Guide to VAX DEC/Code
Management System

Order Number: AA-KL0O3D-TE

December 1989

This manual describes the concepts, commands,'and features of the VAX DEC/Code
Management System.

Revision/Update Information: = This document supersedes the Guide to VAX
DEC/Code Management System
(Order No. AA-KLO3C-TE).

Operating System and Version: VMS Version 5.0 or higher; VMS Version 5.3 or
higher for the CMS DECwindows Interface.

Software Version: VAX DEC/CMS Version 3.3

digital equipment corporation
maynard, massachusetts

First Printing, April 1987
Revised, April 1988
Revised, May 1989
Revised, December 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013. .

© Digital Equipment Corporation 1987, 1988, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

CDD/Plus VAX Document VAXstation
DATATRIEVE VAX MACRO VMS
DECforms VAX Notes vT
DECwindows VAX SCAN

VAX VAXcluster ™
VAX DIBOL VAXset Hﬂ@ﬂﬂﬂ

ZK5321

Contents

= 1= o xiii
shapter 1 Introduction to CMS

1.1 OVeIVIBW . . . e i e et 1-1

1.2 CMS ConCepPtso i it i e e 1-2

1.2.1 Libraries, Elements, and Generations 1-2

1.2.2 Groupsand Classes ccv v iin it 1-2

1.23 Reservations and Replacements. 1-3

1.2.4 Review. i i e e e 1-3

1.2.5 Historyand Remarks 1-3

1.26 Reference Copies ittt iiiennnnnnnn 1-3

1.2.7 Lines of Descent and Variant Generations 14

1.2.8 Concurrent Reservations 1-4

1.2.9 Mergingand Conflicts 1-4

1.2.10 SECUMtY . vttt e e e e e 1-5

1.2.11 Events and Notification 1-5

1.3 Invoking CMS e 1-5

14 GettingHelp e 1-7

15 Sample Session e e 1-7

1.6 Command Summaryccvierrnnuans e 1-11

Chapter 2

Using CMS with DECwindows

241 Invoking CMS e e 2—1
22 Getting Help e 2-2
23 Displaying CMS Information in DECwindows 2-3
2.3.1 Expanding and Collapsing CMS Objects 24

2.3.1.1 Double Clicking 2-5

2.3.1.2 Choosinga Function 2-6

2.3.1.3 Usingthe Pop-UpMenu 2-7

24 CMS Command Correspondenceconvuinn. 2-7
25 Sample CMS DECwindows Session 2-8
2.5.1 Creatinga CMS Library 2-8

252 CreatinganElement. 2-9

25.3 Displaying TwWo Views v it iiine i iie e ns 2-10

254 Inserting a GenerationintoaClass 2-11

2.5.5 Reserving an Element 2-12

25.6 Modifyingan Element L 2-13

26 Customizing Your CMS DECwindows Interface 2-14

Chapter 3 Libraries

341 Creating Libraries. i, 3-1
3.1.1 Creatingthe Directory i, 3~1

3.1.2 Creatingthe Library 3-2

3.1.3 Creating Elements inthe Library. 3-3

3.14 Creating a Reference Copy Directory 3-6

3.2 Using Libraries00ttt innnnnnnnn 3-7
3.2.1 Sefting Libraries. i e 3-8

3.2.2 Modifying Library Lists, 3-8

3.3 Controlling Occlusion in Multiple Libraries 3-9
3.3.1 Occlusion of Multiple Object Types in a Command 3-11

3.3.2 Examples i e e 3-13

34 LibraryLocking ittt 3-17

*hapter 4

Elements and Generations

4.1 The Relationship Between Elements and Generations 4-1
4.2 Manipulating Elements and Generations 4-3
4.2.1 Creating Elements and Generations 4-3
4.2.2 Fetching an Element Generation 44
4.2.3 Reserving an Element Generation 4-4
4.2.4 Replacing an Element Generation. 4-6
425 Monitoring Element Changes 4-7
4.2.6 Displaying Information About Elements and Generations 4-7
427 Deleting Generations 4-10
43 CONCUITBNCYttt it ittt ittt ettt e ettt ees 4-10
4.3.1 Concurrent ACCESS . . v v v vttt i i e 4-10
4.3.2 Concurrent Reservations 4-11
433 Concurrent Replacements 4-12
44 DeltaFiles i i 4-13
45 Element Attributes e 4-13
4.5.1 The History Attribute.. 414
45.2 The Notes and Position Attributes 4-16
45.3 The Reference Copy Attribute 4-18
454 The Review Attribute 4-19
45.5 Examples of Using Element Attributes 4-20
Chapter 5 Groups and Classes
5.1 OVerVieW e e e e et e 5-1
5.1.1 GIOUPS .« & it ettt e e e e e e e e e 5-1
5.1.2 Classes i e e e e 5-2
5.1.3 The Difference Between Groups and Classes 5-2
5.2 Manipulating Groups it 5-4
5.2.1 Creating Groupso vt v ittt et ten i ee e 54
5.2.2 Inserting Elements info Groups 5-5
5.2.3 Retrieving and Removing Elements froma Group 5-7
5.2.4 Displaying the Group Structure of a Library 5-8
5.25 Deleting Groups.. oo ittt i e e - 5-8
5.3 Manipulating Classes i, 5-9
5.3.1 CreatingClassesiiiiiiinnnn.n. 5-9

5.3.2 Inserting Element Generations into Classes 5-¢

5.3.3 Retrieving and Removing Generations froma Class 5-11
5.3.4 Displaying the Class Structure of a Library 5-11
5.3.5 DeletingClasses i, 5-1¢
5.4 GroupandClass Attributes 5-1¢
Chapter 6 Variants and Merging
6.1 LinesofDescent i, 6-1
6.1.1 Creating a Variant Generation 6-1
6.1.2 Accessing Variant Generations 64
6.1.3 Ancestor and Descendant Generations 6-£
6.2 Merging Two Generations of an Element e 6—7
6.2.1 “Merging Element Generations 6-¢
6.2.2 Conflicts in the Merging Process 6-12
6.2.3 Verifying Merged Changes, 6-14
Chapter 7 Security Features
741 VMS File ACCESS00ttt iinanennns 7-2
711 Assigning UIC Protection.o 7-3
7.1.2 Assigning VMS ACL Protection 7-4
7.1.21 Using VMS ACLs on Directories 7-5
7.1.2.2 Using VMS ACLsonFiles................. 7-6
7.2 CMS ACLS . . . ittt it ittt et it e 7-9
7.21 CreatingCMS ACLs oottt e 7-10
7.2.1.1 ACEFormat 7-10
7.21.2 Access TYPES . ..o v ittt e 7-11
7.21.3 ACLFormat, 7-13
7.2.2 Specifying ACLs with Commands 7-14
7.2.2.1 Examples of ACLs on Commands 7-15
7.2.3 Specifying ACLs with Other CMS Objects 7-16
7.2.3.1 Specifying ACLs on Elements, Groups, and
Classescoiiiiiiiin i, 7-17
7.23.1.1 Examples of ACLs on Elements, Groups, and
Classesc.ivviiiiiniinnen, 7-17
7.23.2 Specifying ACLs on Element Lists, Group Lists,
~ andClassLists 0.0 7-18
7.2.3.2.1 Examples of ACLsonlLists 7-20
7.2.3.3 Specifying ACLs on Libraries and History. 7-22

vi

7.2.3.31 Examples of ACLs on History and the

Library o i e 7-23

7.3 VMS BYPASS Privilege and CMS BYPASS Access 7-24

7.4 Combining VMS and CMS Security Mechanisms 7-26
7.41 Example of Protection Scheme Using VMS and CMS

Mechanisms i 7-27

Chapter 8 Event Handling and Notification

8.1 Event Handling [81
8.1.1 Specifying Action ACEs 8-2
8.1.2 DetectingEvents i i, 8-3
8.1.3 Using Your Own EventHandler 8-3
8.2 Notificationof Events 8-5

8.3 Examples i e 8-6

Chapter 9 Library Maintenance

9.1 Command Rollback 91
9.2 Verifying Dataina CMS Library. 9-3
9.21 . Using VERIFY/RECOVERot iiii e 9-4
9.2.2 Using VERIFY/REPAIR it 9-5
9.23 Correcting Errors i e 9-6
9.2.4 Reference Copiesciiirneirneennnnonnn 9-7
9.3 Maintaining Library Efficiency 9-8
9.3.1 Deleting History Records 9-8
9.3.2 Deleting and Archiving Element Generations 9-8
9.4 Unusual Occurrencesttt iiieinannnnnn 9-10

vii

Chapter 10

Command Syntax

viii

10.1 Command Formatand Prompting 10-1
102 Command Parameters iiiinnn. 10-2
10.2.1 Directory Specifications, 10-3

10.2.2 Remarks. i, 10-3
10.2.3 ElementNames............ ..., 10-5 .

10.2.4 Element Expressionsccoiiireeernennns 10-6

10.2.5 Element Generations and Expressions 10-7

10.2.6 Group Namesttt iiit i ettt 10-9

10.2.7 Group EXpressions v it i e 10-9

10.2.8 ClassNamesot nnnnn 10-10

10.2.9 Class EXpressionst iiiiinennnennnns 10-10

10.3 Commalists @it 10-11
104 CommandQualifiers................ iiiiiirnnenn. 10-11
10.4.1 Qualifier Values i e 10-12

10.4.1.1 File Specifications 10-12

104.12 TmeValuesciiuiiinuennn. 10-13

10.4.2 Qualifier Defaults, 10-13

10.5 Wildcard Expressions ittt ennenenns 10-14
10.5.1 Single-Character Wildcards 10-14

10.5.2 Partial- and Full-Field Wildcards - 10-14

10.5.3 Canceling Wildcard Transactions 10-15

10.6 Command Abbreviations. e e e e 10-15

Command Dictionary

ACCEPT GENERATIONttt e i iinenn CD-3
ANNOTATE. et h s s sasee et s CD-6
CANCEL REVIEW it it e e it e e e e CD-13
CONVERT LIBRARY ittt i el e i CD-186

COPY ELEMENTottt i et i e e et e i aane CD-19
CREATE CLASS e i ittt e et it eneen CD-24
CREATE ELEMENT i e it et e et CD-27
CREATE GROUP ittt ittt e eaanns CD-33
CREATE LIBRARY it ettt e eene e CD-35
DELETE CLASS ittt it et ea e CD-39
DELETEELEMENT i e, CD-42

DELETEGROUP . . .o i e e CD-51
DELETE HISTORYttt e i CD-54
DIFFERENCESo e e CD-58
FETCH. . .o e CD-69
= CD-75
INSERT ELEMENT i e CD-77
INSERT GENERATIONo e a e CD-81
INSERTGROUP i i i CD-85
MARKGENERATION i e e CD-88
MODIFY CLASS i CD-91
MODIFY ELEMENT i e CD-95
MODIFY GENERATION ittt CD-101
MODIFY GROUP i e et i e e e i aaas CD-104
MODIFY LIBRARY i i i et e e CD-108
REJECT GENERATION ittt CD-112
REMARK e e e CD-115
REMOVE ELEMENT i, CD-117
REMOVE GENERATION.. e e e e e CD-120
REMOVEGROUP ittt CD-124
REPLACE e it e CD-127
RESERVE i i i e CD-133
RETRIEVEARCHIVE i e CD-139
REVIEW GENERATION ittt i i, CD-142
SET ACL & e e CD-145
SET LIBRARY e e CD-154
SET NOLIBRARY i i i e CD-158
SHOW ACL e CD-160
SHOW ARCHIVE et CD-163
SHOW CLASS i et et e CD-166
SHOW ELEMENT ettt e et CD-169
SHOW GENERATIONt aes CD-173
SHOWGROUPt it ittt CD-179
SHOW HISTORY oottt e e e ee et CD-182
SHOW LIBRARY o i e e CD-188
SHOW RESERVATIONS e CD-191
SHOWREVIEWS PENDING i, CD-195
SHOW VERSION.t e CD-199
UNRESERVE it i i CD-201
VERIFY .. e CD-205

Appendix A Summary of CMS Interface Functional Mappings

Appendix B Error Messages

B.1 Message Displayc. i iiinnnnnennn. B-1
B.1.1 Severity Levels it B-1
B.1.2 Library Directory Specifications. 7
B.1.3 Secondary Messages iiiiii e B-Z
B.2 CMS MeSSagesciiiiiinrnenrnneeenenennnnnen B-2

Appendix C CMS Library Storage Method

Appendix D System Management Considerations

D1 Library Backupieviriini i D-1
D.2 System Time Errors i, D-2
D3 QUOtAS e e e e e D-2
Index
Examples
41 An Element with History and Notes Attributes 4-21
4-2 Example of Using the Review Attribute 4-23
Figures _
2-1 CMS DECwindows Title BarandMenuscc0vu... 2-2
2-2 Expanding @ Group c i ittt ittt i e 2-5
2-3 CMS Pop-UpMenuttt en e 2-7
24 CreatingaNew CMS Library it 2-9
2-5 Creatingan Element. i, 2-10
2-6 Displaying TWo Viewsttt it ittt ir e 2-11

2-7 Inserting a GenerationintoaClass 2-12
2-8 Reservingan Element0t 2-13
2-9 Modifyingan Element, ... i e e 2-14
2-10 Command Modeiiuiiiiiiinnien e 2-15
211 Outline View i e e 2-16
2-12 Restricting History 2-17
3-1 Buildnga CMS Library i i 3-5
3-2 Library Occlusionottt i e e e e 3-14
4-1 Elements and Their Generations, 4-2
5-1 Groups and Classes v v vt ittt e e e e 5-3
5-2 Generations iNaGroUP vttt i ettt et e 5-6
5-3 The Relationship Between Groups and Elements 5-10
6-1 Creating a Variant Generation 6-3
6-2 Extending a Variant Generation from an Earlier Generation. 64
6-3 Ancestorsona Treeof Descent. nennen... 6-6
6—4 Descendantsona Treeof Descent 6-7
6-5 The Relationship Between a Generation and an Element 6-10
6-6 A Generation After Replacementinthe Library 6-12
7-1 CMS ACL ACCESS TYPES & « - v v v ittt ettt e et et aeaneennn 7-12
Tables \
1-1 CMS Command SUMMArYt i it ettt ettt i e eneannn 1-11
7-1 File Access Required for CMS Commands 7-6
7-2 Object Types and Related Expressions 7-14

xi

Preface

The VAX DEC/Code Management System (CMS) is an online library system
that helps track software development and maintenance. This manual
provides reference and conceptual information on how to use CMS on the
VMS operating system.

Intended Audience

This guide is intended for all users of CMS, including managers, project

programmers, writers, and others who may be responsible for maintaining
CMS libraries.

This guide can be used by both experienced and novice users of CMS. You
need not have a detailed understanding of the VMS operating system;
however, some familiarity with the conventions of the Digital Command
Language (DCL) is helpful.

Document Structure

This guide has two parts. The first part is task-oriented and consists of

Chapters 1 through 10; it explains how to use CMS, gives information on
CMS concepts, and explains syntax rules. The second part is a reference
section; it contains the Command Dictionary and four appendixes.

¢ Chapter 1, Introduction to CMS, describes the basic concepts of CMS
and presents a tutorial example to help you get started.

¢ Chapter 2, Using CMS with DECwindows, describes how to use the CMS
DECwindows user interface.

® Chapter 3, Libraries, describes how to set up a CMS library and how to
use library search lists.

Xiii

Chapter 4, Elements and Generations, explains the concepts of files in a
CMS library.

Chapter 5, Groups and Classes, explains how to organize files into
groups and classes.

Chapter 6, Variants and Merging, describes lines of descent, creating
variant lines of descent, and how to merge files.

Chapter 7, Security Features, describes the protection mechanisms that
you can use in CMS.

Chapter 8, Event Handling and Notification, describes how CMS handles
events and the concept of notification when these events occur.

Chapter 9, Library Maintenance, describes how you can maintain the
validity and integrity of your CMS library.

Chapter 10, Command Syntax, gives detailed information on CMS
syntax and how to specify commands.

The Command Dictionary contains detailed descriptions of each CMS
command. The commands are listed in alphabetical order with the
command name at the top of every page.

Appendix A, Summary of CMS Interface Functional Mappings, provides
a table displaying how each of the CMS interfaces are functionally
mapped to each other.

Appendix B, Error Messages, lists CMS diagnostic messages and in-
cludes a brief description of each message.

Appendix C, CMS Library Storage Method, contains information on how
libraries are stored.

Appendix D, System Management Considerations, contains information
about running CMS on the VMS operating system.

Associated Documents

Xiv

o The VAX DEC /Code Management System Callable Routines Reference

Manual contains information about using the CMS callable routines.

The VAX DEC/Code Management System Installation Guide supplies
the instructions for installing CMS on a VMS system.

The Using VAXset manual provides information on using VAX Software
Engineering Tools with other VMS facilities to extend programmer
productivity.

>onventions

The following conventions are used in this guide:

Conventions

Description

Ctrlx

KPn

O

[1

0

user input

boldface text

A key name is shown enclosed to indicate that you press
a key on the keyboard.

A sequence such as CTRL/x indicates that you must hold
down the key labeled Ctrl while you press another key or
a pointing device button.

A sequence such as KP1 indicates that you must first
press and release the key labeled KP1, then press and
release another key or a pointing device button.

In examples, a horizontal ellipsis indicates one of the
following:

¢ Additional optional arguments in a statement have
been omitted.

¢ The preceding item or items can be repeated one or
more times.

¢ Additional parameters, values, or other information
can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are omit-
ted because they are not important to the topic being
discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the
choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all of
the choices.

In format descriptions, braces surround a required choice
of options; you must choose one of the options listed.

The hardcopy version of this manual has interactive
examples that show user input in red letters and system
responses or prompts in black letters. The online ver-
sion differentiates user input from system responses or
prompts by using a different font.

Boldface words introduce attributes.

XV

xvi

Conventions

Description

italic text
UPPERCASE TEXT

mouse

MB1, MB2, MB3

Italicized words introduce new terms.

Uppercase letters indicate the name of a command or
routine. Lowercase words and letters used in examples
indicate that you should substitute a word or value of
your choice.

The term mouse is used to refer to any pointing device,
such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse
button. (The buttons can be redefined by the user.)

Unless otherwise noted, all numeric values are represented in decimal

notation.

Unless otherwise noted, you terminate a command by pressing the RETURN

key.

Chapter 1
Introduction to CMS

The VAX DEC/Code Management System (CMS) is a library system for
software development and maintenance. CMS stores files called elements in
an online library, keeps track of changes made to these files, and monitors
user access to the files.

This chapter provides the following information:

An overview of CMS and information on how to get started
An introduction to CMS concepts

A sample CMS session

A summary of CMS commands

1.1 Overview

During software development, programmers continually make changes to
project files. CMS stores and monitors these files.

CMS allows you to store project files in a central library where they are
available to all project members. Some of the tasks you can perform on
these files are as follows:

Store files (called elements) in a library

Fetch elements, modify them, and test them in your own directory
Control concurrent modifications to the same element

Merge concurrent modifications to an element

Create successive versions (called generations) of elements
Compare two generations of an element within a library

Organize related library elements into groups

Introduction to CMS 1-1

* Define a set of generations of elements as a class to make up a base level
or release version of a project

* Track which users are working on which elements from the library
¢ Maintain a historical account of element and library transactions

1.2 CMS Concepts

This section introduces basic CMS concepts.

1.2.1 Libraries, Elements, and Generations

CMS stores all the information it needs in a library. A CMS library is a
VMS directory containing specially formatted files. It serves as a container
or repository for various CMS entities (called objects).

An element is the basic structural unit in a CMS library; it consists of one
file and all its versions. An element generation represents a specific version
of that element. When you create an element and place it in a CMS library
for the first time, CMS creates generation 1 of that element. Each time you
reserve and then replace a generation of an element in the library, CMS
creates a new generation of that element.

For information on libraries, see Chapter 3. For information on elements
and generations, see Chapter 4.

1.2.2 Groups and Classes

1-2

A group is a set of elements (or other groups) that you can combine and
manipulate as a unit. For example, you might create a group containing all
the elements that process error messages.

A class is a set of particular generations of elements. You typically combine
generations of elements into classes to represent progressive stages, or base
levels, in the development of an entire system.

For information on groups and classes, see Chapter 5.

Introduction to CMS

1.2.3 Reservations and Replacements

As changes are made to a file in the VMS file system, new versions of
that file are created. Similarly, as an element is developed in CMS, new
generations of that element are created. In addition to storing the element
and its generations, CMS manages the development process by using
reservations and replacements.

A reservation exists in the CMS library when you retrieve an element gener-
ation with the intent to modify it. The reservation ends and a replacement
occurs when you return the modified contents to the library.

For information on reservations and replacements, see Chapter 4.

1.2.4 Review

You can mark an element generation for review to indicate that its contents
should be reviewed by other users. After the review process is complete, the
element generation can be marked as having been accepted or rejected.

For information on marking an element generation for review and the
review process, see Section 4.5.4.

1.2.5 History and Remarks

All CMS commands that modify a library or its contents are recorded in the
library history. You can display any part of the history by using the SHOW
HISTORY command. All commands that are recorded allow you to enter a
remark, which is recorded in the history along with the command. Remarks
are useful in explaining library and element modifications.

For information on library history, see Chapter 4. For information on
remarks, see Section 10.2.2.

1.2.6 Reference Copies

For easy reference, you can direct CMS to automatically store copies of
the latest main-line generation of selected library elements in a separately
designated directory, called a reference copy directory.

For information on reference copies, see Sections 3.1.4 and 4.5.3.

Introduction to CMS 1-3

1.2.7 Lines of Descent and Variant Generations

The first generation of a newly created element is generation 1. Every time
you reserve and replace a generation of that element, CMS numbers a new

generation by adding 1 to the number of the reserved generation. This new
generation is a descendant of the generation from which it was created. The
main line of descent consists of generation 1 and its direct descendants.

A generation can have only one direct ancestor and one direct descendant,
but it can also have a humber of variant descendants. Those generations
that are not on the direct line of descent of a generation are called variant
generations. You specify variant generations by adding a letter, called the
variant letter, and the number 1 to the parent generation. For example,
generation 2E1 is a variant descendant of generation 2.

A variant generation and its direct descendants (for example, generations
2E1, 2E2, 2E3) form a variant line of descent. A variant generation may
have variant descendants; for instance, generation 2E1W1 is a variant
descendant of generation 2E1.

For information on lines of descent and variant generations, see Chapter 6.

1.2.8 Concurrent Reservations

You can create variant generations at any time, but default usage creates
successive generations along the same line of descent. You must create

a variant generation when the direct successor of a reserved generation
already exists and you replace a concurrent reservation.

A concurrent reservation exists when an element generation has been
reserved more than once by one or more users. In this case, only one of
these reservations can be replaced on the direct line of descent; the rest of
the reservations must be replaced as variant generations.

For information on concurrency, see Section 4.3.

1.2.9 Merging and Conflicts

1-4

You can use variant generations to maintain separate but related devel-
opment of an element, or you may have generations that have undergone
concurrent development. :

If concurrent changes have been made to a generation, you can merge the
changes from one line of descent and some variant line of descent into a
single generation.

Introduction to CMS

CMS resolves changes from two generations by comparing them to their
common ancestor generation. If both generations change a region of their
common ancestor in different ways, then this region is known as a conflict.
Where the changes do not conflict, CMS includes the appropriate change;
where the changes conflict, CMS includes the changes from both generations
and flags the conflicting region. In either case, you should verify the
resulting merged output for correctness; for instance, program source code
should be compiled and executed to ensure that it is syntactically and
logically correct. After verifying and making any necessary modifications,
you can replace the merged reservation.

For information on merging and conflicts, see Chapter 6.

1.2.10 Security

The VMS operating system provides a security mechanism based on user
identification codes (UIC) and access control lists (ACLs) to control access to
files within the file system. Similarly, you can use CMS ACLs for controlling
access to CMS objects through CMS operations. For you to successfully
access an object in the CMS library, both the file system and the CMS
internal security mechanism must allow you to do so.

For information on the VMS and CMS security mechanisms, see Chapter 7.

1.2.11 Events and Notification

You can use CMS ACLs to specify that a CMS object being accessed consti-
tutes an event, and that some action should be taken when an event occurs.
You can specify lists of people to be notified when certain events occur on
objects in the CMS library. The default action performed is notification
through the VMS Mail Utility (MAIL) to one or more users. CMS provides a
default notification event handler; in addition, you can write event handlers
of your own for CMS to use.

For information on events and notification, see Chapter 8.

1.3 Invoking CMS

You can invoke CMS in four ways:

¢ From DCL command level
¢ From CMS subsystem command level

Introduction to CMS 1-5

1-6

¢ From a program that calls CMS routines directly (see the
VAX DEC/Code Management System Callable Routines Reference
Manual)

e From the DECwindows user interface

Enter CMS commands at the DCL command level prompt ($) by preceding
them with the word CMS. After each command executes, control is returned
to DCL level. For example:

$ CMS SHOW RESERVATIONS

$

You can invoke CMS as a subsystem in the command-line interface in the
following ways:

¢ By entering the CMS command at the DCL prompt
¢ By entering the CMS command with the /INTERFACE qualifier at the
DCL prompt

¢ By entering the CMS command with the INTERFACE=CHARACTER_
CELL qualifier and keyword at the DCL prompt

For example, you can enter any one of the following commands to enter
CMS command-line subsystem mode:

$ cMS
CMS> SHOW RESERVATIONS

$ CMS/INTERFACE
CMS> SHOW RESERVATIONS

$ CMS/INTERFACE=CHARACTER CELL
CMS> SHOW RESERVATIONS

For information on entering the CMS DECwindows interface, see
Section 2.1.

You should enter the CMS subsystem when you plan on entering a series
of CMS commands. This avoids the overhead involved with invoking CMS
multiple times.

To terminate the CMS session and return to DCL level, type EXIT or press
CTRL/Z.

Introduction to CMS

1.4 Getting Help

You can get information about CMS either at DCL level or at CMS

subsystem level. At DCL level, the DCL command HELP CMS provides

online help on CMS commands, qualifiers, and other topics. For example:

$ HELP CMS

To get help on a specific CMS command, such as the CREATE ELEMENT

command, type the command after HELP CMS. For example:
$ HELP CMS CREATE ELEMENT

You can get help at the CMS subsystem level by typing either HELP, or
HELP and the specific command. For example:

CMS> HELP CREATE ELEMENT

To get help from the DECwindows interface, see Section 2.2.

1.5 Sample Session

This section contains a tutorial example showing how to use basic CMS

features. The numbers in the example match the explanations at the end of

the example.

'Username: JONES
Password:

D $ DIRECTORY
Directory DISKX: [JONES]

CMDRMVGRO.BLI;1 CMDRMVGRO. SDML; 1 DIFF_DESIGN.MEM; 2
INSTALL-VERSION.TXT;4 INTERNAL_CUST_SITES.COM;6

LOGIN.COM; 71 MAIL FIL KEY.COM;6

NOTESSNOTEBOOK.NOTE; 1 V010-29_INSTALL.TXT;1
VO050-CALLABLE.LOG; 2

Total of 10 files.

D $ CREATE/DIRECTORY [JONES.CMSLIB]
$ CcMs

B CMS> CREATE LIBRARY [JONES.CMSLIB]

_Remark: creating new library for my project
$CMS-S-CREATED, CMS Library DISKX; [JONES.CMSLIB] created
%$CMS-I-LIBIS, library is DISKX:[JONES.CMSLIB]
$CMS-S-LIBSET, library set

Introduction to CMS

@ CMS> CREATE ELEMENT/KEEP *,*
_Remark: creating elements from default directory to new CMS lib
%CMS-S-CREATED, element DISKX: [JONES.CMSLIB]CMDRMVGRO.BLI created
%$CMS-S-CREATED, element DISKX: [JONES.CMSLIB]CMDRMVGRO.SDML created
%CMS-S-CREATED, element DISKX:[JONES.CMSLIB]DIFF DESIGN.MEM created
%$CMS-S-CREATED, element DISKX:[JONES.CMSLIB]INSTALL-VERSION.TXT created

$CMS-S-CREATED, element DISKX:[JONES.CMSLIB]V010-29 INSTALL.TXT created

$CMS-S-CREATED, element DISKX: [JONES.CMSLIB]VO50-CALLABLE.LOG created
@ cus> ExIT

$ LOGOUT

Qs cus

© cMs> SET LIBRARY [.CMSLIB]
$CMS-I~LIBIS, library is DISKX: [JONES.CMSLIB]
%$CMS-S-LIBSET, library set
-CMS-I-SUPERSEDE, library list superseded

® cvs> smow ELEMENT
Elements in DEC/CMS Library DISKX: [JONES.CMSLIB]

CMDRMVGRO.BLI "creating elements from default directory to new CMS
CMDRMVGRO. SDML "creating elements from default directory to new CMS
DIFF_DESIGN.MEM "creating elements from default directory to new CMS

INSTALL-VERSION.TXT "creating elements from default directory to new CMS

V010-29_INSTALL.TXT ‘“creating elements from default directory to new CMS
V050~CALLABLE.LOG "creating elements from default directory to new CMS

0 CMS> CREATE GROUP
_Group name: USER_MANUAL
_Remark: creating group for the project user’s manual
%CMS-S-CREATED, group DISKX: [JONES.CMSLIB]USER MANUAL created

@ CMS> INSERT ELEMENT CMDRMVGRO.BLI,CMDRMVGRO.SDML USER_MANUAL
_Remark: inserting the command routine files into group USER MANUAL
$CMS-I-INSERTED, element DISKX:[JONES.CMSLIB]CMDRMVGRO.BLI inserted into
DISKX: [JONES.CMSLIB]group USER_MANUAL
$CMS-I-~INSERTED, DISKX:[JONES.CMSLIB]element CMDRMVGRO.SDML inserted into
DISKX: [JONES.CMSLIB]group USER_MANUAL
%CMS-I-INSERTIONS, 2 insertions completed

GQCMS> CREATE ELEMENT CMS$$GSR.TXT/INPUT=DISK$$XXX: [PROJECT.PUBLIC]
_Remark: also need the shareable image
%CMS-S-CREATED, element DISKX:[JONES.CMSLIB]CMSSSGSR.TXT created

@ CMS> INSERT ELEMENT CMS$$GSR.TXT USER_MANUAL
_Remark: inserting the shareable image into group USER_MANUAL
$CMS—-I-INSERTED, element DISKX:[JONES.CMSLIB]CMSSGSR.TXT inserted into
DISKX: [JONES.CMSLIB]lgroup USER _MANUAL
%$CMS-I-INSERTIONS, 1 insertion completed

1-8 Introduction to CMS

1ib"
lib*
lib"
1lib"

lib"
1ib"

D cMS> CREATE CLASS BASELEVELL
_Remark: creating class to contain files needed for base level 1
$CMS-S-CREATED, class DISKX:[JONES.CMLSIB]BASELEVELl created

BCMS> RESERVE DIFF_DESIGN.MEM,USER MANUAL "must add topics to these files"
%CMS-I-RESERVED, generation 1 of element DISKX: [JONES,CMSLIB]CMDRMVGRO.BLI reserved
$CMS-I-RESERVED, generation 1 of element DISKX:[JONES.CMSLIB]CMDRMVGRO.SDML reserved
%CMS-I-RESERVED, generation 1 of element DISKX:[JONES.CMSLIB]CMS$$GSR.TXT reserved
%CMS-I-RESERVED, generation 1 of element DISKX:[JONES.CMSLIB]DIFF DESIGN reserved
%$CMS-I-RESERVATIONS, 4 elements reserved

BCMS> REPLACE CMS$$GSR.TXT "made two changes to table"
%CMS-S—~GENCREATED, generation 2 of element DISKX:[JONES.CMSLIB]CMS$$GSR.TXT
created

D cMS> SHOW GENERATION
Element generations in DEC/CMS Library DISKX: [JONES.CMSLIB]

CMDRMVGRO.BLI 1 23-JAN-1988 17:45:46 JONES "creating elements from
default directory to new CMS lib"

CMDRMVGRO. SDML 1 23-JAN-1988 17:46:47 JONES "creating elements from
default directory to new CMS 1lib"

CMS$$GSR. TXT 2 23-JAN-1988 18:12:18 JONES "made two changes to
table

V050-CALLABLE.LOG 1 23-JAN-1988 17:49:47 JONES "creating elements from
default directory to new CMS 1lib"

@<CMS> INSERT GENERATION CMS$$GSR.TXT/GEN=1,MAIL FIL_KEY.COM BASELEVEL1
_Remark: these generations needed in class to build baselevell
%CMS-S-GENINSERTED, generation 1 of element DISKX:[JONES.CMSLIB]}CMS$$GSR.TXT
inserted into class DISKX: [JONES.CMSLIB]BASELEVELL
$CMS-S-GENINSERTED, generation 2 of element DISKX:[JONES.CMSLIBIMAIL_FIL_KEY.COM
inserted into class DISKX:[JONES.CMSLIB]BASELEVEL1

D cMs> SHOW RESERVATIONS
Reservations in DEC/CMS Library DISKX:[JONES.CMSLIB]

CMDRMVGRO.BLI

(1) JONES 1 24-JAN-1988 17:45:46 "need to add merging to these files"
CMDRMVGRO. SDML

(1) JONES 1 24-JAN-1988 17:46:47 "need to add merging to these files"
DIFF_DESIGN

(1) JONES 1 24-JAN-1988 17:48:29 "need to add mexrging to these files"

EO CMS> SHOW GROUP USER_MANUAL/CONTENTS
Groups in DEC/CMS Library DISKX: [JONES.CMSLIB]

USER_MANUAL "creating group for the project user’s manual"
CMDRMVGRO. BLI
CMDRMVGRO. SDML
CMS$$GSR. TXT

Introduction to CMS

@ cus> ExIT
$

©@ 060600°¢

® 8 606009

User Jones logs in.

Jones displays the directory for the default directory DISKX:[JONES].
Jones creates the subdirectory [.CMSLIB] from the default directory.
Jones invokes the CMS image and enters the CMS subsystem.

Jones creates the CMS library [.CMSLIB] with the CREATE LIBRARY
command.

Jones issues the CREATE ELEMENT command. In this case, all files
from the main default directory are created as elements in the CMS
library. The files are not deleted from Jones’s default directory because
the /KEEP qualifier was specified on the CREATE ELEMENT command.

Jones exits from CMS and logs out.
Jones later logs in and reenters CMS.
Jones sets the library to [JONES.CMSLIBI.

Jones then displays all the elements in the library with the SHOW
ELEMENT command.

Jones creates a group named USER_MANUAL.

Jones then inserts the two elements CMDRMVGRO.BLI and
CMDRMVGRO.SDML into the group USER_MANUAL.

Jones decides that an element from the project directory is needed, and
specifies the /INPUT qualifier on the CREATE ELEMENT command
to indicate that the element is located in a different directory from the
default directory. Because Jones did not specify /KEEP, the file will be
deleted from the project directory.

Jones then inserts the element into the group USER_MANUAL.

Jones creates a class named BASELEVEL1 with the CREATE CLASS
command.

® Jones reserves the element DIFF_DESIGN.MEM and the group

USER_MANUAL from the CMS library. CMS places the element
DIFF_DESIGN.MEM and the contents (in this case, elements) of group
USER_MANUAL in Jones’s default directory. Jones can then modify
these files as necessary.

Jones had previously reserved the element CMS$$GSR.TXT (which

is part of the group USER_MANUAL), and made changes to that file.
Jones replaces the element from the default directory [JONES] back into
the CMS library [JONES.CMSLIB].

1-10 Introduction to CMS

® Jones issues the SHOW GENERATION command to display the last
generation on the main line of descent for each element in the CMS

library.

® Jones then inserts generation 1 of the element CMS$$GSR.TXT
and a generation of the element MAIL_FIL, KEY.COM into class
BASELEVELL. (If you do not specify the /GENERATION qualifier on an
element, CMS uses the latest generation.)

Jones displays all current reservations.
Jones displays the contents of the group USER_MANUAL.
Jones exits from CMS.

1.6 Command Summary

Table 1-1 lists and briefly describes all CMS commands.

Table 1-1: CMS Command Summary

Command

Description

ACCEPT GENERATION

ANNOTATE

CANCEL REVIEW

CONVERT LIBRARY

COPY ELEMENT

CREATE CLASS

Changes the review status of one or more genera-
tions from pending to accepted and removes them
from the review pending list.

Creates a listing file (element-name.ANN) that
includes the element history and an annotated
source listing.

Changes the review status of one or more element
generations from pending to none and removes them
from the review pending list.

Converts libraries that were created with Version
2.n of CMS for use with Version 3.n of CMS.

Copies one or more existing library elements (in-
cluding generation history and file attributes) to
form one or more new elements.

Establishes one or more classes. Once a class
is established, any set of element generations
can be placed in that class with the INSERT
GENERATION command.

(continued on next page)

Introduction to CMS 1-11

Table 1-1 (Cont.): CMS Command Summary

Command Description

CREATE ELEMENT Establishes one or more new elements in a CMS
library by moving one or more files into the CMS
library. By default, CMS deletes all copies of the
input file after creating the element.

CREATE GROUP Establishes one or more groups. Once a group is
established, any set of elements or groups can be
placed in that group with the INSERT ELEMENT
or INSERT GROUP command.

CREATE LIBRARY Creates one or more CMS libraries by loading one or
more empty directories with CMS control structures.

DELETE CLASS Deletes one or more classes from the library.

DELETE ELEMENT Deletes one or more elements from the library.

DELETE GENERATION Deletes one or more generations from one or more

DELETE GROUP
DELETE HISTORY
DIFFERENCES

FETCH

HELP
INSERT ELEMENT
INSERT GENERATION

INSERT GROUP

MARK GENERATION

elements in the library.
Deletes one or more groups from the library.
Deletes some or all of the library history.

Compares the contents of two files and creates a
listing file (filename.DIF) showing all the lines that
differ. DIFFERENCES can also compare element
generations in a CMS library, or a file to an element
generation.

Retrieves a copy of one or more specified element
generations.

Provides online CMS help.
Places one or more elements in one or more groups.

Places one or more element generations in one or
more classes.

Places one or more groups in another group or
groups.
Changes the review status of one or more gener-

ations to pending and adds them to the review
pending list.

Introduction to CMS

(continued on next page)

Table 1-1 (Cont.): CMS Command Summary

Command

Description

MODIFY CLASS

MODIFY ELEMENT

MODIFY GENERATION

MODIFY GROUP

MODIFY LIBRARY

REJECT GENERATION

REMARK
REMOVE ELEMENT
REMOVE GENERATION

REMOVE GROUP

REPLACE

RESERVE

Changes the attributes of a class from those estab-
lished with the CREATE CLASS command or with a
previous MODIFY CLASS command.

Changes the attributes of one or more elements from
those established with the CREATE ELEMENT
command or with a previous MODIFY ELEMENT

command.

Changes the attributes of one or more genera-
tions from those established with the CREATE
ELEMENT or REPLACE command or with a
previous MODIFY GENERATION command.

Changes the attributes of one or more groups
from those established with the CREATE GROUP
command or with a previous MODIFY GROUP

command.

Changes the attributes of the library from those
established with the CREATE LIBRARY command
or with a previous MODIFY LIBRARY command.

Changes the review status of one or more genera-
tions from pending to rejected and removes them
from the review pending list.

Enters a remark in the library history.

Removes one or more elements from one or more
groups.

Removes one or more generations from one or more
classes.

Removes one or more groups from another group or
groups.

Returns the most recent version of one or more
reserved generations to the library, thus creating a
new generation of each element. The reservation
ends, and CMS deletes all versions of the input file.

Delivers a copy of one or more generations and
marks them as reserved.

(continued on next page)

Introduction to CMS 1-13

Table 1-1 (Cont.): CMS Command Summary

Command Description

RETRIEVE ARCHIVE Delivers a copy of one or more generations from
one or more archive files created with the DELETE
GENERATION/ARCHIVE command.

REVIEW GENERATION Associates a review comment with one or more
generations that are currently under review.

SET ACL Manipulates access control lists on various objects
in the CMS library.

SET LIBRARY Identifies one or more existing CMS libraries so that
subsequent CMS commands refer to the specified
library or libraries.

SET NOLIBRARY Removes one or more libraries from the current
library search list.

SHOW ACL Displays the access control list associated with one
or more specified objects.

SHOW ARCHIVE Displays information about the contents of one
or more archive files created with the DELETE
GENERATION/ARCHIVE command.

SHOW CLASS Displays one or more established classes.

SHOW ELEMENT Displays information about one or more elements.

SHOW GENERATION Displays a listing of one or more established genera-
tions.

SHOW GROUP Displays a listing of one or more established groups.

SHOW HISTORY Displays a chronological listing of all CMS transac-
tions that have affected the library.

SHOW LIBRARY Displays the current library directory specification
or list of library directory specifications.

SHOW RESERVATIONS Displays a listing of all current reservations and

concurrent replacements.

Introduction to CMS

(continued on next page)

Table 1-1 (Cont.): CMS Command Summary

Command Description

SHOW REVIEWS_PENDING Displays a listing of generations that currently have
: reviews pending, and also displays any associated
review remarks. '

SHOW VERSION Displays the version number of your CMS system.
UNRESERVE Cancels an existing reservation.
VERIFY Performs a series of consistency checks on your CMS

library to confirm that all elements are present and
stored properly.

Introduction to CMS 1-15

Chapter 2
Using CMS with DECwindows

This chapter describes how you use CMS with the DECwindows interface. It
describes how to invoke CMS in the DECwindows environment, how to get
help, how to display information, and shows a sample session.

Before continuing with this chapter, you should be familiar with the basic
DECwindows concepts described in the VMS DECwindows User’s Guide.
The VMS DECwindows User’s Guide describes the DECwindows user
interface, how to begin a session, how to interact with the session manager,
how to use and manage windows, how to use the mouse to choose objects,
and how to run a DECwindows application.

2.1 Invoking CMS

To invoke the CMS DECwindows interface, enter the following command:
$ CMS/INTERFACE=DECWINDOWS

Figure 2-1 shows the menu bar and the individual menus you can select
from the menu bar.

Using CMS with DECwindows 2-1

Figure 2—1:

CMS DECwindows Title Bar and Menus

Edit

Library

View

Maintenance

Open...
Verify...
Create...

Alt/0

Capy aese

Select All

Update Alt/U

Expand =4
Collapse B
Element

Group

Class
Reservation
History

Review
Command

Restrict...
Uneesteiot
Close View

Data Customize
[Maintenance N
Insert | 2
Remove |
Create I:-)
Modify [4
Delete B
Rewew[—)
Remark
.‘:; .e. t AcL
Copy Element...
[Dato
Fetch...
Reserve...
Replace...

Unreserve...

Differences...
Annotate...

Create Element...

Show Command... Do
Message Logging...

Initial Library...

Known Libraries...

View...

Default Occlusion...
Restrict B
Save Attributes

Use Saved Attributes

Use Default Attributes

Overview...
About...
uUsing CMS Help...

In Figure 2-1, the menus are separated from the menu bar to show you all
the CMS main menus at once; you pull down one main menu at a time.

2.2 Getting Help

You obtain help in the DECwindows environment by pulling down the Help
menu. Help provides brief information about screen objects, concepts, and
tasks that you can perform in CMS.

The CMS DECwindows interface has online help that provides complete
information on all screen objects, including scroll bars, icons, menus,
dialog boxes, text fields, buttons, and functions. The online help is context-
sensitive. To get online help, follow these steps:

1. Position the pointer on the desired object.
2. Press and hold the HELP key while you press MB1.

2-2 Using CMS with DECwindows

3. Release both keys.

A Help window opens to display information about the object.

2.3 Displaying CMS Information in DECwindows

You display and obtain information about CMS objects through views. Views
replace the CMS SHOW commands.

In the DECwindows environment, CMS provides the following types of
views:

¢ Element

e Group

¢ (Class

¢ Reservation

¢ History

* Review

¢ Command

When you invoke the CMS DFE.Cwindows interface for the first time, CMS
displays an Element View. This is a view of all elements in your current
library. However, if you have opened multiple libraries, CMS displays each
library name. To obtain a different view, follow these steps:

1. Pull down the View menu.

2. Choose the desired view.

CMS displays the appropriate view for the type you choose; for instance, if
you choose a group view, CMS displays the names of all the groups in the
library. However, if you have more than one library open, CMS displays only

each library name. You must then expand each library into the groups it
contains.

Displaying More Than One View

A single view can display only one type of information at a time; however,
you can display multiple view windows. To obtain multiple view windows,
follow these steps:

1. Pull down the View menu.
2. Choose the New menu item; the New submenu appears.

Using CMS with DECwindows 2-3

3. Choose the desired view.

CMS displays an additional window with the view you choose.

You can display any number of views that you want; each view is indepen-
dent of other views. By using CMS views, you can quickly and easily choose
objects on which you want to perform functions.

Restricting Views

You can restrict views to display objects meeting certain criteria. For
instance, you could restrict a Reservations View to display only reservations
made by a particular user by following these steps:

1. Pull down the View menu.

2. Choose the Reservations menu item.
3. Pull down the View menu.

4. Choose the Restrict... menu item.

A dialog box appears, enabling you to specify the user name for which CMS
should display reservations.

Customizing Your Initial View

CMS enables you to customize your CMS session by specifying which view
you want displayed on startup. Do this by following these steps:

Pull down the Customize menu.
Choose the View... menu item.
Choose the desired view.

Pull down the Customize menu.

S

Choose the Save Attributes menu item.

You can also obtain information about CMS objects by expanding them. See
Section 2.3.1 for more information.

2.3.1 Expanding and Collapsing CMS Objects

The CMS DECwindows interface provides the following ways to expand and
choose objects:

¢ Double-click on an object to expand it.

24 Using CMS with DECwindows

Choose a menu item, then specify the name of the object in the associ-
ated dialog box. Or, first click on an object and then choose a menu item
and provide information about it in the associated dialog box.

Click on an object, then press MB2 to obtain a pop-up menu.

The following sections describe these methods.

2.3.1.1 Double Clicking
Figure 2-2 shows the group DOC_TEST expanded to show its children.

Figure 2-2: Expanding a Group

FX VAX DEC/CMS: Group View

Library Edit View Maintenance Data Customize Help
A Library DISKX: [JONES. CHSLIB] ke
(b croup ARTWRK *group containing all doc. artwork* o
Qb 6roup CLEANUP “use these files for cleaning up project directories®
(B 6roup DOC_TEST *documentation files*
(I 6roup ARTWRK
O BASCFE.REQ
O BASCOM. REQ
O BASHLPFMT. BAS
O BaSIC. CLD
Qb 6roup ROUTINES "startup routines *
[0}
ad
o — 1D

To expand this group using double clicking, follow these steps:

1. Pull down the View menu.

2. - Choose the Group menu item.

3. Double click on the desired group (in this example, group DOC_TEST).

Using CMS with DECwindows 2-5

Group DOC_TEST expands into its components, including elements and any
other groups that are contained in group DOC_TEST. Double clicking on the
element BASCOM.REQ expands it into its generations.
NOTE

If an item is expanded fully, double clicking collapses the informa-

tion into the previous level of information.
You can also expand an object by choosing a function. For example, to
expand the group DOC_TEST, follow these steps:
1. Click on the desired object (in this example, group DOC_TEST).
2. Pull down the View menu.
3. Choose the Expand menu item; the Expand submenu appears.
4. Choose the Children submenu item.

Section 2.3.1.2 contains more information about choosing a function.

2.3.1.2 Choosing a Function

Most of the functions performed on CMS objects are grouped into two menus:
Maintenance and Data. The Maintenance menu contains all the functions
that are completely internal to CMS libraries, while the Data menu contains
all the functions that involve data transfers between CMS libraries and
external files.

To choose an object and perform a specific operation, use one of the following
methods:

* (Click on an object, then choose a menu item and provide information
about the object in the associated dialog box. For example, to reserve an
element, follow these steps:

1. Click on an element.
2. Pull down the Data menu.
3. Choose the Reserve... menu item.

A dialog box appears, with the name of the element you have chosen in
the Selected list box. You can then enter additional information about
the element and the reserve function, and click on the OK button.

¢ Choose a menu item, then specify the name of the object in the as-
sociated dialog box. For example, to reserve an element, follow these
steps:

1. Pull down the Data mehu.

2-6 Using CMS with DECwindows

2. Click on the Reserve... menu item.
3. Click on the Element field in the Reserve... dialog box.

4. Fill in the Element field with the name of the element you want to
reserve.

You can then enter additional information about the element and the
reserve function, and click on the OK button.

.3.1.3 Using the Pop-Up Menu

CMS provides a pop-up menu enabling you to quickly access some of the
most commonly used CMS functions. You can use the pop-up menu with any
CMS object that can be used in those functions.

To get the pop-up menu, press and hold MB2. Or, to first choose an object
for the operation, click on the object, then press and hold MB2 to get the
pop-up menu.

Figure 2-3 shows the pop-up menu.

Figure 2-3: CMS Pop-Up Menu

Update Alt/U
gxpand B
Callase B
Fetch
Reserve...
Replace...

2.4 CMS Command Correspondence

Most command-line interface CMS commands have a corresponding menu
path in the DECwindows interface; however, there is not a complete one-
to-one correspondence. Because you execute commands in DECwindows by
selecting objects on your screen instead of typing command lines, certain
CMS functions are not applicable in the DECwindows environment.

The following list describes those CMS commands that are not included in
the CMS DECwindows interface:

¢ CONVERT LIBRARY

Using CMS with DECwindows 2-7

¢ RETRIEVE ARCHIVE
* SHOW ARCHIVE

You can invoke the CMS command line from the DECwindows interface by
entering command mode. Do this by following these steps:

1. Pull down the Customize menu.
2. Choose the Show Command... menu item.

A dialog box appears, containing an output window and the CMS command-
line prompt. Enter CMS command-line interface commands at the CMS
prompt (CMS>). CMS displays the resulting command output in the output
window (see Figure 2-10).

2.5 Sample CMS DECwindows Session

This section shows examples that use CMS with DECwindows.

NOTE

Many of the figures in this section show dialog boxes from which
you initiate tasks. These figures also show the menu and menu
item from which the dialog box is invoked.

2.5.1 Creating a CMS Library

Figure 2—4 shows how to create a new CMS library. Do this by following
these steps:

1. Pull down the Library menu.
2. Choose the Create... menu item.
3. Specify the directory name in the subsequent dialog box.

To specify an existing library, follow these steps:

1. Pull down the Library menu.
2. Choose the Open... menu item.
3. Specify the library name in the subsequent dialog box.

2-8 Using CMS with DECwindows

Figure 2—4: Creating a New CMS Library

VAX DEC/CMS: Group View {EHE
Edit View Maint Data Customize Hel
Alt/0 |cmsLiB)

Open...
Verify...

Create... Il
Close.. oty ______________B&i]

Set Directory... Library | [wORK.CMSLIB]
Close View
.................................... Rema"k I“brary for new pl’o]act‘:

Reference Copy Directory [I

Search List Position

® New
QO First
O after |fafter all libraries
O Last

u OK JI l Canc:l=|

ac___________—___—_____—___—________________________________1p

R ——————— 3 [i

2.5.2 Creating an Element

Figure 2-5 shows how to create the element HELP_STRUCTURE.COM. The
Create Element... submenu is pulled down from the Data menu, and the
resulting dialog box is popped up. The user has filled in the Element and
Remark field with an element name and remark, respectively.

Using CMS with DECwindows 2-9

Figure 2-5: Creating an Element

:

[&] vAX DEC/CMS: Element View
Library Edit View Maintt Customize He

. Create Element ° l@! Fetch...

Reserve...
Element | HELP_STRUCTURE.COM Ranl
Remark command file to run online HELP| ~
D ll’lput File L

I —— ———ess——] 3 Y i

Unreserve...

Confi y ti Differences...

B Confirm each creation

O belete Input Files Annotate... .
Reserve New Element Create Element... |

Element Attributes

Allow Concurrent Reservations tions file

- er: 640 BAS D"
] Refarence Copy

[mark new generations for review
[0 Notes
Format |¥#c Column [j8o cription file*

er Options file"

-) iotion file"
OHistory O ag Roginning $ At Bnd cription £1

Format |§un s file for V3.2*

e —) D
0K Cancel
=l

2.5.3 Displaying Two Views

In Figure 2-6, the library class structure is shown in the first view; the View
menu is pulled down, and a new element view is chosen. The second view
contains the element view. The element BASCOM.REQ has been expanded
(by double clicking) to show its generations.

2-10 Using CMS with DECwindows

Figure 2-6: Displaying Two Views

[EL vax pEc/cws: Class View &R
Library Edit View Maintenance Data Customize Hel,
A Library DISKX: [JONES. CMSLIB]

£F Class BL1 ‘A class for a baselevel"
£F class BL2 “a class for a baselevel*
£2 Class BL3 “a class for a baselevel®
£ class BL4 *A class for a baselevel®

VAX DEC/CMS: Element View

T ——— > [}

Library Edit Maintenance Data Customize Help
A Library DISKX: () Update ~ Al/y =

O BASCFE.REQ Expand £ 1=

O BasCoM. REQ Collapse E>

O BASHLPFMT.BAS| oo

O BaszIc. cLD Group

O BaSIG.LSE Class

O BASICBNF. PRE Reservation — 2

O BASICBNF.REQ History

O BASICDEBUG. 0B poiiav

O BASIOMSG.NSG | onond

0 BASTCMSOOLD. P

O BASICPROD. OPT [Element |

O Bastoraie. Ly Kot Group

O BasTC V24108 Unrestelot Class)

O BASIC V3. 1015 Close View Reservation

O BasIc_v3l.MmMs “Initial | History

O BasIc_v32.mMs *mainteny] Review Z
3T Command =35

2.5.4 Inserting a Generation into a Class

In Figure 2-7, generation 6 of the element BASCOM.REQ has been chosen
for the Insert Generation function. The Selected list box confirms that
generation 6 of BASCOM.REQ is being inserted into class BL2.

Using CMS with DECwindows 2-11

Figure 2-7: Inserting a Generation into a Class

VAX DEC/CMS: Element View |2
Library Edit View Maintenance Data Customize Help
A Library DISKX:[JONES. crsL|JURTES Element... e

QO BASCFE. REQ Remove E Graup... o

O BasoOM. EQ ‘ Create e
&9 11-JUN-1986 14 Modify |4
=g 9-JUN-1986 2§ pelete E> |selected
7 16-APR-1986 1§ oo

15-APR-1986 1] :t::'r:::(... © | eascomrears ﬁ

=5 11-BBR-108 2] v s
74 24-SEP-1985 19 LA o
&3 23-sep-1985 2q Cony Homent at 150
&2 14-SEP-1985 09:53:35.36 HOBDAY Hlement
&1 21-AUG-1984 15:03:26.64 SIMONS Genoration e

O BASHLPEMT.BAS *Initial load" -

O Basic.CLD *Initial load" Class L]

O BASIC.LSE “Initial version” Remark project requirements documeng

O BASTCBNE. PRE “Grammar tables* Confirm each generation inserted

O BASICBNF.REQ *Initial load* Insert Option

Q l) O Al 44
. Q If Absent
QO Supersede if Present
@ None
()] L Oculude] Concel]
L

2.5.5 Reserving an Element

In Figure 2-8, the latest generation of the element BASCOM.REQ is
reserved. Because BASCOM.REQ has already been chosen, the Reserve
dialog box shows BASCOM.REQ in the Selected list box (the \ 1+ following
the element generation name indicates the latest generation, and is included
by default).

2-12 Using CMS with DECwindows

Figure 2-8: Reserving an Element

] VAX DEC/CMS: Element View
Library Edit View Maintenance

A Library DISKX: [JONES. CMSLIB]
O BASCFE. REQ “Initial load"

“Initial load*

O BASHLPFMT. BAS

Selected

BASCOM.REQ\1+

(] R 3

G s
Element |

Genagration l}l +

Remark [need to change last parametei]

Confirm each element reserved

| Reserve... |
Replace...
Unreserve...

Differences...
Annotate...

Create Element...

ions file"
r: 640 BAS D*

r Options file"

ription file®
ription file*

do—1__——— ——— 19D

2.5.6 Modifying an Element

In Figure 2-9, the element BASCOM.REQ is chosen for the modify transac-
tion. Because BASCOM.REQ has already been chosen, the Modify Element
dialog box shows BASCOM.REQ in the Selected list box (the \ 1+ following
the element generation name indicates the latest generation, and is included

by default).

Using CMS with DECwindows 2-13

Figure 2-9: Modifying an Element

VAX DEC/CMS: Hement View
Library Edit View faintenance Data [ize Help
A Library DISKX: [JONES.CMSL| Insert B>
O BASCFE.REQ 4 Remove B
Q Create B
-T:Iodify Element ‘
Selected Delete @ o g croup...
Review E Class...
BASCOM.REQ\1+ Remark... Generation...
SetACL. Library...
Copy Element... M
<l Y AS D
Element
ptions file* -/
Remark new gens of element to be reviewed
tion file"
Confirm each element modified tion file"
Modify
Allow Concurrent Reservations @ on O off te for v3.2"
S —]
@] Reference Copy @ on O off SO
Mark new generations for review @® on O Off

[creation Remark II

[Notes O on @ Off
Format Inc Colunm lIsL

O History & 0t {3 At Boginning U At Ead
Farmat i’""

[] New Element Name lz

L o=

OK Geelde... Cancel
M

e

2.6 Customizing Your CMS DECwindows Interface

The CMS DECwindows interface enables you to conveniently customize

many options, including:

* Message logging options
¢ The initial library to open each time you enter CMS

2-14 Using CMS with DECwindows

* A library (or libraries) that are most commonly used, which you can
specify once, then conveniently open by choosing them from a list

¢ The default view to be displayed each time you enter CMS
¢ The default occlusion

¢ Default restrictions for each view type

Figure 2-10 shows the command mode dialog box. The command SHOW
LIBRARY has been entered at the CMS command line prompt (CMS>), and
the resulting information is displayed in the output box.

Figure 2-10: Command Mode

VAX DEC/CMS: Element View | i (5]
Library Edit View Maint Data Help
& Library DISKE: [JOES. CHSLIB) [Show Command... __Ds_] =
O BASCFE.REQ *Initial load" .I.vie:s'sage Loggi.ng... =
O BASCOM.REQ "Initial load" Initial Library...
O BASHLPFMT. BAS "Initial load* Known Libraries...
O BASIC.CLD “Initial load" View...
O BASIC.LSE *Initial version” pefault Occlusion...
O BASICBNF.PRE *Granmar tables"* Restrict B
O BASICENF.REQ *Initial load" Save Attributes
O BASICDEBUG. OPT *Debug Linker Options filel |, o o vad attributes
Use Default Attributes
O
SHOW LIBRARY
Your CMS library list consists of: T
CMS$:[CMS.DEMO.CMSLIB]
O
al 1D é
CMS> SHOW LiBRARY] | =
I3
Clear Command Window 1 l CanceIJ e

In Figure 2-11, the view display has been customized to show the library
structure in outline form. The element BASCOM.REQ has been expanded to
show its generations.

Using CMS with DECwindows 2-15

Figure 2-11:

Outline View

Al VAX DEC/CMS: Element View

Library Edit View Maintenance Data 0 Views
A Library DISKX: [J0NES. cusL1z]] Show Command... = 00 | Startup view
| O BascrE. REQ "Initial load"] ge Logging... @ Element
Initial Library... O Group
—{ O Bascou. rEQ “Initial 1oad"] | Known Libraries... O Class
=g 11-JUN-1986 13:49:08.34 Layl VieWe J O Reservation
Default Occlusion... O History
— <=8 9-JUN-1986 22:17:01.87 HOI pactrict &> O Review
=7 16-aPR-1986 12:41:57.98 HOi Save Attributes O Command
| =6 15-aPr-1986 13.58:30.21 nofl US° sa';:dlm'"’:te‘ Display Style
Use Default Attributes
1 1 O Textual
=~ 11-APR-1 :52:13. "
— <=5 1-APR-1986 21:52:13.83 HOB T 7 Nanbe ® outline
{4 24-sEp-1985 19.35:56.59 HOBDAY "Edit Entry Numbe O Tree
=3 23-sEP-1985 22:38:46.44 HOBDAY “Edit Entry Nambel | __OK | | cancel I
<2 14-sEP-1985 09:53:35, 36 HOBDAY "Edit Entry Nunber: 722 BAd|| .
<71 21-AUG-1984 15:03:26.64 SIMONS *Initial load’] 3
S R s |

In Figure 2-12, the Customize Restrict History dialog box is shown. The
user has specified that the history view contain only elements with the file
type .REQ that have been modified, created, or deleted in the last 30 days

by user SMITH.

2-16 Using CMS with DECwindows

Figure 2-12: Restricting History

fA] VAX DEC/CMS: Element View . |
Library Edit View Maintenance Data Customize Help
A Library DISKX: [JONES.CMSLIB] DO &
Customize Restrict History Logging... O
Objects l“‘-REd Initial Library...
Known Libraries...
Since [-3d view...
User Name |smiTH pefault Occlusion...
Before l Element
Save Attributes Group
O unusual Transactions Only Use Saved Attributes Class
Transactions to View Use Defauit Attributes Reservation
Review
[copy Create Delete O Fetch O insert
[Modify [0 Remark [JRemove [JReplace [JReserve
[unreserve [verify [set [Accept [Cancel
O mark [Reject O Review
[
| OK I | Cancel I v
[

Using CMS with DECwindows 2-17

Chapter 3

Libraries

A CMS library consists of a set of defined objects that can be operated on
by CMS commands. A CMS library resides in a directory that has been
initialized for use solely by CMS.

This chapter discusses how to create and use CMS libraries and how to
control occlusion of CMS objects, and describes library locking.

3.1 Creating Libraries

This section describes how to create a CMS library. First, you must create
a directory to contain the library; then you create the library, and create
elements in it.

You can also optionally create a reference copy directory. A reference copy
directory is a directory used for storing copies of the latest generation

on the main line of descent for specified elements in a CMS library. See
Section 3.1.4 for more information.

3.1.1 Creating the Directory

You create a directory to contain your CMS library by using the DCL
command CREATE/DIRECTORY. The format of the command is as follows:

CREATE/DIRECTORY directory-specification
For example:

$ CREATE/DIRECTORY [PROJECT.CMSLIB]

Libraries 3-1

The name PROJECT identifies the first-level directory. This command
creates the empty subdirectory [.CMSLIB] within the directory [PROJECT].
For more information on the CREATE/DIRECTORY command, see the VMS
DCL Dictionary.

A directory specification can refer to either a first-level directory or a
subdirectory. To create a first-level directory, you must have write access to
the master file directory (MFD) on the volume on which you are creating
the directory. Normally, on a system volume, only users with a system
user identification code (UIC) or the SYSPRV or BYPASS user privilege are
allowed write access to the MFD to create a first-level directory. To create a
subdirectory, you must have write access to the next higher directory level.
For more information on directory specifications, see Chapter 10.

NOTE

You should not place any version limit on a CMS library; CMS
automatically purges and deletes unused files within a library. A
library must have a file retention count of at least 2 to allow error
recovery in case of system failure.

VMS limits directory trees to a depth of eight. Because CMS
may create subdirectories, you should not create a library in an
eighth-level directory.

If you want to place access control lists (ACLs) on the library directory,
you should do so before you create the library, so that files created during
library creation are assigned the correct protection. See Chapter 7 for more
information on ACLs.

3.1.2 Creating the Library

3-2 Libraries

You create a CMS library with the CREATE LIBRARY command. The
CREATE LIBRARY command creates CMS control files in the specified
directory. The directory must exist and must be empty. Once you create

a library in a directory, CMS uses that directory to locate and store files.
Note that your default directory cannot be a CMS library. After you create a
library with the CREATE LIBRARY command, all further CMS commands
refer to this library until the end of the terminal session, until you specify

a different library with the SET LIBRARY command, or until you deassign
the library list with the SET NOLIBRARY command.

The following command initializes a library in the empty directory
[PROJECT.CMSLIBI:

$ CMS CREATE LIBRARY [PROJECT.CMSLIB]

_Remark: test procedure library

%CMS-S~-CREATED, CMS library DISKX: [PROJECT.CMSLIB] created
%CMS-I-LIBIS, Library is DISKX:[PROJECT.CMSLIB]
$CMS-S~-LIBSET, CMS library set

CAUTION

Once the library is created, you should access it only with CMS
commands. If a library has been accessed by means other than
CMS, it may result in unrecoverable library corruption. Files that
have been placed into the library directory by means other than
CMS may be deleted by CMS when the library is verified and
repaired (see Chapter 9).

You can create more than one library with the CREATE LIBRARY command
by specifying a list of directory specifications separated by commas. For
more information, see Section 3.2.

The CREATE LIBRARY command also allows you to optionally specify a
directory to be used for maintaining reference copies of library elements.
For information about using reference copy directories, see Section 3.1.4.

3.1.3 Creating Elements in the Library

You store a file in a CMS library with the CREATE ELEMENT command.
CREATE ELEMENT uses the input file you provide to create the first
version of an element. This first version represents generation 1 of the
element. An element represents all of the versions of a particular file as it is
developed. Every element in the CMS library must have a unique name.

The following is an example of the CREATE ELEMENT command:

$ CMS CREATE ELEMENT OUTPUT.FOR "ascii output format routines"
$CMS~S-CREATED, element [PROJECT.CMSLIB]OUTPUT.FOR created

This command creates the element named OUTPUT.FOR. Generation 1 of
element OUTPUT.FOR now exists in the library.

The file specified in the CREATE ELEMENT command must be present

in your current default directory (unless you specify a different location

by using the /INPUT qualifier). CMS deletes all copies of that file from
the default or specified directory after creating the new element. You can
override this default by specifying the /KEEP or /RESERVE qualifier on the

Libraries 3-3

CREATE ELEMENT command. The contents of the file used to create the
element become generation 1 of that element.

CMS can store and operate on nontext files; however, CMS cannot store
directory files.

There is no explicit limit on the number of elements (or groups or classes)
that can exist in a library. However, there may be limits imposed by your
system configuration including system, process, disk space, and virtual
memory limitations.

To create an element in the library, you must have read access to the file
from which you are creating the element.

Figure 3-1 shows the process of establishing a library and creating elements
in it. See Chapter 4 for more information about elements.

3-4 Libraries

Figure 3-1: Building a CMS Library

Project

~_

(Before CMS Directory Setup)

DISKX:

Project

CcMsLIB

CMS Data Structures

Project

cMmsLiB

\—/

2. CMS Library Established Using
CMS CREATE LIBRARY Command

1. CMS Directory Established Using
$CREATE/DIRECTORY Command

T e Y
~

Project

cMsLIB

CMS Data Structures

ADCONVERT.BAS
SAMPLE.BAS
SPEC.RNO
SYNCHRON.BAS
TIMETST.COM

\-—/

3. Library Elements Inserted Using
CMS CREATE ELEMENT Command
2ZK-0369-GE

Libraries 3-5

3.1.4 Cre

ating a Reference Copy Directory

A reference copy directory is a directory in which CMS maintains a copy of
the latest generation on the main line of descent of each element.

The reference copy directory cannot be a CMS library, nor can it be a
subdirectory of a CMS library directory. Although CMS allows different
libraries to be assigned the same reference copy directory, it is strongly
recommended that you assign each CMS library its own unique reference
copy directory.

To establish a reference copy directory, first create a directory (see
Section 3.1.1), and then use the /REFERENCE_COPY qualifier with the
CREATE LIBRARY or MODIFY LIBRARY command. The /REFERENCE_
COPY qualifier directs CMS to store the name of this directory in the li-
brary, creating a permanent association between the CMS library and this
directory (unless you enter a MODIFY LIBRARY/NOREFERENCE_COPY
command, which removes this association). For example:

$ CREATE/DIRECTORY [PROJECT.CMSLIB]

$ CREATE/DIRECTORY [PROJECT.REFCOPY]

$ CMS CREATE LIBRARY [PROJECT.CMSLIB]/REFERENCE_COPY=[PROJECT.REFCOPY]
_Remark: Master library with reference copies

%$CMS-S-CREATED, library DISKX:[PROJECT.CMSLIB] created

3—6 Libraries

In this example, the first CREATE/DIRECTORY command creates the CMS
library directory [PROJECT.CMSLIB]; the second CREATE/DIRECTORY
command creates the reference copy directory [PROJECT.REFCOPY].

The CREATE LIBRARY command initializes a CMS library in the
[PROJECT.CMSLIB] directory and creates a permanent association between
the CMS library and the [PROJECT.REFCOPY] directory.

Once a reference copy directory is established for a library, CMS maintains
reference copy files in that directory. Every time you create a new main-line
generation of an element (by using CREATE ELEMENT or REPLACE),
CMS updates the reference copy of that element. Existing elements in

the library will not have the reference copy attribute set. Use the
/REFERENCE_COPY qualifier on the MODIFY ELEMENT command to
enable the reference copy attribute on those elements for which reference
copies are to be maintained. See Section 4.5.3 for more information.

The following commands assign an existing CMS library a reference copy
directory and create reference copies for existing elements:

$ CREATE/DIRECTORY [PROJECT.REFCOPY]

$ CMs

CMS> SET LIBRARY [PROJECT.CMSLIB]

CMS> MODIFY LIBRARY/ REFERENCE_COPY=[PROJECT.REFCOPY]

_Remark: Establish reference copy directory

CMS> MODIFY ELEMENT/REFERENCE_COPY *.* "enable reference copy"

The MODIFY LIBRARY command establishes the directory [PROJECT.REFCOPY.
as the reference copy directory for the current CMS library [PROJECT.CMSLIB].
The MODIFY ELEMENT command changes the reference copy attribute

for all currently existing elements and creates reference copies for them. Use

the SHOW LIBRARY/FULL command to display the directory specification

of a reference copy directory.

If you do not want some elements to have reference copies, modify those
elements with the /NOREFERENCE_COPY qualifier on the MODIFY
ELEMENT command. See the descriptions of the CREATE ELEMENT
and MODIFY ELEMENT commands in the Command Dictionary for more
information.

CMS does not create reference copies for any variant generations. CMS
maintains a reference copy only of the latest generation on the main line of
descent of each element.

3.2 Using Libraries

When you invoke CMS, you must explicitly set up a library environment to
tell CMS which library (or libraries) you want to use. This sets a library
search list. You do this by either creating a new library or libraries (with
the CREATE LIBRARY command), or by selecting an existing library or
libraries (with the SET LIBRARY command).

A CMS library search list is a list of one or more libraries. When CMS
operates on multiple libraries, it accesses them in the order that you
specified when you set the library list. If you invoke CMS and do not
establish at least one library in the library search list, you receive an error
indicating that your library environment is undefined and your library
search list is empty.

Libraries in the library search list do not need to be related; each library

is complete and self-contained. You can specify libraries in any order, but

a library can appear only once in the library search list. You can specify a
maximum of 128 libraries in a library search list.

After you establish a library search list, that list remains in effect for all
further CMS commands until you modify it with the CREATE LIBRARY
command or SET [NOJLIBRARY command, or log out.

Libraries 3-7

3.2.1 Setting Libraries

You set one or more libraries by entering the SET LIBRARY command,

or the CREATE LIBRARY command, which performs an implicit SET
LIBRARY operation. The SET LIBRARY command defines a DCL logical
name, CMS$LIB, which points to the library or libraries you have selected.
After you have selected a library or libraries, all CMS commands you enter
refer to the CMS$LIB library list. The library list exists until you enter
another SET LIBRARY, SET NOLIBRARY, or CREATE LIBRARY command,
or log out.

You can enter one or more library directory names as a parameter
to the SET LIBRARY command. For example, to set your library to
[PROJECT.CMSLIBI, enter the following command:

$ CMS SET LIBRARY [PROJECT.CMSLIB]

%CMS-I-LIBIS

, library is DISKX: [PROJECT.CMSLIB]

%$CMS-S-LIBSET, library set
%CMS-I-SUPERSEDE, library list superseded

This command sets (or resets) the library search list to contain only the
library [PROJECT.CMSLIB].

To set your library search list to contain more than one library, you would
specify multiple libraries separated by commas. For example:

CMS> SET LIBRARY [PROJECT1.CMSLIB], [PROJECT3.CMSLIB]
%$CMS-I-LIBIS, library is DISKX:[PROJECT1.CMLSIB]
$CMS-I~-LIBINSLIS, library DISKX:[PROJECT3.CMSLIB] inserted at end of library

list

%CMS-S-LIBSET, library set

This command sets (or resets) the library search list to contain only the two
libraries [PROJECT1.CMSLIB] and [PROJECT3.CMSLIB].

If you try to set your library to a directory that has not been initialized
by CREATE LIBRARY, CMS$LIB becomes undefined and CMS issues a
warning message.

3.2.2 Modifying Library Lists

CMS> CREATE

To add libraries to an established library search list, use the /BEFORE and

/AFTER qualifiers on the CREATE LIBRARY or SET LIBRARY command to
control the placement of the new libraries in the existing library search list.
For example:

LIBRARY [PROJECTL.CMSLIB], [PROJECT3.CMSLIB]

CMS> SET LIBRARY [PROJECT2.CMSLIB]/BEFORE=[PROJECT3.CMSLIB]

3-8 Libraries

In this example, the CREATE LIBRARY command establishes the li-
brary search list consisting of the two libraries [PROJECT1.CMSLIB] and
[PROJECT3.CMSLIB]. The SET LIBRARY command inserts the library
[PROJECT2.CMSLIB] in the library search list. The library search list now
consists of three libraries: [PROJECT1.CMSLIB], [PROJECT2.CMSLIB],
and [PROJECT3.CMSLIB], in that order.

If you specify either the /BEFORE or the /AFTER qualifier without a value,
the new library (or libraries) are added to the existing search list either
before or after the entire library list, respectively.

If you do not specify either qualifier, a new library search list is created,
replacing the entire existing library search list.

To remove one or more libraries from the existing search list, use the SET
NOLIBRARY command. The SET NOLIBRARY command accepts one or
more library directory specifications, which are then removed from the list,
leaving the rest of the list intact. If you do not specify a library directory,
every library from the entire library search list is removed, and the library
search list becomes undefined. See the Command Dictionary for more
information on the SET NOLIBRARY command.

3.3 Controlling Occlusion in Multiple Libraries

CMS operates on your library search list by searching through the library
(or libraries) in the list. If you have more than one library in the search
list, CMS searches the libraries one at a time in the order they appear in
the search list, until a specified object is found. Once the object is found,
CMS performs the specified operation on the object, and by default does not
continue to search for the object in any of the remaining libraries.

Objects with the same name can exist in more than one library. When
an object exists in more than one library of a library search list, CMS
processes only the first occurrence of the specified object and ignores any
later instances of that object in subsequent libraries. This behavior is
occlusion; that is, the first instance of the object occludes any subsequent
instances of that object. For example:

CMS> SET LIBRARY [BOCK.CMSLIB]}, [EXAMPLES.CMSLIB], [TEMP.CMSLIB]
CMS> FETCH TESTBAS.SDML "fetch first instance"

In this example, CMS searches the library list, starting with the library
[BOOK.CMSLIB], then [EXAMPLES.CMSLIB], then [TEMP.CMSLIBI.
When CMS locates the element TESTBAS.SDML, it fetches the ele-
ment from the first library in the list in which it finds it. For example,
if the element TESTBAS.SDML existed in [EXAMPLES.CMSLIB]

Libraries 3-9

and in [TEMP.CMSLIB], CMS would fetch the element only from
[EXAMPLES.CMSLIB], because that element would occlude the element in
[TEMP.CMSLIB].

You control occlusion with the /OCCLUDE qualifier. The /OCCLUDE
qualifier has the following format:

/OCCLUDE[=options,...]

You can specify the following options with this qualifier:
¢ [NOICLASS—controls occlusion for classes

¢ [NOJELEMENT—controls occlusion for elements

¢ [NOIGROUP—controls occlusion for groups

* [NOJOTHER—controls occlusion for library attributes, history, com-
mands, the class list, the element list, and the group list

e ALL
* NONE

You can specify either ALL or NONE, or one or more of the remaining
keywords in any combination. If you do not specify a keyword on the
/OCCLUDE qualifier, the default is /OCCLUDE=ALL. The ALL keyword
enables occlusion for all four object types; the NONE keyword disables
occlusion for all four object types. To disable occlusion for a specific object,
use the /OCCLUDE qualifier with a negated keyword. For example:

$ CMS SET LIBRARY [WORK.CMSLIB], [PROJECT.CMSLIB]

$CMS-I-LIBIS, library is DISKX:[WORK.CMSLIB]

%CMS-I-LIBINSLIS, library DISKX:[PROJECT.CMSLIB] inserted at end of library
list :

$CMS-S-LIBSET, libre.y set

$CMS-I-SUPERSEDE, library list superseded

$ CMS FETCH SAMPLE.PAS/OCCLUDE=NOELEMENT "fetch all instances"

$CMS—-S-FETCHED, generation 1 of element DISKX: [WORK.CMSLIB]SAMPLE.PAS fetched
%CMS~-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.PAS;2 created
%$CMS-S-FETCHED, generation 1 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched

This command produces two copies of SAMPLE.PAS—the latest generation
from library [WORK.CMSLIB], and the latest generation from library
[PROJECT.CMSLIB].

Note that first CMS fetches the first instance of the file SAMPLE.PAS
and then fetches the second instance, which creates a newer version of
SAMPLE.PAS.

3-10 Libraries

3.3.1 Occlusion of Multiple Object Types in a Command

Many CMS commands allow you to specify more than one object type on
a command line. For instance, you can specify an element specification
consisting of a list of element names and group names, as in the following
example:

$ CMS FETCH CODE,BUILD.COM "fetch all code and the build procedure"

In this example, the group CODE represents all program source modules,
and the element BUILD.COM is the build procedure to compile and link the
program.

You can also specify a command in which objects of one type are inserted
into or removed from objects of a different type. For example:

$ CMS INSERT ELEMENT MAIN.BAS CODE "insert main module into CODE group"
This command inserts the element MAIN.BAS into the group CODE.

When you specify multiple object types in a CMS command, CMS simul-
taneously performs occlusion on all applicable objects. Specifically, in the
preceding example, CMS simultaneously performs occlusion on the elements
and the groups, and ignores occlusion for other object types.

A special case occurs when you use a group name as an element specifica-
tion. In this case, the elements in the group occlude subsequent instances
of those elements (if element occlusion is enabled). In such cases, CMS
performs element occlusion even if the specification contained only group
names.

The following two examples show the difference between using a group
name as an element specification and using a comma-separated list
of the same element names that are in the group. In these exam-
ples, the default directory is [WORK], the current library search list
is set to [WORK.CMSLIB],[PROJECT.CMSLIB]; the group SAMPLES
is in [PROJECT.CMSLIB] and contains the elements SAMPLE.PAS
and SAMPLE.DAT. The library [WORK.CMSLIB] does not contain any
groups, but does contain the same elements. The examples correspond with
Figure 3-2.

CMS> FETCH SAMPLES

_Remark: fetch 1lst instance of element generations from group SAMPLES

%CMS-I-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.DAT fetched

%CMS-I-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched
%CMS-I-FETCHES, 2 elements fetched

Libraries 3-11

CMS> FETCH/OCCLUDE=NOELEMENT SAMPLES

_Remark: fetch all instances of element generations from group SAMPLES
%$CMS-I-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.DAT fetched
%CMS-I-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB])SAMPLE.PAS fetched
%CMS-I-FETCHES, 2 elements fetched

In this case, the group SAMPLES is used as the element specification. Note
that the /OCCLUDE qualifier has no effect; two elements are fetched in each
case. Although the two elements SAMPLE.DAT and SAMPLE.PAS exist

in the first library [WORK.CMSLIB], they are not fetched because CMS
looks for the elements in group SAMPLES, which is in the second library
[PROJECT.CMSLIB]. Since there are no further occurrences of SAMPLES,
the two elements in the second library are fetched.

CMS> FETCH SAMPLE.DAT, SAMPLE.PAS

_Remark: fetch first instance of sample elements

%CMS-I-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.DAT fetched
$CMS-I-FETCHED, generation 1 of element DISKX: [WORK.CMSLIB]SAMPLE.PAS fetched
%$CMS-I-FETCHES, 2 elements fetched

CMS> FETCH/OCCLUDE=NOELEMENT SAMPLE.DAT, SAMPLE.PAS

_Remark: fetch all instances of sample elements

%CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.DAT;2 created
%CMS-I-FETCHED, generation 1 of element DISKX: [WORK.CMSLIB]SAMPLE.DAT fetched
$CMS-I-FILEXISTS, file already exists, DISKX:[WORK])SAMPLE.DAT;2 created
%CMS~I-FETCHED, .generation 1 of element DISKX: [WORK.CMSLIB]SAMPLE.PAS fetched
%$CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.DAT;3 created
%$CMS-I-FETCHED, generation 1 of element DISKX: [PROJECT.CMSLIB]SAMPLE.DAT fetched
%CMS~-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.PAS;3 created
%$CMS-I-FETCHED, generation 1 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched
%$CMS-I-FETCHES, 4 elements fetched

In the first command, CMS assumes /OCCLUDE=ALL, and fetches only the
first instance of each of the elements SAMPLE.DAT and SAMPLE.PAS. In
the second command, because the /OCCLUDE=NOELEMENT qualifier was
specified, CMS fetches all occurrences of each element from both libraries.

Thus, an element specification consisting of a group containing a set of
elements, and an element specification consisting of a list of the same set of
elements, are not equivalent. In the first case, CMS locates the first instance
of the group. Previous instances of the elements in the group may exist in
an earlier library, but are not selected because they are not located in the
library with the specified group. In the second case, the first instance of
each of the specified elements is found, regardless of which library they may
be in. In fact, they may be found in libraries in the list prior to the library
in which the group is found.

3-12 Libraries

3.3.2 Examples

The following examples show how you can control occlusion on various
CMS objects. For the following examples, assume the library is set to
[WORK.CMSLIB],[PROJECT.CMSLIB]. The library [WORK.CMSLIB]
contains the two elements SAMPLE.DAT and SAMPLE.PAS with gener-
ation 1 of the element SAMPLE.PAS inserted into class V1. The library
[PROJECT.CMSLIB] contains the two elements SAMPLE.DAT and
SAMPLE.PAS. These two elements are inserted into group SAMPLES.
Generation 2 of element SAMPLE.PAS is inserted into class V2. Figure 3-2
matches the following examples.

Libraries 3-13

Figure 3-2: Library Occlusion

T
w‘__'//

WORK.CMSLIB

SAMPLE .DAT SAMPLE . PAS

O O

PROJECT.CMSLIB

SAMPLE .DAT SAMPLE . PAS

b 4l

1
Group SAMPLES
1
Class V2= ===—=)

ZK-6651-GE

3-14 Libraries

L.

$ CMS FETCH SAMPLE.PAS "fetch the first instance"
%CMS-S-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.PAS fetched
%$CMS-S-FETCHES, 1 element fetched

In this example, CMS assumes the default value of the /OCCLUDE
qualifier (OCCLUDE=ALL), and fetches only the first instance of
SAMPLE.PAS.

$ CMS FETCH/OCCLUDE=NOELEMENT SAMPLE.PAS "fetch all instances"

$CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.PAS;2 created
$CMS-S~-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.PAS fetched
$CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.PAS;3 created
%$CMS-S-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched
%$CMS~-S-FETCHES, 2 elements fetched

In this example, because the /OCCLUDE qualifier is specified with the
negated keyword NOELEMENT, CMS retrieves all (both) instances of
SAMPLE.PAS. Note that the second instance of SAMPLE.PAS is fetched
into the next higher version of the output file, which is then placed into
your default directory.

$ CMS FETCH SAMPLE.PAS/GENERATION=V1 "default occlusion"
$CMS-S~-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.PAS fetched
%$CMS~S-FETCHES, 1 element fetched

$ CMS FETCH SAMPLE.DAT/GENERATION=V1 "SAMPLE.DAT not in class V1"
%¥CMS-E~-NOFETCH, error fetching element DISKX:[WORK.CMSLIB]SAMPLE.DAT
-CMS-E-GENNOTFOUND, generation V1 of DISKX: [WORK.CMSLIB]SAMPLE.DAT not found
$CMS-E~-ERRFETCHES, 0 elements fetched and 1 error occurred

$ CMS FETCH SAMPLES/GENERATION=V1

_Remark: SAMPLES group not in lst library where class V1 is located
%¥CMS-E-NOFETCH, error fetching element SAMPLES

-CMS-E-NOTFOUND, Group SAMPLES not found

%$CMS-E-ERRFETCHES, 0 elements fetched and 1 error occurred

$ CMS FETCH SAMPLE.PAS/GENERATION=V2 "element found but not class"
%CMS-E-NOFETCH, error fetching element DISKX:[WORK.CMSLIB]SAMPLE.PAS
-CMS-E-GENNOTFOUND, generation V2 of DISKX:[WORK.CMSLIB]SAMPLE.PAS not found
-CMS-E-NOTFOUND, Class DISKX:[WORK.CMSLIB]V2 not found

%¥CMS-E-ERRFETCHES, O elements fetched and 1 error occurred

$ CMS FETCH/OCCLUDE=NOELEMENT SAMPLE.PAS/GENERATION=V2

_Remark: element found but not class

%CMS-E-NOFETCH, error fetching element DISKX: [WORK.CMSLIB]SAMPLE.PAS
-CMS-E~-GENNOTFOUND, generation V2 of DISKX:[WORK.CMSLIB]SAMPLE.PAS not found
-CMS-E-NOTFOUND, Class DISKX:[WORK.CMSLIB}jV2 not found

$CMS-S-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched
%CMS-E-ERRFETCHES, 1 element fetched and 1 error occurred)

This example shows occlusion when multiple object types are present.
Classes V1 and V2 exist in the first and second libraries, respectively.

Libraries 3-15

Note that in the last case, an error diagnostic is generated when the first
instance of SAMPLE.PAS is found and the class V2 is not found; then
when both the element and the class are found, the specified generation
is successfully fetched.

4. $ CMS VERIFY SAMPLE.DAT/OCCLUDE=NOELEMENT
%$CMS-I-VERCLS, class list verified
%$CMS-I-VERCMD, command list verified
%CMS-I-VERELE, element list verified
$CMS-I-VERGRP, group list verified
%$CMS-I-VERRES, reservation list verified
%$CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
$CMS~I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS~-I-VERFRE, internal free space list verified
%$CMS-I-VERFRE, internal free space list verified
$CMS-I~-VERARC, archive control block verified
%CMS-I-VER2, internal contiguous space verified
%CMS-I-VERCON, control file verified
$CMS-I-VEREDF, element DISKX:[WORK.CMSLIB]SAMPLE.DAT verified
%$CMS~I-VEREDFS, element data files verified
$CMS-S-VERIFIED, library DISKX:[WORK.CMSLIB] verified
%$CMS-I-VERCLS, class list verified
%$CMS-I-VERCMD, command list verified
%CMS-I-VERELE, element list verified
%CMS-I-VERGRP, group list verified
%CMS-I-VERRES, reservation list verified
%$CMS-I-VERFRE, internal free space list verified
$CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
$CMS-I-VERFRE, internal free space list verified
%$CMS-I-VERFRE, internal free space list verified
$CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%$CMS-I-VERARC, archive control block verified
%CMS~-I-VER2, internal contiguous space verified
%CMS-I-VERCON, control file verified
$CMS-I-VEREDF, element DISKX:[PROJECT.CMSLIB]SAMPLE.DAT verified
%CMS-I-VEREDFS, element data files verified
%CMS~-S-VERIFIED, library DISKX: [PROJECT.CMSLIB] verified

In this example, because the /OCCLUDE qualifier is specified with the
negated keyword NOELEMENT, CMS verifies both libraries and both
instances of the element SAMPLE.DAT.

3-16 Libraries

3.4 Library Locking

CMS allows multiple read operations in the library at the same time. Read
operations are operations that do not change any information in the library;
for example, ANNOTATE, SHOW commands, SET LIBRARY, FETCH
without a remark, and DIFFERENCES. Read operations allow users to use
any combination of these commands in the library without interfering with
each other in any way.

CMS controls concurrent access to the library by using the VMS locking
mechanism. The locking mechanism does not allow multiple write or
multiple read and write operations in the library at the same time. Write
operations are operations that change information in the library; for
example, CREATE, FETCH with a remark, INSERT, MODIFY, REMOVE,
SET ACL, RESERVE, and REPLACE.

When CMS has locked the library during a write operation, any access
attempts made by other users are not allowed until the write operation is
complete.

If the library remains locked for an extended period, CMS periodically issues
messages informing you that the library is still in use. Your command is
processed as soon as the lock preventing your library access is released.

When you enter a command, CMS attempts to lock the library only for

the appropriate type of access for that command. If no other locks prevent
your lock from being granted, you gain immediate access to the library,
and your command is processed. If the library is locked for an access type
incompatible with that required by your command (for example, a user
entered a SHOW GENERATION command that locks the library for read
access, and you enter a REPLACE command that locks the library for write
access), CMS informs you that the library is locked and issues the following
error message:

$CMS-I-INUSE, library library-specification is in use, please wait

CMS processes read and write attempts on the library in order. For
example, assume that user A has currently entered a command causing

a library lock for read access (for example, a SHOW GENERATION
command). User B enters a command requiring write access (for example,

a REPLACE command), thus causing CMS to lock out user B. User C

then enters a command requiring read access (for example an ANNOTATE
command). CMS will not process user C’s command until user B’s command
has been processed, even though the current library lock (user A’s read lock)
allows user C’s command to gain access to the library. This prevents a chain

Libraries 3-17

of compatible lock requests from locking an incompatible lock request out of
the library for a prolonged period of time.

If your command cannot gain access to the library after 15 minutes,

the waiting loop expires and CMS issues a message requesting that you
reattempt the command again later. You can use CTRL/C at any point to
abort the command.

3-18 Libraries

Chapter 4

Elements and Generations

A CMS library is a collection of files, which represent elements and element
generations. An element is the basic structural unit in a library. An element
consists of one file and all its versions, called generations. This chapter
discusses elements and their generations in detail.

4.1 The Relationship Between Elements and Generations

When you place a file in a CMS library for the first time, CMS uses that
file to create an element; that file becomes generation 1 of that element.
An element generation represents a specific version of an element. Each
time you reserve and replace an element in the library, CMS creates a new
generation. CMS can store multiple generations of an element.

CMS assigns a permanent generation number to each new generation.
This number is unique for each generation of a particular element. A CMS
generation number is not the same as a version number that VMS assigns
to files; file version numbers have no significance to CMS.

Figure 4-1 shows four elements and their generations in a simple CMS
library.

Elements and Generations 4-1

4-2

Figure 4-1: Elements and Their Generations

SEARCH.FOR OUTPUT.FOR ARGCHK.FOR INIT.FOR

ZK-1690-GE

This library contains three generations of the element SEARCH.FOR. The
first generation was created with the CREATE ELEMENT command. Then,
a generation of the element was reserved from and replaced into the library
twice, creating generations 2 and 3. Similarly, the library contains two
generations of OUTPUT.FOR, three generations of ARGCHK.FOR, and two
generations of INIT.FOR. CMS stores the entire text of the first generation
of an element. Then, in successive generations, CMS stores only the lines
that change from one generation to the next (see Section 4.4 and Appendix C
for more information).

The following example shows how to reserve a generation of an element
named INIT.FOR and replace it in the CMS library, thereby creating a new
generation:

Elements and Generations

} CMS RESERVE INIT.FOR "change block header offset"
§CMS-S~-RESERVED, generation 2 of element DISKX:[PROJECT.CMSLIBJINIT.FOR reserved

3 CMS REPLACE INIT.FOR "header offset and additional free space added"
$CMS~-S-GENCREATED, generation 3 of DISKX:[PROJECT.CMSLIB]element INIT.FOR created

The RESERVE command retrieves the latest main-line generation of ele-
ment INIT.FOR, which is generation 2. The file is created in your current
default directory and generation 2 is marked as reserved. The REPLACE
command returns the contents of the file to the CMS library and assigns
the next number in sequence to the new generation. Because generation
2 was reserved, the replacement transaction creates generation 3. See
Section 4.2.3 and Section 4.2.4 for more information on the RESERVE and
REPLACE commands, respectively.

4.2 Manipulating Elements and Generations

The following sections describe how to create, fetch, reserve, replace,
monitor, display, and delete elements and generations in a CMS library.

4.2.1 Creating Elements and Generations

You create an element with the CREATE ELEMENT command. Each
time you reserve and replace a generation of an element, you create a new
generation of that element (see Section 4.2.4).

In the CREATE ELEMENT command, you specify the name and type of the
file that is to become the name of the element. Within a library, all element
names must be unique. The file-name component cannot be 00CMS because
that name is reserved for CMS. Specify the file with the following syntax:

filename.type
For example:

$ CMS CREATE ELEMENT INIT.FOR "initialization routines"
%$CMS-S-CREATED, element DISKX:[PROJECT.CMSLIB]INIT.FOR created

This command creates an element named INIT.FOR from the file INIT.FOR.
CMS searches for the file named INIT.FOR in your default directory; use the
/INPUT qualifier on the CREATE ELEMENT command to specify a different
location, a different file name, or both.

When an element is created, CMS deletes all versions of the file in your
default directory used to create the new element. Use the /KEEP or
/RESERVE qualifier to prevent CMS from deleting any files.

Elements and Generations 4-3

4.2.2 Fetching an Element Generation

The FETCH command copies the contents of an element generation into a
file. Unlike the RESERVE command, FETCH does not mark an element
generation as reserved, and you cannot replace a fetched copy in the library.
You can fetch a copy of a generation of an element whether or not the
element is reserved.

For example, to retrieve a copy of the latest main-line generation of an
element named TIMTST.COM, type the following command:

$ CMS FETCH TIMTST.COM
_Remark: Testing storage blocks
%CMS-S-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]TIMTST.COM fetched

CMS retrieves the latest main-line generation of the element TIMTST.COM

(generation 2). To retrieve an earlier generation (or variant generation; see
Chapter 6), specify the /GENERATION qualifier on the FETCH command.

CMS creates a file with the same name as the fetched element, and places
this file in your current default directory; use the /OUTPUT qualifier on the
FETCH command to specify a different file name, a different location, or
both.

4.2.3 Reserving an Element Generation

After creating an element in a CMS library, use the RESERVE command

to retrieve a copy of a generation of the element to make changes to it.
When you reserve a generation, CMS retrieves a copy of the generation

of the element and marks that generation as reserved in the CMS library.
You can then edit, compile, test, and debug the file as necessary. Most

of your work with the CMS library consists of reserving library element
generations for work and replacing the modified files back into the library as
new generations.

When you reserve a generation of an element, CMS creates a file with the
same name as the element, and places this file in your current default
directory; use the /OUTPUT qualifier on the RESERVE command to specify
a different location, a different file name, or both.

CMS prompts you to enter a remark when you reserve an element gen-
eration. You should use the remark to explain why you are reserving the
generation; the remarks provide a permanent record of your work.

4-4 Elements and Generations

For example, to reserve the element SYNCHRON.BAS, use the following
command:

$ CMS RESERVE SYNCHRON.BAS
_Remark: losing sample from one data line
$CMS-S-RESERVED, generation 2 of element DISKX: {PROJECT.CMSLIB]SYNCHRON.BAS reserved

CMS copies the element generation into a file that is created in your current
default directory. CMS marks the generation with your reservation and
records the transaction in the library transaction history.

CMS retrieves the latest main-line generation of the element SYNCHRON.BAS
(generation 2). To reserve an earlier generation (or a variant generation; see
Chapter 6), specify the /GENERATION qualifier on the RESERVE command.
For example:

$ CMS RESERVE SYNCHRON.BAS/GENERATION=1
_Remark: Commenting data line sampling code
%CMS-S-RESERVED, generation 1 of element DISX:[PROJECT.CMSLIB]SYNCHRON.BAS reserved

A copy of the first generation of the element is then placed in the current
default directory.

CMS allows you to concurrently reserve more than one generation of the
same element, or the same generation more than once. If any generation
of an element is already reserved (by you or another person) CMS issues a
message about the reservation already in effect. You then have the option
to proceed with your reservation or to quit. If you choose to proceed with
the reservation, the element is considered to have concurrent reservations.
While you have an element generation reserved, any user who reserves

or attempts to reserve a generation of the same element receives a CMS
message indicating that you have reserved the element generation. See
Section 4.3.2 for more information on concurrent reservations.

If you reserve an element generation and then decide not to modify it, you
can cancel your reservation with the UNRESERVE command. CMS records
the cancellation in the library history. CMS does not modify the library
element and does not create a new generation of the element when you
cancel a reservation. The UNRESERVE command is useful if you reserve a
wrong element, or if you do not want your modifications to become part of
the element. For example, to unreserve a generation of the element named
SYNCHRON.BAS, type the following:

$ CMS UNRESERVE SYNCHRON.BAS

_Remark: element not applicable--wrong file
%$CMS-S-UNRESERVED, element DISKX:[PROJECT.CMSLIB]SYNCHRON.BAS unreserved

Elements and Generations 4-5

Normally, CMS allows you to unreserve only your own reservation. However
if you hold BYPASS privilege or if an access control entry (ACE) on the
element grants you BYPASS access, you can cancel any reservation of

that element held by another user. The cancellation of the reservation is
then logged in the history file under your name. See Chapter 7 for more
information.

4.2.4 Replacing an Element Generation

After modifying a reserved generation, use the REPLACE command to
replace the latest version of the modified file into the library. CMS then
deletes all copies of that file from your directory (unless you specify the
/KEEP or /RESERVE qualifier), assigns a new CMS generation number to
the newly created element generation, terminates your reservation, and
records the transaction. For example:

$ CMS RESERVE SPEC.RNO
_Remark: Misspelling in Reliability section
$CMS-S-RESERVED, generation 3 of element DISKX:[PROJECT.CMSLIB]SPEC.RNO reserved

$ CMS REPLACE SPEC.RNO
_Remark: Reliability section typo fixed
$CMS-S-GENCREATED, generation 4 of element DISKX: [PROJECT.CMSLIB]SPEC.RNO created

In this example, the current generation (generation 3) is reserved to correct
a typographical error, and then replaced.

To avoid creating a new generation if the input file has no changes from
the reserved generation, use the /IF_CHANGED qualifier on the REPLACE
command. See the description of the REPLACE command in the Command
Dictionary for more information.

Normally, CMS allows you to replace only your own reservation. However,
if you hold BYPASS privilege or if an access control entry (ACE) on the
element grants you BYPASS access, you can replace any reservation of that
element held by another user. This mechanism allows you to designate a
single person who is responsible for reviewing and entering all changed
reservations into the library, for example. See Chapters 7 and 8 for more
information on ACEs.

CMS allows you to concurrently reserve more than one generation of
the same element, or the same generation more than once. When you
replace the generations that are concurrently reserved by you, you must
specify the /GENERATION or /IDENTIFICATION_NUMBER qualifier on

4-6 Elements and Generations

the REPLACE command. See Section 4.3.3 for information on replacing
concurrent reservations.

4.2.5 Monitoring Element Changes

You can monitor changes made to elements by using the notification access
control entry (ACE) or the review attribute.

The notification ACE allows you to specify a list of people to be notified
when particular events occur in a CMS library. See Chapter 8 for more
information on CMS notification.

The review attribute allows you to specify that newly created element
generations are to be placed on a review pending list. You can then associate
review remarks with a generation under review. To assign the review
attribute, use the /REVIEW qualifier on either the CREATE ELEMENT or
the MODIFY ELEMENT command. The review attribute specifies that any
new generations of that element are marked as pending review. You can also
mark a specific generation for review by using the MARK GENERATION
command. To determine which generations have reviews pending, use the
SHOW REVIEWS_PENDING command.

When you review a generation, you can accept or reject the generation,
cancel the review, or enter review comments. See Section 4.5.4 and the
descriptions of the following commands in the Command Dictionary for more
information on review:

ACCEPT GENERATION
CANCEL REVIEW

MARK GENERATION
REJECT GENERATION
REVIEW GENERATION
SHOW REVIEWS_PENDING

4.2.6 Displaying Information About Elements and Generations

You can view information about elements and generations in a CMS library
with the SHOW commands. The SHOW ELEMENT command displays
information about some or all of the elements in the current library. For
example:

Elements and Generations 4-7

$ CMS SHOW ELEMENT
Elements in CMS Library DISKX: [PROJECT.CMSLIB]

ADCONVERT .BAS "analog to digital conversion routines"

ERRMSG.TXT
SAMPLE.BAS
SPEC.RNO
SYNCHRON. BAS
TIMTST.COM

"initial load"

"Sampling module"

"ADS functional specification"
"Synchronization routines"
"Command procedure for tests"

In this case, SHOW ELEMENT displays an alphabetical list of all the
elements in the project library [PROJECT.CMSLIB], along with their
remarks. You can also use the SHOW ELEMENT/MEMBER command to
display the element name, creation remark, and the name of any groups to
which the element belongs.

If you need information about a specific generation of an element, use the
SHOW GENERATION command. If you omit a generation number, CMS
assumes the last generation on the main line of descent. If you include

a generation number, specify it with the /GENERATION qualifier. For
example:

$ CMS SHOW GENERATION SYNCHRON.BAS/GENERATION=3

Element generations in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

SYNCHRON.BAS

3 26~-JUN-1988 09:44:12 KELLEY "a/d conversion integrated"

This command displays the characteristics of generation 3 of the element
SYNCHRON.BAS.

To discover which generation of an element is in a particular class, use
the SHOW GENERATION command and specify the class name as the
generation expression. For example:

$ CMS SHOW GENERATION/GENERATION=BASELEVEL1l SYNCHRON.BAS

Element generations in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

SYNCHRON.BAS

3 26-JUN-1988 09:44:12 KELLEY "a/d conversion integrated"

This command displays the generation of element SYNCHRON.BAS that is
in class BASELEVELL.

Whenever you create, reserve, or replace a library element, CMS stores
information about the transaction in the library’s history file. The SHOW
HISTORY command allows you to review a chronological list of all library
transactions. For example:

4-8 Elements and Generations

$ CMS SHOW HISTORY
History of CMS Library DISKX:[PROJECT.CMSLIB]

2-MAY-1988 14:22:16 WHIPPLE CREATE LIBRARY DISKX:[PROJECT.CMSLIB] "a/d data
sampling library"

2-MAY-1988 14:26:47 MARTIN CREATE ELEMENT SPEC.RNO "ADS functional
specification"

8-JUN-1988 12:09:02 WHIPPLE CREATE ELEMENT ADCONVERT.BAS "analog to digital
conversion routines"

8-JUN-1988 12:25:41 WHIPPLE CREATE ELEMENT SAMPLE.BAS "Sampling module"

8-JUN-1988 12:29:24 HENRY CREATE ELEMENT SYNCHRON.BAS "Synchronization

routines"

8-JUN-1988 14:01:36 HENRY CREATE ELEMENT TIMTST.COM "Command procedure for
tests"

9-JUN-1988 14:47:40 DAVIS RESERVE SYNCHRON.BAS(l) "losing sample from one
data line"

CMS does not record transactions that do not alter the library. CMS logs
FETCH transactions only if you supply a remark.

You can use the SHOW HISTORY command with the /UNUSUAL qualifier
to report any abnormal library transactions that occurred, such as two

reservations in effect for the same element at the same time.

The SHOW RESERVATIONS command lists element generations that
are currently reserved (or by identification number, if the element is

concurrently reserved), who reserved each generation, when it was reserved,

and why it was reserved. For example:
$ CMS SHOW RESERVATIONS

Reservations in CMS Library DISKX:[PROJECT.CMSLIB]

SAMPLE.BAS

(1) JIMK 1 30-JUN-1988 11:19:29 "add code for more data lines"
SYNCHRON.RBAS

(1) KELLEY 3 18-JUN-1988 09:42:03 "integrate a/d conversion"

You can use the SHOW GROUP/CONTENTS command to display the
contents of a group. For example:

$ CMS SHOW GROUP/CONTENTS TIME_TST
Groups in DEC/CMS Library DISKX: [PROJECT.CMSLIB]
TIME_TST "comparison testing prototype group"

SYNCHRON.BAS
TIMTST.COM

This command lists the elements contained in group TIME_TST.

Elements and Generations

4-9

4.2,7 Deleting Generations

To delete one or more generations of an element from the library, use the
DELETE GENERATION command. This command is useful if you replaced
a wrong version of a file into the CMS library, or if you want to remove old
generations of elements. This command permanently removes information
about a generation from the corresponding element in the library. If the
latest main-line generation is deleted, the next latest main-line generation
is placed into the reference copy directory. Deleting a generation does not
remove changes from subsequent generations that were originally made in
the deleted generation and thus exist in subsequent generations.

Deleting unneeded generations allows operations that access generations (for
example, FETCH, REPLACE, and RESERVE) to complete faster because the
number of generations to be searched is reduced (see Section 9.3.2 for more
information).

When you delete an element generation, you can optionally use the
/ARCHIVE qualifier to direct CMS to create an archive file. When you
specify /ARCHIVE, CMS creates a file containing all the information
from the deleted generation, and places it in your default directory. See
the description of DELETE GENERATION/ARCHIVE in the Command
Dictionary and Section 9.3.2 for more information.

4.3 Concurrency

This section describes how CMS organizes concurrent changes to library
elements and how to resolve conflicting changes to those elements. A
concurrent change occurs when two or more people work on an element at
the same time and make separate changes to the element.

If you cannot avoid making a concurrent reservation, be aware that some
additional effort is involved when you replace concurrent reservations. The
following sections describe how to reserve a generation of an element that
has prior reservations, and replace the reservation into the library.

4.3.1 Concurrent Access
CMS allows you to control concurrent access to an element by using the

concurrent attribute. You define the concurrent attribute by specifying
the /INOJCONCURRENT qualifier.

4-10 Elements and Generations

You can prohibit concurrent access by specifying the /NOCONCURRENT
qualifier on the CREATE ELEMENT command for a new element, or by
using the MODIFY ELEMENT command to change the attribute of an
existing element. You cannot modify concurrent access to an element while a
generation of the element is reserved. When you prohibit concurrent access
to an element, only one reservation of the element is allowed at a time
until you use the MODIFY ELEMENT/CONCURRENT command to allow
concurrent access.

You can temporarily prohibit concurrent access for the duration of a reser-
vation by specifying the /INOCONCURRENT qualifier on the RESERVE
command. If you reserve a generation of an element in this way, you must
replace it or cancel the reservation (with the UNRESERVE command) before
you or anyone else can reserve any generation of the element.

4.3.2 Concurrent Reservations

If a generation of the element you want to reserve is already reserved and
concurrent access is not prohibited, CMS accepts your RESERVE command
and the remark you enter with it, but warns you that an element generation
is currently reserved and by whom, and prompts you for confirmation
before proceeding. If you continue with the reservation, the element is then
marked as being concurrently reserved, and it retains that status until all
reservations of the element are ended. For example:

$ CMS RESERVE BASTEST.GNC
_Remark: reserving for final production
Element BASTEST.GNC currently reserved by:
(1) DAVIS 3 28-JAN-1988 09:27:46 "for testing"
Proceed? [Y/N] (N):

If you type NO or press RETURN, CMS does not execute the reserve
transaction. If you type YES, CMS places a copy of the generation in your
current default directory, marks the element as concurrently reserved, and
records the reservation transaction in the library history. CMS records
the transaction as an unusual occurrence. For information about unusual
occurrences, see Chapter 9.

CMS allows multiple reservations by a single user; that is, you can reserve
more than one generation of the same element, and you can also reserve
the same generation more than once. CMS assigns a unique identification
number to each reserved generation. The identification number appears
first on each line. Use the SHOW RESERVATIONS command to deter-
mine the identification number of each reservation. You must use the
/IDENTIFICATION_NUMBER qualifier to replace a concurrent reservation
(see Section 4.3.3).

Elements and Generations 4-11

4.3.3 Concurrent Replacements

When a concurrent reservation ends (when you replace the element gener-
ation with the REPLACE command), it is called a concurrent replacement.
When you replace an element that another user has concurrently reserved,
CMS reports that a prior concurrent reservation was made and specifies who
the second reserver was, even if the second reserver has already replaced
the element. For example:

$ CMS REPLACE BASTEST.GNC
_Remark: replacing after completing edits
Concurrent replacements
(1) DAVIS 2 28-JAN-1988 09:27:46 “for testing"
Proceed? [Y/N] (N):

If you type NO or press RETURN after the Proceed? prompt, CMS does not
execute the replacement transaction. If you type YES, CMS proceeds with
the command and records the transaction as an unusual occurrence. For
information about unusual occurrences, see Chapter 9.

At least one reserver must replace a concurrent reservation as a variant
generation. You replace the concurrent reservation as a variant generation
by specifying the /VARIANT qualifier on the REPLACE command. This
begins a variant line of descent. Either user can then merge the variant
generation back into the original line so that both sets of program mod-
ifications appear in one generation, or the variant line of descent can be
continued (see Chapter 6 for more information).

CMS allows you to concurrently reserve a specific generation more than
once. When you replace the generations that are concurrently reserved
by you, you must specify which reservation is to be replaced. You can do
this with either the /GENERATION qualifier or the /IDENTIFICATION_
NUMBER qualifier on the REPLACE command.

You can use /GENERATION as long as the concurrent reservations are not
on the same generation. If you have more than one concurrent reservation
for the same generation, you must identify the specific reservation to be
replaced. Each reservation is assigned an identification number. Use the
SHOW RESERVATIONS command to determine the identification number
of each reservation. The identification number appears first on each line. If
you use the /IDENTIFICATION_NUMBER qualifier, you do not need to also
use the /GENERATION qualifier. For example:

$ CMS REPLACE BASTEST.GNC/IDENTIFICATION NUMBER=2

_Remark: .replacing after completing edits
Element BASTEST.PAS currently reserved by:
(1) DAVIS 3 28-JAN-1988 09:27:46 "“for testing"

Proceed? [Y/N] (N):

4-12 Elements and Generations

In this example, the /IDENTIFICATION_NUMBER qualifier specifies that
the second reserved generation be replaced into the CMS library. CMS
reports other existing reservations you hold for that element (in this case,
the first reserved generation), and then prompts you to proceed.

You must also use the /GENERATION or /IDENTIFICATION_NUMBER
qualifier if you are replacing another user’s reservation. See the description
of the REPLACE command in the Command Dictionary and Section 7.3 for
more information.

4.4 Delta Files

For each element stored in the library, CMS maintains a delta file—a single
file containing a representation of the contents of all of the generations of
that element.

In addition to the actual data, the delta file contains control records. Control
records tell CMS which data records are valid for which specific generations
of the element. When you retrieve a generation of an element, CMS includes
records that are valid and excludes records that are not valid for that
generation.

One of the effects of the delta file method of storing information is that
retrieval times are consistent within a given element. For example, it takes
a similar amount of time to fetch generation 100 of an element or generation
1 of that same element. Another effect is that generation deletion does not
necessarily produce a significantly smaller delta file, because records that
are valid in a generation being deleted may also be valid (and, in fact, are
likely to be valid) in later or earlier generations that are not being deleted.

See Appendix C for more information on how CMS stores library informa-
tion.

4.5 Element Attributes

The CREATE ELEMENT and MODIFY ELEMENT commands allow you to
specify the following element attributes:

e The concurrent attribute controls whether concurrent reservations of
an element are allowed (See Section 4.3.2 for more information).

* The history, notes, and position attributes allow you to manipulate
the format of historical information that is associated with an element.

¢ The reference copy attribute directs CMS to maintain a reference copy
of an element.

Elements and Generations 4-13

* The review attribute directs CMS to mark newly created generations of
an element as pending review.

You can use the SHOW ELEMENT/FULL command to display the cur-
rent settings of these attributes (see the Command Dictionary for more
information).

4.5.1 The History Attribute

When the history attribute is defined for an element, CMS includes the
element generation history in the output file when you retrieve a generation
of an element from the library with the FETCH or RESERVE command.
This history is a list of the transactions that created each generation of the
element. Each transaction record consists of the generation number, user,
date, time, and remark associated with the generation.

Use the /HISTORY qualifier to define the history attribute for an element.
You can either establish the history attribute when the element is created
with the CREATE ELEMENT command, or change the history attribute of
an existing element with the MODIFY ELEMENT command. You can cancel
the history attribute by using the /NOHISTORY qualifier on the MODIFY
ELEMENT command. You can also specify the //NOJHISTORY qualifier on
the FETCH and RESERVE commands to temporarily override the element’s
history attribute.

The format of the /HISTORY qualifier is as follows:
/HISTORY="string" /NOHISTORY

“string” v

Specifies the format of each line of the element history. The string must
contain exactly one occurrence of the history format parameter, can contain
only printing ASCII characters and the space and tab characters, and must
begin and end with a quotation mark ("). The history format parameter
consists of a number sign (#) followed by an uppercase or lowercase letter H
or B. For example:

" gHY

"/ *gpx)

The exclamation point (!) and the slash-asterisk characters (/* */) indicate
comments.

4-14 Elements and Generations

Use the letter B to direct CMS to include the history at the beginning of the
file and H to include the history at the end of the file. The history text is
inserted into the string wherever the #H or #B history format parameter
occurs. To include a number sign (#) in the string, type it twice (##). To
include a quotation mark in the string, type it twice (""). If the file contains
source code, you must include comment indicators or delimiters applicable
to your source code in the string so that the program can be compiled or

assembled. The history is then treated as a comment.

NOTE

Because of Record Management Services (RMS) record storage
restrictions, CMS cannot include history text in files with fixed-
length records. If you try to fetch or reserve a generation of
an element that has history enabled and the generation has
fixed-length records, you receive the following message:

%$CMS-I-NOHISTNOTES, history and notes will not be included in output file

The history includes a line for each generation of an element. Each line
consists of the text contained in the quoted string, with #H or #B replaced
by the creation information for that generation. The history region is
delimited by the following line:

DEC/CMS REPLACEMENT HISTORY, Element element-name

This line allows the REPLACE command to distinguish the history from the
rest of the file when it is returned to the library. CMS does not consider
history text to be part of the file. Instead, the history is added to the file
when it is retrieved from the library and removed when the file is replaced
into the library. The generation numbers of a retrieved generation and its
ancestors are marked with an asterisk (*).

Do not insert or modify text in the history section while editing a file in your
directory. CMS expects only history lines between the two header lines. The
REPLACE command reports an error if it finds any other text where the
history should be, and the command is not executed. You must then delete
the extra text with an editor and reenter the REPLACE command.

The following command establishes the history attribute for a file that
contains a Pascal program:

$ CMS MODIFY ELEMENT SEMANTICS.PAS/HISTORY="{#H}" "est. history attribute"

Elements and Generations 4-15

When the default generation of SEMANTICS.PAS is retrieved with the
FETCH or RESERVE command, the history at the end of the program looks
like this:

DEC/CMS REPLACEMENT HISTORY, Element SEMANTICS.PAS }

*6 28-JUL-1988 10:00:54 EDGAR "formal parameter list support added"}

*5 24-JUL-1988 16:10:14 DAVIS "actual parameter list support added"}
*4 20-JUL-1988 12:22:07 MARTIN "preliminary work on routine calls done"}

3C1 17-JUL-1988 12:15:45 JEFF "error checking on CASE statement works"}
*3 11-JUL-1988 11:57:18 MALER "CASE statement support"}

*2 7-JUL-1988 11:56:05 HENRY "FOR loop support done"}

*1 9-JUN-1988 18:11:25 BARRETT "semantic analysis module"}

DEC/CMS REPLACEMENT HISTORY, Element SEMANTICS.PAS }

The braces ({}) indicate comments in Pascal. Because the braces surround
the lines of the history, the history lines are ignored by the Pascal compiler.
The history is delimited with the header line. Each existing generation of
the element is listed. The generation numbers of the specified generation
and its ancestors are marked with an asterisk. Generation 6 was retrieved;
therefore, that generation and its ancestors are marked with an asterisk.
Generation 3C1 is not an ancestor because it is on a variant line of descent.

NOTE

Some language processors do not accept a file that has data after
the formal end of the program. If you use #H in the definition of
the history attribute for an element, the element file may not be
compatible with these processors. If this occurs, you can specify
the /NOHISTORY qualifier with the RESERVE and FETCH
commands. When you use this qualifier, CMS does not include the
history in the file that is placed in your directory. Also, because
CMS wraps history lines at 132 characters, you can use the
/NOHISTORY qualifier with history lines that are longer than 132
if your file is to be used by a processor or compiler that does not
accept 132-character lines.

See Section 4.5.5 for an example of using the history attribute.

4.5.2 The Notes and Position Attributes

When the notes and position attributes are defined for an element, CMS
appends notes to lines of the file when you retrieve a generation of an
element from the library with the RESERVE or FETCH command. A note
appears on every line that has been modified since generation 1 as close to
the position specified by the position attribute as possible. Notes can be
one or both of the following:

4-16 Elements and Generations

* Generation numbers indicating the latest generation in which the line
was inserted or modified

e ASCII text contained in the quoted string parameter of the /NOTES
qualifier

“You use the /NOTES qualifier to define the notes attribute, and the
/POSITION qualifier to define the column in which the note should start.
You can establish these attributes when the element is created with the
CREATE ELEMENT command, or you can change the attributes of an
existing element with the MODIFY ELEMENT command. Any element
that has the notes attribute must have the position attribute and vice
versa. Use the /NONOTES qualifier on the MODIFY ELEMENT command
to cancel both attributes.

You can also specify the /NOINOTES and /POSITION qualifiers on the
FETCH and RESERVE commands to temporarily override the element’s
notes and position attributes.

The format of the /NOTES qualifier is as follows:
/NOTES="string" /NONOTES

“string”

Specifies the format of the notes. The string can contain only ASCII
characters; it must begin and end with a quotation mark ("). The notes
string cannot exceed 100 characters. The string can optionally contain one
occurrence of the notes format parameter. The notes format parameter
consists of a number sign (#) followed by an uppercase or lowercase

letter G. For example:

"I4Gn

u/*#g*/u

The exclamation point (!) and the slash-asterisk characters (/* */) indicate
comments.

To include a number sign (#) in the string, type it twice (##). To include a
quotation mark in the string, type it twice (""). If the file contains source
code, you must include comment indicators applicable to your source code in
the string so that the program can be compiled or assembled. The notes are
then treated as comments. See Section 4.5.5 for an example.

A note for a line consists of the text contained in the quoted string with the
notes parameter replaced by the number of the generation in which the line
was inserted or most recently modified.

Elements and Generations 4-17

NOTE

Because of Record Management Services (RMS) record storage
restrictions, CMS cannot include notes text in files with fixed-
length records. If you attempt to fetch or reserve a generation
of an element that has notes enabled and the generation has
fixed-length records, you receive the following message:

%CMS~-I-NOHISTNOTES, history and notes will not be included in output file

A note for a line appears at the position specified by the /POSITION
qualifier. The /POSITION qualifier is required when /NOTES is specified.

The format of the /POSITION qualifier is as follows:
/POSITION=n

n
Specifies the character position at which the notes are to appear on the line.
The position value must be an integer in the range 1 to 511.

The note is placed to the right of the text of the line. If the length of the
line is less than n, the note begins at position n. If the length of the line
is greater than or equal to n, the note begins at the next tab stop after the
end of the text of the line. (Tab stops are at position 9 and at every eight
characters thereafter.)

CMS does not consider notes to be part of the element generation. Instead,
notes are added to the file when it is retrieved from the library and removed
when the file is replaced into the library. If, while editing the file, you add
text after the note or within the note, CMS does not recognize it as a note
and therefore replaces it as part of the generation. If you add text that looks
like a note, CMS interprets it as a note and removes it before replacing the
file.

See Section 4.5.5 for an example of using the notes and position attributes.

4.5.3 The Reference Copy Attribute

An element reference copy is a copy of the latest main-line generation of
an element. CMS maintains reference copies of the latest generations of
selected library elements in a nonlibrary directory.

If you have established a reference copy directory for a library, each newly
created element is automatically set with the /REFERENCE_COPY qualifier.
New elements inherit the reference copy attribute from the library setting.

4-18 Elements and Generations

When the reference copy attribute is enabled for an element, CMS creates
a reference copy by fetching a copy of the latest main-line generation into
the reference copy directory. If, for any reason, the reference copy directory
cannot be updated, CMS does not create the new generation.

You can use the /REFERENCE_COPY qualifier to define the reference
copy attribute for a single element. You can establish the reference
copy attribute when the element is created with the CREATE ELEMENT
command, or you can change the reference copy attribute of an existing
element with the MODIFY ELEMENT command. You can prevent CMS
from creating a reference copy by specifying the NOREFERENCE_COPY
qualifier with the CREATE ELEMENT or MODIFY ELEMENT command.

The format of the /NOJREFERENCE_COPY qualifier is as follows:
/REFERENCE_COPY /NOREFERENCE_COPY

See Section 3.1.4 and the /[NOJREFERENCE_COPY qualifier in the
Command Dictionary for more information on reference copies.

4.5.4 The Review Attribute

When the review attribute is enabled for an element, CMS places any
newly created generations of that element on the review pending list, and
marks them for review. You can associate review remarks with a generation
under review by using the REVIEW GENERATION command (see the
Command Dictionary).

You use the /REVIEW qualifier to define the review attribute for an
element. You can establish the review attribute when the element is
created with the CREATE ELEMENT command, or you can change the
review attribute of an existing element with the MODIFY ELEMENT
command. You can cancel the review attribute by using the NOREVIEW
qualifier on the MODIFY ELEMENT command.

The format of the /NOJREVIEW qualifier is as follows:
/REVIEW /NOREVIEW

To determine what generations are under review, use the SHOW REVIEWS_
PENDING command, which also shows any review comments. Once a
generation is under review, a user trying to retrieve that generation with a
FETCH command is informed that a review is pending. If you retrieve the
generation with the RESERVE command, you are informed that a review is
pending and are prompted for confirmation to continue. The messages are
issued until the generation’s review status is resolved. A generation with a
review pending cannot be deleted.

Elements and Generations 4-19

You can resolve a generation’s review status in one of three ways: accept
the generation with the ACCEPT GENERATION command, cancel the
review with the CANCEL REVIEW command, or reject the generation with
the REJECT GENERATION command. If you accept the generation or
cancel the review, CMS halts review-related messages and confirmations
on subsequent reservation attempts. If you reject the generation, CMS
issues a message indicating that the generation was reviewed and rejected.
The generation is still accessible so that the problems in it that caused the
rejection can be corrected.

A generation created from a generation that currently has a review pend-
ing or that was previously rejected is automatically marked for review,
regardless of the setting of the element’s review attribute.

You can also use the MARK GENERATION and REVIEW GENERATION
commands to mark a generation for review and to review the generation.
For more information, see the descriptions of these commands in the
Command Dictionary.

See Section 4.5.5 for an example of using the review attribute.

4.5.5 Examples of Using Element Attributes

The following example shows how to create the element RESV.REQ with the
history, notes, and position attributes:

$ CMS CREATE ELEMENT RESV.REQ/HISTORY="!#H"/NOTES="!#G"/POSITION=80

_Remark:

Require file for multiple reservations

%$CMS-S-CREATED, element DISKX:[PROJECT.CMSLIB]RESV.REQ created

This command creates an element called RESV.REQ. The element con-
tains data structures written in the BLISS programming language. The
/HISTORY qualifier specifies that history is to be appended to the file when
it is retrieved from the library. Each line of the history is preceded by an
exclamation point (!), which indicates a comment in the BLISS language.
The /NOTES and /POSITION qualifiers specify that generation numbers
are to be embedded in the lines of the file at position 80. The generation
numbers are preceded by an exclamation point (!).

The history and notes are embedded in the file RESV.REQ when it is
retrieved with the RESERVE or FETCH command. Alternatively, you
can specify /NONOTES or /NOHISTORY with the FETCH or RESERVE
command to direct CMS to omit the notes or history in the file.

4-20 Elements and Generations

In the following example, five generations of the file RESV.REQ exist and
the element is retrieved with the FETCH command:

$ CMS FETCH RESV.REQ

_Remark: take a look at history and notes specifications

%$CMS-S~-FETCHED, generation 5 of element DISKX:[PROJECT.CMSLIB]JRESV.REQ fetched

The FETCH command retrieves generation 5 of the element. The file that is
delivered to the user’s directory is shown in Example 4-1.

Example 4-1: An Element with History and Notes Attributes

! RESV.REQ - Reservation control information values and structures. 0

LITERAL

REPL = TRUE, (1) !Replace flag
NOTREPL = FALSE, 0 INOT replace flag
RES_MAX = 150, o !Maximum number of entries in list @ !3
TXT MAX = 15000; » !Working buffer size limit (assuming@ 13
0 ‘ lan average reservation line @ t2
° !length of 132 characters) 9 12
MACRO
ENT_SIZ = 4 %; (1] !Number of entries in field
FIELD
RES_FLD =
SET
LINK_ADR = [0,0,$BBVAL, 0], 0 s
STG_ADR = [1,0,%BPVAL,0], @ !5
STG_SI1z = [2,0,%BPVAL/2,0],
REM FLG = [2,%BPVAL/2,%BPVAL/2,0], @ 14
REP_MKR = [3,0,%BPVAL/2,0],
CUR_RES = [3,%BPVAL/2,%BPVAL/2,0]
TES;

! RESV.REQ Last Line @

! DEC/CMS REPLACEMENT HISTORY, Element RESV.REQ e

%5 13-AUG-1988 10:49:12 MARTIN "transportability £fixes" @
t*4 30-JUL-1988 20:45:13 DAVIS "fix field boundary error" 9

'%3 15-JUL-1988 17:27:42 REYB "lower buffer size and reservation max" 9
!%2 30-JUN-1988 07:25:24 KIRK "change work buffer size and reservation max" @

!%1 31-MAY-1988 12:01:17 DAVIS "Require file for multiple reservations" @
! DEC/CMS REPLACEMENT HISTORY, Element RESV.REQ

© Indicates comments existing in the file
® Indicates comments supplied by CMS

Elements and Generations 4-21

The numbers (preceded by an exclamation point) to the right of the code
denote the generation in which the lines were inserted or most recently mod-
ified. These notes start at position 80, except for the third note (generation
2). Because the line exceeds position 80, the third note begins at the next
tab stop after the end of the line. Lines that have not been changed since
generation 1 have no notes. The history starts and ends with the following
title:

! DEC/CMS REPLACEMENT HISTORY, Element RESV.REQ.

The history shows the transactions that created each generation of the
element.

If the /NONOTES and /NOHISTORY qualifiers had been specified on the
FETCH command, the retrieved file would not have contained the embedded
notes and history as shown in Example 4-1.

Example 4-2 shows the process of marking generations for review, display-
ing the list of generations in the library that are on the review pending list,
rejecting a generation, and reserving a generation that has been rejected.

4-22 Elements and Generations

Example 4-2: Example of Using the Review Attribute

CMS> MARK GENERATION BASCHAP*.SDML

_Remark: need to review chapters for BASIC manual

%CMS-I-MARKED, generation 1 of element DISKX: [PROJECT.CMSLIB]BASCHAP1.SDML
marked for review

%$CMS-I-MARKED, generation 1 of element DISKX: [PROJECT.CMSLIB]BASCHAPZ2.SDML
marked for review

$CMS-I-MARKED, generation 1 of element DISKX:[PROJECT.CMSLIB]BASCHAP3.SDML
marked for review

¥CMS-I-MODIFICATIONS, 3 modifications completed

CMS> SHOW REVIEWS PENDING
Reviews pending in DEC/CMS Library DISKX:[PROJECT.CMSLIB]

BASCHAP1.SDML
DAVIS 1 28-JAN-1988 15:48:25 "creating Chapter 1 INTRO"

BASCHAP2, SDML
DAVIS 1 28-JAN-1988 15:48:29 "creating Chapter 2 SYNTAX"

BASCHAP3. SDML
DAVIS 1 28-JAN-1988 15:48:32 “"creating Chapter 3 NEW FEATURES"

CMS> FETCH BASCHAP3.SDML

_Remark: new features still applicable?

Generation 1 of element BASCHAP3.SDML has a review pending

%$CMS-S-FETCHED, generation 1 of element DISKX: [PROJECT.CMSLIB]BASCHAP3.SDML fetched

CMS>. REJECT GENERATION BASCHAP3.SDML "new features made into separate
section, not an entire chapter"
%CMS—-S-REJECTED, generation 1 of element DISKX: [PROJECT.CMSLIB]BASCHAP3.SDML rejected

CMS> RESERVE BASCHAP3.SDML "need to pull section"

Generation 1 of element BASCHAP3.SDML has been rejected

Proceed? [Y/N] (N): YES

%CMS—-S-RESERVED, generation 1 of element DISKX:[PROJECT.CMSLIB]BASCHAP3.SDML reserved

Elements and Generations 4-23

Chapter 5

Groups and Classes

This chapter describes how to create and use groups and classes.

5.1 Overview

Groups and classes are mechanisms that you can use to organize a CMS
library. Both groups and classes are typically used in a library; although
each mechanism creates a different library structure, both can be used in
the same library without conflict.

5.1.1 Groups

A group is a collection of elements or other groups, or a combination of
both. You combine one or more elements into a group that you can then
manipulate as a single unit. For example, you might create a group that
contains all the files that process error messages, a group that contains all
the chapters and appendixes in a book, or a group that contains the modules
needed to build a part of a database.

Even if an element is in a group, you can still manipulate the element as
an object that is separate from the group. A group can also belong to one or
more other groups. The only restriction is that a group cannot be a member
of itself, that is, it cannot directly or indirectly be a subgroup of itself.

Groups and Classes 5-1

5.1.2 Classes

A class is a set of specific generations of elements that can be manipulated
as a unit. A class can hold only one generation of any element.

You use classes to represent the state of development of a system or set

of elements at a particular time or stage. You can think of a class as a
picture taken of a library at a particular time. For example, you might
create a class named FIRST_DRAFT that contains only those generations of
elements that were used in producing the first draft of a manual.

Typically, you create a class to contain generations of all the components of a
software system for a release version of a product. You can establish classes
for different stages or milestones; for example, you could establish one class
for implementation, a second for testing, and a third for generations that
have completed the first two stages. As each module progresses through
each stage, you assign each generation to an appropriate class; thus, you can
easily determine your progress by displaying the contents of the different
classes, and you can later reconstruct any stage of development.

Once you insert an element generation into a class, further changes made to
the element are not reflected in the contents of that class.

5.1.3 The Difference Between Groups and Classes

When you use groups, you manipulate elements. A group is an entity that
allows you to give a name to a set of elements in the library and manipulate
the set of elements with that name. You typically use groups to associate
elements together; for example, you could create a group containing all

the art figures in a manual, or a group containing all source modules that
contain callable entry points.

When you use classes, you manipulate specific generations of elements.

A class is an entity that allows you to give a name to a set of specific
generations of elements in the library and manipulate the set with that
name. In contrast to groups, classes contain only one generation from an
element. You typically use classes to take a "timed snapshot” of a set of
generations; that is, the generations that are meaningful to a project at a
particular time. For example, you could create a class containing the specific
generations that are included in a code freeze or field test kit, or a class
containing the specific generations that make up the state of the project on
some other significant date. Figure 51 shows the the relationship between
a group and a class.

5-2 Groups and Classes

Figure 5-1: Groups and Classes

Group BUILDBASE
INIT.FOR

SEARCH.FOR OUTPUT.FOR ARGCHK.FOR
)
1
!

(o)
(NN

\
\ 1
Legend
Group BUILDBASE
@ Class BASELEVEL4
ZK-1693-GE

Groups and Classes 5-3

The circles in the figure represent four elements and their generations. The
number in each circle represents the generation number of the element gen-
eration. These four elements and their respective generations are contained
in group BUILDBASE, a group containing the modules needed to build part
of a database.

If you retrieve group BUILDBASE, you receive the latest generation on the
main line of descent of each of the following elements in the group:

SEARCH.FOR, generation 6
OUTPUT.FOR, generation 5
ARGCHK.FOR, generation 6
INIT.FOR, generation 4

The dashed line that connects element generations represents class
BASELEVEL4. Class BASELEVELA4 contains the element generations
that comprise the state of the library on March 12, the date the project
moved to base level 4.

If you retrieve class BASELEVEL4, you receive the following element
generations:

SEARCH.FOR, generation 2
OUTPUT.FOR, generation 5
ARGCHK.FOR, generation 5
INIT.FOR, generation 1

5.2 Manipulating Groups

The following sections describe how to create and use groups.

5.2.1 Creating Groups

Groups can contain elements, other groups, or a combination of both.
You establish an empty group with the CREATE GROUP command. For
example:

$ CMS CREATE GROUP USER_MANUAL "user documentation"
$CMS~-S~CREATED, group DISKX:[PROJECT.CMSLIB]USER MANUAL created

This command creates an empty group named USER_MANUAL.

54 Groups and Classes

5.2.2 Inserting Elements into Groups

After you establish a group, you place one or more elements in the group
with the INSERT ELEMENT command.

The following command inserts the elements COPYRIGHT.DOC and
BOOTSTRAP.DOC into the group named USER_MANUAL:

$ CMS INSERT ELEMENT COPYRIGHT.DOC,BOOTSTRAP.DOC USER MANUAL

_Remark: copyright page

%CMS-I-INSERTED, element DISKX:[PROJECT.CMSLIB]COPYRIGHT.DOC inserted into
group DISKX: [PROJECT.CMSLIB]USER_MANUAL

$CMS-I-INSERTED, element DISKX: [PROJECT.CMSLIB]BOOTSTRAP.DOC inserted into
group DISKX:[PROJECT.CMSLIB]USER_MANUAL

%CMS-S-INSERTIONS, 2 insertions completed

Figure 5-2 shows the group USER_MANUAL, which contains two elements,
BOOTSTRAP.DOC and COPYRIGHT.DOC.

Groups and Classes 5-5

Figure 5-2: Generations in a Group

BOOTSTRAP.DOC COPYRIGHT.DOC

()
—/
()
/

Group USER_MANUAL
ZK-1691-GE

This figure shows that all generations of the two elements are associated
with the group. Therefore, you can access any generation of the elements in
a group.

5-6 Groups and Classes

The element expression specified on the INSERT ELEMENT command can
be one or more element names, group names, or a wildcard expression (for
information about element expressions, see Section 10.2.4). If you specify a
group name with the INSERT ELEMENT command, CMS enters the names
of all of the elements in that group into the destination group. For instance,
if you use INSERT ELEMENT to insert the contents of group A into group
B, the contents of group B are not affected by any subsequent changes of the
contents of group A.

You can also use the INSERT GROUP command to insert groups (and, thus
indirectly, elements) into a group. For example:

$ CMS INSERT GROUP USER_MANUAL CODE_AND_DOCS
$CMS-S-INSERTED, group DISKX: [PROJECT.CMSLIB]USER_MANUAL inserted into
DISKX: [PROJECT.CMSLIB]group CODE_AND_DOCS

This command inserts the group USER_MANUAL into the group
CODE_AND_DOCS. The INSERT GROUP command enters the group name
USER_MANUAL into the list of entries for the group CODE_AND_DOCS. If
the contents for the group USER_MANUAL change, the elements accessible
through CODE_AND_DOCS also change.

5.2.3 Retrieving and Removing Elements from a Group

After you create a group and insert elements or other groups into that
group, you can retrieve all generations of elements in the group with a
single FETCH or RESERVE command. For example:

$ CMS FETCH USER MANUAL "copy for internal sites"

$CMS-I-FETCHED, generation 4 of element DISKX: [PROJECT.CMSLIB]BOOTSTRAP.DOC fetched
%CMS-I-FETCHED, generation 1 of element DISKX: [PROJECT.CMSLIB]COPYRIGHT.DOC fetched
%$CMS~-S~FETCHES, 2 elements fetched

When you enter the FETCH command, CMS places a copy of the latest
generation on the main line of descent of each element belonging to the
group named USER_MANUAL into your current default directory.

When you retrieve a group of elements, by default, you get the latest
generation on the main line of descent of each element in the group.

By using the /GENERATION qualifier, you can gain access to a specific
generation. Note that when you use the /GENERATION qualifier with
groups, the generation expression is applied across the group. Thus, if you
were to fetch a group of elements and you specified /GENERATION=2, CMS
would retrieve the second generation of each element in the group.

Groups and Classes 5-7

The REMOVE ELEMENT command allows you to remove an element from
a group; however, it does not alter or delete the element itself. For example:

$ CMS REMOVE ELEMENT SPEC.RNO DOCUMENTATION

_Remark: User’s manual ready for first review

%CMS-S-REMOVED, element DISKX: [PROJECT.CMSLIB]SPEC.RNO removed from group
DISKX: [PROJECT.CMSLIB]DOCUMENTATION

This command removes the element SPEC.RNO from the group
DOCUMENTATION.

You can also use the REMOVE GROUP command to remove groups from
other groups. For example:

$ CMS REMOVE GROUP USER_MANUAL CODE_AND_DOCS "removing group"

$CMS-S-REMOVED, group DISKX:[PROJECT.CMSLIB]USER_MANUAL removed from group

DISKX: [PROJECT.CMSLIB] CODE_AND_DOCS
This command removes the group USER_MANUAL from the group CODE_
AND_DOCS. However, CMS does not delete or alter the groups being
removed.

5.2.4 Displaying the Group Structure of a Library

To find out what groups are defined in your library, use the SHOW GROUP
command. CMS lists group names in alphabetical order with the remark
that is associated with the group. To obtain a list of all elements and groups
in a specific group, use the SHOW GROUP command with the /CONTENTS
qualifier. For example, to display the contents of the group named DATA _
ROUTINES, you would type the following command:

$ CMS SHOW GROUP/CONTENTS DATA_ ROUTINES

Groups in CMS Library DISKX: [PROJECT.CMSLIB]

DATA_ROUTINES "routines for input & conversion"
ADCONVERT.BAS
SAMPLE.BAS

5.2.5 Deleting Groups

The DELETE GROUP command deletes one or more groups from a CMS
library. The group must not contain any elements. For example:

CMS> DELETE GROUP TIME_TST "superseded by comparison tests"
%CMS-S-DELETED, group DISKX:[PROJECT.CMSLIB]TIME TST deleted

This command deletes the group named TIME_TST.

5-8 Groups and Classes

If the group is not empty, or if it belongs to another group, CMS returns
an error and does not delete the group. Use the REMOVE ELEMENT or
REMOVE GROUP command to remove elements or groups from the group
before entering the DELETE GROUP command.

5.3 Manipulating Classes

The following sections describe how to create and use classes.

5.3.1 Creating Classes
You establish an empty class with the CREATE CLASS command. For
example:

$ CMS CREATE CLASS INTERNAL RELEASE "for use in-house only"”
$CMS-S-CREATED, class DISK: [PROJECT.CMSLIB]INTERNAL RELEASE created

This command creates a class called INTERNAL _RELEASE. The class does
not yet contain any element generations.

5.3.2 Inserting Element Generations into Classes

You place an element generation into a class with the INSERT
GENERATION command.

The following commands place generations of INITFOR and ARGCHK.FOR
into the class INTERNAL_RELEASE:

CMS> INSERT GENERATION INIT.FOR INTERNAL RELEASE

_Remark: Initialization routine for demo

$CMS-S-GENINSERTED, generation 2 of element DISKX:[PROJECT.CMSLIB]INIT.FOR
inserted in class DISKX:[PROJECT.CMSLIB]INTERNAL_ RELEASE

CMS> INSERT GENERATION ARGCHK.FOR/GENERATION=3 INTERNAL RELEASE

_Remark: Demo semantic analyzer

%CMS-S-GENINSERTED, generation 3 of element DISKX:[PROJECT.CMSLIB]ARGCHK.FOR

inserted in class DISKX: [PROJECT.CMSLIB]INTERNAL RELEASE
The INSERT GENERATION command uses the latest generation on the
main line of descent unless you specify the /GENERATION qualifier. A class

can contain no more than one generation of an element. A generation can
belong to zero, one, or more classes.

Figure 5-3 shows the relationship of elements, generations, and the class
INTERNAL_RELEASE.

Groups and Classes 5-9

Figure 5-3: The Relationship Between Groups and Elements

SEARCH.FOR OUTPUT.FOR ARGCHK.FOR INIT.FOR

O O
)OO
elorzod

O

The class INTERNAL_RELEASE contains generation 2 of INIT.FOR, gener-
ation 2 of SEARCH.FOR, generation 3 of OUTPUT.FOR, and generation 3 of
ARGCHK.FOR.

w

ZK-1692-GE

5-10 Groups and Classes

5.3.3 Retrieving and Removing Generations from a Class

You can retrieve an element generation from a class by specifying the
class name on the /GENERATION qualifier on the FETCH or RESERVE
command. A class can contain no more than one generation of an element;
the class name specifies the generation of the element to be retrieved. For
example:

$ CMS RESERVE SEARCH.FOR/GENERATION=INTERNAL RELEASE
_Remark: add support for alternate two-character graphics
%CMS-S-RESERVED, generation 2 of element DISKX: [PROJECT.CMSLIB]SEARCH.FOR reserved

This command reserves generation 2 of SEARCH.FOR, as that generation
belongs to the class INTERNAL_RELEASE.

If a class is established to contain each version or base level of a system,
you can accurately reconstruct any previous version of the system. For
example, if the users of your system use version 1, the element generations
that constitute version 1 could belong to the class VERL. If the software has
changed because you are in the process of developing version 2 and a bug
is reported in version 1, you can retrieve the generation of the element in
which the bug appeared because you know that it belongs to class VERL.

The REMOVE GENERATION command allows you to remove an element
generation from a class. For example:

$ CMS REMOVE GENERATION DISPLAY.BAS BASELEVELl "no longer needed"

In this example, a generation of the element DISPLAY.BAS is removed from
class BASELEVEL1. CMS then revises information about BASELEVEL1 so
that no generation of DISPLAY.BAS is included in the class.

5.3.4 Displaying the Class Structure of a Library

To find out what classes are defined in your library, use the SHOW CLASS
command. CMS lists class names in alphabetical order with the remark that
is associated with the class. To obtain a list of all generations in a specific
class, use the SHOW CLASS command with the /CONTENTS qualifier. For
example:

$ CMS SHOW CLASS/CONTENTS BASELEVEL1l
Classes in CMS Library DISKX: [PROJECT.CMSLIB]

Groups and Classes 5-11

BASELEVEL1 "Specifying all generations for first base level"

ADCONVERT.BAS 5
DISPLAY.BAS 2
SAMPLE.BAS 6
SYNCHRON.BAS 4

This command displays all the elements and their generations in class
BASELEVELL.

5.3.5 Deleting Classes

The DELETE CLASS command deletes one or more classes from a CMS
library. The class must not contain any element generations. For example:

$ CMS DELETE CLASS PRE RELEASE "no longer necessary”
%$CMS-S~DELETED, class DISKX: [PROJECT.CMSLIB])PRE RELEASE deleted

This command deletes the class named PRE_RELEASE.

If any element generations belong to the class, CMS issues an error message
and does not delete the class. Use the REMOVE GENERATION command
to remove element generations from a class before entering the DELETE
CLASS command.

5.4 Group and Class Attributes

You can change the name, the remark, and the read-only attribute of both
groups and classes by using the MODIFY GROUP and MODIFY CLASS
commands.

You can use the /NAME qualifier on the MODIFY GROUP command to
change the name of a group that was created with the CREATE GROUP
command. Similarly, you can use the /NAME qualifier on the MODIFY
CLASS command to change the name of a class that was created with the
CREATE CLASS command.

You can use the /REMARK qualifier on the MODIFY GROUP and MODIFY
CLASS commands to specify a new remark to be substituted for the remark
created with the CREATE GROUP and CREATE CLASS commands.

You can use the /READ_ONLY qualifier on the MODIFY GROUP and
MODIFY CLASS commands to assign read-only access to groups or classes.
A group or a class that is set to read-only access cannot be changed; you
cannot insert or remove any items to or from the group or class. In addition,
you cannot change the name of a group or a class that is set to read-only
access.

5-12 Groups and Classes

The following example sets the group DIAGNOSTICS to read-only access:

$ CMS MODIFY GROUP DIAGNOSTICS/READ ONLY
_Remark: diagnostics for use with V2 compiler

After this command has been executed, the group cannot be altered. To
change the group, use the /NOREAD_ONLY qualifier with the MODIFY
GROUP command. Similarly, you can use the /READ_ONLY and /NOREAD_
ONLY qualifiers with the MODIFY CLASS command to enable or disable
modifications to a class.

In addition, you can use the SET ACL and SHOW ACL commands to specify
and display access control lists for groups and classes (as well as for other
CMS library objects). See Chapters 7 and 8 for more information.

Groups and Classes 5-13

Chapter 6

Variants and Merging

This chapter provides information on lines of descent, creating variant lines
of descent, and merging element generations.

6.1 Lines of Descent

The line of descent for a specified generation consists of all ancestors and
direct descendants of that generation. The main line of descent consists of
generation 1 and its direct descendants (generation 2, generation 3, and so
on). A variant line of descent contains one or more variant generations; for
example, the line of descent for generation 3A1B2 consists of the following
generations: 1, 2, 3, 3A1, 3A1B1, 3A1B3, and so on. Generation 1 is the
beginning of every line of descent.

Some projects require alternate development paths, such as a trial devel-
opment of a slightly different internal program structure, a change in the
scope of an existing program, or a version to run on a different operating
system. Variant generations are the mechanism that CMS uses to organize
concurrent, parallel changes to a library element.

6.1.1 Creating a Variant Generation

To create a variant generation, use the /VARIANT=x qualifier on the
REPLACE command. This creates a variant line of descent that CMS

can distinguish from the main line of descent. The parameter x, called

the variant letter, is any single alphabetic character (A through Z). If

you enter the variant letter as a lowercase character, CMS converts it to
uppercase. CMS copies the replaced file into the library and labels the
variant generation by appending the variant letter and the number 1 to the
generation number of the ancestor generation. For example, if you reserved

Variants and Merging 6—1

generation 7 of an element named INIT.FOR, you could create a variant as
follows:

$ CMS REPLACE INIT.FOR/VARIANT=T
_Remark: Routine added for multi-user system
$CMS-S-GENCREATED, generation 7T1 of element DISKX:[PROJECT.CMSLIB]INIT.FOR created

The variant letter (in this case, T) identifies the new line of descent.

The variant letter has no meaning to CMS; you can use it for mnemonic
purposes. For instance, you can choose a variant letter that indicates the
purpose of the variant line, such as F for fixes, E for enhancements, and so
forth.

The number after the variant letter identifies successive generations on that
new line of descent. For example, if you reserve and replace generation 7T1
of INITFOR, generation 7T2 is created. Each variant can have variants of
its own using the same method; for example, you could replace a variant

to generation 7T1 with the REPLACE/VARIANT=E command to create
generation 7T1E1.

You can create a variant line for any reason; however, there are two cases in
which you must create a variant in order to replace an element.

First, when two or more reservations are in effect for the same generation of
the same element at the same time, all but one of the reservations must be
replaced as a variant. CMS manages concurrent changes by allowing only
one replacement to become the next generation on the same line of descent.
The other replacements must begin variant lines of descent; the changes can
then be merged back into the original line of descent (see Section 6.2.1).

Figure 6-1 shows one element at three different stages of development. In
stage I, the element has six generations. At this point, two users reserve
generation 6 of the element. One user replaces his reservation, creating
generation 7 (stage II); the second user replaces her reservation, creating
the variant generation 6X1 (stage III).

6-2 Variants and Merging

Figure 6-1: Creating a Variant Generation

| il n
ZK-1694-GE

Second, when you reserve a generation other than the most recent one on
a line of descent, you must always create a variant successor because the
successor on the same line of descent already exists. For example, if you
reserved an earlier generation to modify software that has already been
released, you must create a variant to store the modification. The change
can then be merged into the original line of descent (see Section 6.2).

Figure 6-2 shows one element at two stages of development. If you reserve
generation 3 of the element, you must create a variant (shown here as
generation 3T1) when you replace the generation with the REPLACE
command, because generation 4 already exists.

Variants and Merging 6-3

Figure 6-2: Extending a Variant Generation from an Earlier Generation

ZK-1695-GE

6.1.2 Accessing Variant Generations

Variant generation numbers can be used like any other generation numbers.
You retrieve a variant generation of an element by using the /GENERATION
qualifier with the FETCH or RESERVE command. You must specify a gen-
eration number or a class name when you use the /GENERATION qualifier.
When you replace a reserved variant generation, the new generation is
created on the same variant line. For example:

6-4 Variants and Merging

$ CMS RESERVE SEMANTICS.PAS/GENERATION=3C1l
_Remark: checks for multiple CASE labels
$CMS-S-RESERVED, generation 3Cl of element DISKX: [PROJECT.CMSLIB]SEMANTICS.PAS reserved

(modify and test element file)

$ CMS REPLACE SEMANTICS.PAS
_Remark: error checking on multiple CASE labels done
%CMS-S-GENCREATED, generation 3C2 of eiement DISKX:[PROJECT.CMSLIB]SEMANTICS.PAS created

In this example, the /GENERATION qualifier on the RESERVE command
specifies that generation 3C1 is to be reserved. The REPLACE command
returns the element to the library and creates generation 3C2, which is on
the same line of descent as its predecessor, 3C1.

6.1.3 Ancestor and Descendant Generations

The ancestors of a generation on the main line of descent are all the
preceding generations back to the first generation of the element
(generation 1). The ancestors of a variant generation are all the preceding
generations on the variant line of descent, which includes all generations on
the path back to the first generation of the element. Figure 6-3 shows the
path to the ancestors of generation 2B2.

Variants and Merging 6-5

Figure 6-3: Ancestors on a Tree of Descent

ZK-1699-GE

The descendants of a generation consist of all successive generations (on the
same line of descent) and all their variant generations. Figure 6-4 shows
the paths that connect the descendants of generation 2.

6-6 Variants and Merging

Figure 6-4: Descendants on a Tree of Descent

ZK-1700-GE

To display the ancestors or descendants of a generation, use the SHOW
GENERATION command with the /ANCESTORS or /DESCENDANTS
qualifier, respectively.

6.2 Merging Two Generations of an Element

At some point in the development cycle, you may want to combine changes
made in two generations of an element. For instance, if concurrent changes
are made to a generation of an element, those changes must be replaced
as two separate generations, at least one of which must be a variant. The
changes made in these new generations can now be merged into a single
generation of the element.

Two conditions are necessary for a merge transaction:

¢ The generations must belong to the same element; that is, you cannot
merge generations of different elements.

Variants and Merging 6-7

¢ One generation cannot be an ancestor of the other; that is, they must
be on different lines of descent. For example, in Figure 6—4, you could
merge generation 2B1 and 3 or 2B2 and 3, but you could not merge
generations 2 and 3, or 2 and 2B1, or 2 and 2B2.

The following sections describe how to merge generations and how the
merging process works.

6.2.1 Merging Element Generations

When you merge generations, CMS identifies the generation you specify
with the /MERGE qualifier, the generation being fetched or reserved, and
the common ancestor for the two generations. The common ancestor for
the two generations is the most recent generation that is on both lines
of descent. (Note that the two generations used in the merge transaction
cannot be on the same line of descent.)

CMS then compares the changes that have been made in both generations
being merged against the common ancestor. CMS looks for identical regions
of text between each of the generations being merged and the common
ancestor. These identical regions provide “anchor” points. The location of
changes is determined relative to these anchor points—not relative to any
particular line number. For example, CMS could consider line 200 in one
generation being merged to be at the same location as line 500 in the other
generation.

Any changes found in only one of the generations are included in the new
file. These are called successful merges. Identical changes (modifications,
insertions, deletions) made at identical locations in the merged generations
are also included in the new file (also called successful merges). Different
changes made at identical locations are flagged by CMS and require
manual resolution. These changes are called merge conflicts. (Section 6.2.2
explains how conflicts between two generations are treated in the merging
process.) CMS then creates an output file containing the results of the
merge transaction, and places it in your current default directory. CMS
assigns the current time as the creation and revision time of the output file;
the output file does not inherit these values from the reserved generation.

NOTE

Because of Record Management Services (RMS) record storage
restrictions, CMS does not merge element generations that have
fixed-length records of different size. CMS does merge element
generations that have fixed-length records with identical formats,

6-8 Variants and Merging

however. If you try to merge fixed-length records of different size,
you receive the following error messages:

CMS-E-SIZEMISMAT, cannot merge generations with different size records
CMS-E-GENRECSIZE, generation ## has ##-byte records, ## has ##-byte records

If at least one of the merged generations has variable-length
records, no restrictions apply, and the resulting generation has
variable-length records.

The /MERGE qualifier identifies the element generation that CMS merges
into the generation being retrieved with the FETCH or RESERVE command.

For example, the following command merges generation 3A1 of the element
DATACHAP.TXT into generation 7B3:

$ CMS FETCH DATACHAP.TXT/GENERATION=7B3/MERGE=3A1

Figure 6~5 shows the contents of three generations of the element CITY.TXT
(generations 1, 2, and 1S1) and the relationship between the element
generations.

Variants and Merging 6-9

Figure 6-5: The Relationship Between a Generation and an Element

1
Generation 1
Boston
New York Generation 1S1

Boston
- New York
Generation 2 San Francisco
Boston
Detroit
New York 2
ZK-1696-GE

In this example, generation 2 is the most recent on the main line of de-

scent. Therefore, you can merge generations 2 and 1S1 with the following
command:

$ CMS RESERVE CITY.TXT/MERGE=1S1l
_Remark: merge generations 2 and 181
$CMS-I-MERGECOUNT, 2 changes successfully merged with no conflicts

%CMS-S-RESERVED, generation 2 of element DISKX:[PROJECT.CMSLIB]CITY.TXT reserved
and merged with generation 1S1

This command merges generation 1S1 into generation 2 of CITY.TXT. The
output file (named CITY.TXT) contains the text common to both genera-
tions and the changes made to both generations. (The file is placed in your
current default directory, or, if you use the /OUTPUT qualifier, another loca-
tion.) CMS marks generation 2 of the element CITY.TXT as reserved. The
generation indicated by the /MERGE qualifier (in this example, generation
1S1) is not reserved.

6-10 Variants and Merging

CMS determines the changes made in each of the generations being merged
by comparing them against generation 1, which is the common ancestor.

In this case, the changes were made to different parts of the file; thus, no
conflicts exist. The resulting file looks like this:

BOSTON
DETROIT

NEW YORK

SAN FRANCISCO

The line DETROIT is the only difference between generation 1 and genera-
tion 2. This change occurs after the line BOSTON in the common ancestor.
The line SAN FRANCISCO is the only difference between generation 1
and generation 1S1. This change occurs after the line NEW YORK in the
common ancestor. Because the changes in generations 1S1 and 2 occur

at different places in the common ancestor, both changes can be applied
without conflict.

The merge transaction combines two lines of descent in a file outside the li-
brary. When you merge with the RESERVE command, you can subsequently
replace the element in the library. The following command replaces the file
created by merging generation 1S1 into generation 2 of CITY.TXT:

$ CMS REPLACE CITY.TXT "completed new format"

%$CMS-S-GENCREATED, generation 3 of element DISKX: [PROJECT.CMSLIB]CITY.TXT created
The generation created by the replacement is a successor only to the genera-
tion that was reserved. Because generation 2 was specified as the retrieved
generation when it was reserved, the REPLACE command creates genera-
tion 3.

Figure 66 shows the relationship of the generations of CITY.TXT after
the replacement transaction. Note that no ancestor or line of descent
relationship exists between generation 1S1 and generation 3.

Variants and Merging 6-11

Figure 6-6: A Generation After Replacement in the Library

ZK-1697-GE

If you do not want to create a new generation but want to produce a merged
file, use the FETCH/MERGE command to merge two lines of descent. You
can also use the ANNOTATE/MERGE command to create a single file that
contains the text common to both generations and the changes made to both

generations. See the ANNOTATE command in the Command Dictionary for
more information.

For information on verifying the merge transaction, see Section 6.2.3.

6.2.2 Conflicts in the Merging Process

Different changes made at identical locations in a generation are called
conflicting changes. A conflicting change can be one of the following:

¢ An insertion of one or more lines

e A deletion of one or more lines

6-12 Variants and Merging

¢ A replacement of n lines by m lines (n may or may not be equal to m)

If CMS detects conflicting changes in the merged generations, it notifies
you by including the changes from both generations in the resulting file and
surrounding them with asterisks.

Suppose that generation 2 of the element CITY.TXT contains an additional
line of text and looks like the following:

BOSTON

DETROIT
NEW YORK
PORTLAND

Under these circumstances, the same merge transaction discussed in
Section 6.2.1 produces different results:

$ CMS RESERVE CITY.TXT/MERGE=1S1

_Remark: merge two generations

$CMS-W-MERGECONFLICT, 1 change successfully merged with 1 conflict
$CMS-S-RESERVED, generation 2 of element DISKX:[PROJECT.CMSLIB]CITY.TXT reserved
and merged with generation 181

The resulting file looks like this:

BOSTON
DETROIT

NEW YORK
kxkkkkkkkkkkxkx*x Conflict 1 HAKKKHKK K KKK KKK A KA KRR AR AR I KKK IR KKK Kk kkkkkhkokdkkkk

PORTLAND

AR AR AR R KRR KRR A AR KA AR A AR KA RN KRR KRR KRA KR ARKR R A AARA I AR KR AN A AR A ARk Ak h ko khhhkhkhhkhhkkhxk

SAN FRANCISCO

*kkk*xkx* End of Conflict 1 ook ek ek ok e ok ke ke kR ek ok ek ok ek e ok ek ek e ek e ek

When the two generations are merged, one change is successfully merged
and one conflict exists. The line DETROIT from generation 2 is applied

to the common ancestor without conflict. That is, there is no change from
generation 1S1 in the same location. However, the line PORTLAND from
generation 2 and the line SAN FRANCISCO from generation 1S1 both occur
at the same location. Each conflict is flagged with the word “Conflict” and

a sequential conflict number in a line of asterisks. (For files with short
fixed-length records, CMS attempts to fit the “Conflict” label; if the Conflict
label does not fit, CMS outputs only asterisks.) Following the asterisks,
CMS displays the conflicting segments of text.

When CMS reports conflicts from a merge transaction, you must resolve
conflicting lines with a text editor. For example, you may want to delete one
set of changes.

Variants and Merging 6-13

NOTE

You must delete the conflict flags (the lines containing asterisks).
If you do not delete them and the merged element is reserved, the
REPLACE command replaces those lines into the library.

6.2.3 Verifying Merged Changes

The merging process is based solely on the text in the files being merged
and is performed with no understanding of the meaning of that text. Thus,
the resulting file from a “successful” merge may not have the desired form.
For example, consider a document where both changes include the same
paragraph, but at different places in the file. The successfully merged copy
will contain a redundant paragraph. Or consider simultaneous changes
made to a code module where one change deleted an unused routine while
the other called that routine. The merged version would contain the call but

no routine to be called, and yet the merge would be considered successful by
CMS.

You should always verify that the merge transaction had the intended
results. You can use the ANNOTATE/MERGE command to produce an
annotated listing that shows all changes made to a file, or you can use the
DIFFERENCES/FULL command to compare the contents of the files. If you
use DIFFERENCES, you should perform the differences transaction three
times: once against the new file and each of the merged generations (to
ensure that their contents were preserved) and once against the new file and
the common ancestor.

Also, because CMS does not understand the meaning of the text in the files
being merged, where applicable you should always compile and link the file
as a precautionary measure.

For more information on the ANNOTATE and DIFFERENCES commands,
see the Command Dictionary.

6-14 Variants and Merging

Chapter 7

Security Features

You can use two types of security mechanisms to protect your CMS library
and the objects in your library:

¢ Standard VMS file protection mechanisms based on user identification
codes (UICs) and access control lists (ACLs)

¢ CMS ACLs

You use VMS file protection mechanisms to control access to VMS files

and directories. In general, UIC-based protection is useful for denying or
granting access to a user or group of users (as defined by the UIC group
number) or to all users on the system. VMS ACL-based protection is useful
for specifying access for a collection of users that are not in the same UIC
group.

CMS ACLs are useful for controlling access to CMS objects and to CMS
operations (commands) performed on those objects. Generally, you should
use CMS ACLs whenever CMS-specific control is needed instead of or in
addition to VMS protection mechanisms. CMS ACLs are very similar to
VMS ACLs; the difference is that while VMS ACLs are used to specify read,
write, execute, and delete access, CMS ACLs are used to specify access types
for CMS operations.

This chapter discusses both security mechanisms; however, you should fully
understand the composition of VMS ACLs and their syntax requirements
before using CMS ACLs. For more information on VMS ACLs, see the VMS
DCL Dictionary, the Guide to Using VMS, the Guide to VMS Files and
Devices, the VMS DCL Concepts Manual, and the Guide to VMS System
Security.

Security Features 7-1

7.1 VMS File Access

When you try to access a directory or file, VMS determines whether or not
you are allowed access by checking the protection mask against your UIC
(unless there is an ACL on the directory or file that grants immediate access
to the directory or file). Specifically, VMS follows these steps to determine
whether a user is allowed access to a particular directory or file:

1. It evaluates any ACLs and grants or restricts the associated access

2. If an ACL does not specifically grant or deny access to the user, or if
there is no associated ACL, it uses UIC-based protection to determine
access.

BYPASS privilege or GRPPRV, READALL, or SYSPRYV privileges may grant
the user access, even if it is denied by the UIC- or ACL-based protection
schemes.

To fully access a CMS library, you must have the following VMS protection
scheme:

¢ Read and write access to the CMS library directory

¢ Read and write access to the 00CMS.CMS control file

* Read, write, and delete access to the 00CMS.HIS control file

* Read and delete access to the element data files

* Execute access to the CMS images SYS$SYSTEM:CMS.EXE,
SYS$SHARE:CMSSHR.EXE, and SYS$SHARE:CMSPROSHR.EXE.

To use the default event action handler, you need the following access:

* Execute access to the CMS image SYS$SHARE:CMS$EVENT_
ACTION.EXE.

To define CMS messages to the VMS Message Utility, you need the following
access:

* Execute access to the CMS image SYS$MESSAGE:CMSMSG.EXE.

To use the CMS DECwindows interface, you additionally need the following
access:

* Read access to the files DECW$SYSTEM_DEFAULTS:CMS$DW.UID,
DECW$SYSTEM_DEFAULTS:CMS$DW_DEFAULTS.DAT, and
SYS$HELP:CMS$DW_HELP.HLB

* Execute access to the CMS image SYS$SYSTEM:CMS$DW.EXE

7-2 Security Features

If you allow read-only access to a library directory or the 00CMS.CMS

file, users cannot make changes to the contents of the library. You must
have delete access to an element data file to delete, reserve, or replace a
generation of the element. To modify the name of an element, you must
have delete access to the element data file and to its corresponding reference
copy, if one exists.

You should set up a library so that at least one account has read, write,
and delete access to every element data file in the library. All three types
of access are necessary to execute the VERIFY/RECOVER and VERIFY
/REPAIR commands (see Chapter 9).

In some cases when you use the VMS file protection scheme, the methods
you use to manipulate a file may modify certain fields in the file header.
When you next use CMS on the library, CMS informs you that some other
means has been used to access the library; you must then execute the
VERIFY/REPAIR command (see Section 9.2.3).

The following sections summarize procedures that you can use to define
VMS access to your CMS library. For more information, see the VMS DCL
Dictionary, the Guide to Using VMS, the VMS DCL Concepts Manual, and
the Guide to VMS System Security.

7.1.1 Assigning UIC Protection

UIC-based protection controls access to directories and files as well as other
VMS objects. In VMS, each user has an associated UIC. Typically, UICs are
presented in numeric or alphanumeric format, for example, [221,253], or
[PROJECT,JONES].

In addition, every file has a protection mask and owner UIC associated
with it. When a user tries to gain access to a directory or file, the system
first checks for existing ACLs, then, if none exist, checks the UIC-based
protection mask. A UIC protection mask allows or denies the following types

of access:
e Read (R)
e Write (W)

¢ Execute (E)
e Delete (D)

Security Features 7-3

The protection mask describes the categories of users who have access
to a directory or file, and the type of access that each category has. The
categories of users are as follows:

e System (S)

* Owner (O)
¢ Group (G)
e World (W)

You use the DCL command SET PROTECTION to specify a particular
protection mask for a directory and its contents. The following example
shows the protection mask that you can use to allow system, owner, and
group access to the library directory [PROJECTICMSLIB.DIR:

$ SET PROTECTION=(S:RWE,O:RWE,G:RWE,W) [PROJECT]CMSLIB.DIR

Note that this protection mask denies world access to the library. Similarly,
you can use the SET PROTECTION command to specify a UIC protection
mask for an individual file within the library directory. For example:

$ SET PROTECTION=(S:RWD,O:RWD,G:RWD,W) [PROJECT.CMSLIB]OOCMS.CMS

For more information, see the Guide to VMS System Security.

7.1.2 Assigning VMS ACL Protection

An ACL consists of access control entries (ACEs) that grant or deny access
to a directory or file (or other VMS object) to specific users. You use ACLs
with a library directory to define access to an entire library. You use ACLs
with library files to establish greater control over access to library contents.
Generally, VMS ACLs are used in conjunction with the standard UIC-based
protection as a way to fine-tune protection.

You can use the following DCL commands to manipulate entire VMS ACLs
or individual ACEs:

EDIT/ACL

SET ACL

SET FILE/ACL

SET DEVICE/ACL
SET DIRECTORY/ACL

You can use the following DCL commands to display VMS ACLs:

SHOW ACL
DIRECTORY/ACL

7-4 Security Features

DIRECTORY/FULL
DIRECTORY/SECURITY

See the VMS DCL Dictionary for more information on these commands. See
the Guide to VMS System Security for more information on using ACLs and
ACEs. :

7.1.2.1 Using VMS ACLs on Directories
VMS directory ACLs provide three means of controlling access to a directory:

¢ By controlling access to the directory file itself. For example:
$ SET FILE/ACL=(IDENTIFIER=DBASEGRP,ACCESS=READ+WRITE) CMSLIB.DIR

This ACE grants read and write access to the directory file CMSLIB.DIR
to users who have the DBASEGRP identifier.

* By specifying a default UIC protection mask to be assigned to each new
file created in the directory. To specify a particular UIC protection mask,
use the DEFAULT_PROTECTION keyword as the first field of an ACE.
For example:

$ SET FILE/ACL=(DEFAULT PROTECTION, S:RWED,O:RWED,G:RWED) CMSLIB.DIR

This ACE specifies that the UIC protection (S:RWED,O:RWED,G:RWED)
be applied to each new file created in the directory. (It does not affect
any files that may already exist in the directory.) If no other ACEs
impose stricter limitations, the system, owner, and group users are
granted full access to new files in the library.

* By specifying a default ACL to be assigned to each file created in the
directory. To specify a default ACL, use the OPTIONS=DEFAULT clause
in the second field of an ACE that is applied to a directory file. For
example:

$ SET FILE/ACL=(IDENTIFIER=DBASEGRP, OPTIONS=DEFAULT, ACCESS=READ+ -
_$ WRITE+DELETE) CMSLIB.DIR

The OPTIONS=DEFAULT clause directs the operating system to du-
plicate this ACE in the ACL of every new file that is created in the
directory. This ACE grants read, write, and delete access to users who
have the DBASEGRP identifier.

Security Features 7-5

7.1.2.2 Using VMS ACLs on Files

To exercise greater control over library access, you can explicitly set the
file protection for each file in the library. Once you have created the first
generation of an element, you can add the necessary ACEs to the ACL
for the element data file. Every time you create a new generation of the
file, CMS creates a new version of the file in the library directory, and the
operating system automatically duplicates the ACL.

For example, you might establish the following ACL for an element data file:

$ SET FILE/ACL=(IDENTIFIER=CMSMGR,ACCESS=READ+WRITE+DELETE), -
$ (IDENTIFIER=[JONES],ACCESS=READ+WRITE+DELETE), -
_$ (IDENTIFIER=[507,*],ACCESS=READ) [PROJECT.CMSLIB.CMS$000]EXAMPLE.PAS

This ACL allows both the user with the CMSMGR identifier and user
JONES read, write, and delete access to the element EXAMPLE.PAS. Users
in the UIC group identified by number 507 can only read (fetch) but cannot
modify the element.

You must have both read and delete access to an element data file to reserve
and replace generations of the corresponding element. If you reserve a
generation of an element and then the access changes (so that either your
account and the element data file ACE no longer have the same identifier, or
you no longer have delete access to the element data file), you cannot replace
the reserved generation.

Table 7-1 shows a list of the CMS commands and the protection required for
each object (an element data file, a control file, or a library directory) that
the command accesses.

Table7-1: File Access Required for CMS Commands

Library

Directory Element

and Data Reference Reference
Command Subdirectories 00CMS.CMS 00CMS.HIS File Copy File Copy Directory
ACCEPT GENERATION RW RW RW
ANNOTATE R R R
CANCEL REVIEW RW RW . RW
CONVERT LIBRARY

(continued on next page)

7-6 Security Features

Table 7-1(Cont.): File Access Required for CMS Commands

Library

Directory Element

and Data Ref Ref
Command Subdirectories 00CMS.CMS (00CMS.HIS File Copy File Copy Directory
—V2-library-name R RW R R
—V3-library-name rwl RW
COPY ELEMENT RW2 RW RW R RW
CREATE CLASS RW RW RW
CREATE ELEMENT RW RW RW RW
CREATE GROUP RW RW RW
CREATE LIBRARY Rrw!
DELETE CLASS RW RW RW
DELETE ELEMENT RW RW RW RD D RW
DELETE RW RW RW RD RW
GENERATION
DELETE GROUP RW RW RW
DELETE HISTORY RW RW RWD
DIFFERENCES3 R
FETCH RwW* R Rw¢
INSERT ELEMENT RW RW RW
INSERT GENERATION RW RW RW
INSERT GROUP RW RW RW
MARK GENERATION RW RW RW
MODIFY CLASS RW RW RW
MODIFY ELEMENT RW RW RW RD D RW
MODIFY RW RW RW
GENERATION
MODIFY GROUP RW RW RW
MODIFY LIBRARY RW RW RW R R
1The directory must be empty.

2You must have read access to the source library and both read and write access to the destination library.

3You must have access to the library and its contents only when you specify an element generation in the differ-
ences transaction.

4You must have write access to the library directory and read and write access to the history file only if you enter a
remark for the fetch transaction.

(continued on next page)

Security Features 7-7

Table 7-1 (Cont.):

File Access Required for CMS Commands

Library
Directory Element
and Data Reference Reference
Command Subdirectories 00CMS.CMS 00CMS.HIS File Copy File Copy Directory
REJECT GENERATION RW RW RW
REMARK RW RW RW
REMOVE ELEMENT RW RW RW
REMOVE RW RW RW
GENERATION
REMOVE GROUP RW RW RW
REPLACE RW RW RW RD D RW
RESERVE RW RW RW RD
RETRIEVE ARCHIVES
REVIEW RW RW RW
GENERATION
SET ACL RW RW RW
SET LIBRARY R
SHOW commands R
SHOW ARCHIVE®
SHOW HISTORY R R R
SHOW LIBRARY R
UNRESERVE RW RW RW
VERIFY/RECOVER RW RW RW RWD
VERIFY/REPAIR RW RW RW RWD RD RW

5You must have read access to the archive file.

If you have set up a restrictive file protection scheme and there is a system
failure during a CMS transaction that leaves your library in an inconsistent
state, a user with sufficient access to the library and its files should execute
the VERIFY/RECOVER command (see Chapter 9). You can also recover the
library if you have BYPASS privilege (see Section 7.3), or read, write, and

delete access to all the library files.

7-8 Security Features

7.2 CMS ACLs

A CMS ACL is used to control access to CMS library objects. You can assign
CMS ACLs to the following types of objects:

¢ Elements

* Groups

¢ C(Classes

¢ Element list

* Group list

¢ (Class list

¢ History

* Library attributes
¢ Commands

When there is no ACL on a command or other object, access to the command
or other object is unrestricted. Assigning an ACL to an object limits access
to the specified user or users.

To determine whether access to an object is allowed, CMS evaluates the ACL
on that object. If no ACL exists, access to the object is granted. If an ACL
does exist, CMS searches the ACL sequentially for the first ACE that the
user matches. A match is determined by comparing the identifiers specified
in the ACE against the identifiers held by the user. If the user holds all

the identifiers specified in the ACE, that ACE is a match. CMS grants the
specified access of the first ACE matched; if another ACE further down in
the ACL also matches, it has no effect. If none of the ACEs match, access is
denied.

Note that if you are granted access to an object by CMS ACLs, you still
need access to the files via VMS protection mechanisms. (However, the
use of BYPASS privilege will allow you access; see Section 7.3 for more
information.)

There are two ways in which you can use CMS ACLs:

e To control and restrict access to CMS commands

For example, you can create an ACL specifying certain users who are
not allowed to use the DELETE ELEMENT command, or users who are
allowed to only use the FETCH, RESERVE, and REPLACE commands.
See Section 7.2.2 for more information.

Security Features 7-9

¢ To control and restrict access to CMS objects

For example, you can create an ACL specifying certain users who are not
allowed to insert or modify a particular element. You can put ACLs on
elements, groups, and classes as well as on the element, group, and class
lists. You can also put an ACL on the entire library and on the library
history. See Section 7.2.3.2 and Section 7.2.3.3 for more information.

You can also use CMS ACLs to define CMS events (see Chapter 8).

7.2.1 Creating CMS ACLs

An ACL consists of ACEs that grant or deny access to a command or other
object to specific users.

You can use two types of ACEs in CMS:

¢ Identifier ACEs—control which users can perform which CMS operations
on a specified object.

e Action ACEs—define CMS events and specify actions to be taken when
the events occur (these are described in Chapter 8).

The following sections describe the format of an ACE and the format of an
ACL.

7.2.1.1 ACE Format
An identifier ACE has the following format:

(IDENTIFIER=identifier [, OPTIONS=options] [,ACCESS=access])

identifier
This field can contain any valid VMS identifier. You use identifiers to specify
the users in an ACL. There are three types of identifiers:

¢ UIC identifiers

* General identifiers

¢ System-defined identifiers

UIC identifiers are described in Section 7.1.1. General identifiers identify
groups of users on the system. For example, DBASEGRP, or CMSPROJ_

MEMBR are general identifiers. System-defined identifiers are described in
the Guide to VMS System Security.

7-10 Security Features

You can specify multiple identifiers by separating them with a plus sign (+).
The plus sign indicates the logical AND operation. CMS grants the access
included in the ACE only for the user who matches all the identifiers. For
example:

(IDENTIFIER=PROJ_LEADER + [PROJ,*])

In this example, the multiple identifier is matched only if the user both
holds the PROJ_LEADER identifier and belongs to the PROJ group.

options

This field can contain the keyword DEFAULT or NONE. This option is valid
only for object lists, that is, an element list, group list, or class list. It is not
valid for commands. See Section 7.2.3.2 for more information on the options
clause.

access

This field specifies the type of access that CMS allows the user or users
identified in the identifier clause of the ACE. You can specify multiple access
types by separating them with a plus sign (+). The plus sign indicates the
logical OR operation. For example:

(IDENTIFIER=PROJ_LEADER, ACCESS=MODIFY+DELETE)

This example indicates that both the modify and delete operations are
allowed for the user holding the PROJ_LEADER identifier.

The next section provides more detail on CMS access types.

7.2.1.2 Access Types

Figure 71 shows all the possible access types for CMS ACLs, along with the
object types for which they are meaningful.

Security Features 7-11

Figure 7-1: CMS ACL Access Types

Element Group Class Library
Access Element List Group List Class List History Attributes Commands
ACCEPT X X
ANNOTATE X X
BYPASS X X
CANCEL X X
CONTROL X X X X X X X X X
COPY X X
CREATE X X X
DELETE X X X X X X X
EXECUTE X
FETCH X X
INSERT X X X X
MARK X X
MODIFY X X X X X X X
REJECT X X
REMARK X
REMOVE X X X X
REPAIR X X X
REPLACE X X
RESERVE X X
REVIEW X X
UNRESERVE X X
VERIFY X X X
ZK-7993-GE
EXECUTE Access

To perform any CMS operation, you must have EXECUTE access to the
command in addition to the appropriate access to the object or objects
accessed by the command. For example, to create an element, you need the
following:

7-12 Security Features

¢ EXECUTE access to the CREATE ELEMENT command
¢ CREATE access to the element list

To create an element and reserve it, you need the following:
¢ EXECUTE access to the CREATE ELEMENT command
¢ CREATE access to the element list

¢ EXECUTE access to the RESERVE command

¢ RESERVE access to the element

To copy an element, in the source library, you need the following:

¢ EXECUTE access to the COPY ELEMENT command
® COPY access to the element

To copy an element, in the destination library, you need the following:

¢ EXECUTE access to the CREATE ELEMENT command
¢ CREATE access to the element list

CONTROL Access

To modify or delete an ACL on an object, you must have CONTROL access
to the object. In addition, you must have EXECUTE access to the SET ACL
command.

You can prevent other users from modifying or deleting an ACL on an object
by giving only yourself CONTROL access. Note that at least one user must
have CONTROL access; if not, then you must use BYPASS privilege to
modify or delete that ACL.

See Section 7.2.2 for information on specifying ACLs on commands. See
Section 7.2.3 for more information on specifying ACLs on other object types.

7.2.1.3 ACL Format

You use the CMS SET ACL command to specify ACEs on commands and
other objects in the CMS library. The SET ACL command has the following
format:

SET ACL /OBJECT_TYPE=type object-expression "remark"

Security Features 7-13

The object expression depends on the object type; they must be related as
shown in Table 7-2.

Table 7-2: Object Types and Related Expressions

Object Type Object Expression
ELEMENT An element expression
GROUP A group expression
CLASS A class expression
COMMAND The name of a command, or a list of commands
LIBRARY ELEMENT_LIST
GROUP_LIST
CLASS_LIST
HISTORY

LIBRARY_ATTRIBUTES

If the object type is LIBRARY, the object expression must be one or more
keywords (called subtypes), as specified in Table 7-2. You can abbreviate
these subtypes.

The SET ACL command is described in detail in the Command Dictionary.
Sections 7.2.2 and 7.2.3 discuss specifying ACLs with commands and other
objects.

7.2.2 Specifying ACLs with Commands

Specifying a CMS ACL on a command allows you to restrict one or more
users from accessing that command. This provides a broad protective
mechanism that allows greater control over the CMS library than using
VMS ACLs and UICs.

You use CMS ACLs on commands and other objects; in most cases, using
CMS ACLs on commands is the most effective method to suit most user’s
needs.

When you use the SET ACL command to set an ACL on a command, the
object type must be COMMAND, as specified in Table 7-2. The object
expression must be one of the following commands:

ACCEPT_GENERATION MARK_GENERATION
ANNOTATE MODIFY_CLASS

7-14 Security Features

CANCEL_REVIEW
COPY_ELEMENT
CREATE_CLASS
CREATE_ELEMENT
CREATE_GROUP
DELETE_CLASS
DELETE_ELEMENT
DELETE_GENERATION
DELETE_GROUP
DELETE_HISTORY
DIFFERENCES

FETCH
INSERT_ELEMENT
INSERT_GENERATION
INSERT_GROUP

MODIFY_ELEMENT
MODIFY_GENERATION
MODIFY_GROUP
MODIFY_LIBRARY
REJECT_GENERATION
REMARK
REMOVE_ELEMENT
REMOVE_GENERATION
REMOVE_GROUP
REPLACE

RESERVE
REVIEW_GENERATION
SET_ACL

UNRESERVE

VERIFY

You can display this list of commands by issuing the SHOW ACL /OBJECT_
TYPE=COMMAND * command. Note that commands containing two words

must include an underscore.

To access a command, you must have EXECUTE access to that command.

7.2.2.1 Examples of ACLs on Commands

1. $ CMS SET ACL/OBJECT_ TYPE=COMMAND RESERVE, REPLACE -
_$ /ACL= (IDENTIFIER=[PROJECT, WILSON], ACCESS=EXECUTE) ""

This command specifies that the user with the UIC [PROJECT,WILSON]
is allowed EXECUTE access to the RESERVE and REPLACE commands.

2. $ CMS SET ACL/OBJECT TYPE=COMMAND INSERT ELEMENT -
_$ /ACL=(IDENTIFIER=JONES, ACCESS=CONTROL) ""
%$CMS~S~-MODACL, modified access control list for command
DISKX: [PROJECT.CMSLIB] INSERT ELEMENT

$ CMS INSERT ELEMENT ELEMENT.2 GROUP2 ""

%CMS-E-NOINSERT, error inserting DISKX: [PROJECT.CMSLIB)ELEMENT.2
into group DISKX: [PROJECT.CMSLIB]GROUP2

-CMS-E-NOACCESS, no execute access to INSERT ELEMENT command

$ CMS SET ACL/OBJECT_ TYPE=COMMAND INSERT ELEMENT -

_$ /ACL= (IDENTIFIER=JONES, ACCESS=EXECUTE+CONTROQOL)""
$CMS-S-MODACL, modified access control list for command

DISKX: [PROJECT.CMSLIB]INSERT ELEMENT

$ CMS SHOW ACL/OBJECT_ TYPE=COMMAND INSERT_ ELEMENT

Security Features 7-15

ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

INSERT_ELEMENT
(IDENTIFIER=[WORK, JONES], ACCESS=EXECUTE+CONTROL)

$ CMS INSERT ELEMENT ELEMENT.2 GROUP2 "V
%CMS-S~INSERTED, element DISKX: [PROJECT.CMSLIB]ELEMENT.2 inserted into
group DISKX: [PROJECT.CMSLIB]}GROUP2

In this example, user JONES assigns an ACL containing CONTROL
access to the INSERT ELEMENT command. The SHOW ACL com-
mand displays the ACL on INSERT ELEMENT. (Note that commands
containing more than one word must be specified with an underscore.)
The example then shows that JONES tries to insert another element
into another group. The attempt fails because, although JONES has
CONTROL access to the INSERT ELEMENT command, he does not also
have EXECUTE access to it.

CONTROL access allows you to modify the ACL. Because JONES has
CONTROL access, he modifies the ACL to allow himself EXECUTE
access to the INSERT ELEMENT command. (You must have EXECUTE
access to use any commands.) He can then insert elements successfully.

$ CMS SET LIBRARY [WORK.CMSLIB], [PROJECT.CMSLIB]

%$CMS-I-LIBIS, library is DISKX: [WORK.CMSLIB]

$CMS-I-LIBINSLIS, library DISKX:[PROJECT.CMSLIB] inserted at end of
library list

%$CMS-S-LIBSET, library set

$§ CMS SET ACL/ACL=((IDENTIFIER=SMITH,ACCESS=CONTROL), (IDENTIFIER=%*, -
_$ ACCESS=NONE)) DELETE_ELEMENT/OBJECT_TYPE=COMMAND/OCCLUDE=NOOTHER ne
$CMS~-S-MODACL, modified access control list for command

DISKX: [WORK.CMSLIB)DELETE_ELEMENT

%$CMS-S-MODACL, modified access control list for command

DISKX: [PROJECT.CMSLIB]DELETE_ELEMENT

%$CMS-S-MODACLS, 2 access control lists modified

This example shows the use of occlusion. The SET ACL command is
used to restrict access to the DELETE ELEMENT command in both

libraries [WORK.CMSLIB] and [PROJECT.CMSLIB]. See Section 3.3 for
more information on occlusion.

7.2.3 Specifying ACLs with Other CMS Objects

For users requiring more restrictive control, you can fine tune access by
using CMS ACLs in combination with objects besides commands. These
other objects include:

L]

Elements, groups, and classes
Element lists, group lists, and class lists

7-16 Security Features

* Library history and library attributes

The following sections describe these objects in detail.

7.2.3.1 Specifying ACLs on Elements, Groups, and Classes

Specifying a CMS ACL on an element, group, or class allows you to restrict
one or more users from accessing that object. For example, you can create
an ACL specifying certain users who are not allowed to insert or modify a
particular element.

When you use the SET ACL command on an object, the object type must
be ELEMENT, GROUP, or CLASS as specified in Table 7-2. The object
expression must be an element, group, or class expression, respectively.

See Figure 7-1 for all the possible access types that are allowed with these
objects. Note that not all access types have meaning for all objects. For
example, giving a user RESERVE access to a class is meaningless, because
the RESERVE command does not operate on classes.

7.2.3.1.1 Examples of ACLs on Elements, Groups, and Classes

1. $ CMS SET ACL EXAMPLE.PAS/OBJECT_ TYPE=ELEMENT -
$_ /ACL=(IDENTIFIER=[555,*],ACCESS=FETCH) ""

This command specifies that users with the UIC [555,*] are allowed only
FETCH access to the element EXAMPLE.PAS.

2. $§ CMS SET ACL/OBJECT TYPE=ELEMENT ELEMENT.1l -
_$ /ACL=(IDENTIFIER=JONES, ACCESS=RESERVE+CONTROL) ""
%$CMS-S-MODACL, modified access control list for element
DISKX: [PROJECT.CMSLIB] ELEMENT. 1

$ CMS SET ACL/OBJECT_TYPE=ELEMENT ELEMENT.1/ACL=(IDENTIFIER=JONES, -
_$ ACCESS=NONE) ""

%$CMS-S-MODACL, modified access control list for element

DISKX: [PROJECT.CMSLIB]ELEMENT. 1

$ CMS RESERVE ELEMENT.1 ""
$CMS-E-NOFETCH, error reserving element DISKX:[PROJECT.CMSLIB]ELEMENT.1
-CMS-E-NOACCESS, no reserve access to element ELEMENT.1

$ CMS SET ACL/OBJECT_TYPE=ELEMENT ELEMENT.1 -

_$ /ACL=(IDENTIFIER=JONES, ACCESS=RESERVE+CONTROL) ""
$CMS-E-NOMODACL, error modifying access control list for element
DISKX: [PROJECT.CMSLIB]ELEMENT. 1

-CMS-E-NOACCESS, no control access to element ELEMENT.1

In this example, user JONES assigns an ACL containing RESERVE
and CONTROL access to the element ELEMENT.1. Then, another user
(who has BYPASS privilege) sets an ACL on ELEMENT.1 containing

Security Features 7-17

ACCESS=NONE, thus restricting JONES from reserving that eleément,
and removing any prior access that JONES had assigned. JONES then
tries to reserve the element. His attempt is unsuccessful because he
no longer has RESERVE access to the element. He also does not have
CONTROL access to the element, which would allow him to modify the
ACL assigned by the second user.

3. § CMS SET ACL/OBJECT_TYPE=CLASS CLASS1 -
_$ /ACL=(IDENTIFIER=JONES, ACCESS=CONTROL) ""
%$CMS-S~-MODACL, modified access control list for class
DISKX: [PROJECT.CMSLIB]CLASS1

$ CMS SHOW ACL/OBJECT_TYPE=CLASS CLASS1
ACLs in DEC/CMS Library DISKX:[PROJECT.CMSLIB]

CLASS1
(IDENTIFIER=[WORK, JONES] , ACCESS=CONTROL)

$ CMS MODIFY CLASS/NOREAD_ ONLY CLASS1 ""
$CMS~E-NOMODIFY, error modifying class DISKX: [PROJECT.CMSLIB]CLASS1
-CMS-E-NOACCESS, no modify access to class CLASS1

$ CMS SET ACL/OBJECT_TYPE=CLASS CLASS1 -

_$ /ACL=(IDENTIFIER=JONES, ACCESS=MODIFY+CONTROL) ""
%CMS-S-MODACL, modified access control list for class
DISKX: [PROJECT.CMSLIB]CLASS1

$ CMS MODIFY CLASS/NOREAD_ONLY CLASS1 ""
%$CMS-S-MODIFIED, class DISKX:[PROJECT.CMSLIB]CLASS1 modified

In this example, user JONES assigns an ACL giving himself CONTROL
access to the class CLASS1. He then tries to modify the class, but is
unsuccessful because, although he has CONTROL access to the class,
he does not also have MODIFY access. However, since JONES has
CONTROL access, this allows him to issue the SET ACL command. He
then assigns another ACL containing both CONTROL and MODIFY
access to the class, and then successfully modifies the class.

7.2.3.2 Specifying ACLs on Element Lists, Group Lists, and Class Lists

The difference between an object and its list is important in the understand-
ing of CMS ACLs. Conceptually, element, group, and class lists are objects
representing all the elements, groups, and classes already existing or yet to
be created in a CMS library. Object lists are used solely with CMS ACLs.

When you use the SET ACL command on an object list, the object type
must be LIBRARY. The object expression must be one of the following
keywords: ELEMENT LIST, GROUP_LIST, or CLASS_LIST, as specified
in Table 7-2 (see Section 7.2.3.3 for information on the HISTORY and
LIBRARY_ATTRIBUTES keywords). See Figure 7-1 for all the possible
access types that are allowed with these objects.

7-18 Security Features

Specifying an ACL on an object list grants the right to create new objects in
the library. For example:

$ CMS SET ACL/OBJECT_ TYPE=LIBRARY GROUP_LIST -
_$ /ACL=(IDENTIFIER=PROJ_TEAM, ACCESS=CREATE) ""

This example assigns an ACL to the group list, and allows only the holders
of the identifier PROJ_TEAM to create groups in the library.

You can also specify a default ACL to be used on newly created objects in
the library. You do this by specifying the OPTIONS=DEFAULT clause in the
ACL of an object list. For example:

$ CMS SET ACL/OBJECT TYPE=LIBRARY ELEMENT LIST/ACL=(IDENTIFIER=PROJ_TEAM, -
_$ OPTIONS=DEFAULT, ACCESS=FETCH) ""

This example specifies that only holders of the PROJ_TEAM identifier will
be able to FETCH newly created elements.

Each time you create a new object, CMS searches for the ACEs containing
the OPTIONS=DEFAULT clause in the ACL of the corresponding object list.
If any exist, the newly created object (or objects) are automatically assigned
the ACEs containing the OPTIONS=DEFAULT clause. For example, if you
specify ACEs containing OPTIONS=DEFAULT in the ACL of a group list,
CMS assigns the default ACEs in the ACL to any newly created groups.

OPTIONS=DEFAULT is only valid for object lists. Note that the
OPTIONS=DEFAULT clause does not affect any objects already in the
list, only new objects. You can assign default ACEs to existing objects by
specifying the SET ACL/DEFAULT command.

Because it is not possible to assign an ACL granting CREATE access to an
object that does not yet exist, the only access types that are meaningful

for an object list ACE not containing the OPTIONS=DEFAULT clause are
CREATE and CONTROL access. All other access types are meaningful only
if the OPTIONS=DEFAULT clause is present.

CAUTION

Because default ACEs do not grant access, when you use de-
fault ACEs, you should assign another ACE granting yourself
or another user a minimum of CONTROL access to an object;
otherwise, you could restrict your own access to the object.

When you use the COPY ELEMENT command, the source element’s ACL is
not assigned to the target element. Instead, the target element receives the
default ACL (if any) that is set on the element list.

Security Features 7-19

If you do not use the OPTIONS=DEFAULT clause, newly created objects are
not affected by the ACL (if any) on the object list. The OPTIONS=NONE
clause indicates that new objects are not assigned that ACE from the
object list. NONE is equivalent to not specifying a clause. Note that the
OPTIONS=NONE clause is not displayed when you issue the SHOW ACL
command.

7.2.3.2.1 Examples of ACLs on Lists

1. $ CMS SET ACL/OBJECT_TYPE=LIBRARY ELEMENT_LIST -~
_$ /ACL=((IDENTIFIER=JONES, OPTIONS=DEFAULT, ACCESS=RESERVE -
_$ +CONTROL) , (IDENTIFIER=JONES, ACCESS=CREATE+CONTROL)) ""

This command places two ACEs on the element list. The first ACE is a
default ACE, which will cause all new elements created in the library to
inherit an ACE giving RESERVE access to the user with the identifier
JONES. The second ACE defines the access to the element list itself.
Because CREATE access is specified, the user with the identifier JONES
is allowed to create elements in the library. Note that both ACEs also
grant control access; this is necessary to allow modification of the ACL
once it has been created.

2. $§ CMS SET ACL/OBJECT TYPE=LIBRARY CLASS LIST -
_$ /ACL= (IDENTIFIER=JONES, ACCESS=CONTROL) ""
%$CMS-S-MODACL, modified access control list for subtype
DISKX: [PROJECT.CMSLIB]CLASS LIST

$ CMS CREATE CLASS CLASS4 ""
%$CMS-E-NOCREATE, error creating class DISKX:[PROJECT.CMSLIB]CLASS4
-CMS-E-NOACCESS, no create access to CLASS_LIST

$ CMS SET ACL/OBJECT TYPE=LIBRARY CLASS_LIST -

_$ /ACL=(IDENTIFIER=JONES, ACCESS=CREATE+CONTROL} ""
$CMS—-S~-MODACL, modified access control list for subtype
DISKX: [PROJECT.CMSLIB]CLASS_LIST

$ CMS SHOW ACL/OBJECT_ TYPE=LIBRARY CLASS_LIST
ACLs in DEC/CMS Library DISKX:[PROJECT.CMSLIB]

CLASS_LIST
(IDENTIFIER=[WORK, JONES] , ACCESS=CREATE+CONTROL)

$ CMS CREATE CLASS CLASS4 ""
%$CMS-S-CREATED, class DISKX:[PROJECT.CMSLIB]CLASS4 created

In this example, JONES assigns an ACL containing CONTROL access to
the class list. Assigning an ACL to the class list will affect the creation
of new classes in the library. However, when he tries to create a new
class, he receives an error because he does not also have CREATE access
to the class list. Because he has CONTROL access, he then assigns a

7-20 Security Features

new ACL giving himself both CONTROL and CREATE access. He can
then create new classes.

$ CMS SET ACL/OBJECT TYPE=LIBRARY ELEMENT LIST -
$ /ACL=((IDENTIFIER=JONES,ACCESS=CREATE+CONTROL), -
_$ (IDENTIFIER=FLYNN, OPTIONS=DEFAULT, ACCESS=FETCH), -
:$ (IDENTIFIER=SMITH, OPTIONS=DEFAULT, ACCESS=RESERVE+REPLACE)) ""
%¥CMS-S-MODACL, modified access control list for subtype
DISKX: [PROJECT.CMSLIB]ELEMENT_LIST

$ CMS SHOW ACL/OBJECT_TYPE=LIBRARY ELEMENT_LIST
ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

ELEMENT_ LIST
(IDENTIFIER=[WORK, JONES] , ACCESS=CREATE+CONTROL)
(IDENTIFIER={WORK, FLYNN], OPTIONS=DEFAULT, ACCESS=FETCH)
(IDENTIFIER=[WORK, SMITH], OPTIONS=DEFAULT, ACCESS=REPLACE+RESERVE)

$ CMS CREATE ELEMENT ELEMENT.4 ""
%CMS-S-CREATED, element DISKX:[PROJECT.CMSLIB]ELEMENT.4 created

$ CMS SHOW ACL/OBJECT TYPE=ELEMENT ELEMENT.4
ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

ELEMENT. 4
(IDENTIFIER=[WORK, FLYNN] , ACCESS=FETCH)
(IDENTIFIER=[WORK, SMITH] , ACCESS=REPLACE+RESERVE)
In this example, user JONES assigns an ACL on the element list. The
ACL specifies the following:

e JONES is allowed CREATE and CONTROL access to the element
list.

* By using OPTIONS=DEFAULT, JONES assigns user FLYNN only
FETCH access to new elements created in the library.

* By using OPTIONS=DEFAULT, JONES assigns user SMITH only
REPLACE and RESERVE access to new elements created in the
library.

JONES then successfully creates a new element named ELEMENT.4.
When the SHOW ACL command is issued, the default access on the
element for each user is displayed. User JONES’s access is not displayed
because he has access to the element list, not the element itself.

Security Features 7-21

7.2.3.3 Specifying ACLs on Libraries and History

Specifying a CMS ACL on the library or the library history allows you to
restrict one or more users from certain types of access to the library, or from
certain types of access to the library history. You can restrict users from the
following types of access to the library:

* MODIFY

¢ REPAIR

¢ VERIFY

You can restrict users from the following types of access to the library
history:

e DELETE

¢ REMARK

REPAIR and VERIFY Access

REPAIR access is required to use VERIFY/REPAIR on a library. If you have
REPAIR access to a library object, you can issue VERIFY/REPAIR, even if
you do not have VERIFY access to that library.

Because CMS cannot determine whether access control information is valid
until it verifies the database, the VERIFY and REPAIR access types apply
only to element data file verification. Once the database has been verified,
CMS checks the following:

® Access to the VERIFY command

¢ VERIFY or REPAIR access to the library

* VERIFY or REPAIR access to each element

When you use the SET ACL command on a library or history, the object type

must be LIBRARY, as specified in Table 7-2. The object expression must be
either LIBRARY_ATTRIBUTES or HISTORY.

See Figure 7-1 for all the possible access types that are allowed on a library
or history.

7-22 Security Features

7.2.3.3.1 Examples of ACLs on History and the Library

1. $ CMS SET ACL/OBJECT_TYPE=LIBRARY HISTORY -
_$ /ACL=(IDENTIFIER=JONES, ACCESS=CONTROL) ""
$CMS-S-MODACL, modified access control list for subtype
DISKX: [PROJECT.CMSLIB] HISTORY
$ CMS REMARK "Add a remark to history"
%$CMS-E-NOREMARK, error adding remark to library
-CMS-E-NOACCESS, no remark access to library history
$ CMS SET ACL/OBJECT TYPE=LIBRARY HISTORY -
_$ /ACL= (IDENTIFIER=JONES, ACCESS=REMARK+CONTROL) ""
%CMS~-S-MODACL, modified access control list for subtype
DISKX: [PROJECT.CMSLIB}HISTORY
$ CMS REMARK "Add a remark to history"™
%$CMS~-S-REMARK, remark added to history file
In this example, JONES assigns an ACL giving herself CONTROL
access to the library history. She then tries to add a remark to the
library history, but is unsuccessful because she does not have REMARK
access to the history. She then assigns another ACL containing both
CONTROL and REMARK access, and can then successfully add a
remark to the library history file.

2. $ CMS SET ACL/OBJECT_TYPE=LIBRARY LIBRARY ATTRIBUTES -

_$ /ACL= (IDENTIFIER=JONES, ACCESS=CONTROL) ""
%CMS-S-MODACL, modified access control list for subtype
DISKX: [PROJECT.CMSLIB]LIBRARY ATTRIBUTES

$ CMS VERIFY/REPAIR

%$CMS-I-VERCLS, class list verified
%$CMS-I-VERCMD, command list verified
%$CMS-I-VERELE, element list verified

%CMS-I-VERCON, control file verified

%CMS-E-ERRVEREDFS, element data files verified with errors
-CMS-E-NOACCESS, no repair access to library DISKX: [PROJECT.CMSLIB]
%CMS-E-NOREPAIR, error repairing library

$ CMS SET ACL/OBJECT TYPE=LIBRARY LIBRARY ATTRIBUTES -
_$ /ACL=(IDENTIFIER=JONES, ACCESS=CONTROL+REPAIR) ""
%CMS-S-MODACL, modified access control list for subtype
DISKX: [PROJECT.CMSLIB]LIBRARY ATTRIBUTES

$ CMS SHOW ACL/OBJECT TYPE=LIBRARY LIBRARY_ATTRIBUTES
ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

LIBRARY ATTRIBUTES
(IDENTIFIER=[WORK, JONES] , ACCESS=CONTROL+REPAIR)

Security Features

7-23

$ CMS VERIFY/REPAIR

$CMS-I-VERCLS, class list verified
%CMS-I-VERCMD, command list verified
%CMS-I-VERELE, element list verified

%$CMS-I-VERCON, control file verified

%CMS-E-VEREDFERR, element DISKX: [PROJECT.CMSLIB)ELEMENT.1 verified with errors
-CMS-E-NOACCESS, no repair access to element ELEMENT.1

%CMS-I~VEREDF, element DISKX:[PROJECT.CMSLIB]ELEMENT.2 verified

$CMS-I-VEREDF, element DISKX:[PROJECT.CMSLIB]ELEMENT.3 verified
%$CMS-E-VEREDFERR, element DISKX: [PROJECT.CMSLIB)ELEMENT.4 verified with errors
-CMS-E-NOACCESS, no repair access to element ELEMENT.4

%$CMS-E-ERRVEREDFS, element data files verified with errors

%$CMS-E-NOREPAIR, error repairing library

$ CMS SHOW ACL/OBJECT_TYPE=ELEMENT ELEMENT.1, ELEMENT.4
ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

ELEMENT.1
(IDENTIFIER=[WORK, JONES], ACCESS=NONE)

ELEMENT. 4
(IDENTIFIER=[WORK,FLYNN], ACCESS=FETCH)
(IDENTIFIER=[WORK, SMITH] , ACCESS=REPLACE+RESERVE)

This example demonstrates how REPAIR access is used. First, JONES
assigns an ACL to the library indicating that he is allowed CONTROL
access to the library. He then tries a VERIFY/REPAIR operation on
the library. This attempt is unsuccessful because he does not also have
REPAIR access to the library. He assigns a new ACL containing both
CONTROL and REPAIR access to the library, and tries another VERIFY
/REPAIR operation on the library. This attempt is also unsuccessful
because, although he has REPAIR access to the library, he does not
have REPAIR access to the elements ELEMENT.1 and ELEMENT.4
(as displayed by the SHOW ACL command). When issuing VERIFY
/REPAIR, you must have REPAIR access both to the library and to the
individual elements in the library.

7.3 VMS BYPASS Privilege and CMS BYPASS Access

The VMS BYPASS privilege allows a user read, write, execute, and delete
access to all files, bypassing UIC protection. A user holding BYPASS
privilege is also granted access to any CMS object or command, regardless of
any VMS or CMS protections.

Whenever you define ACLs for objects, remember that users with BYPASS
privilege are granted complete access; for this reason, BYPASS privilege is
usually reserved for experienced users who need this privilege.

7-24 Security Features

Being granted CMS BYPASS access is not equivalent to holding VMS
BYPASS privilege. The CMS BYPASS access type allows you only to
unreserve or replace another user’s reservation for an element. (VMS
BYPASS privilege also allows you to unreserve or replace another user’s
reservation.)

The following example shows the use of CMS BYPASS access:

;3 CMS SHOW RESERVATIONS

leservations in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

JLEMENT.2
(1) FLYNN 1 12-JAN-1989 18:57:43 "

3 CMS REPLACE ELEMENT.2/IDENTIFICATION_NUMBER=1 "y
sCMS-E-NOREPLACE, error replacing DISKX: [PROJECT.CMSLIB]ELEMENT.2
-CMS-E-IDENTNOTRES, reservation 1 is not reserved by you

3 CMS SET ACL/OBJECT_TYPE=ELEMENT ELEMENT.2 -

§ /ACL=(IDENTIFIER=JONES, ACCESS=BYPASS+REPLACE+CONTROL) ""
5CMS-S-MODACL, modified access control list for element
JISKX: [PROJECT.CMSLIB]ELEMENT. 2

5 CMS SHOW ACL/OBJECT_TYPE=ELEMENT ELEMENT.Z2
\CLs in DEC/CMS Library DISKX:[PROJECT.CMSLIB]

JLEMENT. 2
(IDENTIFIER=[WORK, JONES] , ACCESS=CONTROL+BYPASS+REPLACE)

5 CMS REPLACE ELEMENT.2/IDENTIFICATION_NUMBER=1 wn
ilement DISKX: [PROJECT.CMSLIB]ELEMENT.2 currently reserved by:
(1) FLYNN 1 12~JAN-1989 18:57:43 ""
eplace (1) ELEMENT.2 generation 1, held by FLYNN? [Y/N] (N): Y
5CMS-S-GENCREATED, generation 2 of element DISKX:[PROJECT.CMSLIB]ELEMENT.2 created

This example shows the use of BYPASS access to replace another user’s
reservation. The user JONES unsuccessfully tries to replace FLYNN’s
reservation 1 of the element ELEMENT.2. JONES then assigns an ACL
allowing him CONTROL, BYPASS, and REPLACE access to the element.
CONTROL allows him to modify the ACL again after he replaces the
element. BYPASS allows him to replace FLYNN’s reservation. REPLACE
is needed to perform the actual replacement. Both BYPASS and REPLACE
are required; he can then successfully replace FLYNN’s reservation of the
element.

Security Features 7-25

7.4 Combining VMS and CMS Security Mechanisms

When CMS ACLs are used in conjunction with VMS protection mechanisms,
you should ensure that you allow sufficient access via VMS protection so
that all users can perform necessary operations, but you should not allow
unnecessary access. In other words, you should set the VMS file protections
to allow only as much access as is needed by users to perform operations, as
shown in Table 7-1. (A set of users can be defined by their UIC, identifiers,
or both.)

If a set or sets of users still need to perform a subset of operations beyond
the VMS protection you have set up, you can use CMS ACLs to obtain a
more restrictive protection scheme.

For example, suppose a group of CMS users is divided into those holding
the identifier LIBRARIAN, and those holding the identifier PROGRAMMER.
Members of both groups are allowed to reserve elements, but only holders of
the LIBRARIAN identifier are allowed to replace them.

As listed in Table 7—-1, both the RESERVE and REPLACE commands
require the same access to all files in the library Thus, allowing users
holding the PROGRAMMER identifier sufficient access to the library files
to perform a reserve operation implicitly allows them access to perform

a replace operation. Using VMS file protection mechanisms, it is not
possible to allow access to RESERVE while disallowing access to REPLACE.
However, in CMS, you can place a CMS ACL on the REPLACE command
that allows access to holders of the LIBRARIAN identifier, but disallows
access to holders of the PROGRAMMER identifier.

To successfully operate in a CMS library, the library directory, control files,
and the element data files must be accessible through the VMS system
(including ACLs and UIC protection mechanisms). Also, the commands you
issue in the library, and the objects referenced by those commands, must be
accessible through the CMS ACL mechanism.

NOTE

The use of both VMS and CMS ACLs does not ensure complete
library security. The library can still be accessed using means
other than CMS. However, keep in mind that the library should
never be accessed by means other than CMS; this may result in
unrecoverable library corruption.

7-26 Security Features

7.4.1 Example of Protection Scheme Using VMS and CMS Mechanisms

This example shows a possible protection scheme using both VMS and CMS
security mechanisms,

Suppose a project team consists of the members Smith, Brown, Jones,
Anderson, and Nelson. Smith is the project leader, Brown and Jones are
senior developers, and Anderson and Nelson are junior developers. All
project team members except Nelson hold the PROJECT identifier.

These project members require the following types of access to the library:
* Smith requires full access to the library.

¢ Brown and Jones are allowed to perform all operations except DELETE
ELEMENT and DELETE GENERATION.

¢ Anderson is allowed to perform all operations except DELETE
ELEMENT, DELETE GENERATION, and REPLACE.

* Nelson is allowed access only to the FETCH command.

In this example, the access required to the library files is set according to
Table 7-1. A VMS ACL for each file could be set up as follows:

Library Directory and Subdirectories:
(IDENTIFIER=PROJECT, ACCESS=READ+WRITE)
(IDENTIFIER=NELSON, ACCESS=READ)
(IDENTIFIER=*, ACCESS=NONE)
(IDENTIFIER=PROJECT, OPTIONS=DEFAULT, ACCESS=READ+WRITE+DELETE)
(IDENTIFIER=NELSON, OPTIONS=DEFAULT, ACCESS=READ)
(IDENTIFIER=*, OPTIONS=DEFAULT, ACCESS=NONE)

00CMS.CMS:
(IDENTIFIER=PROJECT, ACCESS=READ+WRITE)
(IDENTIFIER=NELSON, ACCESS=READ)
(IDENTIFIER=*, ACCESS=NONE)

00CMS.HIS:

(IDENTIFIER=PROJECT, ACCESS=READ+WRITE+DELETE)
(IDENTIFIER=NELSON, ACCESS=NONE)
(IDENTIFIER=*, ACCESS=NONE)

Element Data Files:
(IDENTIFIER=PROJECT, ACCESS=READ+WRITE+DELETE)
(IDENTIFIER=NELSON, ACCESS=READ)
(IDENTIFIER=*, ACCESS=NONE)

Note that Nelson is allowed only to use the FETCH command without
also specifying a remark. This is due to Nelson’s lack of access to the
library directory and 00CMS.HIS. Also note that the ACE containing the
ACCESS=NONE clause denies access to all library files to anyone not on

Security Features 7-27

the project team. The OPTIONS=DEFAULT ACEs on the library directory
ensure that newly created element data files will receive the proper ACL.

While the ACLs assigned to the library files provide the access needed by
the members of the project team, they still do not sufficiently restrict access
as originally required. To do this, CMS ACLs must be set up on the various
commands. To ensure that these ACLs are not changed except by the project
leader, an additional requirement is that only Smith can use the SET ACL
command. Smith must also have CONTROL access to each of the commands
in order to change their ACLs once they have been assigned. The CMS
ACLs could be set up as follows:

FETCH:
(IDENTIFIER=SMITH, ACCESS=EXECUTE+CONTROL)
(IDENTIFIER=PROJECT, ACCESS=EXECUTE)
(IDENTIFIER=NELSON, ACCESS=EXECUTE)

DELETE ELEMENT and DELETE GENERATION:
(IDENTIFIER=SMITH, ACCESS=EXECUTE+CONTROL)

REPLACE:
(IDENTIFIER=ANDERSON, ACCESS=NONE)
(IDENTIFIER=SMITH, ACCESS=EXECUTE+CONTROL)
(IDENTIFIER=PROJECT, ACCESS=EXECUTE)

SET ACL:
(IDENTIFIER=SMITH, ACCESS=EXECUTE-+CONTROL)

All other commands:
(IDENTIFIER=SMITH, ACCESS=EXECUTE+CONTROL)
(IDENTIFIER=PROJECT, - ACCESS=EXECUTE)

If an identifier does not match any ACE in an ACL (assuming an ACL
exists) CMS denies access to the object. Thus, Nelson is denied access to
all commands except FETCH. Even though Anderson holds the PROJECT
identifier, he matches the first ACE in the ACL on the REPLACE command,
and so is also denied access. Similarly, the ACE for Smith must be placed
before the ACE for PROJECT; otherwise, Smith will match the PROJECT
ACE and would not receive CONTROL access.

7-28 Security Features

Chapter 8
Event Handling and Notification

You can specify lists of people who are to be notified when certain events
occur in the library. An event is an operation involving one or more of the
following objects:

Elements
Element list
Classes

Class list

Groups

Group list
History
Commands
Library attributes

The following sections describe how to specify events, how to use the default
or a user-written handler, and how to use notification. Section 8.3 shows
examples of using notification.

8.1 Event Handling

You specify and detect events by using CMS access control lists (ACLs) and
access control entries (ACEs). CMS notifies users of events by processing
one or more action ACEs in an object’s ACL. The following sections discuss
how to specify events and how events are detected by means of action ACEs.

Event Handling and Notification 8-1

8.1.1 Specifying Action ACEs

CMS ACLs support two types of ACEs: identifier ACEs and action ACEs.
You use identifier ACEs to control which users can perform which CMS
operations on a specified object (see Section 7.2.1). You use action ACEs to
define CMS events. An action ACE allows you to specify a particular action
to be taken when a CMS object is accessed in a certain way.

An action ACE has the following format:

(ACTION[=image], PARAMETER=string [,IDENTIFIER=identifier] [,OPTIONS=options]
[LACCESS=access])

The ACTION clause identifies the ACE as an action ACE; you can optionally
use it to specify a shareable image containing your own event handler
routine, CMS$EVENT_ACTION (see Section 8.1.3). Do not include the .EXE
file extension in the event handler name. If you do not specify a user-written
event handler routine on the ACTION clause, CMS uses the default event
handler SYS$SHARE:CMS$EVENT_ACTION image.

If you use the default image, the string specified on the PARAMETER clause
must be a valid MAIL recipient specification, such as MYNODE:: JONES or
@DISTLIST, or a list of specifications separated with commas. You may need
to enclose the string in quotation marks if the string contains a list, a period,
a comma, or other nonalphanumeric characters. You should also enclose the
string in quotation marks when differentiating between uppercase and
lowercase, or CMS will convert the string to uppercase.

You can use the NOTIFY clause as a synonym for the ACTION,PARAMETER-
(that is, the ACTION clause without the =image parameter) when you spec-
ify an action ACE. For example, the following specifications are equivalent:

(NOTIFY=QLIST)
(ACTION, PARAMETER=@LIST)

You cannot use the NOTIFY clause, however, if you specify a user-written
handler.

The IDENTIFIER clause is optional in action ACEs. If it is not specified,
CMS assumes the IDENTIFIER=* clause by default. The IDENTIFIER,
OPTIONS and ACCESS clauses are described in detail in Section 7.2.1.

See Section 8.3 for examples of action ACEs.

"~ 8-2 Event Handling and Notification

3.1.2 Detecting Events

A CMS event occurs only when the user has been granted the right to
perform the operation and the operation has been successfully performed.
Therefore, you cannot use an event handler to prevent a command from
performing its operation, nor does the command fail if the event handler
cannot be invoked.

Multiple events can occur as a result of a single CMS command being
executed. For example, if action ACEs have been assigned to the elements
A.TXT and B.TXT and to the command RESERVE, then three independent
events may be triggered by the command RESERVE A.TXT,B.TXT, one for
each of the three objects.

An exception is the INSERT and REMOVE commands. Execution of the
INSERT and REMOVE commands involves two types of objects: the objects
being inserted or removed, and the objects being inserted into or removed
from. CMS does not check ACLs associated with objects of the first type;
therefore, insert and remove operations involving objects of the first type
cannot trigger events. For example:

$ CMS INSERT ELEMENT A.TXT,B.TXT TEST_BAS ""

This command could trigger an event associated with the group TEST_BAS,
but not with the elements A.TXT and B.TXT.

8.1.3 Using Your Own Event Handler

When CMS detects that a specified event has occurred, it invokes the event
handler routine CMS$EVENT_ACTION in the
SYS$SHARE:CMS$EVENT_ACTION image, or, if you have written your
own shareable image, in your user-provided image.

You specify your own shareable image name in the ACTION clause of the
ACE that is defining the event. You do this by specifying the image name
after the ACTION keyword as follows:

ACTION=image_name
See Section 8.1.1 for more information.

You must include a routine named CMS$EVENT_ACTION in your image.
CMS dynamically activates the CMS$EVENT _ACTION routine’s image,
if necessary, by calling LIB$FIND_IMAGE_SYMBOL, and then calls the
CMS$EVENT_ACTION routine.

Event Handling and Notification 8-3

Your CMS$EVENT_ACTION routine should follow the rules for callback
routines (see the VAX DEC/Code Management System Callable Routines
Reference Manual). The CMS$EVENT_ACTION routine calling format and
arguments are as follows:

CMSS$EVENT_ACTION (library_data_block,
user_param,
library_specification_id,
ace_parameter_id,
history_record_id)

library_data_block

Type: cntriblk

Access: read

Mechanism: by reference

Specifies the library data block for the current library.

user_param

Type: undefined

Access: modify

Mechanism: undefined

Specifies the user_arg value passed in a call to a callable CMS routine
whose action caused the event. If no user argument was specified in the
user call, or if the event did not occur as a result of a user call to a callable
CMS routine, then the call frame entry for user_param points to a location
containing the value zero. In this case, user_param is allocated as read-only
storage.

library_specification_id

Type: address

Access: read

Mechanism: by reference

Specifies a string identifier for the current CMS library directory
specification.

ace_parameter_id

Type: address

Access: read

Mechanism: by reference

Specifies a string identifier for the string found in the PARAMETER clause
of the current ACE (the ACE that defines the current event).

8-4 Event Handling and Notification

history_record_id

Type: address

Access: read

Mechanism: by reference

Specifies a string identifier for the string containing the history record
written as a result of the current CMS operation (the operation that caused
the current event).

The library_data_block argument should be used only by the default
CMS$EVENT_ACTION routine; any user-written CMS$EVENT_ACTION
routine should ignore it. The user_param argument is provided so that

a user-written CMS$EVENT_ACTION routine can interpret it; the de-
fault CMS$EVENT_ACTION routine ignores it. If you use the default
CMS$EVENT_ACTION routine, then CMS expects the ace_parameter_id
argument to point to a string containing a list of valid MAIL recipient
specifications.

When the default CMS$EVENT_ACTION routine encounters errors,

it signals error conditions. If the severity code of the condition is an
informational or warning status code, CMS handles it without interrupting
the execution of the CMS$EVENT_ACTION routine. On completion, the
CMSS$EVENT_ACTION routine returns a completion status code; this status
code is signaled by CMS if it does not indicate success.

A user-provided CMS$EVENT_ACTION routine should not issue calls

to callable CMS routines other than CMS$GET_STRING or CMS$PUT_
STRING. Otherwise, a call issued by CMS$EVENT_ACTION might cause a
new CMS event to occur, and possibly trigger an infinite chain of events. A
user-provided CMS$EVENT_ACTION routine, however, can call the default
CMS$EVENT_ACTION routine as part of its event-handling action.

8.2 Notification of Events

User notification is divided into two parts:

* Detecting and dispatching events
* Notifying users of those events by using the VMS Mail Utility (MAIL)

The default CMS$EVENT_ACTION routine determines the name of the
current user (the user whose action caused the event). It then sends one or
more notification messages through MAIL. You specify the recipients of the
messages in the PARAMETER clause of the ACE defining the event. Each
notification message is formatted as follows:

Event Handling and Notification 8-5

From: <string specifying the current user>
To: <string specifying the recipient>
Subj: CMS notification for library <library name>

<message in a CMS history record format>

You use the SET ACL command to associate action ACEs with CMS library
objects, and to define events involving these objects. For example:

CMsS> SET ACL SPEC.RNO/OBJECT=ELEMENT/ACL=(NOTIFY=JOEUSER, ACCESS=MODIFY)
_Remark: send notification if element modified

This command specifies that a notification message be sent to user
JOEUSER on the local node each time SPEC.RNO is modified.

The text of a notification message is identical to the CMS history record
written about the same event. Therefore, CMS notification allows users to
receive selected history records through MAIL.

Note that transactions that are not logged in the library history and there-
fore have no history line (such as ANNOTATE, SHOW, and DIFFERENCES)
do not cause an event.

The default CMS$EVENT_ACTION routine makes only one attempt to
send each notification message. If the attempt fails, the specified event is
not affected in any way. No record of failed MAIL messages is maintained,
although the user whose action triggered the event receives any error
messages incurred by the default CMS$EVENT_ACTION routine.

To avoid duplicate MAIL messages, you should define action ACEs such that
only one event occurs as a result of a single CMS command being executed.
Similarly, you should carefully select the recipients of notification messages
to avoid unnecessary failed MAIL messages.

8.3 Examples

The following examples show how to use ACLs and notification on objects.

1. $ CMS SET ACL/OBJECT=ELEMENT EXAMPLE.PAS -
_$ /ACL=(NOTIFY=LEADER, ACCESS=MODIFY) "notify project leader"

This example specifies that the LEADER account is notified (through
MAIL) when a user modifies the element EXAMPLE.PAS.

8-6 Event Handling and Notification

2.

$ CMS SET ACL/OBJECT=GROUP DATA_ STRUCTURES -
_$ /ACL=(ACTION, PARAMETER="MYNODE: : JONES", ACCESS= MODIFY)
_Remark: notify when group DATA_STRUCTURES is modified

This example specifies that when a user modifies the group DATA_
STRUCTURES, CMS calls the default image
SYS$LIBRARY:CMS$EVENT_ACTION.EXE (because you spec-
ified ACTION with no file specification) with the parameter
MYNODE:: JONES. CMS$EVENT_ACTION.EXE then notifies
MYNODE::JONES that a user has modified the group DATA_
STRUCTURES.

$ CMS SET ACL/OBJECT=ELEMENT EXAMPLE.PAS -
_$ /ACL= (ACTION=CMSLOG_PRO, PARAMETER="NOTIFY.LOG", ACCESS=DELETE)
_Remark: call event handler when element EXAMPLE.PAS is deleted

This example specifies that when the element EXAMPLE.PAS is deleted,
CMS calls the user-written event handler image CMSLOG_PRO, and
passes the parameter NOTIFY.LOG. Note that the event handler
routine name is specified without the .EXE file extension, and the
NOTIFY.LOG parameter is enclosed in quotation marks because it
contains a nonalphanumeric character (a period).

Event Handling and Notification 8~7

Chapter 9

Library Maintenance

CMS automatically performs maintenance on CMS libraries. You can also
perform other types of maintenance to ensure a valid and responsive library.

This chapter presents information on library maintenance that CMS
performs, and on the functions that CMS makes available for you to
maintain your library and validate its integrity. It also provides some hints
on dealing with library problems.

9.1 Command Rollback

If a CMS command is terminated before it has finished executing, CMS
automatically initiates a process called command rollback. Rollback
evaluates the state of the library and then takes appropriate action to
return the library to a consistent state so that you can enter subsequent
CMS commands.

Depending on the point at which the transaction is terminated, rollback
takes the following actions:

¢ If the library contents have not been modified, rollback cancels the
command.

e If the transaction is terminated before the update is complete, rollback
cancels the command and restores the library to the state it was in
before the command was entered. CMS closes and deletes any new files
that were created in the library as a result of the command. In addition,
rolling back a transaction involves restoring any files in the current
default directory to the state they were in before the command was
entered.

Library Maintenance 9-1

For example, if you run out of disk space during execution of a
REPLACE command, CMS may not finish integrating the changes into
the element file. In this case, rollback cancels the command, deletes any
files that were placed in the library as a result of the command, and
restores the library and your current default directory to the state they
were in before the command was entered.

¢ If the library contents have been completely modified, restoration is
not necessary. Rollback recognizes that the command has already
been completed and takes no action. For example, a command may
be terminated after execution but before control is returned to DCL
command level or CMS subsystem level. In this case, the rollback
mechanism determines that the command has been executed and rolling
back the transaction is not necessary.

The following are examples of errors that can cause rollback:

¢ You press CTRL/Y and then enter a command (except STOP); this
terminates the transaction. If you enter the DCL command CONTINUE
after pressing CTRL/Y, the CMS command continues executing. This
CTRL/Y CONTINUE sequence works the same as with any DCL
command. '

* A gystem-generated error occurs (such as running out of disk space).
¢ Certain CMS errors occur, causing CMS to issue an error message.
e CMS is terminated by a VMS exception condition.

CMS cannot initiate command rollback under the following circumstances:
* You press CTRL/Y and then enter the DCL command STOP.

CAUTION

Never abort the CMS process by pressing CTRL/Y, then
entering the DCL command STOP. CMS cannot perform
rollback under this circumstance. To abort CMS, press
CTRL/Y and enter the DCL command EXIT. This allows CMS
to roll back the library into a usable state.

¢ The system is shut down during the execution of a command.
¢ There is a system failure as a result of a hardware or software error.
¢ An error occurs during the rollback process itself.

If one of these errors occurs, you must restore the library with the
VERIFY/RECOVER command (see Section 9.2.1). CMS informs you if
issuing VERIFY/RECOVER is necessary.

9-2 Library Maintenance

9.2 Verifying Data in a CMS Library

The VERIFY command checks your CMS library to confirm that the library
structure and library files are in a valid form. If you use the VERIFY
command under normal conditions, the command executes successfully, and
VERIFY returns a success code. A successful VERIFY command indicates
that CMS considers the information in your CMS library to be valid.

However, as a result of certain occurrences (for example, a library file is
manipulated by a program other than CMS, or the system fails), the data in
a CMS library may not be valid. In these cases, when you issue VERIFY,
CMS detects the corruption, and VERIFY returns an error code.

The VERIFY command checks the following conditions:

* The library must be set to a valid CMS library directory or a list of
library directories.

® The last CMS command entered on the library must have finished
executing (if it did not, CMS attempts automatic recovery before
continuing).

¢ All library control files (00CMS.type) that should be in the library are
present and accessible.

* The element, reference copy, class, and group information, reservation

information, command list, security information, and internal database
structures are in a valid format.

* All element files have been manipulated only by CMS.

¢ All element files have valid checksums (see Section 9.2.2) indicating that
data has not been lost from or added to the files.

¢ Only element files and other files used by CMS are present in the library
(that is, there are no nonelement and no non-CMS files).

¢ All element files that should be there (one for each element) are present.

If the last transaction was prematurely terminated and was not automati-
cally rolled back, use the VERIFY/RECOVER command. If any file in the
library was not closed by CMS or if the checksum for one or more files

is invalid or missing, use the VERIFY/REPAIR command. When you use
VERIFY/REPAIR, you must be sure that data has not been lost or added.
See Section 9.2.3 for more information.

You cannot use the /RECOVER and /REPAIR qualifiers on the same VERIFY
command. If conditions exist that call for the execution of both
VERIFY/RECOVER and VERIFY/REPAIR, you must enter
VERIFY/RECOVER first, then VERIFY/REPAIR.

Library Maintenance 9-3

The following sections describe the /RECOVER and /REPAIR qualifiers in
detail.

9.2.1 Using VERIFY/RECOVER

Most CMS commands update several files in the library. If a command

is terminated while it is updating the library, the library can be left in a
state in which some files have been modified and others have not. Usually,
if a command is terminated prematurely, the rollback mechanism cancels
and rolls back the transaction (see Section 9.1). If CMS cannot roll back
the library, you must use the VERIFY/RECOVER command to restore the
library to a consistent state.

If you terminate a command at a time when the files in the library may
have been left in an inconsistent state, CMS recognizes that the command
execution was incomplete. When any user tries to enter a subsequent

CMS command to the same library, CMS attempts automatic recovery. If
automatic recovery fails, CMS advises the user to enter VERIFY/RECOVER.
In this case, users cannot access the CMS library until VERIFY/RECOVER
has been executed.

The VERIFY/RECOVER and VERIFY/REPAIR commands use earlier
versions of files in the library to restore the library. You should not delete
or purge any files from the library, because CMS performs its own cleanup
functions.

The VERIFY/RECOVER command cancels only the previous transaction.
If the event that causes the premature termination (for example, a system
failure) also corrupts data in the library (that is, data stored in files that
were present before the event), you must use other means to restore the
library. VERIFY/REPAIR corrects some of the unusual occurrences within
a CMS library (see Section 9.2.2). CMS may inform you if library repair is
necessary after certain commands are issued. In this case, you receive the
following message:

$CMS~-E-USEREPAIR, use VERIFY/REPAIR

The VERIFY/RECOVER command affects only the currently set CMS library
or libraries, not your default directory. An incomplete transaction may mean
that the process of moving files into your directory or deleting files from your
directory is incomplete. You must recognize these conditions yourself and, if
necessary, remedy them with CMS or DCL commands.

9-4 Library Maintenance

For example, the REPLACE command generally uses a file from your
current default directory to update the element file. If the system fails
during a replacement transaction, the process of updating the library file
may be incomplete. CMS never deletes any files from your directory until a
transaction is complete. In this case, you would need to enter the VERIFY
/RECOVER command to cancel the transaction. The file that was being
copied would still be in your current default directory. Another REPLACE
command creates a new generation as you originally intended.

If you have set up a restrictive file protection scheme and there is a system
failure during a CMS transaction that leaves your library in an inconsistent
state, a user with sufficient access to the library and its files should execute
the VERIFY/RECOVER command. You can also recover the library if you
have BYPASS privilege, or read, write, and execute access to all the library
files. For more information, see Chapter 7.

The following commands do not update the library and thus cannot leave
the library in an inconsistent state:

ANNOTATE
DIFFERENCES
FETCH (no remark)
RETRIEVE ARCHIVE
SET LIBRARY

SET NOLIBRARY
SHOW commands
VERIFY (no qualifiers)

9.2.2 Using VERIFY/REPAIR

You use the VERIFY/REPAIR command when the VERIFY command
informs you of one of the following conditions:

¢ Element data files in the library were not closed by CMS.
® The checksum of elements in the library is invalid.
* Generations in the library have an invalid maximum record size.

¢ The last recorded transaction time is greater than the current system
time.

¢ The reference copy for an element is missing.

¢ A reference copy is found for an element with the /NOREFERENCE_
COPY qualifier.

® There are duplicate reference copies for an element.

Library Maintenance 9-5

¢ The reference copy is invalid.

CMS uses information in the file header of a library file to confirm that the
file was closed by CMS. If the file was not closed by CMS (for example, if it
was opened and closed with a text editor), VERIFY/REPAIR repairs the file
header so that it can be successfully verified.

For each element, CMS maintains a number known as a checksum. A
checksum is a count that varies with the number of characters and the value
of the characters in a file. Every time CMS writes a file in the library, the
checksum is recalculated. The VERIFY command calculates the checksum
for every element in the library. If this checksum does not equal the stored
value, data has probably been lost from, added to, or changed in the file.

The VERIFY/REPAIR command corrects a bad checksum by recalculating
the value based on the current contents of the file and then storing this
value. The contents of the file are not altered. If you know that data has
been lost from or added to the element, you must correct it manually. See
Section 9.2.3 for more information.

The VERIFY/REPAIR command adjusts element generations that were
created from files with fixed-length records by earlier versions of CMS and
have a stored maximum record size of zero. VERIFY/REPAIR examines the
element data file, determines what the correct size should be, and stores this
value with the generation.

The VERIFY/RECOVER and VERIFY/REPAIR commands use earlier
versions of files in the library to restore the library. You should not delete
or purge any files from the library, because CMS performs its own cleanup
functions.

9.2.3 Correcting Errors

If a program other than CMS has been used to manipulate the files in the
CMS library, you may receive the following error message:

%$CMS-E-VEREDFERR, element DISKX:[PROJECT.CMSLIB]TEST.SDML verified with errors
-CMS-E-NOTBYCMS, data file DISKX:[PROJECT.CMSLIB]TEST.SDML;1l not closed by CMS

If no other errors accompany this message, CMS considers the contents of
the file valid despite manipulation from the outside program. In this case,
you can use the VERIFY/REPAIR command to correct any errors (however,
you should always investigate your source file to ensure that your file is still
valid). Some examples of what can cause these errors are as follows:

* Entering the DCL command SET PROTECTION or
SET FILE/PROTECTION

9-6 Library Maintenance

¢ Entering the DCL command SET ACL or SET FILE/ACL
* Restoring your CMS library from backup
¢ Entering the DCL command COPY

Other programs (such as a text editor) can also cause this error.
CMS may also issue the following error message:

$CMS~-E-BADCRC, bad checksum in element

This error is usually accompanied by the CMS-E-NOTBYCMS error. A bad
checksum indicates that the contents of the element data file are different
from what CMS expects. This usually means that data in the file has been
corrupted. Corruption can occur if something has changed the contents of
the element data file; this can happen if you alter the element data file,

or if a previous version of the element data file was restored from backup.
Corruption can also occur if the library directory contains a revision of the
CMS database (00CMS.CMS) that does not correspond to the element data
file. This typically occurs if the 00CMS.CMS file was restored from backup,
but the rest of the library contains more recent versions of element files and
was not restored.

You can use the VERIFY/REPAIR command to correct BADCRC errors. If
CMS finds more than one version of the element file, it keeps the version
containing the correct checksum, and deletes the other files. If no file exists
with the correct checksum, VERIFY/REPAIR records the checksum from the
most recent file, and deletes any other copies. CMS can then use that value
for future checks. CMS does not attempt to alter the contents of the file.

You should use VERIFY/REPAIR to correct BADCRC errors only if you
understand the source of these errors and the potential impact of repairing
them.

9.2.4 Reference Copies

If a library has a reference copy directory, the VERIFY/REPAIR command
performs a comparison between the reference copy and the latest generation
on the main line of descent for each element in the library.

If CMS finds a reference copy for an element that does not have the
reference copy attribute, it prompts you for confirmation, then deletes the
reference copy file.

Library Maintenance 9-7

If the reference copy attribute is enabled for an element and you enter the
VERIFY/REPAIR command, one of the following situations may occur:

¢ If there is no valid reference copy in the reference copy directory, CMS
prompts you for confirmation to delete the remaining copies, then fetches
the latest main-line generation (1+) into the reference copy directory.

e If there is more than one reference copy and there is at least one valid
copy, CMS keeps the valid copy (or the latest valid generation, if more
than one valid copy exists) in the reference copy directory, and deletes
the remaining copies.

e If the reference copy does not exist, CMS fetches the latest main-line
generation (1+) into the reference copy directory.

9.3 Maintaining Library Efficiency

The following sections discuss the features that CMS provides to allow you
to maintain the contents of your CMS library.

9.3.1 Deleting History Records

CMS maintains a history file in which all operations that modify the library
are recorded. Each operation causes a single record (or one record for each
item, when wildcards have been used) to be written into the 00CMS.HIS
control file. As libraries get older, history files typically become quite large,
taking up disk space and causing SHOW HISTORY performance to degrade.
Because very old history is generally no longer useful, you can use the
DELETE HISTORY command to reduce the size of the file.

Element generation information (for example, as displayed with the com-
mands SHOW GENERATION, FETCH/HISTORY, and ANNOTATE) is part
of each generation and is not stored in the history file; therefore, it is not
affected by the deletion of the library history.

9.3.2 Deleting and Archiving Element Generations

When you enter a FETCH, RESERVE, or REPLACE command, CMS
searches all of the generations of a specified element for the generation
you are trying to access. As libraries get older, the number of generations
usually increases, and CMS commands that operate on element generations
respond more slowly.

9-8 Library Maintenance

You can alleviate this problem by deleting the generations of an element
that you no longer need. For example, if you have an element with 100
generations, and generation 5 was released in version 1 of your product,
generation 30 was released in version 2, generation 43 was released in
version 3, and you are currently developing version 4, you probably do

not need to reproduce generations prior to 43, with the exception of those
specific generations that went into the released versions. You can use the
DELETE GENERATION command to remove the unneeded generations (see
the Command Dictionary for more information).

When you delete a generation, the definition of the generation is per-
manently removed from the corresponding element in the CMS library.
Deleting a generation does not remove changes from subsequent generations
that were originally made in the deleted generation. If you delete a gener-
ation from the end of a line of descent, all the changes representing that
generation are removed from the delta file (see Section 4.4 and Appendix C).
If you remove a generation from the middle of a line of descent, changes
made in that generation are propagated into the surviving descendant and
combined or eliminated from the delta file if possible, because later gen-
erations still depend on those changes. You should not rely on generation
deletion to reduce the size of a delta file.

If you want to delete an element generation from the CMS library but
may still want to access the contents of that generation, you can use

the /ARCHIVE qualifier on the DELETE GENERATION command. This
qualifier directs CMS to create an archive file containing all the information
from the deleted generation.

The archive file is self-contained; you do not need a CMS library to restore
the contents of the file. The archive file exists outside of the CMS library
and can be backed up onto tape and deleted. You can use the SHOW
ARCHIVE command to display the contents of an archive file; you can
use the RETRIEVE ARCHIVE command to retrieve a copy of any of the
generations in an archive file. You cannot restore a generation from the
archive directly into the CMS library. To restore the generation, you must
retrieve the generation into a file, use the RESERVE command to reserve
a generation of the element in the library, and then use the REPLACE
command to replace the reservation, using the retrieved file as input.

Although the VERIFY command does not operate on archive files, the files
store a checksum of the information in the file. The RETRIEVE ARCHIVE
command issues a warning message if it finds that the checksum of the
data in the file does not match the stored checksum. An incorrect checksum
does not prevent you from accessing the data in the file, but it may indicate
that the file is corrupt. In this case, you should restore another copy from
backup.

Library Maintenance 9-9

9.4 Unusual Occurrences

An unusual occurrence results from the execution of a CMS command that
might, at times, have undesirable consequences. An unusual occurrence is
always logged in the library history file. The following actions cause CMS to
record an unusual occurrence:

¢ Entering a RESERVE command that creates a concurrent reservation

¢ Entering a REPLACE command that creates a concurrent replacement

¢ Entering a REPLACE or UNRESERVE command where BYPASS access
was used to manipulate another user’s reservation

¢ Entering the VERIFY/REPAIR command

¢ Entering the VERIFY/RECOVER command

¢ Entering the CONVERT LIBRARY command

* Entering the REMARK/UNUSUAL command

The SHOW HISTORY/UNUSUAL command displays the records of
transactions that caused unusual occurrences. CMS identifies unusual
occurrences in the library history by displaying an asterisk in the first
column of the transaction record.

When the RESERVE or REPLACE command produces an unusual oc-
currence, CMS informs you of the potential unusual occurrence and asks
whether you want to proceed. If you answer YES, the command is executed
and the transaction is recorded as an unusual occurrence.

The VERIFY/RECOVER and VERIFY/REPAIR commands are logged as
unusual occurrences because they are entered when something is wrong
with the CMS library structure or its files. If you enter VERIFY/RECOVER
or VERIFY/REPAIR on a valid library, or if you enter the VERIFY command
without qualifiers, CMS does not log an unusual occurrence.

9-10 Library Maintenance

Chapter 10

Command Syntax

This chapter describes how to enter CMS commands and gives the syntax
for command parameters, qualifiers, remarks, and wildcard characters.

10.1 Command Format and Prompting

The general format of a CMS command is as follows:
command [keyword] [parameter] [/qualifier...] [remark]

A CMS command consists of the name of the command, and a keyword if

it is required by the syntax of the command. For example, the RESERVE
command consists of only the command name. The SHOW command
requires a keyword, for example, HISTORY. In general, you must use one or
more spaces or tabs to separate items in a command string. Spaces or tabs
preceding a qualifier are optional.

The formats of parameters, remarks, and qualifiers are described in Sections
10.2, 10.2.2, and 10.4, respectively.

A CMS command string can consist of 1024 characters if you use hyphen
continuation characters (-). The command can contain any printing
characters, spaces, and tabs.

CMS compresses multiple spaces and tabs to a single space (except in quoted
strings). You can enter CMS commands in either lowercase or uppercase
characters. CMS changes lowercase characters to uppercase (except in
quoted strings). As a result, all commands recorded in the library history
are in uppercase characters.

If you enter a command that requires a parameter and you do not specify
one, CMS prompts you for one. Note, however, that if you use CMS in batch
mode or in a command procedure, CMS does not prompt for missing items.

Command Syntax 10-1

Some commands may require confirmation after you enter the command. In
these cases, you are prompted for a YES or NO answer. In some cases, you
can also supply one of the following responses:

Positive Response Negative Response
1 0

TRUE FALSE

ALL QUIT or CTRL/Z

Typing ALL indicates that CMS should perform the action (or actions)
specified by the command without any confirmation (for example, after
the INSERT GENERATION command). Typing QUIT or pressing CTRL/Z
indicates that CMS should not perform any actions specified by the
command.

If you press RETURN, CMS uses the default, indicated in brackets ([1).
Note that CMS checks only the first character of each confirmation response.
Thus, typing YAHOO is equivalent to typing YES or Y. If you type any
other characters, CMS continues to prompt you until you type an acceptable
response.

To halt the execution of a CMS command, press CTRL/C. CTRL/C indicates
that CMS should terminate the processing of that command. For more
information on using CTRL/C, see Chapter 9.

10.2 Command Parameters

This section describes the parameters that can be used with CMS
commands:

* Directory specifications

* Remarks

¢ Element names

¢ Element expressions

* Element generations

¢ Element generation expressions
* Group names

¢ Group expressions

¢ (Class names

10-2 Command Syntax

¢ C(Class expressions

In addition, you can use wildcard expressions as parameters to certain CMS
commands. Wildcard expressions are described in Section 10.5.

10.2.1 Directory Specifications

You use a directory specification to refer to a directory that contains (or will
contain) a CMS library or a reference copy directory. A directory specifi-
cation is used as a parameter to the CREATE LIBRARY, SET LIBRARY,
and SET NOLIBRARY commands, and as a qualifier value to the COPY
ELEMENT command. In addition, it is a parameter to the DCL command
CREATE/DIRECTORY, which is used to create a directory that will contain
a CMS library (see Chapter 3) or a reference copy directory.

The format of a directory specification is as follows:

disk:[directory]

disk

Specifies one or more disks where the directory that contains your CMS

library is located. If you omit the disk name, your current default disk is
assumed.

directory
Specifies a directory that contains your CMS library. Directory names must
be enclosed in square brackets ([]1). Wildcards are not allowed.

For more information on how to specify disk and directory names, see the
VMS DCL Concepts Manual.

Example

$ CMS SET LIBRARY [SWIFT.CMSLIB]

This example specifies the subdirectory CMSLIB under the top-level
directory [SWIFT] on the current default disk.

10.2.2 Remarks

A remark is a character string that you supply to describe a transaction. All
CMS commands that modify the library or its contents allow you to enter a
remark, which is recorded in the library history as part of the transaction
record. Remarks are useful in tracking modifications to a library element.
For example, in the remark given on the REPLACE command, you could

Command Syntax 10-3

indicate what changes were made to the element for which you are creating
a new generation. For example:

CMS> REPLACE DATAFIG3.SDML "updated figure to show new merge routine"”

For the purpose of command-line interpretation, remarks are defined as
parameters; thus, you can enter qualifiers after the remark. However, the
remark must be the last parameter entered on the command line. Because
remarks are defined as parameters, CMS attempts to translate the remark if
other parameters are missing or incorrectly placed. If, for example, you omit
an element name from the syntax of a command, but you enter a remark,
CMS assumes that the remark is intended as the name of an element.

wm

Quotation marks (") are required to enclose the remark if you enter it on
the same line as the command and the remark contains any spaces. For
example, a one-word remark entered on the command line does not require
enclosing quotation marks. The text can consist of any printing characters,
spaces, and tabs. If you press CTRL/Z as part of a remark, it terminates
the command input at that point, and CMS executes the command. If you
press CTRL/C as part of a remark, CMS cancels the command. To insert a
quotation mark (") within a remark, type it twice (""). If a remark consists
only of two consecutive quotation marks ("), the remark text is null,

If you omit a remark on the command line of a command that requires a
remark, CMS prompts you for the text of the remark on the next line. For
example:

CMS> REPLACE DATAFIG3.SDML
_Remark: updated figure to show new merge routine

Type the text of the remark immediately following the prompt. In this case,
you need not enter quotation marks unless you want them to be included in
the text of the remark. If you press RETURN in response to the prompt, you
are not reprompted, and the remark text is entered as null.

When you start the remark on the same line as the CMS command, the total
length of the remark (including quotation marks), added to the character
count for the rest of the command, cannot exceed 256 characters. When you
enter the remark in response to the prompt, the length of the remark cannot
exceed 254 characters.

You cannot use the hyphen continuation character (-) to continue a remark.
If you type a hyphen within a remark and then press RETURN, the hyphen
becomes the last character in the logged remark. The closing quotation
marks are assumed. To continue a remark, type the remark until the text
wraps to the next line.

104 Command Syntax

Examples

1. CMS> REPLACE SYNTAX.PAS "RECORD declaration implemented"

Note that a blank must precede the first quotation mark in a remark.
The remark, including the quotation marks, is recorded as part of the
record of the REPLACE transaction in the project history.

2., CMS> FETCH SEMANTICS.PAS
_Remark: Get copy for code review

If you press RETURN before you enter a remark, CMS prompts for the
remark. The remark is recorded in the project history. It looks the same
as if the remark had been entered on the same line as the rest of the
command (CMS encloses the remark in quotation marks).

3. CMS> FETCH LEXICAL.PAS "check alternate two-character graphic impl
ementation for demo version of front end"

You cannot use the DCL continuation character (-) to continue the
remark; you must continue typing until the text wraps to the next line.

10.2.3 Element Names

You name an element by specifying it as the parameter to the CREATE
ELEMENT command.

The format of an element name is as follows:

filename.type

filename

Specifies the file-name component of a VMS file specification. The file name
can be 0 to 39 characters. The file-name component must begin with an
alphanumeric character. For a list of the characters that you can use in a
file name, see the VMS DCL Concepts Manual.

type

Specifies the file-type component of a VMS file specification. The file type
can be 0 to 39 characters. For a list of the characters that you can use in a
file type, see the VMS DCL Concepts Manual.

Separate the file name and the file type with a period (.). An element name

must contain a single period even if the file type or file name is null. Spaces
and tabs are not legal element name characters.

Command Syntax 10-5

NOTE

Within a library, all element names must be unique. The file
name component cannot be 00CMS because that name is reserved
for CMS.

The following are examples of valid element names:

TEST.BAS
SAMPLE . SDML
ARGCHK.COM
MODS. S

10.2.4 Element Expressions

An element expression lets you name multiple instances of an element in a
single parameter field.

An element expression is composed of one or more of the following:

¢ An element name
e A group expression

¢ A wildcard expression (a wildcard character, or a wildcard character
used in combination with a name or partial name)

¢ Alist of the preceding items, with the items separated by commas

If you specify an element name, CMS manipulates a single element. If you
specify more than one element name separated by commas or if you specify
a group, a wildcard expression, or a combination of these, CMS operates on
one or more elements. For example:

CMS> SET LIBRARY [JONES.CMSLIB]
CMS> CREATE ELEMENT ELE.SDML, *.LIS,DATASAM.PAS "element list"

This command sets the current CMS library to [JONES.CMSLIB] and
creates the element ELE.SDML, all elements with a file type of .LIS, and
the element DATASAM.PAS. These elements are created from files in your
default disk and directory.

You must include a period (.) in the element expression to select one or
more elements from the complete list of elements in the library. If you do
not include a period, CMS interprets the parameter as a group name and
selects elements based on the list of groups that are established in the
library.

10-6 Command Syntax

10.2.5 Element Generations and Expressions

An element generation is a specific version of an element. Each time you
reserve and replace a version of an element in the library, CMS creates

a new generation of that element. The first generation of an element is
generation 1. Each element generation is assigned a unique generation
number; by default, subsequent generations are numbered sequentially by
adding 1 to the predecessor generation number.

You can create a variant generation number from an existing generation
number by appending a variant letter to the existing generation number
and starting a new level number sequence beginning at 1. For example, the
generation 7Al could be a variant generation of generation 7.

The syntax of a generation number is as follows:

level-number [variant-letter level-numberl...

level-number A positive integer. Leading zeros are not allowed.
variant-letter A single alphabetic character (a through z, A through 7).

An element generation expression allows you to specify a particular
generation of an element. You can specify a generation indirectly by
using a class name, the plus operator, the semicolon, or relative generation
offsets. These methods can be combined or used separately.

The format of a generation expression is as follows:

{ generation-number [+]

class-name [+] } [[;] relative-generation-offset |

generation-number
Specifies a unique element generation.

class-name

Specifies a CMS class name according to the syntax rules in Section 10.2.8.
If a class name value is given, the generation specification refers to the
generation in the specified class.

4

Indicates the plus operator. CMS locates the latest generation on the same
line of descent as the generation specified by the generation number or the
class name.

Command Syntax 10-7

Required to separate the relative generation offset from the generation
specification. The semicolon is not allowed in cases where a generation
number or class name has been omitted and CMS supplies a default value.

relative-generation-offset

Specifies an integer that directs CMS to locate an ancestor or direct
descendant of the specified generation. If the relative generation number
is negative, then CMS locates an ancestor generation. If the relative
generation number is positive, then CMS locates a direct descendant. The
absolute value of the relative generation number indicates how many steps
should be taken to the next existing ancestor or descendant generation. A
relative generation offset of zero has no effect.

If generations have been deleted, CMS selects the third existing generation
prior to the generation you specified. For example, assume the current
generation of SAMPLE.PAS in class VERSION1 is generation 7, and
generations 5 and 6 have been deleted on the main line of descent for
SAMPLE.PAS (thus, the line of descent appears as 1, 2, 3, 4, 7).

Examples

Assume the element SEMANTICS.PAS has six generations on the main
line of descent. In addition, a variant line consists of generations 3C1
and 3C2. Generation 5 belongs to the class VERSION1. The following
examples show valid forms of the /GENERATION qualifier for the
element SEMANTICS.PAS.

1. SEMANTICS.PAS/GENERATION=4

This reference selects generation 4 of SEMANTICS.PAS.

2, SEMANTICS.PAS/GENERATION=3Cl+

This reference selects the latest generation (generation 3C2) on variant
line C that extends from generation 3 on the main line of descent. You
can use this form if you know a variant line exists and want the most
recent generation, but do not know how many generations are on that
line.

3. SEMANTICS.PAS/GENERATION=VERSION1

This reference selects the generation of SEMANTICS.PAS (generation 5)
that belongs to the class VERSION1.

10-8 Command Syntax

4. SEMANTICS.PAS/GENERATION=VERSION1;-3

This reference uses a relative generation offset of -3 to select the third
generation of SEMANTICS.PAS before the generation that is in class
VERSIONT1. In this example, CMS locates generation 2 of SAMPLE.PAS.

10.2.6 Group Names

You name a group by specifying it as the parameter to the CREATE GROUP
command. A group name can be up to 39 characters long, and can contain
any of the following characters:

¢ Letters and digits (a through z, A through Z, and 0 through 9)
¢ Dollar signs ($)

e Hyphens (-)

* Underscores (_)

A group name must begin with an alphabetic character. Group names
cannot contain a period (.) because CMS interprets a group name containing
a period as an element name. You cannot use the same name for both a
group and a class in the same library. The following are examples of valid
group names:

GRAPHICS

DATA_IN

DATASOUT
CREATE-MODULES

10.2.7 Group Expressions

A group expression lets you name one or more multiple instances of a group
in a single parameter field. A group expression is composed of one or more
of the following:

¢ A group name

* A wildcard expression (a wildcard character, or a wildcard character
used in combination with a name or partial name)

* A list of the preceding items, with the items separated by commas

Command Syntax 10-9

If you specify a group name, CMS operates on a single group. If you specify
more than one group name separated by commas or a wildcard expression,
CMS operates on one or more groups. The following are examples of valid
group expressions:

GROUPA

*88
MAIN$MODULES
PHASE *_DOCS

10.2.8 Class Names

You name a class by specifying it as the parameter to the CREATE CLASS
command. A class name can be up to 39 characters long, and can contain
any of the following characters:

* Letters and digits (a through z, A through Z, and 0 through 9)

e Periods (.)

* Underscores (_)

¢ Dollar signs ($)

¢ Hyphens (-)

A class name must begin with an alphabetic character. You cannot use the
same name for both a class and a group in the same library. The following
are examples of valid class names:

BASE_LEVEL3
DEMO.1
VERSIONSA
FIELD-TEST

10.2.9 Class Expressions
A class expression lets you name multiple classes in a single parameter field.
A class expression is composed of one or more of the following:
* A class name

¢ A wildcard expression (a wildeard character used in combination with a
name or partial name)

e A list of the preceding items, with the items separated by commas

10-10 Command Syntax

If you specify a class name, CMS operates on a single class. If you specify
more than one class name separated by commas or a wildcard expression,
CMS operates on one or more classes. The following are examples of valid
class expressions:

VERSION1
BASELINE*
FIELD_TEST
DEMO. %

10.3 Comma Lists

Where a comma list is valid, you can specify more than one value for a
parameter, separated by commas, on the command line. For example:

CMS> DELETE GROUP USER_VIEW,USER_INTFACE, TESTGRP

_Remark: groups no longer necessary--superseded by field test
$CMS-I-DELETED, group DISKX:[PROJECT.CMSLIB]USER VIEW deleted
$CMS-I-DELETED, group DISKX: [PROJECT.CMSLIB]USER_INTFACE deleted
$CMS-I-DELETED, group DISKX: [PROJECT.CMSLIB]TESTGRP deleted
%¥CMS-S-DELETIONS, 3 deletions completed

This command deletes the three groups USER_VIEW, USER_INTFACE,
and TESTGRP. The same remark is logged in the history for each of these

groups.

To cancel a comma list transaction before it has completed, press CTRL/C.
If you press CTRL/C during a transaction using a comma list, CMS finishes
the immediate transaction, but does not continue. For example, if you are
replacing several elements and you press CTRL/C during the replacement of
the first element, CMS finishes that replacement transaction but does not
continue with the others.

When you enter a command using a comma list from DCL command level
and then press CTRL/C during execution of the command, CMS returns
control to DCL. If you enter the command from the CMS subsystem prompt
level, control is returned to CMS.

10.4 Command Qualifiers

Command qualifiers always start with a slash character (/) and may or
may not require a value. A command qualifier, if used, must follow the
command (and the keyword, if any). Qualifiers can appear before or after
any parameters that are specified on the command line, except when you use
the /GENERATION qualifier with the DIFFERENCES command (see the
description of the DIFFERENCES command in the Command Dictionary).

Command Syntax 10-11

You can enter qualifiers after remarks. A command qualifier has the same
meaning whether it follows the command name or a command parameter.

For example, the following two commands are equivalent:

$ CMS CREATE ELEMENT/KEEP CODEGEN.PAS ""
$ CMS CREATE ELEMENT CODEGEN.PAS/KEEP ""

The /KEEP qualifier specifies that the file CODEGEN.PAS is not to be
deleted from the user’s directory.

Many qualifiers on CMS commands have both a positive and a negative
form. For example, /APPEND and /NOAPPEND are the positive and
negative forms of the same qualifier. '

If you specify the same qualifier more than once on a command or specify
both the positive and negative form of the same qualifier, CMS uses only the
last specification. For example:

$ CMS FETCH INIT.FOR/OUTPUT=TEST.FOR/OUTPUT=INITEST.FOR

If you enter this command, CMS uses the second output file specification
(INITEST.FOR).

10.4.1 Qualifier Values

Various CMS command qualifiers require quoted strings, file specifications,
directory specifications, numeric values, alphabetic values, times, or
generation expressions as qualifier values.

You must separate a qualifier and its value with either an equal sign (=)
or a colon (:). Zero, one, or more spaces and tabs can appear between the
qualifier and the separator, and between the separator and the value. For
example, the following two specifications are equivalent:

/OUTPUT = TESTFE.COM
/OUTPUT: TESTFE.COM

The following sections describe file specifications and the format for entering
dates.

104.1.1

File Specifications

Many CMS commands allow you to specify input or output files. These
commands accept full VMS file specifications as qualifier values. If you do
not enter a full file specification, CMS uses the current directory, device, or
node. For a complete description of a file specification, see the VMS DCL
Concepts Manual.

10-12 Command Syntax

10.4.1.2 Time Values

Several commands allow you to specify time values with the /BEFORE and
/SINCE qualifiers. Each of these qualifiers accepts an absolute, delta, or
combination time value. You can also specify one of the following keywords:
YESTERDAY, TODAY, or TOMORROW.

An absolute time is a specific date or time of day, or both. A delta time value
is the difference between the current time and a future time. A combination
time consists of an absolute time value plus or minus a delta time value. For
detailed information about time values, see the VMS DCL Concepts Manual.

10.4.2 AQualifier Defaults

Each command description in the Command Dictionary contains a list of
qualifiers and qualifier defaults. The default indicates the action taken
when you omit the qualifier.

Qualifiers with simple positive and negative forms (those that do not take
qualifier values) are listed in the command format sections with their
defaults. For example:

/ [NOJAPPEND /NOAPPEND

On the left, the qualifier is listed with brackets ([1) around the optional part
of the qualifier (NO). On the right, the default is listed.

Some qualifiers have a positive form that allows a qualifier value, and a
negative form that does not allow the value. These qualifiers are shown
with their defaults. For example:

/MERGE=generation-exp /NOMERGE
/NOMERGE

If you use the positive form, the generation expression is required. If you
use the negative form, which is the default, the generation expression is not
allowed.

The defaults (if any) for qualifier values are explained in the qualifier
descriptions and are also indicated by the letter D next to the qualifier
name.

Command Syntax 10-13

10.5 Wildcard Expressions

You can use DCL wildcard expressions in the parameters for many

CMS commands. The wildcard characters are the percent sign (%)

for single-character substitution and the asterisk (*) for partial- or
full-field substitution. By using these wildcards, you can direct CMS to
operate on more than one element, group, or class at a time. In addition,
you can use wildcards in input and output file specifications, and the
directory-searching wildcards (the ellipsis (. ..) and the minus sign (-)) in
input file specifications.

For elements and generations, wildcards can apply to either the file-name
field or the file-type field, according to the position they occupy.

The following sections describe general rules for using wildcards.

10.5.1 Single-Character Wildcards

The percent sign (%) is the single-character wildcard indicator. When
you use the percent sign in a command parameter, CMS selects elements,
groups, or classes by substituting any single, allowable character for the
percent sign.

For example, the wildcard expression DATA%.FOR might result in the
following list of elements:

DATA1l.FOR
DATA2.FOR

10.5.2 Partial- and Full-Field Wildcards

The asterisk (*) is the partial- and full-field wildcard indicator. When you
use an asterisk in a command parameter, CMS selects objects whose names
contain the character patterns given in the wildcard expression. CMS
replaces the asterisk with any number of allowable characters (within the
range of zero to the maximum size of the field).

For example, the element expression DATA* FOR might result in the
following list of elements:

DATA.FOR
DATAL.FOR
DATA2.FOR
DATA_IN.FOR
DATA_OUT.FOR

10-14 Command Syntax

10.5.3 Canceling Wildcard Transactions

To cancel a wildcard transaction before it has completed, press CTRL/C.

If you press CTRL/C during a wildcard transaction that updates the
library, CMS finishes the immediate transaction, but does not continue.
For example, if you are replacing several elements and you press CTRL/C
during the replacement of the first element, CMS finishes that replacement
transaction but does not continue with the others.

When you enter a wildcard command from DCL command level and then
press CTRL/C during execution of the command, CMS returns control to
DCL. If you enter the command from the CMS subsystem prompt level,
control is returned to CMS.

10.6 Command Abbreviations

You can abbreviate command, keyword, and qualifier names by eliminating
characters from the end of the specified command, keyword, or name. You
cannot truncate the string “CMS” when entering a CMS command at DCL
level. All commands and qualifiers are unique when truncated to their first
four characters. You can truncate these names to fewer than four characters
as long as the result is unique.

For example, VERIFY is the only CMS command that begins with the
character V. Therefore, the VERIFY command can be truncated to CMS V at
DCL level and V at CMS subsystem level.

You do not count the slash character (/) or the prefix NO on negative
qualifiers when you count characters to determine the shortest allowable
form of a qualifier. However, you must count the underscore (_) character.

Command Syntax 10-15

Command Dictionary

This section contains a detailed description of each CMS command. The
commands are arranged in alphabetical order. Each command description
contains the following:

General format of the command

List of command qualifiers

Restrictions on the use of the command, if applicable
Descriptions of each parameter, if applicable
Description of the command

Descriptions of each command qualifier, and the qualifier default
(qualifier defaults are marked with a D)

Examples

ACCEPT GENERATION

ACCEPT GENERATION

Changes the review status of each specified element generation from pending
to accepted and removes it from the review pending list.

Format

ACCEPT GENERATION element-expression “remark”

Command Qualifiers Defaults
/[NOJCONFIRM /NOCONFIRM
/GENERATION[=generation-expression] See text
/INOJLOG /ILOG
/OCCLUDE[=option,...] /OCCLUDE=ALL

Command Parameters

element-expression

Specifies one or more elements. An element expression can be an element
name, a group name, a wildcard expression, or a list of these separated by
commas.

“remark’”

Specifies a string to be logged in the history file with this command, usually
used to explain why the command was entered. The remark is enclosed in
quotation marks. If no remark was entered, a null remark (") is logged.

Description

The ACCEPT GENERATION command changes the review status of each
specified element generation from pending to accepted and removes it from
the review pending list.

CD-3

ACCEPT GENERATION

Use this command only on element generations that have reviews pending
(see the description of the REVIEW GENERATION command for more
information). If you access the generation once it has been accepted, CMS
no longer informs you of any review status.

Command Qualifiers

CD—+4

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/GENERATION[=generation-expression]

Specifies a particular generation of the element to be accepted. If you omit
/GENERATION, CMS accepts the most recently created generation with a
review pending. You specify this qualifier only if more than one generation
of an element is under review.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field

ACCEPT GENERATION

contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE —equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOIGROUP, and [NOICLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Examples

CMS> ACCEPT GENERATION EXAMPLE.SDML "this example cleared for publication"
$CMS-S-ACCEPTED, generation 3 of element DISKX:[PROJECT.CMSLIB]EXAMPLE.SDML accepted

This command accepts the most recently created generation of the
element EXAMPLE.SDML. The generation is removed from the review
pending list.

CD-5

ANNOTATE

ANNOTATE

Creates a line-by-line file listing of the changes made to each specified
element generation and places it in your current default directory or a
specified directory.

Format

ANNOTATE element-expression

Command Qualifiers Defaults

/[NOJAPPEND /NOAPPEND

/[NOJCONFIRM /NOCONFIRM
/FORMAT=(data-format,data-partition) /FORMAT=(ASCII,RECORDS)
/FULL See text
/GENERATION[=generation-expression] /GENERATION=1+

/INOJLOG /LOG
/MERGE=generation-expression /NOMERGE

/NOMERGE

/OCCLUDE[=option,...] /OCCLUDE=ALL
/OUTPUT]=file-specification] /OUTPUT=element-name.ANN

Command Parameter

element-expression

Specifies one or more elements. An element expression can be an element
name, a group name, a wildcard expression, or a list of these separated
by commas. If you specify a group name, CMS annotates each element in
the group. If you use wildcards, CMS produces one annotated listing file
for each matching element. By default, the most recent generation of an
element on the main line of descent is annotated.

CD-6

ANNOTATE

Description

The ANNOTATE command documents the development of an element.
This command creates an output file that contains an annotated listing; by
default, the file name is the same as the element name and the file type is
.ANN. The annotated listing file contains two parts:

* A history
s A source file listing

The history includes the generation number, date, time, user, and remark
associated with each generation of the element (and other file-related
information when you use the /FULL qualifier). The generations are listed
in reverse chronological order. The generation numbers of the specified
generation and its ancestors are marked with an asterisk (*).

The source file listing contains all the lines inserted or modified from
generation 1 to the specified generation. The listing does not show lines
deleted from the file. CMS inserts consecutive line numbers in the listing
unless editor-assigned line numbers already exist. (The line numbers start
with 1 for the first line and increase by 1 for each line.) The generation
field starts at the first character position of each line. It contains the
generation number of the most recent generation in which the line was
inserted or modified. The generation field is blank if a line is unchanged
since generation 1.

Command Qualifiers

/APPEND

/NOAPPEND (D)

Controls whether CMS appends the history and source file listing to an
existing file, or creates a new file. If you specify /APPEND and the output
file does not exist, CMS creates a new file. If you do not provide an output
file specification (see the description for /OUTPUT), CMS searches your
default directory for a file with the element file name and the file type .ANN.

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

CD-7

ANNOTATE

CD-8

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/FORMAT=(data-format,data-partition)

/FORMAT=(ASCII,RECORDS) (D)

Controls whether the history and source file listing is formatted, and
specifies the type of formatting. You can specify one or both formatting
parameters in any order.

data-format
Specifies the type of format. The following table lists the possible values
for data formats:

Data Format
Option Action

ASCII (D) Specifies that each byte of the data be displayed as an
ASCII character. This option is most useful when files
contain textual data. If no data partition is specified, data
is partitioned into records. This option is the default.

DECIMAL Specifies that each value be displayed as a decimal
numeral. If no data partition is specified, data is

partitioned into longwords. You cannot specify both
DECIMAL and RECORDS.

HEXADECIMAL Specifies that each value be displayed as a hexadecimal
numeral. If no data partition is specified, data is
partitioned into longwords. You cannot specify both
HEXADECIMAL and RECORDS.

OCTAL Specifies that each value be displayed as an octal numeral.
If no data partition is specified, data is partitioned into
longwords. You cannot specify both OCTAL and RECORDS.

data-partition

Specifies the type of data partition. A data partition is the size that data
in each record is to be broken into before it is formatted. The following
table lists the possible values for data partitions:

ANNOTATE

Data Partition

Option Action

BYTE Specifies that the data displayed is to be partitioned into
bytes.

LONGWORD Specifies that the data displayed is to be partitioned

into longword values. This is the default partitioning
for DECIMAL, HEXADECIMAL, or OCTAL.

RECORDS (D) Specifies that no further partitioning of data is to occur
beyond the record partitioning already in the file. This
partitioning is most useful when the files contain textual
data. You can only specify RECORDS by itself or in
conjunction with ASCII. It is mutually exclusive with
all other options. This value is the default.

WORD Specifies that the data displayed be partitioned into word
values.

/FULL
Directs CMS to include the following information about the file used to
create each generation:

¢ Creation time
* Revision time
¢ Revision number
¢ Record format
* Record attributes

CMS also indicates deleted lines in the source listing. Each set of one or
more deleted lines is identified by a count of the deleted lines.

/GENERATION[=generation-expression]

/GENERATION=1+ (D)

Specifies a particular generation of the element to be annotated. If you omit
/GENERATION, CMS annotates the most recent generation on the main
line of descent.

The history contains a description of every generation of the element,
including those created after the specified generation. (Generations created
after the specified generation are not marked with an asterisk.)

CD-9

ANNOTATE

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/MERGE=generation-expression

/NOMERGE (D)

Combines two generations of an element and creates a single file that
contains the annotated listing. The parameter on the /MERGE qualifier
specifies the generation that is merged into the retrieved generation. This
command creates a file that contains the text common to both generations
and the changes made to both generations. When changes that are not
identical are made in the same position of the common ancestor, the changes
from both generations are included in the resulting file and are marked as a
conflict. By default, generations are not merged.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL —equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE —equivalent to (NOELEMENT, NOGROUP, NOCLASS)

You can specify eithér ALL or NONE, or any combination of the
[NOJELEMENT, [NOIGROUP, and [NO]JCLASS keywords.

CD-10

ANNOTATE

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/OUTPUT[=file-specification]

/OUTPUT=element-name.ANN (D)

Directs CMS to write output to the specified file. CMS creates a new file if
you do not specify /APPEND. If you omit the /OUTPUT qualifier (or if you
specify /OUTPUT but do not provide a file specification), CMS creates a file
with the element file name and the file type .ANN. Wildcards are allowed.

If you annotate more than one element (by specifying wildecards or a

group name for the element expression parameter), and you do not specify
wildcards in the output file specification, CMS creates successive versions of
the file indicated by /OUTPUT.

Example

CMS> ANNOTATE TIMECVT.BAS/GENERATION=3
$CMS—-S-ANNOTATED, element DISKX:[WORK.CMSLIB]TIMECVT.BAS annotated

This command produces a file named TIMECVT.ANN, which contains
the annotated listing of generation 3 of TIMECVT.BAS. The contents of
TIMECVT.ANN are as follows:

Annotated listing for element TIMECVT.BAS in CMS Library DISKX:[WORK.CMSLIB]
25-APR-1990 15:50:29

4 15-APR-1990 10:01:55 JAMES "additional error checks"
*3 12-APR-1990 15:49:01 JAMES "add check for invalid delta time"
*2 27-MAR-1990 12:39:58 JAMES "jp - fixed length string required"
*1 25~-MAR-1990 15:37:11 JAMES "time conversion program"

Annotated listing for element TIMECVT.BAS in CMS Library DISKX:[WORK.CMSLIB]
25-APR-1990 15:50:29

Cb-11

ANNOTATE

WWwwwwwww

CD-12

WU WN -

10 rem Program to compute an absolute time given the present time
rem and a delta time. The result is written to a file.

20 OPTION TYPE = EXPLICIT
DECLARE STRING DELTA_ TIME
MAP (STRING_LEN) STRING ASC_TIME = 80
DECLARE LONG RETCODE
DIM LONG BINARY DELTA(1)
DIM LONG NOW(1)
DIM LONG BINARY CVT TIME (1)

100 EXTERNAL LONG CONSTANT SS$_NORMAL
EXTERNAL LONG CONSTANT SS_IVTIME
EXTERNAL LONG FUNCTION LIB$ADDX
EXTERNAL LONG FUNCTION LIB$SUBX
EXTERNAL LONG FUNCTION LIBSINT_OVER
EXTERNAL INTEGER FUNCTION SYS$BINTIM (STRING BY DESC, LONG BY REF)
EXTERNAL INTEGER FUNCTION SYS$GETTIM (LONG BY REF)
EXTERNAL INTEGER FUNCTION SYS$SASCTIM (LONG BY REF,STRING BY DESC, &
LONG BY REF,LONG BY REF)
150 LET RETCODE = LIB$INT_OVER(0)
PRINT "Input delta time"
INPUT DELTA TIME

LET RETCODE = SYS$BINTIM (DELTA_TIME, BINARY DELTA(O))

175 IF (RETCODE = SS$_NORMAL) THEN GOTO 200
ELSE IF RETCODE = SS_IVTIME THEN &
PRINT ,"INVALID TIME"
GOTO DONE
END IF
END IF
200 LET retcode = SYS$GETTIM(NOW(0))
IF (VAL(DELTA_TIME) > 0) THEN &
retcode=LIB$ADDX (NOW(0) , BINARY_DELTA (0) ,BINARY_CVT TIME(0))
END IF

LET retcode = SYS$ASCTIM(,ASC_TIME,BINARY CVT_TIME(0),)
OPEN "TIME.TMP" FOR OUTPUT AS FILE #1
PRINT #1,ASC_TIME
CLOSE #1
32767 Done: END

The element’s history appears at the beginning of the file TIMECVT.ANN,
The history lists the records of the transactions that created each of the
four generations. However, because the third generation was annotated
(ANNOTATE TIMECVT.BAS/GENERATION=3), changes made after
generation 3 are not shown in the annotated listing. Generation 3 and its
ancestors are marked with an asterisk in the history.

The source file listing shows each line of the file, including line numbers.
The numbers farthest to the left are the generation numbers in which the
line was most recently inserted or modified; the lines with no generation
numbers have not changed since generation 1. The next column of numbers
is assigned by CMS. The third column of numbers is included in the program
itself.

CANCEL REVIEW

CANCEL REVIEW

The CANCEL REVIEW command changes the review status of each
specified element generation from pending to none and removes it from
the review pending list.

Format

CANCEL REVIEW element-expression “remark”

Command Qualifiers Defaults
/[NOJCONFIRM /NOCONFIRM
/GENERATION[=generation-expression] See text
/INOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL

Command Parameters

element-expression

Specifies one or more elements. An element expression can be an element
name, a group name, a wildcard expression, or a list of these separated by
commas.

“remark”

Specifies a string to be logged in the history file with this command, usually
used to explain why the command was entered. The remark is enclosed in
quotation marks. If no remark was entered, a null remark (") is logged.

Description

The CANCEL REVIEW command changes the review status of each
specified element generation from pending to none and removes it from the
review pending list.

CD-13

CANCEL REVIEW

Use this command only on element generations that have reviews pending
(see the description of the REVIEW GENERATION command for more
information).

Command Qualifiers

CD-14

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, O, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/GENERATION[=generation-expression]

Specifies which generation of the element is to have its review pending
status canceled. If you omit /GENERATION, CMS cancels the review of the
most recently created generation with a review pending. You specify this
qualifier only if more than one generation of an element is under review.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D) ‘

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

CANCEL REVIEW

ALL —equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE —equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOIJGROUP, and [NOJCLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Example

$ CMS CANCEL REVIEW EXAMPLE.SDML "review the final version only"
$CMS-S-CANCELED, review of generation 2 of element
DISKX: [PROJECT.CMSLIB]EXAMPLE.SDML canceled

This command cancels the review of the element EXAMPLE.SDML, and
removes it from the review pending list.

CD-15

CONVERT LIBRARY

CONVERT LIBRARY

Converts libraries that were created with Version 2.n of CMS for use with
Version 3.n of CMS.

Format

CONVERT LIBRARY V2-library-directory-specification
V3-library-directory-specification

Command Parameters

V2-library-directory-specification
Specifies the directory specification of the existing CMS library you want to
convert.

V3-library-directory-specification
Specifies the directory specification of the new CMS library you want to
create. This directory must be empty.

Description

CD-16

The CONVERT LIBRARY command creates a copy of an existing CMS
library and converts the copy for use with this version of CMS. Libraries
created with CMS Version 3.0 do not need to be converted.

To convert a library, you must first create an empty directory to contain
the new, converted library. Conversion maintains all library setup in your
existing library except for VMS ACL protection mechanisms assigned to
the CMS library directory or to any CMS library files in that directory. The
conversion process neither propagates original VMS directory or file ACLs,
nor assigns them new default ACLs. Thus, you must assign the default
protection on the converted library. For example, to assign read, write, and
delete access to the system, owner, and group categories, you could use the
following command:

CONVERT LIBRARY

$ SET FILE/ACL=(DEFAULT PROTECTION, S:RWD,O:RWD,G:RWD) CMSLIB_V3.DIR

The conversion process also maintains the reference copy directory. After
the library is converted, CMS automatically executes the VERIFY/REPAIR
command to ensure that any existing reference copy directory is valid and
current.

The CONVERT LIBRARY command causes an unusual occurrence to be
logged in the history file.

Example

$ - CREATE/DIRECTORY [PROJECT.CMSLIB V3]

$ CMs

CMS> CONVERT LIBRARY

_V2 library: [PROJECT.CMSLIB_V2]

_Directory for V3 library: [PROJECT.CMSLIB V3]
%CMS~-S-CREATED, CMS Library DISKX: [PROJECT.CMSLIB V3] created
%CMS-I-LIBINSLIS, Library DISKX:[PROJECT.CMSLIB V3] inserted into the library list
%CMS~-I-CONELE, element DATAPROG.BAS converted
%CMS-I-CONGRP, group TESTGRP converted

$CMS-I-CONCLS, class ETMETAL converted

%CMS-I-CONRES, all reservations converted
%$CMS~I-CONHIS, history file converted
%CMS-S—-CONVERTED, Version 2 library converted to Version 3 format
%CMS~I-VERCLS, class list verified

$CMS-I~-VERCMD, command list verified

%CMS-I-VERELE, element list verified

%CMS-I-VERGRP, group list verified

$CMS-I-VERRES, reservation list verified
%$CMS-I-VERFRE, internal free space list verified
$CMS-I-VERFRE, internal free space list verified
%$CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERARC, archive control block verified
%CMS-I-VER2, internal contiguous space verified
%$CMS-I-VERCON, control file verified

%$CMS-I-VEREDF, element DATAPROG.BAS verified
%CMS-I-VEREDFS, element data files verified
%CMS-I-REPAIRED, library [PROJECT.CMSLIB_V3] repaired

This example first creates a new directory to contain the converted library,
and then converts the old library.

CD-17

CONVERT LIBRARY

CMS automatically issues VERIFY/REPAIR to ensure that both the library
and any reference copies are valid. If there are invalid reference copies,
VERIFY/REPAIR repairs them. Even if you receive reference copy errors,
your library is still converted and available for use.

CD-18

COPY ELEMENT

COPY ELEMENT

Copies one or more existing elements to form one or more new elements.
If you copy an element to the same library, the new element must have a
different name. The COPY ELEMENT transaction preserves all element
attributes, data, and history.

Format

COPY ELEMENT old-element-expression new-element-name

“remark”
Command Qualifiers Defaults
/INOJCONFIRM /NOCONFIRM
/LIBRARY[=directory-specification] See text
/INOILOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL

Command Parameters

old-element-expression

Specifies one or more existing elements to be copied. If you specify more
than one element to be copied, you must use a wildcard character for the
new element name. An old element expression can be an element name, a
group name, a wildcard expression, or a list of these separated by commas.

new-element-name

Specifies the name for the new element. The name cannot be the same as
any existing element name in the target library. The file-name component
cannot be 00CMS because this name is reserved for CMS. Wildcards are
allowed. If you specify more than one element with COPY ELEMENT, you
must use a wildcard character for the new element name.

CD-19

COPY ELEMENT

“remark”

Specifies a character string for the creation remark of the new element to
be logged in the history file with this command. The remark is enclosed
in quotation marks. If no remark was entered, then the remark from the
old element is used for the creation remark of the new element, but a null
remark (") is logged in the history file.

Description

CD-20

The COPY ELEMENT command uses an existing library element to
copy and create a new element in the same library or in another library.
The original element is left unchanged. The generation history, file
characteristics, and element attributes are copied in full.

If the existing element has the reference copy attribute enabled (that is, if
it was created or modified with /REFERENCE_COPY), the reference copy
attribute is also enabled for the new element (assuming the reference copy
attribute is established for the library).

If the existing element is reserved when you enter COPY ELEMENT, CMS
informs you of the condition, then proceeds with the transaction. The
new element is not reserved, regardless of whether the original element is
reserved at the time of the copy transaction.

If a generation of the element is marked pending review, CMS informs you
of the condition, then asks whether you want to proceed. If you type YES,
CMS records the transaction as an unusual occurrence and proceeds with
the command. The new element is not marked as pending review, regardless
of whether the original element is marked at the time of the copy. If you
type NO or press RETURN or CTRL/Z, no further action is taken.

CMS must be able to create one new element for each old element. When
you use wildcards, a group name, or a comma list in the input element
specification, CMS builds a list of elements to be copied. CMS uses this list
as the point of reference during the copy transactions. If the output element
specification does not allow CMS to create a new element for each element
in the input list, the results may not be what you intend. For example,

the following combination of wildcard expressions produces only one new
element:

COPY ELEMENT

input element specification - *.FOR
output element specification - NDATA.*

The first element that matches the input specification (*. FOR) produces one
new element named NDATA.FOR. Each successive element that matches
the input specification generates an error message because CMS can create
only one unique element name from the given combination of wildcard
expressions.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/LIBRARY/[=directory-specification]
Identifies a valid CMS library that is the location of the element specified
by the old-element-expression parameter. When you specify an alternative

library, the new-element-name parameter is optional. If you do not specify a
value for /LIBRARY, the current CMS library is used.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /ANOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field

CD-21

COPY ELEMENT

contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL —equivalent to (ELEMENT, GROUP)
ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

NONE —equivalent to (NOELEMENT, NOGROUP)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT and [NOJGROUP keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Examples

1.

CMS> COPY ELEMENT INIT.FOR INITX.FOR "experimental version”
$CMS-S-COPIED, element DISKX:{PROJECT.CMSLIB]INIT.FOR copied to INITX.FOR

This command creates a new element named INITX.FOR in the same
library as the old element.

$ CREATE/DIRECTORY [RELEASE.CMSLIB]

$ CMs :
CMS> CREATE LIBRARY [RELEASE.CMSLIB] "follows development library"
$CMS-S-CREATED, CMS Library DISKX:[RELEASE.CMSLIB] created

CMS> COPY ELEMENT *.*/LIBRARY=[PROJECT.CMSLIB] *.* "loading elements"
$CMS-I-COPIED, element DISKX:[PROJECT.CMSLIB]INIT.FOR copied to
DISKX: [RELEASE.CMSLIB] INIT.FOR

$CMS~I-COPIED, element DISKX:[PROJECT.CMSLIB]INITX.FOR copied to
DISKX: [RELEASE.CMSLIB] INITX.FOR

%CMS-I-COPIED, element DISKX:[PROJECT.CMSLIB]MSGDOC.FOR copied to
DISKX: [RELEASE.CMSLIB]MSGDOC.FOR '
$CMS-I-COPIED, element DISKX:[PROJECT.CMSLIB]OUTPUT.FOR copied to
DISKX: [RELEASE.CMSLIB]OUTPUT.FOR

%CMS~I-COPIED, element DISKX:[PROJECT.CMSLIB]SEARCH.FOR copied to
DISKX: [RELEASE.CMSLIB] SEARCH.FOR

%CMS-I~-COPIED, element DISKX:[PROJECT.CMSLIB]ARGCHK.FOR copied to
DISKX: [RELEASE.CMSLIB]ARGCHK.FOR

$CMS-S-COPIES, 6 copies completed

Cb-22

COPY ELEMENT

CMS> SHOW HISTORY
History of DEC/CMS Library DISKX: [RELEASE.CMSLIB]
9-MAY-1990 11:23:43 SMITH CREATE LIBRARY DISKX:{RELEASE.CMSLIB] "follows
development library"
9-MAY-1990 11:26:00 SMITH COPY ELEMENT/LIBRARY=DISKX:[PROJECT.CMSLIB] INIT.FOR
INIT.FOR "loading elements"
9-MAY-1990 11:26:04 SMITH COPY ELEMENT/LIBRARY=DISKX:[PROJECT.CMSLIB] INITX.FOR
INITX.FOR "loading elements”
9-MAY-1990 11:26:07 SMITH COPY ELEMENT/LIBRARY=DISKX:[PROJECT.CMSLIB] MSGDOC.FOR
MSGDOC.FOR "loading elements"
9-MAY~1990 11:26:15 SMITH COPY ELEMENT/LIBRARY=DISKX: [PROJECT.CMSLIB] OUTPUT.FOR
OUTPUT.FOR "loading elements"
9-MAY-1990 11:26:17 SMITH COPY ELEMENT/LIBRARY=DISKX:[PROJECT.CMSLIB] SEARCH.FOR
SEARCH.FOR "loading elements"
9-MAY-1990 11:26:19 SMITH COPY ELEMENT/LIBRARY=DISKX: [PROJECT.CMSLIB} ARGCHK.FOR
ARGCHK.FOR "loading elements"
CMS> SHOW GENERATION/DESCENDANTS INIT.FOR
Element generations in DEC/CMS Library DISKX: [RELEASE.CMSLIB]

INIT.FOR
2 6-MAR-1990 17:34:04 SMITH "header offset and additional free space added"
1 6-MAR-1990 17:26:10 SMITH "initialization routines"

This example creates a new directory for a new library, and then copies
all of the elements from the library [PROJECT.CMSLIB] into the new
library [RELEASE.CMSLIB]. Because the new elements are being
created in a separate library, CMS can create new elements with the
same names as the old elements; thus, a null string may be entered for
the second parameter (for the new element name). In this case, CMS
supplies the value *.*,

The SHOW HISTORY command that is executed after the copy
transaction indicates that the library history contains only records of
transactions performed on the new library (CREATE LIBRARY and
COPY transactions). The SHOW GENERATION/DESCENDANTS
command shows the generation history for one of the elements. The
COPY ELEMENT transaction preserves the generation history for each
element; thus, the record of replacement transactions (also the CREATE
ELEMENT transaction that produced generation 1 of the element) is
maintained from the old element to the new.

CD-23

CREATE CLASS

CREATE CLASS

Creates one or more empty classes.

Format

CREATE CLASS class-name],...] “remark”

Command Qualifiers Defaults
/INOILOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL

Command Parameters

class-name

Specifies a name for the class. CMS reports an error if you specify a name
that is already used for an existing class or group. (Class and group names
must be unique.) If a previously used class or group name has been removed
with the DELETE CLASS or DELETE GROUP command, you can reuse
that name with CREATE CLASS. A class name can also be a list of class
names separated by commas. Wildcards are not allowed.

“remark”

Specifies a character string for the creation remark of the class to be logged
in the history file with this command. The remark is enclosed in quotation
marks. If no remark was entered, a null remark ("") is logged.

Description

CD-24

The CREATE CLASS command establishes a class. After a class is created,
you can place any related set of element generations in that class by using
the INSERT GENERATION command. The CREATE CLASS command
does not automatically place any generations in the created class. For more
information on classes, see Chapter 5.

CREATE CLASS

Command Qualifiers

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /INOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL —equivalent to OTHER
OTHER (D)

NOOTHER

NONE —equivalent to NOOTHER

You can specify either ALL, NONE, or the [NOJOTHER keyword. »

CMS automatically performs occlusion for all objects; that is, CMS
selects only the first occurrence of a specified object. If you specify
/OCCLUDE=NOOTHER, CMS creates a class in every library in the
search list.

Examples

1. CMS> CREATE CLASS INTERNAL RELEASE "for internal use only"
%CMS-S-CREATED, class DISKX:[PROJECT.CMSLIB]INTERNAL_ RELEASE created

This command creates a class named INTERNAL_RELEASE. Once the
class name is established, element generations can be placed in the class
with the INSERT GENERATION command.

CD-25

CREATE CLASS

2. CMS> CREATE CLASS FTEST1,FTEST2,V1 "for external release"
%CMS-I-CREATED, class DISKX:[PROJECT.CMSLIB]FTEST1 created
%CMS-I~CREATED, class DISKX: [PROJECT.CMSLIB]FTEST2 created
%CMS-I-CREATED, class DISKX:[PROJECT.CMSLIB]V1l created
%CMS-S-CREATES, 3 creations completed

This command creates the three classes FTEST1, FTEST2, and V1.

CD-26

CREATE ELEMENT

CREATE ELEMENT

Creates one or more new elements in a CMS library from an existing file.

Format

CREATE ELEMENT element-expression “remark”

Command Qualifiers
/INOJCONCURRENT
AANOJCONFIRM
/HISTORY="string”
/NOHISTORY
/INPUT[=file-specification]
/NOJKEEP

/INOJLOG
/NOTES="string”
/NONOTES
/POSITION=n
/INOJREFERENCE_COPY
/INOJRESERVE
/[INOJREVIEW

Defaults
/CONCURRENT
/NOCONFIRM
/NOHISTORY

See text
/NOKEEP
/LOG
/NONOTES

See text

See text
/NORESERVE
/NOREVIEW

Restrictions

e If you specify the /NOTES qualifier, you must also specify the
/POSITION qualifier on the same command line.

Command Parameters

element-expression

Specifies one or more elements to be created. If you do not specify the
/INPUT qualifier (or if you specify /INPUT without a value), the element
name must correspond to an existing file in your current default directory.
The name cannot be the same as any existing element name in the library.

Ccb-27

CREATE ELEMENT

Do not use the file name 00CMS because this name is reserved for library
control files. Generation 1 of the new element is created. An element
expression can also be a list of element names separated by commas, or a
wildcard expression.

“remark”

Specifies a character string for the creation remark of the element to be
logged in the history file with this command. The remark is stored with both
the element and its first generation. The remark is enclosed in quotation
marks. If no remark was entered, a null remark ("") is logged.

Description

CD-28

The CREATE ELEMENT command creates the first generation of a new
element by moving the input file into a CMS library. By default, CMS
searches for the file in your current default directory. You can direct CMS to
use a file in a different directory by specifying the /INPUT qualifier. After
the element is created, CMS deletes all versions of the file used to create the
new element. If you specify either the /KEEP or /RESERVE qualifiers, CMS
does not delete the file.

When you create an element, you can also define the history, concurrent,
notes, position, reference copy, and review attributes for the element or
establish a reservation.

CMS stores the creation date and time, the revision date and time, file
attributes, and the file revision number of the file used to create generation
1 of the new element. When you fetch or reserve a generation of an element,
CMS restores the times, attributes, and file revision number associated with
the file used to create the element generation. You can also display this
information by using the SHOW GENERATION/FULL command.

To change the creation remark associated with the element or generation 1
of the element, use the MODIFY ELEMENT or MODIFY GENERATION
command, respectively.

CREATE ELEMENT

Command Qualifiers

/CONCURRENT (D)
/NOCONCURRENT
Specifies whether this element can have multiple reservations. After you

create the element, you grant or deny concurrent access by using the
MODIFY ELEMENT command.

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/HISTORY="string”

/NOHISTORY (D)

Establishes the history attribute for the element. If an element has the
history attribute, its history is included in the file when you retrieve it with
the FETCH or RESERVE command.

The quoted string specifies the format of the history. The quoted string
must contain the characters #H or #B (lowercase is allowed) and can contain
other printing characters. To include a quotation mark in the output history
string, type it twice (""). To include a number sign (#) in the output
history string, type it twice (##). For a detailed explanation of the history
attribute, see Section 4.5.

/INPUT[=file-specification]

Specifies the file to be used to create the element. When you specify

an alternative location for the input file, CMS deletes the file from the
alternative location (unless you specify /KEEP or /RESERVE). If you do not
specify this qualifier, CMS searches your current default directory for a file
with the same name as specified with the element expression parameter on
the command line. Wildcards are allowed.

CD-29

CREATE ELEMENT

CD-30

CMS must be able to create a unique element for each file in the input file
list. Thus, if you use wildcards in the /INPUT file specification to specify
more than one input file, you must also use wildcards in the element-name
parameter.

/KEEP

/NOKEEP (D)

Controls whether CMS deletes all versions of the file used to create the new
element. If you specify /KEEP, CMS does not delete the file.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/NOTES="“string”
/NONOTES (D)
Establishes the notes attribute for the element. If an element has the notes

attribute, notes are appended to the lines of the file when it is retrieved by
the FETCH or RESERVE command.

The quoted string specifies the format of the note. The quoted string can
contain text or the characters #G, #g, or both. If you specify /NOTES, you
must also specify /POSITION. For a detailed explanation of the notes
attribute, see Section 4.5.

/POSITION=n

Establishes the position attribute; that is, the character position where
the note generated by the /NOTES qualifier begins on the line. The value
n is required and must be an integer in the range 1 to 511. The /NOTES
qualifier is required with the /POSITION qualifier.

The note is placed to the right of the text of the line. If the length of the
line is less than n, the note appears at position n. If the length of the line
is greater than or equal to n, the note is placed at the next tab stop after
the end of the line. (Tab stops are at position 9 and every eight characters
thereafter.) For a detailed explanation of the position attribute, see
Section 4.5.

CREATE ELEMENT

/[NOJREFERENCE_COPY
Controls whether CMS maintains a reference copy of the element. You must
have established a reference copy directory.

The presence of the reference copy attribute for an element is
inherited from the library, that is, if a reference copy directory is
established for the library, the attribute is automatically enabled for

the element. You can override the reference copy attribute by specifying
/NOREFERENCE_COPY.

If a reference copy directory has been established for the CMS library, CMS
creates a reference copy of the new element and updates the reference copy
directory each time you create a new main-line generation of that element.
When CMS places a file in the reference copy directory, it also deletes any
earlier versions of that file in the reference copy directory.

/RESERVE

/NORESERVE (D)

Controls whether the new element is to be reserved after it is created.
When you specify /RESERVE, CMS does not delete the file used to create
the element. Generation 1 of the newly created element is automatically
reserved.

If you omit both the /RESERVE and the /KEEP qualifiers, CMS deletes all
versions of the file used to create the element.

/REVIEW

/NOREVIEW (D)

Specifies that new generations of the element are marked for review. By
default, new generations of the element are marked for review only if the
reserved generation either was rejected or has a review pending. If you
specify CREATE ELEMENT/REVIEW, generation 1 of the element is also
marked for review.

You can change the review attribute with the MODIFY ELEMENT
command.

CD-31

CREATE

ELEMENT

Example

CD-32

CMS> CREATE ELEMENT INIT.FOR "initialization routines"
$CMS-S-CREATED, element DISKX: [PROJECT.CMSLIB]INIT.FOR created

This command creates an element named INIT.FOR from a file with the
same name in the current default directory, and then deletes all versions of
that file in the current default directory.

CREATE GROUP

CREATE GROUP

Creates one or more empty groups.

Format

CREATE GROUP group-namey,...] “remark”

Command Qualifiers Defaults
/INOILOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL

Command Parameters

group-name
Specifies a name for the group. CMS reports an error if you specify an
existing group or class name. (Group and class names must be unique.)
However, if a previously used group or class name has been removed with
the DELETE GROUP or DELETE CLASS command, you can reuse that
name with CREATE GROUP. A group name can also be a list of group
names separated by commas. Wildcards are not allowed.

t‘remar 4

Specifies a character string for the creation remark of the group to be logged
in the history file with this command. The remark is enclosed in quotation
marks. If no remark was entered, a null remark (") is logged.

Description

The CREATE GROUP command establishes a group. After a group is
created, you can place any related set of elements or groups in that group by
using the INSERT ELEMENT or INSERT GROUP command. The CREATE
GROUP command does not automatically place any elements or groups in
the created group. For more information about groups, see Chapter 5.

CD-33

CREATE GROUP

Command Qualifiers

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to OTHER
OTHER (D)

NOOTHER

NONE-—equivalent to NOOTHER

You can specify either ALL, NONE, or the [NOJOTHER keyword.

CMS automatically performs occlusion for all objects; that is, CMS
selects only the first occurrence of a specified object. If you specify
/OCCLUDE=NOOTHER, CMS creates a group in every library in the
search list.

Example

CMS> CREATE GROUP TIME TST "files for time tests"
%CMS-S-CREATED, group DISKX: [PROJECT.CMSLIB]TIME TST created

This command creates a group named TIME_TST. Once the group name
is established, elements can be placed in the group with the INSERT
ELEMENT command.

CD-34

CREATE LIBRARY

CREATE LIBRARY

Creates one or more new CMS libraries in one or more existing empty
directories. You can have only one CMS library in each directory.

Format
CREATE LIBRARY directory-specification],...] “remark”
Command Qualifiers Defauits
/AFTER][=directory-specification] See text
/BEFORE[=directory-specification] See text
/INOILOG /LOG
/REFERENCE_COPY=directory-specification = /NOREFERENCE_COPY
/NOREFERENCE_COPY
/REVISION_TIME[=0ption] See text
Restrictions

* You cannot specify both the /AFTER and the /BEFORE qualifiers on the
same command line.

Command Parameters

directory-specification

Specifies one or more valid VMS directories. Each directory must not
contain any files. A directory that is to be used as a CMS library cannot be
your current default directory. If you specify more than one VMS directory,
you must separate the directory specifications with commas. Wildcards are
not allowed.

“remark”
Specifies a character string for the creation remark of the new library to
be logged in the history file with this command. The remark is enclosed in

CD-35

CREATE LIBRARY

quotation marks. If no remark was entered, a null remark (") is logged in
the history file.

Description

The CREATE LIBRARY command builds CMS control files in a directory so
that it can be used as a CMS library. After you establish a library with the
CREATE LIBRARY command, you can enter CMS commands to manipulate
the library. When you enter the CREATE LIBRARY command, your current
CMS library is automatically set to the library (or libraries) specified. You
can use CREATE LIBRARY only once on a library.

You can create more than one library at a time by specifying the
CREATE LIBRARY command with more than one directory specification.
The directory specifications must be separated by commas. For more
information, see Chapter 3.

When you execute this command, CMS defines a logical name that begins
with CMS$. These names are used by subsequent CMS commands. You
should not define logical names beginning with CMS$ because this prefix is
reserved for use by CMS.

Command Qualifiers

CD-36

/AFTER[=directory-specification]

Instructs CMS to insert new libraries into the existing library search

list immediately following the existing specified directory. The specified
directory must be in the existing library search list. If you omit the
directory specification, CMS automatically adds the libraries (in the order
you specify) to the end of the list. You cannot specify both /AFTER and
/BEFORE on the same command line. If neither /AFTER nor /BEFORE is
specified, the CREATE LIBRARY command’s library list supersedes any
existing search list.

/BEFORE[=directory-specification]

Instructs CMS to insert new libraries into the existing library search

list immediately in front of the existing specified directory. The specified
directory must be in the existing library search list. If you omit the directory
specification, CMS automatically adds the libraries (in the order you specify)

CREATE LIBRARY

to the front of the list. You cannot specify both /AFTER and /BEFORE on
the same command line. If neither /AFTER nor /BEFORE is specified, the
CREATE LIBRARY command’s library list supersedes any existing search
list.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LLOG or /NOLOG is specified.

/REFERENCE_COPY=directory-specification

/NOREFERENCE_COPY (D)

Specifies a valid VMS directory to be used for reference copies of library
elements. The directory cannot be a CMS library, nor should it be a
subdirectory of a CMS library directory. Wildcards are not allowed.

If you use the CREATE LIBRARY command to create a search list of more
than one library, you should specify a different reference copy directory for
each library in the search list. Although CMS allows different libraries to
be assigned the same reference copy directory, it is strongly recommended
that you assign each CMS library its own unique reference copy directory.
If you specify only one reference copy directory for more than one library,
CMS creates one reference copy directory for the entire search list, not one
reference copy directory for each library in the search list.

/REVISION_TIME[=option]

Controls whether CMS uses the original file revision time or the file storage
time when a file is retrieved from the CMS library. The options field can
contain one of the following keywords:

ORIGINAL (D)
STORAGE_TIME

Use the ORIGINAL keyword to indicate that the original revision time
of files placed in a CMS library should be restored unchanged upon their
retrieval. This is the default behavior.

CD-37

CREATE LIBRARY

Use the STORAGE_TIME keyword to indicate that the time when a file
was stored in a CMS library (through a CREATE ELEMENT or REPLACE
transaction) should be substituted for its original revision time upon

retrieval.
Examples
1. CMS> CREATE LIBRARY [RELEASE.CMSLIB] "follows development library"

CD-38

$CMS-S~CREATED, CMS Library DISKX: [RELEASE.CMSLIB] created

This command creates a CMS library in the subdirectory
[RELEASE.CMSLIB]. The library does not contain any elements

yet. Subsequent CMS commands refer to the library contained in
[RELEASE.CMSLIB] until the user logs out or enters a SET LIBRARY
or another CREATE LIBRARY command.

. CMS> CREATE LIBRARY [DOC.PRELIB], [DOC.TESTLIB], {[DOC.FINLIB]

_Remark: creating doc lib

This example creates three CMS libraries in the subdirectories
[DOC.PRELIB], [DOC.TESTLIB], and [DOC.FINLIB], and sets the
library search list to the three libraries, in that order.

DELETE CLASS

DELETE CLASS

Deletes one or more classes from a CMS library.

Format
DELETE CLASS class-expression “remark”
Command Qualifiers Defaults
/[INOJCONFIRM /NOCONFIRM
/[NOILOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
Restrictions

* You cannot delete a class that contains any element generations.

* You cannot delete a class that has read-only access. (Use the MODIFY
CLASS/NOREAD_ONLY command to change the access to the class.)

Command Parameters

class-expression

Specifies the class (or classes) to be deleted from the CMS library. A class
expression can be a class name, a wildcard expression, or a list of these
separated by commas.

“remark” '
Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null

remark (") is logged.

CD-39

DELETE CLASS

Description

The DELETE CLASS command deletes one or more classes from a CMS
library. The class must exist and must not contain any element generations.
If any generations belong to the class, CMS issues an error message and
does not delete the class. Use the REMOVE GENERATION command to
remove element generations from a class before issuing the DELETE CLASS
command.

Even though a class is deleted, records of transactions that created and
used the class are retained in the library history. You can reuse the deleted
class name to create a new class. However, there is no distinction between
the two classes in the project history, except that their transactions are
separated by entries for DELETE CLASS and CREATE CLASS commands.

To determine which generations belong to a class, use the SHOW CLASS
command with the /CONTENTS qualifier.

Command Qualifiers

CD—40

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /INOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

DELETE CLASS

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to CLASS
CLASS (D)

NOCLASS

NONE—equivalent to NOCLASS

You can specify either ALL, NONE, or the [NOJCLASS keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Examples

1.

CMS> DELETE CLASS PRE_RELEASE "no longer necessary”
%CMS-S-DELETED, class DISKX: [PROJECT.CMSLIB]PRE_RELEASE deleted

This command deletes the class named PRE_RELEASE.

CMS> REMOVE GENERATION *,* BETA¥*

_Remark: beta sites converted to released product

$CMS-I-GENREMOVED, generation 3 of element DISKX: [PROJECT.CMSLIB]INI.FOR
removed from class DISKX: [PROJECT.CMSLIB]BETAFEB

%¥CMS-I-GENREMOVED, generation 4 of element DISKX:[PROJECT.CMSLIB]SRC.FOR
removed from class DISKX: [PROJECT.CMSLIB]BETAFEB

%CMS-I-GENREMOVED, generation 3 of element DISKX: [PROJECT.CMSLIB]INI.FOR

- removed from class DISKX: {[PROJECT.CMSLIB]BETAJAN

$CMS-I-GENREMOVED, generation 2 of element DISKX: [PROJECT.CMSLIB]SRC.FOR
removed from class DISKX: [PROJECT.CMSLIB]BETAJAN
%CMS-S-REMOVALS, 4 removals completed

CMS> DELETE CLASS BETA* "beta sites converted to released product”
%CMS-I-DELETED, class DISKX:[PROJECT.CMSLIB]BETAFEB deleted
%CMS-I-DELETED, class DISKX: [PROJECT.CMSLIB]BETAJAN deleted
%$CMS~-S~-DELETIONS, 2 classes deleted

This example removes all element generations from all classes whose
names begin with the string BETA, then deletes all of the empty classes.
CMS does not prompt for confirmation during deletion unless you specify
the /CONFIRM qualifier.

CD-41

DELETE ELEMENT

DELETE ELEMENT

Deletes one or more elements from a CMS library.

Format
DELETE ELEMENT element-expression “remark”
Command Qualifiers Defaults
/INOJCONFIRM /CONFIRM
/[[NOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
Restrictions

¢ You cannot delete an element that belongs to a group or has a generation
in a class.

* You cannot delete an element that has a generation reserved.
¢ You cannot restore a deleted element.
* You cannot delete an element that has a generation under review.

Command Parameters

element-expression

Specifies one or more elements that are to be deleted from the library. An
element expression can be an element name, a wildcard expression, or a list
of these separated by commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

CD—42

DELETE ELEMENT

Description

The DELETE ELEMENT command deletes an element from a CMS
library. If the element is set to /REFERENCE_COPY and there is a current
reference copy directory for the CMS library, CMS deletes the corresponding
file from the reference copy directory.

There cannot be any existing reservations for the element. The element
cannot be a member of a group, nor can one of its generations belong to a
class, or be under review. If one of the element’s generations is under review,
use the CANCEL REVIEW command to remove it from the review list. If
an element is reserved, you must unreserve or replace it before you can
delete the element. If the element belongs to any groups or has generations
in any classes, use the REMOVE ELEMENT or REMOVE GENERATION
command to remove it.

Even though an element is deleted, records of transactions that created

and used the element are retained in the library history. You can reuse

the deleted element name to create a new element. However, there is no
distinction between the two elements in the library history, except that their
transactions are separated by entries for DELETE ELEMENT and CREATE
ELEMENT commands.

Command Qualifiers

/CONFIRM (D)
/NOCONFIRM
Controls whether CMS prompts you for confirmation before each transaction.

When you run CMS in interactive mode, CMS prompts you for confirmation.
If you type YES, ALL, TRUE, or 1, CMS executes the transaction. If you
type NO, QUIT, FALSE, 0, or press RETURN or CTRL/Z, no action is
performed. If you type any other character, CMS continues to prompt until
you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

CD-43

DELETE ELEMENT

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

All—equivalent to ELEMENT
ELEMENT (D)

NOELEMENT

NONE—equivalent to NOELEMENT

You can specify either ALL, NONE, or the [NOJELEMENT keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Example

CD-44

CMS> DELETE ELEMENT INITX.FOR "x-version no longer required"
Delete element INITX.FOR? [Y/N] (N): Y

$CMS-I-DELETED, element DISKX: [PROJECT.CMSLIB]INITX.FOR deleted
$CMS-S-DELETIONS, 1 deletion completed

This example uses INITX.FOR as an experimental module; when it is no
longer needed, it can be deleted from the library.

DELETE GENERATION

DELETE GENERATION

Deletes one or more generations of an element.

Format
DELETE GENERATION element-expression ‘“remark”
Command Qualifiers Defaults
/AFTER[=generation-expression] See text
/ARCHIVE[=file-specification] /NOARCHIVE
/BEFORE[=generation-expression] See text
/[NO]JCONFIRM /CONFIRM
/FROM[=generation-expression] See text
/GENERATION[=generation-expression] /GENERATION=1+
/INOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
/TO[=generation-expression] See text

Restrictions

You cannot delete generation 1 of an element.

You cannot delete a generation that has variants off it.
You cannot delete a generation that has a review pending.
You cannot delete a generation that is reserved.

You cannot delete a generation that is in a class.

All generations in the specified range of generations to be deleted must
be on the same line of descent.

You cannot use /GENERATION in combination with /AFTER, /BEFORE,
/FROM, or /TO.

You cannot specify /AFTER and /FROM on the same command line.
You cannot specify /BEFORE and /TO on the same command line.

CD-45

DELETE GENERATION

Command Parameters

element-expression

Specifies one or more generations of an element. An element expression can
be an element name, a group name, a wildcard expression, or a list of these
separated by commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

CD-46

The DELETE GENERATION command removes information about one or
more generations of an element. Once a generation is deleted, it cannot
be restored to its former place in the element in the CMS library. You
can, however, archive the contents of the generation using the /ARCHIVE
qualifier and later restore the contents of the generation (see Chapter 9).

If the generation or range of generations to be deleted has a direct
descendant generation (that is, a descendant generation on the same line of
descent), then the changes associated with those generations are combined,
and then those changes are combined with the changes in the descendant
generation. If there is no descendant generation, that is, the generation

or range of generations to be deleted is at the end of the line of descent,
then the changes associated with those generations are discarded. For more
information, see Section 6.1.3.

You can specify a single generation with the /GENERATION qualifier.
/GENERATION=1+ is the default. You can also specify a range of
generations with either the /AFTER or /FROM qualifier to delimit the
beginning of a range, and either the /BEFORE or /TO qualifier to delimit the

“end of a range. These sets of qualifiers can be paired to specify ranges with

inclusive or exclusive endpoints (see the Restrictions section).

DELETE GENERATION

If you delete the latest generation on the main line of descent of an element
that has the reference copy attribute, CMS deletes the generation’s
reference copy and creates a new reference copy that corresponds to the
generation that is now the latest generation on the main line of descent.

Command Qualifiers

/AFTER[=generation-expression]

Specifies the start of a range of generations that are to be deleted, excluding
the specified generation. You cannot specify both /AFTER and /FROM or
both /AFTER and /GENERATION. You must specify the end of the range
with either the /BEFORE or /TO qualifier.

/ARCHIVE[=file-specification]

/NOARCHIVE (D)

Specifies a file to which CMS writes archived generation information. If the
file specification is omitted, CMS creates a file with the same name as each
element, assigns a file type of .CMS_ARCHIVE, and places it in your default
directory.

/BEFORE[=generation-expression]

Specifies the end of a range of generations that are to be deleted, excluding
the specified generation. You cannot specify both /BEFORE and /TO or both
/BEFORE and /GENERATION. You must specify the start of the range with
either the /AFTER or /FROM qualifier.

/CONFIRM (D)
/NOCONFIRM
Controls whether CMS prompts you for confirmation before each transaction.

When you run CMS in interactive mode, CMS prompts you for confirmation.
If you type YES, ALL, TRUE, or 1, CMS executes the transaction. If you
type NO, QUIT, FALSE, 0, or press RETURN or CTRL/Z, no action is
performed. If you type any other character, CMS continues to prompt until
you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

CD-47

DELETE GENERATION

/FROM[=generation-expression]

Specifies the start of a range of generations that are to be deleted, including
the specified generation. You cannot specify both /FROM and /AFTER or
both /FROM and /GENERATION. You must specify the end of the range
with either the /BEFORE or /TO qualifier.

/GENERATION[=generation-expression]

/GENERATION=1+ (D)

Specifies a particular generation of the element to be deleted. By default,
the most recent generation on the main line of descent is deleted. You
cannot combine /GENERATION with any of the following qualifiers: /FROM,
/TO, /AFTER, and /BEFORE.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /INOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords: ’

ALL—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOIGROUP, and [NOJCLASS keywords.

CD—48

DELETE GENERATION

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/TO[=generation-expression]

Specifies the end of a range of generations that are to be deleted, including
the specified generation. You cannot specify both /TO and /BEFORE or both
/TO and /GENERATION. You must specify the start of the range with either
the /AFTER or /FROM qualifier.

Examples

1.

CMS> DELETE GENERATION/NOCONFIRM SAMPLE.PAS/GENERATION=5B1

_Remark: Delete variant line

%$CMS-S-GENDELETED, 1 generation of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS
deleted)

This command deletes generation 5B1 of the element SAMPLE.PAS. The
/NOCONFIRM qualifier directs CMS to suppress the prompt conﬁrmmg
the operation.

CMS> DELETE GENERATION SAMPLE.*/AFTER=V1/BEFORE=V2

_Remark: delete generations between released versions

Delete 5 generations after V1(1l) before V2(7) of element SAMPLE.PAS?

[¥Y/N] (): Y

$CMS-S-GENDELETED, 5 generations of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS
deleted

This command deletes all generations of the element after the generation
in class V1 and before the generation in class V2, excluding the two
generations in classes V1 and V2.

CMS> DELETE GENERATION SAMPLE.PAS/AFTER=1/BEFORE=V1

_Remark: delete a range

$CMS~-E-NOGENDELETED, no generations of DISKX:[PROJECT.CMSLIB]SAMPLE.PAS deleted
-CMS-E-VARINRANGE, range has variants

CMS> DELETE GENERATION/ARCHIVE/FROM=2Al/T0O=2Al+/NOCONFIRM SAMPLE.PAS

_Remark: delete the variant range and archive the deleted generations

$CMS-S-GENDELETED, 3 generations of element DISKX: [PROJECT.CMSLIB]SAMPLE.PAS
deleted

The first command specifies that all generations be deleted between
generation 1 and the generation in class V1. CMS could not delete
the generations, however, because it found variants for the indicated
generations.

CD-49

DELETE GENERATION

CD-50

The second command specifies a range of generations to be deleted from
and including the variant generation 2A1 to and including the latest
variant generation of the element SAMPLE.PAS. In this case, CMS
deleted 3 generations of the element. The /ARCHIVE qualifier directs
CMS to save the deleted generations in an archive file in your default
directory.

To display the descendants of a generation and the classes containing the
generations, use the SHOW GENERATION/DESCENDANTS/MEMBER
command.

DELETE GROUP

DELETE GROUP

Deletes one or more groups from a CMS library.

Format
DELETE GROUP group-expression “remark”
Command Qualifiers Defaults
/[NOJCONFIRM /NOCONFIRM
/INOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
Restrictions

¢ You cannot delete a group that contains any elements or groups.
* You cannot delete a group that belongs to another group.

* You cannot delete a group that has read-only access. (Use the MODIFY
GROUP/NOREAD_ONLY command to change the access to the group.)

Command Parameters

group-expression

Specifies the group (or groups) to be deleted. A group expression can be one
or more group names, a wildcard expression, or a list of these separated by
commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

CD-51

DELETE GROUP

Description

The DELETE GROUP command deletes a group from a CMS library. If the
group is not empty, or if it belongs to another group, CMS returns an error
and does not delete the group.

Even though a group is deleted, records of transactions that created and
used the group are retained in the library history. You can reuse the deleted
group name to create a new group. However, there is no distinction between
the two groups in the library history, except that their transactions are
separated by entries for DELETE GROUP and CREATE GROUP commands.

To determine which elements and groups belong to a group, use the SHOW
GROUP command with the /CONTENTS qualifier.

Command Qualifiers

CD-52

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/LOG (D)

/NOLOG v

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /INOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

DELETE GROUP

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to GROUP
GROUP (D)

NOGROUP

NONE—equivalent to NOGROUP

You can specify either ALL, NONE, or the [NOJGROUP keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Example

CMS> DELETE GROUP TIME_ TST "superseded by comparison tests"
%CMS-S-DELETED, group DISKX: [PROJECT.CMSLIB]TIME TST deleted

This command deletes the group named TIME_TST.

CD-53

DELETE HISTORY

DELETE HISTORY

Deletes all or part of the library history.

Format
DELETE HISTORY ‘“remark”

Command Qualifiers Defaults
/BEFORE=date-time /BEFORE=current-time
/INOJCONFIRM /CONFIRM

/INOJLOG /LOG
/OCCLUDE[=0option,...] /OCCLUDE=ALL
/OUTPUT[=file-specification] /OUTPUT=HISTORY.DMP

Command Parameter

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

The DELETE HISTORY command deletes all or part of the library history.
CMS writes the deleted history records to a file named HISTORY.DMP in
your current default directory. CMS cannot access this file as a history file.

The DELETE HISTORY command does not delete the library creation
history record.

Whenever you delete some of the library history, CMS records two
transactions. As with other commands that modify the contents of the
library, CMS records the deletion transaction. In addition, CMS logs
a REMARK transaction at the point that corresponds to the /BEFORE

CD-54

DELETE HISTORY

value. If you do not specify the /BEFORE qualifier, the default is
/BEFORE=current-time. The REMARK transaction record includes the
following remark: “PREVIOUS HISTORY DELETED”. Both the REMARK
and the DELETE HISTORY transactions are unusual transactions.

When you use the SHOW HISTORY command, CMS identifies unusual
transactions by displaying an asterisk (*) in the first column of the
transaction record.

Command Qualifiers

/BEFORE=date-time

/BEFORE=current-time (D)

Deletes all of the history information before a specified time. A single entry
is made in the history file specifying that a section of the history data has
been removed. This entry is made at the location in the history file where
the lines were deleted.

The time value can be an absolute, delta, or combination time value, or one
of the following keywords: TODAY, TOMORROW, or YESTERDAY.

If the time value is a future value, CMS uses the current time.

/CONFIRM (D)
/NOCONFIRM
Controls whether CMS prompts you for confirmation before each transaction.

When you run CMS in interactive mode, CMS prompts you for confirmation.
If you type YES, ALL, TRUE, or 1, CMS executes the transaction. If you
type NO, QUIT, FALSE, 0, or press RETURN or CTRL/Z, no action is
performed. If you type any other character, CMS continues to prompt until
you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

CD-55

DELETE HISTORY

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to OTHER
OTHER (D)

NOOTHER

NONE—equivalent to NOOTHER

You can specify either ALL, NONE, or the [NOJOTHER keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/OUTPUT[=file-specification]
/OUTPUT=HISTORY.DMP (D)
Directs CMS to write output to the specified file. If you omit the /OUTPUT
qualifier (or if you specify /OUTPUT but do not provide a file specification),
CMS creates a file named HISTORY.DMP in your current default directory.

Example

CD-56

CMS> DELETE HISTORY/BEFORE=TODAY "old history in HISTORY.DMP"
Confirm DELETE HISTORY/BEFORE=10-MAY-1990 [Y/N] (N): vy
$CMS~-S-HISTDEL, 89 history records deleted

This example deletes all of the library history prior to the current day. The
following code shows the first few records contained in the HISTORY.DMP
file:

DELETE HISTORY

Deleted dump for CMS Library DISKX:[PROJECT.CMSLIB]

6-MAR-1990 17:07:50 SNAKE CREATE ELEMENT OUTPUT.FOR "ASCII format"

6-MAR~1990 17:26:10 MARTIN CREATE ELEMENT INIT.FOR "init routines”

8-MAR-1990 12:33:09 LISA RESERVE INIT.FOR(1l) "change header offset"

9-MAR-1990 17:34:04 RONALD REPLACE INIT.FOR(2) "header offset and
additional free space added"

The CREATE LIBRARY transaction is not deleted from the library history.

CD-57

DIFFERENCES

DIFFERENCES

Compares two files, two generations of elements, or a file and a generation

of an element. If the entities are different, it creates a file that contains the
lines that differ between them. If they are the same, it issues a message to
that effect and does not create a differences file (unless the /FULL qualifier

is in effect).

Format

DIFFERENCES file? [file2]

Command Qualifiers Defaults
/[NOJAPPEND - INOAPPEND
/FORMAT=(data-format,data-partition,

[no]generation-differences) See text
/FULL See text
/IGNORE=(keyword],...]) See text
/INOJLOG /LOG

/OCCLUDE[=option,...]
/OUTPUTI[=file-specification]
/NOOUTPUT
/[INOJPAGE_BREAK

/OCCLUDE=ALL
/OUTPUT=file1.DIF

/INOPAGE_BREAK

/INOJPARALLEL /NOPARALLEL
/SENTINEL=("begin-delimiter”,“end-delimiter”) See text
/SKIP=number-of-lines See text
/WIDTH=n See text
Parameter Qualifier Defaults

/GENERATION[=generation-expression]

Restrictions

e If both filel and file2 are element generations, both generations must
reside in the same library of the library search list or an error will occur.

CD-58

DIFFERENCES

Command Parameters

file1

Specifies the first file that is to be compared. If you specify /GENERATION
for this parameter, filel must be an element name; otherwise, a VMS file
specification is assumed.

file2

Specifies the second file that is to be compared. If you specify
/GENERATION for this parameter, file2 must be an element name;
otherwise, a VMS file specification is assumed.

CMS follows these rules when you do not provide a second file specification:
* If you direct CMS to take filel from a location that is not a CMS library,
CMS uses the next lower file version in the same directory as filel.

e If you direct CMS to take filel from a CMS library (by specifying
/GENERATION), CMS uses the latest default directory version of filel
as the second input file.

Description

The DIFFERENCES command compares the contents of two files. If CMS
finds differences, it creates a file named first-file-name.DIF in your current
default directory (unless /OUTPUT is in effect.) If the files are the same,
it issues a message to that effect and does not create a differences file. By
default, CMS compares two files that are not located in a CMS library.
However, you can direct CMS to use element generations from the current
library by specifying the /GENERATION qualifier on one or both of the file
name parameters.

A difference is defined as one of the following:

¢ A line (or lines) that are in one file and not in the other.
¢ A replacement of n lines by m lines (n may or may not be equal to m).

Only the lines that differ are displayed in the differences file (unless you
specify /FULL).

CD-59

DIFFERENCES

A heading at the beginning of the differences file includes the name of

the user that entered the command, the date and time the command was
entered, and the file specifications of the two files being compared. If you
direct CMS to use element generations and you have specified the /FORMAT
option generation-differences, the differences listing contains a section
labeled “Generation Differences” that contains the replacement history for
the element. Each generation used in the comparison is identified by an
asterisk (*) in the first column of the transaction record.

The differences between the files are contained in a section labeled “Text
Differences.” Each difference is formatted with the line (or lines) from the
first file followed by the differing line (or lines) from the second file. If a
difference consists of a line or lines in one file but not the other, only the
lines from the file containing the additional text are displayed.

If you specify the /SKIP, /SENTINEL, and /IGNORE qualifiers on the same
command line, they are processed in the following order:

1. /IGNORE=HISTORY
2. /IGNORE=NOTES
3. /SKIP

4. /SENTINEL

5. /IGNORE options other than HISTORY or NOTES

For example, if you specify /SKIP=5 and /SENTINEL=(“sushi”,“bar”),
DIFFERENCES disregards the first 5 lines in each of the compared files,
and then searches the remainder of each file for the sentinel character
strings “sushi” and “bar”.

Command Qualifiers

CD-60

/APPEND

/NOAPPEND (D) ,
Controls whether CMS appends the command output to an existing file, or
creates a new file. If you specify /APPEND and the output file does not exist,
CMS creates a new file. If you do not provide an output file specification (see
the description for /OUTPUT), CMS searches your current default directory
for a file with the file name specified in the filel parameter and the file type
.DIF.

DIFFERENCES

/FORMAT=(data-format,data-partition,

[no]generation-differences)

Controls whether the output file is formatted, specifies the type of
formatting, and controls whether a list of generation differences is included
in the DIFFERENCES output. You can specify the parameters in any order.

data-format

Specifies the type of format. The following table lists the possible values

for data formats:

Data Format
Option

Action

ASCII (D)

DECIMAL

HEXADECIMAL

OCTAL

Specifies that data be presented as if each byte represents
a value in the ASCII character set. This option is most
useful when files contain textual data. If no data partition
is specified, data is partitioned into records. This option is
the default.

Specifies that each value be displayed as a decimal
numeral. If no data partition is specified, data is
partitioned into longwords. You cannot specify both
DECIMAL and RECORDS.

Specifies that each value be displayed as a hexadecimal
numeral. If no data partition is specified, data is
partitioned into longwords. You cannot specify both
HEXADECIMAL and RECORDS.

Specifies that each value be displayed as an octal numeral.
If no data partition is specified, data is partitioned into
longwords. You cannot specify both OCTAL and RECORDS.

data-partition

Specifies the type of data partition. A data partition is the size that data
in each record is to be broken into before it is formatted. The following
table lists the possible values for data partitions:

CD-61

DIFFERENCES

Data Partition
Option

Action

BYTE

LONGWORD

RECORDS (D)

WORD

Specifies that the data displayed be partitioned into bytes.
Records are not partitioned further unless the data-format
option indicates otherwise.

Specifies that the data displayed be partitioned into
longword values. This is the default partitioning for
DECIMAL, HEXADECIMAL, or OCTAL.

Specifies that no further partitioning of data is to occur
beyond the record partitioning already in the file. This
partitioning is most useful when the files contain textual
data. You can only specify RECORDS by itself or in
conjunction with ASCII. It is mutually exclusive with
all other options. This value is the default.

Specifies that the data displayed be partitioned into word
values. Data records are not partitioned further unless the
data format indicates otherwise.

generation-differences

nogeneration-differences (D)

Specifies whether or not a list of generation differences is to be included
in the DIFFERENCES output. This option is applicable only if two
element generations are compared by the DIFFERENCES command.

In any other case, this option is ignored. The following table lists the
available keywords for the /GENERATION parameter qualifier:

Generation Differences Option Action

GENERATION_DIFFERENCES Specifies that a list of differences is

to be included in the output.

NOGENERATION_DIFFERENCES (D) Specifies that no list of differences is

included in the output.

/FULL

Directs CMS to include a complete listing in the output file, including
identical text and differences between filel and file2.

CD-62

DIFFERENCES

/IGNORE=(keyword],...])
Specifies one or more of the following keywords. Each keyword indicates a
type of special character to be ignored during the comparison.

Keyword Ignored Characters

CASE Directs CMS to ignore any differences between the case
of alphabetic characters (A through Z, a through z).

FORM_FEEDS Directs CMS to remove formfeed characters as it
compares records from the two files.

HISTORY Directs CMS to ignore element generation history as it

compares a file with a generation. At least one of the
files must be an element generation with the history
attribute enabled.

LEADING_BLANKS Directs CMS to remove leading blanks and tabs as it
compares records from the two files.

NOTES Directs CMS to ignore notes as it compares a file with a
generation. At least one of the files must be an element
generation with the notes attribute enabled.

SPACING Directs CMS to compress multiple blanks and tabs into a
single space as it compares records from the two files.

TRAILING_BLANKS Directs CMS to remove trailing blanks and tabs as it
compares records from the two files.

If the HISTORY or NOTES keyword is specified, the history or notes
text is not used for the comparison, and is also removed from the output
generated by DIFFERENCES. For all other options, the output generated
by DIFFERENCES contains the original records used for the comparison,
instead of the modified form of the records designated by the /IGNORE
qualifier.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /INOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

CD-63

DIFFERENCES

CD-64

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, CLASS)
ELEMENT (D)

NOELEMENT

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT and [NOJCLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/OUTPUT[=file-specification]

/OUTPUT=file1.DIF (D)

Directs CMS to write output to the specified file. CMS creates a new file if
you do not specify /APPEND. If you omit the /OUTPUT qualifier (or if you
specify /OUTPUT but do not provide a file specification), CMS creates a file
with the file name specified in the filel parameter and the file type .DIF. If
you specify a file name but omit the file-type component, CMS writes the
output to a file with the specified file name and a file type of .DIF.

/NOOUTPUT

Directs CMS to execute a comparison without creating an output file. This
form of the comparison may be significantly faster because CMS stops the
transaction when it encounters the first difference.

/PAGE_BREAK

/NOPAGE_BREAK (D)

Controls whether CMS allows page breaks in the output file. Page breaks
are converted to the string “<PAGE>” in the output file. Use /PAGE_BREAK
to requést the inclusion of page breaks in the output file.

DIFFERENCES

/PARALLEL

/NOPARALLEL (D)

Controls whether the differing lines from the two files are formatted
side by side. If you specify /PARALLEL, the differences from the first
file are displayed on the left and the differences from the second file are
displayed on the right. The heading of the differences report displays the
file specification of the first file on the left and the file specification of the
second file on the right.

By default, the width of the listing is 132. Use the /WIDTH qualifier to
control the width. Vertical lines separate the text on the left side of the
report from the text on the right side. The text from each of the files is
allotted equal space (half the width of the full report).

If a line from one of the files being compared is longer than half the width of
the full report, the line is truncated on the right. A plus sign (+) is printed
at the end of the line to indicate that the line has been truncated.

/SENTINEL=(“begin-delimiter”, “end-delimiter”)

Specifies a pair of strings used to delimit a section of text to be ignored
during the comparison of both files. The delimiters can be up to 256
characters per line, and must be unique. Any text between and including
the delimiters is treated as if it did not exist. If you do not enclose the
sentinel strings in quotation marks, they are converted to uppercase before
the comparison of the files. Sentinel strings may contain any characters, but
if you include spaces or tabs, they must be enclosed in quotation marks.

Sentinel strings can appear anywhere in a file. If text delimited by a
sentinel pair crosses record boundaries, the text after the delimited region
appears in its own record in the output file; it is not appended to the
contents of the record in which the begin delimiter was found.

/SKIP=number-of-lines

Indicates the number of lines at the beginning of each file (or generation)
that are to be ignored during the comparison of both files. You must specify
a nonnegative integer value indicating the number of lines to be ignored.

/WIDTH=n

Specifies the limit for the width of the differences report. The value n is
required and must be an integer in the range 48 to 511. If n is less than 48,
48 is used. If n is more than 511, 511 is used. The default width is the same
as the width of the output device.

CD-65

DIFFERENCES

The width of the report is rounded down to the nearest multiple of 8 minus
1. CMS rounds down so that if you have specified the /PARALLEL qualifier,
CMS correctly interprets the horizontal tabs in the file on the right. For
example, if you specify a value of 100 on the /WIDTH qualifier, the actual
width is 95.

Parameter Qualifier

/GENERATION[=generation-expression]

Directs CMS to search for an element generation in the current CMS library.
The /GENERATION qualifier must immediately follow the element name

to which it applies. If you specify /GENERATION but do not provide a
generation expression, CMS uses the latest generation on the main line of
descent.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

Examples

CD-66

In the following examples, the files FIB1.PAS and FIB2.PAS are used as
input to the DIFFERENCES command. The contents of these files are as
follows:

FIB1.PAS;1:

PROGRAM FIBONACCI (OUTPUT) ;
VAR FOLD1l, FOLD2, FNEW, I: INTEGER;
BEGIN
FOLDl := 0; FOLD2 := 0; FNEW := 1; I := 1;
REPEAT
WRITELN(I, FNEW);
FOLD1 := FOLD2; FOLD2 := FNEW; FNEW := FOLDl1l + FOLD2;
I:=1I+1; .
UNTIL FNEW > (MAXINT DIV 2);
END .

DIFFERENCES

FIB2.PAS;1:

PROGRAM FIBONACCI (OUTPUT) ; ,
VAR FOLD1, FOLD2, FNEW, I: INTEGER;

BEGIN
WRITELN(’ I FNEW') ;
FOLD1l := 0; FOLD2 := 0; FNEW := 1; I := 1;
REPEAT

WRITELN(I:3, FNEW:20);
FOLD1 := FOLD2; FOLD2 := FNEW; FNEW := FOLD1 + FOLD2;
I:=1+1;
UNTIL FNEW > (MAXINT DIV 2);
END .

1. CMS> DIFFERENCES FIB1.PAS FIB2.PAS
%$CMS~I-DIFFERENT, files are different

This command writes the differences between FIB1.PAS and FIB2.PAS
to a file called FIB1.DIF. The contents of FIB1.DIF are as follows:

DEC/CMS File Comparison Utility

Files Compared By SMITH On 30-APR-1990 15:30:37
(1) DISKX:[WORK.TESTS]FIB1.PAS;1
(2) DISKX:[WORK.TESTS])FIB2.PAS;1

A A T T T T i T T S St S S S S S S A S A A A AR A A S
File DISKX:[WORK.TESTS]FIB2.PAS;1 Line 4 ’
2) WRITELN(’ I FNEW') ;

R S T S S S T A T S T S S S S S S S S Sk e e S i SEE T S S A
File DISKX: [WORK.TESTS]FIB1.PAS;1l Line 6
1) WRITELN(I, FNEW);

File DISKX: [WORK.TESTS]FIB2.PAS;1 Line 6
2) WRITELN(I:3, FNEW:20);

%x*% Bnd of Differences **

The first difference consists of an additional line in the file FIB1.PAS.
That line is displayed with a heading to indicate that it is line 4 of the
file FIB1.PAS. The second difference shows that a line from FIB2.PAS
differs from a line in FIB1.PAS. The differing lines from both files are
included in the report.)

CD-67

DIFFERENCES

2. CMS> DIFFERENCES FIB1.PAS FIB2.PAS/PARALLEL/WIDTH=80/0OUTPUT=FIB80
%$CMS-I-DIFFERENT, files are different

This command specifies that the differences are to be written to the file
FIB80.DIF (the default file type is used). The contents of FIB80.DIF are

as follows:

CMS File Comparison Utility
Files Compared By SMITH On 30-APR-1990 15:31:50

DISKX: [WORK.TESTS]FIB1.PAS;1 DISKX: [WORK.TESTS]FIB2.PAS;1
————— Line 4 -+~ Line 4 -----
—————————————————— | WRITELN(' I FNEW’) ;
+ __________________
----- Line 6 —+- Line 7 -
WRITELN (I, FNEW); | WRITELN(I:3, FNEW:20);
__________________ o

**** End of Differences **x*

The lines from FIB1.PAS are displayed on the left and the lines from
FIB2.PAS are displayed on the right. The width of the report is 79
characters. This is the largest multiple of 8 minus 1 within the limit
specified on the /WIDTH qualifier. The file specifications of the two files
being compared are displayed as headings above the appropriate side of
the report.

CD-68

FETCH

FETCH

Fetches a copy of a generation of one or more elements from a CMS library.

Format

FETCH element-expression “remark”

Command Qualifiers Defauits
/INOJCONFIRM /NOCONFIRM
/GENERATION[=generation-expression] /GENERATION=1+
/HISTORY="string” See text
/NOHISTORY

/INOJLOG LOG
/MERGE=generation-expression /NOMERGE
/NOMERGE

/NOTES="string” See text
/NONOTES

/OCCLUDE[=option,...] /OCCLUDE=ALL
/OUTPUT[=file-specification] /OUTPUT=element-name.type
/NOOUTPUT

/POSITION=column-number See text

Command Parameters

element-expression

Specifies one or more generations of an element to be retrieved from the
library. An element expression can be an element name, a group name, a
wildcard expression, or a list of these separated by commas. By default,
CMS fetches the most recent generation on the main line of descent.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

CD-69

FETCH

Description

The FETCH command delivers a copy of the specified element generation
to your current default directory. The element is not reserved, and CMS
does not allow you to replace a fetched element. CMS allows you to fetch an
element that is reserved, and notifies you of any current reservations for the
element. :

The presence or absence of a remark determines whether the FETCH
transaction is recorded in the library history. If you enter a remark, CMS
records the transaction in the history file. If you enter a null remark, CMS
does not record the transaction in the history file. '

If a version of a file with the same name as the element already exists in
your current default directory when you execute the fetch transaction, CMS
notifies you. A new version is then created with the next higher version
number.

When you fetch a generation of an element from a CMS library, CMS
restores the file creation time, revision time, revision number, and record
format and attributes. The file that is placed in your directory has the same
creation and revision times as the file that was used to create the generation
that you are fetching.

Command Qualifiers

CD-70

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

FETCH

/GENERATION[=generation-expression]

/GENERATION=1+ (D)

Specifies a particular generation of the element that is to be retrieved. If
you omit /GENERATION, CMS fetches the most recent generation on the
main line of descent.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/HISTORY="string”

Specifies that history is to be included in the retrieved file. The quoted
string specifies the format of the history. The quoted string must contain the
characters #H or #B (lowercase is allowed) and can contain other printing
characters. To include a quotation mark in the output history string, type

it twice (""). To include a number sign (#) in the output history string,

type it twice (##). For a detailed explanation of the history attribute, see
Section 4.5.

/NOHISTORY

Prevents CMS from appending the element history to the file. If you omit
/NOHISTORY, and the retrieved element has the history attribute, the
element history is included in the file when it is delivered to your current
default directory. An element has the history attribute if you specified the
/HISTORY qualifier on the CREATE ELEMENT or MODIFY ELEMENT
command.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/MERGE=generation-expression

/NOMERGE (D)

Controls whether another generation of the element (called the merge
generation) is to be merged with the generation that is being fetched (called
the retrieved generation).

CD-71

FETCH

~CD-72

When you specify the / MERGE qualifier, CMS merges the lines of the two
generations and delivers a single copy to your default directory. The file that
is placed in your directory has the current creation and revision times. The
merge generation cannot be on the same line of descent as the retrieved
generation. When there is a conflict between blocks of one or more lines,
CMS includes the conflicting lines and flags the conflict.

For a detailed explanation of how two generations are merged and how CMS
treats conflicts between the generations, see Chapter 6.

/NOTES="string”

Temporarily establishes the notes attribute for the element, regardless of
whether the element previously had the notes attribute enabled. If neither
the /NOTES nor /NONOTES qualifier is specified for an element, but the
element has the notes attribute enabled, notes are appended to the lines of
the file when it is retrieved by the FETCH or RESERVE command.

The quoted string specifies the format of the note. The quoted string can
contain text or the characters #G, #g, or both. If you specify /NOTES for an
element that does not have the notes attribute enabled, then you must also
specify /POSITION. For a detailed explanation of the notes attribute, see
Section 4.5.

/NONOTES

Specifies that notes are not to be embedded in the output file. If you omit
/NONOTES, and the retrieved element has the notes attribute, CMS
embeds notes in the output file. An element has the notes attribute if you
specified the /NOTES qualifier on the CREATE ELEMENT or MODIFY
ELEMENT command.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS)
ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

FETCH

CLASS (D)
NOCLASS
NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOJGROUP, and [NO]JCLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/OUTPUT[=file-specification]

/OUTPUT=element-name.type (D)

Directs CMS to write output to the specified file. If you omit the /OUTPUT
qualifier (or if you specify /OUTPUT but do not provide a file specification),
CMS creates a file with the same name as the element..

If you fetch more than one element (by specifying wildcards or a group name
for the element expression parameter), and you do not specify wildcards

in the output file specification, CMS creates successive versions of the file
indicated by /OUTPUT.

/NOOUTPUT

Specifies that the fetch operation is to be performed along with any history
processing and error checking, but that no output file is to be created. By
default, an output file with the same name as the element is created.

/POSITION=column-number

Specifies the column in which the note is to be placed. The column number
is required and must be an integer in the range 1 to 511. The notes
attribute or the /NOTES qualifier is required with the /POSITION qualifier.

If the length of the line is less than the specified column number, the note
appears at the column number. If the length of the line is greater than or
equal to the column number, the note is placed at the next tab stop after
the end of the line. (Tab stops are at position 9 and every 8 characters
thereafter.)

CD-73

FETCH

Example

CMS> FETCH INIT.FOR "check for correct spelling”
Element INIT.FOR currently reserved by:

(1) SMITH 2 30-APR-1990 15:48:35.65 "to add new routine"
%CMS-S-FETCHED, generation 2 of element DISKX: [PROJECT.CMSLIB]INIT.FOR fetched

This command fetches the latest generation on the main line of descent
of element INIT.FOR. CMS indicates that the element is reserved, then
continues with the fetch transaction.

CD-74

HELP

HELP

Provides online CMS information.

Format

" topic

command

HELP command /qualifier
command option
command option /qualifier

Command Parameters

topic

Specifies a subject that is related to CMS. For example, help on the topic
OVERVIEW consists of general information on CMS and pointers to other
topics that would be of interest to new users. Help on CLASSES defines the
concept of a class and points to help on commands that manipulate classes.

command

Gives information about CMS either at DCL level or at CMS subsystem
level. At DCL level, the DCL command HELP CMS provides online help on
CMS commands, qualifiers, and other topics. For example:

$ HELP CMS

To get help on a specific CMS command, such as the CREATE ELEMENT
command, type the command after HELP CMS. For example:

$ HELP CMS CREATE ELEMENT

You can get help at the CMS subsystem level by typing either HELP or
HELP and the specific command. For example:

CMS> HELP CREATE ELEMENT

CD-75

HELP

command /qualifier
Specifies a CMS command with an appropriate qualifier. For example:

$ HELP CMS DIFFERENCES/PARALLEL

This command gives you help at DCL level on the PARALLEL qualifier on
the DIFFERENCES command.

command option
Specifies a CMS command with an appropriate option. For example:

$ HELP CMS SHOW ELEMENT
$ HELP CMS CREATE CLASS

These commands give you help at DCL level on the SHOW ELEMENT and
CREATE CLASS commands.

command option/qualifier
Specifies a CMS command with an option and a qualifier. For example:

$§ HELP CMS CREATE ELEMENT/RESERVE

This command gives you help at DCL level on the /RESERVE qualifier on
the CREATE ELEMENT command.

Description

CD-76

Online help for CMS is available at both the DCL and the CMS subsystem
command level. At DCL level, you can type HELP CMS or CMS HELP

to get information. At CMS subsystem level, you can type HELP to get
information. If you omit a parameter after HELP CMS, you get an overview
of the CMS HELP facility. In this overview, the general syntax of a CMS
command is displayed, and all the keywords for which you can obtain more
information are listed.

The command HELP CMS HELP gives a short explanation of how the HELP
topics are organized.

INSERT ELEMENT

INSERT ELEMENT

Inserts one or more elements or groups in the specified group (or groups).

Format
INSERT ELEMENT element-expression group-expression
“remark”
Command Qualifiers Defaults
/INOJCONFIRM /NOCONFIRM
/IF_ABSENT See text
/[NOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
Restrictions

¢ You cannot insert an element into a group that has read-only access.

* You cannot insert an element into a group if the element already belongs
to the group.

* You cannot insert an element into a group in another library (the
element and group must be in the same library).

Command Parameters

element-expression

Specifies one or more elements to be inserted into the group. An element
expression can be an element name, a group name, a wildcard expression, or
a list of these separated by commas.

group-expression

Specifies one or more groups into which the element (or elements) is to be
inserted. A group expression can be a group name, a wildcard expression, or
a list of these separated by commas.

CD-77

INSERT ELEMENT

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

The INSERT ELEMENT command places one or more elements or groups
into one or more groups. The groups must already exist. When you use the
INSERT ELEMENT command with a group name, you insert the contents
of the group. For example, if you insert group A into group B by using the
INSERT ELEMENT command, group B will contain the contents of group A
at the time of the insertion transaction. If the contents of group A change at
a later time, the contents of group B are not affected. To insert a group into
another group, use the INSERT GROUP command.

Command Qualifiers

CD-78

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/IF_ABSENT

Directs CMS to insert the element only if the group does not already contain
that element. If the element already belongs to the group, CMS takes no
action and does not return an error.

INSERT ELEMENT

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP)
ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

NONE—equivalent to NOELEMENT, NOGROUP)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT and [NOJGROUP keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Examples

1. CMS> INSERT ELEMENT INIT.FOR TIME_TST “"for time tests"
%$CMS-S-INSERTED, element DISKX:[PROJECT.CMSLIB]INIT.FOR inserted into
DISKX: [PROJECT.CMSLIB]group TIME_TST

This command inserts the element INIT.FOR into the group named
TIME_TST.

CD-79

INSERT ELEMENT

CD-80

CMS> INSERT ELEMENT DBAS EXAMPLES "more examples for book"
$CMS-I-INSERTED, element DISKX: [PROJECT.CMSLIB]ARTFIG.CXS inserted into
DISKX: [PROJECT.CMSLIB]group EXAMPLES

$CMS-I-INSERTED, element DISKX:[PROJECT.CMSLIB]SNAKE.TXT inserted into
DISKX: [PROJECT.CMSLIB]lgroup EXAMPLES

This command inserts the contents of group DBAS into group
EXAMPLES.

INSERT GENERATION

INSERT GENERATION

Places one or more element generations in the specified class (or classes).

Format
INSERT GENERATION element-expression class-expression
“remark”
Command Qualifiers Defaults
/ALWAYS See text
/INOJCONFIRM /NOCONFIRM
/GENERATION[=generation-expression] /GENERATION=1+
/AF_ABSENT See text
/INOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
/[INOJSUPERSEDE /NOSUPERSEDE
Restrictions

* You cannot insert an element generation into a class that has read-only
access.

¢ A class can contain only one generation of any particular element.

¢ You cannot insert a generation into a class in another library (the
generation and class must be in the same library).

Command Parameters

element-expression

Specifies one or more elements whose generations are to be inserted into
the class. An element expression can be an element name, a group name, a
wildcard expression, or a list of these separated by commas. By default, the
most recent generation on the main line of descent is inserted.

CD-81

INSERT GENERATION

class-expression

Specifies an established class into which the element generation is being
placed. The class must not have the read-only attribute. A class expression
can be a class name, a wildcard expression, or a list of these separated by
commas. ‘

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

The INSERT GENERATION command places the specified element
generation into one or more classes. The class (or classes) must already
exist. (See the description of the CREATE CLASS command.)

A class can contain only one generation of an element. You cannot insert
any generations into a class that has the read-only attribute. (See the
description of the MODIFY CLASS command.)

Command Qualifiers

CD-82

/ALWAYS

Directs CMS to insert the element generation into the class in all cases.
If the class already contains a generation from the specified element, that
generation is removed before the new one is inserted.

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

INSERT GENERATION

/GENERATION[=generation-expression]

/GENERATION=1+ (D)

Specifies a particular generation of the element that is to be inserted
into the class. If you omit /GENERATION, the INSERT GENERATION
command uses the latest generation on the main line of descent.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/AF_ABSENT

Directs CMS to insert the element generation into the class only if a
generation of that element is not already in the class. If a generation of the
element is already in the class, CMS takes no action and does not return an
error.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOJGROUP, and [NO]JCLASS keywords.

CD-83

INSERT GENERATION

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/SUPERSEDE

/NOSUPERSEDE (D)

Controls whether CMS removes a generation of the element that exists in
the class and replaces it with the specified generation. (Using /SUPERSEDE
is the equivalent of using the REMOVE GENERATION command before the
INSERT GENERATION command.)

If you specify /SUPERSEDE and there is no generation of the specified
element already in the class, an error message is issued and the generation
is not inserted into the class. You cannot use the /IF_ABSENT qualifier

on the same command line as the /SUPERSEDE qualifier to override this
action.

If you omit the /SUPERSEDE qualifier and a generation of the element
already exists in the class, an error message is issued and no change is
made to the library.

Examples

1. CMS> INSERT GENERATION INIT.FOR PRE_RELEASE_V3 "internal version”
%CMS-S~-GENINSERTED, generation 2 of element DISKX:[PROJECT.CMSLIB]INIT.FOR
inserted into class DISKX:[PROJECT.CMSLIB] PRE_RELEASE V3

This command inserts the default generation of element INIT.FOR into
the class PRE_RELEASE_V3.

2. CMS> INSERT GENERATION INIT.FOR,SPEC.TXT/GENERATION=3/IF_ABSENT/CONFIRM
_Class name: BASELEVEL 1 "inserting generation 3 for final baselevel
Insert generation 3 of element INIT.FOR into class BASELEVEL_1? [Y/N] (N): Y
%CMS-I-GENINSERTED, generation 3 of element DISKX:[PROJECT.CMSLIB]INIT.FOR
inserted into class DISKX: [PROJECT.CMSLIB]BASELEVEL 1
Insert generation 3 of element SPEC.TXT into class BASELEVEL_1? [Y/N] (N): Y
%CMS-I-GENINSERTED, generation 3 of element DISKX:[PROJECT.CMSLIB]SPEC.TXT
inserted into class DISKX: [PROJECT.CMSLIB]BASELEVEL_1
CMS~-I-INSERTIONS, 2 insertions completed

This example inserts generation 3 of both elements INIT.FOR and
SPEC.TXT into the class BASELEVEL_1. The /IF_ABSENT qualifier
indicates that the generations should be inserted only if they are not
already present in the class. The /CONFIRM qualifier directs CMS to
prompt you for confirmation before each insertion.

CD-84

INSERT GROUP

INSERT GROUP

Places one or more groups into the specified group (or groups).

Format
INSERT GROUP subgroup-expression group-expression
“remark”
Command Qualifiers Defaults
/INOJCONFIRM /NOCONFIRM
/IF_ABSENT See text
/INOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
Restrictions

* You cannot insert a group into another group that has read-only access.
* You can insert a group into another group only once.

¢ You cannot create recursive groups; that is, a group cannot directly or
indirectly be a member of itself.

* You cannot insert a group from one library into a group in another
library (both groups must be in the same library).

Command Parameters

subgroup-expression

Specifies one or more groups to be inserted into a second group (indicated by
group-expression). A subgroup expression can be a group name, a wildcard
expression, or a list of these separated by commas.

CD-85

INSERT GROUP

group-expression .
Specifies the group into which subgroup-expression is to be inserted. A
group expression can be a group name, a wildcard expression, or a list of
these separated by commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

The INSERT GROUP command inserts one or more groups into one or more
other groups. Both groups must exist. When you use the INSERT GROUP
command to insert group A into group B, the elements accessible through
group B change as the contents of group A change. A group cannot be a
member of itself; that is, it cannot be a subgroup of itself. For example, you
cannot insert group A into group B if group A already contains group B.

Command Qualifiers

CD-86

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/IF_ABSENT

Directs CMS to insert subgroup-expression into group-expression only if
group-expression does not already contain it. If subgroup-expression already
belongs to group-expression, CMS takes no action and does not return an
error.

INSERT GROUP

/LOG (D)

/NOLOG »

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are

displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D) ,

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to GROUP
GROUP (D)

NOGROUP

NONE—equivalent to NOGROUP

You can specify either ALL, NONE, or the [NOIJIGROUP keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Example

CMS> INSERT GROUP USER_MANUAL CODE_AND DOCS "user documentation"
$CMS-S-INSERTED, group DISKX: [PROJECT.CMSLIB]USER_MANUAL inserted into
group DISKX: [PROJECT.CMSLIB]CODE_AND_ DOCS

This command inserts the group named USER_MANUAL into the group
named CODE_AND_DOCS. As long as group USER_MANUAL belongs to
group CODE_AND_DOCS, any changes to the contents of USER_MANUAL
are reflected in the contents of CODE_AND_DOCS. Any element accessible
through USER_MANUAL is also accessible through CODE_AND_DOCS.

CD-87

MARK GENERATION

MARK GENERATION

Marks each specified element generation for review and adds it to the review

pending list.
Format
MARK GENERATION element-expression “remark”
Command Qualifiers Defauits
/INO]JCONFIRM /NOCONFIRM
/GENERATION[=generation-expression] /GENERATION=1+
/INOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
Restrictions

e This command can be used only on element generations that do not
already have reviews pending.

Command Parameters

element-expression

Specifies one or more elements or groups of elements whose generations are
to be marked with pending review status. An element expression can be
an element name, a group name, a wildcard expression, or a list of these
separated by commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

CD-88

MARK GENERATION

Description

The MARK GENERATION command changes the review status of the
specified element generation from none to pending and inserts it into

the review pending list. You can then review the element generation by
using the REVIEW GENERATION command. Use one of the following
commands to change the review status of the element generation: ACCEPT
GENERATION, REJECT GENERATION, or CANCEL REVIEW. For more
information, see Section 4.5.4.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/GENERATION[=generation-expression]

/GENERATION=1+ (D)

Specifies which generation of the element is to be marked as having review
pending status. If you omit /GENERATION, CMS marks the most recent
generation on the main line of descent.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

CD-89

MARK GENERATION

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOIJGROUP, and [NOJCLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Example

CD-90

$ CMS MARK GENERATION/GENERATION=1X1 SPEC.COM

_Remark: check this gen out before reinserting into class

%CMS-S-MARKED, generation 1X1 of element DISKX: [PROJECT.CMSLIB]EXAMPLE.SDML
marked for review

This command marks a specific generation for review. CMS adds the
generation to the review pending list.

MODIFY CLASS

MODIFY CLASS

Changes the characteristics of a specified class (or classes).

Format
MODIFY CLASS class-expression /qualifier “remark”
Command Qualifiers Defaults
/[NOJCONFIRM /NOCONFIRM
/INOJLOG /LOG
/NAME=class-name See text
/OCCLUDE[=0ption,...] /OCCLUDE=ALL
/[INO]JREAD_ONLY See text
/REMARK="string” See text

Restrictions

¢ You cannot modify a class that has read-only access. If a class has
read-only access, you must change it to NOREAD_ONLY access to
change the contents of the class or any other characteristics.

* You must specify one or more of the following qualifiers: /NAME,
/INOJREAD_ONLY, or /REMARK.

Command Parameters

class-expression
Specifies the class being modified. A class expression can be a class name, a
wildcard expression, or a list of these separated by commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null

CD-91

MODIFY CLASS

"

remark (") is logged. Note that this parameter and the string on the
/REMARK qualifier are unrelated.

Description

The MODIFY CLASS command changes the characteristics of one or more
classes. You can alter the following characteristics:

¢ The name of the class.

* The access to the class (READ_ONLY or NOREAD_ONLY). You cannot
change the contents, the name, or the remark of a class that has been
set to READ_ONLY.

® The creation remark that is associated with the class.

Use the SHOW CLASS command to display class characteristics.

Command Qualifiers

CD-92

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

MODIFY CLASS

/NAME-=class-name

Specifies the new name for the class. The new class name cannot be the
same as an existing class or group name. If a previously used class or group
name has been removed with the DELETE CLASS or DELETE GROUP
command, you can reuse that name. Wildcards and comma lists are not
allowed.

If you specify the /NAME qualifier, you cannot use wildcards or a comma list
in the class-expression parameter, nor can you use a wildcard for the /NAME
qualifier. You cannot change the name of a class that has read-only access.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to CLASS
CLASS (D)

NOCLASS

NONE—equivalent to NOCLASS

You can specify either ALL, NONE, or the [NOJCLASS keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/[NOJREAD_ONLY

Establishes or alters the read-only attribute of a class. To change
the characteristics of a read-only class, you must set the class to
NOREAD_ONLY. NOREAD_ONLY is the default attribute of a class
when it is created with the CREATE CLASS command.

/REMARK="string”

Specifies a new remark to be substituted for the creation remark that is
associated with the class. You cannot change the remark of a class that has
been set to READ_ONLY.

CD-93

MODIFY CLASS

Examples

CD-94

CMS> MODIFY CLASS PRE_RELEASE/READ ONLY "freeze internal version"
%CMS-S-MODIFIED, class DISKX:[PROJECT.CMSLIB]PRE_RELEASE modified

This command sets the class named PRE_RELEASE to READ_ONLY.

CMS> MODIFY CLASS PRE_RELEASE/NOREAD_ONLY/NAME=PRE_RELEASE_V3
_Remark: include additional functions
$CMS-S-MODIFIED, class DISKX:[PROJECT.CMSLIB]PRE_RELEASE modified

This example renames class PRE_RELEASE to PRE_RELEASE_V3.
Because PRE_RELEASE had been set to READ_ONLY, it is necessary to
use the /NOREAD_ONLY qualifier to modify the class.

MODIFY ELEMENT

MODIFY ELEMENT

Changes the characteristics of a specified element or elements.

Format
MODIFY ELEMENT element-expression /qualifier “remark”
Command Qualifiers Defauits
/INO]JCONCURRENT See text
/[INOJCONFIRM /NOCONFIRM
/HISTORY="string” See text
/NOHISTORY
/[NOILOG /LOG
/NAME=element-name See text
/NOTES="string” See text
/INONOTES
/OCCLUDE[=option,...] /OCCLUDE=ALL
/POSITION=n See text
/[INOJREFERENCE_COPY See text
/REMARK="string” See text
/[INOJREVIEW See text
Restrictions

* You cannot modify an element if it is set to read-only access.

¢ You can modify only the reference copy, remark, and review
attributes of an element that has a generation reserved.

e If you specify /NOTES, you must also specify /POSITION on the same
command line.

* You must specify only one or more of the following qualifiers:

/INOJCONCURRENT
/INOJHISTORY
/NAME

CD-95

MODIFY ELEMENT

/INOINOTES

/POSITION
/INOJREFERENCE_COPY
/REMARK

/INOJREVIEW

Command Parameters

element-expression
Specifies one or more elements to be modified. An element expression can

be an element name, a group name, a wildcard expression, or a list of these
separated by commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged. Note that this parameter and the string on the
/REMARK qualifier are unrelated.

Description

CD-96

The MODIFY ELEMENT command changes the characteristics of one or
more elements. You can alter the following characteristics:

¢ The concurrent attribute of the element

* The history string that is inserted in the element history when the
element is reserved or fetched '

* The element name

* The notes string and related position attribute

* ' The reference copy attribute of the element

¢ The creation remark that is associated with the element
¢ The review attribute

Use the SHOW ELEMENT command to display element characteristics.

MODIFY ELEMENT

If the history, notes, or position attribute is modified on an element that
has the reference copy attribute, CMS creates an updated reference copy
for the element.

Command Qualifiers

/[NOJCONCURRENT
Specifies whether this element can have multiple reservations. If you do not
specify this qualifier, the existing concurrent access is not changed.

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/HISTORY=*“string”

Establishes the history attribute for the element. If an element has a
history attribute, its history (which is similar to that produced by the
ANNOTATE command) is included in the file when you retrieve it with the
FETCH or RESERVE command.

The quoted string specifies the format of the history. The quoted string
must contain the characters #H or #B (lowercase is allowed) and can contain
other printing characters. To include a quotation mark in the output history
string, type it twice (""). To include a number sign (#) in the output
history string, type it twice (##). For a detailed explanation of the history
attribute, see Section 4.5.

/NOHISTORY 4
Deletes any existing history attribute. If both /HISTORY and /NOHISTORY
are omitted, any existing history attribute remains unchanged.

CD-97

MODIFY ELEMENT

CD-98

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/NAME=element-name

Specifies the new name for the element. The new element name cannot be
the same as an existing element name. Do not use the file name 00CMS.
This name is reserved for CMS. If you specify the /NAME qualifier, you
cannot use wildecards or a comma list in the element-name parameter, nor
can you use a wildcard for the /NAME qualifier.

If an element is set to /REFERENCE_COPY, CMS creates a new reference
copy of the element in the reference copy directory.

/NOTES="string”

Establishes the notes attribute for the element. If an element has a notes
attribute, notes are appended to the lines of the file when it is retrieved by
the FETCH or RESERVE command.

The quoted string specifies the format of the note. The quoted string can
contain text or the characters #G, #g, or both. For a detailed explanation of
the notes attribute, see Section 4.5.

/NONOTES
Cancels any current notes attribute and the corresponding position
attribute.

If both /ANOTES and /NONOTES are omitted, any existing notes attribute
remains unchanged.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D) ’

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP)
ELEMENT (D)

MODIFY ELEMENT

NOELEMENT

GROUP (D)

NOGROUP

NONE—equivalent to (NOELEMENT, NOGROUP)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT and [NOIJGROUP keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/POSITION=n

Establishes the position attribute; that is, the character position at which
the note generated by the /NOTES qualifier is to begin on the line. A

file that has a position attribute must have a notes attribute. Thus,

the /POSITION qualifier can be used only if the element already has an
established notes attribute, or the /NOTES qualifier is used on the same
MODIFY ELEMENT command.

The value n is required and must be an integer in the range 1 to 511. If
the length of the line is less than n, the note appears at position n. If the
length of the line is greater than or equal to n, the note is placed at the next
tab stop after the end of the line. (Tab stops are at position 9 and every 8
characters thereafter.)

If you omit /POSITION, any current position attribute remains unchanged.

/[NOJREFERENCE_COPY

Controls whether a new reference copy of an element is created or deleted.
If you specify /REFERENCE_COPY, CMS creates a new reference copy

of the element in the reference copy directory and updates the current
reference copy directory whenever you create a new main-line generation
of the element. If you specify /NOREFERENCE_COPY, CMS deletes the
existing reference copy of the element. The reference copy directory must be
established before you enter the MODIFY ELEMENT/REFERENCE_COPY
command. Use the MODIFY LIBRARY/REFERENCE_COPY command to
establish the reference copy directory.

/REMARK="string”
Specifies a new remark to be substituted for the creation remark that is
associated with the element.

CD-99

MODIFY ELEMENT

/[NOJREVIEW

Controls whether new generations of the element are marked for review. If
you specify /REVIEW, new generations of the element are marked for review.
If you specify /NOREVIEW, new generations are marked only if the reserved
generation either is rejected or has a review pending. If you do not specify
this qualifier, the existing review attribute is not changed.

To determine whether an element has the review attribute enabled, use the
SHOW ELEMENT/FULL command.

Examples

CD-100

1. CMS> MODIFY ELEMENT INIT.FOR/NOCONCURRENT
_Remark: no more changes, other than those already discussed
$CMS~S-MODIFIED, element DISKX: [PROJECT.CMSLIB]INIT.FOR modified

This example sets the element INIT.FOR to NOCONCURRENT access.
This means that only one person can reserve the element at a time.

2. CMS> MODIFY ELEMENT/REVIEW EXAMPLE.SDML
_Remark: team should review all changes before performing build
$CMS~-S-MODIFIED, element DISKX: [PROJECT.CMSLIB]EXAMPLE.SDML modified

This example marks the latest generation of the element
EXAMPLE.SDML for review, and adds it to the review pending

list. To display what generations are pending review, use the SHOW
REVIEWS_PENDING command.

MODIFY GENERATION

MODIFY GENERATION

Changes the characteristics of a specified generation (or generations).

Format
MODIFY GENERATION element-expression /qualifier “remark”
Command Qualifiers Defaults
/INO]JCONFIRM ' /NOCONFIRM
/GENERATION[=generation-expression] /GENERATION=1+
/INOILOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
/REMARK="string” See text

Restrictions

* You must specify one of the following qualifiers: /GENERATION or
/REMARK.

Command Parameters

element-expression

Specifies one or more elements whose generations are to be modified. An
element expression can be an element name, a group name, a wildcard
expression, or a list of these separated by commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged. Note that this parameter and the string on the
/REMARK qualifier are unrelated.

CD-101

MODIFY GENERATION

Description

The MODIFY GENERATION command changes the remark that is
associated with a particular generation of one or more elements. Use the
SHOW GENERATION command to display generation characteristics.

This command does not change a generation’s review status. See the
ACCEPT GENERATION, CANCEL GENERATION, MARK GENERATION,
REJECT GENERATION, and REVIEW GENERATION commands for more
information.

Command Qualifiers

CD-102

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/GENERATION[=generation-expression]

/GENERATION=1+ (D)

Specifies which generation of the element is to be modified. If you omit
/GENERATION, CMS modifies the most recent generation on the main line
of descent.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

MODIFY GENERATION

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOJGROUP, and [NO]JCLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/REMARK="string”
Specifies a new remark to be substituted for the creation (replacement)
remark that is associated with the generation. This qualifier is required.

Example

CMS> MODIFY GENERATION/GENERATION=5/REMARK="Obsolete"
_Element expression: SPEC.TXT

_Remark: Marked obsolete

%$CMS-S~-MODIFIED, generation 5 modified

This command specifies a new remark to be substituted for the creation
remark of generation 5 of element SPEC.TXT. You must also specify the
element expression, and its associated remark, which is logged in the history
file.

CD-103

MODIFY GROUP

MODIFY GROUP

Changes the characteristics of the specified group (or groups).

Format

MODIFY GROUP group-expression /qualifier “remark”

Command Qualifiers Defauits
/INOJCONFIRM /NOCONFIRM
/INOJLOG /LOG
/NAME=group-name See text
/OCCLUDE[=option,...] /OCCLUDE=ALL
/[NO]JREAD_ONLY See text
/REMARK="string” See text

Restrictions

* You cannot change the attributes of a group that has been set to
READ_ONLY. If a group has read-only access, you must change it to
NOREAD_ONLY to change any other characteristics.

* You must specify one or more of the following qualifiers: /NAME,
/INOJREAD_ONLY, or /REMARK.

Command Parameters

group-expression
Specifies the group to be modified. A group expression can be a group name,
a wildcard expression, or a list of these separated by commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null

CD-104

MODIFY GROUP

"y

remark (") is logged. Note that this parameter and the string on the
/REMARK qualifier are unrelated.

Description
The MODIFY GROUP command changes the characteristics of one or more

groups. You can alter the following characteristics:

¢ The name of the group.

¢ The access to the group (READ_ONLY or NOREAD_ONLY). You cannot
change the contents of a group that has been set to READ_ONLY.

¢ The creation remark that is associated with the group.

Use the SHOW GROUP command to display group characteristics.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

CD-105

MODIFY GROUP

CD-106

/NAME=group-name

Specifies the new name for the group. You cannot change the name of a
group that has been set to READ_ONLY. The new group name cannot be the
same as an existing group or class name. Wildcards and comma lists are not
allowed. If you specify the /NAME qualifier, you cannot use wildcards or a
comma list in the group name parameter, nor can you use a wildcard for the
/NAME qualifier.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D) ;

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to GROUP
GROUP (D)

NOGROUP

NONE—equivalent to NOGROUP

You can specify either ALL, NONE, or the [NOJGROUP keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/[NOJREAD_ONLY

Establishes or alters the read-only attribute of a group. To change

the characteristics of a READ_ONLY group, you must set the group to
NOREAD_ONLY. NOREAD_ONLY is the default attribute of a group when
it is created with the CREATE GROUP command.

/REMARK="string”
Specifies a new remark to be substituted for the creation remark that is
associated with the group.

MODIFY GROUP

=xample

CMS> MODIFY GROUP TESTS/READ_ONLY "coordinate before changing contents”
%CMS-S-MODIFIED, group DISKX:[PROJECT.CMSLIB]TESTS modified

This command sets the group TESTS to READ_ONLY. Once the group is set
to READ_ONLY, the contents cannot be changed.

CD-107

MODIFY LIBRARY

MODIFY LIBRARY

Establishes or removes the connection between the current CMS library and
a reference copy directory.

Format
MODIFY LIBRARY /qualifier “remark”

Command Qualifiers Defaults
/INOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
/REFERENCE_COPY=directory-specification See text
/NOREFERENCE_COPY

/REVISION_TIME[=0ption] See text

Command Parameter

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

The MODIFY LIBRARY command establishes or removes the connection
between the current CMS library and a reference copy directory. The
reference copy directory cannot be a CMS library. This command does

not add files to or delete any files from a reference copy directory.

Once you establish a reference copy directory for a library, subsequent
transactions that create new element generations on the main line of
descent also update the reference copy directory (provided the element is set
to /REFERENCE_COPY).

CD-108

MODIFY LIBRARY

You must use the MODIFY ELEMENT/NOREFERENCE_COPY
command on the elements in the library before you can use the MODIFY
LIBRARY/NOREFERENCE_COPY command.

If you specify MODIFY LIBRARY/REFERENCE_COPY and the reference
copy directory is already set, CMS first verifies all the files found in that
directory. The contents of the directory must exactly correspond with the
elements that have /REFERENCE_COPY set in the CMS library. If CMS
finds discrepancies or if elements are set with INOREFERENCE_COPY and
there are existing reference copies for those elements, CMS advises you to
use VERIFY/REPAIR.

Use the SHOW LIBRARY command to display library characteristics.

Command Qualifiers

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALIL—equivalent to OTHER
OTHER (D)

NOOTHER

NONE—equivalent to NOOTHER

You can specify either ALL, NONE, or the [NOJOTHER keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

CD-109

MODIFY LIBRARY

CD-110

/REFERENCE_COPY=directory-specification

/NOREFERENCE_COPY

Specifies a valid VMS directory to be used for reference copies of
library elements. The directory cannot be a CMS library, nor can it be
a subdirectory of a CMS library directory.

If you use the MODIFY LIBRARY command on a search list of more than
one library, you should specify a reference copy directory for each library in
the search list. Although CMS allows different libraries to be assigned the
same reference copy directory, it is strongly recommended that you assign
each CMS library its own unique reference copy directory. If you specify
only one reference copy directory for more than one library, CMS uses one
reference copy directory for the entire search list, not one reference copy
directory for each library in the search list.

Use the/ NOREFERENCE_COPY qualifier to remove the connection between
the current CMS library and the current reference copy directory. Wildcards
are not allowed.

/REVISION_TIME[=option]

Controls whether CMS uses the original file revision time or the file storage
time when a file is retrieved from the CMS library. The options field can
contain one of the following keywords:

ORIGINAL (D)
STORAGE_TIME

Use the ORIGINAL keyword to indicate that the original revision time
of files placed in a CMS library should be restored unchanged upon their
retrieval. This is the default behavior.

Use the STORAGE_TIME keyword to indicate that the time when a file
was stored in a CMS library (through a CREATE ELEMENT or REPLACE
transaction) should be substituted for its original revision time upon
retrieval.

MODIFY LIBRARY

Example

CMS> MODIFY LIBRARY/REFERENCE COPY=[WORK.REFCOPY] "current test area"
$CMS-S-MODIFIED, library [WORK.CODELIB] modified

This command establishes the reference copy directory [WORK.REFCOPY]
for the current CMS library. In addition, to update the reference copy
directory, an element must be set to /REFERENCE_COPY. If these two
conditions are met, each transaction that creates a new main-line element
generation also updates the reference copy directory.

CD-111

REJECT GENERATION

REJECT GENERATION

Changes the review status of each specified element generation from pending
to rejected and removes it from the review pending list.

Format

REJECT GENERATION element-expression “remark”

Command Qualifiers Defaults
/INOJCONFIRM /NOCONFIRM
/GENERATION[=generation-expression] See text
/INOILOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL

Command Parameters

element-expression

Specifies one or more elements whose generations are to be rejected. An
element expression can be an element name, a group name, a wildcard
expression, or a list of these separated by commas.

“remark”

Specifies a character string to be associated with the element generation
specified, to be logged in the history file with this command. The remark is
enclosed in quotation marks. If no remark was entered, a null remark (")
is logged.

Description

CD-112

The REJECT GENERATION command changes the review status of each
specified element generation from pending to rejected and removes it

from the review pending list. You can use this command only on element
generations that have reviews pending (see the description of the REVIEW
GENERATION command for more information).

REJECT GENERATION

If you try to reserve a generation that has been rejected, CMS issues a
message stating that the generation was rejected, and then prompts you
for confirmation. Additionally, further generations created from a rejected
generation are marked for review, regardless of the element’s review
attribute. See Section 4.5.4 for more information.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/GENERATION[=generation-expression]

Specifies a particular generation of the element to be rejected. If you omit
/GENERATION, CMS rejects the most recently created generation with a
review pending. You specify this qualifier only if more than one generation
of an element is under review.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are

displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field

CD-113

REJECT GENERATION

contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL-—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOIGROUP, and [NOICLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Example

$ CMS REJECT GENERATION EXAMPLE.SDML "don’t change this until it is fixed"
%CMS~-S-REJECTED, generation 1X1 of element DISKX:[PROJECT.CMSLIB]EXAMPLE.SDML
rejected :

This command rejects the latest generation of EXAMPLE.SDML, which was
on the review pending list. This generation of EXAMPLE.SDML remains
rejected unless you specify a MARK GENERATION command.

CD-114

REMARK

REMARK

Places a remark in the library history.

Format
REMARK “remark”
Command Qualifiers Defaults
/[INOJLOG /LOG
/OCCLUDE[=option,...] J/OCCLUDE=ALL
JUNUSUAL See text
Description

The REMARK command adds a remark to the library history. When you let
CMS prompt you for the remark, the length of the remark cannot exceed 254
characters. When you enter the remark on the command line, the length

of the remark cannot exceed 256 characters. The remark is recorded in the
library history in the following format:

date time username REMARK "remark"

For more information on remarks, see Section 10.2.2.

Command Qualifiers

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

CD-115

REMARK

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to OTHER
OTHER (D)

NOOTHER

NONE—equivalent to NOOTHER

You can specify either ALL, NONE, or the [NOJOTHER keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/UNUSUAL

Specifies that the remark string placed in the history file be marked as
an unusual occurrence, so that it appears marked with an asterisk in the
output from SHOW HISTORY and is included in the output from a SHOW
HISTORY/UNUSUAL command.

Example.

CD-116

CMS> REMARK "all transactions from this point use modules for new system"
$CMS-S~-REMARK, remark added to history file

This command adds the remark enclosed in quotation marks to the library
history.

REMOVE ELEMENT

REMOVE ELEMENT

Removes one or more elements from one or more groups.

Format
REMOVE ELEMENT element-expression group-expression
“remark”
Command Qualifiers Defaults
/[NOJCONFIRM /NOCONFIRM
/IF_PRESENT See text
/INOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
Restrictions

* You cannot remove elements from a group that has read-only access (see
the description of the MODIFY GROUP command).

Command Parameters

element-expression

Specifies one or more elements to be removed from one or more groups.
An element expression can be an element name, a group name, a wildcard
expression, or a list of these separated by commas. When you use wildcard
characters in the element expression, /IF_PRESENT is the default. (CMS
does not return an error message if the group does not contain the element
being removed.)

group-expression

Specifies the group from which one or more elements are to be removed. A
group expression can be a group name, a wildcard expression, or a list of
these separated by commas.

CD-117

REMOVE ELEMENT

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

The REMOVE ELEMENT command removes one or more elements from one
or more groups. The command does not delete the elements from the library,
but there is no longer any association between the elements and the groups.

Command Qualifiers

CD-118

/CONFIRM
/NOCONFIRM (D) .
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/IF_PRESENT

Directs CMS to remove the element from the group if it belongs to the
group. If the element does not belong to the group, CMS takes no action and
does not return an error. When you use wildcard characters in the element
expression, /IF_PRESENT is the default.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify INOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

REMOVE ELEMENT

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALIL—equivalent to (ELEMENT, GROUP)
ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

NONE—equivalent to NOELEMENT, NOGROUP)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT and [NOJGROUP keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Example

CMS> REMOVE ELEMENT *.* A2 "remove all elements from group"
$CMS~-S-REMOVED, element DISKX:[PROJECT.CMSLIB]SEARCH.FOR removed from
group DISKX:[PROJECT.CMSLIB]A2)

%CMS~-S~REMOVED, element DISKX:[PROJECT.CMSLIB]ARGCHK.FOR removed from
group DISKX:[PROJECT.CMSLIB]A2

This command removes all the elements from the group A2.

CD-119

REMOVE GENERATION

REMOVE GENERATION

Removes one or more element generations from one or more classes.

Format

REMOVE GENERATION element-expression class-expression

“remark”

Command Qualifiers Defaults

/INOJCONFIRM /NOCONFIRM

/GENERATION[=generation-expression] See text

/IF_PRESENT See text

/[INOJLOG /LOG

/OCCLUDE[=option,...] /OCCLUDE=ALL
Restrictions

* You cannot remove a generation from a class with read-only access (see
the description of the MODIFY CLASS command).

Command Parameters

CD-120

element-expression

Specifies one or more generations of elements to be removed from one or
more classes. An element expression can be an element name, a group
name, a wildcard expression, or a list of these separated by commas. When
you use wildcard characters in the element expression, /IF_PRESENT is the
default. (CMS does not return an error message if the class does not contain
a generation of the element.)

class-expression

Specifies the class from which the element generation is to be removed.
The class must not have read-only access. A class expression can be a class
name, a wildcard expression, or a list of these separated by commas.

REMOVE GENERATION

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

The REMOVE GENERATION command removes an element generation
from a class. The command does not delete the element generation from the
library, but the element generation is no longer associated with the class.

To remove one element generation from a class and replace it with another
generation of the same element, use the INSERT GENERATION command
with the /SUPERSEDE qualifier.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/GENERATION[=generation-expression]

Directs CMS to remove a particular generation of an element from one or
more classes in the library. The generation must be currently existing in the
class. If you use a wildcard or a list of class names for the class expression,
CMS deletes the particular generation from each specified class.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

CD-121

REMOVE GENERATION

cD-122

/IF_PRESENT

Directs CMS to remove any generation of the element that exists in the
class. If the class does not contain a generation from the element, CMS
takes no action and does not return an error. When you use wildcard
characters in the element expression, /IF_PRESENT is the default.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /[LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOIGROUP, and [NOJCLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

REMOVE GENERATION

Example

CMS> REMOVE GENERATION USER.DOC PRE_RELEASE V3

_Remark: internal documentation is online

%$CMS-S~-GENREMOVED, generation 2 of element DISKX: [PROJECT.CMSLIB]USER.DOC
removed from class DISKX: [PROJECT.CMSLIB]PRE_RELEASE_V3

This example removes generation 2 of USER.DOC from class
PRE_RELEASE_V3.

CD-123

REMOVE GROUP

REMOVE GROUP

Removes one or more groups from another group (or groups).

Format
REMOVE GROUP group-expression1 group-expression2
“remark”
Command Qualifiers Defaults
/[NO]JCONFIRM /NOCONFIRM
/IF_PRESENT See text
/[NOJLOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL
Restrictions

¢ You cannot remove a group from a group with read-only access (see the
description of the MODIFY GROUP command).

Command Parameters

CD-124

group-expression1

Specifies one or more groups to be removed. Wildcards and a comma list are
allowed. When you use wildcard characters or a comma list in the group
name, /IF_PRESENT is the default. (CMS does not return an error message
if group-expression2 does not contain group-expressionl.)

group-expression2
Specifies one or more groups from which the groups in group-expressionl
are to be removed. Wildcards and a comma list are allowed.

REMOVE GROUP

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

The REMOVE GROUP command removes a group from another group. The
command does not delete the group from the library, but there is no longer
any association between the two groups. Removing group A from group B
means that the contents of group A are no longer accessible through

group B.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/IF_PRESENT

Directs CMS to remove group-expressionl only if it belongs

to group-expression2. If group-expressionl does not belong to
group-expression2, CMS takes no action and does not return an error.

When you use wildcard characters or a comma list in the group name,
/IF_PRESENT is the defaulit.

/LOG (D)
/NOLOG
Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays

CD-125

REMOVE GROUP

a success message. If you specify /INOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

All—equivalent to GROUP
GROUP (D)

NOGROUP

NONE—equivalent to NOGROUP

You can specify either ALL, NONE, or the [NOJIGROUP keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Example

CD-126

CMS> REMOVE GROUP Al A2 "remove group from group"
%CMS-S-REMOVED, group DISKX:[PROJECT.CMSLIB]Al removed from group
DISKX: [PROJECT.CMSLIB]A2

This command removes group Al from group A2.

REPLACE

REPLACE

Returns each specified element reservation to the library and creates a new

generation of the element.

Format

REPLACE element-expression “remark”

Command Qualifiers
/INOJCONFIRM
/GENERATION=generation-expression
/IDENTIFICATION_NUMBER=n
/\IF_CHANGED
/INPUTI[=file-specification]
/INO]JKEEP

/[NOJLOG
/OCCLUDE[=o0ption,...]
/INO]JRESERVE
/VARIANT=variant-letter
/NOVARIANT

Defaults
/NOCONFIRM
See text

See text

See text

See text
/NOKEEP
/LOG
/OCCLUDE=ALL
/NORESERVE
/NOVARIANT

Command Parameters

element-expression

Specifies one or more reserved generations of an element to be replaced.

An element expression can be an element name, a group name, a wildcard
expression, or a list of these separated by commas. If you specify more than
one element (with either a group name or a wildcard expression), each file
indicated by the element expression must exist in the same directory. When
you use wildcards, CMS creates an input element list based on the list of

element generations that you have reserved.

CD-127

REPLACE

“remark”

Specifies a character string to be associated with the newly created
generations, to be logged in the history file with this command. The remark
is enclosed in quotation marks. If no remark was entered, then the remark
from the corresponding reservation is used for the new generation and the
replacement transaction in the history file.

Description

CD-128

The REPLACE command transfers a file from your default directory to

the current CMS library, thus creating a new generation. You can direct
CMS to use a file other than the one located in your default directory by
specifying the /INPUT qualifier. After the reserved generation is replaced,
CMS deletes the file used to create the new generation (and any earlier
versions of the file in the same directory). If you specify either the /KEEP or
the /RESERVE qualifier, CMS does not delete the file. You cannot replace a
reserved generation held by another user unless you hold BYPASS process
privilege or unless you are granted BYPASS access to the element by an
access control entry (see Section 7.1.2.2). After the replace transaction is
completed, the reservation is ended.

The number of the new generation is the number of its predecessor with
the rightmost level number increased by 1. For example, if you reserved
generation 1A1, CMS would create generation 1A2 when you replaced it.
CMS also stores the creation date and time, the revision date and time,
and the file revision number of the file used to create the new generation.
When you fetch or reserve a generation of an element, CMS restores the
times and file revision number associated with the file used to create the
element generation. You can also display this information by using the
SHOW GENERATION/FULL command.

CMS reports an error if you try to create a generation that is already in the
library (see the description of the /VARIANT qualifier).

The REPLACE command checks for other current reservations and
concurrent replacements of the element, and whether you are replacing
another user’s reservation. If any of these situations occur, CMS prompts
whether you want to proceed with the command. If you type NO or press
RETURN or CTRL/Z, the command is not executed. If you type YES,

REPLACE

CMS executes the command and records the transaction as an unusual
occurrence.

If you have more than one reservation of an element, or if you are replacing
a concurrent reservation made by another user (that is, if there is any
ambiguity), you must specify the exact reservation to be replaced (see
Section 4.3.3). You do this by using either the /GENERATION qualifier or
the /IDENTIFICATION_NUMBER qualifier.

You can use /GENERATION as long as the concurrent reservations are not
on the same generation. If you have more than one concurrent reservation
for the same generation, you must identify the specific reservation to be
replaced. Each reservation is assigned an identification number. Use the
SHOW RESERVATIONS command to determine the identification number
of each reservation. The identification number appears in parentheses at
the beginning of each line. If you use the /[IDENTIFICATION_NUMBER
qualifier, you do not need to also use the /GENERATION qualifier; when
both are used, CMS ignores the /GENERATION qualifier.

If the reference copy attribute is enabled for an element and REPLACE
creates the new generation on the main line of descent, CMS creates a new
reference copy in the reference copy directory for the element and deletes
the old copy from the reference copy directory.

Replacing an Element with Defined Attributes

If you reserve a generation of an element with an embedded history and
then replace it, the REPLACE command ignores the history; that is, CMS
does not copy the history into your CMS library. If you add text to the file
in or above the history (relative to #B), or in or below the history (relative to
#H), the REPLACE command issues an error message and the command is
not executed.

If you reserve a file with embedded notes and then replace it, the REPLACE
command does not copy the notes to the CMS library. If, while editing the
file, you insert text that looks like an embedded note, it is deleted when the
file is replaced.

For more information about concurrent reservations and replacements, see
Chapter 6. For detailed information on embedded histories and notes, see
Section 4.5.

CD-129

REPLACE

Command Qualifiers

CD-130

/CONFIRM
/NOCONFIRM (D) ‘
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

The /NOCONFIRM qualifier does not override the confirmation prompt
issued when you make a concurrent replacement or when you replace
another user’s reservation.

/GENERATION=generation-expression

Specifies which reserved generation of the element is to be replaced. If you
have more than one reservation of the same element generation, you must
use the /IDENTIFICATION_NUMBER qualifier to replace the reservation.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/IDENTIFICATION_NUMBER=n

Specifies which reservation is to be replaced. This qualifier is required
when you have multiple reservations of the same generation of an element.
/IDENTIFICATION_NUMBER can be used instead of /GENERATION
when you have multiple reservations. Use the SHOW RESERVATIONS
command to determine the identification number of each reservation. The
identification number appears in parentheses at the beginning of each line.

/IF_CHANGED

Specifies that a new generation is to be created only if the input file is
different from the generation that was reserved. CMS automatically creates
a new generation, regardless of the existence of any differences.

CMS deletes the input file from the specified location after the new
generation is created (unless you specify the /KEEP or /RESERVE qualifier).

REPLACE

/INPUT[=file-specification]

Specifies a file to be used as input for the replacement transaction. If you
use the /INPUT qualifier but you do not supply a file specification, CMS
searches your current default directory for a file with the same name as the
element specified on the command line. When you specify /INPUT, CMS
deletes the input file from the specified location after the new generation is
created (unless you specify the /KEEP or /RESERVE qualifier).

CMS must be able to match the input element list with the list of elements
indicated by the element expression parameter. Thus, if you use wildcards
in the /INPUT file specification to generate more than one input file, you
must also use wildcards in the element expression parameter.

/KEEP

/NOKEEP (D)

Controls whether the file used to create the new element generation is
deleted from your directory. If you omit both /KEEP and /RESERVE, the
files are deleted.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /INOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL~equivalent to (ELEMENT, GROUP, CLASS)
ELEMENT (D) ’

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

CD-131

REPLACE

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOIELEMENT, [NOIGROUP, and [NOICLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/RESERVE

/NORESERVE (D)

Controls whether the new generation of the element created by the
replacement is reserved. If you specify the /RESERVE qualifier, the
generation is reserved and the element files are not deleted from your
current default directory. The list of concurrent replacements is updated as
if /RESERVE had been omitted. For information on concurrent reservations
and replacements, see Chapter 6.

/VARIANT=variant-letter

/NOVARIANT (D)

Controls whether a variant generation is created. If you specify the
/VARIANT=variant-letter qualifier, the number of the created generation
is the predecessor’s number, followed by the variant letter, followed by the
number 1.

If two or more users have concurrently reserved the same element
generation, the replaced generations cannot be on the same line of descent.
Thus, one can be replaced as a main-line generation and the rest must be
replaced as variants. For more information on creating variant generations,
see Chapter 6.

Example

CMS> REPLACE FILEIO.BLI

_Remark: descriptor bug fixed

%CMS-S~GENCREATED, generation 14 of element DISKX:[PROJECT.CMSLIB]FILEIO.BLI
created

This command creates a new generation on the main line of descent of
element FILEIO.BLI.

CD-132

- RESERVE

RESERVE

Retrieves a copy of each specified element generation from a CMS library

and marks it as reserved.

Format

RESERVE element-expression “remark”

Command Qualifiers
/[INOJCONFIRM

/GENERATION[=generation-expression]

/HISTORY="string”
/NOHISTORY

/[NOJLOG
/MERGE=generation-expression
/NOMERGE
/NOCONCURRENT
/NOTES="string”
/NONOTES
/OCCLUDE[=o0ption,...]
/OUTPUT[=file-specification]
/NOOUTPUT
/POSITION=column-number

Defaults
/NOCONFIRM
/GENERATION=1+
See text

/LOG
/NOMERGE

See text
See text

/OCCLUDE=ALL
See text

See text

Command Parameters

element-expression

Specifies the element (or elements) from which a generation is to be
reserved. An element expression can be an element name, a group name,

a wildcard expression, or a list of these separated by commas. By default,
CMS reserves the most recent generation on the main line of descent of each
element designated by the element-expression.

CD-133

RESERVE

“remark”

Specifies a character string to be associated with the reservation and logged
in the history file with this command. The remark is enclosed in quotation
marks. If no remark was entered, a null remark ("") is logged.

Description

The RESERVE command sends a copy of the specified generation of each
specified element to your current default directory (or to another location if
you specified the /OUTPUT qualifier). Each element is marked as reserved.
Usually, after you modify the file, you return your changes to the library
with the REPLACE command. Alternatively, you can cancel the reservation
with the UNRESERVE command.

You can reserve more than one generation of the same element if concurrent
reservations are allowed (see Section 4.3.2). If a generation of an element

is reserved by you or another user, or a generation of the element is under
review or has been rejected, CMS displays the current reservations and
review comments, and prompts whether you want to proceed with the
command. If you type YES, you are added to the list of current reservers.
The transaction is recorded as an unusual occurrence (see Chapter 9). If you
type NO or press RETURN or CTRL/Z, no action is taken.

If a version of the output file exists in your default directory when you enter
the RESERVE command, CMS notifies you. A new version is then created
with the next higher version number.

When you retrieve a generation of an element from a CMS library, CMS
restores the file creation and revision times. The file that is placed in your
directory has the same creation and revision times as the file that was used
to create the generation that you are reserving. If you specify /MERGE, the
file placed in your default directory has the current creation and revision
times.

Command Qualifiers
- /CONFIRM

/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

CD-134

RESERVE

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

You cannot use /NOCONFIRM to override the prompt generated when you
try to reserve a generation of an element that is already reserved by you or
by another user.

/GENERATION[=generation-expression]

/GENERATION=1+ (D)

Specifies a particular generation of the element that is to be reserved. If you
omit /GENERATION, CMS reserves the most recent generation on the main
line of descent.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/HISTORY="string”

Specifies that history is to be included in the retrieved file. The quoted
string specifies the format of the history. The quoted string must contain the
characters #H or #B (lowercase is allowed) and can contain other printing
characters. To include a quotation mark in the output history string, type

it twice (""). To include a number sign (#) in the output history string,

type it twice (##). For a detailed explanation of the history attribute, see
Section 4.5.

/NOHISTORY

Prevents CMS from including the element history in the file. If you

omit /NOHISTORY, and the retrieved element has the history attribute,
CMS includes the element history in the output file. An element has the
history attribute if the /HISTORY qualifier was specified on the CREATE
ELEMENT or MODIFY ELEMENT command.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational

CD-135

RESERVE

CD-136

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/MERGE=generation-expression

/NOMERGE (D)

Controls whether another generation of the element (called the merge
generation) is to be merged with the generation that is being reserved
(called the retrieved generation).

If you specify the MERGE qualifier, CMS merges the lines of the two
generations and delivers a single copy of the file to your default directory.
The file that is placed in your directory has the current creation and revision
times. The merge generation cannot be on the same line of descent as the
retrieved generation. When there is a conflict between blocks of one or more
lines, CMS includes the conflicting lines and flags the conflict.

For an explanation of how two generations are merged and how CMS treats
conflicts between the generations, see Chapter 6.

/NOCONCURRENT

Specifies that the element cannot be reserved by another user while you
have it reserved. You must replace or unreserve the element before others
can reserve it. CMS allows concurrent reservations if the element has the
concurrent attribute set (see Section 4.3.1).

/NOTES="string”

Specifies that notes are to be appended to the lines of the file as it is
retrieved by the RESERVE operation. This qualifier overrides the element’s
nonotes attribute, if one was established.

The quoted string specifies the format of the note. The quoted string can
contain text or the characters #G, #g, or both. If you specify /NOTES for an
element that does not have the notes attribute enabled, then you must also
specify /POSITION. For a detailed explanation of the notes attribute, see
Section 4.5.

/NONOTES

Specifies that notes are not to be embedded in the output file. If you omit
/NONOTES, and the retrieved element has the notes attribute, CMS
embeds notes in the output file. An element has the notes attribute if the
/NOTES qualifier was specified on the CREATE ELEMENT or MODIFY
ELEMENT command.

RESERVE

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOJGROUP, and [NO]JCLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/OUTPUT[=file-specification]

Directs CMS to write output to the specified file. If you omit the /OUTPUT
qualifier (or if you specify /OUTPUT but do not provide a file specification),
CMS creates a file with the same name as the element in your default
directory.

If you reserve more than one element (by specifying wildcards or a group
name for the element expression parameter), and you do not specify
wildcards in the output file specification, CMS creates successive versions of
the file indicated by /OUTPUT.

/NOOUTPUT

Specifies that the generation is to be reserved, but that no output file is to
be created.

/POSITION=column-number

Spec1ﬁes the column in which the note is to be placed. The column number
is required and must be an integer in the range 1 to 511. The notes
attribute or the /NOTES qualifier is required with the /POSITION qualifier.

CD-137

RESERVE

If the length of the line is less than the specified column number, the note
appears at the column number. If the length of the line is greater than or
equal to the column number, the note is placed at the next tab stop after
the end of the line. (Tab stops are at positions 9 and every 8 characters
thereafter.)

Examples

1.

2.

3.

CMS> RESERVE FILEIO.BLI

_Remark: fix temporary descriptor bug

$CMS-S-RESERVED, generation 13 of element DISKX: [PROJECT.CMSLIB]FILEIO.BLI
reserved

This command reserves geneiation 13 of the element FILEIO.BLI. When
the element is replaced, a successor generation is created.

CMS> RESERVE SYNTAX.PAS
_Remark: add syntax for RECORD declaration
Element SYNTAX.PAS currently reserved by:

(1) JERRYH 1 24-JUL-1990 16:17:45 "implement FOR loop syntax"
Proceed? [Y/N] (N): YES
%$CMS-S-RESERVED, generation 1 of element DISKX:[PROJECT.CMSLIB]SYNTAX.PAS
reserved

This example creates a concurrent reservation for the element
SYNTAX.PAS. Because you type YES in response to the Proceed
prompt, generation 1 of the element is reserved.

CMS> RESERVE COPY.BLI/GENERATION=12/MERGE=11A1

_Remark: merging new I/O routines with library self checking
$CMS-W-MERGECONFLICT, 31 changes successfully merged with 3 conflicts
%$CMS-S-RESERVED, generation 12 of element DISKX:[PROJECT.CMSLIB]COPY.BLI
reserved and merged with generation 11Al

This command merges generation 11A1 into generation 12 of the element
COPY.BLI and reserves generation 12. The version that is delivered

to the user directory contains the changes from beth generations.
Thirty-one changes were successfully merged. There were three conflicts
between the two generations. These conflicts must be resolved by editing
the file. For more information on merging, see Chapter 6.

CD-138

RETRIEVE ARCHIVE

RETRIEVE ARCHIVE

Retrieves one or more generations from one or more archive files.

Format

RETRIEVE ARCHIVE file-expression

Command Qualifiers Defaults
/[NO]JCONFIRM /NOCONFIRM
/GENERATION[=generation-expression] See text
/INOJLOG /LOG
IOUTPUT[=file-specification] See text
/INOOUTPUT

Command Parameter

file-expression
Specifies one or more archive files. A file expression can be a filename.type
specification, a wildcard expression, or a list of these separated by commas.

Description

The RETRIEVE ARCHIVE command retrieves one or more generations of an
element from one or more archive files. CMS retrieves the highest numbered
generation from the archive file and places a copy of the generation in your
default directory with the same file name and file type of the element whose
generation was originally deleted (unless you specify another name or
location with the /OUTPUT qualifier).

You can specify a particular generation to be retrieved with the

/GENERATION qualifier. CMS creates one file for each retrieved generation.
You do not need to have a library currently set to use this command, because
the RETRIEVE ARCHIVE command does not interact with the CMS library.

CD-139

RETRIEVE ARCHIVE

Command Qualifiers

CD-140

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/GENERATION[=generation-expression]

Specifies a particular generation to be retrieved from the archive file. If you
omit /GENERATION, CMS retrieves the highest numbered generation in
the archive file.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/LOG (D)
/NOLOG
Controls whether CMS displays success and informational messages on the

- default output device. If the command executes successfully, CMS displays

a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

/OUTPUT[=file-specification]
Directs CMS to write output to the specified file. If you omit the /OUTPUT
qualifier (or if you specify /OUTPUT but do not provide a file specification),

CMS creates a file with the same name as the archived element and the file
type .CMS_ARCHIVE.

If you retrieve generations from more than one archive file and you do not
specify wildcards in the output file specification, CMS creates successive
versions of the file indicated by /OUTPUT.

RETRIEVE ARCHIVE

Example

CMS> RETRIEVE ARCHIVE/GENERATION=2A3 SAMPLE.CMS_ARCHIVE
$CMS-S-RETRIEVED, generation 2A3 of element DISKX: [PROJECT.CMSLIB]SAMPLE.PAS
retrieved from DISKX:[WORK]SAMPLE.CMS_ARCHIVE;1l

This command retrieves generation 2A3 from the file
SAMPLE.CMS_ARCHIVE in your default directory. CMS names generation
2A3 to its original element name SAMPLE.PAS and places it in your default
directory.

CD-141

REVIEW GENERATION

REVIEW GENERATION

Associates a review comment with one or more specified element
generations.

Format
REVIEW GENERATION element-expression “remark”
Command Qualifiers Defaults
/INO]JCONFIRM /NOCONFIRM
/GENERATION][=generation-expression] See text
/[NOILOG /LOG
/OCCLUDE[=option,...] /OCCLUDE=ALL

Restrictions

¢ This command can be used only on element generations that have
reviews pending (see Section 4.5.4 for more information).

Command Parameters

element-expression

Specifies one or more elements. An element expression can be an element
name, a group name, a wildcard expression, or a list of these separated by
commas.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

CD-142

REVIEW GENERATION

Description

The REVIEW GENERATION command associates a review remark with
the specified element generation. The review status of the generation must
be pending. You can display the remarks associated with the generation by
issuing the SHOW REVIEWS_PENDING command.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN or CTRL/Z, no action is performed. If you type any other
character, CMS continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/GENERATION[=generation-expression]

Specifies the generation of the element with which to associate the review
remark. If you omit /GENERATION, CMS uses the most recently created
generation with a review pending. You specify this qualifier only if more
than one generation of an element is under review.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

CD-143

REVIEW GENERATION

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOJGROUP, and [NOJCLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

Example

CD~144

$ CMS REVIEW GENERATION EXAMPLE.SDML "looks ok to me -- JEFF"
%$CMS-S-REVIEWED, generation 3 of element DISKX: [PROJECT.CMSLIB]EXAMPLE.SDML
reviewed

In this example, the latest generation of the element EXAMPLE.SDML

is pending review; the REVIEW GENERATION command allows users to
associate review comments with that generation. The generation can then
be accepted, canceled, or rejected. Use the SHOW REVIEWS_PENDING
command to display all generations under review in the library.

SET ACL

SETACL

Manipulates the access control list (ACL) on various objects in the CMS

library.

Format

SET ACL /OBJECT_TYPE-=type object-expression “remark”

Command Qualifiers
/ACL[=(acel,...])]
/AFTER=ace
/INOJCONFIRM
/DEFAULT

/DELETE
/LIKE=0object-specification
/INOJLOG

/NEW
/OBJECT_TYPE-=type
/OCCLUDE[=option,...]
/REPLACE=(ace},...])

Defaults

See text

See text
/NOCONFIRM
See text

See text

See text
/LOG

See text

See text
/OCCLUDE=ALL
See text

Command Parameters

object-expression

Specifies one or more objects whose ACLs are to be modified. Wildcards and

a comma list are allowed.

The object expression depends on the object type (see the /OBJECT_TYPE
qualifier). For example, if the object type is CLASS, the object expression
must be the name of a class in the CMS library. The same principle applies
to elements and groups. However, if the object type is LIBRARY, the object
expression must be one or more of the following keywords:

ELEMENT_LIST
CLASS_LIST
GROUP_LIST

CD-145

SET ACL

HISTORY
LIBRARY_ATTRIBUTES

These keywords are referred to as object subtypes. You can abbreviate object
subtypes. Wildcards are not allowed. See Chapter 7 for more information.

The object name can also be the name of a CMS command. If
/OBJECT_TYPE is specified as COMMAND, SET ACL modifies the

ACL on the given command. Commands that contain two words must be
specified with an underscore, for example, INSERT_ELEMENT.

“remark”

Specifies a character string to be logged in the history file with this
command, usually used to explain why the command was entered. The
remark is enclosed in quotation marks. If no remark was entered, a null
remark (") is logged.

Description

The SET ACL command is used to manipulate ACLs on various objects

in the CMS library. ACLs are used to control access to individual CMS
commands. ACLs are also used to control access to elements, groups, and
classes, as well as on the lists containing these entities. An ACL can also be
put on the entire library, and on the library history. For more information
on using ACLs, see Chapter 7.

Command Qualifiers

CD-146

/ACL[=(ace],...])]

Specifies one or more access control entries (ACEs) to be modified. When no
ACE is specified, the entire ACL is affected. Separate multiple ACEs with
commas and enclose the list in parentheses. The specified ACEs are inserted
at the beginning of the ACL unless the /AFTER qualifier is used.

/AFTER=ace

Indicates that all ACEs specified with the /ACL qualifier are added after the
ACE specified with the /AFTER qualifier. By default, any ACEs added to the
ACL are always placed at the top of the list.

SET ACL

/CONFIRM
/NOCONFIRM (D)
Controls whether CMS prompts you for confirmation before each transaction.

When you specify /CONFIRM and run CMS in interactive mode, CMS
prompts you for confirmation. If you type YES, ALL, TRUE, or 1, CMS
executes the transaction. If you type NO, QUIT, FALSE, 0, or press
RETURN, no action is performed. If you type any other character, CMS
continues to prompt until you type an acceptable response.

CMS does not prompt for confirmation in batch mode.

/DEFAULT

Creates an ACL for one or more specified objects as if the object were newly
created. The /DEFAULT qualifier propagates the DEFAULT option ACEs in
the ACL of the entity list to the ACL of the specified object. This qualifier
can be used only with an object that is a library entity, that is, either an
element, class, or group. ,

/DELETE

Indicates that the ACEs specified with the /ACL qualifier are to be deleted.

If no ACEs are specified with the /ACL qualifier, the entire ACL is deleted.

If the /ACL qualifier specifies an ACE that does not exist in the ACL of the
specified object, you are notified that the ACE does not exist, and the delete
operation continues on to the next ACE on the ACL, if any exists.

/LIKE=object-specification

Indicates that the ACL of the specified object is to replace the ACL of the
object (or objects) specified with SET ACL. Any existing ACEs are deleted
before the ACL specified by /LIKE is copied.

The type of the source and destination objects must be the same. No
wildcard characters are allowed in the /LIKE parameter.

/LOG (D)

/NOLOG '

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /NOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

CD-147

SET ACL

CD-148

/NEW

Indicates that any existing ACEs in the ACL of the object specified with
SET ACL are to be deleted. To use the /NEW qualifier, you must specify a
new ACL or ACE with the /ACL qualifier.

/OBJECT_TYPE=type ,.
Specifies the type of the object whose ACL is being modified. There is no
default object type; therefore, this qualifier is required. The type must be
one of the following keywords:

CLASS
ELEMENT
GROUP
LIBRARY
COMMAND

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

" ALL—equivalent to (ELEMENT, GROUP, CLASS, OTHER)
ELEMENT (D)
NOELEMENT
GROUP (D)
NOGROUP
CLASS (D)
NOCLASS
OTHER (D)
NOOTHER
NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS,
NOOTHER)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOIGROUP, [NOICLASS, and [NOJOTHER keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

SET ACL

/REPLACE=(ace],...])

Deletes the ACEs specified with the /ACL qualifier and replaces them with
those specified with /REPLACE. Any ACEs specified with the /ACL qualifier
must exist and must be specified in the order in which they appear in the

current ACL.
Examples
1. CMS> SET ACL/OBJECT_TYPE=ELEMENT SAMPLE .PAS/ACL= (IDENTIFIER=WALLEN, -
_CMS> ACCESS=RESERVE+CONTROL) "setting up acl on element"
%$CMS~-S-MODACL, modified access control list for element
DISKX: [PROJECT.CMSLIB] SAMPLE.PAS
This command assigns an ACL on the element SAMPLE.PAS, specifying
that the user holding the identifier WALLEN has RESERVE and
CONTROL access to the element.
2. CMS> SET ACL/OBJECT_TYPE=LIBRARY ELEMENT_LIST -
_CMs> /ACL= ((IDENTIFIER=WALLEN, OPTIONS=DEFAULT, ACCESS=FETCH), -
_CMs> (IDENTIFIER=WALLEN, ACCESS=CREATE+CONTROL)) ""
%CMS-S-MODACL, modified access control list for subtype
DISKX: [PROJECT .CMSLIB] ELEMENT LIST
This example shows how to assign two separate ACEs on the element
list. The first ACE specifies a default ACE to be inherited by newly
created elements in the library. The second ACE allows the user holding
the identifier WALLEN to create elements in the library.
3. CMS> SET ACL/OBJECT TYPE=ELEMENT/DEFAULT SAMPLE.PAS "™

%CMS-S-MODACL, modified access control list for element
DISKX: [PROJECT.CMSLIB]} SAMPLE.PAS

CMS> SHOW ACL/OBJECT TYPE=ELEMENT SAMPLE.PAS
ACLs in DEC/CMS Library DISKX:[PROJECT.CMSLIB]

SAMPLE.PAS
(IDENTIFIER=[PROJECT, WALLEN] , ACCESS=FETCH)

The SET ACL command causes the default ACE from the element list
(see Example 2) to be placed on the existing element SAMPLE.PAS (new
elements would inherit this default ACE automatically). The SHOW
ACL command displays this ACE.

CD-149

SET ACL

CMS> SET ACL/OBJECT_TYPE=CLASS BL1/ACL=(IDENTIFIER=[DEV, *]+LIBRARIAN, -
_CMS> ACCESS=INSERT+REMOVE) ""
%$CMS-S-MODACL, modified access control list for class DISKX: [PROJECT.CMSLIB])BL1

This command assigns an ACL allowing INSERT and REMOVE access
to class BL1 for users in group DEV holding the LIBRARIAN identifier.

CMS> SET ACL/OBJECT_TYPE=CLASS/LIKE=BL1 BL2 ""

%$CMS~-S-MODACL, modified access control list for class DISKX:[PROJECT.CMSLIB]BL2
CMS> SHOW ACL/OBJECT_TYPE=CLASS

ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

BL1
(IDENTIFIER=[DEV, *] +LIBRARIAN, ACCESS=INSERT+REMOVE)

BL2
(IDENTIFIER=[DEV, *] +LIBRARIAN, ACCESS=INSERT+REMOVE)

In this example, the /LIKE qualifier causes the ACL from the class
BL1 (see Example 4) to be placed on the class BL2. The SHOW ACL
command displays the ACL on both classes BL1 and BL2.

CMS> SET ACL/OBJECT_TYPE=ELEMENT SAMPLE.PAS -

_CMs> /ACL=(IDENTIFIER=WALLEN, ACCESS=FETCH+CONTROL) ""
$CMS-S-MODACL, modified access control list for element
DISKX: [PROJECT.CMSLIB] SAMPLE.PAS

CMS> SET ACL/OBJECT_TYPE=ELEMENT SAMPLE.PAS -

_CMS>. /ACL= (IDENTIFIER=BRADLEY, ACCESS=NONE) ""
%CMS-S-MODACL, modified access control list for element
DISKX: [PROJECT.CMSLIB] SAMPLE.PAS

CMS> SHOW ACL/OBJECT_ TYPE=ELEMENT SAMPLE.PAS
ACLs in DEC/CMS Library DISKX:[PROJECT.CMSLIB]

SAMPLE.PAS
(IDENTIFIER=[CMS, BRADLEY],ACCESS=NONE)
(IDENTIFIER=[CMS,WALLEN] ,ACCESS=CONTROL+FETCH)

CMS> SET ACL/OBJECT_TYPE=ELEMENT SAMPLE.PAS/AFTER= (IDENTIFIER=BRADLEY) -
CMS> /ACL=((IDENTIFIER=DAVIS, ACCESS=RESERVE+REPLACE), =~

:Cms> (IDENTIFIER=HENRY,ACCESS=MODIFY)) ""

%CMS-S-MODACL, modified access control list for element

DISKX: [PROJECT.CMSLIB] SAMPLE.PAS

CMS> SHOW ACL/OBJECT_TYPE=ELEMENT SAMPLE.PAS

ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

CD-150

SET ACL

SAMPLE.PAS
(IDENTIFIER=[CMS, BRADLEY] , ACCESS=NONE)
(IDENTIFIER=[CMS, DAVIS], ACCESS=REPLACE+RESERVE)
(IDENTIFIER=[CMS, HENRY] , ACCESS=MODIFY)
(IDENTIFIER=[CMS, WALLEN] , ACCESS=CONTROL+FETCH)

In this example, user WALLEN assigns an ACL giving himself FETCH
and CONTROL access to SAMPLE.PAS. (Assume WALLEN has
EXECUTE access to both the FETCH and SET ACL commands.) Wallen
then assigns an ACE to user BRADLEY, restricting BRADLEY from any
access to SAMPLE.PAS. By default, the ACE assigned to user BRADLEY
is put at the beginning of the ACL.

WALLEN then allows REPLACE and RESERVE access to SAMPLE.PAS
to user DAVIS, and MODIFY access to SAMPLE.PAS to user HENRY.
The /AFTER qualifier causes the ACEs for DAVIS and HENRY to be
placed after the ACE for user BRADLEY. The SHOW ACL command
displays the order of the ACEs in the ACL.

CMS> SET ACL/OBJECT_TYPE=ELEMENT SAMPLE.PAS -

_CMs> /ACL=((IDENTIFIER=BRADLEY), (IDENTIFIER=HENRY)) -

_CMS> /REPLACE=((IDENTIFIER=PROJ_MEMBERS,ACCESS=DELETE+MODIFY), -
_CMs> (IDENTIFIER=TALCOTT, ACCESS=NONE)) ""

$CMS-S-MODACL, modified access control list for element

DISKX: [PROJECT.CMSLIB] SAMPLE.PAS

CMS> SHOW ACL/OBJECT_TYPE=ELEMENT SAMPLE.PAS
ACLs in DEC/CMS Library DISKX:[PROJECT.CMSLIE]

SAMPLE.PAS
(IDENTIFIER=PROJ_MEMBERS, ACCESS=DELETE+MODIFY)
(IDENTIFIER=[CMS,DAVIS], ACCESS=REPLACE+RESERVE)
(IDENTIFIER=[CMS, TALCOTT] , ACCESS=NONE)
(IDENTIFIER=[CMS, WALLEN] , ACCESS=CONTROL+FETCH)

In this example, the /REPLACE qualifier causes the ACEs belonging to
user BRADLEY and user HENRY (see Example 6) to be replaced with
new ACEs allowing DELETE and MODIFY access to SAMPLE.PAS
for users with the PROJ_MEMBERS identifier and no access for user
TALCOTT.

The SHOW ACL command displays the new order of the ACEs in the
ACL.

CD-151

SET ACL

8. CMS> SET ACL/OBJECT TYPE=ELEMENT SAMPLE.PAS/NEW -
_CMS> /ACL=((IDENTIFIER=WALLEN, ACCESS=MARK+REVIEW+CONTROL), -
_CMS> (IDENTIFIER=DICKAU,ACCESS=FETCH)) ""
%CMS-E-NOMODACL, error modifying access control list for element
DISKX: [PROJECT.CMSLIB] SAMPLE.PAS
-CMS-E-NOACCESS, no control access to element SAMPLE.PAS

In this example, user WALLEN uses the /NEW qualifier to delete the
existing ACL on the element SAMPLE.PAS and specify a new ACL.
The attempt is unsuccessful; although user WALLEN matches the
ACE (with the [CMS,WALLEN] identifier) containing FETCH and
CONTROL access to SAMPLE.PAS, he also matches the ACE (with the
PROJ_MEMBERS identifier) containing DELETE and MODIFY access
to SAMPLE.PAS. The ACE with the PROJ_MEMBERS identifier is
matched before the ACE with the [CMS,WALLEN] identifier is reached.
Thus, since PROJ_MEMBERS does not have the required CONTROL
access to SAMPLE.PAS, WALLEN receives an error.

9. CMS> SHOW ACL/OBJECT_TYPE=ELEMENT INIT.FOR
ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

INIT.FOR
(IDENTIFIER=[CMS, WALLEN], ACCESS=CONTROL+BYPASS+REPLACE)

CMS> SET ACL/OBJECT_TYPE=ELEMENT INIT.FOR/NEW -

_CMS> /ACL=((IDENTIFIER=WALLEN, ACCESS=MODIFY+CONTROL), -
CMS> (IDENTIFIER=PROJ MEMBERS,ACCESS=NONE)) ""
%CMS-S~MODACL, modified access control list for element
DISKX: [PROJECT.CMSLIB]INIT.FOR

CMS> SHOW ACL/OBJECT_TYPE=ELEMENT INIT.FOR
ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

INIT.FOR
(IDENTIFIER={CMS, WALLEN] , ACCESS=CONTROL+MODIFY)
(IDENTIFIER=PROJ_MEMBERS, ACCESS=NONE)

In this example, WALLEN enters SHOW ACL to display any existing
ACL on the element INIT.FOR. WALLEN successfully uses the /NEW
qualifier to assign himself an ACE containing MODIFY and CONTROL
access to INIT.FOR, and uses the ACCESS=NONE clause to delete any
existing access for INIT.FOR from users holding the PROJ_MEMBERS
identifier.

CD-152

10.

SET ACL

CMS> SET ACL/OBJECT_TYPE=ELEMENT INIT.FOR/DELETE/ACL=(IDENTIFIER=PROJ_MEMBERS) e
%$CMS-S-MODACL, modified access control list for element
DISKX: [PROJECT.CMSLIB] INIT.FOR

CMS> SHOW ACL/OBJECT_TYPE=ELEMENT INIT.FOR
ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

INIT.FOR
(IDENTIFIER=[CMS,WALLEN], ACCESS=CONTROL+MODIFY)

CMS> SET ACL/OBJECT_TYPE=ELEMENT INIT.FOR/DELETE ""
%CMS-S-MODACL, modified access control list for element
DISKX: [PROJECT.CMSLIB] INIT.FOR

CMS> SHOW ACL/OBJECT_TYPE=ELEMENT INIT.FOR

ACLs in DEC/CMS Library DISKX:[PROJECT.CMSLIB]

INIT.FOR
In this example, the /DELETE qualifier is used to delete the existing
ACL on the element INIT.FOR for users holding the PROJ_MEMBERS
identifier. Then, WALLEN enters the /DELETE qualifier on the

remaining ACE. Because no ACEs were specified with the /ACL
qualifier, CMS deletes the entire ACL by default.

CD-153

SET LIBRARY

SET LIBRARY

Enables access to an existing CMS library (or libraries). Subsequent CMS
commands automatically refer to the libraries identified by this command.

Format
SET LIBRARY directory-specification],...]

Command Qualifiers Defaults
/AFTER[=directory-specification] See text
/BEFORE[=directory-specification] See text
/INOJLOG /LOG

/INOJVERIFY /VERIFY

Command Parameter

directory-specification

Specifies one or more existing CMS libraries. The directory that is used as
the CMS library cannot be your current default directory. The directory
specification must conform to VMS conventions; it can also be a logical
name. If you specify more than one VMS directory, you must separate the
directory specifications with commas. Wildcards are not allowed.

Description

The SET LIBRARY command enables access to an existing CMS library

or list of libraries. Subsequent CMS commands automatically refer to the
library (or libraries) identified in the SET LIBRARY command. The SET -
LIBRARY command defines logical names beginning with CMS$ that allow
CMS commands to refer implicitly to the library. You should not define
logical names beginning with CMS$ because this prefix is reserved for CMS.

CD-154

SET LIBRARY

The SET LIBRARY command performs some consistency checks on the
directory to verify that it is a valid CMS library (unless you specify the
/NOVERIFY qualifier). If the library is not valid, you receive an error
message.

The library must have been created with the CREATE LIBRARY command.
During each session in which you want to use your CMS library, you

must use the SET LIBRARY command before you access a library. The
command is not required, however, if you have just created a library (see
the description of the CREATE LIBRARY command) because the CREATE
LIBRARY command performs an implicit SET LIBRARY.

You create a search list by specifying multiple libraries on the SET
LIBRARY command. This enables you to manipulate several libraries
with one command. You must include commas between the directory
specifications.

Command Qualifiers

/AFTER([=directory-specification]

Instructs CMS to insert new libraries into the existing library search list
(that you previously specified by using a comma list with the CREATE
LIBRARY or SET LIBRARY command) immediately following the existing
specified directory. If you omit the directory specification, CMS adds

the libraries to the end of the list. You cannot specify both /AFTER and
/BEFORE on the same command line. By default, the SET LIBRARY
command’s library list supersedes any existing search list.

/BEFORE[=directory-specification]

Instructs CMS to insert new libraries into the existing library search list
(that you previously specified by using a comma list with the CREATE
LIBRARY or SET LIBRARY command) immediately in front of the existing
specified directory. If you omit the directory specification, CMS adds the
libraries to the front of the list. You cannot specify both /AFTER and
/BEFORE on the same command line. By default, the SET LIBRARY
command’s library list supersedes any existing search list.

CD-155

SET LIBRARY

/LOG (D)

/NOLOG

Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays
a success message. If you specify /INOLOG, success and informational

messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /[LOG or /NOLOG is specified.

/VERIFY (D)

/NOVERIFY

Allows you to set a library without performing the locking and verification
process CMS normally performs. This speeds up the SET LIBRARY
operation and allows a CMS library to be set even if the library is locked
by another user. However, if the library needs recovery, the condition is not
detected until another transaction is attempted.

Examples

1. CMS> SET LIBRARY [WORK.CMSLIB]
$CMS-S-LIBIS, CMS library is DISKX: [WORK.CMSLIB]

This command sets the CMS library to the existing library
[WORK.CMSLIB].

2. CMS> SET LIBRARY [WORK.CMLSIB], [TEST.CMSLIB]
$CMS-I-LIBIS, library is DISK$: [WORK.CMSLIB]
%CMS~I-LIBINSLIS, library DISK$:[TEST.CMSLIB] inserted at end of library
list :
%$CMS-S~-LIBSET, library set
~-CMS-I-SUPERSEDE, library list superseded

This command sets (or resets, if there was an existing library or
libraries) the current library to contain two libraries.

CD-156

SET LIBRARY

CMS> SET LIBRARY [PROJECT.CMSLIB]/AFTER=[WORK.CMSLIB]
$CMS-I-LIBINSLIS, library DISK$:[PROJECT.CMLSIB] inserted after
DISKX: [WORK.CMSLIB]

%$CMS~-S-LIBSET, library set

Assuming you set your library as in Example 2, this command directs
CMS to insert the library [PROJECT.CMSLIB] after the library
[WORK.CMSLIB]. The library list now contains the three libraries
[WORK.CMSLIB], [PROJECT.CMSLIB], and [TEST.CMSLIB], in that
order. Use the SHOW LIBRARY command to display the library search
list.

CD-157

SET NOLIBRARY

SET NOLIBRARY

Removes one or more libraries from the current library search list.

Format

SET NOLIBRARY [directory-specificationy,...]]

Command Qualifiers Defaults
/INOJLOG /LOG

Command Parameter

directory-specification

Specifies one or more existing CMS libraries in the current library search
list. The directory specification must conform to VMS conventions; it can
also be a logical name that translates to a search list. If you specify more
than one VMS directory, you must separate the directory specifications
with commas. Wildcards are not allowed. If you do not supply a directory
specification, CMS removes all libraries from the current library search list.

Description

The SET NOLIBRARY command removes one or more libraries from
the current library search list. For more information on search lists, see
Chapter 3. If all libraries are removed from the list, the logical name
CMSS$LIB is deassigned.

Command Qualifiers

CD-158

/LOG (D)
/NOLOG
Controls whether CMS displays success and informational messages on the
default output device. If the command executes successfully, CMS displays

SET NOLIBRARY

a success message. If you specify /NOLOG, success and informational
messages are suppressed. Any warning, error, or fatal error messages are
displayed regardless of whether /LOG or /NOLOG is specified.

Example

CMS> SET NOLIBRARY
$CMS-W-UNDEFLIB, library is undefined

This example removes all existing libraries from the current library search
list.

CD-159

SHOW ACL

SHOW ACL

Displays the access control list (ACL) associated with the specified object (or
objects).

Format
SHOW ACL object-expression /OBJECT_TYPE=type

Command Qualifiers Defaults

/[NOJAPPEND /NOAPPEND
/OBJECT_TYPE = type See text
/OCCLUDE[=option,...] /OCCLUDE=ALL
JOUTPUT[=file-specification] /OUTPUT=SYS$OUTPUT

Command Parameter

object-expression
Specifies the CMS library object whose ACL is to be displayed. Wildcards
and a comma list are allowed.

The object name depends on the object type (see the /OBJECT_TYPE
qualifier). For example, if the object type is CLASS, the object name is the
name of a class in the CMS library. The same principle applies to elements
and groups. If the object type is LIBRARY, the object expression must be a
list of one or more of the following keywords:

ELEMENT_LIST
CLASS_LIST
GROUP_LIST

HISTORY
LIBRARY_ATTRIBUTES

These keywords are called object subtypes. You can abbreviate object
subtypes. Wildcards are not allowed.

CD-160

SHOW ACL

The object name can also be the name of a CMS command. If
/OBJECT_TYPE is specified as COMMAND, SHOW ACL dlsplays the
ACL for the given command.

Description

The SHOW ACL command displays the ACL associated with the specified
object (or objects).

Command Qualifiers

/APPEND

/NOAPPEND (D)

Controls whether CMS appends the command output to an existing file,
or creates a new file. If you specify /APPEND and the output file does not
exist, CMS creates a new file. If you do not provide a file specification (see
the description for /OUTPUT), the output is appended to SYS$OUTPUT.

/OBJECT_TYPE=type

Specifies the type of the object whose ACL is to be displayed. There is no
default object type; therefore, this qualifier is required. The object type can
be one of the following keywords:

ELEMENT
CLASS
GROUP
LIBRARY
COMMAND

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all

instances of the specified object in the library search list. The options field

contains one or more keywords associated with the name of the object. The
- options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS, OTHER)
ELEMENT (D)
NOELEMENT

CD-161

SHOW ACL

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

OTHER (D)

NOOTHER

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS,
NOOTHER)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOJGROUP, [NOICLASS, and [NOJOTHER keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/OUTPUT{[=file-specification]

/OUTPUT=SYS$OUTPUT (D)

Directs CMS to write output to the specified file, except for any warning and
error messages, which are written to SYS§OUTPUT and SYS$ERROR. CMS
creates a new file if you do not specify /APPEND. If you omit the /OUTPUT
qualifier (or if you specify /OUTPUT but do not provide a file specification),
CMS directs output to the default output device (SYS$OUTPUT). If you omit
either the file name or the file-type component, CMS supplies the missing
component from the default specification."

Example

CD-162

CMS> SHOW ACL/OBJECT_TYPE=ELEMENT SAMPLE.PAS
ACLs in DEC/CMS Library DISKX: [PROJECT.CMSLIB]

SAMPLE.PAS
(IDENTIFIER=[PROJECT, WALLEN] ,ACCESS=FETCH)

This command displays the ACE on element SAMPLE.PAS.

SHOW ARCHIVE

SHOW ARCHIVE

Displays information about one or more archive files.

Format
SHOW ARCHIVE file-expression

Command Qualifiers Defaults

/[INOJAPPEND /NOAPPEND

/BRIEF See text

/FULL See text
/INTERMEDIATE See text
IOUTPUT[=file-specification] /OUTPUT=SYS$OUTPUT

Command Parameter

file-expression

Specifies the name of the archive file. The file expression can be a
file-name.type specification, a wildcard expression, or a list of these
separated by commas,

Description

The SHOW ARCHIVE command displays information about the contents of
one or more specified archive files.

Command Qualifiers

/APPEND

/NOAPPEND (D)

Controls whether CMS appends the command output to an existing file, or
creates a new file. If you specify /APPEND and the output file does not exist,

CD-163

' SHOW ARCHIVE

CMS creates a new file. If you do not provide an output file specification (see
the description for /OUTPUT), the output is appended to SYS$OUTPUT.

/BRIEF

/FULL

/INTERMEDIATE (D)

The /BRIEF qualifier displays the name of the element, the generations
archived into this file, the name of the person who archived the file,

the date and time, the remark entered on the DELETE GENERATION
command, and the name of the library in which the original element
resided. The /FULL qualifier displays complete generation file information
for each archived generation. The /INTERMEDIATE qualifier displays the
generation history for the archived generations.

/OUTPUT/[=file-specification]

/OUTPUT=SYS$OUTPUT (D)

Directs CMS to write output to the specified file, except for any warning and
error messages, which are written to SYSSOUTPUT and SYS$ERROR. CMS
creates a new file if you do not specify /APPEND. If you omit the /OUTPUT
qualifier (or if you specify /OUTPUT but do not provide a file specification),
CMS directs output to the default output device (SYS$OUTPUT). If you omit
either the file name or the file-type component, CMS supplies the missing
component from the default specification.

Examples

1. CMS> SHOW ARCHIVE/BRIEF SAMPLE.CMS_ARCHIVE
25-JAN-1990 17:08:47 JONES DISKX:[WORK.CMSLIB] SAMPLE.PAS(2Al through 2A3) "delete
the variant range and archive the deleted generations"

CD-164

This command displays information about the archive file, consisting of
the date and time entered with the DELETE GENERATION command,
the name of the person who archived the file, the library in which the
original element resided, the generations that were archived into the
file, and the remark entered on the DELETE GENERATION command.

SHOW ARCHIVE

2. CMS> SHOW ARCHIVE/FULL SAMPLE.CMS_ARCHIVE

25-JAN-1990 17:08:47 JONES DISKX: [WORK.CMSLIB] SAMPLE.PAS(2A1 through 2A3) "delete
the variant range and.archive the deleted generations"
'22-JAN-1990 14:27:41 JONES "reserved concurrently to add routines"

2Al1

2A2

2A3

File creation:
File revision:
Record format:
Record attributes:
Review status:

22-JAN-1990 14:27

24-JAN-1990 17:12 (1)

Variable length

Carriage return carriage control
None

22-JAN-1990 14:36:56 JONES "another routine added"

File creation:
File revision:
Record format:
Record attributes:
Review status:

22-JAN-1990 14:36

22-JAN-1990 18:01 (1)

Variable length

Carriage return carriage control
None

22~JAN-1990 14:45:12 JONES "last one I promise"

File creation:
File revision:
Record format:
Record attributes:
Review status:

22-JAN-1990 14:45

27-JAN-1990 08:30 (1)

Variable length

Carriage return carriage control
None

This command displays complete generation file information for each
archived generation in the archive file.

CD-165

SHOW CLASS

SHOW CLASS

Displays information about one or more classes in a CMS library.

Format
SHOW CLASS [class-expression]

Command Qualifiers Defaults

/[NOJAPPEND ' /NOAPPEND

/BRIEF See text
/[INO]JCONTENTS /NOCONTENTS

/FULL See text
/INTERMEDIATE See text
/OCCLUDE[=option,...] /OCCLUDE=ALL
/OUTPUT[=file-specification] /OUTPUT=SYS$OUTPUT

Command Parameter

class-expression

Specifies one or more classes to be listed. If you do not specify a class name,
CMS lists all classes in the library. A class expression can be a class name,
a wildcard expression, or a list of these separated by commas.

Description

The SHOW CLASS command lists the names of all established classes in
alphabetical order, along with the associated creation remarks.

CD-166

SHOW CLASS

Command Qualifiers

/APPEND

/NOAPPEND (D)

Controls whether CMS appends the command output to an existing file, or
creates a new file. If you specify /APPEND and the output file does not exist,
CMS creates a new file. If you do not provide an output file specification (see
the description for /OUTPUT), the output is appended to SYS$OUTPUT.

/BRIEF

/FULL

/INTERMEDIATE (D) .

The /BRIEF qualifier displays only the class names. The /FULL qualifier
displays the name, creation remark, and read-only attribute (if established)
for each class. The INTERMEDIATE qualifier displays the name and
creation remark for each class.

/CONTENTS

/NOCONTENTS (D)

Controls whether CMS identifies the element generations that belong to
each class. If you specify /CONTENTS, CMS displays the class name and
the creation remark, along with the element name and generation number
for each generation in the class.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to CLASS
CLASS (D)

NOCLASS

NONE—equivalent to NOCLASS

You can specify either ALL, NONE, or the [NOJCLASS keyword.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

CD-167

SHOW CLASS

/OUTPUT[=file-specification]

/OUTPUT=SYS$OUTPUT (D)

Directs CMS to write output to the specified file, except for any warning and
error messages, which are written to SYS$OUTPUT and SYS$ERROR. CMS
creates a new file if you do not specify /APPEND. If you omit the /OUTPUT
qualifier (or if you specify /OUTPUT but do not provide a file specification),
CMS directs output to the default output device (SYS$OUTPUT). If you omit
either the file name or the file-type component, CMS supplies the missing
component from the default specification.

Examples

CD-168

CMS> SHOW CLASS
Classes in CMS Library DISKX:[RELEASE.CMSLIB]

INTERNAL_RELEASE "for internal use only"
MESSAGETEST “filter evolution checks"
PASCAL CLASS "PASCAL tests"

This command displays the class name and the creation remark for each
class in the library.

CMS> SHOW CLASS/BRIEF
Classes in CMS Library DISKX: [RELEASE.CMSLIB]
INTERNAL_RELEASE MESSAGETEST PASCAL_CLASS

This command limits the output to class names only.

SHOW ELEMENT

SHOW ELEMENT

Displays information about one or more elements in a CMS library.

Format

SHOW ELEMENT [element-expression]

Command Qualifiers Defaults

/INOJAPPEND /NOAPPEND

/BRIEF See text
/FORMAT=“string” /NOFORMAT
/NOFORMAT

/FULL ‘ See text
/INTERMEDIATE See text

/INOJMEMBER /NOMEMBER
/OCCLUDE[=option,...] /OCCLUDE=ALL
IOUTPUT[=file-specification] /OUTPUT=SYS$OUTPUT

Command Parameter

element-expression

Specifies one or more elements to be listed. If you do not supply an element
expression, CMS lists all the elements in the library. An element expression
can be an element name, a group name, a wildcard expression, or a list of
these separated by commas.

Description

The SHOW ELEMENT command lists the name of each specified element
in alphabetical order, along with the remark logged at the time the element
was created or modified. You can also specify qualifiers that provide
information about element attributes, concurrent access, and the groups to
which the element belongs.

CD-169

SHOW ELEMENT

Command Qualifiers

CD-170

/APPEND

/NOAPPEND (D)

Controls whether CMS appends the command output to an existing file, or
creates a new file. If you specify /APPEND and the output file does not exist,
CMS creates a new file. If you do not provide an output file specification (see
the description for /OUTPUT), the output is appended to SYS$OUTPUT.

/BRIEF

/FULL

/INTERMEDIATE (D) ‘

The /BRIEF qualifier displays only the element names. The /FULL qualifier
displays the name, creation remark, and the attributes in effect for the
specified elements. The /INTERMEDIATE qualifier displays the name and
creation remark associated with the element.

/FORMAT="string”

/NOFORMAT (D)

Controls whether the output of the SHOW ELEMENT command is
formatted. You can use the /FORMAT qualifier in combination with the
/OUTPUT qualifier to set up a command file. With this command file,

- you can execute a CMS command or a DCL command on a specified set of

elements (such as all elements in a group).

The format string can contain printing characters; within the format string,
CMS recognizes #E (and #e) as the element format parameter. For each
line of output (one line per element), CMS displays the format string and
replaces each occurrence of #E (or #e) with the element name. To include

a number sign in the output line, type it twice (##). When you specify
/FORMAT, CMS does not generate the heading normally produced by the
SHOW ELEMENT command.

To set up a command file, you specify a format string consisting of a
command, including the dollar sign ($) prompt and the element format
parameter (for example, /FORMAT=“$ CMS FETCH #E”). Use the /OUTPUT
qualifier to direct the output to a command file. When you execute the
SHOW ELEMENT command with these qualifiers, CMS creates a command
file containing a list of FETCH commands that use each element in the
denoted set as parameters.

SHOW ELEMENT

/MEMBER

/NOMEMBER (D)

Lists the element name, creation remark, and the names of any groups to
which the element belongs.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D)

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP)
ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

NONE—equivalent to NOELEMENT, NOGROUP)

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT and [NOJGROUP keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/OUTPUT[=file-specification]

/OUTPUT=SYS$OUTPUT (D)

Directs CMS to write output to the specified file, except for any warning and
error messages, which are written to SYS$OUTPUT and SYS$ERROR. CMS
creates a new file if you do not specify /APPEND. If you omit the /OUTPUT
qualifier (or if you specify /OUTPUT but do not provide a file specification),
CMS directs output to the default output device (SYS$OUTPUT). If you omit
either the file name or the file-type component, CMS supplies the missing
component from the default specification.

CD-171

SHOW ELEMENT

Examples

CD-172

CMS> SHOW ELEMENT/BRIEF
Elements in CMS Library DISKX:[PROJECT.CMSLIB]
CCM.FOR CCM1.FOR COPYTEST.FOR

This command limits the output to element names only.

CMS> SHOW ELEMENT/FORMAT="$ CMS FETCH #E"/OUTPUT=FETCH.COM

This command produces a file named FETCH.COM that contains a
FETCH command for each element in the library. The contents of a file
produced by this command might look like the following example:

$ CMS FETCH INIT.FOR

$ CMS FETCH INITX.FOR
$ CMS FETCH MSGDOC.FOR
$ CMS FETCH OUTPUT.FOR
$ CMS FETCH SEARCH.FOR

SHOW GENERATION

SHOW GENERATION
Displays information about one or more element generations in a CMS
library.
Format
SHOW GENERATION [element-expression]
Command Qualifiers Defaults
/INOJANCESTORS /NOANCESTORS
/[INOJAPPEND /NOAPPEND
/BRIEF See text
/INOJDESCENDANTS /NODESCENDANTS
/FORMAT="string” /NOFORMAT
/FROM=generation-expression /FROM=1
/FULL See text
/GENERATION[=generation-expression] See text
/INTERMEDIATE /See text
/[NOJMEMBER /NOMEMBER
/OCCLUDE[=option,...] /OCCLUDE=ALL
/OUTPUT[=file-specification] /OUTPUT=SYS$OUTPUT
Restrictions

* You cannot specify the /ANCESTORS and /DESCENDANTS qualifiers

on the same command line.

¢ You cannot specify the / DESCENDANTS and /FROM qualifiers on the

same command line.

¢ If you specify the /FROM qualifier, you must also specify the
/ANCESTORS qualifier on the same command line.

CD-173

- SHOW GENERATION

Command Parameter

element-expression

Specifies one or more elements. For each element, CMS lists the transaction
record of the most recent generation on the main line of descent. If you do
not supply an element expression, CMS lists a transaction record for each
element in the library. An element expression can be an element name, a
group name, a wildcard expression, or a list of these separated by commas.

Description

The SHOW GENERATION command lists information about a specific
generation of an element or a group of elements. This command displays
the transaction record of the latest generation on the main line of descent.
You can also use SHOW GENERATION to display the element name and
generation number of all element generations belonging to a specified group
or class.

Command Qualifiers

CD-174

/ANCESTORS

/NOANCESTORS (D)

Displays the transaction records of the specified element generation and all
of its ancestors. The transaction records are listed in reverse chronological
order. If you do not specify a particular generation, the list begins with the
latest generation on the main line of descent.

The ancestors of a main-line generation are all the preceding generations
back to the first generation of an element. The ancestors of a variant-line
generation are all preceding generations on the variant line of descent, and
any generations back to the first generation on the main line.

/APPEND

/NOAPPEND (D)

Controls whether CMS appends the command output to an existing file, or
creates a new file. If you specify /APPEND and the output file does not exist,
CMS creates a new file. If you do not provide an output file specification (see
the description for /OUTPUT), the output is appended to SYS$OUTPUT.

SHOW GENERATION

/BRIEF

/FULL

/INTERMEDIATE (D)

The /BRIEF qualifier displays only the element names and generation
numbers for each specified generation. The /FULL qualifier displays
standard CMS transaction information (the element name, generation
number, date, time, user, and remark), and also produces information about
the file creation and revision date and time, the file revision number, and the
record format and attributes. The /INTERMEDIATE qualifier displays the
element name, generation number, date, time, user, and remark associated
with the transaction that created the generation.

/DESCENDANTS

/NODESCENDANTS (D)

Displays the transaction records of the specified element generation

and of all its descendants. The transaction records are listed in reverse
chronological order. If you do not specify a particular generation, the list
begins with generation 1.

The descendants of a generation consist of all the successor generations,
including those on variant lines of descent. Thus, you can use this command
to determine whether any variant lines of descent exist for a particular
element.

/FORMAT="string”

/NOFORMAT (D)

Controls whether the output of the SHOW GENERATION command is
formatted. You can use the /FORMAT qualifier in combination with the
/OUTPUT qualifier to set up a command file. With this command file,
you can execute a CMS command or a DCL command on a specified set of
elements (such as all elements in a class).

The format string can contain printing characters; within the format string,
CMS recognizes #E (and #e) as the element format parameter, and #G (and
#g) as the generation number format parameter. For each line of output
(one line per generation), CMS displays the format string and replaces
each occurrence of #E or #G with the element name or generation number,
respectively. To include a number sign in the output line, type it twice
(##). When you specify the /FORMAT qualifier, CMS does not generaté the
heading normally produced by the SHOW GENERATION command.

CD-175

SHOW GENERATION

CD-176

To set up a command file, you specify a format string consisting of a
command, including the dollar sign ($) prompt and a format parameter (#E
or #G) (for example, /FORMAT=“$ CMS FETCH #E/GENERATION=#G").
Use the /OUTPUT qualifier to.direct the output to a command file. When
you execute the SHOW GENERATION command with these qualifiers, CMS
creates a command file containing a list of FETCH commands that use each
element in the denoted set as parameters.

/FROM=generation-expression

/FROM=1 (D)

Specifies the generation that begins the list of ancestors. You must specify
the /ANCESTORS and /FROM qualifiers on the same command.

/GENERATION[=generation-expression]

Specifies the generation about which you want information. When you
use the /GENERATION qualifier with the element-name parameter, the
transaction record of the indicated generation is displayed.

You can specify a generation indirectly by using a class name, the plus
operator, the semicolon, or relative generation offsets. See Section 10.2.5.

/MEMBER

/NOMEMBER (D)

Lists the element name, generation number, and the names of any classes to
which the element generation belongs.

/OCCLUDE[=option,...]

/OCCLUDE=ALL (D) ‘

Controls whether CMS selects the first instance of the specified object, or all
instances of the specified object in the library search list. The options field
contains one or more keywords associated with the name of the object. The
options field can consist of the following keywords:

ALL—equivalent to (ELEMENT, GROUP, CLASS)

ELEMENT (D)

NOELEMENT

GROUP (D)

NOGROUP

CLASS (D)

NOCLASS

NONE—equivalent to NOELEMENT, NOGROUP, NOCLASS)

SHOW GENERATION

You can specify either ALL or NONE, or any combination of the
[NOJELEMENT, [NOJGROUP, and [NO]JCLASS keywords.

CMS automatically performs occlusion for all objects; that is, CMS selects
only the first occurrence of a specified object.

/OUTPUT[=file-specification]

/OUTPUT=SYS$OUTPUT (D)

Directs CMS to write output to the specified file, except for any warning and
error messages, which are written to SYS$OUTPUT and SYS$ERROR. CMS
creates a new file if you do not specify /APPEND. If you omit the /OUTPUT
qualifier (or if you specify /OUTPUT but do not provide a file specification),
CMS directs output to the default output device (SYS$OUTPUT). If you omit
either the file name or the file-type component, CMS supplies the missing
component from the default specification.

Examples

1. CMS> SHOW GENERATION/BRIEF
Element generations in CMS Library DISKX:[TAYLOR.CMSLIB]
CCM.FOR/2 CCML.FOR/1 COPYTEST.FOR/2
This command directs CMS to display only the element name and the
number of the latest main-line generation for each element. Because

no element is specified in the command line, CMS displays information
about all elements in the library.

2. CMS> SHOW GENERATION CCM.FOR
Element generations in CMS Library DISKX: [TAYLOR.CMSLIB]
CCM.FOR 2 7-DEC-1990 14:15:51 SMITH "header changed"

This command displays the element name, generation number, date,
time, and remark associated with the latest main-line generation for
element CCM.FOR.

CD-177

SHOW GENERATION

CD-178

CMS> SHOW GENERATION/FULL CCM.FOR
Element generations in CMS Library DISKX:[TAYLOR.CMSLIB]

CCM.FOR 2 6-MAR-1990 17:34:04 SMITH "header changed"
File creation: . 6-MAR-1990 17:24
File revision: 6-MAR~1990 17:24 (1)
Record format: Variable length

Record attributes: Carriage return carriage control

This command produces information about the file creation and revision
date and time, the file revision number, and the record format and
attributes, in addition to the standard CMS transaction information
(element name, generation number, date, time, user, and remark). This
additional information describes the file that was used to create the
particular element generation, in this case generation 2 of CCM.FOR.

CMS> SHOW GENERATION/GENERATION=RELEASES -
_CMS> /FORMAT="$ CMS FETCH #E/GENERATION=#G"/OUTPUT=FETCH_CLASS.COM

This example produces a file named FETCH_CLASS.COM that contains
a FETCH command for each element that belongs to the class named
RELEASES5. The FETCH command retrieves the element of the correct
generation from the RELEASES5 class. The contents of a file produced by
this command might look like the following:

$ CMS FETCH INIT.FOR/GENERATION=6
$ CMS FETCH QUTPUT.FOR/GENERATION=7
$ CMS FETCH SEARCH.FOR/GENERATION=3

SHOW GROUP

SHOW GROUP

Displays information about one or more groups in a CMS library.

Format
SHOW GROUP [group-expression]

Command Qualifiers Defaults

/INOJAPPEND /NOAPPEND

/BRIEF See text

/CONTENTS[=n] /NOCONTENTS
/NOCONTENTS

/FULL See text
/INTERMEDIATE See text
/OCCLUDE[=option,...] /OCCLUDE=ALL
/OUTPUT[=file-specification] /OUTPUT=SYS$OUTPUT

Command Parameter

group-expression

Specifies the group to be listed. If you do not supply a group expression,
CMS lists all groups in the library. A group expression can be a group name,
a wildcard expression, or a list of these separated by commas.

Description
The SHOW GROUP command lists the names of all established groups in

alphabetical order, along with the remark logged at the time each group was
created or modified. ‘

CD-179

SHOW GROUP

Command Qualifiers

CD-180

/APPEND

/NOAPPEND (D)

Controls w