VAX Language-Sensitive Editor and VAX
Source Code Analyzer User Manual

Order Number: AA-PAJLA-TK

December 1989

This manual describes the concepts and features of both the VAX Language-Sensitive
Editor and the VAX Source Code Analyzer.

Revision/Update Information: This document is a new manual.

Operating System and Version: VMS Version 5.1 or higher for LSE
VMS Version 5.2 or higher for SCA

Software Version: VAX Language-Sensitive Editor Version 3.0
VAX Source Code Analyzer Version 2.0

digital equipment corporation
maynard, massachusetts

First Printing, December 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’'s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDD/Plus VAX Document VAXstation
DATATRIEVE VAX MACRO VMS
DECforms VAX Notes VT
DECwindows VAX SCAN

VAX VAXcluster ™
VAX DIBOL VAXset ﬂﬂﬂﬂﬁn

ZK5311

Contents

Preface e e e e xvii
Chapter 1 Introduction
1.1 LSE . . . e e e e e 1-2
1.2 SC A . e e e e 14
13 LSE/SCAIntegrationt 1-5
14 VAX DEC/Code Management System Integration................ 1-6
15 Integration with Other VMS Tools 1-6
Part 1 Using LSE
Chapter 2 Introduction to LSE
2.1 OvervView e e e e e e e 2-1
2.1.1 LSEFeaturesc.ouiiiniininrennnnnn. 2-1
2.2 Getting Started e 2-3
2.2.1 Understanding LSE Concepts 24
22.2 IssuingCommands.ut i innnn.. 2-5
223 Invoking LSE. 2-7
224 GettingHelp 2-7
23 Sample Session e 2-7

2.3.1 Expanding Nonterminal Placeholders. 2-10
2.3.2 Deleting Placeholders 2-12
2.3.3 Typing over List Placeholders 2-13
2.34 Expanding Menu Placeholders 2-14
235 Expanding Tokens 2-18
2.3.6 Expanding Terminal Placeholders 2-19
2.3.7 Entering Pseudocode i, 2-20
2.3.8 Moving Pseudocode to Comments 2-21
2.3.9 Ending the Sample Session 2-22
24 Compiling Source Code00, 2-23
25 Invoking LSE from VMS Debugger and from VAX Performance and
Coverage Analyzer i 2-29
26 LSECommand Line0itiuiueunennnnnnnnn. 2-30
2.6.1 LSE Command Line Qualifiers 2-31
27 Running LSE/DECwindows in a Separate Process 2-38
Chapter 3 Performing Editing Tasks
3.1 Using Buffers. e 3-1
3.1.1 Buffer Attributes L L 3-2
3.2 Using Windows 3-6
33 Using the Search and Substitute Operations 3-9
3.3.1 Searching Through Buffers f e 3-9
332 Substituting Text Stringso oo 3-10
3.4 Workingwith Files e 3-11
3.4.1 Locating, Displaying, and Editing Source Files 3-1
3.4.2 Locating Files in Multiple Directories 3-12
343 Setting Directory Defaults 3-13
3.4.4 Getting Files Through VAX DEC/Code Management
System ... e e e 3-15
35 Recovering from a Failed Editing Session 3-17
3.6 Collapsing and Expanding Program Source 3-19
3.6.1 Sample Session. e 3-19
3.6.2 Editing Overviewst 3-24

Chapter 4

Using VAX LSE with DECwindows

4.1 Overview e 4-1
4.1.1 The DECwindows LSE Application Window 4-2
4.1.2 GettingHelp i 4-4
4.2 LSE DECwindows Sample Session 44
4.2.1 OpeningaFile 4-5
422 Positioning the Cursor and Selecting Text 4-6
4.2.3 Searchingfor Text 4-7
4.2.4 Replacing Text. IR 4-9
4.2.5 Formatting Text it 4-10
4.2.6 Using Multiple Windows, 4-11
4.2.7 Using a FiltertoOpen Files. 4-12
4.2.8 Moving Through Buffers 414
429 Reviewing Source Code L. 4-15
4.3 Querying with SCA 4-18
4.3.1 Ending the Editing Session 4-20
Chapter 5 Performing Language-Specific Tasks
5.1 Using Placeholders i i, 51
5.2 Using Tokens ittt 5-3
53 Using Pseudocode i 54
5.3.1 Typing Pseudocode 5-5
5.3.2 Creating Comment Text from Pseudocode 5-5
5.3.3 Processing Pseudocode 5-7
5.4 Using Aliases i 5-8
55 Packages. e e 5-8
5.6 UsingCommentst iitiiieiniineenns 5-10

Part 2 Using SCA

Chapter 6 Introduction to SCA

6.1 OVeIVIEW . . . e e 6-1
B.1.1 SCAFEAUBS . .ottt it e 6-2
6.1.2 Queryingwith SCA. i 6-3
6.2 SCA Analysis Data Files 6—4
6.2.1 Using the VAX Source Code Analyzer ANALYZE Command . . 6-6
6.3 Invoking SCA e e 6-6
6.4 SCACOMMAaNdS 6-7

Chapter 7 Performing SCA Tasks

74 Getting Started. 7-1
7.11 Invoking SCA e 7-2
7.1.2 GettingHelp 7-2
7.1.3 Selecting a Source Library 7-2
7.1.4 Displaying Library Specifications 7-3
715 Displaying Module Information 7-3
7.1.6 Using the FIND Command 7-4

7.16.1 Navigating the Query Display 7-5
7.1.6.2 Moving to a Source Declaration 7-7
717 Multiple Queries 7-14
7.1.71 Moving to a Specified Query 7-16
71.7.2 Moving tothe Next Query 7-17
7.1.7.3 Moving to the Previous Query 7-17
71.7.4 Terminatinga Query 7-17
7.1.8 Exiting from the SCA Session 7-18

Chapter 8 Using the SCA Query Language

8.1 Overview .7 ... 8-1
8.2 Features of the SCA Query Language 8-1
8.3 Basic Concepts 8-2

Vi

8.4 SCA Query Language Tutorial 8-2
8.4.1 Simple Queries 8-3

8.4.2 Using the Expand Function to Find Related Occurrences 8-6

8.4.3 Using Logical Operators to Select Information. 8-7

84.4 The Current Query it 8-11

8.4.5 Structured Relationship Expressions 8-12

8.4.6 Nonstructured Relationship Expressions. 8-14

8.4.7 Other Relationships 8-16

8.4.8 TheINFunction. 8-19

8.4.9 Pathnames i 8-19

8.4.10 Combined Relationship Examples e 8-21

Chapter 9 Evaluating SCA Query Expresssions

9.1 Query Expression Syntax 9-3
9.2 Operator Precedence and Associativity 94
9.3 Default Parenthesizing 94
9.4 Semantics e 9-5
9.5 Attribute Selection Expressions. 9-5
9.5.1 Name Selection i i 9-6

9.5.2 Symbol Class Selection 9-7

9.5.3 Symbol Domain Selection 9-8

9.54 Occurrence Selection 9-9

9.5.5 File Specification Selection 9-10

9.6 Operator Expressions, 9-10
9.6.1 Path-Name Expressions 9-10

9.6.2 Intersection Expressions 9-11

9.6.3 Union EXpressionsottt i 9-11

9.6.4 Exclusive-Or Expressions 9-11

9.7 Function-Call Expressions, o-11
9.7.1 Parameter Association 0. 9-12

9.7.2 Negation Function 9-13

9.7.3 Expansion Function 9-13

9.7.4 Indicated Function, 9-13

9.75 Query Usage Function 9-14

9.7.5.1 The CurrentQuery 9-14

vii

9.7.6 Relationship Functions 9-14
9.7.6.1 Individual Relationship Functions 9-15
9.7.6.2 Relationship Parameters 9-16
9.7.7 The IN Function. e 9-17
9.8 Abbreviation Rules 9-18
Chapter 10 Using SCA Libraries
10.1 OVerview —
10.1.1 Using Remote Libraries.
10.2 Library Manipulation. 10-2
10.2.1 Creating a Library Directory 10-2
10.2.2 Creatingalibrary 10-3
10.2.3 Specifyinga Library i 10-5
10.2.4 Removingalibrary 10-5
10.2.5 Loading Library Information 10-6
10.2.6 DeletingalLibrary 10-7
10.2.7 Multiple Libraries e 10-7
10.2.8 Library Planning. i e 10-9
10.3 Library Maintenance 10-11
10.3.1 Displaying Library Specifications 10-11
10.3.2 Displaying Module Information 10-11
10.3.3 Deleting Module Information 10-12
10.3.4 Verifying and Recoveringa Library 10-13
10.3.5 Optimizinga Library 10-13
Chapter 11 Using the VAX Source Code Analyzer INSPECT Command
11.1 Overview 11-1
11.2 INSPECT Command Concepts0iiiiunon.. 11-1
11.2.1 General Checking Philosophy 11-2
11.2.2 Routines and Common Blocks 11-2
11.2.3 Master Declarations and Checking 11-3
11.3 INSPECT Command Qualifiers 11-7
11.3.1 Performing Various Types of Checking 1-7
11.3.2 Severity Levels 11-9

viii

11.3.3 ErrorLimits e 11-10
1.4 Diagnostic Error Messages 11-10
11.4.1 Fatal-Level Error Messages 11-12
11.4.2 Error-Level Error Messages ot i 11-12
11.4.3 Warning-Level Error Messages 11-13
11.4.4 Informational-Level Error Messages 11-13
11.5 Tailoring the INSPECT Command for Diverse Programming Styles . . . 11-14
11.51 Using Severity Levels to Eliminate Unwanted Messages. 11-15
11.5.2 Using Error Limits to Eliminate Excessive Messages 11-17

11.5.3 Using the /CHARACTERISTICS Qualifier to Eliminate
Unwanted Checks 11-18
11.5.4 Using Other Techniques to Eliminate Unwanted Diagnostics . . 11-19

Part 3 Designing Programs
Chapter 12 Using LSE and SCA to Design Programs

12.1 Introduction 121
12,2 Creating Designs 12-2
12.2.1 Designing Routine Declarations 124
12.2.2 Refiningthe Design 12-6
12.2.3 Designing Data Declarations 12-7
123 Processing Designs e 12-8
12.3.1 Loading Design Information into an SCA Library 12-9
12.4 Analyzing Designs 12-10
12.5 Expressing Design Informationin Comments 12-10
12.5.1 Using Tagged Comments 12-10
12.5.2 Adding New Tags and Keyword Lists 12-12
12.56.3 Associating Tags with Objects 12-13
12.6 Generating Design Reports 12-15
12.6.1 Using Design Report Formats 12-15
12.6.2 Creating Online HELP 12-17
12.6.3 Creating LSE Package Definitions e e e 12-18
12.6.4 Creating INTERNALS Reports 12-19

12.6.5 Creating 2167A Software Design Reports 12-20

12.6.5.1 Describing 2167A Structure in your Code. 12-21

12.6.5.2 Retrieving 2167A Structure Information 12-23

12.7 Reverse-EngineeringaDesign. 12-25
12.7.1 Sample Report e 12-26
MATRIDXC_MULTIPLY . . oo e e e e e e e e 12-27

Part 4 Customizing Functions

Chapter 13 Customizing Editing Functions

13.1 Modifying LSE i e 13-1
13.1.1 Defining Keys i 13-2
13.1.2 DefiningCommands it 134
13.1.3 Defining Aliases 134
13.1.4 Defining Buffer Attributes 13-5
13.1.5 Customizing Windows P 13-7
13.1.6 Redefining Language Elements 13-7
13.1.7 Using the VAX Text Processing Utility (VAXTPU) 13-10
13.2 Modifying LSE/DECwindows Attributes 13-11
13.3 Storing Modifications oo 13-11
13.3.1 Storing Modifications in TextFiles 13-11
13.3.2 Using Initialization and Command Files 13-12
13.4 Speeding Up LSE Initialization 13-14
13.4.1 Creating Environment and Section Files. 13-15
13.4.2 Using Environment and Section Files 13-16
13.4.3 Using Multiple Files i 13-17

Chapter 14 Customizing LSE/DECwindows Menus

141 Using the Extend Menu DialogBox ’ 14-1
14.2 Adding a New LSE Command EntrytoaMenu 14-3
14.3 Saving Menu Meodifications 14-5

Chapter 15 Defining LSE Templates

15.1 DefiningaText Template. 151
15.1.1 Language Definition, 15-3
15.1.2 Placeholder Definitions 15-4
15.1.3 Token Definitions 15-7
15.2 Defining a Programming Languagecoc.... 15-8
15.2.1 Language Definition L oL 15-10
15.2.2 Defining Language Elements 15-13
153 Saving Language Definitions 15-25
154 IndentationControl. 15-26
15.5 DefiningaPackage 15-28
15.5.1 Routine Definitions 15-29
15.5.2 Parameter Definitions, 15-29

Chapter 16 Providing Diagnostic File Support

16.1 User-File Format Exampleo, 16-2
16.2 User-File Format Command Descriptions 16-6
END DIAGNOSTIC . ..ttt i e et et e i e e 16-7
ENDMODULEc ittt i e 16-8
MESSAGE/FILE i e e e 16-9
MESSAGE/TEXT .. ottt e e e s et 16—-10
REGION/FILE i i e st et i e e 16-12
REGION/LIBRARY it iiiinn e 16-15
REGION/NESTEDttt e i et e e e e e 16-18
REGION/TEXT ..ttt it it ittt e ettt e e e e 16—20
START DIAGNOSTICt i et e 16-22
START MODULE it e et et e i e e 16-23

xi

Chapter 17 Customizing Overviews

171 Introduction e 17-1
17.2 Making Adjustments L 17-3
17.2.1 Testing Overviewsty 17-3

17.2.2 Using Adjustment Qualifiers 17-4

17.2.2.1 Adjusting Single Lines 174

17.2.22 Adjusting Multiple Lines 17-6

17.2.2.3 Interactions of Definitons 17-7

17.2.2.4 languages Without Indentation 17-8

17.2.25 Preventing Text Compression. 17-8

17.2.2.6 Finding Appropriate Overview Text 17-9

17.2.2.7 Inheriting Indentation 17-9

17228 BlankLlines........ 17-10

17229 Prefixes i 17-11

17.2.2.10 Grouping Comment Lines 17-13

17.2.2.11 Bracketed Comments 17-13

17.2.2.12 Fixed Comments e 17-14

17.2.3 Basic Rules for Pattern Matching 17-14

17.2.3.1 Multiple Word Patterns 17-15

17.2.3.2 Blank Space and Adjustment Patterns 17-16

17.2.3.3 SpecifyingColumns 17-17

17.2.3.4 Pattern Matching Precedence 17-17

17.2.3.5 Using Precedence to Hide Patterns. 17-18

17.2.3.6 Rules for Pattern Strings 17-19

17.2.3.7 Using the Pattern Parameter 17-20

17.2.4 Special Processing for FORTRAN. 17-20

17.3 Tab Increments and the DEFINE ADJUSTMENT Command 17-23
17.4 Debugging e 17-24

Chapter 18 Customizing Reports

18.1 Introduction e e 18-1

18.2 How the REPORT Command Invokes VAXTPU 18-2
18.3 How Reports are Organized 184
18.4 Customizing 2167A Reports 18-6
18.4.1 Adding a Sectionto a2167A Report 18-6
18.4.2 Using Program Code For Report Information 18-8

Xii

18.4.3 Changing the Mappingof Files. 18-9

Index

Examples
13-1 Sample Initialization File i, 13-13
13-2 Sample Command Filettt 13-14
15-1 Syntax Summary for the Example Language 15-9
16-1 User-File Format Diagnostic. L., 16-3

Figures
1-1 VAX Language-Sensitive Editor Software Development Environment 1-7
21 Initial String Placeholder ina New Buffer 2-10
2-2 Expanding a Nonterminal Placeholder 2-11
2-3 Typingovera Placeholder it innnnn. 2-12
2-4 Usinga List Placeholder 0., 2-13
2-5 Typing over a List Placeholder, 2-14
2-6 Usinga Menu Placeholder 2-15
2-7 SelectingaMenultem i i 2-16
2-8 Using Tokens in Menu Placeholder 2-17
2-9 Selectinga TokenfromaMenuo, 2-18
2-10 Expandinga Token0 ittt 2-19
2-11 Expanding a Terminal Placeholder 2-20
2-12 Typing Pseudocodettt e 2-21
2-13 Pseudocodeto Comments. ciiiiiiinnnnn. 2-22
2-14 Issuing the COMPILE Command 2-25
2-15 Result of Issuing the REVIEW Command. 2-26
2-16 GOTOSOURCE Command.iiiiininennnennns 2-27
2-17 NEXTSTEP Command.ciiiit it inenenenannn 2-28
2-18 GOTOSOURCECommand..................ooiuinnnnnn.. 2-29
3-1 Screen Format e e 3-7
3-2 Buffer Containing Source i, 3-20
3-3 Overview of SOUICettt ittt ittt i 3-21
34 Expanding to Lower Detail i i, 3-22
3-5 Expanding to Lowest Detail 3-23

xiii

Xiv

3-6
4-1
4-2
4-3
44
4-5
4-6
4-7

4-9
4-10
4-11
4-12
4-13

7-1

CollapsingCodecciii i,

LSE DECwindows Title BarandMenus

OpenDialogBox i,
UserBuffer
FindDialogBox
Replace Dialog Box,
Indentation Dialog Box
Using Multiple Windows L.
Specifyinga Filter
Displaying a Listof Buffers
The REVIEW Buffer i i it
Corresponding Source Code,
SCAQueryBuffer e

Source Code Corresponding to First Occurrence

Setting Up an SCA Environment.
The SHOW MODULE Display
The FIND *table* Display,
The Expanded BUILD_TABLE Display
The GOTO Source Display,
The GOTO DECLARATION Display
The FIND EXPAND INDICATED Display
The TRANS_TABLE Source Display
The FIND calling Display
The FIND called by Display
The Expanded SIGNAL_DUPLICATE Display
The SHOW QUERY Display,
The FIND /MODIFY Display
Extractinga Token ittt it
Executing a New Definition
Extend Menu Dialog Box.,
Addinga CommandtoaMenu
Menu ltem Added i L.
Memo Template

First Diagnostic and Corresponding Source
Second Diagnostic and Corresponding Source

Supplied Text of the Second Diagnostic and Corresponding Source

.....

.....

3-24
4-2
4-5
4-6
4-8
4-9

4-10

4-11

4-13

4-15

4-16

4-17

4-19

4-20
6-5
7-4
7-5
7-6
7-7
7-9

7-10

7-11

7-12

7-13

7-14

7-15

7-16

13-8

13-9

14-2

14-4

14-5

15-2

16-4

16-5

Tables

21
2-2
2-3
24
2-5
31
3-2
3-3
91
9-2
9-3
94
9-5
9-6
111
13-1
17-1
17-2

Commands for Token and Placeholder Manipulation
Manipulation Commands and Their Functions
Commands for Reviewing Compilation Errors
Review Commands and Their Functions
LSE Command Line Qualifiers
Buffer Manipulation Commands o,
Screen Manipulation Commands
Code ViewingCommandscuiiiiinnnnen ..
Attribute Selection Expressions o i e
Binary Operators
Nonrelationship Function Expressions
Function Names i
Function Parameters
Query Expression FOrms it e e e
/CHARACTERISTICS Type Optionso,
Where LSE Stores Modifications
Named Pattern Elements
Type Keywordso i e e e
VAXTPU Varigbles e

2-24
2-24
2-31

3-20

XV

Preface

This manual explains how to use the VAX Language-Sensitive Editor and
the VAX Source Code Analyzer on the VMS operating system.

Intended Audience

This manual is for experienced programmers, technical writers, and techni-
cal managers.

Document Structure

The VAX Language-Sensitive Editor and VAX Source Code Analyzer User
Manual has 18 chapters.

Chapter 1 provides an overview of both the VAX Language-Sensitive
Editor (LSE) and the VAX Source Code Analyzer (SCA). It describes the -
concepts of each tool and explains how these tools can be used together
to create an integrated, multilanguage software development environ-
ment. This chapter also briefly describes several other productivity tools
that work with LSE and SCA.

Chapter 2 provides an overview of LSE, including basic LSE features,
the concepts of tokens and placeholders, how to invoke LSE, and how to
compile source code. This chapter also provides a sample editing session
that lets you experiment with the basic features of LSE.

Chapter 3 describes the text-editing capabilities of LSE. This chapter
provides information on multiple buffer and window support, file location
and manipulation facilities, and LSE’s code-viewing features.

xvii

xviii

Chapter 4 provides an overview of the DECwindows LSE environment.
It describes how to open files, perform basic editing tasks, review source
code, and query source code with DECwindows. This chapter also
provides a sample editing session that lets you experiment with the
basic features of DECwindows LSE.

Chapter 5 describes the language-sensitive features of LSE. This chapter
provides information on designing, coding, compiling, and debugging
source files.

Chapter 6 provides an overview of SCA, including the key features of
SCA and its integration with the LSE software development environ-
ment. This chapter provides information on how to invoke SCA, SCA
concepts, libraries, and SCA commands.

Chapter 7 provides a sample session that demonstrates the use of the
basic SCA query commands and related LSE navigational commands.

Chapter 8 describes advanced uses of the SCA FIND command with the
SCA Query Language. This chapter includes overview information and
a tutorial, which demonstrates the concepts and features of the SCA
Query Language.

Chapter 9 further describes the SCA Query Language by providing an
encyclopedic summary of its rules, syntax, and components.

Chapter 10 describes the structure, organization, and use of SCA li-
braries. This chapter provides library creation, manipulation, and
maintenance information.

Chapter 11 describes how to use SCA consistency checking and di-
agnostic capabilities. This chapter also demonstrates the features

of the INSPECT command that allow you to tailor SCA for diverse
programming styles.

Chapter 12 provides a scenario for designing your own programs. In
addition, it provides information on using tagged comments, generating
design reports, and using the various design report formats.

Chapter 13 describes how to customize your development environment.
This chapter describes how to define keys, commands, and aliases; how
to redefine language elements; and how to execute VAXTPU statements.
The chapter also describes how to store your modifications and how to
speed up LSE initialization.

Chapter 14 describes how you can use the Menu Extension Service to
add, modify, or delete menu entries from LSE pop-up and pull-down
menus.

¢ Chapter 15 explains how to define your own environment files for text
templates and programming-type languages. It describes how to save
and store environment files, and how to define packages.

¢ Chapter 16 provides information on interfacing non-Digital language
processors to the diagnostic review facility.

¢ Chapter 17 describes how to customize overviews for programming
languages, including languages that Digital does not directly support.

¢ Chapter 18 describes how to customize reports.

Associated Documents

* The VAX Language-Sensitive Editor and VAX Source Code Analyzer
Reference Manual contains reference material on how to use the VAX
Language-Sensitive Editor and the VAX Source Code Analyzer.

* The VAX Language-Sensitive Editor Installation Guide contains instruc-
tions for installing LSE on VMS operating systems.

* The VAX Source Code Analyzer Installation Guide contains instructions
for installing SCA on VMS operating systems.

® The VAX Text Processing Utility Reference Manual describes the VAX
Text Processing Utility features, including the high-level procedural
language available for use with LSE.

* Using VAXset describes how to use the VAXset products with other
VMS software development facilities to create an effective development

environment.
Convention Description
In interactive examples, a label enclosed in a box indi-
cates that you press a key on the terminal, for example,
[RETURN].
CTRL/x The phrase CTRL/x indicates that you must press the key

labeled CTRL while you simultaneously press another
key, for example, CTRL/Y, CTRL/Z, CTRL/G.

KPn The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP6, KP3.

Xix

XX

Convention

Description

$ LSEDIT

file-spec, . . .

O

[1

{

boldface text

italic text

user input

UPPERCASE TEXT

mouse

MB1,MB2,MB3

Interactive examples show all output lines or prompting
characters that the system prints or displays in black
letters. All user-entered commands are shown in red
letters.

A horizontal ellipsis following a parameter, option,
or value in syntax descriptions indicates additional
parameters, options, or values you can enter.

A horizontal ellipsis in a figure or example indicates that
not all of the statements are shown.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are omit-
ted because they are not important to the topic being
discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the
choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all of
the choices.

In format descriptions, braces surround a required choice
of options; you must choose one of the options listed.

Boldface text represents the introduction of a new term.

Italic text represents parameters, arguments, and infor-
mation that can vary in system messages (for example,
Internal error number), as well as book titles.

The hardcopy version of this manual has interactive
examples that show user input in red letters and system
responses or prompts in black letters. The online ver-
sion differentiates user input from system responses or
prompts by using a different font.

Uppercase letters indicate the name of a command, a
routine, the name of a file, the name of a file protection
code, or the abbreviation for a system privilege.

The term mouse refers to any pointing device, such as a
mouse, a puck, or a stylus.

MBI indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse
button. (You can redefine the buttons.)

Chapter 1

Introduction

This chapter explains how the VAX Language-Sensitive Editor (LSE)
and the VAX Source Code Analyzer (SCA) work together and with other
VMS productivity tools to create an integrated, multilanguage software
development environment.

LSE is a multilanguage text editor that speeds up writing and compiling
source code. SCA is a multilanguage, interactive cross-reference and static
analysis tool that provides detailed information about source code.

Individually, each of these tools allows you to take advantage of the
multilanguage software development capabilities on VMS systems.

Together, these tools provide an integrated method for designing, creating,
compiling, correcting, and inspecting your source code within a single editing
session. You can include design information that can be processed, analyzed,
and preserved throughout the software development cycle. You can review
and, if necessary, modify the source code for your software project. Instead
of working with each individual file, you can access all your project files
through LSE.

Section 1.1 presents an overview of LSE, and Section 1.2 presents

an overview of SCA. Section 1.3 describes how LSE and SCA work
together. Section 1.4 describes the integration of LSE with VAX DEC/Code
Management System (CMS), and Section 1.5 describes how LSE and SCA
integrate with several other software development tools.

Introduction 1-1

1.1 LSE

LSE is an advanced text editor with language-speciﬁc features. Users
familiar with EDT or EVE will recognize the corresponding keypads in LSE
and be able to use LSE immediately.

In addition to text-editing features, LSE provides the following language-
specific support:

¢ Code compilation

¢ Diagnostic review

¢ Formatted language constructs
* Online language HELP

¢ Pseudocode entry support

* Code elision

* Documentation extraction

You can compile source files from within LSE. The VMS compilers write
diagnostics that are read and displayed by LSE. LSE accesses and displays
the corresponding source locations.

LSE supplies the formatted language constructs. These constructs, known
as templates, include keywords, punctuation, and placeholders for most VAX
programming languages. LSE can supply you with the appropriate syntax
for any of the following VAX languages:

¢ VAX Ada

¢ VAX BASIC

¢ VAX BLISS

¢ VAXC

e VAX CDD

s VAX COBOL

e VAX DATATRIEVE
e VAX DIBOL

e VAX FORTRAN
¢ VAX Pascal

e VAX PL/1I

1-2 Introduction

¢ VAX SCAN
¢ VAXELN Pascal

See the release notes or the Software Product Description (SPD) for a more
complete list of supported languages.

In addition to formatted language constructs, LSE provides templates for
subroutine libraries, including the VMS System Service library and the
~ Record Management System (VAX RMS).

LSE has an online HELP Facility for information on unfamiliar language
constructs, routines, and text insertion. Help is also provided for all LSE
commands and key definitions and all SCA commands.

LSE has features for editing comments efficiently, including word wrapping,
paragraph fill, and comment alignment.

LSE provides for incremental program design and development by using
features that allow you to write structured text, or pseudocode, in source
files. You use this pseudocode to describe the design of the code before you
write the actual program statements. You can process source files that
contain pseudocode by using supported VMS compilers. LSE also provides
functions for capturing this pseudocode in comments when you enter the
actual source code.

LSE provides a facility that lets you view programs at various levels of
detail. The concept is sometimes called outlining, holophrasting, or code
elision. You can generate overviews of programs by collapsing lines of code
to hide detail and expanding overviews to see more detail.

LSE is tightly integrated with the following VMS tools:

¢ VAX Source Code Analyzer (SCA)

¢ VAX DEC/Code Management System (CMS)

¢ VAX Text Processing Utility (VAXTPU)

All SCA commands are available within LSE. CMS commands are available
within LSE by using the prefix CMS at the LSE command prompt. All

VAXTPU commands are available within LSE by using the prefix DO/TPU
at the LSE command prompt.

Introduction 1-3

You can call LSE from the following VMS tools:
e VAX DATATRIEVE

¢ VMS Debugger

e VMS Mail Utility (MAIL)

¢ VAX Notes

¢ VAX Performance and Coverage Analyzer

See Sections 1.4 and 1.5 for more details on LSE’s integration with VMS
tools.

With LSE, you can customize your editing environment to meet your
programming preference or style. You can also extend your editing
environment to handle highly specialized editing needs.

1.2 SCA

1-4

The VAX Source Code Analyzer is a multilanguage, interactive cross-
reference and static analysis tool.

SCA helps you understand large-scale software projects by allowing you to

make inquiries about the symbols used in such projects. With SCA, you can

quickly locate information about any identifier. Thus, SCA is useful during

the implementation and maintenance phases of a project, regardless of your

familiarity with the project.
SCA provides the following capabilities:

* Cross-referencing

SCA provides a cross-referencing facility that gives you an index to
information in your source code.

SCA depends on supported VMS compilers for the generation of detailed

source analysis data. Source analysis data consists of a collection of
information relating to all of the symbols, files, and modules contained
in the source. The information is loaded into an SCA library and used
as a database for the SCA cross-reference query and static analysis
features. ,

The SCA query capabilities allow you to check for specific symbols, files,
or modules. You can determine such things as declarations of program
symbols, references to the symbols, and references to source files.

Introduction

Static analysis

The SCA static analysis facility allows you to extract information about
program structure and the relationship of routines, symbols, and files.
You can display call tree information to determine the relationships
between routines. You can also check whether routines are used in a
consistent manner.

Library creation and maintenance

SCA takes the information generated by supported VMS compilers and
merges these files together into libraries to create a picture of your
entire project.

Once a library has been set up for a particular software project, you can
use the cross-referencing, query, and source analysis features of SCA on

that software project. You can also set up a personal library, containing

information on only those modules that you are working on, and use this
library with the main library describing the rest of the system.

1.3 LSE/SCA Integration

Using LSE and SCA together gives you more power than using each product
individually. With these tools, you can do the following:

Access your entire system from LSE

You can tell LSE where to look for your files and modules. SCA allows
you to have full access to all sources for your project from within
LSE. Then, you can browse through all your code to look for specific

- declarations or symbols or other pertinent information about your

project.

Create a private SCA library for your local sources

You can modify modules in your own directory and also access other
modules in your project-wide SCA library.

Write your source files in more than one language

LSE always provides you with the right language support for the file
you are editing. SCA provides you with global navigation of your entire
project regardless of the languages used in each module.

Query your source files

Using SCA and LSE together, you can point to an identifier with the
LSE cursor and, with one keystroke, you can bring up the definition of
that identifier in another window. You can also step through the results
of an SCA query, looking at the actual source code corresponding to each
reference found by SCA.

Introduction 1-5

Generate reports .

In addition to getting information directly from SCA queries, you can use
the SCA REPORT command to produce a variety of reports from your
SCA database. Reports provide information in a structured, organized
way. Reports are implemented in TPU, and therefore require LSE. By
changing or rewriting the TPU code, you can customize reports to suit
your needs.

In general, the preferred way to use SCA interactively is through LSE.
However, you can use SCA from the DIGITAL Command Language (DCL)
level for batch jobs and time-consuming tasks, such as creating project-wide
libraries.

1.4 VAX DEC/Code Management System Integration

LSE provides an interface to VAX DEC/Code Management System (CMS)
to simplify program development and source file management. Using CMS
with LSE provides the following capabilities:

Online storage library

You can create an online library to store your source files. LSE allows
you to use all source files stored in the CMS library. Once LSE is made
aware of the CMS library, you can locate and examine these files from
within LSE.

Easy file access

You do not have to remember the names or locations of the files
and modules contained in your project. LSE will locate your files
automatically.

File manipulation

Using LSE’s file manipulation commands, you can move a file from the
CMS library, place it in your current buffer, modify it, and return it to
the library without leaving LSE.

1.5 Integration with Other VMS Tools

1-6

LSE works with other VMS productivity tools to simplify the program
development process. Figure 1-1 shows how LSE relates to each of these
tools to make up the VAX Language-Sensitive Editor software development
environment.

Introduction

Figure 1-1:

VAX Language-Sensitive Editor Software Development Environment

VMS VAX
Debugger PCA
1 1
| |
L____LSEDITCommands
1 r
I]
Compile Commands CMS Commands
WS % 7 souceFice LSE [~oMS Outort
Source Files CMS Output VAX
rguage e DEC/CMS
mpilers iagnostic Files VAXTPU Source Files
] L
sca | I sca
Commands | | Output
v |
Analysis Files
SCA
ZK-5928-GE
LSE has links to the following:
¢ VMS compilers

Using LSE, you can write and compile your source code in one editing
session. The supported VMS compilers can process placeholders and
comments. In addition, compilers generate files that LSE reads when
correcting syntax errors in source code. Thus, you can write and compile
your code within a single editing session.

LSE’s multiwindow capability enables you to review your errors while
examining the associated source code. Not only does this feature elim-
inate tedious steps in the error-correction process, it also helps ensure
that you fix all the errors before recompiling.

Some compilers, such as VAX C and VAX Ada, provide you with sug-
gested corrections for syntax errors. With LSE, it is easy for you to
incorporate the compiler’s corrections or to make your own corrections.

Introduction 1-7

In addition, the compilers generate files that contain detailed informa-
tion about your source code that SCA uses when performing queries.
Thus, your cross-reference information is available on an interactive
basis.

* VAX Performance and Coverage Analyzer (PCA)

LSE is integrated with the VAX Performance and Coverage Analyzer
(PCA) to simplify the tuning portions of software development. You
can invoke LSE from the analyzer portion of the VAX Performance and
Coverage Analyzer.

* VMS Debugger

You can invoke LSE from the VMS Debugger (debugger) so that errors
detected during a debugging session can be corrected in the original
source code file. This enables you to make corrections immediately.
When you invoke LSE from the debugger, you are positioned in LSE at
the line of source code that corresponds to your position in the debugging
session. When you finish making a correction, you are positioned back in
- the debugger where you left off.

e VAX MAIL
You can use LSE as your default editor in MAIL by putting the following
command in your LOGIN.COM file:

$ DEFINE MAILSEDIT CALLABLE_ LSE

¢ VAX Notes

You can specify LSE as the editor that you want to use in Notes by
issuing the following Notes command:

NOTES> SET PROFILE /EDITOR=(LSE,CALL)

¢ VAX DATATRIEVE

You can specify LSE as the editor for VAX DATATRIEVE to use when
you issue a DATATRIEVE EDIT command by putting the following
command in your LOGIN.COM file:

$ DEFINE DTR$EDIT LSE

See Using VAXset for a more detailed description of how these software tools
work together to create an effective development environment.

1-8 Introduction

Part 1 Using LSE

This part contains tutorial information on using the VAX Language-Sensitive
Editor and includes the following:

* Performing editing tasks

— Using windows and buffers

— Working with files

— Collapsing arid expanding program source
¢ Using LSE/DECwindows
* Performing language-specific tasks

— Using placeholdersk and tokens

— Using pseudocode and comments

Chapter 2
Introduction to LSE

This chapter is a brief introduction to the VAX Language-Sensitive Editor
(LSE). Section 2.1 provides an overview of LSE, including the features of
LSE. Section 2.2 describes how to invoke LSE, enter source code, and leave
LSE. Section 2.3 provides a sample editing session. Section 2.4 describes
how to compile source code within LSE. Section 2.5 describes how to invoke
LSE from the VMS Debugger and from the VAX Performance and Coverage
Analyzer. Section 2.6 describes the format of the LSE command line.

2.1 Overview

LSE is a multilanguage, advanced text editor that is layered on the VAX
Text Processing Utility (VAXTPU). LSE works with VAX languages and VMS
productivity tools to enhance program development.

With LSE, you can control your editing environment and use LSE’s
knowledge of specific languages to develop programs quickly and accurately.

2.1.1 LSE Features

LSE provides the following features:

¢ Error correction and review

The error correction and review feature allows you to compile, review,
and correct compilation errors within a single editing session. LSE
provides an interface to the supported VMS compilers so that you
can perform compilations without leaving LSE. The compilers provide
LSE with compilation diagnostics in a way that allows you to review

Introduction to LSE 2-1

2-2

compilation errors in one editing window while displaying the related
source in another window.

In addition, LSE provides a mechanism for interfacing non-Digital
language processors to the diagnostic review facility.

Language-specific templates

LSE accesses a collection of formatted language constructs, called
templates, that provide keywords, punctuation, and placeholders for
each supported VAX language. Templates provide a fast and efficient
way to sketch design ideas and enter source code.

LSE allows you to modify existing templates or define your own language
or text templates.

Design support

LSE provides program design and development support. You can write
structured text in the form of pseudocode that describes the design of
the code before you write the actual program statements. LSE provides
a mechanism to preserve this design information in comments when you
enter the source code. In addition, LSE provides code-viewing features
that allow you to see more or less detail at a particular point in a
program. LSE and SCA provide a report tool that allows you to present
the overviews you select in a structured manner.

Integrated programming environment

LSE is integrated into the VMS development environment. LSE is
invoked by using the DIGITAL Command Language (DCL). LSE works
with supported languages, SCA, VAX DEC/Code Management System
(CMS), the VMS Debugger (debugger), and the VAX Performance and

-Coverage Analyzer (PCA) to provide a highly interactive environment.

This environment enables you to design, create and edit code, view
multiple source modules, compile programs, and review and correct
compile-time errors in one editing session.

You can invoke LSE directly from the debugger to correct source code
problems found during debugging sessions. In addition, you can invoke
LSE from the VAX Performance and Coverage Analyzer to correct
performance problems found during analyzing sessions.

Online HELP Facility

LSE provides an online HELP Facility for information on unfamiliar
language constructs and routines. Help is also provided for all LSE’s
commands and key definitions.

Source code analysis

LSE’s integration with VAX Source Code Analyzer (SCA) allows you to
search for specific information contained in your source files.

Introduction to LSE

SCA is a source code cross-reference and static analysis tool that

helps programmers familiarize themselves with complex systems. SCA
accesses source information generated by supported VMS compilers.
SCA allows you to move through this information and gain access to
related source files as necessary. You can find out how a program symbol
was declared, where a particular routine is called, or what module needs
to be recompiled.

¢ Source code management

An interface with VAX DEC/Code Management System (CMS) simplifies
the functions of program development.

You can issue all CMS commands within LSE. In addition, you can
request to fetch or reserve files directly from a CMS library when you
issue standard LSE file manipulation commands.

¢ LSE customization

With LSE, you can extend your editing environment to handle highly
specialized editing needs. LSE provides an interface to VAXTPU.
VAXTPU is part of the VMS operating system. VAXTPU features include
a compiler and an interpreter, and procedures for screen management
and text manipulation. The VAXTPU language is block-structured and
provides looping, conditional, case, and assignment statements, as well
as many built-in procedures so you can perform more powerful editing
tasks.

¢ EVE/EDT keypads

LSE provides a SET MODE KEYPAD command that sets the key
definitions to be similiar to EVE or EDT.

* System Services and Run-Time Library templates

LSE provides templates for subroutine libraries, including the VMS
System Service library, Run-Time Library (RTL) (LIB$, STR$, SMGS$),
and the Record Management System (VAX RMS). In addition, LSE
allows you to define templates for packages of subroutine libraries.

2.2 Getting Started

This section presents some general LSE concepts, including the following:

* Using tokens and placeholders

¢ Issuing commands

* Invoking LSE

¢ Invoking the online HELP Facility

Introduction to LSE 2-3

The best way to learn about LSE is to start using it. Section 2.3 guides you
through a sample editing session to familiarize you with the basic features
of LSE. You will learn how to invoke LSE, use templates to enter source
code, and leave LSE.

2.2.1 Understanding LSE Concepts

24

Before you start using LSE, you need to understand the concepts of tokens
and placeholders, which are language elements that have been predefined
for each of the supported languages. You can expand these elements into
templates for language constructs.

Tokens are reserved words or function names that you type into the
editing buffer and expand to provide templates for corresponding language
constructs. For example, you can type the keyword IF and then expand

it into a complete skeleton IF statement, with consistent indentation and
capitalization.

Placeholders are items surrounded by delimiters that are inserted into
the editing buffer by LSE when you expand other placeholders or tokens.
Placeholders are markers that indicate locations in the source code where
you must provide additional program text or choose from indicated options.

Placeholders are either required or optional. Required placeholders, indi-
cated by braces ({}), represent places in the source code where you must
provide program text. Optional placeholders, indicated by brackets ([1),
represent places in the source code where you can either provide additional
constructs or erase the placeholder. For example, a required placeholder
might look like this:

{compilation_unit}

You can expand, erase, or type directly over placeholders. When you type
over a placeholder, the placeholder is automatically removed and the text
you type is inserted into the buffer. When you erase a placeholder, the
placeholder is automatically deleted. However, if you erase a required
placeholder, LSE displays a message saying that the placeholder is required,
and asks if you want to continue the erase operation. When you press the
EXPAND key (CTRL/E) while the cursor is on a placeholder, one of three
events occurs:

* The placeholder is replaced automatically with a template consisting
of language constructs. This type of placeholder is called a nontermi-
nal placeholder because it inserts a template into the buffer when
expanded.

Introduction to LSE

¢ Text appears in a separate window to aid you in supplying a value. This
type of placeholder is called a terminal placeholder because it does
not insert a template into the buffer when expanded. Instead, you must
supply the necessary text. You can press the spacebar to remove the
window.

* A menu appears that provides you with options that can be selected
and expanded into templates. This type of placeholder is called 2 menu
placeholder.

In any of these three cases, you may type the desired text over the place-
holder, and the placeholder is erased automatically. When expanding a
menu placeholder, you can move through the options by using the up and
down arrow keys. To select an option, you press the EXPAND key, the
RETURN key, or the ENTER key. To exit from the menu without selecting
an option, you press the spacebar.

Some placeholders are automatically duplicated when expanded. These
placeholders are called list placeholders.

In addition, LSE provides pseudocode placeholders. Pseudocode place-
holders are placeholders that contain natural language text that expresses
design information. Pseudocode placeholders, unlike regular placeholders,
are not defined by LSE. LSE inserts pseudocode placeholder delimiters

into the editing buffer when you press the ENTER PSEUDOCODE key
(PF1-spacebar). You type the appropriate design information within the
delimiters. You can move pseudocode placeholder text to program comments.
See Chapter 5 for more details on using pseudocode.

You can construct a complete program by repeatedly expanding templates.
You do not have to continuously expand templates until you reach a terminal
placeholder. Rather, you may find it more appropriate to type in the desired
value yourself at a higher level. See Chapter 5 for additional information on
tokens and placeholders.

2.2.2 Issuing Commands

LSE provides the following two ways to issue commands:

* Keypad mode
¢ Command line mode

Introduction to LSE 2-5

2-6

When you invoke LSE, you are in keypad mode. In keypad mode, text that
you type is inserted into a buffer. Keypad, cursor, and control keys execute
LSE functions. Thus, you can press keys to perform editing functions rather
than typing commands on the command line., LSE binds commonly used
commands to certain keys to simplify editing. LSE provides access to both
the EDT and EVE keypads and commands. When you invoke LSE, the
keypad mode is set to the EDT keypad. You use the SET MODE KEYPAD
command to get the EVE keypad. If you are more comfortable with the
EVE keypad, you can put the SET MODE KEYPAD command in your
initialization file so that it will be set to EVE each time you invoke LSE.
(See the SET MODE command in the VAX Language-Sensitive Editor and
VAX Source Code Analyzer Reference Manual for details.) The EDT key
bindings are used in the examples in this manual.

Some LSE commands are not bound to keys. Therefore, they must be
issued in command line mode. There are two command line prompts: LSE
Command> and LSE>.

The LSE Command> prompt processes one command. After that command
is processed, LSE returns to keypad mode. There are two ways to get the
LSE Command> prompt:

¢ Press the DO key
¢ Press the COMMAND key (PF1-KP7)

The LSE Command> prompt appears near the bottom of the screen.

Alternatively, the LSE> prompt allows you to issue as many commands
as you want. To get the LSE> prompt, press CTRL/Z. The LSE> prompt
appears near the bottom of the screen. To return to keypad mode, you can
press CTRL/Z again or issue the CONTINUE command.

The prompts are in either insert or overstrike mode. The setting defaults

to the current setting of the terminal. In LSE/DECwindows, the default is
overstrike. You can change this setting by including the following commands
in an initialization file:

SET INSERT/BUFFER=$COMMANDS
SET INSERT/BUFFER=$PROMPTS

Introduction to LSE

2.2.3 Invoking LSE

The format for invoking the LSE command line is as follows:
$ LSEDIT ([/qualifiers] {file-—spec]

LSEDIT invokes LSE; /qualifiers specify command qualifiers; and file-spec
specifies the file to be edited. It must be a VMS file specification.

If you do not specify a file name or file type in your file specification, LSE
uses the file name or file type specified in your last LSEDIT command if
you issued the EXIT command to end that editing session. Otherwise, LSE
creates a new buffer called $MAIN and prompts you for a file name when
you exit from LSE if you have added text to the $MAIN buffer.

2.2.4 Getting Help

To get help at ény time during your editing session, do any of the following:
¢ To see a diagram of the keypad, press the HELP key (PF2).

¢ To see a list of the keys and their descriptions, press CTRL/Z to get the
LSE> prompt, and type the SHOW KEY command.

* To see a list of LSE commands and their explanations, press CTRL/Z to
get the LSE> prompt, and type the HELP command.

¢ To see a list of all the predefined tokens or placeholders for the language
of the current buffer, press CTRL/Z to get the LSE> prompt, and type
the SHOW TOKEN or SHOW PLACEHOLDER command.

* To get language-specific help on a particular keyword or placeholder,
position the cursor on the keyword or placeholder and press PF1-PF2.
Help is not available for all keywords and placeholders.

2.3 Sample Session

The following sample editing session helps you experiment with LSE. This
editing session uses a sample language, called EXAMPLE, that is supplied
with LSE. The editing session highlights the following:

* Expanding nonterminal placeholders
* Deleting placeholders

¢ Typing over list placeholders

¢ Expanding menu placeholders

Introduction to LSE 2-7

* Expanding tokens

¢ Expanding terminal placeholders
¢ Entering pseudocode placeholders

¢ Moving pseudocode placeholders to comments

All required placeholders are indicated by braces ({}) and optional language
elements are indicated by brackets ([]1). For this example, all commands are
referred to by the command name and corresponding EDT key binding.

You can use several commands for manipulating tokens and placeholders.
Table 2-1 lists these commands and their default key bindings. Table 2—2
lists the manipulation commands and their functions.

Table 2-1: Commands for Token and Placeholder Manipulation
EDT EVE VT100 EVE VT200
Command Keypad , Keypad Keypad
EXPAND CTRL/E or CTRL// CTRL/ CTRL/
UNEXPAND PF1-CTR/E PF1-CTRL/ PF1-CTRL/
or PF1-CTRL//
ERASE PLACEHOLDER/FORWARD CTRL/K CTRL/K CTRI/K
UNERASE PLACEHOLDER PF1-CTRL/K PF1-CTRL/K PF1-CTRL/K
GOTO PLACEHOLDER/FORWARD CTRL/N CTRL/N CTRL/N
GOTO PLACEHOLDER/REVERSE CTRL/P CTRL/P CTRL/P

ENTER PSEUDOCODE PF1-spacebar
ENTER COMMENT/BLOCK PF1-B
ENTER COMMENT/LINE PF1-L

PF1-spacebar
PF1-B
PF1-L

PF1-spacebar
PF1-B
PF1-L

Table 2-2: Manipulation Commands and Their Functions

Command

Function

EXPAND

The EXPAND key (CTRL/E) replaces a placeholder at
the current cursor position with the appropriate body
of text or code. When you press the EXPAND key after
typing a token name, the token expands in much the
same manner as a placeholder.

2-8 Introduction to LSE

(continued on next page)

Table 2-2 (Cont.): Manipulation Commands and Their Functions

Command

Function.

UNEXPAND

ERASE PLACEHOLDER/FORWARD

UNERASE PLACEHOLDER

GOTO PLACEHOLDER/FORWARD

GOTO PLACEHOLDER/REVERSE

ENTER PSEUDOCODE

ENTER COMMENT/BLOCK

ENTER COMMENT/LINE

The UNEXPAND key (PF1-CTRL/E) reverses the effect
of the last EXPAND command.

The ERASE PLACEHOLDER/FORWARD key (CTRL/K)
allows you to remove optional placeholders that are not
necessary for your program.

The UNERASE PLACEHOLDER key (PF1-CTRL/K)
restores the text deleted by the corresponding ERASE
PLACEHOLDER command that you most recently
executed.

The GOTO PLACEHOLDER/FORWARD key (CTRL/N)
places you on the next placeholder.

The GOTO PLACEHOLDER/REVERSE key (CTRL/P)
allows you to move back to the previous placeholder.

The ENTER PSEUDOCODE key (PF1-spacebar) allows
you to enter pseudocode placeholders.

The ENTER COMMENT/BLOCK key (PF1-B) allows
you to move text from a pseudocode placeholder into a
block comment.

The ENTER COMMENT/LINE key (PF1-L) allows you
to move text from a pseudocode placeholder into a line
comment.

To invoke LSE and start the sample session on your screen, type the

following:

$ LSEDIT USER.EXAMPLE

The placeholder {program_unit} appears at the top of your screen. This
placeholder is called the initial string because it is the first language
element that LSE puts into a newly created buffer. Figure 2-1 shows the
initial string (program_unit}.

Introduction to LSE 2-9

Figure 2—-1: |Initial String Placeholder in a New Buffer

YAX Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help

{program.unit} rey
[End of filel

QC_————— ——— —— ——— —— ———— —)

Creating file DEV$: [USERJUSER. EXAMPLE;

2.3.1

2-10

Expanding Nonterminal Placeholders

To experiment with placeholders and tokens, use the following steps:

1. Press CTRL/E (the EXPAND key) while the cursor is on {program_unit}.

The initial string expands into a template of language constructs. The
cursor is now positioned on [procedure level comments]. Figure 2-2

shows the resulting screen.

Introduction to LSE

Figure 2-2: Expanding a Nonterminal Placeholder

Efﬂ VAX Language-Sensitive Editor o]
File Edit Format Navigate View - Display Customize Help
- [Hrocedure level comments] O

PROCEDURE {procedure_name} ([parameter list].,.) IS
[variable_declaration]...;

BEGIN
[statement]...;

END {procedure_name};

[End of filel

q

'01___________________________________!0

Creating file DEVS$: [USERJUSER. EXAMPLE;

2. Press CTRL/N (the GOTO PLACEHOLDER/FORWARD key) to move the
cursor to {procedure_name}.

3. Type the text sample over {procedure_name}.

4. Press CTRL/N (the GOTO PLACEHOLDER/FORWARD key) to move the
cursor to ([parameter list] ...).

Notice that as soon as you move the cursor from the text, the second occur-
rence of {procedure_name} is replaced with the text sample. This is an exam-
ple of the AUTO_SUBSTITUTE feature. (See the DEFINE PLACEHOLDER
command in the VAX Language-Sensitive Editor and VAX Source Code
Analyzer Reference Manual for details.) Figure 2-3 shows the resulting
screen. ~

Introduction to LSE 2-11

Figure 2-3: Typing over a Placeholder

@ VAX Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help
-~ [procedure level comments] O

PROCEDURE sample ([Harameter listl...) IS
[variable.declaration]...;

BEGIN
[statement]...;

END sample;

[End of filel

IQI___.__._.____—__________._____.___..___.___JO

Creating file DEVS$: [USERJUSER. EXAMPLE;

2.3.2 Deleting Placeholders

1. Press CTRL/K (the ERASE PLACEHOLDER/FORWARD key) to remove
([parameter list] ...).

The cursor is now positioned on [variable_declaration]
2. Press CTRI/E (the EXPAND key).
Figure 2—4 shows the resulting screen.

2-12 Introduction to LSE

Figure 2-4: Using a List Placeholder

¥3
File Edit Format Navigate View Display Customize Help
-- [procedure level comments] O
PROCEDURE sample IS
fHdentifier3... : {type} := [initial_valuel...;
[variable_declaration]...;
BEGIN
[statement]...:
END sample;
[End of filel
<o
oC _—— —— —— ———— 0
Creating file DEvs$: [USERJUSER, EXAMPLE;
2.3.3 Typing over List Placeholders
The cursor is now positioned on the list placeholder {identifier} A list

placeholder, indicated by the ellipsis (...), is automatically duplicated
whenever you type over it or expand it.

1. Type the letter a over {identifier}

2. Press CTRL/N (the GOTO PLACEHOLDER/FORWARD key) to move the
cursor to [identifier]

3. Type the letter b over [identifier]

4. Press CTRL/N (the GOTO PLACEHOLDER/FORWARD key) to move the
cursor to [identifier]

5. Press CTRL/K (the ERASE PLACEHOLDER/FORWARD key) to remove
[identifier]

Figure 2-5 shows the resulting screen.

Introduction to LSE 2-13

Figure 2-5: Typing over a List Placeholder

@ Vax Language-Sensitive Editor LB
File Edit' Format Navigate View Display Customize Help
-~ [procedure level comments] O

PROCEDURE sample IS

a, b : {type} := [initial_valuel...:
[variable_declaration]...;

BEGIN
{statement]...;
END sample:;

[End of filel

Io >

Creating file DEV$: [USERJUSER. EXAMPLE;

2.3.4 Expanding Menu Placeholders

The cursor is now on {type}.

1. Press CTRL/E (the EXPAND key).
Figure 2-6 shows the resulting screen.

2-14 Introduction to LSE

Figure 2-6: Using a Menu Placeholder

Zd VAX Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help
-~ [procedure level comments] O

FPROCEDURE sample IS

a, b : {!ype} = [initial_valuel...:
[variable_declaration]...:

BEGIN
[statement]...:

END sample;

[End of filel

| [EX) O

I) "INTEGER" : Integer data type
"BOOLERAN" : Boolean data type
Choose one or press HELP key

Creating file DEVS$: [USERJUSER. EXAMPLE

A menu of options appears at the bottom of the screen. The options are
INTEGER and BOOLEAN. The text after each menu option describes
what will be inserted into your buffer if you select that option.

The up and down arrow keys allow you to move the indicator to the
desired option in the menu.

2. Press CTRL/E (the EXPAND key) or the ENTER or RETURN key to
select INTEGER from the menu.

The menu is removed, and option INTEGER is inserted into the buffer.
The cursor is now positioned on [initial_value] Figure 2-7 shows
the resulting screen.

Introduction to LSE 2-15

Figure 2-7: Selecting a Menu ltem

¥4 vax Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help
-- [procedure level comments] <

PROCEDURE sample IS

' a, b : INTEGER := [initial_valuel...;
[variable_declaration]...;
BEGIN
[statement]...;
END sample;

[End of filel

oC___——————— ——— 10

Creating file DEVS$: [USER]JUSER.EXAMPLE

3. Press CTRL/N (the GOTO PLACEHOLDER/FORWARD key) twice to
move the cursor to [statement]

4. Press CTRL/E (the EXPAND key).
Figure 2-8 shows the resulting screen.

2-16 Introduction to LSE

Figure 2-8: Using Tokens in Menu Placeholder

3 VAX Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help

-- [procedure level comments] tas
PROCEDURE sample IS

a, b 1 INTEGER := [initial_valuel...;
[variable_declaration]...;

BEGIN
(Btatementl...;
END sample;

[End of file] <
= I3

IF : .IF {expression} THEN...

LOOP : [loop-id]: LOOP ... END LOOP;
EXIT : EXIT [loop.id] WHEN ...
Choose one ar press HELP key

~[> ASSIGNMENT : RAssignment statement

Creating file DEV$: [USERIUSER. EXAMPLE;

A menu of options appears at the bottom of the screen. The options
ASSIGNMENT and IF are tokens that you can expand into templates.
The text after each token describes what will be inserted into your buffer
if you select that token.

5. Use the down arrow key to move to the IF token.

6. Press CTRL/E (the EXPAND key) or the ENTER or RETURN key while
the indicator is on the IF token.

Figure 2-9 shows the resulting screen. '

Introduction to LSE 2-17

Figure 2-9: Selecting a Token from a Menu

VaX Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help

-~ [procedure level comments]
PROCEDURE sample IS

a, b : INTEGER := [initial_valuel...:
[variable_declaration]...;

BEGIN

IF {boolean-exp}
THEN

{atatement}...;
[ELSE {statement}...]
END IF;
[statement]...:

END sample;

[End of file]

e S ———— | '

Creating file DEV$:[USERJUSER. EXAMPLE;

The cursor is now positioned on {boolean_exp}.

2.3.5 Expanding Tokens

1. Type the expression a = b.
This replaces {boolean_exp}.

2. Press CTRL/N (the GOTO PLACEHOLDER/FORWARD key) to position

the cursor on the first list placeholder {statement}
3. Type the text assign.
4. Press CTRL/E (the EXPAND key).

You do not have to type the entire token name ASSIGNMENT; with LSE,

you can abbreviate token names.

In this case, you are typing the token assignment over the {statement} . ..
placeholder. However, a token name does not have to be typed over a
placeholder. You can type a token name anywhere in the editing buffer and

press CTRL/E to produce the template for that token.

Introduction to LSE

The separator text, a semicolon, is automatically placed after the assignment
statement. Figure 2-10 shows the resulting screen.

Figure 2-10: Expanding a Token

E,g VAX Language-Sensitive Editor

File Edit Format Navigate View Display Customize Help
-- [procedure level comments]))N
UPRDCEDURE sample IS

a, b : INTEGER := {[initial_value]...:
[variable_declaration]...;

BEGIN

IFa=b

THEN
fidentifier} := {expression};
[statement]...;

[ELSE {statement}...]

END IF;

[statement]...;

END sample;

L O —— | -]

Creating file DEV$: [USER]JUSER. EXAMPLE;

2.3.6 Expanding Terminal Placeholders

The cursor is now positioned on the terminal placeholder {identifier}. If
you press CTRL/E while positioned on a terminal placeholder, LSE displays
information to help you supply the necessary text.

1. Press CTRL/E (the EXPAND key) to see the information for {identifier}.
Figure 2-11 shows the resulting screen.

Introduction to LSE 2-19

Figure 2-11: Expanding a Terminal Placeholder

#4 vax Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help

PROCEDURE sample IS

a, b : INTEGER := [initial_valuel...:
[variable_declaration]...;

BEGIN
IF a=ob
THEN
{Edentifier} 1= {expression};
[statement]...;
[ELSE {statement}...]
END IF;
[statement]...;
END sample; A
Y — TS

[End of filel
— A string of letters and digits starting with a letter.
Press SPACE to leave of press HELP key

Creating file DEVS$: [USERJUSER. EXAMPLE;

2. Press the spacebar to remove the information about {identifier}

2.3.7 Entering Pseudocode

LSE provides pseudocode placeholders that enable you to enter design -
information into your source files. To enter pseudocode, do the following:

1. Press CTRL/N (the GOTO PLACEHOLDER/FORWARD key) twice to
position the cursor on the [statement]... placeholder.

2. Press PFl-spacebar (the ENTER PSEUDOCODE key).

LSE inserts the special brackets « and » into the buffer that delimit
pseudocode placeholders and positions the cursor within the delimiters.

3. Type the text compute the total at the cursor position.

2-20 Introduction to LSE

Figure 2-12 shows the resulting screen.

Figure 2-12: Typing Pseudocode

VAX Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help

PROCEDURE sample IS

a, b : INTEGER := [initial_value]...;
{variable_declaration]...;

BEGIN

IFa=»>0

THEN
{identifier} := {expression};
«compute the totall:
{statement]...;

[ELSE {statement}...]

END IF;

[statement]...;

END sample;

C_———_——— ———————— ———— —— —— ———— —— —— —— —)b

Creating file DEV$: [USERJUSER.EXAMPLE;

2.3.8 Moving Pseudocode to Comments

With LSE, you can move pseudocode placeholder text to program comments
to preserve design information when implementing your programs. To move
text from a pseudocode placeholder to a block comment, do the following:

1. Press PF1-B (the ENTER COMMENT/BLOCK key) while positioned on
the pseudocode placeholder.
LSE places the pseudocode placeholder text in a comment. In addition,

LSE inserts the {tbs} placeholder into the buffer to provide an easy way
to enter your code.

2. Type the text total = subtotal + 10 on the {tbs} placeholder.
Notice that the {tbs} placeholder is removed when you type over it.

Introduction to LSE 2-21

Figure 2-13 shows the resulting screen.

Figure 2-13: Pseudocode to Comments

VAX Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help

PROCEDURE sample IS

a, b : INTEBER := [initial_valuel...:
[variable_declaration]...:

BEGIN

IF a=0b

THEN
{identifier} := {expression}:
-- compute the total
total = subtotal + 10f
[statement]...;

[ELSE {statement}...]

END IF;

[statement]...;

L O —]

Creating file DEV$: [USER]USER. EXAMPLE;

2.3.9 Ending the Sample Session

2-22

To leave LSE, press CTRL/Z to get the LSE> prompt. If you want to save
modifications to the file, type the EXIT command. If you do not want to save
the file or any modifications, type the QUIT command.

When you use the EXIT command, LSE remembers the original input file
specification and the current cursor position. Thus, you can return to editing
a file at exactly the same position by typing the LSEDIT command without
specifying any input file parameters. This information is lost, however, when
you log out.

Introduction to LSE

2.4 Compiling Source Code

While writing your program, you can use the COMPILE and REVIEW
commands to compile your code and review compilation errors without
leaving the editing session. Supported VMS compilers generate a file of
compile-time diagnostic information that LSE can use to review compilation
errors. The diagnostic information is generated with the /DIAGNOSTICS
qualifier. ’

The COMPILE command issues a DCL command in a subprocess to invoke
the appropriate compiler. LSE checks to see if the language supports
diagnostics capabilities. If so, LSE appends the /DIAGNOSTICS qualifier to
the COMPILE command.

For example, if you issue the COMPILE command while in the buffer
TEST.ADA, the resulting DCL command is as follows:

$ ADA DEV: [DIRECTORY]TEST.ADA/DIAGNOSTICS=DEV: [DIRECTORY]TEST.DIA

LSE supports all of the compiler’s command qualifiers as well as user-
supplied command procedures. You can specify DCL qualifiers, such as
/LIBRARY, when invoking the compiler from LSE. In addition, you can
specify the /DESIGN qualifier to process designs. For example, to invoke the
compiler with the /DESIGN qualifier, type the following command:

LSE> COMPILE $/DESIGN

The REVIEW command displays any diagnostic messages that resulted
from a compilation. LSE displays the compilation errors in one window,
with the corresponding source code displayed in a second window.. (See the
REVIEW command in the VAX Language-Sensitive Editor and VAX Source
Code Analyzer Reference Manual for more details.)

Multiwindow capability allows you to review your errors while examining
the associated source code. This eliminates tedious steps in the error
correction process and helps ensure that all the errors are fixed before
looping back through the compilation process.

LSE provides several commands to help you review errors and examine your
source code. Table 2-3 lists these commands and their default key bindings.
Table 2—4 lists the review commands and their functions.

Introduction to LSE 2-23

Table 2-3: Commands for Reviewing Compilation Errors

EDT EVE VT100 EVE VT200
Command Keypad Keypad Keypad
COMPILE/REVIEW
COMPILE
REVIEW
END REVIEW
GOTO SOURCE CTRL/G CTRL/G CTRL/G
NEXT STEP CTRL/F CTRL/F CTRL/F
PREVIOUS STEP CTRL/B CTRL/B CTRL/B

Table 2-4: Review Commands and Their Functions

Command Function

COMPILE/REVIEW The COMPILE/REVIEW command compiles the con-
tents of a buffer and then displays a set of diagnostic
messages that results from the compilation.

COMPILE The COMPILE command compiles the contents of a
buffer.

REVIEW The REVIEW command selects and displays a set of
diagnostic messages that results from a compilation.

END REVIEW The END REVIEW command ends an LSE REVIEW
session.

GOTO SOURCE The GOTO SOURCE key (CTRL/G) displays the
source corresponding to the current diagnostic item.

NEXT STEP The NEXT STEP key (CTRL/F) moves the cursor

PREVIOUS STEP

forward to the next error.

The PREVIOUS STEP key (CTRL/B) moves the
cursor back to the previous error.

2-24 Introduction to LSE

The following example demonstrates how to compile and review errors
within your editing session. Note that this example and the sample
language, called EXAMPLE, do not have compiler support. Therefore, when
experimenting with the COMPILE command, you should construct your own
example using one of the languages that has compiler support.

If you are editing a program and you want to compile it, use the following
steps:

1. Press CTRL/Z to get the LSE> prompt and type the COMPILE
command.

Figure 2-14 shows the resulting screen.

Figure 2-14: Issuing the COMPILE Command

B4 vaX Language-Sensitive Editor

File Edit Format Navigate View Display Customize Help
PROCEDURE test (a : INTEGER) IS <o

b : BOOLEAN;
BEGIN

b := true;

IF b

THEN

b i= a;

ELSE
b i= false
END IF;

END test:
[End of filel

S ——]

While the compilation is running, you may continue to use LSE to edit.
When the compilation ends, a message appears in the message buffer.

2. Type the REVIEW command at the LSE> prompt.

The REVIEW command instructs LSE to review the compilation errors
generated by the COMPILE command. Figure 2-15 shows your screen
with the compilation errors in the top window and the source code in the
bottom window.

Introduction to LSE 2-25

2-26

Figure 2-15: Result of Issuing the REVIEW Command

VAX Language-Sensitive Editor

File Edit Format Navigate View Display Customize Help

I
%EXAM-E~INSSEMI, Inserted “;" at end of line

Line 1: PROCEDURE test (a : INTEGER) IS

tine 3: b : BOOLEAN;

Line 10: b = a;

%EXAM-E-ASSIGNNERESTYP, Result type BOOLEAN in predefined STANDARD of variable

PROCEDURE test (a : INTEGER) IS

b : BOOLEAN;

<

[

k]

Starting compilation: EXAMPLE DEVS$: [USER]TEST.EXAMPLE; 1 /DIAGNOSTICW=DEVS: [USER®
Compilation of buffer TEST.EXAMPLE completed with error status

Press CTRL/Z to move from the LSE> prompt to the buffer and begin
reviewing the errors.

You can use the NEXT STEP key (CTRL/F) and the PREVIOUS STEP
key (CTRL/B) to step from error to error in the $REVIEW buffer. If you
want to correct the source code associated with a particular error, press
the GOTO SOURCE key (CTRL/G) while the cursor is positioned on that
error.

In addition to the NEXT STEP and PREVIOUS STEP commands, you
can use any cursor movement keys to move around in the SREVIEW
buffer. You can type the GOTO SOURCE command to go to the associ-
ated source code. Thus, you can examine other lines of code associated
with an error.

Press CTRL/G (the GOTO SOURCE key) to correct the source code
associated with the first error.

Figure 2-16 shows the resulting screen.

Introduction to LSE

Figure 2-16: GOTO SOURCE Command

Eg VAX Language-—-Sensitive Editor

File Edit Format Navigate View Display Customize

Help
O
ZEXAM~E-INSSEMI, Inserted “;:" at end of line
Line 1: PROCEDURE test (a : INTEGER) IS
Line 3: b : BOOLEAN;
Line 10: b = a;
%EXAM-E-ASSIGNNERESTYP, Result type BOOLEAN in predefined STANDARD of variable [©
L ———]
<
b := true;
IF b
THEN
b = a;
ELSE
b := falsef]
END IF;
4
oC— — _ ——— —— b

Starting compilation: EXAMPLE DEV$: [USER]TEST.EXAMPLE; 1 /DIAGNOSTICW=DEVS: [USER®
Compilation of buffer TEST.EXAMPLE completed with error status

Corrections accompany some errors. For example, in Figure 2-16, the
compiler supplied a correction for the missing semicolon. You can accept

or reject the correction.
5. Type Y after the following prompt to accept the correction:
Keep the indicated correction {Y OR NJ]?

6. Press CTRL/F (the NEXT STEP key) to move to the next error.
7. Press CTRL/G (the GOTO SOURCE key).
Figure 2-17 shows the resulting screen.

Introduction to LSE

2-27

Figure 2-17: NEXT STEP Command

ﬁ VaX Language-Sensitive Editor

File Edit Format Navigate View Display Customize Help
rey
Line 1: PROCEDURE test (a : INTEGER) IS
Line 3: b : BOOLEAN;
_ 10: b := a;
XEXAM-E-ASSIGNNERESTYP, Result type BOOLEAN in predefined STANDARD of variable

b at line 3 is not the same as type INTEGER in predefined STANDARD of
subprogram ‘in’ formal a at line 1

<
l oC———————————————— —————— ————————————— — — ——————— 1
IF b O
THEN
b := a;
ELSE
b := false;
END IF;
END test:
[End of filel N
9
Euffer: TEST, EXAMPLE { Write | Inzert | Forward
Starting compilation: EXAMPLE DEV$:[USER]TEST.EXAMPLE;1 /DIAGNOSTICW=DEVS: [USER®
Compilation of buffer TEST.EXAMPLE completed with error status

Notice that there are several source lines displayed with this error in the
$REVIEW buffer.

8. Press PFl-up arrow (the PREVIOUS WINDOW key) to go to the
$REVIEW buffer.

9. Press the up arrow key to move the cursor to line 3: b : BOOLEAN;.

Notice that line 10 is highlighted and the cursor moved to the declara-
tion of b.

10. Press CTRL/G (the GOTO SOURCE key). Line 3 is now highlighted.
Figure 2-18 shows your screen with the cursor on the declaration of b.

2-28 Introduction to LSE

Figure 2-18: GOTO SOURCE Command

VaAX Language-Sensitive Editor
File Edit Format Navigate View Display Customize Help

Line 1: PROCEDURE test (a : INTEGER) IS

Line 10: b := a;

REXAM-E-ASSIGNNERESTYP, Result type BOOLEAN in predefined STANDARD of variable
b at line 3 is not the same as type INTEGER in predefined STANDARD of
subprogram ‘in’ formal a at line 1

L O s —] '3

PROCEDURE test {a : INTEGER) IS o
B : BoOLEaN;
BEGIN

Euffer: TEST. EXAMPLE | Write | Inzert | Forward

Starting compilation: EXAMPLE DEVS$:[USER]TEST.EXAMPLE; 1 /DIAGNOSTICW=DEV$: [USER*
Compilation of buffer TEST.EXAMPLE completed with error status

When you finish correcting your program, you can return to a single
window containing the source code.

11. Press CTRL/Z to get the LSE> prompt and type the END REVIEW
command.

2.5 Invoking LSE from VMS Debugger and from VAX
Performance and Coverage Analyzer
While in the VMS Debugger (debugger) or the VAX Performance and
Coverage Analyzer (PCA), you can invoke LSE to edit your code.
The command syntax to invoke LSE from the debugger or PCA is as follows:

DBG> EDIT [/EXIT] [[module-name\] line-number]

LSE positions the cursor at the line in the file that corresponds to the
specified module and line in the debugger or the VAX Performance and
Coverage Analyzer. The default file and line are taken from the current
source display.

Introduction to LSE 2-29

The rules for specifying the module-name and line-number qualifiers are as
follows.

¢ If both module-name and line-number are specified, their values
determine the module and line at which the file is positioned in LSE.

¢ If only line-number is specified, the module is assumed to be the module
of the current source display.

¢ If neither module-number nor line-number is specified, the module is
assumed to be the module of the current source display, and the line
number is assumed to be the central line in the window of that display.

When you invoke LSE from the debugger or PCA, a subprocess is spawned
for the editing session. Control automatically returns to the debugger or the
VAX Performance and Coverage Analyzer after the editing is completed.

You use the edit command to tell LSE exactly what file you are editing. The
EDIT command also checks the file in the debugger or the VAX Performance
and Coverage Analyzer source display to see if it is the most recent version.

LSE always edits the most recent version of the file. If the displayed version
is not the most recent version, LSE issues an error message.

When debugging and editing code, it is faster to use the EDIT/EXIT
command at the DBG> prompt rather than returning to the debugger and
typing the EXIT command. This is useful when only minor editing must be
done before recompiling.

2.6

2-30

LSE Command Line

This section describes the format of the LSE command line and includes
detailed descriptions of each command line qualifier.

The LSEDIT command invokes LSE. The LSEDIT command has the
following form:

LSEDIT [/qualifiers] [file-spec}

/qualifiers
Specifies LSEDIT command qualifiers.

file-spec

Specifies the file to be edited. It must be a VMS file specification. LSE
uses the setting of the SET SOURCE_DIRECTORY command or the
corresponding LSE$SOURCE logical name to resolve the file specification.

Introduction to LSE

LSE reads the file into a buffer if the file exists. The buffer name is taken
from the name and type of the file specification in the command line. The
file type determines the language for the buffer. For example, .FOR is the
file type for FORTRAN, .PLI is the file type for PL/I, and .PAS is the file
type for Pascal. If the file does not exist, it is created when you use the
EXIT command to leave LSE.

If you do not specify a file name or file type in your file specification, LSE
uses the file name or file type specified in your last LSEDIT command,
provided you issued the EXIT command to end that editing session.
Furthermore, the cursor is positioned at the same place as when you last
left LSE. The file name, type, and position are collectively called the current
file information. The current file information is updated only when you
use the EXIT command to leave LSE. If you use the /NOCURRENT_FILE
qualifier, LSE does not use the file specification from the previous LSEDIT
command as the input file specification. The QUIT command or CTRL/Y
does not change the current file information.

2.6.1 LSE Command Line Qualifiers

You can use several command line qualifiers to provide additional informa-
tion to LSE on how to handle your files. Table 2-5 lists these command
line qualifiers. Detailed descriptions of the qualifiers and their defaults,
indicated by (D), follow the table.

Table 2-5: LSE Command Line Qualifiers

Qualifier Default
/INOJCOMMAND-=file-spec See text

/INOICREATE /CREATE
/INOIJCURRENT_FILE /CURRENT_FILE

/INOIDEBUG /NODEBUG

/INOIDISPLAY /DISPLAY=CHARACTER_CELL

/INOJENVIRONMENT=file-spec-list See text
ANOIINITIALIZATION=file-spec See text

/INOJINTERFACE /INTERFACE=CHARACTER_CELL
/INOJJOURNAL[=file-spec] /JOURNAL

(continued on next page)

Introduction to LSE 2-31

2-32

Table 2-5 (Cont.): LSE Command Line Qualifiers

Qualifier Default
LANGUAGE=language

/[INOJMODIFY ,
/INOJOUTPUTI[=file-spec] /OUTPUT
/INOJREAD_ONLY

/INOIRECOVER /NORECOVER
/INOISECTION=file-spec /SECTION=LSE$SECTION

/START_POSITION=(line,character)

/INOJSYSTEM_ENVIRONMENT /SYSTEM_ENVIRONMENT=LSE$SYSTEM_
ENVIRONMENT

/INOIWRITE

/COMMAND-=file-spec

/NOCOMMAND ;
Specifies a file containing VAXTPU statements to be executed as part of LSE
initialization.

If you specify the /NOCOMMAND qualifier, LSE does not use a VAXTPU
initialization command file. (See the VAX Text Processing Utility Reference
Manual for more information.)

You can define the logical name LSE$COMMAND to point to a file contain-
ing VAXTPU statements. If neither the /COMMAND nor /NOCOMMAND
qualifier appears on the command line, LSE attempts to translate the logical
name LSE$COMMAND. If it has a translation, that value is used in the
same way as the /COMMAND qualifier value.

/CREATE (D)

/NOCREATE

Controls whether LSE creates a new file when the specified input file is not
found. By default, LSE provides a buffer in which to create the file. When
you exit from LSE or write out the contents of the buffer with the WRITE or
COMPILE commands, LSE creates a new file with the input file specification
in the appropriate directory.

When you specify the /INOCREATE qualifier on the LSE command line and
the name of a file to edit, and the named file does not exist, LSE displays an
error message and places you in a buffer called $MAIN.

Introduction to LSE -

/CURRENT _FILE (D)

/NOCURRENT_FILE ‘

Specifies whether or not LSE uses the last file edited as the input file
specification if no file is specified on the command line.

/DEBUG

/NODEBUG (D)

Specifies whether LSE loads, compiles, and executes a file implementing
a VAXTPU debugger. If /DEBUG is specified, LSE reads, compiles, and
executes the contents of a debugger file before executing the procedure
TPUS$INIT_PROCEDURE and before executing the command file. (For
more information on VAXTPU’s initialization sequence, see the VAX Text
Processing Utility Manual.)

By default, LSE does not load a debugger. If you specify that a debugger
is to be loaded but do not supply a file specification, LSE loads the file
SYS$SHARE:LSE$DEBUG.TPU. (For more information on how to use the
default VAXTPU debugger, see the VAX Text Processing Utility Manual.)

To use a debugger file other than the default, use the /DEBUG qualifier and
specify the device, directory, and file name of the debugger to be used. If you
specify only the file name, LSE searches SYS$SHARE for the file. You can
define the logical name LSE$DEBUG to specify a file containing a debugger
program. Once you define this logical name, if you use /DEBUG without
specifying a file, LSE calls the file specified by LSE$DEBUG.

/DISPLAY=CHARACTER_CELL (D)
/DISPLAY=DECWINDOWS
/DISPLAY=screen_manager_filespec
/NODISPLAY

Specifies which screen manager you want to run.

The /DISPLAY command qualifier is optional. By default, LSE uses
the character-cell screen manager. As an alternative to the /DISPLAY
qualifier, you can define the logical name LSE$DISPLAY_MANAGER
as DECWINDOWS, CHARACTER_CELL, or as a screen-manager file
specification.

If you specify /DISPLAY=CHARACTER_CELL, LSE uses the character-cell
screen manager, which runs in a DECterm (or VWS) terminal emulator or
on a physical terminal.

If you specify /DISPLAY=DECWINDOWS, LSE uses the DECwindows
screen manager, which creates a DECwindows window in which to run LSE.

You cannot use the /NODISPLAY qualifier if the logical name LSE$DISPLAY_
MANAGER is pointing to the DECwindows window manager.

Introduction to LSE 2-33

2-34

/ENVIRONMENT=file-spec-list

/NOENVIRONMENT(D)

Specifies the name of one or more binary environment files containing LSE
language, token, placeholder, alias, or package definitions. LSE reads in
these definitions as part of the LSE startup. If you specify more than one
file, you must enclose the files in parentheses and separate them with
commas.

If definitions or deletions of items appear in more than one file, the definition
that appears in the file listed first takes precedence.

SYS$LIBRARY: is the default device. The default file type is .ENV.

The logical name LSE$ENVIRONMENT is an alternative to the
/ENVIRONMENT command qualifier. If the /ENVIRONMENT or
/NOENVIRONMENT qualifier does not appear on the command line,

LSE attempts to translate the logical name LSE$ENVIRONMENT. If it has
a translation, the value is used in the same way as the /ENVIRONMENT
qualifier value. LSE translates the first ten indexes of the logical name
LSE$ENVIRONMENT.

See the SAVE ENVIRONMENT command in the VAX Language-Sensitive
Editor and VAX Source Code Analyzer Reference Manual for information on
using environment files.

/INITIALIZATION=file-spec

/NOINITIALIZATION

Specifies the name of a file containing a sequence of LSE commands to
be executed as part of the LSE startup. Usually this file contains the
occurrences of the DEFINE KEY and DEFINE COMMAND commands.

The logical name LSE$INITIALIZATION is an alternative to the
/AINITIALIZATION qualifier. If /INITIALIZATION or /NOINITIALIZATION
does not appear on the command line, LSE attempts to translate the logical
name LSE$INITIALIZATION. If it has a translation, the value is used in
the same way as the /INITIALIZATION qualifier value.

/INTERFACE=CHARACTER_CELL (D)
/INTERFACE=DECWINDOWS
/INTERFACE=screen_manager_filespec
Specifies which screen manager you want to run.

The /INTERFACE qualifier is optional. By default, LSE uses the character-
cell screen manager. As an alternative to the /INTERFACE qualifier, you
can define the logical name LSE$DISPLAY_MANAGER as DECWINDOWS,
CHARACTER_CELL, or as a screen-manager file specification.

Introduction to LSE

If you specify /INTERFACE=CHARACTER_CELL, LSE uses the character-
cell screen manager, which runs in a DECterm (or VWS) terminal emulator
or on a physical terminal. :

If you specify /INTERFACE=DECWINDOWS, LSE uses the DECwindows
screen manager, which creates a DECwindows window in which to run LSE.

/JOURNAL

/JOURNAL|[=file-name] (D)

/NOJOURNAL

Enables buffer-change journaling and keystroke journaling. The /JOURNAL
qualifier enables buffer-change journaling only. The /JOURNAL=file-name
qualifier enables buffer-change journaling and keystroke journaling. One
buffer-change journal file is created per buffer. One keystroke journal file is
created for the entire editing session. The file-name argument specifies the
name for the edit session journal file. The default file name is the file name
from the input file. The default file type for journal files is .TJL.

If you do not want to create a journal file of either type, use the
/NOJOURNAL qualifier.

/LANGUAGE=language
Sets the language for the current input file, overriding the language
indicated by the input file’s file type.

/MODIFY

/NOMODIFY

Specifies whether the buffer you create is modifiable or unmodifiable. If you
specify the /MODIFY qualifier, the LSEDIT command creates a modifiable
buffer. If you specify the /NOMODIFY qualifier, the LSEDIT command
creates an unmodifiable buffer. If you do not specify either qualifier,

LSE determines the buffer’s modifiable status from the read-only/write
setting. By default, a read-only buffer is unmodifiable and a write buffer is
modifiable.

IOUTPUT[=file-spec] (D)

/NOOUTPUT

Specifies the name of the file LSE is to create when you exit from the editing
session. Specifying a file specification on the /OUTPUT qualifier causes LSE
to ignore the current file information. By default, LSE creates a new version
of the input file.

Missing components of the file specification in the /OUTPUT qualifier take
their values from the corresponding fields of the input file specification.

Introduction to LSE 2-35

2-36

When you exit from the editing session, LSE writes other buffers to their
associated files if the buffer contents have been modified during the session.
If you specify the /NOOUTPUT qualifier, LSE prevents the writing back of
the main buffer when you exit.

/READ_ONLY

/NOREAD_ONLY

Specifies that LSE create a read-only buffer for the input file. LSE does

not create a new output file. Any changes to the file are lost when you exit
from the editing session. This qualifier does not affect the writing back of
other buffers to their associated files if they were modified during the editing
session.

If the /INOJREAD_ONLY qualifier is not specified explicitly, the read/write
status of the buffer for the input file is determined by the default settings of
the SET DIRECTORY cqmmand or LSE$READ_ONLY_DIRECTORY logical
name.

/RECOVER

/NORECOVER (D)

Directs LSE to use the latest version of the input file’s corresponding journal
file to recover changes that may have been lost during an abnormal LSE
termination. LSE uses the buffer-change journal files as necessary.

When you recover a session, all files must be in the same state as they were
at the start of the editing session that is being recovered. You must issue the
LSEDIT/RECOVER command with the same qualifiers, initialization file,
section file, and environment file as you did for the session being recovered.
All terminal characteristics must also be in the same state as they were at
the start of the editing session being recovered. If you changed the width

or page length of the terminal, you must change it back to the value it had
at the start of the editing session you want to recover. Check especially the
following values by using the DCL command SHOW TERMINAL:

* Device_type

* Edit_mode
* Eightbit

* Page

* Width

See Chapter 3 for more details on recoveﬁng edits.

Introduction to LSE

ISECTION=file-spec

/SECTION=LSE$SECTION (D)

/NOSECTION

Specifies whether LSE is to map a section file containing VAXTPU proce-
dures, key definitions, and variables. By default, LSE maps section file
LSE$SECTION. If you specify another file specification, LSE applies the
default SYS$LIBRARY:.TPU$SECTION when it opens the file.

If you specify the INOSECTION qualifier, LSE does not use a section
file, and many LSE commands will not work. Therefore, when using the
/NOSECTION qualifier, you should specify the /COMMAND qualifier. The
command file should use only standard VAXTPU built-ins.

/ISTART_POSITION=(line,character)

Specifies the starting line and character in the file (top-of-file is /START _
POSITION=(1,1)). If you do not specify /START_POSITION, LSE starts
either at the top of the file or at the position of the cursor when you last
edited the file.

ISYSTEM_ENVIRONMENT=file-spec
/SYSTEM_ENVIRONMENT=LSE$SYSTEM_ENVIRONMENT (D)
/NOSYSTEM_ENVIRONMENT

Specifies the name of a system environment file. The difference between the
file specified by this qualifier and the file specified by the /ENVIRONMENT
qualifier is that definitions from the system environment file are not saved
by a SAVE ENVIRONMENT command.

The default device is SYS$LIBRARY: and the default file type is .ENV.

/WRITE

/NOWRITE

Specifies that LSE create a new output file when you exit from the editing
session. Any changes you make to the file are saved.

If the /INOIJWRITE qualifier is not specified explicitly, the read/write status
of the buffer for the input file is determined by the default settings of the
SET DIRECTORY command or LSE$READ_ONLY_DIRECTORY logical

name.

Introduction to LSE 2-37

2.7 Running LSE/DECwindows in a Separate Process

When you invoke LSE with the /DISPLAY=DECWINDOWS qualifier to run
LSE/DECwindows, LSE runs in a DECwindows application window and not
in a terminal window. To run LSE from a terminal session without tying
up the terminal windows for the duration of the session, type the following
command:

$ SPAWN /NOWAIT/INPUT=NL: LSEDIT/NOCURRENT/DISPLAY=DECWINDOWS

The /INPUT=NL: qualifier will prevent terminating the subprocess running
LSE if you press CTRL/Y in the parent process. If you run LSE this way,
you must avoid stopping the parent process.

You can also invoke LSE from FileView. The LSEDIT verb is automatically
defined when LSE is installed, but you must add the verb to the menu
where you want it.

In addition, you can run LSE from a detached processing by typing the
following command:

$ RUN/DET/INP=LSE.COM /AUTHORIZE -
_$ sys$system:loginout.exe /OUT=lse.log

The file LSE.COM invokes LSE in DECwindows mode. A typical LSE.COM
file might contain the following:

$ @LOGIN
$ SET DISP/CRE/NODE=name/TRANSPORT=LOCAL
$ LSEDIT/DISP=DECW/NOCURRENT

The LSE.LOG file is useful for diagnosing any problems that might arise.

If you change the transport to be DECnet, you can run LSE on a different
.node than the workstation that you are logged into and still have the LSE
window on the workstation. If you have a workstation with little memory,
this can give you significantly better performance. You need to add the node
name and account of the non-local node to the list of authorized users using
the Session Manager Customize/Security... menu item.

2-38 Introduction to LSE

Chapter 3

Performing Editing Tasks

This chapter describes the editing capabilities of LSE. LSE provides you
with many features, including multiple buffer and window support, that
simplify the task of editing major documents or source files. The file location
and manipulation facilities help you to access and modify documents or
source files easily and quickly. In addition, LSE provides code elision
features that allow you to view programs at various levels of detail.

Sections 3.1 and 3.2 provide details on LSE’s multiple buffer and window
support. Section 3.3 provides information on LSE’s search and substitution
features, and Section 3.4 provides information on file manipulation and
directory searchlists. Section 3.5 describes how to recover edits when

a system or editor failure occurs. Section 3.6 describes the code elision
features, including how to expand and collapse source code, and how to edit
overviews.

3.1 Using Buffers

A buffer is a temporary holding area that provides a workspace for editing
text. You can create a new file or edit an existing file in a buffer. A buffer
becomes visible when it is associated with a window that is mapped to the
screen. Buffers exist only for the duration of your editing session. When you
exit from LSE, the current buffer is discarded and the contents of the buffer
are stored in a file.

With LSE, you can create multiple buffers. Thus, you can edit several
different files in one editing session. You can create additional buffers to
store portions of text that you might want to look at, but not edit, during
your editing session.

Performing Editing Tasks 31

System Buffers

Some buffers are used by LSE for special purposes. These are called system
buffers. Unlike user buffers, system buffers do not correspond to files. You
can edit a system buffer like any other buffer, but you should avoid changing
its contents. By convention, system buffer names start with a dollar sign
($). The most frequently used system buffers are $DEFAULTS, $HELP,
$MESSAGES, $REVIEW, and $SHOW. System buffers are not displayed

by the SHOW BUFFER command unless you use the /SYSTEM_BUFFERS
qualifier.

3.1.1 Buffer Attributes

Buffers have many attributes. This section provides details on buffer
attributes and properties. You can use the SHOW BUFFER command to
display the characteristics of one or more buffers.

Buffer Names

A buffer has a name that is displayed in the status line. Buffers are usually
named by the name and type of their associated input file. The GOTO FILE
and GOTO BUFFER commands can create buffers.

Insert/Overstrike

LSE has two text entry modes: insert and overstrike. In insert mode, text is
inserted into the buffer at the cursor position. Text to the right of the cursor
moves to the right. In overstrike mode, text typed at the cursor replaces text
that is currently under the cursor.

When you start an editing session, the buffer is automatically placed in
insert mode. To change the text entry mode, you can use the SET INSERT
command, SET OVERSTRIKE command, or CHANGE TEXT_ENTRY_
MODE command. (See Table 3—-1 for buffer manipulation commands and
their key bindings.)

Forward/Reverse

LSE maintains a current direction for each buffer. The current direction is
displayed in the status line. This direction is used for SEARCH operations
and most GOTO and ERASE commands. When you start an editing session,
the buffer direction is set to forward. To set the current direction to forward,
you use the SET FORWARD command. To set the current direction to
reverse, you use the SET REVERSE command. Alternatively, you can use
the CHANGE DIRECTION command to change the current direction. (See
Table 3—1 for buffer manipulation commands and their key bindings.)

3-2 Performing Editing Tasks

input/Qutput

Buffers may have an associated input or output file. An input file is read
into a buffer when the buffer is created. An output file indicates where LSE
writes a buffer; this is usually a new version of an input file. You can change
the output file name with the SET OUTPUT_FILE command. The GOTO
FILE command creates a buffer and reads a file into it.

Read/Write

Buffers have either the read-only or write attribute. The read-only attribute
indicates that the contents of the buffer is not written to a file when you
exit from the editing session. The write attribute indicates that the buffer is
written to a file when you exit from the editing session.

Usually, a file is associated with a buffer by the GOTO FILE command,
which creates a buffer and fills it with the contents of a file. When the
buffer is written, it is written to a new version of the file. If no file is
associated with a buffer that has the write attribute, LSE prompts for a file
specification when you exit from the editing session. Note that a buffer is
written only if its contents have been modified.

Modifiable/Unmodifiable

Buffers are either modifiable or unmodifiable. Unmodifiable buffers pro-
tect the contents of a given buffer. You cannot change an unmodifiable
buffer. You use the GOTO FILE/READ_ONLY and GOTO SOURCE/READ_
ONLY commands to create unmodifiable buffers. If you want to modify

an unmodifiable buffer, you must issue the SET MODIFY or SET WRITE
command.

There are some relationships between the READ-ONLY/WRITE buffer
attributes and the UNMODIFIABLE/MODIFIABLE buffer attributes. Given
these attributes, a buffer may be in one of four possible states. The following

list describes these states and explains how to create these states for a
buffer.

* MODIFIABLE-—WRITE

The GOTO FILE/WRITE, GOTO SOURCE/WRITE, SET WRITE, and
RESERVE commands set buffers to this state. It is also the default
for the file specified in the LSEDIT command line. The buffer may be
modified and is written when you exit from the editing session if it has
been modified.

Performing Editing Tasks 3-3

* MODIFIABLE—READ-ONLY

This is the default for the GOTO BUFFER/CREATE command that you
use to create a “scratch” buffer. The buffer may be modified, but it is not
written when you exit from the editing session.

e UNMODIFIABLE—READ-ONLY

The GOTO FILE/READ_ONLY and GOTO SOURCE/READ_ONLY
commands create buffers in this state. The buffer cannot be modified.

If you issue a SET MODIFY command on this buffer and modify the
contents, LSE does not write the contents when you exit from the editing
session unless you also issue the SET WRITE command for the buffer.

¢ UNMODIFIABLE—WRITE

You can set a buffer to this state when you have completed a set of
changes to a buffer in the MODIFIABLE—WRITE state and then issued
a SET NOMODIFY command for the buffer. This protects the buffer
from accidental change for the remainder of the editing session. LSE
writes the file when you exit from the editing session if it has been
changed during the session.

Languages

Buffers may have a language associated with them. This attribute de-
termines which language is used for the language-sensitive features (see
Chapter 5 for details). The file type of the input file associated with your
current buffer determines the language LSE uses. Thus, you can move
between different languages in different buffers, and LSE will provide the
interfaces to the appropriate compilers. The SET LANGUAGE command
associates a language with a buffer.

Overview

You can use buffers for overview operations. The SET OVERVIEW command
enables the COLLAPSE, FOCUS, and VIEW SOURCE commands, and the
use of the EXPAND command on an overview line.

Current Indentation and Tab Settings

LSE maintains two settings to control the action of the tab key: current
indentation level and tab increment. When you are at the left margin, the
tab key indents to the current indentation level. If you are not at the left
margin, the tab key takes you to the next tab column based on the tab
increment setting. The SET INDENTATION command sets the current
indentation level; the SET TAB_INCREMENT command sets the size of the
tab increment.

3-4 Performing Editing Tasks

Wrap/Nowrap

Buffers have either the wrap or nowrap attribute. If the wrap attribute is
set, LSE automatically performs a return to a new line and indent to the left
margin when the text reaches the right margin.

AUTO_ERASE/NOAUTO_ERASE

Buffers have either the AUTO_ERASE or NOAUTO_ERASE attribute. If
the AUTO_ERASE attribute is set, LSE erases the placeholder the cursor is
on as soon as you insert a character over the placeholder.

Margins

Buffers have left and right margin attributes. The SET LEFT MARGIN
command sets the left margin for the indicated buffer. By default, the left
margin is set at column 1. The SET RIGHT MARGIN command sets the
right margin for the indicated buffer to the column number you specify. By
default, the right margin is set at column 80. The right margin controls
where LSE wraps words when you type text into a buffer. The right margin
also controls how the FILL command reformats text.

Table 3-1 contains the commands and their default key bindings used for
manipulating buffers.

Table 3—-1: Buffer Manipulation Commands
EDT EVE VT100 EVE VT200
Command Keypad Keypad Keypad
CHANGE DIRECTION F11 PF3 F11
CHANGE TEXT_ENTRY_MODE Fi4 ENTER F14
CTRL/A CTRI/A CTRLVA
GOTO BUFFER
GOTO FILE
GOTO SOURCE CTRL/G CTRL/G CTRL/G
SET AUTO_ERASE
SET FORWARD KP4 KP4
SET INDENTATION
SET INSERT

(continued on next page)

Performing Editing Tasks 3-5

Table 3-1 (Cont.): Buffer Manipulation Commands

EDT

Command Keypad

EVE VT100

EVE VT200
Keypad

SET LANGUAGE

SET MODIFY

SET NOAUTO_ERASE
SET NOMODIFY

SET NOWRAP

SET OUTPUT_FILE
SET OVERSTRIKE
SET OVERVIEW

SET REVERSE KP5
SET TAB_INCREMENT
SET WRAP

SHOW BUFFER

3.2 Using Windows

A window is a section of your work region that displays the contents of a

buffer.

With LSE, you can split the work region into several windows, each mapped
to a different buffer. By splitting the screen into multiple windows, you can

view multiple buffers simultaneously.

Figure 3—1 shows the screen format for LSE. The screen consists of the
. following regions: a work region, a message region, and a prompt or

command region.

3-6 Performing Editing Tasks

Figure 3—1: Screen Format

@ VAX Language-Sensitive Editor

File Edit Format Navigate View Display Customize Help
[End of file) O
<

e ——] -]

{End of file]

[

ke

IQQ__..________..___.______.____________._______._.—__—JO

Each window in the work region has a status line. The status line is
highlighted and provides information about the associated buffer. The status
line tells you the name of the buffer, whether the buffer is a write or read-
only buffer, whether you are in insert or overstrike mode, and whether the
buffer is in a forward or reverse direction.

The message region is located at the bottom of the screen and displays
broadcast messages and messages issued by LSE and SCA.

The prompt region appears above the message region with the LSE> or LSE
Command> prompts, which prompt for commands or required parameters

" for commands. You can use LSE commands to manipulate the screen and its
format.

Table 3—2 contains the commands and their default key bindings used for
manipulating screens.

Performing 'Editing Tasks 3-7

Table 3-2: Screen Manipulation Commands

EDT VT200 EVE VT100 EVE VT200
Command Keypad Keypad Keypad
CHANGE WINDOW_ PF1-= PFl-= PFl-=
MODE
NEXT WINDOW PF1-| PF1-KPO PF1-E6
PREVIOUS WINDOW PF1-1 PF1-keypad period PF1-E5
GOTO BUFFER
GOTO FILE
SET SCREEN
SPLIT WINDOW
TWO WINDOWS
DELETE WINDOW

For example, if you are editing a file called MODULEL.PAS, you could issue
the following commands to move a procedure from the MODULE2.PAS file
to the current file.

1.

Press the CHANGE WINDOW_MODE key (PF1-=).

This command splits the screen into two windows. Both windows contain
the current buffer. The cursor is placed in the bottom window.

Type the command GOTO FILE MODULE2.PAS.

This command puts the contents of the file MODULE2.PAS into the
bottom window. Now that the two files are displayed on the screen, you
can locate both the procedure you want to select and the location in the
current file where you want the procedure placed.

Move to the procedure you want and press the SELECT key (keypad
period). Use the arrow keys to select the entire procedure and press the
CUT key (KP6) to capture the procedure.

Press the PREVIOUS WINDOW key (PF1-1) to place the cursor in file
MODULEL.PAS.

Press the PASTE key (PF1-KP6) at the location where the procedure
should be placed.

Press the CHANGE WINDOW_MODE key (PF1-=) to return the screen
to one window containing the current buffer.

3-8 Performing Editing Tasks

3.3 Using the Search and Substitute Operations

LSE provides a SEARCH command that allows you to search for a string in
a buffer. LSE also provides a SUBSTITUTE command that will replace a
search string with another value.

3.3.1 Searching Through Buffers

The SEARCH command searches through the current buffer for a specific
word, character, or short phrase. The SEARCH command searches in either
a forward or reverse direction. The direction is determined by the current
setting of the buffer.

If an occurrence of the search string is found, the cursor is positioned on
the first character of the string and the search string is highlighted. If
the string is not found, the cursor is not moved and an error message is
displayed in the message buffer.

After you issue a SEARCH command, LSE remembers the search string.
You can continue searching for the same string by using the SEARCH or
SUBSTITUTE command. If you are an EDT keypad user, you can press the
FNDNXT key (PF3), and LSE automatically uses the previous search string.

LSE supports VMS- and ULTRIX-style wildcard characters with the
/PATTERN qualifier on the SEARCH command. For example, the asterisk
(*) character may be used to match any number of characters within

one line. The percent sign (%) character may be used to match any one
character. These wildecard characters match the VMS format for wildcard
representation. (For more details on wildcard characters, refer to the
SEARCH command in the VAX Language-Sensitive Editor and VAX Source
Code Analyzer Reference Manual.)

If you want to search through your file to locate where you reference VMS
Run-Time Library virtual memory routines, you would issue the following
command:

LSE> SEARCH/PATTERN "LIBS$*_ VM"

If you want to search for an asterisk (*) or percent sign (%) as part of your
pattern, you must include a backslash (\) before using the asterisk (*) or
percent sign (%) in the pattern search string. ~

For example, if you want to search for 20%, 22%, and so on, in a buffer, you
would issue the following command:

LSE> SEARCH/PATTERN "2%\%"

Performing Editing Tasks 3-9

3.3.2 Substituting Text Strings

The SUBSTITUTE command replaces occurrences of one text string with
another text string. When you issue the SUBSTITUTE command, LSE
prompts you for the search string and the value of the replacement string.

For example, you can use the SUBSTITUTE command to replace all
occurrences of STRSAPPEND with STR$PREFIX as follows:

LSE> SUBSTITUTE
_Search for: STR$APPEND
_Replace with: STR$PREFIX

LSE provides case-sensitive substitution. This enables you to specify that
the case of the replacement string should be altered to match the case of the
string located by a SEARCH operation.

For example, you can search for the STRSAPPEND function name and
replace it with STR$PREFIX by issuing the following command:

LSE> SUBSTITUTE/CASE_MATCHING
_Search for: strSappend
_Repldce with: str$prefix

Because you have included the /CASE_MATCHING qualifier on the com-
mand line, LSE alters the case of str$prefix to match the case of str$append
found in your file.

LSE highlights each occurrence and prompts you for an action. Yes in-
structs LSE to replace the occurrence. No instructs LSE not to replace the
occurrence but to search for the next occurrence. Quit ends the command
without replacing the occurrence and stops the SUBSTITUTE operation.
Last instructs LSE to replace the occurrence and then ends the command.
All replaces the occurrence and all remaining occurrences without further
prompting. If you use the /ALL qualifier, LSE replaces all occurrences it
finds without prompting you for an action.

LSE provides the /PATTERN qualifier on the SUBSTITUTE command.
The /PATTERN qualifier uses the same pattern expressions as does the
/PATTERN qualifier on the SEARCH command. The asterisk (*) and
percent sign (%) have the same meaning when used on the SUBSTITUTE
command as they do on the SEARCH command.

An example of using the /PATTERN qualifier on the SUBSTITUTE command
follows:

LSE> SUBSTITUTE/PATTERN "NAME % LENGTH" "NAME_B_LENGTH"

3-10 Performing Editing Tasks

3.4 Working with Files

This section describes the basic file manipulation commands that you

use to bring files into an editing buffer and then write these buffers to

files. Section 3.4.1 describes locating, displaying, and editing source files;
Section 3.4.2 describes locating files in multiple directories; Section 3.4.3
describes how to set default directories; and Section 3.4.4 describes how LSE
provides access to files stored in VAX DEC/Code Management System (CMS)
libraries.

3.4.1 Locating, Displaying, and Editing Source Files
LSE commands bring files into buffers and write contents of buffers to files.

Getting Files

LSE provides several commands for locating, displaying, and editing source
files within your editing session. The commands are as follows:

¢ GOTO DECLARATION

¢ GOTO FILE
¢ GOTO SOURCE
e INCLUDE

e READ

The GOTO DECLARATION command displays the source file corresponding
to the specified or indicated symbol declaration. The GOTO FILE command
locates a file and reads it into a buffer.

The GOTO SOURCE command displays the source file correspondlng to the
current diagnostic or query item.

The INCLUDE command inserts a copy of a file at the current cursor
position. The cursor position does not change.

The READ command inserts a copy of a file at the current cursor position.
The cursor moves to the end of the inserted text.

Performing Editing Tasks 3-11

Writing Files

LSE provides several commands for writing the contents of buffers into files.
The commands are as follows:

* COMPILE
+ EXIT
* WRITE

The COMPILE command first writes out the current buffer, if it has been
modified, and writes out any other modified buffers associated with the same
language. It then compiles the file associated with the current buffer.

The EXIT command ends an editing session and writes out buffers that have
been modified, provided they are not marked read-only buffers. Buffers that
are read-only are not written out by a COMPILE or EXIT command. (If you
do not want to save your modifications, you can use the QUIT command to

end your editing session.)

The WRITE command writes out your current buffer or a specified buffer.

3.4.2 Locating Files in Multiple Directories
With LSE, you can specify a list of directories for LSE to use when locating
files.

The SET SOURCE_DIRECTORY command specifies a searchlist of directo-
ries to be used to find source files. LSE searches the directories in the order
specified on the SET SOURCE_DIRECTORY command line until the source
file is found.

For example, type the following command.:
LSE> SET SOURCE_DIRECTORY [Al, (B, [C], (D]

Then, type a file manipulation command, such as GOTO FILE. LSE searches
through [A], then [B], then [C], then [D], until the source file is found.

You can include CMS$LIB on the SET SOURCE_DIRECTORY directory list
so that LSE will fetch files directly from your CMS library into buffers. Note
that the CMS SET LIBRARY command must be issued first.

The following commands use the source list to locate files:

* GOTO FILE
* GOTO SOURCE

3-12 Performing Editing Tasks

¢ INCLUDE
* READ

The GOTO FILE command uses the searchlist to resolve the file specified on
the GOTO FILE command line.

The GOTO SOURCE command displays a source file that is specified in
the diagnostics file or SCA data that corresponds to your current review
or query operation. If LSE cannot find the file within an existing buffer,
LSE attempts to find the exact file specified by the current diagnostic or
query operation. If that file cannot be found, LSE uses the SET SOURCE_
DIRECTORY list to locate the file.

The INCLUDE and READ commands also use the SET SOURCE_
DIRECTORY list to resolve file specifications.

3.4.3 Setting Directory Defaults

With the SET DIRECTORY command, you can set the default read/write
status of files in a specified directory. Initially, all directories are set to
write.

The SET DIRECTORY/READ_ONLY command allows you to specify di-
rectories that contain files that you do not want to change. If you specify
a directory list as /READ_ONLY, LSE brings the files contained in those
directories into unmodifiable/read-only buffers by default.

Using Default Settings

If you are working on a software project, you might have the following
directories set up:
e [], your current directory.

¢ [MY_DIRECTORY], which contains the files that you are working on, for
example, MODULE1.PAS and MODULE3.PAS.

¢ [PROJECT_DIRECTORY], which contains the files that comprise your
project, for example, MODULE1.PAS, MODULE2.PAS, MODULE3.PAS,
MODULEA4.PAS, and MODULES.PAS. These files are shared by your
project team and should not be modified.

For example, type the following commands to set default settings:

LSE> SET SOURCE_DIRECTORY [], [MY DIRECTORY], [PROJECT_ DIRECTORY]
LSE> SET DIRECTORY/READ_ONLY [PROJECT_ DIRECTORY]

Performing Editing Tasks 3-13

Then, type a GOTO FILE or GOTO SOURCE command. LSE searches
through your current directory, MY_DIRECTORY, and the PROJECT_
DIRECTORY to locate files. Those files located in your current directory
and MY_DIRECTORY can be modified. However, those files located in

the PROJECT _DIRECTORY cannot be modified by default because of the
/READ_ONLY qualifier on the SET DIRECTORY command. Thus, you can
modify files MODULE1.PAS and MODULE3.PAS, and refer to the other
project files as necessary without the possibility of modifying the wrong files.

For example:

LSE> GOTO FILE MODULE2.PAS

LSE gets the file from the PROJECT_DIRECTORY and puts the file into an
unmodifiable/read-only buffer.

LSE> GOTO FILE MODULEL.PAS

LSE gets the file from MY_DIRECTORY and puts the file into a modifiable
/writeable buffer.

Overriding Default Settings
The GOTO FILE command has the following qualifiers:

¢ /WRITE
¢ /READ_ONLY
¢ /MODIFY

You can use these qualifiers to override any settings established by the
SET DIRECTORY command. (See the GOTO FILE command in the VAX
Language-Sensitive Editor and VAX Source Code Analyzer Reference Manual
for more details.) You can also use the /WRITE and /READ_ONLY qualifiers
on the GOTO SOURCE command to override any settings established by the
SET DIRECTORY command.

" If you want to modify MODULEZ2.PAS in the [PROJECT DIRECTORY], you
would type the following command:

LSE> GOTO FILE/WRITE MODULEZ2.PAS

LSE gets MODULEZ2.PAS out of the PROJECT_DIRECTORY and puts the
file into a modifiable/writeable buffer.

If you want to look at MODULE1.PAS in MY_DIRECTORY, but you do not
want to modify the file, you would type the following command:

LSE> GOTO FILE/READ_ONLY MODULEL.PAS

3-14 Performing Editing Tasks

This command overrides the current settings established by the previous
SET DIRECTORY command, and it brings MODULE1.PAS into a read-only
/unmodifiable buffer.

3.4.4 Getting Files Through VAX DEC/Code Management System

With LSE, you can access files stored in VAX DEC/Code Management
System (CMS) directly. You can also issue all CMS commands from within
LSE. The LSE commands related to CMS are as follows:

¢ CMS [cms-command]
e SET CMS

¢ GOTO FILE

e GOTO SOURCE

¢ INCLUDE

e READ

e RESERVE

¢ UNRESERVE

e REPLACE

The CMS [cms-command] Command

With the CMS [ems-command] command, you can execute any CMS com-
mand from within LSE. This command operates on your current CMS
library.

The SET CMS Command

The SET CMS command sets the defaults for CMS qualifier values for CMS
operations performed by the following commands: GOTO FILE, GOTO
SOURCE, INCLUDE, READ, REPLACE, RESERVE, and UNRESERVE.

The GOTO FILE, GOTO SOURCE, INCLUDE, and READ Commands

When you issue the GOTO FILE, GOTO SOURCE, INCLUDE, or READ
command, if the directory for a file you are looking for is the same as your
current CMS library, then LSE fetches the element from CMS and puts

it into a read-only/unmodifiable buffer. LSE prompts you for confirmation
when performing a fetch operation. This fetch operation does not create a
file.

Performing Editing Tasks 3-15

For example, type the following command, and respond with Y-

LSE> GOTO FILE CMS$LIB:FILE.TYP
FILE.TYP found in CMS library DISK:[PROJECT_CMS LIBRARY]
Do you want to fetch it [Y or NJ?

LSE fetches the element FILE.TYP and reads it into a buffer of the same
name. Note that LSE does not create a file in your current directory when
doing a fetch operation.

The RESERVE Command

With the RESERVE command, you can reserve an element in your current
CMS library. This element is put into an editing buffer. For example:

LSE> RESERVE element-name

LSE reserves the element element-name in your current CMS library

and reads it into a buffer. If you omit the element-name parameter, the
RESERVE command reserves the element of the same name and type as the
input file associated with your current buffer.

The UNRESERVE Command

With the UNRESERVE command, you can unreserve the CMS element of
the same name and type as the file associated with your current buffer in
your current CMS library. For example:

LSE> UNRESERVE

LSE unreserves the element in your current buffer that you reserved in the
last example.

The REPLACE Command

The REPLACE command replaces the CMS element of the same name and
type as the file associated with your current buffer in your current CMS
library. For example:

LSE> REPLACE

LSE replaces the element in your current buffer into your current CMS
library.

3-16 Performing Editing Tasks

3.5 Recovering from a Failed Editing Session

LSE provides mechanisms to recover edits that exist as changes in LSE
buffers when a system or editor failure occurs. LSE can journal your edits
in two ways: keystroke journaling and buffer-change journaling. Keystroke
journaling records the keys that you press over the course of an editing
session. Buffer-change journaling records the changes made to a buffer over
the course of an editing session.

Keystroke journal files have an extension of .TJL and buffer-change journal
files have an extension of .TPU$JOURNAL. Both types of journaling
periodically write information to their respective journal files. When an
editing session is terminated abnormally, a journal file may not contain
a.record of the last few operations that were performed. However, when
you recover, using a journal file, your cursor remains at the position that
corresponds to the location where the last journaled edit was made.

Using a Keystroke Journal File

Keystroke journal files contain the exact sequence of keys that you pressed
over the course of the editing session. When you recover, using a keystroke
journal file, you must be sure to restore your environment to the state that
it was in when the journaled editing session was started. The following list
describes the types of things that must be restored to your environment
before you can successfully complete a recovery using a keystroke journal
file.

¢ All files created during the editing session must be either deleted or
placed in a directory that will not be referenced during the recovery
operation. This will prevent the wrong version of the file from being
accessed during the keystroke journal recovery operation.

You can determine what files were created during an editing session by
examining the creation date of the .TJL file. For example, to determine
the creation date of a keystroke journal file, type the following command:

$ DIRECTORY/DATE=CREATE MEMO.TJL
This produces output similar to the following:

Directory DUAO: [SMITH]
MEMO.TJL; 1 15-JUN-1989 08:42:20.69

Total of 1 file.

Performing Editing Tasks 3-17

To move files from specific directories that were created since that date
to a directory that is not referenced during the recovery operation, type
the following commands:

$ CREATE/DIRECTORY DUAOQ: [SMITH.TEMP]
$ COPY/SINCE=15-JUN-1989:08:42:20 -

_$ DUAO:[SMITH...],DUAO: [PROJECT...] DUAO:[SMITH.TEMP]
$ DELETE/SINCE=15-JUN-1989:08:42:20 -
_$ DUAO: [SMITH...],DUAO: [PROJECT...]

¢ You must set the terminal characteristics of the terminal to match the
terminal characteristics that were in effect at the time that the journaled
editing session was started.

* You must invoke LSE with the same command line that you used to
start the journaled editing session. Additionally, you must specify the
/RECOVER qualifier on the command line.

You may have to take other actions, depending on the events that may have
occurred over the course of your editing session.

If you reserve or replace elements in a CMS library during the editing
session, you may not be able to perform a recovery using a keystroke journal
file because changes in the CMS library cannot be undone. In such cases,
you should use a buffer-change journal file.

Using a Buffer-Change Journal File

A buffer-change journal file contains a record of the changes that you made
to a buffer over the course of an editing session. There is one buffer-change
journal file for each editing buffer.

To recover changes, with a buffer-change journal file, use the following steps:

1. Invoke LSE.

2. Type the RECOVER BUFFER command and specify the name of the file
that you want to recover.

3. Examine the information displayed by LSE to verify that the journal file
corresponds to the source file you want.

4. Type Y at the prompt if you want to recover the buffer.

After you instruct LSE to start the recovery, using a buffer-change journal
file, LSE reads the source file that corresponds to the buffer-change journal
file and begins to apply the journaled changes to the file.

3-18 Performing Editing Tasks

When you recover changes, using a buffer-change journal file, you do not
have to worry about the files that were created during the editing session
or the command line that you used to invoke LSE. Using a buffer-change
journal file is much quicker than using a keystroke journal file because LSE
recovers only files that it is directed to recover.

3.6 Collapsing and Expanding Program Source

With LSE, you can view programs at various levels of detail. The concept is
sometimes called outlining, holophrasting, or code elision.

You can generate overviews of your programs in two ways:

¢ Interactively in LSE
¢ In reports

The interactive interface allows you to generate overviews of programs by
collapsing lines of code. The report tool lets you present the overviews you
select in a structured manner.

With LSE, you can hide the details of your source code. LSE generates an
overview line that corresponds to one or more real lines in a program.
LSE displays overview lines as pseudocode placeholders.
For example, the following fragment contains real lines of code:

-- Interchange the numbers.

TEMP := NUMBERS (J);

NUMBERS (J) := NUMBERS (J+1);

NUMBERS (J+1) := TEMP;
It can be represented by the following overview line:

«-- Interchange the numbers...»

3.6.1 Sample Session

Using LSE’s code viewing features, you can see more or less detail at a
particular point in a program. You can specify the level of detail either
uniformly across the buffer or with a focus on a particular line.

Table 3-3 contains the commands and their default key bindings used for
generating overviews. ‘

Performing Editing Tasks 3-19

Table 3-3: Code Viewing Commands

EDT VT200 EVE VT100 EVE VT200
Command Keypad Keypad Keypad
VIEW SOURCE PF1-> PF1-> PF1->
EXPAND/DEPTH=1 CTRL/E CTRL/ CTRL/
EXPAND/DEPTH=ALL PFl1-< PF1-< PFl-<
FOCUS PF1-period PF1-period PF1-period
COLLAPSE CTRLA CTRL/\ CTRL/\

The following sample session demonstrates how to expand and
compress source code. This session uses a sample file from the
directory SCA$EXAMPLE, which is supplied with the SCA kit.
Figure 3-2 shows a