
AA-JL07C-TE

VAXRdb/VMS
RDML Reference Manual

December 1989

This manual describes the components of the Relational Data Manipulation Language
(RDML).

Revision/Update Information: This manual is a revision and supersedes previous
versions.

Operating System:

Software Version:

digital .equipment corporation
maynard, massachusetts

VMS
VAXELN

VAX RdbNMS Version 3.1

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

Any software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license. No responsibility
is assumed for the use or reliability of software or equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation. 1987, 1988, 1989.

All rights reserved.
Printed in U.S.A.

The Reader's Comments form at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS
ALL-IN-1
DATATRIEVE
DEC
DEC/CMS
DEC/MMS
DECforms
DECintact
DECmate
PECnet
DECUS
DECwindows
DECwriter
DIBOL

MASS BUS
MicroVAX
PDP
P/OS
Professional
Rainbow
RALLY
Rdb/ELN
Rdb/VMS
ReGIS
RSTS
RSX
RT
TDMS

ULTRIX
UNIBUS
VAX
VAXCDD
VAXFMS
VAXcluster
VAXELN
VAXstation
VIDA
VMS
VT
Work Processor

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface . vii

1 Introduction
1.1
1.1.1
1.1. 1.1
1.1.1.2
1.1.1.3
1.1.1.4
1.1.1.5
1.1.2
1.1.3
1.1.4
1.2

RDML Language
RDML Language Elements

Value Expressions
Conditional Expressions
Record Selection Expressions .
Statistical Functions .
Clauses and Statements

RDML in the RdbNMS and Rdb/ELN Environments
Data Definition and RDML
RDML Keywords and Naming Conventions

RDML Preprocessor

2 RDML Value Expressions
2.1
2.2
2.3
2.4
2.5
2.6

Arithmetic Value Expression
Database Field Value Expression
FIRST FROM Value Expression
Host Language Variable Value Expression
RDB$DB_KEY Value Expression
RDB$MISSING Value Expression

1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-3
1-3
1-4

2-4
2-9

2-13
2-20
2-26
2-30

iii

3 RDML Conditional Expressions
3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

ANY Conditional Expression
BETWEEN Conditional Expression
CONTAINING Conditional Expression
MATCHING Conditional Expression
MISSING Conditional Expression
Relational Operators
STARTING WITH Conditional Expression
UNIQUE Conditional Expression

3-9
3-13
3-16
3-20
3-26
3-30
3-32
3-37

4 RDML Record Selection Expressions
4. 1
4.2
4.3
4.4
4.5
4.6
4.7

Context Variable
CROSS Clause
FIRST Clause .. .
REDUCED TO Clause
Relation Clause
SORTED BY Clause ·
WITH Clause .. .

4-8
4-13
4-23
4-30
4-36
4-44
4-50

5 RDML Statistical Functions
5.1
5.2
5.3
5.4
5.5

AVERAGE Statistical Function
COUNT Statistical Function
MAX Statistical Function
MIN Statistical Function
TOTAL Statistical Function

5-4
5-8

5-12
5-17
5-23

6 RDML Clauses and Statements
6.1 BASED ON Clause . 6-4
6.2 COMMIT Statement . 6-7
6.3 DATABASE Statement. 6-11
6.4 Database Handle Clause . 6-20
6.5 DECLARE_STREAM Statement . 6-25
6.6 DECLARE_ VARIABLE Clause . 6-31
6.7 DEFINE_TYPE Clause . 6-34
6.8 END_STREAM Statement, Declared....................... 6-35
6.9 END_STREAM Statement, Undeclared . 6-39
6. 10 ERASE Statement . 6-41
6. 11 FETCH Statement . 6-48
6. 12 FINISH Statement . 6-53

iv

6. 13
6.14
6.15
6.16
6. 17
6. 18

. 6. 19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

FOR Statement
FOR Segmented String Statement
GET Statement
MODIFY Statement
ON ERROR Clause
PREPARE Statement
READY Statement
REQUEST_HANDLE Clause
ROLLBACK Statement
START_STREAM Statement, Declared
START_STREAM Statement, Undeclared
START_TRANSACTION Statement
STORE Statement
STORE Statement with Segmented Strings
TRANSACTION_HANDLE Clause

A RDML-Generated Data Types

B VAX C Language Functions for 1/0 Operations

Index

Figures

3-1

Tables

Conditional Expression Component of an RSE

6-58
6-66
6-71
6-77
6-87
6-92
6-96

6-100
6-105
6-109
6-114
6-122
6-133
6-144
6-149

3-6

1-1 RDML Keywords . 1-4
2-1 Value Expressions . 2-2
2-2 Arithmetic Operators and Functions . 2-5
3-1 Conditional Expression Truth Table . 3-4
3-2 Values Returned by Conditional Expressions 3-5
3-3 Relational Operators . 3-30
4-1 Record Selection Expression Clause Functions 4-2
5-1 Statistical Functions . 5-3
5-2 Statistical Expression Data Type Conversions for RDML 5-3
6-1 Functions of RDML Statements and Clauses 6-1

v

6-2 Summary of Database Handle Usage in Preprocessed
Programs . 6-22

6-3 VAX Rdb/ELN and RdbNMS Share Modes 6-127
6-4 Defaults for the START_TRANSACTION Statement........... 6-127
A-1 RDML-Generated Data Types for VAX C . A-1
A-2 RDML-Generated Data Types for VAX Pascal A-2
A-3 RDML-Generated Data Types for VAXELN Pascal A-3
B-1 Summary of VAX C Input/Output Functions B-2

vi

Preface

The Relational Data Manipulation Language (RDML) comprises clauses,
expressions, and statements that can be embedded in C and Pascal programs.
These programs can be processed by the RDML preprocessor, which converts
the RDML statements into a series of equivalent DIGITAL Standard Relational
Interface (DSRI) calls to the database. Following successful preprocessing,
the programmer can submit the resulting source code to the host language
compiler.

Purpose of This Manual
This manual describes the syntax and semantics of all the Relational Data
Manipulation Language (RDML) statements and language elements.

Intended Audience
This manual is intended for programmers who will embed RDML statements
in C or Pascal programs. To get the most out of this manual, you should
be proficient in either C or Pascal. You should also be familiar with
data processing procedures and basic database management concepts and
terminology.

Operating System Information
Information about the versions of the operating system and related software
that are compatible with this version of RdbNMS is included with the
RdbNMS media kit, in the VAX Rdb/VMS Installation Guide.

vii

For information on the compatibility of other software products with this
version of Rdb/VMS, refer to the System Support Addendum (SSA) that comes
with the Software Product Description (SPD). You can use the SPD/SSA to
verify which versions of your operating system are compatible with this version
ofRdb/VMS.

Structure
This manual contains six chapters and two appendixes:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A

Appendix B

Provides an introduction to the RDML language and the
RDML preprocessor.

Describes the syntax and rules of RDML value expressions.

Describes the syntax and rules of RDML conditional
expressions.

Describes the syntax and rules of RDML record selection
expressions.

Describes the syntax and rules of RDML statistical
functions.

Describes the syntax and rules of RDML clauses and
statements.

Contains tables listing the VAX C, VAX Pascal, a:ad
VAXELN Pascal data types that RDML generates for each
data type permitted in an Rdb database.

Describes the sample C functions used in this manual to
handle 1/0 tasks. This appendix also contains the source
code for these functions.

Examples are provided for each statement, clause, and function described in
each chapter. These examples are complete programs that you can copy and
run against the PERSONNEL database.

Related Manuals

viii

1 VAX Rdb/VMS Introduction and Master Index

Introduces Rdb/VMS and explains major terms and concepts. Includes a
glossary, a directory of Rdb/VMS documentation, and a master index that
combines entries from all the Rdb/VMS manuals.

1 VAX Rdb I VMS Guide to Programming

Describes how to use the features of Rdb/VMS to retrieve, store, change,
and erase data. Shows how to write programs that use Rdb/VMS as a
data access method; contains information on writing programs in high­
level languages that are supported by Rdb/VMS preprocessors, including
Relational Data Manipulation Language (RDML); and describes Callable
RDO, an interactive utility for languages without preprocessors.

• VAX Rdb/l(MS Reference Manual

Provides reference material and a complete description of the statements
and syntax of the RdbNMS Relational Database Operator (RDO) interface
and the commands of the RdbNMS Management Utility (RMU).

• VAX Rdb I ELN Technical Overview

Contains an introduction to VAX Rdb/ELN concepts and components.
It also has a glossary of the terms used throughout the Rdb/ELN
documentation set.

• VAX Rdb/E~N Guide to Application.Development

Describes VAX Rdb/ELN application design and development. It also
describes how to define, back up, restore, and journal your VAX Rdb/ELN
database.

• Guide to VAX C

Describes VAX C constructs in context with both the history of the C
programming language and that of the VMS environment. It contains
information on VAX C program development in the VMS environment, the
VAX C programming language, and cross-system portability concerns.

• VAX C Run-Time Library Reference Manual

Describes the functions and macros in the VAX C Run-time Library.

• VAX Pascal User's Guide

Describes how to interact with the VMS operating system using VAX.
Pascal. It contains information dealing with input and output with the
Record Management System (RMS), optimizations, program section use,
calling conventions, and error processing. This document is intended for
programmers who have full working knowledge of Pascal.

• Programming in VAX Pascal

Presents two sections: Section I introduces the Digital Command Language
(DCL) and the VMS text editor (EDT), and explains how to compile, link,
execute, and debug programs; Section II describes the elements of the
Pascal language supported by VAX Pascal.

Syntax Diagrams
This manual presents the syntax of RDML statements with syntax diagrams.
Syntax diagrams graphically portray required, repeating, and optional
characteristics of any RDML statement.

ix

x

To read a syntax diagram, start from the left and follow the arrows until you
exit from the diagram at the right. When you come to a branch in the path,
choose the branch that contains the option you want. If you want to omit an
option, choose the path with no language elements. If a diagram occupies
more than one horizontal line, the arrow returns to the left margin. Syntax
diagrams can contain:

Nam es of syntax
diagrams

Keywords

Punctuation marks

User-supplied elements

If a diagram is named, the name is in lowercase type
followed by an equal sign and appears above and to the left
of the diagram. Syntax diagrams can refer to each other
by name. The equal sign (=) indicates that the name is
equivalent to the diagram and that the diagram can be
substituted wherever the name appears.

If the diagram contains the name of a second diagram,
substitute the second diagram where its name appears.
Such a substitution is similar to putting the name of a field
where "field-name" appears. Most named syntax diagrams
appear as subdiagrams following the main diagram.

Keywords appear in uppercase type. If a keyword is
underlined, you must include it in the statement. A
keyword without underlining is optional; however, it makes
the statement more readable. Omitting an optional keyword
does not change the meaning of a statement.

Punctuation marks are included in the diagram when
required by the syntax of the command or statement. All
punctuation marks shown are required.

User-supplied elements appear in lowercase type. These
elements can include names, expressions, and literals. They
usually follow the diagram.

You can learn the syntax of a command or statement by reading that
statement's syntax diagram.

ERASE --. context-var
Con-error =aJ

on-error=

ON ERROR ---• statement
..

---..---~ END_ERROR

ERASE Is in uppercase type and underlined on the main line of the
diagram. Therefore, you must supply the keyword (which can
usually be abbreviated).

context-var

on-error

statement

Is in lowercase type on the main line of the diagram. Therefore>
you must supply a substitute for context-var. The commentary
following the diagram describes the possible values and the
function for the user-supplied element, in this case context-var,

Is in lowercase type on a branch. Because it parallels an
empty branch, the on-error clause is optional. The subdiagram
expands the definition of on-error.

Is in lowercase type on a main branch. The on-error clause is
optional, but if you include it, you must have ON ERROR,
at least one statement, and END_ERROR. The optional
reverse loop under the statement indicates that more than
one statement can appear within the ON ERROR ... END_
ERROR block.

All lowercase words are explained in the argument list that follows the
diagram. Some explanations refer you to other diagrams that appear elsewhere
in this manual.

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the RETURN key at the end of a line of
input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted, to focus full attention on the statements or commands themselves.

The section explains the conventions used in this manual:

ICTRL/xl

I RETURN i
ITABI

e, f, t

<>

This symbol in examples tells you to press the CTRL (control) key and
hold it down while pressing the specified letter key.

This symbol in examples indicates the RETURN keyo

This symbol in examples indicates the TAB key.

A vertical ellipsis in an example means that information not directly
related to the example has been omitted.

A horizontal ellipsis in statements or commands means that parts of
the statement or command not directly related to the example have
been omitted.

Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page"

Angle brackets enclose user-supplied names.

xi

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command· Language prompt.
This SYlllhol indicates that the DCL interpreter is ready for input.

UPPERCASE Statements appearing in uppercase type in programming examples are
RDML statements.

lowercase Statements appearing in lowercase type in programming examples are
host language statements CC or Pascal).

References to Products.

xii

This document often refers to the following products by their abbreviated
names:

• Relational Data Manipulation Language software is referred to as RDML.

• VAX C software is referred to as C.

• VAX Pascal and VAXELN Pascal software are referred to as Pascal. When
the use of a language statement is not the same in both the VAXELN and
VMS environments, that language is specified as VAXELN Pascal or VAX
Pascal.

• VAX RdbNMS and VAX Rdb/ELN relational database systems are referred
to as Rdb. When the use of an RDML statement is different for one
database system, that product is specified as RdbNMS or Rdb/ELN.

• VAX CDD/Plus software is referred to as the data dictionary or the
dictionary.

• VIDA software is referred to as VIDA.

1
Introduction

This chapter provides a brief overview of the Relational Data Manipulation
Language (RDML) and the RDML preprocessor.

1. 1 RDML Language
RDML, the language, is a set of data manipulation statements, clauses,
expressions, and functions that can be embedded in VAX C and VAX Pascal
programs to access an RdbNMS or Rdb/ELN database.

1. 1. 1 RDML Language Elements
The RDML language elements fall into five broad categories:

• Value expressions

• Conditional expressions

• Record selection expressions

• Statistical functions

• Clauses and statements

1. 1. 1. 1 Value Expressions A value expression is a symbol or string of
symbols used to calculate a value. Value expressions allow you to perform
arithmetic calculations on database values, so that, for example, you could
double each employee's salary by using one expression, rather than modifying
the value of each employee's salary one by one. Host language variables also
fall into the category of value expressions. By using host language variables
in your application you allow the end user to decide which value RdbNMS
will retrieve from the database. For a complete list and information on value
expressions, see Chapter 2.

Introduction 1-1

1. 1. 1.2 Conditional Expressions A conditional expression, sometimes
called a Boolean expression, represents the relationship between two value
expressions. Conditional expressions. can be used to retrieve a subset of records
from a relation on the basis of requirements you specify. For example, you can
specify that you want Rdb to return only those records in the EMPLOYEES
relation in which an employee's last name begins with S. For a complete list
and information on conditional expressions, see Chapter 3.

1. 1. 1.3 Record Selection Expressions A record selection expression (RSE)
is an expression that defines specific conditions individual records must meet
before Rdb includes them in a record stream. A record stream is a temporary
group of related records that satisfies the conditions you specify in the record
selection expression. With a record selection expression, you can specify that
you want Rdb to retrieve only those records in the EMPLOYEES relation that
have a corresponding record in the COLLEGES relation. For a complete list
and information on record selection expressions, see Chapter 4.

1. 1. 1.4 Statistical Functions Statistical functions calculate values based on
a value expression for every record in a record stream. Expressions that use
statistical functions are sometimes called aggregate expressions, because they
calculate a single value for a collection of records. For example, you could use
a statistical function to find the total number of employees in the database,
or the total number of employees in a department. For a complete list and
information on statistical functions, see Chapter 5.

1. 1.1.5 Clauses and Statements RDML clauses and statements are
the basic elements of the RDML language; they allow you to start and
end a transaction, step through a record stream, add new records, modify
existing records, or delete records. They are also the elements that can make
programming easier by providing standardized ways to define host language
variables and host language functions to hold database values. For a complete
list and information on RDML clauses and statements, see Chapter 6.

1. 1.2 RDML in the Rdb/VMS and Rdb/ELN Environments
All RDML language elements can be used in both RdbNMS and Rdb/ELN
environments. However, two RDML language elements have meaning only
within the Rdb/ELN environment. They are:

• The PREPARE statement

• The CONCURRENCY option of the START_ TRANSACTION statement

Both of these RDML language elements may be used in programs that access
an RdbNMS database; however, they will have no effect in that environment.

1-2 Introduction

1. 1.3 Data Definition and RDML
RDML does not include data definition statements. In order to perform data
definition tasks you must use:

• The SQL interactive environment, an SQL program, the Relational
Database Operator (RDO), or the Callable RDO program interface in the
RdbNMS environment. RDO and the SQL interactive environment are
interactive interfaces available to RdbNMS users. Callable RDO lets your
RDML program communicate with RdbNMS using a callable procedure,
RDB$INTERPRET. Calls to RDB$INTERPRET may be embedded in your
RDML program to perform data definition tasks. For more information on
using SQL, see the VAX SQL User's Guide. For more information on RDO,
see the VAX Rdb I VMS Guide to Data Manipulation. For more information
on Callable RDO, see the VAX Rdb/VMS Guide to Programming.

• ERDL, the Rdb/ELN data definition language (DDL) compiler in the
Rdb/ELN environment. By creating an Rdb/ELN DDL file on the Rdb!ELN
development system and processing it with ERDL, you can perform data
definition tasks. For more information on ERDL, see the VAX Rdb I ELN
Guide to Application Development.

l. 1.4 RDML Keywords and Naming Conventions
When you create a name for a context variable, database handle, or stream,
make sure you do not choose RDML keywords for these names. RDML
keywords are listed in Table 1-1. Also, do not use context variables or
database handle names that are the same as the name of a relation in your
database. You may, however, use field names that are the same as RDML
keywords or relation names.

Introduction 1-3

Table 1-1 RDML Keywords

ALPHABETIZED
AND
ANY
AS
ASC
ASCENDING
AT
AVERAGE
BASED
BATCH_ UPDATE
BETWEEN
BY
COMMIT
COMMIT_TIME
COMPILETIME
CONCURRENCY
CONSISTENCY
CONTAINING
COUNT
CROSS
DATABASE
DB KEY
DECLARE_STREAM
DECLARE_ VARIABLE
DEFAULT
DEFAULTS
DESC
DESCENDING
DIV
END
END_ERROR
END_FETCH
END_FOR
END_GET
END_MODIFY
END_STORE
END_STREAM
EQ

1.2 RDML Preprocessor

ERASE
ERROR
EVALUATING
EXCLUSIVE
EXTERN
EXTERNAL
FETCH
FILENAME
FINISH
FIRST
FOR
FROM
GE
GET
GLOBAL
GREATER_EQUAL
GREATER_ THAN
GT
IN
INVOKE
IS
LE
LENGTH
LESS_EQUAL
LESS_THAN
LOCAL
LT
MATCHING
MAX
MIN
MISSING
MODIFY
NE
NOT
NOT_EQUAL
NO WAIT
OF

ON
ON_ERROR
OR
OVER
PATHNAME
PREPARE
PROTECTED
RDB$LENGTH
RDB$MISSING
RDB$VALUE
READ
READY
READ_ONLY
READ_ WRITE
REDUCED
REQUEST_HANDLE
RESERVING
ROLLBACK
RUNTIME
SAME
SCOPE
SHARED
SORTED
STARTING
START_STREAM
START_TRANS
STORE
TO
TOTAL
TRANSACTION_HANDLE
UNIQUE
USING
VALUE
VERB_TIME
WAIT
WITH
WRITE

The RDML preprocessor converts RDML statements embedded in a VAX C or
VAX Pascal program into a series of equivalent DIGITAL Standard Relational
Interface (DSRI) calls to RdbNMS. Following successful preprocessing you can
submit your program to the host language compiler.

Note RDML/C programs are case sensitive. In addition to following the VAX C
conventions about the use of uppercase and lowercase, you must use uppercase

1-4 Introduction

for all RDML language elements in RDML/C programs. RDML/Pascal is not
case sensitive.

For ii;iformation on preprocessing, linking, and running an RDML program, see
the VAX Rdb I VMS Guide to Programming for RdbNMS applications or the
VAX Rdb I ELN Guide to Application Development for Rdb/ELN applications.

Introduction 1-5

2
RDML Value Expressions

This chapter describes the Relational Data Manipulation Language (RDML)
value expressions that can be used with embedded RDML statements in C and
Pascal programs.

The C and Pascal programs in this chapter access the sample personnel
database provided with RdbNMS and Rdb/ELN.

A value expression is a symbol or string of symbols used to calculate a value.
When you use a value expression in a statement, Rdb calculates the value
associated with the expression and uses it when executing the statement.

RDML Value Expressions 2-1

Format

value-expr =

-.........--- host-variabl e

ing
db-field
quoted-str
numeric-lit
statistical­
arithmetic­
missing-va
first-expr
concat-exp
db key
(-+ v

eral
expr
ex pr
lue

r

alue-expr
value-ex r -+ p

-+) -

Table 2-1 summarizes the function of each value expression.

Table 2-1 Value Expressions

Value Expression

Arithmetic

Concatenated

Database field

FIRST FROM

Host language
variable

2-2 RDML Value Expressions

Function

Combines arithmetic operators with numeric values, numeric
host language variables, and/or numeric database fields.

Consists of the concatenate operator (I) and two value
expressions. Joins the second value expression to the first value
expression.

Consists of a context variable and a field name. Use a context
variable as a temporary name for a relation. You define a context
variable in a record selection expression.

Returns the first value from the record stream, formed by a
record selection expression. Use to find the first record that
contains a value that you specify.

Holds data to be passed between your calling program and your
database system. A host language variable is a program variable
in your host language.

(continued on next page)

Table 2-1 (Cont.) Value Expressions

Value Expression Function

RDB$DB_KEY Returns a logical key to a specific record by using an internal
system pointer. Use to retrieve a specific record from the
database.

RDB$MISSING Returns the constant that is the missing value. If you use this
value to store or modify a field, it will be marked as empty. No
data will be stored in the field.

Statistical Uses functions, such as AVERAGE or MAX. Use to calculate
values based on a value expression for every record in a record
stream. Statistical expressions are described in Chapter 5.

RDML Value Expressions 2-3

Arithmetic Value Expression

2. 1 Arithmetic Value Expression

Use an arithmetic value expression to combine arithmetic operators with
numeric values, numeric host language variables, and database fields.

When you use an arithmetic value expression in a statement, Rdb calculates
the value associated with the expression and uses that value when executing
the statement. Therefore, an arithmetic expression must result in a value. If
either operand of an arithmetic expression is a missing value, the resultant
value also is missing.

Format

arith-expr =

1: numeric-value
numeric-host-var
numeric-db-field

Arguments
numeric-value
A numeric literal.

numeric-host-var

+ TI numeric-value -=J numeric-host-var
* numeric-db-field
I

A host language variable that holds a numeric value.

numeric-db-field

r

A database field (qualified with a context variable) that holds a numeric value.

+ - *I
Arithmetic operators. Table 2-2 lists the arithmetic operators and their
functions.

2-4 RDML Value Expressions

Arithmetic Value Expression

The concatenation operator. A concatenated expression is a value expression
that combines two other value expressions by joining the second to the end of
the first.

Table 2-2 Arithmetic Operators and Functions

Operator Function

+

*

Add

Subtract

Multiply

Divide I

Usage Notes
• The minus sign (-) is also used as the unary operator for negation.

• You do not have to use spaces to separate arithmetic operators from value
expressions.

• You can combine value expressions of any kind - including numeric
expressions, string expressions, and literals - with the concatenation
operator.

• You can use parentheses to control the order in which Rdb performs
arithmetic operations. Rdb evaluates arithmetic expressions in the
following order:

1 Value expressions in parentheses

2 Unary negation

3 Multiplication and division, from left to right

4 Addition and subtraction, from left to right

5 Concatenation, from left to right

RDML Value Expressions 2-5

Arithmetic Value Expression

Examples
Example 1

The following programs demonstrate the use of the multiplication (*)
arithmetic operator and the MODIFY statement. These programs select the
record of an employee in the SALARY_HISTORY relation with the specified
employee ID and with no value for the SALARY_END field. The purpose
of specifying the MISSING option for the SALARY_END field is to ensure
that the only salary amount affected is the employee's present salary. Next,
the employee's salary is multiplied by 1.1 to produce a 10% salary increase.
The MODIFY statement replaces the old value in this employee's SALARY_
AMOUNT field with the new value.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START_TRANSACTION READ_WRITE;

FOR SH IN SALARY HISTORY
WITH SH.EMPLOYEE ID = "00164"
AND SH.SALARY END MISSING

MODIFY SH USING
SH.SALARY AMOUNT = SH.SALARY AMOUNT * 1.1;

END_MODIFY;
END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program multiply (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START_TRANSACTION READ_WRITE;

FOR SH IN SALARY HISTORY
WITH SH.EMPLOYEE_ID = '00164'
AND SH.SALARY END MISSING

MODIFY SH USING
SH.SALARY AMOUNT := SH.SALARY AMOUNT * 1.1;

END_MODIFY;
END_FOR;

2-6 RDML Value Expressions

Arithmetic Value Expression

ROLLBACK;
FINISH;
end.

Example 2

The following programs demonstrate the use of the subtraction (-)
arithmetic operator, the CROSS clause, and the MODIFY statement. These
programs decrease a selected employee's salary by an amount you enter
from the keyboard while the program runs. To achieve this interactive
processing, these programs declare the host language variable, deduction,
with the DECLARE_ VARIABLE clause. For more information on the
DECLARE_ VARIABLE clause, see Chapter 6.

Additionally, the C program declares and uses a function named read_float.
This function (described in Appendix B) causes the program to prompt for, and
store, a value for deduction. The Pascal readln and writeln statements perform
a similar function.

After you enter a value for deduction, the programs join records from the
EMPLOYEES and SALARY_HISTORY relations over the common field,
EMPLOYEE_ID. This creates a record stream consisting of the records
specified by E.EMPLOYEE_ID that have no value stored in the SALARY_END
field. By specifying SALARY_END as MISSING, these programs will select
only the current SALARY_HISTORY record for the employee. The value of
deduction is subtracted from the selected employee's salary amount. The
MODIFY statement stores a value of 1 in the SALARY_AMOUNT field for that
employee.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

extern float read_float();
static DECLARE_VARIABLE deduction SAME AS SALARY_HISTORY.SALARY_AMOUNT;

main()
{

deduction= read_float("Amount to be deducted for malfeasance:");

READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES CROSS SH IN SALARY HISTORY
OVER EMPLOYEE_ID WITH E.EMPLOYEE_ID = "00164"
AND SH.SALARY END MISSING

MODIFY SH USING
SH.SALARY_AMOUNT = SH.SALARY_AMOUNT - deduction;

END_MODIFY;

RDML Value Expressions 2-7

Arithmetic Value Expression

END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program subtract (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
DECLARE VARIABLE deduction SAME AS SALARY_HISTORY.SALARY_AMOUNT;

begin

write ('Amount to be deducted for malfeasance:');
readln (deduction);

READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES CROSS SH IN SALARY HISTORY
OVER EMPLOYEE ID WITHE.EMPLOYEE ID= '00164' - -
AND SH.SALARY END MISSING

MODIFY SH USING
SH.SALARY AMOUNT := SH.SALARY AMOUNT - deduction;

END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
end.

2-8 RDML Value Expressions

Database Field Value Expression

2.2 Database Field Value Expression

Use the database field value expression to refer to specific database fields in
record selection expressions and in other value expressions.

Format

db-field-expr

-+ context-var

Arguments
context-var

-+ . -+ field-name

A context variable. A temporary name that you associate with a relation.
You define a context variable in a relation clause. See Chapter 4 for more
information.

field-name
The name of a field in a relation.

Usage Notes
• If you access several record streams at once, the context variable lets you

distinguish among fields from different records, even if different fields have
the same name.

• If you access several record streams at once that consist of the same
relation and fields within that relation, context variables let you
distinguish among the record streams.

• The context established by the context variable is valid during the
execution of the statement or clause in which the context variable is
declared. See Chapter 4 for more information on context variables.

RDML Value Expressions 2-9

Database Field Value Expression

Examples
Example 1

The following programs demonstrate the use of the database field value
.expression. These programs use the clause, FOR JIN JOBS, to declare the
context variable J. This allows the programs to use the database field value
expression, J.JOB_CODE, to mean the JOB_CODE field from the JOBS
relation. These programs search the JOB_CODE field for the string "APGM".
Any record that contains the specified string becomes part of the record stream.
These programs then use the context variable J to qualify the fields in the host
language print statements. The job title, minimum salary, and the maximum
salary for each record in the record stream are printed.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR J IN JOBS WITH J.JOB CODE = "APGM"
printf ("%s", J.JOB TITLE);
printf (" $%f", J.MINIMUM SALARY);
printf (" $%f\n", J.MAXIMUM_SALARY);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program fld value (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR JIN JOBS WITH J.JOB CODE= 'APGM'
writeln (J.JOB TITLE,

END_FOR;

' $',-J.MINIMUM_SALARY: 10 : 2,
$', J.MAXIMUM_SALARY: 10 : 2);

.2-lO RDML Value Expressions

Database Field Value Expression

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of a database field value
expression to qualify fields in a CROSS clause, a SORTED BY clause, and a
REDUCED TO clause of a record selection expression. These programs:

• Declare the context variables E for EMPLOYEES and SH for
SALARY_HISTORY

• Using a CROSS clause, join these two relations on the basis of
their common field, EMPLOYEE_ID (that is, E.EMPLOYEE_ID and
SH.EMPLOYEE_ID)

• Reduce the record stream so that the only values returned are unique
combinations of the values in SH.SALARY_AMOUNT, E.LAST_NAME, and
E.EMPLOYEE_ID

• Sort the record stream on the basis of the database fields, E.LAST_NAME,
SH.SALARY_AMOUNT, and E.EMPLOYEE_ID

• Display fields from the two relations

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY OVER EMPLOYEE_ID
REDUCED TO E.LAST_NAME, SH.SALARY_AMOUNT, E.EMPLOYEE_ID
SORTED BY E.LAST NAME, SH.SALARY AMOUNT, E.EMPLOYEE ID

printf ("%s "ii", E.EMPLOYEE ID); -
printf ("%s ", E.LAST NAME);
printf ("%f\n", SH.SALARY_AMOUNT);

END_FOR;

COMMIT;
FINISH;
}

RDML Value Expressions 2-11

Database Field Value Expression

Pascal Program

program two_rel (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY OVER EMPLOYEE_ID
REDUCED TO E.LAST_NAME, SH.SALARY_AMOUNT, E.EMPLOYEE_ID
SORTED BY E.LAST NAME, SH.SALARY AMOUNT, E.EMPLOYEE ID

writeln (E.EMPLOYEE_ID, E.LAST_NAME, ' ' SH.SALARY_AMOUNT:10:2);
END_FOR;

COMMIT;
FINISH;
end.

2-12 RDML Value Expressions

FIRST FROM Value Expression

2.3 FIRST FROM Value Expression

The FIRST FROM value expression causes Rdb to return the first record in
the record stream that matches the record selection expression specified in
the FIRST FROM value expression. If there are no matches, you receive a
run-time error.

Format

first-from-expr =

-+FIRST
4 handle-options

~ ., value-expr

____ ., rse

handle-options =

-+ (E REQUEST HANDLE ---+ var~) -+
TRANSACTION_HANDLE -+ var
REQUEST _HANDLE -+ var -+ ,)

L=+ TRANSACTION HANDLE -+ var

Arguments
handle-options
A transaction handle, a request handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled RdbNMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

RDML Value Expressions 2-13

FIRST FROM Value Expression

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle. identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
• The following statements (using Pascal) produce the same answer if there

is exactly one employee with the specified ID number:

GET statement with FIRST FROM value expression:

GET
id = FIRST E.STATE FROM E IN EMPLOYEES

WITHE.EMPLOYEE ID= '00176';
END_GET;

FOR statement with restrictive record selection expression:

FOR FIRST 1 E IN EMPLOYEES WITHE.EMPLOYEE ID= '00176'
writeln (E.STATE);

END_FOR;

writeln statement with a FIRST FROM expression with a host
language statement:

writeln (FIRST E.STATE FROM E IN EMPLOYEES
WITH E.EMPLOYEE_ID = '00176');

• However, Digital Equipment Corporation recommends that you use the
GET statement instead of the host language display statement. The GET
statement supports the ON ERROR clause and thereby allows you to trap
errors that might occur during the GET operation.

2-14 RDML Value Expressions

FIRST FROM Value Expression

Furthermore, when you use the GET statement, RDML generates its own
code to retrieve the ·database value; when you use a host language display
statement, RDML calls a function to retrieve the database value and
thereby increases the overhead associated with the query.

Examples
Example 1

The following programs demonstrate the use of the FIRST FROM value
expression. These programs find and print the first occurrence of a supervisor
ID that is the same as the specified employee ID from the CURRENT_JOB
relation.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE VARIABLE id SAME AS PERS.CURRENT_JOB.EMPLOYEE_ID;

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

GET
id= FIRST CJ.SUPERVISOR ID FROM CJ IN CURRENT JOB

WITH CJ.EMPLOYEE ID = "00200"
SORTED BY CJ.EMPLOYEE_ID;

END_GET;

printf ("Id is %s", id);

COMMIT;
FINISH;
}

Pascal Program

program first_value (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

DECLARE VARIABLE id SAME AS PERS.CURRENT_JOB.EMPLOYEE_ID;

begin
READY PERS;
START TRANSACTION READ_ONLY;

RDML Value Expressions 2-15

FIRST FROM Value Expression

GET
id FIRST CJ.SUPERVISOR ID FROM CJ IN CURRENT JOB

WITH CJ.EMPLOYEE ID= '00200'
SORTED BY CJ.EMPLOYEE_ID;

END_GET;

writeln (id);

COMMIT;
FINISH;
end.

Example 2

The folloWing programs demonstrate the use of the FIRST FROM value
expression. The programs find the first record in the JOBS relation with
the value "Company President" in the JOB_TITLE field. Using this record's
value for JOB_CODE, these programs create a record stream that contains
the records in the CURRENT_JOB relation that have this same job code. The
programs print the value that the first record from this record stream holds in
the LAST_NAME field.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE name SAME AS PERS.CURRENT_JOB.LAST_NAME;
main()
{

READY PERS;
START TRANSACTION READ_ONLY;

GET
name = FIRST CJ.LAST NAME FROM CJ IN CURRENT JOB

END_GET;

WITH CJ.JOB CODE = FIRST J.JOB CODE FROM J IN JOBS
WITH J.JOB TITLE = "Company President"
SORTED BY CJ.JOB_CODE;

printf ("Last name is %s", name);

COMMIT;
FINISH;
}

2-16 RDML Value Expressions

FIRST FROM Value Expression

Pascal Program

program first_val (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

DECLARE VARIABLE name SAME AS PERS.CURRENT_JOB.LAST_NAME;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

GET
name =

END_GET;

FIRST CJ.LAST_NAME FROM CJ IN CURRENT_JOB
WITH CJ.JOB CODE =FIRST J.JOB CODE FROM J IN JOBS
WITH J.JOB_TITLE = 'Company President'
SORTED BY CJ.JOB_CODE;

writeln ('Last name is: ', name);

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the FIRST FROM value
expression and the SORTED BY clause in a record selection expression. The
programs sort (in alphabetical order) the records in the CURRENT_JOB
view, based on the sort key DEPARTMENT_CODE. JOB_CODE is the second
sort key, so RDML arranges (alphabetically) those records with different
values for the JOB_CODE field that have the same value stored in the
DEPARTMENT_CODE field. EMPLOYEE_ID is the third sort key, so RDML
arranges (in ascending numerical order) those records with different values for
the EMPLOYEE_ID field that have the same value stored in the JOB_CODE
field.

The first print statement displays the EMPLOYEE_ID and the LAST_NAME
fields of the sorted records. A GET statement retrieves records from a
record stream created by joining the DEPARTMENTS relation with the
CURRENT_JOB view over the DEPARTMENT_CODE field. The FIRST
statement selects the first record from the record stream in which the
department code in the DEPARTMENTS relation is the same as the
department code for a record in the sorted CURRENT_JOB view. The
print statement displays the department name of this selected record.

RDML Value Expressions 2-17

FIRST FROM Value Expression

A third record stream is created by joining the JOBS relation with the
CURRENT_JOB view over the JOB_CODE field. The FIRST FROM statement
selects the first record from the JOBS relation in which the job code in
the JOBS relation is the same as the job code for a record in the sorted
CURRENT_JOB view. The print statement displays the job title of this
selected record.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE name SAME AS PERS.DEPARTMENTS.DEPARTMENT_NAME;
DECLARE VARIABLE title SAME AS PERS.JOBS.JOB_TITLE;

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR CJ IN CURRENT JOB
SORTED BY CJ.DEPARTMENT CODE, CJ.JOB CODE, CJ.EMPLOYEE ID

printf ("%s %s\n",CJ.EMPLOYEE_ID~ CJ.LAST_NAME);

GET
name = FIRST D.DEPARTMENT NAME FROM D IN DEPARTMENTS

WITH D.DEPARTMENT_CODE = CJ.DEPARTMENT_CODE;

title FIRST J.JOB TITLE FROM J IN JOBS
WITH J.JOB CODE CJ.JOB_CODE;

END_GET;

printf ("Department name is: %s\n", name);
printf ("Title is: %s\n\n", title);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program first_comp (input, output);
DATABASE PERS= FILENAME 'PERSONNEL';

DECLARE VARIABLE name SAME AS PERS.DEPARTMENTS.DEPARTMENT_NAME;
DECLARE VARIABLE title SAME AS PERS.JOBS.JOB_TITLE;

2-18 RDML Value Expressions

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR CJ IN CURRENT JOB

FIRST FROM Value Expression

SORTED BY CJ.DEPARTMENT_CODE, CJ.JOB_CODE, CJ.EMPLOYEE_ID
writeln (CJ.EMPLOYEE_ID, ' ', CJ.LAST_NAME);

GET
name FIRST D.DEPARTMENT NAME FROM D IN DEPARTMENTS

WITH D.DEPARTMENT_CODE = CJ.DEPARTMENT_CODE;

title FIRST J.JOB TITLE FROM J IN JOBS
WITH J.JOB_CODE = CJ.JOB_CODE;

END_ GET;

writeln ('Department name is: ', name);
writeln ('Title is: ', title);
writeln;

END_FOR;

COMMIT;
FINISH;
end.

RDML Value Expressions 2-19

Host Language Variable Value Expression

2.4 Host Language Variable Value Expression

Use a host language variable value expression to pass data between a calling
program and Rdb.

Format

C-host-variable =

vax-name
-+ field-identifier

--C: expression .___T]
'

"->" ---. field-identifier

Pascal-host-variable =

vax-name
-+ field-identifier

--C: expression

field-identifier

Arguments
vax-name
A valid VAX name.

field-identifier
A valid host language field identifier.

2-20 RDML Value Expressions

Host Language Variable Value Expression

expression
An expression that resolves to a valid host language array element in C or
Pascal. May include an RDML arithmetic operator. However, host language
operators, such as ++ and -- in C or DIV in Pascal are not supported.

"--+,,

The C pointer symbol. It is shown in quotes to distinguish it from the arrows
that show the logical flow of the syntax. Do not use quotes around the pointer
symbol in your program.

Usage Notes
• Host language variables can be:

Simple names, such as HEIGHT and NAME

Record fields, such as Pl.TERMINAL

Pointers, such as PTA and TREEA .NOD EN AME in Pascal, or
TREE--+NODENAME in C

Array elements, such as A[l] and B [Il, (12-1)*2] in Pascal,
B[Il][(I2-1)*2] in C

• You can use host language variables in record selection expressions.

• You can use host language variables as names to represent databases
and database elements. These names are called handles. See Section 6.4,
Section 6.20, and Section 6.27 for more information.

• You can declare a host language variable by referring to a database field
with a DECLARE_ VARIABLE clause. See Section 6.6 for details.

• When using C:

Be certain that text string variables are the same length as the text
field in which you are storing them. Pad strings that are shorter than
the text field with blank spaces; truncate strings that are longer than
the text field.

Because the DECLARE_ VARIABLE clause provides an extra character
for null termination of character string variables, you may terminate
text string variables with the null character in C programs. For
example, if the field is defined as "DATATYPE IS TEXT SIZE IS 10",
then the first ten characters of the text string variable must be valid
data, and the eleventh may be the null character.

RDML Value Expressions 2-21

Host Language Variable Value Expression

Examples

General host language array elements such as [(int)(etype)] can not be
used in RSEs.

Example 1

The following programs demonstrate the use of a host language variable
value expression. These programs declare a host language variable, badge,
to hold the value of an employee ID. You enter the value of badge from the
keyboard as the program runs. These programs declare badge using the
DECLARE_ VARIABLE clause. See Chapter 6 for more information on the
DECLARE_ VARIABLE clause.

Additionally, the C program declares and uses a function named read_string.
This function causes the program to prompt for, and store, a value for badge.
See Appendix B for the source code and more information on read_string. The
Pascal readln and writeln statements perform a similar function.

The programs find the employee in the EMPLOYEES relation with an ID
that is the same as the value of the host language variable. The MODIFY
statement stores a new value for that employee's status code.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

extern void read_string();
static DECLARE VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

main ()
{

read_string ("Employee ID: ",badge, sizeof(badge));

READY PERS;
START TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE ID badge
MODIFY E USING

strcpy(E.STATUS_CODE,"1");
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
}

2-22 RDML Value Expressions

Host Language Variable Value Expression

Pascal Program

program modify_with_host (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

var
DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

begin
write ('Employee ID: ');
readln (badge);

READY PERS;
START TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE ID badge
MODIFY E USING

E.STATUS CODE := '1';
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
end.

Example 2

The following programs demonstrate the use of the host language variable
value expression. As in Example 1, the programs declare host language
variables with the DECLARE_ VARIABLE clause and prompt for user input at
run time.

The programs create a record stream that contains all the employee records in
the EMPLOYEES relation with a status code equal to the value stored in the
host language variable, stat_code. The programs print the employee ID, first
name, and last name of these employees.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
static DECLARE VARIABLE stat code SAME AS EMPLOYEES.STATUS_CODE;

main()
{

read_string("Status Code: ",stat_code,sizeof(stat_code));

READY PERS;
START TRANSACTION READ_ONLY;

RDML Value Expressions 2-23

Host Language Variable Value Expression

FOR E IN EMPLOYEES WITH E.STATUS CODE stat code
printf ("%s %s %s\n\n",

E.EMPLOYEE_ID,
E.FIRST_NAME,
E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program host_var (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

var
DECLARE VARIABLE stat code SAME AS EMPLOYEES.STATUS_CODE;

begin

write ('Status Code: ');
readln (stat_code);

READY PERS;
START_TRANSACTION READ_ONLY;

FORE IN EMPLOYEES WITH E.STATUS CODE = stat code
writeln (E.EMPLOYEE_ID,

END_FOR;

COMMIT;
FINISH;
end.

Example 3

- -
E.FIRST_NAME, I I E. LAST_NAME);

The following programs demonstrate the use of a host language variable value
expression as a transaction handle. See Section 6.27 for more information
on transaction handles. These programs declare the host language variable,
EMP _UPDATE. The programs use EMP _UPDATE to qualify the transaction
in the START_TRANSACTION statement, the record selection expression,
and the COMMIT statement. The record selection expression modifies the
record with the specified ID number in the EMPLOYEES relation. The
COMMIT statement, also qualified with the transaction handle, ensures that
the modified record is stored in the database.

The C program uses the function pad_string to append trailing blanks to
the LAST_NAME field. This ensures that the last name matches the length
defined for the field. For more information and the source code for pad_string,
see Appendix B.

2-24 RDML Value Expressions

Host Language Variable Value Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{

int EMP_UPDATE = 0;

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE EMP_UPDATE) READ_WRITE;

FOR (TRANSACTION_HANDLE EMP_UPDATE) E IN EMPLOYEES
WITH E.EMPLOYEE ID = "00178"

MODIFY E USING
pad_string("Brannon", E.LAST_NAME, sizeof(E.LAST_NAME));

END_MODIFY;
END_FOR;

COMMIT(TRANSACTION_HANDLE EMP_UPDATE);
FINISH;
}

Pascal Program

program trhand (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var EMP UPDATE : [volatile] integer := O;

begin

READY PERS;
START TRANSACTION (TRANSACTION_HANDLE EMP_UPDATE) READ_WRITE;

FOR (TRANSACTION_HANDLE EMP_UPDATE) E IN EMPLOYEES
WITHE.EMPLOYEE ID= '00178'

MODIFY E USING
E.LAST NAME := 'Brannon';

END_MODIFY;
END_FOR;

COMMIT (TRANSACTION_HANDLE EMP_UPDATE);
FINISH;
end.

RDML Value Expressions 2-25

RDB$DB_KEY Value Expression

2.5 RDB$DB_KEY Value Expression

The RDB$DB_KEY (database key or dbkey) value expression lets you retrieve
a specific record from the database using an internal system pointer. The
database key is a logical pointer that indicates a specific record in the database.
You can retrieve this key as though it were a field in the record. Once you have
retrieved the database key, you can use it to retrieve its associated record
directly, as part of a record selection expression. The database key gives you
the ability to keep track of a subset of records in the database and retrieve
them directly.

Format

db-key=

--. context-var

Argument
context-var

--. . --. RDB$DB KEY --+

A context variable. A temporary name that you associate with a relation. You
define a context variable in a relation clause.

Usage Notes
• The database key reference must be within the scope of the context variable

in the source code. RDML determines which relation the RDB$DB_KEY
refers to from the context variable that you use.

• The scope of the database key can be either the COMMIT or FINISH
statement. When the scope is COMMIT, the database key is valid for as
long as the transaction in which it is retrieved is active. When the scope is
FINISH, the database key is valid for the duration of the database attach
in which it is retrieved. By default, the scope is COMMIT.

2-26 RDML Value Expressions

RDB$DB_KEV Value Expression

• You should use the RDB$DB_KEY value expression only if you have to
repeatedly access the same records. For example, you may sort employees
by seniority and use the database key for each employee. as a way of
moving back and forth within the list of sorted employees.

• In conjunction with a GET statement, you can retrieve the database key
of a record being stored by 1,lsing this expression as part of a STORE
statement.

Examples
Example 1

The following programs demonstrate the use of the RDB$DB_KEY value
expression in a record selection expression. The programs sort the
EMPLOYEES relation in ascending order of employee ID. Then, using the
first 100 records from the EMPLOYEES relation, the programs build two
arrays: rdb_key _array and rdb_name_array. In building these arrays within
a FOR statement, these programs create a one-to-one correspondence between
the elements in the rdb_key_array and the rdb_name_array. Each time a new
element is added to each of these arrays, the next EMPLOYEES record from
the sorted stream is printed.

This one-to-one correspondence allows the programs to step through the
EMPLOYEES records directly. This is demonstrated in the second FOR
statement. The second FOR statement loops through the rdb_key _array in
reverse order; each time the address of an array element in rdb_key _array is
incremented, an EMPLOYEES record is accessed and printed, also in reverse
order.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

DECLARE VARIABLE rdb_key_array[lOO] SAME AS EMPLOYEES.RDB$DB_KEY;
DECLARE VARIABLE rdb_name_array[100] SAME AS EMPLOYEES.LAST_NAME;

int cnt = 0;

READY PERS;

START TRANSACTION READ_ONLY;

RDML Value Expressions 2-27

RDB$DB_KEY Value Expression

FOR FIRST 100 E IN EMPLOYEES SORTED BY E.EMPLOYEE_ID
rdb key array[cnt] = E.RDB$DB KEY;
strcpy (rdb name array[cnt], E.LAST NAME);
printf("%s = lst-pass\n", E.LAST_NAME);
++cnt;

END_FOR;

for (cnt = --cnt; cnt >= 0; --cnt)
FOR E IN EMPLOYEES
WITH E.RDB$DB KEY= rdb key array[cnt]

if (strcmp(E.LAST-NAME, rdb name array[cnt]) != O
printf ("%s DOES-NOT MATCH-%s\nn,

E.LAST NAME, rdb name array[cnt]);
else printf("%s - 2nd-pass\n", E-:-LAST=NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program db_key (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

type

var

Rdb_Key_Type = BASED ON EMPLOYEES.RDB$DB_KEY;
Rdb_Name_Type BASED ON EMPLOYEES.LAST_NAME;

Rdb_Key_Array ARRAY [1 .. 101] OF Rdb_Key_Type;
Rdb_Name_Array ARRAY [1 .. 101] OF Rdb_Name_Type;
Cnt : INTEGER ·= 1;

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR FIRST 100 E IN EMPLOYEES SORTED BY E.EMPLOYEE ID
Rdb_Key_Array[Cnt] := E.RDB$DB_KEY;
Rdb_Name_Array[Cnt] := E.LAST_NAME;
WRITELN(E.LAST_NAME, ' - 1st pass');
Cnt := Cnt + 1;

END_FOR;

2-28 RDML Value Expressions

RDB$DB_KEY Value Expression

for Cnt := Cnt - 1 downto 1 do
FOR E IN EMPLOYEES
WITH E.RDB$DB KEY = Rdb Key array[Cnt]

if E.LAST_NAME <> Rdb_Name_Array[Cnt]
then

else

writeln (E.LAST_NAME, 'DOES NOT MATCH',
Rdb_Name_Array[Cnt])

writeln (E.LAST_NAME, ' - 2nd pass');
END_FOR;

COMMIT;
FINISH;
end.

RDML Value Expressions 2-29

RDB$MISSING Value Expression

2.6 RDB$MISSING Value Expression

The RDB$MISSING value substitutes the missing value (if one was defined)
for a specified database field.

To use RDB$MISSING, you must have previously defined a missing value for
the field when you defined the database. If a field is left blank, or you use
RDB$MISSING without having defined a missing value for that field in its
field definition, RDML issues an error.

For information on how to define a missing value for a field, see the
documentation for your database system. If you are using RdbNMS, see
the VAX Rdb/VMS Guide to Database Design and Definition. If you are using
Rdb/ELN, see the Define Field section in the VAX Rdb/ELN Reference Manual.

Format

missing-value =

----+ RDB$MISSING

context-var. field-name
relation-name . field-name

..

db-handle . relation-name . field-name

Arguments
context-var
A context variable. A temporary name that you associate with a relation. You
define a context variable in a relation clause.

field-name
The name of a field in a relation.

relation-name
The name of a relation in a database.

2-30 RDML Value Expressions

RDB$MISSING Value Expression

db-handle
A database handle. A host language variable that identifies a database.

Usage Notes
• There is no default missing value.

• Use the RDB$MISSING value expression as though it is a constant in the
host language.

• Do not use the RDB$MISSING expression to test for the presence of
values. Rather, you should use the MISSING conditional expression.

• During a STORE operation, instead of using RDB$MISSING to mark
a field as empty, you can simply exclude this field from the STORE
statement. When you retrieve the record that contains this field, the
missing value associated with the field will be returned. However, you
cannot use this method, nor RDB$MISSING, if the field has the validation
clause ''VALID IF NOT MISSING".

• The value of RDB$MISSING is set at preprocessing time. If you redefine
the missing value for a field and do not preprocess the program with the
RDB$MISSING value expression, your program actually stores the old
value rather than marking the field as empty. Note that the MISSING
conditional expression checks the missing value for a field at run time.

Examples
Example 1

The following programs demonstrate the use of the RDB$MISSING value
expression with the STORE statement. The programs store the specified
values for the fields in the DEGREES relation. In these programs, a value
for DEGREE_FIELD is not specified; instead, the RDB$MISSING value
expression is specified. This does not actually assign a value to the degree
field; RDML marks the DEGREE_FIELD as empty and stores nothing in this
field.

The C program uses the function pad_string to append trailing blanks to the
strings before they are stored. This ensures that the strings match the length
defined for the fields. For more information and the source code for pad_string,
see Appendix B.

RDML Value Expressions 2-31

RDB$MISSING Value Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{

READY PERS;
START TRANSACTION READ_WRITE;

STORE D IN DEGREES USING
pad_string ("76156", D.EMPLOYEE_ID, sizeof(D.EMPLOYEE_ID));
pad_string ("HVDU" , D.COLLEGE_CODE, sizeof(D.COLLEGE_CODE));
D.YEAR_GIVEN = 1978;
pad_string ("BA", D.DEGREE, sizeof(D.DEGREE));
pad string (RDB$MISSING(D.DEGREE FIELD),D.DEGREE FIELD,

- sizeof(D.DEGREE_FIELD)); -
END_STORE;

ROLLBACK;
FINISH;
}

Pascal Program

program store_missing (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_WRITE;

STORE D IN DEGREES USING
D.EMPLOYEE_ID := '76156';
D.COLLEGE_CODE := 'HVDU';
D.YEAR_GIVEN := 1978;
D.DEGREE := 'BA';
D.DEGREE FIELD := RDB$MISSING(D.DEGREE_FIELD);

END_STORE;

ROLLBACK;
FINISH;
end.

Example 2

The following programs demonstrate the use of the RDB$MISSING value
expression with the MODIFY statement and the COUNT statistical expression.
The programs print an introductory statement before attaching to the
database.

2-32 RDML Value. Expressions

RDB$MISSING Value Expression

The record selection expression crosses the SALARY _HISTORY and
EMPLOYEES relations over the common EMPLOYEE_ID field. The COUNT
function limits the record stream to those records in the EMPLOYEES relation
with five or more corresponding records in the SALARY_HISTORY relation.
The programs print the last name of the employees in this record stream.

Using the MODIFY statement, the programs mark the STATUS_CODE field as
empty for the employees in the record stream (no value is stored in the field).
However, the ROLLBACK statement undoes all changes to the database, and
all the fields remain as they were before the program began.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_WRITE;

printf ("Impose early retirement on all employees with\n");
printf ("5 or more salary history records\n");

FOR E IN EMPLOYEES
WITH (COUNT OF SH IN SALARY_HISTORY
WITH SH.EMPLOYEE ID = E.EMPLOYEE ID >= 5)

printf ("%s is being forced to retire early\n", E.LAST_NAME);
MODIFY E USING

strncpy(E.STATUS_CODE, RDB$MISSING (E.STATUS_CODE), 1);
END_MODIFY;

END_FOR;

printf ("Only fooling ... Let's rollback and forget it.\n");

ROLLBACK;
FINISH;
}

Pascal Program

program missing_with_modify (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin

writeln ('Impose early retirement on all employees with');
writeln ('5 or more salary history records');

READY PERS;
START TRANSACTION READ_WRITE;

RDML Value Expressions 2-33

RDB$MISSING Value Expression

FOR E IN EMPLOYEES
WITH (COUNT OF SH IN SALARY_HISTORY
WITH SH.EMPLOYEE ID = E.EMPLOYEE ID >= 5)

writeln (E.LAST_NAME, ' is being forced to retire early');
MODIFY E USING

E.STATUS CODE := RDB$MISSING (E.STATUS_CODE);
END_MODIFY;

END_FOR;

writeln ('Only fooling ... Let''s rollback and forget it.');

ROLLBACK;
FINISH;
end.

2-34 RDML Value Expressions

3
RDML Conditional Expressions

This chapter describes the Relational Data Manipulation Language (RDML)
conditional expressions that can be used with embedded RDML statements in
C and Pascal programs.

The C and Pascal programs in this chapter access the sample personnel
database available with RdbNMS.

A conditional expression, sometimes called a Boolean expression, represents
the relationship between two value expressions. Conditional expressions are
used in the WITH clause of the record selection expression.

The value of a conditional expression is true, false, or missing. If there is no
value stored in a field of a record, then the relationship of that field to others
is unknown. Therefore, the results of comparisons that use that field are
considered missing.

A missing value for a field in a relation has no value associated with it. The
missing value is an attribute of a field rather than a value stored in a field.

RDML Conditional Expressions 3-1

The three types of conditional expressions are:

• Those that express a relationship between two value expressions, using a
relational operator

For example, the expression SH.SALARY_AMOUNT > 50000 is true if the
value in the SALARY_AMOUNT field of the SALARY_HISTORY record is
greater than 50,000. When Rdb evaluates this expression, it examines the
relationship between the two value expressions, SH.SALARY_AMOUNT
and 50,000. If the value in the SALARY_AMOUNT field of a record is
MISSING, then that record is not included in the record stream.

• Those that express a characteristic of a single value expression

For example, E.STATE MISSING is true if there is no value in the STATE
field of an EMPLOYEES record.

• Those that express a relationship among three value expressions

For example, E.MIDDLE_INITIAL BETWEEN "A" AND "N".

Format

conditional-expr
1--------- NOT --. conditional-expr

conditional-expr
conditional-expr

conditional-expr =

+ AND --. conditional-expr
+ OR --. conditional-expr

--.....-• value-expr --. re -operator --. value-expr

e

any-clause
between-clause
containing-claus
matching-clause
missing-clause
starting-with-clau
unique-clause

se

3-2 RDML Conditional Expressions

__..
--,,
__..
~ ...
.......
- ...
.......
~ ...
....... ...
__.. ...
~

_..
......

rel-operator =

Arguments
NOT
AND
OR

<>
GT
>
GE
>=
LT
<
LE
<=

Logical operators that combine conditional expressions. The result of such a
combination is also a conditional expression.

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

rel-operator
A relational operator. Controls the comparison of value expressions. In all
cases, if either operand in a relational expression is missing, the value of the
condition is missing.

Usage Notes
• Rdb compares character string literals according to the ASCII collating

sequence (Rdb does not support the DEC multinational character set). Rdb
considers lowercase letters to have a greater value than uppercase letters
and the letters near the beginning of the alphabet to have a lesser value
than those near the end.

RDML Conditional Expressions 3-3

"a">"A"

"b"> "Z"

"a"< "z"

"A"<"Z"

• The RDML preprocessor evaluates conditional expressions in the following
order:

NOT
AND
OR

You can use parentheses to alter this default order of evaluation.

• Table 3-1 is a truth table for complex conditional expressions that use
logical operators. For example, if conditional expression A is true and Bis
missing, then "A AND B" is evaluated as missing.

Table 3-1 Conditional Expression Truth Table

NOT AND OR
Values of A and B Condition Condition Condition

A B NOTA AANDB AORB

True True False True True

True False False False True

True Missing False Missing True

False True True False True

False False True False False

False Missing True False Missing

Missing Missing Missing Missing Missing

Table 3-2 describes the function of each type of conditional expression.

3-4 RDML Conditional Expressions

Table 3-2 Values Returned by Conditional Expressions

Conditional
Expression Values

ANY True if the record stream specified by the record
selection expression (RSE) includes at least one
record.

BETWEEN True if the first value expression is equal to or
between the second and third value expressions.

CONTAINING True if the string specified by the second string
expression is found within the string specified by
the first. Case insensitive.

MATCHING True if the second expression matches a substring
of the first value expression. MATCHING allows
you to use the asterisk (*) to specify a string of
any characters, and the percent character (%) to
specify a single character. Case insensitive.

MISSING True if the specified value expression is missing.

Relational operator

STARTING WITH

UNIQUE

Examples
Example 1

True if the first and second value expressions
are found in the relationship specified by the
relational operator.

True if the characters of the first string expression
match the second string expression. Case
sensitive.

True if the record stream specified by the record
selection expression (RSE) consists of exactly one
record.

The following programs demonstrate the use of a FOR loop with a conditional
expression. The conditional expression limits the records contained in the
record stream, and compares the SALARY_AMOUNT field name to the host
language variable (limit).

The record stream consists of all records in which the result of the comparison
is true. Figure 3-1 shows the relationship of the conditional expression to the
record selection expression.

RDML Conditional Expressions 3-5

Figure 3-1 Conditional Expression Component of an RSE

FOR SH IN SALARY HISTORY WITH SH.SALARY AMOUNT GT LIMIT
- I - I

I
conditional expression

record selection expression

ZK-7549-GE

Notice that the host language variable in these programs receives its value
at run time through interactive processing. The C program uses the function,
read_float, to receive and store the value for the host language variable. See
Appendix B for the source code and details on using this function. The Pascal
program uses the writeln and readln statements to produce similar results.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern float read float();
static DECLARE VARIABLE limit SAME AS SALARY_HISTORY.SALARY_AMOUNT;

main()
{

limit read_float("Salary limit: ");

READY PERS;
START TRANSACTION READ_ONLY;

FOR SH IN SALARY HISTORY WITH SH.SALARY AMOUNT GT limit
printf ("$%f\n", SH.SALARY_AMOUNT);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program cond exp (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

var
DECLARE VARIABLE limit SAME AS SALARY_HISTORY.SALARY_AMOUNT;

begin

3-6 RDML Conditional Expressions

write ('Salary limit: ');
readln (limit);

READY PERS;
START TRANSACTION READ_ONLY;

FOR SH IN SALARY HISTORY WITH SH.SALARY AMOUNT GT limit - -
writeln ('$', SH.SALARY_AMOUNT:10:2);

END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs combine several conditional expressions using the
AND, NOT, and CONTAINING expressions. If, for a given record, the first,
second, and third conditions are all true, that record becomes part of the record
stream defined by the FOR statement. The programs print the names of the
colleges that meet the specified conditions.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR C IN COLLEGES
WITH C.COLLEGE NAME NOT CONTAINING "UNIV"
AND C.COLLEGE NAME NOT CONTAINING "COLLEGE"
AND C.COLLEGE NAME NOT CONTAINING "ACADEMY"

printf ("%s\n", C.COLLEGE_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program cond_and_bool (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

RDML Conditional Expressions 3-7

FOR C IN COLLEGES
WITH C.COLLEGE NAME NOT CONTAINING 'UNIV'
AND C.COLLEGE NAME NOT CONTAINING 'COLLEGE'
AND C.COLLEGE NAME NOT CONTAINING 'ACADEMY'

writeln (C.COLLEGE_NAME);
END_FOR;

COMMIT;
FINISH;
end.

3-8 RDML Conditional Expressions

ANY Conditional Expression

3. 1 ANY Conditional Expression

The ANY conditional expression tests for the presence of any record in a record
stream.

An ANY conditional expression is true if the record stream specified by the
record selection expression includes at least one record. If you precede the
ANY expression with the optional NOT qualifier, the condition is true if no
records are in the record stream.

Format

any-clause =

--~----~--.- ANY -..,.~--11.,__-------.--------.
~ NOT ~ L-. handle-options J

'----------_...- rse

handle-options =

-+ (E REQUEST HANDLE ---. var~) -+
TRANSACTION HANDLE -+ var
REQUEST HANDLE -+ var -+ ,)

G TRANSACTION_HANDLE -+var

Arguments
handle-options
A request handle, transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled RdbNMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

RDML Conditional Expressions 3-9

ANY Conditional Expression

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

rse
A record selection expression. A clause that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Examples
Example 1

The following programs demonstrate the use of the NOT ANY conditional
expression. The programs join the EMPLOYEES and DEGREES relations over
their common EMPLOYEE_ID field. The NOT ANY expression finds those
employees who do not have an employee ID stored in a DEGREES record (and
therefore, either do not have a degree or this information has not been added
to the database). Then the programs print the last names of those employees.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH NOT ANY D IN DEGREES WITH D.EMPLOYEE ID = E.EMPLOYEE ID

printf ("%s \n",E.LAST_NAME); -
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program any_with_not (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START_TRANSACTION READ_ONLY;

3-1 O RDML Conditional Expressions

ANY Conditional Expression

FOR E IN EMPLOYEES
WITH NOT ANY D IN DEGREES WITH D.EMPLOYEE ID E.EMPLOYEE ID

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the ANY conditional expression.
The programs create a record stream that contains all the records from the
SALARY_HISTORY relation that hold a value greater than 50,000 in the
SALARY_AMOUNT field. The informational message "Someone is not
underpaid" is printed if one or more records are found that meet the previously
stated condition. Note that the print statements in these examples do not have
access to the context variable created in the GET statement.

C Program

#include <stdio.h>

DATABASE PERS = FILENAME "PERSONNEL";

int who;

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

GET
who = ANY SH IN SALARY HISTORY WITH SH.SALARY AMOUNT > 50000.00;

END_GET;

COMMIT;

if (who)
printf ("Someone is not underpaid \n");

FINISH;
}

RDML Conditional Expressions 3-11

ANY Conditional Expression

Pascal Program

program anycond (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

who : boolean;

begin
READY PERS;
START TRANSACTION READ_WRITE;

GET
who = ANY SH IN SALARY HISTORY WITH SH.SALARY AMOUNT > 50000.00

END_GET;

COMMIT;

if (who) then
writeln ('Someone is not underpaid.');

FINISH;
end.

3-12 RDML Conditional Expressions

BETWEEN Conditional Expression

3.2 BETWEEN Conditional Expression

The BETWEEN conditional expression creates a record stream that contains
records with values that fall within a range you specify.

This expression is true if the first value expression is equal to or between the
second and third value expressions (inclusive). If you precede the BETWEEN
expression with the optional NOT qualifier, the condition is true if no records
are within the range you specify in the second and third value expressions.

The BETWEEN conditional expression orders records in ascending order by
default. For information on sorting records, see Section 4.6.

Format

between-clause=

----+ value-expr

G value-expr

Argument
value-expr

~ ~. BETWEEN~
~ NOT_J .,. _J

--+ AND --+ value-expr

A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

Usage Notes
• Value expressions that are string literals must be enclosed in quotes.

Use double quotes (" ") in C programs. Use single quotes (' ') in Pascal
programs.

• Value expressions that are numeric literals must not be enclosed in quotes.

RDML Conditional Expressions 3-13

BETWEEN Conditional Expression

• Dates are stored in the database in an encoded binary format. Therefore,
when using. the BETWEEN conditional expression with dates, your
application must first convert the dates to a binary format. See Section 4.1
for an example of a date conversion.

Examples
Example 1

The following programs demonstrate the use of the BETWEEN conditional
expression with a numeric field. These programs form a record stream that
consists of all the records in the CURRENT _SALARY relation where the
SALARY_AMOUNT field contains a value greater than or equal to 10,000 and
less than or equal to 20,000. These programs print the last name and salary
from each of the records in the record stream.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_WRITE;

FOR CS IN CURRENT SALARY
WITH CS.SALARY AMOUNT
BETWEEN 10000.00 AND 20000.00

printf ("%s %f\n", CS.LAST_NAME, CS.SALARY_AMOUNT);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program between numeric (input, output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR CS IN CURRENT SALARY
WITH CS.SALARY AMOUNT
BETWEEN 10000.00 AND 20000.00

writeln (CS.LAST_NAME, CS.SALARY AMOUNT :10:2);
END_FOR;

3-14 RDML Conditional Expressions

BETWEEN Conditional Expression

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the BETWEEN conditional
expression with a text string field. The programs form a record stream
that consists of all the records in the EMPLOYEES relation where the
LAST_NAME field begins with any letter between "A" and "M". Note that any
last name that begins with an "M" is not within this range (unless the entire
last name is "M"). The programs then print the last name contained in each
record in the record stream.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES
WITH E.LAST NAME BETWEEN "A" AND "M"

printf ("%s\n", E.LAST_NAME);
END FOR

COMMIT;
FINISH;
}

Pascal Program

program between_alphabetic (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST NAME BETWEEN "A" AND "M"

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

RDML Conditional Expressions 3-15

CONTAINING Conditional Expression

3.3 CONTAINING Conditional Expression

The CONTAINING conditional expression tests for the presence of a specified
string anywhere inside a string expression.

This expression is true if the string specified by the second (pattern) string
expression is found within the string specified by the first (target) string
expression. If either of the string expressions in a CONTAINING conditional
expression is a missing value, the result is the missing value.

If you precede CONTAINING with the optional NOT qualifier, the condition is
true if no records contain the specified string.

Note The CONTAINING conditional expression is not case sensitive; it considers
uppercase and lowercase forms of the same character to be a match.

Format

containing-clause =

--+ value-expr

Argument
value-expr

- ~-~-----.---- CONTAINING --+ value-expr
L+ NOT _J

A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. With the CONTAINING conditional expression, Rdb searches the
first value expression for the presence of the second value expression. The
second value expression is a literal.

3-16 RDML Conditional Expressions

CONTAINING Conditional Expression

Usage Notes
• Dates are stored in the database in an encoded binary format. Therefore,

when using the CONTAINING conditional expression with dates, your
program must first convert the dates to a binary format. See Section 4.1
for an example of a date conversion.

• The CONTAINING conditional expression will not execute properly in
RDMUPascal when you use a host language variable of data type PACKED
ARRAY for comparison in this expression. For example, in the following
code fragment host-var is the comparison value.

FOR E IN EMPLOYEES
E.LAST NAME CONTAINING host-var

END_FOR;

Note that a PACKED ARRAY data type is generated by the
DECLARE_ VARIABLE, DEFINE_TYPE, and BASED_ON clauses for
field values of data type TEXT.

Therefore, when you declare a host language variable in an RDMUPascal
program as the comparison value in a CONTAINING conditional
expression, you should declare a variable of data type VARYING STRING.
Do not use the DECLARE_ VARIABLE, DEFINE_TYPE, or BASED_ON
clause to declare this variable.

Examples
Example 1

The following programs demonstrate the use of the CONTAINING conditional
expression. The programs create a record stream that contains all the records
in the EMPLOYEES relation in which the LAST_NAME field contains the
string "IACO" (in upper- or lowercase letters). The programs print the
employee ID and last name from each record contained in the record stream.

RDML Conditional Expressions 3-17

CONTAINING Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST NAME CONTAINING "IACO"

printf ("%s %s\n", E.EMPLOYEE_ID,
E. LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program containing (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITHE.LAST NAME CONTAINING 'IACO'

writeln (E.EMPLOYEE_ID, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the NOT CONTAINING
conditional expression. The programs declare two host language variables,
namel and name2, to hold values to use in the CONTAINING conditional
expression. The programs then create a record stream that contains all the
records in the COLLEGES relation where the COLLEGE_NAME field contains
neither the string "univ" nor the string "college" (in upper- or lowercase). The
programs then print the college name from each record contained in the record
stream.

3-18 RDML Conditional Expressions

CONTAINING Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE namel, name2 SAME AS COLLEGES . .COLLEGE_NAME;

main()
{

strcpy(namel,"univ");
strcpy(name2, "college");

READY PERS;
START TRANSACTION READ_ONLY;

FOR C IN COLLEGES
WITH C.COLLEGE NAME NOT CONTAINING namel
AND C.COLLEGE NAME NOT CONTAINING name2

printf ("%s\n", C.COLLEGE_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program not_contain (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

var
namel
name2

begin

namel
name2

VARYING [10] OF CHAR;
VARYING [10] OF CHAR;

:= 'univ';
:= 'college';

READY PERS;
START TRANSACTION READ_ONLY;

FOR C IN COLLEGES
WITH C.COLLEGE NAME NOT CONTAINING namel
AND C.COLLEGE NAME NOT CONTAINING name2

writeln (C.COLLEGE_NAME);
END_FOR;

COMMIT;
FINISH;
end.

RDML Conditional Expressions 3-19

MATCHING Conditional Expression

3.4 MATCHING Conditional Expression

The MATCHING conditional expression lets you use the asterisk (*) pattern
matching character in combination with other characters to test for the
presence of a specified string anywhere inside a string expression.

This expression is true if th~ string specified by the second (pattern)
string expression is found within the string specified by the first (target)
string expression. If either of the string expressions in a MATCHING
conditional expression is missing, the result is missing.

If you precede MATCHING with the optional NOT qualifier, the condition is
true if the pattern string is not found within the string specified by the target
string.

Note The MATCHING conditional expression is not case sensitive; it considers
uppercase and lowercase forms of the same character to be a match.

Format

matching-clause =

----. value-expr

Arguments
value-expr

~ • MATCHING-+ match-expr
L+ NOT _J

A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing
the statement. When you use the MATCHING conditional expression, Rdb
searches the first value expression to see if it starts with the characters
specified in the second value expression. The second value expression is a
string literal. See Chapter 2 for more information on value expressions.

3-20 RDML Conditional Expressions

MATCHING Conditional Expression

match-expr
A match expression. An unquoted host language variable or an expression in
quotation marks that is used to match a pattern. Use double quotation marks
(" ") in C programs. Use single quotation marks (' ') in Pascal programs. The
match expression can include the following special symbols (called wildcards):

• * Matches a string of zero or more characters

• % Matches a single character

Usage Notes
• The MATCHING conditional expression will not ex·ecute properly in

RDMUPascal when you use a host language variable of data type PACKED
ARRAY for comparison in this expression. For example, in the following
code fragment, host-var is the comparison value.

FOR E IN EMPLOYEES
E.LAST NAME MATCHING host-var

END_FOR;

Note that a PACKED ARRAY data type is generated by the
DECLARE_ VARIABLE, DEFINE_TYPE, and BASED_ON clauses for
field values of data type TEXT.

Therefore, when you declare a host language variable in an RDMUPascal
program as the comparison value in a MATCHING conditional expression,
you should declare a variable of data type VARYING STRING. Do not
use the DECLARE_ VARIABLE, DEFINE_TYPE, or BASED_ON clause to
declare this variable.

• You can use any combination of wildcards in a matching expression;
however, if you choose not to use any wildcards in a matching expression;
the expression must match the value stored in the database exactly. For
example, using the PERSONNEL database, if you want to find all the
employees with the last name Smith and do not want to use wildcards, you
must append nine blank spaces to the name Smith. This is because the
LAST_NAME field is defined as TEXT 14 in the PERSONNEL database. If
LAST_NAME were defined as TEXT 5 you would not need to append blank
spaces to the name.

RDML Conditional Expressions 3-21

MATCHING Conditional Expression

FOR E IN EMPLOYEES
WITH E.LAST NAME MATCHING "Smith

END_FOR;

Digital Equipment Corporation recommends that you use the relational
operator equals (=) instead of the MATCHING conditional expression if
you do not need to use wildcards. The equals operator ignores trailing
blanks. For example, the following record selection expression will retrieve
all the records in the EMPLOYEES relation with the value Smith in the
LAST_NAME field:

FOR E IN EMPLOYEES
WITH E.LAST NAME "Smith"

END_FOR;

If you used the MATCHING conditional expression instead of the equals
operator in the previous code fragment, MATCHING would only retrieve
employees with the last name of"Smith" ifthe definition for LAST_NAME
was TEXT 5. If the definition is TEXT 10, the MATCHING conditional
expression would retrieve all records with the name "Smith" only if you
appended five trailing blanks to the name "Smith "

Examples
Example 1

The following programs demonstrate the use of the MATCHING conditional
expression and the SORTED BY clause. The programs declare a host language
variable, match-string, to use in the MATCHING condition expression. Then
the programs create a record stream that contains all the records in the
EMPLOYEES relation in which the LAST_NAME field begins with the letter
"R" (as specified in the host language variable). Next, the programs sort
the record stream in ascending numerical order of the employee IDs. The
programs print, in numerical order, the employee ID, followed by the last name
and first name for each record in the record stream.

3-22 RDML Conditional Expressions

MATCHING Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE match_string SAME AS EMPLOYEES.LAST_NAME;

main()
{

strcpy(match_string,"R*");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST NAME MATCHING match_string
SORTED BY E.EMPLOYEE ID

printf ("%s %s %s",E.EMPLOYEE_ID,
E.LAST_NAME,
E .FIRST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program matching (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

var
match string: VARYING [10] OF CHAR;

begin -

match_string := 'R*';

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST NAME MATCHING match_string
SORTED BY E.EMPLOYEE ID

writeln (E.EMPLOYEE_ID,'
END_FOR;

COMMIT;
FINISH;
end.

E.LAST_NAME, E.FIRST_NAME);

RDML Conditional Expressions 3-23

MATCHING Conditional Expression

Example 2

The following programs demonstrate the use of the MATCHING conditional
expression and the SORTED BY clause. The programs create a record stream
that contains all the records in the EMPLOYEES relation in which the
LAST_NAME field has the string "on" anywhere within the last name. The
record stream is sorted in ascending alphabetical order and the programs print
the first five records from the sorted stream.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR FIRST 5 E IN EMPLOYEES
WITH E.LAST NAME MATCHING "*on*"
SORTED BY E.LAST NAME

printf ("%s\ntt",E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program matching (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR FIRST 5 E IN EMPLOYEES
WITHE.LAST NAME MATCHING '*on*'
SORTED BY E.LAST NAME

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

3-24 RDML Conditional Expressions

MATCHING Conditional Expression

Example 3

The following programs demonstrate the use of the MATCHING conditional.
The programs create a record stream that contains the records in the
EMPLOYEES relation in which the LAST_NAME field has a name beginning
with the string "Bl" and ending with the string "ck" with only one character
between the two strings. These programs might retrieve names such as
"Black" and "Block".

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST NAME MATCHING "Bl%ck"

printf ("il%s\n", E. LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program matching_last (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST NAME MATCHING 'Bl%ck'

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

RDML Conditional Expressions 3-25

MISSING Conditional Expression

3.5 MISSING Conditional Expression

The MISSING conditional expression tests for the absence of a field value. A
missing value expression will evaluate to true for a given field if no data is
stored in the field.

If you precede MISSING with the optional NOT qualifier, the condition is true
if the field contains a value.

Format

missing-cond-expr

--+ db-field-expr

Argument
db-field-expr

--111---.-~-----r-111 MISSING --+
L-. NOT~

A database field value expression. A database field value expression is a field
name qualified with a context variable. See Chapter 2 for more information.

Usage Notes
• Use the MISSING conditional expression to test for the absence of a field

value.

• Some of the conditions that result in a field being marked as missing are:

A STORE statement has been used to explicitly store the MISSING
VALUE in a field of a record. For example, if 'Unknown' is
defined as the missing value for the DEGREE_FIELD field in the
DEGREES relation, the following STORE statement will mark
the DEGREE_FIELD field as missing for the employee with an
EMPLOYEE_ID of 00198.

3-26 RDML Conditional Expressions

MISSING Conditional Expression

STORE D IN DEGREES USING
D.EMPLOYEE_ID := '00198';
D.COLLEGE_CODE := 'PURD';
D.YEAR_GIVEN := '1982';
D.DEGREE :='BA';
D.DEGREE_FIELD := 'Unknown';

END_STORE;

A STORE statement has been used to store a record, and the field has
been omitted from the list of field values stored. For example:

STORE D IN DEGREES USING
D.EMPLOYEE_ID := '00198';
D.COLLEGE_CODE := 'PURD';
D.YEAR_GIVEN := '1982';
D.DEGREE := 'BA';

END_STORE;

A STORE statement has been used to store a record, and the field is
assigned the RDB$MISSING value expression.

STORE D IN DEGREES USING
D.EMPLOYEE_ID := '76156';
D.COLLEGE_CODE := 'HVDU';
D.YEAR_GIVEN := 1978;
D.DEGREE := 'BA';
D.DEGREE_FIELD := RDB$MISSING(D.DEGREE_FIELD);

END_STORE;

• Rdb evaluates the MISSING conditional expression at run time to
determine if a field's value is missing.

Examples
Example 1

The following programs demonstrate the use of the MISSING conditional
expression. The programs form a record stream that contains the records in
the COLLEGES relation that have nothing stored in the STATE field, but do
have a college code stored in the COLLEGE_CODE field. Each record in the
COLLEGES relation is tested for the previously stored condition; if a record
meets the condition these programs print a message and the college code of
this record.

RDML Conditional Expressions 3-27

MISSING Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START TRANSACTION READ_WRITE;

FOR C IN COLLEGES
WITH C.STATE MISSING
AND C.COLLEGE CODE NOT MISSING;

printf ("State Missing for COLLEGE: %s\n", C.COLLEGE_CODE);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program missing (input,output);
DATABASE PERS FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_WRITE;

FOR C IN COLLEGES
WITH C.STATE MISSING
AND C.COLLEGE_CODE NOT MISSING;

writeln ('State Missing for COLLEGE: ' C.COLLEGE_CODE);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the MISSING conditional
expression. The programs create a record stream that contains the records in
the EMPLOYEES relation in which the BIRTHDAY field is marked as empty.
These programs then print a message and the last name from the records in
the record stream.

3-28 RDML Conditional Expressions

MISSING Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.BIRTHDAY NOT MISSING

printf ("%s exists.\n", E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program missing (input,output);
DATABASE PERS FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.BIRTHDAY NOT MISSING

writeln (E.LAST_NAME, ' exists');
END_FOR;

COMMIT;
FINISH;
end.

RDML Conditional Expressions 3-29

Relational Operators

3.6 Relational Operators

Relational operators compare value expressions. Relational operators are used
in conditional expressions. Table 3-3 lists the RDML relational operators and
under which conditions their value is true.

Table 3-3

Relational
Operator

EQ =

NE <>

GT >

GE >=

LT <

LE <=

Relational Operators

Value

True if the two value expressions are equal.

True if the two value expressions are not equal.

True if the first value expression is greater than the second.

True if the first value expression is greater than or equal to the
second.

True if the first value expression is less than the second.

True if the first value expression is less than or equal to the second.

Note In all cases, if either value expression is the missing value, the value of the
condition is missing.

Examples
The following programs demonstrate the use of the LE (less than or equal to
operator) in a record selection expression. The programs find the employees
with an employee ID number that is less than or equal to 00400. Then the
programs print the selected employee IDs.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE ID LE "00400"
printf ("%s\n", E.EMPLOYEE_ID);

END_FOR;

3-30 RDML Conditional Expressions

COMMIT;
FINISH;
}

Pascal Program

program relation (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

Relational Operators

FORE IN EMPLOYEES WITHE.EMPLOYEE ID LE '00400'
writeln (E.EMPLOYEE_ID);

END_FOR;

COMMIT;
FINISH;
end.

RDML Conditional Expressions 3-31

STARTING WITH Conditional Expression

3.7 STARTING WITH Conditional Expression

The STARTING WITH conditional expression tests for the presence of a
specified string at the beginning of a string expression. This expression is true
if the first string expression begins with the characters specified in the second
string expression.

If you precede the STARTING WITH expression by the optional NOT qualifier,
the condition is true if the first string does not begin with the characters
specified by the second string.

Note The STARTING WITH conditional expression is case sensitive; it considers
uppercase and lowercase forms of the same character to be different.

Format

starting-with-clause =

--. value-expr

Argument
value-expr

-~~.----~•ma STARTING WITH --. value-expr
L+ NOT_J

A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

Usage Notes
• To find records regardless of case:

Specify all possibilities in the search condition.

Use the CONTAINING conditional expression for searches that are not
case sensitive.

3-32 RDML Conditional Expressions

STARTING WITH Cohditional Expression

• If either of the string expressions in a STARTING WITH conditional
expression is missing, the result is missing.

• The STARTING_ WITH conditional expression will not execute properly in
RDML/Pascal when you use a host language variable of data type PACKED
ARRAY for comparison in this expression. For example, in the following
code fragment, host-var is the comparison value.

FOR E IN EMPLOYEES
E.LAST NAME STARTING WITH host-var

END_FOR;

Note that a PACKED ARRAY data type is generated by the
DECLARE_ VARIABLE, DEFINE_TYPE, and BASED_ON clauses for
field values of data type TEXT.

Therefore, when you declare a host language variable in an RDMUPascal
program as the comparison value in a STARTING WITH conditional
expression, you should declare a variable of data type VARYING STRING.
Do not use the DECLARE_ VARIABLE, DEFINE_TYPE, or BASED_ON
clause to declare this variable.

Examples
Example 1

The following programs demonstrate the use of the STARTING WITH
conditional expression. The programs create a record stream that contains the
records in the EMPLOYEES relation in which the LAST_NAME field contains
a name that begins with the string "IACO". Because STARTING WITH is
case sensitive, a last name starting with "Iaco" is not the same as a last name
starting with "IACO". Names stored in the PERSONNEL database have only
the first letter capitalized. Therefore, the programs create an emp~y record
stream and nothing is printed.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

RDML Conditional Expressions 3-33

STARTING WITH Conditional Expression

FOR E IN EMPLOYEES
WITH E.LAST NAME STARTING WITH "IACO"

printf(tt'%s %s\n", E.EMPLOYEE_ID, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program starting (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITHE.LAST NAME STARTING WITH 'IACO'

writeln (E.EMPLOYEE_ID, ' ', E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the STARTING WITH
conditional expression. These programs create a record stream that contains
the records in the EMPLOYEES relation in which the LAST_NAME field has
a name that begins with the string "IACO" or "Iaco". The programs print the
employee IDs and last names from each record in the record stream.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE namel, name2 SAME AS EMPLOYEES.LAST_NAME;

main()
{

strcpy(namel, "IACO");
strcpy(name2, "Iaco");

READY PERS;
START TRANSACTION READ_ONLY;

3-34 RDML Conditional Expressions

STARTING WITH Conditional Expression

FOR E IN EMPLOYEES
WITH E.LAST NAME STARTING WITH namel
OR E.LAST NAME STARTING WITH name2

printfC"%s %s\n", E.EMPLOYEE_ID, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program start two_cond (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
namel VARYING [10] OF CHAR;
name2 VARYING [10] OF CHAR;

begin

namel := 'IACO';
name2 := 'Iaco';

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITHE.LAST NAME STARTING WITH 'IACO'
ORE.LAST NAME STARTING WITH 'Iaco'

writeln (E.EMPLOYEE_ID,
END_FOR;

COMMIT;
FINISH;
end.

Example 3

, E.LAST_NAME);

The following programs demonstrate the use of the NOT STARTING WITH
conditional expression and the COUNT statistical function. The programs
create a record stream that contains the records in the COLLEGES relation
in which the value for the STATE field does not begin with the letter ''M". The
COUNT statistical function determines the number of records in the record
stream and the print statement displays this number.

RDML Conditional Expressions 3-35

STARTING WITH Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

int atot;

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

GET
atot COUNT OF c IN COLLEGES WITH C.STATE NOT STARTING WITH "M";

END_GET;

COMMIT;

printf ("%d", atot);
FINISH;
}

Pascal Program

program starting (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

var
atot : integer;

begin
READY PERS;
START TRANSACTION READ_ONLY;

GET
atot =COUNT OF C IN COLLEGES WITH C.STATE NOT STARTING WITH 'M';

END_GET;

COMMIT;
writeln (atot);

FINISH;
end.

3-36 RDML Conditional Expressions

UNIQUE Conditional Expression

3.8 UNIQUE Conditional Expression

The UNIQUE conditional expression tests for the presence of a single record in
a record stream. This expression is true if the record stream specified by the
record selection expression consists of only one record.

If you precede UNIQUE with the optional NOT qualifier, the condition is true
if more than one record is in the record stream or if the stream is empty.

Format

unique-clause =

---.~--1~--....----....... UNIQUE --__,~,........-------~--..
L.+ NOT ~ 4 handle-options _J

----------.. rse

handle-options =

+ (E REQUEST HANDLE --+ var~) +
TRANSACTION_HANDLE ---+ var
REQUEST HANDLE+ var + ,)

c=+ TRANSACTION_HANDLE +var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled RdbNMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

RDML Conditional Expressions 3-37

UNIQUE Conditional Expression

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML associates a default transaction handle with the
transaction.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Examples
Example 1

The following programs demonstrate the use of the UNIQUE conditional
expression. The programs join the EMPLOYEES and DEGREES relations
over the EMPLOYEE_ID common field. The UNIQUE expression limits the
record stream to those records in the EMPLOYEES relation that have only
one corresponding record in the DEGREES relation. These programs print
an informational message and the selected employees' first and last names in
alphabetical order based on the first name.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main ()
{

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
SORTED BY E.FIRST NAME
WITH UNIQUE D IN DEGREES WITH D.EMPLOYEE ID = E.EMPLOYEE ID

printf ("%s %s has one and only one coilege degree.\n";
E.FIRST_NAME, E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

3-38 RDML Conditional Expressions

UNIQUE Conditional Expression

Pascal Program

program unique_expr (input, output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH UNIQUE D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

writeln (E.FIRST_NAME, ' ', E.LAST_NAME,
' has one and only one college degree.');

END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the NOT UNIQUE conditional
expression. The programs join the EMPLOYEES and SALARY_HISTORY
relations over the EMPLOYEE_ID common field. The NOT UNIQUE
conditional expression limits the records in the record stream to those
records in the EMPLOYEE relation that have more than one corresponding
record in the SALARY_HISTORY relation. The SORTED BY clause sorts the
records in alphabetical order. These programs print the last names of the
employees in the record stream, and an informational message.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH (ANY SH IN SALARY_HISTORY

WITH E.EMPLOYEE ID = SH.EMPLOYEE ID)
AND (NOT UNIQUE SH IN SALARY_HISTORY -

WITH E.EMPLOYEE_ID = SH.EMPLOYEE_ID)
SORTED BY E.LAST NAME

printf("%s has had two or more salary reviews.\n", E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

RDML Conditional Expressions 3-39

UNIQUE Conditional Expression

Pascal Program

program unique_not (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH (ANY SH IN SALARY_HISTORY

WITH E.EMPLOYEE_ID = SH.EMPLOYEE_ID)
AND (NOT UNIQUE SH IN SALARY_HISTORY

WITH E.EMPLOYEE_ID = SH.EMPLOYEE_ID)
SORTED BY E.LAST_NAME

writeln (E.LAST_NAME, ' has had two or more salary reviews.');
END_FOR;

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the UNIQUE conditional
expression in a reflexive join. These programs create two record streams by
joining the EMPLOYEES relation with itself. This is achieved by declaring two
context variables, E and EMP, for the EMPLOYEES relation. RDML compares
the CITY field of each record in the EMPLOYEES relation with every other
record in the same relation. The UNIQUE conditional expression selects the
records in which one and only one employee lives in any given city. These
programs print an informational message and the city, first name, and last
name of each of those employees.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH UNIQUE EMP IN EMPLOYEES

WITH E.CITY = EMF.CITY
printf ("City is: %s\n", E.CITY);
printf ("Employee name is: %s %s\n\n",E.FIRST_NAME, E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

3-40 RDML Conditional Expressions

UNIQUE Conditional Expression

Pascal Program

program unique_cond_exp (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH UNIQUE EMP IN EMPLOYEES

WITH E.CITY = EMF.CITY
writeln ('City is: E.CITY);
writeln ('Employee name is: ',E.FIRST_NAME, E.LAST_NAME);
writeln;

END_FOR;

COMMIT;
FINISH;
end.

RDML Conditional Expressions 3-41

4
RDML Record Selection Expressions

This chapter describes the Relational Data Manipulation Language (RDML)
record selection expressions (RSEs) that can be used with embedded RDML
statements in C and Pascal programs.

The C and Pascal programs in this chapter access the sample personnel
database available with RdbNMS.

A record selection expression is an expression that defines specific
conditions individual records must meet before Rdb includes them in a record
stream. A record stream is a temporary group of related records that satisfy
the conditions you specify in the record selection expression.

Record selection expressions let you:

• Include all records in the relation

• Eliminate duplicate records

• Limit the number of records displayed

• Test for values and conditions

• Sort the records in the record stream

• Combine records from the same or different relations

RDML Record Selection Expressions 4-1

Format

rse=

-.---------_J--.---.• relation-clause
L+ first-clause

with-clause reduce-clause

cross-clause

sort-clause

Table 4-1 summarizes the function of each record selection expression clause.

Table 4-1 Record Selection Expression Clause Functions

RSE Clause Function

CROSS Joins records from two or more relations.

FIRST N Restricts the record stream to the number of records specified by
"N".

REDUCED TO Isolates unique field values within the record stream.

Relation Declares context variable for the record stream.

SORTED BY Sorts records in the record stream by values of specific fields.

WITH Specifies conditions that must be met for records to be included in
the record stream.

Usage Notes
• You can use simple and complex host language variables, such as arrays

or records, in a record selection expression. However, do not use functions
or procedures within the record selection expression. Instead, assign the
result of a function to a host language variable and use that variable
within the record selection expression. For example, the following Pascal
code will not preprocess:

(* Bad code - will not preprocess *)
FOR FIRST 5 E IN EMPLOYEES WITHE.LAST NAME= SUBSTR(STRING,1,24)

writeln (E.LAST_NAME); -
END_FOR;

4-2 RDML Record Selection Expressions

However, this code will preprocess:

host_variable = SUBSTR(STRING,1,24)

FOR FIRST 5 E IN EMPLOYEES WITH E.LAST NAME = host variable
writeln (E.LAST_NAME);

END_FOR;

• Record selection expressions cause relations to be referred to in a request
in specific ways. Because there is an implementation-specific limit on the
number of relations that you can refer to in a request, you need to know
that the following factors cause a relation to be referenced:

The name of a relation or view in a record selection expression.

The relations in a view (or virtual relation). Thus, if a view refers to
three relations, referring to that view is the same as referring to four
relations; one for the view, and one for each relation contained in the
view. For example, the following data definition language (DDL) record
selection expression defines a view, NULL_MANAGERS, derived from
the DEPARTMENTS relation (note that the following is not an RDML
statement):

DEFINE VIEW NULL MANAGERS OF
MGR IN JOB HISTORY WITH MGR.DEPARTMENT NAME MISSING.

END NULL MANAGERS VIEW.

The RDML statement that follows refers to three relations:

1 The view, or virtual relation, NULL_MANAGERS

2 The JOB_HISTORY relation referred to in NULL_MANAGERS

3 The JOB_HISTORY relation in the CROSS clause

FOR MGR IN NULL MANAGERS CROSS JH IN JOB HISTORY - -
WITH MGR.SUPERVISOR_ID = JH.EMPLOYEE_ID

WRITE ('The manager with this ID number: ', MGR.SUPERVISOR_ID,
'has an unknown department name');

END_FOR;

The relations in a DDL record selection expression that has a
COMPUTED BY field. This includes COMPUTED BY fields that
refer to other COMPUTED BY fields. For example, the DDL that
follows defines a view of UNIQUE_DEGREES that refers to these three
relations:

1 The view, or virtual relation, UNIQUE_DEGREES

2 The DEGREES relation that is referred to in the view
UNIQUE_DEGREES

RDML Record Selection Expressions 4-3

3 The DEGREES relation that is computed so a total of persons
holding a degree can be found

DEFINE VIEW UNIQUE_DEGREES OF
D IN DEGREES REDUCED TO D.DEGREE.

D.DEGREE.
HOLDERS

COMPUTED BY COUNT OF H IN DEGREES
WITH H.DEGREE = D.DEGREE.

END UNIQUE_DEGREES VIEW.

• You should use parentheses to delineate multiple statistical functions in
record selection expressions. Examples of statistical functions are COUNT,
TOTAL, and MAX.

• If you use a statistical function (for example, COUNT) with a record
selection expression, enclose it in a GET statement. Embedding the
statistical function in a GET statement incurs less overhead than a
statistical function embedded directly in the host language. The following
Pascal example shows the use of the GET statement with the SORTED BY
clause:

GET
acnt = COUNT OF POOR IN CURRENT SALARY

CROSS RICH IN CURRENT SALARY

END_GET;

WITH RICH.SALARY_AMOUNT > (10 * POOR.SALARY_AMOUNT)
SORTED BY POOR.EMPLOYEE_ID;

writeln ('There are', acnt, 'employees who deserve a raise');

If you must use a statistical function within the host language, use
parentheses to delineate both expressions from a program function if
necessary to enforce the order of precedence you desire.

Examples
Example 1

The following programs demonstrate the use of CROSS, WITH, and SORTED
BY record selection expression clauses. These programs generate a report for
the personnel department that shows important information about each active
employee, including salary level attained for each job and the department to
which the employee belongs.

4-4 RDML Record Selection Expressions

The EMPLOYEES relation describes each employee in the company. The
SALARY_HISTORY relation contains current salary information along with
the salary start date and salary amount for that job. The JOB_HISTORY
relation holds data about each job an employee holds and has held, including
the department and job code. The JOBS relation contains information about
each job in the company. Each of these relations supplies some data for the
report.

To obtain the necessary fields from each, the programs contain a query to join
the four relations. The WITH clause ensures that the query uses related fields
in each relation.

Note that the SALARY_START field is a DATE data type. In the database, it
is stored in an encoded binary format. To display it, the program must first
convert the retrieved value into an ASCII string. This program calls the VMS
system service ASCTIM to perform the conversion.

C Program

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

DATABASE PERS = FILENAME "PERSONNEL";

extern int SYS$ASCTIM();

main()
{

/* In the following declaration, note one extra space for EOS */
static $DESCRIPTOR(SAL_DATE,"dd-mmm-yyyy hh:mm:ss.cc ");

/* SYS$ASCTIM returns "len" in a 16-bit word */
short len;
long status;

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS SH IN SALARY HISTORY
CROSS JH IN JOB HISTORY
CROSS J IN JOBS
WITH JH.JOB_CODE = J.JOB_CODE
AND SH.SALARY END MISSING
AND E.EMPLOYEE_ID = SH.EMPLOYEE_ID
AND E.EMPLOYEE ID = JH.EMPLOYEE ID
AND JH.JOB_END-MISSING -
SORTED BY J.JOB_CODE,E.EMPLOYEE_ID;

RDML Record Selection Expressions 4-5

status= SYS$ASCTIM (&len, &SAL_DATE, SH.SALARY_START, 0);
if (status != SS$_NORMAL)

{

printf("Date conversion failed\n");
continue;
}

/* Ensure that the returned string is null-terminated, */
/* so that we may use printf to display it. */

SAL_DATE.dsc$a_pointer[len - l] = '\0';

printf ("Job Code
printf ("Employee ID
printf ("Name
printf ("Dept Code
printf ("Job Title
printf ("Start Date
printf ("Current Salary

%s\n",J.JOB CODE);
%s\n",E.EMPLOYEE ID);
%s %s\n",E.FIRST NAME,E.LAST NAME);
%s\n",JH.DEPARTMENT CODE); -
%s\n", J. JOB TITLE); -
%s\n",SAL_DATE.dsc$a_pointer);

$%f\n\n",SH.SALARY_AMOUNT);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

[inherit ('sys$library:starlet.pen')]

program salary_report (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

type date_asc_type =packed array [1 .. 23] of char;
var sal_date : date_asc_type;

sys_stat : integer;

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS SH IN SALARY HISTORY
CROSS JH IN JOB HISTORY
CROSS J IN JOBS
WITH JR.JOB CODE = J.JOB CODE - -
AND SH.SALARY END MISSING
AND E.EMPLOYEE_ID = SH.EMPLOYEE_ID
AND E.EMPLOYEE_ID = JH.EMPLOYEE_ID
AND JR.JOB END MISSING
SORTED BY J.JOB_CODE,E.EMPLOYEE_ID

writeln ('Job Code
writeln ('Employee ID
wri teln ('Name
writeln ('Dept Code
writeln ('Job Title

4-6 RDML Record Selection Expressions

', J. JOB_CODE);
',E.EMPLOYEE_ID);
',E.FIRST_NAME,' ',E.LAST_NAME);
',JH.DEPARTMENT_CODE);
', J. JOB_TITLE);

sys stat := $ASCTIM(timbuf := sal date, timadr := SH.SALARY_START);
if (sys stat <> SS$ NORMAL) then -

writeln ('Date conversion failed')
else

writeln ('Start Date ',sal date);
writeln ('Current Salary $' ,SH.SALARY_AMOUNT 10 2);
writeln;

END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4-7

Context Variable

4. 1 Context Variable

A context variable is a temporary name that identifies a relation in an Rdb
record stream. Once you have associated a context variable with a relation,
you use the context variable to refer to fields from that relation. In this way,
Rdb always identifies the specific field and its particular relationship to which
you refer.

You must use a context variable in every data manipulation statement that
uses a record selection expression.

If you access several record streams at once, the context variable lets you
distinguish between fields from different record streams, even if different fields
have the same name.

If you access several record streams at once that consist of the same relation
and fields within that relation, context variables let you distinguish between
the two record streams.

Format

context-variable=

---- identifier

Argument
identifier
A valid alphanumeric host language identifier.

Usage Notes
• Context variables are defined explicitly by the record selection expression

(one context variable for each instance of a participating relation).

• The context established by the context variable is valid during the
execution of the statement or clause in which the context variable is
declared.

4-8 RDML Record Selection Expressions

Context Variable

• Context variables establish a context within which RDML resolves
references to database fields. This context affects only the statement in
which the context variable is declared. All inner (contained or nested)
statements and all outer (containing or nesting) statements are not
affected.

• Context variables are implicit in an OVER clause that names a common
field. In the following example, a context variable is not used to identify
EMPLOYEE_ID in the OVER clause:

FOR E IN EMPLOYEES
CROSS D IN DEGREES
OVER EMPLOYEE ID

• The context established by a context variable is valid during the execution
of the statement or clause in which the context variable is declared.
For example, a context variable declared in a FOR statement is only
valid within the FOR ... END_FOR block, whereas the context variable
declared by the DECLARE_STREAM statement is valid from the execution
of the DECLARE_STREAM statement to the end of the program module.

• Context variables are referred to in the following clauses, statements,
functions, and expressions:

ERASE statement

FOR statement

MODIFY statement

STORE statement

START_STREAM statements

Record selection expressions

Field reference

Database key value reference

Statistical and Boolean functions

RDML Record Selection Expressions 4-9

Context Variable

Examples
Example 1

The following programs demonstrate the use of the context variable "CS" for
the CURRENT_SALARY view. These programs:

• Use "CS" to qualify field names in the record selection expression, printf,
and writeln statement

• Print the employee ID of all the employees who earn more than $40,000

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR CS IN CURRENT SALARY WITH CS.SALARY AMOUNT > 40000.00
printf ("%s\n",CS.EMPLOYEE_ID); -

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program context_var (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR CS IN CURRENT SALARY WITH CS.SALARY AMOUNT > 40000.00
writeln (CS.EMPLOYEE_ID);

END_FOR;

COMMIT;
FINISH;
end.

4-10 RDM L Record Selection Expressions

Context Variable

Example 2

The following programs demonstrate the use of two context variables, E for
the EMPLOYEES relation and SH for the SALARY_HISTORY relation, to
qualify the EMPLOYEE_ID field used in both relations. The programs produce
a report about each employee's starting and ending dates at the company.

Note that the SALARY_START and SALARY_END fields from the
SALARY_HISTORY relation are DATE data types. In the database, a
DATE field is stored in an encoded binary format. To display it, the program
must first convert the retrieved value into an ASCII string. This program calls
the VMS system service ASCTIM to perform the conversion.

C Program

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

DATABASE PERS =FILENAME "PERSONNEL";

extern int SYS$ASCTIM();

main()
{

/* In following two declarations, note one extra space for EOS */
static $DESCRIPTOR(SAL START, "dd-mmm-yyyy hh:mm:ss.cc ");
static $DESCRIPTOR(SAL=END, "dd-mmm-yyyy hh:mm:ss.cc ");

/* SYS$ASCTIM returns len in a 16-bit word */
short len_start,len_end;
long status;

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS SH IN SALARY HISTORY
WITH E.EMPLOYEE ID = SH.EMPLOYEE ID
SORTED BY E.LAST_NAME; -

status= SYS$ASCTIM (&len start, &SAL START, SH.SALARY_START, 0);
if (status != SS$_NORMAL) -

{

printf("Date conversion failed\n");
continue;
}

status = SYS$ASCTIM (&len end,
if (status != SS$_NORMAL)

&SAL_END, SH.SALARY_END, 0);

{

printf("Date conversion failed\n");
continue;
}

/* Ensure that the returned strings are null-terminated, */
/* so that we may use printf to print them out. */

RDML Record Selection Expressions 4-11

Context Variable

SAL_START.dsc$a_pointer[len_start - 1)
SAL_END.dsc$a_pointer[len_end - 1)
printf ("%s %s %s\n",

END_FOR;

COMMIT;
FINISH;
}

E.LAST NAME,
SAL_START.dsc$a_pointer,
SAL_END.dsc$a_pointer);

Pascal Program

[INHERIT ('SYS$LIBRARY:STARLET.PEN')]

program two_fields (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

'\0';
'\0';

type DATE_ASC_TYPE =PACKED ARRAY [1 •• 23] OF CHAR;
var Sal_Start : DATE_ASC_TYPE;

Sal_End : DATE_ASC_TYPE;
Sys_Statl INTEGER;
Sys_Stat2 : INTEGER;

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY
WITH E.EMPLOYEE ID = SH.EMPLOYEE ID - -
SORTED BY E.LAST NAME

Sys_Statl := $ASCTIM(timbuf := Sal_Start, timadr := SH.SALARY_START);
Sys Stat2 := $ASCTIM(timbuf := Sal_End, timadr := SH.SALARY_END);
if ((sys statl <>SS$ NORMAL) OR (sys stat2 <> SS$_NORMAL))

then writeln ('Date conversion failed')
else

writeln (E.LAST_NAME, ' ' Sal_Start, '

END_FOR;

COMMIT;
FINISH;
end.

4-12 RDML Record Selection Expressions

Sal_End);

CROSS Clause

4.2 CROSS Clause

The record selection expression's CROSS clause lets you combine records from
two or more record streams. You can base such record combinations on the
relationship between field values in separate record streams. This combination
is called a relational join.

Format

cross-clause = t ~ - relation-clause

Arguments
relation-clause

c OVER ~d-nam .. e __ T? • .. ~

A clause that specifies a context variable for a stream or a loop. For more
information on context variables see Section 4.1.

field-name
The name of a field common to both of the relations.

Usage Notes
• You cannot cross relations from different databases. A record selection

expression may refer to only one database at a time. Instead, you can use
a nested FOR loop to combine data from different databases.

• If you use the OVER clause when crossing more than two relations, the
field name specified in the optional OVER clause must appear in only two
of the relations. If the field name appears in more than two of the relations
that you are crossing, RDML returns an error.

RDML Record Selection Expressions 4-13

CROSS Clause

For example, the clause "RO IN RELO CROSS Rl IN RELl CROSS R2
IN REL2 OVER Fl" is valid if, and only if, Fl is a field that appears in
relation REL2 and in either relation RELO or RELl, but not both.

• The CROSS clause is more efficient if the fields shared by the relations
have indexes defined for them.

• The CROSS clause, used with neither the WITH nor the OVER clause,
forms the cross product of relations. A cross product is the result of
matching each record of one relation with each record of the other relation.
In most cases, the cross product alone is not useful. Normally, you want
to limit the returned records by using one or more of the following record
selection expression clauses:

FIRST

WITH

SORTED BY

REDUCED

OVER

• Do not update a view that refers to more than one relation. Attempts to do
so could cause unexpected results in your database.

• Using an OVER clause is equivalent to specifying a WITH clause that
contains a conditional expression. For example, the following two RDML
Pascal queries use WITH and OVER clauses, respectively, to achieve the
same result;

Query 1

START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS JH IN JOB HISTORY
WITH E.EMPLOYEE ID = JR.EMPLOYEE ID - -

WRITE (E.EMPLOYEE_ID,
WRITE (JH.JOB_CODE,
WRITELN;

END_FOR;
COMMIT;

4-14 RDML Record Selection Expressions

' ', E.LAST_NAME, ' ');
JH.DEPARTMENT_CODE);

CROSS Clause

Query 2

START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS
WRITE (E.EMPLOYEE_ID,
WRITE (JH.JOB_CODE,
WRITELN;

JH IN JOB HISTORY OVER EMPLOYEE ID - -
' ', E.LAST_NAME, ' ');

JH.DEPARTMENT_CODE);

END_FOR;

COMMIT;

Examples
Example 1

The following programs demonstrate the use of the CROSS clause to join
records from two relations. These programs join the relations CURRENT_JOB
and JOBS over the common JOB_CODE field. This allows these programs to
print a report that contains fields from both relations. Specifically, these fields
are: LAST_NAME from the CURRENT_JOBS relation, JOB_CODE from the
JOBS relation, and JOB_TITLE from the JOBS relation.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR CJ IN CURRENT JOB
CROSS J IN JOBS OVER JOB CODE

printf ("%s",CJ.LAST_NAME);
printf (" %s",J.JOB_CODE);
printf (" %s\n", J.JOB_TITLE);

END_FOR;

COMMIT;
FINISH;
}

RDML Record Selection .Expressions 4-15

CROSS Clause

Pascal Program

program person job (input, output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR CJ IN CURRENT JOB
CROSS J IN JOBS OVER JOB CODE

writeln (CJ.LAST_NAME, ' ',J.JOB_CODE, ' ',J.JOB_TITLE);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the CROSS clause to join a
relation with itself (a reflexive join). These programs:

• Join the JOBS relation on itself

• Specify two different context variables, STAFF and EXEC, for the JOBS
relation

• Form a stream with records that contain data on pairs of employees,
STAFF and EXEC

• Form these pairs when:

The wage class of a staff member is equal to 2, and the wage class of
the executive is equal to 4

The staff member's maximum salary amount is greater than the
minimum salary amount of an executive

• Print the job code of each staff member and the maximum salary he or she
can be paid

• Print the job code of each executive and the minimum salary he or she can
be paid

4-16 RDML Record Selection Expressions

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR EXEC IN JOBS
CROSS STAFF IN JOBS
WITH EXEC.WAGE CLASS = '4'
AND STAFF.WAGE CLASS = '2'
AND STAFF.MAXIMUM SALARY > EXEC.MINIMUM SALARY

printf ("%s",STAFF.JOB CODE);
printf (" %f\n",STAFF-:-MAXIMUM_SALARY);
printf ("%s",EXEC.JOB CODE);
printf (" %f\n",EXEc-:-MINIMUM_SALARY);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program reflexive JOln (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR EXEC IN JOBS
CROSS STAFF IN JOBS
WITH EXEC.WAGE CLASS= '4'
AND STAFF.WAGE CLASS= '2'
AND STAFF.MAXIMUM SALARY > EXEC.MINIMUM SALARY - -

writeln (STAFF.JOB_CODE);
writeln (STAFF.MAXIMUM_SALARY:10:2);
writeln (EXEC.JOB_CODE);
writeln (EXEC.MINIMUM_SALARY:10:2);
writeln

END_FOR;

COMMIT;
FINISH;
end.

CROSS Clause

RDML Record Selection Expressions 4-17

CROSS Clause

Example 3

The following programs demonstrate the use of the CROSS clause and the
REDUCED TO clause in a reflexive join. These programs create two context
variables, POOR and RICH, for the CURRENT_SALARY view. This allows
the program to compare records in the CURRENT_SALARY relation to each
other. The WITH clause selects records from the EMPLOYEES relation in
which the salary amount of an employee in the POOR record stream is, at
most, 10 percent of the salary earned by any other employee in the relation.
The REDUCED TO clause ensures that duplicate records (based on employee
ID) are discarded from the selection. These programs print an informational
message and the employee IDs of the POOR employees.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR POOR IN CURRENT SALARY
CROSS RICH IN CURRENT SALARY
WITH RICH.SALARY_AMOUNT > (10.0 * POOR.SALARY_AMOUNT)
REDUCED TO POOR.EMPLOYEE ID

printf ("%s deserves a raise\n",POOR.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program salary_info (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
START_TRANSACTION READ_ONLY;

FOR POOR IN CURRENT SALARY
CROSS RICH IN CURRENT SALARY
WITH RICH.SALARY_AMOUNT > (10.0 * POOR.SALARY_AMOUNT)
REDUCED TO POOR.EMPLOYEE ID

writeln (POOR.EMPLOYEE_ID, ' deserves a raise.');
END_FOR;

4-18 RDML Record Selection Expressions

COMMIT;
FINISH;
end.

Example 4

CROSS Clause

The following programs demonstrate the use of the CROSS clause to join fields
from two relations. These programs join the EMPLOYEES relation and the
DEGREES relation over the EMPLOYEE_ID field. The programs print a list of
all the employees' IDs and college degrees from the COLLEGES relation. The
REDUCED TO clause ensures that this list does not contain duplicate pairings
of employee IDs and degrees.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

fOR E IN EMPLOYEES
CROSS D IN DEGREES OVER EMPLOYEE ID
REDUCED TO E.EMPLOYEE ID,D.DEGREE

printf ("%s",E.EMPLOYEE ID);
printf (" %s\n",D.DEGREE);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program cross_with_reduced (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS D IN DEGREES OVER EMPLOYEE ID
REDUCED TO E.EMPLOYEE_ID, D.DEGREE

write (E.EMPLOYEE_ID,' ');
writeln (D.DEGREE);

END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4-19

CROSS Clause

Example 5

The following programs demonstrate the use of the CROSS clause to join three
relations over multiple join fields. These programs create a record stream
that contains records from the EMPLOYEES, JOB_HISTORY, and JOBS
relations. A record from the JOB_HISTORY relation is included in the record
stream only if it has a corresponding record in EMPLOYEES relation (based
on EMPLOYEE_ID) and a corresponding record in the JOBS relation (based on
the JOB_CODE field). These programs print information from records in the
record stream using fields from both the JOB_HISTORY and JOBS relations.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main{)
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS JH IN JOB HISTORY
CROSS J IN JOBS
WITH E.EMPLOYEE ID = JR.EMPLOYEE ID - -
AND JH.JOB CODE = J.JOB CODE - -

printf {"%s",JH.EMPLOYEE_ID);
printf {" %s",JH.DEPARTMENT_CODE);
printf {" %s",JH.JOB CODE);
printf (" %s\n",J.WAGE_CLASS);
printf ("%s",J.JOB_TITLE);
printf (" %f",J.MINIMUM SALARY);
printf (" %f\n\n",J.MAXIMUM_SALARY);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program mult_join_fields (input,output);
DATABASE PERS =FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

4-20 RDML Record Selection Expressions

FOR E IN EMPLOYEES
CROSS JH IN JOB HISTORY
CROSS J IN JOBS
WITH E.EMPLOYEE ID = JH.EMPLOYEE ID - -
AND JH.JOB CODE = J.JOB CODE - -

write
write
write
writeln
write
write
writeln
writeln;

END_FOR;

COMMIT;
FINISH;
end.

Example 6

(JH.EMPLOYEE_ID, I ');

(JH.DEPARTMENT_CODE,' ');
(JH.JOB_CODE,' ');
(J.WAGE_CLASS);
(J .JOB_TITLE);
(J.MINIMUM_SALARY:10:2);
(J.MAXIMUM_SALARY:10:2);

CROSS Clause

The following programs demonstrate the use of the CROSS clause to join a
relation with itself and with another relation. These programs:

• Join CURRENT_JOB with itself and then with JOBS on the JOB_CODE
CJ2

• Select only those records for which the EMPLOYEE_ID in CJl is the same
as the SUPERVISOR_ID in CJ2

• Display the employee's name, his or her supervisor's name, and his or her
manager's title

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR CJl IN CURRENT JOB
CROSS CJ2 IN CURRENT JOB
CROSS J IN JOBS WITH J.JOB CODE = CJ2.JOB CODE
AND CJl.SUPERVISOR ID = CJ2.EMPLOYEE ID

printf ("Employee: %s ", CJl.LAST_NAME);
printf ("Boss: %s ", CJ2.LAST NAME);
printf ("Managers Title: %s\n 11

:- J.JOB_TITLE);
END_FOR;

RDML Record Selection Expressions 4-21

CROSS Clause

COMMIT;
FINISH;
}

Pascal Program

program self_and_another (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR CJl IN CURRENT JOB
CROSS CJ2 IN CURRENT JOB
CROSS J IN JOBS
WITH J.JOB CODE = CJ2.JOB CODE
AND CJl.SUPERVISOR ID = CJ2.EMPLOYEE ID - -

writeln ('Employee: ', CJl.LAST_NAME,

END_FOR;

COMMIT;
FINISH;
end.

' Boss: ', CJ2.LAST_NAME,
'Manager''s Title: ' J.JOB_TITLE);

4-22 ROM L Record Selection Expressions

FIRST Clause

4.3 Fl RST Clause

The FIRST clause allows you to specify the maximum number of records to be
included in a record stream formed by a record selection expression.

Format

first-clause =

---.- FIRST -+ value-expr

Argument
value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

Usage Notes
• If the value expression is greater than the number of records that satisfy

the conditions of the record selection expression, Rdb returns all the
records it finds. For example:

FOR FIRST 50000 E IN EMPLOYEES
WRITELN (E.LAST_NAME, E.EMPLOYEE_ID);

END_FOR;

If only 10,000 records are in the EMPLOYEES relation, Rdb returns only
those 10,000. It does not produce any informational messages that indicate
the discrepancy between the requested number of records and the number
actually returned.

• If the value expression evaluates to a zero or a negative number, the record
stream is empty. Rdb will not return any records, nor will it generate an
error.

RDML Record Selection Expressions 4-23

FIRST Clause

• If you specify a sort order in the record selection expression, Rdb first sorts
the records that satisfy the conditions of the record selection expression.
Although many records may satisfy those conditions, the FIRST qualifier
restricts the number of records in the record stream after sorting. For
example:

FOR FIRST 10 E IN EMPLOYEES SORTED BY E.EMPLOYEE ID
WRITELN (E.LAST_NAME, E.EMPLOYEE_ID);

END_FOR;

Rdb selects only the first ten records in the sorted EMPLOYEES relation.
See Section 4.6 for more information about the SORTED_BY relation.

• If you do not specify a sort order in the record selection expression, Rdb
selects the qualifying records unpredictably and the records returned may
change each time you use the FIRST clause. In other words, if you make
the same query twice you may not get the same results both times, unless
you use the SORTED BY clause.

• If the value expression is not an integer, Rdb truncates any fractional part
of the value and uses the remaining integer as the number of records in the
record stream. For example, a program might prompt a user for a value
expression, compute a value, and use it in a record selection expression:

VAR productivity REAL;

WRITE ('Productivity factor: ');
READLN (productivity);
FOR FIRST productivity E IN EMPLOYEES

WRITELN (E.LAST_NAME, E.EMPLOYEE_ID);
END_FOR;

Assume here that the value of PRODUCTIVITY is 2.5. Rdb performs all
subsequent actions to the first two records retrieved in the FOR loop.

• The value expression cannot contain a database field unless you take one
of the following actions:

Define a context variable in an outer loop, such as:

FOR E IN EMPLOYEES
FOR FIRST E.EMPLOYEE ID SH IN SALARY HISTORY
WITH SH.EMPLOYEE ID E.EMPLOYEE ID

4-24 RDML Record Selection Expressions

Use a self-contained expression, such as:

FOR FIRST (COUNT OF E IN EMPLOYEES
WITH E.STATE = "MA")

SH IN SALARY HISTORY

FIRST Clause

See Section 2.2 for more information. Also refer to Chapter 5, which
documents statistical functions.

Examples
Example 1

The following programs demonstrate the use of the FIRST clause and the
SORTED BY clause. These programs sort the EMPLOYEES relation in
ascending order based on the EMPLOYEE_ID field. The FIRST 50 statement
creates a record stream that contains the first 50 records from the sorted
EMPLOYEES relation. The programs then print the employee IDs and last
names of these 50 employee records.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main ()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR FIRST 50 E IN EMPLOYEES
SORTED BY E.EMPLOYEE ID

printf ("%s ",E.EMPLOYEE_ID);
printf ("%s\n",E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program first clause (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4-25

FIRST Clause

FOR FIRST 50 E IN EMPLOYEES
SORTED BY E.EMPLOYEE ID

writeln (E.EMPLOYEE_ID,
END_FOR;

COMMIT;
FINISH;
end.

Example 2

' ' E. LAST_NAME);

The following programs demonstrate the use of the FIRST clause and the
SORTED BY clause with two sort keys. These programs sort the COLLEGES
relation in ascending order on the basis of the STATE and CITY fields.
Because STATE is the first sort key, records are sorted by state first. Then the
records are sorted by city within each state. The FIRST clause selects the first
ten records from the sorted relation. These programs then print the college
name, city, and state of each of these ten records.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main ()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR FIRST 10 C IN COLLEGES
SORTED BY C.STATE, C.CITY

printf("%s %s %s\n", C.COLLEGE_NAME, C.CITY, C.STATE);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program first sorted (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR FIRST 10 C IN COLLEGES
SORTED BY C.STATE, C.CITY

writeln (C.COLLEGE_NAME,
END_FOR;

4-26 RDML Record Selection Expressions

C.CITY,' ' C.STATE);

COMMIT;
FINISH;
end.

Example 3

FIRST Clause

The following programs demonstrate the use of a host language variable
and the FIRST clause. The programs obtain the value for the host language
variable, how _many, through interactive programming.

The C program uses the function read_int() to prompt for and store the value
for the host language variable. For more information and the source code for
read_int, see Appendix B. The Pascal program uses the readln and writeln
statements to serve a similar function. By doing the interactive processing
before attaching to the database, these programs keep the transaction as short
as possible.

The SORTED BY clause sorts the EMPLOYEES relation in ascending order,
based on the EMPLOYEE_ID field. The value for how _many determines
the number of records the FIRST clause selects from the sorted relation.
The selection process begins with the first record in the sorted relation and
continues selecting records until the specified number have been selected.
These programs print the employee IDs, first names, and last names from
these records.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

extern int read_int();

main ()
{

int how_many;
how_many = read_int("Enter number of employees to display: ");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST how_many E IN EMPLOYEES
SORTED BY E.EMPLOYEE ID

printf("%s %s %s\n", E.EMPLOYEE_ID, E.FIRST_NAME, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

RDML Record Selection Expressions 4-27

FIRST Clause

Pascal Program

program first_with_host (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
how_many : integer;

begin
write ('Enter number of employees to display: ');
readln (how_many);

READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST how_many E IN EMPLOYEES
SORTED BY E.EMPLOYEE_ID

writeln (E.EMPLOYEE_ID,
END_FOR;

COMMIT;
FINISH;
end.

Example 4

E.FIRST_NAME, E.LAST_NAME);

The following programs demonstrate the use of the FIRST clause
with an arithmetic operator. These programs sort the records in the
CURRENT _SALARY relation in descending order of salary amount. The
FIRST clause selects the first quarter of the total number of the sorted
CURRENT _SALARY records. These programs then print the last name of the
employees in the selected records and the number of records that the FIRST
clause selected.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST (0.25 * COUNT OF CS IN CURRENT SALARY) EMP IN CURRENT_SALARY
SORTED BY DESCENDING EMP.SALARY AMOUNT

printf ("%s %d\n","EMP.LAST_NAME,

END_FOR;

COMMIT;
FINISH;
}

COUNT OF SH IN SALARY HISTORY
WITH SH.EMPLOYEE ID EMP.EMPLOYEE_ID);

4-28 RDML Record Selection Expressions

Pascal Program

program first_with_stat (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FIRST Clause

FOR FIRST (0.25 * COUNT OF CS IN CURRENT_SALARY) EMP IN CURRENT SALARY
SORTED BY DESCENDING EMF.SALARY AMOUNT

writeln (EMP.LAST_NAME, COUNT OF SH IN SALARY_HISTORY

END_FOR;

COMMIT;
FINISH;
end.

WITH SH.EMPLOYEE_ID EMP.EMPLOYEE_ID);

RDML Record Selection Expressions 4-29

REDUCED TO Clause

4.4 REDUCED TO Clause

The REDUCED TO clause of the record selection expression lets you eliminate
duplicate values for fields in a record stream. You can use this expression to
eliminate redundancy in the results of a query and to group the records in a
relation according to unique field values.

Format

reduce-clause =

----. REDUCED TO --.---i. value-expr

Argument
value-expr

.. -1111---

A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. Here, the value expression specifies a qualified field name that Rdb
uses to eliminate duplicate records. See Chapter 2 for more information on
value expressions.

Usage Notes
• The use of the SORTED BY clause with the REDUCED TO clause is highly

recommended. Without it, you cannot be sure of the order in which records
will be retrieved. If you do not use a SORTED BY clause in the record
selection expression, Rdb selects the qualifying records unpredictably and
the records returned may change. In other words, if you make this query
twice you may not get the same results both times, unless you use the
SORTED BY clause.

4-30 RDML Record Selection Expressions

\
/

REDUCED TO Clause

• If you use the REDUCED TO clause, do not retrieve any fields that you do
not specify in the list of value expressions. If you retrieve other fields, the
results are unpredictable.

FOR SH IN SALARY HISTORY REDUCED TO SH.EMPLOYEE ID
SORTED BY SH.EMPLOYEE ID

WRITELN (SH.EMPLOYEE_ID);
END_FOR;

The example reduces the record stream from the SALARY_HISTORY
relation to a record stream that consists of a list of unique employee
identification numbers. If you want to display fields other than
EMPLOYEE_ID, you should include additional REDUCED TO fields.

• In general, the more reduce keys you use, the more records you retrieve.
For example, if Ingrid Smith and William Smith are both employees
with records in the EMPLOYEES relation, the following record selection
expression will retrieve one record, while the succeeding record selection
expression will retrieve two:

FOR E IN EMPLOYEES
REDUCED TO E.LAST NAME
writeln (E.LAST_NAME);

END_FOR;

FOR E IN EMPLOYEES
REDUCED TO E.LAST_NAME, E.FIRST NAME

writeln (E.LAST_NAME);
END_FOR;

11 There is no point in using a unique field as a REDUCED TO field because
unique fields contain unique values; therefore, there are no duplicate field
values to eliminate.

• If you use a statistical function (for example, COUNT) with the REDUCED
TO clause, embed it in a GET statement. A statement embedded in the
GET statement incurs less overhead than a statistical function embedded
directly in the host language.

RDML Record Selection Expressions 4-31

REDUCED TO Clause

Examples
Example 1

The following programs demonstrate the use of the REDUCED TO clause and
the SORTED BY clause with a single relation. These programs sort the records
in the EMPLOYEES relation on the basis of the STATE field. The REDUCED
TO clause limits the record stream so that each record in the stream has a
different value for the STATE field. These programs then display the list of
states represented in the EMPLOYEES relation.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
REDUCED TO E.STATE
SORTED BY E.STATE

printf("%s\n", E.STATE);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program reduced_one_rel (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
REDUCED TO E.STATE
SORTED BY E.STATE

writeln (E.STATE);
END_FOR;

COMMIT;
FINISH;
end.

4-32 RDML Record Selection Expressions

REDUCED TO Clause

Example 2

The following programs demonstrate the use of the REDUCED TO clause and
the SORTED BY clause with multiple relations. These programs:

• Print an informational message

• Cross CURRENT_JOB and DEGREES relations over the common
EMPLOYEE_ID field

• Limit the record stream to those records in the DEGREES relation that
have the same employee ID as the records in the CURRENT_JOB relation
with the department code of "ENG" (engineer)

• Sort the records in the stream in ascending order based on the
COLLEGE_CODE field and within each college code, sort by DEGREE
(also in ascending order)

11 Reduce the record stream to those records that have unique combinations
of college code and degree

• Print the unique combinations of the COLLEGE_ CODE and DEGREE
fields for engineers

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

printf ("List unique combinations of COLLEGE CODE and");
printf ("DEGREE for all engineers");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR CJ IN CURRENT JOB
CROSS D IN DEGREES
OVER EMPLOYEE ID
WITH CJ.DEPARTMENT CODE = "ENG"
REDUCED TO D.COLLEGE_CODE, D.DEGREE
SORTED BY D.COLLEGE_CODE, D.DEGREE

printf ("%s %s", D.COLLEGE_CODE, D.DEGREE);
END_FOR;

COMMIT;
FINISH;
}

RDML Record Selection Expressions 4-33

REDUCED TO Clause

Pascal Program

program reduced_clause (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
writeln ('List unique combinations of COLLEGE CODE and '

'DEGREE for all engineers');

READY PERS;
START_TRANSACTION READ_ONLY;

FOR CJ IN CURRENT JOB
CROSS D IN DEGREES
OVER EMPLOYEE ID
WITH CJ.DEPARTMENT CODE = 'ENG'
REDUCED TO D.COLLEGE_CODE, D.DEGREE
SORTED BY D.COLLEGE CODE, D.DEGREE

writeln (D.COLLEGE_CODE, ' ', D.DEGREE);
END_FOR;

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the REDUCED TO clause with
a reflexive join. These programs:

• Limit the record stream to those records in the DEGREES relation with a
degree starting with "M" (master's) or containing "D" (doctorate)

• Sort the records by descending EMPLOYEE_ID

• Further limit the record stream to those records with unique employee IDs

• Print an informational message and the employee ID of those employees
with either a master's or doctorate degree, or both

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{

READY PERS;
START TRANSACTION READ_ONLY;

4-34 RDML Record Selection Expressions

\
J

FOR D IN DEGREES
WITH D.DEGREE STARTING WITH "M"
OR D.DEGREE CONTAINING "D"
REDUCED TO D.EMPLOYEE ID
SORTED BY DESCENDING D.EMPLOYEE ID

REDUCED TO Clause

printf("%s has an advanced degree.\n", D.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program reduced_one_relation (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR D IN DEGREES
WITH D.DEGREE STARTING WITH 'M'
OR D.DEGREE CONTAINING 'D'
REDUCED TO D.EMPLOYEE ID
SORTED BY DESCENDING D.EMPLOYEE ID

writeln (D.EMPLOYEE_ID, 'has an advanced degree.');
END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4-35

Relation Clause

4.5 Relation Clause

The record selection expression's relation clause lets you declare a context
variable for a stream or a loop. Once you associate a context variable with a
relation, you can use only that context variable to refer to records from that
relation in the record stream you created. Each relation (including multiple
uses of the same relation) in the record stream must have a unique context
variable. See Section 4.1 for more information.

Format

relation-clause =

-. context-var --. IN C db-handle _.. J .. relation-name

Arguments
context-var
A context variable. You define a context variable in a relation clause. See
Section 4.1 for more information.

db-handle
Database handle. A host language variable used to refer to a specific database
you have invoked. If you do not supply a database handle, a default database
handle is declared for you by RDML. However, if you are using more than one
database in your program, you should declare database handles for all the
databases.

relation-name
The name of a relation in a database.

4-36 RDML Record Selection Expressions

Relation Clause

Usage Notes
• You must use a relation clause in the following RDML statements and

functions:

DECLARE_STREAM

FOR

START_STREAM (Declared and Undeclared)

STORE

DECLARE_STREAM

Statistical and Boolean functions

• You must associate a different context variable with each relation you refer
to in the same query. If you access several relations at once, the context
variable lets you distinguish between fields from different relations within
the same statements.

• Once you associate a context variable with a relation, you must use it in
other statements to qualify field names. For instance, once you declare a
context variable in a FOR statement, you must use it in other statements
within the FOR ... END_FOR block (for example, a MODIFY statement)
to qualify field names.

Examples
Example 1

The following programs demonstrate the use of the relation clause with a FOR
loop. These programs declare a context variable E for EMPLOYEES. This
allows the programs to refer to records from the EMPLOYEES relation by
using the context variable E in the host language print statements.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START_TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4-37

Relation Clause

FOR E IN EMPLOYEES
printf ("%s %s %s\n", E.LAST_NAME,

E.EMPLOYEE_ID,
E.SEX);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program context_variable (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
writeln (E.LAST_NAME,

END_FOR;

COMMIT;
FINISH;
end.

Example 2

E.EMPLOYEE_ID, E. SEX);

The following programs demonstrate the use of a relation clause with a STORE
statement.

The C program uses the function pad_string to append trailing blanks to
the last name. This ensures that the last name matches the length defined
for the field. For more information and the source code for pad_string, see
Appendix B. Pascal does not require a special function to pad strings; the
Pascal writeln function pads strings for you.

These programs declare a context variable C for the COLLEGES relation. This
allows the programs to refer to the fields in the COLLEGES relation with the
context variable C during the STORE operation.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

extern void pad_string();

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

4-38 RDML Record Selection Expressions

Relation Clause

STORE C IN COLLEGES USING
pad string("PURD", C.COLLEGE CODE, sizeof(C.COLLEGE CODE));
pad:=string("Purdue University",C.COLLEGE_NAME, sizeof(C.COLLEGE_NAME));
pad string("West Lafayette", C.CITY, sizeof(C.CITY));
pad=:string("IN", C.STATE, sizeof(C.STATE));
pad_string("01760", C.POSTAL_CODE, sizeof(C.POSTAL_CODE));

END_STORE;

ROLLBACK;
FINISH;
}

Pascal Program

program context_store (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START_TRANSACTION READ_WRITE;

STORE C IN COLLEGES USING
C.COLLEGE_CODE := 'PURD';
C.COLLEGE NAME := 'Purdue University';
C.CITY := 'West Lafayette';
C.STATE := 'IN';
C.POSTAL CODE:= '01760';

END_STORE;

ROLLBACK;
FINISH;
end.

Example 3

The following programs demonstrate the use of the relation clause with the
START_STREAM statement and the FETCH statement. The START_STREAM
statement declares and opens the record stream, EMP _STREAM. The FOR
statement determines the records to be included in the stream. These records
are all the records in the EMPLOYEES relation sorted in descending order,
based on the employee ID. The FETCH statement advances an internal pointer
to the first record in the record stream, gets the record, and the programs print
the last name of this employee.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4-39

Relation Clause

START STREAM EMP STREAM USING E IN EMPLOYEES - -
SORTED BY DESCENDING E.EMPLOYEE_ID, E.LAST_NAME;
FETCH EMP_STREAM;

printf("%s has the largest badge number\n", E.LAST_NAME);
END_STREAM EMP_STREAM;

COMMIT;
FINISH;
}

Pascal Program

program stream (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START_TRANSACTION READ_ONLY;

START STREAM EMP STREAM USING E IN EMPLOYEES - -
SORTED BY DESCENDING E.EMPLOYEE_ID, E.LAST_NAME;
FETCH EMP_STREAM;

writeln (E.LAST_NAME, ' has the largest badge number');
END_STREAM EMP_STREAM;

COMMIT;
FINISH;
end.

Example 4

The following programs demonstrate the use of the relation clause to qualify
fields with the same names from different relations. The programs:

• Join the EMPLOYEES relation and the DEGREES relation over the
common EMPLOYEE_ID field

• Join the COLLEGES relation with the DEGREES relation over the
common COLLEGE_CODE field

The joins create a record stream that contains records from the EMPLOYEES,
DEGREES and COLLEGES relations. The SORTED BY clause sorts the
records in ascending order, based on the COLLEGE_CODE, DEGREE,
DEGREE FIELD, and EMPLOYEE_ID fields. Note that these fields are
contained in more than one relation. The programs use the relation clause to
qualify from which relation the program must obtain a specified field value.

These programs print a report using fields from all three relations.

4-40 RDML Record Selection Expressions

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main ()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS D IN DEGREES OVER EMPLOYEE ID
CROSS C IN COLLEGES OVER COLLEGE CODE

Relation Clause

SORTED BY D.COLLEGE CODE, D.DEGREE, D.DEGREE FIELD, E.EMPLOYEE_ID;
printf ("%s %s %s %d %s %s\n", C.COLLEGE_NAME,

D.DEGREE,
D.DEGREE_FIELD,
D.YEAR_GIVEN,
E.EMPLOYEE_ID,

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

E. LAST_NAME);

program qualify_fields (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS D IN DEGREES OVER EMPLOYEE ID
CROSS C IN COLLEGES OVER COLLEGE CODE
SORTED BY D.COLLEGE CODE, D.DEGREE, D.DEGREE_FIELD, E.EMPLOYEE ID

writeln (C.COLLEGE_NAME, ' '
D. DEGREE, ' ' ,
D.DEGREE_FIELD, ' '
D.YEAR_GIVEN, ' '
E.EMPLOYEE_ID,

END_FOR;

COMMIT;
FINISH;
end.

E. LAST_NAME);

RDML Record Selection Expressions 4-41

Relation Clause

Example 5

The following programs demonstrate the use of the relation clause in a CROSS
clause. These programs:

• Cross the CURRENT_JOB view over itself

• Declare the context variables BOSS and WORKER in a relation clause to
qualify two record streams with the same field, LAST_NAME

• Display the bosses' and the workers' names

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR BOSS IN CURRENT JOB
CROSS WORKER IN CURRENT JOB
WITH BOSS.EMPLOYEE ID = WORKER.SUPERVISOR ID
SORTED BY BOSS.LAST_NAME, WORKER.LAST_NAME

printf ("Boss: %s ", BOSS.LAST_NAME);
printf ("Worker: %s\n", WORKER.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program qualify_same_field (input, output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

4-42 RDML Record Selection Expressions

FOR BOSS IN CURRENT JOB
CROSS WORKER IN CURRENT JOB
WITH BOSS.EMPLOYEE ID = WORKER.SUPERVISOR ID - -
SORTED BY BOSS.LAST NAME, WORKER.LAST NAME

writeln ('Boss: I, BOSS.LAST_NAME,-' ',
'Worker: ' WORKER.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
end.

Relation Clause

RDML Record Selection Expressions 4-43

SORTED BY Clause

4.6 SORTED BY Clause

The SORTED BY clause of the record selection expression lets you sort the
records in the record stream by the values of specific fields. You sort on a
database field value expression, called a sort key. The sort key determines
the order in which Rdb returns the records in the record stream.

Format

sort-clause =

___. SORTED BY -~~-----....---.... db-field T
ASCENDING
DESCENDING .,.

4
_____ _

Arguments
ASCENDING
The default sorting order. Rdb sorts the records in ascending order ("A"
precedes "B", 1 precedes 2, and so on). Missing values appear as the last items
in this list of sorted values. You can abbreviate the ASCENDING keyword to
ASC.

DESCENDING
Rdb sorts strings in ASCII sequence, and numbers in numeric order. ("A"
follows "B", 1 follows 2, and so on). Missing values appear as the first items in
this list of sorted values. You can abbreviate the DESCENDING keyword to
DESC.

db-field
A database field value expression. A database field value expression is a field
name qualified with a context variable. See Section 2.2 for more information.

4-44 RDML Record Selection Expressions

SORTED BY Clause

Usage Notes
• The sort order for strings is by byte value (ASCII). This order treats

uppercase characters as being greater than lowercase characters. When
you specify the sort order to be ascending, strings beginning with lowercase
characters will appear after strings beginning with uppercase letters.

• The value expression is the sort key. For example, the following FOR
statement sorts employees by last name:

FOR E IN EMPLOYEES SORTED BY E.LAST NAME

END_FOR;

• If you do not specify the sorting order with the first sort key, the default
order is ascending. In the following example, because the sorting order
is not specified, Rdb automatically sorts the EMPLOYEES records in
ascending order by EMPLOYEE_ID.

FOR E IN EMPLOYEES SORTED BY E.EMPLOYEE ID

END_FOR;

• If you do not specify ASCENDING or DESCENDING for the second or
subsequent sort keys, Rdb uses the order you specified for the preceding
sort key. In the example that follows, Rdb sorts both the EMPLOYEE_ID
and JOB_CODE fields in descending order. The sort order for the
EMPLOYEE_ID and SUPERVISOR_ID fields is explicit; Rdb automatically
determines the sort order for the JOB_CODE field by the preceding sort
key (DESCENDING E.EMPLOYEE_ID).

FOR E IN EMPLOYEES
CROSS JH IN JOB HISTORY OVER EMPLOYEE ID - -
SORTED BY DESCENDING E.EMPLOYEE_ID, JH.JOB_CODE,

ASCENDING JH.SUPERVISOR ID

END_FOR;

RDML Record Selection Expressions 4-45

SORTED BY Clause

• When you use multiple sort keys, Rdb treats the first field or value
expression in the list of sort keys as the major sort key and successive field
or value expressions as minor sort keys. That is, Rdb first sorts the records
into groups based on the first field or value expression. Then Rdb uses the
second key to sort the records within each group, and so on.

• Missing values always sort as the highest items in a sorted list. They are
the first items in a list sorted in descending order, and the last items in a
list sorted in ascending order.

Examples
Example 1

The following programs demonstrate the use of the SORTED BY clause using
the default sort order, ascending. The programs:

• Sort the records in CURRENT_INFO

• Sort in ascending order because no sort order is specified

• Print the last names and salaries stored in the sorted records

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main ()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR CI IN CURRENT INFO
SORTED BY CI.SALARY

printf ("%s $%f\n",CI.LAST_NAME, CI.SALARY);
END_FOR;

COMMIT;
FINISH;
}

4-46 RDML Record Selection Expressions

Pascal Program

program sort_single_field (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR CI IN CURRENT INFO
SORTED BY CI.SALARY

SORTED BY Clause

writeln (CI.LAST_NAME, ' $', CI.SALARY :10:2);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the SORTED BY clause to
arrange records in descending order. The programs:

• Arrange the records in the JOBS relation in descending order on the basis
of the MAXIMUM_SALARY field

• Print the JOB_CODE, MAXIMUM_SALARY, and MINIMUM_SALARY
fields from the sorted list

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR J IN JOBS
SORTED BY DESCENDING J.MAXIMUM SALARY

printf ("%s $%f $%f\n ", J.JOB_CODE,
J.MAXIMUM_SALARY,
J.MINIMUM_SALARY);

END_FOR;

COMMIT;
FINISH;
}

RDML Record Selection Expressions 4-47

SORTED BY Clause

Pascal Program

program sort descending (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR J IN JOBS
SORTED BY DESCENDING J.MAXIMUM SALARY

writeln (J.JOB CODE,

END_FOR;

COMMIT;
FINISH;
end.

Example 3

' $', J.MAXIMUM SALARY 10 2,
I $', J.MINIMUM-SALARY 10 2);

The following programs demonstrate the use of the SORTED BY clause and
sort keys. The programs:

• Create a record stream that contains all records in the employees relation

• Sort this record stream in ascending order by state

• Sort by descending city within each state

• Print the states, cities, and employee IDs from the sorted record stream

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
SORTED BY ASCENDING E.STATE,
DESCENDING E.CITY

printf ("%s %s %s\n", E.STATE, E.CITY, E.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
}

4.-48 RDML Record Selection Expressions

Pascal Program

program matching_all (input,output);
DATABASE PERS =FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
SORTED BY ASCENDING E.STATE,
DESCENDING E.CITY

SORTED BY Clause

writeln (E.STATE, ' ', E.CITY,' ' E.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4-49

WITH Clause

4. 7 WITH Clause

The record selection expression's WITH clause contains a conditional
expression that allows you to specify conditions that must be true for a record
to be included in a record stream.

Format

with-clause=

--•Ill WITH --+ conditional-expr

Argument
conditional-expr
Conditional expression. An expression that evaluates to true or false. See
Chapter 3 for more information.

Usage Notes
• A record becomes part of a record stream only when its values satisfy the

conditions you specified in the conditional expression (that is, only when
the conditional expression evaluates to true).

• If the conditional expression evaluates to false or missing for a record, that
record is not included in the record stream.

Examples
Example 1

The following programs demonstrate the use of the WITH clause in a record
selection expression. The programs:

• Create a record stream of all those records in the EMPLOYEES relation
with an employee ID of 00169

4-50 RDML Record Selection Expressions

)
J

WITH Clause

• Print the employee IDs and last names from each record in the record
stream

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.EMPLOYEE ID = "00169"

printf ("%s ", E.EMPLOYEE_ID);
printf ("%s", E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program with clause (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITHE.EMPLOYEE ID= '00169'

writeln (E.EMPLOYEE_ID,
END_FOR;

COMMIT;
FINISH;
end.

Example 2

' ' E.LAST_NAME);

The following programs demonstrate the use of the WITH clause with multiple
conditions. The record selection expression finds all employees who have
only one degree. The record selection expression limits the stream further
by specifying that these employees must have received their degrees from
Stanford University in the field of Arts. These programs print the employee ID
of the employees who fit these conditions.

RDML Record Selection Expressions 4-51

WITH Clause

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS Dl IN DEGREES OVER EMPLOYEE ID
WITH (UNIQUE D2 IN DEGREES WITH D2.EMPLOYEE ID E.EMPLOYEE_ID)
AND Dl.DEGREE FIELD = "Arts"
AND Dl.COLLEGE CODE = "STAN"

printf ("%s\n 11
, E.EMPLOYEE_ID);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program multiple_cond (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS Dl IN DEGREES OVER EMPLOYEE ID
WITH (UNIQUE D2 IN DEGREES WITH D2.EMPLOYEE ID
AND Dl.DEGREE FIELD= 'Arts'
AND Dl.COLLEGE CODE= 'STAN'

writeln (E.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
end.

4-52 RDML Record Selection Expressions

E. EMPLOYEE_ ID)

5
RDML Statistical Functions

This chapter describes the Relational Data Manipulation Language (RDML)
statistical functions that can be used with embedded RDML statements in C
and Pascal programs.

The C and Pascal programs in this chapter access the sample personnel
database available with RdbNMS.

Statistical functions calculate values based on a value expression for every
record in a record stream. Expressions that use statistical functions are
sometimes called aggregate expressions, because they calculate a single value
for a collection of records. When you use a statistical function you specify a
value expression (except for COUNT), and a record selection expression (RSE).
RdbNMS then performs the following steps:

Evaluates the value expression for each record in the record stream formed
by the record selection expression

2 Calculates a single value based on the results of the first step

You can also use a value expression to group records within a relation and
then use a statistical function to calculate a single value for the group. This
operation is often called a global aggregate because you can group records
by a value in any relation in a database. For example, you can use the
DEPARTMENT_CODE field in the DEPARTMENTS relation to group records
in the SALARY_HISTORY relation in order to get the average salary for each
department.

The following syntax diagram shows the syntax for all the statistical functions.
Refer to the section on each function in this chapter for additional information.

RDML Statistical Functions 5-1

Format

statistical-expr =

~i ==r vruu~x~
~G-d
COUNT ~

handle-options =

-+ (E REQUEST HANDLE ------+ var~) -+
TRANSACTION_HANDLE --+ var
REQUEST _HANDLE -+ var -+ ,)

c=; TRANSACTION HANDLE -+ var

Arguments
handle-options
A transaction handle, a request handle, or both.

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream.

Table 5-1 summarizes the values returned by statistical functions.

5-2 RDML Statistical Functions

Table 5-1 Statistical Functions

Statistical Function Value of Statistical Function

AVERAGE

COUNT

MAX

MIN

TOTAL

Arithmetic mean of values specified by value expression
for all records indicated by record selection expression.
Value expression must be numeric data.

Number of records in stream specified by record selection
expression.

Largest of values specified by value expression for all
records indicated by record selection expression.

Smallest of values specified by value expression for all
records indicated by record selection expression.

Sum of values specified by value expression for all
records indicated by record selection expression. Value
expression must be numeric data.

When RDML returns the results of a statistical function, it may assign a result
data type that is different from the field data type referred to in the expression.
See Table 5-2 for a summary of these assignments.

Table 5-2 Statistical Expression Data Type Conversions for RDML

Statistic a I Field Result Pascal EPascal
Function Data Type Data Type C Equivalent Equivalent Equivalent

MIN, MAX Any Same Same Same Same
as field as field as field as field

COUNT Any LONGWORD int, long INTEGER INTEGER

AVERAGE Any F _FLOATING float SINGLE, REAL
REAL

TOTAL Any G_FLOATINGdouble DOUBLE DOUBLE

The G_floating data types require the use of the /G_FLOATING qualifier at
compile time.

RDML Statistical Functions 5-3

AVERAGE Statistical Function

5. 1 AVERAGE Statistical Function

The AVERAGE statistical function determines the arithmetic mean of values
for all records specified by a record selection expression.

Format

--+ AVERAGE ----.---------_J--..------------. 4 handle-options

~---- value-expr ----- OF ---- rse

handle-options =

-+ (E REQUEST HANDLE -. var~) -+
TRANSACTION HANDLE -+ var
REQUEST HANDLE -+ var -+ ,)

L-=; TRANSACTION_HANDLE -+ var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled RdbNMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

5-4 RDML Statistical Functions

AVERAGE Statistical Function

va/ue-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream.

Usage Notes
• If a field value in the value expression is missing, Rdb does not include

that record in its calculation of the average value.

• You can use the AVERAGE function only with numeric data types. You can
find the average of all salaries, but you cannot find the average employee's
name.

• If the record stream is empty or all the values in the record stream
are missing, the AVERAGE value is zero in the floating_point form:
O.OOOOOOOE+OO if the data type of the field is floating point.

Examples
Example 1

The following programs demonstrate the use of the AVERAGE function in a
display statement. These programs:

• Use a record selection expression to form a record stream from a view. The
record stream consists of the records for which the value in the SALARY
field is greater than $50,000.00.

• Calculate the average salary for these selected records.

• Use a GET statement to place the average in a host language variable.

• Print this average.

RDML Statistical Functions 5-5

AVERAGE Statistical Function

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

double mean;
main()
{

READY PERS;
START TRANSACTION READ_ONLY;

GET
mean = AVERAGE CI.SALARY OF CI IN CURRENT INFO

WITH CI.SALARY > 50000.00;
END_GET;

COMMIT;

printf ("Average is: %f\n",mean);

FINISH;
}

Pascal Program

program average_function (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
mean : double;
begin
READY PERS;
START TRANSACTION READ_ONLY;

GET
mean = AVERAGE SH.SALARY AMOUNT OF SH IN SALARY HISTORY

WITH SH.SALARY AMOUNT > 50000.00;
END_GET;

COMMIT;

writeln ('Average is:

FINISH;
end.

Example 2

mean:10:2);

The following programs demonstrate the use of the AVERAGE function in a
record selection expression. These programs:

• Perform a reflexive join on the CURRENT_INFO view so that each record
in the view can be compared to all the records in the view

5-6 RDML Statistical Functions

AVERAGE Statistical Function

• Use the AVERAGE function to determine the average salary of the
employees in the CURRENT_INFO view

• Compare the value of the SALARY field in each record to this average

• Print the IDs and last names of those employees whose salaries are greater
than or equal to this average

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR Cil IN CURRENT INFO
WITH Cil.SALARY >= AVERAGE CI2.SALARY OF CI2 IN CURRENT INFO

printf ("%s %s\n", Cil.ID, Cil.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program average_with_rse (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR Cil IN CURRENT INFO
WITH Cil.SALARY >= AVERAGE CI2.SALARY OF CI2 IN CURRENT INFO

writeln (Cil.ID, ' ' Cil.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

RDML Statistical Functions 5-7

COUNT Statistical Function

5.2 COUNT Statistical Function

The COUNT statistical function returns the number of records in a record
stream specified by a record selection expression. The COUNT function differs
from other statistical functions because it operates on the record stream
defined by the record selection expression, rather than on the values in that
record stream.

Format

c+ OF ---.111 rse

handle-options =

-+ (E REQUEST HANDLE ---. var~) -+
TRANSACTION_HANDLE ----+ var
REQUEST HANDLE -+ var -+ ,)

c=+ TRANSACTION HANDLE -+ var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

5-8 RDML Statistical Functions

COUNT Statistical Function

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
• The count equals zero if no records are in the record stream.

• If any field value is missing from a record in the record stream, the
COUNT function still includes the record in the record stream because
COUNT does not access field values.

• Use the GET statement rather than a host language statement to retrieve
a statistical value. The GET statement produces more efficient code than a
host language statement. See Example 1.

Examples
Example 1

The following programs demonstrate the use of the COUNT function in a
display statement. These programs:

• Use the COUNT function to compute the number of records stored in the
EMPLOYEES relation

• Use the GET statement to place the count in a host language variable

• Print an informational message and the computed number of records

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

int num;
main()
{

READY PERS;
START TRANSACTION READ_ONLY;

RDML Statistical Functions 5-9

COUNT Statistical Function

GET
num = COUNT OF E IN EMPLOYEES;

END_GET;

printf ("The number of employees is %d", num);

COMMIT;
FINISH;
}

Pascal Program

program display_count (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
num : integer;

begin
READY PERS;
START TRANSACTION READ_ONLY;

GET
num = COUNT OF E IN EMPLOYEES;

END_GET;

writeln ('The number of employees is', num);

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the COUNT function in a
record selection expression. These programs cross the CURRENT_JOB view
and the DEPARTMENTS relation over the DEPARTMENT_CODE field. The
COUNT function keeps track of how many times the department codes in the
CURRENT_JOBS records match a department code in the DEPARTMENTS
relation. These programs print every department code that has seven or more
employees associated with it.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

printf ("List large departments.");

5-10 RDML Statistical Functions

COUNT Statistical Function

FOR D IN DEPARTMENTS
WITH (COUNT OF CJ IN CURRENT_JOB

WITH CJ.DEPARTMENT_CODE = D.DEPARTMENT_CODE) >= 7
printf ("%s\n",D.DEPARTMENT_CODE);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program count_function (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

writeln ('List large departments.');

FOR D IN DEPARTMENTS
WITH (COUNT OF CJ IN CURRENT_JOB

WITH CJ.DEPARTMENT_CODE = D.DEPARTMENT_CODE) >= 7
writeln (D.DEPARTMENT_CODE);

END_FOR;

COMMIT;
FINISH;
end.

RDML Statistical Functions 5-11

MAX Statistical Function

5.3 MAX Statistical Function

The MAX statistical function returns the highest value for a value expression
for all records specified by a record selection expression.

Format

.____ ___ ., value-expr --+ OF --+ rse

handle-options =

-+ (E REQUEST HANDLE ---+ varM) -+
TRANSACTION_HANDLE ----+ var
REQUEST HANDLE -+ var -+ ,)

G TRANSACTION HANDLE -+ var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

5-12 RDML Statistical Functions

MAX Statistical Function

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
• If a field value is missjng from a record, Rdb does not include that record

in its calculation of the MAX value.

• If the record stream is empty or all the values in the record stream are
missing, the MAX value is:

Blanks if the data type of the field is TEXT

Zeros in the floating-point form: O.OOOOOOOE+OO if the data type of the
field is floating point

17-NOV-1858 00:00:00.00 if the data type of the field is DATE

• The ASCII collating sequence is used to determine the maximum value for
TEXT and VARYING STRING. For example, the MAX of "zebra," "bear,"
and "pelican" is "zebra."

• Date chronology is used to determine the maximum value for the DATE
data type. For example, the MAX of 05-NOV-1917, 06-NOV-1917, and
07-NOV-1917 is 07-NOV-1917.

• Dates are stored in the database in encoded binary format. Therefore,
when using the MAX function with dates you must be certain that your
application converts these dates to a binary format. See Section 5.4 for an
example of a date conversion.

RDML Statistical Functions 5-13

MAX Statistical Function

Examples
Example 1

The following programs demonstrate the use of the MAX function in a display
statement. These programs:

• Use the MAX function to compute the highest salary stored in the view
CURRENT_INFO

• Use the GET statement to place this value in a host language variable

• Print this computed value

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE maxi SAME AS PERS.CURRENT_INFO.SALARY;

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

GET
maxi =MAX CI.SALARY OF CI IN CURRENT_INFO;

END_GET;

printf ("%f",maxi);
COMMIT;
FINISH;
}

Pascal Program

program max_function (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

DECLARE VARIABLE maxi SAME AS PERS.CURRENT_INFO.SALARY;

begin
READY PERS;
START TRANSACTION READ_ONLY;

GET
maxi =MAX CI.SALARY OF CI IN CURRENT_INFO;

END_GET;

writeln (maxi:l0:2);

5-14 RDML Statistical Functions

COMMIT;
FINISH;
end.

Example 2

MAX Statistical Function

The following programs demonstrate the use of the MAX function in an
assignment statement. These programs:

• Declare a host language variable, latest_degree

• Use the MAX function to compute the highest number stored in
YEAR_GIVEN in the DEGREES relation

• Use the GET statement to assign this computed value to the host language
variable

• Print an informational message and the value computed by the MAX
function

C Program

#include <stdio.h>
DATABASE PERS= FILENAME 'PERSONNEL';

main()
{

DECLARE_VARIABLE latest_degree SAME AS DEGREES.YEAR_GIVEN;

READY PERS;
START_TRANSACTION READ_ONLY;

GET
latest_degree =MAX D.YEAR GIVEN OF D IN DEGREES;

END_GET;

printf ("Latest Degree was awarded in: %d\n", latest_degree);

COMMIT;
FINISH;
}

Pascal Program

program assignmax (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
DECLARE VARIABLE latest_degree SAME AS DEGREES.YEAR_GIVEN;

begin
READY PERS;
START TRANSACTION READ_ONLY;

RDML Statistical Functions 5-15

MAX Statistical Function

GET
latest_degree =MAX D.YEAR_GIVEN OF D IN DEGREES;

END_GET;

writeln ('Latest Degree was awarded in: ', latest_degree);

COMMIT;
FINISH;
end.

5-16 RDML Statistical Functions

MIN Statistical Function

5.4 MIN Statistical Function

The MIN statistical function returns the lowest value for a value expression for
all records specified by a record selection expression.

Format

-+ MIN -----....-~-------------.-------------..
L+ handle-options J

-----111 value-expr ---111 OF --- rse

handle-options =

-+ (E REQUEST HANDLE ---+ var~ } -+
TRANSACTION HANDLE ----. var
REQUEST HANDLE -+ var -+ ,)

L=+ TRANSACTION_HANDLE -+ var

Arguments
handle-options
A request hand.le, a transaction hand.le, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request hand.le identifies a compiled RdbNMS request. If you do not supply
a request hand.le explicitly, RDML generates a unique request hand.le for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
hand.le explicitly, RDML uses the default transaction handle.

RDML Statistical Functions 5-17

MIN Statistical Function

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
• If a field value is missing, Rdb does not include that record in its

calculation of the MIN value.

• If the record stream is empty or all the values in the record stream are
missing, the MIN value is:

Blanks if the data type of the field is TEXT

Zeros in the floating-point form: O.OOOOOOOE+OO if the data type of the
field is floating point

17-NOV-1858 00:00:00.00 ifthe data type of the field is DATE

• The ASCII collating sequence is used to determine the minimum value for
TEXT and VARYING STRING. For example, the MIN of the fields "zebra,"
"bear," and "pelican" is "bear."

• Date chronology is used to determine the minimum value for the DATE
data type. For example, the MIN of 09-APR-1954, 10-APR-1954, and
11-APR-1954 is 09-APR-1954.

• Dates are stored in the database in encoded binary format. Therefore,
when using the MIN function with dates you must be certain that your
application converts these dates to a binary format. See Example 1 for an
example of a date conversion.

5-18 RDML Statistical Functions

Examples
Example 1

MIN Statistical Function

The following programs list the first SALARY_HISTORY record for each
employee, using the MIN function to determine the oldest salary review date.
Note that the SALARY_HISTORY.SALARY_START field is a DATE data
type. In the database, it is stored in encoded binary format. To display it,
the program must convert the retrieved value into an ASCII string. These
programs call the VMS system service routine ASCTIM to perform the
conversion.

Before converting the SALARY_START DATE field, though, the MIN function
is used. The binary value returned by the MIN function is stored temporarily
in a host language variable. This variable is then converted by ASCTIM. This
process is straightforward in Pascal. The C program must define a pointer to
the variable. In C and Pascal, the host language variable is defined using the
DECLARE_ VARIABLE clause.

C Program

tinclude <stdio.h>
tinclude <descrip.h>
tinclude <ssdef.h>

DATABASE PERS = FILENAME "PERSONNEL";

extern int SYS$ASCTIM ();

main()
{

DECLARE VARIABLE start_binary_date SAME AS SALARY_HISTORY.SALARY_START;

/* In the following declaration, note one extra space for EOS */

static $DESCRIPTOR(sal_ascii_date_desc, "dd-mmm-yyyy hh:mrn:ss:cc ");

/* SYS$ASCTIM returns len in a 16-bit word */

short
long

len;
status;

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH (ANY SH IN SALARY_HISTORY

WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID)
SORTED BY E.EMPLOYEE_ID;

GET
start_binary_date =MIN SH.SALARY_START OF SH IN SALARY_HISTORY

WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID;
END_GET;

RDML Statistical Functions 5-19

MIN Statistical Function

status= SYS$ASCTIM(&len, &sal_ascii_date_desc, &start_binary_date, 0);
if (status != SS$_NORMAL)

{

printf ("Date conversion failed\n"J;
continue;

}

/* Ensure that the returned strings are null-terminated, */
/* so that we may use printf to print them out. */

sal_ascii_date_desc.dsc$a_pointer[len - l] = '\0';

printf ("%s %s First Salary Review was: %s\n",
E.EMPLOYEE_ID,
E.LAST NAME,
sal_ascii_date_desc.dsc$a_pointer~;

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

[inherit ('sys$library:starlet.pen'l]

program min_function (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
DECLARE_VARIABLE SAL_START_DATE SAME AS SALARY_HISTORY.SALARY_START;
sal_date
status

packed array (1 .. 23] of char;
; integer;

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH (ANY SH IN SALARY_HISTORY
WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID)
SORTED BY E.EMPLOYEE ID
WRITELN;
WRITELN (E.EMPLOYEE_ID, E.LAST_NAME);

GET
sal_start_date :=MIN SH.SALARY START OF SH IN SALARY_HISTORY

WITH SH.EMPLOYEE ID = E.EMPLOYEE_ID;
END_GET;

status := $ASCTIM(timbuf := sal_date, timadr := sal start_date);
if (status <> SS$_NORMAL)

then writeln (' Date conversion failed')
else writeln (' First Salary Review was: ',sal_date);

END_FOR;

5-20 RDML Statistical Functions

COMMIT;
FINISH;
end.

Example 2

MIN Statistical Function

The following programs demonstrate the use of the MIN function in an
assignment statement. These programs:

• Use the MIN function to compute the lowest salary in the existing records
of the JOBS relation for which the wage class is "l"

• Use the GET statement to assign this value to a host language variable

• Store a literal value into all fields for a record in the JOBS relation, except
the MINIMUM_SALARY field

• Assign the value stored in the host language variable into the record
currently being stored

The C program uses the function pad_string to append trailing blanks and
the null terminator to the strings being stored. This ensures that the strings
match the length defined for the field. For more information and the source
code for pad_string, see Appendix B.

C Program

*include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE min SAME AS PERS.JOBS.MINIMUM_SALARY;

extern void pad string();
main() -
{

READY PERS;
START TRANSACTION READ_WRITE;

GET
min = MIN J2.MINIMUM SALARY OF J2 IN JOBS

WITH J2.WAGE CLASS = "1";
END_GET;

STORE J IN JOBS USING
pad string ("SWPR", J.JOB CODE, sizeof(J.JOB CODE));
pad-string ("1", J.WAGE CLASS, sizeof(J.WAGE-CLASS));
pad=string ("Sweeper", J.JOB_TITLE, sizeof(J-:-JoB_TITLE));
J.MAXIMUM_SALARY = 10000.00;
J.MINIMUM SALARY =min;

END_STORE;

RDML Statistical Functions 5-21

MIN Statistical Function

ROLLBACK;
FINISH;
}

Pascal Program

program store_with_min (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

DECLARE VARIABLE mini SAME AS PERS.JOBS.MINIMUM_SALARY;

begin
READY PERS;
START TRANSACTION READ_WRITE;

GET
mini =MIN J2.MINIMUM SALARY OF J2 IN JOBS

WITH J2.WAGE CLASS= '1';
END_GET;

STORE J IN JOBS USING
J.JOB_CODE := 'SWPR';
J.WAGE_CLASS := '1';
J.JOB_TITLE := 'Sweeper';
J.MINIMUM SALARY ·=mini;
J.MAXIMUM SALARY := 10000.00;

END_STORE;

ROLLBACK;
FINISH;
end.

5-22 RDML Statistical Functions

TOTAL Statistical Function

5.5 TOTAL Statistical Function

The TOTAL statistical function returns the sum of the values specified by a
record selection expression. The value expression must be a numeric data type.

Format

-+ TOTAL --~~-------~-----------.
4 handle-options ~

L value~xpr ---~OF ---~ rse

handle-options =

-+ (E REQUEST HANDLE -----. var~) -+
TRANSACTION_HANDLE --+ var
REQUEST HANDLE -+ var -+ ,)

G TRANSACTION HANDLE -+ var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled RdbNMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

RDML Statistical Functions 5-23

TOTAL Statistical Function

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
• You can use the TOTAL function only with numeric data types. The value

expression that follows the TOTAL function cannot use host variables. You
can find the total of all salaries, but you cannot find the total LAST_NAME
in a relation.

• The TOTAL value equals zero if no records are in the record stream.

• The TOTAL value equals zero if all values are missing.

• If a field value is missing, Rdb does not include that record in its
calculation of the TOTAL value.

Examples
Example 1

The following programs demonstrate the use of the TOTAL function in an
assignment statement. These programs:

• Use the TOTAL function to compute the total amount budgeted for all
departments in the DEPARTMENTS relation

• Print this computed value

C Program

*include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE all SAME AS PERS.DEPARTMENTS.BUDGET_ACTUAL;
main()
{

READY PERS;
START TRANSACTION READ_ONLY;

5-24 RDML Statistical Functions

TOTAL Statistical Function

GET
all = TOTAL D.BUDGET ACTUAL OF D IN DEPARTMENTS;

END_GET;

printf ("%.f", all) ;

COMMIT;
FINISH;
}

Pascal Program

program total function (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

all : double;

begin
READY PERS;
START TRANSACTION READ_ONLY;

GET
all = TOTAL D.BUDGET ACTUAL OF D IN DEPARTMENTS;

END_GET;

writeln (all:10:2);

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the TOTAL function in a
record selection expression. The programs perform a reflexive join on the
CURRENT_INFO view. This results in two record streams, WORKERS and
DEPT. The TOTAL function adds the salary of each worker with a common
department name and compares the totals for each department with the value
l,000,000,000.00. These programs print an informational message and all the
departments that expend l,000,000,000.00 or more in salaries.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START_TRANSACTION READ_ONLY;

RDML Statistical Functions 5-25

TOTAL Statistical Function

FOR DEPT IN CURRENT INFO
WITH (TOTAL WORKERS.SALARY OF WORKERS IN CURRENT_INFO

WITH WORKERS.DEPARTMENT= DEPT.DEPARTMENT) >= 1000000000.00
printf ("Department %s %s\n",DEPT.DEPARTMENT, "makes large salaries");

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program total_function (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR DEPT IN CURRENT INFO
WITH (TOTAL WORKERS.SALARY OF WORKERS IN CURRENT INFO

WITH WORKERS.DEPARTMENT = DEPT.DEPARTMENT)->= 1000000000.00

END_FOR;

COMMIT;
FINISH;
end.

writeln ('Department ',DEPT.DEPARTMENT,' makes large salaries.');

5-26 RDML Statistical Functions

6
RDML Clauses and Statements

This chapter describes the Relational Data Manipulation Language (RDML)
clauses and statements that can be embedded in C and Pascal programs.
These programs can be processed by the RDML preprocessor.

The C and Pascal programs in this chapter access the sample personnel
database available with RdbNMS.

Table 6-1 summarizes the functions of the statements and clauses in this
chapter.

Table 6-1 Functions of RDML Statements and Clauses

Clause or Statement

BASED ON

COMMIT

DATABASE

Database handle

DECLARE_STREAM

Function

Extracts the data type and size of a field, allowing
you to declare a host languages type: Pascal
TYPE(s) and C typedef(s).

Ends a transaction by making permanent all
changes performed during that transaction.

Nam es the database to be accessed in the program
module in which this statement appears (does not
cause an attach to the database).

Specifies a database context to the RDML
preprocessor. Necessary when you access two
or more databases in the same program.

Declares the context of a record stream. Only
has meaning when used with the declared
START_STREAM statement.

(continued on next page)

RDML Clauses and Statements 6-1

Table 6-1 (Cont.) Functions of RDML Statements and Clauses

Clause or Statement Function

DEFINE_TYPE Declares a host language variable to have the
same data type and size as a specified database
field.

DECLARE_ VARIABLE Declares a host language variable to have the
same data type and size as a specified database
field. Has the same function and effects as
DEFINE_TYPE clause.

END_STREAM, declared

END _STREAM, undeclared

ERASE

Evaluating clause

FETCH

FINISH

FOR

FOR statement with segmented
strings

GET

MODIFY

ON ERROR

PREPARE

6-2 RDML Clauses and Statements

Closes a stream that was previously declared
and opened with the declared START_STREAM
statement.

Specifies and closes a record stream.

Deletes records from a relation in an open stream.

Allows you to specify the point at which the
named constraints are evaluated.

Retrieves the next record from a record stream.
The record stream must be started with the
DECLARE_STREAM or START_STREAM
statement.

Explicitly ends your access to a database.

Executes a statement or group of statements once
for each record in a record stream formed by a
record selection expression.

Sets up a record stream that consists of segments
from a segmented string field. Provides a means
for retrieving the segments of a segmented string.

Assigns values to host variables.

Changes the value in one or more fields in one or
more records from an open stream.

Specifies the statement(s) the host language
executes if an error occurs during the execution of
the associated RDML statement.

Signals to Rdb/ELN that you intend to commit
a transaction. Useful· only in an Rdb/ELN
environment.

(continued on next page)

Table 6-1 (Cont.) Functions of RDML Statements and Clauses

Clause or Statement

READY

REQUEST_HANDLE

ROLLBACK

START_STREAM, declared

START_STREAM, undeclared

START_TRANSACTION

STORE

STORE with segmented strings

TRANSACTION_HANDLE

Function

Causes an attach to the database(s).

Identifies a compiled Rdb request. A request
handle is a host language variable.

Terminates a transaction and undoes all changes
made to the database since the start of the
transaction.

Opens a record stream that has been previously
declared with the DECLARE_STREAM statement.

Specifies and opens a record stream.

Starts a transaction.

Inserts a record into an existing relation.

Inserts a segment into a segmented string field.

Identifies a transaction. If you do not supply
a handle name explicitly, uses the default
transaction handle.

RDML Clauses and Statements 6-3

BASED ON Clause

6. 1 BASED ON Clause

The BASED ON clause lets you extract from the database the data type
and size of a field and then use it to declare host language types. The type
is defined as TYPE in Pascal and typedef in C. When you preprocess your
program, the RDML preprocessor assigns the data type and size attributes
associated with the field to the type you declare using the BASED ON clause.

See Section 6.6 for information on declaring host language variables.

Format

_BA_SE_D ON ---~------_)~--­
"--+ db-handle --+ .

~-•Ila relation-name

Arguments
db-handle

-----+ . -----+ field-name

Database handle. A host language variable used to refer to a specific database
you have invoked. For more information, see Section 6.4.

relation-name
The name of a relation in a database.

field-name
The name of a field in a relation.

Usage Notes
• Do not use the BASED ON clause to declare host language variables;

instead, use the DECLARE_ VARIABLE clause, which is described
Section 6.6.

6-4 RDML Clauses and Statements

BASED ON Clause

• If a relation name exists in more than one database being accessed by
your program, you must specify the database handle to allow RDML to
determine which relation you mean.

• In RDML/C, when the field in the relation is of the TEXT, DATE, SIGNED
QUADWORD, or SEGMENTED STRING data type, the BASED ON clause
generates a C data type of pointer to char (char*). This allows you to
return pointers to strings as shown in Example 1.

Examples
Example 1

The following programs demonstrate the use of the BASED ON clause to
declare function variables. The programs use the BASED ON clause to declare
the function typesjob_title_type andjob_code_type. The programs pass the
value of the JOB_ CODE field to the JOB_NAME function. This function
determines the job title associated with the job code and passes the job title
back to the calling program. Note that in the C program, a host language
variable, temp_job_name, is required so that space is allocated to receive the
results of the strcpy function and the function can return the job title to the
calling program. In Pascal, you assign a value to the function name to return
the job title to the calling program.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

typedef BASED ON JOBS.JOB CODE job code type;
typedef BASED ON JOBS.JOB-TITLE job title type;
DECLARE_VARIABLE temp_job_name SAME AS JOBS.JOB_TITLE;

job title type job name(job)
job-code type job;-
{ I* begin function */

READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 1 J IN JOBS
WITH J.JOB_CODE = job

strcpy (temp_job_name, J.JOB_TITLE);
END_FOR;

COMMIT;
FINISH;
return temp job name;

/* end of function */

RDML Clauses and Statements 6-5

BASED ON Clause

main ()

printf ("%s\n",job_name("APGM"));
}

Pascal Program

program based_on_clause (INPUT,OUTPUT);
DATABASE PERS = FILENAME 'PERSONNEL';

type
job code type = BASED ON JOBS.JOB_CODE;
job=title_type = BASED ON JOBS.JOB_TITLE;

function job_name (job

begin {* function *}
READY PERS;

JOB_CODE_TYPE) : JOB_TITLE_TYPE;

START TRANSACTION READ_ONLY;

FOR FIRST 1 J IN JOBS
WITH J.JOB CODE = job

job_name := J.JOB_TITLE;
END_FOR;

COMMIT;
FINISH;

end; {* function *}

begin {* main *}
writeln (job_name ('APGM'));
end.

6-6 RDML Clauses and Statements

COMMIT Statement

6.2 COMMIT Statement

The COMMIT statement ends a transaction and makes permanent any changes
to the database that you made during that transaction.

Format

COMMIT
~ TRANSACTION_HANDLE ~ var ~)

on-error

Arguments
TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

on-error
The ON ERROR clause. Specifies a host language statement or an RDML
statement or both to be performed if an error occurs during the COMMIT
operation. See Section 6.17 for details.

Usage Notes
• Digital Equipment Corporation recommends that you preprocess your

program with the /NODEFAULT_TRANSACTIONS qualifier. When you
use the /NODEFAULT_TRANSACTIONS qualifier, you reduce the overhead
associated with the work that RDML must do to check the state of the
database (for example, if the program has attached to the database, if a
transaction has started, or if a transaction has ended). When you use the
/NODEFAULT_TRANSACTIONS qualifier, you must explicitly start and
commit or rollback your transaction or you will receive an error when you
preprocess your program.

RDML Clauses and Statements 6-7

COMMIT Statement

• By default, the COMM:IT statement affects all readied databases (whether
implicitly readied by a reference to the database or explicitly readied with
the READY statement).

• The COMM:IT statement writes to the database all changes to data made
with the ERASE, MODIFY, and STORE statements during the transaction.

• If you start a transaction without specifying a transaction handle, you use
the default transaction handle (see Section 6.27 for more information on
transaction handles). There is one default transaction handle.

• By default, when the RDML preprocessor encounters a statement without
a transaction handle, it uses the default transaction handle. However,
Digital Equipment Corporation recommends that you preprocess your
program with the /NODEFAULT_TRANSACTIONS qualifier.

• If you start a transaction and specify a transaction handle, you must
use that transaction handle to commit that transaction. If the COMMIT
statement succeeds, it automatically initializes the transaction handle to
zero.

• The COMM:IT statement also:

Flushes all modified buffers

Closes open streams created by FOR and START_STREAM statements

Releases all locks if you are using RdbNMS

Reduces the lock level if you are using the CONSISTENCY option of
the START_TRANSACTION statement in the Rdb/ELN environment

• Because the COMMIT statement ends a stream, do not explicitly end a
stream (using the END_STREAM statement) after a COMMIT statement
has been executed, or Rdb will return an error.

However, your source program can place a declared END_STREAM
statement after a COMMIT statement, as long as it is executed before the
COMMIT statement at run time.

• Your program cannot continue in a FOR loop after a COMMIT statement.

6-8 RDML Clauses and Statements

Examples
Example 1

COMMIT Statement

The following programs demonstrate the use of the COMMIT statement to
make permanent changes to a field value in a database. The programs:

• Use a record selection expression to find an employee in the EMPLOYEES
relation with the ID number 00193

• Use a MODIFY statement to change the field value of LAST_NAME for
this employee

Although this change is written to the database at the time of the MODIFY
statement, the change is not permanent until the programs issue a COMMIT
statement. After the programs issue the COMMIT statement, the old value for
LAST_NAME is not available.

The C program uses the function pad_string to append trailing blanks to
the last name. This ensures that the last name matches the length defined
for the field. For more information and the source code for pad_string, see
Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{

READY PERS;
START TRANSACTION READ_WRITE;

FORE IN EMPLOYEES WITHE.EMPLOYEE ID= '00193'
MODIFY E USING

pad_string ("Smith-Fields", E.LAST_NAME, sizeof(E.LAST_NAME));
END_MODIFY;

END_FOR;

COMMIT;
FINISH;
}

RDML Oauses and Statements 6-9

COMMIT Statement

Pascal Program

program commit_changes (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE ID
MODIFY E USING

E.LAST NAME ·='Smith-Fields';
END_MODIFY;

END_FOR;

COMMIT;
FINISH;
end.

6-10 RDML Clauses and Statements

'00193'

DATABASE Statement

6.3 DATABASE Statement

The DATABASE statement names the database to be accessed in a program
or program module and specifies to RDML which database to use and where
to declare variables. RDML does not generate code to attach to the database
when it encounters the DATABASE statement. The READY statement causes
an attach to the database.

The only required parameter for the DATABASE statement is the database
name. The name must be the file name that represents the database file or a
logical name that translates to a file name.

You can also specify the following:

• A database handle

A database handle is a name that you can associate with a database so
that your program can refer to more than one database in a module.

• The scope of the database handle

A database handle can be either local to the module that declared it, global
to all the modules that refer to the same database, or external to the
module that refers to the same database.

• Different sources of the database definition for compilation and execution

This option allows you to compile the program using one database
definition and run the program using another. You must use at least
the COMPILETIME option with a file specification or logical name or a
VAX CDD/Plus path name. If you also use the RUNTIME option, you
can use either a file specification or a host language variable. The host
language variable must be initialized to contain a file specification or a
logical name that translates to a file specification before any operations can
be performed against the database.

• The database key (dbkey) scope

This option allows you to specify through a COMMIT statement or a
FINISH statement whether the scope of each record's database key (dbkey)
is valid. See the explanations of the DBKEY SCOPE IS COMMIT and
DBKEY SCOPE IS FINISH options in the Arguments section for details.

RDML Clauses and Statements 6-11

DATABASE Statement

• The request handle scope

Format

This option allows you to specify the scope of system or user request
handles. See the explanations of the REQUEST_HANDLE SCOPE IS
DEFAULT and REQUEST_HANDLE SCOPE IS FINISH options in the
Arguments section for details.

INVOKE DATABASE
db-handle-options

----.....---------.---.-- PATHNAME ---+ path-name

db-handle-options =

COMPILETIME FILENAME ---+ file-spec

RUNTIME FILENAME

DBKEY SCOPE IS ----r+ COMMIT
4 FINISH __ __,

REQUEST HANDLE SCOPE IS ~ DEFAULT
4 FINISH

. - L. handle-scope j l ~
db-handle -+ - ..

'--~------j--.-__... db-handle -+ =

handle-scope

6-12 RDML Clauses and Statements

DATABASE Statement

handle-scope =

C
GLOBAL

~AL-----
LOCAL __ ___,

l; 1 J ~

If you choose to use a bracket, you must enclose the handle scope in both the
right-hand and left-hand brackets.

Arguments
db-handle-options
Database handle options. Allows you to specify the scope and name of a
database handle.

db-handle
Database handle. A host language variable used to refer to a specific database
you have invoked. For more information, see Section 6.4.

handle-scope
Specifies the scope of the database handle.

LOCAL
GLOBAL
EXTERNAL

• LOCAL specifies that the database will be accessed only from the current
module, and that its database handle will be declared local to the current
module.

• GLOBAL (the default) specifies that the database will be accessed from
several modules, including the current module, and that the database
handle will be declared in this module as globally visible.

• EXTERNAL specifies that the database will be accessed from several
modules, including the current module, and that the database handle will
be declared in this module as external.

RDML Clauses and Statements 6-13

DATABASE Statement

Note that GLOBAL and EXTERNAL are equivalent when you use the
/LINKAGE=PROGRAM_SECTIONS qualifier (the default). When you use
the /LINKAGE=GLOBAL_SYMBOLS qualifier, there must be one (and only
one) module where a given database handle is declared GLOBAL; all other
modules that access the database by means of that database handle must
declare it as EXTERNAL.

COMP/LET/ME (FILENAME or PATHNAME)
The source of the database definitions when the program is compiled. For
RdbNMS this can be either a CDD/Plus path name or a file specification. For
Rdb/ELN this should be a file specification; Rdb/ELN does not support the
data dictionary. If you specify only the compile-time identifier and omit the
run-time identifier, Rdb uses the compile-time identifier for both preprocessing
and running the program.

RUNTIME FILENAME
The source of the database definitions when the program is run. This can be
either a file specification or a host language variable. If you do not specify this
parameter, Rdb uses the compile-time identifier for both preprocessing and
running the program.

path-name
A full or relative CDD/Plus path name, enclosed in quotation marks, specifying
the source of the database definition. Use single quotation marks (' ') when
the host language is Pascal. Use double quotation marks (" ") when the host
language is C. Use only with RdbNMS; Rdb/ELN does not have access to the
data dictionary.

file-spec
File specification. A full or partial file specification, or logical name enclosed in
quotation marks, specifying the source of the database. Use single quotation
marks (' ') when the host language is Pascal. Use double quotation marks
(" ")when the host language is C.

host-variable
A valid host language variable that equates to a database file specification.
This variable must be declared before the DATABASE statement is issued.

DBKEY SCOPE IS COMMIT (default)
Controls when the dbkey of an erased record can be reused by Rdb. When the
DBKEY SCOPE is COMMIT, Rdb can reuse a dbkey (to store another record)
when the user who erased the original record commits his or her transaction.

6-14 RDML Clauses and Statements

DATABASE Statement

DBKEY SCOPE IS FINISH
Controls when the dbkey of an erased record can be reused by Rdb. When
the DBKEY SCOPE is FINISH, Rdb cannot reuse the dbkey (to store another
record) until the user who erased the original record detaches from the
database (by issuing a FINISH statement).

REQUEST_HANDLE SCOPE IS DEFAULT (default)
The REQUEST_HANDLE SCOPE clause is used by RDBPRE and RDML
preprocessors. When a FINISH statement is issued, any request handles that
were used in queries against that database during that attach become invalid.
If you wish to reuse any of those request handles in a subsequent database
attach, you must first initialize them.

With the REQUEST_HANDLE SCOPE IS DEFAULT option, RDML
automatically initializes any request handles it generates that are in the
same compilation unit as the FINISH statement. RDML does not reinitialize
any user-specified request handles nor does it reinitialize any request handles
that are outside of the compilation unit where the request is initiated. With
this option, the value of the request handle is not set to zero after the RDML
FINISH statement executes.

The REQUEST_HANDLE SCOPE IS FINISH option causes all request handles
to be set to zero automatically when a FINISH statement is issued. Using this
option means that you have less need to use explicit request handles.

The default option is DEFAULT.

REQUEST_HANDLE SCOPE IS FINISH
When the REQUEST_HANDLE SCOPE is FINISH, the value of the request
handle is set to zero after the RDML FINISH statement executes.

The SQL FINISH statement initializes all request handles in all compilation
units in a program. The RDBPRE and RDML preprocessors allow programs
to define and manipulate request handles. If you do not want your request
handles to be reinitialized, then you must use RDML or RDBPRE (not SQL) to
do the attach, and you must use REQUEST_HANDLE SCOPE IS DEFAULT.

For more information on request handles, see the VAX Rdb I VMS Guide to
Programming.

RDML Clauses and Statements 6-15

DATABASE Statement

Usage Notes
• The common data dictionary is not supported on VAXELN. Therefore, you

cannot specify a path name in the DATABASE statement in the Rdb/ELN
environment. Specify a file name instead.

• You must issue a DATABASE statement before you access a database and
the DATABASE statement must appear before any other RDML statement
in your program.

• The compile-time database must exist at preprocess time. Otherwise, the
RDML preprocessor returns an error.

• The run-time database you declare must exist when you run your program.
Otherwise, Rdb returns an error.

• The DATABASE statement declares a database to the program.

• In VAXELN Pascal programs, place the DATABASE statement after the
MODULE statement and before the PROGRAM statement.

• In VAX Pascal programs, place the DATABASE statement after the
MODULE or PROGRAM statement, and after the declaration of the host
language variable that equates to a database file specification (if such a
variable is used) and before any procedure or function declarations.

• In C programs, place the DATABASE statement before any function
declarations; for example, before the "main" function and after the
declaration of the host language variable that equates to a database file
specification (if such a variable is used) and before any procedure or
function declarations.

• You must declare each database that you plan to access in a module
(compilation unit).

• The DATABASE statement adds a number of declarations to your
program. The declarations, including variable and request definitions,
are automatically included in the output file produced by the RDML
preprocessor.

• The DBKEY SCOPE clause controls when the dbkey of an erased record
can be reused by Rdb. When the DBKEY SCOPE is COMMIT Rdb will
not reuse the dbkey of an erased record (to store another record) until the
transaction that erased the original record completes when the user enters
a COMMIT statement. If the user who erased the original record enters a

6-16 RDML Clauses and Statements

DATABASE Statement

ROLLBACK statement, then the dbkey for that record cannot be reused by
Rdb.

The DBKEY SCOPE IS FINISH clause specifies that the dbkey of each
record used is guaranteed not to change until this user detaches from the
database (usually, by issuing a FINISH statement). With the DBKEY
SCOPE IS FINISH clause, an RDML program can complete one or several
transactions and, while still attached to the database, use the dbkey
obtained during a STORE operation to directly access those records.

Note that if you specify DBKEY SCOPE is FINISH and a record you
accessed earlier is erased by another user, you will receive a message to
indicate that that record is no longer available if you attempt to retrieve
that record with the dbkey.

Also, if you specify DBKEY SCOPE IS COMMIT, and you are accessing
records by means of dbkeys that you have stored in a host language
variable, it is possible for you to retrieve a different (new) record than
the record for which you originally saved the dbkey. This occurs when
the original record is erased by another user, you commit the transaction
in which you retrieved the dbkey, start another transaction, and then
attempt to access records with the dbkeys you have stored in host language
variables.

Examples
Example 1

The following programs demonstrate how to specify a compile-time database
and a run-time database as the same database.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main ()
{
READY PERS;
START TRANSACTION READ_ONLY;

I* perform some action on the database */

COMMIT;
FINISH;
}

RDML Clauses and Statements 6-17

DATABASE Statement

Pascal Program

program db (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

(* perform some actions on the database *)

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate how to specify a database handle along
with naming the DECnet node, device name, directory, and file name for the
compile-time database, and using a host language variable for the run-time
database.

C Program

#include <stdio.h>

char *PRODUCTION_DATABASE;

DATABASE PERS= COMPILETIME FILENAME "DECVAX::DUAl: [DATABASE]PERSONNEL"
RUNTIME FILENAME PRODUCTION_DATABASE;

main ()
{

PRODUCTION_DATABASE = "PERSONNEL";

READY PERS;
START_TRANSACTION READ_ONLY;

/* perform some database actions */

COMMIT;
FINISH;
}

Pascal Program

program db (input,output);

VAR PRODUCTION_DATABASE : VARYING [20) OF CHAR;

DATABASE PERS= COMPILETIME FILENAME 'DECVAX::DUAl: [DATABASE]PERSONNEL'
RUNTIME FILENAME PRODUCTION_DATABASE;

begin

PRODUCTION_DATABASE :='PERSONNEL';

6-18 RDML Clauses and Statements

READY PERS;
START_TRANSACTION READ_ONLY;

{* perform some actions on the database *}

COMMIT;
FINISH;
end.

Example 3

DATABASE Statement

The following program fragments demonstrate how to specify a compile-time
database that is global to all modules. Both programs, one using the GLOBAL
database scope and the other using the EXTERNAL database scope, can access
a database.

C Program

/* global declarations file */

DATABASE PERS = [GLOBAL] FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

/* perform some actions on the database */

COMMIT;
FINISH;
}

Pascal Program

program db (input,output);
DATABASE PERS= [EXTERNAL] FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

(* perform some actions on the database *)

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6-19

Database Handle Clause

6.4 Database Handle Clause

Rdb uses the database handle to identify the particular database that is
referred to by a database request. The database handle provides context to any
statement that uses it. When your program accesses a single database you do
not have to include database handles or scopes in the DATABASE statement.
Unlike transaction handles and request handles, database handles do not
have to be declared in your programs. The RDML preprocessor automatically
generates the data declaration for the database handle.

Format

db-handle=

----+ host-variable

Argument
host-variable
A valid host language variable name.

Usage Notes
• You can use a database handle with the following RDML statements and

clauses to identify a database:

DATABASE

FINISH

READY

Relation clause of the record selection expression

DECLARE_ VARIABLE

DEFINE_TYPE

BASED ON clause

START_TRANSACTION statement

6-20 RDML Clauses and Statements

Database Handle Clause

• Rdb lets you attach to more than one database at a given time. You use
the database handle to distinguish among the different databases in RDML
statements.

• Do not change the value of a database handle after you have declared it in
the database statement; RDML will maintain the handle's value for you.

• By default, the scope of a database handle is GLOBAL.

• Rdb/ELN lets separately compiled modules participate in a single
transaction if the scope of a database handle has been declared as
GLOBAL or EXTERNAL and the modules run synchronously. This means
programmers can write code in functional modules without segregating
database access or adding the overhead of multiple attaches to a database.

Rdb/ELN processes that run asynchronously must maintain separate
database handles and attach to the database separately. Rdb/ELN
maintains state information about each process accessing the database.
Two asynchronous processes that share a database handle will overwrite
each others' state and cause errors.

• If you use GLOBAL and EXTERNAL database handles, Digital Equipment
Corporation recommends that you do not place the two types of database
handles in the same module. Placing the two types in a single module will
not allow your applications to share a single message vector and default
transaction handle, and may return ambiguous results or errors at link
time. Place all GLOBAL database handles in one module to avoid any
ambiguity.

Table 6-2 summarizes how to declare database handles in a precompiled
program.

RDML Clauses and Statements 6-21

Database Handle Clause

Table 6-2 Summary of Database Handle Usage in Preprocessed Programs

Handle Scope Handle Scope
Number of Number of In Main In Second
Databases Modules Module Module

One One Not required Not applicable

One Multiple GLOBAL EXTERNAL

One Multiple EXTERNAL GLOBAL

Multiple One LOCAL Not applicable

Multiple Multiple GLOBAL EXTERNAL

Multiple Multiple EXTERNAL GLOBAL

Examples
Example 1

The following programs demonstrate how to declare a database handle, PERS,
for the PERSONNEL database.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME 'PERSONNEL';

main ()
{

READY PERS;
START TRANSACTION READ_ONLY;

/* perform some actions on the database */

COMMIT;
FINISH PERS;
}

Pascal Program

program dbhandle (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

{* perform some actions on the database *}

6-22 RDML Clauses and Statements

COMMIT;
FINISH PERS;
end.

Example 2

Database Handle Clause

The following program segments show how to use a database handle in a
READY statement. The segments invoke a database and ready it.

C Program

#include <stdio.h>
DATABASE PERS = COMPILETIME FILENAME "PERSONNEL"

main()
{

READY PERS;

Pascal Program

RUNTIME "WORK: :DUAl: [RDB.DEMO] PERSONNEL";

program demoprog (input,output);
DATABASE PERS = COMPILETIME FILENAME 'PERSONNEL'

begin
READY PERS;

end.

Example 3

RUNTIME 'WORK::DUAl: [RDB.DEMO]PERSONNEL';

The following programs demonstrate the use of the database handle to resolve
possible ambiguities when you invoke more than one database. The programs:

• Declare two host language variables, DBl and DB2, as database handles
for the PERSONNEL and PAYROLL databases respectively

• Use DBl to qualify the outer FOR statement and DB2 to qualify the inner
FOR statement

By matching the employee IDs from the CURRENT_INFO view in each
database, the programs can print salaries stored in the PAYROLL database for
the EMPLOYEES record in the PERSONNEL database.

RDML Clauses and Statements 6-23

Database Handle Clause

Because no sample database named PAYROLL is provided with the software,
you cannot run these programs. However, by replacing PAYROLL with
PERSONNEL, you can run the programs to demonstrate the results of using
two database handles.

C Program

#include <stdio.h>
DATABASE DBl FILENAME "PERSONNEL";
DATABASE DB2 =FILENAME "WORK$DISK:PAYROLL";

main ()
{

READY DBl, DB2;

START TRANSACTION READ_ONLY;

FOR CI IN DBl.CURRENT INFO
printf ("%s %s\n", CI.ID, CI.LAST_NAME);
FOR CI2 IN DB2.CURRENT INFO WITH CI2.ID = CI.ID

printf ("Actual Year-to-Date Salary = %f\n",
CI2.SALARY);

END FOR; /* CI2 IN DB2.CURRENT INFO */
END_FOR; /* CI IN DBl.CURRENT INFO */

COMMIT;
FINISH;
}

Pascal Program

program ytd_salary_report (output);
DATABASE DBl FILENAME 'PERSONNEL';
DATABASE DB2 = FILENAME 'WORK$DISK:PAYROLL';

begin
READY DBl, DB2;

START TRANSACTION READ_ONLY;

FOR CI IN DBl.CURRENT INFO
writeln (CI.ID,' ', CI.LAST_NAME);
FOR CI2 IN DB2.CURRENT INFO WITH CI2.ID

writeln ('Actual Year-to-Date Salary
CI2.SALARY);

END_FOR; (* CI2 IN DB2.CURRENT INFO *)
END_FOR; (* CI IN DBl.CURRENT INFO *)

COMMIT;
FINISH;
end.

6-24 RDML Clauses and Statements

CI.ID

DECLARE_STREAM Statement

6.5 DECLARE_STREAM Statement

The DECLARE_STREAM statement declares a stream name and associates
that name with a record selection expression. This statement allows you to
place the START_STREAM, FETCH, and END_STREAM statements in any
order within your module, and within separate procedures in the same module.
A stream is limited to a single module.

Format

DECLARE STREAM C handle-options J

-----------111 declared-stream-name ----+ USING ---+ rse -+-

handle-options =

+ (E REQUEST HANDLE ----+ var~ } +
TRANSACTION HANDLE ----+ var
REQUEST HANDLE + var + ,)

G TRANSACTION_HANDLE + var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a com piled Rdb request. If you do not supply a
request handle explicitly, RDML associates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

RDML Clauses· and Statements 6-25

DECLARE_STREAM Statement

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

declared-stream-name
A name you give to the stream you declare. The declared-stream-name must
be a valid host language name.

rse
A record selection expression. A phrase that defines the specific conditions that
individual records must meet before Rdb includes them in a record stream.

Usage Notes
• The DECLARE_STREAM statement does not require that the same

number of END_STREAM statements and START_STREAM statements
appear within the same procedure, as long as at execution time exactly
one END_STREAM statement is executed for each START_STREAM
statement. You may find this feature particularly helpful when you are
using host language conditional statements.

• The DECLARE_STREAM statement must be used in conjunction with the
declared START_STREAM statement. The DECLARE_STREAM statement
will not work in conjunction with the undeclared START_STREAM
statement, and the reverse is also true.

• The DECLARE_STREAM statement must precede any other reference to
the stream that it declares.

• The stream name must not conflict with any RDML keywords. See .
Table 1-1 for the list ofRDML keywords.

• Digital Equipment Corporation recommends that all programs use the
DECLARE_STREAM statement (with the declared START_STREAM
statement) in place of the undeclared START_STREAM statement. The
declared START_STREAM statement provides all the functionality of the
undeclared START_STREAM statement and provides more flexibility in
programming than the undeclared START_STREAM. statement.

• Any host language variables that appear in the record selection expression
only need to be declared within the program code that contains the
START_STREAM statement declared by the DECLARE_STREAM
statement.

6-26 RDML Clauses and Statements

DECLARE_STREAM Statement

Examples
Example 1

The following programs demonstrate how you can place the START_STREAM,
FETCH, and END_STREAM statements in any order in a module. These
programs are not intended to show good programming style, but rather the
flexibility that the DECLARE_STREAM statement allows in programming.

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE' PERS =FILENAME "PERSONNEL";

DECLARE_STREAM by_first_name USING
E2 IN EMPLOYEES SORTED BY E2.FIRST_NAME, E2.LAST NAME;

DECLARE_STREAM by_last_name USING
El IN EMPLOYEES SORTED BY El.LAST_NAME, El.FIRST_NAME;

int end of stream = FALSE;

close_last()
{

END_STREAM by_last_name;
}

close_first ()
{

END_STREAM by_first_name;
}

read_first ()
{

FETCH by_first_name;
}

read_last ()
{

FETCH by_last_name
AT END

end of stream = TRUE;
END_FETCH;
}

RDML Clauses and Statements 6-27

DECLARE_STREAM Statement

open_first ()
{

START STREAM by_first_name;
}

open_last ()
{

START STREAM by_last_name;
}

main()
{

READY PERS;
START TRANSACTION READ_ONLY;
open_first ();
open last();
/* The streams BY_LAST_NAME and BY_FIRST_NAME will contain the

same number of records. It is only necessary to test
for AT END once. */

end of stream = FALSE;

read last();
read=first ();

while (!end_of_stream)
{

/* Alphabetical listing by last name down left column */

printf ("%s%s",El.LAST NAME,El.FIRST NAME);
printf (" - "); /*skip 20 spaces*/

/* Alphabetical listing by first name down right column */

printf ("%s%s\n",E2.FIRST_NAME, E2.LAST_NAME);

read_last();

if (!end_of_stream)
{

read_first ();
}

close_last();
close_first();

COMMIT;
FINISH;
}

5-28 RDML Clauses and Statements

DECLARE_STREAM Statement

Pascal Program

[inherit ('sys$library:starlet.pen')]

program new_start (input, output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
end_of _stream : BOOLEAN;

DECLARE STREAM BY LAST NAME USING
El IN EMPLOYEES SORTED BY El.LAST_NAME, El.FIRST_NAME;

DECLARE STREAM BY FIRST NAME USING E2 IN EMPLOYEES SORTED BY
E2.FIRST_NAME, E2.LAST_NAME;

procedure close last;
begin -
END_STREAM BY_LAST_NAME;
end;

procedure close_first;
begin
END_STREAM BY_FIRST_NAME;
end;

procedure read firsti
begin -
FETCH BY_FIRST_NAME;
end;

procedure read last;
begin -
FETCH BY LAST NAME
AT END

end of stream := TRUE;
END_FETCH;
end;

procedure open_first;
begin
START_STREAM by_first_name;
end;

procedure open last;
begin -
START STREAM by_last_name;
end;

RDML Clauses and Statements 6-29

DECLARE_STREAM Statement

begin
READY PERS;
START TRANSACTION READ_ONLY;
open_ first;
open_last;
(* The streams BY LAST NAME and BY FIRST NAME will contain the

same number of records. It is only necessary to test
for AT END once. *)

end of stream .- FALSE;

read_last;
read_first;

while not end of stream do
begin

(* Alphabetical listing by last name down left column *)

write (El.LAST NAME,El.FIRST NAME);
write (' - 'f; (* skip 20 spaces *)

(* Alphabetical listing by first name down right column *)

writeln (E2.FIRST_NAME, E2.LAST_NAME);

read_last;

if not end of stream then

end;

close_last;
close_first;

COMMIT;
FINISH;
end.

read_first;

6-30 RDML Clauses and Statements

DECLARE_ VARIABLE Clause

6.6 DECLARE_ VARIABLE Clause

The DECLARE_ VARIABLE clause lets you declare a host language variable
that is compatible with a field associated with a database relation. The
variable inherits the data type and size attributes associated with the field.

Note The DECLARE_ VAR1ABLE and DEFINE_TYPE clauses have exactly the same
function. Digital Equipment Corporation renamed the clause to clarify that
its function is to declare host language variables, not define host language
types. Note that the DEFINE_TYPE clause can still be used; however, Digital
recommends that all new applications use the DECLARE_ VAR~LE clause in
place of the DEFINE_TYPE clause.

Format

DECLARE VARIABLE --------- host-variable

--~---~--~ AS -~.---1----------
L.+ SAME j L.+ db-handle -+ . _J

------~ relation-name

Arguments
host-variable
A valid host language variable.

db-handle

--+ . --+ field-name

A database handle. A host language variable used to refer to a specific
database your program uses. The database handle must be the same database
handle specified in the DATABASE statement.

relation-name
The name of a relation in a database.

field-name
The name of a field in a relation.

RDML Clauses and Statements 6-31

DECLARE_ VARIABLE Clause

Usage Notes
• You should not use the DECLARE_ VARIABLE clause to declare program

functions TYPE (in Pascal) or typedef (in C); use the BASED ON clause
instead.

Examples
Example 1

The following example demonstrates the use of the DECLARE_ VARIABLE
clause to declare a host language variable that is intended to hold database
values. The programs:

• Declare the variable, badge, to have the same data type and size attributes
as the EMPLOYEE_ID field in the EMPLOYEES relation.

• Use this variable for interactive processing. Note that the interactive
portion of the programs appears before the READY statement. This keeps
locks on the database to a minimum.

• Select the record from the EMPLOYEES relation that has the same value
for EMPLOYEE_ID as is stored in badge.

• Modify the status code of this employee.

Note that the C program uses the function read_string to prompt for and
receive a value for badge. For more information and the source code for
read_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
static DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

main()
{

read_string ("Employee ID: ", badge, sizeof(badge));

READY PERS;
START TRANSACTION READ_WRITE;

6-32 RDML Clauses and Statements

DECLARE_ VARIABLE Clause

FOR E IN EMPLOYEES WITH E.EMPLOYEE ID
MODIFY E USING

strcpy(E.STATUS_CODE,"1");
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program modify_with_host (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

var

badge

DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

begin
write ('Employee ID: ');
readln (badge);

READY PERS;
START TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE ID
MODIFY E USING

E.STATUS CODE ·= '1';
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
end.

badge

RDML Clauses and Statements 6-33

DEFINE_TYPE Clause

6.7 DEFINE_TYPE Clause

The DECLARE_ VARIABLE and DEFINE_TYPE clauses have exactly the same
function. Digital Equipment Corporation renamed the clause to clarify that
its function is to declare host language variables, not to define host language
types. Note that the DEFINE_TYPE clause can still be used; however, Digital
recommends that all new applications use the DECLARE_ VARIABLE clause in
place of the DEFINE_TYPE clause. Refer to Section 6.6 for more information.

6-34 RDML Clauses and Statements

END_STREAM Statement, Declared

6.8 END_STREAM Statement, Declared

The declared END_STREAM statement ends a declared stream.

Nole Digital recommends that all programs use the declared STAllT _STREAM
statement (with the DECLARE_STREAM statement) in place of the
undeclared STAllT _STREAM statement. The declared STAllT _STREAM
statement provides all the functionality of the undeclared STAllT _STREAM
statement and provides more flexibility in programming than the undeclared
STAR,T _STREAM statement.

Format

END_STREAM

Arguments

---1111i stream-name
4

4 on-error ~

stream-name
A valid host language variable. This name must be the same name used in the
associated DECLARE_STREAM statement.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statement or both to be performed if an error occurs during the END _STREAM
operation. See Section 6.17 for details.

Usage Notes
• You can have more or fewer declared END_STREAM statements than

declared START_STREAM statements in your program, as long as
the structure of the program ensures that exactly one END_STREAM
statement is executed for each START_STREAM statement that is
executed.

RDML Clauses and Statements 6-35

END_STREAM Statement, Declared

• You can issue several declared END_STREAM statements in a module,
and as long as you use the same declared stream name in each declared
END _STREAM statement, they will all refer to the same stream.

Examples
Example 1

The following examples demonstrate the use of the declared END _STREAM
clause. The programs:

• Declare a stream sal with the DECLARE_STREAM statement that limits
the stream to those records with a value less than ten thousand in the
SALARY_AMOUNT field

• Start a read/write transaction

• Fetch the first record in the stream

• Modify that record so that the value in the SALARY_AMOUNT field is
increased by fifty percent

• Fetch and modify records in the stream until all the records have been
modified

• End the stream with the declared END_STREAM statement

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE PERS = FILENAME "PERSONNEL";

DECLARE STREAM sal USING SH IN SALARY HISTORY - -
WITH SH.SALARY_AMOUNT LT 10000;

int end_of _stream;

main()
{

READY PERS;
START_TRANSACTION READ_WRITE;

START STREAM sal;

FETCH sal
AT END

end of stream = TRUE;
END_FETCH;

6-36 RDML Clauses and Statements

END_STREAM Statement, Declared

while (! end_of_stream)
{

MODIFY SH USING
SH.SALARY AMOUNT

END_MODIFY;
SH.SALARY AMOUNT* (1.5);

FETCH sal
AT END

end of stream
END_FETCH;
}

END STREAM sal;

COMMIT;
FINISH;

Pascal Program

TRUE;

program anycond (input,output);
DATABASE PERS FILENAME 'PERSONNEL';

var
end_of _stream : boolean;

DECLARE STREAM sal USING SH IN SALARY HISTORY
WITH SH.SALARY AMOUNT LT 10000;

begin
READY PERS;
START TRANSACTION READ_WRITE;

START STREAM sal;

FETCH sal
AT END

end of stream := TRUE;
END_FETCH;

while not end of stream do
begin

MODIFY SH USING
SH.SALARY AMOUNT:= SH.SALARY AMOUNT* (1.5);

END_MODIFY;

FETCH sal
AT END

end of stream := TRUE;
END_FETCH;

end;

RDML Clauses and Statements 6-37

END_STREAM Statement, Declared

end.

END_STREAM sal;
COMMIT;
FINISH;

6-38 RDML Clauses and Statements

END_STREAM Statement, Undeclared

6.9 END_STREAM Statement, Undeclared

The undeclared END_STREAM statement ends an undeclared stream.

Format

END STREAM

Arguments

--- stream-name

•
4 on-error ~

stream-name
A valid host language variable. This name must be the same name used in the
associated START_STREAM statement.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the
END _STREAM operation. See Section 6.17 for details.

Usage Notes
• The END_STREAM statement for an undeclared stream must follow the

corresponding START_STREAM statement in the source program.

• There must be one and only one END_STREAM statement for every
undeclared START_STREAM statement. If you have fewer END_STREAM
statements than undeclared START_STREAM statements, you will receive
the error message: "%RDML-W-UNBALSTRM, Undeclared stream "stream
name" has no END_STREAM statement".

RDML Clauses and Statements 6-39

END_STREAM Statement, Undeclared

Examples
Example 1

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

START STREAM CURRENT INF STREAM USING - - -
CI IN CURRENT_INFO SORTED BY DESC CI.SALARY;
FETCH CURRENT_INF_STREAM;

printf ("%s makes the largest salary!\n", CI.LAST_NAME);
END_STREAM CURRENT_INF_STREAM;

COMMIT;
FINISH;
}

Pascal Program

program record_stream (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

START STREAM CURRENT INF STREAM USING - - -
CI IN CURRENT INFO SORTED BY DESC CI.SALARY;
FETCH CURRENT INF STREAM;

writeln (CI.LAST_NAME, ' makes the largest salary!');
END_STREAM CURRENT_INF_STREAM;

COMMIT;
FINISH;
end.

6-40 RDML Clauses and Statements

ERASE Statement

6. 10 ERASE Statement

The ERASE statement deletes a record from a relation or an open stream.

Format

ERASE ---+ context-var

Arguments
context-var

~ _) ..
'--+ on-error

A context variable. A temporary name that you associate with a relation.
You define a context variable in a relation clause. See Section 4.1 for more
information on context variables.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the ERASE
operation. See Section 6.17 for details.

Usage Notes
• Before using the ERASE statement, you must start a read/write

transaction and establish a record stream using a context variable
with a FOR statement or a START_STREAM statement.

• Because the effects of erasing some records in one relation and others in a
second can be unpredictable, you should not erase records from views that
refer to more than one relation.

RDML Clauses and Statements 6-41

ERASE Statement

Examples
Example 1

The following programs demonstrate the use of the ERASE statement to delete
records from a relation. The programs:

• Start a read/write transaction

• Find the records in the COLLEGES relation with the college code "PURD"

• Delete those records from the COLLEGES relation

• Roll back the transaction

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_WRITE;

FOR C IN COLLEGES WITH C.COLLEGE CODE
ERASE C;

END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program erase record (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_WRITE;

FOR C IN COLLEGES WITH C.COLLEGE CODE
ERASE C;

END_FOR;

ROLLBACK;
FINISH;
end.

6-42 RDML Clauses and Statements

"PURD"

'PURD'

ERASE Statement

Example 2

The following programs demonstrate the use of the ERASE statement to
delete all records with a particular field value from a relation. The programs
delete all the employee records from the JOB_HISTORY relation that have
a department code of "ELMC." The programs use the ANY statement to find
any records in the JOB_HISTORY relation that have the value "ELMC" in
the DEPARTMENT_CODE field. If there is no record with this value, the
programs print the message "There are no employees in department ELMC." If
at least one record has this value then the programs:

• Use the COUNT function to compute the number of records with this value

• Print this computed value

• Use the FIRST statement to find the first record in the DEPARTMENTS
relation with the value "ELMC" to determine the department name
associated with this department code

• Print this department name

• Use a FOR statement to find all the records in the JOB_HISTORY relation
with the job code "ELMC"

• Print a message noting the employee ID of the employee about to be
deleted from the relation

• Use the ERASE statement to delete the employees from the relation

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

int who;
int num;

main()

READY PERS;
START_TRANSACTION READ_WRITE;

GET
who = ANY JH IN JOB HISTORY

WITH JR.DEPARTMENT CODE "ELMC";
END_GET;

RDML Clauses and Statements 6-43

ERASE.Statement

if (who)
{

GET
num COUNT OF JH IN JOB HISTORY

WITH JR.DEPARTMENT CODE = "ELMC";
END_GET;

printf ("Deleting %d", num);
printf ("employees in");
printf ("%s\n\n", FIRST D.DEPARTMENT_NAME FROM D IN DEPARTMENTS

WITH D.DEPARTMENT_CODE = "ELMC");

FOR JH IN JOB HISTORY WITH JR.DEPARTMENT CODE = "ELMC"
printf ("Deleting %s\n", JH.EMPLOYEE_ID);
ERASE JH;

END_FOR; /* JH IN JOB_HISTORY*/
}

else
printf ("There are no employees in department ELMC");

ROLLBACK;
FINISH;
}

Pascal Program

program delete_all (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
who
num

boolean;
integer;

begin
READY PERS;
START TRANSACTION READ_WRITE;

GET
who = ANY JH IN JOB HISTORY

WITH JR.DEPARTMENT CODE
END_GET;

if (who) then
begin
GET

'ELMC';

num = COUNT OF JH IN JOB HISTORY
WITH JH.DEPARTMENT_CODE = 'ELMC';

END_GET;

write (' Deleting',num,' employees in');
writeln (FIRST D.DEPARTMENT_NAME FROM D IN DEPARTMENTS

WITH D.DEPARTMENT CODE= 'ELMC');
writeln;

6-44 RDML Clauses and Statements

FOR JH IN JOB HISTORY WITH JH.DEPARTMENT CODE
writeln ('Deleting', JH.EMPLOYEE_ID);
ERASE JH;

END_FOR; (* JH IN JOB_HISTORY*)
end

else

ERASE Statement

'ELMC'

writeln ('There are no employees in department ELMC');

ROLLBACK;
FINISH;
end.

Example 3

The following programs demonstrate the use of the ERASE statement
to remove a specific employee's records from multiple relations. The
programs remove an existing employee's EMPLOYEE, JOB_HISTORY,
and SALARY_HISTORY records from the database. If the employee has any
DEGREE records, the DEGREE records are also removed. After prompting
the user for the employee's ID, the program locates the records that contain
that ID number and uses the ERASE statement to delete the records. The
FOR loop ensures that all the records with that ID in the specified relation are
deleted.

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0
DATABASE PERS = FILENAME 'PERSONNEL';

int employee found;
extern void read_string();

DECLARE_VARIABLE id SAME AS EMPLOYEES.EMPLOYEE ID;
DECLARE_STREAM emp_stream USING E IN EMPLOYEES-WITH E.EMPLOYEE_ID id;

main()
{

employee_found = FALSE;
read_string("Enter ID of employee to be deleted from database: ",

id, sizeof(id));

READY PERS;
START_TRANSACTION READ_WRITE RESERVING

EMPLOYEES FOR SHARED WRITE,
DEGREES FOR SHARED WRITE,
JOB_HISTORY FOR SHARED WRITE,
SALARY_HISTORY FOR SHARED WRITE;

RDML Clauses and Statements 6-45

ERASE Statement

FOR E2 IN EMPLOYEES WITH E2.EMPLOYEE ID id
employee found = TRUE;
if (employee_found)

{

FOR JH IN JOB HISTORY WITH JH.EMPLOYEE_ID = id
printf ("\n Deleting employee's job history record(s)");
ERASE JH;

END_FOR;

FOR SH IN SALARY HISTORY WITH SH.EMPLOYEE ID = id
printf ("\n Deleting employee's salary-history record(s)");
ERASE SH;

END_FOR;

if (ANY D IN DEGREES WITH D.EMPLOYEE_ID id)
{

else
{

}

FOR D IN DEGREES WITH D.EMPLOYEE_ID id
ERASE D;
printf ("\n Deleting employee's degree record(s)");

END_FOR

printf ("\n Employee with ID %s has no DEGREE record.", id);
printf ("\n Continuing transaction.");

printf ("\n Employee %s %s deleted from database.",
E.FIRST_NAME,E.LAST_NAME);

ERASE E2;
}

END_FOR;

if (! employee found)
{ -

ROLLBACK;
printf ("Employee not found with ID

}

else
{

COMMIT;

%s", id);

printf("Employee with ID %s deleted from database.", id);
}

FINISH;
}

Pascal Program

program remove_emp (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
DECLARE_VARIABLE id SAME AS EMPLOYEES.EMPLOYEE_ID;
DECLARE_STREAM EMP_STREAM USING E IN EMPLOYEES WITH E.EMPLOYEE ID id;
emp_found : boolean;

6-46 RDML Clauses and Statements

\
;

ERASE Statement

Begin
emp_found := FALSE;

write ('Enter ID of employee to be deleted from database: ');
readln (id);

READY PERS;
START_TRANSACTION READ WRITE RESERVING

EMPLOYEES FOR SHARED WRITE,
DEGREES FOR SHARED WRITE,
JOB HISTORY FOR SHARED WRITE,
SALARY HISTORY FOR SHARED WRITE;

FOR E2 IN EMPLOYEES WITH E2.EMPLOYEE_ID id
emp_found := true;

if emp_found = true
then

begin
FOR JH IN JOB HISTORY WITH JR.EMPLOYEE ID = id

writeln ('Deleting employee''s job history record(s)');
ERASE JH;

END_FOR;

FOR SH IN SALARY HISTORY WITH SH.EMPLOYEE ID = id
writeln ('Deleting employee''s salary-history record(s)');
ERASE SH;

END_FOR;

if (ANY D IN DEGREES WITH D.EMPLOYEE ID = id) then
FOR D IN DEGREES WITH D.EMPLOYEE_ID = id

ERASE D;
writeln ('Deleting employee''s degree record(s)');

END FOR
else

begin
writeln ('Employee with ID' ,id, ' has no DEGREE record.');
writeln ('Continuing transaction.');

end;

ERASE E2;
end;

END_FOR;

if emp_found
then

begin

false

writeln ('Employee not found with ID
ROLLBACK;

end
else

begin
COMMIT;

, , id);

writeln ('Employee with ID', id, 'deleted from database.');
end;

FINISH;
end.

RDML Clauses and Statements 6-47

FETCH Statement

6. 11 FETCH Statement

The FETCH statement retrieves the next record from a record stream. The
FETCH statement is used:

• With an undeclared START_STREAM statement

After the START_STREAM statement

Before any other RDML statements that affect the context established
by the START_STREAM statement

• With a declared START_STREAM statement

After the DECLARE_STREAM statement

Either before or after the declared START_STREAM statement as long
as it is executed after the declared START_STREAM statement has
executed. (The FETCH statement may physically appear in the source
file before or after the declared START_STREAM statement, but must
be executed after the declared START_STREAM statement.)

The FETCH statement advances the pointer for a record stream to the next
record of a relation. Unlike the FOR statement, which advances to the next
record automatically, the FETCH statement allows you explicit control of the
record stream. For instance, you might use the FETCH statement to print a
report where the first six rows have five columns, and the seventh row only
three. Note thatthe FETCH statement syntax is the same when used in either
a declared or undeclared stream.

Format

FETCH --+ stream-name
on-error

AT END -r ___ st_ate-~~e-nt __ -y_, END FETCH j
END_FETCH --------•--------'

6-48 RDML Clauses and Statements

Arguments
stream-name

FETCH Statement

The stream from which you want to FETCH the next record.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the FETCH
operation. See Section 6.17 for details.

statement
Any valid RDML or host language statement to be executed when your
program reaches the end of a record stream. Use a semicolon (;) at the end of
each RDML, Pascal, or C statement.

Usage Notes
• Once you establish and open a stream with the START_STREAM

statement, use the FETCH statement to establish the first record in the
record stream as the current record. After that, each FETCH statement
makes the next record in the stream the current record.

• The FETCH statement only advances the pointer in a record stream. You
must use other data manipulation statements to manipulate each record
in the stream. For example, you might use FETCH to advance the pointer,
and the GET statement to assign values from that record to host language
variables.

• Your program can use either FOR statements or START_STREAM
statements to establish record streams. Furthermore, you can use both
methods in one program. However, you cannot use the FETCH statement
to advance the pointer in a record stream established by a FOR. statement.
The FOR statement advances to the next record automatically.

• You must always use a FETCH statement before a MODIFY or an ERASE
statement if you want to modify or erase a record in a stream created by
the START_STREAM statement. The START_STREAM statement does
not retrieve the first record in a stream automatically.

• The AT END clause allows you to include statements to be executed when
there are no more records in a record stream. For example, if you embed
the FETCH statement in a host language loop structure, you probably
want your program to stop looping when there are no more records in the

RDML Clauses and Statements 6-49

FETCH Statement

stream. You can set the conditions for terminating the loop based on a flag
that is set by the AT END clause. For example, in pseudo code:

while flag = true
FETCH stream name

AT END
flag = false;

END_FETCH;
end while_loop

Examples
Example 1

The following examples demonstrate the use of the FETCH statement. The
programs:

• With the DECLARE_STREAM statement, declare a stream sal that limits
the stream to those records with a value less than ten thousand in the
SALARY_AMOUNT field

• Start a read/write transaction

• Fetch the first record in the stream

• Modify that record so that the value in the SALARY_AMOUNT field is
increased by fifty percent

• Fetch and modify records in the stream until all the records have been
modified

• End the stream with the declared END_STREAM statement

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_STREAM sal USING SH IN SALARY HISTORY
WITH SH.SALARY AMOUNT LT 10000;

int end_of _stream;

main()
{

READY PERS;
START_TRANSACTION READ_WRITE;

6-50 RDML Clauses and Statements

START STREAM sal;

FETCH sal
AT END

end_of _stream = TRUE;
END_FETCH;

while (! end_of_stream)
{

FETCH Statement

MODIFY SH USING
SH.SALARY AMOUNT

END_MODIFY;
SH.SALARY AMOUNT* (1.5);

FETCH sal
AT END

end of stream
END_FETCH;
}

END STREAM sal;

COMMIT;
FINISH;

Pascal Program

TRUE;

program anycond (input,output);
DATABASE PERS FILENAME 'PERSONNEL';

var
end_of _stream : boolean;

DECLARE STREAM sal USING SH IN SALARY HISTORY
WITH SH.SALARY AMOUNT LT 10000;

begin
READY PERS;
START TRANSACTION READ_WRITE;

START STREAM sal;

FETCH sal
AT END

end of stream := TRUE;
END_FETCH;

while not end of stream do
begin

MODIFY SH USING
SH.SALARY AMOUNT :=SH.SALARY AMOUNT* (1.5);

END_MODIFY;

RDML Clauses and Statements 6-51

FETCH Statement

end.

FETCH sal
AT END

end of stream := TRUE;
END_FETCH;

end;

END_STREAM sal;
COMMIT;
FINISH;

6-52 RDML Clauses and Statements

FINISH Statement

6.12 FINISH Statement

The FINISH statement explicitly detaches from a database. By default,
FINISH, with no parameters, also commits all transactions that have not
been committed or rolled back.

Format

FINISH

Arguments
db-handle

~handle "}=J C::: on-error =-oJ •
'•4--

A host language variable that identifies the database to be closed. Use
the database handle you associated with the database in the DATABASE
statement.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the FINISH
operation. See Section 6.17 for details.

Usage Notes
• By default, an unqualified FINISH statement (no specified database

handle) automatically closes all databases known to the module, commits
the default transaction and re-initializes all RDML-specified handles
(database, transaction, and request handles) to zero.

• Digital Equipment Corporation recommends that you use the
/NODEFAULT_TRANSACTIONS qualifier when you preprocess your
program. When you use the /NODEFAULT_TRANSACTIONS qualifier,
you reduce the overhead associated with the work that RDML must
do to check the state of the database (for example, if the program has
attached to the database, if a transaction has started, or if a transaction
has ended). When you use the /NODEFAULT_TRANSACTIONS qualifier,

RDML Clauses and Statements 6-53

FINISH Statement

you must explicitly attach to the database with a READY statement,
and explicitly start a transaction with the START_TRANSACTION
statement. The /NODEFAULT_TRANSACTIONS qualifier will not affect
the re-initialization of RDML-specified handles.

If you specify the /NODEFAULT_TRANSACTIONS qualifier and you
use a FINISH statement without first committing or rolling back your
transaction, Rdb returns an error. If you are using RdbNMS, refer to
the VAX Rdb/VMS Guide to Programming for more information on
the /NODEFAULT_TRANSACTIONS qualifier. Refer to the Rdb/ELN
documentation set if you are using Rdb/ELN.

• A FINISH statement will never initialize user-supplied handles to zero a
second time.

• If you do not use the /NODEFAULT_TRANSACTIONS qualifier and
you issue a FINISH statement without specifying a database handle, it
will cause your program to detach from all the databases invoked in the
module.

• Once a database is opened, the program must enter a FINISH statement
before the program ends or exits. A database is considered open if the
program has issued a READY statement (or if you do not specify the
/NODEFAULT_TRANSACTIONS qualifier and the program has issued a
START_TRANSACTION statement, or the database has been referred to
in another RDML statement). Whether you access a single database or
multiple databases, this means you must execute a FINISH statement just
prior to exiting your program. You can use one FINISH statement for all
databases, or you can use a single FINISH statement for each database by
using database handles.

• For the best performance, attach to a database once and finish it once
within a program. Attaching to a database several times within your
application program degrades performance.

• Close the database before you exit your program to avoid an error.

6-54 RDML Clauses and Statements

Examples
Example 1

The following programs:

• Declare a database

FINISH Statement

• Enter an RDML FOR loop, implicitly attaching to the database

• Print the last name of each employee in the EMPLOYEES relation

• Commit the transaction

• Close the database

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

FOR E IN EMPLOYEES
printf ("%s\n", E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program empupdate (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

begin
FOR E IN EMPLOYEES

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following program fragments:

• Declare two databases, CUSTORDER and PARTSBOM

• Assign database handles to each

RDML Clauses and Statements 6-55

FINISH Statement

• Open both databases with the READY statement

• Perform some action (indicated by vertical ellipsis)

• Finish both databases

Between the second READY statement and the first FINISH statement, you
can access both databases at once.

C Program

#include <stdio.h>
DATABASE ORDER DB FILENAME "WORK$DISK:CUSTORDER";
DATABASE PARTS DB FILENAME "WORK$DISK:PARTSBOM";

main()
{

READY ORDER_DB;

READY PARTS_DB;

FINISH ORDER_DB;

FINISH PARTS_DB;
}

Pascal Program

program declare_two db;
DATABASE ORDER DB FILENAME 'WORK$DISK:CUSTORDER';
DATABASE PARTS DB = FILENAME 'WORK$DISK:PARTSBOM';

6-56 RDML Clauses and Statements

begin
READY ORDER_DB;

READY PARTS_DB;

FINISH ORDER_DB;

FINISH PARTS_DB;
end.

FINISH Statement

RDML Clauses and Statements 6-57

FOR Statement

6. 13 FOR Statement

The FOR statement executes a statement or group of statements once for each
record in a record stream formed by a record selection expression. You can nest
FOR statements within other FOR statements.

You can use either FOR statements or START_STREAM statements to
establish record streams in your program. Furthermore, you can use both
methods in one program. However, you cannot use the FETCH statement to
advance the pointer in a record stream established by a FOR statement. The
FOR statement automatically advances to the next record for each iteration.

Format

_,,~.--.----_J---r--""T'"::~~ .. _st_at_em_e_nt ___ ----,-+~ END_FOR
4 on-error l ~ _)

handle-options =

-+ (E REQUEST HANDLE -----+ var~) +
TRANSACTION HANDLE -+ var
REQUEST _HANDLE -+ var + ,)

· C=+ TRANSACTION HANDLE + var

Arguments
handle-options
A request handle, a transaction handle, or both.

6-58 RDML Clauses and Statements

FOR Statement

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled RdbNMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in the record stream.
See Chapter 4 for more information.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the FOR
operation. See Section 6.17 for details.

statement
Any valid RDML or host language statement to be executed within the FOR
loop. Use a semicolon (;) at the end of each RDML, Pascal, or C statement.

Usage Notes
• You can use nested FOR loops to form outer joins. In a common type of

join, such as an equijoin, certain values in a field from one relation are
matched with those in another relation. Values that do not match are not
included in the join. An outer join also establishes relationships between
data items by matching fields, but it includes the unmatched values by
adding them to the result of the equijoin.

To accomplish an outer join, you must include the MISSING clause in the
record selection expression so the unmatched values are added at the end
of the join.

• For best results, do not use nested FOR loops unless you are referring to
more than one database, or performing outer joins.

• You can use a context variable from a FOR statement again, as soon as you
end the FOR loop with the END_FOR statement.

RDML Clauses and Statements 6-59

FOR Statement

Examples
Example 1

The following programs demonstrate the use of the FOR statement to create a
record stream. The programs:

• Declare a host language variable dept_code

• Prompt for a value for dept_code

• Start a read-only transaction

• Create a record stream defined by a record selection expression that uses
the value of dept_code

• Display the department name for each record in that stream

The C program uses the function read_string to prompt for and receive a value
for dept_code. For more information and the source code for read_string, see
Appendix B. The Pascal writeln and readln functions serve a similar function.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

extern void read_string ();
DECLARE_VARIABLE dept_code SAME AS DEPARTMENTS.DEPARTMENT_CODE;

main ()
{
read_string ("Department Code: ",dept_code, sizeof(dept_code));

READY PERS;
START_TRANSACTION READ_ONLY;

FOR D IN DEPARTMENTS
WITH D.DEPARTMENT CODE = dept code

printf ("Department name=- %s\n ", D.DEPARTMENT_NAME);
END_FOR;

COMMIT;
FINISH;
}

6-60 RDML Clauses and Statements

Pascal Program

program for_in_rse (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var

FOR Statement

DECLARE VARIABLE dept_code SAME AS DEPARTMENTS.DEPARTMENT_CODE;

begin
write ('Department Code: ');
readln (dept_code);

READY PERS;
START_TRANSACTION READ_ONLY;

FOR D IN DEPARTMENTS
WITH D.DEPARTMENT CODE = dept code

writeln ('Department name~ ' D.DEPARTMENT_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the FOR statement to create a
record stream. The programs:

• Declare a host language variable, dept_name, to be the same as
CURRENT_INFO.DEPARTMENT using the DECLARE_ VARIABLE
clause

• Start a read-only transaction

• Prompt for a value for dept_name

• Create a record stream that consists of two passes of the CURRENT_INFO
view

• Find the employee with the highest salary

• Print the salary and department name of that employee, arid then the
employee's last name

RDML Clauses and Statements H 1

FOR Statement

C Program

*include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
DECLARE_VARIABLE dept_name SAME AS CURRENT_INFO.DEPARTMENT;

main()
{

read_string("Department Name: ", dept_name, sizeof(dept_name));

READY PERS;
START TRANSACTION ~EAD_ONLY;

FOR CI 1 IN CURREN.T-' INFO
WITH Cil.DEPAR~~NT = dept_name
AND Cil. SALARY d:-· (MAX CI2. SALARY OF CI2 IN CURRENT INFO

WITH CI2.DEPARTMENT = dept name)
printf ("The biggest salary in department-%s", dept_name);
printf ("is $%f\n", Cil.SALARY);
printf ("The rich employee is %s", Cil.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program for_in_rse (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
DECLARE_VARIABLE dept_name SAME AS CURRENT_INFO.DEPARTMENT;

begin
write
readln

('Department Name: ');
(dept_name);

READY PERS;
START_TRANSACTION READ_ONLY;

FOR Cil IN CURRENT INFO
WITH Cil.DEPARTMENT = dept_name
AND Cil.SALARY = (MAX CI2.SALARY OF CI2 IN CURRENT INFO

WITH CI2.DEPARTMENT = dept name)
writeln ('The biggest salary in department',

dept name, ' is$', Cil.SALARY: 10 : 2);
writeln ('The-rich employee is Cil.LAST_NAME);

END_FOR; {Cil IN EMPLOYEES}

6-62 RDML Clauses and Statements

COMMIT;
FINISH;
end.

Example 3

FOR Statement

The following programs demonstrate the use of the FOR statement. The
programs:

• Sort the EMPLOYEES relation by last name (ascending order)

• Find and print information on all employees with degrees

• Use the NOT ANY clause to find those employees with a record stored in
the DEGREES relation, but with no value stored in the degree_field

C Program

*include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
FOR D IN DEGREES WITH D.EMPLOYEE ID = E.EMPLOYEE ID

printf ("%s %s\n", E.LAST NAME, E.FIRST NAME);
printf ("%s %s\n\n", D.DEGREE, D.DEGRE()IELD);

END_FOR;

FOR FIRST 1 D IN DEGREES
WITH NOT ANY Dl IN DEGREES
WITH Dl.EMPLOYEE_ID = E.EMPLOYEE_ID

printf ("%s %s", E.LAST NAME, E.FIRST NAME);
printf ("no degree stored %s", RDB$MISSING(D.DEGREE_FIELD));

END_FOR;
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program outer_join (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Clauses and Statements 6-63

FOR Statement'

FOR E IN EMPLOYEES SORTED BY E.LAST NAME
FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

writeln (E.LAST_NAME, ' ', E.FIRST_NAME);
writeln (D.DEGREE, ' D.DEGREE_FIELD);
writeln;

END_FOR;

FOR FIRST 1 D IN DEGREES
WITH NOT ANY Dl IN DEGREES
WITH Dl.EMPLOYEE ID = E.EMPLOYEE ID - -

writeln (E.LAST_NAME, ' ', E.FIRST_NAME);
writeln ('no degree stored', ' RDB$MISSING(D.DEGREE_FIELD));

END_FOR;
END_FOR;

ROLLBACK;
FINISH;
end.

Example 4

The following programs demonstrate the use of the FOR statement and host
language print statements to print a data type of varying text.

The C program:

• Declares a host language variable, candidate_status, to hold the value of
the varying text field.

• Uses the macro, RDB$VARYING_TO_CSTRING, to copy the data from
the database and store it in candidate_status. This macro is in the
RDMLVAXC.H file, which is automatically included (#include) into your
program by RDML.

• Prints the value for candidate_status.

The Pascal program requires no special macro to perform this operation.
Pascal supports varying strings as a native data type.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

char candidate_status[255];

READY PERS;
START_TRANSACTION READ_ONLY;

6-64 RDML Clauses and.· Statements

FOR Statement

FOR C IN CANDIDATES
printf("%s %s %s\n", C.FIRST NAME, C.MIDDLE INITIAL, C.LAST NAME);
RDB$VARYING TO CSTRING(C.CANDIDATE STATUS,candidate status);
printf ("%s\n\n"ii, candidate_status); -

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program varying_text (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

FOR C IN CANDIDATES
writeln (C.FIRST NAME, C.MIDDLE INITIAL, C.LAST_NAME);
writeln (C.CANDIDATE_STATUS); -
writeln;

END_FOR;

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6-65

FOR Segmented String Statement

6. 14 FOR Segmented String Statement

The FOR segmented string statement forms a stream of segments from a
segmented string field. A single segmented string field value is made up of
multiple segments. To retrieve this value you must form a record stream
that first retrieves the record that contains the segmented string field, and
then form a stream of segments themselves. Thus, the process of retrieving
a segmented string field involves retrieving the record that contains the
segmented string field with either a FOR or START_STREAM statement, then
retrieving the individual segments with a FOR statement with segmented
strings. The first stream (formed by the FOR or START_STREAM statement)
retrieves the records that contain the segmented string. The second stream
(formed by the FOR statement with segmented strings) retrieves the individual
segments that compose the segmented string field.

Format

FOR .__. SS-handle ---+ IN ---+ ss-field

G statement ----END FOR

Arguments
ss-handle

C:: on-error ~

A segmented string handle. A name that identifies the segmented string.

SS-field
A qualified field name that refers to a field defined with the SEGMENTED
STRING data type. Note that this field name, like all field names in a FOR
statement, must be qualified by its -own context variable. This second context
variable must match the variable declared in the outer FOR statement. See
the Examples section.

6-66 RDML Clauses and Statements

FOR Segmented String Statement

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the FOR
operation. See Section 6.17 for details.

assignment
Associates the two database variables with a value expression.

The database variables refer to the segment of a segmented string and
its length. The special name for the segment can be either ''VALUE" or
"RDB$VALUE." The special name for the segment length can be either
"LENGTH" or "RDB$LENGTH." You cannot assign any other database
variables to the value expressions for segmented strings.

The assignment operator for RDML Pascal is":=".

for linecnt := 0 to 2 do
STORE SEG IN R.RESUME

SEG := document[linecnt];
SEG.LENGTH := length(document[linecnt]);

END_STORE;

The assignment operator for RDML C is "=" or in this case the strcpy function.

for (line 0; line <= 2; line++)
STORE LINE IN R.RESUME

strcpy(LINE.VALUE,document[line]);
LINE.LENGTH= strlen(LINE.VALUE);

END_STORE;

For more information, see the segmented string examples in this section and
the value expression examples in Chapter 2.

RDML Clauses and Statements 6-67

FOR Segmented String Statement

Usage Notes
• The FOR statement with segmented strings must be embedded within a

simple FOR ... END_FOR block.

• Do not declare the host language variable to hold a segmented string field
with the DECLARE_ VARIABLE clause. The data type generated for a
segmented string field is that of the segmented string identifier, which is
the value that actually is stored in a segmented string field. For example,
the following Pascal code might be used to store a RESUME field in the
RESUMES relation. You should not declare the host language variable
document with the DECLARE_ VARIABLE clause.

FOR R IN RESUMES WITH R.EMPLOYEE ID= '12345'
FOR SEG IN R.RESUME

writeln (SEG)
END_FOR;

END_FOR;

• You cannot modify a subset of the strings contained in a segmented string
field. You must replace the entire segmented string field. See Section 6.16,
Example 3, for an example of modifying a record that contains a segmented
string field.

• RDML defines a special name to refer to the segments of a segmented
string. This value expression is equivalent to a field name; it names the
"fields" or segments of the string. Furthermore, because segments can
vary in length, RDML also defines a name for the length of a segment.
You must use these value expressions to retrieve the length and value of a
segment. These names are:

• RDB$VALUE or VALUE

The value stored in a segment of a segmented string

• RDB$LENGTH or LENGTH

The length in bytes of a segment

6-68 RDML Clauses and Statements

FOR Segmented String Statement

Examples
Example 1

The following programs demonstrate the use of the FOR statement to
retrieve segmented strings. Since the PERSONNEL database does not
have any segmented strings stored, the programs first store three strings
in the RESUME field of the RESUMES relation (see Section 6.26 for more
information on storing segmented strings). The programs retrieve the
segmented string using a nested FOR statement. The outer FOR statement
selects a record based on the EMPLOYEE_ID field. The inner FOR statement
prints each segmented string stored in the RESUME field for the selected
employee.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

int line;
char *document[3];

document[O]
document[l]
document[2]

"first line of resume ";
"second line of resume ";
"last line of resume ";

READY PERS;
START_TRANSACTION READ_WRITE;

STORE R IN RESUMES USING
strcpy (R.EMPLOYEE ID,"12345");
for (line = O; line <= 2; line++)

STORE SEG IN R.RESUME
strcpy(SEG.VALUE,document[line]);
SEG.LENGTH = strlen(SEG.VALUE);

END_STORE;
END_STORE;

FOR R IN RESUMES WITH R.EMPLOYEE ID
FOR SEG IN R.RESUME

printf("%s\n",SEG.VALUE);
END_FOR;

END_FOR;

COMMIT;
FINISH;
}

"12345"

RDML Clauses and Statements 6-69

FOR Segmented String Statement

Pascal Program

program segstr (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

type lines = varying [80] of char;
var linecnt : integer;

document : array [0 .. 2] of lines;

begin

document[O] ·='first line of resume ';
document[l] ·='second line of resume';
document[2] ·='last line of resume ';

READY PERS;
START TRANSACTION READ_WRITE;

STORE R IN RESUMES USING
R.EMPLOYEE ID:= '12345';
for linecnt := 0 to 2 do

STORE SEG IN R.RESUME
SEG := document[linecnt];
SEG.LENGTH ·= length(document[linecnt]};

END_STORE;
END_STORE;

FOR R IN RESUMES WITH R.EMPLOYEE ID
FOR SEG IN R.RESUME

writeln (SEG);
END_FOR;

END_FOR;

COMMIT;
FINISH;
end.

6-70 RDML Clauses and Statements

'12345'

GET Statement

6. 15 GET Statement

The GET statement assigns values to host language variables in RDML
programs.

Format

get-statement =

GET
L. on-error

get-item =

Arguments
get-item

host-var
record-descr
host-var

J .. get-item
L-..:_ ; -~ _ ___..

-.---•lit END GET --+

---. value-expr
---. = ---. context-var.*

---. statistical-expr

The get-item clause includes an equal sign (=), a host language variable on
the right-hand side of the equal sign, and a database value on the left-hand
side of the equal sign. The database value derived from a value expression or
statistical expression is assigned to the host language variable.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the GET
operation. See Section 6.17 for details.

record-descr
A valid host language record structure that contains an entry for each field
in the relation. Each field of the record structure must match exactly the

RDML Clauses and Statements 6-71

GET Statement

field names and data types of the fields in the Rdb relation referred to by the
context variable. In C, the field names must be in lowercase type.

context-var
A context variable. A temporary name that you associate with a relation.
You define a context variable in a relation clause. See Section 4.1 for more
information.

host-var
A valid variable name declared in the host language program.

statistical-expr
A statistical expression. It calculates values based on a value expression for
every record in the record stream.

Usage Notes
You can use the GET statement in four different ways:

• When you specify a record stream with the FOR or START_STREAM
statement, you can use the GET statement to assign values from the
current record in the stream to host language variables in your program.
With the START_STREAM statement, you also need a FETCH statement
to establish the current record in the stream.

• You can use the GET statement within a STORE operation to retrieve
the values of the record currently being stored. This includes the use of
GET ... RDB$DB_KEY in a STORE ... END_STORE block to retrieve
the database key (dbkey) of a record just stored. If you use a GET
statement in a STORE ... END_STORE block, the GET statement must
be the last statement before the END _STORE statement.

• You can use the GET statement alone, without a FOR, FETCH, or STORE
statement, to retrieve the result of a statistical, conditional, or Boolean
expression. The record stream is formed by the record selection expression
within the statistical or conditional expression.

• You can use the GET * format of the GET statement to retrieve an entire
record rather than just a field from a record. When you use the GET *
statement you must first declare a record structure that contains all the
fields in the relation. The host language record field names must match
the database field names exactly. See Example 3.

6-72 RDML Clauses and Statements

Examples
Example 1

GET Statement

The following programs demonstrate the use of the GET statement with a
statistical function. The examples store the value of the statistical function in
the host language variable, maxi, then print this value.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE maxi SAME AS PERS.CURRENT_INFO.SALARY;

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

GET
maxi =MAX CI.SALARY OF CI IN CURRENT_INFO;

END_GET;

printf ("%f" ,maxi);
COMMIT;
FINISH;
}

Pascal Program

program max function (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

DECLARE VARIABLE maxi SAME AS PERS.CURRENT_INFO.SALARY;

begin
READY PERS;
START TRANSACTION READ_ONLY;

GET
maxi =MAX CI.SALARY OF CI IN CURRENT_INFO;

END_GET;

writeln (maxi:10:2);

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6-73

GET Statement

Example 2

The following programs demonstrate the use of the GET statement with a
conditional expression. The examples use the ANY conditional expression to
find if any records in the SALARY_HISTORY relation have an amount greater
than $50,000.00 in the SALARY_AMOUNT field. The GET statement places
the result of the ANY expression in the host language variable, who. If a value
over $50,000.00 is found, the programs display the message "Someone is not
underpaid."

C Program

#include <stdio.h>

DATABASE PERS =FILENAME "PERSONNEL";

int who;

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

GET
who = ANY SH IN SALARY HISTORY WITH SH.SALARY AMOUNT > 50000.00;

END_GET;

if (who)
printf ("Someone is not underpaid \n");

COMMIT;
FINISH;
}

Pascal Program

program anycond (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

who : boolean;

begin
READY PERS;
START TRANSACTION READ_WRITE;

GET
who = ANY SH IN SALARY HISTORY WITH SH.SALARY AMOUNT > 50000.00;

END_GET;

if (who) then
writeln ('Someone is not underpaid.');

6-74 RDML Clauses and Statements

COMMIT;
FINISH;
end.

Example 3

GET Statement

The following programs demonstrate the use of the GET * statement to retrieve
all the fields of a record. The examples declare a host language structure to
hold each field for the COLLEGES relation. The programs then use the FIRST
clause to find the first record in the COLLEGES relation with a college code
of HVDU. The GET * statement places the field values of this record in the
host language record structure. The programs then print the field values of the
retrieved record.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

static struct
{

DECLARE VARIABLE college_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE VARIABLE college_name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE VARIABLE city SAME AS COLLEGES.CITY;
DECLARE VARIABLE state SAME AS COLLEGES.STATE;
DECLARE VARIABLE postal_code SAME AS COLLEGES.POSTAL_CODE;
} colleges_record;

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

FOR FIRST 1 C IN COLLEGES
WITH C.COLLEGE CODE = "HVDU"
GET

colleges_record = C.*;
END_GET;

END_FOR;

printf ("%s %s\n %s %s\n %s\n", colleges_record.college_code,
colleges record.college name,
colleges=record.city, -
colleges_record.state,
colleges_record.postal_code);

COMMIT;
FINISH;
}

RDML Clauses and Statements 6-75

GET Statement

Pascal Program

program anycond (input,output);
DATABASE PERS =FILENAME 'PERSONNEL';

var
colleges_record:
RECORD
DECLARE VARIABLE college_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE VARIABLE college_name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE VARIABLE city SAME AS COLLEGES.CITY;
DECLARE VARIABLE state SAME AS COLLEGES.STATE;
DECLARE VARIABLE postal_code SAME AS COLLEGES.POSTAL_CODE;

end;

begin
READY PERS;
START TRANSACTION READ_WRITE;

FOR FIRST 1 C IN COLLEGES
WITH C.COLLEGE CODE = 'HVDU'
GET

colleges_record C.*
END_GET;

END_FOR;

writeln (colleges_record.college_code,' '
colleges_record.college_name);

writeln (colleges_record.city, ' ',
colleges_record.state);

writeln (colleges_record.postal_code);

COMMIT;
FINISH;
end.

6-76 RDML Clauses and Statements

MODIFY Statement

6. 16 MODIFY Statement

The MODIFY statement changes the value in a field in one or more records
from a relation in an open stream.

Format

MODIFY --+ context-var ---+USING
on-error

'"--o---.--.- statement -----------.------ END_MODIFY

context-var.* --+ = --+ record-descr

Arguments
context-var
A context variable. A temporary name that you associate with a
relation. Define the context variable in the relation clause of the FOR or
START_STREAM statement. See Section 4.1 for more information.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the MODIFY
operation. See Section 6.17 for details.

statement
Any valid RDML or host language statement to be executed within the
MODIFY operation. Use a semicolon (;)at the end of each RDML, Pascal, or
C statement.

RDML Clauses and Statements 6-77

MODIFY Statement

context-var.*
A context variable declared in the relation clause of the FOR or
START_STREAM statement. The MODIFY statement must appear after
the FOR or START_STREAM statement and before the END_FOR or
END _STREAM statement. The asterisk wildcard character (*) allows you to
modify an entire record by assigning a record descriptor to the context-var*
construct.

record-descr
A valid host language record descriptor that matches all the fields of the
relation. Each field of the record descriptor must match exactly the field names
and data types of the fields in the Rdb/VMS relation referred to by the context
variable. Use a semicolon (;) at the end of the record descriptor.

Usage Notes
• Before using the MODIFY statement, you must start a read/write

transaction and establish a record stream with a FOR statement or a
START_STREAM statement.

• The context variable you refer to in a MODIFY statement must be the
same as that defined in the FOR or START_STREAM statement.

• You can modify fields in only one record at a time.

• You can modify a record that contains a segmented string field, but you
cannot not modify selected segments from the segmented string. You must
use a STORE statement with segmented strings to change the segment
contents. Example 3 demonstrates how to modify a record that contains a
segmented string field.

• Because the effects of modifying some records in one relation and others in
a second relation can be unpredictable, you should not modify records from
views that refer to more than one relation.

• You can use the MODIFY* statement to modify all the fields in a relation.
To use MODIFY*, you must first declare a host language record structure
with field names that match the database field names exactly. Then
put the field values that you want to replace into the host language
record fields and modify the entire database record using the MODIFY*
statement. See Example 4.

6-78 RDML Clauses and Statements

Examples
Example 1

MODIFY Statement

The following programs demonstrate the use of the MODIFY statement with a
host language variable. The programs:

• Declare a host language variable, badge, same as
EMPLOYEES.EMPLOYEE_ID

• Prompt for a value for badge

• Prompt for a new status code

• Change the status code for the employee with the specified badge

The C program uses the function read_string to prompt for and receive a
value for badge. For more information and the source code for read_string, see
Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
static DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

main()
{

read_string ("Employee ID: ",badge, sizeof(badge));

READY PERS;
START_TRANSACTION READ_WRITE;

FORE IN EMPLOYEES WITH E.EMPLOYEE ID badge
MODIFY E USING

strcpy(E.STATUS_CODE,"l");
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
}

RDML Clauses and Statements 6-79

MODIFY Statement

Pascal Program

program modify_with_host (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

begin
write ('Employee ID: ');
readln (badge);

READY PERS;
START TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE ID badge
MODIFY E USING

E.STATUS CODE := '1';
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
end.

Example 2

The following programs demonstrate the use of the MODIFY statement to
assign a new value to a field in a record stream. The programs create a record
stream that consists of all the records in the JOB_HISTORY field with a
department code of ''MBMN". The MODIFY statement changes the value for
SUPERVISOR_ID to "00167" for all the records in the record stream. Note
that the C program uses the function pad_string to append trailing blanks and
the null terminator to the employee ID. This ensures that the employee ID
matches the length defined for the field. For more information and the source
code for pad_string, see Appendix B. The writeln function in Pascal pads the
employee ID for you.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{

READY PERS;
START_TRANSACTION READ_WRITE;

6-80 RDML Clauses and Statements

MODIFY Statement

FOR JH IN JOB_HISTORY
WITH JR.DEPARTMENT CODE = "MBMN"

MODIFY JH USING
pad_string ("00167", JH.SUPERVISOR_ID, sizeof(JH.SUPERVISOR_ID));

END_MODIFY;
END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program modify_field (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_WRITE;

FOR JH IN JOB HISTORY
WITH JR.DEPARTMENT CODE = 'MBMN'

MODIFY JH USING
JR.SUPERVISOR ID := '00167';

END_MODIFY;
END_FOR;

ROLLBACK;
FINISH;
end.

Example 3

The following programs demonstrate the use of the MODIFY statement to
modify a record that contains a segmented string field. The programs:

• Store a resume for employee 00164.

• Print out this resume.

• Commit the transaction.

• Begin a second transaction.

• Modify the resume field by embedding a STORE statement within a
MODIFY statement. This operation deletes the segmented string handle
associated with the old resume and replaces it with a new segmented
string handle.

• Print the new resume.

• Commit the transaction.

RDML Clauses and Statements 6-81

MODIFY Statement

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

int line;
char *document[3];

document[O]
document[l]
document[2]

"first line of resume ";
"second line of resume ";
"last line of resume ";

READY PERS;
START TRANSACTION READ_WRITE;

/* Store a resume for employee 00164 */

printf("Storing resume entry for employee 00164\n");

STORE R IN RESUMES USING
strcpy (R.EMPLOYEE_ID,"00164");
for (line = 0; line <= 2; line++)

STORE SEG IN R.RESUME
strcpy(SEG.VALUE,document[line]);
SEG.LENGTH = strlen(SEG.VALUE);

END_STORE;
END_STORE;

/* Read it back */

printf("Resume entry contains:\n");

FOR R IN RESUMES WITH R.EMPLOYEE ID
FOR SEG IN R.RESUME

printf("%s\n",SEG.VALUE);
END_FOR;

END_FOR;

COMMIT;

/* Now modify it */

"00164"

document [0] "new first line of resume ";
document[l] = "new second line of resume ";
document[2] = "new last line of resume ";

START TRANSACTION READ_WRITE;

printf("Modifying resume entry\n");

6-82 RDML Clauses and Statements

FOR R IN RESUMES WITH R.EMPLOYEE ID = "00164"
MODIFY R USING

for (line = 0; line <= 2; line++)
STORE SEG IN R.RESUME

strcpy(SEG.VALUE,document[line]);
SEG.LENGTH = strlen(SEG.VALUE);

END_STORE;
END_MODIFY;

END_FOR;

/* Read it back */

printf("Resume entry contains:\n");

FOR R IN RESUMES WITH R.EMPLOYEE ID
FOR SEG IN R.RESUME

printf("%s\n",SEG.VALUE);
END_FOR;

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program modseg (input, output);

DATABASE FILENAME 'PERSONNEL';

con st

type

var

MAXCHARS = 80;
MAXsegs = 3;

LINERANGE = 1 .. MAXsegs;
segs = varying[MAXCHARS] of char;

linecnt : LINERANGE;
document : array[LINERANGE] of segs;

begin

document[l] :='first line of resume';
document(2] := 'second line of resume';
document[3] :='last line of resume';

READY;

START TRANSACTION READ_WRITE;

"00164"

MODIFY Statement

(* Store a resume for employee 00164 *)

writeln('Storing resume entry for employee 00164');

RDML Clauses and Statements 6-83

MODIFY Statement

STORE R IN RESUMES USING
R.EMPLOYEE ID := '00164'; (* Store EMPLOYEE_ID field *)
for linecnt := 1 to MAXsegs do

STORE LINE IN R.RESUME (* Store RESUME field segments *)
LINE.VALUE := document[linecnt];
LINE.LENGTH := length(document[linecnt]);

END_STORE;
END_STORE;

(* Read it back *)

writeln('Resume entry contains:');

FOR R IN RESUMES WITH R.EMPLOYEE ID= '00164'
FOR LINE IN R.RESUME

Vltriteln(LINE);
END_FOR;

END_FOR;

(* Print resume segments *)

COMMIT;

(* Now modify it *)

document[l] :='new first line of resume';
document[2] :='new second line of resume';
document[3] :~'new last line of resume';

START TRANSACTION READ WRITE;
- I -

writeln('Modifying resume entry');

FOR R IN RESUMES WITH R.EMPLOYEE ID
MODIFY R USING

for linecnt := 1 to MAXsegs do

'00164'

STORE LINE IN R.RESUME (* Modify RESUME, erasing old segments *)
LINE.VALUE := document[linecnt];
LINE.LENGTH:= length(document[linecnt]);

END_STORE;
END_MODIFY;

END_FOR;

(* Read it back *)

writeln('Resume entry contains:');

FOR R IN RESUMES WITH R.EMPLOYEE ID= '00164'
FOR LINE IN R.RESUME -
writeln(LINE); (*Print new segments for RESUME*)

END_FOR;
END_FOR;

COMMIT;

FINISH;

end.

6-84 RDML Clauses and Statements

MODIFY Statement

Example 4

The following programs demonstrate the use of the MODIFY* statement to
modify a record in the COLLEGES relation. The programs:

• Declare a host language record structure with field names that match the
relation field names

• Prompt the user for field values

• Modify the record

• Roll back the transaction

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

static struct
{

DECLARE VARIABLE college_code
DECLARE VARIABLE college_name
DECLARE VARIABLE city
DECLARE_VARIABLE state
DECLARE_VARIABLE postal_code
} colleges_record;

extern void read_string();

main()
{

SAME AS COLLEGES.COLLEGE_CODE;
SAME AS COLLEGES.COLLEGE_NAME;
SAME AS COLLEGES.CITY;
SAME AS COLLEGES.STATE;
SAME AS COLLEGES.POSTAL_CODE;

read_string ("Enter College Code: ", colleges_record.college_code,
sizeof(colleges record.college code));

read_string ("Enter College Name: ", colleges_record:college_name, -
sizeof(colleges_record.college_name));

read_string ("Enter College City: ", colleges_record.city,
sizeof(colleges_record.city));

read_string ("Enter College State: ",colleges record.state,
sizeof(colleges_record.state));

read_string ("Enter Postal Code: ", colleges record.postal code,
sizeof(colleges_record~postal_code));

READY PERS;
START_TRANSACTION READ_WRITE;

FOR C IN COLLEGES
WITH C.COLLEGE CODE = "HVDU"

MODIFY C USING
C.* = colleges_record;

END_MODIFY;

END_FOR;

RDML Clauses and Statements 6-85

MODIFY Statement

ROLLBACK;
FINISH;
}

Pascal Program

program store_with_host_lang (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
colleges_record:
RECORD
DECLARE VARIABLE
DECLARE VARIABLE
DECLARE VARIABLE
DECLARE VARIABLE
DECLARE VARIABLE

end;

college_code
college name
city -
state
postal_code

SAME AS COLLEGES.COLLEGE_CODE;
SAME AS COLLEGES.COLLEGE_NAME;
SAME AS COLLEGES.CITY;
SAME AS COLLEGES.STATE;
SAME AS COLLEGES.POSTAL_CODE;

begin
writeln
readln
writeln
readln
writeln
readln
writeln
readln
writeln
readln

('Enter College Code:');
(colleges_record.college_code);
('Enter College Name:');
(colleges record.college name);
('Enter College City:');­
(colleges_record.city);
('Enter College State:');
(colleges_record.state);
('Enter College Postal Code:');
(colleges_record.postal_code);

READY PERS;
START_TRANSACTION READ_WRITE;

FOR C IN COLLEGES
WITH C.COLLEGE CODE = 'HVDU'

MODIFY C USING
C.* = colleges_record;

END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;

end.

6-86 RDML Clauses and Statements

ON ERROR Clause

6. 17 ON ERROR Clause

The ON ERROR clause specifies the statements the host language performs if
an error occurs during the execution of the associated RDML statement.

You can use the ON ERROR clause in all RDML statements except the
DATABASE and DECLARE_STREAM statements.

Format
on-error=

ON ERROR ~--1111 statement
..

Argument
statement

---r--1111 END_ERROR

Any valid RDML or host language statement to be executed when an RDML
error occurs. Use a semicolon (;) at the end of each RDML, Pascal, or C
statement.

Usage Notes
• Error handling with RDML is accomplished through the ON ERROR clause

and two program variables, RDB$STATUS and RDB$MESSAGE_ VECTOR.

Every routine returns a status value into a program variable that is
declared by RDML. The status value is a longword systemwide condition
value that identifies a unique message in the system message file.
The returned condition value may indicate success, in which case data
manipulation continues uninterrupted. Or, this value may signal an
error, in which case control passes to the ON ERROR clause. RDML
names this condition value RDB$STATUS and declares it to be a
longword. RDB$STATUS is the second element of a twenty-longword
array, RDB$MESSAGE_ VECTOR, that RDML uses to pass information
between the database and a C or Pascal program.

When using C as the host language, declare each status value as a
global value.

RDML Clauses and Statements 6-87

ON ERROR Clause

When using Pascal as the host language, declare each status value as an
[VALUE,EXTERNAL] INTEGER.

The use of these variables varies according to the RdbNMS or Rdb/ELN
environments. See the VAX Rdb/VMS Guide to Programming or the VAX
Rdb I ELN Guide to Application Development for more information about
their use.

Examples
Example 1

The following programs demonstrate the use of the ON ERROR clause to trap
1/0 errors that occur during execution of the READY statement. The programs
check the value of RDB$STATUS. If RDB$STATUS contains the status value
"RDB$_BAD_DB_FORMAT" then the ON ERROR clause associated with the
READY statement traps this error and the programs print the informational
message "110 error at READY ... Possibly because file not found." If the error
is not an 1/0 error, the programs print the informational message "Unexpected
Error, Application Terminating." In both cases, the program eventually
terminates because a return or halt is performed.

C Program

#include <stdio.h>
globalvalue RDB$_BAD_DB_FORMAT;
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

READY PERS
ON ERROR
if (RDB$STATUS == RDB$ BAD DB FORMAT)

printf("I/O error at READY-:- .. Possibly because file not found\n");
else

{

printf("Unexpected Error, Application Terminating\n");
RDML$SIGNAL ERROR(RDB$MESSAGE VECTOR);
} - -

return;
END_ERROR;

START_TRANSACTION READ_WRITE;

/* perform some read/write operation */

COMMIT;
FINISH;
}

6-88 RDML Clauses and Statements

Pascal Program

program onerror (output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
RDB$_BAD_DB_FORMAT [value,external] integer;

begin
READY PERS

ON ERROR
if (RDB$STATUS = RDB$_BAD_DB_FORMAT)
then

ON ERROR Clause

writeln ('I/0 Error at READY ••• Possibly because file not found')
else

begin
writeln ('Unexpected Error, Application Terminating');
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR)
end;

halt;
END_ERROR;

START_TRANSACTION READ_WRITE;

(* Perform some read/write operation *)

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the ON ERROR clause to
trap lock errors that occur during execution of the START_TRANSACTION
statement. The programs start a transaction using the NOWAIT option. This
means that execution of the START_TRANSACTION statement causes a
lock error if anyone else has a lock on the EMPLOYEES relation when you
run the program. In this case, the program will print the message "database
unavailable right now". The programs will try to access the database up to 100
more times before terminating the program.

If the error is not a lock error, the programs print the message "Unexpected
Error, Application Terminating".

To illustrate this application, build it, and then run it simultaneously from two
different terminals.

RDML Clauses and Statements 6-89

ON ERROR Clause

CProgram

globalvalue RDB$ LOCK CONFLICT;
globalvalue RDB$=DEADLOCK;

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

void handle error()
{ -
if (RDB$STATUS == RDB$ LOCK CONFLICT)

printf("database unavaili°ble right now\n");
else

{
printf("Unexpected Error, Application Terminating\n");
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);
}

return;

void access employees()
{ -
READY PERS

ON ERROR
handle_error();
return;

END_ERROR;

START_TRANSACTION READ_WRITE NOWAIT
RESERVING EMPLOYEES FOR EXCLUSIVE WRITE
ON ERROR

handle_error();
return;

END_ERROR;

/* perform some read/write operation on the EMPLOYEES relation */
printf ("Accessing EMPLOYEES •.. \n");

COMMIT;
FINISH;
}

main()
{

int i;
for (i=O; i<=lOO; i++)

access_employees();

6-90 RDML Clauses and Statements

\
)

Pascal Program

program onerror (output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
RDB$_LOCK CONFLICT
i : integer;
error : boolean;

procedure handle_error;
begin

[value,external] integer;

if RDB$STATUS = RDB$_LOCK CONFLICT
then

writeln ('database unavailable right now')
else

begin

ON ERROR Clause

writeln ('Unexpected Error, Application Terminating');
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR)
end;

end;

begin
for i := 1 to 100 do

begin
error := FALSE;
READY PERS;
START_TRANSACTION READ_WRITE NOWAIT

RESERVING EMPLOYEES FOR EXCLUSIVE WRITE
ON ERROR

handle_error;
error := TRUE;

END_ERROR;

if not error then
begin
{ perform some read/write operation on the EMPLOYEES relation }
writeln ('Accessing EMPLOYEES •.• ');

end;
end.

COMMIT;
FINISH;
end;

RDML Clauses and Statements 6-91

PREPARE Statement

6. 18 PREPARE Statement

Use the PREPARE statement to tell Rdb/ELN that your application intends to
commit a transaction. This causes Rdb/ELN to poll all concerned entities, both
hardware and software, to make sure that a commit can occur unimpeded. If
it determines that no component stands in the way of the commit, Rdb/ELN
allows a COMMIT statement that has been issued to execute.

If you use the PREPARE statement in an RdbNMS environment, you will
not receive an error message; the PREPARE statement has no effect in an
RdbNMS environment.

Format

PREPARE

(+ TRANSACTION HANDLE + var -.)

on-error

Arguments
TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable
that you associate with a transaction. If you do not supply a transaction
handle explicitly, RDML supplies the default transaction handle.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the PREPARE
operation. See Section 6.17 for details.

6-92 RDML Clauses and Statements

PREPARE Statement

Usage Notes
The PREPARE statement can be used in two distinct situations:

• When you have a transaction that affects multiple databases. In this case,
the PREPARE statement checks that the transaction can be committed
to all affected databases. If the transaction cannot be committed to all
databases at once, you must roll back the transaction.

• When you need to synchronize database activity with external events
before a transaction is committed. If the database activity and external
events cannot be properly synchronized, you must roll back the transaction.

Note that the PREPARE statement does not reserve database resources. It
does, however, cause Rdb/ELN to poll all concerned entities, both hardware
and software, to make sure that a commit can occur unimpeded. If it
determines that no component stands in the way of the commit, Rdb/ELN
allows a COMMIT statement that has been issued to execute.

Your program logic should specify what to do in case the PREPARE
statement fails.

Examples
Example 1

The following examples demonstrate the use of the PREPARE statement with
a transaction handle. The programs:

• Are intended for an Rdb/ELN environment. A CONCURRENCY
transaction and the PREPARE statement are ignored in an Rdb/VMS
environment.

• Start a Read/write concurrency transaction, SAL_INCREASE.

• Store a new JOBS record using the SAL_INCREASE transaction.

• Use the PREPARE statement to make sure that the transaction can be
committed successfully in an Rdb/ELN environment.

Note that the C program uses the function pad_string. This function ensures
that the values stored in each field have the correct number of trailing blanks
to match the test size of the field. For more information and the source code
for pad_string, see Appendix B.

RDML Clauses and Statements 6-93

PREPARE Statement

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE PERS FILENAME "PERSONNEL";

extern void pad_string();

main()
{

int SAL INCREASE = 0;
RDML$HANDLE_TYPE success;

READY PERS;
success = TRUE;

START_TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE;

STORE (TRANSACTION HANDLE SAL INCREASE) J IN JOBS USING
pad string ("TYPS", J.JOB CODE, sizeof(J.JOB CODE));
pad-string ("1", J.WAGE CLASS, sizeof(J.WAGE-CLASS));
pad-string ("TYPIST", J-:-JOB TITLE, sizeof(J.JOB TITLE));
J .MINIMUM_SALARY 10000; - -
J.MAXIMUM_SALARY = 17000;

END_STORE;

PREPARE (TRANSACTION_HANDLE SAL_INCREASE)
ON ERROR

success = FALSE;
printf ("Sorry. Cannot commit\n");
printf ("Rollback of transaction about to begin •.. \n");

END_ERROR;

if (success == FALSE)
{

ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
}

else
{

COMMIT (TRANSACTION_HANDLE SAL_INCREASE);
}

FINISH;
}

Pascal Program

program prepare_stmnt (input,output);
DATABASE PERS = FILENAME 'PERSONNEL';

var
success : boolean;
sal_increase RDML$HANDLE_TYPE := 0;

begin
READY PERS;
success := TRUE;

6-94 RDML Clauses and Statements

PREPARE Statement

START_TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE CONCURRENCY;

STORE (TRANSACTION_HANDLE SAL_INCREASE) J IN JOBS USING
J.JOB CODE:= 'TYPS';
J.WAGE CLASS := '1';
J.JOB TITLE:= 'Typist';
J.MINIMUM SALARY := 10000;
J.MAXIMUM=SALARY := 17000;

END_STORE;

PREPARE (TRANSACTION_HANDLE SAL_INCREASE)
ON ERROR

success := FALSE;
writeln ('Sorry. Cannot commit');
writeln ('Rollback of transaction about to begin ••. ');

END_ERROR;

if success = FALSE then
ROLLBACK (TRANSACTION_HANDLE SAL INCREASE)

else
COMMIT (TRANSACTION_HANDLE SAL_INCREASE);

FINISH;
end.

RDML Clauses and Statements 6-95

READY Statement

6.19 READY Statement

The READY statement explicitly declares your intention to access one or more
databases and causes an attach to the database.

Format

READY-..-~-..._----......-....-~-.._----.......--.•

~ db-handle -TJ ~ on-error __J

Arguments
db-handle

..___ __ ' ... ~ _ __,

A database handle. A host language variable used to refer to a specific
database your program uses. Specified in a DATABASE statement and
declared by RDML.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the READY
operation. See Section 6.17 for details.

Usage Notes
• If you issue a READY statement without specifying a database handle,

your application attaches to all databases declared in that module.

• Digital Equipment Corporation recommends that you use the
/NODEFAULT_TRANSACTIONS qualifier when you preprocess your
program. When you use the /NODEFAULT_TRANSACTIONS qualifier
you must issue a READY statement to attach to the database. You can
attach to one of many databases as you need it and then use the FINISH
statement to detach from it when you are done. In this way, you do not
have to allocate system resources to remain attached to all the required
databases throughout the program.

6-96 RDML Clauses and Statements

READY Statement

• You do not have to use the READY statement to access a database. By
default, a database attach occurs automatically the first time you refer
to it. However, Digital recommends that you always issue a READY
statement prior to accessing a database.

• You can use the READY statement to test the availability of a database.
For example, you may want to check availability before your program
prompts a user for input.

• When you use the READY statement, you can predict when the
database attach is performed. If you do not use a READY statement,
the first database access will cause an attach to occur (except when
the /NODEFAULT_TRANSACTION qualifier is specified), and this may
introduce a delay that is obvious to the user.

Examples
Example 1

The following program fragments demonstrate the use of the READY
statement to open a database. The program fragments:

• Use the DATABASE statement to declare the PERSONNEL database

• Declare a database handle PERS for PERSONNEL

• Open the PERSONNEL database with the READY statement

• Close the database with the FINISH statement

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{

READY PERS;

FINISH PERS;
}

RDML Clauses and Statements 6-97

READY Statement

Pascal Program

program empupdate;
DATABASE PERS = FILENAME 'PERSONNEL';

begin
READY PERS;

FINISH PERS;
end.

Example 2

The following program fragments demonstrate how to attach to two databases
within the same program. The program fragments:

• Use the DATABASE statement to declare two databases, PERSONNEL
and PAYROLL

• Declare database handles for both databases

• Attach to both databases

• Detach from each database

CProgram

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";
DATABASE PAY = FILENAME "WORK$DISK:PAYROLL";

main ()

READY PERS;

FINISH PERS;

6-98 RDML Clauses and Statements

\
/

READY PAY;

FINISH PAY;

READY PERS, PAY;

FINISH PERS, PAY;
}

Pascal Program

program new_employee;
DATABASE PERS FILENAME 'PERSONNEL';

READY Statement

DATABASE PAY FILENAME 'WORK$DISK:PAYROLL';

READY PERS;

FINISH PERS;

READY PAY;

FINISH PAY;

READY PERS, PAY;

FINISH PERS, PAY;
end.

RDML Clauses and Statements 6-99

REQUEST_HANDLE Clause

6.20 REQUEST_HANDLE Clause

A request handle is a host language variable that identifies a compiled
Rdb request. RDML generates request handles for statements that contain
record selection expressions. In almost all cases it is unnecessary for you to
explicitly specify request handles. However, if you choose to, you can specify a
request handle to identify the requests that RDML generates in the following
statements:

• FOR

• START_STREAM

• STORE

• Statistical functions (AVERAGE, COUNT, MAX, MIN, TOTAL)

For the syntax diagram that shows the placement of the REQUEST_HANDLE
in each of the RDML statements, see the section describing that statement.

Format

request-handle =

-+ (-+ REQUEST HANDLE ----IJli host-variable

Argument
host-variable

---+) -+

A valid host language variable. See Usage Notes.

Usage Notes
• Most applications do not require the use of, or benefit from, user-specified

request handles. Unless you need to refer to a request handle directly
(for example, you want to release a request prior to executing a FINISH
statement) you probably do not need to use request handles. You may
degrade performance if you use request handles unnecessarily.

6-100 RDML Clauses and Statements

REQUEST_HANDLE Clause

• Do not release a request unless it is absolutely necessary. If you release a
request, yet continue to refer to that request, you force RDML to recompile
the request each time you refer to it.

• RDML-supplied request handles improve the performance for an
application program that repeats identical queries. A request handle
serves as a pointer to the internal representation of a query. Request
handles in an application cause Rdb to reuse this internal representation,
reducing the run-time overhead associated with executing a query. Note
that Rdb uses request handles regardless of whether you specify handle
names for the requests.

• If you choose to explicitly declare a request handle in your program, the
request handle must be:

Declared in the host language program as:

• RDML$HANDLE_TYPE for Pascal

DECLARE VARIABLE OF name SAME AS PERS.EMPLOYEES.LAST_NAME;
REQl : RoML$HANDLE_TYPE;

• RDML$HANDLE_TYPE for C

DECLARE VARIABLE name SAME AS PERS.EMPLOYEES.LAST NAME;
extern long RDB$RELEASE REQUEST{); -
RDML$HANDLE_TYPE REQl; -

Initialized to zero before being used for the first time. Do not
reinitialize a request prior to each time you refer to it (for example
within a FOR loop). If you reinitialize a request to zero, RDML
recompiles the request each time you refer to it.

Reinitialized to zero after a request is released, or after your program
detaches from the associated database by issuing a FINISH statement.

• The value of a request handle is valid from the point when the associated
query is made until the request is released, or until your program detaches
from the database associated with that query by issuing a FINISH
statement.

• If you are using modular programming techniques, do not issue a FINISH
statement in one module and then attempt to use a request handle
associated with the finished database in another module. Attempts to do so
will result in the error message: BAD_REQ_HAND.

RDML Clauses and Statements 6-101

REQUEST_HANDLE Clause

• Each request has resources associated with it that are used by Rdb to store
the internal representation of the request. Your program can release these
resources in two ways:

By issuing a FINISH statement. This causes your program to detach
from the database associated with the requests and releases the
resources associated with all the requests for the finished database
attach.

By issuing a call to RDB$RELEASE_REQUEST. This does not cause
your program to detach from the database associated with the request.

Before you issue a call to a RDB$RELEASE_REQUEST, you should
declare it in C programs as shown in the following example:

extern long RDB$RELEASE_REQUEST(};

You do not need to declare RDB$RELEASE_REQUEST in Pascal
programs; it is declared for you in RDMLVPAS.PAS.

To release a request in Pascal use:

if not RDB$RELEASE REQUEST(RDB$MESSAGE VECTOR, request_handle)
then RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

To release a request in C use:

if ((RDB$RELEASE REQUEST(RDB$MESSAGE VECTOR, &request_handle) & 1) == 0)
RDML$SIGNAL=ERROR(RDB$MESSAGE_vECTOR);

Examples
Example 1

The following programs demonstrate the use of the REQUEST_HANDLE
clause in a FOR statement. They also show how to release a request. The
programs:

• Declare the host language variable, REQl, for a request handle and the
local variable, name

• Initialize REQl to zero

• Assign a value to name

6-102 RDML Clauses and Statements

\
)

REQUEST_HANDLE Clause

• Start a transaction

• Use the request handle in the FOR statement

• Release the request

Note These programs merely show how to use and release a request. Do not, under
any circumstances, routinely declare and release requests. Doing so will
degrade performance.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

DECLARE VARIABLE name SAME AS PERS.EMPLOYEES.LAST NAME;
extern long RDB$RELEASE REQUEST(); -
RDML$HANDLE_TYPE REQl; -

main()
{

REQl = 0;
strcpy(name,"Gray");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR (REQUEST_HANDLE REQl) E IN PERS.EMPLOYEES
WITH E.LAST NAME = name
printf("%s\n",E.FIRST_NAME);

END_FOR;

if ((RDB$RELEASE REQUEST(RDB$MESSAGE VECTOR, &REQl) & 1) 0)
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

COMMIT;
FINISH;
}

Pascal Program

program request (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

DECLARE VARIABLE OF name SAME AS PERS.EMPLOYEES.LAST_NAME;
REQl : RoML$HANDLE_TYPE;

begin
REQl := 0;
name :='Gray';

READY PERS;
START TRANSACTION READ_ONLY;

RDML Clauses and Statements 6-103

REQUEST_HANDLE Clause

FOR (REQUEST_HANDLE REQl) E IN PERS.EMPLOYEES
WITH E.LAST NAME = name
writeln (E.FIRST_NAME);

END_FOR;

if not RDB$RELEASE REQUEST(RDB$MESSAGE VECTOR, REQl)
then RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

COMMIT;

FINISH;
end.

6-104 RDML Clauses and Statements

ROLLBACK Statement

6.21 ROLLBACK Statement

The ROLLBACK statement terminates a transaction and undoes all changes
made to the database since the program's most recent START_TRANSACTION
statement or since the start of the specified transaction.

Format

ROLLBACK --.--'I~----------------..--
(-+ TRANSACTION HANDLE -+ var -+)

on-error

Arguments
TRANSACTION-HANDLE var
The TRANSACTION_HANDLE keyword followed by a host language variable
you associate with a transaction. If you do not supply a handle name explicitly,
Rdb uses the default transaction handle.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the ROLLBACK
operation. See Section 6.17 for details.

Usage Notes
• The ROLLBACK statement affects all databases associated with the

transaction.

• The ROLLBACK statement undoes all changes to data made with RDML
ERASE, MODIFY, and STORE statements.

• The ROLLBACK statement with no argument will use the default
transaction handle.

RDML Clauses and Statements 6-1 OS

ROLLBACK Statement

• If you start a transaction without specifying a transaction handle, you use
the default transaction handle. There is one default transaction handle for
the whole program. By default, when the RDML preprocessor encounters a
statement without a transaction handle, it tests for the default transaction
handle. If there is no default transaction, the RDML preprocessor starts
one. Otherwise, the RDML preprocessor includes that statement in the
existing default transaction.

However, Digital Equipment Corporation recommends that you use the
/NODEFAULT_TRANSACTIONS qualifier when you preprocess your
program. When you use the /NODEFAULT_TRANSACTIONS qualifier,
RDML will not test for the default transaction handle on each statement
it encounters without a transaction handle. This means that you must
explicitly start and end your transaction (you do not have to specify a
transaction handle). By explicitly starting and ending your transaction
and using the /NODEFAULT_TRANSACTIONS qualifier, you can reduce
overhead by eliminating the work RDML must do to test if a transaction
has started.

• If you start a transaction and specify a transaction handle, you must use
that transaction handle to roll back that transaction. The ROLLBACK
statement automatically resets both user-specified and RDML-specified
transaction handles to zero.

• The ROLLBACK statement also:

Closes open streams

Releases all locks in RdbNMS

Reduces all locks if you are using the CONSISTENCY option of the
START_TRANSACTION statement in the Rdb/ELN environment. See
the Rdb/ELN documentation set for details.

• Because the ROLLBACK statement closes open streams, you must not
explicitly end the stream after a ROLLBACK statement. If you do end the
stream with the END_STREAM clause of the START_STREAM statement,
Rdb returns an error message.

• You cannot continue in a FOR loop after a ROLLBACK statement is issued.

6-106 RDML Clauses and Statements

Examples
Example 1

ROLLBACK Statement

The following programs demonstrate the use of the ROLLBACK statement
with a transaction handle to undo changes to the database made with the
STORE statement. The programs:

• Start a read/write transaction, SAL_INCREASE

• Store a new JOBS record using the SAL_INCREASE transaction

• Use the ROLLBACK statement to undo the changes made to the database
during the SAL_INCREASE transaction; that is, the new record is not
stored in the database

Note that the C program uses the function pad_string. This function ensures
that the values stored in each field have the correct number of trailing blanks
to match the text size of the field. For more information and the source code
for pad_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main ()
{

int SAL_INCREASE = 0;

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE SAL INCREASE) READ WRITE;

STORE (TRANSACTION HANDLE SAL INCREASE) J IN JOBS USING
pad string ("TYPS", J.JOB CODE, sizeof(J.JOB CODE));
pad-string ("1", J.WAGE CLASS, sizeof(J.WAGE-CLASS));
pad=string ("TYPIST", J-:-JoB_TITLE, sizeof(J.JOB_TITLE));
J.MINIMUM_SALARY 10000;
J.MAXIMUM SALARY= 17000;

END_STORE;

ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
FINISH;
}

RDML Clauses and Statements 6-107

ROLLBACK Statement

Pascal Program

program rollback_trans (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';
var sal increase : [volatile] integer := 0;

begin
READY PERS;
START TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE;

STORE (TRANSACTION_HANDLE SAL_INCREASE) J IN JOBS USING
J.JOB_CODE := 'TYPS';
J.WAGE CLASS := '1';
J.JOB_TITLE := 'Typist';
J.MINIMUM_SALARY := 10000;
J.MAXIMUM_SALARY := 17000;

END_STORE;

ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
FINISH;
end.

6-108 RDML Clauses and Statements

START_STREAM Statement, Declared

6.22 START_STREAM Statement, Declared

A declared START _STREAM statement starts a stream that was declared
earlier in the module with the DECLARE_STREAM statement. A declared
START_STREAM statement allows you to place the START_STREAM, FETCH,
GET, and END_STREAM statements in any order within a program as long as
they appear after the DECLARE_STREAM statement and are executed at run
time in the order: START_STREAM, FETCH, GET, END_STREAM.

Format

START STREAM --- declared-stream-name

4 on-error :J

Arguments
declared-stream-name
A valid RDML name. This name must be the same name you use in the
associated DECLARE_STREAM statement.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the
START _STREAM operation. See Section 6.17 for details.

Usage Notes
• Because the DECLARE_STREAM statement specifies the record selection

expression and any transaction or request handles, the declared
START_STREAM statement must not specify the record selection
expression, a transaction handle, or a request handle.

• You can issue several declared START_STREAM statements in a module,
and as long as you use the same declared stream name, they will all refer
to the same stream.

RDML Clauses and Statements 6-109

START_STREAM Statement, Declared

• A stream is limited to one module.

• Once you have declared the stream (in the DECLARE_STREAM statement)
and referred to this name in the START_STREAM statement, you should
only use the stream name when you want to:

Fetch the next record with a FETCH statement.

Terminate the stream with the declared END_STREAM statement.
For all other purposes you should use the context variables specified in
the record selection expression of the associated DECLARE_STREAM
statement. For example, if you want to modify records, you must use
the context variable associated with the record in the record selection
expression of the DECLARE_STREAM statement.

• Because the context variables specified in a DECLARE_STREAM
statement remain visible until the end of the module, you should not
reuse context variables defined in the record selection expression of the
DECLARE_STREAM statement in other record selection expressions.

• Your program can use FOR statements or START_STREAM statements to
establish record streams. The FOR statement is recommended. However,
there are reasons for using a START_STREAM statement to create a record
stream. You can use a START_STREAM statement to process multiple
streams in parallel. Record streams created by the FOR statement can
process nested streams, but not independent streams.

• You can process streams in the forward direction only. If you want to move
the stream pointer back to a record that you already processed, you must
end the stream and restart it or use database keys.

• The records in a stream are not returned in any specific order unless the
record selection expression that creates the stream contains a SORTED BY
clause.

Nole Rdb retrieves the contents of any input host language variables in the record
selection expression when you use the START _STREAM statement. Rdb
cannot reexamine the host language variables until you end and restart the
stream. Therefore, changing the value of a host language variable specified
in the record selection expression that created the stream has no effect on an
active stream.

• The statements following a declared START_STREAM statement must
include at least one FETCH statement before you access any record in the
stream.

6-11 O RDML Clauses and Statements

START_STREAM Statement, Declared

• Declared streams can overlap. For example:

START STREAM A

START STREAM B

END_STREAM A

END STREAM B

• Declared streams can be nested. For example:

START STREAM A

START STREAM B

END STREAM B

END_STREAM A

Examples
Example 1

The following programs demonstrate the use of the declared START_STREAM
statement with the declared END_STREAM clause. The programs:

• Declare a stream sal with the DECLARE_STREAM statement that limits
the stream to those records with a value less than ten thousand in the
SALARY_AMOUNT field

• Start a read/write transaction

• Fetch the first record in the stream

• Modify that record so that the value in the SALARY_AMOUNT field is
increased by fifty percent

RDML Clauses and Statements 6-111

START_STREAM Statement, Declared

• Fetch and modify records in the stream until all the records have been
modified

• End the stream with the declared END_STREAM statement

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE PERS =FILENAME "PERSONNEL";

DECLARE STREAM sal USING SH IN SALARY HISTORY - -
WITH SH.SALARY AMOUNT LT 10000;

int end_of _stream;

main()
{

READY PERS;
START_TRANSACTION READ_WRITE;

START STREAM sal;

FETCH sal
AT END

end_of _stream = TRUE;
END_FETCH;

while (! end_of _stream)
{

MODIFY SH USING
SH.SALARY AMOUNT SH.SALARY AMOUNT* (1.5);

END_MODIFY;

FETCH sal
AT END

end of stream = TRUE;
END_FETCH;
}

END STREAM sal;

COMMIT;
FINISH;

6-112 RDML Clauses and Statements

START_STREAM Statement, Declared

Pascal Program

program anycond (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
end of stream : boolean;

DECLARE STREAM sal USING SH IN SALARY HISTORY
WITH SH.SALARY_AMOUNT LT 10000;

begin

end.

READY PERS;
START TRANSACTION READ_WRITE;

START STREAM sal;

FETCH sal
AT END

end of stream := TRUE;
END_FETCH;

while not end of stream do
begin

MODIFY SH USING
SH.SALARY AMOUNT :=SH.SALARY AMOUNT* (1.5);

END_MODIFY;

FETCH sal
AT END

end of stream := TRUE;
END_FETCH;

end;

END STREAM sal;
COMMIT;
FINISH;

RDML Clauses and Statements 6-113

START_STREAM Statement, Undeclared

6.23 START_STREAM Statement, Undeclared

The START_STREAM statement declares and starts a record stream. The
START_STREAM statement:

• Forms a record stream from one or more relations. The record selection
expression determines the records in the record stream.

• Places a pointer for that stream just before the first record in this stream.

You must then use the FETCH statement to fetch the next record in the
stream and other RDML statements (for example, MODIFY and ERASE) to
manipulate each record.

Note Digital Equipment Corporation recommends that all programs use the declared
STAllT _STREAM statement (with the DECLARE_STREAM statement) in place
of the undeclared STAllT _STREAM statement. The declared STAllT _STREAM
statement provides all the functionality of the undeclared STAllT _STREAM
statement and provides more flexibility in programming than the undeclared
STAllT _STREAM statement.

Format

START_STREAM - ~---------_J---llJl stream-name
'-+ handle-options

-----IJ USING --+ rse
L; on-error :J

handle-options =

-+ (~ REQUEST HANDLE ---+ var~ } -+ c==; TRANSACTION HANDLE ----+ var
REQUEST HANDLE -+ var -+ ,)

L; TRANSACTION_HANDLE -+ var

6-114 RDML Clauses and Statements

Arguments
handle-options

START_STREAM Statement, Undeclared

A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled RdbNMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

stream-name
The stream that you create. The stream name must be a valid host language
name.

rse
A record selection expression. A clause that defines specific conditions that
individual records must meet before Rdb includes them in a record stream.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the
START_STREAM operation. See Section 6.17 for details.

Usage Notes
• Once you have named the stream, you should only refer to the

stream-name when you want to:

Retrieve the next record with a FETCH statement

Terminate the stream with the END_STREAM statement

For all other purposes you should use context variables. For example, if
you want to modify records, you must use the context variable associated
with the record selection expression of the START _STREAM statement.

RDML Clauses and Statements 6-115

START_STREAM Statement, Undeclared

• Any context variable names that you define with the START _STREAM
statement are valid for the life of that stream only. Once you
have defined a context variable in the record selection expression,
you cannot reuse that context variable name elsewhere inside the
START_STREAM ... END_STREAM block. References to the context
variable must occur between the keywords START_STREAM and
END _STREAM. You can use the context variable name again outside
that block.

• Your program can use FOR statements or START_STREAM statements to
establish record streams. The FOR statement is recommended. However,
there are reasons for using a START _STREAM statement to create a record
stream. You can use a START_STREAM statement to process multiple
streams in parallel. Record streams created by the FOR statement can
process nested streams, but not independent streams.

• If you want to process multiple streams in parallel, you must declare
transaction handles and specify the handles in the START_STREAM
statement.

• You can process streams in the forward direction only. If you want to move
the stream pointer back to a record that you already processed, you must
end the stream and restart it (or use dbkeys).

• The records in a stream are not returned in any specific order unless the
record selection expression that creates the stream contains a SORTED BY
clause.

• Rdb retrieves the contents of any input host language variables in the
record selection expression when you use the START_STREAM statement.
Rdb cannot reexamine the host language variables until you end and
restart the stream. Therefore, changing the value of a host language
variable in the middle of an active stream has no effect on the records
included in the record stream.

• The statements following a START_STREAM statement must include at
least one FETCH statement before you access any record in the stream.

6-116 RDML Clauses and Statements

START_STREAM Statement, Undeclared

• Streams can overlap, for example:

START STREAM A

START STREAM B

END STREAM A

END STREAM B

• Streams can be nested, for example:

START STREAM A

START STREAM B

END STREAM B

END STREAM A

Examples
Example 1

The following programs:

• Create a record stream, CURRENT_INF _STREAM, that consists of the
CURRENT_INFO record sorted by highest salary first

• Fetch the first record, thereby fetching the CURRENT_INFO record with
the highest salary

• Display a message about that record

RDML Clauses and Statements 6-117

START_STREAM Statement, Undeclared

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

START STREAM CURRENT INF STREAM USING - - -
CI IN CURRENT_INFO SORTED BY DESC CI.SALARY;
FETCH CURRENT_INF_STREAM;

printf ("%s makes the largest salary!\n", CI.LAST_NAME);
END_STREAM CURRENT_INF_STREAM;

COMMIT;
FINISH;
}

Pascal Program

program record stream (input,output);
DATABASE PERS -:- FI°LENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_ONLY;

START STREAM CURRENT INF STREAM USING
CI IN CURRENT INFO SORTED BY DESC CI.SALARY;
FETCH CURRENT_INF_STREAM;

writeln (CI.LAST_NAME, ' makes the largest salary!');
END_STREAM CURRENT_INF_STREAM;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the START_STREAM
statement to create a record stream. The programs:

• Create a stream of all EMPLOYEES records sorted by LAST_NAME first

• Create a stream of all EMPLOYEES records sorted by FIRST_NAME first

• List the stream sorted by LAST_NAME in the left column

• List the stream sorted by FIRST_NAME in the right column

6-118 RDML Clauses and Statements

START_STREAM Statement, Undeclared

C Program

#include <stdio.h>
DATABASE PERS FILENAME 'PERSONNEL';

#define TRUE 1
#define FALSE 0
int END_OF_STREAM;

main()
{

READY PERS;
START TRANSACTION READ_ONLY;

START STREAM BY LAST NAME USING - - -
El IN EMPLOYEES SORTED BY El.LAST_NAME, El.FIRST NAME;

START STREAM BY FIRST NAME USING - - -
E2 IN EMPLOYEES SORTED BY E2.FIRST_NAME, E2.LAST_NAME;

/*The streams BY LAST NAME and BY FIRST NAME will contain the - -
same number of records. It is only necessary to test
for AT END once.*/

END_OF_STREAM = FALSE;

FETCH BY LAST NAME - -
AT END

END OF STREAM = TRUE;
END_FETCH;

if (!END_OF_STREAM)
FETCH BY_FIRST_NAME;

while (!END_OF_STREAM)
{

/*Alphabetical listing by last name down left column*/
printf ("%s %s" ,El.LAST_NAME, El.FIRST_NAME);

printf (" "); /*skip 20 spaces*/

/*Alphabetical listing by first name down right column*/
printf ("%s %s\n",E2.FIRST_NAME, E2.LAST_NAME);

FETCH BY LAST NAME - -
AT END

END OF STREAM = TRUE;
END_FETCH;

if (!END_OF_STREAM)
FETCH BY_FIRST_NAME;

/*while*/

RDML Clauses and Statements 6-119

START_STREAM Statement, Undeclared

END STREAM BY_LAST_NAME;
END STREAM BY_FIRST_NAME;

COMMIT;
FINISH;
}

Pascal Program

program two_record_streams (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
end of stream : boolean;

begin
READY PERS;
~TART_TRANSACTION READ_ONLY;

START STREAM BY LAST NAME USING - - -
El IN EMPLOYEES SORTED BY El.LAST_NAME, El.FIRST_NAME;

START STREAM BY FIRST NAME USING - - -
E2 IN EMPLOYEES SORTED BY E2.FIRST_NAME, E2.LAST_NAME;

{* The streams BY_LAST_NAME and BY_FIRST_NAME will contain the
exact same number of records. It is only necessary to test
for AT END once. *}

end_of_stream := false;

FETCH BY LAST NAME - -
AT END

end of stream := true;
END_FETCH;

if not end of stream then
FETCH BY_FIRST_NAME;

while not end of stream do begin

{* Alphabetical listing by last name down left column *}
write (El.LAST_NAME, ' ', El.FIRST_NAME);

write (' ' : 20); {skip 20 spaces}

{* Alphabetical listing by first name down right column *}
writeln (E2.FIRST_NAME, ' ' E2.LAST_NAME);

FETCH BY LAST NAME
AT END

end of stream := true;
END_FETCH;

6-120 RDML Clauses and Statements

START_STREAM Statement, Undeclared

if not end of stream then
FETCH BY_FIRST_NAME;

end; {* WHILE *}

END_STREAM BY_FIRST_NAME;
END_STREAM BY_LAST_NAME;

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6-121

START_TRANSACTION Statement

6.24 START_TRANSACTION Statement

The START_TRANSACTION statement initiates a transaction. A transaction
is a group of statements whose changes can be made permanent or undone
as a unit. Either all the statements that modify records within a transaction
become permanent when the transaction is completed, or none of them do.
If you end the transaction with the COMMIT statement, all the changes
within the transaction become permanent. If you end the transaction with the
ROLLBACK statement, all changes made within the transaction are undone.

Format

START_ TRANSACTION

tx-options =

tx-options
on-clause

-+ TRANSACTION_HANDLE var -+)

on-error

BATCH_UPDATE ------------------.--

READ ONLY
READ WRITE

WAIT
NOWAIT

CONCURRENCY
CONSISTENCY

EVALUATING T evaluatin~-cla-us_e ___ _

RESERVING -e reserving-clause
I.---

6-122 RDML Clauses and Statements

START_TRANSACTION Statement

on-clause=

evaluating-clause =

~-------111i---- constraint 4 db-handle --+ . --+ J

'---_.., AT ~ VERB TIME _J
'--+ COMMIT TIME

reserving-clause=

J

-~----11i----~-11i relation-name
4 db-handle --+ . +:J

FOR ~.....-------~--- READ --.....---------.
EXCLUSIVE
PROTECTED
SHARED ---

WITH AUTO LOCKING
WITH NOAUTO LOCKING

WRITE

RDML Clauses and Statements 6-123

START_ TRANSACTION Statement

Arguments
TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle name explicitly, Rdb uses the default transaction handle.

If you specify a transaction handle in a START_TRANSACTION statement,
you :must also specify the same. transaction handle on any operations that
relate to that transaction (for example, COMMIT, FINISH, FOR, ROLLBACK,
START_STREAM, and STORE statements).

tx-options
Transaction options. Allows you to specify the type of transaction you want,
when you want constraints to be evaluated, and which relations you intend to
access.

on-clause
Allows you to specify a particular database and the tx-options to be applied to
the transaction that accesses that database attach.

BATCH_ UPDATE
READ_ONLY
READ_WRITE
Declares what you intend to do with the transaction as a whole. READ_ONLY
is the default. The effects of these transaction modes depend on the system
you are using. Refer to the VAX Rdb/VMS Reference Manual if you are using
RdbNMS. Refer to the VAX Rdb I ELN Reference Manual if you are using
Rdb/ELN.

CONSISTENCY
CONCURRENCY
These options specify the consistency mode of the transaction:

• CONSISTENCY is the default. This mode guarantees that when all
transactions complete by committing or rolling back, the effect on the
database is the same as if all transactions were run sequentially. In
RdbNMS, CONSISTENCY is the only option.

• CONCURRENCY is a high-throughput option for Rdb/ELN databases
that guarantees that no transaction sees data written by another active
transaction. The concurrency algorithm reduces system overhead, thereby

6-124 RDML Clauses and Statements

START_TRANSACTION Statement

improving overall performance while still guaranteeing a high level of data
consistency (although not as high as the consistency mode).

WAIT
NOWAIT
These options specify what your transaction will do if it needs resources that
are locked by another transaction:

• WAIT is the default. It causes your transaction to wait until the necessary
resources are released or Rdb detects deadlock.

• With NOWAIT, Rdb will return an error ifthe resources you need are not
immediately available, thereby forcing you to roll back your transaction.

evaluating-clause
Supported by RdbNMS only. Allows you to specify the point at which the
named constraints are evaluated. If you specify VERB_TIME, they are
evaluated when the data manipulation statement is issued. If you specify
COMMIT_TIME, they are evaluated when the COMMIT statement executes.
The evaluating clause is allowed syntactically, but is ignored, with read-only
transactions.

constraint
The name of an RdbNMS constraint.

reserving-clause
Allows you to specify the relations you plan to use and attempts to lock those
relations for your access.

In general, include all the relations your transaction will access. If you use the
WITH AUTO_LOCKING option (the default), constraints and triggers defined
on the reserved relations will be able to access additional relations that do not
appear in the list of reserved relations. The WITH AUTO_LOCKING option
will not work for other relations not referenced in the reserving clause.

Note If you use the RESERVING clause and the WITH NOAUTO_LOCKING option,
you can access only those relations that you have explicitly reserved. If you
access multiple databases with a single STAllT_TRANSACTION statement and
use the RESERVING clause for one or more databases, you can access only the
reserved relations in a database for which you reserve relations.

RDML Clauses and Statements 6-125

START_ TRANSACTION Statement

WITH AUTO_LOCKING (default)
WITH NOAUTO_LOCKING
Rdb/VMS automatically locks any relations referenced within a transaction
unless you specify the optional WITH NOAUTO_LOCKING clause. The default
is WITH AUTO_LOCKING.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the
START_TRANSACTION operation. See Section 6.17 for details.

db-handle
A database handle. A host language variable used to refer to a specific
database your program uses. Optionally qualifies relation-name with a
database handle. This option is required if you access two or more databases
that share relations with the same name.

relation-name
The name of the relation to be used during the transaction.

READ (default)
WRITE
The Rdb lock type. This keyword declares what you intend to do with the
relations you have reserved:

• READ reserves the specified relations for read-only access

1 WRITE reserves the specified relations for read/write access

EXCLUSIVE
PROTECTED
SHARED (default)
The Rdb/VMS share modes. The keyword you choose determines what
operations you allow others to perform on the relations you are reserving.
For read-only transactions, EXCLUSIVE and PROTECTED are syntactically
allowed, but are ignored. The CONSISTENCY mode and the choice of
read-only or read/write determines the kind of locking that is necessary.

Table 6-3 summarizes the share modes for both Rdb/ELN and Rdb/VMS.

6-126 RDML Clauses and Statements

START_ TRANSACTION Statement

Table 6-3 VAX Rdb/ELN and Rdb/VMS Share Modes

SHARED Other users can work with the same relations as you.
Depending on the option they choose, they can have
read-only or read/write access to the database.

PROTECTED Other users can read the relations you are using. They
cannot have write access.

EXCLUSIVE Other users cannot read or write to records from the
relations included in your transaction. If another user
refers to the same relation in a START_TRANSACTION
statement, RdbNMS denies access to that user.

Usage Notes
• There are several levels of defaults for START_TRANSACTION. In

general, Digital Equipment Corporation recommends that you use
explicit START_TRANSACTION statements, specifying READ_ WRITE or
READ_ONLY, a list of relations in the RESERVING clause, and a share
mode and lock type for each relation. Table 6-4 summarizes the defaults
for each option and combination of options.

Table 6-4 Defaults for the START_TRANSACTION Statement

Option

Transaction Mode:

READ_ONLY
READ_ WRITE
BATCH_ UPDATE

Default

If you omit the START_ TRANSACTION statement (or
specify the START_TRANSACTION statement but do
not specify a transaction mode), then RDML starts a
read-only transaction (unless you have specified the RDML
/NODEFAULT_TRANSACTIONS qualifier). Note that if the
statement is a STORE, MODIFY, or ERASE statement, the
result is an error, because you cannot update the database
in a read-only transaction.

(continued on next page)

RDML Clauses and Statements 6-127

START_TRANSACTION Statement

Table 6-4 (Cont.)

Option

Lock Specification:

RESERVING

Share Mode:

SHARED
PROTECTED
EXCLUSIVE

Lock Type:

READ
WRITE

Defaults for the START_TRANSACTION Statement

Default

If you do not specify a reserving option of a RESERVING
clause, the default is SHARED_READ.

If you specify a read/write transaction and do not include a
RESERVING clause, Rdb determines the lock specification
for each relation when it is first accessed with a data
manipulation statement.

If you specify a read/write transaction and include a
RESERVING clause, the default share mode is SHARED.

If you use the WITH AUTO_LOCKING option of the
RESERVING clause (the default), RdbNMS determines
the lock specification for each relation accessed within the
transaction when the relation is first accessed with a data
manipulation statement from a constraint or trigger.

If you do not specify a transaction mode but do include
a RESERVING clause, the default share mode is SHARED.

If you specify a read-only transaction, the default is
SHARED_READ, whether or not you specify a RESERVING
clause.

The default is SHARED.

If you specify a read/write transaction, the default is
WRITE.

If you specify a read-only transaction mode, READ is the
default and only allowed lock type.

(continued on next page)

6-128 RDML Clauses and Statements

Table 6-4 (Cont.)

Option

Concurrency Option:

CONSISTENCY
CONCURRENCY

Wait Mode:

WAIT
NO WAIT

Evaluating Clause:

VERB_TIME
COMMIT_TIME

START_TRANSACTION Statement

Defaults for the START_TRANSACTION Statement

Default

CONSISTENCY is the default (and for Rdb/VMS, the only
meaningful option).

WAIT is the default.

By default, Rdb/VMS evaluates each constraint at the time
specified in the DEFINE CONSTRAINT definition. If the
constraint definition does not specify when the constraint
should be checked, the definition default is CHECK ON
UPDATE (VERB_TIME).

• If you issue a data manipulation language statement (DML) without
issuing a START_TRANSACTION statement first, Rdb automatically
starts a read-only transaction for you. However, Digital recommends
that you always explicitly start a transaction statement with the
START_TRANSACTION statement. If you issue a DML statement, such as
a GET or FOR statement, and then try to use the START_TRANSACTION
statement, you will get an error message warning that a transaction is
already in progress.

• Use of the /NODEFAULT_TRANSACTIONS qualifier requires that you
issue a START_TRANSACTION statement prior to any DML statement. If
you are using Rdb/VMS, see the VAX Rdb/VMS Guide to Programming for
details. See the Rdb/ELN documentation set if you are using Rdb/ELN.

• You cannot specify the ROLLBACK statement as the action to be taken if
an error occurs during the START_TRANSACTION operation. If an error
occurs during this operation, no transaction exists; therefore, there is no
transaction to roll back.

• If you choose not to use the default transaction handle, you must explicitly
declare the transaction handle you use in your program. See Section 6.27
for more information on the TRANSACTION_HANDLE clause.

RDML Clauses and Statements 6-129

START_TRANSACTION Statement

• Read-only consistency transactions are automatically started as read-only
concurrency transactions in Rdb/ELN. Therefore it does not make sense to
start a read-only transaction with CONSISTENCY. (This is not the case in
Rdb/VMS, which does not provide CONCURRENCY.)

• In an Rdb/ELN environment, the choice of CONSISTENCY or
CONCURRENCY affects the throughput of both your program and
the programs of other users.

Examples
Example 1

The following statement starts a transaction in C and Pascal programs with
the following characteristics:

• Uses the default transaction handle

• CONSISTENCY mode in both Rdb/VMS and Rdb/ELN

• WAIT option (by default)

• Read-only access (by default)

START_TRANSACTION;

Example 2

The following statement starts a transaction in C and Pascal programs in the
Rdb/ELN environment with the following characteristics:

• Read/write access

• CONCURRENCY mode

• WAIT option (by default)

START_TRANSACTION READ_WRITE CONCURRENCY;

Example 3

The following statements start a transaction with these characteristics:

• Read/write access

• CONSISTENCY mode

• WRITE access for the named relations (the transaction will wait until
these relations are available at this level of access)

6-130 RDML Clauses and Statements

C Statements

DATABASE RDBDEMO
DATABASE FINANCE

START_TRANSACTION Statement

FILENAME "RDBDEMO.RDB";
FILENAME "DDP_FINANCES";

START TRANSACTION READ WRITE CONSISTENCY
RESERVING RDBDEMO.EMPLOYEES,

RDBDEMO.SALARY_HISTORY,
FINANCE.EMPLOYEES

FOR WRITE;

Pascal Statements

DATABASE RDBDEMO
DATABASE FINANCE

FILENAME 'RDBDEMO.RDB';
FILENAME 'DDP_FINANCES';

START_TRANSACTION READ_WRITE CONSISTENCY
RESERVING RDBDEMO.EMPLOYEES,

RDBDEMO.SALARY_HISTORY,
FINANCE.EMPLOYEES

FOR WRITE;

Example 4

The following statements start a transaction with these characteristics:

• Read/write access

• WITH AUTO_LOCKING

• EXCLUSIVE access for the named relations (the transaction will
automatically lock the relations that the triggers and constraints associated
with this relation will need to access)

C Example

*include <stdio.h>
DATABASE PERS = FILENAME 'PERSONNEL';

main()
{

START_TRANSACTION READ_ONLY
RESERVING EMPLOYEES FOR EXCLUSIVE READ WITH AUTO_LOCKING;

if (ANY E IN EMPLOYEES WITH E.STATE = "MA")
printf("Someone lives in Massachusetts and AL works exclusive in NH .\n");

RDML Clauses and Statements 6-131

START_TRANSACTION Statement

ROLLBACK;

FINISH;

Pascal Example

program startwithal4p (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

(* Program to test autolocking qualifier*)

var
DECLARE_VARIABLE emp_id SAME AS EMPLOYEES.EMPLOYEE_ID;

begin
write ('Employee_ID: ');
readln (emp_id);

READY PERS;
START TRANSACTION READ WRITE RESERVING EMPLOYEES FOR EXCLUSIVE WRITE
WITH AUTO_LOCKING;

FOR E IN EMPLOYEES
WITH E.EMPLOYEE_ID = emp_id

writeln ('Employee ID E.EMPLOYEE_ID);
ERASE E;
writeln ('Employee ID= , E.EMPLOYEE_ID, 'should succeed -- autolocking');

END_FOR;

ROLLBACK;
end.

6-132 RDML Clauses and Statements

STORE Statement

6.25 STORE Statement

The STORE statement inserts a record into an existing relation. You can add
a record to only one relation with a single STORE statement. The statements
between the keywords STORE and END_STORE form a context block. You
cannot store records into views defined by any of the following record selection
expression clauses:

• WITH

• CROSS

• REDUCED

• FIRST

Trying to store into views that were defined with any of the preceding clauses
could cause ambiguous results in your database.

Format

STORE----.-~-----------..-------------
~ handle-options _J

4 context-var

C: db-handle ~.

J .- relation-name ----+USING

'---............. _________ ~__. statement

on-error context-var.* ~ = ~ record-descr

'------.----------..----__. END STORE
get-statement

RDML Clauses and Statements 6-133

STORE Statement

handle-options =

-+ (E REQUEST HANDLE -----+ var~) -+
TRANSACTION_HANDLE ____. var
REQUEST HANDLE -+ var -+ ,)

L=; TRANSACTION_HANDLE -+ var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb request. If you do not supply a
request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

context-var
A context variable. A temporary name that you associate with a relation. You
define a context variable in a relation clause.

db-handle
A database handle. A host language variable used to refer to a specific
database your program specifies.

relation-name
The name of a relation in a database.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the STORE
operation. See Section 6.17 for details.

6-134 RDML Clauses and Statements

STORE Statement

statement
Any valid RDML or host language statement to be executed during the
STORE operation. Use a semicolon (;) at the end of each RDML, Pascal, or C
statement.

record-descr
A record descriptor matching all of the fields of the relation. Each field of the
record descriptor must match exactly the field names and data types of the
fields in the Rdb relation referred to by the context variable.

get-statement
The GET statement. If you use a GET statement within a STORE block, it
must be the last statement before the END_STORE keyword.

Usage Notes
• Do not embed host language multipath statements (such as the C switch

statement or the Pascal case statement) in the STORE statement; this may
lead to unpredictable results. The problem occurs when a field is referred
to but not used at run time. This is because RDML assumes that any
field (qualified by the appropriate context variable) mentioned within the
STORE ... END_STORE block is going to be updated.

In the following example, if the program falls through to case 2 at run
time, the FIRST_NAME field will be modified even though FIRST_NAME
is not mentioned in case 2. Upon seeing the fields referred to in case 1,
RDML sets up a buffer for both the FIRST_NAME and LAST_NAME fields
to be sent to the database. Because case 2 does not supply data for the
FIRST_NAME field, RDML sends to the database whatever happens to be
in the buffer for the first name field.

The following Pascal code will cause unpredictable results:

STORE E IN EMPLOYEES USING
case i of

1: E.LAST_NAME = 'Smith';
E.FIRST_NAME ='Andrew';

2: E.LAST NAME= 'Jones';
end;

END STORE

RDML Clauses and Statements 6-135

STORE Statement

When different fields are referred to in a multipath statement, the RDML
statement should be embedded in the host language multipath statement
as shown in the following Pascal example:

case i of

1: STORE E IN EMPLOYEES USING
E.LAST_NAME ='Smith';
E.FIRST_NAME ='Andrew';

END_STORE;

2: STORE E IN EMPLOYEES USING
E.LAST NAME= 'Jones';

END_STORE;

end;

• You can use any valid format of the GET statement within the bounds of
the STORE ... END_STORE block. However, the GET statement must be
the last statement before the END_STORE keyword.

• You may find it particularly useful to use the GET statement to place the
database key (dbkey) of the record you just stored into a host language
variable. Use the GET ... RDB$DB_KEY construct to assign the value of
the dbkey to the host language variable.

• If you do not supply a value for every field in the relation in which you are
storing a record, that fields for which no values are supplied are marked as
missing.

• The STORE * statement lets you manipulate database values at the record
level rather than at the field level. You can store all the fields in a relation
with the STORE* statement. To use STORE*, you must first declare a
record structure that contains all the fields in the relation, with record field
names that match the database field names exactly. See Example 4.

Note Trying to store records into views that were defined with any of the
preceding clauses could cause unexpected results.

Examples
Example 1

The following programs demonstrate the use of the STORE statement and
interactive programming to add a new record to the COLLEGES relation. The
programs:

• Prompt for user input

6-136 RDML Clauses and Statements

STORE Statement

• Start a read/write transaction

• Store the user-supplied values in the relation

• Roll back the stored record from the database

Note that the C program uses the function read_string to prompt for user
input and to hold these values. This function pads the input values with the
necessary number of blanks to match the text size of each field. For more
information on read_string, see Appendix B. The readln function in Pascal
pads strings for you.

C Program

DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
static DECLARE_VARIABLE coll_code SAME AS COLLEGES.COLLEGE_CODE;
static DECLARE VARIABLE coll name SAME AS COLLEGES.COLLEGE_NAME;
static DECLARE VARIABLE coll city SAME AS COLLEGES.CITY;
static DECLARE VARIABLE coll_state SAME AS COLLEGES.STATE;
static DECLARE VARIABLE post_code SAME AS COLLEGES.POSTAL_CODE;

main (}
{

read_string ("Enter College Code: ", coll_code, sizeof(coll code}};
read_string ("Enter College Name: ", coll_name, sizeof(coll-name}};
read_string ("Enter College City: ", coll city, sizeof(coll-city});
read_string ("Enter College State: ",coll-state, sizeof(coll state}};
read_string ("Enter Postal Code: ", post_code, ·Sizeof(post_code}};

READY PERS;
START TRANSACTION READ_WRITE;

STORE C IN COLLEGES USING
strcpy (C.COLLEGE_CODE, coll_code);
strcpy (C.COLLEGE NAME, coll name};
strcpy (C.CITY, coll_city}; -
strcpy (C.STATE, coll_state};
strcpy (C.POSTAL_CODE, post_code};

END_STORE;

ROLLBACK;
FINISH;
}

RDML Clauses and Statements 6-137

STORE Statement

Pascal Program

program store_with_host_lang (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
DECLARE VARIABLE coll_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE VARIABLE coll name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE VARIABLE coll_city SAME AS COLLEGES.CITY;
DECLARE VARIABLE coll_state SAME AS COLLEGES.STATE;
DECLARE VARIABLE post_code SAME AS COLLEGES.POSTAL_CODE;

begin
writeln ('Enter College Code:');
readln (coll code);
writeln ('Enter College Name:');
readln (coll _name);
writeln ('Enter College City:');
readln (coll_city);
writeln ('Enter College State:');
readln (coll state);
writeln ('Enter College Postal
readln (post_ code);

READY PERS;
START TRANSACTION READ_WRITE;

STORE C IN COLLEGES USING
C.COLLEGE_CODE := coll_code;
C.COLLEGE NAME := coll name;
C.CITY :=-coll_city; -
C.STATE := coll_state;
C.POSTAL CODE ·= post_code;

END_STORE;

ROLLBACK;
FINISH;
end.

Example 2

Code:');

The following programs demonstrate the use of the STORE statement with
a record selection expression supplying the value for one of the fields. The
programs:

• Start a read/write transaction

• Assign literal values to all fields in the JOBS relation except the
MAXIMUM_SALARY field

• Use the FIRST FROM statement to find the first record in the JOBS
relation that has a wage class of 1

6-138 RDML Clauses and Statements

STORE Statement

• Assign the maximum salary from this selected record to the
MAXIMUM_SALARY field for the record being stored

• Store these values in the relation

• Roll back the record from the database

Note that the C program uses the function pad_string to prompt for user input
and to store the values in the relation. This function pads the input values
with the necessary number of blanks to match the text size of each field. For
more information, and the source code for pad_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

extern void pad string();
main() -
{

READY PERS;
START TRANSACTION READ_WRITE;

STORE Jl IN JOBS USING
pad string ("CLNR", Jl.JOB CODE, sizeof(Jl.JOB CODE));
pad-string ("1", Jl.WAGE CLASS, sizeof(Jl.WAGE-CLASS));
pad=string ("Cleaner",Jl:-JOB_TITLE, sizeof(Jl.JOB_TITLE));
Jl.MINIMUM_SALARY 8000;
Jl.MAXIMUM SALARY (FIRST J2.MAXIMUM SALARY FROM J2 IN JOBS

WITH J2.WAGE CLASS= "1");
END_STORE;

ROLLBACK;
FINISH;
}

Pascal Program

program store with_assign (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_WRITE;

RDML Clauses and Statements 6-139

STORE Statement

STORE Jl IN JOBS USING
Jl.JOB_CODE := 'CLNR';
Jl.WAGE_CLASS := '1';
Jl.JOB_TITLE :='Cleaner';
Jl.MINIMUM_SALARY := 8000;
Jl.MAXIMUM SALARY := (FIRST J2.MAXIMUM_SALARY FROM J2 IN JOBS

WITH J2.WAGE CLASS= '1');
END_STORE;

ROLLBACK;
FINISH;
end.

Example 3

The following programs demonstrate the use of the STORE statement to store
VARYING TEXT data types.

The C program uses the function pad_string to store the values in the fields
that are defined as text data types. This function appends trailing blanks to
these values. This ensures that the values match the length defined for the
field. For more information and the source code for pad_string, see Appendix B.
The C program also uses a macro, RDB$CSTRING_TO_VARYING to store a
value in a field defined as a varying text data type. This macro is defined in
RDMLVAXC.H, which RDML automatically includes into your program. The
Pascal program does not require the use of any special functions to store either
varying text data types or fixed-length data types; in both cases, the Pascal
assignment operator is sufficient.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

extern void pad string();
main() -
{

READY PERS;
START TRANSACTION READ_WRITE;

STORE C IN CANDIDATES USING
pad string ("Clarkson", C.LAST NAME, sizeof(C.LAST NAME));
pad-string ("Joel", C.FIRST NAME, sizeof(C.FIRST NAME));
pad-string ("R", C.MIDDLE INITIAL, sizeof(C.MIDDLE INITIAL));
RDB$CSTRING_TO_VARYING ("Available part time until-June 15th",

C.CANDIDATE_STATUS);
END_STORE;

6-140 RDML Clauses and Statements

ROLLBACK;
FINISH;
}

Pascal Program

program store_varying (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

begin
READY PERS;
START TRANSACTION READ_WRITE;

STORE C IN CANDIDATES USING
C.LAST_NAME :='Clarkson';
C.FIRST_NAME :='Joel';
C.MIDDLE_INITIAL := 'R';

STORE Statement

C.CANDIDATE STATUS·= 'Available part time until June 15th';
END_STORE;

ROLLBACK;
FINISH;
end.

Example 4

The following programs demonstrate the use of the STORE * statement to store
varying text in a COLLEGES record. The programs declare a host language
record structure that contains a field for each field in the COLLEGES relation.
After the user specifies the field values, they are stored in the database with
the STORE * statement.

The C program uses the function read_string to prompt for and to read values
into host language variables. For more information and the source code for
read_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

static struct
{

DECLARE VARIABLE college_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE_VARIABLE college name SAME AS COLLEGES.COLLEGE NAME;
DECLARE VARIABLE city SAME AS COLLEGES.CITY; -
DECLARE VARIABLE state SAME AS COLLEGES.STATE;
DECLARE VARIABLE postal code SAME AS COLLEGES.POSTAL CODE;
} colleges_record; - -

extern void read_string();

RDML Clauses and Statements 6-141

STORE Statement

main()
{

read_string ("Enter

read_string ("Enter

read_string ("Enter

College

College

College

Code: \n", colleges_record.college_code,
sizeof(colleges record.college code));

Name: \n", colleges record:college name, -
sizeof(colleges record.college name));

City: \n", colleges record:city, -

read_string ("Enter College
sizeof(colleges record.city));

State: \n", colleges record: state,
sizeof(colleges record.state));

read_string ("Enter Postal Code: \n", colleges record:postal code,
sizeof(colleges_record~postal_code));

READY PERS;
START TRANSACTION READ_WRITE;

STORE C IN COLLEGES USING
C.* = colleges_record;

END_STORE;

COMMIT;
FINISH;
}

Pascal Program

program store with_host_lang (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var
colleges_record:
RECORD
DECLARE VARIABLE
DECLARE VARIABLE
DECLARE VARIABLE
DECLARE VARIABLE
DECLARE VARIABLE

college_code SAME AS COLLEGES.COLLEGE_CODE;
college name SAME AS COLLEGES.COLLEGE_NAME;
city SAME AS COLLEGES.CITY;
state SAME AS COLLEGES.STATE;
postal_code SAME AS COLLEGES.POSTAL_CODE;

end;

begin
writeln
readln
writeln
readln
writeln
readln
writeln
readln
writeln
readln

('Enter College Code:');
(colleges_record.college_code);
('Enter College Name:');
(colleges record.college name);
('Enter College City:');­
(colleges_record.city);
('Enter College State:');
(colleges_record.state);
('Enter College Postal Code:');
(colleges_record.postal_code);

READY PERS;
START TRANSACTION READ_WRITE;

6-142 RDML Clauses and Statements

STORE C IN COLLEGES USING
C.* = colleges_record;

END_STORE;

COMMIT;
FINISH;

end.

STORE Statement

RDML Clauses and Statements 6-143

STORE Statement with Segmented Strings

6.26 STORE Statement with Segmented Strings

The STORE statement with segmented strings inserts a segment into a
segmented string.

Format

STORE s
-- (--+ TRANSACTION_HANDLE - var

L ss-handle -+ IN --+ ss-field

L. USING - r+-----..---(--.. statement
4 on-error ~ , •

Arguments
ss-handle

---.. END_STORE

A segmented string handle. A name that identifies the segmented string.

SS· field
A qualified field name that refers to a field defined with the SEGMENTED
STRING data type. Note that this field name, like all field names in a FOR
statement, must be qualified by its own context variable. This second context
variable must match the context variable declared in the outer FOR statement.
See the Examples section.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the STORE
operation. See Section 6.17 for details.

6-144 RDML Clauses and Statements

STORE Statement with Segmented Strings

assignment
An RDML or host language statement that associates the database variables
with a value expression.

The database variables refer to the segment of a segmented string and
its length. The special name for the segment can be either ''VALUE" or
"RDB$VALUE". The special name for the segment length can be either
"LENGTH" or "RDB$LENGTH". You cannot assign any other database
variables to the value expressions for segmented strings.

The assignment operator for RDML Pascal is":=".

for linecnt := 0 to 2 do
STORE SEG IN R.RESUME

SEG := document[linecnt];
SEG.LENGTH := length(document[linecnt]);

END_STORE;

The assignment operator for RDML C is "=" or strcpy.

for (line O; line <= 2; line++)
STORE LINE IN R.RESUME

strcpy(LINE.VALUE,document[line]);
LINE.LENGTH= strlen(LINE.VALUE);

END_STORE;

For more information, see the segmented string examples in this section.

RDML Clauses and Statements 6-145

STORE Statement with Segmented Strings

Usage Notes
• The STORE statement with segmented strings must be embedded within a

simple STORE ... END_STORE block.

• Do not declare the host language variable to hold a segmented string field
with the DECLARE_ VARIABLE clause. The data type generated for a
segmented string field is that of the segmented string identifier, which is
the value that actually is stored in a segmented string field. For example,
the following Pascal code might be used to store a RESUME field in the
RESUMES relation. You should not declare the host language variable
document with the DECLARE_ VARIABLE clause.

STORE R IN RESUMES USING
R.EMPLOYEE ID= '12345'
for linecount := 0 to 2 do

STORE SEG IN R.RESUME USING
SEG.VALUE := document[lincnt];
SEG.LENGTH := length(document[linecnt]);

END_STORE;
END_STORE;

• RDML defines a special name to refer to the segments of a segmented
string. This value expression is equivalent to the field name; it names the
segments of the string. Furthermore, because segments can vary in length,
RDML also defines a name for the length of a segment. You must use these
value expressions to retrieve the length and value of a segment. These
names are:

RDB$VALUEorVALUE

The value stored in a segment of a segmented string

RDB$LENGTH or LENGTH

The length in bytes of a segment

Examples
Example 1

The following programs demonstrate the use of the STORE statement to store
segmented strings in a record. The programs:

• Declare an array to hold the segmented strings to be stored

• Assign values to the array

6-146 RDML Clauses and Statements

STORE Statement with Segmented Strings

• Use a STORE operation to store the employee ID in the RESUMES relation

• Embed a second STORE operation in the first, in order to store
the segmented strings in the same record in which the value for
EMPLOYEE_ID has been stored

• Store the values from the array into the RESUME field of the RESUMES
relation

• Complete the STORE operation

• Retrieve the segmented strings (just stored) using a nested FOR statement

See Section 6.14 for more information on retrieving segmented strings.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

main()
{

int line;
char *document[3];

document[O]
document[l]
document[2]

"first line of resume ";
"second line of resume ";
"last line of resume ";

READY PERS;
START TRANSACTION READ_WRITE;

STORE R IN RESUMES USING
strcpy (R.EMPLOYEE ID,"12345");

for (line = 0; line <= 2;-line++)
STORE LINE IN R.RESUME

strcpy(LINE.VALUE,document[line]);
LINE.LENGTH strlen(LINE.VALUE);

END_STORE;
END_STORE;

FOR R IN RESUMES WITH R.EMPLOYEE ID
FOR LINE IN R.RESUME

printf("%s\n",LINE.VALUE);
END_FOR;

END_FOR;

COMMIT;
FINISH;
}

"12345"

RDML Clauses and Statements 6-147

STORE Statement with Segmented Strings

Pascal Program

program segstr (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

type lines = varying [80] of char;
var linecnt : integer;

document : array [0 .. 2] of lines;

begin

document[O] := 'first line of resume ';
document[l] :='second line of resume';
document[2] ·='last line of resume ';

READY PERS;
START TRANSACTION READ_WRITE;

STORE R IN RESUMES USING
R.EMPLOYEE_ID:= '12345';
for linecnt := 0 to 2 do

STORE SEG IN R.RESUME
SEG := document[linecnt];
SEG.LENGTH := length(document[linecnt]);

END_STORE;
END_STORE;

FOR R IN RESUMES WITH R.EMPLOYEE ID
FOR SEG IN R.RESUME

writeln (SEG);
END_FOR;

END_FOR;

COMMIT;
FINISH;
end.

6-148 RDML Clauses and Statements

'12345'

TRANSACTION_HANDLE Clause

6.27 TRANSACTION_HANDLE Clause

A transaction handle is a host language variable that allows you to associate
a name with a particular transaction. If you do not supply a handle name
explicitly, RDML defines a default transaction handle for the transaction. You
can use a transaction handle in the following RDML statements, clauses and
functions:

• Boolean functions (ANY, UNIQUE)

• COMMIT

• DECLARE_STREAM

• FOR

• PREPARE

• ROLLBACK

• START_STREAM, Undeclared

• START_TRANSACTION

• Statistical functions (AVERAGE, COUNT, MIN, MAX, TOTAL)

• STORE

For the syntax diagram that shows the placement of the
TRANSACTION_HANDLE in each of the preceding statements, see the section
describing that statement.

Format

transaction-handle =

--. (--. TRANSACTION HANDLE ---+ host-var -+) ---+

RDML Clauses and Statements 6-149

TRANSACTION_HANDLE Clause

Argument
host-var
A valid host language variable. See Usage Notes.

Usage Notes
A transaction handle must be:

• Declared in the host language program as:

Either [VOLATILE]INTEGER or RDML$HANDLE_TYPE for Pascal

Either Integer (int) or RDML$HANDLE_TYPE for C

• Initialized to zero (0) for C and Pascal

Note Rdb I VMS allows each user only one active transaction per database.
Rdb I VMS permits each user to have multiple active transactions as long
as each transaction is either attached to a different database, or each
transaction is a separate instance of an attach to the same database.

Rdb I ELN allows each user to have multiple active transactions attached to
the same database.

Examples
Example 1

The following programs demonstrate the use of a transaction handle. These
programs declare the host language variable, emp_update. The programs
use emp_update to qualify the transaction in the START_TRANSACTION
statement, the record selection expression, and ROLLBACK (instead of the
COMMIT statement). The record selection expression modifies the record
with the specified identification number in the EMPLOYEES relation. The
COMMIT statement, also qualified with the transaction handle, ensures that
the modified record is stored in the database.

The C program uses the function pad_string to append trailing blanks and the
null terminator to the LAST_NAME field. This ensures that the length of the
last name matches the length defined for the field. For more information and
the source code for pad_string, see Appendix B.

6-150 RDML Clauses and Statements

TRANSACTION_HANDLE Clause

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

extern void pad_string();

main()
{

int EMP_UPDATE = 0;

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE EMP_UPDATE) READ_WRITE;

FOR (TRANSACTION_HANDLE EMP_UPDATE) E IN EMPLOYEES
WITHE.EMPLOYEE ID= "00178"

MODIFY E USING
pad_string("Brannon", E.LAST_NAME, sizeof(E.LAST_NAME));

END_MODIFY;
END_FOR;

ROLLBACK (TRANSACTION_HANDLE EMP_UPDATE);
FINISH;
}

Pascal Program

program trhand (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';

var EMP UPDATE : [volatile] integer := 0;

begin

READY PERS;
START TRANSACTION (TRANSACTION_HANDLE EMP_UPDATE) READ_WRITE;

FOR (TRANSACTION_HANDLE EMP_UPDATE) E IN EMPLOYEES
WITHE.EMPLOYEE ID= '00178'

MODIFY E USING
E.LAST NAME :='Brannon';

END_MODIFY;
END_FOR;

ROLLBACK (TRANSACTION_HANDLE EMP_UPDATE);
FINISH;
end.

RDML Clauses and Statements 6-151

TRANSACTION_HANDLE Clause

Example 2

The following programs demonstrate the use of a transaction handle with a
ROLLBACK statement to undo changes to the database made with the STORE
statement. The programs:

• Start a read/write transaction, SAL_INCREASE

• Store a new JOBS record using the SAL_INCREASE transaction

• Use the ROLLBACK statement to undo the changes made to the database
during the SAL_INCREASE transaction; that is, the new record is not
stored in the database

Note that the C program uses the function pad_string. This function ensures
that the values stored in each field have the correct number of trailing blanks
to match the text size of the field. For more information and the source code
for pad_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS =FILENAME "PERSONNEL";

extern void pad_string();

main()
{

int SAL_INCREASE = 0;

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE SAL INCREASE) READ WRITE;

STORE (TRANSACTION HANDLE SAL INCREASE) J IN JOBS USING
pad string ("TYPS", J.JOB CODE, sizeof(J.JOB CODE));
pad-string ("1", J.WAGE CLASS, sizeof(J.WAGE-CLASS));
pad:=string ("TYPIST", J-:-JoB_TITLE, sizeof(J.JOB_TITLE));
J.MINIMUM_SALARY 10000;
J.MAXIMUM SALARY= 17000;

END_STORE;

ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
FINISH;
}

6-152 RDML Clauses and Statements

TRANSACTION_HANDLE Clause

Pascal Program

program rollback_trans (input,output);
DATABASE PERS= FILENAME 'PERSONNEL';
var sal increase : [volatile] integer := 0;

begin
READY PERS;
START TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE;

STORE (TRANSACTION_HANDLE SAL_INCREASE) J IN JOBS USING
J.JOB_CODE := 'TYPS';
J.WAGE_CLASS := '1';
J.JOB_TITLE := 'Typist';
J.MINIMUM_SALARY ·= 10000;
J.MAXIMUM_SALARY := 17000;

END_STORE;

ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
FINISH;
end.

RDML Clauses and Statements 6-153

A
RDML-Generated Data Types

The tables in this appendix list the VAX C, VAX Pascal, and VAXELN Pascal
data types that RDML generates for each data type permitted in an Rdb
database.

In some cases, the data type that RDML generates depends on the scale factor.
For example, the following entry is from the VAX C table:

Rdb Database Data Type VAX C Data Type Generated by RDML

SIGNED WORD SCALE n int (n=l,2,3,4) char [8] (n>4)

This table entry indicates that the value of n determines whether an "int"
or "char [8]" data type is defined for a database field whose type is SIGNED
WORD SCALE n. If n equals 1, 2, 3, or 4, RDML will declare that field as an
int. If n is greater than 4, RDML will declare that field as a char [8].

See Table A-1 for RDML-generated data types for VAX C.

Table A-1 RDML-Generated Data Types for VAX C

Rdb Database Data Type

SIGNED WORD

SIGNED WORD SCALE n

SIGNED WORD SCALE -n

VAX C Data Type Generated by RDML

short

int (n=l,2,3,4) char [8] (n>4)

float

(continued on next page)

RDML-Generated Data Types A-1

Table A-1 (Cont.) RDML-Generated Data Types for VAX C

Rdb Database Data Type

SIGNED LONGWORD

SIGNED LONGWORD SCALE n

SIGNED LONGWORD SCALE -n

SIGNED QUADWORD

SIGNED QUADWORD SCALE n

SIGNED QUADWORD SCALE -n

F_FLOATING

G_FLOATING

DATE

TEXTn

VARYING STRING n

SEGMENTED STRING ID

VAX C Data Type Generated by RDML

int

char [8]

double

char [8]

char [8]

double

float

double

char [8]

char [n+l]

Unsupported

char [8]

The VARYING STRING data type is not supported in C. However, you can
still use VARYING STRINGS in RDMUC. See Section 6.13, Example 4, and
Section 6.25, Example 3.

See Table A-2 for RDML-generated data types for VAX. Pascal and Table A-3
for VAXELN Pascal.

Table A-2 RDML-Generated Data Types for VAX Pascal

Rdb Database Data Type

SIGNED WORD

SIGNED WORD SCALE n

SIGNED WORD SCALE -n

SIGNED LONGWORD

SIGNED LONGWORD SCALE n

SIGNED LONGWORD SCALE -n

A-2 RDML-Generated Data Types

VAX Pascal Data Type Generated by RDML

[WORD] -32768 .. 32767

INTEGER (n=l,2,3,4)
RECORD
LO:UNSIGNED;Ll:INTEGER;END (n>4)

REAL

INTEGER

RECORD LO:UNSIGNED;Ll:INTEGER;END

DOUBLE

(continued on next page)

Table A-2 (Cont.) RDML-Generated Data Types for VAX Pascal

Rdb Database Data Type

SIGNED QUADWORD

SIGNED QUADWORD SCALE n

SIGNED QUADWORD SCALE -n

F_FLOATING

G_FLOATING

DATE

TEXTn

VARYING STRING n

SEGMENTED STRING ID

VAX Pascal Data Type Generated by RDML

RECORD LO:UNSIGNED; Ll:INTEGER;END

RECORD LO:UNSIGNED;Ll:INTEGER;END

DOUBLE

REAL

DOUBLE

[BYTE(8)] RECORD END

CHAR (n=l) PACKED ARRAY [l..n] OF CHAR
(n>l)

VARYING [n] OF CHAR

RECORD LO:UNSIGNED;Ll:INTEGER;END

TableA-3 RDML-Generated Data Types for VAXELN Pascal

Rdb Database Data Type

SIGNED WORD

SIGNED WORD SCALE n

SIGNED WORD SCALE -n

SIGNED LONGWORD

SIGNED LONGWORD SCALE n

SIGNED LONGWORD SCALE -n

SIGNED QUADWORD

SIGNED QUADWORD SCALE n

SIGNED QUADWORD SCALE -n

F_FLOATING

G_FLOATING

DATE

VAXELN Pascal Data Type Generated by RDML

-32768 .. 32767

INTEGER (n=l,2,3,4) LARGE_INTEGER (n>4)

REAL

INTEGER

LARGE_INTEGER

DOUBLE

LARGE_INTEGER

LARGE_INTEGER

DOUBLE

REAL

DOUBLE

LARGE_INTEGER

(continued on next page)

RDML-Generated Data Types A-3

Table A-3 (Cont.) RDML-Generated Data Types for VAXELN Pascal

Rdb Database Data Type

TEXTn

VARYING STRING n

SEGMENTED STRING ID

A-4 RDML-Generated Data Types

VAXELN Pascal Data Type Generated by RDML

CHAR (n=l) STRING(n)

VARYING_STRING(n)

LARGE_INTEGER

B
VAX C Language Functions for 1/0

Operations

The VAX C functions described in this appendix are used to simplify the
code in examples and to allow you to concentrate on the RDML statements
rather than C input/output (I/0) issues. When you design your application
programs you should carefully consider the I/O operations and determine the
best method for handling these operations in your application. Most likely, the
simple methods shown here are not sufficient. Read the Guide to VAX C for
information on handling I/O tasks in C programs.

The C functions described in this appendix are:

• pad_string

• read_float

• read_int

• read_string

The source code for the functions appears at the end of this appendix.

VAX C Language Functions for 1/0 Operations B-1

Table B-1 Summary of VAX C Input/Output Functions

pad_string Truncates or appends blanks to text strings. This function is
used in the examples with STORE and MODIFY statements to
ensure that the size of the string to be stored matches the size of
the field into which it is being stored.

read_int Prompts for integer input from the keyboard and stores this
input in a C variable. This function also performs error testing
for valid input.

read_fl.oat Prompts for floating-point input from the keyboard and stores
this input in a C variable. This function also performs error
testing for valid input.

read_string Prompts for text string input from the keyboard and stores this
input in a C variable. This function also truncates or appends
blanks to the input text strings as appropriate to fill out the field
to the correct size. When used in conjunction with STORE and
MODIFY statements, read_string ensures that the size of the
string to be stored matches the size of the field into which it is
being stored.

Usage Notes
To use these functions with the sample programs, you must:

1 Create a file that contains the functions listed in the following source code.

2 Name this file using the appropriate file extension (for example,
C_FUNCTIONS.C).

3 Compile this file using the CC/G_FLOATING command.

4 Declare within your module those functions that you want to call.

5 Link the object file that contains these functions to the object file for the
module in which you want to use them. For example:

LINK myfile.obj,c_functions.obj,options_file/OPT

B-2 VAX C Language Functions for 1/0 Operations

Source Code:

/***

* *
* Code is provided for the following four functions. *

'pad string' copies a null terminated string to a
specified target, with space padding or truncation.
It is used by the 'read_string' function.

'read int' reads decimal integer from standard input.

*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

'read float' reads a floating-point (real) number from*
standard input. *

'read_string' reads a string from standard input, and
returns a padded or truncated result.

*
*
*
*

***/

#include <stdio.h>

#ifndef TRUE
#define TRUE (1==1)
#define FALSE (1!=1)
#endif

#ifndef EOS
#define EOS '\0'
#endif

VAX C Language Functions for 1/0 Operations B-3

/***

* *
* pad_string (source, target, size) *
* *
* Function to take a null terminated string (source) *
* and copy it to target, padding with spaces, or *
* truncating, as appropriate, to the specified size. *

* *
*
*
*

Note that the resulting string will not be null­
terminated.

*
*
*

***/
void pad_string(source, target, size)
char *source,

*target;
int size;
{

char *sptr
*tptr

source,
target;

/* Temporary source ptr */
/* Temporary target ptr */

/*Copy no more than 'size' chars to the target string. */

while (size > 0)
{

if (! (*tptr
break;

sptr++;
tptr++;
size--;

*sptr))

/* Pad the end with spaces, if necessary. */

while (size-- > 0)
*tptr++ = ' ' ;

/***

* * * read_int(prompt)

*
*
*
*

Function to read a decimal integer from stdin.
Keeps prompting until valid integer is input.

*
*
*
*
*

***/
int read_int(prompt)
char *prompt;
{

int len = 0; /* Temporary length */
int i; /* Temporary integer */
int matches; /* Match count */

B-4 VAX C Language Functions for 1/0 Operations

if (prompt != NULL)
len = strlen(prompt}; /*Extract the length once*/

while (TRUE}
{

/* If prompt specified, output it */

if (len != 0)
fputs(prompt, stdout};

/* Get a decimal integer from stdin, converted */
/* (Note that any white space will terminate it) */

matches = scanf ("%d", &i);

/* Flush extraneous input */

while (getchar() != '\n')

if (matches
break;

1) /* If we matched on the scanf, we got one */

/* Invalid, so print error message and do it again */

fprintf(stderr, "Invalid input -- try again\n");
}

return i;

/***

*
* read_float(prompt}

*
*
*
*
*

Function to read a floating-point (real} number
from stdin.
Keeps prompting until valid float is input.

*
*
*
*
*
*
*

***/
float read float(prompt)
/* prompt Is the phrase you want to output to the terminal to

prompt the user for a real number. */
char *prompt;
{

int len = O; /* Temporary length */
float f; /* Temporary float */
int matches; /* Match count */

if (prompt != NULL)
len = strlen(prompt); /*Extract the length once*/

while (TRUE)
{

I* If prompt specified, output it */

VAX C Language Functions for 1/0 Operations B-5

if (len != 0)
fputs(prompt, stdout);

/* Get a real number from stdin, converted */
I* (Note that any white space will terminate it) */

matches = scanf ("%f", &f);

/* Flush extraneous input */

while (getchar() != '\n')

if (matches
break;

1) /* If we matched on the scanf, we got one */

/* Invalid, so print error message and do it again */

fprintf(stderr, "Invalid input -- try again\n");
}

return f;

/***

* *
* read_string(prompt, target, size)

*
*
*
*
*
*
*
*
*

Function to read a string from stdin.
Truncates or pads the string to size.

The returned string will not be null-terminated.

If valid string input, returns 0.
If EOF, returns EOF.

*
*
*
*
*
*
*
*
*
*

***/
int read_string(prompt, target, size)
char *prompt;
char *target;
int size;
{

static char buffer[132]; /* Input buffer */
int return_value; /* Value to be returned */

/* If prompt specified, output it */

if (prompt != NULL)
if (strlen(prompt) != 0)

fputs(prompt, stdout); /*Output prompt without newline*/

I* Get an input line */

B-6 VAX C Language Functions for 1/0 Operations

if (gets(buffer) !=NULL)
{

/* Get a line of input */

pad_string(buffer, target, size); /*Pad or truncate it*/
return value = O; /* Return success */
}

else
return_value = EOF;

return return_value;

VAX C Language Functions for 1/0 Operations B-7

A
Absent values

MISSING conditional expression,
3-26

Access control
START_TRANSACTION statement,

6-122
Accessing multiple databases

FINISH statement, 6-54
using database handles, 6-20
using the BASED ON clause, 6-5
using the READY statement, 6-96

Accessing records
database key, 2-26
START_TRANSACTION statement,

6-122
Access modes

EXCLUSIVE, 6-126, 6-129
PROTECTED, 6-126, 6-129
SHARED, 6-126, 6-129

Adding a record to a relation
STORE statement, 6-133

Addition
arithmetic operator, 2-5

Advancing in a stream
FETCH statement, 6-48
FOR statement, 6-58

Aggregate expressions
See Statistical functions

Alphabetic characters
sort order of, 4-45

AND logical operator
described, 3-7 e

AND logical operators, 3-4

Index

ANY conditional expression
described, 3-9, 3-lOe, 3-lle to

3-12e
testing for presence of record, 3-9

Arithmetic expression, 2-6e to 2-Be
order of evaluation, 2-5

Arithmetic operator, 2-5t
addition, 2-5
division, 2-5
in value expression, 2-4
multiplication, 2-5, 2-6
subtraction, 2-5, 2-7
unary operator, 2-5

Arithmetic value expressions, 2-2, 2-4
ASCII

sorting order, 4-45
ASCTIM routine

using to convert DATE data types,
4-5,4-11, 5-19

Assigning values to host language
variable

using the GET statement, 6-71, 6-72
Assignment operator

in STORE statement with segmented
strings, 6-145

lndex-1

AT END clause
described, 6-49, 6-50e to 6-51e

AUTO_LOCKING option
of START_TRANSACTION statement,

6-125,6-126, 6-127t
Availability of a database

testing for, 6-97
AVERAGE function

B

average of values, 5-4
described, 5-4, 5-6e to 5-7e
restrictions, 5-5

BASED ON clause
data type generated, 6-5
declaring function and type, 6-4
described, 6-4, 6-5e
extracting data type and size of field

6-4 '
multiple database access, 6-5
restrictions, 6-4, 6-5

BETWEEN conditional expression,
3-13

described, 3-13, 3-14e to 3-15e
use with DATE data types, 3-13
use with numerics, 3-14
with text string, 3-15
with text strings, 3-15

Binding to a database
See DATABASE statement

Boolean expressions, 3-1
See also Conditional expressions

c
Callable RDO, 1-3

using, 1-3
Case sensitivity

and conditional expression
MATCHING, 3-20

and conditional expressions
CONTAINING, 3-16
STARTING WITH, 3-32

lndex-2

CDD/Plus
path names, 6-14
restrictions, 6-16

Changing field values
MODIFY statement, 6-77

Changing record values
MODIFY statement, 6-77

C language
converting DATE data types, 5-19
DATABASE statement

placement in program, 6-16
data types generated by RDML, A-1
declaring

function variables, 6-4
request handles, 6-100
status values, 6-87
transaction handles, 6-150
typedef, 6-4
variables, 6-31

functions used in this manual
pad_string, B-1
read_float, B-2
read_int, B-1
read_string, B-2
source code, B-2
usage of, B-2

issuing a call to RDB$RELEASE
REQUEST, 6-102 -

storing VARYING TEXT, 6-140
string literals, 3-13
variables

usage with RDML, 2-20
Closing a database

FINISH statement, 6-53
Closing an open stream

COMMIT statement, 6-8
Combining records from different

relations
See CROSS clause

COMMIT statement
and ending streams, 6-8
closing open streams, 6-8
described, 6-7, 6-9e
restrictions, 6-8

COMMIT statement (Cont.)
to release locks, 6-8
writing changes to a database, 6-7

Committing a transaction
in an Rdb/ELN environment, 6-93

Common Data Dictionary (CDD/Plus)
See CDD/Plus

COMPILETIME option
DATABASE statement, 6-14
restrictions, 6-16

COMPUTED BY clause
used with RSE, 4-3

Concatenated value expression, 2-2
Conditional expressions, 1-2

ANY, 3-9
BETWEEN, 3-13
CONTAINING, 3-16
described, 3-1, 3-6e to 3-7e
effect of a missing value, 3-1
MATCHING, 3-20
MISSING, 3-26
order of evaluation, 3-4
relational operators, 3-30, 3-30t
retrieving result, 6-72
STARTING WITH, 3-32
summary of, 3-5t
truth table, 3-4t
UNIQUE, 3-37
WITH clause, 3-1

Conditional programming
using the DECLARE_STREAM

statement, 6-26
using the STORE statement, 6-135

Connecting to a database
See DATABASE statement

Consistency mode
START_TRANSACTION statement,

6-129
Consistency of data

concurrency option, 6-124
consistency option, 6-124

CONTAINING conditional expression
described, 3-16, 3-18e to 3-19e
pattern matching, 3-16

CONTAINING conditional expression
(Cont.)

restrictions, 3-17
use with DATE data type, 3-17

Context block
STORE statement, 6-133

Context variable
to distinguish field, 2-9

Context variables
described, 4-8, 4-lOe to 4-12e
relation clause, 2-9, 4-36

Converting DATE data types, 4-5,
4-11, 5-19

COUNT function
described, 5-8, 5-9e to 5-lle
effects of missing values, 5-9
number of records in a stream, 5-8
using with the GET statement, 4-4,

5-9
CROSS clause

combining records from different
relations, 4-13

cross product, 4-14
described, 4-13, 4-15e to 4-22e
OVER clause restrictions, 4-13
relational joins, 4-13
restrictions, 4-14
used with index keys, 4-14
with reflexive joins, 4-l8

Cross product
definition, 4-14

D

Database
adding record

STORE statement, 6-133
Database field

numeric, 2-4
Database field value expression, 2-2

described, 2-9, 2-10, 2-lOe to 2-12e
Database handle clause, 6-20
Database handles

described, 6-20, 6-22e to 6-24e
EXTERNAL, 6-21

lndex-3

Database handles (Cont.)
GLOBAL, 6-21
identifying a database, 6-20
in precompiled program, 6-21t
multiple database access, 6-20
restrictions, 6-21
used with synchronous and

asynchronous processes, 6-21
Database keys

See Dbkeys
Database names

specifying, 6-11
Databases

attaching to
DATABASE statement, 6-11

consistency, 6-129
detaching from

FINISH statement, 6-53
erasing record from

ERASE statement, 6-41
performance

effect of reattaching to a database,
6-54

specifying a database name, 6-11
DATABASE statement

COMPILETIME option, 6-14
connecting to a database, 6-11
described, 6-11, 6-17e to 6-19e
placement in program, 6-16
RUNTIME option, 6-14
use in module, 6-16

Data declaration
BASED ON clause

declaring function and type, 6-4
DECLARE_ VARIABLE clause, 6-31
DEFINE_TYPE clause, 6-34

Data definition
performing in RDML program, 1-3

Data manipulation statement, 6-lt
Data types

DATE, 4-5,4-11, 5-19
converting with ASCTIM, 4-11,

5-19
generated by RDML, A-lt

lndex-4

Data types
generated by RDML (Cont.)

for VAX C, A-1
for VAX.ELN Pascal, A-3
for VAX Pascal, A-2

generated by the BASED ON clause
6-5 '

VARYING STRING, 6-64, 6-140
DATE

data type
converting with ASCTIM, 4-5

Db-handle clause, 6-20
of START_TRANSACTION statement

6-126 '
Dbkeys, 2-26

accessing record, 2-26
defining the scope of, 2-26
described, 2-26, 2-27 e to 2-28e
internal system pointer, 2-26
RDB$DB_KEY value expression,

2-26
retrieving, 6-136
scope

specifying with the DATABASE
statement, 6-14

scope of, 2-26
value expression, 2-26

DECLARE_STREAM statement, 6-25
described, 6-25,6-27e

DECLARE_ VARIABLE clause
declaring host language variables

6-31 '
described, 6-31, 6-32e to 6-33e

Declaring function and type, 6-4
Declaring streams, 6-25
DEFINE_TYPE clause

declaring host language variables,
6-34

described, 6-34
Defining data

in RDML program, 1-3
using Callable RDO, 1-3
using ERDL, 1-3

Deleting records from a database
ERASE statement, 6-41

Detecting the end of a stream, 6-49
Division

arithmetic operator, 2-5

E
Ending stream

and the COMMIT statement, 6-8
for a declared stream, 6-35
for an undeclared stream, 6-39

Ending transaction
COMMIT statement, 6-7
ROLLBACK, 6-105

End of stream condition
detecting, 6-49

END_STREAM statement
declared, 6-35
undeclared, 6-39
with undeclared START_STREAM

statement, 6-114
EQ

equal relational operator, 3-30t
ERASE statement

described, 6-41, 6-42e to 6-46e
erasing records from a database,

6-41
restrictions, 6-41

ERDL, 1-3
Error handling

ON ERROR clause, 6-87
RDB$MESSAGE_ VECTOR, 6-87
RDB$STATUS, 6-87

Evaluating clause
of START_TRANSACTION statement,

6-125
EXCLUSIVE lock, 6-129

START_TRANSACTION statement,
6-129

Extracting data type and size of fields,
6-4

F

FETCH statement
advancing in a stream, 6~

FETCH statement (Cont.)
contrasted with FOR statement,

6-49,6-58
described, 6-48, 6-50e to 6-51e
retrieving records from a stream,

6-48
using with declared streams, 6-48
using with START_STREAM

statement, 6-49
using with undeclared streams, 6-48

Field
extracting data type and size, 6-4

Field attribute
missing value, 3-26

Finishing a database
effect of request handle, 6-101

FINISH statement
closing a database, 6-53
described, 6-53, 6-55e to 6-56e
for multiple database access, 6-54
used with database handles, 6-54

FIRST clause
described, 4-23, 4-25e to 4-29e
restrictions when used with a view,

4-25
specifying number of records in

stream, 4-23
using with the SORTED BY clause,

4-23
FIRST FROM value expression, 2-2

described, 2-13, 2-15e to 2-18e
using with GET statement, 2-14

FOR segmented string statement
described, 6-66, 6-69e to 6-70e
retrieving segmented string, 6-66

FOR statement
contrasted with FETCH statement,

6-49,6-58
creating a record stream, 6-58
described, 6-58, 6-60e to 6-65e
retrieving segmented string, 6-66

lndex-5

G
GE

greater than or equal to relational
operator, 3-30t

GET statement
described, 6-71, 6-73e to 6-76e
using to assign value to host language

variable, 6-72
using to retrieve dbkeys, 2-27
using to retrieve results of a

statistical function, 4-4, 4-31
using to retrieve results of Boolean

expression, 6-72
using to retrieve results of conditional

expression, 6-72
using to retrieve results of statistical

function, 6-72
using with a STORE statement,

6-72, 6-136
using with the FIRST FROM value

expression, 2-14
GT

H

greater than relational operator,
3-30t

Handle
database, 6-20
request, 6-100

setting scope, 6-15
transaction, 6-124, 6-149

Handle options, 3-9
Handling an error

See ON ERROR clause
Host language variable

as a transaction handle, 2-25
declaring with DECLARE_ VARIABLE

clause, 6-31
declaring with DEFINE_TYPE clause,

6-34
described, 2-20, 2-22e to 2-25e
numeric, 2-4
used in C programs, 2-21

lndex-6

Host language variable (Cont.)
value expression, 2-2, 2-20

Identifying a database
See Database handles

Indexes
using with the CROSS clause, 4-14

INVOKE DATABASE statement
setting scope of request handle, 6-15

Invoking a database
See DATABASE statement

J
Joining records of relation with itself

See Reflexive joins

K
Keyword list, 1-3, l-3t

L
LE

less than or equal to relational
operator, 3-30t

Locked resource
using NOWAIT mode, 6-125
using WAIT mode, 6-125

Lock reduction
with COMMIT statement, 6-8

Locks
read/write, 6-126
read-only, 6-126

Lock specifications, 6-129
reserving options on START_

TRANSACTION, 6-129
Logical operators

AND, 3-3, 3-4
NOT, 3-3, 3-4
OR, 3-3, 3-4
use in conditional expression, 3-3

Loop
FOR statement, 6-58

LT
less than relational operator, 3-30t

M
MATCHING conditional expression

described, 3-20, 3-23e to 3-25e
pattern matching, 3-20
restriction, 3-21

MAX function
described, 5-12, 5-14e to 5-15e
effect of missing values, 5-13
highest value for a value expression,

5-12
MIN function

described, 5-17, 5-19e to 5-22e
effect of missing values, 5-18
lowest value for a value expression,

5-17
MISSING conditional expression

described, 3-26, 3-27 e to 3-29e
testing for absence of value (null),

3-26
Missing values

assignment, 2-30
described, 2-30, 2-32e to 2-34e
with the STORE statement, 6-136

Modifying
records

See MODIFY statement
segmented strings, 6-68, 6-78, 6-146

described, 6-81e
MODIFY statement

changing field values, 6-77
described, 6-77, 6-79e to 6-86e
modifying records, 6-77
restrictions, 6-78

Modular programming
and the FINISH statement, 6-101

Multiple database access
effect of the FINISH statement, 6-54

Multiple sort keys, 4-45, 4-46

Multiplication
arithmetic operator, 2-5

N
Naming conventions, 1-3
NE

not equal relational operator, 3-30t
Negating changes to a database

ROLLBACK statement, 6-105
Negation

arithmetic operator, 2-5
Nested FOR statement

described, 6-63e
NOAUTO_LOCKING option

of START_TRANSACTION statement,
6-125, 6-126,6-127t

with RESERVING clause, 6-125
/NODEFAULT_TRANSACTIONS

qualifier
and use of the COMMIT statement,

6-8
with the FINISH statement, 6-53,

6-54
with the READY statement, 6-96
with the ROLLBACK statement,

6-106
with the START_TRANSACTION

statement, 6-129
NOT logical operator, 3-4

ANY, 3-9, 3-10
BETWEEN, 3-13
CONTAINING, 3-16
MATCHING, 3-20
MISSING, 3-26
STARTING WITH, 3-32
UNIQUE, 3-37

NOWAIT mode, 6-125
Nulls

See MISSING conditional expression
Numeric value argument

in arithmetic expression, 2-4

lndex-7

0
ON ERROR clause

described, 6-87, 6-88e to 6-9le
handling an error, 6-87
RDB$MESSAGE_ VECTOR, 6-87
RDB$STATUS, 6-87

Opening a database
READY statement, 6-96

Opening a declared stream, 6-109
OR logical operators, 3-4
Outer joins, 6-59
OVER clause

restrictions, 4-13

p

Pascal
converting DATE data types, 5-20
DATABASE statement

placement in program, 6-16
data types generated by RDML, A-2,

A-3
declaring

functions, 6-4
request handles, 6-100
status values, 6-88
transaction handles, 6-150
TYPE, 6-4
variables, 6-31

issuing a call to RDB$RELEASE_
REQUEST, 6-102

storing varying text, 6-140
string literals, 3-13
variables

usage with RDML, 2-20
Path names

CDD/Plus, 6-14
Pattern matching

CONTAINING conditional expression,
3-16

MATCHING conditional expression,
3-20

lndex-8

Pattern matching (Cont.)
STARTING WITH conditional

expression, 3-32
PREPARE statement

described, 6-92
in an Rdb/ELN environment, 6-92
in an Rdb/VMS environment, 6-92

Preprocessor, 1-4
PROTECTED locks

START_TRANSACTION statement,
6-129

R
RDB$CSTRING_TO_VARYING, 6-140
RDB$DB_KEY value expression, 2-2

described, 2-26, 2-27 e to 2-28e
using with GET statement, 2-27

RDB$INTERPRET
calls to, 1-3

RDB$LENGTH
of segmented string, 6-145

RDB$MESSAGE_VECTOR
described, 6-88e
error handling, 6-87

RDB$MISSING value expression, 2-3
assigning a missing value, 2-30
described, 2-30, 2-32e to 2-33e

RDB$RELEASE_REQUEST, 6-102
RDB$STATUS

described, 6-88e
error handling, 6-87

RDB$VALUE
of segmented string, 6-145

RDB$VARYING_TO_CSTRING, 6-64
described, 6-64e

Rdb/ELN
and RDML, 1-2

Rdb/ELN environment
committing transactions, 6-93

Rdb/VMS
and RDML, 1-2

RDML
and Rdb/ELN, 1-2
and Rdb/VMS, 1-2

RDML (Cont.)
clauses and statements, 1-2
conditional expressions, 1-2
keywords, 1-3
language elements, 1-1
naming conventions, 1-3
record selection expressions, 1-2
statistical functions, 1-2
value expressions, 1-1
with Callable RDO, 1-3

RDML-generated data types
for VAX C, A-1, A-lt
for VAXELN Pascal, A-3t
for VAX Pascal, A-2t

RDML keywords, 1-3t
Read/write

transaction mode, 6-126
Read-only

transaction mode, 6-126
READY statement

described, 6-96, 6-97 e to 6-99e
opening a database, 6-96
to access multiple databases, 6-96

Records
manipulating with the STORE

statement, 6-136
Record selection expressions, 1-2

CROSS clause, 4-13
described, 4-1
FIRST clause, 4-23
limit on referencing relations, 4-3
REDUCED TO clause, 4-30
referencing a relation or view, 4-3
relation clause, 4-36
restrictions, 4-2, 6-41, 6-78, 6-133
SORTED BY clause, 4-44
summary of, 4-2t
used with a statistical function, 4-31
used with COMPUTED BY clause,

4-3
WITH clause, 4-50

Record streams
DECLARE_STREAM statement,

6-25

Record streams (Cont.)
establishing a pointer, 6-114
FETCH statement, 6-48
FOR segmented string statement,

6-66
FOR statement, 6-58
multiple stream access, 2-9
START_STREAM statement,

declared, 6-109
START_STREAM statement,

undeclared, 6-114
Record values

modifying
MODIFY statement, 6-77

retrieving
FETCH statement, 6-48
FOR segmented string statement,

6-66
FOR statement, 6-58

storing, 6-133, 6-144
REDUCED TO clause

described, 4-30, 4-32e to 4-35e
isolating unique values, 4-30
reduce key, 4-30, 4-31
restrictions, 4-30, 4-31
using reflexive joins, 4-18
using with a statistical function,

4-31
using with the SORTED BY clause,

4-30
Reduce key

See REDUCED TO clause
Reflexive joins, 4-16

with REDUCED TO and CROSS
clauses, 4-18

Relational join
See CROSS clause

Relational operators
described, 3-30, 3-30e to 3-31e

Relation clause
defining a context variable, 4-36
described, 4-36, 4-37e to 4-42e

Request handles, 5-4
and the FINISH statement, 6-101

lndex-9

Request handles (Cont.)
setting scope, 6-15

REQUEST_HANDLE clause
declarations in host language

program, 6-100
described, 6-100,6-103e
naming requests, 6-100

Reserved word list
See RDML keywords, 1-3

RESERVING clause, 6-129
NOAUTO_LOCKING option, 6-125
of START_TRANSACTION statement,

6-125, 6-127t
Restrictions

AVERAGE function, 5-5
BASED ON clause, 6-4
CDD/Plus, 6-16
COMMIT statement, 6-8
compile-time database, 6-16
CROSS clause, 4-14
ERASE statement, 6-41
FIRST clause, 4-25
MODIFY statement, 6-78
OVER clause, 4-13
REDUCED TO clause, 4-30, 4-31
run-time database, 6-16
TOTAL function, 5-24
using database handle, 6-21
using the BASED ON clause, 6-5
using the CONTAINING conditional

expression, 3-17
using the MATCHING conditional

expression, 3-21
using the STARTING WITH

conditional expression, 3-33
WITH clause, 4-50

Retrieving dbkeys, 2-27, 6-14
Retrieving missing values, 2-30
Retrieving records from a stream

See FETCH statement
Retrieving segmented strings

See FOR segmented string statement
Retrieving the value of a dbkey, 6-72

lndex-10

ROLLBACK statement
described, 6-105,6-107e,6-108e
undoing changes to a database,

6-105
RSE

See Record selection expressions
Run-time databases

restrictions, 6-16
RUNTIME option

DATABASE statement, 6-14

s
Scope

of context variable, 4-8
of database handle, 6-11, 6-20, 6-21
of database key, 6-11
of dbkeys, 2-26, 6-14, 6-17
of request handle, 6-12

SCOPE IS DEFAULT
request handle, 6-15

Segmented strings, 6-147e
described, 6-66
FOR statement, 6-66
modifying, 6-68, 6-78, 6-146

described, 6-8le
retrieving, 6-66
STORE statement with, 6-144

Setting scope of request handle
INVOKE DATABASE statement,

6-15
SHARED lock

START_TRANSACTION statement,
6-129

SORTED BY clause
ASCII order, 4-45
described, 4-44, 4-46e to 4-49e
sorting records, 4-44
sort keys, 4-44
using with the REDUCED TO clause,

4-30
Sort keys

in SORTED BY clause, 4-44
multiple, 4-45, 4-46

STARTING WITH conditional
expression

described, 3-32, 3-33e to 3-36e
match of initial characters, 3-32

. restriction, 3-33
START_STREAM statement, 6-118e

declared
described, 6-109, 6-112e to

6-113e
described, 6-151e
undeclared

creating a record stream, 6-114
described, 6-114

START_TRANSACTION statement
accessing records, 6-122
beginning a transaction, 6-122
described, 6-122, 6-130e to 6-132e
ensuring consistency, 6-124
lock specifications, 6-129
share modes, 6-126
transaction modes, 6-124, 6-126
wait modes, 6-125

Statistical functions, 1-2
aggregate expression, 5-1
and the GET statement, 4-4, 4-31,

5-5, 5-9
AVERAGE function, 5-4
COUNT function, 5-8
in a REDUCED TO clause

described, 4-3 le
in a SORTED BY clause

described, 4-31e
listed, 5-2t
list of result data types, 5-3t
MAX function, 5-12
MIN function, 5-17
retrieving result, 6-72
TOTAL function, 5-23
used with RSE, 4-31

Statistical value expressions, 2-3
AVERAGE, 2-3

Status values
declaration in C programs, 6-87
declaration in Pascal programs, 6-88

STORE * statement, 6-136
STORE statement

context block, 6-133
creating fields with missing values,

6-136
described, 6-133, 6-137e to 6-142e
restrictions, 6-135
storing a segmented string, 6-144
storing record in a relation, 6-133
storing varying text, 6-140, 6-141
view restrictions, 6-133

STORE statement with segmented
strings

described, 6-144
Storing a record

STORE statement, 6-133
Storing segmented strings

See STORE statement with
segmented strings

Stream processing
FETCH statement, 6-48
FOR statement, 6-58
START_STREAM statement,

undeclared, 6-114
String literals

value of, 3-3
Subtraction

arithmetic operator, 2-5

T
TOTAL function

described, 5-23, 5-24e to 5-26e
restrictions, 5-24
sum of values for a value expression,

5-23
Transaction modes

read/write, 6-126
read-only, 6-126

Transactions
COMMIT statement, 6-7
ROLLBACK statement, 6-105
START_TRANSACTION statement,

6-122

lndex-11

TRANSACTION_HANDLE clause
declaration in host language program,

6-150
described, 2-25e, 6-106e to 6-108e,

6-124,6-149
naming transactions, 6-149

Truth tables
for complex condition, 3-4t

u
Unary minus, 2-5
Undoing changes to a database

ROLLBACK statement, 6-105
UNIQUE conditional expression

described, 3-37, 3-38e to 3-41e
testing for presence of single record,

3-37
Unique value

REDUCED TO clause, 4-30

v
Value expressions, 1-1, 2-2t

arithmetic, 2-2, 2-4
calculating value, 2-1
comparison, 3-30
concatenated, 2-2
database field, 2-2, 2-9
FIRST FROM, 2-2, 2-13
function of, 2-2
host variable, 2-2, 2-20
RDB$DB_KEY, 2-2, 2-26
RDB$MISSING, 2-3, 2-30
statistical, 2-3

AVERAGE, 2-3
MAX, 2-3

unary minus, 2-5
Variables, 2-20

using, 4-2
VARYING STRING data type, 6-64,

6-140
View restrictions

ERASE statement, 6-41
MODIFY statement, 6-78

lndex-12

View restrictions (Cont.)
REDUCED TO clause, 4-31
STORE statement, 6-133

w
WAIT mode, 6-125
WITH AUTO_LOCKING option

of START_TRANSACTION statement,
6-125,6-126,6-127t

WITH clause
conditional expression, 3-1
described, 4-50, 4-51e to 4-52e
record selection, 4-50
restrictions when used with a view,

4-50
WITH NOAUTO_LOCKING option

of START_TRANSACTION statement,
6-126

Writing changes to a database
COMMIT statement, 6-7

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location
Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

lnternal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact
Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SDC Order Processing - WMO/El5
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 014 73

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VAX Rdb/VMS
RDML Reference Manual

AA-JL07C-TE

Please use this form to comme,nt on this manual. If you require a written reply to a
software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to :find topic) D
Page layout (easy to find information) D

I would like to see moren.ess

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good
D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
Nametritle Dept.

Company

Mailing Address

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

I

·-----------------------------·FoldH«eandTape--------------------------------'

mamaama™

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications
200 Forest Street
MR01-3/L12
Marlborough, MA 01752-9101

Please
Affix Stamp

Here

---------------------------------Fo~H«e·----------------------------------

