressing mode and .ADDRESS directives are used in MACRO; high-level language
compilers generate the object language equivalent. Some knowledge of MACRO is helpful in
understanding this discussion, but the concept relates to all languages.

To illustrate handling a general addressing mode reference to a routine in a shareable image, con­
sider a call to MTH$SQRT. This mathematical Run-time Library routine is part of the shareable
image MTHRTL.EXE. A program written in a high-level language references the MTH$SQRT
routine as follows:

CALL MTH$SQRT(number)

The compiler translates this to:

CALLG ARGLIST, G"MTH$SQRT

which is how the call appears in a MACRO program. (Note that some compilers may translate
this call to a CALLS instead.) When the program is linked, the linker calculates the location of
MTH$SQRT in MTHRTL, and stores the offset in a symbol named SQRT.

CALLG ARGLIST, @L"SQRT
SQRT: .LONG X

At run time, virtual address space is assigned to MTHRTL, and the image activator can translate
the offset to a true virtual address:

SQRT + (MTHRTL-base-address) = address for routine

The linker handles .ADDRESS and .ASCID directives in an object module in much the same way
as G"references. These directives are often used by MACRO programmers. The equivalent object
language commands are generated by high-level language compilers when building argument lists
with arguments passed by reference or descriptor.

Using the Linker 8-13

The linker resolves the .ADDRESS reference to an offset, rather than an address. The offset
represents the location of the target within the shareable image. After assigning virtual addresses to
the shareable image, the image activator calculates the correct virtual address of the instruction:

Offset + SHIMG-base-address = address of instruction

This treatment of G" references and .ADDRESS directives preserve the position independence of
shareable images.

To conserve disk space, the linker does not allocate memory for large arrays that do not contain data
before the program is run. Instead, a descriptor for the array is placed in a special type of image sec­
tion, a demand-zero section. At run time, the image activator allocates memory for these large ar­
rays. This special treatment oflarge arrays only applies to executable images, not shareable images.

2.2 Image Activator Maps Image to Virtual Address Space

At run time, image sections are mapped to their assigned virtual addresses by the image activator.
Figure 6 illustrates mapping an image composed of four image sections: three containing PSECTs
and one with a pointer to the Run-Time Library shareable image.

8-14 Using the Linker

DEFAULT
CLUSTER

CLUSTER(
TWO

IMAGE FILE
ON DISK

NOEXE, NOWRT

PDATA1
PDATA2
PDATA3

NOEXE, WRT

LOCAL 1
LOCAL2

EXE, NOWRT

CODE1
CODE2
CODE3

DESCRIPTOR
FOR MTHRTL
SHAREABLE
IMAGE RUN-TIME

LIBRARY
ROUTINES

Figure 6 Mapping an Image into Process Virtual Address Space

PROCESS VIRTUAL
ADDRESS SPACE

NO ACCESS
(1 PAGE)

PDATA1
PDATA2
PDATA3

LOCAL 1
LOCAL2

CODE1
CODE2
CODE3

RTL
ROUTINES

FIXED PART

PO

T
l

TK-8364

Notice that the first page of virtual address space is inaccessible to catch common programming
errors (for example, using data as addresses). Since this program references MTHRTL routines,
the image activator uses the descriptor to locate MTHRTL.EXE, and maps the entire shareable
image into the virtual address space. Any other referenced shareable images would be handled
the same way.

Using the Linker 8-15

3 Creating and Reading a Linker Map

The linker optionally creates a listing containing information about a program and the link opera­
tion. This listing, called a linker map, is often helpful when debugging run-time errors.

3.1 Creating a Linker Map

Including an optional qualifier on the LINK command directs the linker to create a linker map. The
map can be in one of three formats:

• BriefMap

• Default Map

• FullMap

A full map contains the following sections of information, of which the brief and default maps con­
tain subsets:

• Object Module Synopsis

• Image Section Synopsis

• Program Section Synopsis

• Symbols by Name (or Symbol Cross-Reference)

• Symbols by Value

• Image Synopsis

• Link Run Statistics

3.2 Using a Linker Map to Debug Run-Time Errors

A linker map, especially a full map, can be useful in debugging run-time errors and reading large
listing files. Some of the uses for a linker map include:

• Locating an instruction that caused a run-time error.

• Translating a number displayed by the debugger to its related symbol or address.

• Locating symbol definitions.

8-16 Using the Linker

The Program Section Synopsis is used with a listing file to determine the instruction that caused
a run-time error:

1. Obtain PC - The error message and traceback should provide you with the program counter
(PC). The PC indicates the virtual address of the instruction that caused the error. Alter­
nately, the PC could be output by a user-written condition-handling routine.

2. Locate PSECT - The Program Section Synopsis lists the beginning and ending addresses
of each program section in the image (the virtual addresses that each program section 'was
mapped into). Locate the program section that contains the problem instruction by locating
the PSECT that contains the PC.

3. Calculate Offset - Subtract the base address of the program section (from step 2) from the
PC to obtain the offset into the PSECT of the erroneous instruction.

4. Locate Instruction - Consult the listing file for the program to obtain the instruction
associated with that offset.

The Symbols by Reference section can be used to translate a number to its related symbol or
address. For example, the debugger refers to most entities by number, but you usually want to
know what symbol or address the numbers represent.

If you encounter a symbol in a large listing and need to know where it is defined, consult the
Symbol Cross-Reference se_ction of a full or default map. Note that this section is included instead
of the Symbols by Name section only if the /CROSS_R.EFERENCE qualifier is included on the
LINK command.

If you need to change a routine, you can consult the Symbol Cross-Reference section to determine
all modules that reference that routine. This allows you to easily locate all codes that might be
affected by your change, preventing future problems.

4 Linker Options Files

You may need to specify additional input and/or directions to the linker when you invoke the
LINK command. Sometimes this additional information cannot be included on the coinmand line.
A linker options file includes this extra information. An options file is created using the DCL
CREATE command, or a text editor.

Using the Linker 8-17

Options files, which have the default file type .OPT, are used to:

• Store frequently used input file specifications.

• Enter large input specifications.

• Specify a shareable image as input.

• Alter program section attributes.

• Define clusters.

• Specify special instructions (options) to the linker.

The Sharing Code and Data module illustrates the use of an options file to specify a shareable
image as input to the linker.

4.1 Creating and Using Linker Options Files

Linker options, like CLUSTER and PSECT_ATTR, cannot be included on the command line
because DCL cannot recognize them. They are included in an options file.

An options file is specified as input to the linker by placing the name of the file on the command line,
followed by the /OPTIONS qualifier:

$ LINK FILE, FILE2, OPTFILE/OPTIONS

It is sometimes convenient to enter the additional input to the linker directly from the terminal,
rather than specifying a separate disk file. This can be done by specifying SYS$INPUT as the op­
tions file. The system will wait for you to enter the additional input, the end of which is signaled by
entering CTRL/Z. ·For example:

$LINK EMILIE, LIZ, SYS$INPUT/OPTIONS
HELPING/SHARE
ANOTHER/SHARE
<CTRL/Z>

If you frequently use the same options file as input to the linker, you may want to put the LINK
command and the options file contents in a command procedure. Then you need only execute one
command (invoking your command procedure) to execute the link operation:

$@DOLINK

where DOLINK.COM contains the following:

$LINK/FULL/MAP EMILIE, LIZ, SYS$INPUT/OPTIONS
HELPING/SHARE
ANOTHER/SHARE
<CTRL/Z>

8-18 Using the Linker

4.2 Linker Options Records

Linker options records are available in MACRO only. These object code records allow the
specification of additional files to the linking operation. See the Guide to Programming in VAX
MACRO for more information about linker options records.

4.3 Using the Cluster Option to Create More Efficient Images

The order of the clusters, and the image sections within those clusters, determines the order in
which the modules appear in the final image. The order in which files appear on the LINK com­
mand line does not necessarily reflect their order in the final image.

To increase program performance, especially for large applications, you may want to control the
placement of object modules within clusters. Segments of code that frequently refer to each other
should be close together in the executable image. Take, for example, the transaction processing
application presented in Section 1.3, Linker Clusters. To ensure that the related routines are near
each other in the final image, use the CLUSTER option of the LINK command:

CLUSTER= cluster-name, [base-adr], [pfc], [file-spec, ..•]

For this example, the option should be used as follows:

$LINK MAIN, OTHERS/OPTIONS

where the file OTHERS.OPT contains:

CLUSTER= ONE,,,FORMl,PROCESSl
CLUSTER= TWO,,,FORM2,PROCESS2
CLUSTER= THREE,,,FORM3,PROCESS3

This command, creates three clusters in addition to the default cluster, as shown in Figure 7. Note
that the optional arguments may be omitted, but the commas may not. Refer to the VAX/VMS
Linker Utility Reference Manual for a description of the arguments omitted from this example.

[PROGRAM]

MAIN.OBJ

[PROGRAM.FORMS]

I FORM1.0BJ I

FORM2.0BJ

FORM3.0BJ

[PROGRAM.PROCESSORS]

PROCESS1.0BJ I

PROCESS2.0BJ

PROCESS3.0BJ

Figure 7 Clustering Related Code in an Executable Image

MAIN

FORM1

PROCESS1

FORM2

Using the Linker 8-19

}

DEFAULT
CLUSTER

}

CLUSTER
ONE

}

CLUSTER

------------.. TWO
PROCESS2 ---------

FORM3

PROCESS3
}

CLUSTER
THREE

TK-8363

When the image is executed, the related routines are mapped consecutively into the physical
memory allocated to the process. This decreases the amount of paging needed to execute the image,
and causes the image to run faster. The system also runs faster, because paging activity is
decreased.

In addition, MACRO programmers can collect modules into specified clusters at the PSECT level,
not just on a file basis. This is done using the COLLECT option, referring to the PSECTs by name.
High-level language programmers do not have control over PSECT names, and, therefore, cannot
exercise the COLLECT option.

LEARNING ACTIVITY

1. Do the written exercises for this module.

Using the Linker 8-21

Written Exercises
1. Multiple choice: The linker can create:

a. Executable images

b. Shareable images

c. Linker maps

d. All of the above

2. Match each term with its description by placing the appropriate number in each blank.

Terms

1. PSECT

2. Object module

3. Linker cluster

4. Image section

Descriptions

Contains code with similar properties

The unit in which the linker handles a program

The unit in which the image activator handles a program

Input for the linker

3. What is the advantage of clustering related code in a large image?

a. Faster image activation

b. Improved program performance

c. Improved system performance

d. All of the above

8-22 Using the Linker

4. Specify which VMS component performs each activity by placing the appropriate number in
each blank.

VMS Components

1. Linker

2. Image activator

Activities

Organize PSECTS into image sections

Map an image file to addresses in process virtual address space

Assign virtual addresses to image sections

Write image sections to an image file

Assign virtual addresses to position-independent shareable images

5. Specify which file would be used for each activity by placing the appropriate number in each
blank.

Files

1. Linker map

2. Linker options file

Activities

Specify additional input and/ or directions to the linker

Locate an instruction that caused a run-time error

Alter PSECT attributes

Translate a number displayed by the debugger to its related symbol or address

Define linker clusters

Locate symbol definitions

Using the Linker 8-23

Solutions
1. The linker can create:

a. Executable images

b. Shareable images

c. Linker maps

** d. All of the above

2. Match each term with its description by placing the appropriate number in each blank.

Terms

1. PSECT

2. Object module

3. Linker cluster

4. Image section

Descriptions

1 Contains code with similar properties

3 The unit in which the linker handles a program

4 The unit in which the image activator handles a program

2 Input for the linker

3. What is the advantage of clustering related code in a large image?

a. Faster image activation

b. Improved program performance

c. Improved system performance

** d. All of the above

8-24 Using the Linker

4. Specify which VMS component performs each activity by placing the appropriate number in
each blank.

VMS Components

1. Linker

2. Image activator

Activities

1 Organize PSECTS into image sections

2 Map an image file to addresses in process virtual address space

1 Assign virtual addresses to image sections

1 Write image sections to an image file

2 Assign virtual addresses to position-independent shareable images

5. Specify which file would be used for each activity by placing the appropriate number in each
blank.

Files

1. Linker map

2. Linker options file

Activities

2 Specify additional input and/ or directions to the linker

1 Locate an instruction which caused a run-time error

2 Alter PSECT attributes

1 Translate a number displayed by the debugger to its related symbol or address

2 Define linker clusters

1 Locate symbol definitions

EXERCISES

System Components

EXERCISES

For each system component named below, fill in the required
information.

• Under Implementation, specify system process (PCS), procedure
(PCR), exception service routine (EXC), interrupt service
routine (INT), or shared image (SHR).

• Under Context, indicate system (SYS) or process (PCS).

• Under Address Region, specify program (PGM), control (CTL), or
system (SYS).

• Under Purpose, briefly describe the primary function of the
component.

!Component Address
Name Implementation Context Region Purpose

system PCR PCS SYS common
·service internal

function

1. scheduler f)J/ 5Y5 SYS ~
- -

2. swapper Pc5 Pc5 t;y5 .A~- .-A. _,,_"V ":IL'

3. symbiont pc5 pc5 ~-~ '_U.M -~~
-.

A·- -~,1;7; 4. AME 5tl~ Pcs PGtv1 v-v z· __ ,, -z
s. XQP Pct<. Pc5 CIJ- µ~~:r~~

~

6. run-time
5}{f<i f/li,~

library Pc5 PGM

7. error Pcs PG111 logger Pc.5 -
..,..

8. pager ~xc_ f c5 sts ~--~ .A.. 7 -, 7

9. CLI 5WA Pc5 &1"'4 ./) c, L..

10. RMS SHI< P~S 5Y5 Lr -I;.-~,. 'V

EX-3

System Components

SOLUTIONS

Component Address
Name Implementation Context Region Purpose

system PCR PCS SYS common
service internal

function

1. scheduler INT SYS SYS chooses
next process
to execute

2. swapper PCS PCS SYS system-wide
mem.management

3. symbiont PCS PCS PGM input/output
spooling

4. AME EXC PCS PGM implements
compatibility
mode

s. XQP PCR PCS CTL implements
ODS-2 file
structure

6. run-time PCR PCS PGM common
library subroutines

and functions

7. error PCS PCS PGM records
logger hardware

errors

8. pager EXC PCS SYS process
memory
management

9. CLI SHR PCS CTL command
language
processing

10. RMS PCR PCS SYS record/file
management

EX-4

System Components

EXERCISES

1. Using the System Dump Anaylzer (SDA)

Throughout this week you will be encountering data structures
and concepts that will require further explanation. One way
to assist in this is to examine the contents of a VMS system's
memory (or a copy of it). The System Dump Analyzer (SDA)
allows you to do just that. SDA is an interactive utility
enabling you to examine:

the system dump file, SYS$SYSTEM:SYSDUMP.DMP (read access
required)

a copy of the system dump file (read access required)

the actively running system (CMKRNL privilege required)

This exercise will "walk" you through an examination of a
system dump file. . Do not attempt to examine the actively
running system until you have completed this lab and have the
permission of your instructor.

a. Activate the System Dump Analyzer (SDA) using the command

$ ANALYZE/CRASH OSI$LABS:CRASH1.DMP

b. The basic crash information will be displayed on your
terminal:

• date of crash

• reason for crash

EX-5

System Components

EXERCISES

c. At the SDA prompt (SDA>), enter the command "HELP". The
commands available are displayed on the terminal. To find
out more information about a command, enter:

SDA> HELP 'command'

d. Using the HELP command, find out about each of the
following commands:

• SET

• SHOW

• FORMAT

• READ

e. Once you feel comfortable with the definition and purpose
of the above SDA commands, issue the following commands to
see what information each provides.

e SHOW SUMMARY

• SHOW PROCESS

e SHOW SYMBOL/ALL

• SHOW POOL/IRP

f. Use the following commands to display the message text
associated with some common condition codes:

• EVALUATE/CONDITION 1

e EVALUATE/CONDITION C

EX-6

System Components

EXERCISES

g. Some locations in Pl and SO virtual address space store
pointers to code and data used by the operating system.
VMS defines global symbols for these virtual addresses.

Consult the Naming Conventions
Internals and Data Structures for
syntax of VMS global symbols.

chapter in
information

VAX/VMS
on the

For example, the global symbol EXE$GL SCB equates to an SO
address that contains the address of the System Control
Block (SCB), as shown in Figure 1.

{ ~ j ::EXE$GL_SCB ------
SCB

MKV84-2232

Figure 1 Global Symbol Locating Pointer to SCB

• Determine the value of the symbol EXE$GL SCB using the
EVALUATE command in SDA. Record the hexadecimal and
decimal values below.

• Determine the contents of the address EXE$GL SCB using
the EXAMINE command. Record the contents-below, in
hexadecimal and ASCII formats.

• Determine the contents of the first longword of the
SCB using the following command:

SDA> EXAMINE @EXE$GL_SCB

The unary operator "@" is used in SDA to provide a
level of indirection.

EX-7

System Components

EXERCISES

A summary of the above commands and another example are
provided in Figure 2 and Table 1.

r - 500 J r-
20A5E :500

:MINE (400)

612

4COO

MKV84-2233

Figure 2 Sample Addresses and Symbols

Table 1 Using Symbols in SDA

SDA Commands and Output

SDA> evaluate MINE
Hex = 00000400 Decimal = 1024

SDA> examine MINE
MINE: 00000500 "

SDA> show symbol MINE

"

MINE = 00000400 : 00000500

SDA> examine @MINE
0000500: 00020A5E

Notes

Value of symbol is
displayed in hex
and ASCII formats

Contents at address
400 are displayed

Value of symbol and
contents at that
address are displayed

Symbol equals address
400 which contains
a 500; contents at
address 500 are shown

h. To provide the additional symbolic definitions necessary
in the following questions, use the SDA READ command to
read in the file OSI$LABS:GLOBALS.STB.

EX-8

System Components

EXERCISES

i. The list below contains some of the system-defined symbols
you will be seeing throughout the course. These
particular symbols equate to addresses.

Choose five symbols and determine and record, for each:

1. Its value

2. The contents at that address

3. The contents at the address obtained in step (2)

The symbols are:

• SCH$GL_CURPCB 'flfppZJ,f'/ / <6tJJ~ '3'39p 1~/Jfffa$t./-C

• CTL$GL_PHD 7 ff e fe <t'if/ 7ffdg'6fr/ (.PFff.F.ff-f

• CTL$GL PCB

e CTL$GQ_PROCPRIV

• EXE$GL_RPB ~ (;;tJ"J~7C/9ptl e'!-D</J/ p
• IOC$G L I RPBL ~PP/J z..l/!7 / 'i9 2 D Bf)l:>o

e IOC$GL_IRPFL

• SCH$GL_COMQS

e SCH$GL_PCBVEC

e SCH$GQ_HIBWQ (ltfi1k)

e SCH$GQ_LEFWQ:!~f p 11'11~
j. Format the data structures pointed to by the following

symbols:

• SCH$GL_CURPCB

• IOC$GL_IRPFL (Jff3)

EX-9

System Components

EXERCISES

k. Issue the SHOW CRASH command, and use the output to answer
the following questions:

• What was the current process at the time of the crash?

/YI~
"7i~--~tpat image (if any) was executing?
v:~ .e,~

• What was the reason for the crash (according to SDA)?

1.

Pu~~~A' SS~vErCEPI
,,.,,-~---~ 41'~

Exit SDA and return to the DCL prompt.

2. Read the following chapters in
Analyzer Reference Manual:

a. Introduction

b. Using SDA

c. Reading the System Dump File

d. SDA Command Format

the VAX/VMS System Dump

The last section of the manual contains descriptions of the
SDA commands. Keep this manual handy for quick reference
while working on other lab exercises.

3. Throughout the course you will see system symbols referencing
so addresses. The contents at these addresses change over the
life of the system. Examining these addresses allows you to
observe various system activities. This is the purpose of the
~!~OR utility.

; Write a MACRO program that examines the word in SO space that
, ords the maximum number of processes that are allowed on

system. This location is referenced by the symbol
$GW_MAXPRCCT.

You can use the template program in OSI$LABS:COMPTEMP.MAR.

EX-10

System Components

SOLUTIONS

1. Consult your instructor for the solutions to these exercises.

2. Consult your instructor for the solutions to these exercises.

3. The program in Example 1 examines and displays the contents
referenced by SGN$GW_MAXPRCCT •

• TITLE COMPLAB3
;++

ABSTRACT:

This program examines and displays the maximum
process count, at SGN$GW_MAXPRCCT.

ENVIRONMENT:

Changes mode to executive. CMEXEC privilege required.

Linked with SYS.STB:
$ LINK COMPLAB3, SYS$SYSTEM:SYS.STB/SELECTIVE

;--
Declare macros
.MACRO CHECK STATUS CODE=RO, ?GO
BLBS RO, GO
PUSHL RO
CALLS #l,G""LIB$STOP
RET

GO:
.ENDM CHECK STATUS

.MACRO CONVERTl BINARY, TEXT
PUSHAL TEXT
PUSHAL BINARY
CALLS #2, G""OTS$CVT L TZ
CHECK STATUS - -
.ENDM- CONVERTl

Example 1 Examining an SO Location (Sheet 1 of 3)

EX-11

System Components

SOLUTIONS

.MACRO CONCAT2 BUFFER,ARG1,ARG2
PUSHAL ARG2
PUSHAL ARGl
PUSHAL BUFFER
CALLS #3,G~STR$CONCAT
CHECK STATUS
.ENDM CONCAT2

.MACRO DISPLAY MESSAGE
PUSHAL MESSAGE
CALLS #l,G~LIB$PUT OUTPUT
CHECK STATUS
.ENDM DISPLAY

• ***
' .PSECT DATA NOEXE,WRT,NOSHR

E ARG LIST:

MAX PROC CNT:
LWORD MAX:
: declare ascii
CNT ASCII:
CNT-DESC:

.LONG 1

.ADDRESS MAX PROC CNT

.BLKW 1

for $cmexec call
passed by reference

word for max proc cnt
: for lw form of max cnt

longwords, and descriptors
.BLKL 1
formats of version
.BLKB 8
.LONG 8
.ADDRESS CNT ASCII

: 4 bytes x 2 chars = 8 max

HOR DESC: .ASCID /Current maximum process count, in hex, is: /
BIG-STRING: .LONG 80 : for concatenated string

.ADDRESS BYTES
BYTES: .BLKB 80

Example 1 Examining an SO Location (Sheet 2 of 3)

EX-12

System Components

SOLUTIONS

. ***
' .PSECT CODE EXE,NOWRT,PIC~SHR

START: .WORD ~M<>

CJead max process co;;nt-=-:-:----neecttooe-trr-exee--m~
CMEXEC_S routin= 100$, arglst= E_ARG_LIST
HECK STATUS -----=-----· ----~ ·---·---· - -- --------~-~---8~-----------·------~-

MOVZ WL MAX_PROC_CNT, LWORD_MAX ; need lw for convertl

convert longwords to ascii, concatenate, and output
CONVERT! LWORD MAX, CNT DESC
CONCAT2 BIG STRING, HOR DESC, CNT DESC
DISPLAY BIG-STRING -

MOVL
RET

#SS$_NORMAL, RO set normal completion
all done

: ************** executive mode code *******************
100$: • WORD ~M<>

move vers !on--n-u_m_b_e_r_i_n_t_o_a-rg~~~~
. __ MOV.W___ ___ G SGN$GW MA~:e_R_C.CT_, ____ @AlAPl ____ __

------........ ovr.: _____ #SSS--NORMAL' RO
RET - finished in exec. mode

.END START

Example 1 Examining an SO Location (Sheet 3 of 3)

EX-13

The Process

EXERCISES

For each resource associated with, or used by, a process and
listed on the following page:

• Name the data structure or component that implements or
controls it.

• State the region (program, control, or system) in which
the data structure or component resides.

• State whether the data structure or component is paged.

• State whether the data structure or component is included
in the working set of the process and swapped.

For resources that are not part of a larger data structure (for
example, the user stack), simply copy the name into the data
structure column. For resources that occur in multiple locations,
answer for each location.

EX-15

The Process

EXERCISES

Data
Resource Structure Region Paged? Swapped?

user stack user stack control yes yes

page tables PHD Sys y__eS yes
privilege mask Pt1D S:ys 1_eS yes

' I

CL! data areas c_t_r e-ll- If.A (I Po

run-time library f{Tt,.. p~ Ye5 !112 77 .
general-purpose regs. P11D u, ~

when process is not ?y7 I e...S

the current one HtlKJe Pc.8

process priority Pc8 ?ys No A/o

quotas/limits on
PllJ) 5y !>

\I Yt-s system resources le,7

VAX-11 RMS code E_Wl s S:t_s
image of user program P!I!_ f !!IJ Yes Yes
working set list

'7

/tf:L£2 ?f/!J P_r_5 Ye5
-r

kernel stack P.t- Al_a_ ""-" --- leJ

process I/O -------- C/L y data structures '-""
I es

process ID ?cB <?y 7)./ IL/

CLI code El- C'} L-- y f
interrupt stack - 5ys /t./-o A/v

EX-17

The Process

SOLUTIONS

Data
Resource Structure Region Paged? Swapped?

user stack user stack control yes yes

page tables process header system yes yes

privilege mask process header system* no yes
software PCB system no no
pointer page control no yes

CLI data areas CLI data areas control yes yes

run-time run-time program yes yes**
library library

general-purpose hardware PCB system* no yes
registers when
process is not
the current one

process priority software PCB system no no

quotas/limits on software PCB system no no
system resources JIB system no no

VAX-11 RMS code RMS code system yes no

image of user image program yes yes**
program

working set list process header system* no yes

kernel stack kernel stack control no yes

process I/O process I/O
data structures data structures control yes yes

process ID software PCB system no no

CLI code CLI code control yes yes**
-

interrupt stack interrupt stack system no no

*These portions of the PHD are also mapped by the Pl "window."
**These software components are or may be global rea~-only
sections. As such, they are included in the process working set,
but may not be outswapped with the rest of the working set. (See
VAX/VMS Internals and Data Structures for details.)

EX-18

The Process

EXERCISES

1. The System Dump Analyzer can be used to obtain information
about the processes on a system at the time of a crash.

Enter the SDA with the following command:

$ ANALYZE/CRASH OSI$LABS:CRASH1.DMP

Issue the following SDA commands and observe the information
they provide about VMS processes.

~

a. Issue the SDA command SHOW SUMMARY/IMAGE and note the
information it provides.

An external process ID (EPID) uniquely identifies a
process on a single system, or on a VAXcluster. Process
IDs are discussed in more detail later in the course.

This listing also shows the addresses of the software PCB
and the process header for each process.

b. Issue the SDA command SHOW PROCESS.

By default, this command displays information from the
process software PCB.

• Record the name of the process. 117~

• Record the address of the software PCB for the
process.

c. Read the symbol table file OSI$LABS:GLOBALS.STB into your
SDA session to provide the symbolic definitions required
for some later questions.

d. SHOW PROCESS does not display all the information from the
software PCB. use the FORMAT command, and the address you
recorded in question (b), to display the contents of the
process's software PCB.

EX-19

The Process

EXERCISES

e. When SDA is invoked, it chooses a process to be its current
process, and thus the target of any process-specific SDA
commands. When analyzing a dump file, SDA's initial current
process is the process that was executing when the system
failed. If you invoke SDA to examine the running system, the
current process is your process.

The SET PROCESS command is used to change process context in
SDA.

• Use the SET PROCESS command to make OPCOM SDA's current
process.

• Issue the SHOW PROCESS command to display information
about the OPCOM process.

• Use the SET PROCESS command to restore the initial current
process.

f. Using the SDA manual, or the HELP command in SDA, read about
the qualifiers to the SDA SHOW PROCESS command.

g. Issue the appropriate form of the SHOW PROCESS command to
display data from the process data structure that maintains
process memory management information.

!Pf//ws1--

h. Issue the appropriate form of the SHOW PROCESS command to
display the values of the process registers.

IR.ej

EX-20

The Process

EXERCISES

i. The EXAMINE/PSL command can be used to produce a formatted
display of a processor status longword. This is often
easier than deciphering the fields manually.

Issue the following command to format the PSL for SDA's
current process.

SDA> EXAMINE/PSL PSL

What is the current IPL for this process? ~

j. Determine the address of the process header for the OPCOM
process.

k. Format the process header for OPCOM.

Remember that the process header does not have a TYPE
field. You must, therefore, use a qualifier on the FORMAT
command to tell SDA you are referencing a process header.

1. Read the description of the READ command in the
VAX/VMS System Dump Analyzer Reference Manual. Which
system-supplied symbol table contains symbols for the I/O
database?

EX-21

2.

The Process

EXERCISES

a. At DCL level, issue the following command to list the
modules of the STARLET macro library at your terminal:

$ LIBRARY/LIST SYS$LIBRARY:STARLET.MLB

Do you recognize any of the modules in this library?

b. List the modules of SYS$LIBRARY:LIB.MLB on your terminal.

Do you recognize any of the modules in this library?

You may want to make a hard copy of this listing for
future reference.

c. What kind of programmer would reference the modules in
STARLET.MLB? in LIB.MLB?

EX-22

The Process

SOLUTIONS

1. Enter SDA with the command shown.

a. Issue the SHOW SUMMARY/IMAGE command as shown.

b.

• The name of the process is shown at the top of the
display.

• The address of the software PCB is at the top of the
first column of the SHOW PROCESS display. Note that
the address is in system virtual address space (SO).

c. SDA> READ OSI$LABS:GLOBALS.STB

d. SDA> FORMAT pcb_address_from lb

e.

• SDA> SET PROCESS OPCOM

• SDA> SHOW PROCESS

e SDA> SET PROCESS initial_process_name

f. use the SDA manual or the on-line help to find out about
the qualifiers for the SHOW PROCESS command.

g. SDA> SHOW PROCESS/PHD

h. SDA> SHOW PROCESS/REGISTERS

i. The current IPL for the process is in bits 16-20 of the
PSL, and is labeled with "IPL" in the EXAMINE/PSL display.

j. SHOW PROCESS OPCOM will display the address of the process
header for OPCOM.

k. FORMAT/TYPE=PHD address_from lj

1. SYSDEF.STB contains symbols for the I/O database.

EX-23

2.

a.

b.

The Process

SOLUTIONS

The modules in STARLET.MLB include macros
system services, calling RMS routines,
user-level RMS data structures.

for.
and

calling
defining

The modules in LIB.MLB include
into many system-level data
common VMS activities.

macros defining offsets
structures, and macros for

c. Nonprivileged programmers might make use of the modules in
STARLET, whereas LIB is used primarily by privileged,
system-level programmers.

EX-24

System Mechanisms

EXERCISES

1. VMS uses a variety of mechanisms
activities.

to synchronize its

a. To synchronize access to the scheduler's data structures,
a program raises IPL to IPL$ SYNCH. Why does the program
raise IPL, rather than request an interrupt at IPL 8?

b. Why can't a mutex be used to lock the scheduler's data
structures?

c. Which VMS mechanism is used to synchronize access to the
system logical name table?

2. When an exception or interrupt occurs, the PSL and the PC are
pushed onto the stack, and a new PC and PSL are created.

a. Which stack is used?

b. How is the new PC value formed?

EX-25

3.

System Mechanisms

EXERCISES

c. What are the contents of the current mode and previous
mode fields of the new PSL?

d. What is the new IPL?

e. When an REI instruction is executed, is the previous mode
field of the PSL significant? Explain.

a. The following table illustrates a hypothetical sequence of
hardware and software interrupts. At each step, fill in
the contents of the indicated items. In the "Saved IPL"
column, indicate the stack that contains the saved IPL.
Indicate where control is passed after each REI
instruction. All numbers are decimal. Assume that
software interrupts above IPL 6 are handled on the
interrupt stack, and that those at IPL 1 through IPL 6 are
handled on the kernel stack. Further assume that all
device interrupts are handled on the interrupt stack.

EX-26

System Mechanisms

EXERCISES

Note that this example is hypothetical and bears little
resemblance to the VAX/VMS operating system. Its purpose
is to explore the workings of interrupts, especially
software interrupts.

Event Stack IPL SISR(hex) Saved IPL

1. Executing
user image

2. Device int.
at IPL 21

3. SOFT INT 8

4. REI to

5. SOFT INT 5

6. SOFT INT 3

7. REI to

8. Device int.
at IPL 20

9. SOFT INT 8

10. REI to

11. SOFT INT 4

12. REI to

13. REI to

14. REI to

15. REI to

EX-27

4.

System Mechanisms

EXERCISES

b. In steps 7 and 12, a switch is made from the interrupt
stack to the kernel stack. Why?

a. Briefly describe how system services are dispatched.
Assume that no errors occur. Include all steps from the
program's initial call until control is passed back to
that program.

b. Why does the routine SRVEXIT issue an REI instruction?

c. several system services have access mode as one of their
arguments. The service routines that perform these
requests first call a routine called Maximize Access Mode
that chooses the least privileged access mode of the one
requested and the access mode of the caller. Describe how
this might be done. Why is it done?

EX-28

System Mechanisms

EXERCISES

5. List two differences between the exception dispatching within
the executive and the Common Run-Time Library procedure
LIB$SIGNAL.

EX-29

1.

2.

System Mechanis'11s

SOLUTIONS

a. An IPL 8 interrupt would invoke the IPL 8 fork dispatcher,
which is not the desired result. Remember the difference
between using IPLs for blocking and synchronization, and
using IPLs to determine how to service an interrupt.

b. Mutexes are a synchronization technique available to
processes. When on the interrupt stack, the system is not
in any process context. Hence the method of elevating IPL
is the only synchronization technique available.

c. A mutex is used to synchronize access to the system
logical name table.

a. The entry to an exception or interrupt service routine
must be longword aligned. Thus, the two low bits in the
SCB can be used for other purposes. Bit 0 determines
whether the interrupt is handled on the kernel stack
(bit O clear) or on the interrupt stack (bit 0 set).

EX-30

System Mechanisms

SOLUTIONS

All device interrupts are handled on the interrupt stack.
All software interrupts (except ASTDEL at IPL 2 and
RESCHED at IPL 3) are handled on the interrupt stack.

CHMx exceptions are placed on the resultant perprocess
stack. Machine Check, Power Fail, and Kernel Stack Not
Valid exceptions are handled.on the interrupt stack. The
rest of the exceptions are handled on the kernel stack.

b. The new PC value is the address found in bits<31:2> of the
SCB entry for this particular exception or interrupt. (PC
bits<l:O> are always cleared.)

c. For all exceptions except CHMU, CHMS and CHME, the current
mode will be zero, kernel access mode.

For exceptions, the previous mode field will be the access
mode that the CPU was in when the exception occurred. In
fact, PSL<previous mode> is the same as the current mode
field of the saved PSL on the stack.

The previous mode field of the PSL is set to 0 (kernel
mode) following an interrupt.

d. The new IPL depends upon the interrupt or exception:

Exceptions

Machine check
Kernel stack not valid
All other exceptions

Software Interrupts

Hardware Interrupts

Interval timer
Console
Other devices
Power fail

EX-31

IPL (decimal)

31
31
unchanged!

IPL raised to
corresponding
level

24
20
20-23
30

3.

System Mechanisms

SOLUTIONS

e. No, the previous mode field of the PSL is not significant
when an REI executes. The previous mode field is an
historical parameter, recording where the processor came
from. The previous mode field is used by the PROBEx
instructions.

a.

The relevant field (and the one checked by the REI
instruction microcode) is the current mode field of the
PSL on the stack. If privileged software wishes to 'alter
its destination, IPL, or mode, then this longword is what
should be changed.

Event Stack IPL SISR(hex) Saved IPL
~

1. Executing
user image user 0 0 --

2. Device int.
at IPL 21 interrupt 21 0 O(I)

3. SOFT INT #8 interrupt 21 100 0 (I)

4. REI to
IPL 8 serv.
routine interrupt 8 0 O(I)

s. SOFT INT #5 interrupt 8 20 0 (I)

6. SOFT INT #3 interrupt 8 28 O(I)

7. REI to
IPL 5 serv.
routine kernel 5 8 O(K)

8. Device int.
at IPL 20 interrupt 20 8 S(I) ,O(K)

9. SOFT INT #8 interrupt 20 108 S(I) ,O(K)

10. REI to
IPL 8 serv.
routine interrupt 8 8 S(I) ,O(K)

EX-32

4.

System Mechanisms

SOLUTIONS

3.a. (Cont)

11. SOFT INT #4 interrupt 8 18 S(I) ,O(K)

12. REI to
interrupted
IPL 5 serv.
routine kernel 5 18 O(K)

13. REI to
IPL 4 serv.
routine kernel 4 8 O(K)

14. REI to
IPL 3 serv.
routine kernel 3 0 O(K)

15. REI to
interrupted
user image user 0 0 --

b. At step 7, the REI triggers a software interrupt at IPL 5.
One of the assumptions was that IPL 5 (actually IPL 6 and
below) interrupts were to be handled on the kernel stack.

At step 12, the restored PSL requires IPL 5 but also
PSL<IS> is clear. The REI instruction microcode then
switches stacks, in this case to the kernel stack.

a. The user program issues a CALLx instruction to the vector
area of system virtual address space. A CHMK or CHME
instruction transfers control to a change mode dispatcher
that builds a call frame and then executes a CASE
instruction to dispatch to the service specific procedure.

When that procedure completes its operations, it executes
an RET instruction which returns control to a routine
SRVEXIT. Because no error occurred (as assumed), an REI
instruction is executed to pass control back to the vector
area where another RET instruction returns control to the
user program.

EX-33

System Mechanisms

SOLUTIONS

b. The CHMK and CHME instructions cause corresponding
exceptions that push a PSL and PC pair plus a service code
used in dispatching and change access mode to the required
mode. The exit from the exception service routine must be
an REI instruction to restore the previous access mode and
reset the PC and PSL.

c. The caller's access mode can be obtained from either the
previous mode field from the current PSL or from the
current mode field of the saved PSL.

Because the saved PSL may be at an unspecified offset from
the top of the stack, the previous mode field of the
current PSL is simply compared to the access mode passed
as an argument to the system service. The larger (less
privileged) access mode is the one used by the system
service.

This operation is performed to ensure that a nonprivileged
image does not gain access rights by, for example, queuing
an executive or kernel mode AST to itself.

s. LIB$SIGNAL may be invoked by any code on detection of an error
that is to be treated as an exception. Software makes the
decision.

The exception dispatcher is entered as a result of hardware
exceptions and a small set of software exceptions.

LIB$SIGNAL, through its alternate entry point LIB$STOP, can
force an image to exit. The exception dispatcher has no such
feature, although a condition handler could issue a $EXIT
system service.

EX-34

System Mechanisms

EXERCISES

1. using the System Dump Analyzer, obtain the following
information about the system recorded in the dump file named
OSI$LABS:CRASH1.DMP.

It will be helpful to read in the file OSI$LABS:GLOBALS.STB.

a. Locate the listhead for the system timer queue.

(HINT: The listhead consists of two longword pointers,
each of which can be located using a global system symbol
(EXE$GL_xxxx).)

b. Locate a timer queue entry for a system subroutine
request.

(HINT: One of the bits in the TQE$B_RQTYPE field
indicates whether or not the TQE represents a system
subroutine request. Consult Internals and Data Structures
for information on the use of system subroutine requests.)

c. What is the PC of the routine that will be invoked by the
software timer when this TQE expires?

d. Scan some other entries in the timer queue.
kinds of requests that are being made.

EX-35

Note the

System Mechanisms

EXERCISES

2. [Optional] VMS allows privileged users to write and implement
their own system services.

a. User-written system services are implemented as privileged
shareable images. Read about privileged shareable images
in the VAX/VMS Release Notes for version 4.0.

b. Install and test the sample user-written system services
in the SYS$EXAMPLES directory.

Obtain a copy of the files from SYS$EXAMPLES:

• USSDISP.MAR
• USSLINK.COM
• USTEST.MAR
• USSTSTLNK.COM

Assemble the .MAR files.

You may want to include the debugger with USSTEST.
That will make it easier to verify whether or not the
program works since it does not do any output.

Link the privileged shareable image containing the
user-written system services using USSLNK.COM.

To avoid conflicts with other students in the class,
rename the resulting shareable image file to a unique
name (for example, using your initials).

Link the USSTEST object module with the shareable
image file. Follow the format used in USSTSTLNK.COM,
replacing USS.EXE with the name of your shareable
image file.

Link USSTEST with the debugger if you like.

By default, the image activator expects all shareable
image files to be in SYS$SHARE.

Therefore, you should define a logical name for your
shareable image file. Equate the file name to the
full file specification.

EX-36

System Mechanisms

EXERCISES

For example, if your shareable image were named

WORKl:[HUNT.LABS]USSLH.EXE:l

you would make the following logical name assignment:

$DEFINE USSLH WORKl:[HUNT.LABS]USSLH.EXE

Install the shareable
/SHARE attributes.
specification.

image with the /PROTECT and
Be sure to specify the full file

You will need CMKRNL privilege to do this.

Run the USSTEST program to ensure that it works. If
you included the debugger, examine RO and location BUF
after the call to USER GET TODR.

Remember to deINSTALL the shareable image when you are
done.

EX-37

1.

2.

System Mechanisms

SOLUTIONS

a. First locate the listhead for the timer queue using the
symbol EXE$GL TQFL. Examine the TQE$B RQTYPE field of
each timer queue entry, looking for an entry with an odd
value in this field. If the low bit in the TQE$GL RQTYPE
field is set, then the request is for a system subroutine.

b. The PC of the routine to be invoked by the software timer
is at offset TQE$L_FPC in the timer queue entry.

c. To locate successive entries in the queue, use the value
at offset TQE$L TQFL in each entry. You can scan
backwards using the value at offset TQE$L_TQBL.

a. In addition to the information in the VAX/VMS Release
Notes, you will find an overview of user-written system
services in the comments of the template files in
SYS$EXAMPLES.

b.
$ COPY SYS$EXAMPLES:USS*.* your_directory
$
$! assemble the files
$ MACRO USSDISP
$! include debugger with USSTEST if desired
$ MACRO USSTEST
$
$! link shareable image, and rename to unique name
$ @USSLINK.COM
$ RENAME USS.EXE your_file_name.EXE
$
$! link the main program; include debugger if desired
$ LINK/MAP/FULL USSTEST, SYS$1NPUT/OPTIONS

your file name.EXE/SHARE
"'z - -

$
$! continued on next page ••••

EX-38

SYSTEM MECHANISMS

SOLUTIONS

$! define logical name for shareable image so
$! image activator will locate it properly
$ DEFINE your_file_name your_full_file_spec
$
$! get privileges for install
$ SET PROCESS/PRIV=(CMKRNL)
$! install the shareable image
$ RUN SYS$SYSTEM:INSTALL
INSTALL> your full file spec/SHARE/PROTECT
INSTALL> your-full-file-spec/LIST .
INSTALL> ~z - - -
$ SET PROCESS/PRIV=(NOCMKRNL)
$
$! test the program, and then deinstall
$ RUN USSTEST
$ SET PROCESS/PRIV=(CMKRNL)
$ RUN SYS$SYSTEM:INSTALL
,INSTALL> your full file spec/DELETE
INSTALL> ~z - - -
$ SET PROCESS/PRIV=(NOCMKRNL)

EX-39

Debugging Tools

EXERCISES

1. Which debugger would you use under the following conditions?

a. Examine the current system

b. Examine a crash dump

c. Debug a user mode image at IPL O

d. Debug a driver

2. Which is NOT a reason for a crash dump to occur?

a. Exception at elevated IPL

b. User mode image error

c. Machine check in kernel mode

EX-41

3.

Debugging Tools

EXERCISES

Use SYS.MAP and the other listings in your
book to answer the following questions
system service and AST delivery.

$SUSPND System service

Source Listings
about the $SUSPND

a. Which module contains the code that implements the $SUSPND
system service? (Remember that all system services have
two entry points, one of the form SYS$name that is the
starting address of the vector entry, and one of the form
EXE$name that is the starting point of the actual code.)

b. What other routines are defined in this module?

c. How long (in bytes) is this module?

d. Which system mechanism is used to suspend a process?

EX-42

Debugging Tools

EXERCISES

e. List all of the system subroutines that are called by the
$SUSPND system service.

f. A process can suspend another process only if it is in the
same group and the issuing process has GROUP privilege, or
if the issuing process has WORLD privilege. Where in the
code is this check made? What other system services need
to make this check?

g. The $HIBER system service does not make the same UIC and
privilege check that $SUSPND does (see question (f)).
Why?

AST Delivery

h. What line of the $SUSPND system service actually queues
the AST?

EX-43

Debugging Tools

EXERCISES

i. What section of code in the routine SCH$NEWLVL computes
the ASTLVL value and stores the value in the hardware PCB
and ASTLVL processor register?

j. Assume that the current process is issuing a $SUSPND for
itself, and that it will be able to complete the $SUSPND
system service without interruption. At what point in the
system service dispatching sequence will the AST delivery
code (the IPL 2 interrupt service routine) be entered?
(This is the code that will eventually transfer control to
the AST routine.)

EX-44

1.

Debugging Tools

SOLUTIONS

a. To examine the current system, use the System Dump
Analyzer.

b. To examine a crash dump, use the System Dump Analyzer.

c. The symbolic debugger is used to debug user mode images at
IPL O. For other access modes at IPL 0, use the DELTA
debugger.

d. Use XDELTA to debug a driver, which operates at elevated
IPL in kernel access mode.

2. A user mode image error will not cause a crash dump to occur.
What will occur is a traceback, and any condition handling
that has been set up.

EX-45

3.

Debugging Tools

SOLUTIONS

$SUSPND System Service

a. SYSPCNTRL is the module
EXE$SUSPND.

that defines the symbol

b. There are two ways to
SYSPCNTRL. The easiest
contents of the SYSPCNTRL
the entry points:

find the routines defined in
way is to look at the table of

module listing. This lists all

EXE$SUSPND
EXE$RESUME
EXE$HIBER
EXE$WAKE

EXE$NAMPID
EXE$xPID TO xxx
EXE$SETPRN -

Another way to answer this question is to first find the
PSECT in which the SYSPCNTRL module resides. This is
accomplished by searching sequentially through the Program
Section Synopsis of SYS.MAP until SYSPCNTRL is found.
Ignore any reference that shows identical base and end
virtual addresses.

SYSPCNTRL appears on page 8 under the AEXENONPAGED PSECT
with a base of 8000B2B5 and an end of 8000B54A. Note that
the length of 296 also appears here, which answers
question (c) as well. Any routines defined by SYSPCNTRL
must have entry points that fall between the base and end
addresses.

All symbols are listed in numerical order in the Symbols
By Value section of SYS.MAP. On page 98 you will find the
following entry points:

8000B2B5
8000B32B
80008340
80008356
80008367
8000B44E
80008455
80008477
8000B4AA
80008407

EXE$SUSPND
EXE$RESUME
EXE$HIBER
EXE$WAKE
EXE$NAMPID
EXE$EPID TO PCB
EXE$IPID-TO-PCB
EXE$EPID-TO-IPID
EXE$IPID-TO-EPID
EXE$SETPRN -

c. The length of the module is 296 bytes hexadecimal or 662
bytes decimal. This can be found on page 8 of SYS.MAP as
described in question (b), or by looking at the last line
of code in the SYSPCNTRL module.

EX-46

Debugging Tools

SOLUTIONS

d. The system suspends a process by queuing a kernel mode AST
to the target process, as mentioned in the comments on
page 4 of SYSPCNTRL (under Functional Description).

e. The following system subroutines are used:

EXE$NAMPID
EXE$ALLOCIRP
SCH$QAST

f. The UIC and privilege check is made in the EXE$NAMPID
routine. The actual check occurs in line 497 for group
privilege and line 496 for world privilege.

The other system services that need to make this check
are:

$DELPRC
$RESUME
$WAKE
$CANWAK

$SCHDWK
$FORCEX
$SETPRI
$GETJPI

Most of these services can be deduced from the names of
the modules that reference EXE$NAMPID, found on page 35 of
SYS.MAP:

SYSPCNTRL
$SUSPND
$RESUME
$WAKE

SYSCANEVT
$CANWAK

SYSDELPRC
$DELPRC

SYSFORCEX
$FORCEX

SYSGETJPI
$GETJPI

SYSRTSLST
$GRANT ID

SYSSCHEVT
$SCHDWK

SYSSETPRI
$SETPRI

To verify the check in each case, locate the call to
EXE$NAMPID in the code for each service. (Merely
understanding the process and perhaps doing it in the case
of the SYSPCNTRL module, is sufficient for this exercise.)

EX-47

Debugging Tools

SOLUTIONS

g. $HIBER makes no privilege check because a process is only
allowed to hibernate itself (not others), although it can
be awak~ned by other processes. This is not mentioned
explicitly in the code comments, but could perhaps be
deduced from the absence of the privilege check or from
the fact that the $HIBER system service does not have any
arguments.

AST Delivery

h. Line 173 of SYSPCNTRL invokes SCH$QAST to actually queue
the kernel mode AST to the target process. The routine
SCH$QAST is located in the module ASTDEL, as indicated in
SYS.MAP.

i. Lines 622-644 of module ASTDEL calculate the ASTLVL value
and store it. Line 632 extracts the access mode of the
first AST in the queue. Line 637 stores the ASTLVL value
in the hardware PCB field, while line 638 performs the
same operation for the ASTLVL processor register.

j~ The AST delivery mechanism begins with an REI instruction
detecting the deliverability of an AST and causing a
software interrupt at IPL 2. If the process is not
interrupted between the queuing of the AST in SCH$QAST and
the REI tnstruction in the SRVEXIT routine, then the first
REI instruction encountered will be that one.

EX-48

Debugging Tools

EXERCISES

1. Consult your instructor for a list of the crash dump files on
your system.

For each crash dump

• Determine the current process (and image, if applicable).

• Determine the current IPL.

• Determine the reason for the crash. In addition to the
reason displayed by SDA, explain why that crash occurred.

EX-.49

Debugging Tools

SOLUTIONS

1. Consult your instructor for the solutions to this exercise.

EX-50

Scheduling

EXERCISES

1. For each state described below, briefly discuss the properties
of a process in the state (for example, memory-resident, or
executable), what event or system service placed the process
in the state, what system events must occur before the process
can leave the present state, and what the next process state
can be.

a. CUR

b. HIB

c. SUSPO

d. CEF

e. COLPG

f. PFW

g. COMO

EX-51

Scheduling

EXERCISES

2. Assuming the same initial conditions (stated below) for each
question, state

• What happens to the currently executing process

• Which process is next selected for execution

• At what software priority that process executes

Initial Conditions:

Process Name

A
B
c
D

Software Priority

5
7
17
5

Process State

COM
LEF
HIB
CUR

a. System event: quantum end for Process D.

b. System event: post event flag (terminal output completed)
for Process B.

c. System event: scheduled wakeup (from software timer) for
Process C.

EX-52

Scheduling

EXERCISES

3. Describe how processes in the categories below may be included
in multiprocess applications. Indicate any possible
interactions with system processes that must be considered in
assigning processes to these categories and the expected
execution behavior of processes in the category.

a. Time-critical processes

b. Normal processes with elevated base priorities

c. Normal processes with normal (default) base priorities

d. Normal processes with lowered base priorities

EX-53

1.

Scheduling

SOLUTIONS

a. CUR -- The process is the current executing process and is
memory-resident. The state is only entered from the
computable, memory-resident state (COM) as a result of a
scheduling operation. A process leaves the CUR state as a
result of quantum end, process deletion, a wait condition,
or preemption by a higher-priority COM process.

b. HIB -- The process is memory-resident, but not computable.
The hibernate state is entered by issuing a request to the
$HIBER system service (from the CUR state) or requesting
the action as part of a create process request ($CREPRC).
A process outswapped while hibernating is placed in the
BIBO wait state. A process can be made computable (COM)
by receiving an AST, a $WAKE request, or a process
deletion request.

c. SUSPO The process is neither memory-resident nor
computable. Th~ state is entered from the CUR state as a
result of a $SUSPND system service request, followed at
some point by an outswap operation. A process leaves this
state only after a $RESUME system service request issued
by another process, or as a result of a process deletion
request. In each case, the process is next placed in the
appropriate COMO queue.

d. CEF -- The process is waiting for one or more event flags
in a common event flag cluster. Memory-resident and
outswapped CEF processes share the same wait state and
queue (for a particular common event flag cluster). When
the combination of event flags is satisfied, the process
is placed into either the computable, resident (COM) or
computable, outswapped (COMO) state depending on the
memory-resident status bit in the software PCB. The
process can also be made computable as a result of AST
delivery and process deletion.

EX-54

2.

Scheduling

SOLUTIONS

e. COLPG -- The process referenced a page already being read
into memory as a result of other activity in the system.
When the page is available, the process will be made
computable or computable outswapped, depending upon its
memory-resident status when the page becomes available.
AST delivery and process deletion also make COLPG
processes computable.

f. PFW -- The process is waiting for a paging operation (page
read I/O) to complete. When the page becomes available,
the process enters the COM or COMO state, depending upon
the memory-resident status. A PFW process can also be
made computable as a result of either AST delivery or
process deletion.

g. COMO -- The process is computable but not resident in
memory. The state may be entered from the various
outswapped wait states after any of the system events that
make such a process computable. The COMO state is also
the initial state of a newly created process. The only
transition is to the computable, resident (COM) state
after an inswap operation, the event for which the process
is waiting.

a. Process D will be rescheduled into the tail of the
priority 5 COM state queue. Process A will be scheduled
by removing it from the head of the priority 5 state queue
and executing it at priority 4.

b. Process D will be rescheduled as in answer a. above. The
event flag service will make Process B computable at
priority 11 (after the terminal input boost is applied).
The scheduler brings Process B into execution at priority
10.

c. Process D will be rescheduled as in answer a. above.
Awakening Process C makes it computable at priority 17,
and it will be scheduled at priority 17.

EX-55

3.

Scheduling

SOLUTIONS

a. Time-critical processes are useful for the traditional
real-time type of application. They are characterized by
fast response times, fixed execution priorities, and
invulnerability to quantum end events. For predictable
scheduling, time-critical processes should be assigned
unique priorities. Otherwise, there is a potential for
round robin scheduling of computable real-time processes.
In addition, these processes should disable swapping to
prevent scheduling conflicts with the swapper, a
time-critical process at priority 16.

b. Normal processes with elevated base priorities are
characterized by fast response times, but they are
susceptible to quantum end events, including the working
set adjustment and CPU time expiration operations. As the
base priority approaches 15, the current priority level
tends to remain more constant than for default processes.
Normally, interaction with the system processes (which are
mostly implemented as processes of this type) is not a
serious concern, because their normal process states are
either HIB or LEF. A process such as an active magtape
ACP may, however, cause some contention for CPU time.

c. Normal processes with default or normal base priorities
typically represent the majority of the processes on a
system. The full range of scheduling-related operations
apply round robin scheduling, dynamic priority
recomputation, and quantum end (with working set
adjustment and CPU time limit checking). Interactive
processes in this category tend to be favored over
compute-bound processes because of the priority boost
mechanism.

d. Normal processes with lowered base priorities are,
effectively, background processes. On a busy system,
these processes will only experience occasional
scheduling. This category, if used at all, is typically
reserved for batch streams, where response time is less
critical.

EX-56

Scheduling

EXERCISES

1. Obtain the following information about the system recorded in
the dump file named OSI$LABS:CRASH1.DMP.

a. Locate the listhead for the HIB state queue.

(HINTS: Recall there is a system symbol pointing to each
state queue. If you do not recall the name of the symbol,
you can probably find it in the Symbols Cross-Reference
section of the system image map. These symbols begin with
the code SCH$.)

b. How many processes were in the HIB state when the system
crashed?

c. List the software priority (base and current) of each
process in the HIB state at the time of the crash.

2. Read the following information on the MWAIT state, and then
answer the questions.

The MWAIT State

Any process waiting for a mutex or a system resource is placed
in the MWAIT (miscellaneous wait) state. There are a few
different methods for discovering which mutex or resource the
process is waiting for.

If SHOW SYSTEM lists the process state as RWxxx, then the
process is waiting for a resource (xxx represents the desired
resource). SHOW SYSTEM displays a mnemonic specifying the
specific resource wait, rather than simply notifying you the
process is in the MWAIT state. Table 1 lists the RWxxx codes
used by SHOW SYSTEM.

These mnemonics are also used in the MONITOR STATES display to
provide you with more information about processes in the MWAIT
state.

EX-57

Scheduling

EXERCISES

When a process is waiting for· a resource, a number
representing the resource is placed in the EFWM field of the
PCB. These numbers are listed with the resource waits in
Table 1. VMS defines symbols to represent the resource
numbers (in the $RSNDEF macro).

You can use SDA to determine which resource a process is
waiting for, but SHOW SYSTEM is usually easier.

Remember The EFWM field normally contains the process event
flag wait mask. The multiple use of this field does not cause
a conflict, however, because a process in the MWAIT state
cannot also be waiting for event flags.

Table 1 Resource Waits

Resource Wait

AST Wait (for system AST)
Mailbox Full
Nonpaged Dynamic Memory
Page File Full
Paged Dynamic Memory
Breakthrough (Wait for
broadcast message)
Image Activation Lock
Job Pooled Quota (unused)
Lock ID Database
Swap File Space
Modified Page List Empty
Modified Page Writer Busy
System Control Services
Cluster State Transition

Mnemonic

RWAST
RWMBX
RWNDY
RWPGF
RWPDY
RWBRO

RWIAC
RWJQO
RWLKI
RWSWP
RWMPE

, RWMPB
RWSCS
RWCLU

Symbol

RSN$ ASTWAIT
RSN$-MAILBOX
RSN$-NPDYNMEM
RSN$-PGFILE
RSN$-PGDYNMEM
RSN$=BRKTHRU

RSN$ IACLOCK
RSN$-JQUOTA
RSN$-LOCKID
RSN$-SWPFILE
RSN$-MPLEMPTY
RSN$-MPWBUSY
RSN$-SCS
RSN$=CLUSTRAN

Numeric

1
2
3
4
5
6

7
8
9
A
B
c
D
E

If SHOW SYSTEM lists the process state as MUTEX, then the
process is waiting for a mutex. In this case, use SDA to
determine which mutex. The system virtual address of the
particular mutex is in the PCB$L EFWM field of the software
PCB. The symbolic names of these -addresses are listed in
Table 2.

EX-58

Scheduling

EXERCISES

Table 2 Mutexes

Mutex

Logical Name Table
I/O Database
(Not used)
Common Event Block List
Paged Dynamic Memory
Global Section Descriptor List
Shared Memory Global Section
Descriptor Table
Shared Memory Mailboxes
(Not used)
(Not used)
Line Printer Unit Control Block

(*) See question (2a)

Symbol

LNM$AL MUTEX
IOC$GL-MUTEX
CIA$GL-MUTEX
EXE$GL-CEBMTX
EXE$GL-PGDYNMTX
EXE$GL-GSDMTX
EXE$GL-SHMGSMTX

EXE$GL SHMMBMTX
EXE$GL-ENQMTX
EXE$GL-ACLMTX
UCB$L_LP_MUTEX

Address (*)

(**)

(**) The mutex associated with each line printer unit does
not have a fixed address like the other mutexes. Its
value depends on where the UCB for that unit is located.

In summary, there are two categories of MWAIT, resource waits
and mutex waits. A process is waiting for a mutex if SHOW
SYSTEM lists its state as MUTEX, and the PCB$L EFWM· field
contains an address greater than 80 million (hex).-

A process is in a resource wait if SHOW SYSTEM lists RWxxx as
its state, and the PCB$L EFWM field contains a small number
representing the partic~lar-resource.

a. Determine the system virtual addresses of the mutexes
listed in Table 2. Add them to the table.

(HINT: you can find these values in SYS$SYSTEM:SYS.MAP)

EX-59

Scheduling

EXERCISES

b. A process on your system named GONZO seems to be 'hung'.
The display from SHOW SYSTEM tells you that· its state is
RWAST, which you know is a subdivision of the MWAIT state.

Analyze the resulting crash dump in OSI$LABS:MWAIT.DMP to
verify that GONZO was

e In the MWAIT state

• Waiting for an AST

EX-60

1.

2.

Scheduling

SOLUTIONS

a. The listhead ,for the HIB wait state queue is at location
SCH$GQ_HIBWQ.

b. The count of processes in the HIB state
offset WQH$W WQCNT in the wait queue
$WQHDEF macro is in SYS$LIBRARY:LIB.MLB.)

is stored at
1 isthead. (The

On most systems, the following processes are often 'in the
HIB state: SWAPPER, ERRFMT, JOB_CONTROL, and REMACP and
NETACP if DECnet is installed.

c. To find the software priority (base and current) of each
process in the HIB state, trace through the the software
PCBs in the queue.

a.

The base priority is at offset PCB$B PRIB, and the current
priority is at offset PCB$B_PRI.

The system virtual addresses
determined by exam1n1ng the
following DCL commands:

of the mutexes
output produced

$ SEARCH
$ SEARCH

SYS$SYSTEM:SYS.MAP MTX
SYS$SYSTEM:SYS.MAP MUTEX

can be
by the

b. The PCB$W STATE field of GONZO's software PCB contains the
value 2 -(SCH$C_MWAIT) which means that GONZO was in the
MWAIT state.

The PCB$L EFWM field contains a 1, which means that GONZO
was waiting for a resource. The resource was an AST (see
Table 1).

EX-61

Process Creation and Deletion

EXERCISES

1. List two advantages to performing process deletion in the
context of the process being deleted.

2. Name two errors that can result from process creation. One of
the errors should be returned from the $CREPRC system service
request and the other only through a termination mailbox.
Explain why the $CREPRC system service is not capable of
detecting the se6ond type of error.

3. Explain why a process with a CLI mapped in is not deleted when
an image exits.

EX-63

Process Creation and Deletion

SOLUTIONS

1. When executing in the context of the process being deleted,
all the virtual address space of that process is accessible.
In particular, the contents of the control region (Pl space)
that describe the state of the process at the time of deletion
is readily available.

In addition, the full support of VAX/VMS (including RMS and
all the system services) is available to aid in the process
deletion. Much of this support is not available to code
executing outside of process context.

2. The complete list of errors that can be detected by the
$CREPRC system service is listed in the description of $CREPRC
in the VAX/VMS System Services Reference Manual. Possible
errors include privilege violation, insufficient quota, and
process name errors.

Several errors can be detected only when the newly created
process executes. These errors include the specification of
an image that does not exist or bad equivalence strings for
SYS$INPUT, SYS$0UTPUT, or SYS$ERROR.

By the time the new process is placed into execution, the
$CREPRC system service has already completed its work for the
creator and returned a status code. All errors that cannot be
detected except in the context of the newly created process
can only be reported to the creator through a ter~ination
mailbox.

3. Image exit results in all previously declared termination
handlers being called. The command language interpreter has
declared a handler that runs the image down (if necessary),
restores the supervisor stack to its state before the image
was initially called, and looks for the next command from
SYS$INPUT. This allows multiple images to execute
sequentially in the same process. Only a special action, such
as a LOGOUT command within the process, or an external
STOP/ID= command, can cause such a process to be deleted.

EX-64

Process Creation and Deletion

EXERCISES

1. Write a program that will:

2.

a. Prompt the user for a Process ID.

b. use a routine (or routines) in the SYSPCNTRL module of VMS
to locate the software PCB for the specified process.

c. Display the event flag wait mask and current priority of
the process.

Things to remember when writing your program:

• Read through the routine(s) in SYSPCNTRL that you will
call. Note the inputs and outputs, calling sequence,
environment (access mode, IPL) and side effects of the
routine(s).

• Remember that the software priority of a process is stored
in the software PCB as 31 minus the priority (to simplify
the scheduler code).

Run the program to gather the information about your process
and some of the system processes (ERRFMT, OPCOM, etc.).
Compare the softwa~e priorities provided by your program with
those listed by SHOW SYSTEM~

a. Write a program to output, and then change, your account
name. This must be done in elevated access mode. (Your
account name is stored in your Pl space.)

b. Use the system dump analyzer (SDA) on the current system
to verify that you have changed your account name.

You may also want to log out after changing the account
name, then log in again and enter:

$ ACCOUNTING/FULL/ACCOUNT=new-name

You should see an accounting record that has your CHANGED
account name.

EX-65

Process Creation and Deletion

SOLUTIONS

1. The program in Example 1 uses EXE$EPID TO PCB (in VMS module
SYSPCNTRL) to locate a software PCB. -It then displays the
event flag wait mask and current priority of the process.

.TITLE PCDLABl
;++

ABSTRACT:

; for process ere/delete

This program accepts a PIO and displays the event flag
wait mask and current priority of the specified process.
It uses EXE$EPID_TO_PCB to locate the PCB.

ENVIRONMENT:
Begins execution in user mode, changes mode to kernel.
Raises IPL to IPL$ SYNCH to synchronize.
Requires: CMKRNL privilege; link with SYS.STB

SIDE EFFECTS:
none known

·--' .LIBRARY
.LIBRARY
$IPLDEF
$PCBDEF

/OSI$LABS:OSIMACROS/
/SYS$LIBRARY:LIB/

; for I/O
; system def's

IPL symbol def's
pcb off sets

*********************** data *******************************
.PSECT NOSHARED DATA PIC, NOEXE, LONG

PIO ASC: .LONG 8
- .ADDRESS ASC BUF

ASC BUF: .BLKB 8
EFWM ASC:.LONG 8

.ADDRESS EFWM BUF
EFWM BUF: .BLKB 8
CURPRI ASC:

.LONG 8

.ADDRESS CURPRI BUF
CURPRI BUF:

.BLKB 8
BIG STRING:

- .LONG 80
.ADDRESS BYTES

BYTES: .BLKB ·ao

Example 1 Program to Locate and Read PCB
(Sheet 1 of 3)

EX-66

Process Creation ana Deletion

SOLUTIONS

PROMPT: .ASCID
HDRl: .ASCID
HDR2: .ASCID
ERRMSG: .ASCID
K ARG LIST:

/Enter a Process ID (all 8 digits): I
/Event Flag Wait Mask is: I
/Current Priority is: I
/Error finding PCB./

for $CMKRNL call
.LONG 3

PROCESS ID:
• LONG
.ADDRESS
.ADDRESS

; passed by value
passed by reference
passed by reference

EFWM: .LONG

o .
EFWM
CU RP RI
0

CURPRI: .LONG 0
*********************** main code ***************************

30$:

40$:

.PSECT CODE EXE,NOWRT,PIC,SHR

.ENTRY BEGIN -M<>

PUSHAL PROMPT
PUSHAL PID ASC
CALLS #2, G-LIB$GET INPUT
CHECK STATUS
CONV HEX BIN PID~ASC, PROCESS_ID

Invoke kernel mode routine. It returns EFWM and
current priority. EFWM remains = 0 if any errors.
$CMKRNL s routin= KERNELl, arglst= K_ARG_LIST
CHECK STATUS

TSTL
BNEQ
BRW

EFWM
40$
63$

CONV BIN HEX
CONCAT2-
DISPLAY

error finding pcb?
(BEQL 63$: will not reach)
if yes, branch to error rtn

EFWM, EFWM ASC
BIG STRING, HDRl, EFWM ASC
BIG-STRING

adjust priority from internal format
SUBB3 CURPRI, #31, CURPRI
CON~ BIN HEX CURPRI, CURPRI ASC
CONCAT2 BIG STRING, HDR2, CURPRI ASC
DISPLAY BIG-STRING

Example 1 Program to Locate and Read PCB
(Sheet 2 of 3)

EX-67

Process Creation and Deletion

SOLUTIONS

50$: MOVL
RET

#SS$_NORMAL, RO

; error routines
63$: DISPLAY ERRMSG

.
I

BRW 50$

*********************** kernel mode code ********************
returns EFWM and current priority

.ENTRY KERNELl -M<RS,R6>

get input argument (PIO) off user stack before raise IPL
MOVL 4(AP), RO ; PIO is first argument
CLRL R6 ; cuz we only move a byte into it

save old IPL on stack, raise IPL. Reference SYNCH
variable to lock down elevated IPL code.
DSBINT SYNCH

PIO is in RO (required by epid routine), jsb to EPID TO PCB
JSB G-EXE$EPID TO PCB returns PCB addr. in RO
BEQL 140$ - - and sets cond. codes

MOVL
MOVB

ENBINT

PCB$L EFWM(RO), RS
PCB$B=PRI(RO), R6

can touch the user stack now
MOVL RS, @8(AP)
MOVL R6, @12(AP)

save EFWM for main code
save current priority

IPL back to zero
because back at IPL 0

; store EFWM in arg list
; store cur. pri in arg list

PCB. Leave zeros iri arg list
140$:

branch here if could not find
SETIPL #0
MOVL #SS$_NORMAL, RO
RET

SYNCH: • LONG
.END

IPL$ SYNCH
BEGIN

all done in kernel mode

Example 1 Program to Locate and Read PCB
(Sheet 3 of 3)

EX-68

Process Creation and Deletion

SOLUTIONS

2. The program in Example 2 displays and changes the account name
for the process •

• TITLE PCDLAB2
;++

ABSTRACT:
Program to change Pl control information (account name)

ENVIRONMENT:
Changes mode to exec to read Pl space, and to kernel
to write Pl space.

Linked with SYS.STB:
$ LINK PCDLAB2, SYS$SYSTEM:SYS.STB/SELECTIVE

SIDE EFFECTS:
Process account name is changed.

;--
.MACRO CHECK STATUS CODE=RO, ?GO
BLBS RO, GO
PUSHL RO
CALLS #1, G LIB$STOP
RET

GO:
.ENDM CHECK STATUS

************************** data ****************************
.PSECT NOSHARED DATA PIC,NOEXE,LONG

/Account name: I MESSl: .ASCID
PROMPT: .ASCID
ACC NAME:

/Enter account name (1-8 characters): I

- .LONG 8
.ADDRESS

ACC BUF:
- .BLKB

E ARG LIST:
.LONG 1
.ADDRESS

8

descriptor for
account name

ACC BUF

argument list for CHME

ACC BUF

Example 2 Program to Display and Change Account Name
(Sheet 1 of 3)

EX-69

Process Creation and Deletion

K ARG LIST:
.LONG 2
.ADDRESS
.ADDRESS

BUFFER: .LONG 80
.ADDRESS

BUF: .BLKB 80
LENGTH: .BLKW 1

SOLUTIONS

ACC BUF
LENGTH

BUF

argument list for CHMK

descriptor for
string concats

storage for prompt

************************** code ******************************
.PSECT CODE EXE,NOWRT,PIC,SHR
.ENTRY ACCNAME AM<>
change mode to executive to read account name in Pl space
$CMEXEC S routin=EXEC RTN, arglst=E_ARG_LIST
CHECK STATUS -

PUSHAL ACC NAME
PUSHAL MESS!
PUSHAL BUFFER
CALLS #3, GASTR$CONCAT
CHECK STATUS

PUSHAL BUFFER
CALLS #1, GALIB$PUT OUTPUT
CHECK STATUS

PUSHAW LENGTH
PUSHAL PROMPT
PUSHAL ACC NAME
CALLS #3, GALIB$GET INPUT
CHECK STATUS

put string together

••• and show it

prompt for "new"
account name

Example 2 Program to Display and Change Account Name
(Sheet 2 of 3)

EX-70

Process Creation and Deletion

SOLUTIONS

change mode to kernel to write new account name
$CMKRNL S routin=KERNEL_RTN, arglst=K_ARG_LIST
CHECK STATUS
MOVL - #SS$ NORMAL, RO
RET -

******************* exec mode code ***********************
.ENTRY EXEC RTN -M<R2,R3,R4,RS>
save r2-r5 because destroyed by MOVC

put account name from Pl in argument list
MOVC3 #8, G-CTL$T ACCOUNT, @4(AP)
MOVL #SS$ NORMAL-; RO ; set normal completion
RET -

******************* kernel mode code ***********************
.ENTRY KERNEL RTN -M<R2,R3,R4,RS>
save r2-r5 because destroyed by MOVC

MOVCS

MOVL
RET

@8 (AP) I @4 (AP) I

#-A//,
#8, G-CTL$T ACCOUNT
#SS$_NORMAL-; RO

.END ACCNAME

-; src len and addr in arglst
-; fill with blanks

dest is 8 bytes in Pl
; set normal completion

Example 2 Program to Display and Change Account Name
(Sheet 3 of 3)

EX-71

System Initialization and Shutdown

EXERCISES

Differentiate the two programs SYSBOOT and SYSGEN, including their

• Purposes

• Environmen.ts

• Command syntax

EX-73

System Initialization and Shutdown

SOLUTIONS

SYSBOOT

• Purpose: SYSBOOT is the program that performs the secondary
phase of the bootstrap sequence. It reads parameters from the
system image and, optionally, from a parameter file. All
adjustable parameters are calculated. The system page table
is set up. The system image is read into memory.

SYSBOOT is not involved in determining which devices are
present or in loading the drivers and associated data
structures for these devices.

• Environment: SYSBOOT executes in a stand-alone environment
with memory management turned off. All communication with the
console terminal and all file operations must be performed by
code contained in the SYSBOOT image, because there is no RMS
or ACP to provide these services.

• Command Syntax: SYSBOOT does not recognize those commands
associated with loading device drivers. The WRITE command is
also ignored by SYSBOOT •

. SYSBOOT begins its operation by reading the
adjustable parameters from the system image file.
implied USE CURRENT command.

SYSGEN

values of
This is p.n

• Purpose: SYSGEN is not directly involved in the bootstrap
operation. Its primary purpose is to create a parameter file
that will be used by SYSBOOT during future bootstrap
operations.

SYSGEN also loads device drivers for all devices that it finds
on the system or in response to explicit commands. The data
structures required by the driver are allocated and
initialized by SYSGEN.

• Environment: SYSGEN is a normal image that executes in full
process context. This means that services of the VAX/VMS
operating system are available for file operations including
terminal communication.

EX-74

System Initialization and Shutdown

SOLUTIONS

• Command Syntax: All commands can be performed by SYSGEN.
However, SET commands do not normally affect the current
system, but merely change the values in a table that will be
written to a parameter file. A WRITE CURRENT command will
establish the parameter values used in the next system
initialization. A WRITE ACTIVE command can change the values
of dynamic system parameters on the running system.

EX-75

Tests

VMS Internals I

PRE-TEST

Circle the letter that best answers each of the following
questions.

1. Which utility is used to make shareable files available to all
users?

a. SYSGEN
b. SDA
c. SYE
d. INSTALL

2. If you have an existing file, and would like to produce a
statistical report summarizing file characteristics, which RMS
utility would you use?

a. CREATE/FOL
b. EDIT/FDL
c. CONVERT
d. ANALYZE/RMS_FILE

3. Which address region contains the user stack?

a. Program region (PO)
b. Control region (Pl)
c. System region (SO)
d. Reserved region (Sl)

4. If, after calling a sy~tem service, the status code equals
one, the system service has completed:

a. With a warning
b. Successfully
c. With an error
d. With a severe error

5. Which of the following must be done before an I/O operation
can be requested on a device?

a. The device must be allocated
b. The device must be mounted
c. A channel must be assigned to the device
d. The device must be initialized

TP-3

VMS Internals I

PRE-TEST

6. Which of the following
communication mechanism?

a. Mailbox
b. Global section
c. DECnet
d. Shared file

is the fastest interprocess

7. Which of the following is true for a hibernating process, but
not true for a suspended process?

a. ASTs can be queued
b. ASTs can be delivered
c. ASTs are disabled
d. ASTs cannot awaken main-line code

8 •. what type of condition occurs as the result of an external
hardware event?

a. Exception
b. Interrupt
c. Trap
d. Fault

9. Which condition handler is looked for first when an exception
occurs?

a. Primary handler
b. Secondary handler
c. User-defined handler in current call frame
d. Last chance handler

10. In designing an application interface, VMS provides assistance
in implementing which of the following features?

a. A HELP facility
b. Application-specific error messages
c. Parsing user input
d. All of the above

TP-4

VMS Internals I

PRE-TEST

11. The linker places information into an executable or shareable
image file for later use by:

a. A compiler or assembler
b. The image activator
c. The scheduler
d. The disk ACP

12. A MAP file is produced by:

a. An assembler or compiler
b. The linker
c. The librarian
d. The Message utility

13. Which of the following types of files can be used to group
image sections into clusters?

a. Options file
b. Library file
c. Shared image file
d. Transfer vector file

14. Which utility can be used to determine the cause of an
operating system failure, and also to examine the
characteristics of the currently executing process?

a. SDA
b. Accounting
c. Monitor
d. SPM

15. To decrease paging activity, system services can be used to:

a. Adjust the size of the working set
b. Lock pages in the working set and/or in physical memory
c. Disable the swapping of a process
d. All of the above

TP-5

VMS Internals I

PRE-TEST

16. In the following instruction, which of the operands is in
Register Deferred mode?

ADDL3 #100, (R3), SUMS

a. #100
b. (R3)
c. SUMS
d. None of the above.

17. What would be the contents of the destination after the
execution of the MOVW (RS)+, R3 instruction?

a. 0600
b. 0602
c. 0700
d. 0702

where RS = 0600
R3 = 3F90
0600 = 0700
0602 = 0702

18. What would be the contents of the source after the execution
of the MOVW (RS)+, R3 instruction?

a. 0600
b. 0602
c. 0700
d. 0702

TP-6

where RS = 0600
R3 = 3F90
0600 = 0700
0602 = 0702

VMS Internals I

PRE-TEST

19. What hexadecimal value will be in R3 after the MOVL #""'BlOll,
R3 instruction executes?

a. A
b. B
c. c
d. D

20. Which instruction is used to divide the longword QUARTS by 4,
placing the result in the longword GALLONS?

a.
b.
c.
d.

DIVL
DIVL3
DIVL3
DIVL3

#4,QUARTS,GALLONS
4,QUARTS,GALLONS

#4,QUARTS,GALLONS
#4,GALLONS,QUARTS

21. Which register mask saves R2 and RS on the stack?

a.
b.
c.

PUS HR
PUSH
PUSHL

#""'M<R2,RS>
#""'M<R2, RS>

#""'M<R2, RS>

22. Which set of instructions are used to invoke a subroutine?

a. CALLS, CALLG, RET
b. CALLS, CALLG, RSB
c. JSB, BSBx, RET
d. JSB, BSBx, RSB

23. The Command Language Interpreter runs primarily in what mode?

a. Kernel mode
b. Executive mode
c. Supevisor mode
d. User mode

TP-7

VMS Internals I

PRE-TEST

24. What is the name of the control block created when the Save
Process Context instruction is executed?

a. Software PCB
b. Hardware PCB
c. Process header
d. AST control block

25. When a typical user logs in to a VAX system, what kind of
process is created?

a. Owner process
b. Detached process
c. Subprocess
d. Privileged process

TP-8

VMS Internals I

SOLUTIONS TO PRE-TEST

Circle the letter that best answers each of the following
questions.

1. Which utility is used to make shareable files available to all
users?

a. SYSGEN
b. SDA
c. SYE © INSTALL

2. If you have an existing file, and would like to produce a
statistical report summarizing file characteristics, which RMS
utility would you use?

a.
b.

CREATE/FOL
EDIT/FOL
CONVERT
ANALYZE/RMS_FILE

3. Which address region contains the user stack?

~ c.
d.

Program region (PO)
Control region (Pl)
System region (SO)
Reserved region (Sl)

4. If, after calling a system service, the status code equals
one, the system service has completed:

~ c.
d.

With a warning
Successfully
With an error
With a severe error

5. Which of the following must be done before an I/O operation
can be requested on a device?

a.
b.

~
The device must be allocated
The device must be mounted
A channel must be assigned to the device
The device must be initialized

TP-9

VMS Internals I

SOLUTIONS TO PRE-TEST

6. Which of the following
communication mechanism?

is the

~ c.
d.

Mailbox
Global section
DECnet
Shared file

fastest interprocess

7. Which of the following is true for a hibernating process, but
not true for a suspended process?

~ c.
d.

ASTs can be queued
ASTs can be delivered
ASTs are disabled
ASTs cannot awaken main-line code

8. What type of condition occurs as the result of an external
hardware event?

9.

~ c.
d.

Exception
Interrupt
Trap
Fault

Which condition handler
occurs?

~ Primary handler
Secondary handler

c. User-d.ef ined handler
d. Last-chance handler

is looked for first when an exception

in current call frame

10. In designing an application interface, VMS provides assistance
in implementing which of the following features?

a.
b.

A HELP facility
Application-specific error messages
Parsing user input
All of the above

TP-10

VMS Internals I

SOLUTIONS TO PRE-TEST

11. The linker places information into an executable or shareable
image file for later use by:

~ c.
d.

A compiler or assembler
The image activator
The scheduler
The disk ACP

12. A MAP file is produced by:

~ c.
d.

An assembler or compiler
The linker
The librarian
The Message utility

13. Which of the following types of files can be used to group
image sections into clusters?

c.
d.

Options file
Library file
Shared image file
Transfer vector file

14. Which utility can be used to determine the cause of an
operating system failure, and also to examine the
characteristics of the currently executing process?

c.
d.

SDA
Accounting
Monitor
SPM

15. To decrease paging activity, system services can be used to:

a. Adjust the size of the working set
b. Lock pages in the working set and/or in physical memory
c. Disable the swapping of a process
@ All of the above

TP-11

VMS Internals I

SOLUTIONS TO PRE-TEST

16. In the following instruction, which of the operands is in
Register Deferred mode?

~ c.
d.

#100
(R3)
SUMS

ADDL3 #100, (R3), SUMS

None of the above.

17. What would be the contents of the destination after the
execution of the MOVW (RS)+, R3 instruction?

a.
b.

~
0600
0602
0700
0702

where RS = 0600
R3 = 3F90
0600 = 0700
0602 = 0702

18. What would be the contents of the source after the execution
of the MOVW (RS)+, R3 instruction?

~
c.
d.

0600
0602
0700
0702

TP-12

where RS = 0600
R3 = 3F90
0600 = 0700
0602 = 0702

VMS Internals I

SOLUTIONS TO PRE-TEST

19. What hexadecimal value will be in R3 after the MOVL #""BlOll,
R3 instruction executes?

~ c.
d.

A
B
c
D

20. Which instruction is used to divide the longword QUARTS by 4,
placing the result in the longword GALLONS?

a. DIVL
DIVL3
DIVL3
DIVL3

#4,QUARTS,GALLONS
4,QUARTS,GALLONS

#4,QUARTS,GALLONS
#4,GALLONS,QUARTS

21. Which register mask saves R2 and R5 on the stack?

c.

PUS HR
PUSH
PUSHL

#"'"M<R2 ,RS>
#""M<R2,RS>

#""M<R2,R5>

22. Which set of instructions are used to invoke a subroutine?

a.
b.

@

CALLS, CALLG, RET
CALLS; CALLG, RSB
JSB, BSBx, RET
JSB, BSBx, RSB

23. The Command Language Interpreter runs primarily in what mode?

a.
b.

~
Kernel mode
Executive mode
Supevisor mode
User mode

TP-13

VMS Internals I

SOLUTIONS TO PRE-TEST

24. What is the name of the control block created when the Save
Proce'$s Context instruction is executed?

d.

Software PCB
H~rdware PCB
Process header
AST control block

25. When a typical user logs in to a VAX system, what kind of
process is created?

~ Owner process
~ petached process
c. · Subprocess
d.: , Privilegeq process

. ,

'TP-14
i

