CDA Reference Manual:
Volume 2

Order Number: Volume 2: AA-PC02A-TE

June 1990

This manual provides reference material for using the CDA Toolkit to create compound
document applications, converters, and viewers.

Revision/Update Information:  This revised manual supersedes the CDA Reference
Manual Part | (Order No. AA-PABUA-TE) and Part i
(Order No. AA-PABVA-TE).

Software Version: VMS Version 5.4
ULTRIX Version 4.0

digital equipment corporation
maynard, massachusetts



First Printing, December 1988
Revised, October 1989 -
Revised, June 1990

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (i) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA LiveLink VAXcluster
DDIF LNO3 VAX RMS
DDIS MASSBUS VAXstation
DEC PrintServer vT
DECnet Q-bus XUl
DECUS ReGIS

DECwindows ULTRIX

DIGITAL UNIBUS i
DTIF VAX il all

The following are third-party trademarks:
PostScript is a registered trademark of Adobe Systems, Inc.
Lotus 1-2-3 is a registered trademark of Lotus Development Corp.
ZK5428

This document was prepared using VAX DOCUMENT, Version 1.2



Contents

Preface ...................... P Xvii
Chapter 1 Introduction

1.1 CDAltem Data Types . ... ....... it ittt ittt ieteeneannenns 1-1

1.2 CDADefault Values ............ ... ... .. . .. .. 14

13 DDIF Standard Aggregates . . ... ........ .. ...ttt 1-5

1.4 DDIF Tags . . . . .ot e e e e e 1-7

15 DDIF Initial Values . . ... ... ... ... ... .. . . . e 1-9

1.6 DDIF Processing Options . . . ............ .. ... ... .. 1-13

1.6.1 Inherit Attributes Processing Option . ... .................... 1-14

1.6.1.1 Type References and Definitions . ................. 1-14

1.6.1.2 StyleGuides . .. ...... ... e 1-15

1.6.2 Retain Definitions Processing Option. . . . ....... ... ... ... .. 1-15

1.6.3 Evaluate Content Processing Option . . . ..................... 1-15

1.6.3.1 Content References and Definitions . ............... 1-16

1.6.3.2 Computed Segment Content and External References . . . . 1-16

1.6.4 Discard Segments Processing Options . .. ................... 1-17

1.7 DTIF Document Aggregate Hierarchy . .. .. ................ ... ...... 1-17

1.8 CFE Aggregate Hierarchy . .. ... .......... ... 0.t 1-18

1.9 ESF Aggregate Hierarchy ... ............ .. .. ... . .. i .. 1-19
Chapter 2 Bundied Converter Formats and Commands

2.1 Base System Front Ends (Input Formats) . . ... ... ................... 2-1

2.1.1 DDIF FrontEnd . . .. ... it e i e e e 2—1

2.1.1.1 DataMapping ... ... ..ttt 2-1

2.1.1.2 Conversion Restrictions. . . . ............. ... ..... 2-1

2.1.1.3 External File References . . . . ..... .. ... ... ..... 2-1

2114 Document Syntax Errors . . .. ... ... . . o ... 2—1

2.1.2 DTIFFrontEnd . . ....... ... .. . .t 2-2

21.21 DataMapping ..........ciii i, 2-2

21.2.2 Conversion Restrictions. . . . ..................... 2-2

2.1.2.3 External File References . . . ..................... 2-2

2.1.24 DTIF Syntax Errors . ... ........ ..., 2-2



2.1.3 TextFront End ... ... ... .0t e e 2-2

2.1.3.1 DataMapping . ......... 0. 2-2

2.1.3.2 Conversion Restrictions. . . . ........... ... .. ..... 2-3

2.1.33 External File References . . . .. .......... .. ... ..., 2-3

2.1.34 Document Syntax Errors . ... ....... ... . o 2-3

2.2 Base System Back Ends (Qutput Formats) . . . ....................... 2-3
2.2.1 DDIFBack End .. . ... ..ot i it 2-3

22141 DataMapping . .. ......oiiiiin i 2-3

221.2 Conversion Restrictions. . .. ........... ... ..., ... 2-3

2.2.2 DTIFBack End .. ... ... . it i e e 2-3

2.2.2.1 DataMapping .. ........ vt 2-3

2222 Conversion Restrictions. . . . ......... ..., 2-4

2.2.23 External File References . . .. ......... ... ... ... 2-4

2.2.3 TextBack End . . .. .. ... i e e e 24

2.23.1 DataMapping . ....... ... 2-4

223.2 Conversion Restrictions. . . . .................. ... 2-4

2233 Processing Options . . . ...... .. ... ... 24

2.2.4 PostScript Back End. . . ... .. ... . 2-5

22441 DataMapping . ... ..ot iiiii i 2-5

2242 Conversion Restrictions. . . ............. ... .. ... 2-5

2243 Processing Options . . ....... ... ... . . . . .. 2-6

2244 Paper Size Processing Option . . .................. 2-6

2245 Paper Height Processing Option. . . ................ 2-7

2246 Paper Width Processing Option .. ................. 2-7

2247 Top Margin Processing Option . .. ................. 2-7

2.24.8 Bottom Margin Processing Option. . ................ 2-7

2249 Left Margin Processing Option . . . ................. 2~7

2.24.10  Right Margin Processing Option . . ... .............. 2-7

2.24.11  Paper Orientation Processing Option . . . ............. 2-7

2.2.412  Eight Bit Output Processing Option . ... ............. 2-8

2.2.4.13  Output Buffer Size Processing Option . .............. 2-8

2.2.4.14  Soft Directives Processing Option . . . . .............. 2-8

2.2.4.15 Word Wrap Processing Option . . . ................. 2-8

22416 Page Wrap Processing Option . . .................. 2-8

2.24.17  Layout Processing Option . . ..................... 2-8

225 Analysis Back End . . . ... ... ... i e 2-8

2.2.6 Processing Options for Domain Conversion . .................. 2-9
CONVERT/DOCUMENT . ...ttt ettt e e e e e e e ieeee e 2-11

VIEW L e e e e e e 2-13

CDOC . oo e e e e e e e e 2-16
DXVDOC . .o e e e 2-18

VDO . o e e e e 2-20

Chapter 3 Transferring CDA Documents

3.1 Sending CDA DocumentsonaVMS System . . . . ..................... 3-1
3.2 Receiving CDA Documentsona VMS System . ...................... 3-2
33 Sending CDA Documents on an ULTRIX System . . . . .................. 3-2
34 Receiving CDA Documents on an ULTRIX System . ................... 3-3
35 Copying CDA Documentsona VMS System .. ...................... 3-3
3.6 Copying CDA Documents on an ULTRIX System. . . . .................. 3-3



Chapter 4
4.1

4.2

DDIF Structures

DDIF Document Structure Overview . . . . ... ... .. ittt ii it

Generic Aggregate ltems . .
DDIF$_ ARC ............
DDIF$ BEZ ............
DDIF$ CRF ............
DDIF$.CTD ............
DDIF$.CTS ............
DDIF$ DDF ............
DDIF$.DHD ............
DDIF$. DSC ............
DDIF$_ERF ............
DDIF$_EXT ............
DDIF$_FAS ............
DDIF$_FTD ............
DDIF$_ GLA ............
DDIF$_ GLY ............
DDIF$ GTX ............
DDIF$ HRD ............
DDIF$_ HRV ............
DDIF$_IDU.............
DDIF$_IMG ............
DDIF$_LGT1 ............
DDIF$_LIN .............
DDIF$_LLT .............
DDIF$_LST.............
DDIF$_LSD ............
DDIF$_ W1 . ...........
DDIF$ OCC ............
DDIF$ PGD ............
DDIF$ PGL ............
DDIF$_ PGS ............
DDIF$_PHD ............
DDIF$_PTD ............
DDIF$_ PTH ............
DDIF$_PVT ............
DDIF$ RCD ............
DDIF$ RGB ............
DDIF$ SEG ............
DDIF$_ SFT ............
DDIF$_SFV ............
DDIF$_SGA ............

....................................

....................................

GENERAL SEGMENT ATTRIBUTES . . . ... .. ..ot i e e e
COMPUTED CONTENT ATTRIBUTES . ......... .00,
COPIED AND REMOTE COMPUTED CONTENT ....................
VARIABLE COMPUTED CONTENT . ........ ... .. .. i,
CROSS-REFERENCE COMPUTED CONTENT ............ ..o ov..
FUNCTION COMPUTED CONTENT . . . ... ... o e
STRUCTURE DESCRIPTION . ... ... ... . ittt

LANGUAGE ATTRIBUTES
LEGEND ATTRIBUTES. .

...................................

MEASUREMENT ATTRIBUTES . ... ... ... i
ALTERNATE PRESENTATION ATTRIBUTE .. ......... ..o,

LAYOUT ATTRIBUTES . .
GALLEY-BASED LAYOUT

41

41
4-2
4-5
4-7

4-10
4-12
4-13
4-16
4-18
4-21
4-23
4-25
4-26
4-28
4-32
4-34
4-36
4-38



PATH-BASED LAYOUT . . .. ... e e e 4-105

POSITION-RELATIVE LAYOUT . ..ot it it ettt e e e i eeaaeae 4-109
TEXT POSITION LAYOUT . oottt ettt e ettt et e e eee e 4-111
FONT DEFINITIONS . . .t o ottt e e e e e e e e e e e 4-112
PATTERN DEFINITIONS . . .. .. oot R 4-113
PATH DEFINITIONS .« o . oot e e et e e e e e e e e e e e 4-114
LINE-STYLE DEFINITIONS . . oo ottt et e e et e e e e e e e s 4-115
CONTENT DEFINITIONS . . .ot ettt et et et e e e e e e e e e 4-116
TYPE DEFINITIONS . . oot ettt et et e e e e e e e e et e e 4-117
TEXT ATTRIBUTES . . o oot et ettt et e e e e e e e e e 4-118
TEXT MASK PATTERN .« o v et et e e e e e e e e e e 4-119
TEXT FONT ottt e e e e e e e e e e e 4-120
TEXT RENDITION . .« o oottt e e e e e e e e e e e e 4-121
TEXT SIZE .« o ottt e e 4-123
TEXT DIRECTION . . o e ettt et e e e e e e e e 4-124
TEXT CHARACTER DECIMAL ALIGNMENT .. ...\ttt eenenn 4-125
TEXT LEADER . .ottt et e e e e e e e e 4-126
TEXT KERNING . . . ottt e e e e e e e e 4-127
LINE ATTRIBUTES . .t ottt et e e e e e e e e 4-128
MARKER ATTRIBUTES . . ottt et e e et e 4-132
GALLEY ATTRIBUTES . .« o ottt et e e e e e e e e 4-133
IMAGE ATTRIBUTES . .« o ot ot ettt e e e et e e et 4-134
IMAGE COMPONENT SPACE . . . o\ oot et e e e et 4-137
FRAME PARAMETERS . . o vttt te e e e e e e e e 4-139
FRAME FLAGS .« o ottt e e e e e e e e e e e e e e e 4-140
FRAME BOUNDING BOX . & v ot v ot et e e e e et e e et e e 4141
FRAME OUTLINE . .\ ittt ettt e e e e e e e e e 4-143
FRAME CLIPPING . . . o o e et e e e e e e e e e e e e e e 4-144
FRAME POSITION . .« . o ot e et et et e e e e e e e e e e e e e 4-145
FIXED FRAME . ..ttt ettt e e e e e e e e e e e 4-147
INLINE FRAME . . o @ ottt e e e e e e e e e e e e 4-148
GALLEY FRAME . . . o ottt e e e e e e 4-149
MARGIN FRAME . . .\ oottt et e e e e e e e e e 4-150
FRAME CONTENT TRANSFORMATION . . . ..\ttt e et nen 4-152
ITEM CHANGE LIST . ottt ettt e e e e e e e e 4-153
DDIF$ SGB ......... P 4-154
COUNTER VARIABLE VALUES . . ..t o oo et e e aiaens 4-156
COMPUTED VARIABLE VALUES . . . o oottt oot eee e ieiees 4-158
LIST VARIABLE VALUES . . . oottt e e e e e e e e e e e 4-159
DDIFS TS v ottt ittt et e e 4-160
DDIFS_ TRN ottt e e e 4-162
070 |3 0 1 4-164
DDIFS_TYD .t vttt e e e e e e e e e 4-165

Chapter 5 DTIF Structures

5.1 DTIF Document Structure Overview . . .. ... ... ... . ... ... 5-1
5.2 Generic Aggregate ltems . . .. ... .. ... ... e e 51
DTIFS _ARD ... it it it i e e e e e 5-2
[ | . 54
I | 7 5-10
o T 7 e e 5-12
0 I T 5-13
D 8 O 6 5-18
DTIFS _COR . ... e e e e e e e e 5-19

Vi



DR AT . . ..ttt i e e e e e e e e 5-20
DTIFG DSC . . e e e e e 5-22
I T 0 I 5-24
DTIRS ERF ... i i it e e e e 5-25
[ 8 | = 5-27
[ ] T ., 5-29
DTIFE _HDR . ... e e e 543
D 5-46
DTIFE _NES . ...t et e e e e e e 5-51
DTIFS _NMR . . . e e e e e 5-52
DTIFE NV . .. i e e e e e e e e e e 5-53
DTIFG RNG . ...ttt e e et e e 5-55
DTIR  _ROW . .. i e e e e e e e 5-57
DTIF _RWER . ... e e e e e e e 5-59
[T I = 5-60
DTIRG TMD ... i i e e e e e e e 5-62
[0 1S O 5-65
DTIFEWND ................... e e e e e e e 5-66
Chapter 6 CFE Structures
6.1 CFE Generic Aggregate ltems . . . ................. ..., 6-1
07 0 I 6-2
10 . 07 6-4
10 = o 6-5
107 o 67 = 6-6
L0 ] I 67
CFES EXL . .ottt it e et e e et e e e e e e e e 6-9
L0 = 6-53
L0 o = 6-55
L0 o = 6-56
L0 T o 6-57
07 o 6-58
L0 o T 6-60
L0 ] 6-61
07 = I 6-62
CFE ST .. .ttt e e e e e e e e e e 6-63
L0 15 6-64
L0 e 1 G 6-65
Chapter 7 ESF Structures
71 ESF Generic Aggregate Rems . . . ..............iivrnrnrnnnnnn 7-1
L . Y 7-2
ESF EDS . ...ttt it e e e e e e e e 7-4
] o = 7-20
ESFS NV . . e e e 7-22
ESFS RPT ...t e e e e 7-24
ESF S TXS . .t e e e e e e 7-27

vii



Chapter 8

viii

8.1

CDA Toolkit Routines

Compile and Link

Procedures for Applications . . . . ...................

8.1.1 VMS Link Procedure . ..........c.ouviiiiiinneennennnnnns

8.1.2 ULTRIX

Link Procedure . ......... .00 ennnnn

AGGREGATE TYPETOOBJECTID ...t

CLOSE FILE .. . ..

CLOSE TEXT FILE
CONVERT .....

...........................................

CONVERT AGGREGATE .. ... ... ittt e
CONVERT DOCUMENT . ..\ttt e e et
CONVERT POSITION . ... i i et
COPY AGGREGATE ... ... ... e i
CREATE AGGREGATE . . . ...ttt it

CREATE FILE . . .

CREATEROOT AGGREGATE . . . ... ... i i it

CREATE STREAM

CREATETEXTFILE .. ... i i e e
DELETE AGGREGATE . . . . . .. i i st e
DELETE ROOT AGGREGATE . . . .. .. ... i i e

ENTER SCOPE. .
ERASE ITEM . ..

............................................

............................................

I T T R T R T N N LI R

GETTEXTPOSITION . ... i i ettt
INSERT AGGREGATE ... ... . it ittt i i eas

LEAVE SCOPE . .
LOCATE ITEM ..

NEXT AGGREGATE. . .. ... i i i e e i
OBJECTID TOAGGREGATE TYPE . ...... ..ttt i i
OPEN CONVERTER ... ... it ittt i e i e

OPEN FILE. . ...

OPEN TEXT FILE

............................................

PRUNE AGGREGATE ... ......0itiiiiiiiiiitiiitiine iy

PRUNE POSITION
PUT AGGREGATE
PUT DOCUMENT
READ TEXT FILE

............................................

............................................

............................................

............................................

............................................

8-1
8-2
8-2
8-3
86
8-9

8-11

8-13

8-24

8-28

8-31

8-33

8-36

8-39

845

8-50

8-54

8-58

8-60

8-62

8-76

8-79

8-83

8-88

8-94

8-97
8-100
8-103
8-106
8-108
8-112
8-115
8-120
8-123
8-126
8-130-
8-138
8-141
8-145
8-148
8-150
8-153
8-156
8-158
8-160
8-168



Chapter 9

User-Defined Routines

ALLOCATE/DEALLOCATEROUTINES . ...... ... . . i 9-2
FLUSHROUTINE . ... . . i i e i aas 94
GETROUTINE . ... i i it it it it i s 9-6
GET-POSITIONROUTINE . . . . . .. i e i et 9-8
PUTROUTINE . ... i et e it ieas 9-10

Chapter 10  CDA Toolkit Example Program
Chapter 11 CDA Converter Routines
1.1 Compile and Link Procedures for ConverterImages . .................. 111
11.1.1 VMS Compile and Link Procedure . ........................ 11-2
11.1.2 ULTRIX Compile and Link Procedure . ...................... 11-2
CLOSEENTRY POINT . ... i i it ettt e aa it 11-3
GET-AGGREGATEENTRY POINT . ... .. ittt it e i i e 11-5
GET-POSITION ENTRY POINT . .. ... i i it ee e eane e 11-8
DOMAINSREAD_FORMATENTRY POINT . . . . ... ittt e s 11-10
DOMAINSWRITE_FORMATENTRY POINT . . ... .. . i i 11-15
Chapter 12  Text Front End Source File
Chapter 13  CDA Viewer Routines
13.1 CDA Viewer Support of Adobe FontMetrics . . ... ..................... 131
13.2  Compile and Link Procedures for Viewerlmages ..................... 13-2
13.2.1 VMS Link Procedure . ........ ...ttt innennaanns 13-2
13.2.2 ULTRIX Link Procedures . . . ... ... ... iiuitiiiiinannens 13-2
CCDELETE PAGE . .. ... ittt ittt et eeae e 13-4
GO END . . i i it e e e e e e 13-6
CC GET PAGE ... .. it ittt e et et et ee e e 13-8
CC INITIALIZE . . .. i et e ettt 13-10
BOTTOM DOCUMENT . . ... ittt ettt et e e e e 13-13
CLOSE FILE . . .. ittt i it it et st s tae i eaneeaeneas 13-15
DOCUMENT INFO . . oottt it it e ittt e tae i ena s 13-16
GOTO PAGE . ... ittt ittt s it tanan s 13-18
NEXT PAGE . ... i i i i it s ittt et 13-20
PREVIOUS PAGE . ... .. . . i i et e e 13-22
REGISTER CLASS . ... i it i it et it e e 13-24
TOP DOCUMENT . ... ittt it ittt e ettt e eeiaenann 13-25
VIEWER . . . e e e e e 13-27
VIEWER CREATE . ... ... ittt it it e et e i 13-31
VIEWER FILE . . . .. i et it e et 13-34



Appendix A

DDIF Fill Patterns

Appendix B

DDIF Syntax Diagrams

B.1 DDISBuilt-inDataTypes . .. . .......... .. ... it i, B-1

B.2 Built-In Operators . . . . ........... ... .. it B-3

B.3 DDIS Defined Types . ... ...ttt it et B-3

B.4 DDIF Syntax Diagrams . .. ... ..... ...ttt einnimunnennnnns B-5
Appendix C DTIF Syntax Diagrams
Appendix D CFE Syntax Diagrams
Appendix E ESF Syntax Diagrams

Appendix F  VMS Support for CDA in DECwindows

F.1 VMS Commands and Utilities . .................................. F-1

F.1.1 Displaying RMS File Tags . . .. ... ... ..t nn. F-2

F.1.1.1 DIRECTORY/FULL. ... ... ...ttt iinien F-2

F1.1.2 ANALYZE/RMS_FILE . ... . ... ... ..., F-2

F1.2 Creating RMS File Tags ... ... ..., F-3

F.1.3 Preserving RMS File Tags and DDIF Semantics . ............... F—4

F.1.3.1 COPYCommand . .............ccviiiiinuunnnns F-4

F.1.3.2 VMSMail Utility . . .. ..., F-4

F1.4 APPEND Command . ... .......c.iiiniiinenrnnnnennnnnn. F-5

F.2 DDIF Support in a Heterogeneous Environment . ..................... F-5

F2.1 EXCHANGE/NETWORK Command. . ...............cvurvnn. F-5

F.2.2 Using the COPY Command in a Heterogeneous Environment . ...... F-6

F.2.3 VMS Mail Utility in a Heterogeneous Environment . .. ............ F-6

F.3 VMSRMS Interface Changes . . . ... .............. it irriennnans F-6

F.3.1 Programming Interface for File Tagging . . . . .................. F-6

F.3.2 AccessingaTagged File . . . ...... ... ... i, F-10

F3.2.1 File Accesses That DoNotSense Tags . . ... ......... F-11

F.3.2.2 File Accesses ThatSense Tags ... ................ F-11

F.3.3 Preserving Tags . . . .. .ot oottt it i e e e e F-13

F.4 Distributed File System Support for DDIF Tagged Files . .. .. ............ F-14

F5 VMS BRMSEITOrS ... ... .ottt iieiinnaneanan F-14



Appendix G CDAS$ Facility Messages

Glossary of Terms

Index

Examples
1-1 Analysis Output of DDIF Initial Segment Aftributes ... ................... 1-10
10-1  Sample CDA Toolkit Program . . . .. ... ... . 0 i i 10-1
10-2  Analysis Output of DDIF File . ...... ... ... et 10-33
F-1 Tagginga File . ... ... s F-9
F-2  AccessingaTagged File ... ........ ... ... .. .. F-12

Figures
11 DDIF Document Aggregate Hierarchy . .. ...... ... ... ... .. 1-7
1-2 DTIF Document Aggregate Hierarchy . . ... ... ... .. ... . i, 1-18
1-3 CFE Aggregate Hierarchy . . ... ... ... ... . . . i 1-19
1-4 ESF Aggregate Hierarchy . .. ...... ... i i 1-20
41 Character Orientation . . ... ... ... ... ittt 4-108
8-1 Example Document . .. .. ... ... ... .. e 8-92
A1 CDAFIll Patterns . . . .. ...t i e i i e i e A-6
B-1 Object Descriptor Syntax Diagram . .. ... ... ... . i, B4
B-2 Latin1 String Syntax Diagram . . . .. ... . ittt e B-4
B-3 Text String Syntax Diagram . . . . . ... .. . e e e B-5
B-4 Character String Syntax Diagram . . .. ... .. . i B-5
B-5 Application Private Data Syntax Diagram . . . .. ....... . ... i, B-5
B-6 DDIF Document Syntax Diagram .. ........ ..., B-5
B-7 Document Descriptor Syntax Diagram . . . . ... ... .. . e B-6
B-8 Document Header Syntax Diagram . .. . . ....... ... ... .. ..o ., B-6
B-9 Document Root Segment ... ....... ... .. . .. B-6
B-10  Segment Primitive Syntax Diagram . .. . ... ... i B-7
B-11  Begin-Segment Syntax Diagram . . . .. . ... . . i e B-7
B-12  Text Primitive Syntax Diagram .. ..... ... ... .. it B-7
B-13  Text Attributes Syntax Diagram . . ... . ... ... .. e B-8
B-14  Rendition Code Syntax Diagram . . . .. ... ..ot B-8
B-15 Leader Style Syntax Diagram . . . .. ... ..ottt i i e e B-9
B-16  Text Layout Syntax Diagram ... .. .... ... ..ttt B-9
B-17  Text String Layout Syntax Diagram . . . . .. ... ... ... B-10
B-18  Formatting Primitive Syntax Diagram . . . . . ... ... oot B-10
B-19  Value Directive Syntax Diagram . . . .. ... ... .. . e B-10
B-20 Directive Syntax Diagram . . ... ... ... ... e B-11
B-21  Escapement Directive Syntax Diagram . ... ........... . .. B-11
B-22 Variable Reset Syntax Diagram . ....... ... ittt B-11
B-23  Graphics Primitive Syntax Diagram . .. . ... ..o o e B-11
B-24 Polyline Syntax Diagram . . .. ... ... e B-12

xi



Xii

B-66

B-68
B-69
B-70
B-71
B-72
B-73

Cubic Bézier Syntax Diagram
Arc Syntax Diagram . ... ..
Fill Area Set Syntax Diagram

.....................................

Line Attributes Syntax Diagram . . . ... ... i e e
Line Style Number Syntax Diagram. . . . ... ot ittt ittt i
Line End Number Syntax Diagram . .. ... ..... ..« inannnnn

Line Join Syntax Diagram . .
Marker Attributes Syntax Diag

L2 L

Marker Number Syntax Diagram. . . . . ... .. it .
Image Primitive Syntax Diagram . . . . ... ... . e e
Image Coding Attributes Syntax Diagram . . . .......... .. ... ... . ...
Image Attributes Syntax Diagram .. .......... ... 0 i i e

Image Lookup Table Data Syntax Diagram . . . .. ..... ... ..., :

Image Component Space Attributes Syntax Diagram . ....................
Restricted Content Syntax Diagram . . . . . . .. .. oottt ittt e i
Content Reference Primitive Syntax Diagram ... ......... ... ... ... ....
Content Reference Syntax Diagram . ... ...... ... ...
Bounding Box Syntax Diagram . . . .. ... ... .

Color Syntax Diagram. . ...

Red/Green/Blue Syntax Diagram .. ........... .t iinnnnnnn
Compute Definition Syntax Diagram . ... ......c. .ottt nnennn.
Cross-Reference Syntax Diagram . . . ... . ..ottt i e

Escapement Syntax Diagram

.....................................

External Reference Syntax Diagram . .. .........c. it
Font Definition Syntax Diagram . .. .. ..... ...t

Format Syntax Diagram . ..

Frame Parameters Syntax Diagram .. ...... ... ... it inn .
Inline Frame Parameters Syntax Diagram . ................ .. ... .....
Galley Frame Parameters Syntax Diagram . . . .. . ... ... i,
Galley Vertical Position Syntax Diagram. . . .. ... .. ot
Margin Frame Parameters Syntax Diagram .. ............ ...,
Margin Horizontal Position Syntax Diagram . ............ ... ciiiinnnn.
Function Link Syntax Diagram . . . ... ..o ittt i i e e

External Reference Index Syn

tax Diagram .. ......... .. . i

Language Index Syntax Diagram ... .... ...t i
Content Definition Syntax Diagram . . . . ... . .. it it e

Label Types Syntax Diagram
Label Syntax Diagram . ...
ASCII String Syntax Diagram

Variable Label Syntax Diagram. . . .. ... ... i i e

Legend Units Syntax Diagram
Angle Syntax Diagram . ...
AngleRef Syntax Diagram . .

.....................................

Measurement Syntax Diagram . . . . ... ... e

Position Syntax Diagram . . .
Ratio Syntax Diagram.. ...
Right Angle Syntax Diagram

Size Syntax Diagram .. ...
X-Coordinate Syntax Diagram

.....................................

.....................................

B-12
B-12
B-13
B-14
B-14
B-14
B-14
B-15
B-15
B-15
B-16
B-16
B-17
B-17
B-18
B-18
B-18
B-19
B-19
B-19
B~20
B-20
B—20
B-20
B-21
B-21
B-21
B—22
B—22
B-22
B-23
B—23
B-23
B-24
B-24
B-24
B-24
B-25
B-25
B-25
B-25
B-25
B-26
B—26
B-26
B-26
B-27
B-27
B-28



B-74
B-75
B-76
B-77
B-78
B-79
B-80
B-81
B-82
B-83
B-84
B-85
B-86
B-87
B-88
B-89
B-90
B-91
B-92
B-93
B-94
B-95
B-96
B-97
B-98
B-99
B-100
B-101
B-102
B-103
B-104
B-105
B-106
B-107
B-108
B-109
B-110
B-111
B-112
B-113
B-114
B-115
B-116
B-117
B-118
B-119
B-120
B-121
B-122

Y-Coordinate Syntax Diagram . .
Measurement Units Syntax Diagra
Named Value Syntax Diagram . .
Value Data Syntax Diagram . . . .
Named Value List Syntax Diagram
Font Number Syntax Diagram . .
Marker Number Syntax Diagram .
Path Number Syntax Diagram . .
Pattern Number Syntax Diagram
Path Definition Syntax Diagram .
Composite Path Syntax Diagram
Arc Path Syntax Diagram . .. ..

..................................
.................................
..................................

Cubic Bézier Path Syntax Diagram . .. .. .. ... .. ... ...

Line Definition Syntax Diagram .
Polyline Path Syntax Diagram . .
Pattern Definition Syntax Diagram
Standard Pattern Syntax Diagram
Reference Syntax Diagram . . ..

..................................

..................................

Segment Attributes Syntax Diagram .. ... . ... i e e

Segment Type Definition Syntax D

jagram. . ... e

Structure Definition Syntax Diagram .. ... ... 0 i e

Occurrence Definition Syntax Diag

L= L1 1

Structure Element Syntax Diagram . .. ... ... .. .. i e

Tag Syntax Diagram . ........
Category Tag Syntax Diagram . .
Conformance Tag Syntax Diagram

Named Value Tag Syntax Diagram . .. ....... ... .. ... ...

Segment Tag Syntax Diagram . .

Storage System Tag Syntax Diagram . ... ... .. ..ttt

Stream Tag Syntax Diagram . . .
Transformation Syntax Diagram .
Variable Binding Syntax Diagram

Counter Definition Syntax Diagram . .. ... ... ..ottt
Layout Object Type Syntax Diagram .. . ... ... .. ... . .. it

Expression Syntax Diagram . . . .
Counter Style Syntax Diagram . .
String Expression Syntax Diagrarh
Record List Syntax Diagram . ..
Record Definition Syntax Diagram
Generic Layout Syntax Diagram .
Page Description Syntax Diagram
Page Set Syntax Diagram . . . ..
Page Layout Syntax Diagram. . .
Layout Primitive Syntax Diagram

Layout Galley Syntax Diagram . .
Galley Attributes Syntax Diagram

Specific Layout Syntax Diagram .
Wrap Attributes Syntax Diagram .
Layout Attributes Syntax Diagram

.................................

..................................

..................................



B—-123 Break Criteria Syntax Diagram . . . .. .. ... .o i i e . B-42

B-124 General Measure Syntax Diagram ... ... B—43
B-125 General Size Syntax Diagram . . ... .. ... . .. i e B-43
B-126 Tab Stop List Syntax Diagram .. .......... ... ... . . . i i, B—43
B-127 Tab Stop Syntax Diagram . . ... ... .. ... . e e B-43
B-128 Generalized Time Diagram ... ....... ... .. . .. B—44
C-1 DTIF Document Syntax Diagram . ........ ... ..ttt ren.nnn C-1
Cc-2 Document Descriptor Syntax Diagram . ... ............. ... ... C—1
C-3 Document Header Syntax Diagram . . . . .. .. ... ... i Cc-=2
C+4 External Reference Syntax Diagram . .. ........ ... ... . .. . i, c-2
C-5 Storage System Tag Syntax Diagram . .. .. ..... ...« i C-3
C-6 External References Index Syntax Diagram .. .......... .. ... . ... ... C-3
(o Language Preference Table Syntax Diagram .......................... C-3
Cc-8 Named Edit String Syntax Diagram . . . . .. . ..o it e Cc+4
C-9 Table Definition Syntax Diagram . . . . .. ... ... . it e C+4
C—10 Table Metadata Syntax Diagram . . . . . . .. ... . . i c-5
C-11  Table Window Syntax Diagram . . . . . . ... ... . i i C-5
C-12 Table Rows Syntax Diagram . .. ... ... ..ttt it i C-6
C-13 Cell Data Syntax Diagram . .. .............. e e e e Cc-6
C-14 Cell Value Syntax Diagram . ... ... ... ittt e e c-7
C-15 Varying Text Syntax Diagram . . . . .. .. o ittt e c—7
C-16  Array Definition Syntax Diagram . . . . . . . .. oottt i e e Cc-8
C—-17 Complex Float Syntax Diagram . . . ... ... .. ittt e e c-8
C-18 Column Attributes Syntax Diagram . . ........ .. ... i Cc-9
C-19 Data Type Syntax Diagram . . .. ... . ..ottt it in ittt e e e C-10
C-20 Format Info List Syntax Diagram . .. .. ... ... ittt C-10
C-21 Language Preference index Syntax Diagram ................ .. ..., Cc-11
C—22 Format Type Syntax Diagram . . . ... . oot in it et et e e e Cc-1
C-23 Edit String Index Syntax Diagram . . . .. . . oottt e i e Cc-12
C—24  Numeric Format Type Syntax Diagram . .............ccoiitinn..nn c-12
C-25 Numeric Format Precision Syntax Diagram. . ... ....... .o vtinnennn. C-13
C-26 Predefined Text Types Syntax Diagram . .. ... ... .. .. i .. C-13
C—27 Predefined Date Types Syntax Diagram. . . .......... .. i C-13
C-28 Format Flags Syntax Diagram . . ... ... ..ttt i e C-14
C-29 Date Time Syntax Diagram . ... ... ...ttt ittt i C-14
C-30 Application Private Syntax Diagram . . . .. .. ... ... i e C-14
C-31 Named Value List Syntax Diagram . . ... .. oo iiii it i it C-15
C-32 Value Data Syntax Diagram . .. .. ... ot tiit ittt i e C-15
C-33 ASCIll String Syntax Diagram . . . . .. ... o e e C-15
C-34 Column Number Syntax Diagram . .. ... ... iiir it iennnneennnns C-16
C-35 Row Number Syntax Diagram . .. ..........ttii i nnenann C-186
C-36 Cell Coordinates Syntax Diagram . . . .. ... ... .. i, c-16
C-37 Range Definition Syntax Diagram . . . . .. .. ... . . i e C-17
C-38 Range Syntax Diagram . .. ...ttt e e C-17
C-39 CellRange Syntax Diagram . . . . . .. ..ot ittt it e e et e Cc-18
C-40 Row Range Syntax Diagram . . ... . ...ttt ien it C-18
C—41 Column Range Syntax Diagram . . .. ........itirienn e, C-18
C—-42 Named Range Syntax Diagram . ... ...... ...ttt i inn i C-18
D-1 Private Function Expression Syntax Diagram . ......................... D-1

xiv



D-2 Storage System Tag Syntax Diagram .. ......... ..., D-2
D-3 Named Parameter Syntax Diagram . . . . .. ...... ... .. i D-2
D4 Expression Syntax Diagram . . . . .. .. ... ... e D-2
D-5 Expression List Syntax Diagram . . . .. ... .. . i e e D-3
D-6 Text Syntax Diagram . .. ...... ... .. .. e D-8
D-7 Varying Text Syntax Diagram . . . .. .. ... ittt it e et D-8
D-8 Selector List Syntax Diagram . . . . . ... .. ... e e D-8
D-9 Decimal String Syntax Diagram . . . ... ... .. ... e D-9
D-10 Edit String Syntax Diagram . . .. .. ... ... e e D-9
D-11  Parenthesized Expressions Syntax Diagram . . . ........................ D-9
D-12  Field Reference Syntax Diagram . ... ........ ... ... D-9
E—1 Edit String Syntax Diagram . . ... ... ... . . ... e E-1
E-2 Edit String Buffer Syntax Diagram . . ... ......... .. i e E-1
E-3 Single Syntax Diagram . . . .. ... ... . e e E-2
E—4 Repeat Syntax Diagram . ... ... ... ittt ittt et s E-3
E-5 Application Private Edit String Syntax Diagram .. ....................... E-3
Tables
1-1 CDAlem Data TYPeS . . . o v v it ettt et e ettt e et e et eeae et 1-1
1-2 DDIF Standard Aggregates . . ... ...ttt 1-5
1-3 1 =T TS 1-8
4 Generic Aggregate Hems . . . . ... . .. e 4-1
4-2 Character Set Identifiers .. .............. . i iinnnnann. 4-32
4-3 Normal Horizontal Alignment .. ............. ... i, 4-107
44 Normal Vertical Alignment . . . .............. ..., 4-108
4-5 Line Style . . ... e e 4-115
4-6 Line Style . . . .ot e e e e e e 4-128
5-1 DTIF Generic Aggregate fems . . . . .. . ... ...t 5-1
6—1 CFE Generic Aggregate ltems . .. ........ ... it ieiiinnnennn 6-1
6-2 Valid Arithmetic Expression Values for CFE$_EXL EXPR. C................ 6-10
6-3 Valid Binary Expression Values for CFE$_ EXL_EXPR_.C .................. 6-11
64 Valid Boolean and Relational Expression Values for CFE$_EXL_EXPR C....... 6-12
6-5 Valid Cell-Related Expression Values for CFE$_EXL EXPR.C .............. 6-14
6-6 Valid Choose and Lookup Expression Values for CFE$_EXL_EXPR.C......... 6-17
6-7 Valid Conversion Expression Values for CFE$ EXL EXPR C ............... 6-19
6-8 Valid Date and Time Expression Values for CFE$_EXL_EXPR_C ............ 6-21
6-9 Valid Financial Expression Values for CFE$ EXL_ EXPR.C................. 627
6-10  Valid Identification Expression Values for CFE$_EXL_ EXPR_.C .............. 6-39
6-11  Valid Literal Values for CFE$_EXL EXPR.C .......... .. ... 641
6-12  Valid Miscellaneous Expression Values for CFE$ EXL EXPR. C ............. 642
6-13  Valid Series Expression Values for CFE$_EXL EXPR.C .................. 643
6-14  Valid Statistical Expression Values for CFE$_EXL EXPR.C ................ 644
6-15  Valid String Expression Values for CFE$ EXL EXPR_C................... 646
6-16  Valid Transcendental Expression Values for CFE$_EXL EXPR C ............ 649
6-17  Valid Trigonometric Expression Values for CFE$_EXL_ EXPR.C ............. 6-50
6-18  Valid Variable Values for CFE$ EXL_ EXPR.C ...... ... ... .. 6-51
7-1 ESF Generic Aggregate ltems . . . ... ... ... e 71
7-2 Valid Values for ESF$_EDS EDIT_STRING_C ............ ... ..., 7-5

XV



7-3 Valid Values for ESFS_RPT_ SEQ_C .. ... ...ttt it ittt 7-24
11-1  Top-Level Aggregate Types . . ... it ittt it i eans 11-7
A-1 DDIF Fill PaHOIMS . ...\t vteetateeee e ee et aeneaeaneenns A-1
B-1 DDIS Built-In Primitives . . . .. ...ttt i B-1
B-2 DDISBuilt-lnConstructors . . . . ... .. ittt i i i e e B-2
B-3  DDISBUl-In OPerators . ... ........euuniuiiitnernnninenenenanens B-3
B4 DDISDefined TYPeS . - - o v oo ottt et i ittt et e et e e B4

F-1 Tag Support Hem Codes . . . .ot vttt it i ittt e e e F-7



Preface

This manual provides reference material for using the CDA (Compound Document
Architecture) Toolkit to create compound document applications, converters, and
viewer widgets. Information in this manual includes reference material for using
the DDIF (DIGITAL Document Interchange Format) and DTIF (DIGITAL Table
Interchange Format) aggregates that are processed by the CDA Toolkit routines.

The CDA Toolkit is a collection of data structures and routines that support the
creation of CDA applications. The CDA Converter architecture is used to convert
files of a specified input format to a specified output format. The CDA Viewer

is used to display CDA-encoded files on a workstation display or character cell
terminal.

CDA is supported in both the VMS and the ULTRIX environments. The informa-
tion contained in this manual is appropriate for both systems. Any differences
between the two implementations are called out in the text of this manual.

All of the following products support CDA-encoded files. If you intend to manip-
ulate only DDIF files and do not have an interest in the particulars of the file
format, you can use any one of these products to manipulate a CDA-encoded file.

DECpaint . PrintScreen CardFiler

DEC GKS DEC GKS-3D PHIGS

CDA Viewer DECwindows MAIL DECImage Applications
Services

Converters MAIL DECwrite

DECchart DECdecision - DEC Test Manager

Intended Audience

This manual is intended for system and application programmers who already
have been introduced to CDA and who are ready to use the CDA Toolkit to write
compound document applications, converters, or viewers. Some knowledge of the
tasks and terminology associated with document typesetting is helpful.

Document Structure

This manual consists of 13 chapters, several appendixes, and a glossary, as
follows:

¢ Chapter 1, Introduction provides an introduction to the reference material
describing the aggregates and routines contained in the CDA Toolkit.

xvii



xviii

Chapter 2, Bundled Converter Formats and Commands describes the VMS
and ULTRIX converter formats and commands used to convert and to view
CDA documents.

Chapter 3, Transferring CDA Documents describes how to mail and to copy
CDA documents on VMS and ULTRIX systems.

Chapter 4, DDIF Structures describes each of the DDIF aggregate structures.
Chapter 5, DTIF Structures describes each of the DTIF aggregate structures.
Chapter 6, CFE Structures describes each of the CFE aggregate structures.
Chapter 7, ESF Structures describes each of the ESF aggregate structures.

Chapter 8, CDA Toolkit Routines describes each of the routines contained
in the CDA Toolkit. The routines are documented in alphabetical order.
Each routine description specifies the calling format, the encoding of the
parameters, a detailed description of the function of the routine, and what
condition values the routine can return.

Chapter 9, User-Defined Routines describes the user-defined routines used to
write CDA-conforming applications and front and back ends.

Chapter 10, CDA Toolkit Example Program contains an example program
that uses the CDA Toolkit to create a DDIF file, and an illustration of the file
created by the example program.

Chapter 11, CDA Converter Routines describes each of the converter routines
that must be created in order to write a CDA-conforming front or back end.

Chapter 12, Text Front End Source File contains the source code for the Text
front end to be used as an example for those wanting to develop their own
front or back ends.

Chapter 13, CDA Viewer Routines describes each of the viewer routines used
to create a character-cell or DECwindows viewer application.

Appendix A, DDIF Fill Patterns illustrates the CDA-defined fill patterns.

Appendix B, DDIF Syntax Diagrams contains a brief overview of DDIS
(DIGITAL Data Interchange Syntax) followed by the syntax diagrams for the
various constructs supported by the DDIF architecture.

Appendix C, DTIF Syntax Diagrams contains the syntax diagrams for the
various constructs supported by DTIF.

Appendix D, CFE Syntax Diagrams contains the syntax diagrams for the
various constructs supported by CFE.

Appendix E, ESF Syntax Diagrams contains the syntax diagrams for the
various constructs supported by ESF.

Appendix F, VMS Support for CDA in DECwindows discusses the support
provided by VMS for the CDA Toolkit and the tagging of DDIF-encoded files.

Appendix G, CDA$ Facility Messages lists and describes the CDA$_ facility
messages generated by the CDA Toolkit.

Glossary, Glossary of Terms defines the terminology associated with the CDA
Toolkit and CDA Converter Architecture.



Associated Documents

CDA is supported by a variety of DIGITAL products. Descriptions of the support
provided by each product are contained in that product’s documentation. For
example, GKS support for CDA is described in the GKS documentation set, and
SO on.

The complete CDA documentation set includes two tutorials and a reference
manual:

e Introduction to the CDA Services

* Guide to Creating Compound Documents with the CDA Toolkit

¢ CDA Reference Manual

The CDA documentation set is a separately orderable subkit available for pur-

chase with the VMS and ULTRIX operating system documentation. Each manual
in the CDA documentation set is also available for separate purchase.

The CDA Converter Library end-user documentation set describes additional
document, graphics, image, and table data file formats that are supported by the
CDA Converter architecture, but that are not bundled with the VMS or ULTRIX
operating system. The following two manuals describe the additional interchange
formats:

* Guide to the CDA Converter Library
* QGetting Started with the CDA Converter Library

Conventions

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key
or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first
press and release the key labeled PF1, then press and
release another key or a pointing device button.

A key name is shown enclosed to indicate that you
press a key on the keyboard.

In examples, a horizontal ellipsis indicates one of the
following possibilities:

¢ Additional optional arguments in a statement
have been omitted.

® The preceding item or items can be repeated one
or more times.

* Additional parameters, values, or other informa-
tion can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

XiX



XX

0O

{1

red ink

italic text

italic text

boldface text

UPPERCASE TEXT

UPPERCASE TEXT

lowercase text

numbers

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the
choices in parentheses. :

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all
of the choices.

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Red ink indicates information that you must enter
from the keyboard or a screen object that you must
choose or click on. For online manuals, user input is
specified in bold.

Italic text represents the introduction of a new term or
the name of an argument, an attribute, or a reason.

Italic text represents user-written routines (for exam-
ple, get-aggregate).

Boldface text represents information that can vary
in system messages (for example, Internal error
number).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ).

Uppercase letters indicate the name of a CDA Toolkit
routine, the name of a file, the name of a file protection
code, or the abbreviation for a system privilege.

Lowercase letters indicate the names of the CDA
Toolkit VAX format routines and values that are
portable to ULTRIX systems. Value names that appear
in lowercase must be coded as such in order to be
portable to ULTRIX systems.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—binary,
octal, or hexadecimal——are explicitly indicated in the
coding examples.



Chapter 8
CDA Toolkit Routines

This section describes the CDA Toolkit routines and VMS and ULTRIX compile
and link procedures used to create CDA-conforming applications. Each routine
description includes the following information:

e A common language (VAX) style binding that is supported on both VMS and
ULTRIX systems

¢ An ULTRIX C style binding that is supported on both VMS and ULTRIX
systems

* A description of the value returned by the routine
* Descriptions of each routine argument
* A description of the routine itself

¢ A list of possible values returned by the routine

NOTE

Given the bindings available at this time, there are two ways to create
CDA Toolkit applications that are portable across VMS and ULTRIX
systems:

1. Code using C style bindings by matching mix-cased spelling.

2. Code your source in lowercase if using the VAX formats (as the
bindings are lowercase in the current ULTRIX CDA Toolkit).

If you are programming in Ada, please refer to the Guide to Applications
Programming for information on Ada programming with DECwindows.

8.1 Compile and Link Procedures for Applications

To create a VMS or ULTRIX application using the CDA Toolkit routines, include
the following public files in your source code:

VMS and ULTRIX

File Names Description
SYS$LIBRARY:cda$def.h CDA Toolkit keyword definitions
/usr/include/cda_defh

SYS$LIBRARY:ddif$def.h : DDIF aggregate definitions
fusrfinclude/ddif_defh :

CDA Toolkit Routines 8-1



VMS and ULTRIX

File Names Description
SYS$LIBRARY:dtif$def.h DTIF aggregate definitions
[usr/include/dtif_def.h

SYS$LIBRARY:cda$msg.h CDA error messages

/usrfinclude/cda_msg.h

NOTE

If you are programming in Ada, please refer to the Guide to
Applications Programming for information on Ada programming
with DECwindows.

Section 8.1.1 describes the VMS compile and link procedure for CDA applications.
Section 8.1.2 describes the ULTRIX compile and link procedure for CDA
applications.

8.1.1 VMS Link Procedure

You can compile and link a CDA. application on VMS using the following build
procedure that also incorporates debugging:

$ CC /DEBUG MY APPLICATION
$ LINK /DEBUG MY APPLICATION, SYSSINPUT:/OPTION
SYS$SLIBRARY :CDASACCESS/SHARE

8.1.2 ULTRIX Link Procedure

You can compile and link an application on ULTRIX using the following build
procedure:

[

% cc -o my application my application.c -1ddif -lm

The -lm parameter specifies the math library that is required by the CDA Toolkit
routines (-1ddif).

8-2 CDA Toolkit Routines



AGGREGATE TYPE TO OBJECTID

AGGREGATETYPETO OBJECTID

Translates a root aggregate type to an object identifier.

VAX FORMAT .
status = cda$aggregate_type to_object_id

(aggregate-type ,buf-len ,buf-adr ,nam-len ,nam-buf
,act-nam-len ,act-len)

Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

aggregate-type VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

buf-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

buf-adr VMS usage: array
Data type: longword (unsigned)
Access: write only
Mechanism: by reference, array reference

nam-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

CDA Toolkit Routines 8-3



AGGREGATE TYPE TO OBJECT ID

Argument Argument Information

nam-buf VMS usage: array
Data type: character string
Access: write only
Mechanism: by reference, array reference

act-nam-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

act-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT

status = CdaAggregateTypeToObjectld

(aggregate_type, buf_len, buf_adr, nam_len,
nam_buf, act_nam_len, act_len)

Argument Information

unsigned long CdaAggregateTypeToObjectId(aggregate_type,
buf_len, buf adr, nam len,
nam _buf, act_nam len, act_len)
unsigned long aggregate_type;

unsigned long buf_len;
unsigned long ~buf_adr([];
unsigned long nam len;
unsigned char nam buf[];
unsigned long *act_nam len;
unsigned long *act_len;

RETURNS

status
A condition value indicating the return status of the routine call.

8-4 CDA Toolkit Routines



AGGREGATE TYPE TO OBJECT ID

Arguments

aggregate-type
Type of the aggregate being translated. The root aggregate type must be either
DDIF$_DDF or DTIF$_DTF.

buf-len
Length (in bytes) of the object identifier buffer. Length must be at least 28 bytes
(space for 7 longwords).

buf-adr
An array of longwords to receive the object identifier.

nam-len
Length (in bytes) of the domain name buffer.

nam-buf
Address of the domain name buffer to receive a string of characters.

act-nam-len
Receives the actual length (in bytes) of the domain name in the nam-buf buffer.

aci-len
Receives the actual length (in bytes) of the object identifier.

Description

The AGGREGATE TYPE TO OBJECT ID routine translates a root aggregate type
to an object identifier.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVAGGTYP Invalid aggregate type
CDA$_INVBUFLEN Invalid buffer length

CDA Toolkit Routines 8-5



CLOSE FILE

CLOSEFILE

Closes the specified compound document file and stream. If the file being closed
was receiving output, the CLOSE FILE routine writes any buffered data before
closing the file and stream.

VAX FORMAT
status = cda$close_file

(stream-handle ,file-handle)

Argument Information

Argument ‘ Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

file-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT

status = CdaCloseFile
(stream_handle, file_handle)

8-6 CDA Toolkit Routines



CLOSE FILE

Argument Information

unsigned long CdaCloseFile(stream handle,
file handle)
unsigned long stream handle;
unsigned long file_handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

stream-handle
Handle of the stream to be closed. This handle is returned by a call to either the
OPEN FILE routine or the CREATE FILE routine.

file-handle
Handle of the file to be closed. This handle is returned by a call to either the
OPEN FILE routine or the CREATE FILE routine.

Description

The CLOSE FILE routine closes the specified stream and compound document
file. If the file being closed was receiving output, this routine writes out any
buffered data before closing the stream. Note that the stream-handle and
file-handle values are invalid after a call to this routine.

RETURN VALUES

Return Value Description

CDA$_NORMAL Normal successful completion®

Any error returned by the memory deallocation routines.

Any error returned by the file routines.

CDA Toolkit Routines 8-7



CLOSE FILE

Example

This example illustrates a typical call to the CLOSE FILE routine. The entire
document is written to the output file prior to a call to the CLOSE FILE routine.
After the file has been closed, the document root aggregate is deleted.

8-8 CDA Toolkit Routines

/* output to a DDIF file */
printf ("Writing document...\n");

status = cdaS$put_document (&root_aggregate_handle,
&stream handle);
if (FAILURE (status)) return(status);

status = cda$close_file(&stream handle, &file_ handle);
if (FAILURE (status)) return(status);

status = cda$delete_root_aggregate (&root_aggregate handle);
if (FAILURE (status)) return(status);



CLOSE STREAM

CLOSE STREAM

Closes an open compound document stream.

VAX FORMAT
status = cda$close_ stream

(stream-handle)

Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT
status = CdaCloseStream

(stream_handle)

Argument Information

unsigned long CdaCloseStream(stream handle)
unsigned long stream_handle;

CDA Toolkit Routines 8-9



CLOSE STREAM

RETURNS

Sstatus
A condition value indicating the return status of the routine call.

Argument

stream-handle
Handle of the stream to be closed. This handle is returned by a call to either the
OPEN STREAM routine or the CREATE STREAM routine.

Description

The CLOSE STREAM routine closes an open compound document stream. If the
stream being closed was receiving output, the CLOSE STREAM routine writes
out any buffered data before closing the stream. Note that the stream-handle
argument is invalid after a call to this routine.

RETURN VALUES

Return Value Description

CDA$_NORMAL Normal successful completion

Any error returned by the memory deallocation routines.

8-10 CDA Toolkit Routines



CLOSE TEXT FILE

CLOSE TEXT FILE

Closes a text file.

VAX FORMAT
status = cda$close_text file
(text-file-handle)
Argument Information
Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
text-file-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT

status = CdaCloseTextFile
(text_file_handle)

Argument Information

unsigned long CdaCloseTextFile(text_ file handle)
text file handle;

unsigned long

CDA Toolkit Routines 8-11



CLOSE TEXT FILE

RETURNS

status
A condition value indicating the return status of the routine call

Argument

text-file-handle
Identifier of the text file to be closed. This handle is returned by a call to either
the CREATE TEXT FILE routine or the OPEN TEXT FILE routine.

Description

The CLOSE TEXT FILE routine closes a text file. The text-file-handle is invalid
after a call to this routine.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion

Any error returned by the memory deallocation routines.

Any error returned by the file routines.

8-12 CDA Toolkit Routines



CONVERT

CONVERT

Lets the user perform document conversion from within an application. This
includes beginning, continuing, or discontinuing the conversion of a document.

VAX FORMAT
status = cda$convert

(function-code ,standard-item-list ,private-item-list

,converter-context)
Argument Information
Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
function-code VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
standard-item-list VMS usage: item_list_2
Data type: longword (unsigned)
Access: read only
Mechanism: by reference, array reference
private-item-list VMS usage: unspecified
Data type: unspecified
Access: read only
Mechanism: by reference
converter-context VMS usage: context
Data type: longword (unsigned)
Access: read only or write only
Mechanism: by reference

CDA Toolkit Routines 8-13



CONVERT

C FORMAT
status = CdaConvert

(function_code, standard_item_list,
private_item_list, converter_context)

Argument Information

unsigned long CdaConvert (function_code, standard item list,
private_item list, converter_ context)

unsigned long function_code;

unsigned long *standard item list;
unsigned char *private_ item list;
unsigned long *converter_context;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

function-code

Symbolic constant that identifies the function to be performed. These symbolic
constant values are defined in the file cda$def.h on VMS systems and in the file
cda_def.h on ULTRIX systems. Valid values are as follows:

CDA$ START
Start conversion. This function code must be specified to begin a document
conversion.

CDA$_CONTINUE

Continue a conversion that was suspended. This function code may only

be specified if a previous call to the CONVERT routine returned the value
CDA$_SUSPEND. If CDA$_SUSPEND is returned by a call to the CONVERT
routine, either CDA$_CONTINUE or CDA$_STOP must be specified so that
resources locked by the conversion are released.

CDA$ _STOP

Discontinue a conversion that was suspended. This function code may only
be specified if the previous call to the CONVERT routine returned the value
CDA$_SUSPEND. If CDA$_SUSPEND is returned by a call to the CONVERT
routine, either CDA$_STOP or CDA$_CONTINUE must be specified so that
resources locked by the conversion are released.

8-14 CDA Toolkit Routines



CONVERT

standard-item-list
An item list that identifies the document source and destination, and can also
contain options to control processing.

Each entry in the item list is a 2-longword structure with the following format:

item code buffer length 0

buffer address 4

To terminate the item list, you must specify the final entry or longword as 0.
The standard-item-list argument is only valid when function-code is set to
CDA$_START; otherwise, standard-item-list is ignored. Valid code values for
the items in the standard-item-list are as follows:

CDA$ _INPUT_FORMAT
The parameter is the address and length of a string that specifies the input
document format.

CDA$ _INPUT_FRONT_END PROCEDURE
The parameter is the address of the main entry point for the front end.

The item-list length field for this item must be set to 0. This item enables a
caller to provide a front end that is a routine within the calling application
rather than a separate image. If this item code is used, the CDA$_INPUT_
FILE item can be used to pass any information (not necessarily a file
specification) to the front end.

CDA$ _INPUT_FRONT_END_DOMAIN

The parameter is the address and length of a string that specifies the input
document domain (either DDIF or DTIF). This item is used with the CDA$_
INPUT_PROCEDURE item to denote the input domain.

CDA$_INPUT _FILE
The parameter is the address and length of the file specification of the input
document.

CDAS$_INPUT _DEFAULT

The parameter is the address and length of a string that specifies the default
input file type. To simplify the porting of applications to other operating
systems, the string should consist only of a file type in lowercase characters.
If this parameter is omitted, the front end will supply an appropriate backup
default file specification.

CDA$_INPUT_PROCEDURE

The parameter is the address of a procedure to provide input to the front end.
The item-list length field must be set to 0. The input procedure must conform
to the requirements for a user get routine. The calling sequence for a user get
routine is defined in Chapter 9.

CDA Toolkit Routines 8-15



CONVERT

CDA$_INPUT_PROCEDURE_PARM

The parameter is the address of a longword parameter to the input procedure.
The item-list length field must be set to 4. This item is valid only if the
CDA$_INPUT_PROCEDURE value is specified

CDAS$_INPUT_POSITION_PROCEDURE

The parameter is the address of a procedure that provides position informa-
tion. The item-list length field must be set to 0. The position procedure must
conform to the requirements for a user get-position routine. The get-position

procedure is specified in the description of the OPEN CONVERTER routine.

CDA$ _INPUT_ROOT_AGGREGATE

The parameter is the address of a longword root aggregate handle that
specifies an in-memory input document. The item-list length field must be set
to 4. The entire in-memory structure, including the root aggregate itself, is
erased by this operation. Note that the root aggregate must specify standard
memory allocation.

CDA$_OUTPUT_FORMAT
The parameter is the address and length of a string that specifies the output
document format.

CDA$ OUTPUT BACK_END PROCEDURE
The parameter is the address of the main entry point of the back end.

The item-list length field must be set to 0. This item enables a caller to
provide a back end that is part of the calling application rather than a
separate image. If this item code is used, the CDA$_OUTPUT _FILE item can
be used to pass any information (not necessarily a file specification) to the
back end.

CDA$_OUTPUT_BACK_END_DOMAIN

The parameter is the address and length of a string that specifies the output
document domain (either DDIF or DTIF). This item is used with the CDA$_
OUTPUT_PROCEDURE item to denote the output domain.

CDA$_OUTPUT_FILE
The parameter is the address and length of the file specification of the output
document.

CDA$_OUTPUT_DEFAULT

The parameter is the address and length of a string that specifies the default
output file type. To simplify the porting of applications to other operating
systems, the string should consist only of a file type in lowercase characters.
If this parameter is omitted, the back end will supply an appropriate backup
default file specification.

CDA$_OUTPUT_PROCEDURE

The parameter is the address of a procedure to receive output. The item-list
length field must be set to 0. The output procedure must conform to the
requirements for a user put routine. The calling sequence for a user put
routine is defined in Chapter 9.

8-16 CDA Toolkit Routines



CONVERT

CDA$ OUTPUT_PROCEDURE_PARM

The parameter is the address of a longword parameter to the output proce-
dure. The item-list length field must be set to 4. This item is valid only if the
CDA$_OUTPUT_PROCEDURE item is specified.

CDA$ OUTPUT_PROCEDURE BUFFER

The parameter is the address and length of the initial output buffer for
the output procedure. This item is valid only if the CDA$_OUTPUT_
PROCEDURE item is specified.

CDA$ OUTPUT _ROOT_AGGREGATE

The parameter is the address of a longword root aggregate handle that
receives an in-memory output document. The item-list length field must
be set to 4. The root aggregate must be empty, and must specify standard
memory allocation. This root aggregate contains an entire in-memory
document at the end of the conversion.

CDA$ OPTIONS FILE

The parameter is the address and length of the file specification of an options
file that contains options to control processing. The default file type is
CDA$OPTIONS on VMS systems and cda_options on ULTRIX systems. Each
line of the file specifies a format name that can contain upper- and lowercase
alphabetic characters, digits, dollar signs, and underscores, optionally
preceded by spaces and tabs, and terminated by any character other than
those listed. Alphabetic case is not significant. The syntax and interpretation
of the text that follows the format name are specified by the supplier of the
front and back ends for the specified format. Multiple lines that specify the
same format are permitted.

CDA$ OPTIONS LINE

The parameter is the address and length of a string that contains options to
control processing. The format of each string is defined in the description of
the CDA$_OPTIONS_FILE item code.

private-item-list

A private item list that is passed directly to the output converter module that is
invoked. The specification of this item list is the responsibility of the particular
back end. Its purpose is to provide for direct two-way communication between
the caller of the CONVERT routine and the back end. On ULTRIX systems, the
CDA$_OUTPUT_BACK_END_PROCEDURE item must be specified when this
parameter is used.

converter-context

If function-code is set to CDA$_START, this argument receives a value that
must be specified as the converter-context parameter when the CONVERT
routine is called with CDA$_CONTINUE or CDA$_STOP as the function code.
This value is invalidated when the CONVERT routine returns a status other than
CDA$_SUSPEND. This parameter is used by the back end to store its processing
context.

CDA Toolkit Routines 8-17



CONVERT

Description

The CONVERT routine lets you perform document conversion from within an
application. This includes beginning, continuing, or discontinuing the conversion
of a document.

To specify the input and output information, and any processing options files,
you should construct an item list with the appropriate fields as specified in the
description of the standard-item-list argument. Note that the standard-item-
list argument is only valid when function-code is set to CDA$_START. The
following restrictions apply when you are constructing the standard-item-list:

¢ Either the CDA$_INPUT_FORMAT item or the CDA$_INPUT_FRONT_
END_PROCEDURE item, but not both, can be specified once in the item list.
If neither is specified, the default input format is DDIF.

* Either the CDA$_INPUT FILE item, the CDA$_INPUT_PROCEDURE item,
or the CDA$_INPUT_ROOT_AGGREGATE item must be specified once in the
item list. If the CDA$_INPUT_PROCEDURE item is specified, the CDA$_
INPUT_PROCEDURE_PARM item can also be specified once.

* Either the CDA$_OUTPUT_FORMAT item or the CDA$_OUTPUT_BACK_
END_PROCEDURE item, but not both, can be specified once in the item list.
If neither is specified, the default output format is DDIF.

¢ Either the CDA$_OUTPUT _FILE item, the CDA$_OUTPUT _PROCEDURE
item, or the CDA$_OUTPUT_ROOT_AGGREGATE item must be specified
once in the item list. If the CDA$_OUTPUT_PROCEDURE item is specified,
the CDA$_OUTPUT _PROCEDURE_PARM item and the CDA$_OUTPUT_
PROCEDURE_BUFFER item can each be specified once.

¢ The CDA$_OPTIONS_FILE item can only be specified once in the item list.

* The CDA$_OPTIONS_LINE item can be specified multiple times in the item
list.

8-18 CDA Toolkit Routines



CONVERT

RETURN VALUES

Return Value

Description

CDA$_DCVNOTFND
CDA$_ICVNOTFND
CDA$_INVFUNCOD
CDA$_INVINPDMN
CDA$_INVITMLST
CDA$_INVOUTDMN
CDA$_NORMAL
CDA$_OCVNOTFND
CDA$_SUSPEND
CDA$_UNSUPCNV
CDA$_UNSUPFMT

Domain converter not found.
Input converter not found.
Invalid function code.

Invalid input domain.

Invalid item list.

Invalid output domain.
Normal successful completion.
Output converter not found.
Converter is suspended.
Unsupported conversion.

Unsupported document format.

Any error conditions returned by the specific front end.

Any error conditions returned by the specific back end.

Example

This example illustrates the use of the CONVERT routine to invoke the DDIF

and Text converters.

/* Example text to ddif conversion using callable converter interface
* with a user-supplied get-rtn for text input.

*/

#ifdef vms

#include <cdaS$def.h>
#include <cda$msg.h>

#include <fab.h>
#include <rab.h>

#include <rmsdef.h>

felse

#include <cda_def.h>
#include <cda_msg.h>
#include <sys/file.h>
#include <stdio.h>

fendif

#define FAILURE (x)

(((x) & 1) == 0)

#define text ubf_ size 2048

CDA Toolkit Routines 8-19



CONVERT

/* User-supplied get-prm

*/

#ifdef vms

struct FAB

struct RAB

#else

struct urab {
int f4;
FILE *fs;
unsigned char *£fil_buffer;
unsigned long fil buflen;
unsigned long fil size;

text fab;
text_rab;

bi
struct urab text_rab;
extern char *fgets();
#endif
unsigned char

static unsigned char

/*
/*
/*
/*
/*

ddif_ format[]

file descriptor */

file ptr, used for text files */
address of input buffer */
length of input buffer */

size of file */

text ubf[text ubf size];

"DDIF";

static unsigned long ddif format length = sizeof (ddif format) - 1;
static unsigned char text format[] = "TEXT";

static unsigned long text_format length = sizeof (text_format) - 1;
static unsigned char text_ file[] = "text";

static unsigned long text file length = sizeof (text_file) - 1;
static unsigned char text_default([] = ".txt";

static unsigned long text_default_ length = sizeof (text_default) -~ 1;
static unsigned char ddif file[] = "output";

static unsigned long ddif file length = sizeof(ddif file) - 1;
static unsigned char ddif default[] = ".ddif";

static unsigned

/* User-supplied get-rtn
*/

long ddif default_length =

sizeof (ddif_ default) - 1;

unsigned long input_text procedure (get_prm, num bytes, buf_ adr)

#ifdef vms
struct RAB
#else

struct urab
#endif
unsigned long
unsigned char

{

#ifdef vms
unsigned long

*get_prm;
*get prm;

*num_bytes;
**buf_ adr;

status;

status =
if (FAILURE (status))
{

sys$get (get_prm);

if (status == RMS$_ EOF)

status =
return status;

}
*num_bytes =
*buf adr =
return status;

#else
char *status;
unsigned long buffer length;

8-20 CDA Toolkit Routines

CDA$_ENDOFDOC;

get_prm->rab$w_rsz;
get_prm->rab$l rbf;



CONVERT

status = fgets(get_prm->fil buffer, get_prm->fil buflen,
get_prm—>fs);
if (status == NULL)
{
*num_bytes = 0;
return CDA$_ENDOFDOC;
}
buffer length = strlen(get_prm->fil buffer);
if ((get_prm->fil buffer) [buffer length-1] == ‘\n’)
*num_bytes = buffer length - 1;
else
*num_bytes = buffer length;
*buf_adr = get_prm->fil buffer;
return CDA$_NORMAL;
#endif
}

main ()

{

unsigned long status;

unsigned long text parameter;

struct item list standard item list{15];
unsigned long integer_value;

unsigned long index;

unsigned char text filename[8];

printf ("Starting TEXT to DDIF procedure conversion\n");

#ifdef vms
/* Open input text file */
text_fab = cc$rms_fab;
text_rab = ccSrms_rab;
text fab.fab$l fna = text_file;
text fab.fabS$b_ fns = text_ file length;
text_fab.fab$l fop = FABSM SQO;
text fab.fab$b rfm = FABSC_VAR;
text_fab.fab$l_dna = text_default;
text_ fab.fabS$b_dns = text_default_ length;
text_rab.rab$l fab = &text_fab;
text_rab.rab$l_rop = RABSM LOC | RABSM RAH;
text rab.rab$l ubf = text ubf;
text_rab.rab$w_usz = text ubf size;

status = sysSopen(&text fab);
if (FAILURE (status)) return status;
status = sys$connect (&text_rab);
if (FAILURE (status))
{
sysSclose (s&text_fab);
return status;

}

felse
strcpy (text_filename, text_file);
strcat (text_filename, text_default);
text_ filename{text file length + text default length] = 0;
text_rab.fil_buffer = text ubf;
text_rab.fil buffer = text_ ubf;
text_rab.fil buflen = text_ ubf_ size;
text rab.fs = fopen(text_ filename, "r"};
if (text rab.fs == NULL) return CDA$_OPENFAIL;
#endif

/* Setup for conversion */
text_parameter = (unsigned long) &text_rab;

integer value = CDAS_START;

CDA Toolkit Routines 8-21



CONVERT

/* Input conversion parameters */

index = 0;
standard item list[index].
text format length;
standard item list [index]
CDA$_INPUT_ FORMAT;
standard item list[index]

(char *) text_ format;
index += 1;
standard_item list[index]
standard_item list [index]
CDAS_INPUT PROCEDURE;
standard item list[index].

.cda$w_item code

.cda$a_item address

.cda$w_item length
.cda$w_item code

cdas$w_item length

0;

cda$a_item address (char *)

input_text_procedure;

index += 1;
standard_item_ list[index].
standard_item_list[index].

cda$w_item length = 4;

cda$w_item_code

CDA$_INPUT PROCEDURE_PARM;

standard_item:list[indeE].

cdas$a_item address (char *)

&text_parameter;

index += 1;

/* Output conversion parameters */

standard_item list[index].
ddif_ format_length;
standard item list[index].
CDA$ OUTPUT FORMAT;
standard_item list[index]
(char *) ddif_ format;
index += 1;
standard_item list[index]
ddif file length;
standard_item_list [index]
CDAS_OUTPUT FILE;
standard_item list [index]
(char *) ddif_ file;
index += 1;
standard item list[index]
ddif_default_length;
standard_item list[index]
CDAS_OUTPUT_DEFAULT;
standard_item list[index]
(char *) ddif_ default;
index += 1;
standard_item_ list [index]
standard_item_ list[index]

/* Perform the conversion
status

.cdaSa_item address

.cdaSw_item length
.cdaSw_item code

.cda$a_item address

.cdas$w_item code

.cda$a_item address

.cda$w_item length
.cda$w_item code

cda$w_item length

cda$w_item code

.cdas$w_item length =

0;

0;

*/

cda$convert (&integer_value, standard_item list, O,

&integer_value);

if (FAILURE (status))
return (status);

#ifdef vms

/* Close the input file */

status = sys$close(&text fab);

if (FAILURE (status)) return status;
felse

fclose (text_rab.fs);
#endif

printf ("Completed TEXT to DDIF procedure conversion\n"):;

8-22 CDA Toolkit Routines



CONVERT

To compile and run this program on VMS systems, you can use the following DCL
commands:

$ cc

_$ /OPTIMIZE=NODISJOINT -
_$ /NOLIST -

_$ TEXT_CONVERTER.C

$ LINK /EXE=TEXT CONVERTER -

_$ /NOMAP -

_$ TEXT_CONVERTER, SYSSINPUT:/OPTION
SYS$LIBRARY : CDASACCESS/SHARE
SYS$SHARE : VAXCRTL/ SHARE

$ RUN TEXT CONVERTER

To compile and run this program on ULTRIX systems, you can use the following
commands:

% cc -o text converter text converter.c -1lddif -1lm
% text_converter

CDA Toolkit Routines 8-23



CONVERT AGGREGATE

CONVERT AGGREGATE

the aggregate type

Reads the next aggregate from a specified front end.

VAX FORMAT

status = cda$convert_aggregate

(root-aggregate-handle ,front-end-handle
,aggregate-handle ,aggregate-type)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
front-end-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
aggregate-type VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

8-24 CDA Toolkit Routines



CONVERT AGGREGATE

C FORMAT
status = CdaConvertAggregate

(root_aggregate_handle, front_end_handle,
aggregate_handle, aggregate_type)

Argument Information

unsigned long CdaConvertAggregate (root_aggregate_ handle,
front_end handle, aggregate handle,
aggregate_type)

unsigned long root_aggregate_handle;
unsigned long front_end_handle;
unsigned long *aggregate_handle;
unsigned long *aggregate type;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle
Identifier of the root aggregate associated with the aggregate to be read. This
handle is returned by a call to the CREATE ROOT AGGREGATE routine.

When reading aggregates using this routine, you must use the same value for
root-aggregate-handle consistently to read all the aggregates in the compound
document. Once you have read all the aggregates, you cannot specify the same
root-aggregate-handle again when calling this routine.

front-end-handle

Identifier of the front end that reads the aggregate. This handle is either re-
turned by a call to the OPEN CONVERTER routine, or is passed as a parameter
to the ddif$write_format or dtif$write_format entry point in the back end.

aggregate-handie
Receives the handle of the aggregate just read. This handle must be used in all
subsequent operations on that aggregate.

aggregate-type

Receives the aggregate type. If the aggregate type is DDIF$_EOS (end of
segment), then the value of aggregate-handle is 0.

CDA Toolkit Routines 8-25



CONVERT AGGREGATE

The aggregate type returned can be any one of the primary DDIF or DTIF

aggregates:

Aggregate Type Meaning
DDIF$_DSC Document descriptor
DDIF$_DHD Document header
DDIF$_SEG Document segment
DDIF$_TXT Text content
DDIF$_GTX General text content
DDIF$_HRD Hard directive
DDIF$_SFT Soft directive
DDIF$_HRV Hard value directive
DDIF$_SFV Soft value directive
DDIF$_BEZ Bézier curve content
DDIF$_LIN Polyline content
DDIF$_ARC Arc content
DDIF$_FAS Fill area set content
DDIF$_IMG Image content
DDIF$_CRF Content reference
DDIF$_EXT External content
DDIF$_PVT Private content
DDIF$_GLY Layout galley
DDIF$_EOS End of segment
DTIF$_DSC Document descriptor
DTIF$_HDR Document header
DTIF$_TBL Table definition
DTIF$_ROW Row definition
DTIF$_CLD Cell data

Note that the returned aggregate is not part of a sequence.

Description

The CONVERT AGGREGATE routine lets your application read the next
aggregate from the specified front end. This routine can only be invoked by a
back end.

8-26 CDA Toolkit Routines



CONVERT AGGREGATE

RETURN VALUES

Return Value

Description

CDA$_ENDOFDOC
CDA$_INVAGGTYP
CDA$_INVDOC
CDA$_NORMAL
CDA$_UNSUPCNV

End of document

Invalid aggregate type
Invalid document content
Normal successful completion

Unsupported conversion

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA Toolkit Routines 8-27



CONVERT DOCUMENT

CONVERT DOCUMENT

Reads an entire document from a specified front end.

VAX FORMAT
status = cda$convert_document

(root-aggregate-handle ,front-end-handle)

Argument Information

Argument ' Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
front-end-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT
status = CdaConvertDocument

(root_aggregate handle, front_end_handle)

8-28 CDA Toolkit Routines



CONVERT DOCUMENT

Argument Information

unsigned long CdaConvertDocument (root aggregate_ handle,
front_end handle)
unsigned long root_aggregate handle;
unsigned long front_end handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle
Identifier of the root aggregate associated with the document being read. This
root aggregate handle is returned by a call to the CREATE ROOT AGGREGATE

routine.

Once you read an entire document, you cannot call the CONVERT DOCUMENT
routine specifying the same root aggregate handle again. That is, you can only
read a document associated with a particular root aggregate once.

front-end-handle

Identifier of the front end that reads the document. This handle is passed to
the back end as a parameter to the ddif$write_format or dtif$write_format
entry point in the back end. In addition, when a front end calls the OPEN
CONVERTER routine, the new front end handle is returned.

Description

The CONVERT DOCUMENT routine lets your application read an entire
document from the specified front end. This routine can only be invoked by a
back end. On return from this routine, the entire document is present in memory
in aggregates linked from the document root aggregate.

CDA Toolkit Routines 8-29



CONVERT DOCUMENT

RETURN VALUES
Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVAGGTYP Invalid aggregate type
CDA$_INVDOC Invalid document content

Any error returned by the memory allocation routines.

Any error returned by the file routines.

8-30 CDA Toolkit Routines



CONVERT POSITION

CONVERT POSITION

Returns the current position in the input stream being processed, as well as the
total size of the input stream.

VAX FORMAT
status = cda$convert_position
(front-end-handle ,stream-position ,stream-size)

Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

front-end-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only »
Mechanism: by reference

stream-position VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

stream-size VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT

status = CdaConvertPosition
(front_end_handle, stream_position, stream_size)

CDA Toolkit Routines 8-31



CONVERT POSITION

Argument Information

unsigned long CdaConvertPosition(front_end_handle,
stream position, stream size)

unsigned long front end handle;
unsigned long *stream position;
unsigned long *stream size;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

front-end-handle

Identifier of the front end that is processing the input stream. The front end
handle is either returned by a call to the OPEN CONVERTER routine or is
passed as a parameter to ddif$write_format or dtif$write_format.

stream-position
Receives the current position (in bytes or aggregates) as measured from the start
of the input stream being processed.

stream-size
Receives the total size (in bytes or aggregates) of the input stream being pro-
cessed.

Description

The CONVERT POSITION routine returns the current position in the input
stream being processed, as well as the total size of a document being processed by
the CONVERT AGGREGATE routine. The numbers are either in units of bytes
or aggregates.

RETURN VALUES

Return Value Description

CDA$_NORMAL Normal successful completion

Any condition value returned by the front end get-position procedure.

8-32 CDA Toolkit Routines



COPY AGGREGATE

COPY AGGREGATE

Creates a copy of an aggregate and its entire substructure. If the specified
aggregate is part of a sequence, only the aggregate specified and its substructure,

rather than the entire sequence, is copied.

VAX FORMAT

status = cda$copy_aggregate

(root-aggregate-handle ,input-aggregate-handle

,output-aggregate-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
input-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
output-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

CDA Toolkit Routines 8-33



COPY AGGREGATE

C FORMAT

status = CdaCopyAggregate

(root_aggregate_handle, input_aggregate _handle,
output_aggregate handle)

Argument Information

unsigned long CdaCopyAggregate (root_aggregate handle,
input_aggregate_ handle,
output_aggregate_handle)

unsigned long root_aggregate_handle;
unsigned long input_aggregate_handle;
unsigned long *output_aggregate_handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate with which the copied aggregate is associated.
The new copy of the aggregate becomes part of the document identified by this
root aggregate handle. This root aggregate handle is returned by a call to either
the OPEN FILE routine or the CREATE ROOT AGGREGATE routine.

input-aggregate-handle
Identifier of the aggregate to be copied.

outpui-aggregate-handle
Receives the handle of the new copy of the specified aggregate. This new
aggregate handle must be used in all subsequent operations on that aggregate.

Description

The COPY AGGREGATE routine makes a copy of the specified aggregate and its
entire substructure. This copy becomes part of the document identified by the
specified root aggregate handle argument, and it is assigned a unique aggregate
identifier, specified by the output aggregate handle argument.

8-34 CDA Toolkit Routines



COPY AGGREGATE

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVAGGTYP Invalid aggregate type

CDA Toolkit Routines 8-35



CREATE AGGREGATE

CREATE AGGREGATE

Creates a new aggregate that contains empty items. Once this aggregate is
created, it can be populated using the STORE ITEM routine.

VAX FORMAT
status = cda$create_aggregate

(root-aggregate-handle ,aggregate-type

,aggregate-handle)
Argument Information
Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-type VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
‘ Data type: longword (unsigned)
Access: write only
Mechanism: by reference

8-36 CDA Toolkit Routines



CREATE AGGREGATE

C FORMAT

status = CdaCreateAggregate

(root_aggregate handle, aggregate_type,
aggregate _handle)

Argument Information

unsigned long CdaCreateAggregate (root aggregate handle,
aggregate_type, aggregate_handle)

unsigned long root_aggregate handle;
unsigned long aggregate_ type;
unsigned long *aggregate handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate with which the newly created aggregate is
associated. This handle is returned by a call to either the OPEN FILE routine or
the CREATE ROOT AGGREGATE routine.

aggregate-type

The type of aggregate to be created, expressed as a symbolic constant. The
aggregate type symbolic constants are defined in the files ddif$def.h and dtif$def.h
on VMS systems and in the files ddif_defh and dtif_def.h on ULTRIX systems.

aggregate-handle
Receives the identifier of the newly created aggregate. This handle must be used
in all subsequent operations on that aggregate.

Description

The CREATE AGGREGATE routine creates a new aggregate of the specified type
that contains empty items. Once this aggregate is created, it can be populated
using the STORE ITEM routine. The created aggregate is part of the document
specified by the root aggregate handle.

CDA Toolkit Routines 8-37



CREATE AGGREGATE

RETURN VALUES

Return Value Description
CDA$_NORMAL " Normal successful completion
CDA$_INVAGGTYP Invalid aggregate type

Any error returned by the memory allocation routines.

8-38 CDA Toolkit Routines



CREATE FILE

CREATEFILE

Creates a new compound document file for output. An output stream is also
created.

VAX FORMAT
status = cda$create_file

(file-spec-len \file-spec ,default-file-spec-len
,default-file-spec ,alloc-rtn ,dealloc-rtn
,alloc-dealloc-prm ,root-aggregate-handle
,result-file-spec-len ,result-file-spec
,result-file-ret-len ,stream-handle ,file-handle)

Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

file-spec VMS usage: char_string
Data type: character string
Access: read only
Mechanism: by reference

default-file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

CDA Toolkit Routines 8-39



CREATE FILE

Argument Argument Information
default-file-spec VMS usage: char_string
Data type: character string
Access: read only
Mechanism: by reference
alloc-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference, procedure refer-
ence
dealloc-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference, procedure refer-
ence
alloc-dealloc-prm VMS usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
result-file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
result-file-spec VMS usage: char_string
Data type: character string
Access: write only
Mechanism: by reference
result-file-ret-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

840 CDA Toolkit Routines



CREATE FILE

Argument Argument Information
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
file-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaCreateFile
(file_spec_len, file_spec, default_file_spec_len,
default_file_spec, alloc_rtn, dealloc_rtn,
alloc_dealloc_prm, root_aggregate_handle,
result_file_spec_len, result_file_spec,
result_file_ret_len, stream_handle, file_handle)

Argument Information

unsigned long CdaCreatefile(file spec_len, file spec,
default file_ spec len, default_file_spec,
alloc_rtn, dealloc_rtn, alloc_dealloc_prm,
root_aggregate_handle, result_file_ spec_ len,
result_file_spec, result_file ret_len,
stream handle, file_handle)

unsigned long file_spec_len;
unsigned char *file_ spec;

unsigned long default_file_spec_ len;
unsigned char *default_file spec;
unsigned long (*alloc_rtn) ()
unsigned long (*dealloc_rtn) ()
unsigned long alloc_dealloc_prm;
unsigned long root_aggregate_handle;
unsigned long result_file spec_len;
unsigned char *result_file_ spec;
unsigned long *result_file ret_len;
unsigned long *stream handle;
unsigned long *file handle;

CDA Toolkit Routines 8-41



CREATE FILE

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

file-spec-len
The length (in bytes) of the string specified by the file-spec parameter.

file-spec
The file specification.

default-file-spec-len

The length (in bytes) of the buffer specified by default-file-spec. If you specify a
value of 0 for both the default-file-spec-len and default-file-spec arguments, a
default file specification of “.ddif” is used.

default-file-spec .
The default file specification. In order to simplify the porting of applications, the
character string should consist of only a file type in lowercase characters. If you
specify an address of 0 for both the default-file-spec-len and default-file-spec
arguments, a default file specification of “.ddif” is used. On ULTRIX systems, the
string is appended to the file specification, if the file specification does not already
contain a period.

alloc-rtn

Address of a memory allocation routine. The calling sequence for an allocation
routine is defined in the Description section of this routine. If you specify 0 for
this argument, a default memory allocation routine is used. For a description, see
Chapter 9.

dealloc-rin

Address of a memory deallocation routine. The calling sequence for a deallocation
routine is defined in the Description section of this routine. If you specify O for
this argument, a default memory deallocation routine is used. For a description,
see Chapter 9.

alloc-dealloc-prm

User context to be passed to the memory allocation and deallocation routines.
If the system default memory allocation or deallocation routine is used, this
parameter is ignored. For a description, see Chapter 9.

root-aggregate-handle

Identifier of the root aggregate associated with the newly created compound
document. This handle must be used in all subsequent operations on that root
aggregate. This handle is returned by a call to the CREATE ROOT AGGREGATE
routine.

The root-aggregate-handle argument is used to specify the file type of the
newly created document using the aggregate type DDIF$_DDF for a DDIF file or
DTIF$_DTF for a DTIF file.

8-42 CDA Toolkit Routines



CREATE FILE

result-file-spec-len »
Length (in bytes) of the buffer specified by result-file-spec. If you specify 0 for
this parameter, the length of the resultant file specification is not returned.

result-file-spec

Receives the resultant file specification. If you specify 0 for this parameter, the
resultant file specification is not returned. This file specification is the result of a
VMS RMS $CREATE operation. On ULTRIX systems, the file-spec argument is
copied to this buffer.

result-file-ret-len

Receives the actual length (in bytes) of the resultant file specification. If you
specify O for this parameter, the actual length of the resultant file specification is
not returned.

stream-handle
Receives the handle of the newly created compound document stream. This
handle must be used in all subsequent operations on that stream.

file-handle
Receives the handle of the newly created compound document file. This handle
must be used in all subsequent operations on that file.

Description

The CREATE FILE routine creates a new compound document file for output and
also creates an output stream. Note that you must have created a document root
aggregate (by a call to the CREATE ROOT AGGREGATE routine) prior to calling
this routine. The handle of this document root aggregate must be passed to the
CREATE FILE routine, and must also be used in all subsequent operations on
that root aggregate.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion

CDA$_INVAGGTYP Invalid aggregate type

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA Toolkit Routines 8-43



CREATE FILE

Example

This example illustrates a typical call to the CREATE FILE routine. The length
of the file specification is specified by the spec_length parameter, and the file
specification is example.ddif. This call does not specify a default file specification
length or a default file specification; this combination defaults to a default file
specification of .ddif. The system memory allocation and deallocation routines are
passed as a zero value, meaning that the default system memory routines are
used. The root aggregate handle specifies the root aggregate of the document.
This root aggregate must exist prior to a call to this routine.

The result_length, result_buffer, and result_length arguments contain
information about the actual resultant file specification of the created file. The
stream_handle and file_handle arguments receive the identifiers of the newly
created stream and file.

/* set up file for DDIF file */

spec_length = 12;

result_length = sizeof (result_buffer);

status = cdaScreate_file(&spec_length, "example.ddif", 0, O,
0, 0, O,
&root_aggregate handle,
&result_length,
&result_buffer[0], &result_ length,
&stream handle, &file_handle);

if (FAILURE (status)) return(status);

8-44 CDA Toolkit Routines



CREATE ROOT AGGREGATE

CREATE ROOT AGGREGATE

Creates a document root aggregate.

VAX FORMAT
status = cda$create_root_aggregate

(alloc-rtn ,dealloc-rtn ,alloc-dealloc-prm
,processing-options ,aggregate-type
,root-aggregate-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
alloc-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference, procedure refer-
ence
dealloc-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference, procedure refer-
ence
alloc-dealloc-prm VMS usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by value

CDA Toolkit Routines 8-45



CREATE ROOT AGGREGATE

Argument Argument Information
processing-options VMS usage: item_list_2
Data type: record
Access: read only
Mechanism: by reference, array reference
aggregate-type VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaCreateRootAggregate

(alloc_rtn, dealloc_rtn, alloc_dealloc_prm,
processing_options, aggregate_type,
root_aggregate _handle)

Argument Information

unsigned long CdaCreateRootAggregate(alloc_rtn, dealloc_rtn,
alloc_dealloc_prm, processing_options,
aggregate_type, root_aggregate_handle)

unsigned long (*alloc_rtn) ()
unsigned long (*dealloc_rtn) ();
unsigned long *processing_options;
unsigned long alloc_dealloc_prm;
unsigned long aggregate_type;
unsigned long *root_aggregate_handle;

RETURNS

status
A condition value indicating the return status of the routine call.

8-46 CDA Toolkit Routines



CREATE ROOT AGGREGATE

Arguments

alloc-rtn

Address of a memory allocation routine. The calling sequence for an allocation
routine is defined in the Description section of this routine. If you specify 0 for
this argument, a default memory allocation routine is used. For a description, see
Chapter 9.

dealloc-rtn

Address of a memory deallocation routine. The calling sequence for a deallocation
routine is defined in the Description section of this routine. If you specify 0 for
this argument, a default memory deallocation routine is used. For a description,
see Chapter 9.

alloc-dealloc-prm

User context to be passed to the memory allocation and deallocation routines.
If the system default memory allocation or deallocation routine is used, this
parameter is ignored. For a description, see Chapter 9.

processing-options

An item list containing options to control input processing. Each entry in the
item list is a 2-longword structure. To terminate the item list you must specify
the final entry or longword as 0. Valid item codes are as follows:

DDIF$_INHERIT_ATTRIBUTES Attribute inheritance is applied to all docu-
ment segments. First, if a segment has a type
reference that corresponds to a type definition,
the attributes of the type are applied to the
segment.

If a segment is the root segment, and a style
guide is referenced in the document’s header,
the definitions and layout from the style guide
are applied to the root segment. For the root
segment only, standard defined initial values
are applied to the attributes of the segment
that do not yet have values.

If the segment is not the root segment, at-
tribute values of its parent segment are
applied to the attributes of the segment that
do not yet have values. For more information
on the inherit attributes processing option, see
Section 1.6.1.

DDIF$_RETAIN_DEFINITIONS Segment definitions that enable the operation
of CDAS$FIND_DEFINITION are retained.
This item code is required only if neither
DDIF$_INHERIT ATTRIBUTES nor DDIF$_
EVALUATE_CONTENT is specified. For
more information on the retain definitions
processing option, see Section 1.6.2.

CDA Toolkit Routines 8-47



CREATE ROOT AGGREGATE

DDIF$_EVALUATE_CONTENT

DDIF$_DISCARD_I_SEGMENTS

DDIF$_DISCARD_2D_SEGMENTS

DDIF$_DISCARD_T_SEGMENTS

DDIF$_DISCARD_TBL_SEGMENTS

DDIF$_DISCARD_PDL_SEGMENTS

Content reference (DDIF$_CRF) aggregates
are replaced with the value of the definition
(DDIF$_CTD) they reference. The value of
this content definition may be in the current
document or in an external document.

Content, for segments with the DDIF$_SGA_
COMPUTE_C item present in the segment’s
attributes (DDIF$_SGA) may be imported
from an external reference. If the value

of the DDIF$_SGA_COMPUTE_C item is
DDIF$K_REMOTE_COMPUTE, the external
content is imported and replaces the segment’s
original content. If the value of the DDIF$_
SGA_COMPUTE_C item is DDIF$_K_COPY_
COMPUTE, the external content is imported
only if the segment has no content. For more
information on the evaluate content processing
option, see Section 1.6.3.

Segments of the image ($1) content category,
and any nested segments, are discarded.

For more information on the discard image
segments processing option, see Section 1.6.4.

Segments of the graphics ($2D) content cate-
gory, and any nested segments, are discarded.
For more information on the discard graphics
segments processing option, see Section 1.6.4.

Segments of the text ($T) content category,
and any nested segments, are discarded. For
more information on the discard text segments
processing option, see Section 1.6.4.

Segments of the table ($TBL) content cate-
gory, and any nested segments, are discarded.
For more information on the discard table
segments processing option, see Section 1.6.4.

Segments of the page description language
($PDL) content category, and any nested seg-
ments, are discarded. For more information
on the discard page descriptions language
segments processing option, see Section 1.6.4.

This item list contains options only to control input processing. If you are
creating a root aggregate for output processing, you must specify both an item

length and an item buffer address of 0.

aggregate-type

The type of aggregate to be created, expressed as a symbolic constant. The only
valid root aggregate types are DDIF$_DDF and DTIF$_DTF.

root-aggregate-handle

Receives a value that identifies the newly created root aggregate. This handle
must be used in all subsequent operations on that root aggregate.

8-48 CDA Toolkit Routines



CREATE ROOT AGGREGATE

Description

The CREATE ROOT AGGREGATE routine creates a document root aggregate.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVAGGTYP Invalid aggregate type
CDA$_INVITMLST Invalid item list

Any error returned by the memory allocation routines.

Example

This code segment illustrates a typical call to the CREATE ROOT AGGREGATE
routine. The first four parameters are passed as zero values, indicating that the
default system memory allocation and deallocation routines are used and that no
processing options are specified. The aggregate type passed is DDIF$_DDF, which
is the document root aggregate, and the root aggregate handle that is returned is
used to identify that document throughout the program.

aggregate_type = DDIF$ DDF;

status = cda$create_root_aggregate (0, 0, 0, 0, &aggregate_ type,
&root_aggregate_handle) ;

if (FAILURE (status)) return(status);

CDA Toolkit Routines 8-49



CREATE STREAM

CREATE STREAM

Opens a compound document stream for output.

VAX FORMAT
status = cda$create_stream

(alloc-rtn ,dealloc-rtn ,alloc-dealloc-prm ,put-rin
,put-prm ,buf-len ,buf-adr ,stream-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
alloc-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference, procedure refer-
ence
dealloc-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference, procedure refer-
ence
alloc-dealloc-prm VMS usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by value

8-50 CDA Toolkit Routines



CREATE STREAM

Argument Argument Information

put-rtn VMS usage: procedure
Data type: procedure entry mask
Access: read only
Mechanism: by reference, procedure refer-

ence

put-prm VMS usage: user_arg
Data type: longword (unsigned)
Access: read only
Mechanism: by value

buf-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

buf-adr VMS usage: vector_byte_unsigned
Data type: byte (unsigned)
Access: read only
Mechanism: by reference, array reference

stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only ‘
Mechanism: by reference

C FORMAT

status = CdaCreateStream

(alloc_rtn, dealloc_rtn, alloc_dealloc_prm, put_rin,
put_prm, buf_len, buf_adr, stream_handle)

CDA Toolkit Routines 8-51



CREATE STREAM

Argument Information

unsigned long CdaCreateStream(alloc_rtn, dealloc_rtn,
alloc_dealloc prm, put_rtn, put_prm,
buf len, buf adr, stream handle)

unsigned long (*alloc_rtn) ();
unsigned long (*dealloc_rtn) ();
unsigned long alloc_dealloc_prm;
unsigned long (*put_rtn) (),
unsigned long put_prm;

unsigned long buf_len;

unsigned char *buf_ adr;
unsigned long *stream handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

alloc-rtn

Address of a memory allocation routine. The calling sequence for an allocation
routine is defined in the Description section of this routine. If you specify 0O for
this argument, a default memory allocation routine is used. For a description, see
Chapter 9.

dealloc-rtn

Address of a memory deallocation routine. The calling sequence for a deallocation
routine is defined in the Description section of this routine. If you specify O for
this argument, a default memory deallocation routine is used. For a description,
see Chapter 9.

alloc-dealloc-prm

User context to be passed to the memory allocation and deallocation routines.
If the system default memory allocation or deallocation routine is used, this
parameter is ignored. For a description, see Chapter 9.

put-rtn

Address of a stream put routine. The calling sequence for a put routine is defined
in Chapter 9. If you specify 0 for this argument on VMS systems, a system
default routine is used. On ULTRIX systems, you must provide both a put-rtn
and put-prm; there is no default. If you specify a value other than the default for
this argument, you must also specify a value for the put-prm argument.

8-52 CDA Toolkit Routines



CREATE STREAM

put-prm

User context to be passed to the stream put routine. If the VMS system default
put routine is used, the value must be a pointer to a RAB. On ULTRIX sys-
tems, you must provide both a put-rtn and put-prm; there is no default. For a
description, see Chapter 9.

buf-len
Length of the buffer specified by the buf-adr parameter.

buf-adr
Address of a buffer that receives the output data.

stream-handle
Receives the handle of the newly created stream. This handle must be used in all
subsequent operations on that stream.

Description

The CREATE STREAM routine opens a compound document stream for output.
The number of streams that you can open simultaneously is limited only by the
amount of memory available.

RETURN VALUES

Return Value Description 7
CDA$_NORMAL Normal successful completion

Any error returned by the memory allocation routines.

CDA Toolkit Routines 8-53



CREATE TEXT FILE

CREATE TEXT FILE

Creates a standard text file for output.

VAX FORMAT
status = cda$create_text_file

(file-spec-len ,file-spec ,default-file-spec-len
,default-file-spec ,result-file-spec-len

,result-file-spec ,result-file-ret-len ,text-file-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
file-spec VMS usage: char_string
Data type: character string
Access: read only
Mechanism: by reference
default-file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
default-file-spec VMS usage: char_string
Data type: character string
Access: read only
Mechanism: by reference

8-54 CDA Toolkit Routines



CREATE TEXT FILE

Argument Argument Information
result-file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
result-file-spec VMS usage: char_string
Data type: character string
Access: write only
Mechanism: by reference
result-file-ret-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
text-file-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT

status = CdaCreateTextFile

(file_spec _len, file_spec, default_file_spec_len,
default_file_spec, result_file_spec_len,

result_file_spec, result_file_ret_len,
text_file_handle)

CDA Toolkit Routines 8-55



CREATE TEXT FILE

Argument Information

unsigned long CdaCreateTextFile(file_spec_len, file_spec,
default_file spec len, default_file spec,
result_file spec_len, result_file spec,
result_file ret len, text file handle)

unsigned long file spec_len;
unsigned char *file_spec;

unsigned long default file spec len;
unsigned char *default_file_spec;
unsigned long result_file spec_len;
unsigned char *result_file_spec;
unsigned long *result_file ret_len;
unsigned long *text_file handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

file-spec-len
Length (in bytes) of the string specified by the file-spec argument.

file-spec
File specification of the text file to be created for output.

default-file-spec-len
Length (in bytes) of the string specified by default-file-spec. If you specify 0 for
this parameter, no default file specification is used.

default-file-spec

Default file specification. If you specify 0 for this parameter, no default file
specification is used. The string should consist only of a file type in lowercase
characters. On ULTRIX systems, the string is appended to the file specification if
the file specification does not already contain a period.

result-file-spec-len
Length (in bytes) of the buffer specified by result-file-spec. If you specify 0 for
this parameter, the length of the resultant file specification is not returned.

result-file-spec _

Receives the resultant file specification. This file specification is the result of a
VMS RMS $CREATE operation. On ULTRIX systems, the file-spec is copied to
this buffer. If you specify 0 for this parameter, a resultant file specification is not
returned. '

8-56 CDA Toolkit Routines



CREATE TEXT FILE

result-file-ret-len

Receives the actual length (in bytes) of the resultant file specification. If you
specify O for this parameter, the actual length of the resultant file specification is
not returned.

text-file-handle
Receives the handle of the text file. This handle must be used in all subsequent

operations on that text file.

Description

The CREATE TEXT FILE routine creates a standard text file for output.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA Toolkit Routines 8-57



DELETE AGGREGATE

DELETE AGGREGATE

Destroys an aggregate and all of its substructure. If the specified aggregate is
part of a sequence, the aggregate is cut from the sequence before being destroyed.

VAX FORMAT
status = cda$delete_aggregate

(root-aggregate-handle ,aggregate-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT
status = CdaDeleteAggregate

(root_aggregate _handle, aggregate_handle)

8-58 CDA Toolkit Routines



DELETE AGGREGATE

Argument Information

unsigned long CdaDeleteAggregate (root_aggregate handle,
aggregate_handle)
unsigned long root_aggregate handle;
unsigned long aggregate_handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate associated with the aggregate to be deleted. This
handle is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

aggregate-handle
Identifier of the aggregate to be destroyed.

Description

The DELETE AGGREGATE routine destroys an aggregate and all of its substruc-
ture. If the specified aggregate is part of a sequence, the aggregate is cut from
the sequence before being destroyed. Note that the specified aggregate handle
and the handles of any subaggregates linked to the specified aggregate either
directly or indirectly to children of the root aggregate are invalid after a call to
this routine.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVAGGTYP Invalid aggregate type

Any error returned by the memory deallocation routines.

CDA Toolkit Routines 8-59



DELETE ROOT AGGREGATE

DELETE ROOT AGGREGATE

Destroys a document root aggregate and all of its substructure.

VAX FORMAT
status = cda$delete_root_aggregate
(root-aggregate-handle)

Argument Information

Argument Argument Information

status VMS usage: ‘ cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT
status = CdaDeleteRootAggregate

(root_aggregate handle)

Argument Information

unsigned long CdaDeleteRootAggregate (root_aggregate handle)
unsigned long root_aggregate handle;

8-60 CDA Toolkit Routines



DELETE ROOT AGGREGATE

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle
Identifier of the root aggregate to be deleted. This handle is returned by a call to
either the OPEN FILE routine or the CREATE ROOT AGGREGATE routine.

Description

The DELETE ROOT AGGREGATE routine destroys a document root aggregate
and all of its associated substructure. The root aggregate and its substructure
form a tree structure, so that when the root aggregate is deleted, any aggregates
attached to that root aggregate are also deleted. The root-aggregate-handle as
well as the handles of any aggregates that are linked to the root aggregate either
directly or indirectly are invalid after a call to this routine.

RETURN VALUES

Return Value Description

CDA$_NORMAL Normal successful completion

Any error returned by the memory deallocation routines.

CDA Toolkit Routines 8-61



ENTER SCOPE

ENTER SCOPE

Opens a document scope for incremental writing.

VAX FORMAT
status = cda$enter_scope
(root-aggregate-handle ,stream-handle ,scope-code

[,aggregate-handle])
Argument Information
Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
scope-code VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

8-62 CDA Toolkit Routines



ENTER SCOPE

C FORMAT

status = CdaEnterScope

(root_aggregate_handle, stream_handle,
scope_code, aggregate handle)

Argument Information

unsigned long CdaEnterScope (root_aggregate handle,
stream handle, scope code
aggregate_handle)

unsigned long root_aggregate_handle;
unsigned long stream handle;
unsigned long scope_code;

unsigned long aggregate handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate associated with the document content to be
incrementally written. This handle is returned by a call to either the OPEN FILE
routine or the CREATE ROOT AGGREGATE routine.

stream-handle

Identifier of the stream associated with the document to be written. This handle
is returned by a call to either the CREATE FILE routine or the CREATE
STREAM routine.

scope-code
Symbolic constant identifying the scope to be opened. Valid values for the DDIF

root aggregate are as follows: :

Code Meaning
DDIF$K_DOCUMENT_SCOPE Document scope
DDIF$K_CONTENT_SCOPE Content scope
DDIF$K_SEGMENT_SCOPE Segment scope

Valid values for the DTIF root aggregate are as follows:

CDA Toolkit Routines 8-63



ENTER SCOPE

Code Meaning
DTIF$K_DOCUMENT_SCOPE Document scope
DTIF$K_TABLE_SCOPE Table scope

DTIF$K_ROW_SCOPE Row scope

DTIF$K_CELLS_SCOPE Cell scope (for all cells in a row)
aggregate-handle

Identifier of an aggregate of the appropriate type, if required by the scope code
specified.

The aggregate must be completely populated, except that its content sequence
must be empty. The DDIF scoped sections that require that the aggregate-
handle be specified are as follows:

Scope Value of Aggregate-Handle

DDIF$K_SEGMENT_SCOPE Aggregate-handle is the handle of an aggregate
of type DDIF$_SEG.

The DTIF scoped sections that require that the aggregate-handle be specified
are as follows:

Scope Value of Aggregate-Handle

DTIF$K_TABLE_SCOPE Aggregate-handle is the handle of the table
aggregate, which contains everything to be specified
except the rows.

DTIF$K_ROW_SCOPE Aggregate-handle is the handle of the row ag-
gregate, which contains everything to be specified
except the cells.

Description

The ENTER SCOPE routine lets you open a particular document scope for
incremental writing. The types of scopes that you can open for a DDIF-encoded
document are the following:

* DDIF$K DOCUMENT_SCOPE
* DDIF$K_CONTENT_SCOPE
* DDIF$K_SEGMENT_SCOPE

For a DTIF-encoded document, the types of scopes that you can open are as
follows:

* DTIF$K_DOCUMENT_SCOPE
* DTIF$K_TABLE_SCOPE

* DTIF$K ROW_SCOPE

* DTIF$K_CELLS_SCOPE

8-64 CDA Toolkit Routines



ENTER SCOPE

Using Scope to Write DDIF Documents Incrementally

When performing incremental writing on a DDIF-encoded document, you should
perform the following steps:

1

Call the ENTER SCOPE routine, specifying scope-code as DDIF$K_
DOCUMENT_SCOPE.

Write an aggregate of type DDIF$_DSC.
Write an aggregate of type DDIF$_DHD.

Call the ENTER SCOPE routine, specifying scope-code as DDIF$K_
CONTENT_SCOPE.

Write a root segment of type DDIF$_SEG. The root segment is a top-level
segment that contains the document content. This document content can
consist of content aggregates as well as nested segments. If the document
contains only one segment, that segment is the root segment and it contains
all of the document content. If the document contains multiple segments,
they must be nested within a root segment.

You can use either of the following methods to create the root segment.
Because the first method requires that the entire segment be completed
before calling the PUT AGGREGATE routine, once you select that method
you must continue to use that method while writing all of the document
content. If you select the second method, you can use either method to write
any nested segments. Again, if while writing nested segments, you select the
first method, you must continue to use that method, and so on.

a. Call the PUT AGGREGATE routine with a completed aggregate of type
DDIF$_SEG, whose DDIF$_SEG_CONTENT item references a sequence
of aggregates that make up the entire content for that segment, including
any nested segments. Using this method, you need only call the PUT
AGGREGATE routine once, because the DDIF$_SEG aggregate written in
the call to PUT AGGREGATE is already completely populated.

b. Call the ENTER SCOPE routine, specifying scope-code as DDIF$K_
SEGMENT_SCOPE, with a completed aggregate of type DDIF$_SEG
whose DDIF$_SEG_CONTENT item is empty. You can then call the PUT
AGGREGATE routine for each aggregate that makes up the segment
content, in order. Once that segment and all its nested segments have
been output, call the LEAVE SCOPE routine, specifying scope-code as
DDIF$K_SEGMENT_SCOPE to complete that segment.

Call the LEAVE SCOPE routine, specifying scope-code as DDIF$K_
CONTENT_SCOPE.

Call the LEAVE SCOPE routine, specifying scope-code as DDIF$K _
DOCUMENT_SCOPE.

When you call the ENTER SCOPE routine with scope-code specified as

DDIF$K_SEGMENT_SCOPE, you can write aggregates of the following types

within the segment, provided that the appropriate restrictions on content types

within content categories are observed:

CDA Toolkit Routines 8-65



ENTER SCOPE

Aggregate Type Meaning
DDIF$_SEG Document segment
DDIF$_TXT Text content
DDIF$_HRD Hard directive
DDIF$_SFT Soft directive
DDIF$_LIN Polyline content
DDIF$_ARC Arc content
DDIF$_BEZ Bézier curve content
DDIF$_IMG Image content
DDIF$_CRF Content reference
DDIF$_EXT External content
DDIF$_PVT Private content

Using Scope to Write DTIF Documents Incrementally

When performing incremental writing of a DTIF-encoded document, you should
perform the following steps:

1.

10.

11.

12.
13.

Call the ENTER SCOPE routine, specifying scope-code as DTIF$K_
DOCUMENT _SCOPE.

Create a header (type DTIF$_HDR) aggregate and write it using the PUT
AGGREGATE routine.

Create a table (DTIF$_TBL) aggregate, specifying everything to be written
except the table rows.

Call the ENTER SCOPE routine, specifying scope-code as DTIF$K_TABLE_
SCOPE and aggregate-handle as the handle of the table aggregate to be
written.

Create a row (DTIF$_ROW) aggregate, specifying everything to be written
except the row cells.

Call the ENTER SCOPE routine, specifying scope-code as DTIFFK_ROW_
SCOPE and aggregate-handle as the handle of the row aggregate to be
written.

Call the ENTER SCOPE routine, specifying scope-code as DTIF$K_CELLS_
SCOPE (do not specify the aggregate-handle argument).

Create and populate a cell (DTIF$_CLD) aggregate, and invoke the PUT
AGGREGATE routine to write the completed aggregate.

Repeat until all of the cells in the row have been written.

Call the LEAVE SCOPE routine, specifying scope-code as DTIF$K_CELLS_
SCOPE.

Call the LEAVE SCOPE routine, specifying scope-code as DTIF$K_ROW_
SCOPE.

Repeat steps 6 through 11 for each row in the table.

Once all the rows in the table have been completed, call the LEAVE SCOPE
routine, specifying scope-code as DTIF$K_TABLE_SCOPE.

8-66 CDA Toolkit Routines



ENTER SCOPE

14. If there are additional tables to be created, repeat steps 4 through 13 to create
the additional tables.

15. Once all the tables in the document have been created, call the LEAVE
SCOPE routine, specifying scope-code as DTIF$K_DOCUMENT_SCOPE.

NOTE

After calling the ENTER SCOPE routine, if your application no longer
requires the aggregates written, you should issue a subsequent call to
the DELETE AGGREGATE routine to destroy these aggregates.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVSCOCOD Invalid scope code

Any errors returned by the file routines.

Examples

The following example shows how to incrementally read a DDIF document and
write it to another DDIF file using the PUT AGGREGATE, ENTER SCOPE, and
LEAVE SCOPE routines.

/* Get the document from the front end using the aggregate method */

while (SUCCESS (status = cdaS$convert_aggregate (&root_aggregate handle,
fre_handle,
&aggregate_handle,
&aggregate type)))

switch (aggregate_type)
{

/* If the aggregate type is DDIF$_DSC, the document
descriptor aggregate, then enter document scope
and write the aggregate to the stream */

case DDIF$S_DSC:

/* The first aggregate is incrementally read--enter
the document scope here before putting out the
aggregate */

scope = DDIFS$K_DOCUMENT_SCOPE;
status = cdaSenter_scope (&root_aggregate_handle,
&stream handle,
&scope) ;
if (!SUCCESS(status))
CLEANUP (status);

CDA Toolkit Routines 8-67



ENTER SCOPE

status = cdaSput_aggregate (&root_aggregate handle,
&stream_handle,
&aggregate handle);
if (!SUCCESS (status))
CLEANUP (status);
break;

Examples

/* 1f the aggregate type is DDIF$_DHD, the document
header aggregate, then simply write the aggregate
to the stream, since we’re already in the document
scope */
case DDIFS_DHD:
status = cda$put_aggregate (&root_aggregate handle,
&stream_handle,
&aggregate_handle) ;
if (!SUCCESS (status))
CLEANUP (status):;

scope = DDIF$K CONTENT_SCOPE;
/* DDIF$ DHD immediately precedes content--enter

content scope here */

status = cda$enter_scope (&root_aggregate_handle,
&stream_handle,
&scope) ;

if (!SUCCESS(status))

CLEANUP (status);
break;

/* If the aggregate type is DDIF$_SEG, the segment
aggregate, then enter the segment scope and write
the aggregate to the stream */

case DDIF$_SEG:

scope = DDIFS$K_SEGMENT_SCOPE;

/* Enter segment scope passing segment handle--
this call outputs the segment aggregate--enter
scope does put aggregate for segments */

status = cda$enter_ scope (&root_aggregate_handle,
&stream_handle,
&scope,
&aggregate_handle) ;
if (!SUCCESS (status))
CLEANUP (status):;
break;

/* If the aggregate type is DDIFS$S_EOS, end of
segment aggregate, then leave the segment scope */
case DDIF$_EOS:

scope = DDIFS$K_SEGMENT_SCOPE;

status = cda$leave_scope (&root_aggregate handle,
&stream handle,
&scope) ;

if (!SUCCESS (status))

CLEANUP (status);
break;

8-68 CDA Toolkit Routines



ENTER SCOPE

/* For any other aggregate type, simply write the
aggregate to the stream */
default:
status = cda$put_aggregate (&root_aggregate_handle,
&stream_handle,
&aggregate_handle);
if (!SUCCESS (status))
CLEANUP (status);
break;

}

/* Delete the aggregate(s) just processed */
status = cda$delete_aggregate (&root_aggregate_handle,
&aggregate_handle);
if (!SUCCESS (status))
CLEANUP (status);

/* Once all aggregates are processed, leave the content scope
and the document scope */

The following example shows the incremental method of creating a document,
using both methods outlined for writing nested segments.

/*

This is an example of using the incremental method to create a
document with nested segments being output using different options.

*/

#ifdef vms

#include <cda$def.h>

#include <ddif$def.h>
felse

#include <cda_def.h>

#include <ddif def.h>
fendif

#define FAILURE (x) (((x) & 1) == Q)

main ()

{

unsigned long status;

unsigned long aggregate_ type;
unsigned long aggregate_handle;
unsigned long prev_aggregate handle;
unsigned long aggregate_item;
unsigned long aggregate_index;
unsigned long add_info;
unsigned long spec_length;
unsigned long result_length;

CDA Toolkit Routines 8-69



ENTER SCOPE

8-70

unsigned char result_buffer[255];
unsigned long stream handle;
unsigned long file_handle;

unsigned long root_aggregate_handle;
unsigned long segment _handle;
unsigned long integer value;
unsigned char  byte value;

unsigned long buffer length;
unsigned long scope_code;

/* Create the root aggregate */

aggregate_type

status

= DDIF$_DDF;

= cda$create_root_aggregate(0, 0, 0, 0, &aggregate_type,
&root_aggregate_handle);
if (FAILURE (status)) return(status);

/* Create the file */
spec_length

result length

status

9;
= sizeof(result_buffer);

= cda$create_file(&spec_length, "test.ddif", 0, O,

if (FAILURE

o, 0, O,

&root_aggregate_handle, &result_ length,
&result_buffer[0], &result_length,
&stream handle, &file_handle);

(status)) return(status);

/* Enter Document Scope */
scope_code
= cdaSenter_scope (&root_aggregate_handle, &stream handle,

status

DDIF$K_DOCUMENT_ SCOPE;

&scope_code) ;

if (FAILURE (status)) return(status):;

/* Create, populate, put, and delete the descriptor aggregate */

aggregate type
cda$create_aggregate (&root_aggregate_handle,

status

= DDIF$_DSC;

&aggregate_type, &aggregate_handle);

if (FAILURE (status)) return(status);

aggregate item = DDIFS$_DSC MAJOR VERSION;

buffer length = sizeof (integer value);

integer_value = 1;

status = cda$store_item(&root_aggregate handle, &aggregate_ handle,
&aggregate_item, &buffer length, &integer_ value);

if (FAILURE (status)) return(status);

aggregate_item = DDIF$ DSC_MINCR VERSION;

buffer length = sizeof (integer_value);

integer value = 0;

status = cda$store_item(&root_aggregate handle, &aggregate_handle,
&aggregate_item, &buffer length, &integer_value);

if (FAILURE (status)) return(status);

aggregate_item = DDIF$_DSC_PRODUCT_IDENTIFIER;

buffer length = 4;

status = cda$store_item(&root_aggregate_handle, &aggregate handle,
&aggregate_item, &buffer length, "Test");

if (FAILURE (status)) return(status);

CDA Toolkit Routines



ENTER SCOPE

aggregate_item = DDIF$_DSC_PRODUCT_NAME;

buffer length = 19;

add_info = CDAS$K_ISO_LATINI;

aggregate_index = 0;

status = cda$store_ item(&root_aggregate_handle, &aggregate handle,
&aggregate_item, &buffer length,
"Example Application", &aggregate_index,
&add_info);

if (FAILURE (status)) return(status);

status = cda$put aggregate (éroot_aggregate handle,
&stream handle, &aggregate_ handle);
if (FAILURE (status)) return(status);

status = cda$delete_aggregate (&rocot_aggregate_handle,
&aggregate handle);
if (FAILURE (status)) return(status);

/* Create, populate, put, and delete the header aggregate. */

aggregate_type = DDIF$ DHD;

status = cda$create_aggregate (&root_aggregate handle,
&aggregate_type, &aggregate_handle);

if (FAILURE (status)) return(status);

prev_aggregate handle = aggregate_handle;

/* Store header items here */

status = cda$put_aggregate (&§root_aggregate handle, &stream handle,
&aggregate handle);
if (FAILURE (status)) return{status);

status = cda$delete_aggregate (&root_aggregate handle,
&aggregate_handle) ;
if (FAILURE (status)) return(status);

/* Enter Content Scope */

scope_code = DDIF$K_CONTENT_ SCOPE;

status = cdaS$enter scope (&root.aggregate handle, &stream handle,
&scope_code) ;

if (FAILURE (status)) return(status);

/* Create the "root segment" aggregate, and f£ill it in except for
the content. This will be output using cda$enter_ scope, and
its contents will be output incrementally.
*/
aggregate_type = DDIF$_SEG;
status = cdaScreate_aggregate (&root_aggregate_handle,
&aggregate_type, &aggregate_handle);
if (FAILURE (status)) return(status);
segment_handle = aggregate_handle;

/* Fill in any items needed at the top level. */
aggregate_type = DDIF$_SGA;
status = cda$create_aggregate (&root_aggregate handle,
&aggregate type, &aggregate handle);
if (FAILURE (status)) return (status):

CDA Toolkit Routines 8-71



ENTER SCOPE

8-72

aggregate_item = DDIF$_SEG SPECIFIC_ATTRIBUTES;

buffer length = sizeof (aggregate handle);

status = cda$store_item(&root_aggregate handle, &segment handle,
&aggregate item, &buffer length,
&aggregate_handle) ;

if (FAILURE (status)) return(status);

aggregate_item = DDIFS$_ SGA CONTENT CATEGORY;

add_info = DDIF$K T CATEGORY;

status = cda$store_item(&root_aggregate handle, &aggregate handle,
&aggregate item, 0, 0, 0, &add info);

if (FAILURE (status)) return(status);

/* Enter Segment Scope. This requires the segment aggregate handle,
and causes the segment aggregate to be output. */
scope_code = DDIFSK SEGMENT SCOPE;
status = cda$enter scope (&root_aggregate_handle, &stream handle,
&scope_code, &segment _handle);
if (FAILURE (status)) return(status);

/* Delete the segment aggregate */

status = cda$delete_aggregate (&root_aggregate handle,
&segment handle);

if (FAILURE (status)) return(status);

/* Incrementally, create the content aggregates and put them out. */

aggregate_type = DDIF$_TXT;

status = cdaScreate_aggregate (&root_aggregate_handle,
&aggregate_type, &aggregate handle);

if (FAILURE (status)) return(status);

aggregate_item = DDIF$_TXT CONTENT;

buffer length = 5;

status = cda$store_item(&root_aggregate handle, &aggregate_handle,
&aggregate item, &buffer length, "Hello");

if (FAILURE (status)) return(status);

status = cda$put_aggregate (&root_aggregate_handle, &stream handle,
&aggregate_handle);
if (FAILURE (status)) return (status);

/* Delete the text aggregate */

status = cda$delete_aggregate (&root_aggregate handle,
&aggregate_handle);

if (FAILURE (status)) return(status);

/* The next content element is a segment
* Create a sement aggregate, link all its content to it,
* and output the aggregate. (This segment does not use
cda$enter_ scope.)
*/
aggregate_type = DDIF$_SEG;
status = cda$create_aggregate (&root_aggregate handle,
&aggregate type, &aggregate_ handle);
if (FAILURE (status)) return(status);
segment_handle = aggregate_handle;

CDA Toolkit Routines



ENTER SCOPE

aggregate_type = DDIF$_SGA;

status = cda$create_aggregate (&¢root_aggregate handle,
&aggregate_type, &aggregate_handle);

if (FAILURE (status)) return(status);

aggregate_item = DDIF$_SEG_SPECIFIC_ATTRIBUTES;

buffer length = sizeof (aggregate handle);

status = cda$store_item(&root_aggregate handle, &segment_handle,
&aggregate_item, gbuffer length,
&aggregate handle);

if (FAILURE (status)) return(status);

aggregate_item = DDIF$_SGA CONTENT CATEGORY;

add_info = DDIFSK_T_ CATEGORY;

status = cda$store_item(&root_aggregate handle, &aggregate handle,
&aggregate_item, 0, 0, 0, &add_info);

if (FAILURE (status)) return(status):;

/* Create content aggregates, and link them to

* the segment aggregate.

*/
aggregate type = DDIFS_TXT;
status = cda$create_aggregate (&root_aggregate_handle,

&aggregate type, &aggregate_handle);

if (FAILURE (status)) return/(status);
prev_aggregate handle = aggregate_handle;

aggregate _item = DDIF$_SEG_CONTENT;

buffer length = sizeof (aggregate_handle);

status = cda$store_item(&root_aggregate_ handle, &segment_ handle,
&aggregate_item, &buffer length,
&aggregate_handle);

if (FAILURE (status)) return(status);

aggregate_item = DDIF$_TXT CONTENT;

buffer length = 5;

status = cda$store_item(&root_aggregate_handle, &aggregate_handle,
&aggregate_item, &buffer_length,
"There") ;

if (FAILURE (status)) return(status);

aggregate_type = DDIF$ HRD;

status = cda$create_aggregate (&root_aggregate_ handle,
&aggregate_type, &aggregate_handle);

if (FAILURE (status)) return(status);

cda$insert aggregate (&aggregate handle, &prev_aggregate_handle);

aggregate_item = DDIFS$_HRD_DIRECTIVE;

buffer length = sizeof (integer_ value);

integer value = DDIF$K DIR NEW PAGE;

status = cda$store_item(&root_aggregate handle, &aggregate handle,
&aggregate item, &buffer_ length,
&integer value);

if (FAILURE (status)) return(status);

CDA Toolkit Routines 8-73



ENTER SCOPE

/* Output the segment aggregate (Since the content is attached,
* it is output also.)
*/
status = cdaSput_aggregate (&root_aggregate handle, &stream handle,
&segment handle) ;
if (FAILURE (status)) return(status);

/* Delete the segment aggregate and all aggregates

* attached to it.

*/

status = cda$delete aggregate (&root_aggregate_handle,
&segment_handle);

if (FAILURE (status)) return(status);

/* Output more content aggregates within the root segment */

/* Leave Segment Scope. This is for the segment that was output
using cda$enter_scope. */
scope_code = DDIF$SK SEGMENT SCOPE;
status = cda$leave_scope (&root_aggregate_ handle, &stream_ handle,
&scope_code) ;
if (FAILURE (status)) return(status);

/* Leave Content Scope */

scope_code = DDIF$K_CONTENT_ SCOPE;

status = cda$leave_ scope (&root_aggregate_handle, &stream handle,
&scope_code) ;

if (FAILURE (status)) return(status);

/* Leave Document Scope */

scope_code = DDIF$K DOCUMENT SCOPE;

status = cda$leave_scope (&root_aggregate handle, &stream handle,
&scope_code) ;

if (FAILURE (status)) return(status);

/* Close the file */
status = cdaS$close_file(&stream handle, &file_handle);
if (FAILURE (status)) return(status);

/* Delete the root aggregate */
status = cda$delete_root_aggregate (&root_aggregate handle);
if (FAILURE (status)) return(status);

return 1;

}

This example illustrates the use of both methods of incremental writing: using
the PUT AGGREGATE routine with a completed segment or using ENTER
SCOPE and incrementally writing the segment’s content. This program creates a
DDIF file whose analysis would appear as follows:

8-74 CDA Toolkit Routines



ENTER SCOPE

DDIF_DOCUMENT

{

}

DDF_DESCRIPTOR
{

DSC_MAJOR VERSION 1 ! Longword Integer
DSC_MINOR_VERSION 0 ! Longword Integer
DSC_PRODUCT_IDENTIFIER "$%$H54657374" | Byte string = "Test"

DSC_PRODUCT NAME
(
ISO_LATINl1 “Example Application"
)
}
DDF_HEADER
{
}
DDF_CONTENT
{
SEG_SPECIFIC_ATTRIBUTES
{
SGA_CONTENT CATEGORY T_CATEGORY "§$T"
}
SEG_CONTENT
{
TXT_CONTENT "$H48656C6C6F" ! Byte string = "Hello"
}
{
SEG_SPECIFIC_ATTRIBUTES
{
SGA_CONTENT CATEGORY T CATEGORY "$T"
}
SEG_CONTENT
{
TXT_CONTENT "%H5468657265" ! Byte string = "There"
}
{
HRD_DIRECTIVE DIR NEW PAGE ! Integer =1
}
}
}

CDA Toolkit Routines 8-75



ERASE ITEM

ERASE ITEM

Erases (sets to empty) the contents of an item within an aggregate. If you erase
an item that is indexed, the index of each subsequent item (each item with a
higher index) decreases by 1.

VAX FORMAT
status = cda$erase _item

(root-aggregate-handle ,aggregate-handle
,aggregate-item [,aggregate-index])

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Aécess: read only
Mechanism: by reference
aggregate-item VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

8-76 CDA Toolkit Routines



ERASE ITEM

Argument Argument Information

aggregate-index VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT

status = CdaEraseltem

(root_aggregate _handle, aggregate handle,
aggregate_item, aggregate_index)

Argument Information

unsigned long CdaEraseltem(root_aggregate_handle,
aggregate_handle, aggregate_item,
aggregate_index)

unsigned long root_aggregate_handle;
unsigned long aggregate_handle;
unsigned long aggregate item;
unsigned long aggregate_index;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate of which the aggregate containing the item is a
part. This handle is returned by a call to either the OPEN FILE routine or the
CREATE ROOT AGGREGATE routine.

aggregate-handle
Identifier of the aggregate containing the item to be erased.

aggregate-item

Identifying code of the item to be erased, expressed as a symbolic constant. The
DDIF aggregate item symbolic constants are defined in the file ddif$def.h on
VMS systems and in the file ddif_def.h on ULTRIX systems and are discussed
in Chapter 4. The DTIF aggregate item symbolic codes are defined in the file

CDA Toolkit Routines 8-77



ERASE ITEM

dtif$def.h on VMS systems and in the file dtif def.h on ULTRIX systems and are
described in Chapter 5.

aggregate-index

Index of the item to be erased (relative to 0). This argument is required whenever
the notation “Array of” appears in the data type of the specified item handle.
Otherwise, this argument is ignored and may be omitted. If an address of O is
specified, all array elements in the item are erased.

Description

The ERASE ITEM routine erases (sets to empty) the contents of an item within
an aggregate. If you erase an item that is indexed, the index of each subsequent
item (each item with a higher index) decreases by 1. If you specify 0, all array
elements in the item are erased.

Note that if you erase an item that contains the handle of a subaggregate, the
subaggregate is deleted.

RETURN VALUES
Return Value Description
CDA$_NORMAL Normal successful completion.
CDAS$_INVAGGTYP Invalid aggregate type.
CDA$_INVITMCOD Invalid item code.
CDA$_EMPTY Item is empty.
CDA$_INDEX Index exceeds array bounds.
CDA$_VAREMPTY Variant item is empty. ’
CDA$_VARINDEX Variant index exceeds bounds.
CDA$_VARVALUE Variant value is undefined.

8-78 CDA Toolkit Routines



FIND DEFINITION

FIND DEFINITION

Looks up the specified definition in a list of definitions.

VAX FORMAT

status = cda$find_definition

(root-aggregate-handle ,aggregate-type ,buf-len
,buf-adr ,aggregate-handle)

Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

aggregate-type VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

buf-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

buf-adr VMS usage: vector_byte_unsigned
Data type: byte (unsigned)
Access: read only
Mechanism: by reference, array reference

CDA Toolkit Routines 8-79



FIND DEFINITION

Argument Argument Information
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT

status = CdaFindDefinition

(root_aggregate _handle, aggregate_type, buf_len,
buf_adr, aggregate _handle)

Argument Information

unsigned long CdaFindDefinition (root_aggregate handle,
aggregate_type, buf_len, buf_adr,
aggregate_handle)

unsigned long root_aggregate_handle;
unsigned long aggregate_type;
unsigned long buf_len;

unsigned char *buf_adr;

unsigned long *aggregate handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate with which the definition aggregate being searched
for is associated. This handle is returned by a call to either the OPEN FILE
routine or the CREATE ROOT AGGREGATE routine.

aggregate-type

The type of definition aggregate being searched for, expressed as a symbolic
constant. The DDIF aggregate type symbolic constants are defined in the file
ddif$def.h on VMS systems and in the file ddif defh on ULTRIX systems and are
discussed in Chapter 4. The DTIF aggregate type symbolic codes are defined in
the file dtif$def.h on VMS systems and in the file dtif_def.h on ULTRIX systems
and are described in Chapter 5.

8-80 CDA Toolkit Routines



FIND DEFINITION

buf-len
Length of the buffer (in bytes) specified by buf-adr.

buf-adr

The buffer that contains the selector value used to indicate the desired defini-
tion from the list of definitions. The definition aggregate types DDIF$_FTD,
DDIF$_LSD, DDIF$_PHD, DDIF$_ERF, and DDIF$_PTD are identified in a
series of definitions by a unique number. Therefore, for these aggregate types,
the buf-adr value must be a longword. For aggregate types DDIF$_CTD,
DDIF$_TYD, and DDIF$_SGB, which are assigned string labels, the value must
be a string.

aggregate-handle
Receives a value that identifies the newly located definition aggregate. This
handle must be used in all subsequent operations on that aggregate.

Description

The FIND DEFINITION routine looks up the specified definition in a se-

ries of definition aggregates. For example, if you have several font definition
(DDIF$_FTD) aggregates and you want to retrieve the definition of the font iden-
tified by the index 3, you would invoke this routine, specifying the aggregate-
type as DDIF$_FTD and the selector value (buf-adr) as 3. The aggregate types
that can be specified for this routine are as follows:

DDIF$_CTD Content definition aggregate
DDIF$_ERF External reference aggregate
DDIF$_FTD Font definition aggregate
DDIF$_LSD Line style definition aggregate
DDIF$_PHD Path definition aggregate
DDIF$_PTD Pattern definition aggregate
DDIF$_SGB Segment bindings aggregate
DDIF$_TYD Type definition aggregate

In order for this routine to return the correct information, you must have specified
one or more of the following processing options in the call to the CREATE ROOT
AGGREGATE routine:

¢ DDIF$_INHERIT_ATTRIBUTES
e DDIF$_EVALUATE_CONTENT
* DDIF$_RETAIN_DEFINITIONS

This routine is only valid when you are using the aggregate (incremental) method
of document conversion, because the definition being determined is dependent
upon the current location in the document. If you call this routine when you are
performing document method conversion, the current position is the top of the
document, so that no definition is available.

CDA Toolkit Routines 8-81



FIND DEFINITION

RETURN VALUES

Return Value

Description

CDA$_NORMAL
CDA$_INVAGGTYP
CDA$_INVBUFLEN
CDA$_DEFNOTFOU

Normal successful completion
Invalid aggregate type
Invalid buffer length
Definition not found

8-82 CDA Toolkit Routines



FIND TRANSFORMATION

FIND TRANSFORMATION

Returns the current transformation matrix values.

VAX FORMAT
status = cda$find_transformation

(root-aggregate-handle ,transformation)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle © VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
transformation VMS usage: address
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaFindTransformation

(root_aggregate_handle, transformation)

CDA Toolkit Routines 8-83



FIND TRANSFORMATION

Argument Information

unsigned long CdaFindTransformation (root aggregate handle,

transformation)
unsigned long root_aggregate_handle;
float **transformation;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle
Identifier of the root aggregate. Thls handle is returned by a call to either the
OPEN FILE routine or the CREATE ROOT AGGREGATE routine.

transformation
Receives the address of a vector of nine single-precision floating-point elements.

The elements of this vector specify the current contént transformation in column
order. For example, the elements of the following array would be returned in the
order A,B,C,D,E, F, G H, 1L

A D G
B E H
C F I

Description

The FIND TRANSFORMATION routine returns the current values of the
transformation matrix specified by the DDIF$_TRN aggregate. In order for this
routine to return the correct information, you must have specified one or more of
the following processing options in the call to the CREATE ROOT AGGREGATE
routine:

* DDIF$_INHERIT ATTRIBUTES
* DDIF$_EVALUATE_CONTENT
e DDIF$_RETAIN_DEFINITIONS

8-84 CDA Toolkit Routines



FIND TRANSFORMATION

RETURN VALUES

Return Value Description

CDA$_NORMAL Normal successful completion
CDA$_DEFNOTFOU Definition not found

CDA Toolkit Routines 8-85



FLUSH STREAM

FLUSH STREAM

Flushes the contents of the stream and ensures that the data has been physically

transferred to the receiving medium.

VAX FORMAT

status = cda$flush_stream
(stream-handle ,flush-rtn ,flush-prm)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
flush-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference, procedure refer-
ence
flush-prm VMS usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by value

C FORMAT

status = CdaFlushStream
(stream_handle, flush_rtn, flush_prm)

8-86 CDA Toolkit Routines



FLUSH STREAM

Argument Information

unsigned long CdaFlushStream(stream handle,
flush_rtn, flush prm)

unsigned long stregm_handle;
unsigned long (*flush_rtn) () ;
unsigned long flush_prm;

RETURNS
status
A condition value indicating the return status of the routine call.

Arguments
stream-handle
Identifier of the output stream to be flushed. This handle is returned by a call to
the CREATE STREAM routine.
flush-rtn
Address of a stream flush routine. If you specify 0 for this argument, a default
flush-rtn is used. If you specify a value other than the default for this argument,
you must also specify a value for the flush-prm argument. For more information,
see Chapter 9.
flush-prm
User context to be passed to the stream flush routine. This argument should
contain the value of the put-prm argument passed in a call to the CREATE
STREAM routine. For more information, see Chapter 9.

Description

The FLUSH STREAM routine writes any buffered data to an output stream and
ensures that the data has been physically transferred to the receiving medium.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion

Any error returned by the file routines.

CDA Toolkit Routines 8-87



GET AGGREGATE

GET AGGREGATE

Reads the next aggregate from the specified stream.

VAX FORMAT

status = cda$get_aggregate

(root-aggregate-handle ,stream-handle
,aggregate-handle ,aggregate-type)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
stream_handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
aggregate-type VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

8-88 CDA Toolkit Routines



GET AGGREGATE

C FORMAT

status = CdaGetAggregate

(root_aggregate_handle, stream_handle,
aggregate _handle, aggregate_type)

Argument Information

unsigned long CdaGetAggregate(root_aggregate_handle,
stream_handle, aggregate_ handle,
aggregate_type)

unsigned long root_aggregate_handle;
unsigned long stream_handle;
unsigned long *aggregate_handle;
unsigned long *aggregate_ type;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate associated with the aggregate to be read. This
handle is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

When reading aggregates using this routine, you must use the same value for
root-aggregate-handle consistently to read all the aggregates in the compound
document. Once you have read all the aggregates, you cannot specify the same
root-aggregate-handle again when calling this routine.

stream-handle

Identifier of the stream from which the aggregate is to be read. This handle
is returned by a call to either the OPEN FILE routine or the OPEN STREAM
routine.

aggregate-handle
Receives the handle of the retrieved aggregate. This aggregate handle is used to
identify the retrieved aggregate to any other aggregate transfer procedure.

aggregate-type

Receives the aggregate type. The DDIF aggregate type symbolic codes are defined
in the file ddif$def.h on VMS systems and in the file ddif def.h on ULTRIX
systems and are described in Chapter 4. The DTIF aggregate type symbolic codes

CDA Toolkit Routines 8-89



GET AGGREGATE

are defined in the file dtif$def.h on VMS systems and in the file dtif def.h on

ULTRIX systems and are described in Chapter 5.

Valid aggregate types are any one of the primary DDIF or DTIF aggregates:

Aggregate Type

Meaning

DDIF$_DSC
DDIF$_DHD
DDIF$_SEG
DDIF$_TXT
DDIF$_GTX
DDIF$_HRD
DDIF$_SFT
DDIF$_HRV
DDIF$_SFV
DDIF$_BEZ
DDIF$_LIN
DDIF$_ARC
DDIF$_FAS
DDIF$_IMG
DDIF$_CRF
DDIF$_PVT
DDIF$_GLY
DDIF$_EOS
DDIF$_EXT
DTIF$_DSC
DTIF$_HDR
DTIF$_TBL
DTIF$_ROW
DTIF$_CLD

Document descriptor
Document header
Document segment
Text content
General text content
Hard directive

Soft directive

Hard value directive
Soft value directive
Bézier curve content
Polyline content

Arc content

Fill area set content
Image content
Content reference
Private content
Layout galley

End of segment
External content
Document descriptor
Document header
Table definition
Row definition

Cell data

These aggregates are the only aggregates that can be returned by the GET
AGGREGATE routine. All other aggregates are somehow connected to these
aggregates and can be located by traversing the structure using other routines
(such as LOCATE ITEM and NEXT AGGREGATE). If the aggregate type is
DDIF$_EOS (end of segment), the aggregate-handle is 0 to indicate that the
nested segment has been completed.

Description

The GET AGGREGATE routine reads the next primary aggregate from a
specified stream. (The primary aggregates are listed in the description of the
aggregate-type argument.)

8-90 CDA Toolkit Routines



GET AGGREGATE

The GET AGGREGATE routine has three restrictions on the information re-
turned:

* The GET AGGREGATE routine returns only primary aggregates (as listed
in the description of the aggregate-type argument). Other aggregates are
returned attached to the primary aggregates.

*  When you call the GET AGGREGATE routine for a segment aggregate, it re-
turns all the items in the segment aggregate (and all its substructure) except
for the content item (DDIF$_SEG_CONTENT) and its substructure.

¢  When you call the GET AGGREGATE routine and it returns a DDIF$_EXT
aggregate, the encoding items (DDIF$_EXT_ENCODING_C, DDIF$_EXT _
ENCODING, and DDIF$_EXT_ENCODING_L will be empty. A call to the
GET EXTERNAL ENCODING routine must be made before the next call to
get AGGREGATE.

* Content aggregates are returned one at a time, following the segment
aggregate.

*  When you are processing a document, you must observe the occurrence
of DDIF$_EOS aggregates, which denote the end of a segment’s content.
It is also important to note that the DDIF$_EOS aggregate is a dummy
aggregate; it is not an actual aggregate and therefore does not have a valid
aggregate handle. Instead, it is simply an aggregate type that is returned to
indicate the end of a segment. The next aggregate returned is a sibling to
that segment.

The GET AGGREGATE routine reads the primary aggregates in a document

in a hierarchical fashion. That is, whenever GET AGGREGATE encounters a
segment, your next call to GET AGGREGATE descends to the next level of the
hierarchy and reads the contents of that segment before reading the remaining
content of the parent segment. The GET AGGREGATE routine only returns to
the parent segment’s level of hierarchy when it encounters a DDIF$_EOS (end of
segment) aggregate to indicate that the nested segment is completed.

For example, consider a document that contains a document root aggregate
(DDIF$_DDF), a document descriptor (DDIF$_DSC), a document header (DDIF$_
DHD), and a root segment (DDIF$_SEG) with text content (DDIF$_TXT), a
nested segment (DDIF$_SEG), and Bézier content (DDIF$_BEZ), where the
segment nested under the root segment contains arc content (DDIF$_ARC). This
document is illustrated in Figure 8-1.

CDA Toolkit Routines 8-91



GET AGGREGATE

Figure 8—1: Example Document

DDF

™>T » SEG » BEZ » EOS

ARC }— EOS |

ZK-1270A-GE

Following these generalized rules, the aggregates returned by consecutive calls to
GET AGGREGATE would be as follows:

1. DDIF$_DSC

2. DDIF$_DHD

DDIF$_SEG (root segment)

DDIF$_TXT

DDIF$_SEG (segment with nested arc content)
DDIF$_ARC (nested arc content aggregate)

DDIF$_EOS (dummy aggregate indicating end of segment with nested arc
content)

DDIF$_BEZ (Bézier content)
DDIF$_EOS (dummy aggregate indicating end of root segment)

A

8-92 CDA Toolkit Routines



GET AGGREGATE

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_ENDOFDOC End of document
CDAS$_INVDOC Invalid document content

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA Toolkit Routines 8-93



GET ARRAY SIZE

GET ARRAY SIZE

Determines the number of elements present in an array-valued aggregate item.

VAX FORMAT
status = cda$get_array_size

(aggregate-handle ,aggregate-item ,array-size)

Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

aggregate-item VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

array-size VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT

status = CdaGetArraySize
(aggregate_handle, aggregate_item, array_size)

8-94 CDA Toolkit Routines



GET ARRAY SIZE

Argument Information

unsigned long CdaGetArraySize (aggregate handle,
aggregate_item, array_size)

unsigned long aggregate_handle;
unsigned long aggregate_item;
unsigned long *array_size;

RETURNS
status
A condition value indicating the return status of the routine call.

Arguments
aggregate-handle
Identifier of the aggregate containing the array-valued item.
aggregate-item
Identifying code of the array-valued aggregate item, expressed as a symbolic
constant. The DDIF aggregate item symbolic constants are defined in the module
ddif$def.h on VMS systems and in the module ddif def.h on ULTRIX systems and
are defined in Chapter 4. The DTIF aggregate type symbolic codes are defined in
the file dtif$def.h on VMS systems and in the file dtif def.h on ULTRIX systems
and are described in Chapter 5.
array-size
Receives the number of elements present in the array-valued item. Because the
index is zero based, this number is equal to 1 more than the value of the highest
valid aggregate index.

Description

The GET ARRAY SIZE routine determines the number of elements present in an
array-valued aggregate item.

CDA Toolkit Routines 8-95



GET ARRAY SIZE

RETURN VALUES

Return Value

Description

CDA$_NORMAL
CDA$_INVAGGTYP
CDA$_INVITMCOD
CDA$_EMPTY

Normal successful completion.
Invalid aggregate type.
Invalid item code.

Item is empty.

8-96 CDA Toolkit Routines



GET DOCUMENT

GET DOCUMENT

Reads an entire compound document from the specified stream.

VAX FORMAT
status = cda$get_document
(root-aggregate-handle ,stream-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT
status = CdaGetDocument
(root_aggregate_handle, stream_handle)

CDA Toolkit Routines 8-97



GET DOCUMENT

Argument Information

unsigned long CdaGetDocument (root aggregate handle,
stream handle)
unsigned long root_aggregate_handle;
unsigned long stream handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate associated with the document to be read. This
handle is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

Once you read an entire document, you cannot call the GET DOCUMENT routine
specifying the same root aggregate handle again. That is, you can only read a
document associated with a particular root aggregate once.

stream-handle
Identifier of the stream from which the document is to be read. This handle
is returned by a call to either the OPEN FILE routine or the OPEN STREAM

routine,

Description

The GET DOCUMENT routine reads an entire document from the specified
stream. This routine is used by a front end module to read an entire compound
document file into memory.

Upon completion of the call to this routine, the entire document is present in
memory in aggregates that are linked from the document root aggregate.

8-98 CDA Toolkit Routines



GET DOCUMENT

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVAGGTYP Invalid aggregate type
CDA$_INVDOC Invalid document content

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA Toolkit Routines 8-99



GET EXTERNAL ENCODING

GET EXTERNAL ENCODING

Reads the value of an external encoding from the specified stream and stores it as
the value of the agg$_EXT ENCODING item in the appropriate aggregate, which
can be DDIF$_EXT, DTIF$_EXT, or ESF$_EXT.

VAX FORMAT
status = cda$get_external_encoding

(root-aggregate-handle ,stream-handle

,aggregate-handle)
Argument Information
Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: modify
Mechanism: by reference

8-100 CDA Toolkit Routines



GET EXTERNAL ENCODING

C FORMAT

status = CdaGetExternalEncoding

(root_aggregate_handle, stream_handle,
aggregate_handle)

Argument Information

unsigned long CdaGetExternalEncoding(root_aggregate_handle,
stream handle, aggregate handle)

unsigned long root_aggregate handle;
unsigned long stream handle;
unsigned long *aggregate handle;

RETURNS
slatus
A condition value indicating the return status of the routine call.

Arguments
root-aggregate-handle
Identifier of the root aggregate. This handle is returned by a call to either the
OPEN FILE routine or the CREATE ROOT AGGREGATE routine.
stream-handle
Identifier of the stream containing the external encoding. This handle is returned
by a call to either the OPEN FILE routine or the OPEN STREAM routine.
aggregate-handie
Identifier of an aggregate of type DDIF$_EXT, DTIF$_EXT, or ESF$_EXT. The
external encoding value that is read from the stream is written to the agg$_EXT_
ENCODING item in the appropriate aggregate, where agg refers to the specific
aggregate type. That aggregate becomes the root aggregate for the external
document.

Description

The GET EXTERNAL ENCODING routine reads the value of an external en-
coding and stores the value in the agg$_EXT_ENCODING item of the aggregate
specified by aggregate-handle, which can be an aggregate of type DDIF$_EXT,
DTIF$_EXT, or ESF$_EXT. If the external encoding is DDIF or DTIF, the value
stored is the handle of a DDIF or DTIF root aggregate, which contains the entire
document in the external encoding.

CDA Toolkit Routines 8-101



GET EXTERNAL ENCODING

If used, the GET EXTERNAL ENCODING routine must be invoked immediately
after the specified aggregate has been returned by the GET AGGREGATE
routine. Alternatively, the caller can read the DDIS encoding of an inner

document by calling the
aggregate.

CDA Toolkit input routines on an inner document root

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVDOC Invalid document

CDA$_INVAGGTYP

Invalid aggregate type

8-102 CDA Toolkit Routines



GET STREAM POSITION

GET STREAM POSITION

Returns the current position in and size of a CDA data stream.

VAX FORMAT
status = cda$get_stream_position

(stream-handle ,position-rtn ,position-prm
,Stream-position ,stream-size)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
position-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference
position-prm VMS usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by value
stream-position VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

CDA Toolkit Routines 8-103



GET STREAM POSITION

Argument Argument Information

stream-size VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaGetStreamPosition

(stream_handle, position_rtn, position_prm,
stream_position, stream_size)

Argument Information

unsigned long CdaGetStreamPosition(stream handle,
position_rtn, position_prm,
stream position, stream size)

unsigned long stream_handle;
unsigned long (*position_rtn) ();
unsigned long position prm;
unsigned long *stream position;
unsigned long *stream _size;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

stream-handle
Identifier of the stream. The handle is returned by a call to either the OPEN
STREAM routine or the OPEN FILE routine.

position-rtn

Address of a get-position routine. The calling sequence for a get-position routine
is defined in Chapter 11. If you specify 0 for this argument, the CDA Toolkit
provides a default gei-position routine. If you specify a value other than the
default for this parameter, you must also specify a value for the position-prm
argument.

8-104 CDA Toolkit Routines



GET STREAM POSITION

position-prm

User context to be passed to the get-position routine. This argument should
contain the value of the get-prm argument passed in a call to the OPEN
STREAM or CREATE STREAM routine, or the value of the file handle in a call
to the OPEN FILE or CREATE FILE routine. If you specify a value for the
position-rtn argument, you must also specify a value for this argument.

stream-position
Receives the current position (in bytes) as measured from the start of the input
stream being processed.

stream-size
Receives the total size (in bytes) of the input stream being processed.

Description

The GET STREAM POSITION routine returns the current position and total size
of the CDA data stream being processed.

RETURN VALUES
Return Value Description
CDA$_NORMAL Normal successful completion

CDA Toolkit Routines 8-105



GET TEXT POSITION

GET TEXT POSITION

Returns the current position in and size of a text file.

VAX FORMAT

status = cda$get_text_position
(file-handle ,file-position ,file-size)

Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

file-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

file-position VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

file-size VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaGetTextPosition

(file_handle, file_position, file_size)

8-106 CDA Toolkit Routines



GET TEXT POSITION

Argument Information

unsigned long CdaGetTextPosition(file handle,
file position, file_size)

unsigned long file handle;
unsigned long *file_position;
unsigned long *file size;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

file-handie
Identifier of the text file being processed. This handle is returned by a call to the

OPEN TEXT FILE routine.

file-position
Receives the current position (in bytes) as measured from the start of the input
text file being processed.

file-size
Receives the total size (in bytes) of the text file being processed.

Description

The GET TEXT POSITION routine returns the current position in and total size
of an input text file being processed.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion

CDA Toolkit Routines 8-107



INSERT AGGREGATE

INSERT AGGREGATE

Inserts an aggregate into a sequence. The location at which the aggregate is to
be inserted is determined by specifying the preceding aggregate in the sequence.

VAX FORMAT
status = cda$insert_aggregate
(aggregate-handle ,prev-aggregate-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: " by reference
prev-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT
status = CdalnsertAggregate

(aggregate_handle, prev_aggregate_handle)

8-108 CDA Toolkit Routines



INSERT AGGREGATE

Argument Information

unsigned long CdalnsertAggregate (aggregate_ handle,
prev_aggregate_ handle)
unsigned long aggregate handle;
unsigned long prev_aggregate_handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

aggregate-handle
Identifier of the aggregate to be inserted into the sequence.

prev-aggregate-handle
Identifier of the aggregate after which the aggregate identified by aggregate-
handle is to be inserted in the sequence.

Description

The INSERT AGGREGATE routine inserts an aggregate into a sequence. The
location at which the aggregate is to be inserted is indicated by specifying the
preceding aggregate in the sequence.

If the aggregate indicated by aggregate-handle is the first aggregate in its
own sequence, this entire sequence is inserted into the sequence containing the
aggregate specified by prev-aggregate-handle. If the aggregate specified as
aggregate-handle is part of a sequence but is not the first aggregate in that
sequence, or if it is the value of an item, an error is returned.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVINSERT Aggregate already in a sequence

CDA Toolkit Routines 8-109



INSERT AGGREGATE

Example

This example illustrates the use of the INSERT AGGREGATE routine to insert
an aggregate into a sequence.

aggregate_type = DDIFS_PTH;
status = cda$create_aggregate (&root_aggregate_ handle,
&aggregate_type,
&inner_ aggregate_handle);
if (FAILURE (status)) return(status):;

aggregate_item = DDIFS$_SGA_FRM OUTLINE;

item length = 4;

status = cda$store_item(&root_aggregate_handle, &aggregate_handle,
&aggregate_item, &item length,
&inner_aggregate handle);

if (FAILURE (status)) return(status):;

aggregate_item = DDIFS$_PTH_C;
local_length = sizeof (integer_value);
integer value = DDIFS$K_PATH REFERENCE;
status = cda$store_item(&root_aggregate_handle,
&inner aggregate handle,
&aggregate_item,
&local_length, &integer value);
if (FAILURE (status)) return(status);

aggregate_item = DDIF$_PTH_REFERENCE;
local_length = sizeof (integer value);
integer_value = 1;
status = cda$store_item(&root_aggregate handle,
&inner_ aggregate handle,
&aggregate_item,
&local_length, &integer_value);
if (FAILURE (status)) return(status);

aggregate_type = DDIFS$_PTH;

status = cdaS$create_aggregate (&root_aggregate_handle,
&aggregate_type,
&inner_aggregate handle_2);

if (FAILURE (status)) return(status);

status = cda$insert_aggregate (&inner_ aggregate_handle_ 2,
&inner aggregate_handle);
if (FAILURE (status)) return(status);

aggregate_item = DDIF$_PTH C;

local_length = sizeof (integer value);

integer_value = DDIF$K_PATH_BEZIER;

status = cda$store_item(&root_aggregate handle,
&inner_aggregate handle 2,
&aggregate_item,
&local length, &integer value);

if (FAILURE (status)) return(status);

8-110 CDA Toolkit Routines



INSERT AGGREGATE

aggregate_item = DDIFS$_PTH BEZ_PATH_C;

local_length = sizeof (integer_value);

integer_value = DDIF$K_VALUE CONSTANT;

aggregate_index = 0;

status = cda$store_item(&root_aggregate_ handle,
&inner_ aggregate_handle 2,
&aggregate_item, &local_length,
&integer value, &aggregate_ index);

if (FAILURE (status)) return(status);

aggregate_item = DDIFS$_PTH BEZ_PATH;

local_length = sizeof (integer_value);

integer_value = 20;

aggregate_index = 0;

status = cda$store_item(&root_aggregate handle,
&inner aggregate_handle 2,
&aggregate_item,
&local_length, &integer value,
&aggregate_index) ;

if (FAILURE (status)) return(status):;

CDA Toolkit Routines 8-111



LEAVE SCOPE

LEAVE SCOPE

Completes a document that was incrementally written.

VAX FORMAT

status = cda$leave_scope

(root-aggregate-handle ,stream-handle
,Scope-code)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
scope-code VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT

status = Cdal.eaveScope

8-112 CDA Toolkit Routines

(root_aggregate_handle, stream_handle,
scope_code)



LEAVE SCOPE

Argument Information

unsigned long CdaLeaveScope (root_aggregate_handle,
stream handle, scope_code)

unsigned long root_aggregate handle;
unsigned long stream_handle;
unsigned long scope_code;

RETURNS
status
A condition value indicating the return status of the routine call.
Arguments
root-aggregate-handle
Identifier of the root aggregate associated with the document being incrementally
written. This handle is returned by a call to either the OPEN FILE routine or
the CREATE ROOT AGGREGATE routine.
stream-handle
Identifier of the stream associated with the document being incrementally
written. This handle is returned by a call to either the CREATE FILE routine or
the CREATE STREAM routine.
scope-code
Symbolic constant identifying the scope to be completed. Valid values are as
follows:
Code Meaning
DDIF$K_DOCUMENT_SCOPE Document scope
DDIF$K_CONTENT_SCOPE Content scope
DDIF$K_SEGMENT_SCOPE Segment scope
DTIF$K_DOCUMENT_SCOPE Document scope
DTIF$K_TABLE_SCOPE Table scope
DTIF$K_ROW_SCOPE Row scope
DTIF$K_CELLS_SCOPE Cell scope (for all cells in a row)
Description

The LEAVE SCOPE routine completes a compound document that was incremen-
tally written. For more information on incremental writing of documents, see the
description for the ENTER SCOPE routine.

CDA Toolkit Routines 8-113



LEAVE SCOPE

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVSCOCOD Invalid scope code

Any errors returned by the file routines.

8-114 CDA Toolkit Routines



LOCATE ITEM

LOCATEITEM

Locates an item within an aggregate by returning its address.

VAX FORMAT
status = cda$locate_item

(root-aggregate-handle ,aggregate-handle
,aggregate-item ,item-address ,item-length
[,aggregate-index] [,add-info])

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-item VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
item-address VMS usage: address
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

CDA Toolkit Routines 8-115



LOCATE ITEM

Argument Argument Information

item-length VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

aggregate-index VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

add-info VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read or write
Mechanism: by reference

C FORMAT
status = CdalLocateltem
(root_aggregate handle, aggregate _handle,
aggregate_item, item_address, item_length,
aggregate_index, add_info)

Argument Information

unsigned long.CdaLocatelItem(roct_aggregate_handle,
aggregate_handle, aggregate_item,
item_address, item length,
aggregate_index, add_info)

unsigned long root_aggregate_ handle;
unsigned long aggregate_handle;
unsigned long aggregate_item;
unsigned char *item address;
unsigned long *item_length;

unsigned long aggregate_index;
unsigned long *add_info;

RETURNS

status
A condition value indicating the return status of the routine call.

8-116 CDA Toolkit Routines



LOCATE ITEM

Arguments

root-aggregate-handle

Identifier of the root aggregate with which the aggregate containing the item to
be located is associated. This identifier is returned by a call to either the OPEN
FILE routine or the CREATE ROOT AGGREGATE routine.

You must use identical memory management procedures when storing and
locating an item within an aggregate, to ensure consistent treatment of memory
allocation and deallocation.

aggregate-handle
Identifier of the aggregate containing the item to be located.

aggregate-item

Identifying code of the item, expressed as a symbolic constant. The DDIF
aggregate item symbolic constants are defined in the file ddif$def.h on VMS
systems and in the file ddif defh on ULTRIX systems and are described in
Chapter 4. The DTIF aggregate type symbolic codes are defined in the file
dtif$def.h on VMS systems and in the file dtif def.h on ULTRIX systems and are
described in Chapter 5.

A user context item named DDIF$_USER_CONTEXT for DDIF aggregates
and DTIF$_USER_CONTEXT for DTIF aggregates is available within every
aggregate. This item is a longword that can be used by the application for any
purpose.

For use by applications, a DDIF$_AGGREGATE_TYPE item and a DTIF$_
AGGREGATE_TYPE item are defined for every DDIF and DTIF aggregate type,
respectively. It is a read-only item and, consequently, may be located using
only this routine. If you specify this aggregate item, it returns the type of the

aggregate.

item-address

Receives the address of the item’s value. This storage area can only be read by
the calling program; that is, it is read-only. The returned item-address is valid
until either the STORE ITEM or the ERASE ITEM routine is called for any item
in the aggregate, or until the aggregate is deleted.

If the item being located contains an aggregate handle, a call to this routine
returns the address of the aggregate handle. In order to use this aggregate
handle, you must “dereference” it. For example, in C you would do the following:

cda$locate_item{&root_agg handle, &agg_handle, &agg_item,
&sub_agg, &item length, &agg_index, &add_info);

The sub_agg parameter receives the address of the aggregate handle of the

subaggregate. To use this handle, you would do the following:

agg_handle = *sub_agg;

cda$locate item(&root_agg handle, &agg handle, &agg_item,
&buf_addr, &buf_length, &agg_index, &add_info);

If there are subsequent aggregates in a sequence, you should use the NEXT
AGGREGATE routine to retrieve the subsequent aggregates.

CDA Toolkit Routines 8-117



LOCATE ITEM

item-length
Receives the length (in bytes) of the item’s value.

aggregate-index

Index of the item (relative to 0). This argument is required whenever the notation
“Array of” appears in the data type of the specified item handle. Otherwise, this
argument is only required if the add-info argument is also required.

add-info

Receives a data type-specific modifier for the data types character string and
string with add-info. Selects the floating-point format to be returned for items
with the data type general floating-point. Receives an integer scaling factor for
the data type scaled integer. For data types other than character string, string
with add-info, general floating-point, and scaled integer, this argument is not
written and may be omitted.

For the data type character string, the add-info parameter receives the character
set designator. For the data type string with add-info, if the string value is
equal to one of the standard tag values, the add-info parameter receives a value
that identifies the tag. For the data type scaled integer, the add-info parameter
receives an integer scaling factor. For the data type general floating-point, the
add-info parameter contains a value that selects the format for the floating-point
value to be returned. For add-info values for the general floating-point type, see
Table 1-1. Otherwise, add-info receives a value that indicates that the tag is
private.

Description

The LOCATE ITEM routine determines the address of an item within an
aggregate.

If the located item is encoded as the handle of an aggregate, you receive the
address of the aggregate handle. To use this handle in subsequent routine calls,
you must first “dereference” it. (For more information, see the description of the
item-address argument.)

If the located item is encoded as an “Array of”, the user must call the GET ARRAY
SIZE routine to determine the array size, and then use the LOCATE ITEM
routine to read each item in the array by incrementing the aggregate-index
argument.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion.
CDA$_INVAGGTYP Invalid aggregate type.

8-118 CDA Toolkit Routines



LOCATE ITEM

Return Value

Description

CDA$_INVITMCOD
CDA$_EMPTY
CDA$_INDEX
CDA$_VAREMPTY
CDA$_VARINDEX
CDA$_VARVALUE
CDA$_DEFAULT

Invalid item code.

Item is empty.

Index exceeds array bounds.
Variant item is empty.
Variant index exceeds bounds.
Variant value is undefined.

Value returned is either a default value that is not in the data
stream or is an inherited value if inheritance is enabled for the
root aggregate.

CDA Toolkit Routines 8-119



NEXT AGGREGATE

NEXT AGGREGATE

Locates the next aggregate in an aggregate sequence.

VAX FORMAT
status = cda$next_aggregate
(aggregate-handle ,next-aggregate-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
next-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaNextAggregate
(aggregate_handle, next_aggregate_handle)

8-120 CDA Toolkit Routines



NEXT AGGREGATE

Argument Information

unsigned long CdaNextAggregate (aggregate handle,
next aggregate_handle)
unsigned long aggregate handle;
unsigned long *next_aggregate_handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

aggregate-handle
Identifier of the aggregate to be used in locating the next aggregate.

next-aggregate-handle

Receives the handle of the aggregate that follows the aggregate specified by
aggregate-handle. If the aggregate specified by aggregate-handle is the last
aggregate in the sequence, next-aggregate-handle receives a value of 0.

Description

The NEXT AGGREGATE routine locates the next aggregate in a sequence

of aggregates. This aggregate is located using the preceding aggregate as a
reference. (The preceding aggregate is specified by the aggregate-handle

argument.)

To read the aggregates in a sequence, you must retrieve the aggregate handle
of the first aggregate using the LOCATE ITEM routine. (The handle of the
first aggregate in the sequence is stored as an item in the current aggregate.)
Once you have located the first item in the sequence using the LOCATE ITEM
routine, you can use the NEXT AGGREGATE routine to retrieve each additional
aggregate in the sequence. All aggregates in the sequence have been retrieved
when the status CDA$_ENDOFSEQ is returned.

For example, the DDIF$_CRF_TRANSFORM item in the DDIF$_CRF aggregate
is encoded as a sequence of DDIF$_TRN aggregates. To access the sequence

of DDIF$_TRN aggregates, you would first use the LOCATE ITEM routine to
read the handle of the first DDIF$_TRN aggregate that is stored in the DDIF$_
CRF_TRANSFORM item. You would then use the NEXT AGGREGATE routine
to return each additional aggregate in this encoded sequence, until the status
CDA$_ENDOFSEQ is returned.

CDA Toolkit Routines 8-121



NEXT AGGREGATE

If you are interested in retrieving aggregates from a particular input stream that
are not encoded as a sequence, refer to the description of the GET AGGREGATE
routine.

NOTE

If several different aggregate types may be linked in sequence, locate
the aggregate type for the aggregate to determine its type (DDIF$_
AGGREGATE_TYPE item code).

RETURN VALUES
Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_ENDOFSEQ No successor aggregate found

8-122 CDA Toolkit Routines



OBJECT ID TO AGGREGATE TYPE

OBJECT ID TO AGGREGATE TYPE

Translates an object identifier to a root aggregate type.

VAX FORMAT
status = cda$object_id_to_aggregate_type
(buf-len ,buf-adr ,nam-len ,nam-adr ,act-nam-len

,aggregate-type)
Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

buf-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

buf-adr VMS usage: array
Data type: longword (unsigned)
Access: read only
Mechanism: by reference, array reference

nam-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

nam-adr VMS usage: array
Data type: longword (unsigned)
Access: write only
Mechanism: by reference, array reference

CDA Toolkit Routines 8-123



OBJECT ID TO AGGREGATE TYPE

Argument Argument Information

act-nam-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

aggregate-type VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaObjectldToAggregateType

(buf_len, buf_adr, nam_len, nam_adr, act_nam_len,
aggregate_type)

Argument Information

unsigned long CdaObjectIdToAggregateType (buf_ len,
buf_adr, nam len, nam adr,
act_nam len, aggregate_type)

unsigned long buf_ len;
unsigned long buf_adrl[];
unsigned long nam_len;
unsigned char *nam_adr;
unsigned long *act_nam _len;
unsigned long *aggregate_ type;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

buf-len
Length (in bytes) of the object identifier buffer.

buf-adr
Address of the object identifier.

8-124 CDA Toolkit Routines



OBJECTID TO AGGREGATE TYPE

nam-len
Length (in bytes) of the domain name buffer.

nam-adr
Receives the address of the domain name buffer.

act-nam-len
Receives the actual length (in bytes) of the domain name in the nam-adr buffer.

aggregate-type
Receives the translated aggregate type.

Description

The OBJECT ID TO AGGREGATE TYPE routine translates an object identifier
to a root aggregate type.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDAS$_INVAGGTYP Invalid aggregate type

CDA Toolkit Routines 8-125



OPEN CONVERTER

OPEN CONVERTER

Activates a front end to process nested content, which can be in the same format
as the current document or in a different format.

VAX FORMAT
status = cda$open_converter

(standard-item-list ,converter-context
,front-end-handle)

Argument Information

Argument Argument Information
status VMS usége: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
standard-item-list VMS usage: item_list_2
Data type: longword (unsigned)
Access: read only
Mechanism: by reference, array reference
converter-context VMS usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
front-end-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT

status = CdaOpenConverter

8-126 CDA Toolkit Routines



OPEN CONVERTER

(standard_item_list, converter_context,
front_end_handle)

Argument Information

unsigned long CdaOpenConverter (standard item list,
converter_context, front_end_ handle)

unsigned long *standard_item list;
unsigned long converter context;
unsigned long *front_end_handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

standard-item-list
An item list that identifies the document source and destination, and can also
contain options to control processing.

Each entry in the item list is a 2-longword structure with the following format:

item code buffer length 0

buffer address 4

To terminate the item list, you must specify the final entry or longword as 0.
Valid code values for the items in the standard-item-list are as follows:

CDA$ INPUT_FORMAT
The parameter is the address and length of a string that specifies the input
document format.

CDA$ INPUT_FRONT _END PROCEDURE

The parameter is the address of the main entry point in the front end,
either ddif$read_format or dtif$read_format. The item list length field
must be 0. This item enables a caller to provide a front end that is part of
the calling application rather than a separate image. If this item code is
used, the CDA$_INPUT_FILE item can be used to pass any information (not
necessarily a file specification) to the front end.

CDA Toolkit Routines 8-127



OPEN CONVERTER

CDA$_INPUT_FRONT_END_DOMAIN
The parameter is the address and length of a string that specifies the input
document domain (either DDIF or DTIF).

CDAS$_INPUT FILE
The parameter is the address and length of the file specification of the input
document.

CDAS$_INPUT _DEFAULT

The parameter is the address and length of the default file specification of the
input document. If this parameter is omitted, the front end must supply an
appropriate backup default file specification.

CDA$_INPUT_PROCEDURE

The parameter is the address of a procedure to provide input. The item list
length field must be 0. The input procedure must conform to the requirements
for a get routine. The calling sequence for a user get routine is defined in
Chapter 9.

CDA$_INPUT_PROCEDURE_PARM
The parameter is the address of a longword parameter to the input procedure.
The item list length field must be 4.

CDAS$_INPUT_POSITION_PROCEDURE

The parameter is the address of a procedure that provides position informa-
tion. The item list length field must be set to 0. For more information on the
calling sequence for a user get routine, see Chapter 9.

CDA$_INPUT_ROOT_AGGREGATE ;

The parameter is the address of a longword handle to a root aggregate that
specifies an in-memory input document. The item list length field must be
4. The in-memory structure, except for the root aggregate itself, is erased by
this operation. The root aggregate must specify standard memory allocation.

converter-context
Context value passed as a parameter to the ddif$read_format or dtif$read_
format entry point in the front end.

front-end-handle
Receives the handle of the front end that will process the nested content. This
handle must be used in all subsequent operations relating to that front end.

{

Description

The OPEN CONVERTER routine activates an additional front end to process
nested centent that is an entire document. The nested content may be in the
same format as that of the main document or in a different format.

Processing options that were specified at the main conversion call (either from
the command line or by the CONVERT routine) for this document format are
automatically retrieved and appended to the standard item list to create a front
end item list that is then passed to the front end’s main entry point.

8-128 CDA Toolkit Routines



OPEN CONVERTER

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_UNSUPFMT Unsupported document format

Any error returned by the specific front end.

CDA Toolkit Routines 8-129



OPENFILE

OPEN FILE

Opens the specified file for input and validates that its initial contents are valid
compound document data. An input stream and a root aggregate are also created.

VAX FORMAT
status = cda$open_file

(file-spec-len ,file-spec ,default-file-spec-len
,default-file-spec ,alloc-rtn ,dealloc-rtn
,alloc-dealloc-prm ,aggregate-type
,porocessing-options ,result-file-spec-len
,result-file-spec ,result-file-ret-len ,stream-handle
,file-handle ,root-aggregate-handle)

Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

file-spec VMS usage: char_string
Data type: character string
Access: read only
Mechanism: by reference

default-file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

8-130 CDA Toolkit Routines



OPENFILE

Argument Argument Information
default-file-spec VMS usage: char_string

Data type: character string

Access: read only

Mechanism: by reference
alloc-rtn VMS usage: procedure

Data type: procedure entry mask

Access: call after stack unwind

Mechanism: by reference
dealloc-rtn VMS usage: procedure

Data type: procedure entry mask

Access: call after stack unwind

Mechanism: by reference
alloc-dealloc-prm VMS usage: context

Data type: longword (unsigned)

Access: read only

Mechanism: by value
aggregate-type VMS usage: longword_unsigned

Data type: longword (unsigned)

Access: read only

Mechanism: by reference
processing-options VMS usage: item_list_2

Data type: record

Access: read only

Mechanism: by reference, array reference
result-file-spec-len VMS usage: longword_unsigned

Data type: longword (unsigned)

Access: read only

Mechanism: by reference
result-file-spec VMS usage: char_string

Data type: character string

Access: write only

Mechanism: by reference

CDA Toolkit Routines 8-131



OPEN FILE

Argument Argument Information
result-file-ret-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
file-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaOpenFile

(file_spec_len, file_spec, default_file_spec_len,
default_file_spec, alloc_rtn, dealloc_rin,
alloc_dealloc_prm, aggregate_type,
processing_options, result_file_spec._len,
result_file_spec, result_file_ret_len, stream_handle,
file_handle, root_aggregate handle)

Argument Information

8-132 CDA Toolkit Routines



OPEN FILE

unsigned long CdaOpenFile(file spec len, file spec,
default_file spec len, default file spec,
alloc_rtn, dealloc_rtn, alloc dealloc_prm,
aggregate_type, processing options,
result_file spec_len, result_file_ spec,
result_file ret len, stream_handle,
file_handle, root_aggregate_ handle)

unsigned long file_ spec_len;
unsigned char *file spec;

unsigned long default_file_spec len;
unsigned char *default_file spec;
unsigned long (*alloc_rtn) ()
unsigned long (*dealloc_rtn)();
unsigned long alloc dealloc prm;
unsigned long aggregate_type;
unsigned long *processing options;
unsigned long result file spec_len;
unsigned char *result_file spec;
unsigned long *result_file ret_len;
unsigned long *stream_handle;
unsigned long *file handle;

unsigned long *root_aggregate_handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

file-spec-len
The length of the string specified by the file-spec parameter.

file-spec
The file specification.

default-file-spec-len

The length (in bytes) of the buffer specified by default-file-spec. If you specify an
address of 0 for both the default-file-spec-len and default-file-spec arguments,
a default file specification of “.ddif” is used.

default-file-spec

The default file specification. In order to simplify the porting of applications, the
character string should consist of only a file type in lowercase characters. If you
specify an address of 0 for both the default-file-spec-len and default-file-spec
arguments, a default file specification of “.ddif” is used. On ULTRIX systems, the
string is appended to the file specification, if the file specification does not already
contain a period.

alloc-rtn

Address of a memory allocation routine. The calling sequence for an allocation
routine is defined in the Description section of this routine. If you specify 0 for
this argument, a default memory allocation routine is used. For a description, see
Chapter 9.

CDA Toolkit Routines 8-133



OPEN FILE

dealloc-rtn

Address of a memory deallocation routine. The calling sequence for a deallocation
routine is defined in the Description section of this routine. If you specify 0 for
this argument, a default memory deallocation routine is used. For a description,
see Chapter 9.

alloc-dealloc-prm

User context to be passed to the memory allocation and deallocation routines. If
the system default memory allocation or deallocation procedure is used, this value
is ignored. For a description, see Chapter 9.

aggregate-type
The type of aggregate, expressed as a symbolic constant. The only valid root
aggregate types are DDIF$_DDF and DTIF$_DTF.

processing-options

An item list containing options to control processing. Each entry in the item list
is a 2-longword structure; to terminate the item list you must specify a final entry
or longword of zero. Valid item codes are as follows:

DDIF$_INHERIT_ATTRIBUTES Inheritance is applied to all document seg-
ments. First, if a segment has a type refer-
ence that corresponds to a type definition,
the attributes of the type are applied to the
segment.

If a segment is the root segment, and a style
guide is referenced in the document’s header,
the definitions and layout from the style guide
are applied to the root segment. For the root
segment only, standard defined initial values
are applied to the attributes of the segment
that do not yet have values.

If the segment is not the root segment, at-
tribute values of its parent segment are
applied to the attributes of the segment that
do not yet have values. For more information
on the inherit attributes processing option, see
Section 1.6.1.

DDIF$_RETAIN_DEFINITIONS Segment definitions that enable the operation
of CDAS$FIND_DEFINITION are retained.
This item code is required only if neither
DDIF$_INHERIT ATTRIBUTES nor DDIF$_
EVALUATE_CONTENT is specified. For
more information on the retain definitions
processing option, see Section 1.6.2.

DDIF$_EVALUATE_CONTENT Content reference (DDIF$_CRF) aggregates
are replaced with the value of the definition
(DDIF$_CTD) they reference. The value of
this content definition may be in the document
or in an external reference.

8-134 CDA Toolkit Routines



OPEN FILE

Content for segments with the DDIF$_SGA_
COMPUTE_C item present in the segment’s
attributes (DDIF$_SGA) may be imported
from an external reference. If the value

of the DDIF$_SGA_COMPUTE_C item is
DDIF$K_REMOTE_COMPUTE, the external
content is imported and replaces the segment’s
original content. If the value of the DDIF$_
SGA_COMPUTE_C item is DDIF$_K_COPY_
COMPUTE, the external content is imported
only if the segment has no content. For more
information on the evaluate content processing
option, see Section 1.6.3.

DDIF$_DISCARD_I_SEGMENTS Segments of the image ($1) content category,
and any nested segments, are discarded.
For more information on the discard image
segments processing option, see Section 1.6.4.

DDIF$_DISCARD_2D_SEGMENTS Segments of the graphics ($2D) content cate-
gory, and any nested segments, are discarded.
For more information on the discard graphics
segments processing option, see Section 1.6.4.

DDIF$_DISCARD_T _SEGMENTS Segments of the text ($T') content category,
and any nested segments, are discarded. For

more information on the discard text segments
processing option, see Section 1.6.4.

DDIF$_DISCARD_TBL_SEGMENTS Segments of the table ($TBL) content cate-
gory, and any nested segments, are discarded.
For more information on the discard table
segments processing option, see Section 1.6.4.

DDIF$_DISCARD_PDL_SEGMENTS Segments of the page description language
($PDL) content category, and any nested seg-
ments, are discarded. For more information
on the discard page descriptions language
segments processing option, see Section 1.6.4.

resuli-file-spec-len
Length of the buffer (in bytes) specified by result-file-spec. If you specify 0 for
this parameter, the resultant file specification length is not returned.

result-file-spec

Receives the resultant file specification. If you specify 0 for this parameter, the
resultant file specification is not returned. This file specification is the result of
a VMS RMS $OPEN operation. On ULTRIX systems, the file-spec argument is
copied to this buffer.

result-file-ret-len
Receives the actual length (in bytes) of the resultant file specification.

stream-handle
Receives a value that identifies the newly created stream. This handle must be
used in all subsequent operations on that stream.

file-handle
Receives a value that identifies the newly opened file. This handle must be used
in all subsequent operations on that file.

CDA Toolkit Routines 8-135



OPEN FILE

root-aggregate-handle
Receives a value that identifies the newly created root aggregate. This handle
must be used in all subsequent operations on that root aggregate.

Description

The OPEN FILE routine opens a file for input and validates that the initial
contents of the file are compound document data. At the same time, this routine
also creates an input stream and a root aggregate.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVAGGTYP Invalid aggregate type
CDA$_INVITMLST Invalid item list

Any error returned by the memory allocation routines.

Any error returned by the file routines.

Example

8-136

This example illustrates a typical call to the OPEN FILE routine. Following
a call to this routine, the file is read using the GET DOCUMENT routine and
subsequently closed.

/* Open the file for input */

aggregate_type = DDIF$ DDF;
status = cda$open_ file(&filename length,
stestl filename{O],

0,

&aggregate_type,
r

&result_file_spec_len,

&result_file spec[0],

&result_file ret_len,

&stream handle,

&file_handle,

&root_aggregate handle });
if (FAILURE (status)) return(status);

CDA Toolkit Routines



OPEN FILE

/* Read the entire document in, then close the file */

printf ("Reading document...\n");

status = cda$get_document (&root_aggregate_handle,
&stream_handle);

if (FAILURE (status)) return(status);

status = cda$close_file(&stream handle, &file handle);
if (FAILURE (status)) return(status);

CDA Toolkit Routines 8-137



OPEN STREAM

OPEN STREAM

Opens a compound document stream for input.

VAX FORMAT
status = cda$open_stream

(alloc-rtn ,dealloc-rin ,alloc-dealloc-prm ,get-rin
,get-prm ,stream-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
alloc-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference
dealloc-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference
alloc-dealloc-prm VMS usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by value
get-rtn VMS usage: procedure
Data type: procedure entry mask
Access: call after stack unwind
Mechanism: by reference

8-138 CDA Toolkit Routines



OPEN STREAM

Argument Argument Information

get-prm VMS usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by value

stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT

status = CdaOpenStream
(alloc_rtn, dealloc_rtn, alloc_dealloc_prm, get _rin,

get_prm, stream_handle)

Argument Information

unsigned long CdaOpenStream(alloc_rtn, dealloc_rtn,
alloc_dealloc_prm, get_rtn,

get_prm, stream handle)

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

long
long
long
long
long
long

(*alloc_rtn) ();
(*dealloc_rtn) (),
alloc_dealloc_prm;
(*get_rtn) ()7

get_prm;

*stream_handle;

RETURNS

status

A condition value indicating the return status of the routine call.

Arguments

alloc-rtn

Address of a memory allocation routine. The calling sequence for an allocation
routine is defined in the Description section of this routine. If you specify 0 for
this argument, a default memory allocation routine is used. For a description, see

Chapter 9.

CDA Toolkit Routines 8-139



OPEN STREAM

dealloc-rtn

Address of a memory deallocation routine. The calling sequence for a deallocation
routine is defined in the Description section of this routine. If you specify 0 for
this argument, a default memory deallocation routine is used. For a description,
see Chapter 9. :

alloc-dealloc-prm :

User context to be passed to the memory allocation and deallocation routines.
If the system default memory allocation or deallocation routine is used, this
parameter is ignored. For a description, see Chapter 9.

get-rtn

Address of a stream get routine. The calling sequence for a get routine is defined
in Chapter 9. If you specify 0 for this argument on VMS systems, a default
get-rtn is used. On ULTRIX systems, you must supply both get-rtn and

get-prm; there is no default. If you specify a value other than the default for this
argument, you must also specify a value for the get-prm argument.

get-prm

User context to be passed to the stream get routine. If the VMS system default
get routine is used, the value must be a pointer to a RAB. On ULTRIX systems, if
you specify a value for the get-rtn, you must supply a value other than 0 for the
get-prm argument. For a description, see Chapter 9.

stream-handle
Receives a value that identifies the newly created stream. This handle must be
used in all subsequent operations on that stream.

Description

The OPEN STREAM routine opens a compound document stream for input.
The number of streams that you can open simultaneously is limited only by the
amount of memory available.

RETURN VALUES
Return Value Description
CDA$_NORMAL Normal successful completion

Any error returned by the memory allocation routines.

8-140 CDA Toolkit Routines



OPEN TEXT FILE

OPEN TEXT FILE

Opens a standard text file for input.

VAX FORMAT
status = cda$open_text_file
(file-spec-len ,file-spec ,default-file-spec-len
,default-file-spec ,result-file-spec-len
Jresult-file-spec ,result-file-ret-len ,text-file-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
file-spec VMS usage: char_string
Data type: character string
Access: read only
Mechanism: by reference
default-file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
default-file-spec VMS usage: char_string
Data type: character string
Access: read only
Mechanism: by reference

CDA Toolkit Routines 8-141



OPEN TEXT FILE

Argument Argument Information
result-file-spec-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
result-file-spec VMS usage: char_string
Data type: character string
Access: write only
Mechanism: by reference
result-file-ret-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
text-file-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaOpenTextFile
(file_spec_len, file_spec, default_file_spec_len,
default_file_spec, result_file_spec_len,
result_file_spec, result_file_ret_len,
text_file_handle)

Argument Information

unsigned long CdaOpenTextFile(file spec_len, file_ spec,

default file spec_len, default_file_spec,
result_file spec len, result file_ spec,
result_file ret_len, text_file_handle)

unsigned long file_spec len;

unsigned char *file spec;

unsigned long default_file spec_len;

unsigned char *default_file_ spec;

unsigned long result_file spec len;

unsigned char *result_file spec;

unsigned long *result_file_ret_len;

unsigned long *text file handle;

8-142 CDA Toolkit Routines



OPEN TEXT FILE

RETURNS
stalus
A condition value indicating the return status of the routine call.

Arguments
file-spec-len
Length (in bytes) of the string specified by the file-spec argument.
file-spec
File specification of the text file to be opened for input.
default-file-spec-len
Length (in bytes) of the string specified by default-file-spec. If you specify 0 for
this parameter, no default file specification is used.
default-file-spec
Default file specification. If you specify a 0 for this parameter, no default file
specification is used. The string should consist only of a file type in lowercase
characters. On ULTRIX systems, the string is appended to the file specification if
the file specification does not already contain a period.
result-file-spec-len
Length (in bytes) of the buffer specified by result-file-spec. If you specify 0 for
this parameter, the length of the resultant file specification is not returned.
result-file-spec
Receives the resultant file specification. This file specification is the result of a
VMS RMS $OPEN operation. On ULTRIX systems, the file specification is copied
to this buffer. If you specify 0 for this parameter, a resultant file specification is
not returned.
result-file-ret-len
Receives the actual length (in bytes) of the resultant file specification.
text-file-handle
Receives the handle of the text file. This handle must be used in all subsequent
operations on that text file.

Description

The OPEN TEXT FILE routine opens a standard text file for input.

CDA Toolkit Routines 8-143



OPEN TEXT FILE

RETURN VALUES
Return Value Description
CDA$_NORMAL Normal successful completion

Any error returned by the memory allocation routines.

Any error returned by the file routines.

8-144 CDA Toolkit Routines



PRUNE AGGREGATE

PRUNE AGGREGATE

Removes the next sequential document content aggregate from an existing
in-memory compound document, and returns its handle and type.

VAX FORMAT
status = cda$prune_aggregate

(root-aggregate-handle ,aggregate-handle
,aggregate-type)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
aggregate-type VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

CDA Toolkit Routines 8-145



PRUNE AGGREGATE

C FORMAT

status = CdaPruneAggregate

(root_aggregate handle, aggregate handle,
aggregate_type)

Argument Information

unsigned long CdaPruneAggregate (root_aggregate handle,
aggregate_handle, aggregate_type)

unsigned long root_aggregate handle;
unsigned long *aggregate handle;
unsigned long *aggregate_type;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handie

Identifier of the root aggregate associated with the aggregate to be removed. This
aggregate handle is returned by a call to either the OPEN FILE routine or the
CREATE ROOT AGGREGATE routine.

When removing aggregates using the PRUNE AGGREGATE routine, you must
use the same value for the root aggregate handle argument consistently to remove
all the aggregates in the compound document. Once you have removed all the
aggregates, you cannot specify the same root aggregate handle again when calling
the PRUNE AGGREGATE routine.

aggregate-handle
Receives the handle of the removed aggregate. This handle must be used in all
subsequent operations on that aggregate.

aggregate-type
Receives the aggregate type. If the aggregate type returned is DDIF$_EOS (end
of segment), the value of the aggregate handle argument is 0.

8-146 CDA Toolkit Routines



PRUNE AGGREGATE

Description

The PRUNE AGGREGATE routine removes the next sequential primary aggre-
gate from an existing in-memory compound document and returns the aggregate
identifier and type. Primary aggregates, also known as “top-level” aggregates,
include all the document content aggregates and the DDIF$_DHD, DDIF$_DSC,
and DDIF$_EOS aggregates. A front end should invoke this routine from the
get-aggregate entry point module in cases where the front end builds an entire
compound document in memory before returning its content.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_ENDOFDOC End of document

CDA Toolkit Routines 8-147



PRUNE POSITION

PRUNE POSITION

Returns the position in and size of an in-memory document.

VAX FORMAT

status = cda$prune_position
(root-aggregate-handle ,file-position ,file-size)

Argument Information

Argument Argument Information

status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

file-position VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

file-size VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaPrunePosition

(root_aggregate_handle, file_position, file_size)

8-148 CDA Toolkit Routines



PRUNE POSITION

Argument Information

unsigned long CdaPrunePosition(root_aggregate_ handle,
file position, file_size)

unsigned long root_aggregate_handle;
unsigned long *file position;
unsigned long *file size;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate associated with the in-memory document. The
handle is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

file-position
Receives the current position (in bytes) as measured from the start of the
document being processed.

file-size
Receives the total size (in bytes) of the in-memory document being processed.

Description

The PRUNE POSITION routine returns the current position in and total size

of the in-memory document being processed. This routine must be used by the
get-position routine when a front end builds an entire document in memory before
returning its content.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion

CDA Toolkit Routines 8-149



PUT AGGREGATE

PUT AGGREGATE

Writes one or more aggregates to a specified stream.

VAX FORMAT

status = cda$put_aggregate
(root-aggregate-handle ,stream-handle

,aggregate-handle)
Argument Information
Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT

status = CdaPutAggregate

8-150 CDA Toolkit Routines

(root_aggregate handle, stream_handle,
aggregate handle)



PUT AGGREGATE

Argument Information

unsigned long CdaPutAggregate (root_aggregate_handle,
stream handle, aggregate handle)

unsigned long root aggregate_handle;
unsigned long stream handle;
unsigned long aggregate_handle;

RETURNS
slatus
A condition value indicating the return status of the routine call.

Arguments
root-aggregate-handle
Identifier of the root aggregate associated with the aggregate to be written. This
handle is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.
When writing aggregates using the PUT AGGREGATE routine, you must use the
same value for root-aggregate-handle consistently to write all the aggregates
in the compound document. Once you have written all of the aggregates, you
cannot specify the same root-aggregate-handle again when calling this routine.
stream-handle
Identifier of the stream to which the aggregate is to be written. This handle is
returned by a call to either the CREATE FILE routine or the CREATE STREAM
routine.
aggregate-handle
Identifier of the aggregate to be written.

Description

The PUT AGGREGATE routine writes one or more aggregates to a specified
stream. Note that the aggregates remain unchanged after a call to this routine.
If you do not require these aggregates after you call this routine, your application
should include a subsequent call to the DELETE AGGREGATE routine to destroy
these aggregates.

If the aggregate is part of a sequence, a call to the PUT AGGREGATE routine
causes the entire sequence to be written. The aggregate type of the written
aggregate must be one of the following primary DDIF or DTIF aggregates:

CDA Toolkit Routines 8-151



PUT AGGREGATE

Aggregate Type Meaning
DDIF$_DSC Document descriptor
DDIF$_DHD Document header
DDIF$_SEG Document segment
DDIF$_TXT Text content
DDIF$_GTX General text content
DDIF$_HRD Hard directive
DDIF$_SFT Soft directive
DDIF$_HRV Hard value directive
DDIF$_SFV Soft value directive
DDIF$_BEZ Bézier curve content
DDIF$_LIN Polyline content
DDIF$_ARC Arc content
DDIF$_FAS Fill area set content
DDIF$_IMG Image content
DDIF$_CRF Content reference
DDIF$_EXT External content
DDIF$_PVT Private content
DDIF$_GLY Layout galley
DDIF$_EOS End of segment
DTIF$_HDR Document header
DTIF$_CLD Cell data
DTIF$_DSC Document descriptor
DTIF$_TBL Table definition
DTIF$_ROW Row definition

If the aggregate is of type DDIF$_SEG, the segment content must be specified
by the value of the DDIF$_SEG_CONTENT item. If the segment does not
contain content, you must use the ENTER SCOPE routine to write the segment
aggregate. Note that any lower-level content must be attached to the segment
aggregate before it is written.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVAGGTYP Invalid aggregate type
CDA$_INVDOC Invalid document content

Any error returned by the file routines.

8-152 CDA Toolkit Routines



PUT DOCUMENT

PUT DOCUMENT

Writes an entire document to the specified stream. The document is not changed
by this operation.

VAX FORMAT
status = cda$put_document

(root-aggregate-handle ,stream-handle)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
stream-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT
status = CdaPutDocument
(root_aggregate handle, stream_handle)

CDA Toolkit Routines 8-153



PUT DOCUMENT

Argument Information

unsigned long CdaPutDocument (root_aggregate handle,
stream_handle)
unsigned long root_aggregate_handle;
unsigned long stream _handle;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate associated with the document to be written. This
handle is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

Once you write an entire document, you cannot call the PUT DOCUMENT
routine specifying the same root aggregate handle again. That is, you can only
write a document associated with a particular root aggregate once.

stream-handie
Identifier of the stream to which the document is to be written. This handle is
returned by a call to either the CREATE FILE routine or the CREATE STREAM

routine.

Description

The PUT DOCUMENT routine writes an entire document to a specified stream.
Note that the document remains unchanged after a call to this routine. If you do
not require the in-memory structure after you call this routine, your application
should include a subsequent call to the DELETE ROOT AGGREGATE routine to
destroy this structure.

8-154 CDA Toolkit Routines



PUT DOCUMENT

RETURN VALUES
Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_INVDOC Invalid document content

Any error returned by the file routines.

CDA Toolkit Routines 8-155



READ TEXT FILE

READ TEXT FILE

Reads a line from a standard text file.

VAX FORMAT
status = cda$read _text_file
(text-file-handle ,buffer-length ,buffer-address)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
text-file-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
buffer-length VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: ‘by reference
buffer-address VMS usage: address
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

C FORMAT
status = CdaReadTextFile

(text_file_handle, buffer_length, buffer_address)

8-156 CDA Toolkit Routines



READ TEXT FILE

Argument Information

unsigned long CdaReadTextFile(text file handle,
buffer length, buffer_ address)

unsigned long text_file handle;
unsigned long *buffer length;
unsigned char *buffer address;

RETURNS
status
A condition value indicating the return status of the routine call.
Arguments
text-file-handle
Identifier of the text file from which the line is to be read. This handle is returned
by a call to the OPEN TEXT FILE routine.
buffer-length
Receives the length (in bytes) of the line that is read.
buffer-address
Receives the address of the line that is read. No trailing record delimiter is
present. On ULTRIX, buffer-address receives the address of the line up to, but
not including, the new-line indicator.
Description

The READ TEXT FILE routine reads a line from a standard text file. On VMS
systems, the line is the next RMS record in the file. On ULTRIX systems, the line
is delimited by a new-line character.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_ENDOFDOC End of document

Any error returned by the file routines.

CDA Toolkit Routines 8-157



REMOVE AGGREGATE

REMOVE AGGREGATE

Removes an aggregate from a sequence. The aggregate is not deleted. If the
specified aggregate is not part of a sequence and has no parent aggregate, no
operation is performed.

VAX FORMAT
status = cda$remove_aggregate
(aggregate-handle)
Argument Information
Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT
status = CdaRemoveAggregate

(aggregate_handle)

Argument Information

unsigned long CdaRemoveAggregate (aggregate_handle)
unsigned long aggregate_ handle;

8-158 CDA Toolkit Routines



REMOVE AGGREGATE

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

aggregate-handie
Identifier of the aggregate to be removed from the sequence.

Description

The REMOVE AGGREGATE routine removes an aggregate that is part of a
sequence from that sequence. The aggregate is not deleted. If the aggregate is
not part of a sequence and has no parent aggregate, no action is performed.

NOTE

Do not attempt to use the REMOVE AGGREGATE routine to remove
the only aggregate from a single-aggregate sequence, or to remove an
aggregate from its parent when the corresponding aggregate-valued
item of the parent is not defined to be a sequence of aggregates.

Although current implementation of the REMOVE AGGREGATE
routine allows removing the only aggregate from a single-aggregate
sequence, and even allows removing an aggregate from its parent when
the corresponding aggregate-valued item of the parent is not defined
to be a sequence of aggregates, the use of the REMOVE AGGREGATE
routine in this manner is not supported and may leave the aggregate
data structures in an inconsistent state. This use of the REMOVE
AGGREGATE routine may be prevented (causing an error status to be
returned) in a future release of the CDA toolkit.

RETURN VALUES

Return Value Description

CDA$_NORMAL Normal successful completion

CDA Toolkit Routines 8-159



STORE ITEM

STOREITEM

Writes the contents of an item within an aggregate. If the item is indexed, the

index must not exceed one more than the number of existing items.

VAX FORMAT

status = cda$store_item

(root-aggregate-handle ,aggregate-handle
,aggregate-item ,buf-len ,buf-adr [,aggregate-index]

[,add-info])
Argument Information
Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
root-aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-item VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

8-160 CDA Toolkit Routines



STORE ITEM

Argument Argument Information

buf-len VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

buf-adr VMS usage: vector_byte_unsigned
Data type: byte (unsigned)
Access: read 6nly
Mechanism: by reference, array reference

aggregate-index VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

add-info VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

C FORMAT

status = CdaStoreltem
(root_aggregate handle, aggregate _handle,

aggregate_item, buf_len, buf_adr, aggregate_index,
add_info)

Argument Information

unsigned long CdaStoreIltem(root_aggregate_handle,
aggregate _handle, aggregate_item,
buf_ len, buf_adr, aggregate_index,

add_info)
unsigned long
unsigned long
unsigned long
unsigned long
unsigned char
unsigned long
unsigned long

root_aggregate_handle;
aggregate_handle;
aggregate_item;

buf len;

*buf_adr;
aggregate_index;
add_info;

CDA Toolkit Routines 8-161



STORE ITEM

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

root-aggregate-handle

Identifier of the root aggregate with which the aggregate containing the item is
associated. This handle is returned by a call to either the OPEN FILE routine or
the CREATE ROOT AGGREGATE routine.

You must use identical memory management procedures when storing and
locating an item within an aggregate to ensure consistent treatment of memory
allocation and deallocation.

aggregate-handle :
Identifier of the aggregate into which the item is written.

aggregate-item

Identifying code of the item, expressed as a symbolic constant. The DDIF
aggregate item symbolic constants are defined in the file ddif$def.h on VMS
systems and in the file ddif defh on ULTRIX systems and are described in
Chapter 4. The DTIF aggregate type symbolic codes are defined in the file
dtif$def.h on VMS systems and in the file dtif_defh on ULTRIX systems and are
described in Chapter 5.

A user context item named DDIF$_USER_CONTEXT for DDIF aggregates
and DTIF$_USER_CONTEXT for DTIF aggregates is available within every
aggregate. This item is a longword that can be used by the application for any
purpose.

buf-len
Length (in bytes) of the buffer specified by the buf-adr argument.

buf-adr
Buffer containing the item’s value.

aggregate-index

Index of the item (relative to 0). This argument is required whenever the notation
“Array of” appears in the data type of the specified item handle. Otherwise, this
argument is only required if the add-info argument is also required.

add-info

Data type-specific modifier for the data types character string, string with
add-info, general floating-point, and scaled integer. For data types other than
character string, string with add-info, general floating-point, and scaled integer,
this argument is ignored and may be omitted.

8-162 CDA Toolkit Routines



STORE ITEM

For the data type character string, the add-info parameter contains the char-
acter set designator. For the data type scaled integer, the add-info parameter
receives an integer scaling factor. For the data type string with add-info, if the
string value is equal to one of the standard tag values, the add-info parameter
contains a value that identifies the tag. For the data type general floating-
point, the add-info parameter contains a value that identifies the format of the
floating-point value supplied in buf-adr. For add-info values for the general
floating-point type, see Table 1-1. Otherwise, add-info contains a value that
indicates that the tag is private.

Description

The STORE ITEM routine lets you store the value of each item within an
aggregate. After creating an aggregate, you must use this routine to fill in the
appropriate items in the aggregate. The items that exist for each aggregate are
defined in the files ddif$defh and dtif$defh on VMS systems and in the files
ddif _def.h and dtif_def.h on ULTRIX systems, and are described in Chapter 4 and
in Chapters 5 through 7. Note that there are optional and required aggregate
items. If the text does not specify that the item is optional, then it must be
specified in order to create a valid aggregate of that type.

If an aggregate item is indexed, the index specified must not exceed one more
than the maximum index of the previously stored indexed items. If the item is of
data type variable, the value of the item that determines the data type must have
been previously established.

The STORE ITEM routine erases the previous item value, unless the item is
“aggregate valued” and not empty. (An “aggregate-valued” item is one in which
the value of the aggregate is actually the handle of another aggregate.) In the
case of an item that is aggregate valued and not empty, the specified aggregate
is inserted in sequence before the existing aggregate. If the specified aggregate
is the beginning of a sequence, the entire sequence is inserted before the existing
aggregate. If the specified aggregate is part of a sequence but is not the first
aggregate in the sequence, or if the specified aggregate is the value of an item, an
error is returned.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion.
CDA$_INVAGGTYP Invalid aggregate type.
CDA$_INVITMCOD Invalid item code.
CDA$_INDEX Index exceeds array bounds.
CDA$_VAREMPTY Variant item is empty.
CDA$_VARINDEX Variant index exceeds bounds.

CDA Toolkit Routines 8-163



STORE ITEM

Return Value Description

CDA$_VARVALUE Variant value is undefined.
CDA$_INVINSERT Aggregate already in a sequence.
CDA$_INVBUFLEN Invalid buffer length.

Examples

This example illustrates the creation of a document descriptor aggregate (type
DDIF$_DSC), and the use of the STORE ITEM routine to fill in the items in the

aggregate.

static unsigned char
product_name[] = {"Sample Product"};

aggregate_type = DDIFS_DSC;

status = cda$create_aggregate (&root_aggregate_handle,
&aggregate type,
&aggregate_handle);

if (FAILURE (status)) return(status);

aggregate_item = DDIF$_DDF_DESCRIPTOR;

local_length = sizeof (aggregate_handle);

status = cda$store_item(&root_aggregate_handle,
&root_aggregate_handle,
&aggregate_item,
&local_length, &aggregate_ handle);

if (FAILURE (status)) return(status);

aggregate_item = DDIF$_DSC_MAJOR VERSION;

local length = sizeof (integer_value);

integer value = 1;

status = cda$store_item(&root_aggregate handle,
&aggregate_handle,
&aggregate_item, &local_length,
&integer_value);

if (FAILURE (status)) return(status);

aggregate_item = DDIFS$_DSC_MINOR VERSION;

local_length = sizeof (integer_value);

integep_value = 0;

status = cda$store_item(&root_aggregate handle,
&aggregate_handle,
&aggregate_item, &local_ length,
&integer value);

if (FAILURE (status)) return(status);

8-164 CDA Toolkit Routines



STORE ITEM

aggregate_item = DDIF$_DSC_PRODUCT IDENTIFIER;

local length = 7;

status = cda$store_item(&root_aggregate_handle,
&aggregate handle,
&aggregate_item, &local length,
"Example") ;

if (FAILURE (status)) return(status);

aggregate_item = DDIF$_DSC_PRODUCT_NAME;

local_len = sizeof (product_name);

aggregate_index = 0;

add_info = CDA$K_ISO_LATIN1;

status = cda$store_item(&root_aggregate handle, &aggregate_handle
&aggregate_item, &local_length,
product_name, &aggregate_index,
&add_info);

if (FAILURE (status)) return(status);

This example illustrates the use of the STORE ITEM routine to specify two
transformation aggregates (type DDIF$_TRN). The type of transformation
specified by the DDIF$_TRN aggregate is indicated by the value of the DDIF$_
TRN_PARAMETER_C item. The first transformation aggregate specifies an
x-scale transformation. The second transformation aggregate specifies a 2 x 3
matrix transformation of the following format:

ADOBEOCF 1

Each matrix coefficient is stored in the DDIF$_TRN aggregate in each call to the
STORE ITEM routine. The first call to STORE ITEM for this matrix writes the A
matrix coefficient into array item 0; the second call writes B to array item 1, and
so on until coefficients A through F are written to the array. You are responsible

for updating the aggregate index of the array each time a coefficient is written.

One matrix coefficient is stored in each call to the STORE ITEM routine. The
aggregate index is used to specify which matrix coefficient is being written.

aggregate type = DDIFS$_TRN;

status = cdaS$create_aggregate (&root_aggregate_handle,
&aggregate_ type,
&inner_ aggregate_handle);

if (FAILURE (status)) return(status):;

aggregate_item = DDIFS$_SGA_FRM TRANSFORM;

item_length = 4;

status = cda$store_item(&root_aggregate handle,
&aggregate_handle, &aggregate item,
&item_length,
&inner_ aggregate_handle);

if (FAILURE (status)) return(status):;

CDA Toolkit Routines 8-165



STORE ITEM

aggregate_item = DDIF$_TRN_PARAMETER C;
local length = sizeof (integer value);
integer value = DDIF$K_X SCALE;
status = cda$store_item(&root_aggregate handle,
&inner aggregate_handle,
&aggregate_item,
&local length, &integer value);
if (FAILURE (status)) return(status);

aggregate_item = DDIFS$_TRN_PARAMETER;

local_length = sizeof (float_value);

float_value = 3.5;

status = cda$store_item(&root_aggregate_handle,
&inner aggregate handle,
&aggregate_item,
&local_length, &float_value);

if (FAILURE (status)) return(status);

aggregate_type = DDIF$S_TRN;
status = cda$create_aggregate (&root_aggregate_handle,
&aggregate type,
&inner aggregate_handle_2);
if (FAILURE (status)) return(status):

status = cda$insert_aggregate (&inner aggregate_handle 2,
&inner_aggregate handle);
if (FAILURE (status)) return(status);

aggregate_item = DDIF$_TRN_PARAMETER C;
local length = sizeof (integer value);
integer_value = DDIF$K_MATRIX 2 BY 3;
status = cdaS$store_item(&root_aggregate_ handle,
&inner aggregate_handle_2,
&aggregate_item,
&local_length, &integer_ value);
if (FAILURE (status)) return(status);

aggregate_item = DDIF$_TRN_ PARAMETER;

local_length = sizeof (float_value);

float_value = 4.75;

aggregate_index = 0;

status = cda$store_item(&root_aggregate_handle,
&inner_aggregate_handle 2,
&aggregate_ item,
&local_length, &float_value,
&aggregate_index);

if (FAILURE (status)) return(status);

aggregate_item = DDIFS_TRN_PARAMETER;

local_length = sizeof (float_value);

float_value = 6.11;

aggregate_index = 1;

status = cda$store_item(&root_aggregate handle,
&inner aggregate_ handle 2,
&aggregate_item,
&local_length, &float_value,
&aggregate_index);

if (FAILURE (status)) return(status);

8-166 CDA Toolkit Routines



STORE ITEM

aggregate item = DDIF$_TRN_PARAMETER;

local_length = sizeof (float_value);

float_value = 2.22;

aggregate_index = 2;

status = cda$store_item(&root_aggregate_handle,
&inner aggregate handle 2,
&aggregate item,
&local_length, &float_value,
&aggregate_index);

if (FAILURE (status)) return(status):;

aggregate_ item = DDIF$_TRN_ PARAMETER;

local_length = sizeof(float_value);

float_value = 3.0;

aggregate_index = 3;

status = cda$store_item(&root_aggregate_handle,
&inner_ aggregate_handle_ 2,
&aggregate_item,
&local length, &float_value,
&aggregate_index);

if (FAILURE (status)) return(status);

aggregate_item = DDIF$_TRN_PARAMETER;

local_length = sizeof(float_value);

float_value = 1.25;

aggregate_index = 4;

status = cda$store_item(&root_aggregate handle,
&inner_ aggregate_handle 2,
&aggregate_ item,
&local_ length, &float_value,
&aggregate_index);

if (FAILURE (status)) return(status):;

aggregate item = DDIF$ TRN PARAMETER;

local_length = sizeof(float_value);

float_value = 2.15;

aggregate_index = 5;

status = cda$store_item(&root_aggregate handle,
&inner aggregate handle 2,
&aggregate item,
&local_length, &float_value,
&aggregate_index) ;

if (FAILURE (status)) return(status):;

CDA Toolkit Routines 8-167



WRITE TEXT FILE

WRITE TEXT FILE

Writes a line of text to a standard text file.

VAX FORMAT
status = cda$write_text_file

(text-file-handle ,buffer-length ,buffer-address)

Argument Information

Argument Argument Information
status VMS usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
text-file-handle VMS usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
buffer-length VMS usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
buffer-address VMS usage: char_string
Data type: character string
Access: read only
Mechanism: by reference

C FORMAT
status = CdaWriteTextFile

(text_file_handle, buffer_length, buffer_address)

8-168 CDA Toolkit Routines



WRITE TEXT FILE

Argument Information

unsigned long CdaWriteTextFile(text file handle,
buffer length, buffer address)

unsigned long text_file_handle;
unsigned long buffer length;
unsigned char *buffer address;

RETURNS

status
A condition value indicating the return status of the routine call.

Arguments

text-file-handle
Identifier of the text file to which the line is written. This handle is returned by

a call to the CREATE TEXT FILE routine.

buffer-length
Length (in bytes) of the buffer specified by the buffer-address argument.

buffer-address
The line to be written to the text file.

Description

The WRITE TEXT FILE routine writes a line of text to a standard text file. On
VMS systems, the written line becomes an RMS record. On ULTRIX systems, the
written line is followed by a new-line character.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion

Any error returned by the file routines.

CDA Toolkit Routines 8-169






Chapter 9

User-Defined Routines

The chapter describes the user-defined routines used to write both CDA-
conforming applications and front and back ends. You can supply these routines
to modify the operation of the CDA Toolkit routines. For example, the GET
AGGREGATE routine, by default, calls a CDA Toolkit get routine. However, you
may provide your own get routine using the format described in this chapter.

Each routine description includes the following information:

* A routine definition that each application must name according to its
operating system-specific format

* Descriptions of each routine argument
¢ A description of the routine itself

¢ A list of possible values returned by each routine argument

NOTE

The entry points and conventions defined throughout this reference
section must be followed on both VMS and ULTRIX systems in order
for all front and back ends to work properly with the CDA Converter
Kernel.

If you are programming in Ada, please refer to the Guide to Applications
Programming for information on Ada programming with DECwindows.

User-Defined Routines 9-1



Allocate/Deallocate Routines

Allocate/Deallocate Routines

Are the specification of the calling standard for two optional user-supplied rou-
tines used to perform memory allocation and deallocation. The address of these
routines can be passed to the CREATE FILE, CREATE ROOT AGGREGATE,
CREATE STREAM, OPEN STREAM, or OPEN FILE routine. If specified, these
allocation and deallocation routines will be used throughout the CDA Toolkit to
allocate and deallocate memory.

FORMAT
status = user-rtn (num-bytes ,base-adr ,alloc-dealloc-prm)

Argument Information

Argument Argument Information
status Usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
num-bytes Usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
base-adr Usage: address
Data type: longword (unsigned)
Access: read only or write only
Mechanism: by reference
alloc-dealloc-prm Usage: user_arg
Data type: longword (unsigned)
Access: read only
Mechanism: by value

RETURNS

status

A condition value indicating the return status of the routine call.

9-2 User-Defined Routines



Allocate/Deallocate Routines

Arguments

num-bytes
The number of bytes to allocate or deallocate. The value of num-bytes must be
greater than zero.

base-adr

Virtual address of the first byte of memory to be allocated or deallocated. (This
argument is write-only for an allocate routine, and read-only for a deallocate
routine.)

alloc-dealloc-prm
User context argument.

Description

The allocate/deallocate routines are the specification of the calling standard

for two optional user-supplied routines used to perform memory allocation and
deallocation. The address of these routines can be passed to the CREATE FILE,
CREATE ROOT AGGREGATE, CREATE STREAM, OPEN STREAM, or OPEN
FILE routine. If specified, these allocation and deallocation routines will be used
throughout the CDA Toolkit to allocate and deallocate memory.

The alloc-dealloc-prm argument is passed through these CDA routines to
the user-supplied routine. For example, the alloc-dealloc-prm argument
must be supplied to the CREATE FILE routine, which will then pass it to the
user-supplied allocate routine.

RETURN VALUES

Each of these user routines must return a completion status. The VMS conven-
tion for completion codes is followed. If the low bit of the return value is clear, an
error has occurred and the caller returns control to its caller; if the low bit of the
return value is set, the caller continues execution.

User-Defined Routines 9-3



Flush Routine

Flush Routine

Is a specification of the calling standard for an optional user-supplied routine.
The address of a routine that meets this specification can be passed to the
FLUSH STREAM routine, which will use the routine to force the writing of the
user’s buffer.

FORMAT
status = flush-rtn  (flush-prm)

Argument Information

Argument Argument Information
status Usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
flush-prm Usage: user_arg
Data type: longword (unsigned)
Access: read only
Mechanism: by value
RETURNS
status
A condition value indicating the return status of the routine call.
Arguments

flush-prm
User context argument.

9-4 User-Defined Routines



Flush Routine

Description

The flush routine is a specification of the calling standard for an optional user-
supplied routine. The address of a routine that meets this specification can be
passed to the FLUSH STREAM routine, which will use the routine to force the
writing of the user’s buffer.

The user-supplied flush routine is only neccessary when a user-supplied put
routine (using buffered output) has been specified in the call to the CREATE
STREAM routine.

RETURN VALUES

The user-defined flush routine must return a value that is one of the error status
codes named by the CDA Toolkit (such as CDA$_INVDOC), by VMS RMS, or that
is application-defined.

If the first bit of the longword returned by this routine is set to 1, the return
status is successful. However, if the first bit of the longword returned by this
routine is set to 0, the return status is unsuccessful.

This routine must return a completion status. The VMS convention for comple-
tion codes is followed. If the low bit of the return value is clear, an error has
occurred and the caller returns control to its caller; if the low bit of the return
value is set, the caller continues execution.

User-Defined Routines 9-5



Get Routine

GetRoutine

Is a specification of the calling standard for an optional user-supplied routine.
The address of a routine that meets this specification can be passed to the
CONVERT routine or to the OPEN STREAM routine.

FORMAT
status = get-rtn  (get-prm ,num-bytes ,buf-adr)

Argument Information

Argument Argument Information

status Usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

get-prm Usage: user_arg
Data type: longword (unsigned)
Access: read only
Mechanism: by value

num-bytes Usage: longword_unsigned

Data type: longword (unsigned)
Access: write only
Mechanism: by reference
buf-adr Usage: address
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
RETURNS
status

A condition value indicating the return status of the routine call.

9-6 User-Defined Routines



Get Routine

Arguments

get-prm
User context argument.

num-bytes

Receives the number of bytes contained in the buffer. The num-bytes argument
is the address of an unsigned longword that receives this number. The number of
bytes is zero only if the stream does not contain any more data.

buf-adr
Receives the address of an unsigned longword that receives the buffer address.

Description

The get routine is a specification of the calling standard for an optional user-
supplied routine. The address of a routine that meets this specification can be
passed to the CONVERT routine or to the OPEN STREAM routine.

For the CONVERT routine, this address will be passed to a front end converter,
which may then use the specified routine to read input data. Refer to the example
for the CONVERT routine in Chapter 8.

For the OPEN STREAM routine, this address will be stored for use by the GET
AGGREGATE routine when reading input data.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion
CDA$_ENDOFDOC End of document

User-Defined Routines 9-7



Get-Position Routine

Get-Position Routine

Is a specification of the calling standard for an optional user-supplied routine.
The address of a routine that meets this specification can be passed to the
CONVERT routine. This user-supplied routine must provide position information
to allow the application reader or converter to determine the total size of the
current input stream as well as to determine the current position within the
stream. (This routine is useful for viewer back ends that provide a scroll bar
indicating the current position in the document being viewed.)

FORMAT
status = get-pos-rtn (stream-prm ,stream-size)

Argument Information

Argument Argument Information
status Usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
stream-prm Usage: user_arg
Data type: longword (unsigned)
Access: read only
Mechanism: by value
stream-size Usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

RETURNS

status

A condition value indicating the return status of the routine call.

9-8 User-Defined Routines



Get-Position Routine

Arguments

stream-prm
User context argument.

stream-size

Receives the number of bytes contained in the buffer. The stream-size argument
is the address of an unsigned longword that receives this number. The number of
bytes is zero only if the stream does not contain any more data.

Description

The get-position routine is a specification of the calling standard for an optional
user-supplied routine. The address of a routine that meets this specification can
be passed to the CONVERT routine. This user-supplied routine must provide
position information to allow the application reader or converter to determine the
total size of the current input stream as well as to determine the current position
within the stream. (This routine is useful for viewer back ends that provide a
scroll bar indicating the current position in the document being viewed.)

RETURN VALUES

The user-defined get-position routine can return a value that is one of the error
status codes named by the CDA Toolkit (such as CDA$_INVDOC), by VMS RMS,
or one that is application-defined.

If the first bit (bit 0) of the longword returned by this routine is set to 1, the
return status is successful. However, if the first bit of the longword returned by
this routine is set to 0, the return status is unsuccessful.

User-Defined Routines 9-9



Put Routine

PutRoutine

Is a specification of the calling standard for an optional user-supplied routine.
The address of a routine that meets this specification can be passed to the
CONVERT routine or to the CREATE STREAM routine.

FORMAT
status = put-rtn (put-prm ,num-bytes ,buf-adr ,next-buf-len
,next-buf-adr)
Argument Information

Argument Argument Information

status Usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value

put-prm Usage: user_arg
Data type: longword (unsigned)
Access: read only
Mechanism: by value

num-bytes Usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

buf-adr Usage: vector_byte_unsigned
Data type: byte (unsigned)
Access: read only
Mechanism: by reference, array reference

next-buf-len Usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

9-10 User-Defined Routines



Put Routine

Argument Argument Information
next-buf-adr Usage: address
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
RETURNS
status

A condition value indicating the return status of the routine call.

Arguments

put-prm
User context argument.

num-bytes
Number of bytes contained in the buffer. The num-bytes argument is the
address of an unsigned longword that contains this value.

buf-adr
Address of the buffer. The buf-adr argument is the address of an array of
unsigned bytes.

hext-buf-len
Length of the buffer specified by next-buf-adr. The next-buf-len argument is
the address of an unsigned longword that receives this length.

next-buf-adr

Address of a buffer that will receive further output data. The next-buf-adr
argument is the address of an unsigned longword that receives this address.
Next-buf-adr may simply be the current buffer, or a different buffer.

Description

The put routine is a specification of the calling standard for an optional user-
supplied routine. The address of a routine that meets this specification can be
passed to the CONVERT routine or to the CREATE STREAM routine.

For the CONVERT routine, this address will be passed to a back end converter,
which may then use the specified routine to write output data. Refer to the
example for the CONVERT routine in Chapter 8.

For the CREATE STREAM routine, this address will be stored for use by the
PUT AGGREGATE routine when writing output data.

User-Defined Routines 9-11



Put Routine

RETURN VALUES

Return Value Description

CDA$_NORMAL Normal successful completion

The user-defined put routine always returns a status CDA$_NORMAL in an
unsigned longword integer.

The user-defined put routine can also return a value that is one of the error
status codes named by the CDA Toolkit (such as CDA$_INVDOC) or that is
application-defined.

If the first bit of the longword returned by this routine is set to 1, the return
status is successful. However, if the first bit of the longword returned by this
routine is set to 0, the return status is unsuccessful.

9-12 User-Defined Routines



Chapter 10

CDA Toolkit Example Program

This chapter illustrates a sample program, written in VAX C, that uses the
CDA Toolkit to create a DDIF document. Example 10-1 contains comments
where necessary, and Example 10-2 illustrates the analysis output of the DDIF
document created by the program. The callouts in this example correspond to
the callouts in Example 10-2. For example, if a callout corresponds to a call

to the CREATE ROOT AGGREGATE routine in Example 10-1, the callout in
Example 10-2 identifies the beginning of the document root aggregate created by

that call.

Example 10-1: Sample CDA Toolkit Program

#ifdef vms ‘

#include <ddifs$def.h> /* Include DDIF keyword definitions. */
#include <cda$def.h> /* Include CDA Toolkit keyword definitions. */
#else

#include <ddif_def.h> /* Include DDIF keyword definitions. */
#include <cda_def.h> /* Include CDA Toolkit keyword definitions. */
#endif

#define FAILURE (x)
#define MAX POINTS 4

/*
** Subroutines to generate frequently-used aggregates.
*/

extern unsigned long create_hrd dir( );
extern unsigned long create_gtx( );
unsigned long poly points[MAX POINTS][2] =
{
{ 500, 500 },
{ 2500, 2000 1},
{ 3500, 2000 },

(((x) & 1) == 0)

{ 5500, 500 }
};
unsigned long aggregate_type;
unsigned long aggregate_item;
unsigned long aggregate_index;
unsigned long add _info;
unsigned long  file handle;
unsigned long integer_ value;
unsigned long integer_length = sizeof( integer_value );
unsigned long local_length;
unsigned long status;
unsigned long stream handle;

(continued on next page)

CDA Toolkit Example Program 10-1



Example 10-1 (Cont.): Sample CDA Toolkit Program

unsigned long aggregate_handle;

unsigned long . aggregate_handle length = sizeof( aggregate handle );
unsigned long root_aggregate_handle;

unsigned long previous_aggregate_handle;

unsigned long aggregate handle_stack[ 100 ];
unsigned long ahs_index = 0;

/* Data and structures for the frame definition. */
struct frm flags sga_frame flags;

unsigned long frame_ur x value = 6000;

unsigned long  frame ur_y value = 2400;

/* Data for the polyline and Bezier curve. */
unsigned long i;

/* Data for the arc. */

struct arc_flags set _arc flags;

float arc_start = 4.5el;
float arc_extent = 9.0el;

unsigned long arc_line width = 60;

unsigned long erf data_typell] =

{1,3,12,1011,1,3,1};
unsigned long erf data_type length = sizeof (erf_data type);
unsigned char filename[] = "DDIF_EXAMPLE.DDIF";

unsigned long filename_length = sizeof( filename ) - 1;
unsigned char result_file_ spec[255];

unsigned long result_file spec_len = sizeof( result_file spec );
unsigned long result_file ret len;

unsigned long dsc_major version = 1;
unsigned long dsc_major_version_length

i

sizeof ( dsc_major_ version );

unsigned long dsc_minor_version = 0;
unsigned long dsc_minor version_length

sizeof ( dsc_minor_version );

unsigned char dsc_product_identifier([] = "DDIF$";
unsigned long  dsc_product_identifier length =

sizeof ( dsc_product_identifier ) - 1;
unsigned char dsc_product_name[] = "Test V1.0";
unsigned long dsc_product_name length = sizeof( dsc_product_name ) - 1;
unsigned char erf descriptor _name[] = "Style Guide™;
unsigned long erf descriptor name length = sizeof( erf descriptor name ) - 1;
unsigned char erf label name[] = "defstyle";
unsigned long erf label name_length = sizeof( erf label name ) - 1;
unsigned char erf label typel] = "$STYLE";
unsigned long erf_label type length = sizeof( erf_label type ) - 1;
unsigned char dhd_languages_1[] = "E/USA/";

unsigned long dhd_languages_length 1 = sizeof( dhd languages_1 ) - 1;

unsigned char dhd_languages_2[] = “"Mandarin";
unsigned long dhd_languages_length 2 = sizeof( dhd_languages 2 ) - 1;

(continued on next page)

10-2 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

unsigned char sga_content_category[] = "$2D";
unsigned long sga_content_category length 2 =
sizeof ( sga_content_category ) - 1;
unsigned char txt_content[] = "This is the first line of the example text.";
unsigned long  txt_content_ length = sizeof( txt_content ) - 1;
unsigned char gtx _content_1[] = "This is the second line of the example text, \

and should be separated from the first line by a single space.";

unsigned char gtx_content_2[] = "The third line of the example text will \
begin . on a new line.";

unsigned char gtx _content_3[] = "The fourth line of the example text will be \
separated from the previous lines by a blank line, and will be the \
last text on the first page.";

unsigned char para_seg_type[] = "PARA";
unsigned long para_seg_type length = sizeof( para_seg type ) - 1;
unsigned char  tyd label[] = "FRAME";

unsigned long tyd _label length =
sizeof ( tyd label ) - 1;

unsigned char pline_labell[] = "pline";
unsigned long pline_label length =
sizeof( pline_label ) - 1;

unsigned char bline label[] = "bline";
unsigned long bline_label length =

sizeof( bline label ) - 1;
unsigned char filled arc_label[] = "filled_arc";
unsigned long filled arc_label length =

sizeof( filled arc_label ) - 1;
main ()

{

printf ("Creating in-memory DDIF structure...\n" );

(continued on next page)

CDA Toolkit Example Program 10-3



Example 10-1 (Cont.): Sample CDA Toolkit Program

/*

KAKKKAKA KKK A KA A ALK A AT KA KA AR I R ARk Ik hk Ak hkkhk ok hkhkkkhkkhkhkkkhkhhhkhhhkhkxhkhkk

**
* %
*k
*k
* %
* %
**
* %
*k
* %
* %
*k
* %
* %
* %
* %k
* %k
* k
* %
* %
* %

The overall structure (excluding hard directives) is as follows:

DDF
(Root Aggregate)
/ | \
DSC DHD SEG

(Descriptor) (Header) (Segment)

!
SEG

[
TXT - GTX - SEG - GTX - SEG - GTX - SEG - GTX

! ! I
LIN BEZ SEG

AR KA KRR AR AR AR R A AR KR KA AR AR N R AR KA AR AAKR AN R AR ARR AR ARA AR R AA R AN R AR KRR A I AR Ao dhdhhohhhhk

*/

/*

/*

** Create the DDIF Root Aggregate.

*/

aggregate_type = DDIF$ DDF;

status = cda$create_root_aggregate( 0, 0, 0, O, 1]
&aggregate_type,
&root_aggregate_handle );

if( FAILURE( status ) )

return ( status ):;

ek ok ok ok ok ok ok ok ok ok e kS ok o ke ok ke sk ok ok e AR R ok ok e ok o ke R ok Kk ok o ok ok ok ok Sk ok e ok ok ok ok ok ok ok ke ok ok ok ke K sk ok ok ok ek ke kb ok ke ke sk ok ok ok

)k
* %
* %
KK
* %
* %
**

DESCRIPTOR:

1) create the Descriptor aggregate
2) attach it to the Root aggregate
3) fill in the items in the Descriptor aggregate.

AR AR KA KA KA KA KA AR AAAAAR A AR AR A Ak kA A ARk ko hkk kA Ak hkkkkhkhkhkhhhkhhkhhhkhkkhhkkx

*/

/*

** Create the Descriptor aggregate and attach it to the Root aggregate

** by storing its handle in the Descriptor item of the Root aggregate.

*/

aggregate type = DDIF$_DSC;

status = cda$create_aggregate( &root_aggregate_handle, (2]
&aggregate_type,
&aggregate_handle_stack[ahs_index] };

if( FAILURE( status ) )
return ( status );

(continued on next page)

104 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate_item = DDIFS$_DDF_DESCRIPTOR;

status = cda$store_item( &root_aggregate handle, (3]
&root_aggregate_ handle,
&aggregate_item,
&aggregate_handle_length,
&aggregate handle_stack[ahs_index] );

if ( FAILURE( status ) )

return ( status );

/*

** Fill in the Major Version item of the Descriptor aggregate.

*/

aggregate_item = DDIF$_DSC MAJOR VERSION;

status = cdaSstore_item( &root_aggregate_handle, (4]
&aggregate_handle stack[ahs_index],
&aggregate_item,
&dsc_major_version_length,
&dsc_major_ version );

if( FAILURE( status ) )

return ( status );

/*
** Fill in the Minor Version item of the Descriptor aggregate.

*/

aggregate_item = DDIF$_DSC_MINOR VERSION;

status = cda$store_item( &root_aggregate handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&dsc_minor_ version_length,
&dsc_minor_version );

if( FAILURE( status ) )

return ( status );

/*
** Fill in the Product Identifier item of the Descriptor aggregate.

*/

aggregate_item = DDIF$_DSC _PRODUCT_IDENTIFIER;

status = cda$store_item( &root_aggregate_ handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&dsc_product_identifier length,
dsc_product_identifier );

if( FAILURE( status ) )

return ( status );

/*
** Fill in the Product Name item of the Descriptor aggregate.

*/

(continued on next page)

CDA Toolkit Example Program 10-5



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate_index = 0;

aggregate_item = DDIF$_DSC_PRODUCT_NAME;

add_info = CDA$K_ISO_LATINI;

status = cda$store_item( &root_aggregate handle, (5]
&aggregate handle_stack[ahs_index],
&aggregate_item,
&dsc_product_name length,
dsc_product_name,
&aggregate_index,
g&add_info );

if( FAILURE( status ) )

return ( status );

/*
HEKAKKK I AR K IAA R AR AR A kA ko k ko ko hkhkhkhkhkkkk ko kkhkhkhkkhkhhhkhkhkhhkkhhkhkkhkhkkkkx
**

** HEADER:

* %

*x 1) create the Header aggregate

** 2) attach it to the Root aggregate

* % 3) £ill in the items in the Header aggregate
*k

KKK AKA KKK I I AR AAK A KA AI A IAA KA AT kAR kAR hhkk ko hkk ok k ko hkhkkhkkkhkkkhkkhkhkhkhkkhkkkkkkkkkkhkk
*/

/*
** Create the Header aggregate and attach it to the Root aggregate
** by storing its handle in the Header item of the Root aggregate.
*/
aggregate_type = DDIF$_DHD;
status = cda$create_aggregate( &root_aggregate_handle, (6]
&aggregate_type,
&aggregate_handle stack[ahs_index] );
if ( FAILURE( status ) )
return ( status );

aggregate_item = DDIF$_DDF_HEADER;

status = cda$store_item( &root_aggregate handle, (7]
&root_aggregate_ handle,
&aggregate_item,
&aggregate_handle_ length,
&aggregate_handle_stack[ahs_index] )

if( FAILURE ( status ) )

return ( status );

/%
** Add the style guide reference.
*/

ahs_index++;
aggregate_ type = DDIF$_ERF;
status = cda$create_aggregate( &root_aggregate_ handle, (5]
&aggregate_type,
&aggregate_handle_stack[ahs_index] );
if ( FAILURE( status ) ).
return ( status );

(continued on next page)

10-6 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate_item = DDIFS$_DHD_EXTERNAL REFERENCES;

status = cda$store_item( &root_ aggregate_handle, (0]
&aggregate_handle_stack([ahs_index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index] );

if( FAILURE( status ) )

return ( status ):

aggregate _item = DDIF$_ERF_DATA TYPE;

status = cda$store_item( &root_aggregate_handle, @
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&erf_data_type length,
erf_data_type );

if ( FAILURE( status ) )

return ( status );

aggregate_item = DDIF$ ERF_DESCRIPTOR;

aggregate_index = 0;

add_info = CDA$K_ISO_LATIN1;

status = cda$store_item( &root_aggregate_handle, ®
&aggregate_handle_stack([ahs_index],
&aggregate_item,
&erf descriptor_name_length,
erf_descriptor_name,
&aggregate_index,
&add_info );

if ( FAILURE( status ) )

return ( status );

aggregate_index = 0;

add_info = CDASK_ISO LATINI;

aggregate_item = DDIF$_ERF_LABEL;

status = cda$store_item( &root_aggregate_handle, ®
&aggregate_handle stack[ahs_index],
&aggregate_item,
&erf_ label_name_length,
erf label name,
&aggregate_index,
&add_info );

if( FAILURE( status ) )

return ( status );

aggregate_item = DDIF$_ERF_LABEL TYPE;
add_info = DDIF$K_STYLE LABEL_TYPE;
status = cda$store item( &root_aggregate_handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&erf_ label_ type_length,
erf label_ type,
0,
&add_info);

if( FAILURE( status ) )
return ( status );

(continued on next page)

CDA Toolkit Example Program 10-7



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate_item = DDIF$_ERF_CONTROL;

integer_value = DDIF$K NO COPY REFERENCE;

status = cda$store_item( &root_aggregate handle,
&aggregate_handle stack[ahs_index],
&aggregate item,
&integer length,
&integer_value);

if ( FATLURE( status ) )

return ( status );

ahs_index--;

/%
** Fill in the Languages item in Header aggregate. First, the enumeration
** yalue must be stored, then the data value. An index must be used since
** these are arrays.
*/
aggregate_item = DDIF$_DHD_LANGUAGES_C;
integer_value = DDIFSK_ISO_639_ LANGUAGE;
aggregate_index = 0;
status = cda$store_item( &root_aggregate_handle, ®
&aggregate_handle_ stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer_value,
&aggregate_index );
if ( FAILURE ( status ) )
return ( status );

aggregate item = DDIF$_DHD_ LANGUAGES;

aggregate_index = 0;

status = cda$store_item( &root_aggregate handle, @
&aggregate_handle_stack[ahs_index],
&aggregate item,
&dhd_languages_length 1,
dhd_languages_1,
s&aggregate index );

if ( FAILURE( status ) )

return ( status );

aggregate_item = DDIF$_DHD_ LANGUAGES_C;

aggregate_index = 1;

status = cda$store_item( &root_aggregate_ handle, ®
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer_wvalue,
&aggregate index );

if( FAILURE( status ) )

return ( status );

(continued on next page)

10-8 CDA Toolkit Example Program



Example 10-1 (Cont.): Sampie CDA Toolkit Prograrri

aggregate_item = DDIF$_ DHD LANGUAGES;

integer value = DDIF$K_OTHER_LANGUAGE;

aggregate_index = 1;

add_info = CDASK_ISO_LATINI;

status = cda$store_item( &root_aggregate handle, ®
&aggregate_handle stack([ahs_index],
&aggregate_item,
&dhd_languages_length_2,
dhd_languages_2,
&aggregate_index,
&add_info );

if ( FAILURE( status ) )

return ( status );

/%
** Add the DHD_STYLE GUIDE item, defining it to point to the
** first external reference, which was defined above as the
** style-guide file.

*/

aggregate_item = DDIF$_DHD_STYLE GUIDE;

integer_value = 1;

status = cda$store_item( &root_aggregate_ handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_ value);

if ( FAILURE( status ) )

return ( status );

/*
AR KRR R KRR KRR KR AR AR R AR R R A R A A R AR R A A KRR KRR A AR R AR A AR KA AR A AR KR AARNKRAR KR AR R AR A AR KRR A AR ALK
* %

**  CONTENT:

*k

*x 1) create the Segment aggregate

x* 2) attach it to the Root aggregate

* % 3)-fill in the items in the Segment aggregate

* %

KRR KRR KRR AR AR R R AR A AR KRR AR KRR A AR A A AR A A AR KA A AR AN A A AR AR A A AR AR AN A AR A A A A A A A A A A Ak Ak Ak bk ki
*/
/*
** Create the Segment aggregate and attach it to the Root aggregate
** by storing its handle in the Content item of the Root aggregate.
*/
aggregate type = DDIF$_SEG;
status = cda$create_aggregate( &root_aggregate_handle, ﬂi
&aggregate_type,
&aggregate_handle_stack([ahs_index] );
if( FAILURE( status ) )
return ( status );

(continued on next page)

CDA Toolkit Example Program 10-9



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate item = DDIFS$_DDF_CONTENT;

status = cda$store_item( &root_aggregate_handle, ®
&root_aggregate handle,
&aggregate_item,
&aggregate_handle length,
&aggregate_handle_stack[ahs_index] );

if ( FAILURE( status ) )

return ( status );

ahs_index++;
aggregate_type = DDIF$_SEG;
status = cda$create_aggregate( &root_aggregate_handle, ®
&aggregate_type,
&aggregate_handle_ stack[ahs_index] );
if{ FAILURE( status ) )
return ( status );

/* Store into this segment. */

aggregate item = DDIF$_SEG CONTENT;

status = cda$store_item( &root_aggregate_ handle, 20}
&aggregate_handle_stack[ahs_index-1],
&aggregate_ item,
&aggregate_handle length,
&aggregate_handle_stack[ahs_index] );

if( FAILURE ( status ) )

return ( status ):;

/*
** Store the segment type ("PARA"). PARA is defined in the default
** style guide.

*/

aggregate_item = DDIF$_SEG_SEGMENT_TYPE;

status = cda$store item( &root_aggregate handle, o1
&aggregate_handle stack[ahs_index],
&aggregate item,
&para_seg_type_length,
para_seg_type );

if ( FAILURE ( status ) )

return ( status );

/*
*% Now fill in the items in the Segment aggregate.

*/

ahs_index++;
aggregate_type = DDIF$_ SGA; )
status = cda$create_aggregate( &root_aggregate handle, ®
&aggregate_type,
&aggregate_handle_stack([ahs_index] );
if( FAILURE( status ) )
return ( status );

(continued on next page)

10-10 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate_item = DDIFS$_SEG_SPECIFIC_ATTRIBUTES:;

status = cda$store_item( &root_aggregate_handle, ®
&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle_ length,
&aggregate handle_stack{ahs_index] ):

if ( FAILURE( status ) )

return ( status );

/* .

** Create a type-definition aggregate and attach to the segment
** attribute aggregate.

*/

ahs_index++;
aggregate_type = DDIF$_TYD;
status = cda$create_aggregate( &root_aggregate handle, @B
&aggregate_type,
&aggregate_handle_ stack[ahs_index] );
if( FAILURE( status ) )
return ( status );

aggregate_item = DDIF$_SGA TYPE_DEFNS;

status = cda$store_item( &root_aggregate handle, (25]
&aggregate handle_stack[ahs_index-1],
&aggregate_ item,
&aggregate_handle length,
&aggregate handle_ stack[ahs_index] );

if( FAILURE( status ) )

return ( status );

/* Now store the type~-definition label. */

aggregate_item = DDIFS$S_TYD_ LABEL;

status = cda$store_item( &root_aggregate handle, @
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&tyd label length,
tyd label );

if ( FAILURE( status ) )

return ( status );

/*
** Create an attribute aggregate, and attach to the
** type-def aggregate.

*/

ahs_index++;
aggregate_type = DDIF$_SGA;
status = cda$create aggregate( &root_aggregate handle, @a
&aggregate_ type,
&aggregate_handle_ stack([ahs_index] );
if( FAILURE( status ) )
return ( status );

(continued on next page)

CDA Toolkit Example Program 10-11



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate_item = DDIF$_TYD ATTRIBUTES;

status = cda$store_item( &root_aggregate handle, (28]
&aggregate_handle stacklahs_index-1],
&aggregate_item,
&aggregate_handle_ length,
&aggregate handle_stack[ahs_index] );

if( FAILURE( status ) )

return ( status ):;

/*
** Now that the type-def attributes aggregate is in place, store
** each desired attribute there.

*/

aggregate_item = DDIF$_SGA CONTENT_CATEGORY;

aggregate_index = 0;

add_info = DDIF$K_2D_CATEGORY;

status = cda$store_item( &root_aggregate_handle, ®
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&sga_content_category_length_ 2,
sga_content_category,
&aggregate_index,
&add_info );

if ( FAILURE( status ) )

return ( status );

/* Store the flags, indicating border on frame. */

aggregate_item = DDIF$_SGA FRM FLAGS;

sga_frame_ flags.ddif$v_flow_around = 0;

sga_frame_ flags.ddif$v_frame border = 1;

sga_frame_flags.ddif$v_frame background fill = O;

sga_frame_flags.ddif$v_frm £fill = 0;

integer_length = sizeof( sga_frame_flags );

status = cda$store_item( &root_aggregate handle, (30}
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer length,
&sga_frame flags );

if ( FAILURE( status ) )

return ( status );

/* Store the bounding coordinates of the frame. (Note indexing.) */

aggregate_item = DDIF$_SGA FRM BOX LL_X C;

integer value = DDIF$K VALUE CONSTANT;

aggregate_index = 0;

status = cda$store_item( &root_aggregate_ handle, (31}
&aggregate_handle stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer value,
&aggregate index );

if ( FAILURE( status ) )

return ( status );

(continued on next page)

10-12 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate_item = DDIF$ SGA_FRM BOX_ LL_X:

aggregate_index = 0;

integer_value = 0;

status = cda$store_item( &root_aggregate_ handle, @
&aggregate_handle_stack[ahs_index],
&aggregate_ item,
&integer_length,
&integer_value,
&aggregate_index );

if( FAILURE( status ) )

return ( status ):;

aggregate item = DDIF$ SGA FRM BOX LL_Y C;

integer value = DDIF$K VALUE CONSTANT;

aggregate index = 1;

status = cda$store_item( &root_aggregate_ handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer value,
&aggregate_index );

if( FAILURE( status ) )

return ( status );

aggregate item = DDIF$_SGA_FRM BOX LL Y;

aggregate_index = 1;

integer_value = 0;

status = cda$store_item( &root_aggregate_handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer_ value,
&aggregate_index );

if( FAILURE( status ) )

return ( status );

/* And now the upper-right coordinates... */

aggregate_item = DDIF$_SGA FRM BOX UR X C;

integer value = DDIF$K_VALUE_ CONSTANT;

aggregate_index = 0;

status = cda$store_item( &root_aggregate_handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer length,
&éinteger_value,
&aggregate_index );

if( FAILURE( status ) )

return ( status );

(continued on next page)

CDA Toolkit Example Program 1013



Example 10—1 (Cont.): Sample CDA Toolkit Program

aggregate_item = DDIF$_SGA FRM BOX UR X;

aggregate_index = 0;

integer value = frame ur x value;

status = cda$store_item( &root_aggregate_ handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer value,
&aggregate_index );

if ( FAILURE( status ) )

return ( status );

aggregate_item = DDIF$_SGA FRM BOX UR Y C;

integer_value = DDIF$K_VALUE_CONSTANT;

aggregate index = 1;

status = cda$store item( &root_aggregate handle,
&aggregate handle stack[ahs_index],
&aggregate_item,
&integer length,
&integer_value,
&aggregate_index );

if ( FAILURE( status ) )

return ( status );

aggregate item = DDIF$_SGA_FRM BOX _UR_Y;

aggregate_index = 1;

integer value = frame ur y value;

status = cda$store item( &root_aggregate handle,
&aggregate_handle stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_value,
&aggregate_index );

if( FPAILURE( status ) )

return ( status );

/* Now store the form-position item. */

aggregate_item = DDIF$_SGA FRM POSITION_C;

integer_value = DDIF$K _FRAME GALLEY;

status = cda$store item( &root_aggregate handle,
&aggregate_ handle_ stack[ahs_index],
&aggregate_item,
&integer length,
&integer value );

1f( FAILURE( status ) )

return ( status );

ahs_index--; /* End of type attributes. */
ahs_index--; /* End of type-definition */
ahs_index--; /* End of segment attributes aggregate. */

/*
** Create Text Content aggregate and store its handle in the SEG_CONTENT
** item in DDF_CONTENT. (This is the first aggregate in a Sequence Of,
** so it is attached with a store. The rest will be inserted.)

*/

(continued on next page)

10-14 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

ahs_index++; _
aggregate_type = DDIF$_ TXT;
status = cda$create_aggregate( &root_aggregate_handle, @B
&aggregate_ type,
&aggregate_handle_stack[ahs_index] );
if ( FAILURE( status ) )
return ( status );

aggregate item = DDIF$_SEG_CONTENT;

status = cda$store_item( &root_ aggregate_handle, (3]
&aggregate handle stack[ahs_index-1],
&aggregate_item,
&aggregate_handle length,
&aggregate handle_stack[ahs_index] );

if( FAILURE( status ) )

return ( status );

/*
** Add a text line.

*/

aggregate_item = DDIF$_ TXT CONTENT;

status = cda$store_item( &root_aggregate_handle, (3]

&aggregate_handle_stack[ahs_index],
&aggregate item,
&txt_content_length,
txt_content );
if( FAILURE( status ) )
return ( status );

/* Save the handle of the segment_content aggregate. */
previous_aggregate_ handle = aggregate_handle stack[ahs_ index];
/* Insert a space (hard) directive. */

status = create_hrd dir ( &root aggregate_handle, (3]
&previous_aggregate_handle,
&aggregate_ handle_stack[ahs_index],
DDIFS$K_DIR_SPACE );
i1f( FAILURE( status ) )
return ( status );

/* Create a General Text Content aggregate. */

previous_aggregate handle = aggregate handle stack[ahs_index];
status = create_gtx ( &root_aggregate_handle, (37]
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],
gtx_content_1 );
if ( FAILURE( status ) )
return ( status ):

/* Insert a new-line (hard) directive to force a new line. */

(continued on next page)

CDA Toolkit Example Program 1015



Example 10-1 (Cont.): Sample CDA Toolkit Program

previous_aggregate handle = aggregate handle_ stack([ahs index];
status = create_hrd dir ( &root_aggregate_handle, ®
&previous_aggregate handle,
&aggregate_handle stack[ahs_index],
DDIF$K_DIR NEW_LINE );
if ( FAILURE( status ) )
return ( status );

/* Create another General Text Content aggregate. */

previous_aggregate handle = aggregate handle_stack[ahs_index];
status = create_gtx ( &root_aggregate_handle,
&previous_aggregate_handle,
&aggregate_handle_ stack[ahs_index],
gtx_content_2 ); '
if( FATILURE( status ) )
return ( status ):;

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate_ handle = aggregate handle_stack[ahs_index];
status = create hrd dir ( &root_aggregate_handle,
&previous_aggregate handle,
&aggregate _handle_ stack[ahs_index],
DDIF$K_DIR NEW_LINE );
if ( FAILURE( status ) )
return ( status ):

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create_hrd dir ( &root_aggregate_handle,
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],
DDIF$K_DIR NEW_LINE );
if( FAILURE( status ) )
return ( status );

/* Create another General Text Content aggregate. */

previous_aggregate handle = aggregate handle stack[ahs_index];
status = create_gtx ( &root_aggregate_handle,
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],
gtx_content_3 ); '
if( FAILURE( status ) )
return ( status );

/* Insert a new-page (hard) directive. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create_hrd dir ( &root_aggregate_handle,
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],
DDIF$K_DIR NEW_PAGE );
if ( FAILURE( status ) )
return ( status );

(continued on next page)

10-16 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

the

/* Insert next general-text line. */

previous_aggregate handle = aggregate_ handle_stack[ahs_index];
status = create_gtx ( &root_aggregate_handle,
&previous_aggregate_handle,
&aggregate handle_stack[ahs_index],
"The following is a Bezier curve, using \
same path as the polyline, within a frame:" );
if( FAILURE( status ) )
return ( status );

/*
** Create a new segment aggregate in which to define the polyline, and
** insert after the previous aggregate.

*/

previous_aggregate_ handle = aggregate handle stack[ahs_index];
aggregate_type = DDIF$_SEG;
status = cda$create_aggregate( &root_aggregate handle, (39]
&aggregate_type,
&aggregate_handle_ stack[ahs_index] );
if ( FAILURE( status ) )
return ( status );

/*
** Insert after previous aggregate. (Insert rather than store, as this
** is a sequence of aggregates.)
*/
status = cda$insert_aggregate( &aggregate handle_stack[ahs_index],
&previous_aggregate_ handle );

if( FAILURE( status ) )

return ( status );

/* Store the segment ID. */

aggregate_ item = DDIF$_SEG_ID;

status = cda$store item( &root_aggregate handle, (40)
&aggregate_handle_stack[ahs_index],
&aggregate item,
&épline label_length,
pline_label );

if( FAILURE( status ) )

return ( status );

/* Store the segment type ("FRAME"). */

aggregate_item = DDIF$_SEG_SEGMENT_TYPE;

status = cda$store_item( &root_aggregate handle,
&aggregate handle_stack[ahs_index],
&aggregate_item,
&tyd_label length,
tyd label );

if ( FAILURE( status ) )

return ( status );

/* Create a Polyline aggregate. */

(continued on next page)

CDA Toolkit Example Program 10-17



Example 10-1 (Cont.): Sample CDA Toolkit Program

ahs_index++;
aggregate type = DDIF$_LIN;
status = cdaScreate aggregate( &root_aggregate handle, ®
&aggregate_type,
&aggregate_handle_stack[ahs_index] );
if( FAILURE( status ) )
return ( status );

/* Store the Polyline aggregate. */

aggregate_item = DDIF$_SEG _CONTENT;

status = cda$store_item( &root_aggregate_handle, @
&aggregate_handle_stack([ahs_index-1],
saggregate_item,
&aggregate_ handle_length,
&aggregate handle_stack([ahs_index] );

if ( FAILURE( status ) )

return ( status );

/* Store Polyline Flags into the Polyline aggregate. */

aggregate_item = DDIF$_LIN FLAGS;

integer_value = 0x1;

status = cda$store_item( &root_aggregate handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_value );

if( FAILURE( status ) )

return ( status );

/* Store the Line Pattern bit string into the Polyline aggregate. */

aggregate_item = DDIF$_LIN_DRAW_PATTERN;

integer_value = O0xF;

status = cda$store item( &root_aggregate handle,
&aggregate_handle stack{ahs_index],
&aggregate_item,
&integer_length,
&integer value );

if ( FAILURE( status ) )

return ( status );

/%
** For the points to be used, store "VALUE CONSTANT" as the data type
** choice, followed by the value of the point.

*/

for (i = 0; i < MAX POINTS; i++ )

{

aggregate_item = DDIF$_LIN PATH C;

integer_value = DDIF$K_VALUE_CONSTANT;

aggregate_index = i * 2;

status = cda$store_item( &root_aggregate handle, ®
&aggregate_handle_stack{ahs_index],
&aggregate_item,
&integer_ length,
&integer value,
&aggregate_index );

if ( FAILURE ( status ) )

return ( status );

(continued on next page)

10-18 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

/* Store the x-coordinate integer value in the polyline path array. */

aggregate_item = DDIF$_LIN_PATH;

integer_value = poly points[i][0];

aggregate_index = 1 * 2;

status = cda$store_item( &root_aggregate handle, QB
&aggregate_handle_stack[ahs_ index],
&aggregate_item,
&integer_length,
&integer_value,
&aggregate_index );

if( FAILURE( status ) )

return ( status ):;

/%
** Now store the y-coordinate for each point.

*/

aggregate_item = DDIF$_LIN_PATH C;

integer_value = DDIFS$K_VALUE_CONSTANT;

aggregate_index = ((2 * i) + 1 );

status = cda$store_item( &root_aggregate handle, ®
&aggregate handle stack[ahs_index],
&aggregate item,
&integer length,
&integer_value,
&aggregate index );

if( FAILURE( status ) )

return ( status );

aggregate item = DDIF$_LIN PATH;

integer_value = poly points[i][1];

aggregate_index = ((2 * i) + 1 );

status = cdaS$store_item( &root_aggregate_handle, 2]
&aggregate handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_value,
&aggregate_index ):

if ( FAILURE( status ) )

return ( status ):;
}: /* End of "for" loop */

ahs_index--; /* End of pline. */ ®

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate handle = aggregate_ handle_stack[ahs_index];
status = create_hrd_dir ( &root_aggregate handle, @
&previous_aggregate_handle,
&aggregate handle_stack[ahs_index],
DDIFS$K_DIR NEW _LINE );
if( FAILURE( status )} )
return ( status );

(continued on next page)

CDA Toolkit Example Program 10-19



Example 10-1 (Cont.): Sample CDA Toolkit Program

previous_aggregate handle = aggregate handle stacklahs_index];
status = create_hrd dir ( &root aggregate handle,
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],
DDIF$K_DIR NEW_LINE );
if ( FAILURE( status ) )
return ( status );

/* Insert next general-text line. */

previous_aggregate handle = aggregate_handle_stack[ahs_index];
status = create_gtx ( &root_aggregate_handle, (9]
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],
"The following is a polyline within a frame:" );
if( FAILURE( status ) )
return ( status ):;

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate_handle = aggregate handle stack[ahs_index];

status = create_hrd dir ( &root_aggregate_handle, (50]
&previous_aggregate_handle,
&aggregate_handle stack[ahs_index],
DDIF$K_DIR NEW_LINE );
if( FAILURE( status ) )
return ( status );

previous_aggregate handle = aggregate_ handle stack[ahs_index];
status = create_hrd dir ( &root_aggregate_handle,
&previous_aggregate_handle,
&aggregate handle_stack[ahs_index],
DDIF$K_DIR_NEW_LINE );
if( FAILURE( status ) )
return ( status );

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate handle = aggregate_handle stack[ahs_index];
status = create_hrd dir ( &root_aggregate_handle,
&previous_aggregate handle,
&aggregate_handle stack[ahs_index],
DDIF$K_DIR NEW_LINE );
if( FAILURE( status ) )
return ( status );

previous aggregate handle = aggregate handle stack[ahs_index];
status = create_hrd dir ( &root_aggregate_handle,
&previous_aggregate_handle,
&aggregate handle_stack[ahs_index],
DDIF$K_DIR_NEW_LINE );
if( FAILURE( status ) )
return ( status );

/*
** Create new segment to define Bezier curve.

*/

(continued on next page)

1020 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program A

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
aggregate_type = DDIF$_SEG;
status = cda$create_aggregate( &root_aggregate_handle, 51
&aggregate_type,
&aggregate_handle stack[ahs_index] );
if ( FAILURE( status ) )
return ( status );

/*
** Insert after previous aggregate. (Insert rather than store, as
** this is a sequence of aggregates.)
x/
status = cda$insert_aggregate( &aggregate_handle_stack[ahs_index],
&previous_aggregate_handle );

if( FAILURE( status ) )

return ( status );

/* Store the segment ID. */

aggregate_item = DDIF$_SEG_ID;

status = cda$store_item( &root_aggregate handle, (52}
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&bline label length,
bline label ):

1f( FAILURE( status ) )

return ( status );

/* Store the segment type ("FRAME"). */

aggregate_item = DDIF$_SEG SEGMENT_ TYPE;

status = cda$store item( &root_aggregate_ handle,
&aggregate handle_ stack[ahs_index],
&aggregate_item,
&tyd_label length,
tyd_label );

if ( FAILURE( status ) )

return ( status );

/* Create a Bezier Curve aggregate. */

aggregate_type = DDIF$ BEZ;
previous_aggregate_handle = aggregate_handle_stack[ahs_index];
ahs_index++;
status = cda$create_aggregate( &root_aggregate_ handle, (53]
&aggregate_type,
&aggregate_handle stack[ahs_index] );
if( FAILURE( status ) )
return ( status );

/* Store the Bezier Curve aggregate */

aggregate_item = DDIF$_SEG_CONTENT;

status = cda$store_item( &root_aggregate_ handle, @
&éaggregate_handle stackfahs_index-11,
&aggregate_item,
&aggregate_handle_length,
&aggregate handle_stack([ahs_index] );

if( FAILURE( status ) )

return ( status );

(continued on next page)

CDA Toolkit Example Program 10-21



Example 10—1 (Cont.): Sample CDA Toolkit Program

/* Store the Flags item into the Bezier Curve aggregate. */

aggregate item = DDIF$_BEZ_FLAGS;

integer_value = Oxl;

status = cda$store item( &root_aggregate handle,
&aggregate handle_ stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer_value );

if( FAILURE( status ) )

return ( status );

/*
** For the points to be used, store "VALUE CONSTANT" as the data type
** choice, followed by the value of the point.

*/

for (i = 0; i < MAX POINTS; i++ )

{

aggregate item = DDIF$_BEZ_ PATH_C;

integer_value = DDIF$K VALUE_ CONSTANT;

aggregate_index = 1 * 2;

status = cda$store_item( &root_aggregate_handle, ®
&aggregate_handle_ stack[ahs_index],
&aggregate item,
&integer_ length,
&integer_value,
&aggregate_index );

if ( FAILURE( status ) )

return ( status );

/* Store the x—-coordinate integer value in the polyline path array. */

aggregate_item = DDIF$_BEZ_ PATH;

integer value = poly points([i][0];

aggregate_index = i * 2;

status = cda$store_item( &root_aggregate_ handle, @@
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer length,
&integer value,
&aggregate_index );

if( FAILURE( status ) )

return ( status );

/%
** Now store the y-coordinate for each point.
*/

aggregate_item = DDIF$_BEZ_PATH_C;

integer value = DDIF$K VALUE_CONSTANT;

aggregate_index = ((2 * i) + 1 );

status = cda$store_item( &root_aggregate handle, 57
&aggregate handle stack[ahs_index],
&aggregate item,
&integer_ length,
&integer_ value,
&aggregate_index );

if ( FAILURE( status ) )

return ( status ):;

(continued on next page)

10-22 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate_item = DDIF$_BEZ_PATH;

integer_value = poly points[i][1];

aggregate_index = ((2 * 1) + 1 );

status = cda$store_item( &root_aggregate_handle, @
&aggregate_handle_stack([ahs_index],
&aggregate_item,
&integer length,
&integer_value,
&aggregate_index );

if( FAILURE( status ) )

return ( status ):
}; /* End of "for" loop */

ahs_index--; /* End of Bezier segment */

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate handle = aggregate_handle_stack[ahs_index];
status = create_hrd dir ( &root_aggregate_handle, ®
&previous_aggregate_handle,
saggregate handle_stack[ahs_index],
DDIF$K DIR NEW _LINE );
if( FAILURE( status ) )
return ( status ):;

previous_aggregate_handle = aggregate_handle_ stack[ahs_index];
status = create_hrd dir ( &root_aggregate_handle,
&previous_aggregate_handle,
&aggregate handle stack([ahs_index],
DDIF$K DIR NEW_LINE );
if( FAILURE( status ) )
return ( status ):;

/* Insert next general-text line. */

previous_aggregate_handle = aggregate handle_stack([ahs_index];

status = create_gtx ( &root_aggregate_handle, @
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],

"The following is a basketweave-filled arc \
within a frame:" );
if ( FAILURE( status ) )
return ( status );

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create_hrd dir ( &root_aggregate_handle, (6]
&previous_aggregate_handle,
&aggregate handle_stack[ahs_index],
DDIF$K_DIR NEW_LINE );
if( FAILURE( status ) )
return ( status );

previous_aggregate handle = aggregate_ handle_stack[ahs_index];
status = create_hrd_dir ( &root_aggregate_handle,
&previous_aggregate_handle,
&aggregate_handle stack[ahs_index],
DDIF$K_DIR NEW_LINE );
if ( FAILURE( status ) )
return ( status );

(continued on next page)

CDA Toolkit Example Program 10-23



Example 10-1 (Cont.): Sample CDA Toolkit Program

/*

** Create new segment to define special segment attributes for
**% the arc.

*/

previous_aggregate_handle = aggregate_handle stack[ahs_index];
aggregate_type = DDIF$_SEG;
status = cda$create_aggregate( &root_aggregate_handle, (62]
&aggregate_type,
&aggregate handle_ stack[ahs_index] );
if ( FAILURE( status ) )
return ( status );

/* Insert after previous aggregate. */

status = cda$insert_aggregate( &aggregate_handle_stack[ahs_index],
’ &previous_aggregate handle );
if ( FAILURE( status ) )
return ( status );

/* Store the segment ID. */

aggregate_item = DDIF$_SEG_ID;

status = cda$store_item( &root_aggregate_handle, (62}
&aggregate_handle_stack[ahs_index],
&aggregate_ item,
&filled_arc_label length,

filled arc label );
if( FAILURE( status ) )
return ( status );

/* Store the segment type ("FRAME"). */

aggregate item = DDIF$_SEG_SEGMENT TYPE;
status = cda$store_item( &root_aggregate_handle,
&aggregate handle_stack{ahs_index],
&aggregate_item,
&tyd label length,
tyd label );
if( FAILURE( status ) ) .
return ( status );

/*
**% Create a segment aggregate and store in the seg-content item.

*/

ahs_index++;
aggregate_type = DDIF$_SEG; .
status = cda$create_aggregate( &root_aggregate_ handle, @
&aggregate_type,
&aggregate_handle_stack([ahs_index] );
if ( FAILURE ( status ) )
return ( status );

(continued on next page)

10-24 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate item = DDIF$ SEG_CONTENT;

status = cda$store_item( &root_aggregate_handle, @9
&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack{ahs_index] );

if( FAILURE( status ) )

return ( status );

/*
** Create new segment attributes aggregate to define the arc’s
** attributes, and store it in the segment aggregate just created.

*/

ahs_index++;
aggregate_type = DDIF$_SGA;
status = cda$create aggregate( &root_aggregate_handle, ®
&aggregate_type,
&aggregate handle_stack([ahs_index] );
if ( FAILURE( status ) )
return ( status );

aggregate_item = DDIF$_SEG_SPECIFIC_ATTRIBUTES;

status = cda$store_item( &root_aggregate_handle, @
&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate handle_stack[ahs_index] );

if ( FAILURE( status ) )

return ( status );

/*
** Now store the specific attributes for the arc.

*/

aggregate_item = DDIF$_SGA LIN WIDTH C;

integer_value = DDIFS$K VALUE_CONSTANT;

status = cda$store_item( &root_aggregate handle,
&aggregate_handle stack[ahs_index],
&aggregate_item,
&integer length,
&integer_value );

if( FAILURE( status ) )

return ( status );

aggregate item = DDIF$_SGA_LIN_WIDTH;

integer_value = arc_line_width;

status = cda$store_item( &root_aggregate_handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer value );

if ( FAILURE( status ) )

return ( status );

(continued on next page)

CDA Toolkit Example Program 10-25



Example 10-1 (Cont.): Sample CDA Toolkit Program

aggregate_ item = DDIF$_SGA LIN_STYLE;

integer_ value = DDIFS$K_SOLID_LINE STYLE;

status = cda$store_item( &root_aggregate_handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_value );

if( FAILURE( status ) )

return ( status );

aggregate_item = DDIF$_SGA LIN_END_START;

integer_value = DDIF$K_ROUND_LINE END;

status = cda$store_item( &root_aggregate_handle,
&aggregate_handle stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer_value );

if( FAILURE( status ) )

return ( status );

aggregate_item = DDIF$ SGA LIN END FINISH;

integer_value = DDIF$K ROUND_LINE_END;

status = cda$store_ item( &root_aggregate handle,
&aggregate handle_stack({ahs_index],
&aggregate item,
&integer_length,
&integer_value );

if ( FAILURE( status ) )

return ( status );

aggregate_item = DDIFS$_SGA LIN_JOIN;

integer_ value = DDIF$K_MITERED_LINE_JOIN;

status = cda$store_item( &root_aggregate_handle,
&aggregate_handle_stack([ahs_index],
&aggregate_item,
&integer_length,
&integer_value );

if ( FAILURE( status ) )

return ( status ):

aggregate_item = DDIF$_SGA LIN_INTERIOR PATTERN;

integer value = DDIF$K PATT BASKET WEAVE;

status = cda$store item( &root_aggregate_ handle,
&aggregate handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_value );

if( FAILURE( status ) )

return ( status );

ahs_index--; /* End of line attributes */ (65]

(continued on next page)

10-26 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

/* Create an Arc Content aggregate. */

aggregate_type = DDIF$_ARC;

previous_aggregate_handle = aggregate handle_stack[ahs_index];

ahs_index++;

status = cdaScreate_aggregate( &root_aggregate_handle, ®
&aggregate_ type,
&aggregate_handle_stack[ahs_index] );

if ( FAILURE( status ) )

return ( status );

/*

** Store the arc-content aggregate as the seg _content of the previous

** aggregate.

*/

aggregate_ item = DDIF$_SEG_CONTENT;

status = cda$store_item( &root_aggregate_handle, /0]
&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle length,
&aggregate_handle stack[ahs_index] );

if ( FAILURE ( status ) )

return ( status );

/* Store the Flags item into the arc aggregate. */

set_arc_flags.ddif$v_arc_draw_arc = 1;
set_arc_flags.ddif$v_arc_fill arc = 1;
set_arc_flags.ddif$v_arc pie_ arc = 1;
set_arc_flags.ddif$v_arc close_arc = 0;
set_arc_flags.ddif$v_arc_flags_f£fill = 0;

aggregate_item = DDIF$ ARC_FLAGS;
status = cda$store_item( &root_aggregate_ handle,
‘ &aggregate_handle_stack[ahs_index],

&aggregate_ item,
&integer_length,
&set_arc flags ):;

if ( FAILURE( status ) )

return ( status );

/* Store "VALUE CONSTANT" as the data type choice for the arc
center x-coordinate. */

aggregate_item = DDIF$_ ARC_CENTER X C;

integer value = DDIF$K_VALUE CONSTANT;

status = cda$store_item( &root_aggregate_handle,
&aggregate_handle_stack[ahs_index],
&aggregate item,
&integer length,
&integer value );

if( FAILURE ( status ) )

return ( status ):

(continued on next page)

CDA Toolkit Example Program 10-27



Example 10-1 (Cont.): Sample CDA Toolkit Program

/* Store an integer value for the arc center x-coordinate. */

aggregate_item = DDIF$_ARC CENTER X;

integer_value = 3000;

status = cda$store_item( &root_aggregate_handle,
&aggregate handle_ stack([ahs_index],
&aggregate_item,
&integer length,
&integer value );

if ( FAILURE( status ) )

return ( status );

/* Store "VALUE CONSTANT" as the data type choice for the arc
center y-coordinate. */

aggregate_item = DDIF$_ARC_CENTER Y C;

integer_value = DDIF$K_VALUE_CONSTANT;

status = cda$store_item( &root_aggregate_handle,
&aggregate _handle stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_ value );

if( FAILURE( status ) )

return ( status ):

/* Store an integer value for the arc center y-coordinate. */

aggregate_item = DDIF$ ARC CENTER Y;

integer value = 150;

status = cdaS$store_item( &root_aggregate handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer value );

if ( FAILURE( status ) )

return ( status );

/* Store "VALUE CONSTANT" as the data type choice for the arc
radius x value. */

aggregate_item = DDIF$_ARC_RADIUS X C;

integer value = DDIF$K_VALUE_CONSTANT;

status = cda$store_item( &root_aggregate_handle,
&aggregate_handle stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer value );

if ( FAILURE ( status ) )

return ( status );

/* Store an integer value for the arc radius x value. */

aggregate_item = DDIF$_ARC_RADIUS X;

integer value = 2000;

status = cda$store_item( &root_aggregate_handle,
&aggregate handle_stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer_value );

if ( FAILURE( status ) )

return ( status );

(continued on next page)

10-28 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

/* Store "ANGLE CONSTANT" as the data type choice for the arc
start value. */

aggregate_item = DDIF$ ARC_START_C;

integer value = DDIF$K _ANGLE_ CONSTANT;

status = cda$store item( &root_ aggregate handle,
&aggregate _handle_stack[ahs_index],
&aggregate_item,
&integer_ length,
&integer_value );

if ( FAILURE( status ) )

return ( status );

/* Store an integer value for the arc start value. */

aggregate_item = DDIF$_ARC_START;

local_length = sizeof( arc_start );

status = cda$store_item( &root_aggregate_handle,
&aggregate handle_stack[ahs_index],
&aggregate_item,
&local length,
.&arc_start ):

if ( FAILURE( status ) )

return ( status );

/* Store "ANGLE CONSTANT" as the data type choice for the arc
EXTENT value. */

aggregate_item = DDIFS$_ARC EXTENT C;

integer value = DDIF$K_ANGLE_CONSTANT;

status = cda$store item( &root_aggregate_handle,
&aggregate handle_ stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_ value );

if ( FAILURE( status ) )

return ( status );

/* Store an integer value for the arc EXTENT value. */

aggregate_item = DDIF$_ARC_EXTENT;

local_length = sizeof( arc_extent );

status = cda$store_item( &root_aggregate handle,
&aggregate_handle stack[ahs_index],
&aggregate_item,
&local length,
&arc_extent );

if ( FAILURE( status ) )

return ( status );

ahs_index--; /* End of arc. */
ahs_index--; /* End of arc-attribute segment */

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate handle = aggregate handle stack([ahs_index];
status = create_hrd dir ( &root_aggregate_ handle, (/1]
&previous_aggregate_ handle,
&aggregate_handle stack([ahs_index],
DDIF$K DIR NEW_LINE );
if ( FAILURE( status ) )
return ( status );

(continued on next page)

CDA Toolkit Exampie Program 10-29



Example 10-1 (Cont.): Sample CDA Toolkit Program

previous_aggregate handle = aggregate_handle stack([ahs_index];
status = create_hrd dir ( &root_aggregate_ handle,
&previous_aggregate handle,
&aggregate handle_stack[ahs_index],
DDIF$K_DIR NEW_LINE );
if ( FAILURE( status ) )
return ( status );

/* Insert next general-text line. */

previous_aggregate_handle = aggregate_handle_stack([ahs_index];
status = create_gtx ( &root_aggregate_handle, @
&previous_aggregate handle,
&aggregate_handle_stack[ahs_index],
"This ends the examples." );
if( FAILURE ( status ) )
return ( status );

ahs_index--; /* End of image segment */
ahs_index--; /* End of document content. */

/* Create an output file to receive the DDIF stream. */

status = cdaScreate file( &filename_length,
filename,
0o, 0, 0, 0, O,
&root_aggregate_ handle,
&result_file_spec len,
result file spec,
&result file_ spec len,
&stream handle,
&file_handle,
&root_aggregate_handle );
if ( FAILURE( status ) )
~return ( status );

result_file spec[result_file spec len] = 0;
printf ("Created file: %s\n",result_file spec );
/* Write the DDIF stream to the output file */
printf ("Writing document...\n" );

status = cda$put_document ( &root_aggregate handle,
&stream handle );
if( FAILURE( status ) )
return ( status );

/* Close the output file. */

status = cdaS$close_file( &stream handle,
&file handle );
if ( FAILURE( status ) )
return ( status );

/* Delete the Root aggregate structure. */

status = cda$delete root_aggregate( &root_aggregate_handle );
if ( FAILURE( status ) )
return ( status );

return;

(continued on next page)

10-30 CDA Toolkit Example Program



Example 10-1 (Cont.): Sample CDA Toolkit Program

/*

** This routine creates a hard-directive aggregate for the specified

** directive type, and inserts it after the specified previous

* %

*/

aggregate. It returns the handle of the newly-created aggregate.

unsigned long create_hrd dir (root_handle,

previous_handle,
return_handle,

dir type )
unsigned long *root_handle; /* Root aggregate handle. */
unsigned long *previous_handle; /* previous handle */
unsigned long *return_handle; /* Handle to be returned. */
unsigned long dir_type; /* Directive item code. */

{

unsigned long aggregate_handle;
unsigned long aggregate_handle_ length = sizeof( aggregate_ handle );
unsigned long aggregate_type;

unsigned long aggregate_item;

unsigned long integer_value;

unsigned long integer_length = sizeof( integer_value );
unsigned long status;

/* Create a Hard Directive aggregate. */

aggregate_type = DDIF$_HRD;
status = cda$create_aggregate (root_handle,
&aggregate_type,
&aggregate_handle );
if ( FAILURE( status ) )
return ( status ):;

/* Insert the Hard Directive aggregate in the sequence of aggregates. */

status = cda$insert_aggregate( &aggregate_handle,
previous_handle );
if ( FAILURE( status ) )
return ( status );

/* Store the designated directive as an item in the
Hard Directive aggregate. */

aggregate_item = DDIF$_HRD_ DIRECTIVE;

integer_value = dir_type;

status = cda$store_item(root_handle,
&aggregate_handle,
&aggregate_item,
&integer length,
&integer value );

if ( FAILURE( status ) )

return ( status ):;

*return_handle = aggregate_handle;

return(l );

(continued on next page)

CDA Toolkit Example Program 10-31



Example 10-1 (Cont.): Sample CDA Toolkit Program

/*
** This routine creates a general-text aggregate for the specified
** text, and inserts it after the specified previous aggregate. It
** returns the handle of the newly-created aggregate.
*/
unsigned long create_gtx (root_handle,

previous_handle,

return handle,

gtx_string )
unsigned long *root_handle; /* Root aggregate handle. */
unsigned long *previous_handle; /* previous handle */
unsigned long *return_handle; /* Handle to be returned. */
char *gtx_string; /* Ptr to text string. */

{

unsigned long aggregate_handle;
unsigned long aggregate_handle_ length = sizeof( aggregate_handle );
unsigned long aggregate_type;
unsigned long aggregate_item;
unsigned long add_info;
unsigned long integer_ value;
unsigned long local_length;
unsigned long status;

/* Create another General Text Content aggregate. */

aggregate_type = DDIF$_GTX;
status = cda$create_aggregate (root_handle,
&aggregate_type,
&aggregate_handle );
if( FAILURE( status ) )
return ( status );

/* Insert the Text aggregate in the sequence of aggregates.

status = cdaS$insert_aggregate( &aggregate_handle,
previous_handle );
if ( FAILURE( status ) )
return ( status );

/* Store more text into the General Text aggregate. */

aggregate_item = DDIFS$_GTX_ CONTENT;
add_info = CDASK ISO_LATIN1;
local_length = strlen( gtx string );
status = cda$store_item(root_handle,
&aggregate handle,
&aggregate_item,
&local length,
gtx_string,
0,
&add_info );
if( FAILURE( status ) )
return ( status );

*return_handle = aggregate_handle;

*/

10-32 CDA Toolkit Example Program

(continued on next page)



Example 10-1 (Cont.): Sample CDA Toolkit Program

return(l );

Example 10-2 illustrates the Analysis output of the DDIF document created
by Example 10-1. The callouts in Example 10-1 correspond to the callouts in
Example 10-2.

In the Analysis output of a DDIF file, the following symbols are used.
* A left brace indicates the beginning of an aggregate.

* Aright brace indicates the end of an aggregate.

* A left parenthesis indicates the beginning of an array.

¢ A right parenthesis indicates the end of an array.

Additionally, in this example all hexadecimal values produced by the Analysis
back end have been restored to their ASCII representations.

Note that default values are indicated by the comment “[Default value.]”. These
values are not specified in Example 10-1; instead, the default values specified by
the CDA Toolkit are accepted.

Example 10-2: Analysis Output of DDIF File

DDIF_DOCUMENT

{
DDF_DESCRIPTOR

{
DSC_MAJOR VERSION 1 ! Longword Integer
DSC_MINOR VERSION 0 ! Longword Integer
DSC_PRODUCT_IDENTIFIER "DDIFS$"
DSC_PRODUCT_NAME
(
® 150 1ATINI "Test V1.0"
)
}

@ DDF_HEADER

0 ¢
© DHD EXTERNAL REFERENCES
®

® ErF DATA TYPE
(

(continued on next page)

CDA Toolkit Example Program 10-33



o6

o

000 BOO00 0OPBS

Example 10-2 (Cont.): Analysis Output of DDIF File

1 ! Object Identifier
3 | Object Identifier
12 ! Object Identifier

1011 ! Object Identifier
1 ! Object Identifier
3 ! Object Identifier
1 ! Object Identifier
)
ERF_DESCRIPTOR
(
ISO_LATIN1 "Style Guide"
)
ERF_LABEL ISO_LATIN1 "defstyle" ! Char. string.
ERF_LABEL_TYPE STYLE LABEL_TYPE "$STYLE"
ERF_CONTROL NO_COPY_REFERENCE ! Integer = 2
}

DHD_LANGUAGES_C
(

ISO_639 LANGUAGE ! Integer = 0
ISO_639_LANGUAGE ! Integer = 0
)
DHD_LANGUAGES
(
"E/USA/" '
"Mandarin"

)
DHD_ STYLE_GUIDE 1 ! Longword Integer

}
DDF_CONTENT

{
SEG_CONTENT

{
SEG_SEGMENT_TYPE "PARA"

SEG_SPECIFIC ATTRIBUTES

{
SGA_TYPE_DEFNS

{

TYD LABEL "FRAME"
TYD ATTRIBUTES

{
SGA_CONTENT CATEGORY TWOD_CATEGORY "$2D"

SGA FRM_FLAGS "%B01000000000000000000000000000000" ! Flags

SGA_FRM BOX LL X C VALUE_CONSTANT ! Integer = 0
SGA_FRM BOX LL X 0 ! Longword Integer

SGA_FRM BOX LL Y C VALUE_CONSTANT ! Integer

SGA_FRM BOX LL Y 0 ! Longword Integer

SGA_FRM BOX UR X C VALUE CONSTANT ! Integer

SGA_FRM BOX UR X 6000 ! Longword Integer

SGA_FRM BOX UR_Y C VALUE CONSTANT ! Integer

SGA_FRM BOX_UR_ Y 2400 ! Longword Integer
SGA_FRM POSITION_C FRAME GALLEY ! Integer
SGA_FRMGLY VERTICAL FRMGLY_BELOW_CURRENT
SGA_FRMGLY_ HORIZONTAL FMT_CENTER_OF PATH

]
o

1
o

I
o

=2

Integer = 1 [Default]
Integer = 2 [Default]

10-34 CDA Toolkit Example Program

(continued on next page)



Example 10-2 (Cont.): Analysis Output of DDIF File

@ SEG_CONTENT
®
(35) TXT CONTENT “This is the first line of the example text."
}
®
HRD DIRECTIVE DIR SPACE ! Integer = 5
}
@
GTX_CONTENT 1ISO_LATINl "This is the second line of the example text,
and should be separated from the first line by a single space."™ ! Char. string.
}
@ ¢
HRD DIRECTIVE DIR NEW LINE ! Integer = 2
}
{
GTX_CONTENT ISO LATIN1 "The third line of the example text will
begin on a new line." ! Char. string.

1

{

HRD DIRECTIVE DIR NEW LINE ! Integer
}
{

HRD DIRECTIVE DIR NEW LINE ! Integer
}

{
GTX_CONTENT ISO LATIN1 "The fourth line of the example text will be

separated from the previous lines by a blank line, and will be the last
text on the first page." ! Char. string.

}

{

HRD_DIRECTIVE DIR NEW PAGE ! Integer = 1

}

{

1
[\V]

I
N

GTX_CONTENT ISO_LATIN1 "The following is a Bezier curve, using the

same path as the polyline, within a frame:" ! Char. string.
}
®
@® sec_ 1D "pline"
SEG_SEGMENT TYPE "FRAME"
@  SEG CONTENT
@
LIN_FLAGS "%B10000000000000000000000000000000" ! Flags
LIN _DRAW PATTERN "$B1111" ! Bit string
LIN PATH C
(
® VALUE_CONSTANT ! Integer = 0
q? VALUE CONSTANT ! Integer = 0
VALUE_CONSTANT ! Integer = 0
VALUE _CONSTANT ! Integer = 0
VALUE_CONSTANT ! Integer = 0
VALUE_CONSTANT ! Integer = 0
VALUE CONSTANT ! Integer = 0
VALUE_CONSTANT ! Integer = 0

(continued on next page)

CDA Toolkit Example Program 10-35



e 6

®

5]

88 09

X

Example 10-2 (Cont.): Analysis Output of DDIF File

LIN PATH
(
500 ! Integer
500 ! Integer
2500 ! Integer
2000 ! Integer
3500 ! Integer
2000 ! Integer
5500 ! Integer
500 ! Integer
)
}
}
{
HRD_DIRECTIVE DIR NEW_LINE Integer =
}
{
HRD_DIRECTIVE DIR NEW_LINE Integer =
}
{
GTX_CONTENT ISO LATIN1 "The following is a polyline
within a frame:" ! Char. string.
}
{
HRD_DIRECTIVE DIR_NEW_LINE Integer =
}
{
HRD DIRECTIVE DIR_NEW_LINE Integer =
}
{
HRD DIRECTIVE DIR_NEW_LINE Integer =
}
{
HRD DIRECTIVE DIR NEW LINE Integer =
}
{
SEG_ID "bline"
SEG_SEGMENT_TYPE "FRAME"
SEG_CONTENT
{
BEZ_FLAGS "%B10000000000000000000000000000000" ! Flags
BEZ_PATH_C
(
VALUE_CONSTANT ! Integer =
VALUE_CONSTANT ! Integer =
VALUE_CONSTANT ! Integer = 0
VALUE_CONSTANT ! Integer = 0
VALUE_CONSTANT ! Integer = 0
VALUE CONSTANT ! Integer = 0
VALUE CONSTANT ! Integer = 0
VALUE CONSTANT ! Integer = 0

10-36 CDA Toolkit Example Program

(continued on next page)



®
®

®

@

0980 8 @

Example 10-2 (Cont.): Analysis Output of DDIF File

BEZ_PATH
(
500 ! Integer
500 ! Integer
2500 ! Integer
2000 ! Integer
3500 ! Integer
2000 ! Integer
5500 ! Integer
500 ! Integer

HRD_DIRECTIVE DIR NEW LINE !
}
{
HRD_DIRECTIVE DIR NEW LINE !
}

Integer

Integer

{
"The following

1 Char. string

GTX_CONTENT ISO LATINI

basketweave-filled arc within a frame:"
}

{

HRD DIRECTIVE DIR NEW_LINE !
}
{
HRD_DIRECTIVE DIR NEW_LINE !

}

Integer

Integer

{

SEG_ID "filled arc"

SEG_SEGMENT TYPE "FRAME"
SEG_CONTENT

{

SEG_SPECIFIC_ATTRIBUTES

{

SGA_LIN WIDTH C VALUE_CONSTANT ! In
SGA_LIN WIDTH 60 ! Longword Integer
SGA_LIN_STYLE SOLID_LINE STYLE ! In
SGA_LIN_END START ROUND_LINE END !
SGA_LIN _END FINISH ROUND _LINE END !
SGA_LIN_JOIN MITERED LINE JOIN ! In
SGA_LIN_INTERIOR_PATTERN 41 ! Longw

is a

.

teger

teger

Integer
Integer =

teger 1

ord Integer

2
2

(continued on next page)

CDA Toolkit Example Program 10-37



Example 10-2 (Cont.): Analysis Output of DDIF File

@ SEG_CONTENT
® {
ARC_FLAGS "$%B11100000000000000000000000000000" ! Flags
ARC_CENTER_X C VALUE_CONSTANT ! Integer = 0
ARC_CENTER_X 3000 ! Longword Integer
ARC_CENTER_Y C VALUE_CONSTANT ! Integer = 0
ARC_CENTER Y 150 ! Longword Integer
ARC_RADIUS_X C VALUE_CONSTANT ! Integer = 0
ARC_RADIUS_X 2000 ! Longword Integer
ARC_RADIUS_DELTA_Y C VALUE CONSTANT ! Integer = 0 [Default]
ARC RADIUS DELTA Y O ! Longword Integer [Default]
ARC_START_C ANGLE_CONSTANT ! Integer = 0
ARC_START "%F4.500000e+01"™ ! Single Prec. Floating Point
ARC_EXTENT_C ANGLE_CONSTANT ! Integer = 0
ARC_EXTENT "%F9.000000e+01"™ ! Single Prec. Floating Point
ARC_ROTATION C ANGLE_CONSTANT ! Integer = 0 [Default]
ARC_ROTATION "$F0.000000e+00" ! Single Prec. Floating Point [Default]
}
}
}
D
HRD DIRECTIVE DIR NEW LINE ! Integer = 2
}
{
HRD DIRECTIVE DIR NEW LINE ! Integer = 2
}
@
GTX _CONTENT ISO _LATIN1 "This ends the examples." ! Char. string.

}
}
}
}

10-38 CDA Toolkit Example Program



Chapter 11

CDA Converter Routines

This chapter provides detailed discussions of the converter routines and the
VMS and ULTRIX compile and link procedures that applications must create in
writing CDA-conforming front and back ends. Each routine description includes
the following information:

* A routine definition that each application must name according to its
operating system-specific format

* Descriptions of each routine argument
e A description of the routine itself

¢ A list of possible values returned by each routine argument

NOTE

The entry points and conventions defined throughout this reference
section must be followed on both VMS and ULTRIX systems in order
for all front and back ends to work properly with the CDA Converter
Kernel.

If you are programming in Ada, please refer to the Guide to Applications
Programming for information on Ada programming with DECwindows.

11.1 Compile and Link Procedures for Converter Images

To create a VMS or ULTRIX front or back end image using the CDA Toolkit
routines, include the following public files in your source code:

VMS and ULTRIX

File Names Description
SYS$LIBRARY:cda$def.h CDA Toolkit keyword definitions
fusr/include/cda_def.h

SYS$LIBRARY:ddif$def.h DDIF aggregate definitions
fusr/include/ddif_def.h

SYS$LIBRARY:dtif$def.h DTIF aggregate definitions
fusr/include/dtif_defh

SYS$LIBRARY:cda$msg.h CDA error messages

fusr/include/cda_msg.h

Section 11.1.1 describes the VMS compile and link procedure for CDA converters.
Section 11.1.2 describes the ULTRIX compile and link procedure for CDA
converters.

CDA Converter Routines 111



11.1.1 VMS Compile and Link Procedure

You can compile and link a front end on VMS using the following build procedure:

$ cc ddif$cvt_src:cda$rtx
$ link /share=ddif$read_text -
sys$input:/option
identification="DECwindows v1.0"
universal = ddifS$read text
gsmatch=lequal, 1,0
psect=$char_string constant, shr,exe,nowrt
psect=8$data, shr, exe, nowrt
cdaSrtx
sys$library:cdas$access/share
sys$share:vaxcrtl/share

You can compile and link a back end on VMS using the following build procedure:

$ cc ddif$cvt_src:cda$rtx
$ link /share=ddifSwrite text -
sys$input:/option
identification="DECwindows v1.0"
universal = ddif$write text
gsmatch=lequal, 1,0
psect=$char_string constant, shr, exe, nowrt
psect=8$data, shr, exe, nowrt
cdas$rtx
sys$library:cda$access/share
sys$share:vaxcrtl/share

Note that this compile and link procedure does not provide debugging.

When the build is complete, define a logical named domain$read_format that
points to your executable image so that the CONVERT/DOCUMENT or cdoc
command will locate your converter when the CDA$_INPUT_FORMAT value (for
front ends) or the CDA$_OUTPUT_FORMAT value (for back ends) is passed into
the std-item list.

11.1.2 ULTRIX Compile and Link Procedure

You can compile and link a front end on ULTRIX using the following build
procedure:

$ cc —o ddif_read myformat ddif read myformat.c -
-1lddif fe -1ddif ~1m

You can compile and link a back end on ULTRIX using the following build
procedure:
$ cc —o ddif write myformat ddif write myformat.c -
-1ddif be -1ddif -1lm
In the build procedure for a front end or back end on ULTRIX systems, the -lm

parameter specifies the math library that is required by the CDA Toolkit routines
(-1ddif).

When the build procedure on ULTRIX systems is complete, you should store the
output file in the /usr/bin directory for use with the cdoc command. Alternatively,
you can define CDAPATH (an environment variable) to be the directory containing
your front end or back end. The CDA Converter Kernel searches CDAPATH first
when you invoke the edoc command.

11-2 CDA Converter Routines



Close Entry Point

Close Entry Point

Terminates the operation of a front end by closing all open files and releasing all
dynamic memory and other resources that have been allocated by the front end.
The close routine is one of the routines that compose a front end.

FORMAT
status = close-procedure
(front-end-context)
Argument Information
Argument Argument Information
status Usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
front-end-context Usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

RETURNS
status
- A condition value indicating the return status of the routine call.
front-end-context
Context returned by either ddif$read_format or dtif$read_format.

The front-end-context argument is the address of an unsigned longword that
contains this context. This context must specify the input file or stream to be
closed.

CDA Converter Routines 11-3



Close Entry Point

Description

In the document method of conversion, the input file or stream has already been
closed by the ddif$read_format or dtif$read_format routine. Therefore, the close
routine simply performs regular cleanup operations and returns control to the
CDA Converter Kernel.

In the aggregate method of conversion, the close routine must close the currently
open file or stream in addition to performing the regular cleanup work. If the
format of the input file is not DDIF, DTIF, or Text, the front end must supply its
own file-closing capability, typically through the use of the RMS $CLOSE service,
or the close C run-time library routine or equivalent language statement. Once
all cleanup work has been completed, the close routine passes control back to the
CDA Converter Kernel.

The name of this routine is defined by the user. The front end simply returns the
address of this routine to the CDA Converter Kernel.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion

The close routine can also return any front end-specific error conditions.

11-4 CDA Converter Routines



Get-Aggregate Entry Point

Get-Aggregate Entry Point

Returns the next aggregate in the document to the converter kernel. The get-
aggregate routine is one of the routines that compose a front end.

FORMAT
status = get-aggregate-procedure

(front-end-context ,aggregate-handle
,aggregate-type)

Argument Information

Argument Argument Information
status Usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
front-end-context Usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
aggregate-handle Usage: identifier
Data type: longword (unsigned)
Access: write only
Mechanism: by reference
aggregate-type Usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

RETURNS

status

A condition value indicating the return status of the routine call.

CDA Converter Routines 11-5



Get-Aggregate Entry Point

front-end-context
Context returned from either ddif$read_format or dtif$read_format.

The front-end-context argument is the address of an unsigned longword that
contains this context. Typically, this argument is used to specify the type of
content aggregate to be created by the get-aggregate routine.

aggregate-handle

Receives the handle of the created and populated aggregate. The aggregate-
handle argument is the address of an unsigned longword that receives this
aggregate handle. This handle must be used in all subsequent operations on that

aggregate.

aggregate-type

Receives the aggregate type. The aggregate-type argument is the address of an
unsigned longword that receives this aggregate type. If the aggregate is of type
DDIF$_EOS (end of segment), aggregate-handle is 0.

Description

Depending on the conversion used, the get-aggregate routine either creates and
populates the next document content aggregate (aggregate method of conversion)
or it reads the next aggregate from the in-memory document (document method
of conversion). In either case, the returned aggregate must not be part of a
sequence, and the DDIF$_SEG_CONTENT item of a DDIF$_SEG aggregate must
be empty; the content must be returned one aggregate at a time followed by a
DDIF$_EOS (end of segment) aggregate.

A front end should create aggregates on demand, rather than first creating the
entire document in memory. However, if the entire document must be available
in memory in order for the conversion to take place, the get-aggregate routine
must use the PRUNE AGGREGATE routine to return the next content aggregate
from the in-memory document. The PRUNE AGGREGATE routine removes the
next sequential document content aggregate from an existing in-memory DDIF
document and returns the aggregate identifier and type.

Before creating any of the document content aggregates, the get-aggregate routine
must first create the required aggregates. For document data, the required
aggregates are DDIF$_DSC, DDIF$_DHD, and DDIF$_SEG. For table data, the
required aggregates are DTIF$_HDR, DTIF$_DSC, and DTIF$_TBL. Once these
aggregates are created and the appropriate items have been stored (using the
STORE ITEM routine), the get-aggregate routine creates and populates each
sequential document content aggregate (and its subaggregates) that results from
the translation of the input document. Once these aggregates are created and
populated, the get-aggregate routine returns the handle and type of the parent
aggregate. The aggregate type created must be a top-level content type, as listed
in Table 11-1.

11-6 CDA Converter Routines



Get-Aggregate Entry Point

Table 11-1: Top-Level Aggregate Types

Aggregate Type Meaning

DDIF$_DSC

Document descriptor

DDIF$_DHD Document header
DDIF$_SEG Document segment
DDIF$_TXT Text content
DDIF$_GTX General text content
DDIF$_HRD Hard directive
DDIF$_SFT Soft directive
DDIF$_HRV Hard value directive
DDIF$_SFV Soft value directive
DDIF$_BEZ Bézier curve content
DDIF$_LIN Polyline content
DDIF$_ARC Arc content
DDIF$_FAS Fill area set content
DDIF$_IMG Image content
DDIF$_CRF Content reference
DDIF$_EXT External content
DDIF$_PVT Private content
DDIF$_GLY Layout galley
DDIF$_EOS End of segment
DTIF$_DSC Table descriptor
DTIF$_HDR Table header
DTIF$_TBL Table definition
DTIF$_ROW Table row
DTIF$_CLD Table cell

The name of this routine is defined by the user. The front end simply returns the
address of this routine to the CDA Converter Kernel.

RETURN VALUES
Return Value Description
CDA$_NORMAL Normal successful completion

CDA$_ENDOFDOC End of document

The get-aggregate routine can also return any front end-specific error conditions.
Note that the get-aggregate routine must return the status CDA$_ENDOFDOC
when the document has been completely transferred.

CDA Converter Routines 11-7



Get-Position Entry Point

Get-Position Entry Point

Returns the current position in and total size of the current data stream. The
get-position routine is one of the routines that compose a front end.

FORMAT
status = get-position-procedure
(front-end-handle ,stream-position ,stream-size)

Argument Information

Argument Argument Information
status Usage: cond_value
. Data type: longword (unsigned)

Access: write only
Mechanism: by value

front-end-handle Usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

stream-position Usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

stream-size Usage: longword_unsigned
Data type: longword (unsigned)
Access: write only
Mechanism: by reference

RETURNS
status

A condition value indicating the return status of the routine call.

11-8 CDA Converter Routines



Get-Position Entry Point

front-end-handle

Identifier of the front end. The front-end-handle argument is the address of an
unsigned longword that contains this handle. The front end handle is returned
by either ddif$read_format or dtif$read_format.

stream-position

Receives the current position (in bytes) as measured from the start of the input
stream being processed. The stream-position argument is the address of an
unsigned longword that receives this position.

stream-size ‘

Receives the total size (in bytes) of the input stream being processed. The
stream-size argument is the address of an unsigned longword that receives this
size.

Description

The get-position routine provides a method for a back end to determine the total
size of the current input stream, as well as to determine the current position
within the stream. This routine is useful for viewer back ends that provide a
scroll bar indicating the current position in the document being viewed.

The name of this routine is defined by the user. The front end simply returns the
address of this routine to the CDA Converter Kernel.

RETURN VALUES
Return Value Description

CDA$_NORMAL Normal successful completion

CDA Converter Routines 11-9



domain$read_format Entry Point

domain$read formatEntry Point

Initializes the conversion process and establishes any special processing informa-
tion for the front end. The domain$read_format routine is one of the routines
that compose a front end.

FORMAT
status = domain$read_format (standard-item-list ,converter-context
,front-end-context
,get-aggregate-procedure
,get-position-procedure
,close-procedure)

Argument Information

Argument Argument Information
status Usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
standard-item-list Usage: item_list_2
Data type: record
Access: read only
Mechanism: by reference,array reference
converter-context Usage: context
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
front-end-context Usage: context
Data type: longword
Access: write only
Mechanism: by reference

11-10 CDA Converter Routines



domain$read_format Entry Point

Argument Argument Information
get-aggregate-procedure Usage: procedure
Data type: procedure entry mask
Access: write only
Mechanism: by reference
get-position-procedure Usage: procedure
Data type: procedure entry mask
Access: write only
Mechanism: by reference
close-procedure Usage: procedure
Data type: procedure entry mask
Access: write only
Mechanism: by reference

RETURNS

status

A condition value indicating the return status of the routine call.

Arguments

standard-item-list

An item list that identifies the document source and may also contain options to
control processing. The standard-item-list argument is the address of this item

list.

Each entry in the item list is a 2-longword structure with the following format:

item code

buffer length

buffer address

To terminate the item list, you must specify the final entry or longword as zero.
Valid code values for the items in the front end standard-item-list are as

follows:
¢ CDAS$_INPUT FILE

The address and length of the file specification of the input document.

CDA Converter Routines 11-11



domain$read_format Entry Point

* CDA$_INPUT_DEFAULT

The address and length of a string that specifies the default input file type.
To simplify the porting of applications, the string should consist of only a file
type in lowercase characters. If this parameter is omitted, the front end must
supply an appropriate default file specification.

* CDA$_INPUT_PROCEDURE

The address of a user get procedure that provides input. The item list length
field must be set to 0. The input procedure must conform to the requirements
for a user get routine. For more information on the calling sequence for a
user get routine, see the description of the Get entry point.

¢ CDA$_INPUT_PROCEDURE_PARM

The address of a longword parameter to the input procedure. The item list
length field must be set to 4.

* CDAS$_INPUT_POSITION_PROCEDURE

The parameter is the address of a procedure that provides position informa-
tion. The item-list length field must be set to 0. For more information on the
get-position procedure, see the description of the Get-Position entry point.

* CDA$_PROCESSING_OPTION

The address and length of a string that contains an option to control process-
ing. The format name and leading spaces and tabs have been removed from
the string. This item code may occur more than once in the item list.

Either the CDA$_INPUT_FILE item or the CDA$_INPUT_PROCEDURE item,
but not both, must occur once in the item list. If the CDA$_INPUT_PROCEDURE
item is specified, then a single value for CDA$_INPUT_PROCEDURE_PARM can
also be specified.

NOTE

If, in processing the standard item list, you encounter an unrecognized
item, your front or back end should ignore that item and not return an
error.

converter-context

Converter context required to call the OPEN CONVERTER routine. The
converter-context argument is the address of an unsigned longword that
contains this context.

front-end-context

Receives a front-end-defined value that identifies this particular instance of

the front end. The front-end-context argument is the address of an unsigned
longword that receives this context. This value is returned to the get-aggregate-
procedure and the close-procedure arguments described later. All writable
memory used by the front end must be allocated from dynamic memory and
located by reference to this value.

11-12 CDA Converter Routines



domain$read_format Entry Point

get-aggregate-procedure

Receives the address of the get-aggregate routine. The get-aggregate-procedure
argument receives the address of this procedure entry mask. For more informa-
tion on the calling sequence for the get-aggregate routine, see the description of
the Get-Aggregate entry point.

get-position-procedure

Receives the address of the get-position routine. The get-position-procedure
argument receives the address of this procedure entry mask. For more informa-
tion on the calling sequence for the get-position routine, see the description of the
Get-Position entry point.

close-procedure

Receives the address of the close routine. The close-procedure argument
receives the address of this procedure entry mask. For more information on the
calling sequence for the close routine, see the description of the Close entry point.

Description

The read_format entry points (ddif$read_format and dtif$read_format) are

the initial entry points in the front end. The read_format routine initializes the
conversion process and establishes any special processing information for the
front end. The term format in the entry point name refers to the name of the
document format that is read by this particular front end. For example, the entry
point for the Text front end is ddif$read_TEXT.

On ULTRIX systems, front end and back end converters are invoked as subpro-
cesses, rather than being dynamically loaded into the same address space, as
they are on VMS systems. Because of this, on ULTRIX systems the entry point
name for the read_format entry point is always the same, cda$read_format, no
matter what the format name. This is usually accomplished in source code by
using a “jacket” routine named cda$read_format that simply calls the real routine
(ddif$read_format or dtif$read_format) with the same parameters (see the Text
front end source code example in Chapter 12). Another way of accomplishing
this is to use compiler directives (#ifdef in the C language) to name the function
differently, depending on the operating system.

In order to initialize a document or aggregate method of conversion, the
ddif$read_format or dtif$read_format routine must first process the user-
supplied item list, storing all pertinent information in the context block.

The item list structure that is used to pass this information between the front
end, back end, and the kernel is created by the CDA Converter Kernel; this
structure contains the following fields:

* cda$w_item_length specifies the length of the item.

¢ cda$w_item_code specifies the item code, selected from the list specified for
the standard-item-list argument.

¢ cda$w_item_address specifies the address of the item.

These fields are defined in the file cda$def.h on VMS systems and in the file
cda_def.h on ULTRIX systems.

CDA Converter Routines 11-13



domain$read_format Entry Point

In addition, the ddif$read_format or dtif$read_format routine must process any
specified processing options that the user selects for this conversion.

If the format of the input file is not DDIF, DTIF, or Text, the front end must
supply its own file-opening capability, typically through the use of the RMS
$OPEN service, or the open C run-time library routine or equivalent language
statement.

It is also recommended that the ddif$read_format routine define values for at
least the following aggregate items:

e DDIF$_DSC_PRODUCT_IDENTIFIER specifies the registered facility
mnemonic for the product that encoded the document.

e DDIF$_DSC_PRODUCT NAME specifies the name of the product that
encoded the document.

The ddif$read_format or dtif$read_format routine must call the CREATE ROOT
AGGREGATE routine to create the document root aggregate. In the case of
aggregate-method conversion, once the root aggregate is created, control passes
back to the CDA Converter Kernel.

In the case of document-method conversion, the read_format routine must
also create the appropriate aggregates before reading the entire document from
the input stream and placing it in memory. For document data, the required
aggregates are DDIF$_DSC, DDIF$_DHD, and DDIF$_SEG. For table data,
the required aggregates are DTIF$_HDR, DTIF$_DSC, and DTIF$_TBL. Once
the entire document is in memory, the ddif$read_format or dtif$read_format
routine must close the input stream (and, if applicable, the input file). Again, if
the format of the input file is not DDIF, DTIF, or Text, the read_format routine
must supply its own file-closing capability, typically through the use of the RMS
$CLOSE service, or the close C run-time library routine or equivalent language
statement. At this point, control passes back to the CDA Converter Kernel.

RETURN VALUES

Return Value Description
CDA$_NORMAL Normal successful completion

The read_format entry point can also return any front end-specific error condi-
tions.

11-14 CDA Converter Routines



domain$write_format Entry Point

domain$write_formatEntry Point

Requests aggregates from the front end, converts them from the CDA in-memory
format to the specified output format, and writes the information to the specified
output file. The domain$write_format routine composes a back end.

FORMAT

status = domain$write_format (function-code ,standard-item-list
,private-item-list ,front-end-handle
,back-end-context)

Argument Information

Argument Argument Information
status Usage: cond_value
Data type: longword (unsigned)
Access: write only
Mechanism: by value
function-code Usage: longword_unsigned
Data type: longword (unsigned)
Access: read only
Mechanism: by reference
standard-item-list Usage: item_list_2
Data type: record
Access: read only
Mechanism: by reference, array reference
private-item-list Usage: unspecified
Data type: unspecified
Access: read only
Mechanism: by reference
front-end-handle Usage: identifier
Data type: longword (unsigned)
Access: read only
Mechanism: by reference

CDA Converter Routines 11-15



domain$write_format Entry Point

Argument Argument Information
back-end-context Usage: context
Data type: longword (unsigned)
Access: read only or write only
Mechanism: by reference
RETURNS
status

A condition value indicating the return status of the routine call.

function-code

Symbolic constant that identifies the function to be performed. The function-
code argument is the address of an unsigned longword that contains this
symbolic constant. These constant values are defined in file cda$def.h on VMS
systems and in the file cda_def.h on ULTRIX systems. Valid values are as follows:

* CDA$_START

Start conversion. This function code must be specified to begin a document
conversion.

* CDA$_CONTINUE

Continue a conversion that was suspended. This function code may only be
specified if a previous call to either ddif$write_format or dtif$write_format
returned the value CDA$_SUSPEND. If CDA$_SUSPEND is returned by a
call to the write_format routine, either CDA$_CONTINUE or CDA$_STOP
must be specified so that resources locked by the conversion may be released.

* CDA$_STOP

Discontinue a conversion that was suspended. This function code may only be
specified if the previous call to the write_format routine returned the value
CDA$_SUSPEND.

If CDA$_SUSPEND is returned by a call to ddif$write_format or dtif$write_
format, either CDA$_STOP or CDA$_CONTINUE must be specified so that
resources locked by the conversion may be released.

standard-item-list

An item list that identifies the document destination and may also contain
options to control processing. The standard-item-list argument is the address of
this item list.

Each entry in the item list is a 2-longword structure with the following format:

11-16 CDA Converter Routines



domain$write_format Entry Point

item code buffer length 0

buffer address 4

To terminate the item list you must specify the final entry or longword as zero.
The standard-item-list argument is ignored when function-code is set to

either CDA$_CONTINUE or CDA$_STOP. Valid code values for the items in the
standard-item-list are as follows:

CDA$_OUTPUT_FILE
The address and length of the file specification of the output document.
CDA$_OUTPUT_DEFAULT

The address and length of the default file specification of the output docu-
ment. If this parameter is omitted, the back end must supply an appropriate
default file specification.

CDA$_OUTPUT_PROCEDURE

The address of a procedure to receive output. The item list length field must
be set to 0. The output procedure must conform to the requirements for a
user put routine. For more information on the calling sequence for a user put
routine, see the description of the Put routine.

CDA$_OUTPUT_PROCEDURE_PARM

The address of a longword parameter to the output procedure. The item list
length field must be set to 4.

CDA$_OUTPUT_PROCEDURE_BUFFER
The address and length of the initial output buffer for the output procedure.
CDA$_PROCESSING_OPTION

The address and length of a string that contains an option to control process-
ing. The format name and leading spaces and tabs have been removed from
the string. This item code may occur more than once in the item list.

Either CDA$_OUTPUT _FILE or CDA$_OUTPUT_PROCEDURE, but not both,
must occur once in the item list. If the CDA$_OUTPUT_PROCEDURE item
occurs, then the CDA$_OUTPUT_PROCEDURE_PARM item and the CDA$_
OUTPUT_PROCEDURE_BUFFER item may each occur once in the item list.

NOTE

If, in processing the standard item list, you encounter an unrecognized
item, your front or back end should ignore that item and not return an
error.

CDA Converter Routines 11-17



domain$write_format Entry Point

private-item-list

A private item list that is passed directly to the back end. The private-item-list
argument is the address of this private item list. The specification of this item list
is the responsibility of the back end. Its purpose is to provide for direct two-way
communication between the caller of the CONVERT routine and the back end.

On ULTRIX systems, the CDA$_OUTPUT_BACK_END_PROCEDURE item must
be specified at the CONVERT routine call for this parameter to be used.

front-end-handle

Identifier of the front end that will process the document content. The front-
end-handle argument is the address of an unsigned longword that contains this
front end handle. This handle is passed to either the CONVERT DOCUMENT
routine or the CONVERT AGGREGATE routine.

back-end-context

When function-code is set to CDA$_START, this argument receives a value
defined by the back end that identifies this particular instance of the back end.
The back-end-context argument is the address of an unsigned longword that
either receives or specifies the converter context. This value will be returned to
ddif$write_format or dtif$write_format for the functions CDA$_CONTINUE and
CDAS$_STOP. If a back end returns CDA$_SUSPEND, all writable memory used
by the back end must be allocated from dynamic memory and located by reference
to this value.

Description

The write_format entry points (ddif$write_format and dtif$write_format) are
the entry points in the back end. This routine requests aggregates from the
front end, converts them from the CDA in-memory format to the specified output
format, and writes the information to the specified output file. The term format
in the entry point name refers to the name of the document format that is being
written by this particular back end. For example, the entry point for the Text
back end is ddif$write_TEXT.

On ULTRIX sytems, front end and back end converters are invoked as subpro-
cesses, rather than being dynamically loaded into the same address space, as
they are on VMS systems. Because of this, on ULTRIX systems the entry point
name for the write_format entry point is always the same, cda$write_format, no
matter what the format name. This is usually accomplished in source code by
using a “jacket” routine named cda$write_format that simply calls the real rou-
tine (ddif$write_format or dtif$write_format) with the same parameters (see the
Text front end source code example in Chapter 12). Another way of accomplishing
this is to use compiler directives (#ifdef in the C language) to name the function
differently depending on the operating system.

In order for the back end to call through to the front end, two routines are
provided: :

* The CONVERT DOCUMENT routine invokes the document-method conver-
sion of an input file to the specified output format.

11-18 CDA Converter Routines



domain$write_format Entry Point

e The CONVERT AGGREGATE routine invokes the aggregate-method conver-
sion of an input file to the specified output format.

The back end must use one of these routines to request the appropriate informa-
tion from the front end.

If the format of the output file is not DDIF, DTIF, or Text, the back end must
supply its own file-creation capability, typically through the use of the creat C
run-time library routine or equivalent language statement.

In order to initialize a document-method conversion, the write_format routine
must first process the user-supplied item list, storing all pertinent information in
the context block. The item list structure that is used to pass this information
between the front end, back end, and kernel is created in the CDA Converter
Kernel; this structure contains the following fields:

e cda$w_item_length specifies the length of the item.

e cda$w_item_code specifies the item code, selected from the list specified in
this section.

e cda$w_item_address specifies the address of the item.

These fields are defined in the file cda$def.h on VMS systems and in the file
cda_def.h on ULTRIX systems.

RETURN VALUES

Return Value Description

CDA$_NORMAL Normal successful completion.
CDA$_SUSPEND Converter is suspended.
CDA$_INVFUNCOD Invalid function code.
CDA$_INVITMLST Invalid item list.
CDA$_UNSUPFMT Unsupported document format.

The write_format routine can also return any error returned by the specific front
end or the specific back end.

CDA Converter Routines 11-19






Chapter 12

Text Front End Source File

This chapter contains the source code for the Text front end provided with the
CDA Toolkit. This front end should be used as a sample when writing your own
front or back ends. The Text front end reads in a standard text file and creates a

DDIF in-memory document.

In this chapter, the source code for the Text front end is divided into subsections.
Where appropriate, the subsections are annotated with a list following each

section explaining the annotations.

The fbllowing callouts correspond to the callouts in the main module of the Text

front end.

© All of these routines from the CDA Toolkit are used by the Text front end.

® These are the additional entry points in the Text front end.

©® This is the context block that is used to share information between the front

end, the CDA Converter Kernel, and the back end.

/*
o

)k

*%* COPYRIGHT (c) 1987 BY

*%* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

** ALL RIGHTS RESERVED.

* %k

*% THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
** ONLY 1IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
** INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
*% COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
** OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
** TRANSFERRED.

* %

**% THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
*%* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
**  CORPORATION.

* %

*% DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
** SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

**

*%  FACILITY:

*k

** Compound Document Converters

* %

**  ABSTRACT:

* %

*k This is a Text Converter Front End that reads a text input

falad file (or stream), creates DDIF aggregates from this text, and

*x passes each DDIF Aggregate back to the calling converter kernel.

* %

KK

**/

Text Front End Source File 12-1



/*
* %

** INCLUDE FILES

* %

**/

#ifdef vns

#include <ddif$def.h> /* Contains values of al DDIF$xxxx keywords */
#include <cda$def.h> /* Contains values of all CDAS$xxxx keywords */
#include <cda$msg.h> /* CDA error messages */

#else

#include <ddif def.h>
#include <cda_def.h>
#include <cda_msg.h>

#endif

#ifdef vms /* Use VMS RMS to manipulate files */

#include <fab.h> /* Defines the file access block structure */
#include <rab.h> /* Defines the record access block structure */
#include <nam.h> /* Defines the name block structure */

#include <rmsdef.h> /* Defines the completion status codes that RMS returns
* after every file- or record-processing operation */

/* NOTE: The previous 4 #include statements can be replaced with <rms.h> */

#include <descrip.h> /* Allows program to pass arguments by descriptor.

* A descriptor is a structure that describes the

* data type, size, and address of a data structure. */
#endif

/* Declare routines used in the Toolkit */ "

extern unsigned long cda$open_text file();
extern unsigned long cda$close_text_file();
extern unsigned long cda$read text_ file();
extern unsigned long cda$get_aggregate();

extern unsigned long cda$get_text_position();
extern unsigned long cda$create root_ aggregate();
extern unsigned long cda$delete root_aggregate();
extern unsigned long cda$create_aggregate();
extern unsigned long cda$store_item();

unsigned long get. aggregate(); G?
unsigned long create_dsc();

unsigned long create_dhd();

unsigned long create_seg();

unsigned long create_txt();

unsigned long create_eos();

unsigned long look_ahead();

unsigned lonhg create_dir();

unsigned long get_position();

unsigned long close_front_end();

/* Define literals for characters used */

#define HORIZONTAL_TAB 9
#define FORM_FEED 12
#define DDIF BUFFER SIZE 2048

12-2 Text Front End Source File



/* Front End Context structure (text context)
The front end context contains all variables needed to keep track
of a conversion in progress. Since the front end, back end, and
converter kernel are re-entrant, it is possible to have several
conversions occurring simultaneously. A pointer to this structure
is passed back and forth between the front and back ends, so
* that the front end knows where it is in any particular conversion.
*/
struct text_cxt {

unsigned long text_a file handle;

unsigned long text_a_root_ aggregate handle;

unsigned long (*text_a_input_routine) ();

unsigned long text_a_ input_routine param;

unsigned long (*text_a position_routine) ();

unsigned long text_a position_param;

unsigned long text_1l_state;

unsigned char *text_a buffer address;

unsigned long text_l buffer length;

* F X Ok *

unsigned char *text_a_local buffer;
unsigned char text_l_local length;
unsigned long text_l_directive type;
unsigned long text 1 directive_content;
unsigned char text_a title[32];

unsigned long-text_ 1 _title_length;
unsigned long text_b_scope level;
unsigned long text 1 newline_count;
unsigned char text_v_end of paragraph : 1;
unsigned char text_v_root segment 2 1;
unsigned char text_v_end of_document : 1;
unsigned char : 0;

/* Default file extension */
static unsigned char default_file[] = ".txt";
static unsigned long default_length = sizeof (default_file) - 1;

/* Name for Root Segment */
static unsigned char seg_id[] = "RootSegment";
static unsigned long seg_id length = sizeof(seg id) - 1;

/* Name for style guide file */
static unsigned char style_guide name[] = "defstyle";
static unsigned long style length = sizeof(style guide name) - 1;

/* Name for paragraph */
static unsigned char para_buffer[] = "PARA";
static unsigned long para_length = sizeof (para buffer) - 1;

/* Name for literal */
static unsigned char literal buffer{] = "LITERAL";
static unsigned long literal length = sizeof(literal buffer) - 1;

/* Name for erf descriptor */
static unsigned char erf desc_type(] "Style Guide";
static unsigned long erf desc_length = sizeof (erf_desc type) - 1;

/* Name for erf label type */
static unsigned char erf label typell = "$STYLE";
static unsigned long erf length = sizeof(erf label type) - 1;

/*

* %

**  MACROS
* %

*% /

/* Error check macros */

#define FAILURE (status) \
(((status) & 1) == 0)

Text Front End Source File

12-3



#define SUCCESS (status) \
(((status) & 1) == 1)

/* Memory allocation and deallocation */

#ifdef vms

extern unsigned long lib$free_vm();
extern unsigned long lib$get_vm();
f#else

extern char *malloc();

extern free();

#endif

/* Literals used in creation of aggregates */

"DDIFS";

sizeof (dsc_identifier) - 1;
"DDIF Text Front End";
sizeof (dsc_prod name) - 1;
"DDIF Text Front End";
sizeof (dhd_author) - 1;

static unsigned char dsc_identifier[]
static unsigned long dsc_id length
static unsigned char dsc_prod name(]
static unsigned long dsc_nam length
static unsigned char dhd_author(]
static unsigned long dhd_aut_length

[

/* Lookup table for DEC MCS character set. These values are taken from DEC

* Standard 169. This table has the space character inserted in the control

* character and holes positions. This ensures no such characters appear

* in the DDIF TXT aggregates.

*/

static unsigned char lookup_buffer[256] =

{32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 1715, 76, 17, 18, 19,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 092, 93, 94, 095,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 32,

32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
32, 161, 162, 163, 32, 165, 32, 167, 168, 169, 170, 171, 32, 32, 32, 32,
176, 177, 178, 179, 32, 181, 182, 183, 32, 185, 186, 187, 188, 189, 32, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 32, 223,
224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 32, 32};

The following callout corresponds to the callout in the jacket entry point for the
Text front end.

® This is a jacket routine that supports the ULTRIX entry point to the Text
front end.

12-4 Text Front End Source File



/*
koKt

*%  FUNCTIONAL DESCRIPTION:

* K
%* %
)%
* %k
* %
* %
* )
* %
* %

The name of this routine is CDA$READ_ FORMAT ().

4]

This routine is the jacket entry point for the text Front End on

Ultrix. It is called from the converter kernel to

call the "real" entry point which initializes the conversion.
When employed on VMS systems, this routine is not called (or even

compiled). On VMS systems, the converter kernel calls the

DDIF$SREAD_TEXT () routine.

*%* FORMAL PARAMETERS:

* %
**
* %
* %
**
* %
**
* %
* %
* K
**k
* %
**

item list.rr.ra item list

cvt_context.rlu.v value for cda$open_converter
text_context.wlu.v value to identify this converter
get_aggr.wa.r address of get aggregate routine
get_pos.wa.r address of get position routine
close_text.wa.r address of close front end routine

*% IMPLICIT INPUTS:

* %
**
* %

none

*% IMPLICIT OUTPUTS:

* %
* %
kK

none

** FUNCTION VALUE:

**
* %
**
* %
* %
* %k

CDA$_NORMAL

CDA$ _INVAGGTYP

Memory allocation error conditions
File error conditions

** SIDE EFFECTS:

* k
**
* %k
KK m

37

none

#ifdef ultrix
unsigned long cda$read format (item list,

cvtr context,
text_context ptr,

get_aggr,

get_pos,

close_text)
struct item list *item list;
unsigned long cvtr context;
unsigned long *text_context ptr;
unsigned long *get_aggr;
unsigned long *get_pos;
unsigned long *close_text;

{

unsigned long ddif$read _text();

#endif

return (ddif$read text(item list, cvtr_context, text_ context_ptr,

get_aggr, get_pos, close_text));

Text Front End Source File 12-5



The following callouts correspond to the callouts in the main entry point of the
Text front end.

@ This is the main entry point of the Text front end.

@ This loop reads the items in the item list passed to the Text front end. This
item list can contain information such as the file specification of the file to be
used for input, the routine to be used to read the input, a parameter to the
input routine, and so on.

@ This statement creates the DDIF root aggegate (type DDIF$_DDF). This
aggregate is required in every DDIF document. -

The next aggregate to be created is the document descriptor aggregate (type
DDIF$_DSC). This aggregate is also required in every DDIF document.

/*
XKty

*% FUNCTIONAL DESCRIPTION: (5
* %k

* % This routine is the entry point for the Text Front End. It

bl is called from the converter kernel to initialize the

** conversion.

* %

*%* GENERAL DESCRIPTION:
Kk

*k The DDIFSREAD format entry point is the initial entry point in the
*% front end. This routine initializes the conversion process and

*% establishes any special processing information for the front end.
*x The term "format" in the entry point name refers to the name of the
*% document format that is read by this particular front end ---

** "TEXT", in this instance.

* k%

* % This routine is required and must be named according to the above
*k convention. Three other routines/entry points are also required.

* % The parameters to this routine specify their addresses to the

* % converter kernel.

* %

*%* FORMAL PARAMETERS:
*%

*x item list.rr.ra item list

* %

*x cvt_context.rlu.v value for cdaSopen_converter

* %

*x text_context.wlu.v value to identify this converter

*%* The next three parameters are the addresses of the other required
** entry points in any front end.

*x get_aggr.wa.r address of get aggregate routine

* % .

** get _pos.wa.r address of get position routine

* %

* % close_text.wa.r address of close front end routine

*% IMPLICIT INPUTS:

* %k text file or data stream

** IMPLICIT OUTPUTS:

* % none

** FUNCTION VALUE:

* CDAS_NORMAL

fald CDAS$_INVAGGTYP

** Memory allocation error conditions
** File error conditions

*% SIDE EFFECTS:

12-6 Text Front End Source File



* %
* %
b -

**/

unsigned long

struct item list

none

ddif$read text (item list,
cvtr_context,
text_context ptr,
get_aggr,
get_pos,
close_text)

*item list;

block size */

unsigned long cvtr_context;

unsigned long *text_context ptr;

unsigned long *get_aggr;

unsigned long *get_pos;

unsigned long *close_text;

{

unsigned long status; /* return status */
unsigned long struct_size; /* holds context
unsigned long aggregate_type; /* aggregate type*/
unsigned long result_length; /* result file length */
unsigned char result_buffer[255]; /* result file buffer */
unsigned long filespec_ length; /* file specification length */
unsigned char *default_ file address;

unsigned long default_file length;

unsigned char  *input_file_ address;

unsigned long  input_file_length;

struct text_cxt *text context;

/*

points to context block */

/* Allocate the context block for this front end */

struct_size = sizeof
text_context = 0;

default_file address =
default_file_length

(struct text_cxt):

default_file;
default length;

input_file_address = 0;
input_file_length = 0;
#ifdef vms
status = lib$get_vm(&struct_size, &text_context, 0);
#else
text_context = (struct text_cxt *) malloc(struct_size);
(text_context == 0) ? (status = CDA$_ALLOCFAIL) : (status = 1);
#endif

if (FAILURE (status))
return (status);

/* Initialize the context block */

text_context->text_a file_handle = 0;
text_context->text a root_aggregate_ handle = 0;
text_context->text_a_ input_routine = 0;
text_context->text_a input_routine param = 0;
text_context->text_a position_routine =0;

text_context->text_a position_param ;

text_context->text_l_state = 0;
text_context->text_ 1l title length = 0;
text_context->text_a buffer address = 0;
text_context->text 1 buffer length = 0;
text_context->text_a local buffer = 0;
text_context->text_ 1 local_length = 0;
text_context->text 1 directive_type = 0;
text_context->text_1_directive_content = 0;

text_context->text_b_scope level ;

text_context->text_l newline_count = 07
text_context->text v _root_segment =1;
text_context->text_v_end of paragraph = 0;
text_context->text_v_end of document = 0;

Text Front End Source File 12-7



/* Scan item list until item code is 0 */
while (item list->cda$w_item code != 0) (6
{

status = 1;

switch (item_list->cda$w_item_ code)

{

case CDA$_INPUT FILE: /* Input filename */
input_file length = item list->cda$w_item length;
input_file address = (unsigned char *)
item_list->cda$a_item address;
break;
case CDAS$_INPUT_DEFAULT: /* Default input filename */

default file length = item list->cda$w_item length;
default_file address (unsigned char *)
item list->cda$a_item_address;

break;

case CDAS_INPUT_PROCEDURE: /* Input procedure address */
text_context->text_a input_routine =
(unsigned long (*) ())
item_list->cda$a item address;
break;

case CDA$_INPUT_ PROCEDURE PARM: /* Input procedure param */
text_context->text_a_input_routine_ param =
* ((unsigned long *)
item list->cda$a_item address);
break;

case CDA$_INPUT_POSITION PROCEDURE: /* Input position
proc address */
text_context->text a position routine =
(unsigned long (*) ())
item list->cda$a_item address;
break;

default: /* All others */
break;
}

/* Any problems? */
if (FAILURE (status))
return (status);

/* Point to next item in item list */
/* Note that this advances the item list a full two longwords */
/* (i.e. + 1 * sizeof (item list)) */

item list += 1;

}
/* Create a DDIF root aggregate */

aggregate_type = DDIF$_DDF; ‘i
status = cda$create_root_aggregate (O,

0,

0,

0,

&aggregate_type,
&text context->text a_ root_aggregate handle);

/* If there is an error, return */
if (FAILURE (status))
return (status);

/* Try to open the input file if specified */
if (input_file_ address != 0)
{

result length = sizeof (result_buffer);

status = cda$open_text file (&input_file length,
input_file address,
&default file length,
default_file_ address,
&result_length,
result buffer,
&result_length,
&text_context->text_a file handle);

12-8 Text Front End Source File



#ifdef vms

#endif

/* Parse filename from file specification

* for use as the Title field in the Header

*/

if (SUCCESS (status))

{

/* File access block */

/* Name block */

/* file length */
/* file buffer */

struct FAB fil_fab;
struct NAM fil nam;
unsigned long esa_length = 255
unsigned char esa_buffer[255];

/* Initialize fab and nam blocks */
fil_fab = cc$rms_fab;
fil nam = cc$rms_nam;

fil fab.fab$l dna = 0;

fil fab.fab$b dns
fil_fab.fab$l_fna
fil_ fab.fab$b_fns
fil_fab.fab$l nam
fil fab.fab$l fop

£il _nam.nam$b_nop
fil nam.nam$l_rlf
fil nam.nam$l esa
fil_nam.nam$b_ess

0 ’
result_buffer;
result_length;
&fil nam;
FABSM NAM;

= NAM$M_SYNCHK;

0;
esa buffer;
esa_length;

/* Parse the file specification */
status = sys$parse(&£il_fab);
if (FAILURE (status))

return (status);

/* Copy the filename into the title area */
text_context->text 1 title_length = fil nam.nam$b_name;
strncpy (text_context->text_a_title,

fil nam.nam$l_name,

fil_nam.nam$b_name) ;

/* Copy the file extension into the title area */
strncpy (text_context->text_a title +
text_context->text_l title length,
£il nam.nam$l_type,
fil_nam.nam$b_type);
text_context->text_ 1 title length += f£il nam.nam$b_type;

/* If an input procedure was specified, set
* the position parameter to the input parameter
* otherwise, use the file handle.

*
/
if (text_context->text_a input_routine != 0)
text_context->text a position_param =
text_context->text_a input_routine param;
else
text_context->text_a position_param =
text_context->text_a file handle;
/*

* The state value tells the Get Aggregate routine what

* aggregate to return next. In this case (first), we want
* it to return a document descriptor.
*/
text_context->text 1 state = DDIF$_DSC; 0

/* Fill in .get and close procedure addresses */
*text_context_ptr = (unsigned long) text_context;
*get_aggr (unsigned long) get_aggregate;
*get_pos (unsigned long) get_position;
*close_text (unsigned long) close front_end;

]

/* How did we do? */
return status;

Text Front End Source File

12-9



The following callouts correspond to the callouts in the get_aggregate routine in
the Text front end.

© This routine reads the input data and calls the appropriate routines.

@® Before reading the input and creating the appropriate content aggregates,
this routine creates a document descriptor (DDIF$_DSC) and document
header (DDIF$_DHD) aggregate. These aggregates, along with the document
root aggregate, are required in every DDIF document.

The text_context->text_l_state argument is used to specify the next
aggregate to be created. After the DDIF$_DSC and DDIF$_DHD aggregates
have been created, the state is set to DDIF$_SEG, so that the next aggregate
created will be the root segment aggregate.

/%

*kpd

*% FUNCTIONAL DESCRIPTION: @
* %k

% This routine is the entry point for the ’get_aggregate’ procedure.
x % It reads an aggregate from the input DDIF stream and returns

fald this aggregate to the caller.

* %k

*%* FORMAL PARAMETERS:
*k

*x text_context.wlu.v value to identify this converter instance
* %

** aggregate_ handle.wlu.r address to store aggregate handle

* Kk

*% aggregate type.wlu.r address to store aggregate type

% %

** IMPLICIT INPUTS:
*k

*%x none
* Kk

*%*  IMPLICIT OUTPUTS:
% %

x none
* %

*% FUNCTION VALUE:
*%

*ox CDA$_NORMAL

*k CDAS$_ENDOFDOC

** Memory allocation error conditions
* K File error conditions

* %k

** SIDE EFFECTS:
*%

*x none

* Kk

Kk e

*% /)

static unsigned long get_aggregate (text_context ptr,

aggregate_handle,

; aggregate_type)

unsigned long *text_ context ptr;

unsigned long *aggregate_handle;
unsigned long *aggregate_type;

{
unsigned long status;
struct text_cxt *text context;

/* Dereference */
text_context = (struct text_cxt *) *text_context ptr;

12-10 Text Front End Source File



The state value tells the Get Aggregate routine what aggregate
to return next. We will test the state value here to determine
what type of aggregate is needed. Each time an aggregate is
returned, the state value is set to return the next type of
aggregate.

L A

*/
/* Find what DDIF aggregate we need to return */

switch (text_context->text 1 state)
{

/* Build a document descriptor */
case DDIF$ DSC: @

status = create_dsc (&text_context,
aggregate_type,
aggregate_handle);
break;

/* Build a document header */
case DDIF$_DHD:

status = create_dhd (&text_context,
aggregate_type,
aggregate_handle);
break;

/* Build a document segment */
case DDIF$_ SEG:

/* Create the SEG aggregate */

status = create_seg (&text_context,
aggregate_type,
aggregate_handle);

break;

/* Build a text aggregate */
case DDIF$_TXT:

/* Create a TXT aggregate */

status = create_txt (&text_context,
aggregate_type,
aggregate_handle);

break;

/* Build a directive (new_line or new_page) */
case DDIF$_SFT:
case DDIF$_HRD:

/* Create a hard or soft directive aggregate */

status = create_dir (&text_ context,
aggregate_type,
aggregate_handle);

break;

/* Build an end of segment */
case DDIF$_EOS:

/* Create an end of segment aggregate */

status = create_eos (&text_context,
aggregate_type,
aggregate_handle);

break;
/* If we got here it is surely an insidious bug */
default:

status = CDA$_INTERR;

break;

}

/* Return the status */
return status;

Text Front End Source File

12-11



The following callout corresponds to the callout in the create_dsc routine in the
Text front end.

@® This routine creates and fills in the required DDIF$_DSC aggregate, sets the
state to DDIF$_DHD, and returns to the switch statement referenced by @.

/%
*kop

** FUNCTIONAL DESCRIPTION: @
* %k

% This routine creates a document descriptor aggregate and

*x £fills it in.

**
** FORMAL PARAMETERS:

* %

*% text_context.wlu.v value to identify this converter
* %k

* % aggregate_ type.wlu.r pointer to aggregate type

* Xk

*% aggregate handle.wlu.r pointer to aggregate handle

% %

*% IMPLICIT INPUTS:
*%

Ll none
* %

** IMPLICIT OUTPUTS:
* %

*x none
% %

*%* FUNCTION VALUE:

* %

*% CDA$_NORMAL

* % Aggregate creation errors

* % Memory deallocation error conditions

* %

** SIDE EFFECTS:
* %

*k none
* %
KK e

**/

static unsigned long create_dsc (text_context ptr,
aggregate_type,
aggregate_handle)

unsigned long *text_context_ptr;
unsigned long *aggregate_type;
unsigned long *aggregate handle;

{

unsigned long status;

struct text_cxt *text context;
unsigned long aggregate item;
unsigned long item length;
unsigned long item index = 0;
unsigned long add_info;
unsigned long major_version;
unsigned long minor version;

/* Dereference */
text_context = (struct text_cxt *) *text_context_ptr;

/* Set the aggregate type */
*aggregate_type = DDIF$_DSC;

/* Create the aggregate */
status = cda$create_aggregate
(&text context->text_a root_aggregate handle,
aggregate_type,
aggregate_handle);
if (FAILURE (status))
return (status);

12-12 Text Front End Source File



/* First item to include is the major version. */

major_version = DDIF$K MAJOR VERSION;

item_length = sizeof(major_version);

aggregate item = DDIF$_DSC_MAJOR VERSION ;

status = cda$store_item (&text_context->text_a root_aggregate_handle,
aggregate_handle,
&aggregate_item,
&item_length,
&major_version);

if (FAILURE (status))

return (status);

/* The next item is the minor version */

minor_version = DDIF$K_MINOR_VERSION;

item length = sizeof (minor_version);

aggregate item = DDIFS$_DSC_MINOR VERSION ;

status = cda$store_item (&text_context->text_a root_aggregate_ handle,
aggregate_handle,
&aggregate_item,
&item length,
&minor_version);

if (FAILURE (status))

return (status);

/* Now the product identifier */

aggregate item = DDIF$_DSC_PRODUCT IDENTIFIER;

status = cda$store_item (&text_context->text_a root_aggregate_handle,
aggregate_handle,
&aggregate item,
&dsc_id_length,
dsc_identifier);

if (FAILURE (status))

return (status);

/* And the product name */
aggregate_item = DDIF$_DSC_PRODUCT_NAME ;
add_info = CDASK_ISO_LATINI;
status = cda$store_item (&text_context->text_a_ root_aggregate_handle,
aggregate_handle,
&aggregate_item,
&dsc_nam_length,
dsc_prod_name,
&item index,
&add info);

/* Document header next */
text_context->text_l_ state= DDIF$_DHD;
/* Say how we did */

return (status);

The following callout corresponds to the callout in the create_dhd routine in the
Text front end.

® This routine creates and fills in the required DDIF$_DHD aggregate, sets the
state to DDIF$_SEG, and returns to the switch statement referenced by @.

Text Front End Source File 12-13



/*

*K gt

*% FUNCTIONAL DESCRIPTION: ﬂ@
* Kk

kel This routine creates a document header aggregate and

*% £ills it in.

* %

*%* PFORMAL PARAMETERS:
*%

*x text_context.wlu.v value to identify this converter
* %

*% aggregate_type.wlu.r pointer to aggregate type

*k

*k aggregate_handle.wlu.r pointer to aggregate handle

* %

** IMPLICIT INPUTS:
*%

*% none
*k

*% IMPLICIT OUTPUTS:
Kk

*x none
% %

** FUNCTION VALUE:

* %

*x CDA$_NORMAL
*% Aggregate creation errors
* % Memory deallocation error conditions

**

** SIDE EFFECTS:
*k

*% none

**

*K e

**/

static unsigned long create_dhd (text_context ptr,
aggregate_type,
aggregate_handle)

unsigned long *text context_ptr;

unsigned long *aggregate_type;

unsigned long *aggregate_ handle;

{

unsigned long status; /* return status */

struct text_cxt *text_context; /* points to context block */
unsigned long aggregate_ item;
unsigned long item_index = 0;

unsigned long int_length;

unsigned long add_info;

unsigned long erf_ type;

unsigned long erf handle;

unsigned char *erf aggregate;
unsigned long object_identifier(7];

/* Dereference */
text_context = (struct text_cxt *) *text context ptr;

/* Set the aggregate type to document header */
*aggregate_type = DDIF$_DHD;
add_info = CDA$K_ISO_LATINI;

/* Create the aggregate */
status = cda$create aggregate
(¢text_context->text_a root_aggregate handle,
aggregate_type,
aggregate_handle);
if (FAILURE (status))
return (status);

12-14 Text Front End Source File



/* Fill in the Author */
aggregate_item = DDIF$_DHD_AUTHOR;
status = cda$store item (&text_context->text_a_root_aggregate handle,
aggregate_handle,
&aggregate_ item,
&dhd_aut_length,
dhd_author,
&item_ index,
&add_info);

/* Fill in the Title if we have one */
if ((text context->text_ 1 title_length != 0) &&
(SUCCESS (status)))
{
aggregate_item = DDIF$_DHD_ TITLE;
status = cda$store_item
(&text_context->text_a_ root_aggregate_handle,
aggregate handle,
&aggregate_item,
&text context->text 1 title_length,
text_context->text a title,
&item index,
&add_info);

/* Create an external reference aggregate */
erf type = DDIF$_ERF;

/* Create the aggregate */
status = cda$create_aggregate
(&étext_context->text_a_root_aggregate_handle,
&erf type,
&erf handle);
if (FAILURE (status))
return (status);

/* Store the object identifier of DDIF */
object_identifier(0] = 1;

object identifier[1] = 3;
object_identifier([2] = 12;

object identifier(3] = 1011;

object_identifier({4] = 1;

object_identifier([5] = 3;

object_identifier[6] = 1;

aggregate_item = DDIF$_ERF DATA TYPE;

int_length = sizeof(object_identifier);

status = cda$store_item (&text context->text a root_aggregate handle,
&erf handle,
&aggregate_itenm,
&int_length,
object_identifier);

if (FAILURE(status))

return (status);

/* Store the style guide name */

aggregate_item = DDIF$_ERF_ LABEL;

add_info = CDA$K_ISO_LATIN1; :

status = cda$store_item (&text context->text_a root_aggregate_handle,
&erf_handle,
&aggregate_item,
&style_ length,
style_guide_name,
&item index,
&add_info);

if (FAILURE (status))

return (status);

Text Front End Source File 12-15



/* Store the descriptor */

aggregate_item = DDIF$_ERF_DESCRIPTOR;

add info = CDASK_ISO_LATIN1;

item index = 0;

status = cda$store_item (&text_context->text_a root aggregate handle,
&erf handle,
&aggregate_item,
&erf desc_length,
erf desc_type,
&item index,
&add_info);

if (FAILURE (status))

return (status);

/* Store the label type */

aggregate_item = DDIF$_ERF_LABEL TYPE;

add_info = DDIF$K STYLE_LABEL_TYPE;

status = cda$store_item (&text_context->text_a root_aggregate_handle,
&erf handle,
&aggregate item,
&erf length,
erf label type,
&item index,
&add _info);

if (FAILURE (status))

return (status);

/* Store the copy info */

aggregate_item = DDIF$_ERF_CONTROL;

int_length = sizeof (unsigned long);

item_index = DDIF$K_NO_COPY REFERENCE;

status = cda$store_item (&text_ context->text_a root_aggregate handle,
&erf handle,
&aggregate_item,
&int_length,
&item_index);

if (FAILURE (status))

return (status):;

/* Store the Style Guide External Reference */

aggregate_item = DDIF$_DHD_EXTERNAL_REFERENCES;

int_length = sizeof (unsigned long);

status = cda$store_item (&text_context->text_a root_aggregate_handle,
aggregate_handle,
&aggregate_item,
&int_length,
&erf handle);

if (FAILURE (status))

return (status);

/* Fill in the Style Guide */
aggregate_item = DDIF$_DHD_STYLE_ GUIDE;
item index = 1;
int_length = sizeof(unsigned long);
status = cdaSstore_item (&text_ context->text_a root_aggregate handle,
aggregate_handle,
&aggregate_item,
&int_length,
&item_index);

/* Segment next */
text_context->text 1 state= DDIF$_SEG;

/* Say how we did */
return status;

The following callouts correspond to the callouts in the create_seg routine in the
Text front end.

® The first time this entry point is invoked, this routine creates the required
document root segment and returns to the switch statement referenced by @
with the state still set to DDIF$_SEG. All subsequent calls to this routine
create nested segments that contain the document content.

12-16 Text Front End Source File



@ If the root segment has just been created, this routine also creates a segment
attributes aggregate (type DDIF$_SGA) and a type definition aggregate (type
DDIF$_TYD) to define types that are accessible to all of the document content
aggregates. Once these aggregates are created, this routine passes control
back to the switch statement referenced by ®. Because the state is still set to
DDIF$_SEG, ® immediately passes control back to this routine to create the
first nested segment of the document.

@ If this routine is not creating the root segment, it simply creates a nested
segment aggregate and sets the state to DDIF$_TXT before passing control

back to @.
/*
Kkt
*% FUNCTIONAL DESCRIPTION: @
* %k
*% This routine creates a document segment aggregate and
*% fills it in.

*% FORMAL PARAMETERS:

* % text_context.wlu.v value to identify this converter
* %

kel aggregate_type.wlu.r pointer to aggregate type

* %

*% aggregate_handle.wlu.r pointer to aggregate handle

*% IMPLICIT INPUTS:

** none

*% IMPLICIT OUTPUTS:

Ll none

*%* FUNCTION VALUE:

* % CDA$_NORMAL
okl Aggregate creation errors
* % Memory deallocation error conditions

** SIDE EFFECTS:

* none

L

KK ==

**/

static unsigned long create_seg (text_context ptr,
aggregate_type,
aggregate_handle)

unsigned long *text_context_ptr;

unsigned long *aggregate_type;

unsigned long *aggregate_handle;

{

unsigned long status;

struct text_cxt *text context;
unsigned long aggregate_ item;
unsigned long item length;
unsigned long item index = 0;
unsigned long add_info;
unsigned long  tyd handle;
unsigned long tyd _type;
unsigned long sga_handle;
unsigned long sga_type;

/* Dereference */
text_context = (struct text_cxt *) *text_context_ptr;

/* Set the aggregate type to segment */
*aggregate_type = DDIF$_SEG;

Text Front End Source File 12-17



/* Create the root segment */
status = cda$create_aggregate (&text context->text_a_root_aggregate handle,
aggregate_type,
aggregate_handle);
if (FAILURE (status))
return (status);

/* If this is the root segment, then setup to create a */
/* child segment. */
if (text_context->text v_root_segment == 1) @
{
/* Reset flags */
text_context->text_v_root_segment = 0;

/* Store SEG ID in segment */
aggregate_item = DDIF$_SEG_ID;
status = cda$store_item
(&text_context->text_a root_aggregate_handle,
aggregate_handle,
&aggregate_item,
&seg_id length,
seg_id);
if (FAILURE (status))
return (status);

/* Create an attribute aggregate */

sga_type = DDIF$_SGA;

status = cda$create_aggregate
(stext_context->text a root_aggregate_ handle,
&sga_type,
&sga_handle) ;

if (FAILURE (status))

return (status);

/* Store SGA in segment */
aggregate_item = DDIFS$_SEG_SPECIFIC_ATTRIBUTES;
item length = sizeof (sga_handle);
status = cda$store_item
(&text_context->text_a root_aggregate_handle,
aggregate_handle,
saggregate_ item,
&item length,
&sga_handle) ;
if (FAILURE (status))
return (status);

/* Create a type definition aggregate */
tyd_type = DDIF$_TYD;
status = cda$create aggregate
(&¢text context->text_a root_aggregate_ handle,
&tyd_type,
&tyd _handle);
if (FAILURE (status))
return (status);

/* Store TYD in SGA */

aggregate_item = DDIF$_SGA_TYPE DEFNS;

item_length = sizeof (tyd_handle);

status = cda$store_item
(&text_context->text_a root_aggregate_ handle,
&sga_handle,
&aggregate_item,
&item_ length,
&tyd_handle);

if (FAILURE(status))

return (status);

12-18 Text Front End Source File



/* Store TYD_LABEL in TYD */
aggregate_item = DDIF$_TYD_ LABEL;
status = cda$store_item
(¢text_context->text_a_ root_aggregate_ handle,
&tyd_handle,
&aggregate item,
&para_length,
para buffer);
if (FAILURE (status))
return (status);

/* Store TYD PARENT in TYD */
aggregate_item = DDIF$_TYD PARENT;
status = cda$store_item
(&text_context->text_a_ root_aggregate handle,
&tyd handle,
&aggregate_item,
&literal length,
literal buffer);
if (FAILURE (status))
return (status);

else

/* Not a root segment; tag as paragraph */
aggregate_item = DDIF$_ SEG_SEGMENT_ TYPE; ®
status = cda$store_item
(&text_context->text_a root_aggregate_handle,
aggregate_handle,
&aggregate_item,
&para_length,
para buffer);
if (FAILURE (status))
return (status);

text_context->text_l_state= DDIF$_TXT;
}

/* Bump scope level */
text_context->text_b_scope_level += 1;

/* Say how we did */
return status;

The following callouts correspond to the callouts in the create_txt routine in the
Text front end. ‘ :

This routine creates and fills in a text content aggregate.

If a user-supplied text file input procedure was specified in the item list, use
that procedure. Otherwise, use the CDA Toolkit routine READ TEXT FILE.

If we reached the end of the document, pass control back to @.

This loop reads each character on the line of text. If a form-feed character is
encountered, the ff found flag is set.

If a horizontal tab character is encountered, the ht_found flag is set.

The characters are passed through a filter to ensure that there are no control
characters.

If write_length was not zero, there was text on the line, so a DDIF$_TXT
aggregate is created and the text is stored in the aggregate.

If a form-feed character was encountered (indicated by ff found = 1), this
corresponds to a DDIF hard directive. Therefore, the value of the directive is
set to DDIF$K_DIR_NEW_PAGE and the state is set to DDIF$_HRD.

If a tab character was encountered (indicated by ht_found = 1), this
corresponds to a DDIF soft directive. Therefore, the value of the directive is
set to DDIF$K_DIR_TAB and the state is set to DDIF$_SFT.

® & o086 66 o096

e

Text Front End Source File 12-19



/*
Kkt

2

o

If the tab or form-feed directive was the first character encountered on
the line, pass control to the create_dir entry point to create the necessary
directive aggregate.

If there was no form feed or horizontal tab directive on the line, this
statement checks to see if the line was completely read or if there are more
characters on the line to be processed. If the line has been completely read,
the next aggregate to be created is a new line (DDIF$K_DIR_NEW_LINE)
soft directive aggregate (type DDIF$_SFT). Otherwise, create another
DDIF$_TXT aggregate because there is more text to read.

If the line was empty, the next aggregate to be created is new line (DDIF$K_
DIR_NEW_LINE) soft directive aggregate (type DDIF$_SFT). If this is the
case, the value of the directive is set to DDIF$K_DIR_NEW_LINE, the state
is set to DDIF$_SFT, and the create_dir routine is invoked.

** FUNCTIONAL DESCRIPTION: @

% %
**
* %

This routine creates a text aggregate and fills it in.

** FORMAL PARAMETERS:

* %

*x text_context.wlu.v value to identify this converter
* %k

*% aggregate_type.wlu.r pointer to aggregate type

*%

*% aggregate handle.wlu.r pointer to aggregate handle

* K

*% IMPLICIT INPUTS:

* %

*x none

* %

*% IMPLICIT OUTPUTS:

* K

*% none

* %

** FUNCTION VALUE:

* %

ok CDAS_NORMAL
** Aggregate creation errors
*x Memory deallocation error conditions

* %k

** SIDE EFFECTS:

* %

*x none

* %

KK

**/

static unsigned long create_txt (text_context ptr,
aggregate_ type,
aggregate_handle)

unsigned long *text_context_ptr;

unsigned long *aggregate_type;

unsigned long *aggregate handle;

{

unsigned long status;

struct text_cxt *text context;

unsigned long aggregate item;

unsigned long item_index;

unsigned long add_info;

unsigned long write_ length;

unsigned long ££f found;

unsigned long ht_found;

unsigned long junk;

12-20 Text Front End Source File



/* Dereference */
text_context = (struct text_cxt *) *text_ context_ptr;

write length = 0;
£ff found = 0;
ht_found = 0;
item index = 0;

/* Do we need to get a line of text from the text file? */
if (text context->text 1 buffer_ length == 0)
{
/* File or procedure? */
if (text_context->text_a input_routine == 0) ®
{
status = cda$read text_file
(&text_context->text_a file handle,
&text_context->text 1 buffer length,
&text context->text_a buffer address);

else

(*text_context->text_a_ input_routine)
(text_context->text_a input_routine_param,
&text_context->text_ 1 buffer_ length,
&text_context->text_a buffer address);

status

}

/* Check for ENDOFDOC. If found, then
stack for later processing. */
if (status == CDA$_ENDOFDOC)
{
text_context->text_v_end of document = 1; ®

/* Create an end of segment aggregate */
status = create_eos (&text_context,
aggregate_type,
aggregate handle);
/* Get out of here; no further processing in TXT */
return status;

if (FAILURE (status))
return (status);
else
text_context->text 1l newline_count += 1;

}

/* Allocate text buffer */
if (text context->text_ 1 local_length < text_context->text 1 buffer_ length)
{ N

/* Deallocate old one first */

if text_context->text_l1_ local_length > 0)

#ifdef vms
lib$free vm(&text_context->text_ 1 local_length,
&text_context->text_a_local buffer, 0);
#else
free (text_context->text_a local_ buffer);
#endif

Text Front End Source File 12-21



/* Allocate larger buffer */

if (DDIF_BUFFER_SIZE > text_context->text 1 buffer_length)
text_context->text 1 local_length = DDIF_BUFFER SIZE;

else
text_context->text 1 local length =
text_context->text 1 buffer length;

#ifdef vms
status = lib$get_vm(&text_context->text 1_local_ length,
&text_context->text_a local_buffer, 0);
#else
text_context->text a local buffer = (unsigned char *)
malloc(text context->text_l local_length);
(text_context->text_a local buffer == 0) ?
(status = CDA$_ALLOCFAIL) : (status = 1);
#endif

if (FAILURE(status))
return (status);

/* Were there characters on the line? */
if (text_context->text_l _buffer length != 0)
{
while (write_length < text_context->text 1 buffer length) ®
{
/* Look for the Form Feed character (12) which is translated to
* a new_page soft directive

*/
if (text_context->text_a buffer address[write_ length]
== FORM FEED)
{
£ff found = 1;
break;
}
else

if (text_context->text_a buffer address[write_length]

== HORIZONTAL_TAB) @
{
ht_found = 1;
break;

}

else
{
/* Make sure no control characters
* pass through */ 2]
text_context->text_a_local buffer[write_length]
= lookup_ buffer
[text_context->text_a buffer address(write length]];

write_length += 1;

/* Is there anything to write? May not be if
FF is first on line */
if (write_length != 0) @
{
/* There was text on the line so
we set the aggregate type to text */
*aggregate type = DDIF$_TXT;

status = cda$create_aggregate
(&text_context->text_a root_aggregate handle,
aggregate_type,
aggregate handle);
if (FAILURE (status))
return (status);

12-22 Text Front End Source File



/* We now store the text line as a text content item */
aggregate_item = DDIF$_TXT_ CONTENT;
add_info = CDASK_ISO_LATIN1;
status = cda$store_item
(&text context->text_a_root_aggregate_handle,
aggregate_handle,
&aggregate_item,
&write_length,
text_context->text_a local_ buffer,
&item_index,
&add_info);
if (FAILURE (status))
return (status);

/* Adjust buffer count and address for next pass */
text_context->text_l buffer length -= write_length;
text_context->text_a buffer address += write_length;

/* Special case for FORM FEED or HORIZONTAL_TAB characters;
skip over it */
if ((ff_found == 1) ||
(ht_found == 1))
{
text context->text_ 1l buffer length -=1
text_context->text_a buffer address += 1

~e N

/* Setup for directive */
if (££_found == 1) ®
{
text context->text 1 _directive_content =
DDIF$K_DIR NEW _PAGE;

text_context->text_ 1 state =
DDIF$_HRD;

text_context->text_1l directive_type =
DDIF$_ HRD;

else @

text_context->text_ 1 directive_content =
DDIFS$K_DIR TAB;

text_context->text_l_state = DDIF$_SFT;

text_context->text_1_ directive_type = DDIF$_SFT;

/* Create a directive aggregate if it is
first on line */ 25]
if (write_length == 0)
{
status = create dir (&text_context,
aggregate_type,
aggregate handle);

}

/* Finished with the line? */ (26)
else

if (text_context->text_l buffer length == 0)
{
/* Set next aggregate as new_line directive */
text context->text 1 directive content =
DDIF$K_DIR NEW_LINE;
text_context->text_l state = DDIF$_SFT;
text_context->text_l_directive_type = DDIF$_SFT;

else
/* Otherwise, next aggregate is TXT */
text_context->text_l state= DDIF$_TXT;

Text Front End Source File 12-23



/*

kg

**
* %k
* %
* %
* *
* )
* %k
* %
* %
)k
* %
% %
*%
* %
* %
* %k

* %
*%
* %
* %
*k
* %
* %
* %
* %
* %
KKk
% %

/* Empty line */ @

else

{

}

/* Set directive to be new line */

text_context->text 1 directive_content
text_context->text 1 directive type

DDIF$K_DIR_NEW LINE;
DDIF$ SFT;

/* Create a directive aggregate */
status = create dir (&text_context,

aggregate_type,
aggregate_handle);

/* Say how we did */
return status;

The following callouts correspond to the callouts in the create_eos routine in the
Text front end.

®

®

This routine creates an end-of-segment (type DDIF$_EOS) aggregate. This
aggregate is a “dummy” aggregate in that it is not actually stored in the
DDIF document. Instead, it is used to indicate the end of a segment.

If the front end has reached the end of the document and if the scope level
is greater than or equal to 1 (the scope level indicates the level of nesting of
segments), the previous DDIF$_EOS aggregate completed a nested segment
and there are more segments to be completed before the document itself can
be completed. In this case, the routine must continue to create DDIF$_EOS
aggregates until the scope level is 0, meaning that the end of the root
segment has been reached. At that point, the status CDA$_ENDOFDOC can
be returned. :

If the front end has not reached the end of the document, this routine only
creates one DDIF$_EOS aggregate to complete the current nested segment.
In this case, the state is set to DDIF$_SEG so that the next aggregate created
is another nested segment.

This statement decrements the scope level to indicate that a nested segment
has been completed by a DDIF$_EOS aggregate.

FUNCTIONAL DESCRIPTION: @

This routine creates an end of segment aggregate

FORMAL PARAMETERS:

text context.wlu.v value to identify this converter

aggregate_type.wlu.r pointer to aggregate type

aggregate handle.wlu.r pointer to aggregate handle

IMPLICIT

none

IMPLICIT

none

INPUTS:

OUTPUTS:

FUNCTION VALUE:

CDAS$_NORMAL
Aggregate creation errors
Memory deallocation error conditions

SIDE EFFECTS:

12-24 Text Front End Source File



* %
* %
K

none

*%/

static unsigned long create_eos (text_context ptr,
aggregate_type,
aggregate_handle)

unsigned long *text_context_ptr;

unsigned long *aggregate_type;

unsigned long *aggregate_handle;

{

unsigned long status;
struct text cxt *text context;

/* Dereference */
text_context = (struct text_cxt *) *text_ context ptr;

/* Return EOS as current aggregate */
*aggregate_type = DDIF$_EOS;
*aggregate_handle = 0;

/* If end of document, then set status */

if (text_context->text v_end of document == 1)

{
if (text_context->text b scope_level >= 1)
{

/* Set next directive to be EOS for content */

text_context->text_ 1 state= DDIFS$_EOS;

/* Set status to success */
status = CDA$_NORMAL;

else
/* Set status to end of document */
status = CDA$_ENDOFDOC;

else

/* Set state to be SEG*/
text_context->text_1 state= DDIF$_SEG;

/* Set status to success */
status = CDA$_NORMAL;
}

/* Decrement scope level */
text_context->text_b_scope level -= 1;

return (status);

®

The following callout corresponds to the callout in the look_ahead routine in the

Text front end.

@ This routine is called by the create_dir routine to scan through multiple blank

lines in the text file.

Text Front End Source File 12-25



/*
LSS

*% FUNCTIONAL DESCRIPTION: @

* %

*k This routine looks ahead for multiple blank lines in the text stream.
* % Multiple blank lines indicate end of paragraph. They become

* % hard newline directives.

* %k

*% FORMAL PARAMETERS:
%k ‘

** text context.wlu.v value to identify this converter
* %k

*% aggregate_type.wlu.r pointer to aggregate type

*k

ek aggregate handle.wlu.r pointer to aggregate handle

* %

** IMPLICIT INPUTS:
*%

*& none
* %k

*% IMPLICIT OUTPUTS:
* Kk

o none
* %

** FUNCTION VALUE:
%

fakad CDAS_NORMAL

Ll Aggregate creation errors

*x Memory deallocation error conditions
* %

** SIDE EFFECTS:

* %

** none

* %

L -

**/

static unsigned long look ahead (text_context ptr)
unsigned long *text_context_ptr;

{
unsigned long status = 1;
struct text_cxt *text_context;

/* Dereference */
text_context = (struct text_cxt *) *text context ptr;

/* Look ahead and compress blank lines */
while ((text_context->text_l buffer length == 0) &
(SUCCESS (status)))

/* File or procedure? */
if (text_context->text_a_ input_routine == 0)
{
status = cda$read_text_file
(&text_context->text_a file handle,
&text_context->text 1 buffer length,
&text context->text_a buffer address);

else

status = (*text_context->text_a input_routine)
(text_context->text_a_input_routine_param,
&text_context->text_l buffer length,
&text context->text_a buffer_ address);
}
if (SUCCESS (status))
text_context->text 1 newline count += 1;

12-26 Text Front End Source File



/*

Kkt

* %
* %
**
* %
* %
**
* %
* %
*k
* %
* %
**

/* Check for ENDOFDOC. 1If found, then stack for later processing. */
if (status == CDA$_ENDOFDOC)
{
text_context->text_v_end of document = 1;
status = CDAS_NORMAL;
}

return status;

The following callouts correspond to the callouts in the create_dir routine in the
Text front end.

@ If the directive content was set to DDIF$K_DIR_NEW_LINE (regardless of
whether it indicates the end of a paragraph or the end of the document), this
directive must be stored as a hard directive in a DDIF$_HRD aggregate.

@ Otherwise, the appropriate type of aggregate is created and filled in.

@ If the directive was a new-line directive, the new-line counter is decremented
and the routine checks to see if it is at the end of a paragraph, the end of the
document, or if there are more new lines to process. The appropriate values
are specified according to which case applies.

FUNCTIONAL DESCRIPTION:

This routine creates a directive aggregate and
fills it in.

FORMAL PARAMETERS:

text_context.wlu.v value to identify this converter
aggregate_type.wlu.r pointer to aggregate type
aggregate handle.wlu.r pointer to aggregate handle

IMPLICIT INPUTS:

none

IMPLICIT OUTPUTS:

none

FUNCTION VALUE:

CDA$_NORMAL
Aggregate creation errors
Memory deallocation error conditions

SIDE EFFECTS:

* % none

* K

KK

*% /

static unsigned long create_dir (text_context_ptr,
aggregate_type,
aggregate_handle)

unsigned long *text_ context ptr;

unsigned long *aggregate type;

unsigned long *aggregate_handle;

{

unsigned long status;

struct text_cxt *text_context;
unsigned long aggregate_item;
unsigned long item_length;

Text Front End Source File 12-27



12-28

/* Dereference */
text_context = (struct text_cxt *) *text_context_ptr;

/* Look ahead for blank lines? */

if ((text_context->text_ 1 newline count == 1) &&
(text_context->text v_end of paragraph == 0) &&
(text_context->text_1 buffer_ length == 0))

status = look_ahead (&text_context);
if (FAILURE (status))
return (status);

}

/* Is this a new line? */ ®
if (text_context->text 1l directive_content == DDIF$K DIR NEW_LINE)
{

/* End of paragraph? (current newline plus at least 2 more)
if (text_context->text 1 newline_count > 2)
text_context->text_v_end of paragraph = 1;

/* Set HRD directive if end of paragraph or document */
if (text_context->text_v_end of_ paragraph == 1)
text_context->text_ 1 directive_type = DDIF$_HRD;

if ((text_context->text_v_end of_ document == 1) &&
(text_context->text_l newline_count == 1))
text context->text 1 directive type = DDIF$_HRD;

/* We are to return a directive */
*aggregate_type = text_ context->text 1 directive_type:

/* Create the aggregate */ GB
status = cda$create_aggregate
(&text_context->text_a root_aggregate_handle,
aggregate_type, )
aggregate_handle);
if (FAILURE (status))
return (status);

/* Set the directive type */

if (text_context->text 1 directive_type == DDIF$_SFT)
aggregate item = DDIF$_SFT DIRECTIVE;

else
aggregate item = DDIF$ HRD DIRECTIVE;

/* Store it */
item_length = sizeof (text_context->text_l_directive_content);

*/

status = cda$store_item (&text_context->text_a_ root_aggregate handle,

aggregate_handle,
&aggregate item,
&item length,
&text_context->text 1 directive_content);
if (FAILURE (status))
return (status);

/* If this is a new line directive, then decrement counter */ Q@
if (text_context->text_ 1l directive content == DDIF$K DIR NEW_LINE)
text_context->text_l_newline count -= 1;

Text Front End Source File



/* Decide what aggregate to process next */
/* End of Document? */
if (text_context->text_v_end of document == 1)

{

/* Soft newlines to end of document */

if (text_context->text_ 1l newline count >= 1)

{
text_context->text_l state = DDIF$_HRD;
text_context->text_ 1 directive_type = DDIF$_HRD;
text_context->text_1_directive_content = DDIF$K DIR_NEW_LINE;

}

else
/* EOS terminates paragraph and document */
text_context->text_ 1 state= DDIF$_EOS;

}

else
/* End of Paragraph? */
if (text_context->text v_end of paragraph == 1)
{
/* Hard newlines to end of paragraph */
if (text_context->text_l newline_count >= 2)
{
text_context->text_ 1 state = DDIF$_HRD;
text_context->text_l_directive_type = DDIFS_HRD;
text_context->text 1 directive_content = DDIF$K_DIR NEW_LINE;
}

else
/* EOS terminates paragraph */

{
text context->text 1 state= DDIF$_EOS;
text_context->text_v_end of paragraph = 0;

}

else
/* Not end of paragraph or document, but more newlines */
if (text_context->text 1 newline_count > 1)

{

text_context->text 1 state= DDIFS_SFT;

text_context->text_l directive_type = DDIF$_SFT;

text_context->text_1_directive content = DDIF$K DIR_NEW_LINE;
}

/* No more newlines; just text */
else
text_context->text_ 1 state= DDIF$_TXT;

/* Say how we did */
return status;

The following callout corresponds to the callout in the get-position routine in the
Text front end.

@ This routine determines the current location of the front end within the input
stream. This routine is used primarily by viewer applications for scroll bar
support.

Text Front End Source File 12-29



/*

*ktq

*%* FUNCTIONAL DESCRIPTION: GB
* % .

*x% This routine is the entry point for the ’get_position’ procedure.
* % It returns the total size of the text stream and the current

*% position (or offset) within the text stream.

* %

** FORMAL PARAMETERS:
%

* % text_context.wlu.v value to identify this converter instance
* %

kel stream position.wlu.r  address to store stream position

* %

*x stream size.wlu.r address to store stream size

* %

** IMPLICIT INPUTS:

* %

** none

* %

*% IMPLICIT OUTPUTS:
* %

** none
* *

** FUNCTION VALUE:
k%

* CDA$_NORMAL

*x CDAS_ENDOFDOC

* % Memory allocation error conditions
*% File error conditions

% %

** SIDE EFFECTS:
* %

*x none

* %k

KK

*%/

static unsigned long get_position (text_ context_ptr,
stream position, -
stream size)

unsigned long *text_context_ptr;

unsigned long *stream_position;

unsigned long *stream_size;

{
unsigned long status;
struct text_cxt *text_context;

/* Dereference */
text_context = (struct text_cxt *) *text_ context_ptr;

/* Do we have a user supplied position routine? */
if (text_context->text_a_position_routine == 0)
/* Ask the CDA Toolkit for the position and size information */
status = cda$get_text_position (&text_context->text_a file_handle,
stream position,
stream_size);
else
) /* Ask user routine for position and size information */
status = (*text_context->text_a position_routine)
(text_context->text_a position_param,
stream position,
stream size);

return status;

The following callout corresponds to the callout in the close routine in the Text
front end.

@ This routine closes the front end and deallocates all resources.

12-30 Text Front End Source File



/*

Kk

*% PFUNCTIONAL DESCRIPTION: Gﬂ

* %k

*% This routine is the entry point for the ’'close front end’ procedure.
* % It closes the input DDIF file (or stream) and deallocates the

*% converter context.

**x

**% FORMAL PARAMETERS:

* %

* % text_context.wlu.v value to identify this converter
*x

*% IMPLICIT INPUTS:
*%

*% none
* K

*% IMPLICIT OUTPUTS:

* %

*k none
* %

** FUNCTION VALUE:
K%

*% CDAS$_NORMAL

* % Memory deallocation error conditions

* % File error conditions

* %

** SIDE EFFECTS:

*x

* % none

**

K e

*% [

static unsigned long close_front_end (text context_ptr)
unsigned long *text_ context ptr;

{

unsigned long  status; /* return status */
unsigned long  struct_size; /* holds context block size */

struct text_cxt *text context; /* points to context block */

/* Dereference */
text_context = (struct text cxt *) *text_context_ ptr;

/* Do we have a file or just a stream? */
status = CDA$_ NORMAL;
if (text_context->text_a file handle != 0)
{
/* Close the input file */
status = cda$close_text file
(&text_context->text_a file_ handle);
if (FAILURE (status))
return (status);

/* Delete the root aggregate */
status = cda$delete root_aggregate
(&text_context->text_a root_aggregate_handle);

/* Deallocate text buffer and front end context block if we have one */
struct_size = sizeof (struct text_cxt);
#ifdef vms
if (text_context->text_1 local_length > 0)
lib$free vm(&text_context->text 1 local_length,
&text_context->text a local_buffer, 0);
lib$free_vm (&struct_size, &text_context, 0);

#else
if (text_context->text 1 local_ length > 0)
free (text_context->text_a_local buffer);
free (text_context);
#endif

/* Say how we did */
return status; }

Text Front End Source File

12-31






Chapter 13

CDA Viewer Routines

This chapter describes the VMS and ULTRIX compile and link procedures and
routines used to write a viewer application.

There are two sets of viewer routines: 1) the character cell viewer routines, which
are listed first and which are preceded by DvrCC, and 2) the DECwindows viewer
routines. Each routine description includes the following information:

* An ULTRIX C style binding that is supported on both VMS and ULTRIX
systems

¢ A description of the value returned by the routine
A description of each routine argument
¢ A description of the routine itself

¢ A list of possible values returned by the routine

13.1 CDA Viewer Support of Adobe Font Metrics

The CDA Viewer uses the Adobe font metrics in processing a DDIF file for
viewing. The font name in a DDIF file follows the X-11 font naming convention.
When processing a file from a creating application that uses font metrics other
than Adobe font metrics, the CDA Viewer defaults to the Adobe Courier font.

The DECwindows CDA Viewer queries the X server for a list of available fonts
when processing a file for viewing. Although the CDA Viewer does not use these
fonts in its calculations, it tries to match the font from the file with an X11 font
on the server. If there is not an exact match, the CDA Viewer uses the font
from the list that is the closest lower point size for that font name. If there is
no match at all, the DECwindows CDA Viewer display type defaults to 12 point
Adobe Courier.

The character cell CDA Viewer displays all files in a 12 point Courier font. The
contents of each file are spaced and displayed correctly, based on the font that is
stored in the file.

The Adobe font metrics are stored in SYS$PS_FONT_METRICS:.AFM on VMS
systems and in /usr/lib/font/metrics/ on ULTRIX systems.

CDA Viewer Routines 13«1



13.2 Compile and Link Procedures for Viewer Images

To create a VMS or ULTRIX program using the CDA Viewer callable interface,
include the following public files in your source code:

VMS and ULTRIX

File Names Description

SYS$LIBRARY:DVR$MSG.H Status codes for both the character cell viewer

fusrfinclude/dvr_msg.h and the DECwindows viewer callable inter-
faces.

SYS$LIBRARY:DVR$CC_DEF.H Literals and structure definitions for the

Jusr/include/dvr_cc_def.h character cell viewer callable interface.

SYS$LIBRARY:DVR$DECW_DEF.H Literals and structure definitions for the

fusr/include/X11/dvr_decw_def.h DECwindows viewer callable interface.

On ULTRIX systems, you must also install the DECimage Application Services
libraries (libimg.a, libids.a, and libchf.a) before you can use the CDA DECwindows
viewer callable interface library (libdvr.a) and the CDA character cell viewer
callable interface library (libdvs.a).

Section 13.2.1 describes the VMS compile and link procedure for CDA viewers.
Section 13.2.2 describes the ULTRIX compile and link procedure for CDA viewers.

13.2.1 VMS Link Procedure

After you compile your source code into an object module (for example, YOUR_
MODULE.OBJ), link a C program (VIEWER_PROGRAM.EXE) using the
following link command on VMS:

$ LINK/EXE=VIEWER PROGRAM YOUR_MODULE.OBJ, -
SYS$INPUT/OPT
SYS$SHARE :DDIF$VIEWSHR/ SHARE

13.2.2 ULTRIX Link Procedures

After you compile your source code into an object module (for example, your_
module.o), link a DECwindows viewer program (dw_viewer_program) using the
following link command:

¢sh> cc -o dw_viewer program
your_module.o
/usr/1lib/libdvr.
/usr/lib/1libids.
/usr/lib/libdwt.
/usr/lib/libimg.
/usr/lib/libchf.
/usr/lib/1ibX11.
/usr/lib/libdvs.
/usr/lib/libddif.a
/usr/lib/libm.a

UG T Y
P

To link a character cell viewer program (cc_viewer_program), use the following
command:

13-2 CDA Viewer Routines



csh> cc -0 cc_viewer program \
your_module.o \
/usr/lib/libdvs.a \
/usr/lib/libimg.a \
/usr/lib/libchf.a \
/usr/lib/libddif.a \
/usr/1lib/libcurses.a \
/usr/lib/libtermlib.a \

/usr/lib/libm.a

Applications that call the viewer routines should use a general condition handling
routine for asynchronous signals that the viewer may generate. The signals
probably will occur when the viewer is processing images, rather than text or
graphics. The following example is a condition handling routine shell, written in
C, which can be included in applications that call the viewer:

int my condition_handler(signal, mechanism)
struct chf$signal_array *signal;
struct chf$mech_array *mechanism;

{

/* signal->chf$l sig name contains the error status;
* process status and continue program execution
*/

}

In the main routine of your application, add the following call to set up the
condition handler:
#ifdef VMS

LIBSESTABLISH (my_ condition handler);
#endif

#ifdef ultrix
ChfEstablish (my_ condition_handler) ;
#endif

LIB$ESTABLISH() is a VMS run-time library routine. ChfEstablish() is the
condition handling establish routine provided within libchf.a.

CDA Viewer Routines 13-3



CC DELETE PAGE

CC DELETE PAGE

Deallocates the page display structure allocated by the routine CC GET PAGE.

C FORMAT
status = DvrCCDeletePage (cc_viewer_context, line_array)

Argument Information

unsigned long *cc_viewer_context;
unsigned char ***line array;

RETURNS

status
A condition value indicating the return status of the routine call.

ARGUMENTS

cc_viewer_context
The address of an unsigned longword that specifies the CC viewer context. This
value must be the value returned by the CC INITIALIZE routine.

line_array

The address of an unsigned longword that contains the address of the line array
returned by the CC GET PAGE routine. This parameter serves to identify the
line array and the corresponding line size array to be deallocated.

Description

The CC DELETE PAGE routine deallocates the page display structure allocated
by the routine CC GET PAGE. Applications may delete this structure once it is

no longer required. Page structures must be deallocated using the CC DELETE
PAGE routine; applications cannot directly deallocate these structures.

13-4 CDA Viewer Routines



CC DELETE PAGE

RETURN VALUES
Return Value Description
DVR$_NORMAL Page successfully deleted
DVR$_MEMDEALLOFAIL Memory deallocation failure
CDA$_xxxx Any CDA return status

CDA Viewer Routines 13-5



CCEND

CCEND

Deallocates all internal structures that were allocated and does general cleanup
required for CC viewer shutdown for the current file.

C FORMAT
status = DvrCCEnd (cc_viewer_context)

Argument Information

unsigned long *cc_viewer_context;

RETURNS

status

A condition value indicating the return status of the routine call.
ARGUMENTS

cc_viewer_context
The address of an unsigned longword that specifies the CC viewer context. This
value must be the value returned by the CC INITIALIZE routine.

Description

The CC END routine deallocates all internal structures that were allocated and
does general cleanup required for CC viewer shutdown for the current file. This
routine may be called at any point during document processing. Any outstanding
page structures not previously deleted by calls to the CC DELETE PAGE routine
are also deallocated.

13-6 CDA Viewer Routines



CCEND

RETURN VALUES

Return Value Description

DVR$_NORMAL Structures successfully deallocated
DVR$_MEMDEALLOFAIL Memory deallocation failure
CDA$_xxx Any CDA return status

CDA Viewer Routines 13-7



CC GET PAGE

CC GET PAGE

Returns the next sequential formatted page from the CDA document.

C FORMAT

status = DvrCCGetPage

(cc_viewer_context, number_of_lines, line_array,
line_size_array)

Argument Information

unsigned long *cc_viewer context;

unsigned long *number of lines;

unsigned char ***line_ array;

unsigned long **line_size_array;
RETURNS

status

A condition value indicating the return status of the routine call.
ARGUMENTS

cc_viewer_context
The address of an unsigned longword that specifies the CC viewer context. This
value must be the value returned by the CC INITIALIZE routine.

number_of _lines
The address of an unsigned longword that receives the number of lines in this

page.

line_array
The address of an unsigned longword that receives the address of an array of

~ longwords in which each element is the address of a null-terminated character

string that represents the characters to be displayed on a line. Each element in
the array represents a specific line number. Element 0 represents line 1, element
1 represents line 2, and so on.

line_size_array

The address of an unsigned longword that receives the address of an array of
longwords in which each element is the length of the character string for the
corresponding line-array element. If you specify 0 by value for this parameter, no
size array is returned.

13-8 CDA Viewer Routines



CC GET PAGE

Description

The CC GET PAGE routine returns the next sequential formatted page from the
CDA document. The page is returned as an array of character string pointers.
Each character string represents a line of text. After the last page in the
document has been processed, the CC GET PAGE routine returns a null page
structure and the status DVR$_EOD (end of document). The page structures
remain in memory until they are explicitly deleted by a call to either the CC
DELETE PAGE routine or the CC END routine.

RETURN VALUES

Return Value Description

DVR$_NORMAL Page returned successfully.

DVR$_EOD The application is at the bottom of the file and cannot page
forward any further.

Any other error status codes.

CDA Viewer Routines 13-9



CC INITIALIZE

CCINITIALIZE

Initializes the character-cell CDA Viewer and returns a context block to the caller
for use in subsequent character-cell CDA Viewer routine calls.

C FORMAT
status = DvrCClnitialize
(select_options, standard _item_list,
private_item_list, display_height, display_width,
cc_viewer_context)

Argument Information

unsigned long select_options;

ITEM LIST TYPE *standard item list;

ITEM LIST_TYPE *private item list;

unsigned long display_height;

unsigned long display width;

unsigned long *cc_viewer_context;
RETURNS

status

A condition value indicating the return status of the routine call.
ARGUMENTS

select _options
A flag vector that may contain any of the following CDA Viewer masks:

Mask Value Meaning

DVR$M_Outfile Output is directed to a text file. If set, the entire
document is written at once to the output file (or
standard output) in the CC INITIALIZE routine
without the application having to call the CC GET
PAGE routine or the CC END routine.

DVR$M_SoftDirectives Obey DDIF soft directives (new line, new page, and so
on).

13-10 CDA Viewer Routines



CCINITIALIZE

Mask Value Meaning

DVR$M_Auto_Wrap Output is word wrapped at the specified page width or
galley width.

DVR$M_Text Set to create text output.

DVR$M_Graphics Set to note location of graphics in the output with a
replacement message.

DVR$M_Images Set to note location of images in the output with a
replacement message.

DVR$M_Layout Use generic layout.

DVR$M_SpecificLayout Use generic and specific layout.

DVR$M_ReportErrors Write all nonfatal error messages to SYS$ERROR or

stdexr. Fatal errors are always reported.

DVR$M_Paging If not set, the entire document is written at once to the
output file (or standard output) in the CC INITIALIZE
routine without the application having to call the CC
GET PAGE routine or the CC END routine.

DVR$M_Text_Backend If set, the CC viewer acts as a text back end. It
expects the CDA front end handle to be passed in the
private item list, with item code
DVR$_FRONT_END_HANDLE.

These masks are defined in DVR$CC_DEF.H. Note that if DVR$M_Text is not
set, there will be no text output. '

standard_item_list
Address of a standard CDA item list. An item list contains entries consisting of
two longwords. The item list is terminated by a null entry.

The item codes are the same CDA$ item codes accepted by the CONVERT
routine in its standard_item_list parameter. The CDA item codes are defined
in SYS$LIBRARY:cda$def.* on VMS systems and in /usr/include/cda_defh on
ULTRIX systems. Item codes of the same names, but with the DVR$ prefix, are
provided in SYS$LIBRARY:DVR$CC_DEF.H on VMS systems and in /usr/include
/dvr_cc_def.h on ULTRIX systems.

The CDA$_INPUT_PROCEDURE and CDA$_INPUT_ PROCEDURE_

PARM codes are supported. These allow the calling application to supply DDIF
input rather than having the CDA Viewer get it from the specified input file.
The standard item list actually supports all the items listed for the CONVERT
routine, although not all item combinations make sense.

private_item_list

The address of a private item list, in the same format as the standard_item_
list. This item list only supports DVR$ item codes. Currently, the only item
codes expected in this private item list are shown in the following table.

Item Code Meaning
DVR$_FRONT_END_HANDLE Front end input procedure handle
DVR$_PAGE_HEIGHT Formatted page height in lines of characters

CDA Viewer Routines 13-11



CC INITIALIZE

Item Code Meaning

DVR$_PAGE_WIDTH Formatted page width in columns of characters

display height

The maximum height per page (in rows). If you specify 0 for this parameter, the
resulting screen height is set to a size adequate to include the entire original
page. This is useful for applications that would like the entire page formatted to
a specific number of rows.

display_width
The maximum page width (in columns). If you specify 0 for this parameter, the
resulting screen width defaults to 132 columns.

cc_viewer_context

The address of an unsigned longword that receives the CC viewer context.
The address of this value must be specified as the cc_viewer_context input
parameter during calls to the other CC routines.

Description

The CC INITIALIZE routine initializes the character-cell CDA Viewer and
returns a context block to the caller for use in subsequent character-cell CDA
Viewer routine calls.

RETURN VALUES
Return Value Description
DVR$_NORMAL CC viewer successfully initialized

Any error status codes.

13-12 CDA Viewer Routines



BOTTOM DOCUMENT

BOTTOM DOCUMENT

Displays the last page of content in the file in the widget window.

C FORMAT
status = DvrBottomDocument (w)

Argument Information

int status;

Widget w;
RETURNS

status

A condition value indicating the return status of the routine call.
ARGUMENTS

w

Identifier of the CDA Viewer widget.
Description

When an application calls the BOTTOM DOCUMENT routine, the CDA Viewer
displays the last page of content.

CDA Viewer Routines 13-13



BOTTOM DOCUMENT

RETURN VALUES

Return Value

Description

DVR$_NORMAL
DVR$_EOD

DVR$_ERROR

DVR$_INVADDR
DVR$_FILENOTOPEN
CDA$_xxxx

The last page of content was displayed successfully.

The application is at the bottom of the file and cannot
page forward any further.

An error was encountered while reading the file, or
converting to in-memory DDIF.

Invalid address.
There is no open file.
Any CDA return status.

13-14. CDA Viewer Routines



CLOSEFILE

CLOSEFILE

Closes the file currently being read by the CDA Viewer and clears the window.

C FORMAT
status = DvrCloseFile (w)

Argument Information

int status;

Widget w;
RETURNS

status

A condition value indicating the return status of the routine call.
ARGUMENTS

w
The identifier of the CDA Viewer widget.

Description

The CLOSE FILE routine closes the file currently being read by the CDA Viewer
and clears the window.

RETURN VALUES

Return Value Description

DVR$_NORMAL The file was closed successfully.
DVR$_FILENOTOPEN There is no open file.
DVR$_INVADDR Invalid address.

CDA$_xxxx Any CDA return status.

CDA Viewer Routines 13-15



DOCUMENT INFO

DOCUMENT INFO

Returns information from the header aggregate of the currently open document.

C FORMAT
status = DvrDocumentinfo (w, buffer_dsc)

Argument Information

int status;

Widget w;

char **puffer dsc;
RETURNS

status

A condition value indicating the return status of the routine call.
ARGUMENTS

w

The identifier of the CDA Viewer widget.

buffer_dsc

The address of a string buffer to be allocated.
Description

The DOCUMENT INFO routine returns information from the header aggregate
of the currently open document. This information includes the document title,
author, version, and creation date.

13-16 CDA Viewer Routines



DOCUMENT INFO

RETURN VALUES

Return Value

Description

DVR$_NORMAL
DVR$_BADPARAM
DVR$_FILENOTOPEN
DVR$_DRMSTRINGFETCHFAIL
DVR$_NODISPCONT

DVR$_MEMDEALLOFAIL
DVR$_MEMALLOFAIL

The document’s header was successfully read.
An invalid parameter was specified.

There is no open file.

Failure to fetch a string.

The requested information is not contained in the
document.

Failure to deallocate memory.
Failure to allocate memory.

CDA Viewer Routines 13-17



GOTO PAGE

GOTO PAGE

Attempts to move to the specified page number.

C FORMAT

status = DvrGotoPage (w, page_num)

Argument Information

int status;

Widget w;

int page_num;
RETURNS

status

A condition value indicating the return status of the routine call.

ARGUMENTS

w
Identifier of the CDA Viewer widget.

page_num
Page number of the desired page in the document.

Description

The GOTO PAGE routine attempts to move to the specified page number.

RETURN VALUES

Return Value Description

DVR$_NORMAL The CDA Viewer widget has successfully moved to the
requested page.

13-18 CDA Viewer Routines



GOTO PAGE

Return Value

Description

DVR$_EOD
DVR$_PAGENOTFOUND

DVR$_BADPARAM

End of document.

A page with the specified page number was not found
in the document.

An invalid parameter was specified.

CDA Viewer Routines 13-19



NEXT PAGE

NEXT PAGE

Displays the next page of a CDA document.

C FORMAT
status = DvrNextPage (w)

Argument Information

int status;

Widget w;
RETURNS

status

A condition value indicating the return status of the routine call.
ARGUMENTS

w

Identifier of the CDA Viewer widget.
Description

The NEXT PAGE routine displays the next page of a CDA document.

13-20 CDA Viewer Routines



NEXT PAGE

RETURN VALUES

Return Value

Description

DVR$_NORMAL

DVR$_INVADDR
DVR$_EOD
DVR$_FILENOTOPEN
CDA$_xxxx

The CDA Viewer widget has successfully moved to the
next page.

Invalid address.

End of document.

There is no open file.

Any condition value returned by the CDA$ routines.

CDA Viewer Routines 13-21



PREVIOUS PAGE

PREVIOUS PAGE

Displays the previous page (if one exists) of a CDA document.

C FORMAT
status = DvrPreviousPage (w)

Argument Information

int status;
Widget w;
RETURNS
status
A condition value indicating the return status of the routine call.
ARGUMENTS
w
Identifier of the CDA Viewer widget.
Description
The PREVIOUS PAGE routine displays the previous page (if one exists) of a CDA
document.
RETURN VALUES
Return Value Description
DVR$_NORMAL The CDA Viewer widget has successfully displayed the
previous page.
DVR$_INVADDR Invalid address.

13-22 CDA Viewer Routines



PREVIOUS PAGE

Return Value Description

DVR$_TOPOFDOC The application is at the top of the file and cannot page
backward any further.

DVR$_FILENOTOPEN There is no open file.

CDAS$_xxxx Any condition value returned by the CDA$ routines.

CDA Viewer Routines 13-23



REGISTER CLASS

REGISTER CLASS

Indicates that the CDA Viewer widget is registered with DRM.

C FORMAT

status = DeregisterClass ()

RETURNS
status

A condition value indicating the return status of the routine call.

Description

The REGISTER CLASS routine is used to indicate that the CDA Viewer widget is
registered with DRM. This call is only necessary for developers using UIL.

RETURN VALUES
Return Value Description
DVR$_NORMAL The CDA Viewer widget was successfully registered with DRM.
DVR$_INVADDR Invalid address.
DVR$_FAILURE The CDA Viewer widget was not successfully registered with

DRM.

13-24 CDA Viewer Routines



TOP DOCUMENT

TOP DOCUMENT

Displays the beginning content of the file in the widget window.

C FORMAT
status = DvrTopDocument (w)

Argument Information

int status;

Widget w;
RETURNS

status

A condition value indicating the return status of the routine call.

ARGUMENTS

w
The identifier of the CDA Viewer widget that opens and displays the information
content of the file.

Description

The TOP DOCUMENT routine displays the beginning content of the file in the
widget window.

RETURN VALUES
Return Value Description
DVR$_NORMAL The beginning content was displayed successfully.

DVR$_TOPOFDOC The application is at the top of the file and cannot page
backward any further. ,

CDA Viewer Routines 13-25



TOP DOCUMENT

Return Value Description
DVR$_INVADDR Invalid address.
DVR$_FILENOTOPEN There is no open file.
CDAS$_xxxx Any CDA return status.

13~26 CDA Viewer Routines



VIEWER

VIEWER

Creates a widget for viewing a CDA file.

C FORMAT
Widget = DvrViewer

(parent, name, x, y, width, height, horz_scroll_bar,
vert_scroll_bar, proc_options, callback,
help_callback)

Argument Information

Widget parent;

char *name;

int x;

int v

int width;

int height;

Boolean horz_scroll_bar;
Boolean vert_scroll _bar;
int proc_options;

DwtCallbackPtr callback;
DwtCallbackPtr help_callback;

RETURNS

Widget

Identifier of the created CDA Viewer widget.
ARGUMENTS

parent
The parent window of the widget.

name
The name of the widget to be created.

b'¢

A signed longword that defines in pixels the placement of the left side of the
widget window relative to the inner upper left corner of the parent window. The
default is 0.

CDA Viewer Routines 13-27



VIEWER

y
A signed longword that defines in pixels the placement of the left side of the

widget window relative to the inner upper left corner of the parent window. The
default is 0.

width
The width in pixels of the widget window.

height
The height in pixels of the widget window.

hbrz_scroll_ bar
A Boolean value indicating that a horizontal scroll bar should be included in the
CDA Viewer widget.

vert_scroll_bar
A Boolean value indicating that a vertical scroll bar should be included in the
CDA Viewer widget.

proc_options

An integer mask indicating the options for processing the document. For a list
of possible processing options masks, see the low-level creation routine VIEWER
CREATE.

callback
The identifier of the application routine to be called back. The callback routine
should have the form callback(Widget, tag, reason).

help_callback
The identifier of the application help routine to be called back. The callback
routine should have the form callback(Widget, tag, reason).

CALLBACK ROUTINES

The format of the callback routines is as follows:

void CallbackProc(WidgetID, tag, reason)
Widget *WidgetID;
caddr_t tag;
DvrCallbackStruct *cb_data;

CALLBACK DATA STRUCTURE

The format of the callback data structure is as follows:

typedef struct

{ int reason;
Xevent *event;
unsigned long status;
char *string ptr;

} DvrCallbackStruct;

13-28 CDA Viewer Routines



VIEWER

CALL BACK REASONS

The application callback is called with the following values for reason:

DvrCRactivated
The CDA Viewer requests focus by clicking on MB1.

DvrCRendDocument
The end of the document has been displayed.

DvrCRcdakError

A nonrecoverable error was incurred while processing the document. See the
status field of the callback structure for the specific status returned. See the
string-ptr field for a character string describing the status.

DvrCRhelpRequested
Help was requested by clicking on HELP + MB1.

CALLBACK FIELD DESCRIPTIONS

The callback field descriptions are as follows:

reason
See the Callback Reasons section.

event
A pointer to the X event structure describing the event that generated this
callback.

Status
The specific status returned.

string_ptr
The character string describing the status.

Description

The VIEWER routine creates a widget that can be used to view the information
content of an in-memory CDA document. If the document to be viewed is not
in DDIF format, then a front end converter must exist that can convert the
document from its non-DDIF format to in-memory DDIF. (A CDA Viewer widget
can also be created using the low-level creation routine VIEWER CREATE.)

To associate a file with the CDA Viewer widget, see the description of the
VIEWER FILE routine.

CDA Viewer Routines 13-29



VIEWER

RETURN VALUES

If the return value is successful, the VIEWER routine returns the ID of the
widget. If the return value is failure, the VIEWER routine returns 0.

13-30 CDA Viewer Routines



VIEWER CREATE

VIEWER CREATE

Creates a widget for viewing a CDA file.

C FORMAT

Widget = DvrViewerCreate
(parent, name, override_arglist, override_argcount)

Argument Information

Widget parent;

char *name;

ArgList override_arglist;
int override_ argcount;

RETURNS

Widget
Identifier of the created CDA Viewer widget.

ARGUMENTS

parent
The parent window of the widget.

name
The name of the widget to be created.

override_arglist

The application override argument list. This list consists of name/value pairs
that describe the attributes of the created widget. For more information on
the override_arglist argument, see the VMS DECwindows Toolkit Routines
Reference Manual.

The override_arglist argument can contain any of the common arguments for
low-level widget creation routines, plus the following widget-specific arguments:

* Boolean horz_scroll_bar
¢ Boolean vert_scroll_bar
* int processing_options

¢ int paper_width

CDA View