EY-1034E-SG-0002

VAX/VMS
Users Introduction

Student Guide

Prepared by Educational Services
of
Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

TABLE OF CONTENTS
Chapter

1 The User Environment « . ¢« ¢ o o o o o
l.1 The Hardware . ¢« « ¢ ¢ ¢ o o o o o
1.2 The SoftWare « « « « o o o o o o o o @
1.3 Restricting the User Environment .

[(] [.
L] L ° L]
[] . L] L[]

etting Started
1 Logging In and Out . . .
2 Special Terminal Keys .
3 DCL Command Format . . .
.4
«5
.6

[.
. L)
° .
. 3
.

Getting HELP
Obtaining Information About the Environment
Modifying the Environment « o &

L] . - L]

3 File Naming and Manipulating . . « « . . &
3.1 File ConceptsS =« o o o o o o o o o o @
3.2 Specifying Files « « + ¢ o « ¢ o o o =«

3.2.1 File Specification Rules
3.2.2 Directories and Subdirectories .
3.2.3 Purpose of Directories and Subdir

«2.4 Specifying Files in Subdirectorie

e2.5 Defaults .« « ¢« ¢ o o o o o o o o

.6 Changing Defaults . .

.7 Wildcards .« ¢« « o «

iphering Error Messages .

cto

e ¢ o o 1N M e ¢ o ¢ o
o o o ¢ o (T e o ¢ o o
o o o o o ™M ae o o o o

3
3.2
3.2 [] . L] L] L]
3.2 e o o o @
3.3 Dec e o o o o

4 Creating and Manipulating Files
4.1 Creating Files Using EDT . « « « o« « &
4.1.1 EDT Line Mode Commands . . « « «

4.1.2 EDT Keypad Mode Commands .- .

4.1.3 Recovering From a System Fallure

4.2 File Manipulation with DCL Commands .

L] L[] [] L] e o
L] L]] L o o

L] L[] [] L] e o

5 Introduction to Program Development

5.1 Program Development on VAX/VMS . . . « « « &
5.2 Logical NamesS =« ¢ ¢ o o o o o o o o o o o
5.3 A Sample Program - GRADES . . ¢ e e s s e
5.3.1 Normal Execution of GRADES ¢ o o o o o
5.4 Using the Symbolic Debugger . . . ¢« « ¢ o &
5.4.1 Execution of GRADES with the Debugger

L . [[] [] L] . L] L[] L] m L] L] L] L] L] L] L] L] L[] L[] . L] L] L] L L]

L] L] L] L] L] [[[] L[] L] . L] .] L[] L] (] . [] L] [

L] L] [] L] L

-

wuwww*wwwww
HERHEREOOMN WHH

-bubnlb-bb;h
O oOoBNRFK

wn =

Table of Contents (cont.)

Chapter

5.5 Program Development with MACRO .
505.1 Source Files - ® . L] L] L] L]

5.5.2 Preparing the Program for Execution

5.5.3 Debug Commands . . « . . &

5.6 Program Development with FORTRAN .

5.6.1 Source Files « o ¢ o o o &

5.6.1.1 Character Per Column Formatti

5.6.1.2 Tab Formatting . .

6
6.3 Debug Commands &«
o

gram Development with PASCAL
.1l Source Files . . ¢« ¢« «o « &

«3 Debug Commands . . « . « &
gram Development with BASIC .
.1 Source Files . « « ¢« & « &

3 Debug Commands
gram Development with COBOL .
1 Source Files « ¢« « o o +« &

5
)
Pr
5
5
5
5.8 Pr
5
5.
5.
5.9 Pr
S.

5

5

«3 Debug Commands . « « +» « &

6 Simplifying a User Session
6.1 Creating a Command Procedure .
6.1.1 The LOGIN.COM Procedure
6.2 Creating Symbols . . «
6.2.1 Parameter Symbols . . .

6.2.2 Interpretation of Symbols

L[] L] L] L] .

7 Producing Formatted Text Output .
7.1 Using RUNOFF « . . o ¢ ¢ & o &
7.2 Input Files .« o ¢ ¢ o o o o &
7.3 Summary of RUNOFF Commands . .

8 Miscellaneous VAX/VMS Utilities . .
8.1 Using the MAIL Utility
8.2 Using the PHONE Utility

L]

.

L * L] L[] . .

. L] L] L]

3

.

. [] L] L[]

.2 Preparing the Program for Execution

.2 Preparing the Program for Execution

L]

7
7
7
o
8
8.2 Preparing the Program for Execution
8.
o
9.
9.2 Preparing the Program for Execution
9

3

3

L]

L] L] L] * L] .

[. . L

L] L] * L] L[] . L] L] L] . * L] * L] L] D L] L] L] L] L] L]

. L[] L] . L] L] * . L] L] L] L] L] L] *

. L] L L] L] L]

* L] L] L]

¢ o ® e ® e 6 ® e ® e ° o o o o o o & o ¢ o

L L] L] .

e o o

L] L] L] L] L] L] L] L] L] L] L[] L] L L] . . L] L] L] L[] L[] L]

[L] L [] [] L]

INTRODUCTION

The purpose of this document is to introduce you to VAX/VMS,
The document 1is divided into chapters, where each chapter
discusses a different aspect of VAX/VMS from the user's point
of view.

Chapter 1 provides an overview of the wuser's environment,
discussing the software and hardware available with VAX/VMS.

Chapter 2 gets you started, by discussing how to 1log in and
out, wuse the terminal, enter commands, get help when needed,
and obtain information about or modify the user environment.

Chapter 3 discusses file naming conventions, directory
structure, use of defaults, and deciphering error messages.

Chapter 4 discusses file creation using the EDT editor, and
file manipulation commands.

Chapter 5 discusses program development in general, including
program examples for several languages supported on VAX/VMS
(MACRO, FORTRAN, COBOL, BASIC, PASCAL). The VAX-11 Symbolic
Debugger is also discussed in this chapter.

Chapter 6 introduces command procedures and symbols, methods
that can be used to simplify a user session.

Chapter 7 provides an overview of the RUNOFF text formatter,
including examples and a summary of popular commands.

Chapter 8 discusses some other useful utilities, MAIL and
PHONE.

1.0

CHAPTER 1

THE USER ENVIRONMENT

THE USER ENVIRONMENT
A computer system consists of two major parts:
o Hardware

o Software

Hardware is a term used to refer to the physical computer,
which is manufactured in a factory.

Software is a term used to refer to the programs that
contain instructions to be performed by the hardware.

The combination of hardware and software forms a system.
Many types of hardware and software exist, so computer
systems do not have to be, and rarely are, identical.

A user's environment is defined by the combination of
hardware and software on his/her particular system. Since
the elements forming each system may not be the same, a user
of one system will probably work in a different environment
than a user on another system.

Each system is managed by a system manager. The system
manager is familiar with the system environment, and can
further restrict each user's environment.

THE USER ENVIRONMENT Page 1-2

1.1 THE HARDWARE

The hardware on a system is generally divided into three
parts - the central processing unit (CPU), main memory, and
peripheral devices.

The central processing unit is where most of the work |is
done on a computer system. In the VAX family of computers,
there are four models of the CPU, including the 11-780,
11-75¢9, and 11-730. The 11-780 model is larger than the
11-750. The 11-730 is the smallest model. All do the same
job; some faster than others. There is usually only one
CPU per system. The 11-782 (larger than the 11-780) uses
two CPU's, one as the primary worker, and the other as the
secondary worker. Work is shared between the two processors
according to rules set up by the designers.

Main memory is used for temporary storage of instructions
and data. Main memory can be installed in units, so the
amount of memory on a system can vary. Battery backup 1is
available so the contents of main memory are not lost in the
case of a power failure. The system manager can set up the
system to start automatically after a failure (such as a
power outage), and restore the contents of memory.
Therefore, with battery backup, work is rarely lost.

Peripheral devices include disk drives, magnetic tape units,
printers, terminals, and card readers.

Each disk or magnetic tape is referred to as a volume in
this document. The term device 1is used to refer to the
physical equipment where the volume is mounted.

Disks are used by the system to store currently used
information. A disk can be placed in a disk drive or stored
in a cabinet in the same way a record can be played on a
record player or stored in a cabinet. Although several disk
drives may be attached to a system, the wuser's information
is normally recorded on one disk only, which may be mounted
in any drive.

In the same way, a person may own several record players to
play records on. If a particular song is recorded on one
record only, the person may play the record on any of the
players and hear the same song. If the creators of another
record decided to include the same song, or a variation of
the song, on their record, the song would be on more than
one record. In the same way, the same information, or
different versions of the information, may be stored on more
than one disk.

THE USER ENVIRONMENT Page

Magnetic tapes are normally used to store information not in
current use, to free up storage space on the disks. The

owner of the disk decides what will be stored on tape and/or
removed from the disk.

Many different types of disk and magnetic tape drives can be
installed as part of a VAX/VMS system. The storage of

information on disks and magnetic tapes is handled by the
system and the system manager. This document assumes the
user will not be handling disks or magnetic tapes.

Most users of VAX/VMS work with printers and terminals.

Several types of printers are available. The system manager
chooses one of the printers on the system to be the default
printer. All files to be printed are sent to the default
printer unless the user specifies otherwise.

Several types of terminals are available. Some have a video
screen, such as the VT52 and VT1ld0@. Others are hardcopy
terminals using paper, such as the LA36 or LAl12f (see Figure
1-1). A standard keyboard 1is built 1into all DIGITAL
terminals (see Figure 1-2). This document assumes DIGITAL
terminals are being used.

A VIDEO A HARDCOPY
TERMINAL TERMINAL

TK-7319

Figure 1-1 Figure 1-2

1-3

THE USER ENVIRONMENT Page 1-4

1.2 THE SOFTWARE

The software on a system is generally divided into two major
parts - application software and system software.

Application software includes programs written by users of

the system for specific purposes, such as budgeting,

processing the payroll, running machines, or keeping
personnel records up-to-date.

System software includes programs written by the creators of
the system for such purposes as coordinating users, sharing
resources, running the hardware, and helping the user
communicate with the system.

1.3 RESTRICTING THE USER'S ENVIRONMENT
A user can be restricted from access to:

o The system (i.e., not allowed to work on the system)

o Other users (i.e., so can not affect the work of other
users)

o Certain kinds of software (such as system programs)

o Particular kinds of hardware

Information about each user is stored in a special file,
called the User Authorization File (UAF), on the system.
The system manager can modify any of information stored
there to allow the user more access to hardware and
software, or to restrict the user further.

The information in the UAF includes:

o The user's name and password - needed for access to the
system

o Privileges - to allow or disallow access to hardware
and/or software

o Limits - to restrict the use of system resources
o UIC - User Identification Code

o Priority - used by the scheduler to coordinate users -
on a 'higher priority - first serve' basis

THE USER ENVIRONMENT Page 1-5

When a user logs in, VMS uses this information to create a
process. A process contains a complete description of the
user's environment, including all of the information from
the UAF, what the user is doing, and what part of memory the
user is working in. Therefore, the process is equivalent to
the wuser's environment. Each user works in the context of
their own process. VMS coordinates, manages, and allocates
resources to processes, not users.

Processes are created for the purpose of running programs.
When a user logs in, a special kind of process is created -
an interactive process. The term interactive means that the
user is interacting directly with the system, usually via a
terminal.

VMS runs a program for interactive processes as soon as they
are created. The default program may be changed by the
system manager, but this document assumes that the program
is the command language interpreter for the DIGITAL Command
Language (DCL).

The DCL interpreter accepts a DCL command input by the user
and runs the system program corresponding to that command.
One DCL command is the RUN command, which can be wused to
execute user programs. After user or system programs have
completed, VMS runs the DCL interpreter again, so the
process will not be deleted. (If a program is not executing
in a process, VMS deletes the process.)

The user will know if the DCL interpreter program is
executing by the presence of the DCL prompt, $ (a dollar
sign). The dollar sign prompt indicates that the DCL
interpreter is ready to receive a command from the user. If
the dollar sign prompt is not present, another program is
probably executing, and DCL commands should not be input.

Interactive processes are deleted by VMS when the user logs
off the system. Resources which were used by that process
are then available for use by other processes.

CHAPTER 2

GETTING STARTED

LOGGING IN AND OUT

Before you can 1log into the system you must obtain
permission to wuse the computer. The system manager is
usually the person to contact. The system manager will give
you a username and password that will permit you to use the
facilities of the system.

Once you have a username and password you can 1log in. To
log in to the VAX/VMS system, do one of the following:

o Press the <RETURN> key on the right side of the keyboard

o Press the control key <CTRL> on the 1left side of the
keyboard. Hold it down and press the C or Y key (both
achieve the same results).

You should see a request for your user name in the format:

Username:

If you do not see the prompt:

o First, check to see if the terminal 1is plugged
in and turned on.

o Then, try again.

o If you still do not see the prompt, get help
from your system manager or designated expert.

GETTING STARTED Page 2-2

If you received the prompt, enter your user name. The
system should output another prompt requesting your password
in the form:

Password:

Enter your password. The password does not echo (i.e., you
can not see what you type), so type carefully.

The system should output a welcome message. Some systems
also output site-specific informational messages. (These
informational messages can be changed, and added to, by the
system manager.)

If the system outputs an error message instead of a
welcome message:

o Start over and enter the information more
carefully

o If you still receive an error message, notify
your system manager or designated expert.
(Sometimes the information recorded in the UAF
corresponding to your user name is not correct.
Sometimes the information has not been recorded.
By notifying the system manager, the problem
should be corrected so you will not receive any
more error messages.)

If the system outputs an informational message such
as 'system busy - try again later', then obey the
message.

Assuming you have been successful in logging in, you should
see the dollar sign prompt, §, at the left side of your
terminal screen. The $ was output by the DCL interpreter
program executing in your process. The DCL interpreter is
ready to receive a valid DCL command.

One valid DCL command is LOGOUT. If you enter this command,
your process is deleted and its resources are returned to
the system.

$LOGOUT

GETTING STARTED Page

The examples that follow show both a successful and
unsuccessful attempt to login to the system.

Example 1 -- Successful Login
<CR>
Username :SMITH
Password:

Welcome to VMS V3.0

$
Example 2 -- Unsuccessful Login

<CR>

Username :SMITH

Password:

User Authorization Failure

GETTING STARTED Page 2-4

2.2

SPECIAL TERMINAL KEYS

A diagram of the standard DIGITAL keyboard can be seen 1in
chapter 1, Figure 1-2. The following terminal keys can be
used while you are logged in to correct errors or modify the
behavior of programs:

o DELETE - Used to delete the character Jjust entered on
the terminal

For example, If you enter PAPEF when you meant to enter
PAPER, press the DELETE key after entering the F.

On a video screen, the F will be erased, 1leaving the
cursor after the E. You can then enter the correct
letter, R.

When working on a hardcopy terminal, the deleted
character will be echoed, preceded by a backslash
character. When the correct letter is entered, another
backslash <character will appear on the paper, followed
by the new letter.

PAPEF/F/R

o BACKSPACE - Do not use! The character entered by this

key 1is unacceptable input to the DCL interpreter or a
compiler.

GETTING STARTED Page 2-5

o CTRL - This key is to be used in conjunction with one of
the following keys by holding it down while pressing one
of them:

- Cor Y - suspends the current command 1line or
currently executing program. The dollar sign prompt
is then output.

- R - retypes the current input line on the terminal.
CTRL-R is useful on hardcopy terminals after several
corrections have been made to an input line.

Papef/f/r is a uf/f/seful tb/b/ocol (user types CTRL-R)

Paper is a useful tool (line is retyped as the
computer will see it.
Input may continue at
the end of the line.)

- U - cancels the current command line

- S - stops the display of information on the terminal
screen

- Q - continues printing output stopped with the
CTRL/S on the terminal screen

- O = suppresses output to the terminal screen but
allows program to continue. Entering another CTRL-O
reverses the effect so the output can be seen again.
(The information output by the program while output
to the terminal screen is suppressed is never seen
by the user.)

NOTE: Sometimes a terminal will not respond to a
user, and appears to have stopped working. Often,
this is because the wuser accidentally entered a
CTRL-S or a CTRL-0. The terminal will usually
respond if a CTRL-Q or CTRL-0O is entered. If that
fails, enter a CTRL-Y.

GETTING STARTED Page 2-6

2.3 DCL COMMAND FORMAT

Any valid DCL command can be input by the user when the $§
prompt 1is seen. The general format of all DCL commands is
the same. However, some commands may be more explicitly
defined or modified through the use of command options,
parameters and qualifiers.

Table 2-1 lists the major command formats and examples of
commands using those formats.

Table 2-1

‘Command Format Example
$command $LOGOUT

$command option $SHOW SYSTEM

$command option/qualifier $SHOW DEVICE/ALL

$Scommand parameter STYPE FILE.DAT
$command/qualifier parameter $DIRECTORY/FULL FILE.DAT
$command parameter/qualifier SPRINT FILE.DAT/COPIES=2
$command parameter ,parameter SPRINT FILE.DAT,TEST.FOR
$command param,param/qualif SPRINT A.DAT,B.FOR/COPIES=4

The first four characters of any DCL command, option, or
qualifier wuniquely identifies it to the DCL interpreter.
For example, PRINT can be shortened to PRIN, and DIRECTORY
can be shortened to DIRE. Many commands are uniquely
defined by fewer characters than four, so the user rarely
needs to enter the entire command. For example, DIRECTORY
can actually be shortened to DIR.

Many commands require an option or parameter so the DCL
interpreter will know exactly what to do. The interpreter
will prompt the user for missing information. For example,
the PRINT command prompts for a file name.

S$SPRINT (user pressed <RETURN>)
$ _file: (system prompt...user
should input file name)

GETTING STARTED ' Page 2-7

As soon as the DCL interpreter has received all required
information, it will invoke the <corresponding system
program. For example, the PRINT command requires only one
file name. If a user enters one file name and presses the
carriage return, the file will be printed. If the user
intends to enter more than one file name, the carriage
return should not be pressed until all file names have been
entered. For example:

SPRINT (user pressed <RETURN)>)
$ _file: FILE.DAT (user enters file name and presses
<RETURN>. File is printed)

SPRINT

$ file: FILE.DAT,A.DAT,B.DAT (user list names and does not

- press <RETURN> until all have
been listed. All files are
printed.)

If a user needs to print so many files that the end of the
line 1is reached before all files have been 1listed, a
continuation marker can be placed at the end of the 1line.
The continuation marker accepted by the DCL interpreter is -
(a hyphen). The user can press the carriage return after
entering the hyphen, and continue to input file names after
the $_ prompt on the next line. A carriage return pressed
after the 1last name causes all listed files to be printed.
The continuation marker can be used with any DCL command.
For example:

SPRINT FILE.DAT,A.DAT,B.DAT, -
$_TEST.FOR, PAYROLL.DAT

GETTING STARTED Page 2-8

2.4 GETTING HELP

All commands listed in Table 2-1 are valid DCL commands.
More information is available on-line for every DCL command.
To obtain this information, enter the command HELP when the
$ prompt is seen.

An alphabetical 1listing of all DCL commands and other
selected topics will be seen. The HELP program then prompts
for a topic. The name of any topic 1listed can be input
after the prompt. Information about the topic will be

output, including a statement "additional information
available" preceding a list of subtopics, and a prompt for a
subtopic.

Information about a subtopic 1listed can be obtained by
inputting 1its name. If a carriage return 1is entered
instead, the topic prompt will be output. If another
carriage return is entered, the user will see the $ prompt.
For example:

$HELP
(Alphabetical list of commands and topics)
Topic? PRINT (user enters name of topic)
(general information about topic)
(subtopics listed if available)
Subtopic? /COPIES (user enters name of subtopic)
(information about subtopic is output)
Subtopic? (user presses <RETURN>)
Topic? (user presses <RETURN)>)

GETTING STARTED Page 2-9

NOTES:

l. The three words: options, parameters, and/or qualifiers
are wusually included in the 1list of subtopics for
commands. Any of these may be entered as a subtopic to
obtain general information. For example:

Subtopic? parameters

2. If the subtopic is a command qualifier, the / is part of
the name of the qualifier, as seen with /COPIES.

3. Another way to exit from the HELP program is by
inputting a CTRL-C or CTRL-Y.

4. The HELP command accepts a topic and/or subtopic as part
of the HELP command to obtain information more quickly.
For example:
SHELP topic subtopic
Some examples of this include:
$HELP SHOW SYSTEM

SHELP DIRECTORY
$HELP PRINT/COPIES

GETTING STARTED Page 2-10

2.5 OBTAINING INFORMATION ABOUT THE ENVIRONMENT

The environment of a user is defined by the hardware on the
system, the software available, and the information recorded
about the user in the UAF.

Users can look at their environment through the use of one
or more DCL commands listed in Table 2-2. Use HELP to find
out more ‘information about these commands.

Table 2-2 Commands to obtain information about environment

Information desired Command to use
List of all processes on system SSHOW SYSTEM
Information about own process $SHOW PROCESS/ALL
Current statistics on own process $SHOW STATUS
*Current position (device and $SHOW DEFAULT
directory)
Current system date and time $SHOW TIME
Characteristics of own terminal $SHOW TERMINAL
Characteristics of other devices SSHOW DEVICE

*discussed in Chapter 3 of this document.

GETTING STARTED Page 2-11

2.6 MODIFYING THE ENVIRONMENT

Users can change some of the characteristics of their
environment. Table 2-3 1lists the commands used to change
typically modified characteristics. Use HELP to obtain more
information about these commands.

Table 2-3 Commands used to modify user environment

Characteristic Command
Password SSET PASSWORD
Width of line on terminal $SET TERMINAL/WIDTH=132

$SET TERMINAL/WIDTH=80

*Default position $SET DEFAULT [directory-name]
(device and directory)

*discussed in Chapter 3 of this document

CHAPTER 3

FILE NAMING AND MANIPULATING

FILE CONCEPTS

The following analogy should help you understand how
information is stored and accessed on VAX/VMS.

A large company, called WERGRATE, owns a building. The
building is divided into many rooms. Some of these rooms
are set aside for the storage of information. Filing
cabinets 1line the walls of each of these storage rooms.
File folders containing information are stored in most of
the cabinets.

In this analogy, we have defined several places:
The building
Rooms in the building
Filing cabinets in each room

One or more file folders in the cabinet

Many different types of information can be stored 1in the
file folders, such as drawings, reports, and personnel
records.

Many different kinds of files can be stored on a computer
system. A file stored on a computer system can contain such
things as text, source code, object code, or executable
code. Files are created by an editor, a compiler, the
linker, or other utilities. Normally, a file is stored on a
disk or magnetic tape.

The storage areas in a company correspond to storage areas
in a computer system as seen in Table 3-1.

FILE NAMING AND MANIPULATING Page 3-2

Table 3-1 Correspondence between a company and a VAX system

A company A VAX system
The building A node
A room A device

A filing cabinet A directory
A file folder A file

To send a person to retrieve a certain file folder,
directions to the folder must be specified. The person must
know which building to enter, where the correct room is, and
which filing cabinet to open to access the folder. It is
assumed the person sent is familiar with buildings, rooms,
file cabinets, and folders. However, if the person is given
incorrect directions, the folder may not be found, or a
different folder may be retrieved.

To send the computer system to access a file, directions to
the file, called a file specification, must be given to the
system. In VAX/VMS, a file specification includes the names
of the node, device, directory, and file. The system is
familiar with nodes, devices, directories, and file names,
and will attempt to locate the file as specified. If the
user gives the system an incorrect file specification, the
system may respond with an error message, or by retrieving a
different file than the user intended.

FILE NAMING AND MANIPULATING Page 3-3

3.2

SPECIFYING FILES
A file specification has the following format:

Node::Device:[Directory]File name.File_type;Version_number

The fields of a file specification are discussed below.

o Node:: - the name of the system connected to the device
where the file resides.

o Device: - the name of the device containing the volume
(disk pack, magnetic tape) where the file is stored.
Several devices may be connected to the wuser's system.
Volumes can be moved from device to device. The
information stored on a volume can be accessed only by
specifying the name of the device where the volume is
currently mounted. The system will respond with an
error message if the volume is not available.

o [Directory] - the name of a special file, a directory
file, where the name of the file 1is 1listed. The
directory file is stored on the same volume as the file.
Directory files are discussed further in section 3.2.2.

o File name - any name chosen by the user. The name
usually corresponds to the contents of the file.

o .File type - should indicate the kind of information
stored in the file, such as text (.TXT), data (.DAT),
FORTRAN source code (.FOR), object <code (.0OBJ). The
file type may also be chosen by the user, and does not
have to correspond to the contents of the file.

o ;Version number - indicates whether this is the first,
second, ~third, etc. version of the file. When a file
is created, the system assigns it a version number of 1.
If the file 1is modified, the modified version |is
assigned the version number of 2. Each new modification
is assigned a new number (increment is 1).

FILE NAMING AND MANIPULATING Page 3-4

For example:
If the node is NODEA ,
the device is DRA3 ,
the directory is WHITE ,
the filename is MYFILE ,
the filetype is TXT ,
and the version number is 4 ,
then the full VMS file specification is:

NODEA: :DRA3: [WHITE]MYFILE.TXT;4

The following are other examples of complete file
specifications:

ENGNDE: :DRAQ: [BROWN] TESTFIL.DAT;2
DEPT@1: :DBB3: [SERGIO] DRAWING4.TXT;33
ACCTNG: :DBA1l: [MANAGER]BUDGET.FOR;1

ACCTNG: :DRAQ: [SYSEXE]HELP.EXE;1

FILE NAMING AND MANIPULATING Page

3.2.1 FILE SPECIFICATION RULES

A few rules must be followed when creating a file
specification:

1. The punctuation marks are required to separate the
fields of the file specification.

2. Spaces are not allowed within a file specification.
3. The name chosen for each portion (except the
version number) may contain digits or characters,

but must begin with a character.

4. Each portion of the file specification is 1limited
to a certain length:

o Node: 1-6 characters

o Device: 1-15 characters

o Directory: 1-9 characters
o File name: 1-9 characters
o File type: @-3 characters

o Version number: 1-5 digits

FILE NAMING AND MANIPULATING Page 3-6

3.2.2 DIRECTORIES AND SUBDIRECTORIES

A directory file is a special kind of file. Directory
files contain a list of names of other files. They are
used by the system to access the other files.
Directories reside on disk volumes. Normally, one
directory file is created for each user on a system.
The name of this file is often the same as the user's
last name.

A master directory file, named 000000.DIR, resides on
each volume. This master file contains a list of the
names of the top-level directory files on the volume
(usually the files whose names correspond to user
names) .

For example, a volume could contain the directory files
for BROWN, SMITH, BLACK, and JONES. When the
000000 .DIR directory file is listed, all of these names
are seen:

SDIRECTORY NODEA::DRAl:[000000]

BLACK.DIR;1 BROWN.DIR;1 JONES.DIR;1 SMITH.DIR;1

Several conclusions can be drawn from this example:

1. Even though the name of the master directory is
0000P00.DIR, to specify the name of the directory in
the command, the syntax [000600] must be used.
This 1is true of all directory files. Their names
are in the form name.DIR, but they must be
specified as [name] in a file specification.

2. The DIRECTORY command always outputs file names in
alphabetical order.

3. Directory files are always version 1.

The #00000.DIR file 1is a 1list of files which are
directory files themselves. Each of these directory
files should contain a list of files, some of which
could be directories. The directories listed in the
master file are <called top-level directories. The
directories 1listed in top-level directories are called
subdirectories. Subdirectories are directory files
which <contain a list of file names, some of which can
be directories. Directories listed in a subdirectory
are also called subdirectories.

FILE NAMING AND MANIPULATING Page 3-7

Directory £files and subdirectories can be better
understood through the use of a tree diagram (like a
family tree), as seen in Figure 3-1.

—— ——————————— —— T — ———— - ——

. . . I
. . . I
. . . I

l

PROJECT1.DIR;1 FILE.DAT;19 TEST.FOR; 4

SHIPSPD.BAS;2 DATA.DAT;6 PROJNOTES.DIR;7

NOTESDATA,.DAT; 3 SHIPNOTES.DAT;9
Figure 3-1

In this figure, the files listed reside on the volume
mounted in the disk drive, DRAl. The DRAl device, as
well as the DRAP and DRA2 devices are connected to the
system with the node name NODEA. Each volume contains
a master directory.

The master directory on the volume mounted in the DRAl
device contains four top-level directories: BLACK.DIR,
BROWN.DIR, JONES.DIR, and SMITH.DIR. The SMITH.DIR
directory file (shown in figure) contains one directory
file, PROJECT1.DIR. PROJECT1.DIR, a subdirectory of
SMITH.DIR, contains a directory file, PROJNOTES.DIR.

FILE NAMING AND MANIPULATING Page 3-8

Notice that directories also contain other kinds of
files.

The number of directory files which may be 1listed in
any directory file is not 1limited. Therefore,
SMITH.DIR could contain the names of more than one
subdirectory, and each subdirectory file could contain
the names of several other subdirectory files.
However, only seven 1levels of directories may be
defined from the top. (SMITH.DIR is a top-level or
first-level directory. PROJECT1.DIR is a second-level
directory. PROJNOTES.DIR is a third-level directory.)

3.2.3 PURPOSE OF DIRECTORIES AND SUBDIRECTORIES

The major reason directories and subdirectories are
created 1is to logically separate information on a
volume. When users are separated from each other
through the wuse of top-level directories, each user
appears to own a portion of the volume for storage of
information. VMS supports a protection scheme which
can be used to prevent other users from accessing
files. This protection can be wused to protect an
entire directory from access, or to protect only a few
of the files in the directory.

In some situations, one user could be working on
several projects, each requiring several files.
Subdirectories can be used to separate the files
belonging to one project from files belonging to
another.

Subdirectories become very useful for a frequent user
because directory 1listings can be very long. OpWhen
information is separated, each directory is smaller and
easier to work with. Any user <can create a
subdirectory with their own directory structure with
the CREATE/DIRECTORY [name] DCL command.

FILE NAMING AND MANIPULATING Page 3-9

3.2.4 SPECIFYING FILES IN SUBDIRECTORIES

The system assumes that a master directory is stored on
each volume. When a file specification is input, the
system searches the master directory for the directory
name input. If the directory name is listed in the
master file, the system searches the directory file for
the file name.

If a file is stored in a subdirectory, the file name is
not listed in the top-level directory file; rather, it
is listed in the subdirectory file. Therefore, the
system must be given the name of the subdirectory file
to search. In a file specification, this 1is done in
the [DIRECTORY] portion by specifying the top-level
directory name followed by a period. After the period,
the subdirectory name is specified. 1If the file_name
is 1listed 1in a second-level subdirectory, the
[DIRECTORY] portion will contain two names. For
example, to specify DATA.DAT in the subdirectory
PROJECT1.DIR (see Figure 3-1), the following file
specification can be used:

NODEA: :DRAl: [SMITH. PROJECT1]DATA.DAT

If the file name is listed in a third-level
subdirectory, the top-level name and the second-level
name must be specified first to provide a search path
for the system. For example, to specify NOTESDATA.DAT
in the subdirectory PROJNOTES.DIR (see Figure 3-1), the
following specification can be used:

NODEA: :DRAl: [SMITH. PROJECT1.PROJNOTES]NOTESDATA.DAT

FILE NAMING AND MANIPULATING Page 3-10

3.2.5 DEFAULTS

Most users never have to input the complete file
specification to uniquely identify a file to the
system. This is because the system supplies several
fields of the specification if the wuser does not
specify them. These supplied fields are called
defaults. The system stores some default values as
part of the user's process. It is possible to default
any field of the specification except the file name.
However, fields may be defaulted only under certain
conditions:

o The node (the name of the system) may be defaulted
if the file resides on a device attached to the
system where the user is currently working.

o The name of one device where the wuser's top-level
directory file is stored is recorded in the UAF for
that user. If a device 1is not 1included in the
specification, the name of this device (the
default) is supplied.

o The name of the wuser's top-level directory is
normally recorded in the UAF. The system supplies
this directory name if the user does not specify a
directory.

o The name of each file is unique, so the user must
always supply a file_name. The system does not
supply a default.

o The kind of information stored in each file should
be 1indicated by the file type. Users may choose
any file type desired, but if the standard
file types are used, certain system programs will
supply the file type field of the specification.
For example, the PRINT and TYPE programs will
always supply the file type of LIS. However, if
the wuser desires to print a file of type FOR, the
file type of FOR should be included in the file
specification.

Some system programs which accept input files and
produce output files will assume one file type for
files 1input to them, and supply a different
file type for the output files. For example, the
FORTRAN compiler assumes input files have the
file type of FOR, and supplies the OBJ file type
for files output. -

FILE NAMING AND MANIPULATING Page 3-11

o The version number, as previously stated, is set to
1 by default when the file is created. As modified
versions are created, each is given a new version
number . Version numbers are incremented by 1
automatically. A user may assign any version
number to a file or allow the system to assign
numbers. System programs choose the version with
the highest number by default if no number is
given.

Defaulting can be seen in the following example:
Joe Brown is working
on a system whose name is NODEA,
where his files are stored on a device named DRAJ
in the top-level directory, [BROWN].
He is working with a file, TESTPRGM,
whose file type is LIS.

This is the third version of the file, and the other two
versions are also residing in the [BROWN] directory.

The program invoked by the PRINT command assumes all
files input are of the type LIS. To print the file,
Joe Brown can use any of the following commands:
$ PRINT NODEA::DRA@: [BROWN]TESTPRGM.LIS;3
PRINT DRA@: [BROWN] TESTPRGM.LIS;3
PRINT [BROWN]TESTPRGM.LIS;3
PRINT TESTPRGM.LIS;3
PRINT TESTPRGM.LIS

PRINT TESTPRGM

«w » o » N »n

FILE NAMING AND MANIPULATING Page 3-12

3.2.6 CHANGING DEFAULTS

Users can change the defaults recorded in their
process. The SET NODE command is used to change the
default node name to access another system connected by
DECnet to the current system. The SET DEFAULT command
can be used to change either the device name and/or the
directory name. The new device name must correspond to
an actual device on the system, and the new directory
name must correspond to an existing directory.

For example, the device and directory names recorded in
the UAF entry for Joe Smith are DRA@G and [SMITH],
respectively (see Figure 3-1). When Joe logs in, the
system sets his default to DRA@:[SMITH]. To compile
DRA@: [SMITH]TEST.FOR;4, Joe only has to enter the
command :

$FORTRAN TEST

If Joe wants to print DATA.DAT in the subdirectory
PROJECT1.DIR (see Figure 3-1), the following command
can be entered:

$PRINT [SMITH.PROJECT1]DATA.DAT

If Joe wants to work with several files for a while in
that subdirectory, he could change his default:

$SET DEFAULT ([SMITH.PROJECT1]

$PRINT DATA.DAT
Notice that Joe only has to enter the file name and
file type after the default has been changed, since the
default directory name is now [SMITH.PROJECT1}.

To change the default directory name back to [SMITH],
the following command can be used:

$SET DEFAULT [SMITH]
S$PRINT [SMITH.PROJECT1]DATA.DAT

SPRINT DATA.DAT
error message

Notice that if Joe tries to print DATA.DAT now, the

complete directory specification must be given, or an
error message results.

FILE NAMING AND MANIPULATING Page 3-13

3.2.7 WILDCARDS

To list the names of all files in a directory, the
DIRECTORY command is used:

S$DIRECTORY [SMITH]

To list the names of all files whose type is FOR in a
directory, a wildcard, *, may be used instead of any
particular file name:

S$SDIRECTORY [SMITH]*.FOR

To list the names of all files whose names begin with G
in a directory, the wildcard may also be used:

$DIRECTORY [SMITH]G*.*

To list all versions of a file:

$DIRECTORY [SMITH]FILE.DAT;*

This wildcard may be used in the directory, file_name,
file type, and version number portions of the file
specification. The purpose of the wildcard is to save
time and effort on the part of the user.

Another useful wildcard is the period (.). The period
is used within the [DIRECTORY] portion of the file
specification:

$DIRECTORY [SMITH.PROJECT1]

S$DIRECTORY [.PROJECT1]

By using the period, the user did not have to enter the
name SMITH. The system takes the current default value
for the directory name, and includes it before the
period. Then, the completed file specification is used
to search for the requested file.

FILE NAMING AND MANIPULATING Page 3-14

Therefore, if the default wvalue is [SMITH.PROJECT1],
the files in the subdirectory PROJNOTES, can be listed
using:

SDIRECTORY ([SMITH.PROJECT1.PROJNOTES]
or

S$DIRECTORY [.PROJNOTES]

Two other wildcards may be wused with the directory
portion as well; the ellipsis (...), and the hyphen
(-). The meaning of the ellipsis is to search down
through the directory structure. So, to list all files
in the current directory and all subdirectories:

$DIRECTORY [...]

The hyphen is used to mean back up one directory level.
So, 1if the default is set to [SMITH.PROJECT1l], and the
user wanted to list the files in [SMITH]:

$DIRECTORY [-]

Wildcards may be used 1in conjunction with directory
names. So, to 1list the files in the PROJECT1
subdirectory and all files below it (assuming the
default directory is [SMITH]):

SDIRECTORY [.PROJECTI...]

If the default is set to [SMITH.PROJECT1l], and the user
wanted to 1list all files in [SMITH] and all files in
the rest of the structure:

$DIRECTORY [-...]

Other combinations may be used. Users should practice
wildcards with the DIRECTORY command, as this command
does not change anything. However, the wildcards are
valid for wuse within most DCL commands requiring file
specifications as parameters.

FILE NAMING AND MANIPULATING Page 3-15

3.3 DECIPHERING ERROR MESSAGES

When a problem occurs in a program, utility, or DCL command,
an error message is displayed. The error message contains
four parts and appears in the following format:

$FACILITY-L-IDENT, TEXT

$FACILITY is the name of the system program or utility that
generated this error message (for example, DCL).

L is the level of the error. There are five 1levels of
errors:

o S - Successful. No error is reported. Usually, no
message is output if a program is successful.

o I - Informational. No error, but the program outputs
some information needed by the user. Often, these types
of messages do not appear in the above format.
Informational messages usually consist of text only.

o W - Warning. The program may have completed
successfully, or there may have been an error. The user
should check to see 1if the desired task has been

completed.

o E - Error. The program has encountered an error. The
program outputs the message and attempts to continue if
possible.

o F - Fatal or severe error. The program is not able to
recover from this error and continue. The program is
aborted.

IDENT is a code word that is an abbreviation of the message
text.

TEXT is a descriptive message that tells the user what the
problem is.

FILE NAMING AND MANIPULATING Page 3-16

The following example shows the error message which results
when a command unknown to the DCL interpreter is entered
after the $ prompt.

$SDDD
$DCL-W~IVVERB,unrecognized command
\SDDD\

$

The error message 1is a warning, output by the DCL
interpreter. The incorrect command is also echoed. (Most
messages include the echoing of incorrect input in some
format; not always enclosed in backslashes.)

Some errors are detected by more than one utility, so
several messages may be output. Usually, the first message
contains the most pertinent information, but the others can
be helpful.

For example:

SPRINT FILE,.DAT
$PRINT-W-OPENIN, error opening DRA@:[BROWN]FILE.DAT as input
-RMS-E-FNF, file not found

In this example, the file to be printed could not be found
by RMS, so the PRINT program could not open it to print it.
To correct this error, the user should create the file or
enter the name of an existing file.

The user should ask the following questions when an error is
received, because the problem is usually a common one:

o Is every part of the command spelled correctly?

o Does the command exist (is it a valid DCL command)?

0 Were the options, gqualifiers,and/or parameters chosen
from the 1list displayed for the command by the HELP
program?

o Was the command entered correctly (i.e., are the
options, qualifiers, and parameters, if any, in the
correct order)?

o Is the user allowed to use the command?

o Is the wuser trying to access a non-existent or
restricted piece of hardware or software?

CHAPTER 4

CREATING AND MANIPULATING FILES

CREATING FILES WITH EDT

EDT is the DIGITAL standard editor for text files. Files
containing text can be created and modified using the EDT
editor. The following command is used to invoke the editor:

SEDIT file specification

Usually, the file name and file_type are sufficient for the
file specification. If the user desires to create a file on
a different device or in a different directory than the
current default values specify, the device and directory
portions of the file specification will have to be included.

When a file is created, the file 1is assigned the version
number of 1. If the editor is being used to modify an old
file, the editor will open the file of the name given which
has the highest version number.
Some examples:
SEDIT FILE.DAT (uses defaults)

SEDIT DRA@:[SMITH]FILE.DAT;1 (no defaults used
except system name)

To create a file in a subdirectory, the same kind of command
is used:

Method one:

$SET DEFAULT DRA@:[SMITH.PROJECT1]
SEDIT DATA.DAT

Method two:

SEDIT DRA@:[SMITH.PROJECT1]DATA.DAT

CREATING AND MANIPULATING FILES Page 4-2

When the carriage return is pressed after the command is
input, the editor 1is invoked. The EDT editor outputs a
message and a prompt. The EDT prompt is an asterisk, *.

The EDT editor is capable of being in one of two modes, line
mode and character mode. The * signals the user that EDT is
in line mode, and is ready to accept 1line mode commands.
(Note: DCL commands can not be input after the * prompt.)

One line mode command is CHANGE, (can be abbreviated to ().
When this command is input, the mode is changed to character
mode. No prompt is output £for character mode, and the
editor will only accept character mode commands. (Note:
Neither DCL commands nor EDT line mode commands are accepted
when there is no prompt.)

A Computer-Based course is available that will teach you how
to wuse the features of EDT. Contact your system manager to
see if this course is available on your system.

4.1.1 EDT LINE MODE COMMANDS

Since character mode is so easy to use on video
terminals, most 1line mode commands are only used on
hardcopy terminals. People working on video terminals
will normally use the CHANGE (to enter character mode),
EXIT, QUIT, and SUBSTITUTE line commands.

In line mode, the EDT editor numbers each 1line so it
can be identified. Line numbers begin at # and the
normal increment is 1. However, fractional numbers are
used also. For example, if a line is inserted between
lines 1 and 2, the new line is given the number of 1.5.
When too many lines have been inserted, numbers are not
assigned to the new lines. At this point, the user can
enter the RESEQUENCE command to renumber the file in
increments of 1 (or some other chosen increment).

To indicate a line in a line mode command, the number
of the 1line should be specified. To indicate several
lines, a range can be specified by entering the number
of the first line, followed by a colon and the number
of the last line. For example, to DELETE 1lines 2
through 10 (inclusive), the range is specified as 2:14.
To indicate the entire file, as often happens with the
SUBSTITUTE command, the symbol %WH (or $WHOLE) can be
entered (see Table 4-1 for an example).

All EDT line mode commands are terminated by the input
of a carriage return. All commands can be abbreviated
(see Table 4-1) except the QUIT command.

CREATING AND MANIPULATING FILES Page 4-3

Table 4-1 lists a subset of line mode commands. The
EDT editor has on-line HELP, so help can be obtained on
each of the commands listed.

Table 4-1 Subset of EDT line mode commands

Command Function Example (s)

CHANGE To change to character mode *CHANGE or *C

COPY To copy a line or a group of *COPY 10 TO 100
lines from one area of the *CO 1:5 TO 8
file to BEFORE another line
in the file

DELETE Delete a line or group of *DELETE 10
lines *D11:25

EXIT Exit from the editor, saving *EXIT or *EX
all changes

HELP Obtain help on all 1line *HELP or *H
mode commands

INSERT Add text to the file. Editor * INSERT
inserts BEFORE current position new text
or BEFORE line number specified. <CTRL-Z>
No prompt is output while *I5
inserting. To return to the other new text
* prompt, press <CTRL-Z>. <CTRL-2>

*

MOVE Move a line or lines from one *MOVE 10 TO 5
area of the file to BEFORE a *MO 3:4 TO 11
line in another area

QUIT Exit from the editor without *QUIT
saving any changes

REPLACE Delete a line or group of lines *REPLACE 10 or *R10
and enter Insert mode to add 1l line deleted
text new text added

<CTRL~Z>
*

RESEQUENCE Renumber all lines in the *RESEQUENCE
file in increments of 1 *RES

SUBSTITUTE Substitute a new piece of *SUBSTITUTE/0ld/new/$WH

—— —————————— —— — — —— — — S — —— VD D W WD T P WES = T W = . ———— - G- — — — —— ———— — — i — — — —————— - — — T — ——— — -

text for an old piece

*S/text/newtext/10: 20

CREATING AND MANIPULATING FILES Page 4-4

4.1.2 EDT KEYPAD MODE COMMANDS

Character mode in the EDT editor is easy to learn, fast
to use, and powerful. No prompt is output, because all
commands are based on the <current position of the
cursor (the flashing light on the screen).

In character mode, the wuser is always inserting.
Whenever a character is entered from the main keyboard,
it is echoed on the terminal and becomes part of the
file. New 1lines are created by pressing the carriage
return. Commands are entered by using the keypad to
the right of the keyboard. Character mode commands are
terminated when they are input. (A carriage return
does not mean 'end of command' in character mode.)

Each key on the keypad means something different to the
editor. Figure 4-1 shows the layout of the keypads for
the VT52 and VT1@@#. The commands available on each
terminal are similar, but the keypad 1layout 1is
different. Most users cut out a copy of one of these
diagrams to paste to the front of the appropriate
terminal for reference.

The easiest way to learn how to use character mode is
by using it. The following 1list of character mode
commands should be practiced on a practice file until
the user is familiar with them.

CREATING AND MANIPULATING FILES Page 4-5

MAJOR KEYS

o GOLD - wused in conjunction with other keys.
Normally, the command associated with a key is the
command listed at the top of the square
corresponding to the key in Figure 4-1. To invoke
the commands at the bottom of the square, press
GOLD, and then press the key. For example, the DEL
C key deletes a character. Pressing GOLD and the
DEL C key will undelete a character.

o HELP - will output a picture of Figure 4-1 for the
current terminal and allow the user to obtain HELP
for any of the keys on the keypad.

o ADVANCE - When pressed, causes the cursor to be 1in
advance mode (the default). All commands used to
move the cursor will move it in a forward
direction, towards the end of the file.

o BACKUP - When pressed, causes the cursor to be in
backup mode. All commands used to move the cursor
will move it in a backward direction, towards the
beginning of the file.

CREATING AND MANIPULATING FILES Page 4-6

Commands affected by ADVANCE or BACKUP

o SECT - moves the cursor several lines at a time
o LINE - moves the cursor one line at a time
o WORD - moves the cursor one word at a time
o CHAR - moves the cursor one character at a time

o EOL - moves the cursor to the end of a line

Commands not affected by ADVANCE or BACKUP

o DEL CHAR - deletes the character at the cursor
position

(DELETE - not on the keypad, but on the regular
keyboard, deletes one character to the left of the
cursor as usual)

o DEL WORD - deletes the word to the right of the
cursor

o DEL LINE - deletes the line to the right of the
cursor (including the «carriage return and line
feed)

Note that when the DEL CHAR, DEL WORD, and DEL LINE
keys are used, the deleted text is saved in a temporary
buffer so the user can UNDelete the text. This 1is
useful 1in the <case of an accident, where text is
unintentionally deleted. It is also useful when the
user wants the same 1line of text to be placed in
several places in the file. The user can delete the
line, wundelete 1it, and then move to the other places,

undeleting the line wherever it is needed. However,
these buffers only hold one value (i.e., one line, one
word, or one character) at a time. They are

overwritten by newly deleted values.

If the user would like to save several lines of text in
a buffer, to be placed in another place or several
places in the file, the CUT and PASTE keys should be
used. To save the text, the user should position the
cursor at the beginning of the text and press SELECT.
Then, the user should position the cursor after the end
of the text and press CUT. The selected text will be
removed from the file and placed 1in a buffer.
Therefore, the text is deleted. The wuser could stop
here, or replace the text elsewhere in the file by

CREATING AND MANIPULATING FILES Page 4-7

moving the cursor to the desired position and pressing
PASTE. The text will be inserted before the current
position of the cursor when PASTE 1is pressed. (Note
that the GOLD key must be pressed before the PASTE key
to enter the PASTE command.)

EDT VERSION 3 KEYPAD FOR VT100

CTRL/A Compute tab level
FNDNXT | DEL L
CTRL/D Decraase tab level GOLD HELP
FIND UND L
CTRL/E Incresse tsb level
PAGE SECT APPEND | DELW
CTRL/K Define key
CO FILL REPL. UNDW
CTRL/T Adjust tabs
Detete to start of ADVANCE | BACKUP | CUT DELC
CTRLU line
BOTTOM | TOP PASTE UNDC
CTRLW Refresh screen
WORD EOL CHAR
CTRLZ Exit to EDT command
mode ICHNGCASE| DEL EOL |SPECINS | ENTER
DEL Rubout character
LINE SELECT | SuBS
K Go o beginning of
BAcKS? line ™ OPEN LINE RESET
LF Delete to start of
word
VT100 KEYPAD
- "
HE BTl B F1 PF2 PF3 PF4
] A
e ~
7 8 9 =
4 11 6
t 2 3
ENTER
0 . EDT VERSION 3 KEYPAD FOR VT52
DEL Delste character
. DELL |up
Delete to beginning
Trac LF GOLD HELP
ofword UNDL |REPLACE
BACK SP Move to begi of
line PAGE FNDNXT | DELW | pown

CTRL/A Computs tab level
CTRL/D Decrease tab level

CTRLE incresse tab ievel

ICOMMAND | FIND UND W SECT
ADVANCE | BACKUP | DELC | RIGHT

BOTTOM | TOP UNDC | SPECINS
WORD EOL cut LEFT

CTRL/F Fill text

CTRL/K Define key
CTRUT Adjust tabs
CTRL/Z Return to line mode

DELEOL | PASTE | APPEND

LINE SELECT | ENTER
OPEN LINE RESET suBs

VT 52 KEYPAD
;
stue | Reo | cray | % "
!
T
7
8 ® Jvt
. 5 P >
1 2 3 <-n-
[. ENTER
TRS040

Other EDT character mode commands are used less
frequently. Information about them can be obtained
through the HELP facility.

CREATING AND MANIPULATING FILES Page 4-8

4.1.3 RECOVERING FROM A SYSTEM FAILURE

Recovering from a system failure during an edit session
is not difficult with the EDT editor. While the user
is editing, EDT is creating a journal file. This
journal file contains a list of all commands entered
since the beginning of the session. After the system
is running again, users can recover all edits done by
using the command:

$EDIT/RECOVER file specification

The user should specify the name of the file which was
being edited at the time of the system crash. The EDT
editor will read the latest version of that file as
input, and use the commands listed in the journal file
of the same name (name.JOU) to reconstruct the work
done. During recovery, the editor will actually repeat
the work done previously by the user. Users should not
touch the keyboard until the editor 1is done and a
prompt (if they were in line mode) appears. If the
system crashed while the user was in chara