EY-2279E-SG-0002

VAX/VMS
INTERNALS |

Student Workbook

Prepared by Educational Services
of
Digital Equipment Corporation

Second Edition, October 1986

Copyright © 1986 by Digital Equipment Corporation
All Rights Reserved

The reproduction of this material, in part or whole, is strictly prohibited.
For copy information, contact the Educational Services Department,
Digital Equipment Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for.any errors that may appear in this document.

The software described in this document is furnished under a license
and may not be used or copied except in accordance with the terms of
such license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by Digital.

The manuscript for this book was created using DIGITAL Standard
Runoff. Book production was done by Educational Services
Development and Publishing in Nashua, NH.

The following are trademarks of Digital Equipment Corporation:

ﬂﬂﬁﬂﬂﬁﬂ ™ DECtape Rainbow

DATATRIEVE DECUS RSTS
DEC DECwriter RSX
DECmate DIBOL UNIBUS
DECnet MASSBUS VAX
DECset PDP VMS
DECsystem-10 P/OS vT

DECSYSTEM-20 Professional Work Processor

CONTENTS

SG STUDENT GUIDE

INTRODUCTION 0 SG—3
GOALS.) SG-4
NON—GOALS: o o o o o o o o o o o o s o s o s o s o o o o o« o« SG-5
PREREQUISITES.: 4 « o o o o o s o o o o o s o o o s o« s o o« « SG-5
RESOURCES. . . 3] 3 . . 3 3 SG—S
COURSE MAP ° . . 3] . . 3 . 3 ° . .] 3 . . L] . [} . .] . . SG_6
COURSE OUTLINE O O SG-7
1 SYSTEM COMPONENTS
INTRODUCTION 3 3 . 3 3 . 3 . ° . . * 3 01—3
OBJECTIVES) 0 ol_4
RESOURCES. ° . [} . . . 3 3 . . 3 [} * o .1-4
Reading. L] L] L] L] L] L] L] * L] . L] L] ® L . L d * . * L] * L] L] L] .1—4
Additional Suggested Reading . « « ¢« o« o ¢ o o o o o o « o1-4
Source ModuleS ° 3 ° . .1—4
TOPICS . . 3 . . 3 o 3 . . 3 . . 3 . 3 3 . . .1—5
THREE MAIN PARTS OF VMS. ¢ o ¢ o ¢ o o o s o s o s o o o o o o1=7
Scheduling and Process COntrol « « o « o o o o o o o o o o1=7
Memory Managemente o« « o o o o o o o o o o o o s o o o o o1-7
I/O Subsystem. e o o o s o o o o e o o e e o o o s o e & 1=7
The Parts of the Operating SysteéM. « « o o« o o « o o o » o1-8
Functions Handled "Below" User Level . « o« o o o o o o o« o1-9
INVOKING SYSTEM CODE 3 . e o 3 O . . .) . e o 1-10
Interrupts vs, EXceptions. « o« o ¢ o o o o o o » o o o o 1-11
HARDWARE MAINTAINED PRIORITY LEVELS: « o o o o o o o o o -« 1-12
Two Types Of Priority. « o« o o o o o o o o o o o o o o o 1-13
Interrupt Servicing Sequence « « « o o o o o o o o o o o 1-14
ACCESS MODES AND COMPONENTS: o « o o s o o o o o o o o o o o 1-16
LOCATION OF CODE AND DATA: « « o o o o o o o o o o o o o o o 1-17
Entry Paths Into VMS Kernel. ¢« o ¢ o o« o o s o o o o o o 1-18
THREE TYPES OF SYSTEM COMPONENTS ¢ « o o o o o o o o« o o o« o 1-20
INTERACTION OF VMS COMPONENTSe o o o o o o o o o s o » o o o 1-21
Hardware Clock Interrupt o« o« o o o o o o o o o s o o o o 1-21
Periodic Check for Device Timeout. « ¢« o o o o s o o o o 1-22
Periodic Wake of Swapper, Error LOJJEr « o« « o » o o o o 1-23
System Event Reporting « « o« o o o o o o o o o o o o o o 1-24
Page Fault [] L] L] L] L] L] L] * * L] L] L] L] L] L] L] L] L d L] L] L] * L] 1—25
Data Transfer Using RMS. .« « « ¢ o o o o o2 o s s o o o« o« 1-26
File Manipulation Using RMS. « « o s o o o o o o o o o » 1-27
Data Transfer Using $OI0 « & o « o « o o s o o o o o o o 1=-29
$QI0 Sequence Of EVENES. « o« o o o o o o o o o o« o o o« o 1-30
" EXAMPLES OF SYSTEM PROCESSES o« o« o o o o o o o o o o o o o » 1-31
OPCOM, Error LOGJEr. « o o o o s s o o o o o o o o o o o 1-31

iii

Print Jobs « ¢« « « « &
Batch Jobs + ¢« ¢ o o &
Terminal Input . . .
Card Reader Input. . .« .
SOFTWARE COMPONENTS OF DECnet VAX.
Data Link Device Drivers . . .
NETDRIVER and NETACP « « « o &
RMS, DAP Routines, and FAL n .

L] . L]

RTTDRIVER, REMACP, and RTPAD
Netserver. . . e o o o o o o
Special DECnet Components. .
EVL. . * L] [] L L] L] L] [] L[] L] . L] L]
SERVER N ProcCe€sSs o« « o o o o o o
NCP, NML, MOM, MIRROR, NDDRIVER.
DECnet Remote File AccesSS. « «
SUMMARYO L] L] L] . * L] L] L] * [] * L] * *
APPENDIX:

2 THE PROCESS

INTRODUCTION . . s o
OBJECTIVES . . o o o
RESOURCES. . . ¢ o o
Reading. . o o o
Additional Suggested
Source Modules , ., .
TOPICS ¢ o o o o o o o o
PROCESS VS, SYSTEM CONTEXT
Process Context.,
System Context . « o« ¢« o o &
PROCESS DATA STRUCTURES OVERVIEW .
Software Process Control Block
Process Header (PHD)
Hardware Process Control Block
Privileged vs. General Register
PriVileged e o o o o e o o o o
General. « o« o o o o o o o o @
Job Information Block. « « « &
VIRTUAL ADDRESS SPACE OVERVIEW . .
Process Virtual Address Space.
S0 Virtual Address Space .
PO Virtual Address Space .
Pl Virtual Address Space .
SUMMARY: ¢ o o o o o o o o o &

o o Fje o e o

eadi

e o o e (.o O o o
o]
o o o o Qe o o o

® o o o ¢ o o o o o
e o o o o o & o o (N e & o~ 0 © o o o &6 ¢ o o o+ o

3 SYSTEM MECHANISMS
INTRODUCTION . L] L4 L L] . L] . L] . L] L]

OBJECTIVES L] L] L[] * . L L] L L * L] L L
RESOURCES: « o o o o o ¢ o o o o o o

iv

ADDITIONAL DECnet-VAX INFO

L]
L
L
[
L]
L]
L]
.
.
*
L]
R

e o o o e (Me o o

A

L] . . L] L] S L] [] L] L] . L] L] L] . L]

26 e o o o o o e o o o

L] L] L] L] L] L]] L] L] L] * L] . L J L] .]

L] L] . L) L] . [] L) []

L] L] L] Ld L] L[] L] . L]] [}

* * o L]

L L] L] L L] L] L] . ° * . - L[]

e © o o e o

] L] L L] [] L] L] L] L] L] [] L[] L] L[] L] L] L]

L[] L] L] L 4 L2 * L]

® o o o o o

® L] L] . L] L] L] L] L] L]]

e e o & o o e ° o o o

* L [] * L] L] L] L] * L] *

[] * L] L] L] L]

1-32
1-33
1-34
1-35
1-36
1-36
1-36
1-36
1-36
1-36
1-37
1-37
1-37
1-37
1-38
1-39
1-41

FRONDNNONNDNDNDDNDN
I
(RN RN NT, WE, WE; [T, I -y

[
o

Reading. * L] L L] L] L] . ° L] L] L]

Additional Suggested Reading .

Source Modules . « « ¢ o o .
TOPICS . L] * L] L] L] L] L] L] * L] L] L] L]
HARDWARE REGISTER AND INSTRUCTION SET S

o
e o o o
o
e o o o
=)

Processor Status Word (PSL). .
Processor Status Longword. . .
Hardware Context + « o« « o o« o
SYNCHRONIZING SYSTEM EVENTS. o + « &
Hardware Interrupts and the SCB.
Hardware Interrupts and IPL. . .
Software Interrupts and the SCB.
Software Interrupts and IPL. . .
Example of Fork Processing . . .
Software Interrupt Requests. . .

Blocking InterruptS. « « « o« &
Summary of IPL Mechanism . . .
Using IPL to Synchronize System Routi
System Tier Queue and System Clocks.
Clocks and Timer ServicesS. « « o+ o« o &
Summary of System Synchronization Tools
PROCESS SYNCHRONIZATION:. o o ¢ o o o o o o
Mutual Exclusion Semaphores (MUTEXes).
Obtaining and Releasing Mutexes. . . .
Asynchronous System Traps (ASTS) « « o o o o+ o
AST DEliVEerY « o o o o s o o o o o o o o o o s
AST Delivery SequencCe. « « o« o s o o o o o o

® © o o6 o & e o o o o o (TiIe o o o

e

e S e e o o o 0o o o o o o o
e o 6 e @ © o & O @ & & o o © 0 ¢ o o * o o o

e @ e ® e @ 6 o © o ¢ 6 o o e o o ° s o o o o
[} L] L] L] . L] L] * L] . . * L] L] [] [] L] . * L] . L] L]

e e o o o [l e o o o o & o o o o o o

Synchronizing Access Using the VAX/VMS Lock Manager

EXCEPTIONS AND CONDITION HANDLING: « o ¢ ¢ o o o
Exception and Interrupt Dispatching.
HOW A USER EXECUTES PROTECTED CODE . . .
Access Mode Transitions. « « « « &
CHMx and REI Instructions. . « « .
REI Is Used in Various Situations.
Path to System Service . . .
Return from System Service . .
Nonprivileged System Service .
Path tO RMS. « ¢« ¢ o « o o o &
Return from RMS. . s o o o o &
Path to User-Written Service (
Path to User-Written Service (
Return from User-Written Servi
Two Dispatchers. « « « o« o o &
MISCELLANEOUS MECHANISMS . « « « &
Dynamic Memory . . . ¢« o o o o s s e o
Allocating Nonpaged Pool e o o o o o o o o o
Relevant SYSGEN Parameters for Nonpaged Pool .
SUMMARY OF SYSTEM MECHANISMS + ¢ ¢ o o ¢ o o o o
SYSGEN Parameters Related to System Mechanisms
APPENDIX A: COMMONLY USED SYSTEM MACROS « o« ¢ o &
APPENDIX B: PRIVILEGE MASK LOCATIONS. « ¢ &+ o o
APPENDIX C: THE REI INSTRUCTION . « ¢ o o o o o o

L] L d

.
L]
]
.

L]

1
2
C

e o ® @ e o o o o

*® e ® o © 9 * e oo & o o

e o ® o o o o ¢ ¢ o o o o+ o o
e o ©® & o o ® o & o o o s o o
e o & e 6 o & o o+ o o o

® o o o e o O o o © o*o o

® o @ o © o o o © ¢ o o

o o (D~~~ o o ¢ o

L] * . L] L L] . L] * L] L L] L] L] L] L] [] L] L[] . [] L] L]

® o e o o s o e ©* o o o o

. .

L[] . . L] L] L] . L] L] L] . L] L] L] L[] L[] L] L] [] L] L] L] L]

. . L A d

L] . ® L] L[] L] L L] L] L] L] L] L] L] ° L] . L]

[L] . [[L) () L] [] () . . . (] [] . L] [] L] [

WWWWe ¢ o ¢ o.0 o
' T wwwwwww
L T T I |
cwoJJoaouymuo,m

|
R
N

3-13
3-14
3-15
3-16
3-17

3-18

3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-33
3-34
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-50
3-51
3-52
3-54
3-56
3-57
3-60
3-61

4 DEBUGGING TOOLS

INTRODUCTION o « o o o s o o o o o o o »
OBJECTIVES &+ o o o o o o o o o o o o o o
RESOURCES.: « + o o o o o o o s o o o o »
TOPICS * * [] L] L] * L] L] * * L] L] [] L] L] L] L]
VAX/VMS DEBUGGING TOOLS. e o o o o
THE SYSTEM DUMP ANALYZER (SDA) e o o o o

SDA Functions and Commands .

Examining an Active System .
THE SYSTEM MAP FILE:e ¢« ¢ o o o o

OVerview o« o« o o o o s o o
Sections of SYS.MAP. . . .
SYS.MAP and Crash Dumps. .

L] L] L] * L] L]
L] L] L] * . .
® o o o o o

SYS.MAP and Source Code. .
CRASH DUMPS:e « ¢ o o o o s o o o
Causes of Crash Dumps. . .
BUGCHECKS: « ¢ s o o o o o o« o
The Two Types of Bugchecks .
How Crash Dumps are Generated
How Bugchecks are Generated.
SAMPLE STACKS AFTER BUGCHECKS. .
Access Violation . + « + + &
Page Fault Above IPL 2 . . .
Reserved Operand Fault . . .
Machine Check in Kernel Mode
Sample Crash Dump Analysis .
DELTA AND XDELTA 4 o o o o o o
DELTA Debugger « « o« o « o o
CHMK Program « o o o o o o s

L] * L] . L] * L]] L] * L] .
® o e e 6 ° & o o o o o

e o o e o
jde®@ © o @ o o o o o » o

=

U

.
.
.

(] . () * o~ 0 [])] .
@]
e o o o o

DELTA and XDELTA Functions and Commands

.
L]
L]
L]
[]
.
L]
.
me
L]
L]
d

APPENDIX A:
APPENDIX B:

BUGCHECK FLOW OF CONTROL. .
PATCH L] L] L] L] L] * . L] . L] * L]

5 SCHEDULING

INTRODUCTION « « &« « o &
OBJECTIVES ¢« o o« o o o o

RESOURCES. * L] L] L] L] L] * L] L] L] [] L[] L] L] L]
Reading. « « o o ¢ o o o o o o o o o o
Additional Suggested Reading . « « « &
Source Modules ¢« o« ¢ o o o o o ¢ o o o

TOPICS 4« o o o o o o o o o s o o o o o o o

THE PROCESS STATES &« o o o o o o o o o o o
Process Wait States. « o« o o o s ¢ o o
Ways to Leave the Current State. . . .

Ways to Become Computable (Inswapped).
Inswapped to Outswapped Transitions. .
Ways to Become Computable (Outswapped)
HOW PROCESS STATES ARE IMPLEMENTED . « + o
Queues e © o o e o o o © o o o o e o o

vi

e o e o O o (o o o o o

L[] L] L] * L] L]

e ® o 6 s & e v e ® @ © © o & © o & °o ¢ o o o o o

e o o o o o

* L[] L] L] L] * L] * . L]] [} L] L] * L] . L]

e o o o o o

L] L] L) ° L] () L] [. () * L] L] L] L] L]

L] L] L] L]

e ® o o e © 8 © o & o © ©° ° o © o & o ° o o o o o

. .

e o o o o o

L[] L] L] L] L[] . L] L] . . . [] L] . L] L] . .

* o o o .

L] L) L] L] L] L] * . L] L] * L] L[] L] L] L] . [} L] L] L] . L] L]

L]

L[] L] *] L[]

e« o . [. [] . L] . .] e o] [] . [L] [.

o o
| [|
A0 AU W WW

. . [} .
|

[N SN S Y

| T T Y Y NG N SO SN S N
el il B oI | I
N oo

4-17
4-18
4-18
4-19
4-19
4-19
4-20
4-22
4-22
4-23
4-24
4-25
4-26
4-30
4-31
4-32
4-34
4-37
4-41

[IS IO O RO, I RGOS, O, 6,
|

|
=
HO WU S DS WW

NTUTUle o o o o o

1
[
[

Implementation of COM and COMO States. . .
Example of Computable Queues . ¢« o« ¢« ¢« « &
Implementation of Wait StateS. « « « o« o o«
Implementation of CEF State. « « o ¢ ¢ o &
Summary of Scheduling States « « « « o « &
Process Data Structures Related to Schedul
Saving and Restoring CPU Registers
THE SCHEDULER (SCHED.MAR): & o o o o o o o o &
BOOSTING SOFTWARE PRIORITY OF NORMAL PROCESSES
Example of Process Scheduling. « « « « «
IMPLEMENTATION OF PROCESS STATE CHANGES. . .
Report System Event Component (RSE.MAR).
STEPS AT QUANTUM END ¢ ¢ « o o o o o o o o
Real-Time ProCesS. « o« « o o o o o
Normal ProcCesSs « « o o o o o o o o
Automatic Working Set Adjustment .
Rules for Working Set Adjustment .
Example of Working Set Size Variati
Forcing Processes to Quantum End .
SOFTWARE PRIORITY LEVELS OF PROCESSES.
SUMMARY. L] L] L] L] L] L L] . . L] L[] L] L] L] L]

L] L] L] e L] ® L4 * L]
* L4 L] L] * . L] L] * L] L)

e o o D e o o
3
. L] L] L] L] L] L] []

6 PROCESS CREATION AND DELETION

INTRODUCTION . .
OBJECTIVES . . .
RESOURCES. « « &
Reading. . .
Source Modules ¢« v« « o ¢ o o o o o o o o o
TOPICS L] L] L] * L] L] L] L] L] L] L] L] . L] L] L] . L] L] *
PROCESS CREATION o« o o o o o « o
Creation of PCB, JIB, and POB. . .
Relationships Between PCBs and JIB . . .+ o
PCB VECLOY o o ¢ o o o o o s o o s s o o o
PID and PCB, Sequence Vectors. . . .
Process IDSs « ¢« ¢ o o o o o o o o o
Swapper's Role in Process Creation .
PROCSTRT's Role in Process Creation
TYPES OF PROCESSES ¢« &« o o ¢ o o o o
The LOGINOUT IMage « o o o o o o
INITIATING JOBS. o o o o o o o o o o
Initiating an Interactive Job. .
Initiating Job using $SUBMIT . .
Initiating Job Through Card Reade
PROCESS DELETION &« o« o o o o o o o o
Process Deletion Sequence. . . .
SUMMARYe o o s o o o o o o o o o o o

e ® e o ¢ o
o o o ¢ o ¢ o ¢ o
e o o ¢ o o o ¢ o

L] * L[] L] (]] - L]] . . L L]
L] *

e o o N o o o o

e o o o
. [] L] .

vii

® o o o ¢ o o 0 s & ¢ o o o o TH e e o

e e e © o e o o o

. . * L] L] L] o

e © @ o e & o o ¢ © o ©° o O° o ° o o o

* .

e ©® e o e o o o o

® O e e ° ¢ e e o O 6 o o & @ o ¢ o o

L] . * L[]

L]] L] L] L] L] L] L] * L] L] L] L] L] L) L] L] L[] []

L] L] L] . . L d . . L] . .

.] . .

. . * . L] L . L[] L] L[] [L] . L L] L] L] L] L] L]

. L] [] L] L] L] L] [} * [] L] L]

5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-23
5-24
5-29
5-31
5-32
5-32
5-32
5-33
5-35
5-36
5-37
5-38
5-39

10
6-11

6-13
6-14
6-15
6-17
6-18
6-18
6-19
6-20
6-21
6-22
6-23

7 SYSTEM INITIALIZATION

INTRODUCTION . . .
OBJECTIVES
RESOURCES. « « o
Reading. .« . .
Source Modules
TOPICS o« ¢ ¢ o o
VAX-11/780, 11/750,
780 and 730. . .
750 L] L] L] L] L] (] * L] L]
SYSTEM INITIALIZATION. . . .
SYSTEM INITIALIZATION SEQUENC
INITIALIZATION PROGRAMS. . .
PHYSICAL MEMORY DURING INITIA
PHYSICAL MEMORY LAYOUT AFTER
TURNING ON MEMORY MANAGEMENT
SYSINIT: o o o o o o o
START-UP « ¢« ¢ o o o o
Start-Up Process .
STARTUP.COM. L] . L] L] L]
SYSTARTUP.COM: « « o ¢ « &
SYSBOOT AND SYSTEM PARAMETERS
SYSGEN AND SYSTEM PARAMETERS
VAX-11/780 PROCESSOR
VAX-11/750 PROCESSOR .
VAX-11/730 PROCESSOR .
VAX FRONT PANELS . . .
SHUTDOWN OPERATIONS. .
SHUTDOWN PROCEDURES. . . .
AUTORESTARTING THE SYSTEM. .
REQUIREMENTS FOR RECOVERY AFT
SUMMARY' * L] L] L] L] L] L] L] L L]

. L L] L] L d L]

11/730

1/7

e o (MNe o o
O

] L] L]
* * L]

L] [] L] L]

8 USING THE LINKER

INTRODUCTION o o« o o o o o o
OBJECTIVES &« o s o o o o o o
RESOURCES.: o« o o o o o o o &
1 Linking Object Modules
1 Using the LINK Command
2 Program Sections . . .
3 Linker Clusters. . . .
4 Image Sections . . .

2

Mapping an Image to the Vlrtual Address Space

of a Process . « « +»
Linker Assigns Virtual

1
2
3 'Creating and Reading a
1 Creating a Linker Map.
2

SHUTDOWN

NSOLE DIFFERENCES
E * L] L] L] L] L] L] *
LIZATION. « . .« &
SYSBOOT ENDS. . .
ER POWER-FAIL . .

to Form an Image.

Addresses ¢« « o o

Linker Map. « «

viii

e O o © @ 5 & & o o o ¢ O o ¢ O 9 6 0o o o o

L] . L d L] L] L] L] [] L] . * '] L] L[] . L] L] L] L] . . L]

L]
L[]
L]
L]
ce
.
L

Using a Linker Map to Debug Run-Time Errors.

L] L] L] [] L] L L] L] * * L]] L] L] * * L] L] o L] L]

e e O o o o * o o o o o o

L] L] L] L] [] [° [L]] L]] L] L] L L] L d] . . [] L[]

Image Activator Maps Image to Virtual Address Space

L] L] . . L] L] L] L] L) L] . L] L] L] * L] * L] L] L] L] L] L] L] L]

L] [] L L[] L4 L] L] L] [] [] L] [] * L] L d L] L L] L * * . . L]

NN NNNNNNNNY
|

I
NOWOINIJUd b Ww

1 |
(AR

NN I Je o e o o
I

I
Pt e
O\ W W

7-17
7-17
7-17
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-25
7-26
7-27
7-28
7-20

| 00 0O 0o ®
I
oONOoOUTUWwwWw

O e o o
=

o 0

|
gy
e

8-13
8-15
8-15
8-15

Linker Options FileS « o o o o o o o o o o o o o o « « 8=16
Creating and Using Linker Options Files. « « « o « « « 8-17
Linker Options Records e o o o o o o o o o 8-18
Using the Cluster Option to Create

More Efficient ITmageSe. o« « o o o o o o o o o« o o o o« o 8-18

L~
¢ e o
W N >

EXERCISES
TESTS

FIGURES
1 Invoking System COAe v o o o o o o o o o o o o o o« o o o« 1-10
2 Two Types Of Prioritye « o o o o o o o o o o o o o o o o« 1-13
3 Example of Interrupt Servicing i « « « o o o o o o o o o 1-14
4 Access Modes and ComponentsSe. o« o+ + o o o o o o o o o« o o 1=-16
5 Location of Code and Data In Virtual Address Space . . . 1-17
6 Entry Paths into VMS Kernel. . . ¢« « o « o o o o o o o« o 1-18
7 Three Types of System Components . « « « o« o o o o o« o o 1-20
8 Hardware Clock Interrupt « « « o o o o o o o o o o o o o 1-21
9 Periodic Check for Device Timeout. « o« o ¢ ¢ o o o o o o 1=-22
10 Periodic Wake of Swapper, Error LOJger « « « « o o o o o 1=-23
11 System Event REpPOrting . o« o o« o o o o o o s o o o o o o 1=24
12 Page Fault o o o o o o o o o o o o e o o o o o o o o o o« 1-25
13 Data Transfer Using RMS. &« ¢ « o o o o o s o o o o o o« » 1-26
14 ODS-2 File Manipulation Using an ACP + « « o o o o o o o 1=-27
15 File Manipulation Using an ACP . « & « o o o o « s o o« o« 1-28
16 Data Transfer Using SOTIO « ¢ & + o o o o s o o o o o o« o« 1-29
17 $SQIO Sequence Of EVENtSe o« o o o o o o o s o o o o o o o« 1-30
18 OPCOM, Error LOJGEr. « o o o o o o o o o o o o o o o o o 1-31
19 Pril’lt JObS . 3 3 3 . O . 3 . . 3 .] 3 . . . ° . 1"32
20 BatcCh JODS o o « o o o o o o o o o o o o o s o o o o o o 1-33
21 Terminal INPUL o 1-34
22 Card Reader Inpute o o o o o o o o o o o o s o o o o o o 1-35
23 DECnet Remote File ACCESSe o o o o s o o o s o o o o o o« 1-38
24 DECnet ProtoCoOl LAyErS « o o o o o o o s o o o o o o o o 1-41
25 DECnet Task-to-Task CommunicationN. « « o o o o o o« o o o 1-42
26 Performing Set Host Operation. « « ¢« ¢ o« ¢ ¢ o o o o o o 1-44
1 Process Data Structures. . . s s o s e o e o s e e & 2-10
2 Software Process Control Block (PCB) e s e s s s e o+ o 2-11
3 Process Header (PHD) « o o o o o o o o o o o o o s o o o 2-12
4 Hardware Process Control Block . o« ¢ o o o o o o o o « o 2-13
5 Job Information Block (JIB)e o o o o o o o o o o o o & o« 2-15
6 Virtual AdAress SPAcCe. + o « o o o o o o o o o o o o o o+ 2-16
7 S0 Virtual Address Space — Low Addresses . « + o« o o o« « 2-17
8 S0 Virtual Address Space - High AddresseS. « « « o o« o« o 2-18
9 PO Virtual AddreSS Space 3 . Y 3 . Y 2—19
10 Pl Virtual Address Space - High Addresses. « « « « « « o 2-20
11 Pl Virtual Address Space — Low AQAresses . « « o o o o o 221

ix

LCOdOUTdWNH

=HOOJoOYUTE WINE

Processor Status Word. . « « .+ &
Processor Status Longword (PSL).
Hardware Context

Hardware Interrupts and the SCB.
Software Interrupts and the SCB.
Fork Queue « + o o o o o o o o &
Software Interrupt Requests.,
Raising IPL to SYNCH
Timer Queue Element. . . «
Clocks and Timer Services.
A MuteX: o« o o o o ¢ o o o
AST Queue Off the Software
AST Delivery Order
AST Delivery Sequence. « « « .
Relationships in the Lock Database . . .
Relationships Between Locks and Sublocks
Exceptions and the SCB « « o« « o o o o o
Exception and Interrupt Dispatching.
Condition Handler Argument List. . .
Access Mode TransitionsS. . « « .
Stack After CHMx Exception .
Path to System Service . . .
Return from System Service .
Nonprivileged System Service
Path tO RMS. « « ¢ ¢ o o o &
Return from RMS., « « o o ¢ o o o o

o e o
@]
e e o o o o

® ® e e e e @ o ® o O o o o
L) L] L d L] * . L] * o [3 * L] L] L]
L] L] L] L] * * L] L] [] [] L] L] L] []
L] L] ° L[]] . L] * L] . L] . L] L]

L]
[
L]
*
.
L]
.
[

e o o e o © o o

® ® e e ©® o © o & o ©® o ° o S o ° o ° ° © o o o o o

® @ e e © o o o @ © © e © ° o e o © e ° e e & o o+ o

Path to User-Written System Service (Part 1)
Path to User-Written System Service (Part 2)

Return from User-Written System Service.
Two Dispatchers. « « « o o o « o o o o o
Paged Dynamic MEMOXY + « « o o o o o o o
Allocating Nonpaged POOl « « o ¢ o o o &

Stack After Access Violation Bugcheck. .
Stack After Page Fault Above IPL-2 ., . .
Stack After Reserved Operand Fault . . .
Stack After Machine Check in Kernel Mode
Bugcheck Flow of Control « « o o o o o &

Process States « « o o ¢ o o ¢ o o o @
Process Wait StateSe. o« « o o o o o o o
Ways to Leave Current State. . . & .
Ways to Become Computable (Inswapped).
Inswapped to Outswapped Transitions. .
Ways to Become Computable (Outswapped)
A State Implemented by a Queue
Implementation of COM and COMO States.
Example of Computable Queues . « « + &
Wait State Listhead. ¢« ¢« o ¢ o « ¢ + &

[] L] [] * . . L] . L] .

L] L] ° L]]

[} L] L] . . L] ® L] L] L

. . L] L] L] [] . L] L] L] L) [] L] . L[] L] L] . L] L] L] L] L] . L] . L) L] L] L]]]

. e o] . . * [] [] . * o . . . * o [. [[. * e L] . . [L] . o e

L] . L] L] [] L] L] L] L] . L] L[] L] . L] L] L] L] . L] * L] L] * L] * . L L] . [] L]

L] * L[] L]]

. L] L] * L] L] L] * * Ld

* . L] L] * L] L] L d L] LJ L] L] L] L]

L] L[]] * L] . L] L] L] * . [} . L[] [] . L] *

® e o o ¢ ¢ o o o o

L] L[] . . * * L] * L) L] L - L] [L] L] L d L] L] L] L] L] L d * L] L] . L[] L[] L] L[] .

e o o o o o o o o o

L] L] L] L] L] '] L] ° L] . L] L] * L]

. L] L[] L]]

* L] * L] L] L] L . * ° L] L] L] L] . . L] L]

WO UTLsWND - = OO U WN -

NoOds W

Inplementation of Wait StateSe « o ¢ ¢ ¢ o o o o o « o 5-16
Implementation of CEF State. « « o ¢« o ¢ ¢ ¢ ¢« o o o « « 5-17
Scheduling Fields in Software PCB.e « ¢ « ¢ o o ¢ o« o o o« 5=-19
Saving and Restoring CPU Registers . « o+« o« o o o« o o o« « 5=20
SCheduling Examp].e Symbols 3 . 3 . 3 3 3 o . 3o . 5_24
Example of Process Scheduling — Part 1 . « « ¢« ¢« « o » » 5=25
Example of Process Scheduling — Part 2 « o« « o o o o o « 526
Example of Process Scheduling — Part 3 ¢ ¢« o« « o o o ¢ o 5=27
Example of Process Scheduling - Part 4 . . « « ¢« « « o « 5-28
Interaction of Scheduling Components « « « o« o o o o « « 5=30
Automatic Working Set Adjustment . « « o« o o o o o o o o 5=34
WSSIZE Variation Over TiMe€ « o+ + o o o o o o o o o s o o« 5-36
Use of the IOTA System Parameter « o « « o o o o o o o o 5=37
Creation of PCB, JIB and POB6-8

Relationships Between PCBs and JIB .
PCB VEeCtOY &+ ¢ o o o o s o o o o o o
PID and PCB, Sequence VectOrsS. . . «
Swapper's Role in Process Creation .
PROCSTRT's Role in Process Creation.

L[] o . . ° L] L] L[] L]
. o e o * o o o o
e o o e o o e o o
e o e o o o o o o
e o o o o o o o o
e o o ¢ o o o o o
e o o o o o o ¢ o
L[] L] L] L]
e o O o o o o o o

e o 0 o o o o o o
(=)
|
[
w

Initiating an Interactive Job. . . 6-18
Initiating Job Using $SUBMIT . . . 6-19
Initiating Job Through Card Reader 6-20
Process DeletiOn o o o o o o o o o o o s o o o o o o o o 6-22

System Initialization. « « « .
System Initialization Sequence
Physical Memory During Initiali
Physical Memory After SYSBOOT.
Turning on Memory Management .
SYSBOOT and System Parameters.
SYSGEN and System Parameters .
VAX-11/780 Processor: .
VAX-11/750 Processor .
VAX-11/730 Processor .
VAX Front Panels . . . & e e o o o o s o o o
Autorestarting the System. . . . 0 . o o . ¢ o . o o . . 7-25

e o o o o
L] L[] * L] L]
L * L] L]
L] L]] L]
L] * L] L]
e o o o
L[] L] L] L]
e o o o

=
e & o o N e o
Q
e o o o (tTe o
'.-I-
o o o o O ¢ o
=
Y
e o o ¢ o o o
.
.
.
~
{
N R
O WO WN WY

.
.
o ¢ o o o o
.
* o o o o o
.
.
.
~
I

. L[] *

. . L]

.
L]
L]

.
~
1
N
w

Organization of Source Files into Program Sections .
Organization of Input Files into Clusters. . « « « &
Routines for Transaction Processing Application. . .
Placement of Program Sections in Clusters. .« « o « o
Organization of PSECTS into Image Sections . « « « &
Mapping an Image into Process Virtual Address Space.
Clustering Related Code in an Executable Image . . .

Differences Between Interrupts and Exceptions., . « « « .« 1-11
Summary of System Components and Functions . « . . . « . 1-19

xi

[\

WO ULdWN -

O~JoOUT W Vb WN - ~ OO -JN U kWNhH

DW=

Function of Pl Space « « « o o o o o s o o o &

SYSGEN Parameters Relevant to Process Structure,

Keeping Track of CPU, Process State. .
Hardware Interrupts and IPL. « « o o &
Software Interrupts and IPL. « « « o &
Blocking InterruptSe « o o o o o o o o
Summary of System Synchronization Tools
Process Synchronization Mechanisms . .
Rules for Selection of ASTS. ¢« « « o &
Data Structures Supporting the Lock Man
Executing Protected Code « « o ¢ o o &
SYSGEN Parameters for Nonpaged Pool. .

i

Q
o D e ¢ o o o o o
o o o © o 0 o o o

e M) e o o o o o o

L] L L o

Function and Implementation of System Mechanisms

SYSGEN Parameters Related to System Mechanisms
Privileged Mask LOCationS. « « o« o o s o o o o

Environment vs. Debugging Tools. « « + .
Examining Crash Dump or Current System .
SDA Functions and CommandsS « « « o o o« &«
SDA Commands Used to Display Information
Symbols and OperatorsS. o« « « o o o o o o
Common Command USage « « « o o o o o o o
Sample BUGCHECKS * L] * L] . L] L] L] L] L] L] .
Comparison of DELTA with XDELTA. « « .« .
DELTA and XDELTA Functions and Commands.
PATCH CommandsS « « o o o o o o o s o o o

. L] L] L] L]
e o o & o
L] L] L] L] L]

Initial Conditions for Scheduling Example. . .
Operating System Code for Scheduling Functions
Reasons for Working Set Size Variations. . . .
Software Priority Levels of Processes on VMS .
SYSGEN Parameters Relevant to Scheduling . . .

Steps in Process Creation and Deletion .
Three Contexts Used in Process Creation,
Routines for Manipulating PIDS + « o o+ &
Types Of ProCesSSesS o s o« o o o o o o o o
PCB Fields Defining Process TypeS. « «
Restrictions on Process Creation
Steps in Process Creation and Deletion
SYSGEN Parameters Relating to Process Creation
and Deletion e © o 8 o e e o o e o o o o o o o

L] [] . [] . [
L] L] L] . L] L]
. * L[] L] L] L[]

In1t1a11zat10n ProgramsS. . . « o o o
Switches on the VAX-11/780, /730 /750 .« o
Shutdown Operations. « o« « o o o o o o o &
Shutdown ProcedureS. « o« o ¢ o o o s o o o

xii

.

L] . [) *

e © o o o ¢ o

* L] * * . L] . L[] . L] * L]]

e e . e o * L 4 [) L .

. L] L] .] o o

. L] L] L[]

7-10

7-25
7-26

wNn =

W N =

B W N

-

PSECT Attributes [[[[L] [[} [. L] L] . [} [}

Commonly Used Qualifiers for the LINK Command. . « « o+
File Qualifiers Commonly Used with the LINK Command., . .

oociooo
S

EXAMPLES

Sample SHOW SYSTEM Outputo 3 . . . 01-8

IPL Control MAcCrOS « o o o o o s s s o o o o o o o o o & 3=57
Argument PrObing MACYOSe o o o o o s o o o o o o o o o o 3-58
PriVilege CheCRing MacrOS. ° 3-59

Examining an Active SySteém . « o ¢ o o o o o o o o o« o o 4-11
Sample Console Qutput After BugchecCk « o« « o o ¢ o ¢ o« o 4-21
Sample Crash Dump AnalysSiS o« « o o o o o o o o o o o o o 4-26
The CHMK Program « o« o o o o o o o o s o o o o o o o« o« o 4-33

The SCheduler (SCHED.MAR). e o e e o o ¢ o o e o o o+ o oo 5—21

xiii

Student Guide

STUDENT GUIDE

INTRODUCTION

The VAX/VMS Operating System Internals course is intended for
the student who requires an extensive understanding of the
components, structures, and mechanisms contained in the VAX/VMS
operating system. It is also an aid for the student who will go
on to examine and analyze VAX/VMS source code.

This course provides a discussion of the interrelationships
among the 1logic or code, the system data structures, and the
communication/synchronization techniques used in major sections of
the operating system. ’ '

Technical background for selected system management and
application programmer topics is also provided. Examples of this
information include:

e The implications of altering selected system parameter
values

e The implications of granting privileges, quotas, and
priorities

® How selected system services perform requested actions.

Information is provided to assist in subsequent system-related
activities such as:

@ Writing privileged wutilities or programs that access
protected data structures

e Using system tools (for example, the system map, the
system dump analyzer, and the MONITOR program) to examine
a running system or a system crash.

This course concentrates on the software components included
in (and the data structures defined by) the linked system image.
Associated system processes, utilities, and other programs are
discussed in much less detail.

SG-3

STUDENT GUIDE

GOALS

e Describe the contents, use, and interrelationship of
selected VAX/VMS components (job controller, ancillary
control processes, symbionts), data structures (SCB, PCB,
JIB, PHD, Pl space), and mechanisms (synchronization
techniques, change mode dispatching, exceptions and
interrupts). .

® Describe and differentiate system context and process
context.

® Discuss programming considerations and system management
alternatives in such problems as:

- Assigning priorities in a multiprocess application

- Controlling paging and swapping behavior for a process
or an entire system

- Writing and installing a site-specific system service

® Use system-supplied debugging tools and wutilities (for
example, SDA, XDELTA) to examine crash dumps and to
observe a running system.

® Describe the data structures and software components
involved when a process is created or deleted, an image 1is
activated and rundown, and the operating system is
initialized.)

® Describe how the following interrupt service routines are
implemented:

AST delivery
Scheduling

- Hardware clock
Software timers

@ Briefly describe the components of the 1I/0 system,
including system services, RMS, device drivers and XQPs.

@ Briefly describe how RMS processes I/O requests, including
the user-specified and internal data structures involved.

® Describe certain additional VMS mechanisms used on a VAX
system in a cluster (for example, synchronization and
communication mechanisms).

STUDENT GUIDE

NON-GOALS

® Writing device drivers (see the VAX/VMS Device Driver
course)

® Writing ancillary control processes, ACPs (see the VAX/VMS
Device Driver course)

® Comprehensive understanding of RMS internals
® DECnet internals (see the DECnet courées)

® Layered product internals

e Command language interpreter internals

e System management of a VAXcluster

PREREQUISITES

@ Ability to program in at least one VAX native language.
This may be obtained through language programming
experience and completion of an appropriate language
programming course (for example, Assembly Language
Programming in VAX-11] MACRO). 1In addition, completion of
the Introduction to VAX-11 Concepts course is recommended.

e Ability to read and comprehend programs written in VAX-11
MACRO 1is required. In addition, ability to program in
VAX~11l MACRO or BLISS is recommended.

e Completion of one of the Utilizing VMS Features courses.

RESOURCES

1. VAX/VMS Internals and Data Structures

2. VAX/VMS System Dump Analyzer Reference Manual

3. VMS Internals I and II Source Listings

SG-5

STUDENT GUIDE

COURSE MAP

VMS IN A
VAXcluster
ENVIRONMENT

VMS IN A
MULTIPROCESSING
ENVIRONMENT

« PAGING

A

~
¥~ FORMING

\¢ { ACTIVATING AND
TERMINATING
IMAGES

1/0 CONCEPTS
AND FLOW

SYSTEM
PROCESSES

SYSTEM
INITIALIZATION

g

i{?\“ PROCESS
W (CcREATION AND DE_?_ggEéNG
DELETION

A

THE

PROCESS MECHANISMS

SYSTEM
COMPONENTS

\/ MKV84-2242

STUDENT GUIDE

COURSE OUTLINE

System Components

A,

B.

C.

How VMS Implements the Functions of an Operating System

How and When Operating System Code is Invoked

Interrupts and Priority Levels

Location of Code and Data in Virtual Address Space

Examples of Flows for:

l.
2.
3.
4.
5.

Hardware clock interrupt
System event completion
Page fault

RMS request for I/0

$QIO request for I/0O

Examples of System Processes

1.
2.
3.
4.

Operator Communication (OPCOM)
Error logger (ERRFMT)

Job controller (JOB_CONTROL)
Symbionts (SYMBIONT n)

Software Components of DECnet-VAX

SG-7

STUDENT GUIDE

II. The Process
A. Process vs., System Context
B. Process Data Structures Overview

1. Software context information
2. Hardware context information

C. Virtual Address Space Overview
1. S0 space (operating system code and data)
2. PO space (user image code and data)

3. Pl space (command language interpreter, process data)

D. SYSGEN Parameters Related to Process Characteristics

III. System Mechanisms
A. Hardware Register and Instruction Set Support
B. Synchronizing System Events
1. Hardware Interrupts
2. Software Interrupts
Example: Fork Processing
3. Requesting Interrupts
4. Changing IPL
5. The Timer Queue and System Clocks
C. Process Synchronization Mechanisms
1. Mutual Exclusion Semaphores (MUTEXes)
2. Asynchronous System Traps (ASTs)
3. VAX/VMS Lock Manager
D. Exceptions and Condition Handling

E. Executing Protected Code

1. Change Mode Dispatching
2. System Service Dispatching

F. Miscellaneous Mechanisms
1. System and Process Dynamic Memory (Pool)

G. SYSGEN Parameters Controlling System Resources

SG-8

Iv.

STUDENT GUIDE

Debugging Tools

A. VAX/VMS Debugging Tools
B. The System Dump Analyzer (SDA)
1. Uses
2. Requirements
3. Commands
C. The System Map File
D. Crash Dumps and Bugchecks
1. How bugchecks are generated
2. Sample stacks after bugchecks
3. Sample crash dump analysis
E. The DELTA and XDELTA Debuggers
Scheduling
A. Process States
1. What they are (current, computable, wait)
2. How they are defined
3. How they are related
B. How Process States are Implemented in Data Structures
1. OQueues
2., Process data structures
C. The Scheduler (SCHED.MAR)
D. Boosting Software Priority of Normal Processes
E. Operating System Code that Implements Process State
Changes
l., Context switch (SCHED.MAR)
2. Result of system event (RSE.MAR)
F. Steps at Quantum End
1. Automatic working set adjustment
G. Software Priority Levels of System Processes

S5G-9

VI.

VII.

STUDENT GUIDE

Process Creation and Deletion
A, Process Creation

1. Roles of operating system programs
2. Creation of process data structures

B. Types of Processes
C. Initiating Jobs

1. Interactive
2. Batch

D. Process Deletion

E. SYSGEN Parameters Relating to Process

Deletion

System Initialization and Shutdown
A, System Initialization Sequence

B. Function of initialization programs
C. How memory is structured and loaded
D. Start-up command procedures

E. How hardware differences between
initialization

F. Shutdown procedures and their functions
G. Auto-restart sequence

H. Power-fail recovery

SG-10

Creation

CPUs

and

affect

VIII.

IX.

A.

STUDENT GUIDE

System Processes

For selected VAX/VMS processes:

1. Job controller
2. Symbionts

3. Error Logger
4., OPCOM

We will be describing their:

1. Primary Functions
2. Implementation

3. Methods of communication with other VMS components

4, Basic internal structure (on a module basis)

Forming, Activating and Terminating Images

A.

Forming an Image

l. PSECTs in source/object modules
2, Format and use of the image header

Image Activation and Start-Up

1. Mapping virtual address space

2. Overview of related data structures
3. Image start-up (SYSSIMGSTA)

4. 1Installing Known Files

Image Exit and Rundown

1. SEXIT system service

2. Termination Handlers

3. DCL Sequence

SYSGEN parameters relating to image formation,
and termination

sG-11

activation

XI.

STUDENT GUIDE

Paging

A.

Basic Virtual Addressing

1. Virtual and physical memory
2. Page table mapping

B. Overview of Page Fault Handling
1. Resolving page faults
2. Data structures in the process header
C. More on Paging
l. Free and modified page lists
2. The paging file
3. Cataloging pageable memory (the PFN database)
D. Global Paging Data Structures
E. Summary of the Pager
Swapping
A. Comparison of Paging and Swapping
B. Overview of the Swapper, the System-Wide Memory Manager
C. Maintaining the Free Page Count
1. Write Modified Pages
2. Shrink Working Sets
3. Outswap Processes
D. Waking the System-~-Wide Memory Manager
E. Outswapping a Process
1. Swap files
2. Scatter/Gather
3. Partial Outswaps
F. Inswapping a Process

SG-12

XII.

XIII.

STUDENT GUIDE

I/0 Concepts and Flow

A.

B.

A.

B.

Overview of I/0O components and flow

Components of I/O system

1.
2.
3.
4‘

The

RMS

I/0 system services
XQPs, ACPs

Device drivers

I/0 database
Driver tables

IRPs
Control blocks

Methods of data transfer

RMS Implementation and Structure

. User-specified data structures (FABs, RABs, and so on)

RMS
1.

2.

RMS
1.

3.

Internal Data Structures

Process I/0 Control Page (for example, default values,
I/0 segment area)

File-Oriented and Record-Oriented Data Structures
(IFAB, IRAB, BufDescBlk, I/O Buffer)

Processing

RMS Dispatching
RMS routines and data structures

‘Examples of flows of some common operations

SG-13

XIV.

XV,

STUDENT GUIDE

VMS in a Mulﬁiprocessing Environment

A.

B.

VMS

A,

c.

Loosely coupled processors

Tightly coupled processors (11/782)
l. MP.EXE structures

2. Scheduling differences

3. Startup /shutdown

Clustered proceséors

in a VAXcluster Environment

Cluster synchronization and communication mechanisms
1. Distributed lock manager

2. Distributed job controller

3. Interprocessor communication

System initialization and shutdown differences

1. VMB, INIT and SYSINIT differences

2. Joining a cluster

3. Leaving a cluster

SYSGEN parameters relevant to the VAXcluster environment

Relevant system operations

sG-14

System Components

SYSTEM COMPONENTS

INTRODUCTION

This module introduces the major software components supplied
in or with the VAX/VMS operating system. As an overview of the
operating structure, it gives a review of facilities introduced in
previous VAX/VMS courses, New terms and logic components are
introduced, but detailed discussion of them is generally deferred
until later modules of this course.

This module does not provide a complete catalog of all
facilities, modules, and programs in the operating system. It
provides an understanding of the relationships and coordination
among the various software components.

Software components can be classified by several attributes,
including:

e Implementation form (service routine, procedure, image, or
process)

® "Closeness" to the linked system image (part of SYS.EXE,
linked with system symbol table, privileged known image,
and so forth)

® Access mode (kernel, executive, supervisor, or user)
® Address region (program, control or system)

® Memory-resident characteristics (paged, swapped or shared)

SYSTEM COMPONENTS

For each selected VAX/VMS software

describe:

1. 1Its primary function
2. 1Its implementation (process, ser
procedure; in which address regio
access modes it uses)
3. The method or methods by which
communication
Reading

® VAX/VMS Internals and Data Structures,

Additional Suggested Reading

VAX/VMS Internals and Data Structures,
System Services, Interactive and
Miscellaneous System Services.

Source Modules
Facility Name

SYS

DCL,CLIUTL

DEBUG

RTL

RMS

F11A,F11X,MTAACP
REM,NETACP

JOBCTL, INPSMB, PRTSMB
OPCOM

ERRFMT

OBJECTIVES
component, briefly
vice routine, or
n it resides; what

it accomplishes

RESOURCES

System Overview

I/0
and

Chapters on
Batch Jobs,

II.

III.

Iv.

VI.

VII.

SYSTEM COMPONENTS

TOPICS
How VMS Implements the Functions of an Operating System

How and When Operating System Code Is Invoked
Interrupts and Priority Levels

Location of Code and Data in Virtual Address Spife

Examples of Flows for: N{éﬁ;&Jb
A. Hardware clock interrupt kk~ w&w

B. System event completion Y\QQ ' 0?'0

C. Page fault

D. RMS request for 1/0
q gg\y
E. $QI0 request for I/0 *‘

Examples of System Processes

A. Operator Communication (OPCOM)

B. Errxor logger (ERRFMT)

C. Job controller (JOB_CONTROL)

D. Symbionts (SYMBIONT_n)

Software Components of DECnet-VAX

SYSTEM COMPONENTS

THREE MAIN PARTS OF VMS

Scheduling and Process Control

Functions

® Assign processor to computable process with highest
priority

® Attend to process state transitions

e Facilitate synchronization of processes

® Perform checks and actions at timed intervals

Code and Data

e Scheduler interrupt service routine
® Report system event code (ﬁl3)
® Hardware clock and software tlmer interrupt service

routines L 220 24 4y yppwe ek (1L7 for SFwEL
@& System services ($WAKE)fn' C’ jh'

Memory Management

Functions
® Translate virtual addresses to physical addresses
® Distribute physical memory among processes
® Protect process information from unauthorized access
® Allow selective sharing of information between processes

Code and Data

® Pager fault service routine and swapper process
® PFN database, page tables
® System services (SCRETVA)

1/O Subsystem
Functions

® Read/write devices on behalf of software requests
® Service interrupts from devices
® Log errors and device timeouts

Code and Data
® Device drivers, device- 1ndependent routines

e I/O data structures
e System Sérvices ($QI0)

SYSTEM COMPONENTS

The Parts of the Operating System

UAX/UMSE V4.0 on

Fid
00000080
00000081
00000084
00000085
00000086
00000088
00000109
0000008R
0000008C
0000008
0000018F
00000110
00000191
00000096
00000197
00000218
0000019E
HD00001AA
00000120
0000013A

node COMICS

26-SEF-1984 13134335,10

Frocess Name State Fri 1/0
NULL COM 0 0
SWAFFER HIE 1é 0
ERRFMT HIE 8 834
OFCOM LEF 8 133
JOB_CONTROL HIR 9 4110
SYMBIONT..Q001L HIE 6 1161
S0UZA LEF 7 8777
NETACF HIE 10 3375
EVL HIE 6 32
REMACF HIE @ 111
HANDEL LEF 7 2631
BACH LEF b 15106
STRAVINSKY LEF 9 6689
OFERATOR LEF 7 122767
CHOFIN LEF 4 4140
MARSH LEF 4 17492
BATCH.%09 COM 4 1076
SCOTT_KEY LEF 4 2788
HUNT CUR 4 17262
~TTA3, LEF 4 1765
Example 1

CO OO OO OCOCO OO OO OO

CryU
09:110:38.72
00:01:08.46
00:00:07.34
00:00301.62
00:00:45.73
00:011192.87
00100:50.47
00301:25.81
00100:00.,73
00100:00.55
00100:31.96
00:101:58.01
00:101:14.464
00819134.03
00300843.43
00:04325.90
00100116.36
00:00:48.76
00:02:122.36
00:00332.21

Sample SHOW SYSTEM Output

List of processes on the system

Images running in process context

Only the "upper layer"

Notice lack of:

- Scheduling program

- I/0 handling programs

- System service code

Urtime

O 1131138352

Fade flts Fh.Mem

0
0

67
625
155
7514
14077
4121
265
72
14528
20174
16548
6974
9015
59864
7318
11152
23639
9565

0
0

88
58
299
45
445
1500
44
41
150
400
372
499
129
150
312
127
178
138

SYSTEM COMPONENTS

Functions Handled “Below” User Level

® Scheduling of processes for CPU time
" - Highest-priority process
e Memory management within a process
e System services
- SCREPRC

- SGETxxX
- SCREMBX

® Record Management Services (RMS)

- OPEN
- GET, PUT
- CLOSE
e I/0 Code to handle peripherals

e Time Management

® Basic resource management

SYSTEM COMPONENTS

INVOKING SYSTEM CODE

EVENT mssp TABLE sssp EXECUTED CODE

trov POINTER TO
C
iﬁﬁ,‘} Lb PAGE FAULT
CODE
W’Wﬂ INTERRUPT POINTER TO
/71» SCHEDULER
?L CODE SCHEDULER

CODE

Y4

Figure 1 1Invoking System Code

e VAX/VMS driven by interrupts and exceptions

e On interrupt or exception, hardware vectors to correct
code

e Example, page fault
Page fault occurs

- Hardware vectors through table
- Page fault code executes

2 C%Q\ WW

Awh

SYSTEM COMPONENTS

Interrupts vs. Exceptions

Table 1 Differences Between Interrupts and Exceptions
! .
Interrupts | Exceptions
Asynchronous to the execution Caused by prdcess instruction

of a process

Serviced on the system-wide (
interrupt stack in system- t

wide context

priority level to that

Change the interrupt
of the interrupting device /

lower-priority interrupts
are queued behind higher-
priority interrupts /

Cannot be disabled, although (

execution

Serviced on the process local

stack in process context
W‘}{;
lgk

*L,)%P

\ @"“’9

e

Does not alter interrupt
priority level

Some arithmetic traps can
be disabled

Hw I

Sw (
[

Traps Faults_ borts
MAT Recoversle Recovershle . et Receverable
dhéiwﬁthi 1B&¢ahyfhﬁt o Che

o st e it

SYSTEM COMPONENTS

HARDWARE MAINTAINED PRIORITY LEVELS

® Processor is always operating at one of 32 possible
hardware-maintained priority levels (0 - 31).

® Operating at a higher level causes hardware to block
interrupts at the same and 1lower levels from being
serviced.

® Hardware determines which code will execute after an
interrupt occurs.

® How to get into and out of different levels:
1. Interrupt

Into - Hardware requests interrupt (for example,
from a terminal). Levels 16 through 31.
Software requests interrupt (uses MTPR
instruction). Levels 0 through 15.

Out of - Use REI instruction.
2. Block Interrupt

Into - Software raises priority level (uses MTPR).
Out of - Software. lowers priority level (uses MTPR).

e These hardware-maintained priority 1levels are called
Interrupt Priority Levels (IPLs).

Two Types of Priority

SYSTEM COMPONENTS

IPL
31
requested by
hardware Hardware
Maintained
16
15
requested by
software
1 /
0Z Software
Maintained
Figure 2

/v 31
Real time
process
16
15
A
W[dormal
g’x process
0

Two Types of Priority

MTPR %n)%PR$—)‘*7“ (/)WC;&CI!W?)
mTPR ﬁ”’~ﬁQW$wﬁ%- (é4w7mpffl)

I/D ﬂ’L 20 S;WM)

SYSTEM COMPONENTS

Interrupt Servicing Sequence

User program being executed.

PC = address of next instruction
to be executed.

/Vﬂ/ PSL = general status information.
s CB W
Interrupt occurs. Associated IPL

,,,_t-sﬂ‘) l I IPL | must be greater than current IPL
PSL in PSL, else interrupt not serviced.

,mm(/v“‘;ﬁf

,»isﬂk ﬁﬁﬁ
T ©
/- W’"

Hardware saves current PC and
PSL on stack.

PC Z"ﬁtl(- oteur) pL>3
PSL

Hardware indexes into table of
service routine addresses to get
new PC, and builds new PSL.

—»1 ADDRESS &1—%NEW PC

SYSTEM CONTROL BLOCK
MKV84-2234

Figure 3 Example of Interrupt Servicing
(Sheet 1 of 2)

SYSTEM COMPONENTS

) 4

NEW
PC

REI

INTERRUPT SERVICE

ROUTINE

PC—>

CODE

Figure 3

Interrupt service routine executes
at new |PL.

At end, interrupt dismissed with

RE! instruction (making sure old
PC and PSL are at top of stack).

REI
- Pops PC, PSL from stack % rw
Checks PSL /M” &

- Moves PC, PSL to CPU registers

- Transfers control to PC

Interrupted program continues

exectution,

MKV842235

Example of Interrupt Servicing

(Sheet 2 of 2)

SYSTEM COMPONENTS

ACCESS MODES AND COMPONENTS

Runtime
Library

e|/0 o\ o
e SCHEDULING K E

e MEMORY
MANAGEMENT

Program
Development
Tools

Figure 4 Access Modes and Components

® Kernel of the operating system is protected from user
several layers of access protection

® User normally accesses protected code and data through the
Command Language Interpreter (CLI), Record Management

sﬁ £ Services (RMS), and system services
Y

ng#%;* ® System services - routines in operating system kernel that
N

may be <called by the wuser by means of a well-defined

/ interface

SYSTEM COMPONENTS

LOCATION OF CODE AND DATA

’

o Process A Process B
A\
5; NATIVE MODE IMAGE COMPATIBILITY

i MODE IMAGE
¥ RUN-TIME LIBRARY

APPLICATION MIGRATION

DEBUGGER CODE EXECUTIVE (NATIVE)

PER
PROCESS PROGRAM REGION (PO)
ADDRESSES
COMMAND LANGUAGE COMMAND LANGUAGE
INTERPRETER INTERPRETER
DATA -- SYMBOL TABLE DATA -- SYMBOL TABLE --
CODE CODE
DEBUGGER DATA --
SYMBOL TABLE
CONTROL REGION (P1)
|
SYSTEM SERVICES
SYSTEM RECORD MANAGEMENT SERVICES

ADDRESSES SYSTEM REGION (SO)

Figure 5 Location of Code and Data in
Virtual Address Space

e Images running within processes wuse several different
types of software components

e Py space (program region) - user's code and data

e Pl space (control region) - process-specific information;
stored by the operating system

® PO space and Pl space are mapped differently for native
\ and compatibility mode images

e SO space (system space) - operating system code and data;
one copy shared by all processes

1-17

SYSTEM COMPONENTS

_Entry Paths Into VMS Kernel

Translation - not - Valid
Fault
{Page Fault) Memory
Management
® Page Fault
Handler

® Rescheduler

Rescheduling
Software Interrupt

7

Hardware Clock
Interrupt

Figure 6

Memory Management

1/0 Subsystem
® Device Drivers

Process and Time Management

® Clock and Timer Service

External Device
é Hardware Interrupts

Device Driver
Fork Processing
Software Interrupts

® Post-

processing \ €= 1/0 Postprocessing
routines Software Interrupt

AST Delivery
Software Interrupt

N

Software Timer
Interrupt

Entry Paths into VMS Kernel

e Brings virtual pages into memory

Process and Time Management

Updates system time

Saves and restores context of process

Checks timer queue entries (TQES), quantum end

Causes events to be processed

I1/0 Subsystem

Reads/writes device
Finishes 1/0 processing

1-18

@je\/@

SYSTEM COMPONENTS

Table 2 Summary of System Components and Functions

Function System Component

Assigns CPU to highest-priority 5%151{ SCHEDULER 3
computable process

_ Syed
Moves working set between disk §¢/praoc$9 SWAPPERMMM@ fPL% 0—[?’}

and memory

Moves pages from disk to memory §¢/ E5R PAGER (W"")

Updates system clock and quantum§¢ HARDWARE CLOCK ISR IrL 22/27
field, check for servicing at
intervals @/

Performs servicing at 1ntervals§¢ SOFTWARE TIMER ISR IPL7’

Checks for quantum end
Causes events to be posted

Checks device timeout
yﬁﬂ}l Wakes swapper and error logger

Handles requests to/replies from P Pmu% OPCOM

| 7””"“5
operator Z éQj?LSL
Writes errors to error log file 7¢ Prectss ERROR LOGGER Eﬂkﬁwr

Maintains volume structures for P8 10059 ANCILLARY CONTROL Aadﬁﬁhﬁg

driver pps-4 Fiacl pgmhc? PROCESS
o050 mranc?

Maintains disk and file structureﬂL FILES-11 XQP

for Files-11p0DS-2 disks
pinhistiitn Mt

Creates processes for print jobs,P§ ﬂwaﬁJOB CONTROLLER JOBCTL EXE
batch jobs, interactive jobs _ (watt motle

Controls devices, service deviceﬁ%,ﬂp DRIVERS
interrupts, check for and report

device errors
Handles printing of files W%pﬂvﬁﬁgRINT SYMBIONTSCydﬂuWMW&>

Handles process state transitions RMUMREPORT SYSTEM EVENT
resulting from event completion RSE

SYSTEM COMPONENTS

THREE TYPES OF SYSTEM COMPONENTS

M";‘Sﬂ

\./&/

PROGESSES: \/ - =
ACP 3 JOB CONTROLLER OPCOM) 0{{\
= N\ ﬂ i
SWAPPER N ERRFMT C),@\Q\
; SYMBIONTS g AN U
L?g‘(ﬁfﬁ(%TV?.cow\

EXCEPTION AND INTERRUPT SERVICE ROUTINES:

SCHEDULER fp13

ROUTINES:

PAGER

HARDWARE CLOCKIf 21/24

SOFTWARE TIMERJ'pL7

REPORT SYSTEM EVENT

e

SYSTEM SERVICES

tg_”'oo Zé)
IPL <L 3./

DRIVERS

e L e 5

4 418,(&’7/0[=/, /

MKV84-2236

SYSTEM COMPONENTS

INTERACTION OF VMS COMPONENTS
Hardware Clock Interrupt

USER
PROGRAM

Process A Process B Process C
Per Process
Space ERRFMT
Process
Context

System
Space

Process
Context

om
SWAPPER

System ‘ll)gxlct THMEOUT
Space

System
Context

TIMER CODE

qwPL7 @

SOFTWARE
TIMER

HARDWARE CLOCK
IPL 24

INTERRUPT
SERVICE
ROUTINE

Figure 8 Hardware Clock Interrupt

1. Clock
- Updates system time and quantum field

~ Checks first timer queue entry

2. Timer
- Checks for quantum end
- Causes events to be processed

3. Report system event
- Changes process state
- May request scheduler interrupt

4. Scheduler
- Current <----> Computable

®

CONTEXT SWITCH
REI

SCHEDULER
INTERRUPT
SERVICE
ROUTINE

REPORT
SYSTEM
EVENT

LEFO il

EXE $CL - TREFL 2 Tge,
glxuzgéel. ~TRE <€

5. Swapper
- Inswaps computable process 7‘\56’9% KS@
/\/,___/‘\/y

6. Scheduled user program runs

1-21

SYSTEM COMPONENTS

Periodic Check for Device Timeout

Process A Process B Process C

Per Process 2

Space 0”‘:;““ USER
Process PROGRAM

Context
System 0":'”‘14 w

Space SWAPPER
Pl’gzzt :xt \ gg'NTEXT SWITCH

B
— -

SCHEDULER

L uT
System JSB TIMER CODE INTERRUPT
Space DEVICE iPL 20-23 SERVICE
System DRIVER ROUTINE

Context
SCHEDULE
IPL3

,./ HARDWARE CLOCK
IPL 24 CLOCK REPORT
INTERRUPT
SERVICE SYSTEM

EVENT
ROUTINE ”///\\V/,ep&>‘

\ N /"\(\I\o
Figure 9\”§er10d1c Check for Device Timeout

Hardware clock interrupt.

//‘/—__ﬂ
=
.

causes a system subroutine to execute.

drivers to handle timeouts.

\w@f et

2. Once every second, a timer queue entry becomes due that

3. This system subroutine checks for device timeouts, calls

SYSTEM COMPONENTS

Periodic Wake of Swapper, Error Logger

Process A Process B Process C
Per Process
Space USER
PrOZess ERRFMT PROGRAM
Context
System
Space @
Prgf):\::xt :gNTEXT SWITCH
System Oy CE TIMEOUT WTERRGPT
Space DEVICE L 20-23 TIMER CODE SERVICE
System DRIVER ROUTINE
Context

SCHEDULE
PL3

@

1L 7
HARDWARE CLOCK
IPL 24 CLoCcK SOFTWARE REPORT
INTERRUPT TIMER
SYSTEM
SERVICE ENT
ROUTINE EVEN

Figure 1@ Periodic Wake of Swapper, Error Logger

4. The same system subroutine can wake the swapper process
and the error logger process.

5. Scheduler interrupt is requested.

6,7. Swapper and error logger will eventually run.

SYSTEM COMPONENTS

System Event Reporting

Process A Process B Process C
Per Process
Space USER USER
Process PROGRAM A PROGRAM B
Context
System
SWAPPER
Space CODE
Process
Context
CONTEXT
System SWITCH
Space
System TIMER SCHEDULER
Context 1/O COMPLETION @ > gsggg: INTERRUPT
SET EVENT FLAG EVENT SERVICE
WAKE ROUTINE
RESUME
Figure 11 System Event Reporting

SYSTEM COMPONENTS

Page Fault
Process A Process B Process C
Per Process USER : USER
Space PROGRAM A @ PROGRAM B
Process
Context
TRANSLATION
NOT VALID
FAULT
A 4
System SWAPPER
Space PAGER CODE
Process
Context
/0
REQUEST
S‘:tenl REPORT SCHEDULER
pace 1/0 COMPLETION INTERRUPT
Syst “ —> SYSTEM : SERVICE
ystem @ EVENT ROUTINE
Context

Figure 12 Page Fault

SYSTEM COMPONENTS

Data Transfer Using RMS

Process A

Per Process
Space

Process
Context

$GET

©)
) B
System

sal0 FOT

Space
SYSTEM
Process SERVICE ROUTINE

Context

System

Space DEVICE
DRIVER

System
Context

Figure 13 Data Transfer Using RMS

SYSTEM COMPONENTS

File Manipulation Using RMS

Process A

Per Process
Space

Process
Context

$GET

System @
Space

Process
Context

RMS
ROUTINE

$QI10
SYSTEM
SERVICE

3 Q)

FOT
ROUTINE

System
Space

System
Context

Figure 14

When the ODS-2 file structure
following operations require
Procedures (XQP) to interpret

File
File

open
close

File extend

File delete

Window turn (for read

DEVICE
DRIVER

ODS-2 File Manipulation Using RMS

disk the

volume,
the intervention of the eXtended QIO
or manipulate the file structure.

is imposed on a

or write)

SYSTEM COMPONENTS

File Manipulation Using RMS

Process A Process B

Per Process

Space $GET
Process

Context

N

@
e

System
Space RMS
Process ROUTINE
Context

®
o\

$Qlo0
SYSTEM
SERVICE

FDOT
ROUTINE @

y:
DEVICE
DRIVER

System
Space

System
Context

ACP

Ancillary Control Processes (ACPs) help drivers implement:

Figure 15 File Manipulation Using an ACP

® Magnetic Tape File Structure

® Network Operations

® ODS-~-1 On-Disk File Structure

SYSTEM COMPONENTS

Data Transfer Using $QIO

Process
USER IMAGE
Per Process
Space $QI0
Process SET EVENT FLAG
Context ST
A
\ 4
System
Space $Qi0 FDT
Process SERVICE ROUTINE ST
Context ROUTINE
* AST DELIVERY
PL 2
System cork R 40
pace DISPATCH PRO%OESSEING
System CODE ROUTINE
Context

iPL 8 OR 11 >

Figure 16

DEVICE »
DRIVER
INTERRUPT
DISPATCH
CODE
PL 20-23 <
DEVICE
INTERRUPT
1PL 20-23

Data Transfer Using $QIO

SYSTEM COMPONENTS

$QI0 Sequence of Events

YES

YES

USER
ISSUES
$Qlo

v

$QI0 CHECKS
DEVICE INDEPENDENT
PARAMETERS

ERROR

NO

FDT CHECKS
DEVICE DEPENDENT
PARAMETERS

ERROR

:

RETURN WITH
ERROR MESSAGE

Figure 17

1-30

NO

DRIVER REQUESTS
DEVICE ACTIVITY

)

DEVICE INTERRUPTS
CPU IPL 20-23

v

INTERRUPT
SERVICE ROUTINE
IPL 20-23

!

DRIVER DOES
FURTHER PROCESSING

IPL 8-11

YES

DEVICE INDEPENDENT
PROCESSING

IPL 4
'

AST ROUTINE
INVOKED
IPL 2

USER
CONTINUES
EXECUTING

TK-8968

$QI0 Sequence of Events

SYSTEM COMPONENTS

EXAMPLES OF SYSTEM PROCESSES
OPCOM, Error Logger

Process B

Process A

$REQUEST
OR
SREPLY

PER PROCESS
SPACE

Process C

ERRFMT

PROCESS
CONTEXT
3
SYSTEM
SPACE I
PROCESS
CONTEXT ERROR
MESSAGE |
SYSTEM BUFFER
SPACE
SYSTEM
CONTEXT
2
DEVICE DEVICE ERROR
DRIVER @
Figure 18 OPCOM, Error Logger
OPCOM Process
® Handles requests to, and responses from, the system
operator
Error Logger
e Has buffers in memory in which detected errors are
recorded

@ Writes to the error log file

SYSTEM COMPONENTS

Print Jobs

LINE PRINTER

“"SYMBIONT PRINT
MANAGER" SYMBIONT

$PRINT A

PROCESS l JOB CONTROLLER _L SYMBIONT

Figure 19 Print Jobs

SYSTEM COMPONENTS

Batch Jobs

A.COM

$SUBMIT A INITIATOR"

(SCRElPRC)

|
I
| "JOB
I
I
|

PROCESS I JOB CONTROLLER I BATCH PROCESS

Figure 20 Batch Jobs

SYSTEM COMPONENTS

Terminal Input

TERMINAL "Jos
DRIVER INITIATOR"

SERVICE ROUTINE

_ SEViceRouTNe) deecowmousn) pmecmss

JOB CONTROLLER PROCESS

Figure 21 Terminal Input

SYSTEM COMPONENTS

Card Reader Input

CARD
READER
DRIVER

"JOB INPUT
INITIATOR" SYMBIONT

SERVICE ROUTINE I JOB CONTROLLER I

PROCESS

Figure 22 Card Reader Input

SYSTEM COMPONENTS

SOFTWARE COMPONENTS OF DECnet-VAX
Data Link Device Drivers

e XMDRIVER, XDDRIVER, XGDRIVER - handle synchronous DDCMP
links (DMR11l, DMPll, DMF32)

e XEDRIVER - for DIGITAL Ethernet UNIBUS Adapter (DEUNA)

e XQDRIVER

for DIGITAL Ethernet Q-bus Adapter (DEQNA)
e CNDRIVER

handles Computer Interconnect (CI)

e NWDRIVER for X.25 (used for datalink mapping)

e Terminal drivers - for asynchronous DECnet (DDCMP
protocol)

NETDRIVER and NETACP

e Implement routing, and End Communications Layer (ECL)

e NETDRIVER handles the time-critical functions (for
example, transmit or receive data).

® NETACP handles the non-time-critical functions (for
example, setting up logical 1link).
RMS, DAP Routines, and FAL_n

e Implement application layer for file transfer operations

RTTDRIVER, REMACP, and RTPAD

e Implement application layer for remote terminal access

Netserver

@ Collection of programs used to start up a network user
process on a remote node

SYSTEM COMPONENTS

Special DECnet Components
EVL

e Event logger process - collects and filters network event
information; passes it to the correct destination

e Created at network start-up if event logging enabled

SERVER_n Process

® Process ready to handle a logical link

NCP, NML, MOM, MIRROR, NDDRIVER
® For network management

e For special functions (down-line 1load, up-line dump,
device loopback tests)

1-37

SYSTEM COMPONENTS

DECnet Remote File Access

LOCAL (SOURCE) NODE REMOTE (TARGET) NODE
USER LEVEL USER LEVEL

F11iBxap F11BXQP

I MTAACP I MTAACP I
| | |
NORMAL { t | t I
USER P I - .
TASK < |, RMS |e= : RMS ‘i »| FAL
E.G., DAP DAP 4
DCL COMMANDS | | |
GET, PUT, OPEN L 4
I N D ! 0 N I
E |e > - >| E e
| T[T g FHIR R LY T I
1|3 ool 8§ | o2
SOPHISTICATED) NETACP L E L E NETACP A
USER | y NR | N R ¥ | _
TASK | R | R | TARGET
E.G., USER
salo | | I TASK
SASSIGN [| |
SDASSGN
| | sl
| | R |
E PROCESS
| | N 2 | —RTAn:
RTPAD | | ¢ YU
E
| | Rl |
| | |
[} 1]

Figure 23 DECnet Remote File Access

® User issues DCL command, such as:

TYPE NODEB"NAME PASSWORD"::DISKS$: [DIRECTORY]FILENAME,TYP
® RMS detects "::" in file sgpecification
® RMS and NETDRIVER use internal $QIOs.

® NETACP process_on each node sets wup data structures to
support logical 1link

e FAL n process issues requests to RMS on remote node

SYSTEM COMPONENTS

SUMMARY

e How VMS Implements the Functions of an Operating System
® How and When Operating System Code is Invoked

e Interrupts and Priority Levels

® lLocation of Code and Data in Virtual Address Space

e Examples of Flows for:

Hardware clock interrupt
- System event completion
-~ Page fault
- RMS request for I/0
- $QIO0 request for I/O
e Examples of System Processes
- Operator Communication (OPCOM)
- Error logger (ERRFMT)
-~ Job controller (JOB_CONTROL)
- Symbionts (SYMBIONT_n)

e Software Components of DECnet-VAX

SYSTEM COMPONENTS

DECnet Protocols

APPENDIX

ADDITIONAL DECnet-VAX INFORMATION

DATA

APPN

PROTOCOL

ECL

ROUTING

DATA LINK
PROTOCOL

DATA
CHECK

User data

Handled by network
application components

Handled by NETDRIVER
and NETACP for data
transfer via logical link

Handled by NETDRIVER
and NETACP to determine
routing

Handled by data link layer
to transfer data across
physical link

MKV84-2237

Figure 24 DECnet Protocol Layers

SYSTEM COMPONENTS

DECnet Task-to-Task Communication

LOCAL (SOURCE) NODE REMOTE (TARGET) NODE
USER LEVEL I l | USER LEVEL
| F11BXQP | F11BXQP |
MTAACP MTAACP
| | |

NORMAL | t | t [
fr’:za : »| RMS | : RMS | i FAL
EG., DAP DAP
DCL COMMANDS | | |
GET, PUT, OPEN I L 4 I I
2 < »|2 o re— E
I 1 [* "138 i CH T !
| R {d v [42V | R |
SOP":,SSTEK;“ED I ’ NETACP :I; : | :l; : NETACP > i |
- E K K E
‘I;AGSK | R ‘ | R | L] Tarcer
salo I R r I l > ::i:
SASSIGN 1 > | |
SDASSGN
| | |
I I 11
I I £ o I PROCESS
Y R —~RTAn:
RTPAD | | < ‘;, |
| | Rl
| | |
1] |

Figure 25 DECnet Task-to-Task Communication

SYSTEM COMPONENTS

Transparent Task-to-Task Communication

For

example, on the source node, the user issues:

SDEF XXX NODEB"""USERID PASSWORD"""::"""TASK=yyy"""

and

in the program:

OPEN (NAME=XXX ceeeass)

The

RMS
the

The

OPEN command is passed to RMS.

checks the translation and sets up a logical link with
remote program YYY.

procedure is similar to remote file access with the

following differences:

The command procedure YYY.COM must reside on the
directory of USERID on NODEB (SYSSLOGIN).

The remote program uses the logical name SYSSNET to
accept connection.

for example, OPEN (NAME=SYSSNET .:ccceeeccncss)

The two programs must cooperate. For example, when
one program issues a Read, the other issues a Write.

Nontransparent Task-to-Task Communication

Bypass RMS and issue $QIOs directly to the NETDRIVER.

SYSTEM COMPONENTS

DECnet Performing Set Host Operation

LOCAL (SOURCE) NODE REMOTE (TARGET) NODE
USER LEVEL | ' I USER LEVEL
| F11BXQP | F11BXQP |
MTAACP MTAACP

- [| |
NORMAL | : :
USER
TASK : RMS ' RMS l FAL
EG., DAP DAP
DCL COMMANDS | | |
GET, PUT, OPEN I I I
| ¢l >lael | A2 > & |
SOPHISTICATED I ? g té 1 t é « ? l
USER | v NETACP 'l‘ " ' 'l‘ " NETACP \E, |
TASK [R i R | TARGET
E.G., | A I 4 4 | USER
salo TASK
SASSIGN A
SDASSGN : : v Yy :
R
T
l ' £ | TL ! .| PROCESS
| | o hid BN ™ _&Tan:
a A '
RTPAD “1 ' € \E! |
| | R
| | |
[' [}

Figure 26 Performing Set Host Operation

e SSET HOST invokes RTPAD program

@ Process is created on remote system to handle requests

® Local terminal appears to be connected to remote system

44

—
]

The Process

THE PROCESS

INTRODUCTION

This module details a familiar part of VAX/VMS: the process.
The definition of a process is fundamental to understanding the
operating system. The process is the representation of each user
of the system. Several of the software components of the system
itself are also processes.

The process is the basic scheduling entity of VAX/VMS. A
group of one or more processes forms the basic accounting entity
of vAX/VMS: the job. Some features and resources are only
defined for each process, while others are shared among all the
processes in a job. Three major classes of attributes and
resources can define a process and the operations performed within
it.

e Hardware process context ((’Pklﬁ.;w'"mb)
e Software process context (Pcﬁ/PH0/316>

® Virtual address space (and associated memory management
data)

Hardware context includes the contents of the hardware
processor registers that contain perprocess values (separate from
system-wide ones). Examples of these registers include:

® The general-purpose registers (RO through R11)
g,\" Ri*
e The frame pointer (FP), argument pointer (AP), the four
perprocess stack pointers (KSP,ESP,SSP,USP), and the
current stack pointer (%g&

® The processor status longword (PSL) and the program
counter (PC)

e Hardware registers that define the state of the AST queue
and the locations and sizes of the process page tables,.

sl

2 ¢ ép&f

THE PROCESS

Software context defines the resources and attributes used by
the VAX/VMS software but not wused by the VAX-11 hardware.
Examples of this type of information include:

® Resource quotas, privileges, and accumulated accounting
values

® Scheduling or software priority
e Link fields to operating system data structures and queues

® Identification fields such as wuser name, UIC, process
name, and process 1ID.

Virtual address space includes the mapping information for,
and the contents of, the perprocess address regions, the program
(or PO) region, and the control (or Pl) region. 1In addition, all
processes implicitly share the system region. Software executing
in any of the three address regions, but using the hardware and
software context of a process is said to be "executing in the
context of the process." Software components wusing only system
address space and the interrupt stack execute in system context
(outside process context). Examples include interrupt service
routines and device drivers.,

OBJECTIVES

1. Describe the similarities and differences of system
context and process context.

2. Using the System Dump Analyzer on either a crash dump file
or the current system, examine and interpret the software
process control block, process header, job information
block, and control region of a specified process.

3. Describe how the various process data structures are used.
-~ When the structures are modified

- Which structures are reset to default or initial
values

4. Discuss the SYSGEN parameters that relate to process
characteristics, and the effects of altering those
parameters.

‘THE PROCESS

RESOURCES
Reading

e VAX/VMS Internals and Data Structures, system overview,

chapters on use of 1listing and map files, and naming
conventions.

Additional Suggested Reading

e VAX/VMS Internals and Data Structures, chapters on
executive data areas, data structure definitions, and size
of system virtual address space.

e VAX/VMS System Dump Analyzer Reference Manual

Source Modules

Facility Name Module Name

SYS SHELL

SYSIMGACT
SYSBOOT
SCHED
PAGEFAULT

SWAPPER

SYS.MAP

THE PROCESS

TOPICS

I. Process vs. System Context

II. Process Data Structures Overview

A. Software context information

B. Hardware context information

III. Virtual Address Space Overview

A. SO space (operating system code and data)
B. P@ space (user image code and data)

C. Pl space (command language interpreter, process data)

IV. SYSGEN Parameters Related to Process Characteristics

THE PROCESS

PROCESS VS. SYSTEM CONTEXT
Process Context

e Software Context, including

- Privileges

- Quotas

- Scheduling priority

- IDs (user name, UIC, Process ID)
e Hardware Context, including

~ General Purpose Registers (RO- R11l, AP, FP, PC)

- Stack pointers (4)
- Processor Status Longword (PSL)

® Virtual Address Space

- Program region (P0)

- Control region (P1l)

- System region (S0)

System Context

e System virtual address space (S9)

e The interrupt stack

THE PROCESS

PROCESS DATA STRUCTURES OVERVIEW

SO SPACE

ot

JOB
INFORMATION
BLOCK
(JiB)

L

@

@

PcB3L. PRYPCE

| Physical

Rldress’

Figure 1

Holds

SOFTWARE
PROCESS
CONTROL

BLOCK
(PCB)

process-specific

SRS

frons et HARDWARE

PROCESS

PO PAGE CgsgggL
TABLE
P1 PAGE
TABLE
PROCESS

Software Process Control Block (PCB)

data t

HEADER (PHD)

Process Data Structures

hat must always

available (for example, process state, priority).
Contains pointers to other process data structures

Not paged, not swapped

Process Header (PHD)

Contains process memory management information

Hardware Process Control Block

Contains saved hardware context

Job Information Block (JIB)

Keeps track of resources for a
all its subprocesses.

2-19

Contains hardware process control block

detached process

be

and

THE PROCESS

Software Process Control Block (PCB) (/7, 922 IPS/VI)

-

STATE QUEUE FORWARD LINK e

— @ \VMS standard queue

-~STATE QUEUE BACKWARD LINK

header
® Size of nonpaged

7 T~

. . I TYPE I SIZE pool allocation
/) 2)‘750 ‘\ Scheduling Information
i \ ® Priority .
d SCHEDULING e Status f:;r;fszﬂ
INFORMATION Resident/outswapped
Swap/noswap
® State (f;’ 22, Ipms)
Resources
RESOURCES e 1/0 limits
] Subprocess count
Pointers to:
POINTERS TO e Process heade(iM)
OTHER DATA ° naé'dwar3 PCB
¢ vA \
STRUCTURES ® Event flag clusters (LEF/CEF)
Listheads
LISTHEADS o AST queue

® Lock queue

NAMES AND PRIVILEGES

Names and Privileges

® Process ID (PID)
e Login UIC
® Privilege mask

Figure 2

MKV84-2152

Software Process Control Block (PCB)

(g‘;’wg PLB NP fﬂ’(No Vo
—_— | f S mym
PHD —falance S 7’,%7[1; ,,ffg
J1B J A PP Vo [WMo |

THE PROCESS

924 TDSM)
Process Header (PHD)
od
o
)
FIXED AREA Privilege mask

Hardware process control
block

CATALOG WORKING SET PAGES | ® Working set list

USED TO LOCATE IMAGE

® Process section table

SECTIONS IN IMAGE FILES WMC‘%
VIRTUAL TO PHYSICAL ® PO page table
ADDRESS MAPPING ® P1 page table

MKV84-2153

Figure 3 Process Header (PHD)

N

THE PROCESS

Hardware Process Control Block (x/w PHD>

- PR$_PCBB

® Pointers to:

STACK POINTERS Kernel stack) aﬂ/ ﬂ‘;ﬁ PLW

Executive stack
Supervisor stack
User stack

(I I

GENERAL PURPOSE e RO, R1, .., R11
REGISTERS

e Argument Pointer (AP)
OTHER REGISTERS Frame Pointer (FP)

STATUS INFORMATION Program Counter (PC)
® Processor Status Longword (PSL)

® PO base register

MEMORY MANAGEMENT P1 base register

REGISTERS PO length register
P1 length register

MKV84-2148

Figure 4 Hardware Process Control Block

e PRS$ PCBB contains the physical address of the hardware PCB
for the current process.

THE PROCESS

Privileged vs. General Registers

Privileged

General
[]

Can only be accessed in kernel mode using MTPR,
instructions

Types:
Pointers to Data Structures

Hardware Process Control Block (PR$_PCBB)
System Control Block Base (PR$_SCBB)

Hardware Error Registers

SBI Error on VAX-11/780 (PRS$_SBIER)
Cache Error on VAX-11/750 (PRS$_CAER)

Clock Registers

Time of Year on VAX-11/730 (PR730$_TODR)
Interval Count on VAX-11/780 (PR780$_ICR)

Other Registers

Interrupt Priority Level (PR$_IPL)
Software Interrupt Summary (PR$_SISR)

MFPR

Can be accessed in any access mode using most instructions

RO-R].].,AP,FP,SP,PC

THE PROCESS

Job Information Block

LIST OF
AVAILABLE

RESOURCES
& LIMITS
DETACHED
PCB JOB INFORMATION
BLOCK (JIB)
SUB
PCB

SUB

PCB

TK-8947

Figure 5 Job Information Block (JIB)

@ Job consists of a detached process and its subprocesses.

e Job information block (JIB) keeps track of resources
allotted to a job, such as:

- Limit on number of subprocesses (PRCLIM)
- Open File Limit (FILLM)

2-15

THE PROCESS

VIRTUAL ADDRESS SPACE OVERVIEW

rl:__f’

PO | SEPARATE MAPPING
FOR EACH PROCESS

P1 -

S0 ALL PROCESSES

}ONE MAPPING FOR

TK-8942

Figure 6 Virtual Address Space

Process Virtual Address Space

J“Wy@ﬂzwtgﬁb -~ Image, Run-Time Library, Debugger

~ ﬂ') zm’ USTK
Wﬂﬁﬁ,,.~/~(Pf - Command Language Interpreter,
stacksLﬂﬁileMsys%em~xQP7«4¢Q‘g§53~E£gas

;éﬁ/ S0 - System services, Record Management
m%ﬁw Services, other executive code and

data

THE PROCESS

SO Virtual Address Space

| SYSTEM SERVICE VECTORS
_EN :
/”M(b*n d/ﬂ ® System service code
m AND DATA ¢ Report System Event
" m;(,\;@wo?%f o Adzpter Virtual s
et g0 FILE HANDLING T
, ROUTINES |
ERROR MESSAGE TEXT e SYSMSG.EXE
DESCRIPTION OF PAGES o PEN database
IN PHYSICAL MEMORY Gobomer®® ! PFV/
SHARED DYNAMIC ® Paged pool
DATA STRUCTURES ¢ Global section descriptors
SHARED DYNAMIC ® Non-paged pool
DATA STRUCTURES o E:)(;‘zlvsare process control
DRIVERS e Unit control blocks
o Lookaside list
e |/0 request packets

® Timer queue elements
MKV84-2150

Figure 7 S0 Virtual Address Space - Low Addresses

THE PROCESS

STACK USED WHEN
INTERRUPTS OCCUR

_ "wnehleHaral
TABLE FO VECTORING

BY HARDWARE TO
SERVICE ROUTINES

—

STORAGE FOR
PROCESS HEADERS

LOCATIONS OF VALID
SYSTEM VIRTUAL ADDRESSES

DATA STRUCTURES USED
TO LOCATE GLOBAL SECTIONS

3
7

Ty

“ LOCATION OF EACH

PAGE OF SYSTEM
VIRTUAL ADDRESS SPACE

LOCATIONS OF
GLOBAL PAGES

Figure 8

Interrupt stack

System ControIzBlock {SCB)
]

BI =>
(&A@sa; = £

780 > L

73¢/50 =>

Balance slots

System header (Femitor %7, 4D

- System working set list
- Global section table

System page table

Global page table

MKV84-2149

S@ vVirtual Address Space - High Addresses

Native Mode Image

THE PROCESS

PO Virtual Address Space

Compatibility Mode Image

0 0
Compatibility
Mode Image
Native Mode Image End of Compatibility
Mode Image
not mapped
1777775 = FFFF
8 16
RSX-11M AME
Run Time Library
Native Mode Image POLR Pages
Debugger not mapped 3FFFFFFF
Traceback
POLR Pages
not mapped
3FFFFFFF
Figure 9 P@ Virtual Address Space

THE PROCESS

P1 Virtual Address Space

Iimage-Specific

2’0/70/ User tStac:k

40000000

Process Specific

Per-Process Message Section (s)

4 CTLS$GL_CTLBASVA

CLI Symbol Table

CLI Image

4 CTL$AG_CLIMAGE

W zef 11 P (karihomock)

<+ CTL$GL_F11BXQP

g IF g;nggg 1/0 Zeg@ent
Process 1/0 Segment

<4 PIOSGW_PIOIMPA+
IMPSL_IOSEGADDR

Process Allocation Region

4 CTL$GL_ALLOCREG

Channel Control Block Table

Static

P1 Window to Process Header

4+ CTL$GL_CCBBASE

& P Processr% Segment (ﬂms)

4 PIOSGL_FMLH

Per Process Common Area

Per Process Common Area

}W—

Figure 10 Pl virtual Address Space - High Addresses

Pl space is built from high addresses toward low addresses.

N
|

20

THE PROCESS

Compatibility Mode Data Page

4 CTLSGL_CMCNTX

Security Auditing
impure Data Table

4

«NSAST_IDT

L

Image Activator Context

<« CTLSGL_IAFLINK

Generic CLI Data Pages

4 CTLSAL_CLICALBK

Image Activator Scratch Pages

Static

Debugger Context

Vectors for Messages and User-Written System Services

+CTLSA_DISPVEC

Image Header Buffer

+MMGS$GL_IMGHDRBUF

v

4 CTLSAL_STACKLIM

<4+P1SYSVECTORS

syt

4+ CTL$GL_VECTORS

7FFFFFFF

Figure

P Kernel Stack Kw
Executive Stack EW
Supervisor Stack 5w
System Service Vectors
P1 Pointer Page
Debugger Symbol Table
11 Pl Virtual Address Space

Image-Specific - Deleted on image exit
Process-Specific - Changes according to SYSGEN parameters

and CLI used

Static - Does not change

- Low Addresses

set Hudts i'//fz

THE PROCESS

Table 1 Function of Pl Space

Function Pl Area

Images Command Language Interpreter
(DCL, MCR, user-written)

Symbol tables Symbolic Debugger
Command Language Interpreter
Pointers System service vectors
User-written system service
vectors

Pl window to process header
(maps to PHD in S0 space)

Pl pointer page (i.e.,
CTLSGL_CTLBASVA; addresses
of exception vectors)

. Perprocess message vectors
7 o2
A
W

Kernel, executive, supervisor,

Stacks U]S?ewg

user
RMS data Image I/O segment

Process I/0 segment
File system code Files-11 XQP
Error message text Perprocess message section

Storage area

e Data stays around Perprocess Common Area
between images (LIBSGET_COMMON)

® Logical names Process allocation region

Other data areas Generic CLI data pages

Image activator scratch pages
Image header buffer
Compatibility mode data page
(used by AME)

Channel control block table
(links process to device)

THE PROCESS

SUMMARY

Table 2 SYSGEN Parameters Relevant to Process Structure

Function

Parameter

Size of the CLI symbol table

Limit on use of process allocation region by
images

Number of pages in the process allocation
region

Default number of pages created by the image
activator for the image I1/0 segment

Number of pages for the process I/0 segment
mapped by PROCSTRT

CLISYMTBL

CTLIMGLIM (¥*)

CTLPAGES (*)

IMGIOCNT (*)

PIOPAGES (¥*)

(*) = special SYSGEN parameter

System Mechanisms

SYSTEM MECHANISMS

INTRODUCTION

Many of the operations associated with an operating system can
be described in terms of software components manipulating data
structures. A variety of control mechanisms must be established
to ensure that components competing for common resources do not
interfere with each other or cause a system "deadlock." Several
hardware instructions provide support for these software
mechanisms. Additional mechanisms control the accessibility of
data structures.

The implementation of an interrupt priority structure provides
a hardware-arbitrated mechanism for synchronizing device requests,
some software component requests (such as scheduling and AST
delivery), and synchronizing the accessibility of some protected
data structures. Interrupts are the result of asynchronous events
occurring within VMS and the hardware configuration.

Available mechanisms for synchronizing the activities of
processes include: '

® Interrupt Priority Levels (IPL)

® The System Timer Queue

® Mutual Exclusion Semaphores (MUTEXes)
® Asynchronous System Traps (ASTs)

e The VAX/VMS Lock Manager

Exceptions are another mechanism used by VMS. Exceptions are
synchronous events that result from actions within a particular
process. Common examples include:

e Translation-not-valid fault (page fault)
e Divide-by-zero trap

Execution of most system services and record management
services occurs as a result of change mode to kernel and change
mode to executive exceptions (CHMK and CHME instructions).

SYSTEM MECHANISMS

Dynamic memory (pool) is used to provide storage for various
classes of VMS data structures. Process data structures are
allocated from a dynamic memory area in the control (P1l) region.
System-wide data structures are allocated from either paged or
nonpaged pools depending on the types of system components
accessing them.

OBJECTIVES

To understand the operations of VMS, and to write system-level
programs, the student must be able to:

1. Describe how the various . VAX/VMS protection,
communication, and synchronization mechanisms are
implemented, and why each of them is used.

2. Discuss the SYSGEN parameters controlling various system
resources (for example, memory), and the effects of
altering those parameters,

Reading

SYSTEM MECHANISMS

VAX/VMS Internals and Data Structures, chapters on
condition handling, system service dispatching, software
interrupts, AST delivery, the lock manager,

synchronization techniques and dynamic memory allocation.

Additional Suggested Reading

VAX/VMS Internals and Data Structures, chapters on

hardware interrupts, and timer support

VAX-11 Architecture Handbook, chapters on special

instructions, and exceptions and interrupts

VAX-11 Hardware Handbook, chapters on privileged registers

Source Modules

Facility Name Module Name

SYS

ASTDEL, SCHED
CMODSSDSP
EXCEPTION, SYSUNWIND

MEMORYALC

MUTEX

SYSENQDEQ

TIMESCHDL
SYSSCHEVT, SYSCANEVT
FORKCNTRL

IOCIOPOST

SYSSEXAMPLES USSDISP.MAR,USSLNK.COM

Macros

RTL

USSTEST.MAR,USSTSTLNK.COM
IFWRT, IFNOWRT, IFRD, IFNORD
IFPRIV, IFNPRIV
SETIPL,DSBINT, ENBINT, SAVIPL

LIBSIGNAL

SYSTEM MECHANISMS

TOPICS

I. Hardware Register and Instruction Set Support

II. Synchronizing System Events
- Hardware Interrupts
- Software Interrupts
Example: Fork Processing
- Requesting Interrupts
- Changing IPL
-~ The Timer Queue and System Clocks
III. Process Synchronization Mechanisms
- Mutual Exclusion Semaphores (MUTEXes)

~ Asynchronous System Traps (ASTs)
- VAX/VMS Lock Manager

IV. Exceptions and Condition Handling
V. Executing Protected Code
- Change Mode Dispatching

- System Service Dispatching

VI. Miscellaneous Mechanisms

- ©System and Process Dynamic Memory (Pool)

VII. SYSGEN Parameters Controlling System Resources

SYSTEM MECHANISMS

HARDWARE REGISTER AND INSTRUCTION SET SUPPORT

Table 1 Keeping Track of CPU, Process State

Function Implementation Name

Store processor Register Processor Status
state Longword (PSL)
Save, restore Instruction SVPCTX, LDPCTX

process state

SYSTEM MECHANISMS

Processor Status Word

15 8 7 6 5 4 3 2 1 0

NOT USED

DECIMAL OVERFLOW TRAP ENABLE _f
FLOATING UNDERFLOW TRAP ENABLE

INTEGER OVERFLOW TRAP ENABLE
TRACE TRAP ENABLE
NEGATIVE CONDITION CODE
ZERO CONDITION CODE
OVERFLOW CONDITION CODE
CARRY (BORROW) CONDITION CODE

Figure 1 Processor Status Word

e Low-order word of Processor Status Longword (PSL)

@ Writable by nonprivileged users through:

- Special Instructions
- Entry masks
- Results of most instructions

j/ ‘ 0“0”)>
! monPer
e

SYSTEM MECHANISMS

Processor Status Longword (PSL)

31- - 20 16 15 0

PROCESSOR STATUS WORD

Y e —

T L INTERRUPT PRIORITY LEVEL

PREVIOUS ACCESS MODE

CURRENT ACCESS MODE

EXECUTING ON THE INTERRUPT STACK
INSTRUCTION FIRST PART DONE
TRACE PENDING

COMPATABILITY MODE

Figure 2 Processor Status Longword (PSL)

.

® High-order word of most interest to system programmers

- Contains processor status information

- Read-only to nonprivileged users

- Changed as a result of REI and MTPR instructions

- May be changed as a result of interrupts and
exceptions

e PSL is part of process hardware context

Hardware Context

SYSTEM MECHANISMS

Process Header

Table

® Accounting Info

-

PO Page Table
(Virtual

Address Space
Description)

P1 Page Table

Figure 3

-

Hardware PCB

Rrasias |

® Working Set List
® Process Section

~

PRS._PCBB

-

-

Hardware Process
Control Block

® General Registers
e PC, PSL

® Per Process
Stack Pointers

® Memory
Management
Registers

® ASTLVL

(Hardware Context)

Hardware Context

® Hardware PCB contains hardware context while

current

process

not

® VAX instructions for saving and restoring hardware context
(SVPCTX and LDPCTX)

3-10

SYSTEM MECHANISMS

SYNCHRONIZING SYSTEM EVENTS
Hardware Interrupts and the SCB

< & PR$_SCBB

Exceptions

Processor Faults

Software Interrupts

:: EXE$GL_SCB

System Control Block

Figure 4 Hardware Interrupts and the SCB
e System Control Block (SCB) - physically contiguous area of

system space

e Hardware register PR$_SCBB contains physical address of
SCB

e Hardware gets service routine address from longword in SCB

@ Size of SCB is CPU-specific.

SYSTEM MECHANISMS

Hardware Interrupts and IPL

Table 2 Hardware Interrupts and IPL

SALUE | ame
Power Fail Interrupt 30

Clock Interrupts 24 IPL$_HWCLK

Device Interrupts 20-23 ucB$B_DIPL*

* Otfset into Device's Unit Control Block

e Interrupt Priority Levels (IPLs) above 15 reserved for
hardware interrupts

@ Peripheral devices interrupt at IPL 20 to 23

® IPL$ xxxx - IPL level (see SIPLDEF)

SYSTEM MECHANISMS

Kg,ﬁlﬂﬂ

Software Interrupts and the SCB %//

PR$_SCBB
<

Exceptions

Processor Faults

Clock and Console

Device Interrupts

C—— :: EXE$GL__SCB

System Control Block

Figure 5 Software Interrupts and the SCB

e Hardware gets service routine address from longword in
SCB.

SYSTEM MECHANISMS
gﬁhaj? "p
222K
>32p/L M4 C

>
Software Interrupts and IPL e

Table 3 Software Interrupts and IPL

VALUE
FUNCTION 4 (decimal)} _NAME
ﬂM)ﬂ“
L
(unused) 15-@%;” ‘dﬂﬂ%y
Fork Dispatching 11 IPL$_MAILBOX
Fork Dispatching 10
Fork Dispatching 9 \
Fork Dispatching 8 IPL$_TIMER
(s IPL$_SYNCH
Software Timer Interrupt 7 IPL$_TIMERFORK
Fork Dispatching 6 (EXESDEALOAON)
Used to Enter XDELTA 5
1/0 Post-Processing 4 IPL$_IOPOST
Rescheduling Interrupt 3 IPL$_SCHED
AST Delivery Interrupt 2 IPL$_ASTDEL
[;9) (unused) 1-0

e Interrupt Priority Levels (IPLs) 1 through 15 reserved for
software interrupts

® Driver fork level stored at offset UCB$B_FIPL in UCB (see
$UCBDEF)

14

w
|

SYSTEM MECHANISMS

Example of Fork Processing

1. IPL 23 interrupt occurs

2. Driver interrupt service routine executes

Processing done at IPL 23

Queue 'context block' (UCB) to fork dispatcher
contains PC)

Request IPL 8 interrupt

Continue processing at IPL 23

REI when done at IPL 23

3. IPL 8 interrupt is recognized

4., Fork dispatcher service routine executes

If queue empty, REI
Dequeue UCB

JSB to PC in UCB

PC is usually in driver code
Routine exits with RSB when done

Loop back
FORK - " o
QUEUE 1 i =
LISTHEAD
PC PC
UCB UCB

TK-8943

Figure 6 Fork Queue

3-15

(block

SYSTEM MECHANISMS

Software Interrupt Requests

31 4 3 [¢]
IGNORED REQUEST

PR$_SIRR Software Interrupt Request Register

(Write Only)

31) 16 15 i 0
PENDING SOFTWARE INTERRUPTS M
MBZ B
F{EyD;CyB;A}9;8;7,6;5,41342,;1]2

PR$_SISR Software Interrupt Summary Register
(Read/Write)

Figure 7 Software Interrupt Requests

® Software Interrupt Summary Register
- Bits 1 through 15 correspond to IPLs 1 through 15.
- Bit set indicates pending software interrupt request.

- Interrupt is serviced as IPL drops below specified
level, when REI is issued.

e Software Interrupt Request Register
- To set bit in SISR, write IPL value to SIRR.
~ Use SOFTINT macro:
.MACRO SOFTINT 1IPL

MTPR IPL,SA#PR$_SIRR
. ENDM SOFTINT

Reactivation of a Driver Fork Process

DEVICE
GENERATES
INTERRUPT

:

DRIVER
SERVICES
INTERRUPT

SOFTWARE
INTERRUPT
OCCURS

I

:

DRIVER
FORKS

Lower IPL to fork level

FORK
DISPATCHER
CALLS DRIVER

l

l

DRIVER
DISMISSES
INTERRUPT

DRIVER
COMPLETES
REQUEST

l

FORK
DISPATCHER
DISMISSES
INTERRUPT

ZK-924-82

Creating a Fork Process After

DEVICE DRIVER'S
GENERATES [INTERRUPT- DRIVER
INTERRUPT SERVICING

ROUTINE

JSB

| Rse IOFORK

——d
ZK-923-82

from Interrupt to Fork Process Context
To lower its priority, the driver calls a VAX/VMS fork process queuing routine

(by means of the IOFORK macro) that performs the following steps:
1 Disables the timeout that was specified in the wait-for-interrupt routine

2 Saves R3 and R4 (these are the registers needed to execute as a fork
process) (UCB$SL _FR3, UCBS$L _FR4)

3 Saves the address of the instruction following the IOFORK request in the
UCB fork block (UCB$L _FPC)

4 Places the address of the UCB fork block from RS in a fork queue for the
driver’s fork level

5 Returns to the driver’s interrupt-servicing routine
The interrupt-servicing routine then cleans up the stack, restores registers,

and dismisses the interrupt. Figure 5-7 illustrates the flow of control in a
driver that creates a fork process after a device interrupt.

Fork Block

Fork Queue Forward Link

B Fork Queue Backward Link
Fork IPL | Type Size
B Saved PC
Saved R3
-

Saved R4

Fork Dispatching Queue Structure

IPL 15
IPL 1\4
IPL 13
IPL 12
IPL 11
‘IPL 10
IPL 9
IPL 8
IPL 7
IPL 6
IPLS
iPL 4
iPL 3
IPL 2
IPL 1

IPLO

RESERVED

RESERVED

RESERVED

RESERVED

IPL 11
FORK QUEUE
LISTHEAD

BLOCK

FORK

FORK LEVEL

FORK LEVEL

IPL 10
FORK QUEUE
LISTHEAD

FORK LEVEL

FORKLEVEL

iPL 9
FORK QUEUE
LISTHEAD

TIMERFORK

FORK LEVEL

XDELTA

IPL 8
FORK QUEUE
LISTHEAD

FORK
BLOCK

1/0 POSTING

PROCESS SCHEDULING

IPL 6
FORK QUEUE
LISTHEAD

FORK
BLOCK

AST DELIVERY

RESERVED

PROCESS EXECUTION

ZK-584-81

Activating a Fork Process from a Fork Queue

When no hardware interrupts are pending, the software interrupt priority
arbitration logic of the processor transfers control to the software interrupt
fork dispatcher. When the processor grants an interrupt at a fork IPL, the

- fork dispatcher processes the fork queue that corresponds to the IPL of the
interrupt. To do so, the dispatcher performs these actions:

1 Removes a driver fork block from the fork queue
2 Restores fork context

3 Transfers control back to the fork process

Thus, the driver code calls VAX/VMS code that coordinates suspension and
restoration of a driver fork process. This convention allows VAX/VMS to
service hardware device interrupts in a timely manner and reactivate driver
fork processes as soon as no device requires attention.

When a given fork process completes execution, the fork dispatcher removes
the next entry, if any, from the fork queue, restores its fork process context,
and reactivates it. This sequence is repeated until the fork queue is empty.
When the queue is empty, the fork dispatcher restores RO through R5 from
the stack and dismisses the interrupt with an REI instruction.

The I/O Database

Unit-Control Block (UCB)

uCBSL . FQFL-
UCBSL_ FQBL-
JCEIE FPL. I JCBSE . TYPE. _I uCBSw SIZE-
uCBsL ..FPC
UCBSL. FR3

JCBSA SRCAZDR- -

UCBSL. .OREB-

UCBSL_ LOCKID-

vCBSL_CRB-

“C8sL_D08-

LCBsL _PO-

JEBSL . LK.

wCBSL .vCB-

UCBSL_DEVCHAR

UCBSL__DEVCHAR?
1

| ucese_DEvTvRE | .cBSB_DEVCLASS

JCBSL . DEVDEREND

UCBSL _DEVDEPND2

UCBSL_.10QFL-

ucBsSL ‘00BL-
JCBSW CrARGE- 1 UCBSW _ UNIT-
UCBSL_.IRP
LCBSB AMOD- | UCBSE_DPL | UCBSW _REFC-
UCBSL_AME-
UCBSL_ST7S
JCBSW__OLEN | JCBSW DEYSTS
UCBSL_DUETIM:
UCBSL_OPCNT-
UCBSL_SVPN-
UCBSL__SVAPTE
JCBSW_BCNT JCBSW _BOFF

UCBSW _ERRCNT UCBSB_ERTMAX T UCBSB_ERTCNT

uCBSL_PDT.

uCBsSL. 00T

reserved

SYSTEM MECHANISMS

Blocking Interrupts

Table 4 Blocking Interrupts

RAISEIPLTO
WHAT TO BLOCK (decimal) NAME
All Interrupts 31 IPL$_POWER
Clock Interrupts 24 IPL$_HWCLK
Device Interrupts 20-23 ucB$B_DIPL*
Access to 8 IPL$_SYNCH
Scheduler's Data
Structures
Delivery of ASTs 2 IPL$_ASTDEL
(Prevent Process
Deletion)

* Offset into Device's Unit Control Block

@ Can use IPL to block interrupt servicing

e For example, to block AST delivery, raise to IPL$_ASTDEL

e IPL$ SYNCH used to coordinate access to scheduler's
database

SYSTEM MECHANISMS

Summary of IPL Mechanism

e IPL determines which component gets the CPU

- IPL of interrupt determines which service routine is
called

e Can alter current IPL
- To raise, use SETIPL or DSBINT
- To lower:

If at original level (IPL has not been raised),
request interrupt at lower level with SOFTINT,

then REI

If at elevated level, lower to original level with
SETIPL or ENBINT

-~ REI enforces the rules

@ Altering of IPLs can be used to synchronize system
routines and processes

- Current IPL blocks interrupts at same and lower IPLs

- Convention: Raise IPL to IPL$_SYNCH to access
system-wide database (PCBs, PHDs, etc.)

- .Convention: Raise to IPL$_ASTDEL to prevent process
deletion

3-18

SYSTEM MECHANISMS

Using IPL to Synchronize System Routines

pL o o o4
o o

TIME
MKV84-2240

Figure 8 Raising IPL to SYNCH

1. Software timer invoked at IPL$_TIMERFORK (IPL 7)
2., Software timer raises to IPL$_SYNCH (IPL 8) to synchronize
3. Device interrupt - driver code at IPL 23
Driver requests interrupt at IPL 8 and issues REI
4. Software timer resumes at IPL$_SYNCH
5. Software timer lowers IPL back to IPL$_TIMERFORK

6. Driver code executes at IPL 8

SYSTEM MECHANISMS

System Timer Queue and System Clocks

TQFL

TQBL

RQTYPE [TYPE | SIZE

PID/FPC

AST/FR3

ASTPRM/FR4

TIME

DELTA

| EFN_ | RMOD

RQPID

QES$B_RQTYPE
76543210

1
0
1

Figure 9

g
W’”“") pei-
Process timer request (0
System subroutine request #"‘J 3

Scheduled wake request {WME
One-time request
Repeat request

Relative time request
Absolute time request

Timer Queue Element

e Timer queue is ordered by absolute expiration time.

® Scheduled wake-up and system subroutine requests may have
a delta time specified for recurring events.

e The AST routine, AST parameter, and event flag fields

are

filled from the system service argument list.

100

200

300

400

500

600

700

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800

.SBTTL INSERT ENTRY IN TIME DEPENDENT SCHEDULER QUEUE

+

EXESINSTIMQ - INSERT ENTRY IN TIME DEPENDENT SCHEDULER QUEUE

THIS ROUTINE IS CALLED TO INSERT AN ENTRY IN THE TIME DEPENDENT SCHEDU
QUEUE. THE ENTRY IS THREADED INTO THE QUEUE ACCORDING TO ITS DUE TIME.
THE QUEUE IS ORDERED SUCH THAT THE MOST IMMINENT ENTRIES ARE AT THE FR
OF THE QUEUE.

INPUTS:
RO = LOW ORDER PART OF EXPIRATION TIME.
Rl = HIGH ORDER PART OF EXPIRATION TIME.
RS = ADDRESS OF ENTRY TO INSERT IN TIME QUEUE.

IPL MUST BE IPLS_TIMER.
OUTPUTS:

SPECIFIED ENTRY IS INSERTED INTO THE TIME DEPENDENT SCHEDULER QU
ACCORDING TO ITS DUE TIME.

NE NE We WE Ne Ne We Ne NE “e TE Ns We s W WE we we ws we =&

.PSECT
EXESINSTIMQ:: ; INSERT ENTRY IN TIME QUEUE
MOVQ RO, TQESQ_TIME(RS) ;SET ABSOLUTE DUE TIME
MOVAL W EXESGL_TQFL,R3 ;GET ADDRESS OF TIME QUEUE LISTH
MOVL R3,R2 ;COPY ADDRESS OF TIME QUEUE LIST
10$: MOVL TQESL_TQBL(R2),R2 ;GET ADDRESS OF NEXT ENTRY
CMPL R3,R2 :END OF QUEUE?
BEQL 208 s IF EQL YES
CMPL R1,TQESQ_TIME+4(R2) ; COMPARE HIGH ORDER PARTS OF TIM
BLSSU 108 ;s IF LSSU NEW ENTRY MORE IMMINENT
BGTRU 208 ; IF GTRU NEW ENTRY LESS IMMINENT
CMPL RO, TQESQ_TIME(R2) :COMPARE LOW ORDER’‘PART OF TIME
BLSSU 108 :IF LSSU NEW ENTRY MORE IMMINENT
20$: - INSQUE TQESL_TQFL(RS),TQESL_TQFL(R2) ; INSERT NEW ENTRY IN TIME
RSB H

Example 3 EXESINSTIMQ (from module EXSUBROUT)

29

MAKETQE

Allocates two blocks from nonpaged pool

Places code to execute periodically in first block

Makes second block TQE that invokes code
block

in

first

Records address of TQE block in site-specific longword

After program run, user can log out
Code will still be executed periodically
No process overhead involved

Independent of CURRENT process

TQE

< EXESGL_SITESPEC::
CODE = PC
BLOCK
REPEAT
REQUEST
DELTA
TIME
Tk4188

Figure 2 Sample System Programs

STOPTQE

Removes TQE from queue
Deallocates TQE and code block

Clears site-specific longword

25

[oF 3

.TITLE MAKETQE —- Inserts TQE into timer queue

.IDENT /V0l/

+
+

ABSTRACT:

every tenth of a second.

SIDE EFFECTS:

executes.

PROGRAMMER:

WE We W We We We We We Ve We WE We We We We We We we Wwe we

External symbols
SIPLDEF
STQEDEF

~e we

Local symbols
HEADER = 12
DYN C_MY TYPE = 120

!

; Local storage

.PSECT NONSHARED DATA PIC, NOEXE,

DELTA: .LONG 10000*100

Non-paged pool is used to hold the TQE,

Vik Muiznieks 15-MAY-1980

This program places a segment of code into nonpaged pbol,
and then establishes a TQE which invokes that routine

and the code that

~e we

~e we

“e wo

IPL definitions
TQE definitions

size of header
my block type

delta repeat time

. LONG 0 of .1 seconds
4
H This is the code that executes every .1 seconds in response to
H the TQE. The timer interrupt service routine transfers control
; to the code with a JSB instruction at IPL$ TIMER (7). Note that
; the code must be PIC (position independent) since it is being COPIED
: to the system buffer (and executes at arbitrary system addresses).
’
COPY_START: start of code to be
copied into pool
INCL @UPDATE This is where the
routine could do
useful work
RSB return control to

UPDATE: .LONG 0
COPY_LEN = . - COPY_START

Program entry point

we we “we

+PSECT CODE PIC, SHR,
START: .WORD 0
$CMKRNL S ROUTIN=10%

RET

10s: .WORD "M<R2,R3,R4,R5>
.ENABL LSB
TSTL G "EXESGL_SITESPEC

BEQLU 153

NOWRT

We We WE We We We Wo W we we wo

-

we we weo

timer interrupt

service routine

will hold address of
location to be incremented
size of copied code

null entry mask
enter kernel mode
all done

save registers used
enable local symbol block
if in use, error

2413

MOVL #SS$ IVMODE,RO
RET

Allocate pool to hold code. Code must be placed in system
space so that it can execute in ANY process context. HEADER extra
bytes will be allocated for a header (since the code block may
later be deleted by running program STOPTQE). The program will
use the first word in the third longword to store the size of
the block. Normally the system uses the first two longwords
for forward and backward links. 1In this case, the first
longword will be incremented each time the routine specified
by the TQE executes. The second longword will not be used.
Note that IPL is raised to IPLS ASTDEL before the block of pool
is allocated. This is done so that the process can not be
deleted while it has the address of the block in a register
(and no other record of the block is maintained elsewhere in
the system).

= Ne We Ve Ne We Ve Ve We Ve Ve We Ve We we we we

5%: MOVL #COPY_LEN+HEADER,R1 ; size of pool needed
SETIPL #IPL$ ASTDEL ; so process not deleted
JSB G "EXESALONONPAGED ; allocate pool

The above routine destroys R0O-R3, and returns in R2 the
address of the allocated block of pool.

we We we we

MOVZBW #DYN C MY TYPE, (R2)+ fill in type field and
-7 point R2 to start of code
save address of code

copy code to buffer

NOTE —-- RO-R5 altered

PUSHL R2
MOVC3 #COPY LEN,COPY START, (R2)

BLBS R0, 20s ; proceed if no error
SETIPL #0 ; lower IPL before exiting
MOVZWL #SS$S INSFMEM, RO ; indicate error
RET - ‘ ; return error code
20$: MOVL R2,UPDATE ; save address of block

CLRQ (R2)+ ; clear location to be update

; point R2 to 3rd longword
MOovVW Rl, (R2)+ ; £ill in size field

’

H

H

H

H

Allocate a TQE. Note that the routine allocates the TQE at
IPLS_SYNCH, but returns control at IPLS ASTDEL (so process
cannot be deleted before it can deallocate pool used for TQE).
The routine destroys R0O-R4, and returns the address of the TQE

We WO WMe We W W wo

block in R2.

JSB G "EXESALLOCTQE ; allocate TQE block

BLBS RO, 40$; continue if no error

MOVL (sp)+,R0 ; else, get code address
; and clean up stack

SUBL #HEADER, RO ; account for header

JSB G "EXE$SDEANONPAGED ; deallocate code block

MOVZWL #SS$ NOSLOT,RO ; return error code

BRB 50$; and exit

Initialize TQE and insert TQE into queue (using system routine).
The routine expects the TQE address in R5. It copies the

due time into the TQE, and inserts the TQE in the queue at

the appropriate point. Since the current time is passed

(in RO and R1) as the due time, the TQE should be placed

at the head of the queue, and delivered after the next

timer interrupt.

WO We We WMy We We We wWe W “o

The address of the TQE is also stored in a global location

;
40$: MOVB $TQESC_SSREPT,TQE$B_RQTYPE(R2) ;
‘ ;
MOVQ DELTA, TQESQ DELTA(R2) ;
MOVL (SP)+,TQESL_FPC(R2) ;
MOVL RZ,G"EXE$GL_SITESPEC H
H

ASSUME IPL$ SYNCH EQ IPL$ TIMER
LOCK_START:

SETIPL SYNCH

’

MOVQ G "EXE$GQ_SYSTIME, RO ;

MOVL R2,R5 ;

JSB G "EXE$INSTIMQ ;

MOVZWL #SS$_NORMAL,RO ;

50$: SETIPL #0 :
RET ;

;

.DSABL LSB

By placing the SYNCH label after the code

set (with the $SLKWSET system service).

e we We We We We we “we we

SYNCH: .LONG IPL$ SYNCH
LOCK_END:
ASSUME LOCK_END-LOCK_START LE 512

.END START

30¥3

in the executive reserved for site-specific use.

indicate system sub.

and repeat request

set repeat time-.1 sec
starting address of code;
also cleans up stack
save TQE address for
program that will

cancel TQE request

accessing system data base
get current abs. time

copy TQE address for
queuing routine

set success status

lower IPL

all done

disable local symbol block

that must execute

at IPL$_SYNCH, the page with the SETIPL SYNCH instruction and
the page with the SYNCH label are guaranteed to be in the
process’s working set. Since the code will not span more

than 2 pages, there is no way to have a page fault above IPL 2,
even though the pages have not been locked into the working

$ set process/priv=cmkrnl

$

$ RUN/NODEBUG MAKETQE

S

$ RUN/NODEBUG MAKETQE

%SHR-F-IVMODE, invalid mode for requested function
$

$ RUN/NODEBUG STOPTQE

Value in EXESGL SITESPEC = B01FEAQOC

Value in field = 0000010F
Value in field = 0000010F
Value in field = 0000010F

S

$ RUN/NODEBUG STOPTQE

MAKETQE program has not been run.

S .

$ RUN/NODEBUG MAKETQE

$

$ RUN/NODEBUG STOPTQE

Value in EXESGL SITESPEC = 80205A00

value in field = 0000003A
Value in field = CO00003A
Value in field = 0000003A

Example 6 Sample Run

33

[T 2

.TITLE STOPTQE —- Removes TQE from timer queue
.IDENT /VO0l1/

++

ABSTARCT:

This program displays the contents of the location being updated
by the routine specified in a TQE (thrice). It then cancels the
TQE request, and deallocates the block of pool being used to
contain the TQE routine.

SIDE EFFECTS:
Non-paged pool is returned to the system.

PROGRAMMER:

Vik Muiznieks 15-MAY-1980

WO ME We W WE We W WE We W We We We Ve We We We e we “o

External symbols
SIPLDEF
STQEDEF

IPL definitions
TQE definitions

-e we

~e we

Local symbols
HEADER = 12
LOOP_CNT = 3

header size for code block
loop counter

“e we

: Local storage

.PSECT NONSHARED DATA PIC, NOEXE, LONG
LKWSET: .ADDRESS START LOCK

.ADDRESS END_ LOCK
TTCHAN: .WORD 0

starting address
ending address
TT channel

H
H
’
TT: .ASCID /SYSSCOMMAND/ ; descriptor for terminal
CTR: .LONG STR_END - STRING ; SFAO control string
.ADDRESS STRING ; descriptor
CTR1: .LONG STR1 _END - STR ; $FAO control string
.ADDRESS STR , ; descriptor
STR: .ASCII *Value in EXESGL_SITESPEC = !XL*; converts to hexadecimal
STR1 END:
STRING: .ASCII *Value in field = !XL* ; converts to hexadecimal
STR_END:
FAOLEN: .LONG ; SFAO output length
OuT: . LONG 35 ; Output string desc.

.ADDRESS BUFF
BUFF: .BLKB 35 Actual output string
BAD MESSAGE: used in case MAKETQE
.ASCII /MAKETQE program has not been run./ ; not yet run
BAD SIZE = . - BAD MESSAGE

~e we

~e we

Entry point for routine

.PSECT CODE PIC, SHR, NOWRT
START: .WORD 0 ; null entry mask
$CMKRNL_S ROUTIN=10$. : enter kernel mode
Note that most of the work being done in kernel mode by this
example really could be done in user mode. There is not much
need to enter kernel mode before label START LOCK.

RET ; all done

10s$: .WORD "M<R2,R3,R4,R5,R6>

we we weo

‘save registers used

’

H
SLKWSET_S INADR=LKWSET ; lock pages in working set
BLBS RO, 15$; proceed on success
RET ; stop on error

15%:
20S$:

25%:
30$:

40

START LO

END_LOCK

ERROR:

$ASSIGN_S DEVNAM=TT, CHAN=TTCHAN

BLBC
MOVL

BLSS

RO, 25%
' G"EXE$GL_SITESPEC,R2

308

e we we we we

2 o

get channel to terminal
exit on error

get TQE address

if negative, system address
stop if not negative

$OUTPUT CHAN=TTCHAN, LENGTH=#BAD SIZE,BUFFER=BAD_ MESSAGE
SDASSGN_S CHAN=TTCHAN

RET

BRW ERROR

MOVL TQESL FPC(R2),R6

SUBL2 #HEADER,R6

MOVZBL #LOOP_CNT,R4

SFAO S CTRSTR=CTR1,OUTLEN=FAOLEN, -

- OUTBUF=0UT,P1=R2

BLBC RO, 253

$SOUTPUT CHAN=TTCHAN, LENGTH=FAOLEN, BUFFER=BUFF ;

BLBC RO, 25$

$FAO_S CTRSTR=CTR,OUTLEN=FAOLEN, -
OUTBUF=0UT,P1=(R6)

BLBC RO, 25%

SOUTPUT CHAN=TTCHAN, LENGTH=FAOLEN,BUFFER=BUFF ;

BLBC RO, ERROR

SOBGTR R4,40$

CK:

SETIPL #IPL$ SYNCH

REMQUE (R2),R0

JSB G "EXESDEANONPAGED

MOVL R6,R0

JSB G "EXES$DEANONPAGED

CLRL G"EXES$GL_SITESPEC

SETIPL 0

$SDASSGN_S CHAN=TTCHAN

MOVZWL ~ #SS$ NORMAL,RO

RET -

MOVL RO,R6

$DASSGN_S CHAN=TTCHAN

MOVL R6,R0

RET

.END START

* Ne we we We we we we wo

!

e we e wo

WO WME WE W We WE WO e W WE WO Ne We WE NE We We We We Ny we “o

deassign terminal channel
all done

solve BLBC byte displacemen
get code address

point to update location
set loop count

format EXESGL SITESPEC
for debugging

test for errors

print value

test for errors

format counter which
changes every .1 seconds
check for error

display counter
check for error

loop a few times

code must be locked in
working set so no page
faults above IPL 2

raise IPL to synch

remove TQE from queue
deallocate TQE

get address of code block
deallocate code block
clean-up location so this
program cannot be rerun
until MAKETQE rerun
enable interrupts

end of locked down code
deassign terminal channel
return success status

all done

save exit status code
deassign terminal channel
restore exit status code
all done

SYSTEM MECHANISMS

Clocks and Timer Services

TIMER QUEUE (ELEMENTS ORDERED BY EXPIRATION TIME)

NN

EXE$GL_TQFL

CURRENT SYSTEM TIME

EXE$GQ_SYSTIME

TIME OF DAY CLOCK
: PRxxx$_TODR

{xxx=number associated with processor)

INTERVAL CLOCK

(______l PRxxx$_NICR (NEXT INTERVAL COUNT)
|::' PRxxx$_ICR (INTERVAL COUNT)

Figure 10 Clocks and Timer Services

MKV84-2238

SYSTEM MECHANISMS

Summary of System Synchronization Tools

Table 5

Summary of System Synchronization Tools

Function

Implementation

Name

Arbitrate interrupt
requests

Service interrupts
and exceptions

Synchronize execu-
tion of system
routines

Request software
interrupt

Synchronize sys-
tem's access to

scheduler data
structures

Continue execution

of code at lower
priority

Hardware-maintained
priority

Table of service
routine addresses

Interrupt service
routines

MACRO

MACRO - raise IPL to
IPL$_SYNCH

Queue request,
SOFTINT, REI

Interrupt priority
level (IPL)

System control
block (SCB)

Timer, SCHED, etc.

SOFTINT

SETIPL or DSBINT

FORK

SYSTEM MECHANISMS

PROCESS SYNCHRONIZATION

Table 6 - Process Synchronization Mechanisms

Function

Implementation

Name

Synchronize certain
system-level
activities of
processes

Allow process to

request action at a
certain time

Synchronize access
to data structures
by processes

Allow process to

execute procedure on
completion of event

Allow processes to

synchronize access
to resources

Adjust IPL
(SETIPL macko)

Queue of requests and

hardware and software
clock interrupts

Semaphore

REI

IPL. 2 interrupt ser-
vice routine

SENQ (W) and $DEQ
system services

IPL

Timer queue

Mutex

Asynchronous system
trap (AST)

VMS lock manager

SYSTEM MECHANISMS

Mutual Exclusion Semaphores (MUTEXes)

31 17 16 15 0

Status Ownership Count

Write-in-Progress or
Write-Pending Flag

Figure 11 A Mutex

e Protect data structures against conflicting accesses by
multiple processes

®¢ One writer or multiple readers are allowed

e Examples:

-~ Group logical name tables
- System logical name table

® To access the data structure, first place a 1lock on the
mutex

® Mutex locking is only possible in process context

SEMAPHORE

For articles on related subjects see CONCURRENT
ProGRAMMING: DEADLOCK. LOCKOLT, MONITORS:
ParALLEL PROCESSING; and PETRI NgTs.

Semaphores are synchronization primitives used to
coordinate the activities of two or more programs or pro-
cesses that are running at the same time and sharing in-
formation. They are used for elementary interprocess
communication, to guarantee exclusive access to shared
data. 10 protect a section of code that must be executed
without certain kinds of interruptions (such a code seg-
ment is called s critical region or critical section), or 10
allocate a set of identical scarce resources.

Two operations are defined on semaphores: P. or
wait, and V, or proceed. The usage protocol for a shared
resource is as follows: A process that needs control of a
resource executes a P operation on the semaphore asso-
ciated with that resource. The system suspends the pro-
cess until the resource is available, and then aliows it to
proceed. When the process is finished with the resource,
it executes a ¥V operation on the semaphore to release the
resource for use by another process. The resource may be
any hardware or software component, including data
structures, physical devices, or code segments. A sema-
phore may also be used to indicate when it is safe for ex-
ecution to proceed past & certain point in the program.
The usage protocol is stightly different when a semaphore
is used 1o coordinate interprocess communication. For ex-
ampie, if process 4 requires data produced by process B
before it can execute further, a semaphore can be used to
block A until B provides the data and reieases A with a
V¥ operation.

One case of special interest is the mutex (for mutual
exclusion) semaphore, which allows only one process 1o
use the resource at once. This is particularly useful for
protecting a data structure from being updated simulta-
neously by more than one process.

Semaphores are often implemented with counters.
For example. a typical implementation of a semaphore
(call it SEM) might involve: .

® Initialization of SEM. (Set the counter of SEM
to the total number of instances of the resource;
e.g.. for 3 mutex semaphore, to 1.)

® P(SEM). (If the counter of SEM is greater than
zero, decrement it by one and aliow the calling
process to proceed. otherwise. block the calling
process and switch to another—unblocked—
process.)

® V(SEM). (If there is 8 blocked process waiting
on SEM, then select and awaken some blocked
process: otherwise, increment the counter of SEM
by one.)

_ The bodies of these routines must be indivisible (un-
interruptible operations). The P and V notation is due to
Dijkstra, who, motivated by the counter implementation,
used his native Dutch 10 get P from proberen te verlagen

(“t0 try to decrease™) and ¥ from verhogen (“to in-
crease’).

REFERENCE

1968. Dijkstra, Edsger W. “The Structure of the "THE -Multi-
programming Sysiem.” Comm. ACM 11, No. §: 341-346
(May).

M. SKaw

List of Data Structures Protected by Mutexes

Clobal Name
Data Structure of Mutex
Logcal Name Tabie LNMSAL_MUTEX
1/0 Database ? 10CSCL_MUTEX
Comunon Event Block Lust EXESCL_CEBMTX
Paged Dymnamuc Memory EXESCL_PGDYNMTX
Global Section Descriptor Lust EXESCL_GSDMTX
Shared Memory Clobal Section Descriptor Tabie EXESCL_SHMGSMTX
Shared Memory Maibox Descriptor Table EXESCL_SHMMBMTX
(not currently used) . EXESCL_ENQMTX
tune Printer Urut Contro! Block 3 UCBSL_LP_MLUTEX
(not currently used) EXESCL_ACIMTX
System Intruder Lists ClASCL_MLUTEX
Obyect Rughts Block Access Contral Lust 4 ORBSGL_ACL_MUTEX

IWhen a process s placed into an MWAIT state waiting for a mutex, the address of the mutex

is placed into the PCBSL_EFWM field of the PCB The symbouc contents of PCBSL_EFWM will
probably remain the same from reiease to release but the numeric contents change. The numernc
values are availabie frem the system map SYSSSYSTEM SYS MAP

2Thus mutex 1s used by the Assign Channel and Allocate Device system services when searching
through the Linked Lst of aevice data blocks and urut control blocks (UCBs) for a device it 1s
also used whenever UCBs are adaed or deleted :or example. during the creaton of mailboxes and
network devices.

3The mutex associated with each line printer unit does not have a fixed location like the other
mutexes As 2 field in the urut control block (LUCB), its iocation and value depend on where the
UCB for that urnut is allocated. ‘

4The mutex associated with each object rights block {ORB) does not have a fixed location like the
other mutexes As a field 1n the object rights block, its location and vaiue depend on where the
ORB 1s allocated.

The mutex itself consists of a single longword that contains the number of
owners of the mutex MTX$W_OWNCNT) in the low-order word and status
flags (MTXSW_STS) in the high-order word (see Figure 2-1). The owner count
begins at -1 so that a mutex with a zero in the low-order word has one owner.
The only flag currently implemented indicates whether a write operation is either

in progress or pending for this mutex (MTX$V_WRT).

MUTEX - MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 0
Table of contents

(1) 43 HISTORY ; DETAILED

(1) 61 DECLARATIONS

(1) 83 SCH$RWAIT -~ RESOURCE WAIT

(1) 121 SCH$LOCKWNOWAIT - LOCK MUTEX FOR WRITE WITHOUT WAITING
(1) 169 SCH$IOLOCKW ~ LOCK I/O DATA BASE MUTEX FOR WRITE
(1) 205 SCHSLOCKW - LOCK MUTEX FOR WRITE

(1) 252 SCH$IOLOCKR - LOCK I,/0 DATABASE MUTEX FOR READ
(1) 288 SCHSLOCKR - LOCK MUTEX FOR READ

(1) 355 SCHSRAVAIL - DECLARE RESOURCE AVAILABILITY

(1) 381 SCHSIOUNLOCK - UNLOCK I/0 DATABASE MUTEX

(1) 410 SCH$UNLOCK - UNLOCK MUTEX

MUTEX
X-1

- MUTEX WAIT ROUTINES

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

D0 JRAU W N =

D T T T TR P e T T I T T T T TR VA

LR B B N BN B EE NE BE IR IR IR DR R BE 2R BE AR B R 2

D R I TR I TR TR T T PRI

R R I T TR TIC VI TIC NI PR

b4

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00

Page

18~-JUN-1985 07:53:25 _11DUA75:(SYS.SRC]MUTEX.MAR;1

.TITLE MUTEX - MUTEX WAIT ROUTINES
.IDENT ’'X-1'

COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

tE 2 E A SRR SR E AR R R RS R RS R RS SRR R R R R R R R R R R R XD 2]

FACILITY: EXECUTIVE, SCHEDULER

ABSTRACT:

THIS MODULE CONTAINS THE ROUTINES WHICH IMPLEMENT THE MUTEX
LOCK AND UNLOCK SERVICES FOR INTERNAL EXECUTIVE USE.

ENVIRONMENT:

MODE = KERNEL

.PAGE
.SBTTL HISTORY ; DETAILED

AUTHOR: R. HUSTVEDT CREATION DATE: 25-AUG-76

MODIFIED BY:

v03-003 SSA0022 Stan Amway 2-Apr-1984
Backed out SSA0005. It was temporary.

v03-002 SSA0005 Stan Amway 10-Jan-1984
Added code to maintain PMS MWAIT transition counters.
The counters (in MDAT) and supporting code will be removed
before V4 release.

V03-001 ROWO0168 Ralph O. Weber 3~-MAR-1983

[E X 2 R 2 R 2 RS R R R S R S R R RS S 2 R 2 2 R R R R 2 R 2R AR RS2SRSS 22222222222 R R X X 2 2 23

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

1
(1)

MUTEX - MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 2
X-1 HISTORY ; DETAILED 18-JUN-1985 07:53:25 _11DUAT75:{SYS.SRCIMUTEX.MAR;1 {1)

0000 58 ; Change W~ references to G".
0000 59 ;

MUTEX ~ MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page
X-1 DECLARATIONS 18-JUN-1985 07:53:25 ‘511$DUA75:(SYS.SRC]HUTBX.MAR;I

0000 61 .SBTTL DECLARATIONS

0000 62

0000 63 ;

0000 64 ; INCLUDE FILES:

0000 65 ;

0000 66

0000 67 $DYNDEF ; STRUCTURE TYPE DEFINITIONS

0000 68 $IPLDEF ; IPL DEFINITIONS

0000 69 $MTXDEF ; MUTEX DEFINITIONS

0000 70 $PCBDEF ; PCB DEFINITIONS

0000 71 $PRDEF ; PROCESSOR REGISTER DEFINITIONS

0000 72 $PRIDEF ; PRIORITY INCR CLASS DEFS

0000 73 $PSLDEF ; PSL DEFINITIONS

0000 74 $SSDEF ; SYSTEM STATUS CODES

0000 75 $STATEDEF ; SCHEDULER STATE DEFS

0000 76 $WQHDEF ; WAIT QUEUE HEADER DEFS

0000 77 ;

0000 78 ; EQUATED SYMBOLS

0000 79 ;

0000 80

00000000 81 .PSECT AEXENONPAGED,BYTE ; NONPAGED EXEC

MUTEX
X-1

00 00000000'GF

50
7E

- MUTEX WAIT ROUTINES
SCH$RWAIT — RESOURCE WAIT

E6
11

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0008
000A

.SBTTL SCH$RWAIT - RESOURCE WAIT

++
FUNCTIONAL DESCRIPTION:

RESOURCES ARE AVAILABLE.
CALLING SEQUENCE:

SETIPL/DSBINT #IPL$ SYNCH

PUSHL <PSL> -

BSB/JSB SCHSRWAIT
INPUT PARAMETERS:

R4 -~ PCB ADDRESS

00(sP) - PC AT WHICH TO RESUME
IMPLICIT INPUTS:

PCB OF CURRENT PROCESS

OUTPUTS:
RO-R3 PRESERVED

IMPLICIT OUTPUTS:
*%k% TRG **%

SIDE EFFECTS:
x%% TBG *k*

e N4 NE e e Ne Ne Ne Se S Ne Sa Ne s Ne Ne Ne Ne %e N N Se Se Ne ve ws we ve Se N

SCHSRWAIT::
BBSSI RO,G"SCH$GL RESMASK,10$
105: BRB WAITR -

04(SP) - PSL WITH WHICH TO RESUME

tre
e
tes
oo
R

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page
18-JUN-1985 07:53:25 _11DUA75: [SYS.SRCIMUTEX.MAR: i

SCH$RWAIT SUSPENDS THE EXECUTION OF A PROCESS UNTIL REQUIRED

RO - RESOURCE NUMBER FOR WHICH TO WAIT

SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER

RESOURCE WAIT ENTRY POINT
SET WAITING FLAG
AND ENTER WAIT STATE

MUTEX
X~1

0B 60

50

- MUTEX WAIT ROUTINES
SCH$LOCKWNOWAIT ~ LOCK MUTEX FOR WRITE W 18-JUN-1985 07:53:25

000A
000A
000A
000A
000A
000A
000A
000a
000A
000A
000A
000A
000A
000A
000A
000A
000Aa
000A
000A
000A
000A
000A
000A
000A
000A
000A
000A
000A
000A
000a
000A
000A
000A
000A
000a
000A
000A
000A
000D
0011
0013
0015
0018
001a
001cC
001E
0021

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

L2 %o So %o o vo e Ne me e ve ve Ne N e Se Ne Ne Se e Ne S e Te ve we we e e Ve v Ve vE v Ve

1
2

.SBTTL SCH$LOCKWNOWAIT - LOCK MUTEX FOR WRITE WITHOUT WAITING

+
+

FUNCTIONAL DESCRIPTION:
SCHSLOCKWNOWAIT LOCKS THE SPECIFIED MUTEX FOR EXCLUSIVE WRITE ACCESS
TO THE PROTECTED STRUCTURE. IF ANOTHER PROCESS HAS ALREADY CLAIMED
THE MUTEX, THEN THIS ROUTINE RETURNS A FAILURE INDICATION.

CALLING SEQUENCE:
BSB/JSB SCH$LOCKWNOWAIT

INPUT PARAMETERS:
R0 - ADDRESS OF MUTEX
R4 - PCB ADDRESS OF CURRENT PROCESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF CURRENT PROCESS
MUTEX LOCATED BY RO

OUTPUTS:
R0 LOW BIT SET IF LOCKED SUCCESSFULLY
LOW BIT CLEAR IF MUTEX IN USE
R1-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
**k TBS *%*

SIDE EFFECTS:
kkk TBG rk#

CH$LOCKWNOWAIT: :
SETIPL #IPL$ SYNCH
BBSSI #MTXS$SY WRT, (RO),20$
INCW MTX$W_OWNCNT (RO)

RAISE TO SYNCH IPL
SET WRITE PENDING
RAISE OWNER COUNT

BNEQ 10% :::; RETURN FAILURE IF BUSY
MOVZWL #5S$ NORMAL,RO ;;; INDICATE SUCCESSFUL COMPLETION
BRB LKEX™ ;:; AND MERGE WITH COMMON EXIT CODE
0%: DECW MTX$W OWNCNT(RO) ::: CORRECT COUNT
05: CLRL RO ;3: SET FAILURE RETURN INDICATION
SETIPL #IPL$ ASTDEL ;;; LOWER TO ASTDEL
RSB - ; AND RETURN

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page
_11DUA75:[SYS.SRC]HUTBX.MAR:I

MUTEX
X-1

50

00000000 ’EF

- MUTEX WAIT ROUTINES

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page

SCH$IOLOCKW - LOCK I/O DATA BASE MUTEX F 18-JUN-1985 07:53:25 _11DUA75:[SYS.SRCIMUTEX.MAR;1

9E

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

.SBTTL SCH$IOLOCKW - LOCK I,/0 DATA BASE MUTEX FOR WRITE

++
FUNCTIONAL DESCRIPTION:

CALLING SEQUENCE:
BSB/JSB SCH$IOLOCKW

INPUT PARAMETERS:

IMPLICIT INPUTS:

PCB OF CURRENT PROCESS
I/0 DATABASE MUTEX

OUTPUTS:

R1-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
xkk TRS *k#*

SIDE EFFECTS:
k PRS k*%

N e NE Ne N Na NE Ne %e Ne S Ne we ve e e % %o Sy N4 SE Ne Te e e e e e Ve s Se v

SCH$IOLOCKW: :
MOVAB 10C$GL_MUTEX, RO

e

SCH$IOLOCKW RETURNS TO THE CALLER WHEN THE I/0 DATABASE MUTEX
HAS BEEN LOCKED FOR WRITE ASSURING EXCLUSIVE ACCESS.

R4 - PCB ADDRESS OF CURRENT PROCESS

SCH$GQ MWAIT —~ MUTEX WAIT QUEUE HEADER

RO = ADDRESS OF I,/0 DATABASE MUTEX

LOCK 1I,/0 DATA BASE FOR WRITE ACCESS
GET ADDRESS OF I/O DATABASE MUTEX

MUTEX
X-1

08 60

- MUTEX WAIT ROUTINES

SCH$LOCKW - LOCK MUTEX FOR WRITE

0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
002C
0030
0032
0034
0036
0036
0036
0038
003A
003cC

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

22-MAY-1987 20:03:51 VAX
18-JUN-1985 07:53:25

Macro V04-00

.SBTTL SCHS$LOCKW - LOCK MUTEX FOR WRITE

+

OUTPUTS:

e N S NS NE e e SO NE VO %A NA e e NG NE S NS NN e e NI NI NS NS Ne Se e e s ve

SCHSLOCKW: :

10$: SETIPL
BBSSI
INCW
BNEQ
BRB

20$:
DECW
30$: BSBB
BRB

SIDE EFFECTS:
**% TBS

e

FUNCTIONAL DESCRIPTION:
SCH$LOCKW RETURNS TO THE CALLER WHEN THE SPECIFIED MUTEX
HAS BEEN LOCKED FOR WRITE ASSURING EXCLUSIVE ACCESS TO THE
PROTECTED STRUCTURE.

CALLING SEQUENCE:
BSB/JSB SCH$LOCKW

INPUT PARAMETERS:
RO -~ ADDRESS OF MUTEX
R4 - PCB ADDRESS OF CURRENT PROCESS

IMPLICIT INPUTS:
SCH$GQ MWAIT — MUTEX WAIT QUEUE HEADER
PCB OF CURRENT PROCESS
MUTEX LOCATED BY RO

RO-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
* %k TBS

LE 2

* & %

#IPL$ SYNCH

#MTX$V WRT, (RO),30$
MTX$W OWNCNT(RO)
208 ~

LKEX

MTX$W_OWNCNT (RO)
WAITM
10$

L T R

’
’
2
’
.

EY R T TIRIE

~e e

LOCK MUTEX FOR WRITE

RAISE TO SYNCH IPL

SET WRITE PENDING

RAISE OWNER COUNT

WAIT IF BUSY

MERGE WITH COMMON EXIT CODE

YRR TR

MUST WAIT FOR EXCLUSIVE USE
CORRECT COUNT

AND WAIT FOR MUTEX

REPEAT LOCK ATTEMPT WHEN
RESCHEDULED

~e e v

/VMS
_11DUA75:[{SYS.SRC|MUTEX . MAR; 1

Page

7
(1)

MUTEX
X-1

50

00000000 'EF

- MUTEX WAIT ROUTINES
SCH$IOLOCKR - LOCK I/O DATABASE MUTEX FO 18-JUN-1985 07:53:25

9E

003cC
003C
003cC
003C
003cC
003C
003cC
003C
003C
003C
003C
003C
003C
003C
003C
003C
003cC
003cC
003C
003C
003C
003C
003¢C
003C
003cC
003cC
003cC
003C
003C
003C
003C
003cC
003C
003C
003C

252
253
254

e N N4 NE Ne Ne e NE MO Ne NU NE e Ve NS NE Ne N N N VO Ne e ne Ne we Ve ve v ve ve

SCHS$IOLOCKR: :

.SBTTL SCH$IOLOCKR - LOCK I/0 DATABASE MUTEX FOR READ

++

FUNCTIONAL DESCRIPTION:
SCH$IOLOCKR RETURNS TO THE CALLER WHEN NO WRITERS OWN THE I/0
DATABASE MUTEX THUS ASSURING THE I/0 DATABASE WILL REMAIN UN-
CHANGED UNTIL THE MUTEX IS RELEASED. IPL IS RAISED TO PREVENT
AST DELIVERY WHILE THE MUTEX IS OWNED AND THE PROCESS WILL NOT
BE OUTSWAPPED.

CALLING SEQUENCE:
BSB/JSB SCH$IOLOCKR

INPUT PARAMETERS:
R4 - CURRENT PROCESS PCB ADDRESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF CURRENT PROCESS
I/0 DATABASE MUTEX

OUTPUTS :
RO = ADDRESS OF I/0 DATABASE MUTEX
R1-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
xkk TRG **%

SIDE EFFECTS:
*k% TBG *k%

; LOCK I/O DATABASE FOR READ ACCESS

MOVAB IOC$GL_MUTEX,R0 GET ADDRESS OF I/0 DATA BASE MUTEX

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page
_11DUA75: [SYS.SRC]IMUTEX.MAR; 1

MUTEX - MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page

X-1 SCH$LOCKR - LOCK MUTEX FOR READ 18~JUN-1985 07:53:25 _11DUA75:[SYS.SRC]MUTEX.MAR;1
0043 288 .SBTTL SCH$LOCKR - LOCK MUTEX FOR READ
0043 289 ;++
0043 290 ; FUNCTIONAL DESCRIPTION:
0043 291 ; SCH$LOCKR RETURNS TO THE CALLER WHEN NO WRITERS OWN THE
0043 292 ; SPECIFIED MUTEX. THUS THE STRUCTURE PROTECTED BY THE MUTEX
0043 293 ; WILL REMAIN UNCHANGED UNTIL THE MUTEX IS RELEASED. 1IPL IS
0043 294 ; RAISED TO PREVENT AST DELIVERY WHILE THE MUTEX IS OWNED AND
0043 295 ; THE PROCESS WILL NOT BE OUTSWAPPED.
0043 296 ;
0043 297 ; CALLING SEQUENCE:
0043 298 ; BSB/JSB SCH$LOCKR
0043 299 ;
0043 300 ; INPUT PARAMETERS:
0043 301 ; RO - ADDRESS OF MUTEX
0043 302 ; R4 - CURRENT PROCESS PCB ADDRESS
0043 303 ;
0043 304 ; IMPLICIT INPUTS:
0043 305 ; SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
0043 306 ; PCB OF CURRENT PROCESS
0043 307 MUTEX
0043 308 ;
0043 309 ; OUTPUTS:
0043 310 ; RO-R3 PRESERVED
0043 311 ; IPL = ASTDEL
0043 312 ;
0043 313 ; IMPLICIT OUTPUTS:
0043 314 k% TBS ***
0043 315 ;
0043 316 ; SIDE EFFECTS:
0043 317 ; kkx TBS ***
0043 318 ;
0043 319 ;—
0043 320
0043 321 SCH$LOCKR:: ; LOCK MUTEX FOR READ
0043 322 SETIPL #IPL$ SYNCH :7; RAISE TO SYNCH IPL
30 60 10 E0O 0046 323 BBS #MTX$V WRT, (RO) ,RDWAIT ;;; WAIT IF WRITE PENDING OR
004Aa 324 - ;77 IN PROGRESS
60 B6 004A 325 INCW MTX$W OWNCNT(RO) ; 7+ INCREASE OWNER COUNT
0A A4 ocC 91 004cC 326 LKEX: CMPB #DYNST PCB,PCB$B _TYPE(R4) : CHECK FOR PCB
25 12 0050 327 BNEQ 20% - - ; BUG CHECK IF NOT PCB
OE x4 B6 0052 328 INCW PCB$W MTXCNT(R4) ;:: NOTE IN PCB ALSO
01 0E a4 B1 0055 329 CMPW PCB$W MTXCNT(R4),#1 ; IS THIS THE FIRST MUTEX IT OWNS?
18 12 0059 330 BNEQ 106 ~ ; BR IF OWNS MORE THAN 1 MUTEX
28 a4 0B a4 90 005B 331 MOVB PCB$B_PRI{R4),PCB$B PRISAV(R4); SAVE CURRENT PRIORITY
29 A4 2F A4 90 0060 332 MOVB PCB$B PRIB(R4),PCBSB PRIBSAV(R4) ; SAVE BASE PRIORITY
0B a4 10 91 0065 333 CMPB #16,PTBSB PRI(R4) - ; IS THIS A REAL TIME PROCESS?
08 1A 0069 334 BGTRU 10$ - ; BR IF SO
0B A4 OF 90 006B 335 MOoVB #15,PCB$B PRI(R4) ; ELSE FORCE TO LOWEST RT PRIORITY
2F A4 OF 90 O006F 336 MOVB #15,PCBSB PRIB(R4) ; AND SET PRIORITY BASE TO RT
0073 337 10%: SETIPL #IPL$ ASTDEL ;s: DROP TO ASTDEL IPL
05 0076 338 RSB - ;:: AND RETURN
00aC 31 0077 339 20%: BRW NOTPCB ;
007A 340
007A 341 RDWAIT: ;::; MUST WAIT FOR READ
Cé AF DF 007A 342 PUSHAL SCH$LOCKR ;i7 RETRY AFTER WAIT
007D 343

007D 344 WAITM: ;7; WAIT FOR MUTEX TO FREE

MUTEX
X-1
6E
04 AE
04 AE 05 10 02
4C a4 50
00000000 'GF 64
00000008 'GF
2C A4 02
FF60’

- MUTEX WAIT ROUTINES

SCHSLOCKR - LOCK MUTEX FOR READ

007D
007F
0082
0088
008C
0093
0099
009D
00A0

345

WAITR:

PUSHL
MOVPSL
INSV
MOVL
INSQUE
INCW
MOVW
BRW

22-MAY-1987 2
18-JUN-1985 0

(spP)

4(sp)

#IPLS ASTDEL, #PSLSV IP
RO,PCBSL EFWM(R4) —
(R4),G"STHSGQ MWAIT

G "SCH$GQ MWAIT+WQHSW WQCNT
#SCH$C_MWAIT,PCBSW_STATE(R4)

SCH$WATTL

0:03:51 VAX/VMS Macro V04-00 Page
7:53:25 _11DUAT75:([SYS.SRC]MUTEX.MAR;1

;;: FORM PC, PSL ON STACK
:+; BUILD PSL
L, #PSL$S IPL,4(SP) ;;; SET IPL TO ASTDEL
::: SAVE ADDRESS OF MUTEX
;:: INSERT AT HEAD OF WAIT QUEUE
;s INCREMENT COUNT IN QUEUE
;:: SET STATE
;:; WAIT WITH STACK CLEAN, STATE SET

10
(1)

MUTEX
X-1

7D 00000000 'GF

50
45

- MUTEX WAIT ROUTINES

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 11

SCHSRAVAIL - DECLARE RESOURCE AVAILABILI 18-JUN-1985 07:53:25 _ 11DUA75:[SYS.SRCIMUTEX.MAR;1 (1)

E7
11

00A0
00A0
00A0
00A0
00A0Q
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A8
00AE

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

+SBTTL SCHSRAVAIL - DECLARE RESOURCE AVAILABILITY

++

FUNCTIONAL DESCRIPTION:
SCH$RAVAIL IS CALLED TO SIGNAL THE AVAILABILITY OF THE SPECIFIED
RESOURCE AND RELEASE ANY WAITING PROCESSES.

CALLING SEQUENCE:
BSB/JSB SCH$RAVAIL

INPUT PARAMETERS:
R0 — RESOURCE NUMBER

IMPLICIT OUTPUTS:
kk*k TRG *k#*

SIDE EFFECTS:
*k*k TBG ***

D U P TR A THR N Yare

SCHSRAVAIL:: ; DECLARE RESOURCE AVAILABILITY
BBCCI RO, G "SCHSGL RESMASK,EXIT ; CLEAR AND TEST WAITING FLAG
DSBINT #IPL$ SYNCH ;:; BLOCK SYSTEM EVENTS
BRB UNLOCK ;77 MERGE WITH COMMON CODE

.
’

MUTEX
X-1

50

00000000'EF

- MUTEX WAIT ROUTINES

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page

SCH$IOUNLOCK - UNLOCK I/O DATABASE MUTEX 18-JUN-1985 07:53:25 _11DUA75:[SYS.SRCIMUTEX.MAR;1

9E

00BO
00BO
00BO
00BO
00BO
00B0O
00B0
00B0O
00B0
00B0O
00B0
00BO
00B0
00B0
00BO
00B0
00B0
00BO
00B0O
00BO
00BO
00B0
00B0
00B0
00B0
00BO
00BO
00BO

381
382
383
384
385
386
387
388
389

.SBTTL SCH$IOUNLOCK - UNLOCK 1/0 DATABASE MUTEX

i+t
FUNCTIONAL DESCRIPTION:

SCH$IOUNLOCK RELEASES OWNERSHIP OF THE I/0 DATABASE MUTEX AND
RE-ACTIVATES ANY WAITING PROCESSES IF THE MUTEX HAS BECOME
AVAILABLE AS A CONSEQUENCE OF THIS UNLOCK REQUEST.

CALLING SEQUENCE:
BSB/JSB SCH$IOUNLOCK

INPUT PARAMETERS:

IMPLICIT INPUTS:

SCH$GQ MWAIT - MUTEXT WAIT QUEUE HEADER

PCB OF CURRENT PROCESS
I/0 DATABASE MUTEX

IMPLICIT OUTPUTS:
*kk TRG *k*

SIDE EFFECTS:
k%% TBG ***%

SCH$IOUNLOCK: :
MOVAB IOCSGL_MUTEX,RO

;
;
H
; R4 - PCB ADDRESS OF CURRENT PROCESS
H
’
’

UNLOCK I,/0 DATABASE MUTEX
GET ADDRESS OF I/O DATABASE MUTEX

12
(1)

MUTEX

X-1

52

0A A4

2F A4
51
0B A4

00000000 'GF
00000000’GF 20

53

52

2D 60

000000
54

52

54

4C A4

ocC

10

11
00'GF
63

02
53
7

5E

- MUTEX WAIT ROUTINES
SCH$UNLOCK - UNLOCK MUTEX

91
12
B7

90
90

00B7
00B7
00B7
00B7
Q0B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00BD
00c1
00C3
00Cé6
00Cs8
00CD
00D1
00D5
00DC
00ES5
00ES8
00EA
00ED
00EF
00F1
00F5
00F5S
00F7
00FE
0101
0104
0107
0109
010D
010F
0111
0114
0117

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

.SBTTL SCH$UNLOCK - UNLOCK MUTEX
++
FUNCTIONAL DESCRIPTION:

CALLING SEQUENCE:
BSB/JSB SCH$UNLOCK

INPUT PARAMETERS:
RO - MUTEX ADDRESS
IMPLICIT INPUTS:

PCB OF CURRENT PROCESS
MUTEX

IMPLICIT OUTPUTS:
*%% TBS ***

SIDE EFFECTS:
k%% RS A%

D I T R TR TR T T T IR T I PO P P PR I I PR TR

SCHSUNLOCK: :
DSBINT #IPL$ SYNCH
CMPB #DYNST PCB,PCB$B TYPE(R4
BNEQ NOTPCB™ -
DECW PCB$W MTXCNT(R4)
BNEQ 106 ~—
MOVB PCB$B PRIBSAV(R4),PCBS$B
MOVB PCB$B PRISAV(R4),R1 -
MOVB R1,PCBS$B PRI(R4)
MOVB R1,G"SCHSGB PRI

Moo vo Se me s v

FFS #0,#32,G SCH$GL COMQS,R2
CMPB R1,R2 -
BLEQU 10$
SOFTINT #IPL$ SCHED
106: DECW MTX$W OWNCNT(RO)

BGEQ EXITN
BBCCI #MTX$V_WRT, (RO),EXITN

UNLOCK: PUSHR # "MCRO,R4>
MOVAL G"SCH$GQ MWAIT,R3

MOVL (R3) ,R4 —

MOVZBL $#PRI$ RESAVL,R2
10$: CMPL R3,R4™

BEQL 308

CMPL (SP) ,PCB$L EFWM(R4)

BNEQ 20% -

PUSHL (R4)

BSBW SCHS$CHSE

DECW WQHSW WQCNT (R3)
POPR #"MRD>

D TR T TR L T T T T TR TR N P PR

LR T T R TEY R TR TR Y

LYY

.
’

YRR TR TR

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00
18-JUN-1985 07:53:25 _11DUA75:{SYS.SRCIMUTEX.MAR;1

R4 - PCB ADDRESS OF CURRENT PROCESS

SCH$UNLOCK RELEASES OWNERSHIP OF THE SPECIFIED MUTEX AND
RE-ACTIVATES ANY WAITING PROCESSES IF THE MUTEX HAS BECOME
AVAILABLE AS A CONSEQUENCE OF THIS UNLOCK REQUEST.

SCH$GQ MWAIT - MUTEXT WAIT QUEUE HEADER

UNLOCK MUTEX

.

v

.

RAISE TO SYNCH IPL

STRUCTURE MUST BE PCB

NOTE UNLOCK IN PCB
MORE STILL OWNED

RIB{R4) ; RESTORE SAVED BASE PRIORITY

GET ORIGINAL PRIORITY
RESTORE IT

AND ANNOUNCE IT

FIND PRIORITY OF NEXT COMPUTABLE PROCESS
CHECK FOR DELAYED PREMPTION
NO, CONTINUE

ELSE RESCHEDULE WHEN IPL DROPS

D T I T T I I SRR T

DECREMENT OWNERSHIP COUNT
EXIT IF NOT LAST

EXIT IF NO WRITE IN PROGRESS
OR PENDING

SAVE PCB ADDRESS

GET ADDRESS OF WAIT QUEU
AND HEAD PCB

SET PRIORITY INCREMENT CLASS
CHECK FOR END OF QUEUE

YES, DONE

IS PROCESS WAITING FOR THIS MUTEX
NO, SKIP IT

SAVE FLINK

CHANGE TO EXECUTABLE STATE
DECREASE QUEUE LENGTH
RESTORE FLINK

Page

(1)

MUTEX
X-1

54

- MUTEX WAIT ROUTINES

SCHSUNLOCK - UNLOCK MUTEX

0119
011B
011E
0120
0122
0125
0126
0126
012a

467
468
469
470
471
472
473
474
475

205:
30%:
EXITN:
EXIT:

NOTPCB:

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page

BRB 10%
MOVL (R4),R4
BRB 10$

POPR # "M<RO,R4>
ENBINT
RSB

BUgUCHECK NOTPCB, FATAL

18-JUN-1985 07:53:25 _11DUA75:{SYS.SRC|MUTEX.MAR;1

;¢:; AND CONTINUE

;:; FLINK ON TO NEXT PCB
;::; AND CONTINUE

;:: RESTORE REGISTERS
;+; ENABLE INTERRUPTS

; STRUCTURE NOT PCB

14
(1)

MUTEX
Symbol table

BUG$ NOTPCB
DYNS$ST PCB
EXIT —

EXITN

IOC$GL MUTEX
IPLS ASTDEL
IPL$TSCHED
IPLSTSYNCH
LKEX™

MTX$V WRT
MTX$W OWNCNT
NOTPCE

PCBSB PRI
PCB$BTPRIB
PCB$B PRIBSAV
PCB$B PRISAV
PCB$SB_TYPE
PCBSLTEFWM
PCB$W MTXCNT
PCBSW_STATE
PR$ IPL
PR$TSIRR
PRI RESAVL
PSL$T IPL
PSLSVIPL
RDWAIT
SCH$CHSE
SCH$C MWAIT
SCHSGB PRI
SCHSGL™COMQS
SCH$GL RESMASK
SCH$GQ MWAIT
SCH$IOLOCKR
SCHS$IOLOCKW
SCHS$IOUNLOCK
SCHS$LOCKR
SCH$LOCKW
SCH$ LOCKWNOWAIT
SCHSRAVAIL
SCHSRWAIT
SCH$UNLOCK
SCH$WAITL
SS$ NORMAL
UNLOCK
WAITM

WAITR
WQH$W_WQCNT

PSECT name

. ABS .
$ABSS
AEXENONPAGED

~ MUTEX WAIT ROUTINES

kAR hih

= 0000000C
00000125
00000122
Akkhdkkk
00000002
00000003
00000008
0000004cC
00000010
00000000
00000126
0000000B
0000002F
00000029
00000028
0000000A
0000004C
0000000E
0000002C
00000012
00000014
00000002
00000005
00000010
0000007A
Rdek kKK
00000002
Kokhk Kk Kk
Rk kA AR
I I
ERRERE KK

0000003C
00000022
00000080
00000043
00000029
0000000A
000000A0
00000000
000000B7
ke ke kkkdkk
= 00000001
000000F5
0000007D
00000088
= 00000008

LT T T T I I T 1}

Allocation
00000000
00000000
0000012A

X

MMM X

RG
RG
RG
RG
RG
RG
RG
RG
RG

oo

(
(

29

0.
0
8

02

02
02
02

02

02

Psect synopsis

+ o=

)
)
)

4 -4

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00
18-JUN-1985 07:53:25

PSECT No. Attributes

00 (0.) NOPIC USR
01 (1.) NOPIC USR
02 (2.) NOPIC USR

CON
CON
CON

ABS
ABS
REL

Page

_§11$DUA75:[SYS.SRC]MUTEX.MAR;l

LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE

LCL NOSHR
LCL NOSHR

EXE
EXE

RD
RD

WRT NOVEC BYTE
WRT NOVEC BYTE

15
(1)

MUTEX
VAX-11 Macro Run Statistics

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX

Macro V04-00 Page 16
18-JUN-1985 07:53:25

/VMS
_11DUAT7S:[SYS.SRCIMUTEX.MAR;1 (1)

Performance indicators

4 oo 4
4+ -4

Phase Page faults CPU Time Elapsed Time
Initialization 33 00:00:00.03 00:00:00.33
Command processing 874 00:00:00.22 00:00:01.66
Pass 1 392 00:00:01.87 00:00:07.71
Symbol table sort 0 00:00:00.25 00:00:00.27
Pass 2 26 00:00:00.43 00:00:00.87
Symbol table output 6 00:00:00.01 00:00:00.25
Psect synopsis output 4 00:00:00.01 00:00:00.01
Cross~reference output 0 00:00:00.00 00:00:00.00
Assembler run totals 1338 00:00:02.82 00:00:11.12

The working set limit was 1650 pages.

49006 bytes (96 pages) of virtual memory were used to buffer the intermediate code.

There were 50 pages of symbol table space allocated to hold 889 non-local and 12 local symbols.
475 source lines were read in Pass 1, producing 13 object records in Pass 2.

22 pages of virtual memory were used to define 21 macros.

Macro library statistics

4+ -4
+ -

Macro library name Macros defined

11DUA75: [SYS.OBJ]LIB.MLB;1 12
T11DUAT7S: [SYSLIB]STARLET.MLB; 2 6
TOTALS (all libraries) 18

993 GETS were required to define 18 macros.
There were no errors, warnings or information messages.

MACRO/LIS=LIS$:MUTEX/0BJ=0BJ$:MUTEX TMP$:MUTEX.MAR+EXECMLS$/LIB

SYSTEM MECHANISMS

Obtaining and Releasing Mutexes

e Example - to obtain the paged pool mutex

- In your routine

MOVAL G EXESGL_PGDYNMTX, R0
MOVL G"SCHSGL_CURPCB, R4

JSB G“SCHSLOCKR ;read
or
JSB G " SCHSLOCKW ;write

- When returns, process has mutex

- Process should remain at IPL 2 or greater while it
owns a mutex

e Example - to release the paged pool mutex
- In your routine
MOVAL G EXESGL PGDYNMTX, R0

MOVL G"SCHS$GL_ CURPCB, R4
JSB G"SCHSUNLOCK

SETIPL #0 ; if no longer hold any mutexes

- All mutex symbols defined in module SYSCOMMON, except
for line printer mutex in LPDRIVER.

SYSTEM MECHANISMS

Asynchronous System Traps (ASTs)

Software Process Control Block (PCB)

[TASTEN JASTACT
::Ig:t ® \ AST Conirol Block (ACB) . Z
ASTQFL
) ASTQBL
RMOD | TYPE | SIZE
PID
AST
ASTPRM
KAST
I ASTCNT RMOD bits:
7654 10

I. MODE
PKAS

T
NODELETE acb
QUOTA

KAST

Figure 12 AST Queue off the Software PCB

e Provide an asynchronous tool for communication and
synchronization

e AST Control Block (ACB) built when AST requested

® ACBs are queued to the software PCB when the AST is due

- Queue is ordered by access mode

3-26

ASYNCHRCNQUS SYSTEM TRAPS (ASTS)

MECHANISM TO INITIATE THREAD CF EXECUTION

WITHIN A PROCESS ,

ASYNCHRONQUSLY TO OTHER ACTIVITY WITHIN PRCCESS

FREQUENTLY TO NOTIFY PRCCESS OF SOME EVENT

SOMETIMES TO EXECUTE PIECE OF SYSTEM CODE IN PROCESS'S CONTEZxT

THREAD OF EXECUTION INITIATED

- AT A PARTICULAR ACCESS MODt
- FREQUENTLY AS CALLED PROCEDURE
- SOMETIMES AS SUBROUTINE QOF IPL2 ASTDEL SERVICE ROUTINE

"INTERRUPT™ MOST PROCESS WAIT STATES
DELIVERY TO ALL ACCESS MODES ENABLED BY DEFAULT
ONLY ONE AST ACTIVE PER PROCESS PER ACCESS MODE

ASSOCIATED SYSTEM SERVICES

$OCLAST DECLARE AST

SENQ[W] ENQUEUE LOCK REQUEST

SGETOVI GET DEVICE/VOLUME INFORMATION
SGETJPI GET JOB/PROCESS INFORMATION
SGETSYI GET SYSTEM INFORMATION
$QIOCW] QUEUE I/0 REQUEST

$SETIMR ENQUEUE TIMER REQUEST

SSETAST ENABLE/DISABLE AST DELIVERY
SSETPRA SPECIFY POWER RECOVERY AST

SUPDSEC UPCATE SECTION FILE ON DISK

ARCHITECTURE FEATURES

o PRS_ASTLVL

0 PHDSB_ASTLVL

o LDPCTX

¢ REI

SCFTWARE PCB FIzLDS ASSOCIATED WITH ASTS

PCBSL_ASTQFL

PCBSL_ASTGBL

PCBSW_ASTCNT

PCBSB_ASTACT

PCB$B_ASTEN

LIST HEADER FOR

ENQUEUED ASTs

AVAILABLE AST QUOTA

{ BIT FOR EACH ACCESS MCDE
(1 = AST ACTIVE)

1 BIT FOR EACH ACCESS MODE
({ = AST DELIVERY ENABLED)

ACBS ARE ENQUEULD IN ACCESS MODE ORDER

PCB

a1 ACB F ACB ¥ ACB

80 0 1 2 5

50 50 50 50 50 50

AST CONTROL BLOCK

!
|
!

+-----—---,-—-----------------c-c----—-------+

ASTQFL
[emeeeccecccecemememme-me——ccesecccccaccccconx=]

.
.
.

ASTQBL

]

]

'

'

]

]

]

] wul

t ~

] -

] w

J

1

[}

]

]

1)

]

[}

| ——

[}

L}

L]

1

1

]

] (V8

' a

] >~

! b—

'

]

| SES—
(e}
o
¥
(e 4

n
i
!
!

R I e e e e I R e
.

!
|
!

[
[o mmmm oo

P

1

|
:
|
1]
|
‘.

AST
[ommmmmmmmmmmmemeeecccccamccooeen

.
.
.

ASTPRM
| eeemeccccnarccccccceccncccccrcccrnccccccaan==]

!
!
!

KAST
g g g g g g

ACBSB_RMOD

0

1

6 5 4

7
O L Y L L T L R SR e

.
i
i

]
.
'

!
!
!

!
!
]

X P L L E R R PRE TR ELEEEEE R Ak R PP R R X R

TARGET

w)
v W
w O
[Iy e |
QO ¥
<

(W8)

T

L)
— —J <
) w —
< (o) (e]
ho4 o oD
> > >
L ol [g o
o0 o o
(&5 O (W)
< < <C

.

-—— e wwe e -

ACBSV_KAST

SPECIAL KERNEL MODE ASTS

CANNOT BE DISABLED THROUGH $SETAST
QUEUED AT FRONT OF AST QUEUE
DELIVERED THROUGH JSB AT [PL 2

USED BY VMS EXEC AND UTILITIES

- SGETJPI - READ INFORMATION ABOUT TARGET PROCESS

- [0CsIQPOST - POST [/0 COMPLETION [N PROCESS CONTEXT

- EXESPOWERAST - QUEUE PROCESS-REQUESTED AST NOTIFICATION OF
POWER RECQVERY

- DELTA - READ/WRITE VIRTUAL MEMORY OF TARGET PROCESS

READ VIRTUAL MEMORY OF TARGET PROCESS

- SDA (ONLINE)

AST ROUTINE CALL FRAME

i 0 I LFP.SP

E REGISTERS E
! SPECIFIED BY |
S— RS L
______________________________________ [?___! AP

! AST PARAMETER . !

R i ARGUMENT
| SAVED R1 P LIST

[PC OF AST lNTERRUPT{?@ML/ |

romesemeene 0 T AT TR el

! PSL OF AST INTERRUPT !

D L L L R A T I +

REI

Cperation:

Return from Exception or Interrupt

tmpl <= (SP)+; ! Pick up saved PC
tmp2 <= (SP)+; ! and PSL

if [tmp2<IS> EQLU 1 AND tmp2<IPL> EQLU 0} OR
[tmp2<IPL> GTRU 0 AND tmpZ<CUR MOD>}! NEQU 0} OR
ZtmpZ<PRV MOD> LSSU tmpZ(CUR %OD)} OR
ZtmpZ<PSL MBZ> NEQU 0} OR
ItmpZ(CUR MOD> LSSU PSL<CUR MOD>! OR
[tmp2<IS>» EQLU 1 AND PSLKIS> EQLU 0} OR
femp2<IPL> GTRU PSLKIPL>} then [reserved operand fault;

if fcompatibility mode implemented} then

begin
1f [etmp2<CM> EQLU 1] AND
{{tmp2<FPD,IS,DV,FU,IV> NEQU 0} OR
["mp2<CUR_MOD> NEQU 3]} tnen [reserved operand fault;
end

else 1f [tmp2<CM> EQLU 1} then {reservad operand fault;

if PSLKIS> EQLU 1} then ISP <= SP !save old stack pointer
else PSL<CUR MOD> SP <=~ SP;

if PSL<KT?> EQLU 1 then tmp2<TP> <~ 13 !TP <= TP or stack TP

PC <~ tmpl;

PSL <-tmp2;
if PSLKIS> EQLU 0 then

begin

SP <= PSL<CUR_MOD>_SP; !sWwitch stack

1f PSL<CUR_MOD> GEQU ASTLVL lcheck for AST delivery
tnen {request interrupt at IPL 21};

end:

fcheck for scftware interruptsi;
{clear instruczcion look-anead]

SYSTEM MECHANISMS

AST Delivery

SPECIAL K . KERNEL EXEC SUPER USER
AST AST AST AST AST
KERNEL EXEC SUPER USER

MKV84-2239

Figure 13 AST Delivery Order

e Delivery of an AST depends on:
- The current access mode of the process
- Whether the access mode of the AST is enabled
- Whether an AST is already active in the same access
mode .

@ Certain system ASTs have special precedence (special
kernel ASTs)

- 1I/0 completion
- S$GETJPI on another process

® REI checks for deliverability of pending ASTs
@ Deliverability of ASTs is recorded in ASTLVL
® ASTLVL contains

- Access mode of first deliverable AST in queue
(for example, ASTLVL = 1 for executive mode AST)

- Or, the value 4 if:

1. There are no ASTs in the queue
2. AST delivery is disabled
IZ 3. An AST is active in the same access mode

SYSTEM MECHANISMS

AST Delivery Sequence

Exception/Interrupt
Service Routine

(i.e. Scheduler)
°

RE!]
a,cd _ No Ast
Delivered
b
IPL 2 INT
Generated
SCHS$ASTDEL: JSB Special K
/ AST
} IPL=2
"'232:“ USER
(Recompute ASTLVL) RET AST
RE! IPL=0

Figure 14 AST Delivery Sequence

Table 7 Rules for Selection of ASTs

Rule Example

a) ASTLVL > new access User AST (3) > kernel access mode (@)
mode

b) ASTLVL £ new access Super AST (2) £ super access mode (2)
mode

c) Interrupt stack active (IS) bit set in PSL

d) Final IPL > 2 Process code at elevated IPL (>2)

3-28

LOCK ManAGER

SyvcHRoNIZES SHARING oF Resources

Resource ~ANYTHING THAT CAN BE GIVEN A NAME

CLuster Devzce Name
~ OERZIVED FROM THE PATNWAY ro THE Dsvice

- Devzce Name - NODE § Dev:

SHARED KESOURCE « MUST NAVE UNTIQUE NAME
ACROSS TH E CLVSTER

DuaL Portep DeEvrce- musT HAVE THE SAME NAME
ACrRoss THE CLAVSTER

THE DISTRIBUTED LOCK MANAGER

RESOURCES AND RESOURCE LOCKING

Definition of resources -- Any entity on VAX/VMS -- for example

o

o

o

o

Files
Data structures
Data bases

Anything that can be given a name and shared

Definition of locking

o

o

Lock -- a process's request to access a resource
Locks may be granted -- access permitted

Locks may be waiting -- access pending (while access is
granted to another process)

Used to prevent such things as one process reading from a
file while another is writing to it.

Program 1 Program 2 Program 3

Figure 4-1 Several Programs Sharing a File

4-7

37

THE DISTRIBUTED LOCK MANAGER

Lock Management System provided by VMS (Lock manager)

0 Allows cooperating processes to synchronize access to
shared resources

o Provides a a queuing mechanism

o Consists of System Services

- S$ENQ -- enqueue a lock, return, notify caller when
lock is granted by AST or Event flag

- SENQW -- enqueue a lock and wait until it is granted
(LEF)

- S$DEQ -- dequeue a lock

- SGETULKI ~-- get lock information

Requirements to enqueue a lock

1. Resource name -- indicates which resource is to be locked
2. Lock mode -- indicates how the resource may be shared
3. Address of 1lock status block -- receives completion

status and lock identification (used for all future
references to lock)

LKSB: .BLKQ 1 ; quadword to contain
: ; the lock status block
RESOURCE:
.ASCID /MY _FILE/ ; the name of the resourc
$ENQW_S LKMODE=#LCXSK_PRMODE, - ; protected read mode
LKSB=LKSB, -
RESNAM=RESOURCE

Example 4-1 A Simple Lock Request

4-8

.
~ <

THE DISTRIBUTED LOCK MANAGER

Operation of the lock manager

The lock manager compares the lock mode of newly requested lock to
the lock mode of other locks with the same resource name.

o If no other lock on same resource -- lock is granted
o "If another process has compatible lock -- lock is granted
o If another process has incompatible lock -- lock is

placed in a wait gqueue for the resource

o A process can change lock mode with $ENQ. Called lock
conversion.

- [If requested conversion is compatible with existing
locks -- conversion is granted

- If requested conversion is incompatible with existing
locks -- lock 1s place in a conversion queue until
the existing incompatible lock is dequeued

Lock queues @u%@

O GRANTED

- Contains those locks that have been granted

0 WAITING

- Contains those locks that are waiting to be granted

o CONVERSION

- Contains those locks that are granted at one mode and
are waiting to be converted to higher lecck mode

4-10

4/

THE DISTRIBUTED LOCK MANAGER

Table 4-1 The Six Lock Modes

Mode name

Description

LCKSK_NLMODE

LCKSK_CRMODE

LCK$K_CWMODE

LCKSK_PRMODE

LCK$K_PWMODE

LCK$SK_EXMODE

NULL MODE. No access granted
to the resource. Serves as an
indicator of interest in a
resource and is converted to
higher modes before for access.
It is quicker to convert an
existing lock than to

create a new lock.

CONCURRENT READ. Grants read
access to resource. Permits
others to read and write at
same time. |

CONCURRENT WRITE. Grants write
access to resource. Permits
others to read and write at
same time,

PROTECTED READ. Grants read
access to resource, Permits
others to read. No writers
are allowved. "share lock"

PROTECTED WRITE. Grants write
access to the resource. Allows

it to be shared with concurrent
read mode. No other writers

are allowed access. "update lock”

EXCLUSIVE. Grants write access
to the resource and prevents it
from being shared. "exclusive lock"

4-9

THE DISTRIBUTED LOCK MANAGER

Table 4-2 Compatibility of_Lock Modes

Rode of Currently
Granted Locks
NL CR cw M P [3
119 yes yes yes yeos y‘u yes
CR yes yes yes yes yes ne
Node of (=] yes yes yes ne ne ne
Requested
Ltock PR yes yeso ne yes no ne
™~ yes yes ne ne ne ne
[4 4 yes | ne ne ne ne neo
Key to Lock Modes
NL == Null lock
CR -- Concurrent read
CW -=- Concurrent write
PR -~ Protected resd
PW -- Protected write
EX -- Exclusive .lochk
QRANTED :::J COMPATIOLE
CONVERSIONS
ERSIONS CONVERSIONS
°3$Lunm THAT ARE
INCOMPATIOLE
CONVERSIONS
WAITING LOCKS
Locx anasTED p—
GRANTED
NEW LOCK QUEUED
IN-I76-89

Figure 4-2 Three Lock Queues

4-11

SVESTEM A

- SYSTEM S
SYSTEM C

MASTER
AESOURCE SYSTEM

FLE) A
2]
DATABASE 1 3

Resource trees ~-- the set of locks and resources that are common
to a given root. Resource trees describe a root resource, related
resources, and all locks on them.

Example -- On system A

l. FILE_1l is locked

2. RECORD_1 and RECORD_2 are locked under FILE_l

3. FIELD_3 is locked under RECORD_2
This entire structure is called & resource tree. Any §iven
resource tree is entirely located on one system vhich is called

the master system. (ie. It is said that this system is
*mastering the resource®)

This tends to distribute the locking activity throughout the
cluster.

C v

0O ==

Only one system (the resource master) maintains complete

information about a resource tree. All other systems only
maintain information about locks that they have an interest in.

Example

1. System A is doing all locking services for entire cluster
on the resource tree that it is mastering. It holds the
master copies of locks held by remote systems.

2. Systems B and C only maintain information about locks
that they have acquired. They have the local copies of
locks that they hold. The resource master, if it |is
another system, holds a corresponding copy of that lock
called the master copy.

System A
Master of

the resource

RECORD 1 (:::::,

System 8
* Dwectory for
Resonsrce Fug 1°

* Knowledge
of wiech

systom g
mastenng
the resowce tree

System C
Wonts to lock
Regsource Fie 1

Systom

Be

dwectory system
for thws specsic
Assource

The knovledge of which system is the master of a resource is
distributed in the VAXcluster.

Each system maintains a partial directory that identifies which
system is the master of certain resource trees.

A hashing algorithm is used to convert a resource name into the
identity of the system that should be the directory system for
that resource.

The hashing algorithm is chosen at the time of cluster formation
and vhen nodes are added or removed from the VAXcluster. It must
be the same on all nodes.

It provides a distributed lookup point to identify which system is
mastering any given resource.

This directory is held in the lock database in memory and is not
to be confused vith a directory on a disk.

THE DISTRIBUTED LOCK MANAGER

Function
EXAMPLE LOCKING OPERATIONS Lock Fug 1
Lock Recorg 1
System A <:xc> ,
18
4
3
1
System B 2 "
S 8 e Svystam C

& D

Resource Svstam
Fue ! A

Q||

Function

@ Lock Fes !

@meez

Figure 4-8 Example of Locking Operations

4-22

THE DISTRIBUTED LQOCK MANAGER

Annotation for Figure 4-8

A. FILE_l locked on SYSTEM A

1.
2.
3.

4.
5.

“Request for a lock on FILE_1l, the hash alglorithm
indicates that SYSTEM_ B should be the directory system
for FILE_l.

Message to Directory system -- "Who is masterlng FILE 12"
No system is mastering FILE_l so SYSTEM_A is entered Into
the root directory as master of FILE_1

Message to SYSTEM A "You are now mastering FILE_1"
SYSTEM_A locks FILE_1

B. RECORD_1l locked on SYSTEM A

6.
7.

Request for a lock on RECORD_l
Lock is granted -- no CI "traffic since SYSTEM A is
mastering the resource

C. FILE_l locked on SYSTEM C

a.

9.
10.
11,
12.
13.
14.

“Request for lock on FILE _1l, the hash alglorithm indicates
that SYSTEM_B should be the directory system for FILE_l.
Message to Directory system -- "Who is masterxng FILE 12"
Message to SYSTEM C -- "SYSTEM A is mastering FILE_1""
Message to SYSTEM_A -- "Could T lock FILE_12?"

Lock is granted

Message to SYSTEM _C -- "Lock is granted”

Lock data is also kept locally

D. RECORD_2 locked on SYSTEM_C

15.
le.

17.
18.
19.

Request for lock on RECORD_2

SYSTEM C goes directly to SYSTEM_A, since C already knows
that A”"is mastering the resource

Lock is granted

Message to SYSTEM C -- "Lock is granted”

Lock data is also kept locally

4-23

SYSTEM MECHANISMS

Synchronizing Access Using the VAX/VMS Lock Manager

® Allows cooperating processes to synchronize access to
shared resources

® Can be used system-wide or group-wide
® Lock manager is invoked with system services

SENQ(W) [efn], lkmode, lksb, [flags], [resnam], [parid]l,
[astadr], [astprm], [blkast], [acmode], [nullarg]

SDEQ 1kid, [valblk], [acmode], [flags]
® Provides a queuing mechanism
® To allow for maximum sharing

- Locking at various levels of granularity
- Provides several lock modes

® Lock manager uses event flags to signify completion
® Lock manager uses ASTs

- Kernel ASTs to perform asynchronous operations 1in
context of the caller

- Normal ASTs to notify of completion
® Detects locking deadlocks
e Limit on number of locks per process‘(ENQLM)
e Used by
- VAX-11 RMS to implement file and record locking

- Image activator and INSTALL utility to synchronize
access to the known file database

- Files-11 0ODS-2 file system

SYSTEM MECHANISMS

Table 8 Data Structures Supporting the Lock Manager

Purpose Data When Size
Structure Created

Describe a lock on the Lock Block When lock Fixed
system (owner PID, (LKB) requested
address of lock status
block)
Catalog all locks on the Lock ID Table At INIT LOCKIDTBL
system LOCKIDTBL_MAX
Describe a resource Resource When first Fixed
being locked (resource Block (RSB) lock placed
name, lock queues, lock on resource
value block, etc.)
Given a resource name, Resource Hash At INIT RESHASHTBL
locate the resource Table
block
Hold the listhead for Software PCB Process Fixed
the process lock queue creation
Can access the lock database in several ways:

@ Given a resource name, use the resource hash table

@ Given a lock ID, use the lock ID table

@ To access all locks of a process, use the 1lock gqueue on

the software PCB

SYSTEM MECHANISMS

Vg
a'f“’”w
o
Rnogr::%:.ﬂnh I,C\Ls?
RSB
° o > [}
Grant
Conversion
Waiting
Figure 15

Lock ID Table
LKB
¢t
State Q —
—Owner Q— 41
RSB
pPCB
Owner Q

Relationships in the Lock Database

Lclaﬁa“w L

Resource Hash

SYSTEM MECHANISMS

Table Lock ID Table
LXB B -
’ ko &)
> RSB <
sl _1, < S
> = State Q =
Granted |e— > = Owner 6 —
Conversion
Waiting
s RsB
D
RSB < LKB
| ° < ®
* .) 4
Parent |
1__Waiting e » = State 0 —
- —awnﬂ a ey PCB
e Parent
e RSB
Owner Q
Figure 16 Relationships Between Locks and Sublocks

3-32

38 VMS Level 2 for Field Service
3 ERROR HANDLERS (USER-SPECIFIED)

3.2 Search Sequence

1. PRIMARY EXCEPTION VECTOR for the MODE of the exception

2. SECONDARY EXCEPTION VECTOR for the MODE of the exception
3. All CALL FRAMES in the stack of the MODE of the exception

4. LAST CHANCE EXCEPTION VECTOR for the MODE of the exception

3.2.1 Setting up a Vector Address

Use the following system service macro call to set up an address in any of the three vector
locations for one mode.

$SETEXV_S vector, addres, [acmode], (prvhnd]

Where the [] around an item means you do not have to specify a value because the macro
definition provides a default for you.

Vector = #0 to specify Primary Vector
#1 to specify Secondary Vector
#2 to specify Last Chance Vector

Address = The address of your error handling routine.
The routine must have an entry mask because
the system is going to CALLG to it.

Acmode = The mode you want to set the vector for.
This mode is maximized with the mode
you called the system service in.

Prvhnd = The location to store the previous contents of the vector.

3.2.2 Setting up a Call Frame Address

Use the following instruction to fill in the first location in the currently active call frame.

MOVAL address, (FP)

Address = The address of your error handling routine.
The routine must have an entry mask.

Internal Use Only

18 - Hardware-Detected Exceptions

3.2 Search Sequence

39

3.3 Primary and Secondary Exception Vectors

Kernel Primary
Keznel Secondary
Executive Primary
Executive Secondary
Supervisor Primary
Supervisor Secondary
User Primary

User Secondary

COO0O0O0OO0O0O0

CTLSAQ_EXCVEC:: 00

Figure 11: Primary and Secondary Exception Vectors

3.4

r—— — — —— — —— — —————— — v— —

Call Frame Specifying a Handler Address

::Initial SP Value

Ri1 if Bit 11 is Set in Entry Mask

\

RO if Bit O is Set in Entry Mask

| 1]

Updated PC After CALLx Instruction
FP (Address of Previous Call Frame)
AP Prior to the CALLx Instruction

SP |G]O
1:0]8

ENTRY MASK
tn 10>

<15

PSL Prior to the CALLx Inst. FLW:
10> .

User Specified Handler Address Not Equal to Zero FP:

31302928 27

16 15

Figure 12: Call Frame

The Debugger creates a call frame with a handler before calling your image.
DCL also creates a call frame with EXE§CATCH _ALL as the handler address.

3.5

Last Chance Exception Vectors

Kernel Last Chance
Executive Last Chance
Supervisor Last Chance
User Last Chance

EXESEXCPTN
EXESEXCPTNE

0
EXE$CATCH_ALL

CTLSAL _FINALEXC: :

offset

00 Bugcheck, Fatal

04 Bugcheck, Nonfatal

08
0C Exit Image

Figure 13: Last Chance Exception Vectors

Internal Use Only

12

2 SYSTEM COMPONENTS

VMS Level 2 for Field Service

2.2.2 System Control Block and Addresses

VECTORS (BITS 1:0)

00

01 SERVICE ON INTERRUPT STACK

10
1"

SERVICE IN WCS, PASS BITS 15:2 TO MICRO PC
HALT

SYSTEM CONTROL BLOCK {SCB)

SERVICE ON KERNEL STACK UNLESS RUNNING ON INTERRUPT STACK

0 UNUSED, RESERVED
g MACHINE CHECK ABORT/FAULT/TRAP, PROCESSOR & ERROR INFO PUSHED ON,SP EXESAL_LOAVEC
8 KERNEL STACK NOT VALIO ABORT EXESKEASTKNV

c POWER FAIL INTERRUPT EXESPOWERFAIL
10 RESERVED/PRIVILEGED INSTRUCTION FAULT,OP-CODES RESERVED TO DEC & PRIVILEDGED!INST. EXESOPCDEC
12 CUSTOMER RESERVED INSTRUCTION FAULT EXE$OPCCUS
18 RESERVED OPERAND FAULT/ABORT EXESROPRAND
1C RESERVED ADDRESSING MODE FAULT EXESRADRMOD
20 ACCESS CONTROL VIOLATION FAULT, VA CAUSING FAULT IS PUSHED ONTO STACK, REASON MASK EXESACVIOLAT
24 TRANSLATION NOT VALID FAULT, VA CAUSING FAULT IS PUSHED ONTO STACK, REASON MASK MMGSPAGEFAULT
28 TRACE (TP} FAULT, ENABLED BY T ON PREVIOUS INSTRUCTION EXESTBIT
2c BREAKPOINT FAULT EXESBREAK
30 COMPATIBILITY TRAP, TYPE CODE PUSHED ON STACK (TABLE A) EXESCOMPAT
34 ARITHMETIC TRAP, TYPE CODE PUSHED ON STACK (TABLE 8) EXESARITH
38.3F UNUSED,RESERVED
40 CHMK TRAP, OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED EXESCMODKRANL
44 CHME TRAP, OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED EXESCMODEXEC
48 CHMS TRAP, OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED EXESCMODSUPR
ac CHMU TRAP, OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED EXESCMUDOSER
50 $BI SILO COMPARE
54 CRD/RDS

-58 SBI ALERT

*5C SBI FAULT

*60 CPU TIMEQUT (VMS: ASYNCHRONOUS WRITE TIMEOUT)
61-83 UNUSED, RESERVED
84 SOFTWARE LEVEL 1
88.8C SOFTWARE LEVEL 2.3
90-8C SOFTWARE LEVEL 4F
co INTERVAL TIMER
C4.E4 UNUSED, RESERVED

*F8 CNSL RECEIVE INTR

*FC CNSL TRANSMIT INTR
FF UNUSED, RESERVED

100-13C SBI REQ 4

+14017C SBI REQ 5

*180-18C SBI REQ 6

*1CO-1FC SBIREQ7

* These offsets are 11/780-specific.
**interrupt serviced in WCS,
Go to 10EOD which contains a RETURN 1 unless changed.

***Vector must select interrupt stack TABLEB TABLE A
. Mode Codes lity M
REASON MASK BIT BREAKDOWN VAX-11 Native Compatibility Mode Codes
8IT VALUE | MEANING CODE | CONDITION CODE | CONDITION
0 0 PROTECTION VIOLATION 1 INTEGER OVERFLOW TRAP 0 RESERVED OP-CODE
L |lmenuouno 1| NEImdMewamezw | ol
B o b aCEraaTioN 4 FLOATING DIVIDE 8Y ZERO TRAP 3 EMT
5 FLOATING UNDERFLOW TRAP r TRAP
6 DECIMAL STRING OVERFLOW TRAP 5 ILLEGAL msrnucnon
1 0 NORMAL MEMORY 7 DECIMAL STRING DIVIDE BY ZERO TRAP [0DD ADDRESS
REFERENCE
1 REFERENCE TO A PTE
8,7 6 5 4,3 2 1 0
2 0 READING 8R R 00
1 WRITING

PERIPHERAL INTERRUPT VECTOR

Figure 5: System Control Block and Addresses

Internal Use Only

MKV84.2583

SYSTEM MECHANISMS

EXCEPTIONS AND CONDITION HANDLING

PR PR$__SCBB

Software Interrupts

Clock and Console

—-ﬂ-. :: EXE$GL_SCB

Device Interrupts

System Control Block

Figure 17 Exceptions and the SCB

® Exceptions are serviced by system routines

® Exception Service Routines (ESRs) are dispatched through
the SCB

3-33

SYSTEM MECHANISMS

Exception and Interrupt Dispatching

SOFTWARE ® EXCEPTION
DETECTED —l DISPATCHER LIB$SIGNAL
—> ® ©)
SEARCH ROUTINE
CONDITION
HARDWARE
<DETECTED) EXCEP N HANDLERS

@ sce [P @ | —
©

.$" '
®[T.

Figure 18 Exception and Interrupt Dispatching

3-34

SYSTEM MECHANISMS

Notes on Figure 18

PSL, PC and @ to 2 longwords pushed onto stack

Exceptions and interrupts always héndled by VMS (for
example, page fault)

Exceptions that user may handle (for example, access
violation)

These exception routines complete the signal array by
pushing "SS§$exception_name”™ and "N" (total of longwords
now in signal array) onto the stack.

Detected and signaled by executive
The exception dispatcher
1. Builds mechanism array and argument

2. Invokes the search routine. Search order is:

a. Primary exception
b. Secondary exception
c. Call frames

d. Last chance

Alternate condition-handling mechanism

1. Signaled by RTL or a user calling LIBSSIGNAL or
LIBSSTOP

2. Search mechanism ~ same as (F)-2.

SYSTEM MECHANISMS

ARGUMENT LIST

2

ADDRESS OF SIGNAL ARRAY

SIGNAL ARRAY

ADDRESS OF MECHANISM
ARRAY

CONDITION NAME

FIRST SIGNAL ARGUMENT

, ADDITIONAL ARGUMENTS FOR. L

22 CONDITION HANDLER, v
IF ANY
PC
PSL

MECHANISM ARRAY

ESTABLISHER FRAME

DEPTH

RO

R1

TK-5058

Figure 19 Condition Handler Argument List

SYSTEM MECHANISMS

HOW A USER EXECUTES PROTECTED CODE

Table 9 Executing Protected Code

Function Implementation Name

Protect memory from Hardware-maintained Kernel, executive,
read/write access modes supervisor, user
Change access mode Instruction CHMx, REI

Enter system service, Call --> instruction CALL_x --> CHMx

RMS, user-written
system service

3-37

SYSTEM MECHANISMS

Access Mode Transitions

CHMX:

REI:

)

Figure 20 Access Mode Transitions

Only way to move from less privileged to more
access modes

Only way to move from more privileged to less
access modes

Checks for illegal or unauthorized transitions

privileged

privileged

SYSTEM MECHANISMS

CHMx and REI Instructions

CHMx code-number

e Stack pointer switches to new mode

e PSL, PC and sign-extended code-number pushed onto stack

Sign-extended code-number «— SP

PC of next instruction

Old PSL

MKV84-2241

Figure 21 Stack After CHMx Exception

® PSL zeroed (except for IPL, Current Mode, Previous Mode)
@ Current mode of PSL moved to previous mode field

e Current mode changed to new mode

e New PC taken from system control block (SCB)

® Code-number determines routine to execute in new mode

REI

® Replaces current PC and PSL with two longwords popped from
the stack. Before doing so,

Various checks are made to protect the integrity of
the system.

- Checks for pending ASTs.

- Checks for pending software interrupts.

- After placing the PC and PSL in temporary registers,
the SP 1is switched to the appropriate access mode
based on the PSL current mode field.

SYSTEM MECHANISMS

REIl Is Used in Various Situations

e To provide user-initiated access to system code and data:

CHMx code-number

REI

e To switch to compatibility mode:

PUSHL PSL (Bit 31 set)
PUSHL PC

REI
e To dismiss any other exception

@ To service and dismiss a hardware interrupt:

Hardware Interrupt (IPL 16 through 31)

REI

® To service and dismiss a software interrupt:

Software Interrupt (IPL 1 through 15)

REI

3-40

SYSTEM MECHANISMS fune tllf*™

Path to System Service

P1
Space

PO
Space

System Space

Change
Mode Dispatcher

S_ystem l EXE$CMODxxxx ::

Service Vector
@ 1) Build call frame Service Specific
SYS$service :: 2) Check argument Procedure
entry mask fist
ad CASEW

CHMx #code o] .
M \ @ vEXESservice i

. @
° /
. RET
cALLx = | offsets

User Program

R . entry mask
. . ‘ .
M rocess ille
eh ange moc? °
. codes .
RET

Common Exit Path

Figure 22 Path to System Service

System services that execute in kernel or executive access
modes are invoked by:

1. A call to a system service vector.

2. A change mode instruction.

3. Dispatching through a CASE instruction in the CMODSSDSP
module.

SYSTEM MECHANISMS

Return From System Service

Space | Space | System Space
Change
l l Mode Dispatcher
System EXE$CMODXXXX ::
I Service Vector I
1) Build call frame Service Specific
User Program SYS$service :: 2} Check argument Procedure
l I list
entry mask
: CHMx #code CASEW
. @ I RET I : EXES$service ::
CALLx / offsets
. k I l : entry mask
L] ° L]
. process illegal .
change mode
l codes .
® /-

Common Ex_it Path
| SRVEXIT: /
L]

I \RE|
Figure 23 Return from System Service

4. Return through a common code sequence (SRVEXIT)

~ Checks return status code

- Causes system service failure exception if service
failed and that feature was enabled

5. REI from CHMx exception service routine

6. RET for original CALL

SYSTEM MECHANISMS

Nonprivileged System Service

PO
Space

P1

Space System Space

System
Service Vector

l entry mask
° <:) "UMP
L]
. / T @ EXES$service ::
caLLx =]
. entry mask
: | ' .

3 ;

Service Specific
Procedure

User Program SYS$service ::

RET

Figure 24 Nonprivileged System Service

1. Invoked with a CALL statement.

2. System services that do not require a change of access
mode have a simpler control passing sequence.

- SFAO
- Timer conversion services

3. These services are not checked by SRVEXIT for error status
codes.

3-43

SYSTEM MECHANISMS

Path to RMS &{/V

S Service Specific
Procedure

ommon Exit Path

RMSS$service ::

PO I P1 |
Space | Space System Space AMS Dispatcher
I RMSS$DISPATCH:
/ CASEW
l RMS Service Vector offsets
User Program I SYS$service :: R;B
@ ontry mask
M /I/' CHME scode offsets
caLLx = one Jéa @

ontry mask g
MS Synchronization : :
Routine e o
RET

Figure 25 Path to RMS

1. Same path as executive mode system service

2. Same as 1

3. Falls off end of system service case table, so JSB to RMS
case table

4. Dispatch to RMS procedure

3-44

SYSTEM MECHANISMS

Return from RMS

P1
Space

PO
Space

System Space RMS Dispatchgr
RMSS$DISPAYCH:

RMS Service Vector

SYS$service ::

User Program

eontry mask
CHME scode

hERE

L]
GEENNE GEMEE GREEE GELNND TSRS I G VD IS G G GERGRS SRS e

L]
L]
: \ @ ® ‘ I
Common Exit Path RMS Service Specific
\ Procedure
SRVEXIT: _/
[]
L]
L .
NREI RMSS$service ::
I entry mask
MS Synchronization .
Routine v .
(:) h\\\ .
RMSCHK _STALL: | RET
L]
o
L]
ner |

Figure 26 Return from RMS \\}6 26 ‘//«,M

5. Same path as system service

6. Same as 1

7. Extra step to manage the synchronous nature of most RMS
I1/0 operations

8. RET for original CALL

SYSTEM MECHANISMS

Path to User-Written Service (1)

PO
SPACE

User Program

P1
SPACE

JSB A

RSB

SYSTEM
SPACE

Change Mode
Dispatcher

P .ENTRY
CHMX
VECTORS RET
H
CAS.E
DISPATCHER ottsets
RSB.
,ENIRY
PROCEDURES Ret
Figure

1. To find

program
vector.

» EXESCMODxxxx ::
1) Build call frame
2) Check argument
list
. CASEW
[]
.
.
offsets
[]
.
.
JSB
process illega
change mode codes
.
.
.
Common Exit Path

SRVEXIT :
[
]
.

RE!

27 Path to User-Written System Service
(Part 1)

the

calls

appropriate
a global

user-written
symbol defining a service entry

service, a

2. A change mode instruction with a negative code causes

change

mode

dispatcher

to

for

system ser

dispatchers that were linked with the image.

user

the
vice

SYSTEM MECHANISMS

Path to User-Written Service (2)

PO P1 SYSTEM
SPACE I SPACE | SPACE
User P:ogvam JSB A ‘__1
. | RSB l
CALLx Change Mode
: l l Dispatcher
. EXESCMODxxxx ::
1) Build call frame
I I 2) Check argument
() list
@ : CASEW
[]
I I :
[]
l l offsets
[]
.ENTRY]
CHMX l .
VECTORS RET ' T JsB
. process illegal
. I I change mode codes
[]
CAS:E Q— o
. []
DISPATCHER = offgets I I Common Exit Path
@ Rse SRVEXIT :
[]
LENTRY I I L4
[3 L]
. REI
PROCEDURES ReT I I
Figure 28 Path to User-Written System Service
(Part 2)

3. Code for user-written system service causes JSB at end of
case table to be executed.

4. When a request can be serviced, the user-written
dispatcher passes control through a CASE instruction to
the routine.

5. Same as 4.

SYSTEM MECHANISMS

Return from User-Written System Service

PO P1 SYSTEM
SPACE SPACE SPACE
User P:ogram JSB A
: RSB
- CA:.LX Change Moge
. Dispatcher
L3 EXESCMODxxxx ::

1) Build call frame

2) Check argument
list

CASEW

.

.

.

offsets
°

.

I
I
|
I
I
I
|
I
I
I
|
I

VECTORS RET <
. process iliegal
. change mode codes
CASE 4
. .
. []
DISPATCHER offsets Common Exit Path
*
rse’ » SRVEXIT :
.
.ENTRY M
. [
L]

REI

PROCEDURES RET

: ®

Figure 29 Return from User-Written System Service

6. When the user-written routine exits, it passes control to
SRVEXIT, as the supplied system services do.

7. The rest of the return path to the user program is similar
to the steps for the supplied system services.

8. Same as 7.

3-48

Two Dispatchers

SYSTEM MECHANISMS

PO P1 SYSTEM
SPACE SPACE SPACE
User P;ogvam JSB A
: JSB B
CALLx RSB Change Mode
: Dispatcher
. EXESCMODxxxx ::
1) Build call frame
2) Check argument
VECTORS list
CASEW
DISPATCHER .
®
PROCEDURES *
offsets
.
.ENTRY °
CHMX [
VECTORS RET JsB
. process illegal
. change mode codes
CASE .
: []
. .
DISPATCHER offsets Common Exit Path
RsE SRVEXIT :
[]
ENTRY o
3 L]
. REI|
PROCEDURES RET

Figure 30

Two Dispatchers

e Multiple dispatchers can be linked to an image.

e Dispatchers are searched in order activated.
e Duplicate CHMx code numbers possible.

- Only first occurrence recognized.

SYSTEM MECHANISMS

MISCELLANEOUS MECHANISMS

Dynamic Memory

<
<
USED
Beginning of Pool Area
(Filled in When
System is Initialized)
..
| Size of this Block
First Unused
Block
USED) b-.----;‘--.-.-ﬂl
0
Address of First
Next Unused ® Free Block
Block °® (Moditied by Allocation
® and Deallocation Routines)

(Zero in Pointer
Signifies End of List)

Last Unused
Block

Figure 31 Paged Dynamic Memory

® Used for the management of data structures that must
allocated and deallocated after the system or process is

initialized.

® Free blocks are stored in order of ascending addresses.

® Number of bytes allocated for paged pool determined by

SYSGEN parameter PAGEDYN.

SYSTEM MECHANISMS

Allocating Nonpaged Pool

<4—9:: MMG$GL_NPAGEDYN
Rest of
Nonpaged
Pool :: EXESGL_NONPAGED +4
.9952.4——"-‘
size
""" first
unused
block
P s 4@ IOC$GL__LRPSPLIT
see T T ~ :: I0OC$GL_LRPFL
4@ EXE$GL_SPLITADR
4—;;'4-:;’1-:;
e T AT~ .: I0C$GL_IRPFL
";ﬁ':v = 4—@:: |OC$GL_SRPSPLIT
- -
eee :: IOC$GL_SRPFL

Figure 32 Allocating Nonpaged Pool

SYSTEM MECHANISMS

Relevant SYSGEN Parameters for Nonpaged Pool

Table 10 SYSGEN Parameters for Nonpaged Pool

Function Parameter

Number of bytes preallocated for the nonpaged NPAGEDYN
dynamic pool, exclusive of the lookaside lists

Number of bytes to which the nonpaged pool may NPAGEVIR
be extended.

Number of large request packets preallocated for LRPCOUNT
the LRP lookaside list.

Number of LRPs to which the LRP list may be LRPCOUNTV
extended.

Number of bytes to allocate per LRP, exclusive of LRPSIZE
header. Number of bytes actually allocated per
packet is LRPSIZE + 64.

Size of minimum allocation request for LRP (bytes) LRPMIN

Number of I/0 request packets preallocated for IRPCOUNT
the IRP lookaside list.

Number of IRPs to which the IRP list may be IRPCOUNTV
extended.

Number of small request packets preallocated for SRPCOUNT

the SRP lookaside list.

Number of SRPs to which the SRP list may be SRPCOUNTV
extended.

Number of bytes to allocate per SRP. SRPSIZE

SYSTEM MECHANISMS

Notes on Table 10

e System page table entries are reserved and physical memory
preallocated for NPAGEDYN, LRPCOUNT, IRPCOUNT, and
SRPCOUNT.

e System page table entries are reserved but no physical
memory preallocated for NPAGEVIR, LRPCOUNTV, IRPCOUNTV,
and SRPCOUNTV. Physical memory 1is allocated on demand
from the free page list if there is enough excess memory.

® Size of IRPs is 208 bytes.

® LRPMIN is a special parameter.

SYSTEM MECHANISMS

SUMMARY OF SYSTEM MECHANISMS;

Table 11 Function and Implementation of System
Mechanisms
Function Implementation Name

Keeping Track of CPU,

Process State

Store processor
state

Store, restore
process state

Register

Instruction

Handling and Uses of Interrupts

Arbitrate interrupt
requests

Service interrupts
and exceptions

Synchronize execu-

tion of system
routines

Request an interrupt

Synchronize system's
access to system
data structures

Continue execution
of code at lower-

priority

Hardware-maintained
priority

Table of service
routine addresses

Interrupt service
routines

MACRO

MACRO-raise IPL to
IPLS$_SYNCH

Queue request,
SOFTINT, REI

How User Executes Protected Code

Protect memory from
read/write

Change access mode

Hardware-maintained
access modes

Instruction

Enter system service, Call --> instruction

RMS, user-written
system service

Processor status
longword (PSL)

SVPCTX, LDPCTX

Interrupt priority
level (IPL)

System control block
(SCB)

Timer, SCHED,

SOFTINT

SETIPL

FORK

Kernel, Executive,
Supervisor, User

CHMx, REI

CALL_x --> CHMX

IOPOST..

Table 11

SYSTEM MECHANISMS

Mechanisms (Cont)

Function and Implementation of System

Function Implementation Name
Process Synchronization
Synchronize certain Adjusting IPL IPL

system-level
activities of
processes

Allow process to
request action at
a specific time

Synchronize access
to data structures
by processes

Allow process to
execute procedure
on completion of
event

Allow processes to
synchronize access

to various resources

(SETIPL macro)

Queue of requests and
hardware and software
timer interrupts

Semaphore

REI
IPL2 interrupt
service routine

$ENQ(W) and $DEQ
system services

Timer queue
MUTEX

Asynchronous
system trap (AST)

VMS lock manager

SYSTEM MECHANISMS

SYSGEN Parameters Related to System Mechanisms

Table 12 SYSGEN Parameters Related to System Mechanisms

Function Parameter
Size of the interrupt stack (in pages) INTSTKPAGES
Initial size of nonpaged pool (no lookaside lists) NPAGEDYN
Maximum size of nonpaged pool NPAGEVIR
Initial number of LRPs LRPCOUNT
Maximum number of LRPs LRPCOUNTV
Bytes in LRP (exclusive of header) LRPSIZE
Size of minimum allocatioh request for LRP (bytes) LRPMIN (*)
Initial number of IRPs IRPCOUNT
Maximum number of IRPS IRPCOUNTV
Initial number of SRPs SRPCOUNT
Maximum number of SRPs SRPCOUNTV

Number of bytes to allocate per SRP

Initial size of Lock ID Table

Maximum size of Lock ID Table

Max. number of entries in Resource Hash Table
Deadlock detection timeout period

Number of retries for multiprocessor lock

SRPSIZE (*)
LOCKIDTBL
LOCKIDTBL_MAX
RESHASHTBL
DEADLOCK_WAIT

LOCKRETRY (*)

(*) = special SYSGEN parameter

SYSTEM MECHANISMS

APPENDIX A
COMMONLY USED SYSTEM MACROS
IPL Control Macros

+MACRO SETIPL IPL

.IF NB IPL
MTPR IPL,S"#PR$_IPL
. IFF
MTPR #31,S"#PR$_IPL
. ENDC

. ENDM SETIPL

.MACRO DSBINT IPL,DST
.IF B DST
MFPR S"#PR$_IPL,- (SP)
.IFF
MFPR S"#PRS$_IPL,DST
. ENDC
.IF B IPL
MTPR #31,S"#PR$_IPL
.IFF
MTPR IPL, S"#PR$_IPL
. ENDC

. ENDM DSBINT

«MACRO ENBINT SRC

.IF B SRC

MTPR (SP)+,S"#PRS$_IPL

. IFF

MTPR SRC,S"#PRS$_IPL

. ENDC
. ENDM ENBINT
.MACRO SOFTINT IPL

MTPR IPL,S"#PR$_SIRR
. ENDM SOFTINT

Example 1 IPL Control Macros

SYSTEM MECHANISMS

Argument Probing Macros

-MACRO IFRD SI1Z,ADR,DEST,MODE=#0

PROBER MODE, S1Z,ADR
BNEQ DEST
. ENDM IFRD

. MACRO IFNORD S1IZ,ADR,DEST,MODE=4#0
PROBER MODE,SIZ,ADR

BEQL DEST
. ENDM IFNORD

.MACRO IFWRT S1Z,ADR,DEST,MODE=4#0

PROBEW MODE,SIZ,ADR
BNEQ DEST

. ENDM IFWRT

.MACRO IFNOWRT SIZ,ADR,DEST,MODE=#0
PROBEW MODE,SIZ,ADR

BEQL DEST
. ENDM IFNOWRT

Example 2 Argument Probing Macros

SYSTEM MECHANISMS

Privilege Checking Macros

.MACRO IFPRIV PRIV,DEST,PCBREG=R4

.IF DIF <PRIV>,<R1>
.IF DIF <PRIV>,<R2>

BBS #PRVSV_'PRIV,@PCBSL_PHD (PCBREG) ,DEST
. IFF
BBS PRIV,@PCBSL_PHD (PCBREG) ,DEST
. IFF
BBS PRIV,@PCBSL_PHD (PCBREG) ,DEST
. ENDC
. ENDM IFPRIV

.MACRO IFNPRIV PRIV,DEST,PCBREG=R4
.IF DIF <PRIV>,<R1>

.IF DIF <PRIV>,<R2>

BBC #PRVSV_'PRIV,@PCBSL_PHD (PCBREG) ,DEST
.IFF

BBC PRIV,@PCBSL_PHD (PCBREG) ,DEST

. ENDC

. IFF

BBC PRIV,@PCBSL_PHD (PCBREG) ,DEST

. ENDC

. ENDM IFNPRIV

Example 3 Privilege Checking Macros

Table 13

SYSTEM MECHANISMS

APPENDIX B
PRIVILEGE MASK LOCATIONS

Privilege Mask Locations

Symbol Name

Use

CTL$GQ_ PROCPRIV

PCBSQ PRIV

PHD$SQ PRIVMSK
(PHD base address)

PHDSQ IMAGPRIV

PHD$Q AUTHPRIV

Process permanent mask
Altered by SET PROCESS/PRIV= command
Used to reset current masks

Current mask, permanently resident
Altered by known image activation

Altered by S$SETPRV system service
Reset by image rundown

Current mask, swappable

Altered by known image activation
Altered by SSETPRV system service
Reset by image rundown

Used by IFPRIV, IFNPRIV macros

Mask of installed known image
ORed with CTL$GQ PROCPRIV to
produce current masks

Mask defined in authorization file
Not changed during life of process

3-60

SYSTEM MECHANISMS

APPENDIX C
THE REI INSTRUCTION

The REI instruction results in a reserved operand fault if any
one of the following operations is attempted:

l.

Decreasing the access mode value (to a more privileged
access mode). (This is a comparison of the current mode

fields of both the present PSL and the saved PSL on the
stack.)

Switching to the interrupt stack from one of the four
perprocess stacks.

Leaving the processor on the interrupt stack in other than
kernel access mode.

Leaving the processor on the interrupt stack at IPL @.

Leaving the processor at elevated IPL (IPL > @) and not in
kernel access mode.

Restoring a PSL in which the previous mode field 1is more

privileged than the current mode field (previous mode <
current mode) .

Raising IPL.

Setting any of the following bits - PSL<29:28> or PSL<21>
or PSL<K15:8>.

When the processor attempts to enter compatibility mode, the
following checks are made:

The first-part-done bit must be clear.

The interrupt stack bit must be clear.

All three arithmetic trap enables (DV, 1V, and FU) must be
clear.

The current mode field of the saved PSL must be user
access mode. '

SYSTEM MECHANISMS

If all the preceding checks are performed without error, the
REI microcode continues by:

1. Saving the old stack pointer (SP register) in the
appropriate processor register (KSP, ESP, SSP, or USP).

2. Setting the trace pending bit in the new PSL if the trace
pending bit in the old PSL is set.

3. Moving the contents of the two temporaries (note 1 above)
into the PC and PSL processor registers.

If the target stack is a perprocess stack:

1. Getting the new stack pointer from the corresponding
processor register (KSP, ESP, SSP, or USP)

2. Checking for potential deliverability of pending ASTs.

3-62

Debugging Tools

SDAZ Validate Queve <2
oty s)

DEBUGGING TOOLS

INTRODUCTION

Since VMS runs in executive and kernel modes and at elevated
interrupt priority levels, any error is considered serious, and
can cause a system crash.

VMS offers several tools to aid in debugging system level

code.

These tools are:
SDA - a symbolic dump analyzer

DELTA - a debugger for code running in operating modes
from user to kernel,

XDELTA - a debugger for kernel mode <code running at
elevated IPLs.

OBJECTIVES

To use various system-supplied debugging tools and
utilities (for example, SDA, DELTA, XDELTA) to examine
crash dumps and to observe a running system.

To use the system map file as an aid in reading source
code, and identifying the source of system crashes.

RESOURCES

VAX/VMS System Dump Analyzer Reference Manual

VAX/VMS Internals and Data Structures, chapter on Error
Handling

VAX/VMS PATCH Utility Reference Manual

VAX Hardware Handbook

Guide to Writing a Device Driver for VAX/VMS

4-3

DEBUGGING TOOLS

TOPICS

I. VAX/VMS Debugging Tools

I1. The System Dump Analyzer (SDA)

A. Uses

B. Requirements

C. Commands

III. The System Map File

IV. - Crash Dumps and Bugchecks
A. How bugchecks are generated

B. Sample stacks after bugchecks

C. Sample crash dump analysis

V. The DELTA and XDELTA Debuggers

DEBUGGING TOOLS

VAX/VMS DEBUGGING TOOLS

Table 1 Environment vs. Debugging Tools

Problem/Environment Method of Analysis
Program IPL=0, VAX/VMS Symbolic Debugger
User mode (Linked with image or
Examine perprocess memory included at run time)
Program IPL = 0, DELTA debugger
User to kernel mode (Linked with an image or
included at run time)
Examine process Nonsymbolic

and system memory

Examine active System Dump Analyzer (SDA)
system Activated from DCL
Examine a Crash file System Dump Analyzer (SDA)

Activated from DCL

Program IPL > O XDELTA DEBUGGER
(Linked with VMS, run from
console terminal only)
Nonsymbolic

® VAX/VMS provides several debugging tools
e Method of analysis depends on
- Program environment

- Nature of desired analy3157

\Y} Qgﬁqabqé¢¢

4-5

DEBUGGING TOOLS

THE SYSTEM DUMP ANALYZER (SDA)

® The

System Dump Analyzer (SDA) is used to examine:

The system dump file (SYSSSYSTEM:SYSDUMP.DMP)

A copy of the dump file containing previous crash
information

The active system

e Through the SDA, information can be:

Displayed on a video terminal

Printed on a hard-copy terminal

Sent to a file or line printef

® Requirements for running SDA

VIRTUALPGCNT must be size of SYSDUMP.DMP plus 3000
(pages)

PGFLQUOTA must be size of SYSDUMP.DMP plus 2000
(pages)

To examine the active system, the CMKRNL privilege is
needed

To examine a dump file, read access to the file is
needed

DEBUGGING TOOLS

Table 2 Examining Crash Dump or Current System

To Examine Command Restrictions

Currxent System $ ANALYZE/SYSTEM CMKRNL priv
needed

System Dump File $ ANALYZE/CRASH_DUMP Read access to

or

file needed

Other Dump File

e SDA Functions

Examine locations by address or symbol

Displays process/system data
Formats and displays data structures

Assigns values to symbols as requested

® Command Format

SDA> command [parameter] [/qualifier]

DEBUGGING TOOLS

SDA Functions and Commands

Table 3 SDA Functions and Commands

Function Command
Information

Provides help using SDA HELP
Displays specific SHOW
data/information

Formats and displays FORMAT

data structures

Displays contents of EXAMINE
location(s)

Manipulation

Preserves second copy COPY
of dump file

Creates and defines symbols DEFINE
Performs computations EVALUATE
Sets/resets defaults SET
Defines other VMS symbols READ
Repeats last command REPEAT

or

<Keypad 0>

DEBUGGING TOOLS

Table 4 SDA Commands Used to Display Information

Function Command Comments

The last crash SHOW CRASH Dump file only

I/0 data structure SHOW DEVICE Device_name parameter
optional;
/ADDRESS=n

Contents of dump SHOW HEADER

file header

Resource locks SHOW LOCK /ALL

System page table SHOW PAGE_TABLE /GLOBAL, /SYSTEM
/ALL (D)

PFN database SHOW PFN_DATA /FREE, /MODIFIED
/SYSTEM, /BAD
/ALL (D)

Dynamic pool SHOW POOL /IRP, /NONPAGED
/PAGED, /SUMMARY,
/ALL (D)

Process-specific SHOW PROCESS /PCB (D), /ALL,

information /CHANNEL, /INDEX=n,
/LOCKS, /PO, /P1,
/PAGE_IABLES, /PHD,
/PROCESS_SECTION_TABLE,
/REGISTERS, /RMS,
/SYSTEM, /WORKING_SET

Lock manager SHOW RESOURCE /ALL, /LOCKID=nn

resource database

RMS display options SHOW RMS

Stacks SHOW - STACK /INTERRUPT, /KERNEL
/EXECUTIVE, /SUPER
/USER

Summary of all SHOW SUMMARY /IMAGE

processes

Symbol table SHOW SYMBOL Symbol-name parameter

optional; /ALL

DEBUGGING TOOLS

Table 5 Symbols and Operators

Function Symbol or Example

Operator
Contents of location @ Examine @80Q000@45A
Add 80000000 (SO base) G G45A
to address
Add 7FFE@QQ00 (Pl H H7A4
stacks) to address ‘
Current location . Format .
Hexadecimal number “H “H10Q
radix
Octal number radix e} ~020
Decimal number radix “D “D16
Register symbols R@¢-R11, AP, FP,

KSp, ESP, SSP, USP,

PUBR, POLR, PI1BR,

P1LR, PC, PSL

Table 6 Common Command Usage

Function

Command

Comment

Examine
location(s)

Examine address
at location

Format data

Define symbol

EX .
EX G14:G74

EX @USP

Format addr
Format @addr

Define BEGIN =

G580

One 1location
Several locations

Examine address found
contained in given
location

Format at given location
Format at contents addr

>
|

10

DEBUGGING TOOLS

Examining an Active System

$ ANALYZE/SYSTEM

VAX/VUMS Sustem Analuyzer

SDAr EVALUATE G+H(50%4)-(4/2)+707

Hex = B00001435 Decimal = -2147483323
ShA>

SDAx EXAMINE G25C0

SCH$GL _NULLPCE+118% 0QO000EZ274 *the."
SDAx

SDAX EXAMINE

SCH$GLNULLFCE+11IC? 00000000 RN

ShAx

SDA> EXAMINE ! used keurad 0 to rereat last command
SCH$GL_ _NULLFPCER+120¢ FFFFFFFF "eres!

SDAx

SDA> EXAMINE t used kewrad 0 to rereat last command
SCH$GL.NULLPCR+124t FFFFFFFF et

SDHA

Shax EX IOC$GL_DEVLIST
IOCHGL.DEVLIST?! B80000FSC "N
ShAx

ShA> EX RO

RO: 00000020 foaee!

SDAx

SDAx EX/FSL FPSL

CMF TF FFD IS CURMOD FRUMOD IFPL DV FU IV T N Z V C

0 0 0 0 USER USER 00 0 0 000100
ShAx .
SDA> EVALUATE/CONDITION C
ASYSTEM~F-ACCVIO0Oy access violationr reason mask=!XEy
virtuzsl address=iXLs PC=IXLsy PSL=1XL
sSpax
SpAx EX G100:1G140
00040019 B8FBCOOFC 00040018 BFBCOO03L <i<sevsaletornes 80000100
0004001k BFRBCOZFC 0004001A BFBCOOFC s sevsloornnn 80000110
00040011 BFEBCOFFC 0004001C BFRCOOFC le<esoselefovens 80000120
0004001F 8FERCO03C 0004001E B8FRCOLIFC 1o s vrvetoConnns 80000130
00040021 BFEBCO1FC 00040020 BFBCOOIO0 +svseralatelens 80000140

Example 1 Examining an Active System (Sheet 1 of 5)

DEBUGGING TOOLS

S80A> SHOW FROCESS
Frocess index! 0044 Name! HUNT Extended FID! 00000144

Frocess status! 02040001 RESsFHIRES

FCE address 801246730 JIR address 80200100
PHD' address 80507800 Swarfile disk address 01001C81
Master internal FID 00020044 Subrrocess count 0
Internal FPID 00020044 Creator internal FID 00000000
Extended PID 00000144 Creator extended FID 00000000
State CUR Termination mailbox 0000
Current epriority 7 AST’s enabled KESU

" Base priority 4 AST’s active NONE
uIcC [011,1401 AST’s remaining 7
Mutex count 0 Buffered I/0 count/limit 6/6
Waitindg EF cluster 0 Direct I/0 count/limit &/6
Starting wait time 1BOO1RIE BUFIO0 bute count/limit 7840/7840
Event flag wait mash DFFFFFFF ¥ oren files allowed left 36
Loeal EF cluster 0O E0000023 Timer entries allowed left 10
Local EF cluster 1 08000000 Active rade table count 0
Global cluster 2 rointer 00000000 Frocess WS rade count 250
Global cluster 3 rointer 00000000 Global WS rage count 50
SDA»

SitA» SHOW LOCK
Lock database

Lock idt 00010001 PID? 00000000 Flads! NOQUEUE SYNCSTS SYSTEM
Far. id: 00000000 Granted at EX CVTSYS
Sublocks! 0
LKE? 802573540
Resource! SF535933 24535953 SYS$8YS. Status! MNOQUOTA

Lendgth 16 00000000 00004449 IDsess s

xec.s mode 00000000 00000000 EEEERE

Sustem 00000000 00000000 DR A A A

Local corw

Lock id? 00020002 FID: 00000000 Flads! CONVERT NOQUEUE SYNCSTS
Far. id? 00000000 Granted st CR NOQUOTA CVUTSYS
Sublocks? 0 . -

LKE? 802357480 RLRAST

Resource! 41566224 42313146 F1iB$bVA Status! NOQUOTA

Lendth i8 20334C52 534D5658 XUMSRL3

Kernel mode 00000000 00002020 e e e e

Sustem 00000000 00000000 DR R

lLocal cory

Example 1 Examining an Active System (Sheet 2 of 5)

DEBUGGING TOOLS

SDA> READ OSI$LARBSI!GLORALS

shA
SDAX FORMAT BREXE$GL.TQFL
80108324 TRES$L_TQFL 80118040
80108528 TRE$L.TQEL 80002ES8
80108352C TRE$W.SIZE 0030
8010852E TRE$E.TYFE OF
8010852F TRE$E.RATYFE 05
801083530 TRE$L.FFC BO107F 36
TRE$L.FPID
80108334 TRE$L.AST 802002E4
TRE$L..FR3)
80108538 TRE$L_ASTFRM 802002A0
TRE$L.FR4
8010853C TRE$Q.TIME 9O0DNEDBGO
80108540 008D1CY9
80108344 TRE$Q.DELTA 00989680
80108548 00000000
8010854C TRE$EBR_.RMOD 00
80108540 TRE$B.EFN 00
8010834E 0000
80108550 TRE$L_RQFID 00000000
TRE$C_ LENGTH
ShAx
SDA> FORMAT @.
8011ER040 TRE$L.TQFL 80106918
8011B044 TRE$L.TQEL 80108524
8011R048 TAE$W.SIZE 0000
8011B04A TRE$E.TYFE OF
8011B04EB TRE$EB.RQTYFE 05
8011E04C TRE$L.FFC 80118E11
TRE$L.FID
80118050 TRE$L_AST 00000000
TRE$L.FR3
8011R054 TRE$L_ASTFRM 8011AEL10
TRE$L.FR4
8011R058 TRE$Q.TIME 924N0E60
8011R0SC 00801C?9
80118060 TRE$Q_DELTA 00989680
8011ER064 00000000
80118068 TRE$E.RMOD 00
BO11RB069 TRE$EB_EFN 00
8011B06A 0000
8011B04C TRE$L_RQFID 00000000

TQE$C_LENGTH

Example 1 Examining an Active System (Sheet 3 of 5)

BDhAx SHOW FOOL/IRFP

CONF

FCe

IRF

FCER

JIEB

801EDGOO

801EDY40

801EDAL0

801EDC8O

801EDDS0

Example 1

DEBUGGING TOOLS

Dumr of blocks allocated from IRF lookaside list

28106C00
80029200
8002C800
80020000
8002F400
00000000
00000000
00000020
00000000
00000000
00000000
00000000
00000000

00000000
00010001
00000001
00000001
000008ED
00000000
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000

00030029
8010AAEQ
80121BFO
11010001
00000000
4946204E
00030024
00000000
2061206F
00000004
00208001
00000000
00000000

00000000
00000000
00000001
00000040
00000007
00000000
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000

AF56414C
20202020

0763009C
00380000
80029800
8002CEQO
8002F200
80030A00
00000028
00000000
00000000
00000000
00000000
00000000
00000000

000700C0
00010001
00000000
00000002
00000000
00010004
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000

410A400C4
00000000
0003FFEBO
00000000
80257%5A0
801159F4
20020000
00000000
742064645
00000200
00000000
00000201
00000000

0006700C0
00010001
00000000
00000040
00000000
00010004
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000

002F0080
20202020

00000000
00002020
80029600
8002CC00
8002F000
8002FBOC
00000010
00000000
00000000
00000038
00000000
00000000
00000000

80LFC3RO
80259340
00ZEOBED
0003DAIG
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

80002A58
7FFC6928
7FFC6934
00000000
00900820
244C4C4a1
8011F470
7FFEROOCO
FAOB1603
08020054
02000000
Q000FFFF
00000000

80202E40
80261040
00060007
000302C3
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

8O01EDDSO
20202020

00000000
00000000
80029400
8002CA00
8002E000
BOO2F&00
0000006C
00000000
00000020
00000000
00000000
00000000
00000000

BO1EFSEO.

80259340
00000000
00000000
00000000
00000000
05490058
0000EAQO
00000000
00000000
00000000
00000000
00000000

801FS9A0
800394E8
1B1DCOOO
0100014F
00001200
0003520F
0000454C
7FFROCF8
03030000
4E495250
00000003
64280100
00000000

801EDEFO
80261040
00000001
00000000
00000000
00000000
05490058
0000A000
00000000
00000000
00000000
00000000
00000000

8O1ELDSO
20204549

seereresesCaalel
R FEIIRS - RIS
teesrerssvoneHoe
edeseblv e oMo P
st ereParsaTear b
sVee oo s v e o000
Loveresslonvonns
PEI L LI L O b
D N N A N N I R S A
sresBer vt e
I I S R S S S SN SR
DR A A I I S S N AR

L A A I N A A A I Y

OUus s OEv e Broovres
@*Zt@o%oootooooo
"00"‘00000000000
'OQQYZQQQQQO‘QQ.
st v s e e elMes e
LR I N R 2K 2K K K 2R X 2N 1
Xeloowovoronsnne
0\-’.'0'0.'00600000
L2 B I N R I I B I N B K2R
L R R A B R R N N
L I N K I N B N R K R N 4
L2 I O I N K B B DR O N 4

L A A A R B A)

.Y"X*QQ["GA)OQ'
h..'(il’QQOQ*QQ
vBev4il s0ses®one
00'0000..0.00000

.
teer sreaMZev e

sResALLSEY o N FI
LEssrtovees Xowo
MedoBodo v v nnnnn
sesrerezed to a
F‘RINT..Q..Q.‘Q"
NI A I S A I A A
00(6000.0"")00

L R I A K IR IR R B O A 1

T o84 v Besesree
BeBiBo&evisvrvons
voreloviov e o
ve et CRV By eBo v
teerarrrrroalene
R
Xeloeoosoosnsenn
DR N S AR S A A S A S A A Y
DR N S S S S S SR AP S S Y
RN I I IR S A S
DRI AT S IR S ST SR S S
R R I A I S S ST S S S)

[R R)

FIlesPlesso/LAVO
IE

Examining an Active System (Sheet 4 of 5)

4-14

DEBUGGING TOOLS

SoA
DA SHOW STACK/USER
Frocess stacks

Current orerating stack (USER)?

PFF314a44 00000000
PFF31648 000011F8 SGN$C_MAXFGFLY1FS
7FF31A4C 00000001
7FF31A50 00000000

JFF31A34 00001017 CTL$C.CLIDATASZ+773
7FF31A58 0001F3C2
7FF31A8C 00001023 CTLHC CLIDATASZY?FF

7FF31A60 0001ED74

5F 7FF31464 0000101R CTLHC.LCLIDATASZY?77
7FF31A68 00000000

7FF31Aa6C 00000000

FFF31A70 2FFCO000

7FF31474 7FF31AER

FFF31A78 7FF31aCC

7FF31Aa720C C000070E3 SGN$C..NFAGEDYN+BES
7FF31A80 000013a4F GONSCLMAXFGFL+3A
ZFF31684 00001017 CTLSC . CLIDATASZI773
7FF31a88 00000000

7FF3148C 00000000

JFF31490 0000000C

7FF31494 00001017 CTL$C CLIDATABZ+773
7FF31498 O0001EESS
7FF3149C 00001023 CTLHC.L.CLIDATASZY77F
7FF314A0 7FFEDDD4
7FF31aa4 00001DZER CTL$C..CLIDATAEZ+787
7FF314a8 00000003
7FF31A4AC 00001D117 CTL$C.CLIDATASZH+773

7FF31AB0O CQOO1EDD4
7FF31AR4 O0001E%26
7FF31AR8 0000000F
JFF31ABC 00000600 BUGS .NOHIJIMT
7FF31AC0 00000000
7FF31AC4 00000000
7FF31AC8 00000000
7FF31ACC 0001FESS
+ +

+ ¢

Example 1 Examihing an Active System (Sheet 5 of 5)

4-15

DEBUGGING TOOLS

THE SYSTEM MAP FILE
Overview

® MAP of linked executive

e Available on every VMS system
SYS$SSYSTEM:SYS.MAP

e Useful in debugging crash dumps and when reading source
code

Sections of SYS.MAP

1. Object module synopsis

e Listed in order processed by linker
e Includes creation data and source language

2. Image section synopsis

@ Lists base virtual address

3. Program section synopsis

e Lists PSECTs by base virtual address
® Includes PSECT size and attributes

4, Symbol cross-reference

e Lists global symbols alphabetically
® Includes symbol value, module(s) that define and
reference it

5. Symbols by value

e Lists global symbols by hexadecimal value
e Multiple symbols have same value

6. Image synopsis
® Miscellaneous information about the output image
7. Link run statistics

® Miscellaneous information about the 1link &run that
produced the image.

DEBUGGING TOOLS

SYS.MAP and Crash Dumps

1. Information in crash dumps given by value

e Virtual address of code (PC)
® Contents of data structures

-~ Virtual address references

- Symbolic references (for example, State of
process) ”

2. SYS.MAP.can be used to translate numbers to meaningful
information. ‘

® Program section synopsis (virtual address to source
code module)

e Symbols by value (value to symbol name)

SYS.MAP and Source Code

1. Layout of linked executive in S@ space
® Program section synopsis

2. Interrelationship of modules ("who references whom")
e Symbol cross-reference

3. Module entry points and global data locations

DEBUGGING TOOLS

CRASH DUMPS

® Generated when the system decides that it cannot continue
normal flow of work

e System attempts to copy all the information in physical
memory to a special file on a disk

Causes of Crash Dumps

e Fatal error or inconsistency (fatal bugcheck) recognized
and declared by a component of the operating system

® Bugcheck is declared by referencing a central routine
® Some reasons for declaring a fatal bugcheck:

- Exception at elevated IPL
- Exception while on interrupt stack

- Machine check in kernel mode
- BUG_CHECK macro issued

- HALT instruction restart
- Interrupt stack invalid restart

- Kernel or executive mode exception without exit
handler

W
I

18

DEBUGGING TOOLS

BUGCHECKS
The Two Types of Bugchecks

e Fatal - system must be taken down; no recovery possible

® Continue - nonfatal; the system may attempt recovery

How Crash Dumps Are Generated

® Written by the fatal bugcheck code
¢ For a dump to be written

- Bugcheck must be fatal

~ If nonfatal bugcheck, all bugchecks must be declared
fatal (done by setting BUGCHECKFATAL = 1)

- DUMPBUG (a SYSGEN parameter) must be set (= 1).
DUMPBUG is set by default.

- SYSSSYSTEM:SYSDUMP.DMP must be the correct size
file size = physical memory plus 4 (in pages)

- Console must be allowed to finish printing the
bugcheck output

DEBUGGING TOOLS

How Bugchecks Are Generated

BUGCHECKS are generated using the BUG_CHECK macro.

BUG_CHECK QUEUEMPTY, FATAL

generates
.WORD ‘XFEFF
-WORD BUGSQUEUEMPTY !4

Bugchecks are generated by system components (EXEC, RMS, ACP, and
so on) after detecting an internal (software) error.

Table 7 Sample BUGCHECKS

Name Module Type Description
BADRSEIPL RSE Fatal Bad IPL at entrance to RSE
FATALEXCPI EXCEPTION Fatal Fatal executive or kernel mode
exception
NOTPCB MUTEX Fatal Structure is not a PCB
UNABLCREVA EXCEPTION Cont. Unable to create virtual address
space
NOTE

When looking at the crash dump, PC minus 4 is

that address at which the BUG_CHECK macro is
referenced.

Kekk FATAL

CURRENT PROCESS =

REGISTER DUMF

BUG CHECKy

RO = 00000000

SOO0F DI
00000040

= ZFFAS0AF

80]1/F60

2 OOOOOObO
FFEU.u

!)OOOFIdH?

= Q0000000

KERNEL/INTERRUFT STACK

7FFE fﬂ”4

7n8c
090

: /1““8
PFFE7RCC
EFEZINO
ZFFEZDDA
ZEFEZDNG
JFFE7LDC
FFE7IEQ
7FFE7DEA4
JFFE7DES
7FFF/UEF

Example 2

ZEFEZR9E

Q0Q008FG

00000000
00000000
00000000
VEFEZDCE
BOOV0O14
BOOLTF16
00000002
TFFE7IRO

Q0000004
7F
FF L
00000014

(816101010101 19]

Q0000008
00000000
00000000
00000014
0000022%

SYSTE

DEBUGGING TOOLS

VERSTON = U4,0 SBRUVEXCEFT,

M

<«— MECHANISM ARRAY

<— SIGNAL ARRAY

<— SS$_ACCVIO
<— REASON MASK

<— FAULTING V.A.

< PC

QOCO0000
00000000
01040000

71

80009400
00000004
7FFEDOS2
00000000
00000000

03&00000

<« PSL

Unexrected swsbem service

Sample Console Output After Bugcheck

axoertion

DEBUGGING TOOLS

SAMPLE STACKS AFTER BUGCHECKS

Access Violation

SP—

4

7FFECDEA“4

FFFFFFFD

14

0

1

12

80052184

1800000

Figure 1

Probable Causes:

ESTABLISHER FRAME

DEPTH = -3 LAST CHANCE
RO

R1

SS$_ACCVIO
REASON
VA

PC

PSL

TK-8966

Stack After Access Violation Bugcheck

e Blown register
® Incorrect data structure field

e Improper synchronization

DEBUGGING TOOLS

Page Fault Above IPL 2

SP— R4
R5
1 REASON
314 VA
80050200 PC
150000 PSL
[]
®

TK-8967

Figure 2 Stack After Page Fault Above IPL-2

Probable Causes:

e Blown register in fork interrupt routine
e Improper start I/0 routine design

DEBUGGING TOOLS

Reserved Operand Fault

SPp—-»f 4
ESTABLISHER FRAME
DEPTH
RO
R1
3
454 SS$_ROPRAND
80051234 PC
00070000 PSL
- v
°
°
TK-8964
Figure 3 Stack After Reserved Operand Fault

Probable Causes:

REI

RET

failure

IPL problems (allocate memory at wrong IPL)

Blown stack

failure

24

DEBUGGING TOOLS

Machine Check in Kernel Mode (CPU Timeout)

28
0 REASON = CPU TIMEOUT
80014300 VA
TIMEOUT SBI ADDR
80053210 PC
1C150000 PSL

TK-8963

Figure 4 Stack After Machine Check in Kernel Mode

Reasons:

® Accessing nonexistent UBA or SBI address
® Corrupted page tables
® Processor device or bus failure

DEBUGGING TOOLS

Sample Crash Dump Analysis

“$ ANALYZE/CRASH SYS$SYSTEM:SYSDOUMP . DNF
VAX/UMS Sustem dumr analuzer

Dume taken on 3-0CT-1984 12:126:120.27
SSRVEXCEFPTs Unexrected sustem service excertion

SIA* sho crash
Sustem crash information

Time of sustem crash! 3I-0CT-1984 12126120.27
Version of sustem! VAX/VUMS VERSION V4.0

Reason for BUGCHECK excertion! SSRVEXCEFT, Unexrected suystem service excertion
FProcess currently executing! SYSTEM

Current imadge file! DRAOILSYS0.ILSYSMGRICRASHAST.EXE:3

Current IFL! 0 (decimal)

Gerneral redisters!

RO = 00000000 R1 = 8000FDD2 R2 = 00000004 R3 = 7FFAS0AF

R4 = BO106ERO RS = 00000000 Ré6 = 7FFEDN78A R7 = 7FFED78A

R8 = ZFFEDOS52 R? = 7FFEN23A R10 = 7FFEDDD4 R11 = 7FFE330C

AF = ZFFE7D88 FF = 7FFE7D70 SF = ZFFE7D70 FC = 8000OFIDIDB

FSL = 00000000

Frocessor redisters?

FORR = BO24R600 FCBER = 006CC478 ACCS = 00000000

FOLR = 00000003 SCEER = Q07EFEO0OOQ SRIFS = 00040000

F1ER = 7FASES00 ASTLVUL = 00000004 SRISC = 00000000

F1LR = Q001FFE96 SISk = 00180000 SRIMT = 00200400

SER = QQ7F2000 IcCCcs = 800000C1 SRIER = 00008000

SLE = 00003800 ICR = FFFFEC69 SEITA = 20000000
TODR = FE&470CS1 SRIS = 00000000

ISP = B022EA00

KSF = 7FFE7D70

ESF = 7FFE9EQOQ

SSF = 7FFEDO4E

USF = 7FF75360

Example 3 Sample Crash Dump Analysis (Sheet 1 of 4)

DEBUGGING TOOLS

s0A» sho stack
Current orerating stackhk

Current orerating stack (KERNEL)!

/FFE7RS0 7FFED23A
JFFE7DS4 7FFEDRDD4

7FFE7DS8 7FFE33DC CTL$AG_CLIDATA+180
7FFE7DSC 7FFE7D8S8 CTL$GL _KSTKBAS+E8E
7FFE7L60 7FFE7ZD70 CTL$GL_KSTKBAS+E70
7FFE7Dé4 7FFE7068 CTL$GL_KSTKRASHESE
7FFE7D&68 8000FDDS EXESEXCFTN+006

JFFEZD4C 00000000

8P =x 7FFE70D70 00000000
7FFE7074 00000000
7FFE7D78 00000000

7FFE7D7C 7FFE7DCS CTL$GL _RSTREAS+SCE
7FFE7D80 80000014 SYS%CALL_HANDL+004
7FFE7IB4 BO017F16 EXE$CONTSIGNAL+O7C
7FFE7D88 00000002

7FFE7D8BC 7FFE7DAC CTL$GL.KSTKEAS+GAC
7FFE7D90 7FFE7D94 CTL$GL.KSTKBAS+594

7FFE7DI?4 00000004
7FFE7D98 7FF75360
JFFE7D9C FFFFFFFD
7FFE7IA0 00CO00009
7FFE7DA4 00000002
7FFE7DA8 000008F8 SS$.ENDOFFILE+088
7FFE7RAC 00000005
7FFE7DRBO 0000000C
7FFE7DE4 00000000
7FFE7DE8 0000000C

7FFE7DBRC BOOOPF &8 MFH$QAST
7EFE7LCO 00C00004
7FFE7DC4 00000220 BUGY _MODRELNEAK

JFFE7DC8 00000000
JFFE7DCC 00240000
7FFE7DDO 7FF735378

7FFE7DD4 7FFE7DE4 CTL$GL KSTRBAS+IE4
7FFE7LD8 8000940C EXE$CMKRNL+OOD
7FFE7DDC 00000004

7FFE7DEO0 7FFE64E4 MMG$ IMGHOREBUF+0R4

7FFE7DE4 00000000

7FFE7DEB 00000000

7FFE7DEC 7FF75378

7FFE7DFO 7FF73360

7FFE7DF4 B8000FIDCE EXE$CMODEXEC+176
7FFE7DF8 7FFEDE®6 SYS$CMKRNL+006
7FFE7DFC 03C00000

Example 3 Sample Crash Dump Analysis (Sheet 2 of 4)

S
i

27

8¢~V

~-$255¢DUAZBILSYS.OBJISYS.EXESL

Fsect Name

$0SWFSCHED

$ZBUGFATAL

+ BLANK

ASEXENONFAGED

AES1

AES2

Module Name Rase
800087CE
OSWPSCHED 800087CE
80008BA78
BUGCHECK 80008A78
80008A78
EXSUBROUT 80008BA78
FORKCNTRL 80008E11
NULLFROC 80008B1F
SYSACFFIT 80008E21
SYSASCEFC 8000925C
SYSCANCEL 8000927k
SYSCANEVT 800093R6
SYSCHGMOD 800093EF
SYSDERLME 80009420
SYSFORCEX 8000945E
SYSQIQFDT 80009440
SYSSCHEVT 80009742
SYSQRIOREQ 800078AA
SYSSETFRI 8000%CIHC
SYSMTACCESS 80009070
MTFDT 80009074
80009090
ASTREL 80009070
FORKCNTRL 8000A044
TIMESCHIDL 8000A0OCSE
8000A37D
RSE 8000A370D
8000A676

Example 3

End

80008A74
80008A76

80008A78
80008BA78

8000908
80008B10
80008B1E
80008EB20
8000925k
80009274
800093B5
B800093EE
8000941F
8000945A
8000949F
80009741
800098A%
80009CIB
80009D6F
80009079
80009D8D

8000A37C
80004040
8000A0C4
8000A37C

800044675
80004675

8000A6AL

Length

000002A9
00000249

00000000
00000000

00001316
00000099
0000000E
00000002
0000073R
0000001F
000001 3B
00000039
00000031
0000003E
00000045
00000242
00000168
00000432
00000094
0000000A
00000014

00000TED
000002E1
00000081
000002ES

000002F9
000002F9

0000002C

A A A AA A A A A AN A~

-~~~

681.)
681.)

00)
0.)

48864
153.)
14.)
24)
18514
310)
315.)
974)
49.)
994
69.)
674.)
3604
1074.)
148.)
104D
20.)

1517.)
689.)
129.)
693.)

761.)
7614

44,)

16-SEF-1984 04100

VAX-11 Linker V04-00

Align Attributes

BYTE
BYTE

WORD
WORD

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE.
BYTE.

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

LONG
LONG
LONG
LONG

BYTE
BYTE

BYTE

0 NOFICsUSRyCONSREL,LCLyNOSHRy EXEsy RIy
0

1 NOPICsUSRsCONsRELsLCLsNOSHRy EXEs RDy
1 -

0 NOPICsUSRsCONSREL,LCLsNOSHRy EXEr RD»
0

/]

]

0

0

0

[

V]

0

0

0

0

0

0

4]

o]

2 NOFPICsUSRsCONYRELsLCLsNOSHRy EXEy RD»
2

2

2

0 NOPICsUSRsCONSRELsLCLyNOSHRy EXE» RD»
4]

0 NOPICsUSRsCONYRELsLCLsNOSHR» EXE» RIDs

Sample Crash Dump Analysis (Sheet 3 of 4)

Padge 7

WRTsNOVEC
WRT»NOVEC

WRTyNOVEC

WRTsNOVEC

WRTyNOVEC

WRTyNOVEC

ST00d: DNIDONGAd

~

01C6 469
01C6 470 i+
01Cé6 471 3
01C6 472
01Cé 473
01C6 474
01C6 475
01C6 476
01C6 477
01C6 478
01C6 479 3
01C6 480 5
01C6 481
01C6 482
01C6 483
01C6 484 ;
01C6 485 '3
01C6 486
01C6 487
0iCé6 488
01C6 489
01Cé 490
0iC6 491 &
01C6 492
01Cé 493
01C6 494 3
01C6 495
01C6 496 3
01C6 497 i
01C6 498
01C6 499 3
01C6 500 3
01Cé6 S01 3
01C6 502
01Cé6 503 i~
01C6 504
01Cé 505 QN
01C6 506
01Cé6 507
01C6 508
01C6 509
0iCé 510
01CB 511
01CE 512
01B1 513 5%
0106 514
0108 515

01Dp8 916 MF
oing 317 SC

01b8 518
01DC 519
01E2 520
01E8 521
01ED 522
01EF 523
Example 3

DEBUGGING TOOLS

+SBTTL SCH$QAST - ENQUEUE AST CONTROL BLOCK FOR F

-+

FUNCTIONAL DESCRIFTION:?
SCH$QAST INSERTS THE AST CONTROL KRLOCK SUFFLIED IN
FOSITION RY ACCESS MODE IN THE AST QUEUE OF THE FR
BY THE PID FIELD OF THE AST CONTROL EBLOCK. AN. AST
I8 THEN REPORTED FOR THE FROCESS TO REACTIVATE FRO
IF APFROPRIATE. THE AST CONTROL EBLOCK WILL BE REL-
IF THE PID SFECIFIES A NON-EXISTENT FROCESS.

LOADARLE MULTI-FPROCESSING CODE WILL REFLACE THIS R
ENTIRELY NEW CODE» AT MFH$QAST.

CALLING SEQUENCE:
BSRB/JSE SCH$QAST

INFUT FARAMETERS!
R2 - PRIORITY INCREMENT CLASS
RS - FPOINTER TO AST CONTROL ELOCK

IMFLICIT INFUTS!
FCE OF FROCESS IDENTIFIED BY FID FIELD

OUTPUT FPARAMETERS!?
RO - COMFLETION STATUS CODE
R4 - PCB ADDRESS OF FROCESS FOR WHICH AST WAS QUEU

SIDE EFFECTS?
THE FROCESS IDENTIFIED RBY THE FID IN THE AST CONTR
WILL BE MADE EXECUTAELE IF NOT SUSFENDED.

COMPLETION CODES:
S5$_NORMAL - NORMAL SUCCESSFUL COMPLETION STATUS
88%_NONEXPR - NON-EXISTENT FROCESS

+ENAEBL LSE

ONEXFR? ,
5 DEALLOCATE THE ACE AS LONG AS THE NODELETE RIT I
5 THIS REALLY SHOULDN’‘T HAFFPENs BUT IF IT DOESy WE
TO FOSSIBLY LOSE FOOL OVER POSSIBLY CORRUFTING I

BES FACE$V_NODELETE»ACB$R.RMOD(RS) »5%3 BR IF N
MOVL RSsRO RELEASE AST CONT
ESEUW EXE$DEANONFAGED IF NO SUCH FROCE

¢ MOVZUWL #SS$_NONEXFRsRO SET ERROR STATUS
BRE QEXIT ANDI EXIT

- wr e e

HERAST ¢

HeQRAST ¢
MOVZUWL ACB$L_FID(RS)sRO
DSEINT #IPL$._SYNCH DISARLE SYSTEM E
MOVL GW"SCH$GL .PCBVECLROIyR4 LOOK UP PCE ADDR
CHMFPL ACB$L.PID(RS) +FCESL.FID(R4) 7 CHECK FOR MA
BNEG QNONEXFR # PID MISMATCHES
CLRL RO i ASSUME KERNEL MO

MULTI-FROCESSING
ENRUEUE AST FOR
GET FROCESS INDE

wr ar W wr W

Sample Crash Dump Analysis (Sheet 4 of 4)

>
I

29

DEBUGGING TOOLS

DELTA AND XDELTA

Table 8 Comparison of DELTA with XDELTA

Factors DELTA XDELTA

Usage User images Operating System Drivers
Terminal used Any TTY Console only (OPA@:)

for control

IPL =0 >0

How activated Linked or included Included at boot time

at run time

Access mode All modes Kernel mode only

Both debuggers are:

e Nonsymbolic

e Use name command syntax

@ No visible prompt

e Error message is "Eh?"

4-30

DEBUGGING TOOLS

DELTA Debugger

To use the DELTA debugger, assemble and link a program in the
following fashion:

1. $ MACRO prog_nameSYSSLIBRARY:LIB/LIB
2. $ LINK/DEBUG prog_name, SYSSSYSTEM:SYS.STB/SELECT
3. S DEFINE LIBSDEBUG DELTA
4. $ RUN prog_name
Steps:

1. Assembles the program allowing system macros to be defined
(SYSSLIBRARY:LIB/LIB) .

2. Links the program with a debugger and resolving any system
symbols (SYS$SYSTEM:SYS.STB).

3. Define the debugger used to be DELTA.

4., Activate the program mapping in DELTA.

DEBUGGING TOOLS

CHMK Program

It is often convenient to observe data structures changing
dynamically. One way to gain access to kernel mode data
structures is to run the CHMK program. This program allows any
privileged process (with CMKRNL privilege) to change mode to
kernel, and enter DELTA commands (for example, to look at system
data structures).

NOTE
Extreme caution should be exercised that data
structures not be modified, since such
modification could lead to a system crash.

Perform the following steps to use the CHMK program.

1. Assemble CHMK.

2. Link CHMK.

3. Indicate the DELTA debugger.

4, Run the CHMK program,

5. Enter a breakpoint in the program and tell it to proceed.

The Corresponding Commands are:

1. $ MACRO CHMK SYSSLIBRARY:LIB/LIB

2. $ LINK/DEBUG CHMK, SYSS$SYSTEM:SYS.STB/SELECT
3. $ DEFINE LIBSDEBUG DELTA

4, $ RUN CHMK

5. 215;B;P

Note that at step 4, no prompt from DELTA is given.

After you receive the "stopped at breakpoint" message, you are
in kernel mode, and may proceed to examine system data structures.
To leave the program, type ';P', followed by EXIT. (If you just
type EXIT, you will be logged off, since kernel mode exit implies
process deletion.)

DEBUGGING TOOLS

This program gets you into kernel mode.
Use with DELTA debugger to examine system locations.

.WORD O

SCMKRNL_S ROUTIN = 10$
RET

.WORD O

NOP

NOP

MOVZBIL #SSS$_NORMAL, RO
RET

.END GO

Example 4

4-33

WO NS ME NE Ne ND e~

Null entry mask

Enter kernel mode

all done

Null entry mask

Where BPT instruction
is placed (215;B)

Return success status

All done in kernel mode

The CHMK Program

DELTA and XDELTA Functions and Commands

DEBUGGING TOOLS

Table 9 DELTA and XDELTA Functions and Commands
Function Command Example
Display contents address/ GA88/00060034

of given address

Replace contents
of given address

Display contents

of previous
location

Display contents
of next location

Display range of
locations
Display indirect
Single step

command

Set breakpoint

Display breakpoint

addr/contents new

<ESC>

addr/contents <LF>
addr/contents

addr ,addr/contents

<TAB>

or

addr,N;B <RET>
(N is a number 2-8)

;B

GAB88/00060034 GAS8S

GA88/00060034 'A'
(Replace as ASCII)

80000PA88/80000BE4 <ESC>
80000AB4/00000000
80000004 /8FBCOFFC
80000008/50E9002C
G4,GC/8FBC@FFC

80000008/50E9002C
8000000C/00000400

80000A88/80000BE4 <TAB>
8000PBE4 /80000078

80000A88/80000BE4,/80000078
1 brk at 8600B17D

S

8000B17E/9AQFBB@5

800@55F6,2;B

;B
8009B17D
2 800@55F6

-

DEBUGGING TOOLS

Table 9 DELTA and XDELTA Functions and Commands (Cont)
Function Command Example
Clear g,N;B <RET> g,2;B
breakpoint
Proceed from ;P H %
breakpoint
Set base 'value' ,N;X 80000000,0;X
register
Display base Xn <RET> X0
register or 000000033
Xn= X0=00000003
Display general Rn/ RO/00000003
register - (n is in
Hexadecimal)
Show value expression= 1+2+3+4=0000000A

Executing stored

addr;E <ret>

command strings

Change display

mode

[B
[w
[L
[v

(+,-,*,%{divide})

8000UPESS;E

Byte width

Word width

Longword width
ASCII display

| = Moy s tsimclin

9

RF+d (PSL)

Figure 5

DEBUGGING TOOLS

SYSTEM
COMPONENT
INVOKES
BUG_CHECK. ...
GENERATES
EXCEPTION

¥

SYSTEM
DISPATCHES
(THROUGH SCB)

TO
EXE$OPCDEC

C

JUMP TO
EXE$BUG_CHECK

Bugcheck Flow of Control

APPENDIX A

BUGCHECK FLOW OF CONTROL

HANDLE IN
TRADITIONAL
WAY
(EXCEPTION
DISPATCHER,
ETC.)

TK-9009

(Sheet 1 of 3)

DEBUGGING TOOLS

‘ EXE$BUG_CHECK >

¥

READ
BUGS$_XXXX
CODE
FOLLOWING

FF, FE OR FF, FD

YES FATAL ‘l’EVR'TE
BUGCHECK RROR LOG
ENTRY

FATAL
BUGCHECK

A

READ FATAL SEXIT_S -

BUG #5S$_BUGCHECK
CODE FROM

SYS.EXE

JUMP TO
BUGSFATAL

Figure 5 Bugcheck Flow of Control (Sheet 2 of 3)

TK-9010

BUGSFATAL

BUILD
DUMPFILE
HEADER

DEBUGGING TOOLS

REBOOT
REQUESTED

PRINT

INFO OPERATOR
ON SHUTDOWN
CONSOLE

WRITE

DUMPFILE

DUMP
REQUESTED

REBOOT
REQUESTED

TELL
MICRO
TO
REBOOT

XDELTA CALL

PRESENT XDELTA
(BREAKPOINT)
PRINT

OPERATOR SHUTDOWN

SHUTDOWN MESSAGE ON
CONSOLE
LOOP

' FOREVER

TK-9011

Figure 5 Bugcheck Flow of Control (Sheet 3 of 3)

DEBUGGING TOOLS

APPENDIX B
PATCH

The patch utility enables a user to ‘'edit' an image file.
Patch is intended to be used on non-DIGITAL software. Application

of patches to DIGITAL software, other than those that are
DIGITAL-supplied, invalidate the warranty.

Table 10 PATCH Commands

Function Command

Display contents of one Examine
or more locations

Store new contents in Deposit
one or more locations

Insert one or more Insert
symbolic instructions

Verify the replace Replace
contents of location

Display various ' SHOW parameter
information (e.g.,
module names)

Alter default settings SET parameter
(e.g., module name
referenced) .

Scheduling

SCHEDULING

INTRODUCTION

Scheduling is the selection of a process for a particular
action or event. The scheduler, a software interrupt service
routine at 1IPL 3, is responsible for selecting which
memory-resident, executable process will be the next one to use
the CPU. The scheduler code performs the exchange of hardware
process contexts between the set of resident, computable processes
and the currently executing process.

The swapper, a system process, selects processes for removal
from, or placement in, memory. Outswap operations move processes
in memory-resident states to corresponding outswapped states.
Inswap operations transform executable, nonresident processes into
executable, resident ones. -

Additional support routines provide the logic to establish and
satisfy a range of conditions for which processes may wait.
Examples of these conditions include system service requests (such
as SHIBER, SRESUME, or SWAITFR) and resource waits (such as mutex
wait or depleted system dynamic memory).

OBJECTIVES

1. For each process state, describe the properties of a
process in the state, and how a process enters and leaves
the state.

2. Given a set of initial conditions and a description of a
system event, describe the operation of the scheduler.

3. Assign priorities for a multiprocess application.

4, Discuss the effects of altering SYSGEN parameters related
to scheduling.

SCHEDULING

RESOURCES

Reading

® VAX/VMS Internals and Data Structures, the chapter on
Scheduling.

Additional Suggested Reading

® VAX/VMS Internals and Data Structures, the chapters on
Software 1Interrupts, Process Control and Communication,
Timer Support, Swapping, and Synchronization Techniques.

Source Modules

Facility Name Module Name
SYS SCHED
RSE
SYSWAIT
SDAT

SWAPPER (local
label SWAPSCHED)
OSWPSCHED
SYSPCNTRL

5-4

II.

III.

Iv.

VI.

VII.

SCHEDULING

TOPICS

Process States

A. What they are (current, computable, wait)

B. How they are defined

C. How they are related

How Process States are Implemented in Data Structures

A. Queues

B. Process data structures
The Scheduler (SCHED.MAR)
Boosting Software Priority of Normal Processes

Operating System Code that Implements Process State Changes

A. Context switch (SCHED.MAR)

B. Result of system event (RSE.MAR)

Steps at Quantum End

A. Automatic working set adjustment

Software Priority Levels of System Processes

SCHEDULING

THE PROCESS STATES

WAIT o

DELETE CUR 2 com J=m = como) «=creaTE

(SCHEDULER) {(SWAPPER)

Figure 1 Process States

1. CURRENT -~ executing

2. WAIT - removed from execution to wait for event completion

3. COMPUTABLE - ready to execute

4. WAIT OUTSWAPPED

5. COMPUTABLE OUTSWAPPED

SCHEDULING

Process Wait States

DR~~~
O~

DELETE CUR | com | COMO)<= CREATE
CF -~
¥ -2
ffmmmmmmam

@ e oan S oEn emn o e e

Figure 2 Process Wait States

SCHEDULING

Ways to Leave the Current State

1.
2.
3.
4.

6.
7.
8.

10.

DELETE

Figure 3 Ways to Leave Current State

Wait for common event flag(s) set (SWAITFR)

Wait for local event flag(s) set (SWAITFR)

Hibernate until wake-up (SHIBER)

Suspended until resume ($SUSPND)

Removed from execution-quantum end or preempted

Page read in progress

Wait for free page available

Wait for shared page to be read in by another process
Wait for miscellaneous resources oOr mutex

Deletion

SCHEDULING

Ways to Become Computable (Inswapped)

CUR

@

Figure 4 Ways to Become Computable (Inswapped)

1. Common event flag(s) set

2. Local event flag(s) set

3. Wake-up (SWAKE)

4., Resume (SRESUME)

5. Removed from execution-quantum end or preempt

6. Page read complete

7. Free page available

8. Shared page read complete

9. Miscellaneous resources available or mutex available
10. Outswapped computable process is inswapped

SCHEDULING

Inswapped to Outswapped Transitions

cOoM

Figure 5 Inswapped to Outswapped Transitions

SCHEDULING

Ways to Become Computable (Outswapped)

com . <= CREATE

Figure 6 Ways to Become Computable (Outswapped)

5-12

SCHEDULING

HOW PROCESS STATES ARE IMPLEMENTED

Queues

Pointer = SQFL

=—> —>
Y~saBL | T~

i

state
"listhead"
PCB PCB PCB

Figure 7 A State Implemented by a Queue

e The state of a process is defined by:

- The value in the PCB$W_STATE field
- The PCB being in the corresponding state queue

® State queues are circular

e The current state is not implemented as a queue

- Just a longword pointer (SCH$SGL_CURPCB)

- Queue structure not necessary because only one process
in the current state

e VAX instructions for manipulating queues:

-~ INSQUE new_entry, predecessor
- REMQUE out_entry, return_address

SCHEDULING

Implementation of COM and COMO States

BITMAP (1 EACH FOR COM, COMO)

FOR STATE COM
BITS 31 00

&Q{/j LONGWORD QUEUE BIT MAP

::SCHS$GL_COMQS

PRIORITIES O 31
LISTHEADS (32 EACH FOR COM, COMO)

QUEUE HEADERS

QUEUE 0 . L ::SCH$AQ_COMH
PRIORITY 31 L ::SCH$AQ_COMT
, !

TK-8974

Figure 8 Implementation of COM and COMO States

® COM state implemented as a collection of queues

® Designed to speed scheduler's search for highest-priority
computable process

- A queue for each software priority
- Summary longword records nonempty COM queues

- Internally, software priority stored as inverted value
(as 31 minus priority)

® COMO state is implemented like COM state

- 32 more queues
- Another summary longword

5-14

SCHEDULING

Example of Computable Queues

BITS 31 0
111
PRIORITIES O 31
\.r‘ ~
QUEUE 25 L .- >
PRIORITY 6 RIORITY 6 nd
—— PRIORITY 5 — PCB PCB
"
— PRIORITY 4 —\
e

Figure 9 Example of Computable Queues

TK-8975

e COM processes at priorities 4 and 6
-~ Bit 25 in summary longword is set
- Queue for priority 6 has entries
- Bit 27 in summary longword is set

- Queue for priority 4 has an entry

5-15

SCHEDULING

Implementation of Wait States

e —

—

State Count

Figure 10 Wait State Listhead

HIBER| 2

|HlBER lHIBER

HIBERNATE PCB PCB
LISTHEAD

TK-8952

Figure 11 Implementation of Wait States

SCHEDULING

Implementation of CEF State

SCH$GQ_CEBHD::

[CEB

I

PCB

I

PCB

I

Wait Queue PCB

CEB Name

CEB

i

Wait Queue PCB

CEB

PCB

I

Wait Queue |&=—— PCB

CEB

Wait Queue

Figure 12 Implementation of CEF State

® CEB created when event flag cluster created

® CEB contains the cluster, CEF state queue listhead, and
other information about the cluster
® One CEF state queue for each CEF cluster

5-17

SCHEDULING

Summary of Scheduling States

e Current

Implemented with one longword pointer

- Contains at most one process

e Computable and computable-outswapped

Each consists of a summary longword, and 32 queues

e Voluntary wait (LEF, LEFO, SUSP, SUSPO, HIB, HIBO)

One queue for each state

e Involutary wait (PFW, PFWO, FPG, FPGO, COLPG, COLPGO,

MWAIT, MWAITO)

- In four queues

Resident and outswapped in same queue (differentiate

with resident bit in PCBSL_STS)

Usually not in these states very often

SCHEDULING

Process Data Structures Related to Scheduling

SQFL
SQaBL
PRI
PHYPCB
STS
PRIB STATE

Figure 13 Scheduling Fields in Software PCB

SQFL, SQBL - state queue forward, backward 1links, 1link
PCBs in a given state

STATE - process state

PRI - current software priority

PRIB - base software priority
PHYPCB - physical address of hardware PCB
STS - process status

5-19

SCHEDULING

Saving and Restoring CPU Registers

PR$_PCBB —p STACK POINTERS
KESU

General Purpose
Registers RO-R11

AP
FP

PC

PSL
POBR
AST LVL POLR
P1BR
P1LR

Figure 14 Saving and Restoring CPU Registers

® Process-specific CPU registers saved/restored during
context switch 0
QV?&
iﬁxd ,

SVPCTX instrpuction (G
y BT e k-5t [V
- opies registerns to hardware PCB

- Switches to Interrupt Stack
- Does not save P@BR, POLR, PlBR, PlLR, ASTLVL

e LDPCTX instruction

- Pushes PC, PSL on kernel stack.(REI removes them

'\\ &
. /
\\.‘M,..‘-—»f«ﬁ-’/

- Restores registers (except PC, PSL) from hardwaij PCB

SCHEDULING

THE SCHEDULER (SCHED.MAR) M
S
1 7 SCH$RESCHED - RESCHEDULING INTERRUFT HANDLER &
25
3 3 THIS ROUTINE IS ENTERED VIA THE IPL 3 RESCHEDULING INTERRUFT.
4 i THE VECTOR FOR THIS INTERRUFT IS CODED TO CAUSE EXECUTION
9 3 ON THE KERNEL STACK.
6 ¥
7 # ENVIRONMENT? IFL=3 MODE=KERNEL
8 & INPUT: 00(SF)=FC AT RESC 4 -INTERRUFT
9 04(SF)=FSL AT INTERRUFT.
10 -
i1 +ALIGN LONG
12 MFH$RESCHED?? sMULTI-FROCESSING CODE HOOKS IN HERE
13 SCH$RESCHEDS FRESCHEDULE INTERRUFPT HANDLER
14 SETIFL #IFL$_SYNCH $SYNCHRONIZE SCHEDULER WITH EVENT REFORTING
15 SVUFPCTX iSAVE CONTEXT OF PROCESS
16 MOVL L"SCH$GL .CURFCEsR1 $GET ADDRESS OF CURRENT FCR
17 MOVZEL FCB$BE_FRI(R1)sR2 i CURRENT FRIORITY
18 BRSS R2yL"SCH$GL _COMRS,10¢ i MARK QUEUE NON-EMPTY
19 10%% MOVW = #SCH$C.COMsFPCES$W_STATE(RL1) SET STATE TO RES COMFUTE
20 Movan SCH$AR-COMTLR21+R3 sCOMFUTE ADDRESS OF QUEUE
21 INSQUE (R1)s@(R3)+ § INSERT AT TAIL OF QUEUE
22 i+
23 % SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION
24
25 § THIS ROUTINE SELECTS THE HIGHEST FRIORITY EXECUTAELE PROCESS
26 3 AND PLACES IT IN EXECUTION.
27 -
28 MPH$SCHED?? fMULTI-FROCESSING CODE HOOKS IN HERE
29 SCH$SCHEDS S §SCHEDULE FOR EXECUTION
30 SETIFL #IPL$_SYNCH FSYNCHRONIZE SCHEDULER WITH EVENT REFORTING
31 FF8 F¥0s$32,L"SCH$GL_COMQSR2 sFIND FIRST FULL STATE
32 REQL SCH$IDLE #NO EXECUTABLE FROCESST?
33 MOVAQ SCH$AR.COMHLR21R3 s COMPUTE QUEUE HEAD ADDRESS
34 REMQUE @(R3)+sR4 §GET HEAD OF QUEUE
33 RVS QREMFTY §BR IF QUEUE WAS EMPTY (BUG CHECK)
36 BNEQ 20% FQUEUE NOT EMPTY
37 EECC R2yL."SCH$GL.COMQRS,»20% FSET QUEUE EMPTY
38 20%¢ -
39 CMFE $DYNSC_PCR»FCE$B_TYFE(R4) #MUST BE A FROCESS CONTROL EBLOCK
40 ENEQ REMFTY sOTHERWISE FATAL ERROR
41 MOVW SCHC_CUR»FCEBSW_STATE(R4) $SET STATE TO CURRENT
42 MOVL R4rL"SCH$GL_.CURFCE _#NOTE CURRENT FCER LOC
43 CMFE FCE$B_FRIB(R4) yFCE$B_FRI(R4) $CHECK FOR EBASE
44 iFRIORITY=CURRENT
45 BEGL 30% §YESy DONT FLOAT FRIORITY
46 BEC $4sFCE$B.FPRI(R4) »30¢ sDONT FLOAT REAL TIME FRIORITY
47 INCE PCE$SE_FRI(R4) sMOVE TOWARD BASE FRIO
48 304t MOVE FCE$R_PRI(R4)sL"SCH$GB_FRI $SET GLOBAL FRIORITY
49 MTFR FCE$L_FHYFCEB(R4) »#FR$_FCEER iSET FPCE BASE FHYS ADDR
50 LOPCTX FRESTORE CONTEXT
51 REI i NORMAL RETURN
g2
53 SCH$IDLE? iNO ACTIVE, EXECUTAEBLE FROCESS
54 SETIFL #IFL$_SCHED sDROF IFL TO SCHEDULING LEVEL .
55 MOVE $#32,L"SCH$GB_FRI $SET 'PRIORITY TO -1(32) TO SIGNAL IDLE
56 ERE SCH$SCHED JANDY TRY AGAIN
57 :
58 QEMPTY! BUG.CHECK QUEUEMFTYsFATAL $SCHEDULING QUEUE EMPTY
59
60 +END

Example 1 The Scheduler (SCHED.MAR)
5-21

SCHEDULING

Comments on SCHED.MAR:

1.

Current process ---> computable resident
a. Entry point
b. Synchronize access to scheduler database

c. Save hardware context of current process in hardware
PCB

d. Insert PCB at tail of COM queue
Highest-priority computable resident process ---> current

a. Entry point

b. Synchronize access to scheduler database

c. Remove PCB from head of COM queue

d. Restore hardware context, push PC and PSL onto stack

e. Transfer control to current process

Ul
|

22

SCHEDULING

BOOSTING SOFTWARE PRIORITY OF NORMAL PROCESSES

@ Usually normal interactive process has base priority 4

e To help interactive processes compete with compute-bound
processes

- Boosts applied upon certain events (I/0 completion,
resource available)

- Different boosts for different events

- Current priority equals greater of:

e Current priority
® Base priority plus boost

- Lowering of priority

® Each time process scheduled, decrement priority
(until reach base priority)

® Return to base priority at quantum end if COMO
process exists

- Not allowed to boost above normal priority range
(9-15)

SCHEDULING

Example of Process Scheduling

Table 1 1Initial Conditions for Scheduling Example

Process Type Base Priority Priority State
Swapper System 16 16 HIB
Null Compute Bound 7} g COoM
A Compute Bound 4 9 CUR
B I/0 Bound 4 19 COMO
C Real-Time 18 - 18 HIB

Symbol Event

@ 1/0 Request
@ Preemption
@ Quantum End

MKV84-2151

Figure 15 Scheduling Example Symbols

SCHEDULING

QUANTUM

M
20
w| =
o
pa—— L] L] L}

14

SOFTWARE

PRIORITY 12

LEVELS

10

g o @

TIME —>

Figure 16 Example of Process Scheduling - Part 1

1. Process C becomes computable. Process A is preempted.

2. C hibernates. A executes again, one priority level lower.

A experiences quantum end and is rescheduled at its base
priority. B is computable outswapped.

4. The swapper process executes to inswap B. B is scheduled

for execution. g/ . Z’fwgzﬁﬁp ﬁ@%ﬁ ﬁgfﬁ

SOFTWARE
PRIORITY
LEVELS

6.
7‘

SCHEDULING

QUANTUM

20

8|] C]
16 fwareed]

14

10

S

. of
2
0 NULLi

TIME —>

]

Figure 17 Example of Process Scheduling - Part 2

B is preempted by C.

B executes again, one priority level lower.

B requests an I/0 operation (not terminal 1I/0). A
executes at its base priority.

A requests a terminal output operation. The null process
executes.,

A executes following I/0 completion at its base priority
plus 3. (The applied boost was 4.)

SOFTWARE
PRIORITY
LEVELS

19.

11.

12.

13.

14.

SCHEDULING

QUANTUM

—i
20
e []
] I T

14

12

10

o de g,

e |
()

Ko x

00 06 0000000 00 OO0

TIME —>

Figure 18 Example of Process Scheduling - Part 3

A is preempted

by C.

A executes again, one priority level lower.

A experiences
priority level

A is preempted
to B Dbecause
priority.

B is preempted

quantum end and is rescheduled at one

lower.

by B.
the

by C.

A priority boost of 2 is not applied
result would be less than the current

SCHEDULING

QUANTUM

| s |

20
| [<] CJ C] C]]
16 pa— oeE—
14

SOFTWARE

PRIORITY 12

LEVELS
10

8 ﬁo é’) ®
4 ﬁ ‘ = nono
: .

000 0000000 DOODOOO©O®O

TIME —>

Figure 19 Example of Process Scheduling - Part 4

15. B executes again, one priority level lower.

16. B requests an I/O operation. A executes at its Dbase
priority.

17. A experiences quantum end and is rescheduled at the same
priority (its base priority).

18. A is preempted by C.

SCHEDULING

IMPLEMENTATION OF PROCESS STATE CHANGES

Table 2 Operating System Code for Scheduling Functions

Function Module Routines
Change between CUR and COM SCHED.MAR SCHSRESCHED
SCHSSCHED
Move between resident and SWAPPER.MAR SWAPSCHED
outswapped INSWAP
OUTSWAP
Move in and out of wait RSE.MAR SCHSRSE
states SCHSUNWAIT

(and others)

Quantum end processing RSE.MAR SCHSQEND

5-29

SCHEDULING

Process A Process B Process C
Per Process |
Space USER USER
Process PROGRAM A PROGRAM B
Context
System
Space SWAPPER
Process CODE
Context
CONTEXT
System SWITCH
Space
System TIMER SCHEDULER
Context 1/O COMPLETION @ > g{;g?& INTERRUPT
SET EVENT FLAG EVENT SERVICE
WAKE ROUTINE
RESUME

Figure 20 Interaction of Scheduling Components

SCHEDULING

Report System Event Component (RSE.MAR)

‘System events cause transitions between process states.

|
These transitions are accomplished by the code in RSE.MAR.

Inputs to RSE

a.

PCB address

Event number (number for WAKE, CEF SET, and so on)

flow

-

Event checked for significance (for example, WAKE only
if in HIBER state).

PCB removed from wait queue and wait queue header
count decremented.

PCB inserted on COM or COMO state queue after priority
adjustment, and summary bit set.

Swapper process can be awakened (if PCB was inserted
on COMO queue).

Scheduler interrupt at IPL 3 requested if the new
computable process has software priority greater than
that of current process.

5-31

SCHEDULING

STEPS AT QUANTUM END
Real-Time Process

l.
2.

Reset PHD$B_QUANT to full quantum value.

Clear initial quantum bit PCBS$V_INQUAN in PCBSL_STS.

Normal Process

Reset PHD$B_QUANT to full quantum value.

Clear initial quantum bit PCBS$V_INQUAN in PCBS$L_STS.

If any outswapped process computable, set current software
priority PCB$B_PRI to base priority PCB$B_PRIB.

If SWAPPER needed, wake SWAPPER.

If CPU limit imposed, and limit has expired, queue AST to
process for process deletion.

If not, then calculate automatic working set adjustment.

Request scheduling interrupt at IPL 3.

SCHEDULING

Automatic Working Set Adjustment

® Goal: optimal working set size
- Large enough to allow good program performance
- Small enough to optimize overall memory usage
e Adjustment calculated at quantum end
- If high paging rate, want to increase working set size

- 1If low paging rate, may want to decrease working set
size (take back some physical memory)

e Usually gives large increases, small decreases

@ Only affects the list size, not the number of entries in
use ,

® No adjustment done for real-time processes

® Can disable adjustment for normal processes

- Perprocess: $ SET WORKING_SET/NOADJUST

- System-wide: SYSGEN> SET WSINC 0

5-33

SCHEDULING

Automatic Working Set Adjustment

PAGE
FAULT

RATE

WSINC

PFRATH—

PFRATL—

WSDEC
-—

Tl
’ t———AWSMIN
MINWSCNT

Figure 21 Automatic Working‘Set

WORKING SET SIZE

L-WSMAX

Adjustment

v

TK-9008

SCHEDULING

Rules for Working Set Adjustment

1. If PFRATL < PFRate < PFRATH, no adjustment is necessary.

2. If PFRate > PFRATH then perhaps WSSIZE = WSSIZE + WSINC.

~ WSSIZE can grow to WSQUOTA anytime

- WSSIZE can grow to WSEXTENT if free pages > BORROWLIM

3. If PFRate < PFRATL then perhaps WSSIZE = WSSIZE - WSDEC.

- WSSIZE can shrink to AWSMIN (no smaller)

Example 2 Working Set Adjustment Algorithm

5-35

SCHEDULING

Example of Working Set Size Variation

WSSIZE =i

WSMAX —

WSEXTENT—

WSQUOTA—

AWSMIN —
MINWSCNT —

® ® © © ®

TIME =————p

TK-9012

Figure 22 WSSIZE Variation Over Time

Table 3

Reasons for Working Set Size Vvariations

Time

Reason for WSSIZE Change

a

Page
Free

Page
Page

Page
Free

Page
Free

faults > PFRATH
page count > BORROWLIM

faults < PFRATL
faults < PFRATL

faults > PFRATH
page count < BORROWLIM

faults > PFRATH
page count > BORROWLIM

SCHEDULING

Forcing Processes to Quantum End

Prog.

Program B $Qlo $WAITFR

_____ .
—10TA —

I Context
Switch

Program A

Figure 23 Use of the IOTA System Parameter

e IOTA - special system parameter (in 10 ms units)

e Deduct IOTA units from time quantum when process enters
wait state

® Used to force processes to quantum end

® Not charged to process CPU limit

SCHEDULING

SOFTWARE PRIORITY LEVELS OF PROCESSES

Table 4 Software Priority Levels of Processes on VMS
Base

Process Priority Purpose
NULL 7} Consume idle CPU time
default user 4 User activities
SYMBIONT n 4 Input/output symbiont
OPCOM 6 Operator communications
ODS-1 disk ACPs 8 ODS-1 disk file structure
Tape ACPS 8 Tape file structure
ERRFMT 7 Write error log buffers
JOB_CONTROL 8 Queue and accounting manager
NETACP 8 DECnet ACP
REMACP 8 Remote ACP
SWAPPER 16 System-wide memory manager

@ Base priority of process determined by argument to SCREPRC

system service

® Base priority of system processes

- Most are established during system initialization

~ Base priority of ACPs is
system parameter

controlled by ACP_BASEPRIO

e Normal processes receive priority boosts

SCHEDULING

SUMMARY

Table S

SYSGEN Parameters Relevant to Scheduling

Function

Parameter

Base priority for Ancillary Control Processes

Minimum number of working set pages

Minimum amount of time that must elapse for
significant sample of a process page fault rate

Minimum number of pages required on free page
list before working sets are allowed to grow
beyond WSQUOTA (checked at quantum end)

Base default priority for processes

Time alloted to each of a process's exit
handlers after CPU limit expires

Amount of time to deduct from process gquantum
for each voluntary wait

Minimum number of fluid working set pages

Page fault rate above which VMS attempts
to increase the process working set size

Page fault rate below which VMS attempts
to decrease the process working set size

Maximum amount of CPU time a normal process can
receive before control passes to a computable

process of equal priority
Number of pages for working set size decrease
Number of pages for working set size increase

Maximuim number of pages for any working set

ACP_BASEPRIO

AWSMIN

AWSTIME

BORROWLIM

DEFPRI
EXTRACPU

IOTA (%*)

MINWSCNT

PFRATH

PFRATL

QUANTUM

WSDEC

WSINC

WSMAX

(*) = special SYSGEN parameter

Process Creation
and Deletion

PROCESS CREATION AND DELETION

INTRODUCTION

This module discusses the operations required to create and delete
processes under VAX/VMS.

Process creation and deletion involve several different components
of VMS. Discussion in this module focuses on the process context
of each component. Some operations execute in the context of the
process that requests the particular action, while others execute
in the context of the target process.

Interactive and batch processes involve additional components such
as command language interpreters (CLIs), the job controller, and
possibly the input symbiont process. 1In addition, interactive and
batch processes may require execution of the LOGINOUT image for
such functions as mapping the CLI.

The discussion of the life cycle of processes should contribute to
a better wunderstanding of the implications of multiprogramming
application designs.

OBJECTIVES

1. To assist in the design of efficient multiprogramming

applications, the student must understand how the
following kinds of processes are created and deleted:

- User-created processes
- Interactive processes
- Batch processes

2. To alter process characteristics (beyond the functionality
provided by DCL), the student must know how process
context is built.

3. To assist 1in managing processes, the student must
understand the effects of altering SYSGEN parameters
related to process creation and deletion.

PROCESS CREATION AND DELETION

RESOURCES
Reading \

1. VAX/VMS Internals and Data Structures, chapters on process
Creation, process deletion, and interactive and batch
jobs.

Source Modules

Facility Name Module Name
SYS SHELL
PROCSTRT
SYSCREPRC, SYSDELPRC
LOGIN
JOBCTL
INPSMB

PROCESS CREATION AND DELETION

TOPICS

I. Process Creation

A. Roles of operating system programs

B. Creation of process data structures

II. Types of Processes

III. Initiating Jobs

A. Interactive

B. Batch

IV. Process Deletion

V. SYSGEN Parameters Relating to Process Creation and Deletion

PROCESS CREATION AND DELETION

PROCESS CREATION

Table 1 Steps in Process Creation and Deletion

Action

Code

Creating process

Inswap a process

Process startup

Process deletion

SYSSCREPRC

SWAPPER

PROCSTRT

SYSSDELPRC

Table 2 Three Contexts Used in Process Creation

Creator's

Swapper's

New Process's

Context Context Context

SCREPRC From SHELL PC= EXESPROCSTRT

e PCB PHD filled in PSL= K mode, IPL=2
e JIB COMO --> COM Sets up:

e PQB (temp)

SW priority
boost

Process re-
turned COMO

logical names (sysSinput...)
Catch-all cond. handler

RMS dispatcher

XQP merged in

Image name moved to PHD
Image activated

PROCESS CREATION AND DELETION

Creation of PCB, JIB, and PQB

JB |€—
Creator
(Pooled
Quotas)
PCB
) New Process
4
PCB
$CREPRC L
arguments -—
Control (..
Region
Process
Quota
:F ™ Block
(PQB)
"') Process
Header

Figure 1 Creation of PCB, JIB and PQB

1. SCREPRC allocates new data structures

- PCB ;
~ JIB (if new process is detached)

- PQB (temporary)
2. These new data structures are filled from:

-~ SCREPRC arguments
- Creator's PCB

- Creator's control region
—~ Creator's process header

- System defaults

*SYSGEN -

PQL_xxxx parameters

PROCESS CREATION AND DELETION

Relationships Between PCBs and JIB

JIB for
all processes
in this job

MPID = 001AS

pooled
quotas

-
-

name w
PID O01AS
@ |PrcoNT 2
OWNER 0
JiB [
name X name Y
PID 008 1E PID 00824
PRCCNT O @ PRCCNT 1
OWNER O01AS OWNER O01AS
JiB @ JiB &
name Z
PID 0073F
PRCCNT O
OWNER 00824
Jig
Figure 2 Relationships Between PCBs and JIB

All PCBs point to JIB

W created X and Y

W's PRCCNT is 2

X and Y owner PID is W PID

Y created 2

No pointers from creator to subprocess

PROCESS CREATION AND DELETION

PCB Vector

$SSCHS$GL_PCBVEC

NULL PCB
SWAPPER pCB UL
ERRFMT e of PROCESS
SWAPPER

JOB_CONTROL [y

NULL
YMBIONT_ 0001
PIPPIN

——

NULL
BATCH_195
NULL

FRODO of

SAM 3 s MERRY

of
SAM

Figure 3 PCB Vector

® On process creation, search for unused vector

® Unused vectors point to Null's PCB

e Table of pointers to all PCBs

e Index into table is contained in PID

e SCHSGL_PCBVEC points to start of table

*SYSGEN -

MAXPROCESSCNT

6-10

PROCESS CREATION AND DELETION

PID and PCB, Sequence Vectors

’ S SCH$GL_PCBVEC

® $8 SCHSGL_SEQVEC
|

NULL |t @I

APPER | PROCESS
SWAPPE INDEX

rﬁ

Sequence no.

s -

Y

PepdL-EPFD

I_) to PCB of Extended PID
new process

Figure 4 PID and PCB, %ﬁgggnce Vectors
w’wﬁmgﬁhaﬁ@M*W§ (@Q@mﬁﬁkﬁ

!t

e Extended P contalns four parts:

Process index into PCB and sequence vectors<}3:5>

Process sequence number <2014
Cluster node index <¢%i2»
Node sequence number <39:26S

e PID formed at process creation

® Sequence number incremented each time vector slot re-used

® SCHS$GL_SEQVEC points to start of sequence vector>

PROCESS CREATION AND DELETION

Process IDs

® There are actually two PIDs for a process
e Extended PID

- Visible at the user level

- Uniquely identifies a process on a single system, and
on a VAXcluster

- Displayed by VMS utilities and system services
- Stored in PCB at offset PCBSL_EPID
- Format is very subject to change
e Internal PID
- Only visible through SDA, and in VMS source code
- Stored in PCB at offset PCBSL_PID

- Only contains process index and sequence number
(original pre-v4 PID)

-~ Used by most kernel-mode code

- Some privileged data structures contain internal PIDs
(for example TQESL PID, ACBSL_PID, and LKBSL PID)

® Several routines available for manipulating PIDs

Table 3 Routines for Manipulating PIDs

Operation . Mechanism

Convert an extended PID to an internal PID EXESEPID_TO_IPID
Convert an internal PID to an extended PID EXE$IPID_TO_EPID
Return the PCB address given an EXESEPID _TO_PCB

extended PID

Return the PCB address given an EXESIPID_TO_PCB
internal PID

PROCESS CREATION AND DELETION

Swapper’s Role in Process Creation

_Mio @ .
’
é?‘ﬁw‘%swp

I+
@
(o}
P
$#

VBN

WSSWP

PCB

Figure 5 Swapper's Role in Process Creation

pce$l -

e For new process, WSSWP is less than or equal to zero

® WSSWP less than or equal to zero causes SHELL to be copied

® Swapper f;{%%ﬁﬁ{@

- Stores SYSGEN parameters in PHD
- Initializes pointers, counters in PHD

- Initializes system page table entries

PROCESS CREATION AND DELETION

PROCSTRT’s Role in Process Creation

«

> JB
New Process
PCB
@
[
@
< Control
Region
Process
Quota)
v N
Block Y 1
(PQB) —>| Process
Header

Figure 6 PROCSTRT's Role in Process Creation

® Hardware PCB defined in SHELL

e PC and IPL invoke PROCSTRT at IPL 2
® Code located in SYS.EXE

e Functions

- PQOB information moved to PHD and Pl
- Create logical name tables

- Change to user mode, IPL 0

- Map in F1l1BXQP

- Call SYSSIMGACT

- Call image at transfer vector

PROCESS CREATION AND DELETION

TYPES OF PROCESSES

Table 4 Types of Processes

Created Creating Special
By Code Properties
Batch Job Controller SUBMIT, ~ Deleted upon logout,
SSNDJBC, or at end of command
SCREPRC stream :
- No password check
Detached Another RUN, SCREPRC - Survives deletion of
process its creator
- May be interactive
or not
Network Network ACP SCREPRC - Deleted when no more
(result of DCL logical links to
command with service
node name)
Subprocess Another RUN, SPAWN, - Cannot survive

process (the
owner) .

LIB$SPAWN,
SCREPRC

deletion of owner
Quotas are pooled
with owner

May be interactive
or not

RUN and SPAWN call SCREPRC

After system initialization

An interactive process has:

A process is created by another process
Process creation is done by S$SCREPRC

PCBSV_INTER bit set in PCBSL_STS field
Non-file-oriented SYSSINPUT

PROCESS CREATION AND DELETION

Table 5 PCB Fields Defining Process Types

PCBSV_BATCH PCBS$V_NETWRK PCB$V_INTER PCBSL_OWNER

Network o ‘ 1 o o
Batch 1)] %]
Detached "] /) @ or 1 @
Subprocess @] @ or 1 non-zero

e PCBS$V_xxx symbols represent bits in PCBSL_STS longword

e These bits in the status longword

- Are intended ONLY for use by the system (for example, the
job controller or SPAWN)
- Can be set using STSFLG argument to $CREPRC

e Interactive processes have the PCBSV_INTER bit set

Table 6 Restrictions on Process Creation

Quota/Limit Meaning

MAXJOBS Maximum number of interactive, detached, and batch
processes a user may create

MAXDETACH Maximum number of detached processes a process
may create

PRCLM Limit on number of subprocesses a process may
create

Privilege Required for

DETACH or Creation of a detached process with a different

CMKRNL UIC than the creator

6-16

PROCESS CREATION AND DELETION

The LOGINOUT Image

e Initialize the process permanent data region (store
SYSSINPUT value, etc.)

@ Perform initializations specific to the type of process

Network process

Validate user name and password
Map CLI if necessary

- Batch process

Obtain job parameters from job controller

- Subprocess

No special initialization

- Interactive process (only if initiated by unsolicited
terminal input)

Ensure that SYSSINPUT is non-file-oriented
Process system password (if necessary)
Write SYSSANNOUNCE [y M«W

Verify user name and password
Check for re-connections
Ensure that interactive job quota not exceeded

- Detached process

Store user name (no need to verify password)’

e Check job limits, account and password expiration, and

hourly restrictions
A& fﬁﬁfﬂ
¥

¢ If interactive process, write welcome messageci?@
e Initialize CLI if not activating a single image
e Alters process characteristics to match UAF record

- privileges
- gquotas

® Pass control to CLI or to image

PROCESS CREATION AND DELETION

INITIATING JOBS
Initiating an Interactive Job M‘E‘
#

37
Terminal 4,;(:
Driver \}‘ y
¢ \‘@5
Job \%\9‘
Controlier eff ¥
%{ﬁ“\x@\

Creates) (ﬁ
\% Context of Job
Process %{,@ Controlier Process

Context of Newly
Created Process

2
$SPAWN

D
LOGINOUT.EXE oM

D
® If not subprocess CBN‘ [

- Verify Username,
Password ‘

- Set quotas, privileges, UIC and
username from UAF record

© Set up process permanent files

® Pass control to CLI

Figure 7 1Initiating an Interactive Job

e Initiated by unsolicited input at a free terminal

- Job controller notified by driver
- Creates process with user name equal to terminal name

e LOGINOUT runs

e DCL mapped (or alternate CLI)

® SPAWN creates an interactive or non-interactive subprocess
(no need to verify user name, etc.)

6-18

PRy

&

PROCESS CREATION AND DELETION

Initiating Job Using $SUBMIT

$ SUBMIT X.COM JBCSYSQUE.DAT
SUBMIT utility o ":"’u.
CLI sctivates notifies Job Controler ontrotier
SUBMIT utility
Creates
process -
SYSSINPUT
SYSSCOMMAND

LOGINOUT.EXE

1) No username/password
verification

SYSSOUTPUT
SYSSERROR
2) SYSSINPUT and SYSSOUTPUT

are different k
C x106 BATCH.LOG

Figure 8 Initiating Job Using S$SUBMIT

o Similar to interactive process, except
- Job controller notified by DCL ($SﬁBMIT)
- User already validated
- Files are assigned:

SYSSINPUT to batch stream
SYSSOUTPUT to log file

PROCESS CREATION AND DELETION

Initiating Job Through Card Reader

Job
Controller

Card
Reader
Driver

$ SUBMIT X.COM | supMIT utility Job

notifies Job

CLI activates c f Controller JBCSYSQUE.DA
SUBMIT utility ontratler \ ’
Creates BATCH.COM
process v
SYSS$INPUT
SYSSCOMMAND

LOGINOUT.EXE

1) No username/password
verification

2) SYS$INPUT and SYS$OUTPUT
are different

BATCH.LOG

MKV84-2777

Figure 9 1Initiating Job Through Card Reader

1. Job controller notified by card reader driver
2, Job controller creates input symbiont process
- User authorization
- Read cards into command file
- Submit as batch job

3. Same as for S$SSUBMIT

PROCESS CREATION AND DELETION

PROCESS DELETION

e After image runs and exits, process deleted
- Unless running with a CLI
@ All traces of process removed from system
e All system resources returned
e Accounting information passed to job controller

e For subprocess, all qubtas and limits returned to creator

® Creator notified of deletion

PROCESS CREATION AND DELETION

Process Deletion Sequence

name oTG

PID 003AE

PRCCNT 2

OWNER O
name BERT name ERNIE
PID 00423 PID 00518B
PRCCNT O PRCCNT O
OWNER OO3AE OWNER OO3AE

Figure 10 Process Deletion Q
AR

o0 Deleted by kernel AST while CURRENT

o Sequence

- Delete any subprocesses

- Accounting information to job controller

- Call SYSSRUNDOWN

- Delete Pl space

- Free PCBVEC and SWAP slots, page file space
- Decrement counts

Balance set
Total processes

- Jump to SCHSSCHED

SUMMARY

PROCESS CREATION AND DELETION

Table 7 Steps in Process Creation and Deletion

Action

Code

Creating process

Inswap a process

Process startup

Process deletion

SYSSCREPRC

SWAPPER
PROCSTRT

SYSSDELPRC

Table 8 SYSGEN Parameters Relating to Process Creation
and Deletion

Function Parameter
Maximum number of processes allowed on the MAXPROCESSCNT
system
System default values for some process limits PQL Dxxx
and quotas -
System minimum values for some process limits PQL_MxxX

and quotas

System Initialization
c:nd Shutdown

SYSTEM INITIALIZATION AND SHUTDOWN

INTRODUCTION

The study of the initialization of a VAX/VMS system provides a
convenient summary of many of the topics previously discussed in
this course. It is during initialization that the structures,
mechanisnms, and other features of the VMS environment are
established.

Each component of the initialization sequence is discussed
from turning on the power to the final start-up command procedure
and the enabling of logins. 1Included is an explanation of:

® Why each component executes in its particular environment

e Why it executes at its position in the overall
initialization sequence.

Hardware differences between VAX systems, especially the
components of the console subsystem, have an effect on the initial
stages of system initialization. The basic configurations of the
VAX-11/730, VAX-11/750 and VAX-11/780 are described, highlighting
the effects of the differences on. the initialization sequence.

In addition, some time is spent discussing the shutdown and
recovery sequences involved in power failure and bugcheck.

OBJECTIVES

1. Describe, in general terms, the sequence of operations
involved in:

e Initial bootstrap
e Powerfail and recovery
® Bugcheck and reinitialization

2. Describe the differences between console subsystems of the
VAX family systems, and the effects on system
initialization.

3. Discuss the effects of altering SYSGEN parameters relating
to system initialization.

SYSTEM INITIALIZATION AND SHUTDOWN

RESOURCES
Reading

1. VAX/VMS Internals and Data Structures, chapters on error
handling, bootstrap procedures, operating system

initialization, and powerfail recovery.

Source Modules

Facility Name Module Name
BOOTS SYSBOOT, SYSGEN
, VMB
SYS INIT
' SYSPARAM
POWERFAIL
BUGCHECK, BUGCHKMSG
SYSINI SYSINIT
Hardware Microfiche CONSOLE. SYS

Memory ROM program

II.

SYSTEM INITIALIZATION AND SHUTDOWN

TOPICS

Initialization

A.

B.

C.

D.

System initialization sequence
Functions of initialization programs
How memory is structured and loaded
Start-up command procedures

SYSBOOT, SYSGEN

VAX-11/7889, VAX-11/750, and VAX-11/730
differences and how they affect initialization

Shutdown and Restart

A.
B.

cC.

Front panel switches

Shutdown procedures and their functions

Autorestart sequence

Powerfail recovery

hardware

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/780, 11/750, 11/730 CONSOLE DIFFERENCES
780 and 730

Contain a console microprocessor

780 - LSI-1l1
730 - 8085

Boot/restart information available on console media

780 - floppy
730 - TUSS

750

No console microprocessor

Boot/restart information in ROM (normally) or on disk

SYSTEM INITIALIZATION AND SHUTDOWN

SYSTEM INITIALIZATION

TEST

L
LOAD INITIAL
PROGRAM
v
OBTAIN SYSTEM
PARAMETERS
A 2
LOAD OPERATING
SYSTEM

2
RUN INITIALIZATION
CODE
L 2

ACTIVATE STANDARD
COMMAND PROCEDURE

L 2

ACTIVATE SITE'S
COMMAND PROCEDURE

@

Figure 1 System Initialization

SYSTEM INITIALIZATION AND SHUTDOWN

SYSTEM INITIALIZATION SEQUENCE

11/750 11/780;11/730
MICROPROCESSOR
CONSOLE PROGRAM STARJS Up
(D DEVICE SPECIFIC BOOT BLOCK @
INFORMATION PRO%RAM
l CONSOL.SYS
- y
VMB‘.EXE
SYSBO:)T.EXE
SYS‘.'EXE ®
SYSIN‘IVT.EXE '

START‘l‘JP.COM
SYSTARTUP.COM

Figure 2 System Initialization Sequence

1. Bootstrap computer using ROMs in CPU
2. Bootstrap computer using LSI-11 (780) or 8085 (7340)
3. Finish system initialization

Finish preparing system

Load operating system

Run operating system initialization code

Activate VMS standard and site-specific DCL procedures

SYSTEM INITIALIZATION AND SHUTDOWN

INITIALIZATION PROGRAMS

Table 1 Initialization Programs
Program Function Environment
CONSOLE. SYS Loads VAX writable diagnostic control store LSI (7889)
(CONSOLE.EXE Acts as monitor for console terminal commands 8085 (730)
on 730) On boot command loads, passes control to CPU (759)
VMB. EXE
VMB. EXE Sizes and tests physical memory, discovers VAX memory

SYSBOOT.EXE

INIT
(in SYS.EXE)

SYSINIT

external adapters
Sets up primitive SCB

Locates, loads, and passes control to
SYSBOOT. EXE

Locates and loads SYS.EXE

Loads SYSBOOT parameters

Opens and stores location of dump file

Sets up full SCB

Sizes system space, sets up system page table
Maps nonpaged pool into high end of physical
memory

Loads terminal driver and system disk driver
Sets up PO page table

Passes control to INIT in SYS.EXE

Turns on memory management

Maps and initializes the I/0 adapter

Maps paged pool

Initializes several scheduling and memory
management data structures

Invokes SCHED.MAR

Opens and stores locations of page files
and swap files

Maps RMS and system message file as system
sections

Mounts system disk

Physical
address

VAX memory

Physical
address

VAX memory
Physcial
address/
Virtual
address

Process

SYSTEM INITIALIZATION AND SHUTDOWN

Table 1 1Initialization Programs (Cont)

Program Function Environment

STARTUP.COM Creates several system logical names Process
Creates job controller, error log formatter,
OPCOM processes
Invokes INSTALL
Invokes SYSGEN for autoconfigure
Invokes SYSTARTUP.COM

SYSTARTUP.COM Site-specific, such as: Process

Create logical names

Load user-written device drivers

Install privileged and shareable images
Set up queues and terminal characteristics

~
I

11

SYSTEM INITIALIZATION AND SHUTDOWN

PHYSICAL MEMORY DURING INITIALIZATION

ON ENTRY TO VMB.EXE ON ENTRY TO SYSBOOT.EXE
Restart Parameter Restart Parameter
Block (RPB) «SP Bloc.k (RPB) «—RPBSL.BASE
Primary Primary +°X200
Bootstrap Bootstrap
Program Program
VMB VMB
Symen1Conuo|chk(sc3)'*PRs‘SCBB
for VMB
PFN Bitmap

Bootstrap Stack

SP

A

Secondary
Bootstrap
Program

SYSBOOT

Figure 3 Physical Memory During Initialization

e Console or ROM programs have located 64K bytes of good
contiguous memory.

e On entry to VMB.EXE

Console program has loaded VMB into the known good memory,
leaving 512 bytes for the Restart Parameter Block.

® On entry to SYSBOOT.EXE
VMB has loaded

- Restart Parameter Block with values from R@-R5

- System Control Block with vectors pointing to one
routine

- PFN Bitmap with map of error-free pages in physical
memory -

- SYSBOOT.EXE

VMB has also allocated Bootstrap Stack, used by VMB and
SYSBOOT.

SYSTEM INITIALIZATION AND SHUTDOWN

PHYSICAL MEMORY LAYOUT AFTER SYSBOOT ENDS

<+ 0

Dynamic Pages

<4+— MMG$GL_.MAXPFN
(Physical Page Number) -
PFN Database

Nonpaged Executive
Code and Data

Nonpaged Dynamic Memory

Interrupt Stack

<4— PR$_SCBB
System Control Block (Physical Address)

System Header

<4— PR$_SBR

System Page Table (Physical Address)

<4— Largest PFN

Figure 4 Physical Memory After SYSBOOT

SYSBOOT has

e Sized the pieces of memory shown above

@ Filled in the SCB and part of the system header

e Mapped and read in SYS.EXE (Executive code)

SYSTEM INITIALIZATION AND SHUTDOWN

TURNING ON MEMORY MANAGEMENT

PO
Region

System
Space

Virtual Address Space

From SYSBOOT

Physical Address Space

EXES$INIT::
MOVL RPB$L_BOOTRS5(R11).FP
MTPR #1.S*#MAPEN
JMP @#10% <
10$: .
MOVL EXES$GL_INTSTK.SP
.
[]
EXES$INIT::
MOVL RPB$L_BOOTR5(R11),FP
MTPR #1,S*"¢MAPEN
JMP @#10%
10$: <
MOVL EXE$GL_INTSTK,SP

Figure 5

| EXESINIT:: (D)
MOVL RPBSL_BOOTRS(R11)FP
| MTPR #1.5A#PRS_MAPEN
JMP @#10$
10§:
MoVvL

EXE$GL_INTSTK,SP
°

Turning on Memory Management

SYSTEM INITIALIZATION AND SHUTDOWN

Turning on Memory Management

e Done by INIT in SYS.EXE

e Physical to virtual transition:

1.

e All address references treated as physical
addresses

e INIT page table entries set up so P@g virtual
address

equals physical address

e SO and PJ page table entries for INIT contain same
PFNs

Writing a 1 to processor register MAPEN causes
following address references to be treated as virtual
addresses

Next instruction is found in P@ space

When INIT was linked, base was in S@ space, so JMP
@#10S causes jump to address in SO space

SYSTEM INITIALIZATION AND SHUTDOWN

SYSINIT

® Created by swapper as part of one-time initialization
routine

e Selected from COM queue after SWAPPER goes into normal HIB

e Major functions:

- Opens and records locations of page and swap files

- Maps RMS and system message files

- Creates XQP global section

- Mounts system disk

- Creates start-up process

SYSTEM INITIALIZATION AND SHUTDOWN

START-UP

Start-Up Process
e Runs as final part of initialization

e Runs using DCL command procedures

- STARTUP.COM

- SYSTARTUP.COM

STARTUP.COM

e Assigns logical names

e Installs VMS images
e Creates system processes

- ERRFMT

- JOB_CONTROL

- OPCOM

® Autoconfigures all devices

SYSTARTUP.COM

® Mounts volumes other than the system disk
e Assigns site-specific logical names
® Sets up site-specific

- Terminal characteristics

- Print and batch queues

e Installs site-specific images

® Starts DECnet

e Loads user-written device drivers

SYSTEM INITIALIZATION AND SHUTDOWN

SYSBOOT AND SYSTEM PARAMETERS

=

SET USE CURRENT

®

parameter
SYSBOOT Parameter
Table Settings
USE of in Memory @
DEFAULT Working Image of U
Values Executive
USE filespec
Default
Parameter
Settings
Internal
to
SYSBOOT

Figure 6 SYSBOOT and System Parameters

SYSBOOT executes as part of system initialization.
1. Automatically brings in current parameters
2. Allows changes if conversational boot requested

e Valid commands are USE, SET, CONTINUE, EXIT
@ Can alter all parameters used in present system
@ Cannot create alternate parameter files

3. Writes parameters to copy of SYS.EXE in memory

4. Later in initialization sequence, parameter values
copied to VAXVMSSYS.PAR for subsequent boots

are

SYSTEM INITIALIZATION AND SHUTDOWN

SYSGEN AND SYSTEM PARAMETERS

Default
Parameter
Settings
Internal
to
SYSGEN

Parameter
Settings
in Memory
Emage of
Executive

SYSGEN runs as an editor-like utility under VMS

l‘

USE ACTIVE

USE filespec

Figure

SYSGEN
Table
of
Working
Values

')

7 SYSGEN and System Parameters

WRITE ftilespec

WRIT

WRITE
CURRENT

E

ACTIVE

Parameter
Settings
in Memory
Image of
Executive

SYSGEN copies active system parameters into its buffer

Can replace all values with
or with values in an alternate file

val

ues,

current,

default

or

Can alter individual parameters in SYSGEN buffer

Use

WRITE command to record new values:

Can create alternate parameter files

Can alter dynamic parameters on present system
Can alter parameters used on mnext system boot

active

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/780 PROCESSOR

FPA ucs

FLOPPY
DISK [

SYSTEMS

CONSOLE -
LA120 - VAX¢¥H78° MEMORY MEMORY | MULTIPORT | MULTIPORT

CONTROLLER [CONTROLLER| MEMORY MEMORY
REMOTE
DIAGNOSIS | MEMORY
CACHE
1/0 ADAPTORS

¥ ¥ 3

1 STANDARD 4 OPTIONAL 1 OPTIONAL
3 OPTIONAL

Figure 8 VAX-11/780 Processor

Program on ROM causes CONSOLE.SYS to be loaded from floppy

.
into LSI-11 memory

e CONSOLE.SYS runs on LSI-11

- Loads diagnostic control store

Causes ROM in memory controller to find 64K good bytes

Loads VMB.EXE from floppy disk to VAX memory

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/750 PROCESSOR

Ucs
Tus8
SYSTEMS
LA120 CONSOLE VAX-11/750 MEMORY
CPU CONTROLLER
Dﬁf*ﬁiSS
IAG ! MEMORY
CACHE
I/O ADAPTORS
UNBUS MASSBUSr
1 STANDARD 3 OPTIONAL
Figure 9 VAX-11/750 Processor

e Console program stored in ROM with CPU

- Locates 64K good bytes

- Passes control

e Device ROM

to device ROM

- Reads boot block from device

e Boot block program

- Loads VMB.EXE from specified system device

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/730 PROCESSOR

4-RLO2s
Dual TU58s FPA IDC or,
3-RLO2s
Console & 1-R80
RD Subsystem Data Path
§ LA120 [Control Store
Memory Controlier/
Input/Output

COMBO
Board

Figure 10 VAX-11/730 Processor

® Program on ROM causes CONSOLE.EXE to be loaded from TU58 into
8085 memory

® CONSOLE.EXE runs on 8@85

- Loads microcode into CPU from TUS5S8

- Executes DEFBOO - loads registers of CPU, finds 64K good
bytes

- Loads VMB.EXE from TU58

SYSTEM INITIALIZATION AND SHUTDOWN

VAX FRONT PANELS

KEY SWITCH
LOCAL
ATT RU
OFF N POWER REMOTE LOCAL /REMOTE
AUTO) /' DISABLE DISABLE
RESTART BOOT
_/ _/ OFF REMOTE
ON
VAX-11/780@ Panel
BOOT DEVICE POWER ON ACTION Locmt(ey SWITCH
CPU STATE /
SECURE REMOTE/
POWER RUN ERROR INITIALIZE SECURE
OFF REMOTE

A BOOT

B RESTART
C HALT ™
D RESTART

VAX-11/75@ Panel

RUN DCON BATT R/D rﬂlnmn VM]‘V73O
O O O O LOCAL / LOCDSBL
gg:o RESTARTON BOOT §'T'o_sﬁ REwDSEL
" REMOTE
VAX-11/730 Panel
Figure 11 VAX Front Panels

Table 2

SYSTEM INITIALIZATION AND SHUTDOWN

Switches on the VAX-11/786, /730, /7580

11/780

11/750

11/730

Ef fects on Console
Terminal and System

OFF

LOCAL/DISABLE

LOCAL

REMOTE

REMOTE/DISABLE

OFF

SECURE

LOCAL

REMOTE

REMOTE/SECURE

STANDBY

LOCAL/DISABLE

LOCAL

REMOTE

REMOTE/DISABLE

OFF

Power partially off

Local terminal-program

I1/0 mode only. Remote
disabled.

Local terminal-program
I/0 mode and console
I/0 mode. Remote dis-

abled.

Local terminal disabled.
Remote-console I/0

mode and program I/0
mode.

Local terminal disabled.

Remote-program I/0
mode only.

Power completely off

SYSTEM INITIALIZATION AND SHUTDOWN

SHUTDOWN OPERATIONS

Table 3 Shutdown Operations

Action Operation
Clean shutdown $ @SYS$SSYSROOT: [SYSEXE]SHUTDOWN
Quick shutdown $ RUN SYSSSYSTEM:OPCCRASH
Forced crash Control/P (on OPA®:)
>>>@CRASH (780/730 only)
>>>E P (750 only)
>>E/G F
S>E/I 0
DO>>E/I 1
S>>E/I 2
>>>E/I 3
>>>E/I 4
>>>D/G F FFFFFFFF
>>>D P QGOlFGQ0Q
>>>C
Halt system Control/P (on OPAg:)
>>>H (780/730 only)

SYSTEM INITIALIZATION AND SHUTDOWN

SHUTDOWN PROCEDURES

Table 4 Shutdown Procedures

Procedure Function

SHUTDOWN.COM - Warns users of shutdown
- Stops queues
- Removes installed images
- Stops processes

-~ Dismounts disks
- Runs OPCCRASH

OPCCRASH - Marks system disk for dismount (to force
cache flushing)
- Flushes modified page list

- Requests "operator" BUGCHECK

CRASH.CMD - Halts CPU
- Examines PSL and all SPs
- Deposits -1 in PC
) 1F@P@P0 in PSL
- Continues

SYSTEM INITIALIZATION AND SHUTDOWN

AUTORESTARTING THE SYSTEM

REBOOT VMS)

TURN MEM. MANAGE-
MENT ON

RESTORE INTERRUPT
STACK

CALCULATE NEW
SYSTEM TIME

'

SCAN TIMER QUEUE

'

MAKE ERROR LOG
ENTRY

v

INITIALIZE
ADAPTERS

v

NOTIFY DEVICE
DRIVERS OF POWER
FAIL

RESTORE REGISTERS

D

Figure 12 Autorestarting the System

TK-8973

7-27

SYSTEM INITIALIZATION AND SHUTDOWN

REQUIREMENTS FOR RECOVERY AFTER POWER-FAIL

Battery backup

Memory valid (battery not run down)
RPB and memory valid and warm restart flag cleared
VAX-11/788 - Autorestart On

- RESTART.CMD on console floppy

-~ RESTART.CMD contains right TR
number for system disk adapter

VAX-11/758 - Power action SW on 'Restart/Boot'
'Restart/Halt'

VAX-11/730 - Enable restart

or

SUMMARY

SYSTEM INITIALIZATION AND SHUTDOWN

@ Initialization

System initialization segquence
Functions of initialization programs
How memory is structured and loaded
Start-up command procedures

SYSBOOT, SYSGEN

VAX-11/780, VAX-11/7540, and VAX-11/730 hardware
differences and how they affect initialization

e Shutdown and Restart

Front panel switches
Shutdown procedures and their functions

Autorestart sequence

Powerfail recovery

7-29

Using The Linker

Using the Linker 8-3

4)

Introduction

The linker binds object modules, together with any other necessary information, into executable
and shareable images. Most linker operations are transparent to the user, but a basic understanding
of these operations allows a user to write programs that execute more efficiently.

An optional output file produced by the linker, called a linker map, can be particularly helpful in
locating and debugging run-time errors.

This module provides an overview of the linker’s processing of input files, along with the qualifiers
available with the LINK command. These qualifiers and options control the execution
characteristics of the images produced.

Objectives

1. To build images that execute efficiently, a programmer must be able to:

¢ Describe the manner in which the linker arranges the contents of object modules to form
images.

¢ Use the qualifiers and options available with the LINK command.

2. To locate certain types of run-time errors, a programmer must be able to produce and read a
linker map.

Resources

1. VAX/VMS Linker Utility Reference Manual
2. VAX/VMS DCL Dictionary

_),

Using the Linker 8-5

a N

Linking Object Modules to Form an Image

The linker accepts object modules, shareable images, and libraries as input, and creates executable
and shareable images. When an image is executed, the image activator uses information placed in
“the image file by the linker to map the image into the virtual address space of a process.

1.1 Using the LINK Command

The VAX/VMS DCL Dictionary describes the LINK command and its command and file qualifiers.
The LINK command has the following format:

$ LINK file-spec [,file-spec...]

The default file type for input object files is .OBJ. Input files that are not object files (shareable
images), are indicated by a file qualifier, and have different default file types.

Tables 1 and 2 list some of the most frequently used qualifiers. The default qualifiers are labeled
with a (D). ‘

Table1 Commonly Used Qualifiers for the LINK Command

Operation Qualifier

Create an executable image /EXECUTABLE (D)
Include a debugging module /DEBUG

Create a full linker map /FULL and /MAP
Create a shareable image /SHAREABLE

Search the default system libraries to resolve undefined references /SYSLIB (D)

Table 2 File Qualifiers Commonly Used with the LINK Command

Operation Qualifier

Include one or more modules from a library /INCLUDE
Specify that the input file is a library /LIBRARY

Specify that the input file is an options file /OPTIONS

8-6

Using the Linker

Program Sections

The VAX-11 MACRO assembler and high-level language compilers translate source code into
object code. Different parts of a source file have different properties (for example, code is
executable; data is not). Table 3 lists some of the properties that might describe different segments
of source code. In creating an object file, the compiler (or assembler) divides the code into
program sections (PSECTs). Each PSECT contains code with similar properties; the properties

of a particular PSECT are called its PSECT attributes.

~

Table 3 PSECT Attributes

WRT
RD
EXE
PIC
LCL
CON
SHR
VEC

Writeable

Readable

Executable
Position-Independent
Local

Concatenated
Potentially Shareable
Protected (vector)

NOWRT
NORD
NOEXE
NOPIC
GBL
OVR
NOSHR
NOVEC

Not Writeable

Not Readable

Not Executable

Not Position-Independent
Global

Overlaid

Not Shareable
Nonprotected (vector)

Figure 1 shows the organization of a sample source file into various program sections. All
executable code is gathered into a PSECT named CODE, which has the attributes EXE and

NOWRT.
PROGRAM SECTIONS IN
SOURCE FILE OBJECT FILE

DATA DECLARATIONS PDATA NOEXE, NOWRT
CONSTANT DECLARATIONS |- LOCAL NOEXE, WRT
DATA DECLARATIONS /

| — "] cobe EXE,NOWRT
CODE /
CODE

TK-8367

Figure 1 Organization of Source Files into Program Sections

Using the Linker 8-7

1.3

MACRO programmers can assign attributes to different sections of a program. PSECT attributes
for high-level language programs, however, are assigned by the compiler. High-level language
programmers can determine the PSECT attributes given to a program by examining the listing file
produced when the program is compiled using both the /MACHINE__CODE and /LIST qualifiers.
Any programmer can alter the attributes of a PSECT using a linker options file, discussed later in
the module.

Linker Clusters

The linker must first collect all files specified as input for an image. As the linker collects the input
files, it organizes them into clusters, and stores the clusters in a buffer. A cluster is the unit in which
the linker handles your program. The input is processed and written to the image file, cluster-by-
cluster.

It is sometimes beneficial to have certain segments of code close to each other in an executable im-
age. Since the placement of input modules in clusters defines the order of the code in an image, it is
useful to know how the linker clusters input modules.

An executable image is mapped into the virtual address space of a process at run time, but may not
fit into the physical memory allocated to the process (the process working set). In this case,
segments of the program are paged into the working set as needed. If related segments of the pro-
gram are close to each other in an executable image, they will be paged into the working set
together, which can improve program performance. You can ensure that related segments of code
are near each other in an executable image by controlling their placement in clusters.

By default, the linker places all input object modules in a default cluster. Even if the object modules
are stored in different files, they are placed in the same default cluster. In addition, a separate cluster
is created for each shareable image referenced by the program, as in Figure 2. The code for a
shareable image is not copied into the image file (to conserve disk space), rather, a descriptor for the
shareable image is included in the executable image file.

8-8

Using the Linker

-

_

y A
FILE1.0BJ B B
c
D
E
FILE2.0BJ D
E
VMSRTL.EXE * SHAREABLE
IMAGE
DESCRIPTOR

Figure 2 Organization of Input Files into Clusters

DEFAULT
{ CLUSTER

CLUSTER
TWO

TK-8368

\

Options on the LINK command allow you to control placement of program sections within
clusters. (Linker options are discussed in more detail later in the module.) Take, for example,
a transaction processing application that collects and processes data input to a terminal. One set
of routines displays three different forms on the terminal, and another set collects and processes
the data input for each form. Because the screen formatting routines are similar to each other,
they are stored in the same subdirectory. Similarly, the processing routines are stored together
in another subdirectory, as in Figure 3. To place the form and processing routines for each screen
next to each other in the final image, you might specify the files on the LINK command in the

following order:

$ LINK MAIN, [.FORMSJFORMI,
[.FORMS]FORM?2,
[.FORMS]FORM3,

[PROGRAM]

MAIN.OBJ

[PROGRAM.FORMS]
FORM1.0BJ

FORM2.0BJ |

FORM3.0BJ

Figure 3 Routines for Transaction Processing Application

[.PROCESSRS]PROCESSI, -
[.PROCESSRS]PROCESS2, -
[.PROCESSRS]PROCESS3

[PROGRAM.PROCESSORS]

PROCESS1.0BJ

PROCESS2.0BJ

PROCESS3.0BJ

TK-8369

_/

Using the Linker 8-9

-

The organization of input files into clusters, however, is not defined by the order of the files on the\
LINK command. Rather, the linker gathers similar PSECTS from the input files, so the routines are
ordered in the final image, as shown in section A of Figure 4. To ensure that the related routines are
near each other in the final image (as shown in section B of Figure 4), use the CLUSTER option of
the linker. This is discussed later in this module.

Small programs that fit into the working set of a process need not be too concerned with the location
of related code in an image. For large programs, the advantages of clustering are three-fold:

¢ Faster image activation
¢ Improved program performance (less paging I/O)

¢ Improved system performance (decreased paging activity)

A. Default placement B. User-defined placement
r -
FORM1 . FORM!1
CLUSTER<
ONE .
FORM2 L I PROCESS1
f
FORM3 FORM2
CLUSTER
) TWO
peFAuLT | [PROCESS! | | [ProcESs2 |
. CLUSTER _
PROCESS2 FORM3
CLUSTER)
THREE
PROCESS3 L PROCESS3
DEFAULT
L MAIN CLUSTER MAIN

Figure 4 Placement of Program Sections in Clusters
LEARNING ACTIVITY

1. (OPTIONAL) See the VAX/VMS Linker Utility Reference Manual for a more com-
plete description of the way the linker organizes input into clusters.

8-10

Using the Linker

~

Once the linker has located all modules needed to create an image, and has organized them into
clusters, the modules are processed on a cluster-by-cluster basis to form the final image. This
processing has three parts:

Image Sections

1. Organize the PSECTS into image sections.
2. Assign virtual addresses to the image sections.

3. Write image sections to the image file.

The linker must organize your image into image sections because that is the unit in which the
image activator handles your program. Your image is mapped to your virtual address space an
image section at a time.

The following paragraphs describe the creation of image sections by the linker. The allocation
of virtual memory is discussed in the next section.

For each cluster, the linker gathers PSECT's with similar attributes and organizes them into image
sections. When creating image sections, the linker only looks at certain relevant PSECT at-
tributes. For all images, the WRT/NOWRT, EXE/NOEXE, and VEC/NOVEC attributes are
considered. When creating shareable images, the PIC/NOPIC and SHR/NOSHR attributes are
also considered.

Figure 5 shows the creation of image sections for a typical default cluster. This default cluster
contains object modules from three separate input files. All PSECTS with both the NOEXE and
NOWRT attributes are collected into the first image section. The rest of the image sections are
created similarly.

Using the Linker

8-11

2.1

FILE1.0BJ

FILE2.0BJ

FILE3.0BJ

~

PSECTS IMAGE SECTIONS
NOEXE, NOWRT
PDATA1 NOEXE, NOWRT \-
PDATA1
LOCAL1 NOEXE, WRT : PDATA2
CODE1 EXE, NOWRT PDATA3
| NOEXE, WRT
PDATA2 NOEXE, NOWRT
LOCAL1
CODE2 EXE, NOWRT LOCAL?2
EXE, NOWRT
PDATA3 NOEXE, NOWRT
CODE1
LOCAL3 NOEXE, WRT CODE2
CODE3 EXE, NOWRT CODE3

Figure 5 Organization of PSECTs into Image Sections

When the linker creates image sections:

e PSECTs are alphabetized by name within each image section.

¢ Image sections are organized within a cluster in a predefined order (see the VAX/VMS Linker

Utility Reference Manual).

The linker and the image activator work together to assign virtual addresses to executable code. The

2 Mapping an Image to the Virtual Address Space of a Process

code is mapped to these addresses in the virtual address space of a process at run time.

Linker Assigns Virtual Addresses

On a cluster by cluster basis, the linker assigns virtual addresses to the image sections. The image
file is mapped to these addresses in process virtual address space when the RUN command is issued.
An executable image file is always mapped to the same virtual addresses each time it is run.

In most cases, virtual addresses are assigned to shareable images at run time, rather than when they
are created by the linker. This avoids addressing conflicts. If, for example, virtual addresses are
assigned at creation, then two shareable images could both be assigned to start at address 200. They
could not both be included in the same program. To avoid such addressing conflicts, the image
activator assigns virtual addresses to position-independent shareable images at run time.

TK-8365

/

8-12

Using the Linker

-

~

Sometimes it is necessary to include data definitions which contain virtual addresses in a
shareable image (for example, a character string descriptor). An address must be assigned to this
code for it to link successfully. The correct address will not be known until run time, when
addresses are assigned to the rest of the image. To satisfy the need for an address and preserve
the position independence of the shareable image, the linker assigns an offset to the code. The
offset is translated to the correct address at run time by the image activator.

The linker performs this special action for:

¢ .ADDRESS and .ASCID directives in a shareable image.

 General addressing mode (G) references to a location in a shareable image.

General addressing mode and .ADDRESS directives are used in MACRO; high-level language
compilers generate the object language equivalent. Some knowledge of MACRO is helpful in
understanding this discussion, but the concept relates to all languages.

To illustrate handling a general addressing mode reference to a routine in a shareable image, con-
sider a call to MTH$SQRT. This mathematical Run-time Library routine is part of the shareable
image MTHRTL.EXE. A program written in a high-level language references the MTH$SQRT
routine as follows:

CALL MTH$SQRT(number)

The compiler translates this to:

CALLG ARGLIST, G MTH$SQRT

which is how the call appears in a MACRO program. (Note that some compilers may translate
this call to a CALLS instead.) When the program is linked, the linker calculates the location of
MTHS$SQRT in MTHRTL, and stores the offset in a symbol named SQRT.

CALLG ARGLIST, @L'SQRT

SQRT: LONG X

At run time, virtual address space is assigned to MTHRTL, and the image activator can translate
the offset to a true virtual address:

SQRT + (MTHRTL-base-address) = address for routine

The linker handles .ADDRESS and .ASCID directives in an object module in much the same way
as G references. These directives are often used by MACRO programmers. The equivalent object

language commands are generated by high-level language compilers when building argument lists
with arguments passed by reference or descriptor.

j

Using the Linker 8-13

2.2

~

The linker resolves the .ADDRESS reference to an offset, rather than an address. The offset
represents the location of the target within the shareable image. After assigning virtual addresses to
the shareable image, the image activator calculates the correct virtual address of the instruction:

Offset + SHIMG-base-address = address of instruction

This treatment of G~ references and . ADDRESS directives preserve the position independence of
shareable images.

To conserve disk space, the linker does not allocate memory for large arrays that do not contain data
before the program is run. Instead, a descriptor for the array is placed in a special type of image sec-
tion, a demand-zero section. At run time, the image activator allocates memory for these large ar-
rays. This special treatment of large arrays only applies to executable images, not shareable images.

Image Activator Maps Image to Virtual Address Space

At run time, image sections are mapped to their assigned virtual addresses by the image activator.
Figure 6 illustrates mapping an image composed of four image sections: three containing PSECTs
and one with a pointer to the Run-Time Library shareable image.

8-14

Using the Linker

-

DEFAULT
CLUSTER

CLUSTER
TWO

Figure 6 Mapping an Image into Process Virtual Address Space

PROCESS VIRTUAL

ADDRESS SPACE
NO ACCESS ‘
(1 PAGE)
IMAGE FILE
ON DISK PDATA1
PDATA2
NOEXE, NOWRT PDATAS
PDATAT LOCALT
PDATA2 T OGALS
PDATA3
PO
CODE1
NOEXE, WRT CODE2
CODE3
LOCALT
LOCAL2
RTL
ROUTINES
EXE, NOWRT
CODET /
CODE2 i
CODE3
P1
USER STACK
FIXED PART
DESCRIPTOR
FOR MTHRTL _ MTHRTL.EXE
SHAREABLE v
IMAGE RUN-TIME
LIBRARY
ROUTINES

TK-8364

Notice that the first page of virtual address space is inaccessible to catch common programming
errors (for example, using data as addresses). Since this program references MTHRTL routines,
the image activator uses the descriptor to locate MTHRTL.EXE, and maps the entire shareable
image into the virtual address space. Any other referenced shareable images would be handled

the same way.

Using the Linker 8-15

3.1

3.2

C Creating and Reading a Linker Map

~

The linker optionally creates a listing containing information about a program and the link opera-
tion. This listing, called a linker map, is often helpful when debugging run-time errors.

Creating a Linker Map

Including an optional qualifier on the LINK command directs the linker to create a linker map. The
map can be in one of three formats: ‘

¢ Brief Map
¢ Default Map
e Full Map

A full map contains the following sections of information, of which the brief and default maps con-
tain subsets:

® Object Module Synopsis

¢ Image Section Synopsis

® Program Section Synopsis

® Symbols by Name (or Symbol Cross-Reference)
¢ Symbols by Value

¢ Image Synopsis

e Link Run Statistics

Using a Linker Map to Debug Run-Time Errors

A linker map, especially a full map, can be useful in debugging run-time errors and reading large
listing files. Some of the uses for a linker map include:

¢ Locating an instruction that caused a run-time error.
¢ Translating a number displayed by the debugger to its related symbol or address.

® Locating symbol definitions.

8-16

Using the Linker

~

The Program Section Synopsis is used with a listing file to determine the instruction that caused
a run-time error:

1. Obtain PC — The error message and traceback should provide you with the program counter
(PC). The PC indicates the virtual address of the instruction that caused the error. Alter-
nately, the PC could be output by a user-written condition-handling routine.

2. Locate PSECT — The Program Section Synopsis lists the beginning and ending addresses
of each program section in the image (the virtual addresses that each program section ‘was
mapped into). Locate the program section that contains the problem instruction by locating
the PSECT that contains the PC.

3. Calculate Offset — Subtract the base address of the program section (from step 2) from the
PC to obtain the offset into the PSECT of the erroneous instruction.

4. Locate Instruction — Consult the listing file for the program to obtain the instruction
associated with that offset.

The Symbols by Reference section can be used to translate a number to its related symbol or
address. For example, the debugger refers to most entities by number, but you usually want to
know what symbol or address the numbers represent.

If you encounter a symbol in a large listing and need to know where it is defined, consult the
Symbol Cross-Reference section of a full or default map. Note that this section is included instead
of the Symbols by Name section only if the /CROSS__REFERENCE qualifier is included on the
LINK command.

If you need to change a routine, you can consult the Symbol Cross-Reference section to determine
all modules that reference that routine. This allows you to easily locate all codes that might be
affected by your change, preventing future problems.

4 Linker Options Files

You may need to specify additional input and/or directions to the linker when you invoke the
LINK command. Sometimes this additional information cannot be included on the command line.
A linker options file includes this extra information. An options file is created using the DCL
CREATE command, or a text editor.

Using the Linker 8-17

4.1

Options files, which have the default file type .OPT, are used to: w

¢ Store frequently used input file specifications.

* Enter large input specifications.

® Specify a shareable image as input.

® Alter program section attributes.

¢ Define clusters.

® Specify special instructions (options) to the linker.

The Sharing Code and Data module illustrates the use of an options file to specify a shareable
image as input to the linker.

Creating and Using Linker Options Files

Linker options, like CLUSTER and PSECT__ATTR, cannot be included on the command line
because DCL cannot recognize them. They are included in an options file.

An options file is specified as input to the linker by placing the name of the file on the command line,
followed by the /OPTIONS qualifier:

$ LINK FILE, FILE2, OPTFILE/OPTIONS

It is sometimes convenient to enter the additional input to the linker directly from the terminal,
rather than specifying a separate disk file. This can be done by specifying SYSSINPUT as the op-
tions file. The system will wait for you to enter the additional input, the end of which is signaled by
entering CTRL/Z. For example:

$LINK EMILIE, LI1Z, SYS$SINPUT/OPTIONS
HELPING/SHARE

ANOTHER/SHARE

<CTRL/Z >

If you frequently use the same options file as input to the linker, you may want to put the LINK
command and the options file contents in a command procedure. Then you need only execute one
command (invoking your command procedure) to execute the link operation:

$ @DOLINK

where DOLINK.COM contains the following:

$ LINK/FULL/MAP EMILIE, LIZ, SYSSINPUT/OPTIONS
HELPING/SHARE

ANOTHER/SHARE

<CTRL/Z>

8-18

Using the Linker

4.3

\

Linker options records are available in MACRO only. These object code records allow the
specification of additional files to the linking operation. See the Guide to Programming in VAX
MACRO for more information about linker options records.

Linker Options Records

Using the Cluster Option to Create More Efficient Images

The order of the clusters, and the image sections within those clusters, determines the order in
which the modules appear in the final image. The order in which files appear on the LINK com-
mand line does not necessarily reflect their order in the final image.

To increase program performance, especially for large applications, you may want to control the
placement of object modules within clusters. Segments of code that frequently refer to each other
should be close together in the executable image. Take, for example, the transaction processing
application presented in Section 1.3, Linker Clusters. To ensure that the related routines are near
each other in the final image, use the CLUSTER option of the LINK command:

CLUSTER = cluster-name, [base-adr], [pfc], [file-spec,...]

For this example, the option should be used as follows:

$ LINK MAIN, OTHERS/OPTIONS

where the file OTHERS.OPT contains:

CLUSTER = ONE,,,FORM1,PROCESS1
CLUSTER =TWO,,,FORM2,PROCESS2
CLUSTER = THREE,,,FORM3,PROCESS3

This command creates three clusters in addition to the default cluster, as shown in Figure 7. Note
that the optional arguments may be omitted, but the commas may not. Refer to the VAX/VMS
Linker Utility Reference Manual for a description of the arguments omitted from this example.

Using the Linker 8-19

4)

[PROGRAM]
DEFAULT
MAIN.OBJ MAIN }CLUSTER
N
FORM 1
L J CLUSTER
(ONE
[PROGRAM.FORMS] [Frocessr]
| FormioBs | ’
—_——
.OBJ ; h
[_Fonwzon | L_rorwz | CLUSTER
4
TWO
FORM3.0BJ
L | [Processz | |
[] |
FORM3
i | CLUSTER
[PROGRAM.PROCESSORS] THREE
| PrROCESS1.0BJ | [__processs |

| PrROCESS2.08J |

| procEss3.osy |

TK-8363
Figure 7 Clustering Related Code in an Executable Image

When the image is executed, the related routines are mapped consecutively into the physical
memory allocated to the process. This decreases the amount of paging needed to execute the image,
and causes the image to run faster. The system also runs faster, because paging activity is
decreased.

In addition, MACRO programmers can collect modules into specified clusters at the PSECT level,
not just on a file basis. This is done using the COLLECT option, referring to the PSECTSs by name.
High-level language programmers do not have control over PSECT names, and, therefore, cannot
exercise the COLLECT option.

LEARNING ACTIVITY

1. Do the written exercises for this module.

_ W

Using the Linker

8-21

itten Exercises

Multiple choice: The linker can create:

a. Executable images
b. Shareable images
c. Linker maps

d. All of the above

Match each term with its description by placing the appropriate number in each blank.

Terms

1. PSECT

2. Object module
3. Linker cluster

4. Image section

Descriptions

_ Contains code with similar properties

—__ The unit in which the linker handles a program

—_ The unit in which the image activator handles a program

— Input for the linker
What is the advantage of clustering related code in a large image?

a. Faster image activation
b. Improved program performance
c. Improved system performance

d. All of the above

~

8-22

Using the Linker

Specify which VMS component performs each activity by placing the appropriate number in
each blank.

VMS Components

1. Linker

2. Image activator

Activities

Organize PSECTS into image sections

____ Map an image file to addresses in process virtual address space
— Assign virtual addresses to image sections
____ Write image sections to an image file

___ Assign virtual addresses to position-independent shareable images

Specify which file would be used for each activity by placing the appropriate number in each
blank.

Files

1. Linker map

2. Linker options file

Activities

— Specify additional input and/or directions to the linker

— Locate an instruction that caused a run-time error

— Alter PSECT attributes

__ Translate a number displayed by the debugger to its related symbol or address
—_ Define linker clusters

Locate symbol definitions

Using the Linker 8-23

(Solutions \

1. The linker can create:

a. Executable images
b. Shareable images
c. Linker maps

** d. All of the above
2. Match each term with its description by placing the appropriate number in each blank.

Terms

1. PSECT

2. Object module
3. Linker cluster
4.

Image section

Descriptions

1 Contains code with similar properties

_ 3 The unitin which the linker handles a program

_ 4 The unit in which the image activator handles a program

2 Input for the linker

3. What is the advantage of clustering related code in a large image?
a. Faster image activation
b. Improved program performance
c. Improved system performance

** d. All of the above

8-24

Using the Linker

~

Specify which VMS component performs each activity by placing the appropriate number in
each blank.

VMS Components
1. Linker
2. Image activator
Activities
1 Organize PSECTS into image sections
2 Map an image file to addresses in process virtual address space
1 Assign virtual addresses to image sections
| Write image sections to an image file

2 Assign virtual addresses to position-independent shareable images

Specify which file would be used for each activity by placing the appropriate number in each
blank.

Files
1. Linker map
2. Linker options file
Activities
2 Specify additional input and/or directions to the linker
1 Locate an instruction which caused a run-time error
2 Alter PSECT attributes
1 Translate a number displayed by the debugger to its related symbol or address
2 Define linker clusters

1 Locate symbol definitions

EXERCISES

System Components

EXERCISES
For each system component named below, £fill in the required
information.

e Under Implementation, specify system process (PCS), procedure
(PCR), exception service routine (EXC), interrupt service
routine (INT), or shared image (SHR).

® Under Context, indicate system (SY¥S) or process (PCS).

e Under Address Region, specify program (PGM), control (CTL), or
system (SYS).

® Under Purpose, briefly describe the primary function of the
component,

‘Component Address
Name Implementation Context Region Purpose
system PCR PCS SYS common
'service internal
function
1. scheduler e §YS SYS %
2. swapper Ves Pc5 5vs 1 /
3. symbiont PCs pcs A@GM WW
4. AME SR Pcs pop | CompEldly
L y .
5. XOQP PcR Pc5 s M”"%‘?
6. run-time YiL 4 55 7#—
library SHR L) PCm #
7. error
logger Pcs Fcs P6em —
8. pager Exc pes Y5 | iy
9. CLI SHR Fcs T, Dl
10. RMS SHR Pes sys | tontind oyt

EX-3

System Components

SOLUTIONS
Component Address
Name Implementation Context Region Purpose
system PCR PCS SYS common
service internal
function
1. scheduler INT SYS SYS chooses
next process
to execute
2. swapper PCS PCsS SYS system-wide
mem.management
3. symbiont PCS PCS PGM input/output
spooling
4, AME EXC PCS PGM implements
compatibility
mode
5. XQP PCR PCS CTL implements
oDs-2 file
structure
6. run-time PCR PCS PGM common
library subroutines
and functions
7. error PCS PCS PGM records
logger hardware
errors
8. pager EXC PCS SYS process
memory
management
9, CLI SHR PCS CTL command
language
processing
10. RMS PCR PCS SYS record/file
management

EX-4

System Components

EXERCISES

Using the System Dump Anaylzer (SDA)

Throughout this week you will be encountering data structures
and concepts that will require further explanation. One way
to assist in this is to examine the contents of a VMS system's
memory (or a copy of it). The System Dump Analyzer (SDA)
allows you to do just that. SDA 1is an interactive wutility
enabling you to examine:

- the system dump file, SYSSSYSTEM:SYSDUMP.DMP (read access
required)

- a copy of the system dump file (read access required)

- the actively running system (CMKRNL privilege required)
This exercise will "walk" you through an examination of a
system dump file., Do not attempt to examine the actively
running system until you have completed this lab and have the
permission of your instructor. ’

a. Activate the System Dump Analyzer (SDA) using the command
$ ANALYZE/CRASH OSISLABS:CRASH1.DMP

b. The basic crash information will be displayed on your
terminal:

® date of crash

® reason for crash

System Components

EXERCISES

c. At the SDA prompt (SDA>), enter the command "HELP". The
commands available are displayed on the terminal. To find
out more information about a command, enter:

SDA> HELP 'command'

d. Using the HELP command, find out about each of the
following commands:

® SET

® SHOW
e FORMAT
® READ

€., Once you feel comfortable with the definition and purpose
of the above SDA commands, issue the following commands to
see what information each provides.
® SHOW SUMMARY
e SHOW PROCESS
® SHOW SYMBOL/ALL
® SHOW POOL/IRP

f. Use the following commands to display the message text
associated with some common condition codes:

e EVALUATE/CONDITION 1

e EVALUATE/CONDITION C

EX-6

System Components

EXERCISES

Some locations in Pl and SO0 virtual address space store
pointers to code and data used by the operating system.
VMS defines global symbols for these virtual addresses.

Consult the Naming Conventions chapter in VAX/VMS
Internals and Data Structures for information on the
syntax of VMS global symbols.

For example, the global symbol EXESGL_SCB equates to an SO0
address that contains the address of the System Control
Block (SCB), as shown in Figure 1.

< [" .
< I - | :EXE$GL_SCB

SCB

MKV84.2232

Figure 1 Global Symbol Locating Pointer to SCB

® Determine the value of the symbol EXESGL_SCB using the
EVALUATE command in SDA. Record the hexadecimal and
decimal values below.

® Determine the contents of the address EXESGL_SCB using
the EXAMINE command. Record the contents below, in
hexadecimal and ASCII formats.

® Determine the contents of the first 1longword of the
SCB using the following command:

SDA> EXAMINE @EXESGL_SCB

The unary operator "@" is used in SDA to provide a
level of indirection.

System Components
EXERCISES

A summary of the above commands and another example are
provided in Figure 2 and Table 1.

- +e 500 :MINE (400)
20A5E :500
612
4C00

MKV84-2233

Figure 2 Sample Addresses and Symbols

Table 1 Using Symbols in SDA

SDA Commands and Output Notes
SDA> evaluate MINE Value of symbol is
Hex = 00000400 Decimal = 1024 displayed in hex
and ASCII formats
SDA> examine MINE Contents at address
MINE: 00000500 el 400 are displayed
SDA> show symbol MINE Value of symbol and
MINE = 00000400 : 00000500 contents at that
address are displayed
SDA> examine @MINE Symbol equals address
0000500: 00020AS5E 400 which contains

a 500; contents at
address 500 are shown

To provide the additional symbolic definitions necessary
in the following questions, use the SDA READ command to
read in the file OSISLABS:GLOBALS.STB.

Jo

System Components

EXERCISES

The list below contains some of the system-defined symbols
you will be seeing throughout the course. These
particular symbols equate to addresses.

Choose five symbols and determine and record, for each:

1. 1Its value

2. The contents at that address

3. The contents at the address obtained in step (2)

The symbols are:
e SCHSGL_CURPCB Fgpp 2L €8 /ggx;;s 33?9»’/9p,é¢z¢ 4c
o CTLSGL PHD 7 ffefess/ 78505800 [Lrerrrss
e CTLSGL_PCB
e CTL$GQ PROCPRIV
® EXESGL_RPB § gyy357C/3p/1 6460/ #
e TIOCSGL_IRPBL 3bpgp245%/ 3¢ 2p3p60
e IOCSGL_IRPFL
e SCH$GL_COMQS
e SCHSGL_PCBVEC
e SCH$GQ_HIBWO (Mask)

° SCH$GQ_LEFwoﬁ§fﬂ/Z lﬂﬁ?’%

Format the data structures pointed to by the following
symbols:

e SCH$GL_CURPCB

e IOCSGL IRPFL (_SIB>

System Components
EXERCISES

k. 1Issue the SHOW CRASH command, and use the output to answer
the following queéstions:

e What was the current process at the time of the crash?

M wten

o W image (if any) was executing?
N 7 2.5

® What was the reason for the crash (according to SDA)?

MM SSRUEXCEPT
4wu¢%nﬂ5£ 4

AR
1. Exit SDA and return to the DCL prompt.

2. Read the following chapters in the VAX/VMS System Dump
Analyzer Reference Manual:

a. Introduction

b. Using SDA

c. Reading the System Dump File
d. SDA Command Format

The last section of the manual contains descriptions of the
SDA commands. Keep this manual handy for quick reference
while working on other lab exercises.

3. Throughout the course you will see system symbols referencing
S0 addresses. The contents at these addresses change over the
life of the system. Examining these addresses allows you to
observe various system activities. This is the purpose of the
AMONITOR utility.

/ Write a MACRO program that examines the word in S0 space that

' records the maximum number of processes that are allowed on
the systen. This location is referenced by the symbol
SGNSGW_MAXPRCCT.

You can use the template program in OSISLABS:COMPTEMP.MAR.

EX-10

WO MO N NE MO N WO N NE N me Ne v we e

GO:

+
+

System Components

SOLUTIONS

Consult your instructor for the solutions to these exercises.

Consult your instructor for the solutions to these exercises.

The program in Example 1 examines and displays the contents
referenced by SGN$GW_MAXPRCCT.

.TITLE COMPLAB3

ABSTRACT:

This program examines and displays the maximum

process

ENVIRONMENT :

Changes

count, at SGNSGW_MAXPRCCT.

mode to executive. CMEXEC privilege required.

Linked with SYS.STB:

$ LINK

Declare
«MACRO
BLBS
PUSHL
CALLS
RET

« ENDM

+MACRO
PUSHAL
PUSHAL
CALLS

COMPLAB3, SYSSSYSTEM:SYS.STB/SELECTIVE

macros

CHECK_STATUS CODE=R0, ?GO
RO, GO

RO

#1,G"LIBSSTOP

CHECK_STATUS

CONVERT1 BINARY, TEXT
TEXT

BINARY

#2, G"OTS$CVT_L_TZ

CHECK_STATUS

JENDM

CONVERT1

Example 1 Examining an S0 Location (Sheet 1 of 3)

EX-11

System Components

SOLUTIONS

.MACRO CONCAT2 BUFFER,ARG1,ARG2
PUSHAL ARG2

PUSHAL ARGl

PUSHAL BUFFER

CALLS #3,G"STR$CONCAT
CHECK_STATUS

.ENDM CONCAT?2

.MACRO DISPLAY MESSAGE
PUSHAL MESSAGE

CALLS #1,G"LIB$PUT_ OUTPUT

CHECK_STATUS

« ENDM

DISPLAY

khhkhkhkhkhhkhkkkkhhkhkhhhhhhhkhkhhhhhkhhhhhhkkhkhkhhhkhkkhkhhkhkkhkkhkkhkkkik

.
’

.PSECT

E_ARG_LIST:

MAX_ PROC_CNT:
LWORD MAX:

: declare ascii
CNT_ASCII:
CNT_DESC:

DATA NOEXE ,WRT ,NOSHR

. LONG 1 ; for Scmexec call
.ADDRESS MAX PROC CNT : passed by reference
BLKW 1 - ; word for max proc cnt
.BLKL 1 ; for lw form of max cnt
formats of version longwords, and descriptors
«BLKB 8 : 4 bytes x 2 chars = 8 max
. LONG 8

+ADDRESS CNT ASCII

HDR_DESC: .ASCID /Current maximum process count, in hex, is: /

BIG_STRING:

BYTES:

. LONG 80 ; for concatenated string
.ADDRESS BYTES
.BLKB 80

Example 1 Examining an S0 Location (Sheet 2 of 3)

EX-12

System Components

SOLUTIONS

: khhkkhkkhkhhhkhkhkhkkhkhkkhkhkhkhkhhkhhkikhkhkkhhhhkhhhhhhhkhhkhhkhhkkhhhhhkkhhhkkkk

.PSECT CODE EXE,NOWRT,PIC,SHR
START: .WORD “M<O

read max process count... need to be in-exee-mode

$CMEXEC_S routin= 100$, arglst= E_ARG_LIST
CHECK_STATUS

e _ e = [— e

MOVZWL MAX PROC_CNT, LWORD MAX ; need lw for convertl

convert longwords to ascii, concatenate, and output
CONVERT1 LWORD_MAX, CNT_DESC

CONCAT2 BIG_STRING, HDR_DESC, CNT_DESC

DISPLAY BIG_STRING

.
r’

MOVL #SS$_NORMAL, RO _; set normal completion
RET ; all done

; KkkkkxKkkkkX** oxecutive mode code Rrkkkkkkkkkkkkkkkkk
100S: «WORD “M<O>

move version number into argument li;;%N\\\t>
MOVW _ G"SGNSGW_MAXPRCCT,. Q4(AP)

~e weo

e

OVL. #SS$ NORMAL, RO
RET ; finished in exec. mode

.END START

Example 1 Examining an S0 Location (Sheet 3 of 3)

EX~13

The Process

EXERCISES

For each resource associated with, or wused by, a process and
listed on the following page:

® Name the data structure or component that implements or
controls it.

e State the region (program, control, or system) 1in which
the data structure or component resides.

e State whether the data structure or component is paged.

e State whether the data structure or component is included
in the working set of the process and swappé€d.

For resources that are not part of a larger data structure (for
example, the wuser stack), simply copy the name into the data
structure column. For resources that occur in multiple locations,
answer for each location.

EX~15

The Process

EXERCISES
Data
Resource Structure Region Paged? | Swapped?
user stack user stack| control| yes yes |
page tables PHD Sy yes yes
privilege mask PHD Sys vyes ves
CLI data areas c) L c’TL i Mo ;O
run-time library AT P@ Yes %S
/7]
whon procoss is not " Frb e | Mo | T
the current one Hdwe PcB
process priority Pc B Sys Mo o
252323@2‘225&22 PHD Sys Yes | 7es
VAX-11 RMS code RM S 595
image of user program ’7¢ l; Yes Yes
working set list PHD ﬁ'yﬁj /f'gé) Yes
kernel stack _— ij, /b/ﬁ Tes
Sata struetures T eTe | ves| Y
process ID PCcB Sy o Y4 e
CLI code PL chV }/ \//
interrupt stack — Sys e Ap

EX-17

The Process

SOLUTIONS

Data
Resource Structure Region Paged? | Swapped?
user stack user stack control | yes yes
page tables process header system yes yes
privilege mask process header system* | no yes

software PCB system no no

pointer page control | no yes
CLI data areas CLI data areas control | yes yes
run-time run-time program | yes yes**
library library
general-purpose hardware PCB system¥* no yes
registers when
process is not
the current one
process priority software PCB system no no
quotas/limits on software PCB system no no
system resources JIB system no no
VAX-11 RMS code RMS code system yes no
image of user image program | yes yes**
program
working set list process header system* | no yes
kernel stack kernel stack control | no yes
process I/0 process 1/0
data structures data structures| control | yes yes
process ID software PCB system no no
CLI code CLI code control | yes yes**
interrupt stack interrupt stack| system no no

*These portions of the PHD are also mapped by the Pl "window."

**These
sections.

software components are
As such, they are included in the process working set,

but may not be outswapped with the rest of the working set.

or may be

global

VAX/VMS Internals and Data Structures for details.)

EX-18

read-only

(See

The Process

EXERCISES

The System Dump Analyzer can be wused to obtain information
about the processes on a system at the time of a crash.

Enter the SDA with the following command:
$ ANALYZE/CRASH OSISLABS:CRASH1.DMP

Issue the following SDA commands and observe the information
they provide about VMS processes.

a. Issue the SDA command SHOW SUMMARY/IMAGE and note the
information it provides.

An external process ID (EPID) uniquely identifies a
process on a single system, or on a VAXcluster. Process
IDs are discussed in more detail later in the course.

This listing also shows the addresses of the software PCB
and the process header for each process.

b. Issue the SDA command SHOW PROCESS.

By default, this command displays information from the
process software PCB.

® Record the name of the process. ﬂ%wvﬁZ:/

® Record the address of the software PCB for the
process. 90)33370

c. Read the symbol table file OSISLABS:GLOBALS.STB into your
SDA session to provide the symbolic definitions required
for some later questions.

d. SHOW PROCESS does not display all the information from the
software PCB. Use the FORMAT command, and the address you
recorded in question (b), to display the contents of the
process's software PCB.,

EX-19

The Process

EXERCISES

When SDA is invoked, it chooses a process to be 1its current
process, and thus the target of any process-specific SDA
commands. When analyzing a dump file, SDA's initial current
process 1is the process that was executing when the system
failed. 1If you invoke SDA to examine the running system, the
current process is your process.,

The SET PROCESS command is used to change process context in
SDA.

® Use the SET PROCESS command to make OPCOM SDA's current
process.

® Issue the SHOW PROCESS command to display information
about the OPCOM process,

® Use the SET PROCESS command to restore the initial current
process.

Using the SDA manual, or the HELP command in SDA, read about
the qualifiers to the SDA SHOW PROCESS command.

Issue the appropriate form of the SHOW PROCESS command ¢to
display data from the process data structure that maintains
process memory management information.

/P PT fwsi

Issue the appropriate form of the SHOW PROCESS command to
display the values of the process registers.

/ke()

EX-20

The Process

EXERCISES

The EXAMINE/PSL command can be used to produce a formatted
display of a processor status longword. This is often
easier than deciphering the fields manually.

Issue the following command to format the PSL for SDA's
current process.

SDA> EXAMINE/PSL PSL

What is the current IPL for this process? ﬂé

Determine the address of the process header for the OPCOM
process.

Format the process header for OPCOM.

Remember that the process header does not have a TYPE
field. You must, therefore, use a qualifier on the FORMAT
command to tell SDA you are referencing a process header.

Read the description of the READ command in the
VAX/VMS System Dump Analyzer Reference Manual. Which
system-supplied symbol table contains symbols for the 1I/0
database?

EX-21

The Process

EXERCISES

At DCL level, issue the following command to 1list the
modules of the STARLET macro library at your terminal:

$ LIBRARY/LIST SYSSLIBRARY:STARLET.MLB

Do you recognize any of the modules in this library?

List the modules of SYSSLIBRARY:LIB.MLB on your terminal.
Do you recognize any of the modules in this library?

You may want to make a hard copy of this 1listing for
future reference.

What kind of programmer would reference the modules in
STARLET.MLB? in LIB.MLB?

EX-22

The Process

SOLUTIONS

1. Enter SDA with the command shown.

a.

b.

C.
d.

€.

Issue the SHOW SUMMARY/IMAGE command as shown.

® The name of the process is shown at the top of the
display.

® The address of the software PCB is at the top of the
first column of the SHOW PROCESS display. Note that
the address is in system virtual address space (S0).

SDA> READ OSISLABS:GLOBALS.STB

SDA> FORMAT pcb_address_from_ 1b

e SDA> SET PROCESS OPCOM

® SDA> SHOW PROCESS

® SDA> SET PROCESS initial_ process_name

Use the SDA manual or the on-line help to find out about
the qualifiers for the SHOW PROCESS command.

SDA> SHOW PROCESS/PHD

SDA> SHOW PROCESS/REGISTERS

The current IPL for the process is in bits 16-20 of the
PSL, and is labeled with "IPL" in the EXAMINE/PSL display.

SHOW PROCESS OPCOM will display the address of the process
header for OPCOM.

FORMAT/TYPE=PHD address_from_1j

SYSDEF.STB contains symbols for the I/0 database.

EX-23

The Process

SOLUTIONS

The modules in STARLET.MLB include macros for calling
system services, calling RMS routines, and defining
user—-level RMS data structures.

The modules in LIB.MLB include macros defining offsets
into many system-level data structures, and macros for
common VMS activities.

Nonprivileged programmers might make use of the modules in

STARLET, whereas LIB 1is used primarily by privileged,
system-~level programmers.

EX-24

System Mechanisms

EXERCISES

VMS uses a variety of mechanisms to synchronize its
activities,

a. To synchronize access to the scheduler's data structures,

a program raises IPL to IPL$_SYNCH. Why does the program
raise IPL, rather than request an interrupt at IPL 8?

b. Why can't a mutex be used to 1lock the scheduler's data
structures?

c. Which VMS mechanism is used to synchronize access to the
system logical name table?

When an exception or interrupt occurs, the PSL and the PC are
pushed onto the stack, and a new PC and PSIL are created.

a. Which stack is used?

b, How is the new PC value formed?

EX-25

System Mechanisms

EXERCISES

What are the contents of the current mode and previous
mode fields of the new PSL?

What is the new IPL?

When an REI instruction is executed, is the previous mode
field of the PSL significant? Explain,

The following table illustrates a hypothetical sequence of
hardware and software interrupts. At each step, fill in
the contents of the indicated items. 1In the "Saved IPL"
column, indicate the stack that contains the saved IPL.
Indicate where control is passed after each REI
instruction. All numbers are decimal,. Assume that
software interrupts above IPL 6 are handled on the
interrupt stack, and that those at IPL 1 through IPL 6 are
handled on the kernel stack. Further assume that all
device interrupts are handled on the interrupt stack.

EX-26

System Mechanisms

EXERCISES

Note that this example is hypothetical and bears 1little
resemblance to the VAX/VMS operating system. 1Its purpose
is to explore the workings of interrupts, especially
software interrupts.

Event Stack IPL SISR(hex) Saved IPL

1. Executing
user image

2. Device int.
at IPL 21

3. SOFTINT 8

4. REI to

5. SOFTINT 5

6. SOFTINT 3

7. REI to

8. Device int,
at IPL 20

9. SOFTINT 8

10. REI to

11. SOFTINT 4

12, REI to

13. REI to

14. REI to

15, REI to

EX-27

b.

 System Mechanisms
EXERCISES

In steps 7 and 12, a switch is made from the interrupt
stack to the kernel stack. Why?

Briefly describe how system services are dispatched.
Assume that no errors occur. 1Include all steps from the
program's initial call until control is passed back ¢to
that program.

Why does the routine SRVEXIT issue an REI instruction?

Several system services have access mode as one of their
arguments, The service routines that perform these
requests first call a routine called Maximize Access Mode
that chooses the least privileged access mode of the one
requested and the access mode of the caller. Describe how
this might be done. Why is it done?

EX-28

System Mechanisms

- EXERCISES

5. List two differences between the exception dispatching within
the executive and the Common Run-Time Library procedure
LIBSSIGNAL.

EX-29

System Mechanisms

SOLUTIONS

An IPL 8 interrupt would invoke the IPL 8 fork dispatcher,
which 1is not the desired result. Remember the difference
between using IPLs for blocking and synchronization, and
using IPLs to determine how to service an interrupt.

Mutexes are a synchronization technique available to
processes. When on the interrupt stack, the system is not
in any process context. Hence the method of elevating IPL
is the only synchronization technique available.

A mutex is wused to synchronize access to the system
logical name table.

The entry to an exception or interrupt service routine
must be longword aligned. Thus, the two low bits in the
SCB can be used for other purposes., Bit 0 determines
whether the interrupt is handled on the kernel stack
(bit 0 clear) or on the interrupt stack (bit 0 set).

EX-30

System Mechanisms

SOLUTIONS

All device interrupts are handled on the interrupt stack.
All software interrupts (except ASTDEL at IPL 2 and
RESCHED at IPL 3) are handled on the interrupt stack.

CHMx exceptions are placed on the resultant perprocess
stack. Machine Check, Power Fail, and Kernel Stack Not
Valid exceptions are handled on the interrupt stack. The
rest of the exceptions are handled on the kernel stack.

The new PC value is the address found in bits<31:2> of the
SCB entry for this particular exception or interrupt. (PC
bits<1:0> are always cleared.)

For all exceptions except CHMU, CHMS and CHME, the current
mode will be zero, kernel access mode.

For exceptions, the previous mode field will be the access
mode that the CPU was in when the exception occurred. 1In
fact, PSL<{previous mode> is the same as the current mode
field of the saved PSL on the stack.

The previous mode field of the PSL is set to 0 (kernel
mode) following an interrupt.

The new IPL depends upon the interrupt or exception:

Exceptions IPL (decimal)
Machine check 31
Kernel stack not valid 31
All other exceptions unchanged!
Software Interrupts IPI, raised to
corresponding
level

Hardware Interrupts

Interval timer 24
Console 20
Other devices 20~-23
Power fail 30

EX-31

System Mechanisms

SOLUTIONS

No, the previous mode field of the PSL is not significant
when an REI executes. The previous mode field is an
historical parameter, recording where the processor came
from, The previous mode field 1is wused by the PROBEx
instructions.

The relevant field (and the one checked by the REI
instruction microcode) is the current mode field of the
PSL on the stack. If privileged software wishes to alter
its destination, IPL, or mode, then this longword is what
should be changed.

Event Stack IPL SISR(hex) Saved IPL

1. Executing
user image user 0 0 -

2. Device int,.

at IPL 21 interrupt 21 0 0(1)
3. SOFTINT #8 interrupt 21 100 0(1)
4, REI to
IPL 8 serv,
routine interrupt 8 0 0(I)
5. SOFTINT #5 interrupt 8 20 0(1)
6. SOFTINT #3 interrupt 8 28 0(1)
7. REI to
IPL 5 serv,.
routine kernel 5 8 0(K)
8. Device int,
at IPL 20 interrupt 20 8 5(1),0(K)
9. SOFTINT #8 interrupt 20 108 5(1),0(K)
10. REI to
IPL 8 serv,
routine interrupt 8 8 5(1),0(K)

EX-32

System Mechanisms

SOLUTIONS

3.a. (Cont)

11. SOFTINT #4 interrupt 8 18 5(1),0(K)

12. REI to
interrupted
IPL 5 serv.
routine kernel 5 18 0(K)

13. REI to
IPL 4 serv,
routine kernel 4 8 0(K)

14. REI to
IPL 3 serv,
routine kernel 3 0 0(K)

15. REI to
interrupted
user image user 0 0 -=

At step 7, the REI triggers a software interrupt at IPL 5.
One of the assumptions was that IPL 5 (actually IPL 6 and
below) interrupts were to be handled on the kernel stack.

At step 12, the restored PSL requires 1IPL 5 but also
PSL<KIS> 1is clear. The REI 1instruction microcode then
switches stacks, in this case to the kernel stack.

The user program issues a CALLx instruction to the vector
area of system virtual address space. A CHMK or CHME
instruction transfers control to a change mode dispatcher
that builds a <call frame and then executes a CASE
instruction to dispatch to the service specific procedure.

When that procedure completes its operations, it executes
an RET instruction which returns control to a routine
SRVEXIT. Because no error occurred (as assumed), an REI
instruction is executed to pass control back to the vector
area where another RET instruction returns control to the
user program,

EX-33

System Mechanisms

SOLUTIONS

b. The CHMK and CHME instructions cause corresponding
exceptions that push a PSL and PC pair plus a service code
used in dispatching and change access mode to the required
mode. The exit from the exception service routine must be
an REI instruction to restore the previous access mode and
reset the PC and PSL.

c. The caller's access mode can be obtained from either the
previous mode field from the current PSL or from the
current mode field of the saved PSL.

Because the saved PSL may be at an unspecified offset from
the top of the stack, the previous mode field of the
current PSL is simply compared to the access mode passed
as an argument to the system service. The larger (less
privileged) access mode is the one used by the system
service,

This operation is performed to ensure that a nonprivileged
image does not gain access rights by, for example, queuing
an executive or kernel mode AST to itself.

LIBSSIGNAL may be invoked by any code on detection of an error
that is to be treated as an exception. Software makes the
decision.

The exception dispatcher is entered as a result of hardware
exceptions and a small set of software exceptions.

LIBSSIGNAL, through its alternate entry point LIB$SSTOP, can
force an image to exit. The exception dispatcher has no such
feature, although a condition handler could issue a SEXIT
system service.

EX-34

System Mechanisms

EXERCISES

Using the System Dump Analyzer, obtain the following
information about the system recorded in the dump file named
OSISLABS:CRASH1.DMP. '

It will be helpful to read in the file OSISLABS:GLOBALS.STB.
a. Locate the listhead for the system timer queue.

(HINT: The listhead consists of two longword pointers,
each of which can be located using a global system symbol
(EXESGL_XXXX).)

b. Locate a timer queue entry for a system subroutine
request,

(HINT: One of the bits in the TQESB_RQTYPE field
indicates whether or not the TQE represents a system
subroutine request. Consult Internals and Data Structures
for information on the use of system subroutine requests.)

c. What is the PC of the routine that will be invoked by the
software timer when this TQE expires?

d. Scan some other entries in the timer queue. Note the
kinds of requests that are being made.

EX-35

System Mechanisms

EXERCISES

[Optional] VMS allows privileged users to write and implement
their own system services.

a. User-written system services are implemented as privileged
shareable images. Read about privileged shareable images
in the VAX/VMS Release Notes for version 4.0.

b, 1Install and test the sample user-written system services
in the SYSSEXAMPLES directory.

Obtain a copy of the files from SYSSEXAMPLES:

USSDISP.MAR
USSLINK.COM
USTEST.MAR
USSTSTLNK.COM

Assemble the .MAR files,

You may want to include the debugger with USSTEST.
That will make it easier to verify whether or not the
program works since it does not do any output.

Link the privileged shareable image containing the
user-written system services using USSLNK.COM.

To avoid conflicts with other students in the class,
rename the resulting shareable image file to a unique
name (for example, using your initials).

Link the USSTEST object module with the shareable
image file. Follow the format used in USSTSTLNK.COM,
replacing USS.EXE with the name of your shareable
image file.

Link USSTEST with the debugger if you like.

By default, the image activator expects all shareable
image files to be in SYS$SHARE.

Therefore, you should define a logical name for vyour

shareable image file. Equate the file name to the
full file specification.

EX-36

System Mechanisms

EXERCISES

For example, if your shareable image were named
WORK1 : [HUNT.LABS]USSLH.EXE;1
you would make the following logical name assignment:
$ DEFINE USSLH WORK]1:[HUNT.LABS]USSLH.EXE
Install the shareable image with the /PROTECT and
/SHARE attributes. Be sure to specify the full file
specification.
You will need CMKRNL privilege to do this.
Run the USSTEST program to ensure that it works. If
you included the debugger, examine RO and location BUF

after the call to USER_GET_TODR.

Remember to deINSTALL the shareable image when you are
done.

EX-37

System Mechanisms

SOLUTIONS

First locate the listhead for the timer queue using the
symbol EXESGL TQFL. Examine the TQES$B RQTYPE field of
each timer queue entry, looking for an entry with an odd
value 1in this field. If the low bit in the TQESGL_ RQTYPE
field is set, then the request is for a system subroutine.

The PC of the routine to be invoked by the software timer
is at offset TQESL_FPC in the timer queue entry.

To locate successive entries in the queue, use the wvalue

at offset TQESL TQFL 1in each entry. You can scan
backwards using the value at offset TQESL_ TOBL.

In addition to the information in the VAX/VMS Release

Notes, you will find an overview of user-written system

services in the comments of the template files in
SYSSEXAMPLES.

COPY SYS$EXAMPLES:USS*.* your directory

! assemble the files

MACRO USSDISP

! include debugger with USSTEST if desired
MACRO USSTEST

! 1link shareable image, and rename to unique name
QUSSLINK.COM
RENAME USS.EXE your_file name.EXE

! link the main program; include debugger if desired
LINK/MAP/FULL USSTEST, SYSSINPUT/OPTIONS

your file name.EXE/SHARE

A

“nr»nnwnnnnnnnnnnn

«vr-n

! continued on next page....

EX-38

SYSTEM MECHANISMS

SOLUTIONS

! define logical name for shareable image so
! 1image activator will locate it properly
DEFINE your file name your_ full file spec

! get privileges for install

SET PROCESS/PRIV=(CMKRNL) .

! install the shareable image

RUN SYSSSYSTEM:INSTALL

INSTALL> your_ full file spec/SHARE/PROTECT
INSTALL> your_full file spec/LIST

INSTALL> “Z

$ SET PROCESS/PRIV=(NOCMKRNL)

wv»unnnnnnn

RUN USSTEST
SET PROCESS/PRIV=(CMKRNL)
$ RUN SYSSSYSTEM:INSTALL
INSTALL> your_full file spec/DELETE
INSTALL> 2
$ SET PROCESS/PRIV=(NOCMKRNL)

$
$! test the program, and then deinstall
$
$

EX-39

Debugging Tools

EXERCISES

Which debugger would you use under the following conditions?
a. Examine the current system

b. Examine a crash dump

c. Debug a user mode image at IPL 0

d. Debug a driver

Which is NOT a reason for a crash dump to occur?
a. Exception at elevated IPL
b. User mode image error

c. Machine check in kernel mode

EX-41

Debugging Tools

EXERCISES

Use SYS.MAP and the other listings in your Source Listings

book to answer the following questions about the $SUSPND

system service and AST delivery.

SSUSPND System Service

a. Which module contains the code that implements the $SUSPND
system service? (Remember that all system services have
two entry points, one of the form SYS$Sname that 1is the

starting address of the vector entry, and one of the form
EXESname that is the starting point of the actual code.)

b. What other routines are defined in this module?

c. How long (in bytes) is this module?

d. Which system mechanism is used to suspend a process?

EX-42

£.

Debugging Tools
EXERCISES

List all of the system subroutines that are called by the
$SUSPND system service,

A process can suspend another process only if it is in the
same group and the issuing process has GROUP privilege, or
if the issuing process has WORLD privilege. Where in the
code is this check made? What other system services need
to make this check?

The SHIBER system service does not make the same UIC and
privilege check that SSUSPND does (see question (f)).
Why?

AST Delivery

What line of the SSUSPND system service actually queues
the AST?

EX-43

Debugging Tools

EXERCISES

What section of code in the routine SCHSNEWLVL computes
the ASTLVL value and stores the value in the hardware PCB
and ASTLVL processor register?

Assume that the current process is issuing a S$SUSPND for
itself, and that it will be able to complete the $SUSPND
system service without interruption. At what point in the
system service dispatching sequence will the AST delivery
code (the IPL 2 interrupt service routine) be entered?
(This is the code that will eventually transfer control to
the AST routine.)

EX-44

Debugging Tools

SOLUTIONS

To examine the current system, use the System Dump
Analyzer,

To examine a crash dump, use the System Dump Analyzer,

The symbolic debugger is used to debug user mode images at
IPL 0. For other access modes at IPL 0, use the DELTA
debugger.

Use XDELTA to debug a driver, which operates at elevated
IPL in kernel access mode.

A user mode image error will not cause a crash dump to occur.

What

will occur 1is a traceback, and any condition handling

that has been set up.

EX-45

Debugging Tools

SOLUTIONS

$SUSPND System Service

SYSPCNTRL is the module that defines the symbol
EXESSUSPND.

There are two ways to find the routines defined 1in
SYSPCNTRL. The easiest way 1is to look at the table of
contents of the SYSPCNTRL module listing. This lists all
the entry points: ‘

EXESSUSPND EXESNAMPID
EXESRESUME EXE$XPID TO_ XXX
EXESHIBER EXESSETPRN
EXESWAKE

Another way to answer this question is to first find the
PSECT in which the SYSPCNTRL module resides. This is
accomplished by searching sequentially through the Program
Section Synopsis of SYS.MAP until SYSPCNTRL is found.
Ignore any reference that shows identical base and end
virtual addresses.

SYSPCNTRL appears on page 8 under the AEXENONPAGED PSECT
with a base of 8000B2B5 and an end of 8000B54A. Note that
the 1length of 296 also appears here, which answers
question (c) as well, Any routines defined by SYSPCNTRL
must have entry points that fall between the base and end
addresses.

All symbols are listed in numerical order in the Symbols
By Value section of SYS.MAP. On page 98 you will find the
following entry points: :

8000B2B5 EXE$SUSPND
8000B32B EXESRESUME
8000B340 EXESHIBER
8000B356 EXESWAKE
8000B367 EXE$NAMPID
8000B44E EXESEPID_TO_PCB
8000B455 EXESIPID_TO_PCB
8000B477 EXESEPID_TO_IPID
8000B4AA EXESIPID_TO_EPID
8000B4D7 EXE$SETPRN

The length of the module is 296 bytes hexadecimal or 662
bytes decimal. This can be found on page 8 of SYS.MAP as
described in question (b), or by looking at the last 1line
of code in the SYSPCNTRL module.

EX-46

Debugging Tools

SOLUTIONS

The system suspends a process by queuing a kernel mode AST
to the target process, as mentioned in the comments on
page 4 of SYSPCNTRL (under Functional Description).

The following system subroutines are used:

EXESNAMPID
EXESALLOCIRP
SCHSQAST

The UIC and privilege check 1is made in the EXESNAMPID
routine. The actual check occurs in line 497 for group
privilege and line 496 for world privilege.

The other system services that need to make this check
are:

SDELPRC $SCHDWK
SRESUME $FORCEX
SWAKE SSETPRI
SCANWAK SGETJPI

Most of these services can be deduced from the names of
the modules that reference EXESNAMPID, found on page 35 of
SYS.MAP:

SYSPCNTRL SYSFORCEX
$SUSPND SFORCEX
SRESUME SYSGETJPI
SWAKE SGETJPI

SYSCANEVT SYSRTSLST

S$CANWAK SGRANTID

SYSDELPRC SYSSCHEVT

SDELPRC SSCHDWK
SYSSETPRI
SSETPRI

To verify the check in each case, locate the call to
EXESNAMPID in the code for each service. (Merely
understanding the process and perhaps doing it in the case
of the SYSPCNTRL module, is sufficient for this exercise.)

EX-47

Debugging Tools

SOLUTIONS

SHIBER makes no privilege check because a process is only
allowed to hibernate itself (not others), although it can
be awakened by other processes, This is not mentioned
explicitly in the code comments, but could perhaps be
deduced from the absence of the privilege <check or from
the fact that the SHIBER system service does not have any
arguments,

AST Delivery

Line 173 of SYSPCNTRL invokes SCH$SQAST to actually queue
the kernel mode AST to the target process. The routine
SCHSQAST is located in the module ASTDEL, as indicated in
SYS .MAP.

Lines 622-644 of module ASTDEL calculate the ASTLVL value
and store it. Line 632 extracts the access mode of the
first AST in the queue. Line 637 stores the ASTLVL value
in the hardware PCB field, while line 638 performs the
same operation for the ASTLVL processor register.

The AST delivery mechanism begins with an REI instruction
detecting the deliverability of an AST and causing a
software interrupt at IPL 2. If the process is not
interrupted between the queuing of the AST in SCHS$QAST and
the REI instruction in the SRVEXIT routine, then the first
REI instruction encountered will be that one.

EX-48

Debugging Tools

EXERCISES

1. Consult your instructor for a list of the crash dump files on
your system.,

For each crash dump
® Determine the current process (and image, if applicable).
® Determine the current IPL,

® Determine the reason for the crash. In addition to the
reason displayed by SDA, explain why that crash occurred.

EX-49

Debugging Tools

SOLUTIONS

1. Consult your instructor for the solutions to this exercise,.

- EX-50

Scheduling

EXERCISES

For each state described below, briefly discuss the properties
of a process in the state (for example, memory-resident, or
executable), what event or system service placed the process
in the state, what system events must occur before the process
can leave the present state, and what the next process state
can be.

a. CUR
b. HIB
c. SUSPO
d. CEF
e, COLPG
f. PFW
g. COMO

EX-51

Scheduling

EXERCISES

Assuming the same initial conditions (stated below)
guestion, state

Initial Conditions:

What happens to the currently executing process

Which process is next selected for execution

At what software priority that process executes

Process Name

oOQwp

System event:

System event:
for Process B.

System event:
Process C.

Software Priority

gquantum end for Process D.

CoM
LEF
HIB
CUR

for

Process State

each

post event flag (terminal output completed)

scheduled wakeup (from software timer)

EX-52

for

Scheduling

EXERCISES

Describe how processes in the categories below may be included
in multiprocess applications. Indicate any possible
interactions with system processes that must be considered in
assigning processes to these categories and the expected
execution behavior of processes in the category.

a, Time-critical processes

b. Normal processes with elevated base priorities

c. Normal processes with normal (default) base priorities

d. Normal processes with lowered base priorities

EX-53

Scheduling

SOLUTIONS
CUR -- The process is the current executing process and is
memory-resident, The state is only entered from the

computable, memory-resident state (COM) as a result of a
scheduling operation., A process leaves the CUR state as a
result of quantum end, process deletion, a wait condition,
or preemption by a higher-priority COM process,

HIB -- The process is memory-resident, but not computable.
The hibernate state is entered by issuing a request to the
SHIBER system service (from the CUR state) or requesting
the action as part of a create process request (SCREPRC).
A process outswapped while hibernating is placed in the
HIBO wait state. A process can be made computable (COM)
by receiving an AST, a $WAKE request, or a process
deletion request.

SUSPO -~ The process is neither memory-resident nor
computable. The state is entered from the CUR state as a
result of a $SSUSPND system service request, followed at
some point by an outswap operation. A process leaves this
state only after a $SRESUME system service request issued
by another process, or as a result of a process deletion
request, In each case, the process is next placed in the
appropriate COMO queue.

CEF -- The process is waiting for one or more event flags
in a common event flag cluster, Memory-resident and
outswapped CEF processes share the same wait state and
queue (for a particular common event flag cluster). When
the combination of event flags is satisfied, the process
is placed into either the computable, resident (COM) or
computable, outswapped (COMO) state depending on the
memory-resident status bit in the software PCB. The
process can also be made computable as a result of AST
delivery and process deletion.

EX-54

Scheduling

SOLUTIONS

COLPG -- The process referenced a page already being read
into memory as a result of other activity in the system.
When the page is available, the process will be made
computable or computable outswapped, depending upon its
memory-resident status when the page becomes available,
AST delivery and process deletion also make COLPG
processes computable,

PFW -- The process is waiting for a paging operation (page
read I/0) to complete. When the page becomes available,
the process enters the COM or COMO state, depending upon
the memory-resident status, A PFW process can also be
made computable as a result of either AST delivery or
process deletion.

COMO -- The process is computable but not resident in
memory. The state may be entered from the various
outswapped wait states after any of the system events that
make such a process computable. The COMO state is also
the initial state of a newly created process. The only
transition 1is to the computable, resident (COM) state
after an inswap operation, the event for which the process
is waiting.

Process D will be rescheduled into the tail of the
priority 5 COM state queue. Process A will be scheduled
by removing it from the head of the priority 5 state queue
and executing it at priority 4.

Process D will be rescheduled as in answer a. above. The
event flag service will make Process B computable at
priority 11 (after the terminal input boost 1is applied).
The scheduler brings Process B into execution at priority
10.

Process D will be rescheduled as 1in answer a. above.

Awakening Process C makes it computable at priority 17,
and it will be scheduled at priority 17.

EX-55

Scheduling

SOLUTIONS

Time-critical processes are useful for the traditional
real-time type of application. They are characterized by
fast response times, fixed execution priorities, and
invulnerability to quantum end events. For predictable
scheduling, time-critical processes should be assigned
unique priorities. Otherwise, there is a potential for
round robin scheduling of computable real-time processes.
In addition, these processes should disable swapping to
prevent scheduling conflicts with the swapper, a
time-critical process at priority 16.

Normal processes with elevated base priorities are
characterized by fast response times, but they are
susceptible to quantum end events, including the working
set adjustment and CPU time expiration operations. As the
base priority approaches 15, the current priority 1level
tends to remain more constant than for default processes.
Normally, interaction with the system processes (which are
mostly implemented as processes of this type) is not a
serious concern, because their normal process states are
either HIB or LEF, A process such as an active magtape
ACP may, however, cause some contention for CPU time.

Normal processes with default or normal base priorities
typically represent the majority of the processes on a
system., The full range of scheduling-related operations
apply - round robin scheduling, dynamic priority
recomputation, and quantum end (with working set
adjustment and CPU time 1limit checking). Interactive
processes 1in this category tend to be favored over
compute-bound processes because of the priority boost
mechanism.

Normal processes with lowered Dbase priorities are,
effectively, background processes, On a busy system,
these processes will only experience occasional
scheduling. This category, if used at all, is typically
reserved for batch streams, where response time is less
critical.

EX-56

1.

Scheduling

EXERCISES

Obtain the following information about the system recorded in
the dump file named OSISLABS:CRASH1.DMP.

a. Locate the listhead for the HIB state queue.

(HINTS: Recall there is a system symbol pointing to each
state queue. If you do not recall the name of the symbol,
you can probably find it in the Symbols Cross-Reference
section of the system image map. These symbols begin with
the code SCHS.)

b. How many processes were in the HIB state when the systenm
crashed?

c. List the software priority (base and current) of each
process in the HIB state at the time of the crash,

Read the following information on the MWAIT state, and then
answer the questions,

The MWAIT State

Any process waiting for a mutex or a system resource is placed
in the MWAIT (miscellaneous wait) state, There are a few
different methods for discovering which mutex or resource the
process is waiting for.

If SHOW SYSTEM lists the process state as RWxxx, then the
process 1is waiting for a resource (xxx represents the desired
resource)., SHOW SYSTEM displays a mnemonic specifying the
specific resource wait, rather than simply notifying you the
process is in the MWAIT state. Table 1 lists the RWxxx codes
used by SHOW SYSTEM,

These mnemonics are also used in the MONITOR STATES display to

provide you with more information about processes in the MWAIT
state.

EX-57

Scheduling

EXERCISES

When a process 1is waiting for a resource, a number
representing the resource is placed in the EFWM field of the
PCB. These numbers are listed with the resource waits in
Table 1. VMS defines symbols to represent the resource
numbers (in the $RSNDEF macro).

You can use SDA to determine which resource a process is
waiting for, but SHOW SYSTEM is usually easier.

Remember The EFWM field normally contains the process event
flag wait mask. The multiple use of this field does not cause
a conflict, however, because a process in the MWAIT state
cannot also be waiting for event flags.

Table 1 Resource Waits

Resource Wait Mnemonic Symbol Numeric
AST Wait (for system AST) RWAST RSN$_ASTWAIT 1
Mailbox Full RWMBX RSNS$_MAILBOX 2
Nonpaged Dynamic Memory RWNDY RSNS_NPDYNMEM 3
Page File Full RWPGF RSNS_PGFILE 4
Paged Dynamic Memory RWPDY RSNS_PGDYNMEM 5
Breakthrough (Wait for RWBRO RSN$_BRKTHRU 6
broadcast message)

Image Activation Lock RWIAC RSN$_TACLOCK 7
Job Pooled Quota (unused) RWJQO RSNS$S_JQUOTA 8
Lock ID Database RWLKI RSNS$_LOCKID 9
Swap File Space RWSWP RSN$_SWPFILE A
Modified Page List Empty RWMPE RSN$_MPLEMPTY B
Modified Page Writer Busy . RWMPB RSNS$_MPWBUSY C
System Control Services RWSCS RSN$_SCS D
Cluster State Transition RWCLU RSN$_CLUSTRAN E

If SHOW SYSTEM lists the process state as MUTEX, then the
process 1s waiting for a mutex., 1In this case, use SDA to
determine which mutex. The system virtual address of the
particular mutex is 1in the PCBSL_EFWM field of the software
PCB. The symbolic names of these addresses are 1listed in
Table 2.

EX-58

Scheduling

EXERCISES

Table 2 Mutexes

Mutex

Symbol Address (*)

Logical Name Table

I/0 Database

(Not used)

Common Event Block List
Paged Dynamic Memory

Global Section Descriptor List
Shared Memory Global Section
Descriptor Table

Shared Memory Mailboxes

(Not used)

(Not used)

Line Printer Unit Control Block

LNM$AL_MUTEX
IOCS$GL_MUTEX
CIASGL MUTEX
EXESGL_CEBMTX
EXESGL_PGDYNMTX
EXESGL_GSDMTX
EXESGL_SHMGSMTX

EXE$GL_SHMMBMTX
EXESGL_ENOMTX
EXESGL ACLMTX

UCBSL LP_MUTEX (**)

(*) See question (2a)

(**) The mutex associated with each line printer unit does
not have a fixed address like the other mutexes. Its
value depends on where the UCB for that unit is located.

In summary, there are two categories of MWAIT, resource

and mutex waits.,
SYSTEM lists its state as

waits

A process is waiting for a mutex if SHOW
MUTEX,

and the PCBSL EFWM:- field

contains an address greater than 80 million (hex).

A process is in a resource wait if SHOW SYSTEM lists RWxXXX as

its state, and

the PCBSL EFWM field contains a small number

representing the particular resource.

a. Determine the system
listed in Table 2.

(HINT:

EX-59

virtual
Add them to the table,

addresses of the mutexes

you can find these values in SYSSSYSTEM:SYS.MAP)

Scheduling

EXERCISES

b. A process on your system named GONZO seems to be ‘'hung'.
The display from SHOW SYSTEM tells you that its state is
RWAST, which you know is a subdivision of the MWAIT state.

Analyze the resulting crash dump in OSISLABS:MWAIT.DMP to
verify that GONZO was

@ In the MWAIT state

® Waiting for an AST

EX-60

Scheduling

SOLUTIONS

The listhead for the HIB wait state queue is at 1location
SCH$GQ_HIBWQ.

The count of processes in the HIB state 1is stored at
offset WQHSW _WOCNT in the wait queue listhead. (The
SWOHDEF macro is in SYSSLIBRARY:LIB.MLB.)

On most systems, the following processes are often 'in the
HIB state: SWAPPER, ERRFMT, JOB_CONTROL, and REMACP and
NETACP if DECnet is installed.

To find the software priority (base and current) of each
process in the HIB state, trace through the the software
PCBs in the queue.

The base priority is at offset PCB$B_PRIB, and the current
priority is at offset PCBSB_PRI.

The system virtual addresses of the mutexes can be
determined by examining the output produced by the
following DCL commands:

$ SEARCH SYSSSYSTEM:SYS.MAP MTX
$ SEARCH SYSS$SYSTEM:SYS.MAP MUTEX

The PCBSW STATE field of GONZO's software PCB contains the

value 2 ~ (SCHSC_MWAIT) which means that GONZO was in the

MWAIT state.
The PCBSL EFWM field contains a 1, which means that GONZO

was waiting for a resource. The resource was an AST (see
Table 1).

EX-61

1.

3.

Process Creation and Deletion

EXERCISES

List two advantages to performing process deletion in the
context of the process being deleted.

Name two errors that can result from process creation. One of
the errors should be returned from the SCREPRC system service
request and the other only through a termination mailbox.
Explain why the S$SCREPRC system service 1is not capable of
detecting the second type of error.

Explain why a process with a CLI mapped in is not deleted when
an image exits.

EX-63

Process Creation and Deletion

SOLUTIONS

When executing in the context of the process being deleted,
all the virtual address space of that process is accessible.
In particular, the contents of the control region (Pl space)
that describe the state of the process at the time of deletion
is readily available.

In addition, the full support of VAX/VMS (including RMS and
all the system services) is available to aid in the process
deletion. Much of this support is not available to code
executing outside of process context.

The complete list of errors that can be detected by the
SCREPRC system service is listed in the description of $CREPRC
in the VAX/VMS System Services Reference Manual. Possible
errors include privilege violation, insufficient quota, and
process name errors,

Several errors can be detected only when the newly created
process executes. These errors include the specification of
an image that does not exist or bad equivalence strings for
SYSSINPUT, SYSSOUTPUT, or SYSSERROR.

By the time the new process 1is placed into execution, the
SCREPRC system service has already completed its work for the
creator and returned a status code. All errors that cannot be
detected except in the context of the newly created process
can only be reported to the creator through a termination
mailbox.

Image exit results in all previously declared termination
handlers being called. The command language interpreter has
declared a handler that runs the image down (if necessary),
restores the supervisor stack to its state before the image
was initially called, and looks for the next command from
SYSSINPUT. This allows multiple images to execute
sequentially in the same process. Only a special action, such
as a LOGOUT command within the process, or an external
STOP/ID= command, can cause such a process to be deleted.

EX-64

Process Creation and Deletion

EXERCISES

Write a program that will:
a. Prompt the user for a Process 1ID.

b, Use a routine (or routines) in the SYSPCNTRL module of VMS
to locate the software PCB for the specified process.

c. Display the event flag wait mask and current priority of
the process.

Things to remember when writing your program:

® Read through the routine(s) in SYSPCNTRL that you will
call, Note the inputs and outputs, calling sequence,
environment (access mode, IPL) and side effects of the
routine(s).

® Remember that the software priority of a process is stored
in the software PCB as 31 minus the priority (to simplify
the scheduler code).

Run the program to gather the information about your process
and some of the system processes (ERRFMT, OPCOM, etc.).
Compare the software priorities provided by your program with
those listed by SHOW SYSTEM. ‘

a. Write a program to output, and then change, your account
name., This must be done in elevated access mode. (Your
account name is stored in your Pl space.)

b. Use the system dump analyzer (SDA) on the current system
to verify that you have changed your account name.

You may also want to log out after changing the account
name, then log in again and enter:

$ ACCOUNTING/FULL/ACCOUNT=new-name

You should see an accounting record that has your CHANGED
account name,

EX-65

Process Creation and Deletion

SOLUTIONS

1. The program in Example 1 uses EXESEPID _TO_PCB (in VMS module
SYSPCNTRL) to locate a software PCB. It then displays the
event flag wait mask and current priority of the process,

.TITLE PCDLABI1 ; for process cre/delete

+
+

ABSTRACT:

This program accepts a PID and displays the event flag
wait mask and current priority of the specified process.
It uses EXESEPID _TO_PCB to locate the PCB.

ENVIRONMENT:

Begins execution in user mode, changes mode to kernel.
Raises IPL to IPLS_SYNCH to synchronize.

Requires: CMKRNL privilege; link with SYS.STB

SIDE EFFECTS:
none known

Ne NE NE N NE e NP N NS NE Ne ws e e e

«LIBRARY /OSISLABS:0SIMACROS/ ; for I1/0
.LIBRARY /SYSSLIBRARY:LIB/ ; system def's
SIPLDEF ; IPL symbol def's
$PCBDEF ;: pcb offsets

; khkkhkhkkhkkhkhkkkhkhkhhkhkhkkhkhkhk data hkhkkhkkhkhkkhkhhhkhhkkhkhkhhhkhhhkhkhkhkhkhkk
«PSECT NOSHARED_DATA PIC, NOEXE, LONG

PID_ASC: .LONG 8
.ADDRESS ASC_BUF

ASC_BUF: .BLKB 8
EFWM_ASC:.LONG 8

.ADDRESS EFWM_BUF
EFWM_BUF: .BLKB 8
CURPRI_ASC:

.LONG 8

.ADDRESS CURPRI_BUF
CURPRI_BUF:

.BLKB 8
BIG_STRING:

.LONG 80

.ADDRESS BYTES
BYTES: .BLKB 80

Example 1 Program to Locate and Read PCB
(Sheet 1 of 3)

EX-66

Process Creation and Deletion

SOLUTIONS

PROMPT: .ASCID /Enter a Process ID (all 8 digits): /
HDR1: .ASCID /Event Flag Wait Mask is: /

HDR2: .ASCID /Current Priority is: /

ERRMSG: .ASCID /Error finding PCB./

K_ARG_LIST: ; for $CMKRNL call
- LONG 3

PROCESS_1ID:
. LONG 0. ; passed by value
.ADDRESS EFWM : passed by reference
.ADDRESS CURPRI ; passed by reference

EFWM: . LONG 0

CURPRI: .LONG 0

khkkhkhkkkhkhkkkkkhkkkhkhkkkkkk main code kkkkkhkhkhkhkkkhkdkkhdkhkdkhhhkkkkkx

.PSECT CODE EXE ,NOWRT,PIC,SHR
«ENTRY BEGIN “M<O>

~e

PUSHAL PROMPT

PUSHAL PID_ASC

CALLS #2, GTLIBSGET_INPUT
CHECK_STATUS

CONV_HEX BIN PID- ASC, PROCESS_ID

Invoke kernel mode routine. It returns EFWM and
current priority. EFWM remains = 0 if any errors.
SCMKRNL_S routin= KERNEL1l, arglst= K_ARG_LIST
CHECK_STATUS

~e o

308: TSTL EFWM ; error finding pch?
BNEQ 408 ; (BEQL 63S$: will not reach)
BRW 63S ; if yes, branch to error rtn
40$: CONV_BIN_HEX EFWM, EFWM_ASC
CONCAT2 BIG_STRING, HDR1l, EFWM ASC
DISPLAY BIG_STRING
; adjust priority from internal format
SUBB3 CURPRI, #31, CURPRI
CONV_BIN_HEX CURPRI, CURPRI_ASC
CONCAT?2 BIG_STRING, HDR2, CURPRI_ASC
DISPLAY BIG_STRING

Example 1 Program to Locate and Read PCB
(Sheet 2 of 3)

EX-67

Process Creation and Deletion

SOLUTIONS
50$: MOVL #SSS_NORMAL, RO
RET
: error routines
63S: DISPLAY ERRMSG

BRW 508$

khkhkkhkhkhkhhhhdhhhhkddhhikhkk kernel mode code khkkhkhkkhkhkkhkkhhkkkhkkkk
returns EFWM and current priority

~e weo

«ENTRY KERNEL1 “M<R5,R6>

: get input argument (PID) off user stack before raise IPL
MOVL 4(AP), RO ; PID is first argument
CLRL R6 ; cuz we only move a byte into it

save old IPL on stack, raise IPL. Reference SYNCH
variable to lock down elevated IPL code.
DSBINT SYNCH

~e weo ~o

PID is in RO (required by epid routine), jsb to EPID_TO_PCB
returns PCB addr. in RO

~e

JSB G“EXESEPID_TO_PCB H

BEQL 1408 ; and sets cond. codes

MOVL PCBSL_EFWM(RO), R5 ; save EFWM for main code

MOVB PCBSB_PRI(RO), R6 ; save current priority

ENBINT ; IPL back to zero

: can touch the user stack now because back at IPL 0

MOVL R5, @8(AP) ; store EFWM in arg list

MOVL R6, . @12(AP) ; store cur. pri in arg list
H branch here if could not find PCB. Leave zeros in arg list
140$: SETIPL #0

MOVL #SSS_NORMAL, RO

RET ; all done in kernel mode
SYNCH: . LONG IPLS_SYNCH

«.END BEGIN

Example 1 Program to Locate and Read PCB
(Sheet 3 of 3)

EX-68

Process Creation and Deletion

SOLUTIONS

The program in Example 2 displays and changes the account name
for the process,

.TITLE PCDLAB2

+
+

ABSTRACT: _
Program to change Pl control information (account name)

ENVIRONMENT:
Changes mode to exec to read Pl space, and to kernel
to write Pl space. :

Linked with SYS.STB:
$ LINK PCDLAB2, SYSSSYSTEM:SYS.STB/SELECTIVE

SIDE EFFECTS:
Process account name is changed.

NG NG N e NE N NG NG N N N Np Ne we

+MACRO CHECK_STATUS CODE=R0O, ?2GO
BLBS RO, GO

PUSHL RO

CALLS #1, GTLIBSSTOP

RET

GO:
.ENDM CHECK_STATUS

; RERKAKKKKKKAKKRKKRIARKARRK Japg AAARRARRAARKKAXRR KRR AR KKK
.PSECT NOSHARED_DATA PIC,NOEXE,LONG

MESSl: .ASCID /Account name: /

PROMPT: .ASCID /Enter account name (1-8 characters): /
ACC_NAME: ; descriptor for
. LONG 8 ; account name
.ADDRESS ACC_BUF '
ACC_BUF:
.BLKB 8
E_ARG_LIST: ; argument list for CHME
.LONG 1
.ADDRESS ACC_BUF

Example 2 Program to Display and Change Account Name
(Sheet 1 of 3)

EX-69

Process Creation and Deletion

SOLUTIONS
K_ARG_LIST: ;
.LONG 2
.ADDRESS ACC_BUF
.ADDRESS LENGTH
BUFFER: .LONG 80 ;
.ADDRESS BUF :

BUF: .BLKB 80
LENGTH: .BLKW 1

.
’

~e

’

argument list for CHMK

descriptor for
string concats

storage for prompt

kkkhkkkkkhkhhkkhhkkkhkhkkhkhkkkkk* ~~de kkkkkkkhhkhkhhkhkhkhhkhkhhkkhkrkhkhhkkhkkk

.PSECT CODE EXE,NOWRT,PIC,SHR

.ENTRY ACCNAME ML

change mode to executive to read account name in Pl space
S$CMEXEC_S routin=EXEC_RTN, arglst=E_ARG_LIST

CHECK_STATUS

PUSHAL ACC_NAME
PUSHAL MESS1

PUSHAL BUFFER

CALLS #3, G"STR$CONCAT
CHECK_STATUS

PUSHAL BUFFER
CALLS #1, GTLIBSPUT_OUTPUT
CHECK_STATUS

PUSHAW LENGTH

PUSHAL PROMPT

PUSHAL ACC_NAME

CALLS #3, G LIBSGET_INPUT
CHECK_STATUS '

.
’

.
’
-
’

put string together

.s.+.and show it

prompt for "new"
account name

Example 2 Program to Display and Change Account Name
(Sheet 2 of 3)

EX-70

-

~e

~e

.
’

~e

Process Creation and Deletion

SOLUTIONS

change mode to kernel to write new account name

$CMKRNL_S routin=KERNEL_RTN, arglst=K_ARG_LIST
CHECK_STATUS

MOVL #SS$_NORMAL, RO

RET

khkkkkhkkhkkhkhkkkhkkhhkk exec mode code khkkhkhkkhkhkhhkhkhkhkhkhkkrkkkxk

.ENTRY EXEC_RTN “M<R2,R3,R4,R5>
save r2-r5 because destroyed by MOVC

put account name from Pl in argument list

MOvVC3 #8, GTCTLS$T_ACCOUNT, @4(AP)

MOVL #SSS_NORMAL, RO ; set normal completion
RET

khkkkkkhkhkkhkkhkkhkkkk kernel mode code khkhkhhkhhkhkhkkhkhhkhkhhhhkhkkkh

.ENTRY KERNEL_RTN “M<R2,R3,R4,R5>
save r2-r5 because destroyed by MOVC

MOVC5 @8 (AP), @4(AP), ~; src len and addr in arglst
£a/ /, -; fill with blanks
~ #8, G CTLST ACCOUNT ; dest is 8 bytes in Pl
MOVL #SSS_NORMALT RO ; set normal completion
RET

+END ACCNAME

Example 2 Program to Display and Change Account Name

(Sheet 3 of 3)

EX-71

~ System Initialization and Shutdown

EXERCISES

Differentiate the two programs SYSBOOT and SYSGEN, including their
® Purposes
® Environments

® Command syntax

EX-73

System Initialization and Shutdown

SOLUTIONS
SYSBOOT

® Purpose: SYSBOOT is the program that performs the secondary
phase of the bootstrap sequence., It reads parameters from the
system image and, optionally, from a parameter file. All
adjustable parameters are calculated. The system page table
is set up. The system image is read into memory.

SYSBOOT is not involved in determining which devices are
present or 1in loading the drivers and associated data
structures for these devices,

e Environment: SYSBOOT executes in a stand-alone environment
with memory management turned off. All communication with the
console terminal and all file operations must be performed by
code contained in the SYSBOOT image, because there is no RMS
or ACP to provide these services,

e Command Syntax: SYSBOOT does not recognize those commands
associated with loading device drivers. The WRITE command is
also ignored by SYSBOOT.

. SYSBOOT begins its operation by reading the values of
adjustable parameters from the system image file, This is an
implied USE CURRENT command.

SYSGEN

® Purpose: SYSGEN is not directly involved in the Dbootstrap

operation, Its primary purpose is to create a parameter file
that will be wused by SYSBOOT during future bootstrap
operations,
SYSGEN also loads device drivers for all devices that it finds
on the system or in response to explicit commands. The data
structures required by the driver are allocated and
initialized by SYSGEN.

e Environment: SYSGEN is a normal image that executes in full

process context, This means that services of the VAX/VMS
operating system are available for file operations including
terminal communication.

EX-74

System Initialization and Shutdown

SOLUTIONS

Command Syntax: All commands can be performed by SYSGEN.
However, SET commands do not normally affect the current
system, but merely change the values in a table that will be
written to a parameter file. A WRITE CURRENT command will
establish the parameter values wused in the next system
initialization. A WRITE ACTIVE command can change the values
of dynamic system parameters on the running system.

EX-75

Tests

VMS Internals |

PRE-TEST

Circle the 1letter that best answers each of the following
questions.

1. Which utility is used to make shareable files available to all

users?

a. SYSGEN
b. SDA

c. SYE

d. INSTALL

2, If you have an existing file, and would 1like to produce a
statistical report summarizing file characteristics, which RMS

utility would you use?

a. CREATE/FDL

b. EDIT/FDL

c. CONVERT

d. ANALYZE/RMS FILE

3. Which address region contains the user stack?

a. Program region (PO)
b. Control region (P1l)
c. System region (s0)
d. Reserved region (S1)

4, 1If, after calling a system service, the status code -equals
one, the system service has completed:

a. With a warning

b. Successfully

Cc. With an error

d. With a severe error

5. Which of the following must be done before an I/O operation
can be requested on a device?

a. The device must be allocated

b. The device must be mounted

c. A channel must be assigned to the device
d. The device must be initialized

TP-3

10.

- VMS Internals |

PRE-TEST

Which of the following is the fastest interprocess
communication mechanism?

a. Mailbox

b. Global section
c. DECnet

d. Shared file

Which of the following is true for a hibernating process, but
not true for a suspended process?

a. ASTs can be queued

b. ASTs can be delivered

c. ASTs are disabled

d. ASTs cannot awaken main-line code

-What type of condition occurs as the result of an external

hardware event?

a. Exception
b. Interrupt
c. Trap
d. Fault

Which condition handler is looked for first when an exception
occurs?

a. Primary handler

b. Secondary handler

c. User-defined handler in current call frame
d. Last chance handler

In designing an application interface, VMS provides assistance
in implementing which of the following features?

a. A HELP facility

b. Application-specific error messages
c. Parsing user input

d. All of the above

TP-4

11.

12.

13.

14,

15.

VMS Internals |

PRE-TEST

The linker places information into an executable or shareable
image file for later use by:

a. A compiler or assembler
b. The image activator

c. The scheduler

d. The disk ACP

A MAP file is produced by:

a. An assembler or compiler
b. The linker

c. The librarian

d. The Message utility

Which of the following types of files can be wused to group
image sections into clusters?

a. Options file

b. Library file

c. Shared image file

d. Transfer vector file

Which utility can be used to determine the cause of an
operating system failure, and also to examine the
characteristics of the currently executing process?

a. SDA

b. Accounting
c. Monitor

d. SPM

To decrease paging activity, system services can be used to:
a. Adjust the size of the working set
b. Lock pages in the working set and/or in physical memory

c. Disable the swapping of a process
d. All of the above

TP-5

16'

17.

18.

VMS Internals |

PRE-TEST

In the following instruction, which of the
Register Deferred mode?

a.
b.
Ce.
d.

ADDL3 #100, (R3), SUMS

#100
(R3)
SUMS
None of the above.

operands is in

What would be the contents of the destination
execution of the MOVW (R5)+, R3 instruction?

where R5 =
R3 =
0600
0602
a. 0600
b. 0602
c. 0700
d. 0702
What would be the contents of the source after the
of the MOVW (R5)+, R3 instruction? ‘
where R5 =
R3 =
0600
0602

a.
b.
C.
d.

0600
0602
0700
0702

TP-6

after the

0600
3F90
0700
0702

execution

0600
3F90
0700
0702

19.

20,

21.

22.

23.

VMS Internals |

PRE-TEST

What hexadecimal value will be in R3 after the MOVL #7°B1011,
R3 instruction executes?

Ae A
b. B
c. C
d. D

Which instruction is used to divide the longword QUARTS by 4,
placing the result in the longword GALLONS?

a. DIVL #4,QUARTS,GALLONS
b. DIVL3 4 ,QUARTS, GALLONS
c. DIVL3 #4,QUARTS,GALLONS
d. DIVL3 #4,GALLONS,QUARTS

Which register mask saves R2 and R5 on the stack?

a. PUSHR #"M<R2,R5>
b. PUSH #°"M<R2,R5>
c. PUSHL #"M<R2,R5>

Which set of instructions are used to invoke a subroutine?

a. CALLS, CALLG, RET
b. CALLS, CALLG, RSB
c. JSB, BSBx, RET
d. JSB, BSBx, RSB

The Command Language Interpreter runs primarily in what mode?
a. Kernel mode
b. Executive mode

C. Supevisor mode
d. User mode

TP-7

VMS Internals |

PRE-TEST

What is the name of the control block created when the Save
Process Context instruction is executed?

a. Software PCB

b. Hardware PCB

c. Process header

d. AST control block

When a typical user logs in to a VAX system, what kind of
process is created?

a. Owner process

b. Detached process
c. Subprocess

d. Privileged process

VMS Internals |

SOLUTIONS TO PRE-TEST

Circle the letter that best answers each of the following
questions.

1. Which utility is used to make shareable files available to all

users?
a. SYSGEN
b. SDA

+ SYE
INSTALL

2., If you have an existing file, and would 1like to produce a
statistical report summarizing file characteristics, which RMS
utility would you use?

a. CREATE/FDL
b. EDIT/FDL

. CONVERT
ANALYZE/RMS_FILE
3. Which address region contains the user stack?

3. Program region (PO)
Control region (P1l)
C. System region (s0)
d. Reserved region (S1)

4, 1If, after calling a system service, the status code equals
one, the system service has completed:

3 With a warning
Successfully

Cc. With an error

d. With a severe error

5. Which of the following must be done before an I/0 operation
can be requested on a device?

a. The device must be allocated

b. The device must be mounted

@ A channel must be assigned to the device
. The device must be initialized

TP-9

10.

VMS Internals |

SOLUTIONS TO PRE-TEST

Which of the following is the fastest interprocess
communication mechanism?

a. Mailbox

Global section
C. DECnet

d. Shared file

Which of the following is true for a hibernating process, but
not true for a suspended process?

3. ASTs can be queued
CD ASTs can be delivered
. ASTs are disabled
d. ASTs cannot awaken main-line code

What type of condition occurs as the result of an external
hardware event?

a. Exception
C’ Interrupt
¢. Trap
d. Fault

Which condition handler is looked for first when an exception
occurs?

Primary handler
5

Secondary handler
c. User-defined handler in current call frame
d. Last-chance handler

In designing an application interface, VMS provides assistance
in implementing which of the following features?

a. A HELP facility
b. Application-specific error messages

. Parsing user input
All of the above

TP-10

11.

12.

13.

14.

15.

VMS Internals |

SOLUTIONS TO PRE-TEST

The linker places information into an executable or shareable
image file for later use by:

The image activator
C. The scheduler
d. The disk ACP

i. A compiler or assembler

A MAP file is produced by:

The linker
C. The librarian
d. The Message utility

An assembler or compiler

Which of the following types of files can be used to group
image sections into clusters?

Options file
e

Library file
c. Shared image file
d. Transfer vector file

Which utility can be wused to determine the cause of an
operating system failure, and also to examine the
characteristics of the currently executing process?

SDA
. Accounting

c. Monitor
d. SPM

To decrease paging activity, system services can be used to:

a. Adjust the size of the working set
b. Lock pages in the working set and/or in physical memory
c. Disable the swapping of a process

All of the above

TP-11

VMS Internals |

SOLUTIONS TO PRE-TEST

16. In the following instruction, which of the operands 1is in
Register Deferred mode?

ADDL3 $#100, (R3), SUMS

a, #100
(b) (R3)
S. SUMS

d. None of the above.

17. What would be the contents of the destination after the
execution of the MOVW (R5)+, R3 instruction?

where R5 = 0600

R3 = 3F90
0600 = 0700
0602 = 0702
a. 0600
b, 0602

g;) 0700
7 0702

18. What would be the contents of the source after the execution
of the MOVW (R5)+, R3 instruction?

where R5 = 0600
R3 = 3F90
0600 = 0700
0602 = 0702
3 0600
0602
c. 0700
d. 0702

TP-12

19.

20.

21.

22,

23,

VMS Internals |

SOLUTIONS TO PRE-TEST

What hexadecimal value will be in R3 after the MOVL #°B1011,
R3 instruction executes?

C.
d.

oOwpP

Which instruction is used to divide the longword QUARTS by 4,
placing the result in the longword GALLONS?

a. DIVL #4,QUARTS,GALLONS
« DIVL3 4 ,QUARTS ,GALLONS
é;) DIVL3 #4,QUARTS,GALLONS
. DIVL3 #4,GALLONS,QUARTS

Which register mask saves R2 and R5 on the stack?

PUSHR #°M<R2,R5>

D o PUSH #"M<R2,R5>

c. PUSHL #"M<R2,R5>

Which set of instructions are used to invoke a subroutine?

a. CALLS, CALLG, RET

JSB, BSBx, RET
JSB, BSBx, RSB
The Command Language Interpreter runs primarily in what mode?

a. Kernel mode
b. Executive mode

g;) Supevisor mode
. User mode

TP-13

VMS Internals |
SOLUTIONS TO PRE-TEST

24, What is the name of the control block created when the Save
Process Context instruction is executed?

» Software PCB
@ Hardware PCB
. Process header
d. AST control block

25. When a typical user logs in to a VAX system, what kind of
- process is created?

ae Owner process
CD~'Detached process
C. Subprocess ’
d. .Privileged process

- TP-14

