
VAX DEC/MMS
User's Guide
Order No. AA-P119B-TE

August 1984

This manual describes how to use DEC/MMS (Module Management
System) for building software systems.

REVISION/UPDATE INFORMATION: This revised document
supersedes the VAX-11
DEC/MMS User's Guide
(Order No. AA-P119A-TE).

OPERATING SYSTEM AND VERSION: VAX/VMS Version 3.4 or later.

SOFTWARE VERSION: DEC/MMS Version 2.0

digital equipment corporation . maynard, massachusetts

First Printing, March 1983
Revised, August 1984

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corpora­
tion assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1983, 1984 by Digital Equipment Corporation.
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL PDT
DEC/CMS EduSystem RSTS
DEC/MMS IAS RSX
DECnet MASS BUS TOPS-20
DECsystem-10 MICRO/PDP-11 UNIBUS
DECSYSTEM-20 Micro/RSX VAX
DEC US Micro VMS VMS
DECwriter PDP VT

~a~aoma

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of. Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1 G 4C2
Attn: A&SG Business Manager

ZK2594

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

Contents

Page

Preface ... vii

Chapter 1 Introduction to DEC/MMS
1.1 MMS and the Software Development Cycle 1-1
1.2 What MMS Does . 1-2
1.3 HowtoUseMMS 1-4
1.4 How MMS Executes Commands . 1-5
1.5 Process Requirements For Running MMS 1-5
1.6 Advantages of MMS Over DCL Command Procedures 1-6

Chapter 2 Creating a Description File
2.1 Dependency Rules 2-2

2.1.1 Dependency Rule Format . 2-3
2.1.2 Source and Target Files . 2-5
2.1.3 Action Lines . 2-7
2.1.4 Examples . 2-9

2.2 Built-In Rules 2-10
2.3 Macro Definitions 2-14

2.3.1 Format . 2-15
2.3.2 Invoking Macros . 2-15
2.3.3 Defining Macros on the Command Line 2-17
2.3.4 Default Macros . 2-18
2.3.5 Using CLI Symbols as MMS Macros 2-19

2.4 Description File Example . 2-20

Chapter 3 Advanced Description File Techniques
3.1 User-Defined Rules 3-1
3.2 Special Macros . 3-2
3.3 Double Colon Dependencies . 3-6
3.4 Directives ... 3-7

3.4.1 .IGNORE 3-8
3.4.2 .SILENT . 3-10
3.4.3 .DEFAULT . 3-11
3.4.4 .SUFFIXES 3-12
3.4.5 .INCLUDE . 3-14
3.4.6 .FIRST 3-16
3.4.7 .LAST .. 3-17
3.4.8 .IFDEF, .ELSE, and .ENDIF . 3-18

iii

3.5 Action Line Prefixes . 3-19
3.5.1 The Ignore Prefix(-) 3-20
3.5.2 The Silent Prefix(@) 3-20

3.6 Invoking MMS From a Description File . 3-21

Chapter 4 Accessing Libraries With DEC/MMS
4.1 CREATING AND ACCESSING FILES IN VAXNMS LIBRARIES 4-1
4.2 USING MMS WITH DEC/CMS 4-4

4.2.1 Using CMS Commands in a Description File 4-4
4.2.2 Automatic Access of CMS Elements from Dependency Rules 4-5
4.2.3 Explicit References to CMS Elements in Dependency Rules 4-6
4.2.4 Accessing Description Files in CMS Libraries 4-7

4.3 Accessing Forms in an FMS Library . 4-8
4.4 Accessing Records in the CDD 4-8

Chapter 5 The MMS Command
/ACTION (D) ... 5-3
/CHECK_STATUS . 5-4
/CMS .. 5-5
/DESCRIPTION (D) 5-6
/FROM_SOURCES 5-8
/HELP ... 5-9
/IDENTIFICATION 5-10
/IGNORE .. 5-11
/LOG ... 5-13
/MACRO .. 5-14
/OUTPUT .. 5-15
/OVERRIDE . 5-16
/REVISE_DATE 5-17
/RULES (D) ... 5-18
/SKIP _INTERMEDIATE . 5-19
NERIFY (D) . 5-21

Chapter 6 DEC/MMS Examples
6.1 Simple Uses ofMMS 6-1

6.1.1 Checking Whether Files Are Up-to-Date 6-1
6.1.2 Using MMS to "Fetch and Build" . 6-1
6.1.3 Using the /SKIP _INTERMEDIATE Qualifier 6-2

6.2 Description File Example . 6-3
6.3 Gathering Statistics 6-4

6.3.1 Finding Out What Sources Are Missing . 6-5
6.3.2 Creating a Checkpoint File . 6-5

6.4 Using DCL Command Procedures in Description Files 6-7
6.5 Creating and Using Time Stamps 6-7

6.5.1 Creating a Time Stamp File Using DCL Symbols 6-8
6.5.2 Creating a Time Stamp File Using Included Files 6-9

6.6 Checking for Replacement of CMS Elements 6-11

iv

6. 7 Selectively Deleting Files . 6-12
6. 7 .1 Creating a Command Procedure . 6-12
6.7.2 Using a Macro Definition 6-13

6.8 Doing Parallel Processing 6-14

Appendix A DEC/MMS Built-In Features

Appendix B DEC/MMS and UNIX Make Comparisons

Appendix C DEC/MMS Messages
C.1 Message Format C-1
C.2 MMS Messages . C-2

Glossary

Index

Figures
1-1 How MMS Builds a Software System 1-3
2-1 Dependencies of Files in a Software System 2-20

Tables
3-1 MMS Special Macros . 3-3
3-2 MMS Directives . 3-8
3-3 MMS Action Line Prefixes . 3-20
A-1 The Suffixes Precedence List A-1
A-2 MMS Default Macros . · A-2
A-3 MMS Built-in Rules A-3
A-4 Built-in Rules for Library Files A-4
A-5 Built-in Rules for CMS Access A-5

v

Preface

Objective
This manual explains how to use DEC/MMS (Module Management System). It
is a reference book with examples that illustrate both basic and advanced
techniques.

Intended Audience
This manual is primarily intended for software engineers working on a wide
range of software projects; however, others, such as managers and technical
writers, can also use MMS. Those with UNIX1 make experience should be able
to use MMS with little trouble, since MMS is patterned after make.

DEC/MMS runs only on the VAX/VMS operating system Version 3.4 or later.

Structure of This Document
The VAX DEC/MMS User's Guide is divided into six chapters, three appendixes,
and a glossary.

• Chapter 1, Introduction to DEC/MMS, describes how MMS automates the
software development cycle, briefly explains how to use MMS, and
describes how MMS executes commands.

• Chapter 2, Creating a Description File, presents the concepts of description
files, built-in rules, and macro definitions.

• Chapter 3, Advanced Description File Techniques, describes techniques for
using MMS as efficiently as possible.

• Chapter 4, Accessing Libraries With DEC/MMS, explains how MMS can
process files stored in VAX/VMS, DEC/CMS, and VAX FMS libraries and
records stored in the VAX Common Data Dictionary.

• Chapter 5, The MMS Command, presents the MMS command line format
and contains detailed descriptions of all MMS qualifiers. The qualifier
descriptions are listed alphabetically by qualifier name.

• Chapter 6, DEC/MMS Examples, illustrates MMS techniques.

• Appendix A, DEC/MMS Built-In Features, contains tables of MMS
defaults, with explanatory information.

1. UNIX is a trademark of Bell Laboratories.

vii

• Appendix B, DEC/MMS and UNIX make Differences, describes the differ­
ences between MMS and UNIX make.

• Appendix C, DEC/MMS Messages, lists and explains all MMS messages.

• The Glossary defines important terms.

Associated Documents
• The VAX DECIMMS Pocket Guide (Order No. AV-P120B-TE) provides a

concise summary of MMS rules and qualifiers.

• Installing VAX DECIMMS (Order No. AA-P121B-TE) supplies the instruc­
tions for installing MMS on a VAX/VMS system.

Conventions Used in This Document
Convention

[]

{ }

'string'

target

Meaning

Square brackets indicate that the enclosed item is optional.

Braces enclose a list from which one element must be
chosen.

The OR symbol separates alternatives within braces or
brackets. For example,

{ filespec : "macro" }

means that you must type either a file specification or a
macro enclosed in quotation marks.

A horizontal ellipsis indicates that the preceding item(s)
can be repeated one or more times.

A term enclosed in apostrophes is information that can
vary. (This convention is used frequently in Appendix C.)

A term that appears in italics is defined in the Glossary.

Unless otherwise noted:

• All numeric values are represented in decimal notation.

• You terminate a command by pressing the RETURN key.

viii

Summary of Technical Changes
This section summarizes the technical changes made to VAX DEC/MMS for
Version 2.0:

• Better use of built-in rules and updated built-in macros.

• New directives .FIRST, .LAST, .IFDEF, .ELSE, and .ENDIF.

• New mnemonic synonyms for the MMS special macros.

• Three new qualifiers, /NODESCRIPTION, /FROM_SOURCES, and
/HELP.

• Specification of a file that contains the default rules that MMS uses. This
feature is provided by a parameter to the /RULES qualifier and the logical
name MMS$RULES.

• Enhanced messages produced by the /LOG qualifier.

• Automatic access to description files and .INCLUDE files stored in VAX
DEC/CMS libraries.

• Support for forms stored in VAX FMS (Forms Management System) librar­
ies and records in the VAX CDD (Common Data Dictionary). You must
have either VAX FMS or VAX CDD, Versions 2.1 or later, installed on your
system.

• Support for wildcard characters in the specifications of VAX/VMS library
modules.

• A new facility for managing subprocesses that allows quotas to be reduced.
The minimum BYTLM quota has been reduced to 13000 if you use
DEC/MMS recursively, and 8192 if you do not use DEC/MMS recursively.

• More error checking and more descriptive error messages.

• Printing of the erroneous line when a syntax error is detected in a descrip­
tion file.

• A new installation procedure using VMSINSTAL.

ix

Chapter 1

Introduction to DEC/MMS

DEC/MMS (Module Management System) is a tool that automates and simpli­
fies the building of software systems. MMS is useful for building both simple
programs, which may have only one or two source files, and complex programs,
which may consist of several source files, message files, and documentation. It
can rebuild all the components in a system, or only those that have changed
since the system was last built. And above all, MMS is also easy to use - with
one command, you can build either a small or a large system.

If you have used the UNIX1 make utility, you should easily be able to make the
transition to MMS, since MMS is patterned after make. Appendix B describes
the differences between UNIX make and MMS.

1.1 MMS and the Software Development Cycle

Software development is an iterative process that involves the following basic
steps:

• Think about the problem and create a design

• Write code based on the design

• Build the system

• Test the software

MMS automates the build step in the cycle so that you have more time for the
creative aspects of software development.

When more than one programmer is working on a software development proj­
ect, the components of the software system are usually stored in a common
source directory (which may be a DEC/CMS library). Each programmer usually

1. UNIX is a trademark of Bell Laboratories.

1-1

has copies of the sources, which he or she edits and then replaces. MMS can sim­
plify this procedure in the following ways:

1. MMS can determine which components in a system have been changed
and what other components are affected by these changes. For example,
if you change several source files, MMS can determine which corre­
sponding object modules need to be updated and updates them. Thus,
the entire system is not rebuilt, only those components whose sources
have been modified.

2. If you rebuild a complete system without regard to which components
do not need to be updated, you waste disk space. MMS has a
/SKIP _INTERMEDIATE qualifier that avoids unnecessary building of
intermediate files, thus saving space. (The /SKIP _INTERMEDIATE
qualifier is described in Chapter 5.)

3. You can use MMS first to build and test modules locally, and then
against the modules in the source directory (or library). Thus, you can
test modules before you replace them and be sure that they work prop­
erly. If you use MMS in conjunction with DEC/CMS, you can be sure
that the replaced modules do not conflict with the edits another
programmer may have made. In fact, you can use these two tools
together to ensure that only your changes (and not another program­
mer's) are included in the revised module.

DEC/CMS (Code Management System) is a tool that helps manage a project's
files by storing them in a library, tracking changes, and monitoring access to the
library that contains the files. Section 4.2 describes in detail how MMS and
CMS can work together.

1.2 What MMS Does

MMS controls the efficient building of a software system by determining which
components in the system have changed and then updating, or creating new
versions of, only those files that depend on the changed components.

Figure 1-1 depicts a small software system and describes the basic steps MMS
follows when it builds the system. In this system, Component A is the target -
the file that you want to update. Component B is a source for Component A, and
Components C and Dare sources for Component B. (For example, A might be an
.EXE file, B might be an .OBJ file, and C and D might be .C or definition files.)
The commands that update B (by using C and D) and A (by using the updated B)
are called actions. (For example, the LINK command is the action that uses
B.OBJ to update A.EXE.)

1-2 Introduction to DEC/MMS

I
I

I

/
I

,,,,.

• I
I
I
I

f
,..B

\ c
\

' '

A 0

+
I
I
I
I

B °'
D

-·---

'

/

' \
' ' I
I

I
/

0 MMS checks the revision time of the target (Component A).

8 MMS checks the revision time of the first source (Component B).

8 MMS checks the revision times of Components C and D against that of B.

0 If the times of Components C and/or Dare more recent than that of Component B, MMS updates B
according to action lines that you specify in the description file (action lines tell MMS what commands
to execute to update the components of a software system). If B is more recent than C and D, MMS
does not do anything to B because it is already up-to-date.

0 Once Component Bis updated, it is more recent than the target. Therefore, MMS updates Component
A.

ZK-1090-82

Figure 1-1: How MMS Builds a Software System

If the target has been modified since the sources were last changed, MMS does
not take any action to update the target. Instead, it issues a message to inform
you that the target is already up-to-date.

Introduction to DEC/MMS 1-3

1.3 How to Use MMS

When you use MMS to build your software system, you usually perform two
steps:

1. Create a description file

2. Invoke MMS

The description file contains rules that describe how the components of your sys­
tem are related, and the CLI commands that MMS is to use in building them.
Once you have created your description file, you can use it every time you
invoke MMS to build your system. In most cases, you will need a description file;
however, if your system is very simple, MMS can build it even if you have no
description file. (Description files are explained in detail in Chapter 2.)

When you invoke MMS, it looks in your current directory for a description file
called DESCRIP.MMS, unless you have specified the /NODESCRIPTION quali­
fier to indicate that no description file is to be used. If MMS cannot find
DESCRIP.MMS, it looks for a description file called MAKEFILE. (If both
DESCRIP.MMS and MAKEFILE. exist in your directory, MMS uses only
DESCRIP.MMS.) Once it locates the description file, MMS processes it. If you
specified a target on the command line, MMS begins processing the description
file with the first rule that describes how to build that target. If you did not spec­
ify a target on the command line, MMS builds the first target in the description
file. If neither DESCRIP.MMS nor MAKEFILE. exists, MMS issues an error
message and aborts execution.

If you specify /NODESCRIPTION with the MMS command, you must specify
the target on the MMS command line so that MMS knows what to build. When
/NODESCRIPTION is in effect, MMS does not look for a description file but
relies entirely on its built-in rules to update the target.

Suppose that you have a source file named PROG.COB, which you want to use
to create an executable file, PROG.EXE, and suppose that the intermediate file
PROG.OBJ does not exist. All you have to do is type the MMS command with
the /NODESCRIPTION qualifier (to indicate that no description file is to be
used); then specify the executable file as the target, as shown in the following
example:

$ MMS/NODESCRIPTION PROG.EXE

Because MMS does not use a description file in this example, it must rely on its
default rules, or built-in rules, to build PROG.EXE. MMS knows that an .EXE
file results from an .OBJ file, so it looks for PROG.OBJ in the current directory.
Since PROG.OBJ does not exist, MMS uses another built-in rule that builds an
.OBJ file from a .COB file and looks for PROG.COB. If PROG.COB is newer
than PROG.EXE, MMS determines that PROG.EXE is not up-to-date. To make
it up-to-date, MMS invokes the COBOL compiler to compile PROG.COB

1-4 Introduction to DEC/MMS

and then invokes the VAX Linker to link PROG.OBJ, thus creating a new
version of PROG.EXE. (Built-in rules are described in Chapter 2, and the
/NODESCRIPTION qualifier is described in Chapter 5.)

Before you read further in this manual, you may want to see for yourself how
MMS works. The following example shows how you might use MMS to build the
file CHAPTERLMEM using DIGITAL Standard Runoff (DSR) and the input
file CHAPTERLRNO:

$ MMS/NODESCRIPTIDN CHAPTER1.MEM
RUNOFF /OUTPUT=CHAPTERl CHAPTERl.RNO
DIGITAL Standard Runoff Version V2.0-014: No errors detected
12 Pa9es 1,.1ritten to "USER$:[ANDERSONJCHAPTER1.MEM;1"
$

In this example, MMS applies the built-in rule that instructs it to use DSR when
building .MEM files. By default, MMS attempts to locate the source by looking
in the working directory for a file with the same name as the target and with the
extension .RNO.

1.4 How MMS Executes Commands
MMS runs two processes as it updates a target. The first process, your current
process, executes MMS. The second process, a spawned subprocess, executes the
commands you specified in the description file to update the target.

MMS creates a spawned subprocess only when the target needs updating, and it
creates only one spawned subprocess to execute all the actions in the description
file. The subprocess is created when the first action is executed; it remains
active until the MMS image terminates.

While the subprocess executes an action (such as a DCL command), the parent
process waits until it is notified that the subprocess has finished executing com­
mands. Therefore, if you monitor the parent process, do not be alarmed to find it
idle.

If you invoke MMS from a description file with the $(MMS) reserved macro (see
Section 3.6), another subprocess is used to execute the new invocation ofMMS.
The original subprocess is treated as a parent process for the subsequent MMS
execution.

1.5 Process Requirements for Running MMS
When a subprocess is created, the VAX/VMS operating system automatically
assigns it a portion of the quotas established for your main process. Some of

Introduction to DEC/MMS 1-5

these quotas are shared among the main process and all its subprocesses; that
is, the sum of these quotas cannot exceed the total originally assigned to the
main process.

In some cases, the subprocess MMS creates to execute actions may not have suf­
ficient BYTLM, ASTLM, PRCLM, and FILLM quotas. These quotas determine
the number of bytes of buffered 110 and the number of ASTs, subprocesses, and
open files your process can have. If MMS exceeds one or more of these quotas
when it begins processing your description file, it issues an error message that
tells you the current quotas and the minimum needed to continue processing.
The quotas suggested in the error message are the minimum required to exe­
cute MMS, the subprocess that executes action lines, and one recursive invoca­
tion ofMMS using the $(MMS) reserved macro. You must then ask your system
manager to increase your process's quotas by the difference between the current
quotas and the minimum required by MMS. If your quotas are higher than the
minimum, MMS will be able to execute faster and more efficiently.

1.6 Advantages of MMS Over DCL Command Procedures

You can write DCL command procedures that perform functions similar to
MMS functions, but the major advantage of MMS is the ease with which it can
rebuild a software system. Writing a command procedure that determines
whether one file is more recent than another (or whether one file exists at all in
relation to another file) is not an easy task; but making such a command proce­
dure straightforward requires your time and effort, and also requires considera­
ble processing time. MMS is designed to rebuild only the parts of a software
system whose sources have been modified since the last system build, and it
does so faster and more easily than a comparable command procedure could.
For example, the following MMS rule:

A : B
ACTION

means, in DCL terms:

If CA is older than B> or
CA does not exist but B exists)

THEN
DO ACTION

As you can see, this relationship is expressed much more easily by an MMS rule
than by DCL commands.

1-6 Introduction to DEC/MMS

MMS has other advantages over DCL command procedures:

1. The order in which MMS processes the rules in a description file does
not depend on the position of the rules in the description file. In DCL
command procedures, the order of command execution is determined by
the position of the command in the procedure or by a directive to trans­
fer control to a specified location.

2. You can leave out some steps of an MMS description file because MMS
built-in rules define certain commonly used actions. You cannot leave
out any steps of a DCL command procedure.

3. MMS allows the "top-down" breakdown of a task. Thus, you can use
mnemonic names at the beginning of a description file to specify the
order in which tasks must be accomplished, and then specify the actions
to accomplish those tasks further on in the description file. In DCL, you
cannot break down a task into sub-tasks in a clean manner; you must
specify the actions as you go along, scattering commands and structural
information throughout the command procedure. With MMS, the struc­
tural information is all in one place, giving a clear representation of the
system.

Introduction to DEC/MMS 1-7

Chapter 2

Creating a Description File

A description file contains the information MMS needs to build your software
system. It has two principal uses:

• To instruct MMS how to build your system

• To document the relationships among the various components of your
system

Since the description file is si~ply an ASCII text file, you can create and modify
it with any text editor. Once you have created the description file, you need issue
only a simple MMS command to update your system. (The MMS command is
described in detail in Chapter 5.)

The description file describes the process of building a single target. However,
the process of building one file may produce several other files. For example, to
build a new version of a compiler, MMS might need to recompile all the source
files to produce object files, an image file, a message file, and an installation
document.

A description file can contain five kinds of information:

• Dependency rules

• Comments (optional)

• Macro definitions (optional)

• Directives (optional)

• User-defined rules (optional)

This chapter describes dependency rules, comments, and macro definitions.
Directives and user-defined rules are described in Chapter 3.

As explained in Chapter 1, MMS by default looks for a description file called
DESCRIP.MMS, and then for one called MAKEFILE. If you need several

2-1

description files for different MMS applications, one of the following methods
will help you keep better track of your description files:

• Create a separate subdirectory for each MMS application and store a
description file named DESCRIP.MMS in each one.

• Give each description file a meaningful name and then specify the correct
file each time you invoke MMS. You can use the /DESCRIPTION qualifier
on the MMS command line to supply the name of a description file; the
default file type is .MMS. Examples of the /DESCRIPTION qualifier
appear throughout this manual. A complete discussion of /DESCRIPTION
is contained in Chapter 5.

2.1 Dependency Rules

A description file always contains dependency rules. These rules describe the
relationships among the files in a software system and specify the actions MMS
will perform in building an up-to-date version of the system. Dependency rules
indicate how files depend on, or are affected by, other files.

For example, ifthe file TEST.OBJ results from compiling TEST.BAS with the
BASIC compiler, then TEST.OBJ depends upon TEST.BAS, and the action
required to update TEST.OBJ is the command BASIC TEST. To put it in MMS
terms, TEST.OBJ is the target that MMS will build from the source, TEST.BAS,
by executing the action line BASIC TEST. You express such a relationship to
MMS by writing a dependency rule.

For each dependency rule, MMS uses the last revision dates of the target and
the source to determine whether the target should be updated. The revision
date indicates the date and time the file was most recently changed. (You can
find out this information for yourself by using the DCL command
DIRECTORY/DATE= MODIFIED.)

If none of the sources have later revision dates than the target, MMS does not
perform the action specified in the dependency rule. If, however, any of the
sources have been modified since that target was last updated, or if the target
does not exist, MMS performs the action that updates or creates the target.

2-2 Creating a Description File

NOTE

Occasionally MMS may execute an action even though you do not
expect the source to be newer than the target. This situation can
result from one of the following conditions:

1. If sources are being stored in a library and more than one person
is accessing a given source, someone else may replace that
source in the library after you have invoked MMS but before
MMS has checked the source's revision time. Thus, when MMS
does check the time, a source newer than the corresponding tar­
get will exist in the library, which may cause MMS to execute
an action to update the target when you did not expect the tar­
get to be out-of-date.

2. If the sources and targets in your description file do not reside
on the same node of a network, the clocks on the nodes may not
be synchronized and a source may have a revision time that is
later than the target's solely because the clock on the source's
node is slower.

These conditions are not likely to occur very often, but you should be
aware that they are possible.

2.1.1 Dependency Rule Format
A dependency rule has the following format:

target... : [source ...] [!comment]
[action line ...) [!comment]

target, source

A VAXNMS file specification or a mnemonic name (Section 2.1.2 describes
mnemonic names). If you are using DECnet, the file specifications for the
target and source can include node information.

comment

A string of text, introduced by an exclamation point(!), that documents the
description file.

action line

A command-language command that MMS will use to update the target.
You can specify any number of action lines for a target.

You must begin a target/source line in column 1 of the line, and you must
include at least one space or tab on either side of the colon that separates the
source from the target. This requirement is necessary so that MMS does not
interpret the colon as part of a VAXNMS file specification.

Creating a Description File 2-3

By default, MMS expects to find the source and target files in the current default
directory. However, it can process files in other directories if you provide a com­
plete file specification.

You can use a logical name for a source or a target; however, if you do so, you
must supply the action lines that update the target because MMS relies on the
source and target file types to apply built-in rules. Section 2.2 describes how
MMS uses built-in rules.

An action line is positioned below the corresponding target/source line and
must be indented by at least one space or tab. MMS interprets all indented lines
as action lines and associates them with the most recently specified tar­
get/source line. You can omit the action line and MMS will use built-in rules to
update the target if it can (see Section 2.2).

The following example shows the dependency rule for making TEST.OBJ:

TEST.OBJ : TEST.BAS
BASIC TEST

! TEST.OBJ is updated by TEST+BAS
! Creates or updates the .OBJ file

Any line in a description file can be continued onto the next line with a hyphen
(-).This practice makes the description file easier to read when a dependency
rule is too long to fit on one line. For example:

TESTS+ OBJ : -
TEST1. BAS, -
TEST2+BAS1 -
TEST3.BAS1 -
TESTll +BAS, -
TESTS.BAS

! Source Modules for TESTS.OBJ

BASIC/OBJECT=TESTS TEST1+TEST2+TEST3+TEST4+TEST5

The hyphen means that the next line is treated as part of the current line. In the
example, the second and third lines are continuations of the target/source line.
Note, though, that a comment can appear after a continuation character with­
out affecting the processing of the description file. When a hyphen appears as
the last character on a line, MMS interprets the hyphen as a continuation char­
acter, even if the hyphen is part of a comment.

A description file can contain many dependency rules; however, MMS builds
only one target. You can specify several targets on the MMS command line, but
such a command is executed as a separate invocation of MMS for each target
with the specified set of qualifiers. By default, MMS updates the first target
specified in the description file. You can force MMS to update a target other than
the first one by explicitly including the target name on the MMS command line.
In that case, MMS searches the description file for the dependency rule associ­
ated with the specified target.

2-4 Creating a Description File

MMS must check all sources before it updates a target, since sources may them­
selves be targets with sources of their own in other dependency rules. Therefore,
MMS updates all sources and their dependencies before updating the main
target.

To improve the readability of description files, you may separate dependency
rules from each other with one or more blank lines. However, a blank line sig­
nals the end of a dependency rule, so you may not use blank lines between the
action lines of a single dependency.

2.1.2 Source and Target Files
If you specify an action line but omit the source from a dependency rule, MMS
executes the action line only if the target does not exist in the specified direc­
tory. For example, in the following dependency:

EDELANOJA,OBJ :
PASCAL/DEBUG EDELANOJA,PAS

MMS executes the PASCAL command only if A.OBJ does not exist in the direc­
tory [DELANO].

As MMS checks the revision times of targets and sources, it builds a list of times
used to allow it to decide when a target needs to be updated. If there is no file
associated with a target or source (for example, if the target does not exist),
MMS records a revision time for it that is older than the times of all other
existing targets and sources: 17-NOV-1858 00:00:00.0. (This is the oldest time
used by VAX/VMS.) All targets and sources that are not files are assigned this
revision time. ·

To specify multiple targets and sources, you separate them with commas,
spaces, or a combination of both. However, the specification of multiple targets
is actually just a shorthand notation that MMS expands into separate depend­
encies before it executes the action lines. For example, suppose you include the
following dependency rule in a description file:

KERNEL.OBJ, DRIVER.OBJ : COMMON.DEF

Although no action line is specified, MMS can use built-in rules to determine
what action is needed to update KERNEL.OBJ and DRIVER.OBJ. (Built-in
rules are explained in Section 2.2.) Thus, MMS expands the previous rule to the
following two:

KERNEL.OBJ : KERNEL.Ct COMMON.DEF
CC KERNEL.C

DRIVER.OBJ : DRIVER.Ct COMMON.DEF
CC DRIVER,C

Creating a Description File 2-5

Built-in rules also allow MMS to determine that KERNEL.C and DRIVER.C,
which were not specified in the original dependency, are sources for
KERNEL.OBJ AND DRIVER.OBJ, respectively. The original dependency rule
therefore expands to two action lines, resulting in two compilations if both
targets need to be updated.

Sometimes, however, if an action line is executed twice, the results may not be
what you intended, as in the following example:

A+EXE : A+DBJt A+LIS
LINK A+DBJ

A+OBJt A+LIS : A.BAS

BASIC/LIST A+BAS

MMS expands the second rule to the following two:

A.OBJ : A.BAS

BASIC/LIST A+BAS

A.LIS : A+BAS

BASIC/LIST A+BAS

Since the second dependency in the description file expands to two action lines,
MMS executes the command BASIC/LIST A.BAS twice and produces two .OBJ
files and two .LIS files.

You can use a mnemonic name to represent a target; you can also use a mne­
monic name to represent a source, provided that the source is a target in
another dependency rule. If MMS encounters a name for which it cannot find a
matching file in the specified directory, it assumes that the name is a mnemonic
name.

Mnemonic names are useful in several cases, for example:

• To update more than one file

• To group a variety of related actions under a name that identifies the pur­
pose of the whole sequence

• To give a name to a common action or sequence of actions in building a
system

2-6 Creating a Description File

The first of these cases is probably the most important, since MMS by default
builds only one target. If you actually need to update several targets, you can
make them sources in a dependency rule where the target is a mnemonic name.
For example:

NEW_SYSTEM : A.EXEt B.EXE
! no action needed

A.E>{E : A.OBJ
LINK A.OBJ

B. E}{E : B. OBJ
LINK B.OBJ

The target (in this case, NEW _SYSTEM) is considered updated when MMS has
executed the action line or lines that follow it. This technique guarantees that
both A.EXE and B.EXE are updated, if necessary.

The following partial example shows the use of mnemonic names as both
targets and sources:

ALL PROG.EXE PRINT
! system completely built and the sources Printed

PROG.EXE : MODl.OBJt MOD2.0BJt MOD3.0BJ
LINK/EXEC=PROG MODl.OBJt MOD2.0BJt MOD3.0BJ

PRINT : MOD1.Ct MOD2.Ct MOD3.Ct DEFSl.Ht DEFS2.H
! Print the source files
PRINT MOD1+Ct MOD2.Ct MOD3.Ct DEFSl+Ht DEFS2.H

MMS updates the target ALL by updating the two sources, PROG.EXE and
PRINT, which are themselves targets in subsequent dependency rules.

2.1.3 Action Lines
Sometimes a target requires a series of actions to update it. In that case, you
may follow a target/source line in the description file with one or more action
lines, as in the following example:

RESULTS.DIF : ACCOUNTS.EXEt BENCHMARK.DAT
RUN ACCOUNTS.EXE ! Runs ACCOUNTS
DIFFERENCES/OUTPUT=RESULTS+DIF -

ACCOUNTS.DATt BENCHMARK.DAT
! Compares Prolram outPut to master file

TYPE RESULTS.DIF ! DisPlaYs results of comparison

ACCOUNTS.EXE : ACCOUNTS.OBJ
LINK ACCOUNTS.OBJ Links ACCOUNTS Prolram

Creating a Description File 2-7

If either ACCOUNTS.EXE or BENCHMARK.DAT is newer than
RESULTS.DIF, MMS executes the action lines that update RESULTS.DIF. (If
ACCOUNTS.OBJ is newer than ACCOUNTS.EXE, MMS first executes the
action line to update ACCOUNTS.EXE.) It then runs the program, runs the
DIFFERENCES utility to compare the program's output with a master file, and
displays the results of the comparison.

When you run MMS, all action lines, along with any comments that you speci­
fied on action lines in the description file, are written to SYS$0UTPUT or to the
file specified by the /OUTPUT qualifier on the MMS command line. (The
/OUTPUT qualifier is described in Chapter 5.) If you were to run MMS using the
previous example as the description file BALANCE.MMS, you would see the
following output:
$ MMS/DESCRIPTION=BALANCE
LINK ACCOUNTS.OBJ ! Links ACCOUNTS Prof raM
RUN ACCOUNTS.EXE ! Runs ACCOUNTS
DIFFERENCES/OUTPUT=RESULTS.DIF ACCOUNTS.DAT, BENCHMARK.DAT
! CoMPares Pro•raM output to master file
TYPE RESULTS.DIF ! Displays results of comparison
Number of difference sections found: 0
Number of difference records found: 0

DIFFERENCES /MERGED=1/0UTPUT=USER$:[ALISONJRESULTS.DIF1-
USER$:[ALISONJACCOUNTS+DATi18-
USER$:[ALISONJBENCHMARK+DATi27

$

Action lines are subject to certain restrictions, as follows:

• An action line may not receive data from SYS$INPUT. For example, an
action line cannot contain the DCL command CREATE and cannot read
data from the terminal.

• An action line may not contain the DCL commands LOGOUT, EXIT, or
STOP.

• An action line may spawn a subprocess only by using the $(MMS) reserved
macro (see Section 3.6). The DCL command SPAWN is not allowed in an
action line.

• An action line may not use the DCL c0111mands SET VERIFY or SET ON.
You can use these commands in a command procedure that you invoke from
an action line; however, if you use SET VERIFY you must be sure to issue
SET NOVERIFY before the command procedure ends.

MMS uses a special symbol, MMS$STATUS, to record the return status of the
last action line it executed. If the value of MMS$STATUS is an even number,
the last action line terminated with an error. If the value ofMMS$STATUS is
an odd number, the last action line executed successfully. To check the value of
MMS$STATUS, you can issue the DCL command SHOW SYMBOL after MMS

2-8 Creating a Description File

has finished processing your description file. Do not confuse MMS$STATUS
with the $STATUS condition value returned by MMS itself. MMS$STATUS
contains the status of the last action line executed; $STATUS contains the sta­
tus resulting from the termination of the MMS image.

2.1.4 Examples
The following example shows a simple dependency rule:

NEWTESTS,OBJ : TEST1,BAStTEST2,BAS
BASIC/OBJECT=NEWTESTS TEST1+TEST2

This dependency rule states that the target, NEWTESTS.OBJ, depends on two
sources, TESTl.BAS and TEST2.BAS. If either source has a later revision
date than NEWTESTS.OBJ, MMS executes the action line and updates
NEWTESTS.OBJ.

Most description files contain more than just one dependency rule. Sometimes a
source in a dependency may itself depend on other files in the system. In that
case, the source is a target in another dependency rule, so the description file for
building the system must contain several rules. The dependency rules in the
next example describe the structure of a system called MYSYSTEM.EXE.

USER$:[PROJECTJMYSYSTEM+EXE : TESTS.OBJ KERNEL.OBJ DRIVER.OBJ
LINK/EXE=USER$:[PROJECTJMYSYSTEM TESTS,OBJt­

KERNEL.OBJtDRIVER,OBJ

TESTS.OBJ : TEST1,BASt TEST2.BAS
BASIC/OBJECT=TESTS TEST1+TEST2

KERNEL.OBJ : KERNEL.BAS
BASIC KERNEL

DRIVER.OBJ : DRIVER.BAS
BASIC DR I t.JER

The first dependency rule defines the top level of the system. That is, the target
MYSYSTEM.EXE in the directory USER$:[PROJECT] is composed of the
sources TESTS.OBJ, KERNEL.OBJ, and DRIVER.OBJ. The second depen­
dency rule tells MMS that TESTS.OBJ is itself a target and that it depends on
TESTl.BAS and TEST2.BAS.

In summary, MMS dependency rules allow you to describe all of the file relation­
ships and processing needed to build a software system. However, for building
complex systems (such as a compiler), the number of dependency rules may
make the description file quite large. In such cases, instead of explicitly describ­
ing all dependencies, you may want to shorten the description file by relying on
MMS built-in rules, which are described in the next section.

Creating a Description File 2-9

2.2 Built-in Rules

When writing a description file, you can explicitly state dependencies and
actions, or you can abbreviate them by taking advantage ofMMS built-in rules.

Built-in rules allow MMS to assume dependencies that are not stated in the
description file and to perform actions necessary to update the target. MMS
applies built-in rules (when they exist) in addition to any dependencies and
action lines you supply in the description file. By using built-in rules, you can
write shorter description files and allow MMS to do most of the work for you. A
complete list of the MMS built-in rules is in Table A-3 in Appendix A.

MMS attempts to use its built-in rules only when you omit the action line or the
source, or both, from a dependency rule. For example, MMS has a built-in rule
that instructs it to use .FOR files when updating .OBJ files and to produce the
.OBJ files by invoking the FORTRAN compiler. In writing the description file,
you can make this relationship explicit, as in the following dependency rule:

MOD3+0BJ : MD03.FOR
FORTRAN M003,FOR

Or you can rely on MMS built-in rules by eliminating the action line, leaving
only:

MD03.0BJ : M003,FOR

MMS uses its built-in rule to invoke the FORTRAN compiler and build
MODS.OBJ from MOD3.FOR.

If you omit the action line, MMS tries to locate the source in the directory you
specified. If the source exists there, MMS uses the built-in rule that describes
how it should use that source to update the target. If the source does not exist,
MMS issues an error message and aborts execution.

If you omit the source, MMS can still use built-in rules to locate it because MMS
knows about implied dependencies among files with the same name but differ­
ent file types. In the previous example, since the target's file name is MOD3,
MMS assumes that the source's file name is also MOD3. And since MMS knows
that .OBJ files depend on .FOR files with the same file name, you can abbreviate
the previous dependency rule even further to:

MOD3+0BJ :

MMS automatically looks for MOD3.FOR and uses it to build MOD3.0BJ.

2-10 Creating a Description File

To determine the source's file type, MMS checks its suffixes precedence list,
which lists all the file types it recognizes, arranged in a predetermined order.
MMS then uses the built-in rules (and user-defined rules, if any exist) to deter­
mine how the various types of files can be generated from the known rules.
(User-defined rules are explained in Section 3.1.) Suppose the suffixes prece­
dence list contains the following file types:

• EXE • OBJ • BL I , C • FOR • BAS

According to this list, .EXE files have precedence over .OBJ files, which have
precedence over .BLI files, which have precedence over .C files, and so on. The
relationship between the suffixes list and the known rules could be represented
as follows:

.OBJ .BLI .c .FOR .BAS

ZK-1664-84

The arrows in this figure indicate rules known to MMS. For example, a known
rule specifies how an .EXE file is made from an .OBJ file; no other rule exists (in
this figure) for making .EXE files. Similarly, rules exist to direct MMS how to
make an .OBJ file from a .BLI file, a .C file, a .FOR file, and a .BAS file. Since
.BLI precedes .C in the suffixes list, .BLI files have priority over .C files as a way
to build .OBJ files. (The suffixes precedence list is included in Table A-1; you can
alter the order of the suffixes precedence list, as described in Section 3.4.4.)

Suppose that your description file directs MMS to update a target called
MOD3.EXE. If you specify no sources or action lines, MMS assumes that the
source and the target have the same file name, which in this example is MOD3.
Since a rule exists to build an .EXE file from an .OBJ file, MMS looks in your
directory (or in the directory you specified in the description file) for a file named
MOD3.0BJ. If such a file exists, and ifit has a revision time later than the tar­
get's, MMS applies the known rule to update the target.

If MMS cannot locate a source with the proper file name and with the first file
type in the suffixes list that can update the target, it proceeds to the next file
type that is connected to the target type by a known rule. In this example, how­
ever, no other rules exist for making .EXE files. If MMS checks all possible
source types and cannot find a file with the same name as the target, it does not
abandon the attempt to update the target. Instead, it tries to build a file that
could then be used as the target's source. For example, if MMS failed to find

Creating a Description File 2-11

MOD3.0BJ, it tries to build MOD3.0BJ and then use it as the source that
updates MOD3.EXE. To build this new target, MMS works through the list of
file types, looking in the specified directory for a source with the correct file
name and a file type that corresponds in turn to each file type that can update
the target.

For example, the figure shows that .OBJ files can be built from .BLI, .C, .FOR,
and .BAS files; so, ifMMS is trying to build MOD3.0BJ, it looks first for a source
named MOD3.BLI. If such a source exists in the specified directory, MMS
applies the known rule and creates MOD3.0BJ; if it finds no match for the file
name and type, it continues looking in the specified directory for the same file
name and the next file type from the suffixes list that can update the target.
Thus, if MOD3.BLI does not exist, MMS next looks for MOD3.C. If MOD3.C
does not exist, the next possible source is MOD3.FOR, and so on.

Suppose that MMS finally matches MOD3.0BJ with MOD3.FOR and locates
MOD3.FOR in your directory. It then applies the built-in rule that instructs it to
update the target MOD3.0BJ from the source MOD3.FOR by using the action
line FORTRAN MOD3.FOR. This procedure explains why a dependency rule as
brief as the following:

MOD3.0BJ :

equates to the full dependency rule:

MOD3.0BJ : MOD3.FOR
FORTRAN/OBJ=MOD3 MOD3,FOR

If, however, MMS fails to find a source from which to build the new target, it
repeats the entire process by determining whether it can build one of the non­
existent sources. For example, if MMS does not locate a file that can update
MOD3.0BJ, it starts with the first possible source for MOD3.0BJ and tries to
build that. In this case, it would try to build MOD3.BLI, since the suffixes list
gives .BLI files the highest priority among the file types that update .OBJ files.
Since there is no known rule for building .BLI files (in our example), MMS next
considers .C. Suppose you have added a rule that directs MMS to build a .FOR
file by fetching it from a CMS library. (Section 4.2 explains how to specify CMS
elements in description files.) The relationship between the rules and the file
types might look like this:

I .E;E I I iOBJ 1 __ ·__,BLI .c .FOR .BAS .FOR-

ZK-1665-84

2-12 Creating a Description File

(The tilde (-) signifies a file in a CMS library.) When MMS considers .FOR as a
possible target, it discovers that a rule exists for building .FOR files from .FOR­
files. Therefore, it looks for a file named MOD3.FOR in the CMS library. If one
exists, it applies the known rule to update the .FOR target; ifit cannot find such
a file, it continues searching for a file to use. Suppose that MMS does locate
MOD3.FOR in the library. It can then use this file to create all the necessary
sources that finally result in an updated MOD3.EXE, the original target. Thus
the simple dependency

MOD3, E)<E :

could result in the following sequence of actions:

MOD3.EXE : MOD3,0BJ
LINK/EXEC=MOD3 MOD3,0BJ

MOD3.0BJ : MOD3.FOR
FORTRAN/DBJ=MOD3 MDD3.FDR

MOD3,FOR : MOD3.FOR~

CMS FETCH MDD3.FDR~

IfMMS exhausts all the possible file types without finding a way to build any of
the sources, it issues an error message and aborts processing.

Once MMS locates what seems to be the correct source for updating a target, it
does not immediately apply the corresponding known rule. Instead, it checks to
see whether the source itself needs updating before it can be used to update the
original target. To do this, MMS repeats the process of trying to find a file in the
specified directory that matches the file name of the source and each file type in
the suffixes list that can update the target type. MMS repeats this process every
time it finds a source that could update the target so that all the sources are
guaranteed to be up-to-date.

The following example shows a description file that does not take advantage of
MMS built-in rules:

PROG,EXE : MDD1.0BJt MOD2.0BJt MOD3.DBJ
LINK/EXEC=PROG MDD1.0BJt MOD2.0BJt MOD3.0BJ

MOD1.0BJ : MOD1.C
CC MOD1.C

MOD2.0BJ : MOD2+Ct DEFDIR:DEFS1+Ht DEFDIR:DEFS2+H
CC MDD2.C

MOD3.0BJ : MOD3.Ct DEFDIR:DEFS2.H
CC MOD3.C

Creating a Description File 2-13

The following description file of the same system takes advantage of MMS built­
in rules:

PROG.EXE : MOD1.0BJ1 MOD2.0BJ1 MOD3.0BJ
LINK/EXEC=PROG MODl+OBJ1 MOD2.0BJ1 MOD3.0BJ

MOD2+DBJ1 MOD3.0BJ : DEFDIR:DEFS2.H

MOD2+DBJ : DEFDIR:DEFS1,H

The first dependency rule lists the object files and states that PROG.EXE is con­
structed by executing the DCL command LINK. The second dependency rule
says that MOD2.0BJ and MOD3.0BJ depend on DEFS2.H, which is located in
the directory defined by DEFDIR. Neither the .C file dependencies nor the
actions taken to build the objects are stated. The third dependency rule says
that MOD2.0BJ also depends on DEFDIR:DEFSl.H. The rule for building
MODI.OBJ need not be specified because a built-in rule directs MMS to build it
from MODl.C.

In addition to providing built-in rules, MMS allows you to define your own
rules. Defining your own rules may involve deleting, adding to, or replacing the
built-in rules. Section 3.1 describes when and how to define new rules.

2.3 Macro Definitions
A macro is a name that represents a character string. You define macros at the
beginning of your description file or on the command line that invokes MMS.
You can then use the macro names in the description file in place of the strings.
For example, you might discover that your description file uses the same file
name over and over, or that you have several action lines that invoke a compiler
with the same set of qualifiers. If you define a macro to represent the file name or
the list of qualifiers, you can use the macro name throughout your description
file. Then, if you want to use a different file name or need to change the qualifi­
ers, you can edit only the macro definition and leave the rest of the description
file as it is.

The following sections describe how to define and use MMS macros. Besides
your own macros, you can also use default macros, discussed in Section 2.3.4,
and special macros, which MMS defines for you, described in Section 3.2.
Finally, you can also treat CLI symbols as macros (see Section 2.3.5).

When processing macros, MMS applies definitions in the following order:

1. Command-line definitions

2. Description file definitions

2-14 Creating a Description File

3. Built-in definitions

4. CLI symbol definitions

Once MMS finds a definition for a macro, it does not search those locations far­
ther down the list for more definitions. If MMS finds more than one definition in
the same location (such as on a command line), it uses the last definition it
processed, unless the location is a description file. MMS issues an error message
if a macro is defined more than once in a description file.

You can change the order in which MMS applies macro definitions by using the
/OVERRIDE qualifier (see Chapter 5).

2.3.1 Format
A macro definition has the following format:

name = string

name

The name of the macro. A macro name can consist of any characters except
a space, a tab, a carriage return, an equal sign, the sequence$(), and
control characters. A macro name can be as long as you like.

string

The text that replaces the macro name when the macro is expanded. A
macro string can consist of any character sequence. You can use a hyphen
(-) as a continuation character to continue a macro string onto the next line
of the description file; however, when the macro is expanded it is consid­
ered as one line.

You must begin a macro definition in column 1 of the line. You can place macro
definitions anywhere in the description file; however, it is a good idea to place all
macro definitions at the beginning of the description file so that you can easily
find and edit them.

Note that you must define a macro before you can use it; otherwise, the macro's
expanded value is the null string. To determine whether a macro has been
defined, keep in mind the order in which MMS processes macro definitions (see
Section 2.3).

2.3.2 Invoking Macros
After you have defined a macro, you can invoke it anywhere in the description
file. To write a macro invocation, simply specify a macro's name in the following
format:

$(name)

Creating a Description File 2-15

The dollar sign and parentheses are required punctuation surrounding the
macro name. MMS replaces the name (and the punctuation) with the
equivalent text string when it processes your description file.

A macro string can also contain macro invocations that are expanded when the
macro is defined. The macro invocations must denote macros that you have
already defined in the description file. For example, suppose the following
macro definitions appear in your description file:

TWO /DEBUG

ONE /LIST $(TWO)

The macro invocation $(TWO) is expanded to /DEBUG because TWO has
already been defined. If the positions of the macro definitions were reversed,
TWO would be expanded to the null string because it has not been previously
defined and therefore cannot be expanded. In this case, MMS does not issue an
error message.

MMS macros are not recursive. That is, MMS expands a macro invocation only
once. If during the expansion of a macro MMS encounters another macro invo­
cation, the second invocation is not expanded.

The following description file, CPROG.MMS, defines two macros: FNAME,
which expands to the string TESTS, and CCQUALS, which expands to the
string /NOLIST:

FNAME = TESTS
CCQUALS = /NOLIST

$CFNAME>.EXE : $CFNAME>.OBJ1 SYS$LIBRARY:STARLET+OLB
LINK $CFNAME) 1-

SYS$LIBRARY:STARLET+OLB/LIB

$CFNAME>.OBJ : $CFNAME>.C
CC $CCCQUALS) $CFNAME).C

When MMS starts building the target (in this case, the .EXE file), it replaces
every occurrence ofFNAME with TESTS and the occurrence of CCQUALS with
the string /NOLIST. As a result, MMS interprets the description file as the
following:

TESTS.EXE : TESTS+OBJ1 SYS$LIBRARY:STARLET+OLB
LINK TESTS, -

SYS$LIBRARY:STARLET+OLB/LIB

TESTS.OBJ : TESTS+C
CC /NOLIST TESTS+C

2-16 Creating a Description File

2.3.3 Defining Macros on the Command Line
You can define macros on the MMS command line by using the /MACRO quali­
fier. /MACRO allows you to define new macros or to redefine macros you defined
in the description file. When you redefine an existing macro with /MACRO, the
new definition overrides the one in the description file. The format of the
/MACRO qualifier is as follows:

/MACRO= { filespec: "macro" ... }

files pee

A VAX/VMS file specification or a logical name for a file that contains only
macro definitions. The def~ult file type is .MMS.

"macro"

A macro definition enclosed in quotation marks. Use the same format
that you would use to define a macro in a description file; that is,
name = string. If you need to specify more than one macro, you must sep­
arate the macros with commas and enclose the list in parentheses.

The /MACRO qualifier is described in detail in Chapter 5.

Suppose you want to build a new program, called TESTLEXE, using the same
description file with which you built TESTS.EXE (as shown in the example in
Section 2.3.2). To redefine FNAME and override the macro definition in the
description file, type the following:

$ MMS/ DESC = CPROG I MACRO=" FNAME =TEST 1"

MMS then interprets the description file as follows:

TEST1.EXE : TEST1.0BJt SYS$LIBRARY:STARLET.OLB
LINK TEST 1 t -

SYS$LIBRARY:STARLET.DLB/LIB

TEST1.0BJ : TEST1.C
CC/NOLIST TEST1.C

The definition of the macro CCQUALS remains the same.

As indicated by the format for /MACRO, you can store macro definitions in a file
from which MMS extracts them. Suppose that you want to redefine the macro
FNAME in your description file and change the qualifiers to the CC command.
First, you create a file to hold the macro definitions. For example, a macro defi­
nitions file might be called MACROS.MMS and contain the following:

FNAME = TEST1
CCQUALS = /LIST/DEBUG

Then you invoke MMS with the /MACRO qualifier and the name of the macro
definitions file:

$ MMS/DESC=CPRDG/MACRO=MACRDS

Creating a Description File 2-17

MMS interprets the previous description file as follows:

TEST1.EXE : TESTl+OBJ1 SYSSLIBRARY:STARLET.OLB
LINK TEST 1 t SYSSLI BRARY: STARLET, OLB/ LIB

TESTl+DBJ : TEST1+C
CC/LIST/DEBUG TEST1.C

You can define a macro only once in a description file. IfMMS finds two or more
definitions of the same macro, it issues an error message and uses the first defi­
nition in the file. To change a macro definition, you can redefine the macro with
the /MACRO qualifier on the command line or you can replace the definition
with the /OVERRIDE qualifier. (See Chapter 5 for descriptions of these
qualifiers.)

2.3.4 Default Macros
MMS default macros can help you use MMS more efficiently because they define
commonly used operations. MMS built-in rules are expressed in terms of default
macros. Table A-2 in Appendix A contains the MMS default macros.

You invoke a default macro in a dependency rule just as you would invoke a
macro you have defined yourself. For example, if you want to compile a C pro­
gram using the /NOLIST and /OBJECT qualifiers, you can instead invoke the
default macro CFLAGS:

PROG+OBJ : PROG,C
CC $(CFLAGS) PROG,C

MMS expands CFLAGS to its equivalent, /NOLIST/OBJECT, and assumes that
the the object file and the specified target have the same name. Since MMS has
a built-in rule for generating .OBJ files from .C files, and since this rule invokes
the default macro CFLAGS, you can get the same results with the following
very simple dependency rule:

PROG.OBJ :

You may, though, want to redefine a default macro, perhaps so that you can use
different qualifiers. The following example redefines CFLAGS:

CFLAGS = /LIST

PROG.EXE : MOD1,0BJ1 MODZ,OBJ1 MOD3.0BJ
LINK/EXEC=PROG MOD1.0BJ1 MODZ.OBJ1 MOD3,0BJ

MOD1.0BJ

MODZ.OBJ DEFDIR:DEFS1 ,H

MODZ+OBJ1 MOD3,0BJ : DEFDIR:DEFSZ+H

2-18 Creating a Description File

MMS interprets the description file as the following:

PROG.EXE : MDD1.0BJ, MDD2,0BJ1 MDD3.0BJ
LINK/EXEC=PROG MOD1.0BJ1 MOD2+05J1 MOD3.0BJ

MOD1+0BJ : MOD1.C
CC/LIST MDDl+C

MOD2.0BJ : MOD2.C1 DEFDIR:DEFS1.Ht DEFDIR:DEFS2,H
CC/LIST MOD2, C

MOD3.0BJ : MOD3,C1 DEFDIR:DEFS2.H
CC/LIST MOD3,C

If you later decide that you want the C source files to be compiled with the
/DEBUG qualifier, you can redefine CFLAGS on the command by typing:

$ MMS I MACRO= II CFLAGS =/DEBUG I NOL I ST II

MMS then interprets the description file as the following:

PROG,EXE : MOD1.0BJ, MOD2,0BJ, MOD3+05J
LINK/EXEC=PROG MOD1.0BJ, MOD2.0BJ1 MOD3+0BJ

MOD1,0BJ : MOD1+C
CC/DEBUG/NOLIST MOD1,C

MOD2.0BJ : MOD2.C1 DEFDIR:DEFS1.Ht DEFDIR:DEFS2+H
CC/DEBUG/NOLIST MOD2,C

MOD3.0BJ : MOD3+Ct DEFDIR:DEFS2.H
CC/DEBUG/NOLIST MOD3.C

2.3.5 Using CLI Symbols as MMS Macros
If you have defined CLI symbols before you invoke MMS, you can use them as
MMS macros in your description file or on the MMS command line. For exam­
ple, you could define a CLI symbol called CCQUALS as follows:

$ CCQUALS :== /LIST/DEBUG

Then in your description file you could use the syntax for a macro invocation to
refer to this symbol:

PROG+DBJ : PROG.C
CC $(CCQUALS> PROG.C

When MMS processes the description file, it replaces the macro with the list of
qualifiers specified in the CLI symbol definition.

Creating a Description File 2-19

To find the macro definition, MMS looks at symbols defined by the CLI assign­
ment statement, scanning the CLI symbol table for the body of the macro. If the
body of the macro is not in the CLI symbol table, MMS substitutes a null string
for all invocations of the macro.

By default, the CLI symbol table is the last place MMS looks for macro defini­
tions. To give CLI symbols a higher precedence, you can use the /OVERRIDE
qualifier, as described in Chapter 5.

If an action line in your description file changes the value of a CLI symbol, this
change is not reflected in any subsequent use of that symbol as a macro in the
description file. MMS expands the symbol in the parent process that is running
the MMS image, while the action lines are executed in a subprocess. Because
the CLI symbol tables for the process and the subprocess are not related, the
action lines are not affected by the changed symbol.

2.4 Description File Example

Figure 2-1 illustrates a system that consists of an executable file call~d
PROG.EXE, several object and source files, and two definition files. Files at a
higher level depend upon files at a lower level.

PROG.EXE

MOD1.0BJ MOD2.0BJ MOD3.0BJ

MOD1.C DEFS1.H MOD2.C DEFS2.H MOD3.C

ZK-1017-82

Figure 2-1: Dependencies of Files in a Software System

2-20 Creating a Description File

PROG.EXE is made by linking together three files: MODl.OBJ, MOD2.0BJ,
and MOD3.0BJ. All of the object files are made by compiling their respective .C
source files: MODl.C, MOD2.C, and MOD3.C. Some of these sources include
definition files; for example, MOD2.C refers to both DEFSl.H and DEFS2.H,
and MOD3.C refers to DEFS2.H.

PROG.EXE depends upon the object, source, and definition files. If any of them
have changed since PROG.EXE was last linked, PROG.EXE is no longer up-to­
date. Similarly, the object files depend upon their respective sources, as well as
upon the definition files in two cases.

Note that although MOD2.C and MOD3.C refer to the definition files, they do
not depend upon them. Therefore, if either of the two definition files was
changed, MOD2.0BJ would be have to be updated, but no change would be
needed to MOD2.C. If only DEFS2.H were changed, both MOD2.0BJ and
MOD3.0BJ would need to be updated.

The following example shows how to state the dependencies shown in Figure 2-1
in a description file, CPROG.MMS.

PROG.EXE : MOD1.0BJ, MODZ.OBJ, MOD3.0BJ 1 PROG depends on three .OBJ files
1 LINK obJect files LINK/EXEC=PROG MOD1.0BJ, -

MODZ.OBJ, -
MOD3.0BJ

1 to Produce PROG.EXE

MOD1.0BJ ! Use built-in rules to comPile MOD1.C and Produce MODI.OBJ

MODZ.OBJ DEFDIR:DEFS1.H ' Use built-in rules to comPile MODZ.C

MODZ.OBJ, MOD3.0BJ : DEFDIR:DEFSZ.H 1 Use built-in rules to comPile MOD3.C

Suppose that you want to update the system and the current directory contains
the following files:

$ DIR/DATE=MOD

Directory USER$:[LOUISEJ

CPROG.MMS 22-JAN-1984 09:42
DEFS1.H 22-JAN-1984 10:20
DEFS2.H 22-JAN-1984 10:00
MOD 1. C 22-JAN-1984 10:25
MDDl+DBJ 22-JAN-1984 10:30
MOD2.C 22-JAN-1984 10:05
MOD2+DBJ 22-JAN-1984 10: 1 (I
MOD3.C 22-JAN-1984 10: 15

Note that the file MOD3.0BJ does not exist in the directory. To build the sys­
tem, type:

$ MMS/DESC=CPRDG

Creating a Description File 2-21

MMS builds the system and writes the following action lines to SYS$0UTPUT
as they are executed:

CC /NOLIST/OBJECT=MOD2 MOD2.C
CC /NOLIST/DBJECT=MOD3 MOD3.C
LINK/EXEC=PROG MDD1.0BJ1 MDD2.0BJ1 MOD3.0BJ

The description file in this example illustrates the MMS build process:

1. Since no target is specified on the command line, MMS attempts to
update the first target in the description file (PROG.EXE).

2. MMS finds that all the sources for PROG.EXE are themselves targets in
subsequent dependency rules.

3. MMS scans each subsequent dependency rule and, by comparing the
revision dates and times, determines whether the target should be
updated:

• If any of the sources have changed since the target was last updated,
MMS executes the action line to update the target. For example, in
the third dependency rule, MMS determines that the definition file
DEFSl.H is newer than the target MOD2.0BJ. Therefore, MMS
updates MOD2.0BJ. In the fourth dependency rule, MMS determines
that MOD3.C has recently been revised, but that the target
MOD3.0BJ does not exist in the current directory. Therefore, MMS
creates the target, MOD3.0BJ.

• If none of the sources for a specific dependency have changed since the
target was last updated, MMS does not execute the action line, and
the target is left unchanged. For example, in the second dependency
rule, the target MODI.OBJ is more recent than its source, so MMS
does not update MODI.OBJ.

4. After MMS updates all the sources, it updates the main target,
PROG.EXE, by executing its action line.

2-22 Creating a Description File

Chapter 3

Advanced Description File Techniques

Once you become familiar with MMS, you can use advanced techniques in your
description file to make it more flexible and useful. This chapter describes the
following techniques:

• User-defined rules

• Special macros

• Double colon dependencies

• Directives

• Action line prefixes

• Invoking MMS from a description file

3.1 User-defined Rules

MMS has built-in rules that allow it to figure out unstated dependencies and
perform actions necessary to update targets; the list of built-in rules, however,
may not contain all the rules you need, or you may want to redefine existing
rules. Therefore, MMS provides you with the ability to include user-defined
rules in a description file. Once you define a new rule, MMS uses it every time it
builds your system with that description file.

The format of a user-defined rule is as follows:

.SAC.TAR [!comment]
action line ... [!comment]

.SRC

The file type of the source .

. TAR

The file type of the target.

3-1

comment

A string of text, introduced by an exclamation point(!), that documents the
description file.

action line

A command-language command that MMS should execute to update a file
of the target type from a file of the source type. You can specify as many
action lines as necessary to update the target.

You can continue any line in a user-defined rule onto the next line by ending it
with a hyphen(-). A comment can appear on any line in the user-defined rule.

Suppose a new language has been added to your system. The command for com­
piling programs written in this language is NEWLANG; the files have a type of
.NEW. If you want MMS to build .OBJ targets automatically from .NEW
sources, you must first add .NEW to the suffixes precedence list. (Section 3.4.4
describes how to extend the suffixes precedence list.)

Then, you can put the following user-defined rule in your description file:

• NBJ. OBJ
NEWLANG $CMMS$SOURCE>

MMS$SOURCE is a special macro that MMS expands to the name of the source
(see Section 3.2). MMS interprets this rule in the following way: make an .OBJ
target from a .NEW source by executing the NEWLANG command.

3.2 Special Macros
MMS special macros expand to source or target names in the dependency cur­
rently being processed. You use them instead of target and source file specifica­
tions when you are writing general user-defined rules.

MMS provides nine special macros, which you can use in the following places in
a description file:

• In user-defined rules

• In macro definitions

• In action lines

• In comments

You may not use a special macro on a target/source line in a description file. You
may not redefine a special macro.

Table 3-1 lists the MMS special macros and describes their functions. The table
also lists a symbol that you can use as an abbreviation for each macro.

3-2 Advanced Description File Techniques

Table 3-1: MMS Special Macros

Macro

MMS$TARGET

MMS$TARGET_NAME

MMS$SOURCE

MMS$SOURCE_LIST

MMS$CHANGED_LIST

MMS$LIB_ELEMENT

MMS$CMS_ELEMENT

MMS$CMS_GEN

MMS$CMS_LIBRARY

Symbol

$@

$<

$+

$?

$%

$<

$&

'$@

Meaning

Expands to the mnemonic name or the com­
plete file specification of the target currently
being updated.

Expands to the m.nemonic name or the file
name (excluding the file type) of the target
being updated. The device, directory, and node
information are included.

Expands to the source file specification.

Expands to a comma list of the full file specifi­
cations of all sources specified in this depen­
dency rule, including any sources implied by
built-in rules.

Expands to a comma list of the full file specifi­
cations of all sources that have changed since
the target was updated, ip.cluding any sources
implied by built-in rules.

Expands to the name of a module in a
VAXNMS library and its file name, including
the file type (see Section 4.1).

Expands to the implicit CMS element specifi­
cation (if the source file is a CMS element).

Expands to the CMS generation specified by
the source file (if the source is a CMS
element).

Expands to the CMS library specification (if
the source is a CMS element).

More information on the special macros that relate to DEC/CMS can be found in
Section 4.2.

NOTE

The characters$*,$%, and$? always denote special macros. If an
action line contains these characters combinations, the asterisk (*),
percent sign(%), and question mark(?) are not interpreted as wild­
card characters.

Advanced Description File Techniques 3-3

The following example shows how MMS defines a built-in rule using the
MMS$SOURCE special macro:

,C,OBJ
$(CC) $(CFLAGS) $(MMS$SOURCE)

CC and CFLAGS are default macros that invoke the C compiler with the
/NOLIST and /OBJECT qualifiers. Suppose your description file contains the
following dependency:

EALDENJMDD2,0BJ : ESTANLEYJMOD2+C

MMS applies the built-in rule that updates an .OBJ file from a .C file, expanding
the special macros in this rule as follows:

CC /NDLIST/OBJECT=EALDENJMDD2+DBJ ESTANLEYJMOD2,C

A good use of the MMS$CHANGED_LIST special macro is to get listings of files
that have changed since the last time the system was built. For example:

PROG.EXE : PRINT+FLGt MDD1.0BJ, MDD2.0BJ, MOD3,0BJ
COPY NLAO: PRINT.FLG
! Make the revision date of PRINT.FLG More current
PURGE PRINT.FLG
LINK/EXEC=PROG MDD1.0BJ, MOD2,0BJ1 MOD3.0BJ

PRINT,FLG : MOD1+Ct MDD2,Ct MOD3,C
! Print the sources that have chansed
PRINT $(MMS$CHANGED_LIST)

The COPY command in the first dependency rule insures that PRINT.FLG has
approximately the same revision time as PROG.EXE. Therefore, sources newer
than PROG.EXE will also be newer than PRINT.FLG and will be printed only
when they are more recent than the' last linking of PROG.EXE. The
MMS$CHANGED_LIST special macro expands to a list of all the source files
that have changed, and each changed source listing is submitted to the print
queue.

The following example shows how you could use MMS$TARGET and
MMS$CHANGED_LIST in an action line to represent the current target and a
list of the revised sources. Suppose your description file contains the following
dependency rule:

PROG+EXE : MOD1.0BJ1 MDD2+DBJt MOD3,0BJ
LINK/EXEC=PROG MDD1.0BJ, MOD2+DBJt MOD3.0BJ

! Needed to update $(MMS$CHANGED LIST> to Make $CMMS$TARGET>

3-4 Advanced Description File Techniques

Assume that your directory contains the following entries:

$ DIR/DATE=MODIFIED

Directory USER$:[MICHAELSJ

MOD1.0BJ
MOD2+DBJ
MOD3.0BJ
PROG. DCE
$

02-DEC-1983 13:50
02-DEC-1983 09:22
02-DEC-1983 1a:OG
02-DEC-1983 11:a7

Since MODI.OBJ and MOD3.0BJ have changed since PROG.EXE was last
linked, the following lines are displayed when you run MMS:

LINK/EXEC=PROG MODl.OBJt MOD2+0BJt MOD3.0BJ
! Needed to update MOD1.0BJt MOD3.0BJ to Make PROG.EXE

MMS$TARGET is expanded to the name of the target being updated, and
MMS$CHANGED_LIST is expanded to a list of the revised sources.

The MMS$TARGET_NAME special macro expands to the target name or
the file name (without the file type) of the target being updated.
MMS$TARGET_NAME can be useful when the rule specifies an output file
with the same name as the source being processed, but with a file type other
than the one MMS expects by default. For example, you could create your own
rule for building .MEM files from .TXT sources, as shown here:

.TXT.MEM :
RUNOFF/OUTPUT=$CMMS$TARGET_NAME>.MEM $CMMS$SOURCE)

This rule directs MMS to use DIGITAL Standard Runoff (DSR) to build .MEM
files from any . TXT files.

You can then use this rule in a description file to build a document:

• SUFF I }{ES • rnr

.nn.MEM:
RUNOFF/LOG/OUTPUT=$CMMS$TARGET_NAME>.MEM $CMMS$SOURCE>

MEMO.MEM : PARTl.MEMt PART2.MEM
COPY/LOG PARTl+MEM MEMO.MEM
APPEND/LOG PART2.MEM MEMO.MEM

PARTl.MEM

PART2.MEM

Advanced Description File Techniques 3-5

The first line in this description file adds .TXT to the list of suffixes recognized
by MMS. (Section 3.4.4 describes the .SUFFIXES directive in detail.) Since you
have defined the rule that MMS will use to update .MEM files from .TXT files,
you can omit the sources and the action lines from the last two dependency
rules.

If both .MEM files in this example need to be updated, the following output
appears on your screen when you run MMS:
$ MMS MEMO. MEM
RUNOFF/LOG/OUTPUT=PARTl+MEM PARTl+TXT
DIGITAL Standard Runoff Version V2.0-014: No errors detected
G pages 1,1ritten to "USER$:EHENRYJPART1.MEMil"
RUNOFF/LOG/OUTPUT=PART2.MEM PART2.TXT
DIGITAL Standard Runoff Version V2.0-014: No errors detected
19 pages 1,1ritten to "USER$: EHENRYJPART2.MEMi2"
COPY/LOG PART1.MEM MEMO.MEM
%COPY-S-COPIED1 USER$:EHENRYJPART1.MEMi1 copied to USER$:EHENRYJMEMO+MEMil 124 b
1 0 cf\ s)

APPEND/LOG PART2.MEM MEMO.MEM
%APPEND-S-APPENDED1 USER$:EHENRYJPART2.MEMi2 appended to USER$:EHENRYJMEMO.MEMi1

11252 records)
$

3.3 Double Colon Dependencies
In writing MMS dependency rules, you are allowed to specify the same target in
more than one dependency rule, provided that you specify only one action for
updating that target. For example, the following construction is legal:

MODZ.OBJ1 MOD3+0BJ : DEFSl.DEF

MODZ+OBJ : DEFSZ+DEF
PASCAL MODZ

MOD2.0BJ appears in the target list of two dependency rules, but only one
action (PASCAL MOD2) is specified for it. In contrast, the following construc­
tion is invalid:

MODZ+DBJ1 MOD3.0BJ : DEFSl.DEF
PRINT DEFSl+DEF

MODZ+DBJ : DEFSZ+DEF
PASCAL MOD2

Two different actions are specified for MOD2.0BJ, requiring MMS to take two
different actions if one of MOD2.0BJ's dependencies is changed.

Sometimes, however, you want MMS to take different actions depending on
which sources have changed. For example, in the previous dependency rules,
MMS was supposed to execute the PRINT command if DEFSl.DEF had
changed and the PASCAL command if MOD2.PAS had changed. For such cases,

3-6 Advanced Description File Techniques

MMS allows you to use a double colon rather than a single colon to separate the
target list from the source list in a dependency rule. The double colon directs
MMS to allow the same target to be specified in more than one dependency rule,
each of which may require different actions to update the target. By using the
double colon, you could modify the previous example to execute as you intended:

MOD2.0BJ, MOD3.0BJ :: DEFS1.DEF ! If at least one source is
PR I NT DEF S 1 • DEF ! n e 1A1 e r t h an t a r 9 e t s ' P r i n t DEF S 1 , DEF,

MDD2+DBJ : : DEFS2.DEF
PASCAL MOD2

If MOD2.PAS or DEFS2.DEF is newer than
MOD2+0BJt COMPile MOD2+PAS

Note that in this example, if MOD2.PAS is newer than MOD2.0BJ, both action
lines will be executed.

Suppose you use MMS to maintain a library of object files. This library, called
UTIL.LIB, contains three object modules: MODl.OBJ, MOD2.0BJ, and
MOD3.0BJ. If one of these object modules is updated, it should be added to the
library. A description file for this system might look like the following:

UTIL.LIB : : MOD1 .OBJ
LIBR UTIL.LIB MOD1.0BJ

UTIL.LIB : : MOD2+DBJ
LIBR UTIL.LIB MOD2+DBJ

UTIL+LIB :: MOD3.0BJ
LIBR UTIL.LIB MOD3+DBJ

UTIL.LIB depends on all three object modules, but MMS takes different actions
depending on which module is out-of-date. The syntax for using MMS to access
files in VAX/VMS libraries is described in Section 4.1.

In a description file, a given target may be included in either a single colon
dependency rule or in a double colon dependency rule, but not in both. MMS
will issue an error message if you try to specify both kinds of rules for the same
target.

3.4 Directives
A directive is a word that instructs MMS to take a certain action as it processes
a description file. A directive can appear on any line in the description file, but
it controls the processing of the entire file.

A directive must start in column 1 of a line. You can type a directive in either
uppercase or lowercase letters, or a combination of both. Table 3-2 lists the
directives and their functions.

Advanced Description File Techniques 3-7

Directive

.IGNORE

.SILENT

.DEFAULT

. SUFFIXES

.INCLUDE

.FIRST

. LAST

.IFDEF

.ELSE

.ENDIF

Table 3-2: MMS Directives

Function

Causes MMS to ignore all errors generated by all action lines and to con­
tinue processing the description file.

Suppresses the writing of all action lines to the output file <whether
SYS$0UTPUT or the file specified by the /OUTPUT qualifierl.

Indicates actions to be performed if MMS built-in rules or user-defined
rules do not specify how to update a target.

Clears, adds to, or redefines the suffixes precedence list .

Includes the specified file in the description file .

Indicates actions to be performed before MMS has executed any action
lines to update the target .

Indicates actions to be performed after MMS has executed all the action
lines that update the target.

Causes subsequent lines of a description file to be processed only if the
specified macro is defined.

Causes subsequent lines of a description file to be processed ifthe speci­
fied macro for the .IFDEF directive is undefined.

Terminates the set oflines in the description file whose processing is con­
trolled by .IFDEF or .ELSE.

The following sections describe the directives in detail.

3.4.1 . IGNORE
The .IGNORE directive tells MMS to ignore warnings, errors, and fatal errors
that occur during the execution of an action line and to continue processing the
description file. Without the .IGNORE directive, MMS aborts execution if it
detects an error while processing an action line.

3-8 Advanced Description File Techniques

The .IGNORE directive in the following description file tells MMS to continue
processing even if it encounters errors while running DSR to update the target:

, IGNORE

BOOK.MEM : CHAPTER1.MEMt CHAPTER2.MEMt CHAPTER3.MEMt CHAPTERa.MEM
COPY/LOG CHAPTER1.MEM BOOK.MEM
APPEND/LOG CHAPTER2.MEM BOOK.MEM
APPEND/LOG CHAPTER3.MEM BOOK.MEM
APPEND/LOG CHAPTERa.MEM BOOK.MEM

CHAPTER1.MEM : CHAPTER1.RNO
RUNOFF CHAPTER!

CHAPTER2.MEM : CHAPTERZ.RNO
RUNOFF CHAPTER2

CHAPTER3.MEM : CHAPTER3.RNO
RUNOFF CHAPTER3

CHAPTER4.MEM : CHAPTERa.RNO
RUNOFF CHAPTER4

Suppose that CHAPTER3.RNO contains DSR errors. When you run MMS with
this description file (BOOK.MMS), the following lines appear on your screen:
$ MMS/DESCRIPTION=BOOK

RUNOFF CHAPTER!
DIGITAL Standard Runoff Version V2.0-01a: No errors detected
5 Pales written to "USER$:[MICHAELSJCHAPTER1.MEM;1"
RUNOFF CHAPTER2
DIGITAL Standard Runoff Version V2.0-014: No errors detected
16 Pales written to "USER$:[MICHAELSJCHAPTER2.MEM;1"
RUNOFF CHAPTER3
ZRUNOFF-W-CJL, Can't Justify line

on output Pale 2; on inPut line aG of Pale
ZRUNOFF-W-CJL, Can't Justify line

on output Pale 2; on inPut line 52 of Pale
ZRUNOFF-W-TFEt Too few end COMMands

on output Pale 3; on inPut line 77 of Pale
ZRUNOFF-W-BMSt Bad Marlin specification: ".1M70

of file "USER$:[MICHAELSJCHAPTER3.RN0;1"

of file "USER$:[MICHAELSJCHAPTER3.RN0;1•

of file "USER$:[MICHAELSJCHAPTER3.RN0;1"

on output Pale a; on inPut line 102 of Pale 1 of file "USER$:[MICHAELSJCHAPTER3.RN0;1•
ZRUNOFF-W-CORt Can't open re9uired file "TABLE1.RNO"

on output Pale 5; on inPut line 154 of Pale 1 of file "USER$:[MICHAELSJCHAPTER3.RN0;1•
DIGITAL Standard Runoff Version 2.o-01a: 5 dialnostic Messales reported
10 Pales written to "USER$:[MICHAELSJCHAPTER3.MEM;1•
RUNOFF CHAPTERa
DIGITAL Standard Runoff Version V2.0-0la: No errors detected
13 Pales written to "USER$:[MICHAELSJCHAPTERa.MEM;1•
COPY/LOG CHAPTER1.RNO BOOK.MEM
ZCOPY-S-COPIEOt OOCO$:[MICHAELSJCHAPTER1.MEM;1 coPied to DOCO$:[MICHAELSJBOOK.MEM;1 C35 blocKsl
APPEND/LOG CHAPTER2.MEM BOOK,MEM
ZAPPEND-S-APPENDEDt DOCD$:[MICHAELSJCHAPTER2.MEM;1 appended to DOCO$:[MICHAELSJBOOK.MEM;1 c1a52 records
APPEND/LOG CHAPTER3,MEM BOOK,MEM
ZAPPEND-S-APPENDEDt DOCD$:[MICHAELSJCHAPTER3,MEM;1 aPPended to DOCD$:[M!CHAELSJBDOK.MEM;1 C1508 records
APPEND/LOG CHAPTERa.MEM BOOK,MEM
%APPEND-S-APPENDED1 DOCD$:[MICHAELSJCHAPTERa.MEM;1 appended to DOCD$:[M!CHAELSJBOOK.MEM;1 C621 records)
$

Advanced Description File Techniques 3-9

Although errors occurred in the processing of CHAPTER3.RNO, MMS contin­
ued to execute action lines, successfully processing CHAPTER4.RNO. Had
.IGNORE not been specified, MMS would have terminated execution upon
encountering errors in CHAPTER3.RNO; the last action line would not have
been executed.

NOTE

You should be careful about executing MMS with the .IGNORE
directive. If errors occur during processing, the target may be
updated but still contain errors of which you will not be aware.

To override the .IGNORE directive for a particular MMS build, use the
/NOIGNORE, /IGNORE, /IGNORE= WARNING, or /IGNORE= ERROR quali­
fier on the MMS command line when invoking MMS. (See Chapter 5 for more
information on the /IGNORE qualifier.)

3.4.2 .SILENT
The .SILENT directive tells MMS to suppress the display of action lines. Nor­
mally, MMS writes action lines either to SYS$0UTPUT or into a file specified
by the /OUTPUT qualifier. Action lines are always executed even if they are not
displayed (unless you specify /NOACTION). /OUTPUT and /NOACTION are
described in Chapter 5).

The .SILENT directive does not suppress the display of error messages gener­
ated by execution of action lines.

The following example illustrates the use of the .SILENT directive .

• SILENT

PROG.EXE : MOD1.06Jt MOQ2.06J
LINK/EXEC=PROG MOD1.06Jt MOD2+06J

MOD1.06J MOD1.C

MOD2.06J MODZ.C

MMS processes this description file without displaying action lines. The CLI
prompt returns when the target PROG.EXE has been updated.

To override the .SILENT directive for a particular MMS build, use the NERIFY
qualifier on the MMS command line when invoking MMS. (See Chapter 5 for
more information on the NERIFY qualifier.)

3-10 Advanced Description File Techniques

3.4.3 .DEFAULT
The .DEFAULT directive tells MMS to continue processing the description file
even if it encounters a dependency rule for which there is neither a specified
action line nor applicable built-in or user-defined rules. Rather than abort exe­
cution in such a situation, MMS executes the default action you specify and con­
tinues processing the description file.

The .DEFAULT directive has the following format:

.DEFAULT
action line ...

action line

A command-language command that MMS will execute by default. You
may specify as many action lines as you like.

The .DEFAULT directive can be useful when, for example, you are developing a
system that contains inoperative parts. You want MMS to process the operating
portions and inform you about the inoperative parts. Assume that only one mod­
ule (TEST.D) has been written in the system described by the following descrip­
tion file:

.DEFAULT
Source $(MMS$TARGET> not Yet added

TEST.A TEST.B

TEST.B TEST1.C TEST2.E TEST3.F

TEST1.C : TEST1.D
COPY TEST1.D TEST1.C

When MMS processes the description file, TESTSYS.MMS, it expands the
MMS$TARGET special macro to the name of the target and writes the follow­
ing lines to SYS$0UTPUT:
$ MMS/DESC=TESTSYS

COPY TEST1.D TEST1.C

$

Source TEST2.E not Yet added
Source TEST3.F not Yet added
Source TEST.B not Yet added
Source TEST.A not Yet added

By using .DEFAULT in this way, you are reminded when you invoke MMS of
the modules you have not yet implemented.

Advanced Description File Techniques 3-11

Another situation in which .DEFAULT might be useful is to copy files from one
directory to another, as shown in this example:

+DEFAULT :
COPY $(MMS$SOURCEl $CMMS$TARGETl

TEST.BL! EPROJECT,FILESJTEST,BLI

PROG, BLI EPROJECT,FILESJPROG,BLI

The sources in this description file exist in a common directory for the project.
Since these dependency rules have no action lines and MMS finds no built-in or
user-defined rules to apply, MMS executes the action line specified by
.DEFAULT and copies the required files into your directory. (The
MMS$SOURCE and MMS$TARGET special macros are described in Section
3.2.)

Unlike some directives, .DEFAULT cannot be changed or overridden from the
MMS command line.

3.4.4 .SUFFIXES
The .SUFFIXES directive allows you to redefine the suffixes precedence list so
that you can reorder the list of file types, add new file types to the existing list, or
disable recognition of all file types. MMS uses the suffixes precedence list to
determine the order in which it should look for sources and targets when apply­
ing built-in rules. MMS also uses this list to determine which built-in rule,will
update the specified target. Section 2.2 contains a detailed discussion of how the
suffixes precedence list and MMS built-in rules work together.

The .SUFFIXES directive has the following format:

.SUFFIXES [file types list]

file types list

A list of file types in order of precedence. If you omit the file types list
entirely, the suffixes precedence list is cleared and all built-in rules are
disabled.

When you want to change the precedence of suffixes, you must first clear the
precedence list with the simple directive .SUFFIXES. Then you can specify
.SUFFIXES followed by a list of file types to enable built-in and user-defined
rules for the specified suffixes. Once you set up a new list of suffixes, MMS will
recognize only the specified file types.

When you specify a new list, you must be careful to list the file types of targets
before the file types of sources. For example, consider the new suffixes list here:

, SUFFD{ES

+SUFFIXES +MEM +OBJ +RNO +BLI

3-12 Advanced Description File Techniques

When MMS tries to apply a built-in rule to update an .OBJ target from a .BLI
source, it will begin searching the precedence list with the first suffix following
that of the current target from which an .OBJ file can be built. In this case, MMS
begins searching at .BLI and finds that it can use a built-in rule to update the
.OBJ file. However, in the next example, the positions of the two suffixes are
reversed:

+ SUFF: I XES

+SUFFIXES +BLI +RNO +OBJ +MEM

Because MMS begins its search with .MEM, it will not be able to locate the
built-in rule that updates an .OBJ target from a .BLI source. Therefore, it will
never find .BLI in the list because .BLI comes before .OBJ.

Suppose you want to redefine the suffixes precedence list so that .PLI files have
precedence over .C files. You can do so by putting the following lines in your
description file:

+ SUFF I){ES

+SUFFIXES +E)<E +OBJ +PLI +C

The first use of .SUFFIXES completely clears the suffixes precedence list and
disables all built-in rules. The next use specifies the revised order of file type
precedence (.PLI before .C) and enables built-in rules for only the specified
suffixes.

You can specify a null file type in the suffixes precedence list by using a free­
standing period. For example, the following precedence list directs MMS to look
for files with null file types before looking for .B32 files:

, SUFF I >~ES + E>~E , OBJ , + B32

With the .SUFFIXES directive, you can also add a new file type to the suffixes
precedence list. If you want the new file type to be added at the end of the prece­
dence list, you can simply specify it after .SUFFIXES, as in the following:

.SUFFIXES +NEW

In this case, however, you must be sure not to clear the suffixes list first because
you still want the rest of the suffixes to be recognized.

If you want to give precedence to .NEW over some or all of the established file
types, you must first clear the suffixes precedence list and then redefine the
precedence in the order you want:

+ SUFF l){ES

.SUFFIXES +EXE +OLB +OBJ +NEW +BLI

Advanced Description File Techniques 3-13

The first use of .SUFFIXES completely clears the suffixes precedence list and
disables all built-in rules. The second use redefines the suffixes precedence list
so that .NEW files have precedence over .BLI files. It also enables the built-in
rules for the specified suffixes only.

After you have added a new file type to the suffixes precedence list, you can then
create a user-defined rule to instruct MMS how it can update a target from a
source with the new file type. If you want MMS to use the command NEWLANG
to update .OBJ targets from .NEW sources, you can put the following lines in
your description file:

, SUFF I){ES

.SUFFIXES .EXE .OLB .OBJ .NEW .BLI

.NEW.OBJ
NEWLANG $CMMS$SOURCE>

When MMS processes the description file, it expands the special macro
MMS$SOURCE to the name of the source and updates the corresponding .OBJ
target with the NEWLANG command. Section 3.1 explains how to define your
own rules to supplement MMS built-in rules.

3.4.5 .INCLUDE
The .INCLUDE directive allows you to include other files in a description file.
You can use this directive when you have stored common macros or user-defined
rules in a separate file that can then be included by several description files.

The .INCLUDE directive has the following format:

.INCLUDE filespec

files pee

A VAX/VMS file specification or a logical name that identifies the included
file. The default file type is .MMS.

3-14 Advanced Description File Techniques

The line in the description file on which the .INCLUDE directive occurs is
replaced with the contents of the specified file. For example, suppose you create
a description file of user-defined rules, MAKEINDEX.MMS, that generate an
index using an indexing program called INDEX:

,SUFFIXES

,SUFFIXES .MEX .RNX .BRN .RNO

INDEXQUALS = /INDEX/NOOUTPUT

, RNX, ME><
RUNOFF/LOG $CMMS$SOURCE> ForMat the index

, BRN, RN)·(
INDEX $CMMS$SOURCE> Process interMediate file with INDEX

.RNO.BRN
RUNOFF $CINDEXQUALS> $CMMS$SOURCE> ! Make an interMediate file

Subsequently, a description file. (CHAPTERLMMS) that wants to take advan­
tage of these rules can simply include MAKEINDEX.MMS as follows:

,INCLUDE MAKEINDEX

CHAPTER1.ME>< CHAPTER 1, RN)-(Index forMatted for output

CHAPTER! .RN>< CHAPTER 1 , BRN InterMediate file Makes an index

CHAPTER1.BRN CHAPTER 1, RNO Input file updates interMediate file

When you invoke MMS to run this example, the following output appears on
your screen (or in your output log file):
$ MMS/DESC=CHAPTER1
RUNOFF /INDEX/NOOUTPUT CHAPTER1+RNO ! Make an interMediate file
INDEX CHAPTER1.BRN ! Process interMediate file with INDEX
RUNOFF/LOG CHAPTER1+RNX ! ForMat the index
RUNOFF Version VZ.0-014: No errors detected
3 Pa!ies written to "USER$:[AUSTENJCHAPTER1.ME><;1"
$

Included files may themselves include files, up to a depth of sixteen or the maxi­
mum open file limit for your current process (as indicated by the FILLIM quota).
MMS treats lines read from an included file as though they came from the origi­
nal description file, except when it detects syntax errors. If an error occurs, the
error message indicates the line number and the file in which the error was
detected.

Advanced Description File Techniques 3-15

3.4.6 .FIRST
The .FIRST directive tells MMS to execute certain action lines before it exe­
cutes the action lines that update the target.

The .FIRST directive has the following format:

.FIRST
action line ...

action line

A command-language command that MMS will execute before it updates
the target. You can specify as many action lines with .FIRST as you like.

MMS executes the action lines that accompany the .FIRST directive only if the
target requires updating. The actions are executed before those that actually
update the target.

The following example shows how you ~ight use .FIRST to send a mail message
to your process to notify you when MMS begins processing your description file:

.FIRST
OPEN/WRITE MSGTEXT MSGTEXT.TXT
WRITE MSGTEXT "Build of SCMMSSTARGET> now beginning"
CLOSE MSGTD(T
MAIL MSGTEXT.TXT ANDERSON -

/SUBJECT="RePort froM MMS"

BOOK.MEM : CHAPTERl.MEMt CHAPTER2.MEMt CHAPTER3.MEMt CHAPTER4.MEM
COPY/LOG CHAPTER1.MEM BOOK.MEM
APPEND/LOG CHAPTER2.MEM BOOK.MEM
APPEND/LOG CHAPTER3.MEM BOOK.MEM
APPEND/LOG CHAPTER4.MEM BOOK.MEM

CHAPTER1.MEM : CHAPTER1.RNO
RUNOFF CHAPTER1

CHAPTER2.MEM : CHAPTER2.RNO
RUNOFF CHAPTER2

CHAPTER3.MEM : CHAPTER3.RNO
RUNOFF CHAPTER3

CHAPTER4.MEM : CHAPTER4.RNO
RUNOFF CHAPTER4

3-16 Advanced Description File Techniques

When this description file (BOOK.MMS) is processed, the following lines
appear on your terminal (or in your output file):

OPEN/WRITE MSGTEXT MSGTEXT.TXT
WRITE MSGTE}{T "Build of BDOK.MEM nor .. r besinnins"
CLOSE MSGTEXT
MAIL MSGTEXT+TXT ANDERSON
RUNOFF CHAPTER!
RUNOFF CHAPTER2
RUNOFF CHAPTER3
RUNOFF CHAPTER4
COPY CHAPTERl.MEM BOOK.MEM
APPEND CHAPTER2.MEM BOOK.MEM
APPEND CHAPTER3.MEM BOOK.MEM
APPEND CHAPTER4.MEM BOOK.MEM

3.4.7 .LAST

/SUBJECT="RePort fror11 MMS"

The .LAST directive tells MMS to execute certain action lines after it has exe­
cuted the action lines that update the target.

The .LAST directive has the following format:

.LAST
action line ...

action line

A command-language command that MMS will execute after it updates
the target. You can specify as many action lines with .LAST as you like.

MMS executes the action lines that accompany the .LAST directive only ifthe
target requires updating. The actions are executed after those that actually
update the target.

The following example shows how you might use .LAST:

A.EXE : A.OBJ
LINK CGREGORY.DBJECTSJA.OBJ

A.OBJ : A.FDR
FORTRAN/LIST=[GREGORY.LISTINGSJA.LIS -

/OBJECT=CGREGORY.OBJECTSJ A.FDR

.LAST
SET DEFAULT [GREGORY+OBJECTSJ
DELETE/LOG A.OBJi*
SET DEFAULT CGREGORY.LISTINGSJ
PURGE/LOG A.LIS

If A.EXE needs to be updated, the LINK command is executed and produces an
object file in the directory [GREGORY.OBJECTS]. If A.OBJ needs to be updated
before it can update A.EXE, the FORTRAN command is executed and produces
a listing in the directory [GREGORY.LISTINGS]. After A.EXE is up-to-date,

Advanced Description File Techniques 3-17

the action lines associated with .LAST are executed to delete the object file and
purge the listings directory. The following output might be produced on your
screen when you use the description file shown here:

$ MMS/DESC=ADESC
FORTRAN/LIST=EGREGORY.LISTINGSJA.LIS
LINK EGREGORY.OBJECTSJA.OBJ
SET DEFAULT EGREGORY.OBJECTSJ
DELETE/LOG A.OBJi*

/OBJECT=EGREGORY.OBJECTSJA,FC

%DELETE-I-FILDEL1 USER$:[GREGORYJA.OBJi1 deleted <3 blocks)
SET DEFAULT EGREGORY.LISTINGSJ
PURGE/LOG A.LIS
%PURGE-I-FILPURG1 USER$:[GREGORY.LISTINGSJA.LISi4 deleted CG blocks)

3.4.8 .IFDEF, .ELSE, and .ENDIF
The .IFDEF directive tests whether a specified macro is defined. You use this
directive to cause MMS not to process certain lines in your description file if the
macro is undefined.

The .IFDEF directive has the following format:

.IFDEF
macro [description file line]. ..
. ENDIF

macro

The name of the macro being tested.

description file line

Zero or more action lines that are valid in a description file .

.IFDEF must always be accompanied by a matching .ENDIF directive. MMS
checks for a definition of the macro specified with the .IFDEF directive. If the
macro is undefined, all lines of the description file between .IFDEF and .ENDIF
(even lines that contain .IFDEF directives) are ignored.

For example, suppose your description file contains the following lines:

• I FDEF t.lAX

A.OBJ : A.BL!
BLISS A

.END IF

.IFDEF PDP11

A.OBJ : A.BL!
6LISS/PDP11 A

.END IF

3-18 Advanced Description File Techniques

When you invoke MMS with this description file (BLIPROG.MMS), you can
define one of the macros on the command line to determine which action line
gets executed. For example:

$ MMS I DESC =BL I PROG I MACRO= 11 t.JA>< =CURRENT 11

BLISS A
$

Since the command line defines the macro VAX, the command BLISS A is exe­
cuted and the commands associated with the undefined macro PDPll are
ignored.

You may use the .ELSE directive in conjunction with the .IFDEF directive but
never alone. If the specified macro for the .IFDEF directive is undefined, MMS
will skip all the subsequent lines of the description file until it comes to a .ELSE
or a .END IF directive. The next example of a description file shows the format
for a .IFDEF directive using .ELSE and a nested .IFDEF directive:

, I FDEF t,JA){

.IFDEF CURRENT
A.OBJ : A+BLI

BLISS A
.END IF
A,E){E : A.OBJ

LINK A.OBJ

.ELSE
A.OBJ : A+BLI

BLISS/PDP11 A
.END IF

MMS reads the line beginning with the .IFDEF directive and tests whether the
macro is defined. If the macro is defined, MMS processes the action lines
between .IFDEF and the second .ENDIF except for the lines between the .ELSE
and the second .ENDIF. If the specified macro for the .IFDEF directive is unde­
fined, MMS skips all the action lines including the nested .IFDEF until it
reaches the .ELSE directive. MMS then processes the subsequent lines to the
.END IF.

3.5 Action Line Prefixes
An action line prefix is a one-character modifier that controls the processing
of a single action line in a description file.

The two action line prefixes are described in Table 3-3.

Advanced Description File Techniques 3-19

Table 3-3: MMS Action Line Prefixes

Prefix Function

- (Ignore) Causes MMS to ignore errors generated by the action line on which the
prefix appears.

@ (Silent) Suppresses the writing to the output file of the action line on which the
prefix appears. (The output file can be either SYS$0UTPUT or the file
specified by the /OUTPUT qualifier.)

You cannot override either action line prefix from the MMS command line.

An action line prefix must appear as the first non-blank character on an action
line; however, a prefix may not appear in column 1 of the line. The rest of the
action line must be separated from the prefix by at least one space or tab. You
can use both prefixes on the same action line by typing them next to each other
with no intervening spaces or tabs; they must be separated from the rest of the
action line with at least one space or tab. The following example shows the use
of both prefixes:

A : B
@-Write SYS$0UTPUT "It worked!"

Note that the difference between the action line prefixes and the directives with
the same functions (.IGNORE and .SILENT) is that a prefix affects the process­
ing of only one line in the description file, while a directive affects the process­
ing of the entire file.

3. 5.1 The Ignore Prefix (·)
The Ignore action line prefix (-) directs MMS to ignore any errors that occur dur­
ing the processing of the action line on which the prefix appears.

The following dependency rule tests the BASIC compiler with a source file
known to contain errors. Normally, the BASIC compiler aborts the compilation
when it encounters an error, and MMS aborts execution as well. In this case, the
Ignore prefix directs MMS to ignore the error and execute the EDIT command.

TESTERR : ERRORS.BAS
- BASIC /LIST=ERRORS ERRORS
EDIT/COMMAND=EXTRACT.EDT ERRORS.LIS

3.5.2 The Silent Prefix(@)
The Silent action line prefix (@) directs MMS that the action line on which the
prefix appears should not be written to SYS$0UTPUT or to the file specified by
the /OUTPUT qualifier. This prefix is useful when you do not want certain com­
mands echoed at execution.

3-20 Advanced Description File Techniques

For example, the Silent action line prefix directs MMS to suppress the display of
the following action line:

I DELETE *•LIS;*

The Silent action line prefix can be useful in cleanup procedures. In the next
example, MMS deletes compilation listings from the [LISTINGS] directory, and
then returns to the [WORKING] directory. Since the Silent prefix suppresses
the action lines, MMS can do its work silently and then display "Cleanup done"
when the work is done.

CLEANUP :
I SET DEFAULT CLISTINGSJ
I DELETE *•*;*
@ SET DEFAULT CWORKINGJ
I WRITE SYS$0UTPUT "Cleanup done"

MMS assumes that an at sign(@) followed by a space signifies the Silent prefix.
If you want to invoke a command procedure from an action line, you must not
type a space between the at sign and the name of the command procedure.

3.6 Invoking MMS from a Description File
You can invoke MMS from a description file while MMS is updating a target.
The second invocation of MMS will run as a spawned subprocess that inherits
any existing symbol definitions. To invoke MMS from within a description file,
specify the reserved macro $(MMS) on an action line where you want MMS to be
invoked again.

As MMS processes the description file, it executes any action line that contains
the reserved macro $(MMS), even if you specified the /NOACTION qualifier on
the command line. (/NOACTION suppresses the execution of action lines and is
described in Chapter 5.) Thus, the MMS subprocess is created but no other
actions are performed.

NOTE

When you spawn an MMS subprocess, you may exceed the quotas
assigned to your process. See Section 1.5 for a discussion of how MMS
execution can be affected by subprocess quotas.

Advanced Description File Techniques 3-21

MMS includes two other reserved macros, $(MMSQUALIFIERS) and
$(MMSTARGETS), which you can use when you invoke MMS as a subprocess.
Both of these qualifiers pass to the subprocess the same information you speci­
fied on the command line that invoked MMS:

• $(MMSQUALIFIERS) passes the command-line qualifiers.

• $(MMSTARGETS) passes the targets from the command line.

These two macros and $(MMS) are reserved macros; you cannot redefine them.

The $(MMSQU ALIFIERS) macro does not pass the /DESCRIPTION,
/OUTPUT, /IGNORE, and /NORULES qualifiers. To use these qualifiers when
invoking MMS from a description file, you must explicitly specify them after
$(MMSQUALIFIERS), as shown in the following example:

TESTS. E}<E :
$(MMS> $(MMSQUALIFIERS> -

/DESCRIPTION=[GREGORYJTESTBUILD -
$(MMSTARGETS>

If you do not use the $(MMSQUALIFIERS) macro, MMS uses the default quali­
fiers. A list of the default qualifiers and complete descriptions ofall MMS quali­
fiers are contained in Chapter 5.

The following example shows a description file, ALL.MMS, that contains two
subprocess invocations ofMMS:

ALL.EXE : A.OBJ, B.OBJ
LINK/EXEC=ALL At B

A.OBJ :
$(MMS> $(MMSQUALIFIERS> /DESCRIPTION=A A.OBJ

B.OBJ :
$(MMS> $(MMSQUALIFIERS> /DESCRIPTION=B B.OBJ

Before MMS can update the target ALL.EXE, it must check the two sources,
A.OBJ and B.OBJ, to make sure they are up-to-date. If either needs to be
updated, MMS spawns a subprocess, using the specified description file. If both
A.OBJ and B.OBJ need to be updated, the output from this example is the
following:

$ MMS/DESC=ALL
MMS /DESCRIPTION=A A.OBJ
PASCAL A
MMS /DESCRIPTION=B 8.0BJ
PASCAL B
LINK/EXEC=ALL A1B
$

3-22 Advanced Description File Techniques

If you invoke MMS with the /NOACTION qualifier and the same description
file, the following output results:

$ MMS/DESC=ALL/NOACTIDN
MMS /NoAction /DESCRIPTIDN=A A.OBJ
PASCAL A
MMS /NoAction /DESCRIPTIDN=B B+OBJ
PASCAL B
LINK/EXEC=ALL A1B
$

The MMS subprocesses are created, but the PASCAL and LINK commands are
not executed to update the targets because you specified /NOACTION on the
MMS command line.

Advanced Description File Techniques 3-23

Chapter 4

Accessing Libraries With DEC/MMS

This chapter describes how you can specify sources and targets that are stored
in libraries. The following sections describe how MMS can access information
in:

• VAXNMS libraries created with the LIBRARY utility

• DEC/CMS (Code Management System) libraries

• VAX FMS (Forms Management System) libraries

• VAX CDD (Common Data Dictionary)

4.1 Creating and Accessing Files in VAX/VMS Libraries
MMS can access files that are contained in VAX/VMS libraries; in addition, you
can use MMS to create library files using certain built-in rules. The built-in
rules that MMS uses to create library files are listed in Table A-4 in Appendix A.
These rules tell MMS to create the specified library if one does not already exist,
and then to replace the source module in the target library.

NOTE

You cannot use MMS to access modules in an RSX library because
only a module's revision date is recorded, not its revision time.

To specify that a source or target in a dependency rule is a module in a
VAXNMS library, use the following format avoiding any spaces or tabs that
cause problems in processing:

library (module[= filespec], ...)

library

A VAXNMS file specification that denotes a library. The default file type is
.OLB if you are referring to a module within the library. If you are refer­
ring to the entire library, there is no default file type.

4-1

module

The name of the module in the library.

files pee

A VAX/VMS file specification that corresponds to the module in the
library. The default file type depends on the file type of the library. You can
use a logical name for the name of the module, but if you do so, you must
supply the action lines that update the target. MMS cannot apply its built­
in rules to a logical name because it relies on file types to determine which
built-in rule is appropriate.

For example, CRTLIB(C$STRLEN = STRLEN.OBJ) designates the module
C$STRLEN in library CRTLIB.OLB; C$STRLEN is found in the file named
STRLEN.OBJ.

To specify more than one module in the same library, you have three options:

• You can enclose the module names in one set of parentheses and separate
them with commas. For example, to refer to three modules in the library
CRTLIB.OLB, you can specify CRTLIB(C$STRLEN = STRLEN.OBJ,
C$STRPAD=STRPAD.OBJ, C$STRIND=STRIND.OBJ).

• You can use the VMS* wildcard character. For example, the specification
CRTLIB(C$*) directs MMS to look for all modules in the library
CRTLIB.OLB whose names begin with the characters C$.

• You can use the VMS % wildcard character. For example, the specification
CRTLIB(C$STR%) directs MMS to look for all modules in CRTLIB.OLB
whose names begin with the characters C$STR followed by only one
character.

You can use a complete library specification when you need to access library
modules whose names are not valid VAX/VMS file specifications (for example,
C$STRLEN). However, you do not always need to make the specification com­
plete; MMS can interpret shorter specifications as follows:

• If the module's name in the library is the same as its file name, you can
provide just the module name in parentheses after the library name. For
example, ifthe module in the previous example were named STRLEN, you
could refer to the module in the library as CRTLIB(STRLEN).

4-2 Accessing Libraries With DEC/MMS

• If the module's file type is associated by default with the type of the library,
you can omit the file type. In the specification CRTLIB(STRLEN), MMS
assumes that the file name is STRLEN.OBJ, because .OLB libraries are
assumed to contain .OBJ modules. If the module's file type is something
other than the default for that kind of library, though, you must supply it.
For example, if the module were STRLEN.C, you would have to specify
CRTLIB(STRLEN.C). MMS would then expand this specification to the fol­
lowing two dependencies:

CRTLIBCSTRLEN=STRLEN+OBJ> : STRLEN.OBJ

STRLEN.OBJ : STRLEN.C

If you use a logical name as the directory name of an object library, that logical
name must not translate to another logical name. This restriction is necessary
because the built-in rules that MMS uses to update libraries are defined in
terms of the DCL function F$SEARCH, which translates only one level oflogi­
cal name.

The format shown in this section describes how to refer to modules within a
library. You can also use MMS to process the library file itself simply by provid­
ing the library file specification (for example, CRTLIB.OLB).

When used with library specifications, certain MMS special macros have
slightly different meanings:

• If a library is the source in a dependency rule, MMS$SOURCE expands
to the complete specification of the module in the library. For example, in
the specification CRTLIB(C$STRLEN = STRLEN), MMS$SOURCE
expands to CRTLIB.OLB(C$STRLEN = STRLEN.OBJ).

• If a library is the target in a dependency rule, MMS$TARGET expands
to the name of the library. For example, in the specification
CRTLIB(C$STRLEN), MMS$TARGET becomes CRTLIB.

• If a library is the target in a dependency rule, MMS$TARGET_NAME
expands to the module name (without its file type). For example, if the
library module is STRLEN, MMS$TARGET_NAME expands to STRLEN.

In addition to these MMS special macros, there is another special macro,
MMS$LIB_ELEMENT, which you can use only in library specifications.
MMS$LIB_ELEMENT expands to the string between parentheses, that is, to
the module name and its corresponding file specification. For example, in the
specification CRTLIB(STRLEN), MMS$LIB_ELEMENT becomes
STRLEN = STRLEN.OBJ. The expansion of MMS$LIB_ELEMENT does not
depend on whether the library is the source or the target in a dependency rule.

Accessing Libraries With DEC/MMS 4-3

The use oflibraries as a source is illustrated in the following example. Suppose
your description file contains the following dependency rules:

TOOLTITLE.EXE : SYS$LIBRARY:CRTLIB.OLB1 USER$:EWATKINSJFLIB.OLB
LINK TDDLTITLE.OBJ, SYS$LIBRARY:CRTLIB/LIB, USER$:EWATKINSJFLIB/LIB

TOOLTITLE,OBJ : SMGTEXLIB.TLBISMGDEF=SMGDEF,HI
CC TDDLTITLE + SMGTEXLIB/LIB

TOOLTITLE.C is a C program that includes the file SMGDEF.H, which is stored
in the text library SMGTEXLIB.TLB under the name SMGDEF. The action line
in the second dependency rule invokes the C compiler to compile TOOLTITLE.C
and the text library. You must state this action line explicitly. In this case speci­
fying only the target and source is not sufficient. The first dependency rule
invokes the VAX Linker to link TOOLTITLE.OBJ with one system library and
one user library.

4.2 Using MMS With DEC/CMS

IfVAX DEC/CMS (Code Management System) is installed on your system, you
can use MMS to access elements in CMS libraries. You should be familiar with
CMS before you read this section.

MMS provides default macros and special macros tailored for use with CMS.
Table A-2 in Appendix A lists the default macros, and Table 3-3 in Chapter 3
describes the special macros.

4.2.1 Using CMS Commands in a Description File
You can use any CMS command in an MMS description file.

As MMS examines target/source lines in your main process, it uses the
CMS$LIB logical name to establish the CMS directory from which sources will
be fetched if the target must be updated. If you use the CMS SET LIBRARY
command in an action line, that command is executed in the subprocess where
MMS normally executes action lines. Such an action establishes a new library
as the current default for any subsequent action lines that execute CMS com­
mands; however, the value of CMS$LIB is not changed in the main process
because the CMS SET LIBRARY command is executed in the subprocess. MMS
still looks for sources in the library represented by CMS$LIB.

The MMS qualifier /REVISE_DATE has no effect when MMS is accessing ele­
ments in CMS libraries.

4-4 Accessing Libraries With DEC/MMS

4.2.2 Automatic Access of CMS Elements from Dependency Rules
The /CMS qualifier directs MMS to look for sources in the current default CMS
library, as well as in the directories specified in the description file. If the CMS
element has been replaced in the library since the file in the specified directory
was last revised, MMS directs CMS to fetch the source from the library so that
the target can be rebuilt. MMS has built-in rules that instruct CMS how to find
the correct source (see Table A-5 for the built-in CMS rules). MMS uses the
sources fetched from CMS to update the target by executing the action lines in
the description file. The CMSFLAGS default macro determines which genera­
tion of an element is fetched as the source or from which class the source ele­
ment is fetched.

If the file in the specified directory is newer than the CMS element, MMS uses
that file. Therefore, you could edit a source in your directory and build a new
system with the edited source, rather than with the corresponding CMS
element.

For example, suppose your description file contains the following dependencies:

A.E>(E A.OBJ

A.OBJ A.PAS

If you invoke MMS with the /CMS qualifier, MMS processes the description file
by looking in the current default CMS library for A.PAS. If it locates that
source, it compares the revision time with the revision time of A.PAS in the cur­
rent directory (if A.PAS exists there). If the CMS element is newer, MMS uses it
to update A.OBJ.

The CMSFLAGS default macro always fetches the most recent generation of an
element on the main line of descent. You can redefine CMSFLAGS to indicate a
specific element generation or the element generation that belongs to a particu­
lar class. However, if you do so, you must be aware that if newer generations
exist in the library, they will not be fetched; MMS will check the time of the
element designated by the CMSFLAGS macro against the time of the file in
your directory. If the file is newer, MMS will use it even though more recent
generations of the element may exist in the library.

The /NOCMS qualifier directs MMS not to look automatically for sources in the
current default CMS library; /NOCMS is the default. The /CMS and /NOCMS
qualifiers are described in full in Chapter 5.

Accessing Libraries With DEC/MMS 4-5

4.2.3 Explicit References to CMS Elements in Dependency Rules
The /CMS qualifier causes MMS to compare the times of a CMS element and a
file in the specified directory, if both exist. You can also direct MMS to check only
the CMS element by putting a tilde(-) immediately after the source file name
in a dependency rule. For example, the tilde in the following target/source line
directs MMS to look for the source PROG.C in the current d~fault CMS library:

PROG,OBJ : PROG,CN

If you use the tilde format to indicate CMS elements, you can specify only one
element in a given dependency rule. You cannot specify a list of CMS elements if
their file specifications are followed by tildes.

If the element is in a CMS library other than the current default library, you
must type the library specification before the element name:

PROG,OBJ : [OTHER+CMSJPROG,CN

Note, however, that you cannot access elements in a CMS library that resides on
a different DECnet node than your own.

You can also use the tilde format with the .INCLUDE directive to include files
that are stored in the current default CMS library. For example:

+INCLUDE RULESN

This line in the description file directs MMS to fetch the file RULES.MMS from
the current CMS library. (The .INCLUDE directive is discussed in Section
3.4.5.)

When a tilde occurs in your description file, MMS looks for the file in the current
CMS library, even if you specify /NOCMS on the command line. However, if the
CMS element is newer than the target in the dependency, the element is not
fetched from its CMS library unless an action line directs CMS to fetch the
source.

The following example shows a user-defined rule for accessing a single-file CMS
element.

+CN+OBJ :
CMS FETCH $CMMS$CMS_ELEMENT> $CCMSFLAGS> $CCMSCOMMENT>
$CCC> $CCFLAGS> $CMMS$CMS_ELEMENT>

This dependency rule tells MMS to do the following:

1. Fetch the .C source file from the current default CMS library, applying
the qualifiers· specified by the CMSFLAGS macro and writing to the
CMS history file the remark specified by the CMSCOMMENT macro.

2. Run the C compiler on the file fetched from the CMS library, applying
the qualifiers specified by the CFLAGS macro.

4-6 Accessing Libraries With DEC/MMS

CMSFLAGS and CMSCOMMENT are default MMS macros. You can redefine
them so that the same qualifiers or the same remarks are used for all accesses to
CMS elements.

The next example shows how to access a CMS element that is not in the current
default CMS library.

TEST.C : [QTHER.CMSJTEST.c~

CMS SET LIBRARY [QTHER.CMSJ
CMS FETCH TEST.C "Auto fetch fror11 MMS"

This dependency rule causes MMS to set the current default CMS library to
[OTHER.CMS], fetch the element TEST.C, and write the specified remark to
the CMS history file. (MMS does not reset the CMS library back to the default in
this example. This action differs from that of the built-in rules for CMS element
access. See Table A-5 in Appendix A.)

MMS supports only one CMS qualifier: /GENERATION. The default macro
CMSFLAGS expands to the /GENERATION qualifier. You can also specify
/GENERATION and a generation number after the tilde in the element name,
as shown in this example:

PROG.OBJ: [QTHER.CMSJPROG.C~/GEN=t'.lA1

The tilde format for an explicit reference to a CMS element is useful when you
are certain that the most up-to-date source is stored in the CMS library. A more
convenient use of MMS with CMS is to let MMS determine where the newest
source is located and fetch the CMS element automatically, if necessary. To take
advantage of this feature, you must use the /CMS qualifier on the MMS com­
mand line and you should not use the tilde format for specifying the source.

4.2.4 Accessing Description Files in CMS Libraries
If a description file does not exist in your default directory, and if you have
defined a CMS library, you can request that MMS retrieve the description file
from the CMS library by using the /CMS qualifier on the MMS command line. If
the description file exists in your directory and is newer than the element in the
CMS library, MMS uses the file in your directory.

MMS looks for the description file on the main line of descent
unless you override the default macro CMSFLAGS. If you specify
!MACRO= "CMSFLAGS =/GEN= class-name", MMS instead uses the
specified class. If MMS cannot find a description file in either your default
directory or the CMS library, it aborts execution.

Accessing Libraries With DEC/MMS 4-7

If you know that the description file you want to use is stored in a CMS library,
you can explicitly request MMS to use that file. When you use the
/DESCRIPTION qualifier on the MMS command line, you can follow the name
of the description file with a tilde(-) character so that MMS will automatically
fetch the file from the current CMS library. For example:
$ MMS I DESCR I PT ION=ALL ~

This command directs MMS to fetch the description file ALL.MMS from the cur­
rent CMS library.

If the file you specify with /DESCRIPTION does not exist in the current CMS
library, MMS issues an error message.

4.3 Accessing Forms in an FMS Library
IfVAX FMS (Forms Management System) is installed on your system, you can
use MMS to access forms stored in FMS libraries. You should be familiar with
FMS before reading this section.

To specify an FMS form in a dependency rule, you use the same syntax as for
files in VAX/VMS libraries. This syntax is explained in detail in Section 4.1.
The file type .FLB after the library name informs MMS that the library con­
tains FMS forms. The default file type for FMS forms is .FRM.

For example, in the following dependency rule:

A.FLB : B.FRM

$CFMS> $CFMSFLAGS) A.FLB B.FRM

B.FRM is the source that updates the target B in the FMS library A.FLB. FMS
and FMSFLAGS are default macros that invoke FMS with the /REPLACE
qualifier.

MMS uses the insertion time of a form in an FMS library to determine whether
a source is newer than the target. You cannot use the /REVISE_DATE quali­
fier with references to FMS forms. (See Chapter 5 for a description of
/REVISE_DATE.)

4.4 Accessing Records in the COD
If the VAX CDD (Common Data Dictionary) is installed on your system, you can
use MMS to access records stored in the CDD. You should be familiar with the
Common Data Dictionary before reading this section.

4-8 Accessing Libraries With DEC/MMS

In a dependency rule, you follow the path name of a CDD record description
with a caret or an up-arrow character (A) to inform MMS that the source is stored
in the CDD. For example:

A.OBJ : A.PASt CDDSTOP.B.C.D.EA
PASCAL A.PAS

! COD record referred to in A.PAS

MMS uses the CDD path specification to find the source and check its revision
time against that of the target, A.OBJ. In this example, A.OBJ resides in your
current directory.

The CDD maintains a history list that includes the date and time that a CDD
record was accessed and an optional remark that you supply to document the
access. To insert a remark in the CDD history list when MMS accesses a CDD
record, you can use the I AUD IT qualifier after the caret in the CD D record speci­
fication. /AUDIT is followed by a quoted string that contains the remark that is
to be inserted in the CDD history file. For example:

A.OBJ : A.PASt CDDSTOP.B.C.D,EA/AUDIT="Accessed by MMS to update A"
PASCAL A

MMS writes the remark that follows the /AUDIT qualifier into the CDD history
list for the specified record.

The /AUDIT qualifier must follow the caret character in the CDD record specifi­
cation. You separate the qualifier from the remark with an equal sign. You can­
not use /AUDIT on the MMS command line.

MMS also provides the default macro CDDFLAGS. This macro is initially
defined to be the null string, but you can redefine it so that the same remark is
written to the history file for all accesses to CDD records. For example, you
could set up your description file as follows:

CDDFLAGS = /AUDIT="Record accessed b}' MMS"

A.OBJ : A.PASt CDDSTOP.B,C,D,EA
PASCAL A

Q,OBJ : Q,PASt CDDSTOP,L.M.N.OA
PASCAL Q

v.OBJ : v.PASt CDDSTOP.w.x.v.zA
PASCAL 1.1

When MMS accesses one of these sources from the CDD, it writes the string that
is the value of CDDFLAGS into the history file.

Accessing Libraries With DEC/MMS 4-9

The following restrictions apply to CDD access:

• You cannot access CDD records that reside on a different DECnet node
than your own.

• You cannot use the /REVISE_DATE qualifier with references to CDD
records. (See Chapter 5 for a description of /REVISE_DATE.)

• The /NOACTION qualifier does not affect the /AUDIT qualifier. That is, if
you have suppressed the execution of action lines with the /NOACTION
qualifier, the remark you supplied with /AUDIT is still written to the CDD
history file.

4-10 Accessing Libraries With DEC/MMS

Chapter 5

The MMS Command

The MMS command has the following format:

MMS [/qualifier ...] [target, ...]

Parameters

qualifier

An MMS qualifier.

target

The name of a target, which can be either a VAX/VMS file specification
or a mnemonic name.

Unless you use the /NODESCRIPTION qualifier on the command line, you need
not type the qualifiers and targets you want to use. MMS assumes default quali­
fiers and updates the first target in the description file whenever you type the
MMS command. The following command line:
$ MMS

activates the following default qualifiers:

/ACTION
/NOCHECK_STATUS
/NOCMS
/DESCRIPTION= DESCRIP.MMS or /DESCRIPTION= MAKEFILE.
/NO IGNORE
/NO LOG
/OUTPUT= SYS$0UTPUT
/NOOVERRIDE
/NOREVISE_DATE
/RULES
/NOSKIP _INTERMEDIATE
/VERIFY

5-1

You can abbreviate all MMS qualifiers and their parameters. However, you
must be sure that the abbreviations are unique, so that they will not be confused
with other CLI qualifiers. If you type an ambiguous abbreviation, the CLI issues
an error message.

You can continue an MMS command to the next line by using the DCL continua­
tion character, a hyphen(-), as the last character on the command line.

The rest of this chapter describes the MMS qualifiers in alphabetic order and
notes whether the qualifier affects the behavior of MMS, the execution. of action
lines, or both. The notation "(D)'' following a qualifier indicates the default
form.

5-2 The MMS Command

/ACTION {D)
/NOACTION

The /ACTION and /NOACTION qualifiers control whether MMS executes the
action lines in a description file. These qualifiers affect only the execution of
action lines, not the behavior ofMMS.

Format

$ MMS/[NO]ACTION

Description

The /ACTION qualifier directs MMS to execute action lines.

The /NOACTION qualifier directs MMS not to execute action lines,
but still to write them to the output file. (The output file can be
either SYS$0UTPUT or the file specified by the /OUTPUT qualifier.)
/NOACTION is useful for determining what actions MMS would
have executed had the system actually been built. You can also use
/NOACTION in combination with the /OUTPUT qualifier to generate
a command procedure (refer to the description of /OUTPUT).

/NOACTION overrides the Silent action line prefix (@) (described in
Section 3.5.2).

NOTE
The $(MMS) reserved macro is executed even if you specify
/NOACTION. Thus, you can see what actions MMS would have
executed in the subprocess. See Section 3.6 for information
about the $(MMS) macro.

The /NOACTION qualifier does not affect the /AUDIT qualifier
that you can provide with references to CDD records. That is, if
you have suppressed the execution of action lines with the
/NOACTION qualifier, the remark you supplied with I AUDIT is
still written to the CDD history file. The /AUDIT qualifier and
the use of CDD records with MMS is described in Section 4.4.

The MMS Command 5-3

/CHECK-STATUS
/NOCHECK-STATUS (D)
The /CHECK_STATUS and /NOCHECK_STATUS qualifiers control whether
MMS returns a value in the symbol MMS$STATUS, instead of updating a tar­
get. This symbol contains the status of the last action line executed by MMS.
These qualifiers affect both the execution of action lines and the behavior of
MMS.

Format

$ MMS/[NOJCHECK_STATUS

Description

/CHECK_STATUS directs MMS to check whether a target is up-to-date by
determining whether any actions would be executed if MMS/ACTION
were specified. MMS issues an informational message and sets
MMS$STATUS to 1 if no actions would be executed (that is, if the tar­
get is up-to-date). If the target needs to be updated,' MMS sets the
MMS$STATUS value to 0.

The /CHECK_STATUS qualifier has precedence over both the I ACTION
and /REVISE_DATE qualifiers if they appear on the same command line.
In these cases, only /CHECK_STATUS is processed.

The /NOCHECK_STATUS qualifier directs MMS to process the descrip­
tion file as it normally would, executing action lines if necessary.

5-4 The MMS Command

/CMS
/NOCMS(D)

If DEC/CMS is installed on your system, you can use the /CMS and /NOCMS
qualifiers to control whether MMS looks for source files, description files, and
included files in the current default CMS library, as well as in the specified
directories. See Section 4.2 for information on using MMS to access elements in
CMS libraries. These qualifiers affect both the execution of action lines and the
behavior of MMS.

Format

$ MMS/[NO]CMS

Description

The /CMS qualifier directs MMS to look for source files in the current
default CMS library and in the specified directories. If the source in the
CMS library is newer, it is fetched from there. If the source in the CMS
library is older, MMS uses the source in the specified directory rather than
fetch it from the CMS library. /CMS also directs MMS to look in the current
default CMS library for a description file and any files included with the
.INCLUDE directive. If MMS cannot find a description file in either the
specified directory or the current default CMS library, it aborts execution.
(The .INCLUDE directive is described in Section 3.4.5.)

The /CMS qualifier also directs MMS to apply CMS built-in rules where
appropriate. (See Table A-5 for a table of CMS built-in rules.)

The /NOCMS qualifier directs MMS not to look in the current default CMS
library for source files, description files, or included files. However, if any
file specifications in the description file are followed by tildes n to indicate
specific CMS elements, MMS looks for the files in the CMS library even if
/NOCMS is in effect.

If you specify /NOCMS or the combination /CMS/NORULES, and the
sources do not exist in the specified directory, MMS aborts execution.

The MMS Command 5-5

/DESCRIPTION (D)
/NODESCRIPTION

The /DESCRIPTION and /NODESCRIPTION qualifiers control whether MMS
looks for a description file to update the target. These qualifiers affect the
behavior ofMMS but not the execution of action lines.

Format

$ MMS/DESCRIPTION = filespec ...
$ MMS/NODESCRIPTION target

Parameters

files pee

A VAX/VMS file specification or a logical name that identifies the
description file. The default file type is .MMS. If a tilde n follows the file
specification, MMS fetches the description file from the default CMS
library even ifthe description file exists in the default directory.

target

A VAX/VMS file specification or a mnemonic name that designates the
target to be built.

Description

To specify more than one description file, you can separate the file specifi­
cations with either commas(,) or plus signs (+).If you use commas, the
description files are processed separately and the list of files must be
enclosed in parentheses:

$ MMS/DESCRIPTION=(A, 5)

If you use plus signs, the description files are concatenated and processed
as one file. The list of files must be enclosed in quotation marks and must
not be surrounded by parentheses:

$ MMS/DESCRIPTION="A + B"

The following command line directs MMS to process A.MMS and B.MMS
as one file, and CLEANUP.MMS as another. Since you are specifying
essentially two description files here, you must use commas to separate the
file specifications.

$ MMS/DESCR I PT ION= (II A + B II ' CLEANUP)

In this case, there are two default targets: the first one in either A.MMS or
B.MMS (depending on the contents of the two files) and the second one in
CLEANUP.MMS.

5-6 The MMS Command

If you specify a list of description files in parentheses and a list of targets,
the rules for updating all the listed targets must occur in all the listed
description files. That is, in the following command

$ MMS/DESC=CAtB) x,y,z

the rules for updating X, Y, and Z must appear in both description files,
A.MMS and B.MMS.

If you specify a concatenated list of description files and a list of targets,
the rules for updating all the listed targets must occur in the concatenated
description file. That is, in the following command

$ MMS/DESC="A + B" X ,y ,z

the description file formed by the concatenation of A.MMS and B.MMS
must contain the rules for updating X, Y, and Z.

If you specify /DESCRIPTION without the name of a description file, MMS
looks for the default description file DESCRIP.MMS. If it cannot locate
that file, it issues an error message and aborts execution.

If you do not specify /DESCRIPTION, MMS looks first for DESCRIP.MMS.
If it cannot locate that file, it looks for one called MAKEFILE. If that
search also fails, MMS issues an error message and aborts execution.

The /NODESCRIPTION qualifier directs MMS to ignore all description
files and build the target specified on the command line. In that case, MMS
does not automatically look for DESCRIP.MMS and MAKEFILE. If you
use the /NODESCRIPTION qualifier, you must specify a target on the
command line; otherwise, MMS does not know what target to build.

The MMS Command 5-7

/FROM-SOURCES
The /FROM_SOURCES qualifier directs MMS to build a target from its sources
regardless of whether the target is already up-to-date. This qualifier affects the
execution of action lines and the behavior ofMMS.

Format

$ MMS/FROM_SOURCES

Description

When you specify /FROM_SOURCES on the command line, MMS does not
compare the revision times of the specified sources and target. Instead, it
executes the action lines in the description file necessary to update the tar­
get. The /FROM_SOURCES qualifier is useful when you want to guaran­
tee that an entire system is rebuilt, perhaps for an internal release.

If you specify /CMS/FROM_SOURCES qualifiers on the MMS command
line, MMS uses the sources found in the default CMS library. If you do not
use /CMS, MMS locates the sources in the specified directory.

The /FROM_SOURCES qualifier overrides the /SKIP _INTERMEDIATE
qualifier.

5-8 The MMS Command

/HELP

The /HELP qualifier allows you to obtain information about MMS and its quali­
fiers. This qualifier affects the behavior of MMS but not the execution of action
lines.

Format

$ MMS/HELP[="topic"]

Command Parameters

topic

An MMS topic on which you want information.

Description

The /HELP qualifier displays on your terminal the information in the
HELP library specific to MMS. If you use the /HELP qualifier alone, you
are presented with general information about MMS and a list of its qualifi­
ers and other topics on which more detailed information is available. To
see the information about one of these topics, follow the /HELP qualifier
with an equal sign (=) and the topic. The topic must be enclosed in quota­
tion marks.

The MMS Command 5-9

/IDENTIFICATION

The /IDENTIFICATION qualifier directs MMS to print an informational mes­
sage with the version number of the MMS image and the copyright date. This
qualifier affects the behavior of MMS, not the execution of action lines.

Format

$ MMS/IDENTIFICATION
\,

Description

The /IDENTIFICATION qualifier provides you with the version number
and copyright date of the MMS image you are running. When you use
/IDENTIFICATION, MMS does not process any description files or qualifi­
ers; it simply prints an informational message on your screen. You should
include the version number and copyright date when you submit Software
Performance Reports (SPRs) about MMS.

5-10 The MMS Command

/IGNORE
/NOIGNORE (D)

The /IGNORE qualifier specifies the severity level(s) of errors that MMS should
ignore when it executes action lines. The parameters correspond to the DCL
severity levels "W," "E," and "F." /NOIGNORE directs MMS to abort execution
when it finds any error. These qualifiers affect the execution of action lines but
not the behavior of MMS.

Format

$ MMS/IGNORE ={[WARNING] : ERROR : FATAL}
$ MMS/NOIGNORE

Parameters

WARNING

Directs MMS to ignore "W" errors and continue processing, but to abort
execution when it finds either an "E" or an "F" error. If you specify
/IGNORE without parameters, WARNING is the default.

ERROR

Directs MMS to ignore both "W" and "E" errors, but to abort execution
when it finds an "F" error.

FATAL

Directs MMS to ignore all errors, and to continue processing the
description file. This parameter is equivalent to the .IGNORE directive.

Description

/IGNORE is equivalent to /IGNORE= WARNING.

The errors that MMS ignores when you specify /IGNORE are those errors
generated by the execution of action lines, rather than MMS errors.
/IGNORE does not stop MMS error messages from being generated or dis­
played. Informational messages are always displayed, regardless of any
use of the /IGNORE qualifier.

You should be careful about executing MMS with the /IGNORE qualifier.
If errors occur during processing, the target may be updated but still con­
tain errors of which you will not be aware.

The .IGNORE directive and the Ignore action line prefix are similar to the
/IGNORE= FATAL qualifier. Instead of typing them on the command line,
however, you include them in the description file. Sections 3.4.1and3.5.1
describe the .IGNORE directive and the Ignore action line prefix in detail.

The MMS Command 5-11

The /NOIGNORE qualifier directs MMS to abort execution when it finds
any error.

If you want to override the .IGNORE directive contained in a description
file, you must type the /IGNORE[= WARNING], /IGNORE= ERROR, or
/NOIGNORE qualifier explicitly on the MMS command line. You cannot
override the Ignore action line prefix from the MMS command line.

5-12 The MMS Command

/LOG
/NOLOG (D)

The /LOG and /NO LOG qualifiers control whether MMS displays on your termi­
nal informational messages about its findings and assumptions as it processes
the description file. These qualifiers affect the behavior ofMMS, not the execu­
tion of action lines.

Format

$ MMS/[NO]LOG

Description

The /LOG qualifier directs MMS to write all informational messages to
your terminal screen while it processes the description file. These
messages indicate what MMS finds and what it assumes as it processes the
description file. You should include these messages with any Software Per­
formance Reports (SPRs) that you submit about MMS. The /LOG qualifier
is useful for debugging your description files.

The /NO LOG qualifier directs MMS not to display informational messages
about its assumptions while it processes the description file. However, if
you specify /NOLOG/CHECK_STATUS on the same command line, MMS
does display the informational message that reports the value of
MMS$STATUS. (Refer to the description of /CHECK_STATUS for more
information about MMS$STATUS.)

The MMS Command 5-13

/MACRO

The /MACRO qualifier directs MMS to add to or override the macro definitions
in the description file. This qualifier affects the behavior ofMMS, not the execu­
tion of action lines.

Format

$ MMS/MACRO={ filespec: "macro", ... }

Parameters

files pee

A VAX/VMS file specification or a logical name that identifies a file of
macro definitions. The default file type is .MMS.

"macro"

A macro definition enclosed in quotation marks. Use the same format as
for macro definitions in description files, that is, name = string.

Description

The /MACRO qualifier allows you to specify a macro definition on the
MMS command line. It also allows you to specify a file of macro definitions
that you want to use in your description file. Section 2.3 gives a detailed
discussion of the use of macros.

You can define macros in three locations:

• In a description file

• In a macro definitions file

• On the command line

To specify more than one macro definition on the MMS command line,
enclose the list of macros in parentheses. For example:

$ MMS/MACRO=<"A=MAC1", "5=MAC2")

You can also specify both a macro definition and a file on the same com­
mand line:

$ MMS/MACRO= (II A=MAC 1 11 ' MACROS)

5-14 The MMS Command

/OUTPUT
The /OUTPUT qualifier directs MMS to write action lines and output to the
specified file. Error messages preceded by "%MMS" are not written to this out­
put file, but to SYS$ERROR. This qualifier affects the behavior of MMS, not the
execution of action lines.

Format

$ MMS/OUTPUT = filespec

Parameters

files pee

A VAX/VMS file specification or a logical name that identifies the out­
put file. The default file type is .LOG.

Description

If you specify the /NOVERIFY qualifier on the same MMS command line
with /OUTPUT, MMS does not write action lines to the output file.

If you specify /OUTPUT and your command-line interpreter is DCL, MMS
automatically prefixes a dollar sign($) to any action line that does not
begin with one. This technique allows you to use the file generated by
/OUTPUT as a DCL command procedure.

If you do not specify the /OUTPUT qualifier on the MMS command line,
MMS writes all action lines, messages, and output to SYS$0UTPUT.

The MMS Command 5-15

/OVERRIDE
/NOOVERRIDE (D)

The /OVERRIDE and /NOOVERRIDE qualifiers control the order in which
MMS applies definitions when it processes macros. These qualifiers affect the
behavior of MMS, not the execution of action lines.

Format

$ MMS/[NO]OVERRIDE

Description

The /OVERRIDE qualifier directs MMS to override the macro definitions
in the description file with CLI symbol definitions. To find the macro defi­
nitions that should have precedence, MMS looks at symbols defined by the
CLI assignment statement, scanning the CLI symbol table for the body of
the macro. If the body of the macro is not in the CLI symbol table, MMS
substitutes a null string for all invocations of the macro.

/OVERRIDE imposes the following order of application when MMS
processes macro definitions:

1. Command-line definitions

2. CLI symbol definitions

3. Description file definitions

4. Built-in definitions

Once MMS finds a definition for a macro, it does not search those locations
farther down the list for more definitions. IfMMS finds more than one defi­
nition in the same location (such as on a command line), it uses the last
definition it processed, unless the location is a description file. MMS issues
an error message if a macro is defined more than once in a description file.

/NOOVERRIDE imposes the following order, which is the default
hierarchy:

1. Command-line definitions

2. Description file definitions

3. Built-in definitions

4. CLI symbol definitions

5-16 The MMS Command

/REVISE-DATE
/NOREVISE_DATE (D)

The /REVISE_DATE and /NOREVISE_DATE qualifiers control whether MMS
changes only the revision dates of all targets that need updating, rather than
actually performing the update. These qualifiers affect the behavior of MMS,
not the execution of action lines.

Format

$ MMS/[NO]REVISE_DATE

Description

The /REVISE_DATE qualifier directs MMS to change only the revision
dates of any target that needs updating, but not to execute the action lines
that actually do the updating. If any files are missing, /REVISE_DATE
causes MMS to create them. If MMS cannot create a missing file, or if it
cannot update the revision date of an existing file, it issues an error
message.

The /REVISE_DATE qualifier is useful for reducing the number of super­
fluous compilations; for example, when only a comment line was changed
in a required file. However, /REVISE_DATE can defeat the purpose of
using MMS, so you should use this qualifier with caution.

As it changes the revision times, MMS writes the name of the revised
files to the output file (either SYS$0UTPUT or the file specified by the
/OUTPUT qualifier). If you specify /REVISE_DATE/NOVERIFY, the
names of revised files are suppressed. (Section 3.4.2 describes the
.SILENT directive.)

Unless you specify a target on the command line, the /REVISE_DATE
qualifier causes the first target in the description file and its sources to be
revised by MMS. If you specify multiple targets on the command line,
those targets and their sources are revised. /REVISE_DATE does not
change the value of MMS$STATUS (see Section 2.1.3 for information
about MMS$STATUS).

/REVISE_DATE has precedence over the /ACTION qualifier if they both
appear on the same command line. In that case, only /REVISE_DATE is
processed.

The /NOREVISE_DATE qualifier directs MMS to build the system by·
updating targets as necessary (as long as the /CHECK_STATUS qualifier
does not appear on the same command line).

The MMS Command 5-17

/RULES (D)
/NO RULES
The /RULES and /NORULES qualifiers control whether MMS applies built-in
rules and the suffixes precedence list when it builds a system. These qualifiers
affect the behavior of MMS, not the execution of action lines.

Format

$ MMS/[NO]RULES[= filespec]

Command Parameters

files pee

A VAX/VMS file specification or a logical name that identifies the file of
default rules that MMS is to use.

Description

The /RULES qualifier directs MMS to use built-in rules and the suffixes
precedence list. If you supply a file specification with /RULES, MMS reads
the specified file and uses the rules and suffixes list it contains as the built­
in rules. The rules in this file replace the built-in rules that MMS normally
uses. If you specify /RULES without a file specification, MMS translates
the logical name MMS$RULES to find the file of built-in rules to use. If
MMS$RULES is not defined, MMS uses its own built-in rules. Therefore, if
you want to replace MMS's built-in rules with default rules of your own,
you have two choices:

• You can create a file of your rules and specify the file with the /RULES
qualifier on the MMS command line. The file specified with /RULES
has precedence over the file represented by MMS$RULES.

• You can assign the logical name MMS$RULES to the file specification
of your rules file.

The /NORULES qualifier directs MMS not to use its built-in rules or the
suffixes precedence list. It also prevents MMS from applying user-defined
rules and default macros. This qualifier is useful when the description file
makes explicit all actions MMS should take in building a system. When
you specify /NORULES, MMS applies only the dependency rules con-
tained in the description file. ,

5-18 The MMS Command

/SKIP-INTERMEDIATE
/NOSKIP_INTERMEDIATE (D)

The /SKIP _INTERMEDIATE and /NOSKIP _INTERMEDIATE qualifiers con­
trol whether MMS builds intermediate source/target files. These qualifiers
affect the behavior ofMMS, not the execution of action lines.

Format

$ MMS/[NOJSKIP _INTERMEDIATE

Description

The /SKIP _INTERMEDIATE qualifier directs MMS to determine
whether the target is up-to-date without rebuilding intermediate files
unless they need to be updated. If MMS cannot find some intermediate
files, it "skips over" them as though they already existed. Suppose, for
example, that you have a .C file and an .EXE file, but no .OBJ file, and the
time of the .EXE file is more recent than that of the .C file.
/SKIP _INTERMEDIATE directs MMS not to build the .OBJ file and
therefore not to rebuild the .EXE file because the target is already up-to-·
date with regard to its nearest source. Using /SKIP _INTERMEDIATE
saves time and disk space.

The /NOSKIP _INTERMEDIATE qualifier directs MMS to make sure that
all intermediate source files exist and are up-to-date. If any intermediate
source files do not exist, MMS builds them.

Restrictions

When you use the /SKIP _INTERMEDIATE qualifier, be aware that cer­
tain MMS actions (such as invoking the VAX Linker) require all sources to
be present. Other actions (such as invoking the VAX/VMS librarian) may
operate safely only on the sources used to update the current target.

MMS dependencies cannot distinguish between situations in which all
sources must be present for MMS to perform the specified action and situa­
tions in which only one of the specified sources may be required.

The following example shows a situation in which all of the sources must
be present for MMS to perform the action:

PROG.OBJ : PROG.Ct DEFS.H
CC PROG

The MMS Command 5-19

PROG.C and DEFS.H do not depend on each other, but both must
be present forMMS to build PROG.OBJ. If one source has changed, and
you specify /SKIP _INTERMEDIATE, MMS does not verify that the other
source is present in the directory; therefore, it cannot build the target.
You will not encounter a situation such as this one if you use
/NOSKIP _INTERMEDIATE (the default).

5-20 The MMS Command

/VERIFY {D)
/NOVERIFV

The /VERIFY and /NOVERIFY qualifiers control whether MMS displays action
lines before executing them. These qualifiers affect the behavior of MMS, not
the execution of action lines.

Format

$ MMS/[NOJVERIFY

Description

The /VERIFY qualifier directs MMS to display each action line before exe­
cuting it. MMS writes action lines either to SYS$0UTPUT or into the file
specified by the /OUTPUT qualifier.

If you specify the /REVISE_DATE qualifier on the same command line,
the /VERIFY qualifier causes MMS to display the names of files whose
dates have been revised.

The /NOVERIFY qualifier suppresses the display (but not the execution)
of action lines. Any error messages generated by the execution
of action lines continue to be displayed. If you specify
/REVISE_DATE/NOVERIFY on the same command line, the names of
files whose dates have been revised are not displayed.

The behavior of the /NOVERIFY qualifier is identical to that of the
.SILENT directive and the Silent action line prefix (see Sections 3.4.2 and
3.5.2, respectively). If a description file contains the .SILENT directive,
but you want to override it, you must type the /VERIFY qualifier explicitly
on the MMS command line. You cannot override the Silent action line pre­
fix from the MMS command line.

The MMS Command 5-21

Chapter 6

DEC/MMS Examples

This chapter contains many examples that should help you use MMS creatively
and effectively. It assumes that you understand MMS concepts and that you are
familiar with DCL. This chapter also suggests approaches to some specific tasks
for which you might not have considered using MMS. You can use these
approaches as they appear in this chapter, or you can modify them for other
purposes.

6.1 Simple Uses of MMS

The following sections describe some simple tasks for which you can use MMS.
Some of these tasks do not even require a description file.

6.1.1 Checking Whether Files Are Up-to-Date
You can use MMS to check whether a file is up-to-date with respect to its
source(s), without even using a description file. Suppose you have defined a
CMS library that contains the source file TEST.BL!. The target, TEST.EXE,
resides in your default directory. To see whether TEST.EXE is up-to-date, you
need type only the following command line:

$ MMS/CMS/SKIP/CHECK TEST.EXE

MMS checks the time of TEST.BL! in the CMS library and reports whether
TEST.EXE is up-to-date with respect to TEST.BL!. (The /SKIP qualifier
ensures that the outcome of /CHECK is unaffected if any intermediate files do
not exist.)

6.1.2 Using MMS to "Fetch and Build"
Suppose you have a CMS library that contains DSR (DIGITAL Standard Run­
off) sources (which have a file type of .RNO) and you want to create a .MEM file
from one of those sources. Instead of fetching the .RNO file from the CMS
library and running DSR to create the .MEM file, you can simply use the /CMS
qualifier and specify the .MEM file on the command line.

6-1

For example, suppose you want to create a memo, and the source MEMO.RNO
exists in your CMS library. To use MMS to build MEMO.MEM, you can type the
following command line:

$ MMS/CMS MEMO.MEM

MMS fetches MEMO.RNO from the CMS library, runs DSR, and creates
MEMO.MEM. No description file is necessary, but if your directory does contain
one of the default description files (DESCRIP.MMS or MAKEFILE.) and the
description file specifies the same .MEM file as a target, MMS will process that
description file.

6.1.3 Using the /SKIP _INTERMEDIATE Qualifier
You can use the /SKIP _INTERMEDIATE qualifier when you want to update a
system, but do not want to rebuild all the intermediate files (such as .OBJ files).
For example, suppose your directory contains the following files:

$ DIRECTORY/COL=l

Directory USERS:[MARKJ

A.BU
DESCRIP.MMS
MYPROG. D<E
MYPROG.OLB

The description file for building MYPROG.EXE could look like this:

MYPROG.EXE : MYPROG.OLBCA1B1Cl
LINK/EXE=MYPROG MYPRDG/LIB/INCLUDE=A

Suppose that you have fetched A.BLI from a CMS library and edited it. To
update the system to reflect the changes to A.BLI, type this command:

$ MMS/CMS/SKIP

MMS updates MYPROG.EXE and also creates A.OBJ, since A.BLI is newer
than the corresponding module in MYPROG.OLB. However, MMS does not cre­
ate any other .OBJ files (such as B.OBJ and C.OBJ) because you specified /SKIP
on the command line. Had you not specified /SKIP, MMS would have fetched
B.BLI and C.BLI, compiled them, and added the .OBJ files to MYPROG.OLB,
even though they did not need to be updated.

You may want to delete intermediate files once the main target is updated. See
Section 6. 7 for an example of selectively deleting files.

6-2 DEC/MMS Examples

6.2 Description File Example
The description file in the next example shows how MMS can be used to perform
the following functions:

• Define macros

• Describe dependencies

• Print out the source files

• Clean up the directory and show the results

• Check the portability of the system

• Generate, print, and delete listings complete with cross-references

The comments in this description file explain the dependency rules.

! The macros are defined:

OBJECTS MOD1.0BJt MODZ.OBJt MOD3.0BJ

SOURCES DEFS1.Ht DEFSZ.Ht MOD1.Ct MODZ.Ct MOD3.C

CSOURCES = MOD1.Ct MOD2.Ct MOD3.C

The following dependency rules describe target-source
relationships for the sYstem. Built-in rules are
used so that not all the dePendencies need to be
stated exPlicitlY.

PROG.EXE : $(OBJECTS>
LINK/EXEC=PROG $(OBJECTS>
COPY PROG.EXE PRINTNEW

MODZ.OBJ : DEFS1.H

MOD2.0BJt MOD3.0BJ DEFS2.H

Use PRINTNEW as a time stamp

! The following rule Prints out all the source files:

PRINT
PRINT $(SOURCES>

The following rule cleans UP the directory and
shows the result; the Silent Prefix suppresses
the disPlaY of the action lines.

CLEANUP :
@DELETE. *+BAK;*t *+OBJ;*
@ DIRECTORY/DATE/SIZE

DEC/MMS Examples 6-3

The following rule Prints the sources
that have changed since. last build:

PRINTNEW : $(SOURCES>
PRINT $(MMS$CHANGED_LISTl

The following rule checks the Portability of the system:

PORTABLE :
CC /STANDARD=PORTABLE/NOOBJECT/NOLIST $(CSOURCESl

The following rule generates listings (comPlete with cross­
references and symbols) t Prints theMt then deletes them:

CROSSREF :
CC /CROSS_REFERENCE/LIST/NOMACHINE_CODE $(CSOURCESl
PRINT/DELETE *•LIS

With this sample description file, you can perform several system management
tasks by specifying different targets on the MMS command line.

To clean up the directory, type:

$ MMS CLEANUP

To print all the source files, type:

$ MMS PRINT

To print all recently changed source files, type:

$ MMS PRINTNEW

To get a complete set ofhardcopy listings with cross-references and the symbol
table, type:

$ MMS CROSSREF

To check the portability of source code, type:

$ MMS PORTABLE

As the need for other system management tasks arises, you can add appropriate
dependency rules to the description file.

6.3 Gathering Statistics
You can use MMS to gather statistics about your files. The examples in the fol­
lowing sections describe some methods for gathering certain kinds of statistics.

6-4 DEC/MMS Examples

6.3.1 Finding Out What Sources Are Missing
Suppose that you have stored the sources for a particular software system in a
source directory or CMS library, and you want to make sure that all the sources
you need are there. To get a list of any missing files, you could put a default
action such as the following in your description file, using the .DEFAULT
directive:

.DEFAULT :
IF 11 ''F$SEARCH< 11 MISSING.SRC 11

)'
11 ,EQS.

THEN OPEN/WRITE MSING MISSING.SRC
I F II II F $ s EAR c H (II M I s s I NG • s R c II) Ill • NE s •
THEN OPEN/APPEND MSING MISSING.SRC
WRITE MSING 11 1T1issin9 $(MMS$TARGET_NAME) 11

CLOSE MSING

When you process this description file with MMS, MISSING.SRC contains the
list of missing files.

6.3.2 Creating a Checkpoint File
You can use MMS to create a checkpoint file that indicates when MMS finished
building a target. For example, suppose that your directory contains the source
files TESTl.C, TEST2.C, and TEST3.C. You want MMS to create .EXE files
from each of these sources and also inform you when each target is complete.
The following example shows a description file that accomplishes these tasks.
This description file builds TESTl.EXE, TEST2.EXE, and TEST3.EXE. It also
creates a file called CHECK.PNT, which indicates the time the executable files
were completed.

! Suffixes list with .PNT in the fir~t Position •
• SUFFIXES
.SUFFIXES .PNT .EXE .OBJ .c .c-

! User-defined rule to build .EXE files frolTl .PNT files •
• EXE.PNT :

IF 11 ''F$SEARCH< 11 CHECK.PNT 11
) '

11 .EQS. 1111
-

THEN OPEN/WRITE CHECK CHECK.PNT
IF II I I F$SEARCH (II CHECK. PNT II) I II • NES. II II -

THEN OPEN/APPEND CHECK CHECK.PNT
WRITE CHECK 11 Co1T1Pleted build of $(MMS$SOURCE) at ''f$ti1T1e() ' 11

CLOSE CHECK

MAIN_TARGET : FOO.PNT BAR.PNT BAS.PNT
MAIL CHECK.PNT MICHAELS -
/SUBJECT= 11 Build su1r11r1arY of $(MMS$TARGET_NAME) endin9 at ''f$ti1r1e()' 11

DELETE CHECK.PNT;

DEC/MMS Examples 6-5

NOTE

The executable files will be built before the .PNT files are processed.
Also, the .PNT files never really exist. They are simply a trick to
allow the actions that produce the file to be localized in one place (the
.EXE.PNT rule).

When you run MMS, the action lines are displayed as follows:

CC /NOLIST TEST1.C
LINK /TRACE TEST1.0BJ
IF II II F$SEARCH (II CHECK. PNT II) /II • EQS. II II THEN OPEN /WRITE CHECK CHECK. PNT
IF II I I F$SEARCH (II CHECK. PNT II) I II • NES. II II THEN 0 PEN I APPEND CHECK CHECK. PNT

WRITE CHECK 11 Co111Pleted build of TEST1.E)<E at ''f$ti111e()' 11

CLOSE CHECK
CC /NOLIST TEST2.C
LINK /TRACE TEST2.0BJ
IF II I I F$SEARCH (II CHECK. PNT II) I II • EQS. II II THEN OPEN/WRITE CHECK CHECK. PNT
IF 11 ''F$SEARCH(11 CHECK,PNT 11

)'
11 .NES. 1111 THEN OPEN/APPEND CHECK CHECK.PNT

WRITE CHECK 11 Co111Pleted build of TEST2.E)-(E at ''f$ti111e() ' 11

CLOSE CHECK
CC /NOLIST TEST3.C
LINK /TRACE TEST3.0BJ
IF II I I F$SEARCH (II CHECK. PNT II) I II • EQS. II II THEN 0 PEN /WR I TE CHECK CHECK. PNT
IF II I I F$SEARCH (II CHECK. PNT II) I II • NES. II II THEN OPEN I AP PEND CHECK CHECK. PNT

WRITE CHECK 11 Co111Pleted build of TEST3,E)<E at ''f$ti111e() ' 11

CLOSE CHECK
MAIL CHECK.PNT MICHAELS/SUBJECT= 11 Build su111fllar>' of MAIN_TARGET
endin9 at ''f$ti111e() ' 11

DELETE CHECK.PNTi

The mail message sent to your process looks like the following:

Frolll: MICHAELS 21-FEB-1984 14:48
To: MICHAELS
SubJ: Build sul!ll!larY of MAIN_TARGET endin9 at 21-FEB-1984 14:48:08+85

ColllPleted build of TEST1.EXE at 21-FEB-1984 14:47:32.99
ColllPleted build of TEST2,EXE at 21-FEB-1984 14:47:49.85
ColllPleted build of TEST3.EXE at 21-FEB-1984 14:48:08.33

6-6 DEC/MMS Examples

6.4 Using DCL Command Procedures in Description Files

You can use DCL command procedures in conjunction with MMS. For example,
you could write a command procedure that loops until a given file becomes
available, and invoke that command procedure in your description file.

Suppose your command procedure is called GETFILE.COM, and contains the
following lines:

$ LABEL:
$ IF II I I F$SEARCH (II Ip 1 I II) I II • NES. II II THEN GOTO DONE
$WAIT +: 'P2'
$ GOTO LABEL
$ DONE:

You could use this command procedure when you start MMS in a batchjob.

The description file that invokes GETFILE.COM might look like the following:

GET _NDn _I NFD
MAIL NL: $CMY_PROC)/SUBJECT= 11 strins 11

@GETFILE ANSWER.IN 15
@ANSWER. IN

NOTE

Be sure that you do not leave a space between the at sign(@) and the
name of the command procedure, so that MMS does not interpret the
at sign as the Silent action line prefix.

ANSWER.IN corresponds to the Pl parameter, and 15 is the polling interval (in
minutes) that corresponds to the P2 parameter. ANSWER.IN might modify the
environment in some way - for example, it might set a CMS library at a point
where MMS cannot find the right CMS library.

The $(MY _PROC) macro in this description file is assumed to be a DCL symbol
that represents a valid electronic mail address.

6.5 Creating and Using Time Stamps

You can use MMS to create time stamps for such purposes as determining
whether any sources have changed since the last time the system was built or
tracking the progress of the system.

The following sections describe two methods of creating and using time stamps.

DEC/MMS Examples 6-7

6.5.1 Creating a Time Stamp File Using DCL Symbols
The following example description file creates the file CMSMODS.RPT, which
reports the number of modified sources by checking replace operations in the
CMS library.

PROJECT_SOURCES = PARSE.Vt TOUCH.Ct GM.Ct DRIVE.Ct CLP.Ct -
LEX.Ct GRAFBUILD+Ct GRAFWALK.Ct LFS,Ct -
MACROBANK.Ct MB.Ct MMSPRINT,Ct UTILS.Ct -
EXECCMD+Ct RULES.Ct LBR.Ct CMSACCESS,Ct -
MMSMSG,MSGt FILTER.Ct GRAPH.Ht GLOBALS.Ht -
LBRDEF.Ht PDEFS.Ht TOKEN.Ht CLP.Ht TC.H

! Special CMS filetYPes not inclu~ed by default.
,SUFFIXES : ,y ,y-

! New CMS rules <Note: no real CMS fetches occur)
.MsG-.MsG

COPY NL: S<MMSSTARGET_NAMEl.MSG ! Create the new tilrle staMP file
PUR SCMMSSTARGET_NAMEl.MSG ! Relrlove the old one t if any
MODS = MODS + 1 ! IncreMent the Modification counter

,H-.H :
COPY NL~ S<MMSSTARGET_NAME>.H
PUR S<MMSSTARGET_NAME>,H
MODS = MODS + 1

.c-.c :
COPY NL: S<MMSSTARGET_NAME> ,C
PUR SCMMSSTARGET_NAME>,C
MODS = MODS + 1

,y-,y :
COPY NL: $CMMSSTARGET_NAME>,Y
PUR SCMMSSTARGET-NAME>,Y
MODS = MODS + 1

Pri1r1ar>' Tar9et
MODS : INIT SCPROJECT_SOURCES>

INIT

IF 11 ''F$SEARCHC 11 CMSMODS,RPT 11
) '

11 ,EQS, 1111
-

THEN OPEN/WRITE CHECK CMSMODS+RPT
IF 11 ''F$SEARCHC 11 CMSMODS,RPT 11

)'
11 .NES, 1111

-

THEN OPEN/APPEND CHECK CMSMODS,RPT
WRITE CHECK II I 'MODS I MODIFICATIONS DETECTED AT I 'FSTIME ()/II
CLOSE CHECK

MODS = 0

CMSMODS.RPT may be used in some form as input to a program that prints a
graph of CMS replace operations with relation to a number of days. Such a
graph can be used as an indication of how stable a given project's source code is
with respect to its milestones.

6-8 DEC/MMS Examples

It is a good idea to run a description file such as the one in this example on a
daily or otherwise frequent basis. You may want to put the appropriate MMS
command in your LOGIN.COM file.

6.5.2 Creating a Time Stamp File Using Included Files
Suppose you have the following directories and files:

[DIR1l contains FILE1.X

[DIR2l contains FILE2.Y

[DIR3l contains FILE3.Z

You want MMS to build a file reporting changes to these files. The following
description file creates the file CHANGES.DOC, which reports when changes
were made to the source .

• SILENT

RECORD-CHANGE= .INCLUDE CHANGE.REC
REPORT_CHANGE : INIT FILEl.TIM FILEZ.TIM FILE3.TIM

IF "''F$SEARCH<"CHANGES.DOC") '" .NES.
THEN TYPE CHANGES.DOC

IF "' 'F$SEARCH<"CHANGES.DOC") '" .EQS.
THEN WRITE SYS$0UTPUT "No chan!l'es detected"

INIT
IF II I 'F$SEARCH ("CHANGES. DOC")/ II • NES.

THEN DELETE CHANGES.Doc;*/NOLOG

! Testin!l' the tiMe staMPS
FILE1.TIM : [DIR1JFILE1.X
$(RECORD_CHANGE)

FILE2.TIM : [DIR2JFILEZ.Y
$(RECORD_CHANGE>

FILE3.TIM : [DIR3JFILE3.Z
$(RECORD_CHANGE>

Since the .SILENT directive suppresses the display of action lines, MMS dis­
plays only two pieces of information when it processes this description file:

1. If no changes were made to the files, MMS prints "No changes detected,"
as instructed in the REPORT_CHANGE action line.

2. If changes were made to the files, MMS displays the contents of the file
CHANGES.DOC, as instructed in the REPORT_CHANGE action line.
CHANGES.DOC lists the files that were changed and the times the
changes were made.

DEC/MMS Examples 6-9

CHANGE.REC, the file included by the RECORD_CHANGE macro, is the
recording procedure (rule) for making a change. It contains the following
actions:

IF "''F$SEARCH<"CHANGES.DOC") '" ,NES, 1111
-

THEN OPEN/APPEND CHANGE CHANGES.DOC
IF II ''F$SEARCH<"CHANGES+DOC") /II .EQS, 1111

-

THEN OPEN/WRITE CHANGE CHANGES.DOC
WRITE CHANGE "Chan9es to $(MMS$SOURCE> noted ''f$tirt1e() '"
CLOSE CHANGE
COPY NL: $(MMS$TARGET_NAME>.TIM
PURGE $(MMS$TARGET_NAME> .TIM

You can substitute different recording procedure files for CHANGES.REC
without changing the description file every time. To do so, create the same
description file described in the example, but omit the RECORD_CHANGE
macro. Also, replace the invocations of the RECORD_CHANGE macro with
.INCLUDE $(REC_PROC). After these changes, the description file looks like
this:

.SILENT

REPORT_CHANGE : INIT FILE1+TIM FILE2,TIM FILE3+TIM
IF "''F$SEARCH<"CHAl";!GES+DOC") ' 11 +NES,

INIT

THEN TYPE CHANGES.DOC
IF 11

' 'F$SEARCH< 11 CHANGES.DOC 11
)

111 ,EQS,
THEN WRITE SYS$0UTPUT "No chan9es detected"

IF 11
' 'F$SEARCH< 11 CHANGES+DOC 11

) '
11 +NES,

THEN DELETE CHANGES+DOCi*/NOLOG

! Testin9 the tiMe staMPS
FILE1,TIM : EDIR1JFILE1,X
+INCLUDE $(REC_PRDC>

FILE2,TIM : EDIR2JFILE2,Y
+INCLUDE $(REC_PRDC>

FILE3,TIM : EDIR3JFILE3+Z
.INCLUDE $(REC_PROC>

REC_PROC is a macro that you define on the MMS command line to be the
name ofrecording procedure file you want to use at the time. Type the following
command line to use the file of your choice:

$ MMS/MACRO="REC_PROC=filenaMe"

6-10 DEC/MMS Examples

6.6 Checking for Replacement of CMS Elements

If more than one programmer is working on a project, you may want to wait for
someone else to replace an element in the project CMS library before you do a
particular task. MMS can automatically check for element replacements at
specified intervals by using the command procedure in the following example.
Besides the command procedure, you also need a description file that tells MMS
which element to look for and how to notify you when the element has been
replaced. Such a description file might be named THERE.MMS and look like
this:

THERE.TIM : NEEDED.FOR- ! The naMe of the eleMent
IF II I I F$SEARCH (II THERE.TIM II) I II • NES

THEN MAIL NL: $CMY-PRDC> -
/SUBJECT= 11 $CMMS$SOURCE> is bad~ in the CMS libran-+ 11

SET DEFAULT 123a567880 ! Causes MMS to abort with $STATUS = failure

The command procedure that loops until the specified element is available in
the CMS library looks like the following:

$ CMS SET LIBRARY [LOUISEJ ! The CMS library
$SET DEFAULT [LOUISE.WORK] ! Your workin~ directory
$ IF 11 ''F$SEARCHC 11 THERE.TIM 11

) '
11 +ECJS, 1111 THEN COPY NL: THERE.TIM

$ LOOP:
$ MMS/DESCRIPTION=THERE
$ IF .NOT, $STATUS THEN EXIT
$ WAIT 0:5 ! or soMe interval
$ GOTO LOOP

When submitted to the batch queue, this command procedure runs MMS, which
checks to see whether the element in the CMS library is newer than
THERE. TIM. If it is not (that is, if the element has not been replaced in the CMS
library), $STATUS is 1, and MMS will wait the specified interval before trying
again. If the element has been replaced, the first bit in $STATUS is 0, and MMS
will mail you the message "NEEDED.FOR is back in the CMS library."

You can run this procedure in a subprocess (instead of submitting it to the batch
queue) by typing the following command:

$ SPAWN/NOWAIT @FILENAME

FILENAME is the name of the command procedure.

DEC/MMS Examples 6-11

6. 7 Selectively Deleting Files
Suppose you have just updated your system, and now you want to delete the
intermediate files from your working directory. Or you want intermediate files
to be deleted automatically after an MMS build. Three ways of accomplishing
this task with MMS are:

1. Create a command procedure.

2. Use a macro definition.

3. Use the .LAST directive.

The first two methods are described in the following sections. The .LAST direc­
tive is described in Section 3.4. 7.

&. 7 .1 Creating a Command Procedure
To use a command procedure to delete files selectively, create the procedure in
the description file. Modify the dependencies or the default rules to include the
following actions:

IF II I 'F$SEARCH (II DELETE. COM II) 'II • EQS.
THEN COPY NL: DELETE.COM

OPEN/APPEND DEL_FILE DELETE.COM
WR I TE DEL_F I LE II$ DELETE $ (MMS$SOURCE) ; II

NOTE

Usually, you will want to modify only the .OBJ.OLE rule to include
these actions. However, to delete everything, you can modify all the
rules you use just be extremely careful that you are deleting only
those files you are sure you want deleted.

The modified .OBJ.OLE rule looks like this:

.OBJ,OLB :
IF 11 ''F$SEARCHC 11 $CMMS$TARGET) 11

) '
11 ,EQS, 1111

-

THEN $CLIBR>ICREATE $CMMS$TARGET>
$CLIBR> $CLIBRFLAGS) $CMMS$TARGET> $CMMS$SOURCE>
IF 11 ''F$SEARCHC"DELETE,COM 11

) '
11 ,EQS, 1111

-

THEN COPY NL: DELETE.COM
OPEN/APPEND DEL-FILE DELETE.COM
WRITE DEL-FILE "$ DELETE $CMMS$SOURCE> ; 11

Once you have modified the rule, add a target such as the following to your
description file:

DELETE : MYPROG,EXE ! The name of the tar~et

- @DELETE.COM

6-12 DEC/MMS Examples

Note that the Ignore action line prefix(-) is used to prevent MMS from aborting
execution if it detects errors (such as the absence of files) while deleting files.

To delete .OBJ files that MMS created during a build, you need type only the
following:

$ MMS/SKIP DELETE

The /SKIP qualifier causes MMS not to rebuild the files that were deleted.

6. 7 .2 Using a Macro Definition
There are two ways of using macros for the selective deletion of files:

1. Use a macro definition on the MMS command line.

2. Use a DCL symbol as a macro.

To use a macro on the command line to delete files, modify the desired rule to
include the following action:

IF II$ (CLEAN) II t NES II II THEN DELETE $ (MMS$SOURCE) ;

Thus, the .OBJ.OLB rule looks like this:

.OBJ,OLB :
IF 11 ''F$SEARCH(11 $(MMS$TARGET) 11

) '
11 ,EQS, 1111

-

THEN $(LIBR)/CREATE $(MMS$TARGET>
$(LIBR> $(LIBRFLAGS) $(MMS$TARGET> $(MMS$SOURCE>
IF II$ (CLEAN) II t NES II II THEN DELETE $ (MMS$SOURCE) ;

The command line is the following:

$ MMS/CMS/SKIP/MACR0= 11 CLEAN=CLEAN 11

You can equate the macro to any character string that you like; MMS simply
needs to be able to expand the CLEAN macro to something other than the null
string.

To use a DCL symbol as a macro for deleting files, add the same action line to the
desired rule as for using a macro on the command line. However, substitute
"CLEAN' for $(CLEAN), as follows, where CLEAN is a global CLI symbol:

.OBJ,OLB :
IF 11 ''F$SEARCH(11 $(MMS$TARGET) 11

)'
11 ,EQS, 1111

-

THEN $(LIBR>JCREATE $(MMS$TARGET>
$(LIBR> $(LIBRFLAGS) $(MMS$TARGET> $(MMS$SOURCE>
IF II I I CLEAN I II t NES II II THEN DELETE $ (MMS$SOURCE) ;

You can use the same macro definition on the command line as for the previous
example. If you do not want to define the macro on the command line, make sure
that the DCL symbol CLEAN is defined before you invoke MMS. Then the com­
mand line can be shortened as follows:

$ MMS/CMS/SKIP

DEC/MMSExamples 6-13

6.8 Doing Parallel Processing
If you have a very large system to build, you can process different parts of it
simultaneously by adding rules such as the following to the beginning of your
existing description file:

PARALLEL_PROC : TARGl TARG2 TARG3 ! NaMes for Parts of Your sYsteM
! Files subMitted

TARGl :
MMS/CMS/OUT=TARGl.COM/NOACTIDN PRDG.EXE
SUBMIT $CMMS$TARGET_NAME>

TARG2 :
MMS/CMS/OUT=TARG2.COM/NOACTIDN MOD.EXE
SUBMIT $CMMS$TARGET_NAME>

The rules buildins the Parts of Your SYsteM
PROG.EXE : PROG.OBJ

action

MOD.EXE : MOD.OBJ
action

This description file causes MMS to process the parts of your system "in
parallel" or simultaneously, resulting in shorter processing time and earlier
error detection.

6-14 DEC/MMS Examples

Appendix A

DEC/MMS Built-in Features

This appendix contains tables of certain MMS built-in features, namely the
suffixes precedence list, the built-in rules, and the default macros. Chapter 2
contains detailed information about how these three features work together in
MMS.

The tables in this appendix are arranged as follows:

• Table A-1 contains the suffixes precedence list.

• Table A-2 lists the default macros.

• Table A-3 contains the standard built-in rules.

• Table A-4 describes the built-in rules for accessing VAXNMS libraries.

• Table A-5 includes the built-in rules for accessing CMS library elements.

For information on using MMS to create and access elements in VAX/VMS
libraries, see Section 4.1; in CMS libraries, Section 4.2.

.SUFFIXES

Table A-1: The Suffixes Precedence List

.ANL .EXE .OLB .MLB .HLB .TLB .FLB .OBJ .BLI

.B32 .C .COB .FOR .BAS. B16 .PLI .PEN .PAS .MAC

.MAR .CLD .MSG .COR .DBL .RPG .MEM .RNO .HLP

.RNH .132 .REQ .R32 .116 .Rl6 .TXT .H .FRM .MMS

.DDL .COM .DAT .OPT .ANL- .BAS" .BLr .B32- .B16-

.c- .CLD- .cow .COM- .CoR- .DAT- .DDL- .FoR­

.FRM- .HLP- .ff .MAC- .MAR- .MMS- .DBL- .MSG­

.OPT- .PAs- .PLr .REQ- .R32- .R16- .RNff .RNo­

.RPG- .TXT-

NOTE
A tilde n after a file type indicates that the file is in a CMS library.
See Section 4.2 for information on using MMS to access CMS
elements.

A-1

Macro

ANLFLAGS
AS
BASIC
BASFLAGS
BLISS
BLISS16
BFLAGS
BLIBFLAGS
cc
CFLAGS
CDDFLAGS
CLDFLAGS
CMS
CMSCOMMENT
CMSFLAGS
COBOL
COBFLAGS
CORAL
CORFLAGS
DIBOL
DBLFLAGS
FMS
FMSFLAGS
FORT
FFLAGS
LIBR
LIBRFLAGS
LINK
LINKFLAGS
MACRO
MFLAGS
MSG FLAGS
PASCAL
PENVFLAGS
PFLAGS
PLI
PLIFLAGS
RPG
RPG FLAGS
RUNOFF
RFLAGS

Table A-2: MMS Default Macros

Definition

/OUTPUT= $(MMS$TARGET_NAME)
MACRO
BASIC
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
BLISS
BLISS/PDPll
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
/NO LIST
cc
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
null string
null string
CMS
null string
/GEN= $(MMS$CMS_GEN)
COBOL
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
CORAL
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
DIBOL
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
FMS
/REPLACE
FORTRAN
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
LIBRARY
/REPLACE
LINK
/TRACE/NOMAP/EXEC = $(MMS$TARGET_NAME)
MACRO
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
PASCAL
/NO LIST
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
PLI
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
RPG
/NOLIST/OBJECT = $(MMS$TARGET_NAME)
RUNOFF
/OUTPUT= $(MMS$TARGET_NAME)

A-2 DEC/MMS Built-in Features

TableA-3: MMS Built-in Rules

Source Target Action

.BAS .OBJ $(BASIC) $(BASFLAGS) $(MMS$SOURCE)

.BLI .OBJ $(BLISS) $(BFLAGS) $(MMS$SOURCE)

.B16 .OBJ $(BLISS16) $(BFLAGS) $(MMS$SOURCE)

.B32 .OBJ $(BLISS) $(BFLAGS) $(MMS$SOURCE)

.c .OBJ $(CC) $(CFLAGS) $(MMS$SOURCE)

.CLD .OBJ SET COMMAND /OBJECT= $(MMS$TARGET_NAME)
$(CLDFLAGS) $(MMS$SOURCE)

.COB .OBJ $(COBOL) $(COBFLAGS) $(MMS$SOURCE)

.COR .OBJ $(CORAL) $(CORFLAGS) $(MMS$SOURCE)

.DBL .OBJ $(DIBOL) $(DBLFLAGS) $(MMS$SOURCE)

.EXE .ANL ANALYZE/IMAGE $(ANLFLAGS) $(MMS$SOURCE)

.FOR .OBJ $(FORT) $(FFLAGS) $(MMS$SOURCE)

.MAC .OBJ $(MACRO) $(MFLAGS) $(MMS$SOURCE)

.MAR .OBJ $(MACRO) $(MFLAGS) $(MMS$SOURCE)

.MSG .OBJ MESSAGE $(MSGFLAGS) $(MMS$SOURCE)

.OBJ .EXE $(LINK) $(LINKFLAGS) $(MMS$SOURCE)

.OBJ .ANL ANALYZE/OBJECT $(ANLFLAGS) $(MMS$SOURCE)

.PAS .OBJ $(PASCAL) $(PFLAGS) $(MMS$SOURCE)

.PAS .PEN $(PASCAL) /ENVIRON= $(MMS$TARGET)
$(PENVFLAGS) $(MMS$SOURCE)

.PLI .OBJ $(PLI) $(PLIFLAGS) $(MMS$SOURCE)

.RNH .HLP $(RUNOFF) $(RFLAGS) $(MMS$SOURCE)

.RNO .MEM $(RUNOFF) $(RFLAGS) $(MMS$SOURCE)

.REQ .L32 $(BLISS) /LIBRARY= $(MMS$TARGET)
$(BLIBFLAGS) $(MMS$SOURCE)

.RPG .OBJ $(RPG) $(RPGFLAGS) $(MMS$SOURCE)

.R16 .L16 $(BLISS16) /LIBRARY= $(MMS$TARGET)
$(BFLAGS) $(MMS$SOURCE)

.R32 .L32 $(BLISS) /LIBRARY= $(MMS$TARGET)
$(BFLAGS) $(MMS$SOURCE)

DEC/MMS Built-in Features A-3

Table A-4: Built-in Rules for Library Files

To build a help library:

.HLP.HLB
IF ":'F$SEARCH("$(MMS$TARGETl"l'" ,EQS, "" -

THEN $(LIBRl/CREATE/HELP $(MMS$TARGETl
$(LIBRl $(LIBRFLAGSl $(MMS$TARGETl $(MMS$SOURCEl

To build a macro library:

.MAR.MLB
IF "''F$SEARCH("$(MMS$TARGETl"l'" .EQS, "" -

THEN $(Ll5Rl/CREATE/MAC $(MMS$TARGETl
$(LI5Rl $(LIBRFLAGSl $(MMS$TARGETl $(MMS$SOURCE)

+MAC+MLB
IF "''F$SEARCH("$(MMS$TARGETl"l'" .EQS, "" -

THEN $(LIBRl/CREATE/MAC $(MMS$TARGETl
$(LIBRl $(LIBRFLAGSl $(MMS$TARGETl $(MMS$SOURCEl

To build an object library:

.OBJ.OLB
IF "''F$SEARCH("$(MMS$TARGETl"l'" .EQS, "" -

THEN $(LIBRl/CREATE $(MMS$TARGETl
$(LIBRl $(LlBRFLAGSl $(MMS$TARGETl $(MMS$SOURCEl

To build a text library:

• nn + TLB
IF "''F$SEARCH("$(MMS$TARGET)"l'" ,EQS, "" -

THEN $(Ll5Rl/CREATE/TEXT $(MMS$TARGETl
$(Ll5Rl $(LlBRFLAGSl $CMMS$TARGETl $(MMS$SOURCEl

To build an FMS library:

+FRM,FLB
IF "''F$SEARCH("$(MMS$TARGETl"l'" .EQS, "" -

THEN $(FMSl/LIBRARY $(FMSFLAGSl $(MMS$TARGETl $(MMS$SOURCEl
IF "''F$SEARCH("$(MMS$TARGETl"l'" .EQS, "" -

THEN $(FMS)/LIBRARY/CREATE $(MMS$TARGET) $(MMS$SOURCEl

A-4 DEC/MMS Built-in Features

Table A-5: Built-in Rules for CMS Access

.ANL-.ANL

.BAS-.BAS

.BLr.BLI

.B16-.B16

.B32-.B32

.c-.c

.CLff.CLD

.COff.COB

.CoM-.CoM

.COK.COR

.DAT-.DAT

.DBL-.DBL

.DDL-.DDL

.FOK.FOR

.FRM-.FRM

.ff.H

.HLP-.HLP

.MAC-.MAC

.MAR-.MAR

.MMS-.MMS

.MsG-.MsG

.oPT-.OPT

.PAS-.PAS

.PLr.PLI

.REQ-.REQ

.RNff.RNH

.RNO-.RNO

.RPG-.RPG

.R16-.R16

.R32-.R32

.TxT-.TxT

Each rule in the table performs the following action to reestablish the default
CMS library:

MMS$CMSLIB :== 1 f$lo9ical<"CMS$LIB") /

IF" 11 MMS$CMSLIB 111 .nes. "$(MMS$TARGET>" -
THEN $(CMS> SET LIBRARY $(MMS$TARGET>

$(CMS> FETCH $(MMS$SOURCE> $(CMSFLAGS> $(CMSCOMMENT>
IF MMS$CMSLIB .EQS. 1111 THEN $(CMS> SET LIBRARY 1234
IF MMS$CMSLIB .NES. 1111 .AND. MMS$CMSLIB .NES. 11 $(MMS$TARGET> 11

-

THEN $(CMS> SET LIBRARY 1 MMS$CMSLIB 1

Because the action is the same for each built-in rule, it is not repeated after each
target/source line. Therefore, this action applies to all of the dependencies listed
in Table A-5.

A tilde n after a file type indicates that the file is in a CMS library.

DEC/MMS Built-in Features A-5

Appendix B

DEC/MMS and UNIX make Comparisons

This appendix briefly compares the characteristics of MMS and UNIX make
(version 7). It is designed to ease the transition to MMS for users already famil­
iar with make.

Because VAX/VMS and UNIX are very different pperating systems, certain sys­
tem-imposed changes were necessary to provide the features of make on
VAX/VMS. The experienced user of make will notice the following differences:

• In the absence of a /DESCRWTION or /NODESCRIPTION qualifier, MMS
looks first for the description file DESCRIP.MMS. It looks for MAKEFILE.
only if it cannot locate DESCRIP.MMS.

• In the target/source line of a dependency rule, there must be at least one
space or tab on either side of the colon or double colon that separates the list
of targets from the list of sources. The space or tab prevents MMS from try­
ing to interpret the colon(s) as part of a VAX/VMS file specification.

• MMS allows you to use commas as well as spaces to separate the elements
in a list of targets or sources.

• MMS allows either a number sign(#) or an exclamation point(!) to be used
as a comment character. On target/source lines, as well as on blank lines
that separate dependency rules, the number sign and the exclamation
point can be used interchangeably; however, on action lines, only the excla­
mation point may be used to indicate a comment.

• In MMS, subprocesses are not executed independently of one another.
Therefore, it is possible to define logical names, change directories, and in
general manipulate the subprocess environment at will.

• The dummy target .PRECIOUS, found in make, is not implemented.

• When invoking a macro in MMS, you must enclose the macro name in
parentheses. That is, $(A) is a legal invocation of an MMS macro, but $A is
not.

B-1

• MMS action lines may begin with either a space or a tab. However, MMS
assumes that any line that begins with a space or tab is an action line
(unless the preceding line ends with a continuation character).

• MMS has different built-in rules than make. See Table A-3 in Appendix A
for the format and contents ofMMS built-in rules.

• MMS requires you to separate the Silent (@) and Ignore (-) action line
prefixes from the rest of the action line by at least one space.

• In a description file, the line continuation character can be either a hyphen
(-)or a backslash(\). On the MMS command line, only the hyphen is legal.

• In the specification of a VAX/VMS library module, you can use the? wild-
card character as a synonym for the % wildcard.

For compatibility with make, MMS provides alternative formats for depen­
dency rules, user-defined rules, and directives, and recognizes two-character
abbreviations for special macros. The experienced user of make will recognize
the following make features in MMS:

• MMS allows the following alternative format for dependency rules:

target. .. [source ...].; [action line ...]

In this format, the only legal comment character is an exclamation point
(!).You cannot use the Ignore(-) action line prefix with this format because
the hyphen is interpreted as a line continuation character.

• MMS allows the following alternative format for user-defined rules:

.SAC.TAR : ; action line ...

In this format, you must include at least one space or tab on each side of the
colon and the semicolon to prevent MMS from trying to interpret the rule
as a file specification. You cannot use the Ignore (-) action line prefix with
this format because the hyphen is interpreted as a line continuation
character.

• The name of a directive can be followed by a colon. For example, you can
specify either .SILENT or .SILENT: in a description file.

• The period preceding the .INCLUDE directive is optional.

• MMS special macros can be abbreviated to two characters; see Table 3-3 in
Chapter3.

B-2 DEC/MMS and UNIX make Comparisons

Appendix C

DEC/MMS Messages

This appendix lists the DEC/MMS messages. These messages are accompanied
by explanations and, where possible, suggestions for actions needed to recover
from errors.

MMS messages are displayed on the current output device. If you are running
MMS interactively, this device is a terminal. If you are running MMS in batch
mode, messages are written into the log file.

C.1 Message Format
The general format of messages displayed by the VAX/VMS operating system is
the following:

%FACILITY-L-IDENT, text

FACILITY

The name of a VAX/VMS facility or component (in this case, MMS).

L

A severity level indicator. It has one of the following values:

Code Meaning
S Success
I Information
W Warning
E Error
F Fatal error

IDENT

text

An abbreviation of the message text. The message descriptions in this
appendix are alphabetized by this abbreviation.

The actual text of the message.

C-1

MMS messages range in purpose from confirming the successful completion of
your last MMS command to notifying you of an error that caused the last com­
mand to be terminated.

The severity level of a message indicates the general nature of the message.
MMS messages have one of three severity levels: I, W, or F. These severity levels
indicate the following:

• Informational (I) messages indicate MMS's actions during the process of
building the system. The display of many of these messages can be con­
trolled by the /LOG qualifier on the command line. Other informational
messages are displayed regardless of whether you specified /LOG.

• Warning (W) messages indicate that MMS has encountered a minor error.
If the error occurred during the execution of an action line, processing stops
unless you specified the /IGNORE= FATAL, /IGNORE= ERROR, or
/IGNORE= [WARNING] qualifier on the command line.

• Fatal (F) messages indicate that MMS is about to terminate because of a
problem that prevents' it from continuing any further. Processing of the
command stops.

MMS does not generate Success (S) or Error (E) messages.

For some error messages, the recommended action is to submit a Software
Performance Report (SPR). See Installing VAX DECIMMS for information
on submitting SPRs.

C.2 MMS Messages
This section lists all MMS messages along with brief descriptions and recom­
mended user actions. A term enclosed in single quotation marks is variable
information.

ABORT, For target 'target name,' CLI returned abort status: %X'status.'

Explanation: Execution of an action line in the description file returned
a fatal or warning error. By default, MMS aborts execution.

User Action: Correct the error in the action line.

BADTARG, Specified target 'target name' does not exist in the description file.

Explanation: You specified a target on the command line that does not
exist in your description file.

User Action: Correct-the command line or the target specification in the
description file.

C-2 DEC/MMS Messages

CDDACCERR, CDD access error on path 'path specification.'

Explanation: The VAX Common Data Dictionary (CDD) signaled an
error while attempting to access the path specified in your description file.

User Action: Verify the path specification and correct the description
file.

CDDNOAUD, CDD audit string not found.

Explanation: You used the I AUDIT qualifier with a CDD record specifi­
cation, but you did not supply a remark to be included in the CDD audit
history file.

User Action: Edit the description file to remove the /AUDIT qualifier or
to include a remark with it.

CDDNOTIME, CDD path 'name' has no time attribute.

Explanation: The CDD path specification in your description file is not
associated with a revision time. Therefore, MMS cannot determine
whether the CDD record is newer than your target.

User Action: You cannot use a CDD record that is not associated with a
revision time. Correct the description file to specify a different CDD
record.

CDDPRIERR, Prior severe CDD error has occurred.

Explanation: An error occurred earlier in the processing of your
description file when MMS tried to access a CDD record. This message is
preceded by one of MMS's other error messages that pertain to the CDD
and by a message from the CDD itself to help you locate the error.

User Action: Correct the condition that caused the first error and try
again.

CLPHELP, Please type HELP MMS for help on DEC/MMS.

Explanation: For some reason MMS cannot access the help library from
the /HELP qualifier on the MMS command.

User Action: Type the DCL command HELP MMS instead.

CMSABORT, Aborted with CMS errors.

Explanation: One or more errors were returned by Callable CMS and
MMS cannot continue processing.

User Action: The CMS message printed after %MMS-W-CMSCALL
will describe what caused the problem. Refer to the DEC/CMS Reference
Manual for more information.

DEC/MMS Messages C-3

CMSBADGEN, Illegal generation 'value' specified in description file.

Explanation: The generation value specified by the /GENERATION
qualifier is not valid.

User Action: Correct the generation value or the CMS library.

CMSBADLIB, There is a problem with the specified CMS library 'library name.'

Explanation: MMS is unable to access the specified CMS library.

User Action: Correct the CMS library or the description file.

CMSBADTIM, Invalid time field in CMS history file for file 'filespec.'

Explanation: The time field in the history portion of the file in the ele­
ment is in a nonstandard format.

User Action: Reserve, then replace the CMS element that contains the
specified file. If this element belongs to a specified CMS class, perform the
steps necessary to replace the newly created generation of that element
into that CMS class.

CMSCALL, Callable CMS has returned an error.

Explanation: Callable CMS, used in conjunction with CMS Version 2
libraries, has returned an error to MMS. The specific error is printed on
the next line.

User Action: Refer to the DEC/CMS Reference Manual for more infor­
mation on the CMS error returned.

CMSNOCLAS, Specified class name 'name' not found in CMS library 'library
name.'

Explanation: MMS could not find the given class name (specified with
/GENERATION in the CMS library.

User Action: Correct the CMS library or the description file.

CMSNOELE, Element 'element name' not found in CMS library.

Explanation: MMS could not find the specified element in the CMS
library.

User Action: Correct the CMS library or the description file.

CMSNOFIL, File filespec not found in CMS library.

Explanation: MMS could not find the specified file in the CMS library.

User Action: Correct the CMS library or the description file.

C-4 DEC/MMS Messages

CMSNOGEN, No generation value specified.

Explanation: You did not specify a value with the /GENERATION
qualifier.

User Action: Add the value to the/GENERATION qualifier.

CMSNOLIB, Your default CMS library is undefined.

Explanation: You do not have a CMS library defined but you used /CMS
on the command line or a tilde - in the description file.

User Action: Define a CMS library.

CMSNOV2SUP, DEC/CMS is installed without DEC/CMS Version 2 support.

Explanation: You are trying to access a source in a CMS Version 2
library, but MMS was installed without CMS Version 2 support.

User Action: DEC/CMS Version 2 must already be installed on your
system before you install MMS if you want access to CMS Version 2
libraries.

CMSPROBLEM, Problem with CMS control file 'filespec.'

Explanation: The specified control file is either missing or has been
opened by another user without using CMS.

User Action: Check to see whether the file is in the specified CMS
library. If it is, make sure it is closed and try running MMS again. If the file
is not in the CMS library, correct the library.

CMSPROCED, Proceeding with CMS library access.

Explanation: MMS is now accessing the specified CMS library.

User Action: None. This is an informational message that appears after
the CMSWAIT message when MMS finally succeeds in accessing the
library.

CMSWAIT, CMS library 'library name' is in use. Please wait ...

Explanation: The specified CMS library is currently being accessed by
another user. This message is printed at 4-second intervals until access is
successful.

User Action: Wait untilMMS succeeds in accessing the CMS library.

DRVBADPARSE, Parser detected a fatal syntax error in the description file.

Explanation: The description file contains a syntax error. MMS did not
attempt to build the system.

User Action: Correct the erroneous line in the description file.

DEC/MMS Messages C-5

DRVDEPFIL, Using description file 'filespec.'

Explanation: MMS is using the specified description file to build the
system.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

DRVFMSSUP, DEC/MMS is installed with support for VAX FMS.

Explanation: You can access forms stored in VAX FMS libraries with
this version of MMS.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

DRVINSQUO, Your process needs a 'quota name' of at least 'value,' current
value is 'value.'

Explanation: At least one of the process quotas set by your system man­
ager has been exceeded, and the remaining process quotas at the time
MMS was invoked were insufficient to run MMS reliably. The BYTLM
value relates to the buffered I/O byte count quota; the ASTLM value
relates to the AST limit of your process; the PRCLM value relates to the
subprocess limit of your process; and the FILLM value relates
to the open file limit of your process. You can obtain information about
your process-specific parameters by typing the DCL command SHOW
PROCESS/QUOTA.

User Action: Request that your system manager increase process
quotas. See Section 1.5 for a discussion of process quotas.

DRVNOFMSSUP, DEC/MMS is installed without support for VAX FMS.

Explanation: You cannot access forms stored in VAX FMS libraries
because you did not install FMS before you installed MMS on your system.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

DRVOUTFIL, Using output file 'filespec.'

Explanation: MMS is writing all action lines and their resulting output
to the specified output file. Note that messages preceded by "%MMS" are
not written into this file, but to SYS$ERROR.

User Action: None. This is an informational message. It appears only if
you have invoked MMS with the /LOG qualifier.

C-6 DEC/MMSMessages

DRVPARSERR, Parser error: 'message' in file 'filename,' line 'number.'

Explanation: The MMS parser failed, for the reason explained in the
message text.

User Action: Correct the erroneous action line in the description file.

DRVQUALIF, Using non-defaulted qualifiers 'qualifier name.'

Explanation: MMS is processing your description file using the speci­
fied qualifiers. These qualifiers, which are not enabled by default, corre­
spond to the value of the $(MMSQUALIFIERS) reserved macro.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

DRVRULFIL, Using rules file 'filespec.'

Explanation: MMS is reading its default rules from the specified rules
file.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

DRVSUBCLI, Using 'CLI name' for the subprocess CLI.

Explanation: MMS is using the specified CLI to execute the subprocess.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

EXEBADREAD, Could not read command output from subprocess.

Explanation: The MMS main process was unable to read the results of
the action lines executed by the subprocess.

User Action: This message indicates a problem with your system,
resulting possibly from insufficient quotas or a mailbox problem. Check
with your system manager.

EXEBADWRT, Could not write command line to subprocess.

Explanation: The MMS main process was unable to send an action line
to the subprocess for execution.

User Action: This message indicates a problem with your system,
resulting possibly from insufficient quotas or a mailbox problem. Check
with your system manager.

DEC/MMS Messages C-7

EXECANTWAKE, Could not wake up main process.

Explanation: After executing an action line, the subprocess was unable
to wake up the main process.

User Action: This message indicates a problem with your system,
resulting possibly from insufficient quotas or a mailbox problem. Check
with your system manager.

EXEDELPROC, Subprocess terminated abnormally.

Explanation: The subprocess terminated unexpectedly, possibly
because you used illegal commands like STOP or LOGOUT in your
description file or because the subprocess was stopped by another process.

User Action: Remove any invalid commands from the description file.

EXEDELSES, Cleanup of subprocess %X'value' failed.

Explanation: The $DELPRC system service could not delete the sub­
process that was executing action lines.

User Action: Type the DCL command SHOW SYSTEM/SUB to deter­
mine whether the subprocess still exists. If it does, type the STOP com­
mand to delete it: STOP/ID='value'. If the subprocess does not still exist·
and this message was preceded by the message %MMS-F-EXEDELPROC,
the subprocess was probably deleted by a user command such as LOGOUT.
If this is the case, remove the offending command from the description file.

EXENCRE, Could not create subprocess for executing action lines.

Explanation: MMS could not create the subprocess for executing action
lines.

User Action: Check your quotas, and raise them if necessary. See
Section 1.5 for a discussion of subprocess quotas and MMS. This
message could also indicate a system problem; you should notify your
system manager.

EXENEF, Unable to allocate event flag.

Explanation: MMS was unable to allocate an event flag that allows the
MMS main process to communicate with the subprocess.

User Action: This message indicates a system problem. Check with
your system manager.

C-8 DEC/MMS Messages

EXENOAST, Could not enable AST.

Explanation: MMS could not enable an AST that allows the main MMS
process to send input to the subprocess and the subprocess to send output
back to the main process.

User Action: This message indicates a system problem. Check with
your system manager.

EXENOMBX, Unable to create mailbox for communicating with subprocess.

Explanation: MMS could not create a mailbox for the MMS main pro­
cess to use in communicating with the subprocess.

User Action: This message indicates a problem with your process's crea­
tion of mailboxes. Check with your system manager.

EXEPROCID, PID of created subprocess is %X'value.'

Explanation: The process ID of your subprocess is the value specified in
the message.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

EXESTRING, Quoted string must be under 'value' characters.

Explanation: A quoted string in an action line exceeded the maximum
length allowed.

User Action: Correct the action line in the description file.

EXETOOBIG, Command too large. Maximum length is 'value' characters.

Explanation: The command on an action line exceeded the maximum
command length allowed.

User Action: Correct the command in the description file.

FMSNOSUPP, DEC/MMS is installed without VAX FMS support.

Explanation: Your description file specifies a form in an FMS library
but you installed MMS without FMS support.

User Action: VAX FMS must already be installed on your system before
you install MMS if you want access to FMS forms.

FMSNOWILD, Wild cards are not allowed for VAX FMS library access.

Explanation: You cannot use a wild card character in the specification
of an FMS form.

User Action: Correct the description file to specify the forms you want
MMS to access.

DEC/MMS Messages C-9

GFBTYPEMIX, Illegal single/double colon rule mix for 'item' in line 'number.'

Explanation: The item named was specified as a target in both a single
colon and a double colon dependency rule.

User Action: Choose the rule you want for the build and make the
description file consistent with respect to this target.

GMBADMOD, Missing left parenthesis in library specification 'filespec.'

Explanation: A library specification is missing a left parenthesis.

User Action: Insert the missing parenthesis.

GMPRIVIO, MMS-does not have read access to file 'filespec.'

Explanation: MMS is unable to read the specified file, possibly because
the file protection does not allow read access.

User Action: This is an informational message. MMS assigns the file
the oldest date known to VAX/VMS (17-NOV-1858 00:00:00.00) and con­
tinues processing the description file. You may want to check the file pro­
tection and change it so that the read access is allowed.

GMTIMFND, Time for 'filespec' is 'time.'

Explanation: The specified time is the latest revision time MMS found
for the specified file.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

GWKBEGWLK, Starting the build at target 'target name.'

Explanation: MMS will start its build process by trying to update the
specified target.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

GWKCANT, MMS cannot up<!_ate target 'target name.'

Explanation: MMS cannot update the specified target because neither
the description file nor the built-in rules indicate how to do it. Because you
instructed MMS to ignore severe errors (using either .IGNORE or
/IGNORE= FATAL), processing of the description file continues.

User Action: Revise the description file. Either remove the dependency
on the target, or describe how to update the target.

C-10 DEC/MMS Messages

GWKCONECT, Target 'target name' found in circular dependency.

Explanation: The specified target(s) are involved in a circular depend­
ency; that is, a source depends on its target. This message is always issued
after the GWKLOOP message which indicates the target for which a circu­
lar dependency was detected in the description file.

User Action: Revise the description file to remove circular
dependencies.

GWKCURRNT, Target 'target name' is already up-to-date.

Explanation: MMS has not updated the specified target because it is
already up-to-date.

User Action: None. This is an informational message.

GWKEXESrrS, Status of executed command is %X'condition code.'

Explanation: MMS has executed a CLI command in an attempt to
update a target. The resulting condition code of the command is displayed
in this message, and MMS attempts to decode its text in the following mes­
sage line. If the 11ext message line is blank, MMS cannot decode the
message.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG·qualifier.

GWKHSHOVER, Internal Hashtable Overflow.

Explanation: This is an MMS internal error.

User Action: Collect as much information as possible and submit a
Software Performance Report (SPR).

GWKLOOP, Circular dependency detected at target 'target name.'

Explanation: The specified target is indirectly its own source. That is,
you are asking MMS to make a target from the target itself, which is not
legal. The ensuing GWKCONECT messages specify all relevant targets
involved in the circular dependency.

User Action: Revise the description file to remove circular
dependencies.

GWKNEEDUPD, An update is required for target 'name.'

Explanation: This message is issued when /CHECK_STATUS is
specified.

User Action: None. This is an informational message.

DEC/MMS Messages C-11

GWKNOACTS, Actions to update 'target name' are unknown.

Explanation: MMS cannot determine what actions to take in updating
the specified target.

User Action: Revise the description file. Specify the actions needed to
update the target.

GWKNOPRN, There are no known sources for the current target 'target name.'

Explanation: MMS has found no sources for the current target.

User Action: Create a source file that can update the target.

GWKNOREV, Cannot update modification time for file 'filespec.'

Explanation: MMS is unable to modify the revision time of the specified
file, as directed by the /REVISE_DATE qualifier on the command line,
because an error occurred. A possible reason for the error is that the file's
protection prohibited write access.

User Action: Correct the file protection so that write access is allowed.

·GWKOLDNOD, Target 'target name' is older than 'source names.'

Explanation: The specified target is older than the specified sources, so
MMS will update it.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

GWKUPDONE, Completed update for target 'target name.'

Explanation: MMS has updated the specified target.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

GWKUPDTIM, Updating modification time for file 'filespec.'

Explanation: MMS is changing the revision time of the specified file, as
directed by the /REVISE_DATE qualifier.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier, in addition to
/REVISE_DATE.

C-12 DEC/MMS Messages

GWKWILLEX, MMS will try executing action line to update target 'target
name.'

Explanation: MMS will execute the action line to update the current
target for one of the following reasons: at least one source may be more
recent than the target, or the target may have no sources.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /LOG qualifier.

IDENT, DEC/MMS 'version' COPYRIGHT (C) DIGITAL EQUIPMENT
CORPORATION 'date'

Explanation: This message provides the version number and copyright
date of the MMS image installed on your system. You should include this
information with any Software Performance Reports (SPRs) that you sub­
mit about MMS.

User Action: None. This is an informational message that appears only
if you have invoked MMS with the /IDENTIFICATION qualifier.

INTERNERR, Internal MMS Error. Please Report Error # 'number.'

Explanation: An MMS internal component failed.

User Action: Collect as much information as possible and submit a
Software Performance Report (SPR).

LBRNOELEM, Illegal library element is specified in 'filespec.'

Explanation: You used incorrect syntax to specify a library module.

User Action: Correct the module syntax in the description file.

LEXFILELOOP, Included file 'filespec' is already open.

Explanation: An included file is itself included at some deeper level. If
undetected, this situation would cause an infinite sequence of included
files.

User Action: Remove the second level of inclusion in the file.

LEXIFERR, Encountered .ENDIF without matching .IFDEF.

Explanation: MMS found an .ENDIF directive in your description file
but no corresponding .IFDEF directive.

User Action: Correct the description file to remove the .END IF
directive.

DEC/MMS Messages C-13

LEXILLNAME, Specified target name 'target' on line 'number' is illegal.

Explanation: You used incorrect syntax to indicate the target on the
specified line number of the description file.

User Action: Correct the description file.

LEXINACCINCL, Included file 'filespec' is inaccessible.

Explanation: The file could not be found, could not be opened, or was
already open.

User Action: Verify that the file exists. If it does, check its location,
access mode, protection, and file-sharing characteristics.

LEXINACCRULE, Rules file 'filespec' is inaccessible.

Explanation: The specified rules file could not be found, could not be
opened, or was already open.

User Action: Verify that the file exists. If it does, check its location,
access mode, protection, and file-sharing characteristics.

LEXUNEXEND, Continuation character found at end of file.

Explanation: MMS found a hyphen (-) or a backslash (\) continuation
character at the end of the description file.

User Action: Revise the description file. Delete the continuation char­
acter or add another line.

LFSBADFP, Cannot find source for target 'filespec.'

Explanation: MMS cannot process an invalid file specification. This
error cart occur if you specified an undefined logical name as the target.

User Action: Correct the syntax of the file specification and invoke
MMSagain.

LFSUNEXP, Unexpected error from RMS while looking for 'filespec.'

Explanation: MMS encountered an error while doing a $SEARCH RMS
call.

User Action: Collect as much information as possible and submit a
Software Performance Report (SPR).

MBBADMODE, Unknown mode parameter 'mode number.'

Explanation: An internal MMS component failed.

User Action: Collect as much information as possible and submit a
Software Performance Report (SPR).

C-14 DEC/MMS Messages

MBREDEFILL, Illegal attempt to redefine macro 'macro name.'

Explanation: You attempted to redefine the specified macro in the
description file. You cannot define the same macro twice in one description
file. The attempt is ignored, and the original definition will apply.

User Action: If you want to redefine a macro, you must use the /MACRO
qualifier on the MMS command line.

NODEPFIL, Cannot find default description file (either DESCRIP.MMS or
MAKEFILE.).

Explanation: Because you did not specify a description file on the com­
mand line with the /DESCRIPTION qualifier and you did not specify
/NODESCRIPTION, MMS looked first for DESCRIP.MMS and then for
MAKEFILE. However, neither of these files exists in the working
directory.

User Action: If the description file exists, reissue the command using
the /DESCRIPTION qualifier. If a description file does not exist, create
one.

NOMACFIL, Cannot open macro file 'filespec.'

Explanation: You specified either an illegal or a nonexistent file in the
command line macro definitions.

User Action: Create the file, or correct the file specification.

NOOUTFIL, Cannot open output file 'filespec.'

Explanation: MMS failed to create the output file.

User Action: Verify that the file specification is legal, check your disk
quota, or check the protection of an existing file of the same name as the
output file.

NOSPECDEP, Cannot find specified description file 'filespec.'

Explanation: You specified either an illegal file specification or a nonex­
istent file as the description file.

User Action: Invoke MMS again with the correct file specification.

NOSTATUS, Unable to set MMS$STATUS to 'value.'

Explanation: MMS received an error from VMS when trying to set the
symbol MMS$STATUS. This error may occur if you have exceeded the
available space for symbols defined by your process.

User Action: Either remove some of your symbols or have the system
manager change the SYSGEN parameter CLISYMTBL.

DEC/MMS Messages C-15

NOTARGET, No target specified.

Explanation: You did not specify a target for MMS to build.

User Action: Specify a target on the MMS command line, or correct the
description file so that it specifies a target.

UTLALLOCFAIL, Failed to allocate memory for dynamic data structures.

Explanation: An MMS call to obtain more virtual memory failed.
Either your description file is too large or a system service failed
unexpectedly.

User Action: Try trimming your description file. If this fails, collect as
much information as possible and submit a Software Performance Report
(SPR).

UTLBADMAC, Unterminated macro name 'string.'

Explanation: The character combination $(was encountered without
a matching closing parenthesis). As a result, on the line that contains the
offending macro, all characters to the right of the $(are ignored.

User Action: Correct the erroneous line.

UTLUNDERFLOW, Deallocation of unallocated space.

Explanation: This is an internal MMS error.

User Action: Collect as much information as possible and submit a
Software Performance Report (SPR).

C-16 DEC/MMS Messages

Glossary

action

A command-language command that MMS executes to update a target. (See
also action line.)

action line

The part of the dependency rule that contains the commands that tell MMS
how to use the source(s) to update the target. (See also dependency rule.)

action line prefix

A special character placed at the beginning of an action line that influences
how MMS executes the action. (See also action line.)

built-in rule

A command that MMS uses when the description file does not explicitly
describe the processing needed to update a target.

default macro

A name that represents a character string that defines commonly used opera­
tions. MMS built-in rules are expressed in terms of default macros.(See also
macro and built-in rule.)

dependency rule

The description of a relationship between a target and one or more sources,
and the action(s) required to update the target. Dependency rules are con­
tained in the description file. (See also description file.)

description file

A text file that contains the dependency rules, comments, macros, and direc­
tives that MMS uses to build your system. (See also dependency rule, macro,
and directive.)

Glossary-I

directive

A word that specifies an action for the p:rocessing of the description file.

macro

A name that represents a character string. The string is substituted for the
name in a dependency rule.

macro invocation

The execution of the macro that replaces the macro name with its definition.

mnemonic name

A name that identifies the purpose of a sequence of related actions. It can be
used as either a source or a target in the description file. (See also source and
target.)

source

In a dependency rule, an entity that is used to create or to update the target.
A source can be a VAX/VMS file specification or a mnemonic name. (See also
dependency rule and mnemonic name.)

special macro

A name that represents a character string that expands to source or target
names in the dependency currently being processed. A special macro is used
instead of a target or source file specification when writing general user­
defines rules. (See also target, macro, dependency rule.)

suffixes precedence list

A list of file types to which MMS refers when it needs to know which source
file can update the specified target.

target

In a description file, the entity that is to be updated. A target can be a
VAXNMS file specification or a mnemonic name. (See also mnemonic name.)

user-defined rule

A rule that the user specifies in the description file to add to and/or replace
MMS built-in rules. (See also built-in rule.)

Glossary-2

Index

A

Action line prefixes, 3-19
see also individual prefix
Ignore(-), 3-20
Silent(@), 3-20

Action lines, 2-3
definition of, 2-2
effect of I ACTION on, 5-3
format of, 2-4
restrictions on, 2-8

/ACTION qualifier, 5-3
/AUDIT qualifier, 4-9

B

Built-in rules, 2-10
example of, 2-13

c

for CMS libraries, A-5
for libraries, A-4

CDDrecord
syntax of, 4-9

CDDrecords
access to, 4-8

CDDFLAGS default macro, 4-9
/CHECK_STATUS qualifier, 5-4
CLlsymbols

used as macros, 2-19
CMS commands

in description files, 4-4
CMS elements

automatic access of, 4-5
explicit references to, 4-6
including with .INCLUDE, 4-6

CMS libraries
access to, 4-4
built-in rules for, A-5

/CMS qualifier, 4-5, 4-7, 5-5
CMSCOMMENT default macro, 4-7
CMSFLAGS default macro, 4-5, 4-7
Command procedures

advantages ofMMS over, 1-6to1-7
generating with /OUTPUT, 5-15

D

.DEFAULT directive, 3-11
Default macros, 2-18

CDDFLAGS, 4-9
CMSCOMMENT, 4-7
CMSFLAGS, 4-5, 4-7
FMSFLAGS, 4-8
redefining, 2-18
table of, A-2

Dependency rules, 2-2
alternative format for, B-2
comments in, 2-3
continuing, 2-4
double colon in, 3-7
examples of, 2-9
format of, 2-3

DESCRIP.MMS, 1-4
Description files, 2-1

CMS commands in, 4-4
default, 1-4
examples of, 2-9, 2-20, 6-1
in CMS libraries, 4-7

/DESCRIPTION qualifier, 5-6
Differences, MMS and make, B-1
Directives, 3-7

see also individual directives
.DEFAULT, 3-11
.ELSE,3-18
.ENDIF, 3-18
.FIRST, 3-16
.IFDEF, 3-18
.IGNORE, 3-8
.INCLUDE, 3-14
.LAST,3-17
.SILENT, 3-10
.SUFFIXES, 3-12

Double colon
in dependency rules, 8-7

E

.ELSE directive, 3-18

.ENDIF directive, 3-18
Error messages, C-1

Index 1

F

.FIRST directive, 3-16
FMSforms

access to, 4-8
syntax of, 4-8

FMSFLAGS default macro, 4-8
/FROM_SOURCES qualifier, 5-8

H

/HELP qualifier, 5-9

/IDENTIFICATION qualifier, 5-10
.IFDEF directive, 3-18
.IGNORE directive, 3-8

overriding, 3-10
Ignore prefix(-), 3-20
/IGNORE qualifier, 5-11
.INCLUDE directive, 3-14
Including files, 3-14

L

.LAST directive, 3-17
Libraries

built-in rules for, A-4
Libraries (Cont.)

CMS,4-4
access to elements in, 4-5 to
4-6
FMS, 4-8
syntax of forms in, 4-8
VMS,4-1
syntax of modules in, 4-1

/LOG qualifier, 5-13

M

/MACRO qualifier, 2-17, 5-14
Macros, 2-14

CLI symbols as, 2-19
default, 2-18
table of, A-2

defining, 2-14
defining in a file, 2-17
defining on the command line, 2-17,

5-14
example of, 2-16
format of, 2-15
invoking, 2-15
($MMS), 3-21
$(MMSQUALIFIERS), 3-22

Index 2

$<MMSTARGETS), 3-22
redefining, 2-17
redefining default, 2-18
special, 3-2

table of, 3-3
used with libraries, 4-3

user-defined, 2-14
make and MMS differences, B-1
MAKEFILE., 1-4
Messages, MMS, C-1
MM$TARGET _NAME macro

example of, 3-5
MMScommand

abbreviating, 5-2
format of, 5-1
qualifiers, 5-2
see also Qualifiers

MMS messages, C-1
MMS$CHANGED_LIST special macro

example of, 3-4
MMS$LIB_ELEMENT special macro,

4-3
MMS$RULES, 5-18
MMS$SOURCE special macro

example of, 3-4
used with libraries, 4-3

MMS$STATUS, 5-4, 5-17
MMS$STATUS special symbol, 2-8
MMS$TARGET special macro

example of, 3-4
used with libraries, 4-3

MMS$TARGET_NAME special macro
used with libraries, 4-3

$(MMS) reserved macro, 3-21
$(MMSQUALIFIERS) reserved macro,

3-22
$(MMSTARGETS) reserved macro, 3-22
Mnemonic names, 2-6

N

/NOACTION qualifier, 5-3
/NOCHECK_STATUS qualifier, 5-4
/NOCMS qualifier, 5-5
/NODESCRIPTION qualifier, 1-4, 5-6
/NOIGNORE qualifier, 5-11
/NOLOG qualifier, 5-13
/NOOVERRIDE qualifier, 5-16
/NOREVISE_DATE qualifier, 5-17
/NORULES qualifier, 5-18
/NOSKIP _INTERMEDIATE qualifier,

5-19
/NOVERIFY qualifier, 5-21

0

/OUTPUT qualifier, 5-15
/OVERRIDE qualifier, 5-16

p

Precedence list, 3-12
table of, A-1

Q

Qualifiers
abbreviating, 5-2
/ACTION, 5-3
/AUDIT, 4-9
/CHECK_STATUS, 5-4
/CMS, 4-5, 4-7, 5-5
default, 5-1
/DESCRIPTION, 5-6
/FROM_SOURCES, 5-8
/HELP, 5-9
/IDENTIFICATION, 5-10
/IGNORE, 5-11
/LOG, 5-13
/MACRO, 2-17, 5-14
/NODESCRIPTION, 1-4
/OUTPUT, 5-15
/OVERRIDE, 5-16
/REVISE_DATE, 5-17
/RULES, 5-18
/SKIP _INTERMEDIATE. 5-19

example of. 6-2
/VERIFY, 5-21

Quotas
subprocess, 1-5

R

/REVISE_DATE qualifier, 5-17
Rules

built-in
see Built-in rules

dependency
see Dependency rules

user-defined
see User-defined rules

/RULES qualifier, 5-18

s
.SILENT directive, 3-10

overriding, 3-10
Silent prefix ((<1), 3-20
/SKIP _INTERMEDIATE qualifier, 5-19

example of, 6-2
Software development cycle, 1-1
Sources, 1-2, 2-3

mnemonic names for, 2-6
multiple, 2-5

Special macros, 3-2
table of, 3-3
used with libraries, 4-3

Subprocesses
invoking MMS as, 3-21
MMS's use of, 1-5
quotas for, 1-5

.SUFFIXES directive, 3-12
Suffixes precedence list, 3-12

table of, A-1

T

Targets, 1-2, 2-3
mnemonic names for, 2-6
multiple, 2-5

u
User-defined rules, 3-1

alternative format for, B-2
example of, 3-2
format of, 3-1

v
/VERIFY qualifier, 5-21
VMS library access, 4-1

Index 3

READER'S COMMENTS

VAX DEC/MMS
User's Guide

AA-Pl19B-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
0 Higher-level language programmer
O Occasional programmer (experienced)
0 User with little programming experience
D Student programmer
D Other (please specify)

Organization

Street

State ______ Zip Code _____ _

or Country

- - DoNotTear-FoldHereandTape - - - - - - - - - - - - - -

111111

BUSINESS REPLY MAIL
FIRST CLAS~ PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

No Postage
Necessary

if Mailed in the
United States

- - - - DoNotTear-FoldHere -I

I
I
I

