Guide to VAX DEC/Test Manager
Order Number: AA-Z330E-TE

December 1989

This manual describes the concepts, commands, features, and DECwindows interface
of VAX DEC/Test Manager.

Revision/Update Information: This revised manual supersedes Guide fo VAX
DEC/Test Manager (Order Number AA-Z330D-TE).

Operating System and Version: VMS Version 5.3 or higher
Software Version: VAX DEC/Test Manager Version 3.1

digital equipment corporation
maynard, massachusetts

First Printing, November 1984
Revised, December 1985
Revised, October 1986
Revised, May 1989

Revised, December 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii} of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1985, 1986, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDD/Plus VAX Document VAXstation
DATATRIEVE VAX MACRO VMS
DECforms VAX Notes vT
DECwindows VAX SCAN

VAX VAXcluster ™
VAX DIBOL VAXset ﬂﬂ@ﬂﬂn

ZK5331

Contents

Preface e i e e XV
Chapter 1 Introduction to DEC/Test Manager

ST OVeIVIBW L L L e e 1-1

12 Ehtering COMMANGS vvntin et ie it in e 14

- 1.241 GettingHelp i i 1-5

1.2.2 Canceling Commandsovvr v vvniie e i, 1-5

13 Getting Started e 1-6
Chapter 2 Using DEC/Test Manager in DECwindows

21 OVerVIeW e e e e 2-1

211 GettingHelp i 2-2

21.2 Displaying DEC/Test Manager Information in DECwindows . . . 2-2

21.3 DEC/Test Manager Command Correlation 2-4

2.2 Sample DECwindows Session, 24

2.21 Creatingalibrary 24

222 CreatingaTestc i 2-5

223 RecordingaTest iiiiiinnnennnn 2-6

224 Creatinga Collection v, 2-10

225 Executinga Collection vt 2-1

2.2.6 Displayinga TestResult 2-12

227 Updating a Benchmark File 2-14

228 Creating a Benchmark Mask 2-15

Chapter 3 Creating Tests

3.1 DEC/Test Manager Librariesc.ccu.... 3-
3.1.1 Creating a DEC/Test Manager Library 3~

3.1.2 Settingalibrary 3=

3.1.3 Displaying DEC/Test Manager Library Information 3~

3.1.4 DEC/Test Manager History 3-

3.1.4.1 Adding a Remark to the History 3

3.1.4.2 Deleting History Information 3+

3.2 DEC/Test Manager Testscciiiiiiiennnennnnnn 3~
33 TestDescriptionst iiinnnnnnns 3-¢
3.3.1 Creating Test Descriptions 3~¢

33.2 Displaying Test Descriptions 3~1(

3.3.3 Copying Test Descriptionso ivinnnnnn.. 3-1(

3.34 Modifying Test Descriptionsccu... 3-1¢

335 Deleting Test Descriptionscov.on.. 3-1¢

34 Creating Noninteractive Tests 3-1¢4
34.1 Writing a Noninteractive Test 3-14

34.2 Writing a Template File for a Noninteractive Test. 3-14

34.3 Creating a Noninteractive Test Description 3-1¢

3.5 Creating Interactive Tests irrurnn.. 3-1€
3.5.1 Recording Testst nnnn 3-17

3.5.1.1 Recording Key Sequences 3-17

3.5.1.2 Exiting from a Recording Session 3-1¢

35.1.3 Redefining the Termination Character 3-1¢

35.1.4 Redefining the Command Keysym Key 3-2C

35.2 Interactive Terminal Recording 3-2C

35.3 Interactive DECwindows Recording 3-21

3.6 Creating an Input File froma Session File 3-22
3.7 Playing Back an Interactive Test 3-22
3.7.1 Playing an Interactive Terminal Session 3-23

3.7.2 Playing an Interactive DECwindows Session. 3-23

3.8 Processing Considerations for Interactive Terminal Tests 3-23
3.8.1 Time-Dependent Applications 3-24

3.8.2 CTRL/C or CTRL/Y .. ittt e 3-24

3.8.3 Type-Ahead ittt 3-24

3.84 Applications That Accept Unsolicited Input 3-25

385 Device Type and Terminal Characteristics 3-25

3.9 Processing Considerations for DECwindows Tests 3-25
3.9.1 Playing DECwindows Tests 3-25

3.9.2 Storing DECwindows Benchmark and Result Files. 3-27

3.9.3 Environment Initialization 3-27

Chapter 4 Organizing and Executing Test Collections

4.1 Creating Collections i iiinnnenn.. 4-1
4.2 Executing Collections 4-3
4.2.1 Executing CollectionsinBatch 4-5

422 Executing Collections Interactively 4-5

423 Stopping the Execution of Collections 4-6

4.3 Displaying a Collection Summary 4-7
44 Deleting Collections i, 4-7
4.5 Re-creating Collections 4-8
4.6 Comparing TestResults 4-9
4.7 Recomparing Partially Compared Collections 4-10

Chapter 5 Reviewing Test Results

5.1 ReviewConceptst iininnnnnnns 5-1
5.1.1 Using Result Descriptionsot 5-2

5.1.11 OutputFiles 5-3

5.1.1.2 Comparison Status 5-3

5.1.2 Specifying Result Descriptions 54

5.2 Examining TestResults 5-6
5.2.1 Using the Review Subsystem. 5-6

52.1.1 Review Subsystem Overview 5-6

5.2.1.2 Primary and Read-only Reviewers 5-7

5213 Canceling Review Subsystem Commands 5-8

5.2.1.4 Locating Test Results in the Review Subsystem . . 5-8

5.2.1.5 Using the Review Subsystem Keypads 5-10

522 Displaying TestResults 5-16

5.2.3 Printing Test Results., 5-20

53 Working with TestResults 5-21

5.3.1 Updating an Existing Benchmark File 5-21
5.3.2 Creating a Benchmark File foraNew Test. 5-22
533 Reviewing Partially Run Collections 5-25

Chapter 6 Tailoring Your Test System

6.1 Using Prologue and Epilogue Files 6-1
6.1.1 Test Prologue and Epilogue Files 6-2
6.1.2 Collection Prologues and Epilogues 64
6.2 Grouping Tests0 ittt 6-6
6.2.1 Organizing Testsinto Groupso iiiin i 6-7
6.2.2 Displaying a Group Structure 6-9
6.2.3 Removing Tests and Subgroups from Groups 6-10
6.2.4 Deleting Groups..« oo i it i e 6-10
6.3 Using Variables i, 6-11
6.3.1 Modifying and Deleting Variables 6-13
6.3.2 Overriding Variable Default Values 6-13
6.3.3 Using Variables Defined by DEC/Test Manager 6-15
6.3.3.1 DTM$COLLECTION_NAME Global Symbol 6-15
6.3.3.2 DTM$TEST_NAME Local Symbol 6-15
6.3.3.3 DTM$RESULT Logical Name 6-16
6.3.3.4 DTM$DECWSDISPLAY Logical Name 6-17
6.3.3.5 DTM$DELAY_TIMEOUT Logical Name 6-17
6.3.3.6 DTM$OMIT_PRINTABLE_SCREENS Logical
Name i, 6-18
6.4 UsingFilters i, 6-18
6.4.1 Associating and Disabling Test Filters 6-19
6.4.2 Applying File Filters i 6-20
6.5 Defining Keypad Keys i 6-20
6.6 Using Command Files 6-22
6.6.1 Creating and Invoking a Command File 6-22
6.6.2 Creating a DEC/Test Manager Initialization Command File . . . 6-23
6.7 Spawning or Attaching to Another Process 6-24

vi

Chapter 7

Maintaining a DEC/Test Manager Library

741 Correcting an Invalid DEC/Test Manager Library 7-1
7.2 Storing Files Outside a DEC/Test Manager Library 7-2
7.21 Setting Benchmark and Template Directories 7-2
7.2.2 Storing Files in CMS Libraries 7-3
7.3 Security Features i i e 7-5
7.3.1 Assigning UIC Protection. 7-5
7.3.2 Assigning ACL Protection 7-7
7.3.2.1 Using ACLs on Library Directories 7-7
7322 Using ACLs on Library Files 7-8
Chapter 8 Working with Terminal Session Files

8.1 Terminal Session Files 8-2
8.1.1 Sample SessionFile. 8-3
8.1.2 Terminal Session File Structure 8-5
8.1.21 Record Structure of Session Files. 8-6
8.1.2.2 Modifying Session Files Directly 8-9
8.2 InputFiles i ittt 8-11
8.2.1 Sample inputFile............ i, 8-11
822 Special Strings e 8-12

8.2.2.1 Types of Special Strings Recognized by DEC/Test
Manager. i, 8-12
8.2.2.2 Using Special Strings in Input Files. 8-15
8.3 CreatingInput Files 8-15
8.3.1 Extracting an Input File from a Session File 8-16
8.3.2 Creating an Input File with a Text Editor 8-17
8.4 Recording a Session File fromanInputFile. 8-17
8.4.1 Using the /INPUT Qualifier 8-18
8.4.2 Using the INSERT Recording Function 8-19
8.4.3 Terminal Characteristics 8-19
844 Type-Ahead i e 8-21
8.5 Translation Tables it 8-21

vii

Chapter 9

Working with DECwindows Session Files

9.1 Creating a DECwindows InputFile. 9~
9.2 Creating a DECwindows Session File from a DECwindows Input

File . ..o e e 9~

9.3 Editing a DECwindows Input File. 9-t

9.3.1 Commenting Input Files 9-¢

9.3.2 Synchronizing Play Back 9

9.3.3 Repeating Tasks inan InputFile 9~

9.34 Creating Informational Messages 9-¢

9.3.5 Changing the Times of InputEvents 911

Chapter 10 DEC/Test Manager Callable Interface

10.1 Calling Sequence for DTM$DTMc..... 10-1

10.11 Command Line (command_line) 102

10.1.2 Message Routine (msg_routine) 10-<2

10.1.3 Prompt Routine (prompt_routine) 10-2

10.1.4 Confirmation Routine (confirm_routine) 10-C

10.1.5 Output Routine (output_routine) 10-£

10.1.6 Output Width (width).o it 10-£€

10.1.7 Initialization Flag (init flag) 10-€

10.2 Rules for Writing DEC/Test Manager Callback Routines 10-€

103 Handling Error Conditions 0ot 10-7

104 Writing an Error Message Handler 10-7

10.5 Linking with the DEC/Test Managerlmage 10-8

Command Dictionary

1 Command Format.ttt ennerenns CD-3

1.1 Command Parameterscoiiirenennsnn CD-3

1.2 Qualifiersciiiii ittt CD—+4

1.2.1 Command Qualifiers CD-5

1.2.2 Parameter Qualifiers. CD-5

1.3 Remark i CD-5

viii

File Specification Format CD-6

Command Descriptions. i iiiieieen.. CD-6
@file-specification i i e CD-7
N I ¥ CD-8
COMPAREttt ittt it ettt ieineneaans CD-11
CONVERT LIBRARYttt ittt ittt tneanaannen CD-17
COPY TEST_DESCRIPTIONt ittt ittt i et e inennn CD-19
CREATE COLLECTION ittt it et ietitnennnnn CD-24
CREATE GROUP ittt et e e i e eeannn CDh-32
CREATE LIBRARY it i it ettt ee e CD-34
CREATE TEST_DESCRIPTION ittt iii e CD-36
CREATEVARIABLE ittt i it e e e CD—43
DEFINE/KEYt ii i, et CD-47
DELETE COLLECTION. ittt it it ittt aeeennnn CD-51
DELETEGROUP............... e et e e e e, CD-53
DELETE HISTORYttt i i i it i i it eeeeeeennen CD-56
DELETE TEST_DESCRIPTION0 ittt CD-59
DELETEVARIABLE ittt ittt i e ia e Cbh-62
DISPLAY .. e e e e e e e e CD-64
0 CD-66
) CD-68
EXTRACT .. i it i i e i ettt e e CD-69
I 1 CD-72
= CD-75
INSERT GROUP it it ittt i isaaensn CD-77
INSERT TEST_DESCRIPTION. i i i i it e e e CDh-80
MODIFY GROUP. i i i i et et e iae e CD-83
MODIFY TEST_DESCRIPTION it ittt it eeannn CD-85
MODIFY VARIABLE i i e et e e e iiaen CD-93
PLAY . e e e e e e CD-96
RECORDttt it ittt et ettt i ian e CD-99
RECREATEttt ittt e i tieeteinnan CD-104
REMARK i i i i e i e e e CD-107
REMOVEGROUP it ettt it i e CD-109
REMOVE TEST_DESCRIPTION. i i i it e i e CD-111
RESTORE ..ot ittt i it e st et s e e CD-114
REVIEW . . . i i i i i et e et et e it et CD-116
RUN i i i e et s e e e CD-119
SET BENCHMARK_DIRECTORYttt ittt e e e Cbh-123
SETEPILOGUEttt ittt it tiea e CD-125
SET LIBRARY . ..ottt ittt et sttt i i e e Ccbh-127
SETPROLOGUE.t ittt ittt ittt taeean e CD-129
SET TEMPLATE_DIRECTORYottt it et it e e CD-131

ix

SHOW ALL e i et e CD-133

SHOW BENCHMARK_DIRECTORY, CD-135
SHOW COLLECTIONo i i e i v e CD-136
SHOW EPILOGUE. it e i e i PR CD-140
SHOW GROUP e et st e e CD-141
SHOW HISTORY it i et e e CD-144
SHOW LIBRARY it e et e i CD-148
SHOWPROLOGUE it it et i CD-149
SHOW TEMPLATE_DIRECTORYttt i i e CD-150
SHOW TEST_DESCRIPTION 00ttt CD-151
SHOW VARIABLE i it e CD-156
SHOW VERSION. i it it et e e CD-159
SPAWN . . e e e e CD-160
R 1 CD-164
SUBMIT . ..o e e e CD-166
VERIFY . . e e e e CD-169
Review Subsystem Command Descriptions CD-171
DTM_REVIEW> @file-specification Cb-172
DTM_REVIEWs> ATTACH it i e nns CD-174
DTM_REVIEW>BACK i i e CD-176
DTM_REVIEWs DEFINE/KEYttt i CD-178
DTM_REVIEW> EXIT ittt et e i e i e CD-182
DTM_REVIEW> FIRST i it e CD-184
DTM_REVIEWS> HELP ¢ttt it CD-185
DTM_REVIEW> INSERT i i i CD-187
DTM_REVIEWs> LAST it it e i eiieeann CD-190
DTM_REVIEWS NEXT i ittt iie e CD-191
DTM_REVIEW> PCA e i e e CD-194
DTM_REVIEW> PRINT i i i e it CD-195
DTM_REVIEW> SELECT ittt CD-199
DTM_REVIEW> SHOW i i i CD-200
DTM_REVIEW> SPAWN e CD-206
DTM_REVIEW> UPDATE ittt CD-210

Appendix A

A1

A2

DEC/Test Manager Messages

Message Display it inninenannns A-1
A1 Message Format, A-1
A1.2 SeverityCodest A-2
DEC/Test Manager Messagesccitumuvnenennn A-2

Glossary

Index

Examples
1-1 Sample Interactive Terminal Session 1-7
3-1 Copying Test Descriptionsot iin e 3-12
3-2 Sample Noninteractive TestFile 3-14
3-3 Sample Noninteractive Test Template File 3-15
5-1 Updating a Benchmark File s, 522
5-2 Creatinga Benchmark File 5-23
6-1 Sample Test Prologue File.. it 6-3
6-2 Sample Test Epilogue File i i i, 6-4
6-3 Sample Collection Prologue File 6-5
64 Sample Collection Epilogue File 6-6
6-5 Creating GroUPS . . . it i i ittt ittt ie e tane s anenns 6-8
6-6 Overriding Variables it 6-14
6-7 Using the DTM$TEST_NAME Locai Symbol 6-16
6-8 Using the DTMSRESULT Logical Name, 6-16
6-9 Sample Initialization Command File. 6-23
8-1 Sample Session File. i i e 84
8-2 Inserting an Input File into a Recording Session 8-20
9-1 DECwindows Input Filet 9-2
9-2 Commented InputFile 9-6
9-3 Adding Synchronization Points i, 9-7
94 Adding LoopstoaninputFile oL, 9-8
9-5 Creating Informational Messages 9-9

Figures
1-1 Regression Testing with DEC/Test Manager 1-2
2-1 DEC/Test Manager DECwindows Title Bar and Main Menus 2-2
2-2 Expanded Collection View it i it i e 2-3
2-3 Creating a DEC/Test Manager Libraryo, 2-5
24 Creatinga DECwindows Test. s 2-6
2-5 Recording a DECwindows Testo iuvenn. 2-7

xi

2-6 Ready to Record Dialog Boxciiiiiinennn. 2-8

2-7 Sample DECwindows Recording Session. 2-9
2-8 Creatinga Collection0ttt innennn 2-10
2-9 Executinga Collectiono rnnnnnn 2-1
2-10 Viewing Differences ittt 2-13
2-11 UpdatingaBenchmarklmageciiiiiinnnnn 2-14
2-12 Applying Masks to a Benchmark Image 2-16
3-1 Overview of a Custom DEC/Test Manager Library 3-2
5-1 Review Subsystem Default Keypad 5-11
5-2 Review Subsystem SHOW/RESULT, SHOW/BENCHMARK, and

DISPLAY/BENCHMARK Keypadottt iiiiine e 5-13
5-3 Review Subsystem SHOW/DIFFERENCES Defauit Keypad 5-15
54 DEC/Test Manager Benchmark File Screen 0 5-18
5-5 DEC/Test Manager Difference File Screen 0. 5-19
6-1 Sample Group Hierarchy it 6-9
8-1 Format of the Terminal Characteristics Block 8-7

Tables

1-1 Supported DEC/Test Manager Environments 1-3
1-2 DEC/TestManager Termso v vviie it eninnenennnnnnss 1-3
3-1 DEC/Test Manager Test Types - v v v vttt it iie i einn e 3-7
3-2 Test Description Fields 3-8
3-3 Recording Key Sequences0 ennnn 3-18
4-1 Comparison Status Values ittt i i 4-9
5-1 DEC/Test Manager Output Files i, 5-3
5-2 Result Descriptions and Comparison Status Qualifier Variations for the

SHOW Commandc.0iiiiiiiennennneonnnennns 5-5
5-3 Locating Test Results i, 5-8
54 Key Definitions for the Review Subsystem Keypad 5-1
5-5 Key Definitions for the SHOW/RESULT, SHOW/BENCHMARK, and

DISPLAY/BENCHMARK Keypadottt i i i i eanns 5-14
5-6 Key Definitions for the SHOW/DIFFERENCES Keypad. 5-15
6-1 Prologue and Epilogue Files oo 6-2
6-2 Group Commandsiiiiinennunenennneanennss 6-7
7-1 DEC/Test Manager Action in CMS Libraries 7-3
7-2 Privileges Required for DEC/Test Manager Library Users 7-6
7-3 Privileges Required for Individual DEC/Test Manager Commands. 7-8
8-1 Session File Record Typest iemieannnnennn. 8-8

Xii

8-2

8-3

8-5

87

8-9

9-1
101

CD-
CD-2

A-2

Translation of Nonprinting Characters and Control Codes When Extracting
an Input File roma SessionFile

Translation of Special Strings Representing Control and Nonprinting
Characters When Recording a Session File from an Input File

Translation of Special Strings Representing 8-Bit Control Characters When
Recording a Session File fromaninputFile

Translation of Special Strings Representing the Function Key Codes When
Recording a Session File foman lnputFile

Translation of Special Strings Representing the Editing Key Codes When
Recording a Session File fromaninputFile

Translation of Special Strings Representing the Keypad Key Codes When
Recording a Session File froman InputFile

Translation of Special Strings Representing the Arrow Key Codes When
Recording a Session File fomaninputFile

Translation of Special Strings Representing the Recording Functions When
Recording a Session File fomaninputFile

Input File Editing Operations
Confirm_Routine Response String
Confirm Routine Return Status i,
DEC/Test Manager Command Line Elements
Types of Collection Display Information
DEC/Test Manager Message Fields
DEC/Test Manager Message Severity Codes

8-21

8-27

8-29

Xiii

Preface

This manual explains how to use DEC/Test Manager as an automated
regression test system. It describes how to use DEC/Test Manager during
the development and maintenance phase of a software development project.

DEC/Test Manager allows you flexibility in organizing tests, in selecting
tests for execution, and in reviewing and verifying test results. This manual
provides examples that show basic and advanced techniques for using
DEC/Test Manager.

Intended Audience

This manual is intended primarily for programmers, software engineers,
and project managers who are responsible for producing fully tested code.
Users should be familiar with the VMS operating system, Digital Command
Language (DCL), VMS program development facilities, and VMS utilities.

Document Structure

The Guide to VAX DEC [Test Manager contains 10 chapters, a command
dictionary, an appendix, and a glossary.

Chapter 1 explains regression testing, gives an overview of how DEC/Test
Manager automates the regression testing process, and briefly explains
the DEC/Test Manager concepts. It includes a sample interactive terminal
session.

Chapter 2 describes the DEC/Test Manager DECwindows interface. It gives
an overview and a sample DECwindows session.

XV

Chapter 3 describes the concepts of DEC/Test Manager libraries and tests.
It explains how to create noninteractive tests and how to record interactive
terminal tests.

Chapter 4 explains how to organize, execute, display, delete, re-create,
compare, and stop test collections.

Chapter 5 explains how to examine test results. Topics include evaluating
the results of a test run, examining and updating test results, and displaying
and printing reports of the test results.

Chapter 6 explains how to add features to your test system to create a
custom testing environment. Topics include prologue and epilogue files,
groups, variables, filters, defining keys for the DEC/Test Manager keypads,
initialization and command files, and spawning subprocesses.

Chapter 7 explains how to store files outside the DEC/Test Manager library,
verify data in the DEC/Test Manager library, access the DEC/Test Manager
library from a remote node, and how to set user identification code (UIC)
and access control list (ACL) file protections.

Chapter 8 describes the format of terminal session files and input files and
explains how to edit terminal session files.

Chapter 9 describes the format of DECwindows session files and input files
and explains how to edit DECwindows session files.

Chapter 10 explains how to call DEC/Test Manager from other programs.

The Command Dictionary describes the command syntax and the file spec-
ification format; it also contains detailed descriptions of all terminal-based
DEC/Test Manager and Review subsystem commands, listed alphabetically
by command name.

Appendix A contains the informational, warning, and error messages that
DEC/Test Manager issues; it also supplies explanations and user actions,
where applicable.

The Glossary defines DEC/Test Manager terms.

Associated Documents

The following list describes additional documentation related to DEC/Test
Manager:

¢ The VAX DEC/Test Manager Installation Guide supplies instructions for
installing DEC/Test Manager on a VMS operating system.

® Using VAXset describes how to use VAX Software Engineering Tools
(VAXset) with other VMS facilities to create an effective software devel-
opment environment.

¢ The Guide to VAX DEC/Code Management System provides information
about the VAX DEC/Code Management System (CMS).

¢ The Guide to VAX Performance and Coverage Analyzer provides reference
information about the VAX Performance and Coverage Analyzer (PCA).

Conventions

The following conventions are used in this guide:

Conventions

Description

CTRL/x

)

A key name is shown enclosed to indicate that you press
a key on the keyboard.

A sequence such as CTRL/x indicates that you must hold
down the key labeled Ctrl while you press another key or
a pointing device button.

A sequence such as KP1 indicates that you must first
press and release the key labeled KP1, then press and
release another key or a pointing device button.

In examples, a horizontal ellipsis indicates one of the
following:

¢ Additional optional arguments in a statement have
been omitted.

¢ The preceding item or items can be repeated one or
more times.

¢ Additional parameters, values, or other information
can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are omit-
ted because they are not important to the topic being
discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the
choices in parentheses.

xvii

xviii

Conventions

Description

[

i

User Input

boldface text

italic text
UPPERCASE TEXT

mouse

MB1, MB2, MB3

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all of
the choices.

In format descriptions, braces surround a required choice
of options; you must choose one of the options listed.

The hardcopy version of this manual has interactive
examples that show user input in red letters and system
responses or prompts in black letters. The online ver-
sion differentiates user input from system responses or
prompts by using a different font.

Boldface words introduce new terms that are defined in
the glossary.

Italicized words introduce new terms.

Uppercase letters indicate the name of a command or
routine. Lowercase words and letters used in examples
indicate that you should substitute a word or value of
your choice.

The term mouse is used to refer to any pointing device,
such as a mouse, a puck, or a stylus.

MBI1 indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse
button. (The buttons can be redefined by the user.)

Chapter 1
Introduction to DEC/Test Manager

This chapter describes the DEC/Test Manager, environment, and
components. A sample session provides an overview of DEC/Test Manager,
and a section on entering commands.

1.1 Overview

DEC/Test Manager is a software development and maintenance tool that
organizes and automates the software regression testing process. You use
DEC/Test Manager to run, review, and store software regression tests and
test results.

Regression testing ensures that an application runs correctly and that
new features you add to an application do not affect the correct execution of
previously tested features. If errors do occur, the application has regressed.

The following list outlines typical regression testing steps for an application:

1. Create tests for the application.

a. Organize the tests.

b. Create a mechanism to allow ready access to tests.
2. Run the tests.
3. Examine the test results.

a. Compare the test results to those you expected and note any
differences.

b. Revise the application code to correct problems that caused incorrect
test output. Repeat steps 2 and 3 until the test output is correct.

4. Save the correct output as the validated test results.

Introduction to DEC/Test Manager 1-1

5. Repeat steps 2 through 4 whenever you modify the application or add
new code.

If the current and the previously validated test results match, the
application being tested is working as expected.

If you find unexpected changes in test results, the application being
tested may contain errors.

DEC/Test Manager automates the regression testing steps except for the
creation of tests, which only you can do for your software applications.
Figure 1-1 shows the regression testing steps. The shaded area indicates
those steps that DEC/Test Manager automates.

Figure 1-1: Regression Testing with DEC/Test Manager

Tests Generate
and Test
Test Data Output

Examine

Comparison Comparison
Report

Expected
Results
(benchmarks)

ZK-2084-GE

DEC/Test Manager performs the following actions with minimal or no user
assistance:

* Organizes test files.
¢ Runs tests.

1-2 Introduction to DEC/Test Manager

* Compares the current results with the expected results in the bench-
mark file and logs any differences found between benchmark and
current results. (A benchmark file contains the expected output for the

test’s execution.)

¢ Saves the test results if different from the benchmark.
* Displays the test results for examination.

You can use DEC/Test Manager to test software that executes in a variety
of common VMS environments. Table 1-1 shows the environments that
DEC/Test Manager supports.

Table 1-1: Supported DEC/Test Manager Environments

Chosen Environment

Result

Noninteractive

Interactive Terminal

Interactive DECwindows

You can use DEC/Test Manager with noninteractive tests
that do not have a terminal-oriented or workstation in-
terface. Software that accepts an input text file and gives
you an output text file can be tested as a noninteractive
DEC/Test Manager test.

You can use DEC/Test Manager with interactive terminal
tests for testing of software with an interactive terminal-
oriented interface.

You can use the DEC/Test Manager with DECwindows
tests for testing of software that presents a windowed
interface within the DECwindows workstation
environment.

Table 1-2 further describes the DEC/Test Manager environment by describ-
ing DEC/Test Manager terms.

Table 1-2: DEC/Test Manager Terms

Term Description

Library DEC/Test Manager stores the information it needs to manage
a test system in a VMS directory called a DEC/Test Manager
library. Chapter 3 describes DEC/Test Manager libraries in
detail.

(continued on next page)

Introduction to DEC/Test Manager 1-3

Table 1-2 (Cont.): DEC/Test Manager Terms

Term Description

Test Description A collection of fields that contain the information DEC/Test
Manager needs to run a particular test. A test description
requires a template file and can have other optionally specifie
test-related entities. A template file is a VMS command
procedure that executes a noninteractive test, or a session file
containing a recorded interactive terminal or DECwindows
session. Chapter 3 describes tests and test descriptions in
more detail.

Collection A set of tests selected for execution. You can execute a test
only in the context of a collection. You can select tests for
inclusion in a collection by test name or groups. Chapter 4
describes collections in detail.

1.2 Entering Commands

1-4

You can enter DEC/Test Manager commands in several ways:

* From the Digital Command Language (DCL) command line

* From the DEC/Test Manager command line

¢ From the DECwindows interface (see Chapter 2)

* From a program that calls DEC/Test Manager directly (see Chapter 10)

When you enter a command from the DEC/Test Manager command line, you
omit the DTM command. After the command executes, control returns to
the DEC/Test Manager subsystem level.

The following example shows how to invoke DEC/Test Manager, issue the
SHOW VERSION command, and exit from DEC/Test Manager:

$ DTM

DTM> SHOW VERSION

DEC/Test Manager Version 3.1
DTM> EXIT

$

If you press RETURN before completing a command, you are prompted for
all required information for a command.

Introduction to DEC/Test Manager

If you plan to enter many commands, you should use DEC/Test Manager as
a subsystem to avoid the processing overhead that occurs when you invoke
DEC/Test Manager from DCL directly.

NOTE

Examples in this manual show prompts from the following process
levels:

¢ The dollar sign prompt ($) indicates DCL level.

® The DEC/Test Manager prompt (DTM>) means a command is
being issued from the DEC/Test Manager subsystem; examples
in this manual typically show commands entered from this
prompt.

* The DTM_REVIEW> prompt means a command is being issued
from the Review subsystem of DEC/Test Manager.

1.2.1 Getting Help

You can access DEC/Test Manager online help in several ways. To access
the DEC/Test Manager help system, type the following command at the DCL
prompt:

$ HELP DTM

To access help on a specific command, type the command name at the DCL
prompt:

$ HELP DTM COPY TEST_DESCRIPTION

You can also access DEC/Test Manager help from the DEC/Test Manager
command line or any of the DEC/Test Manager subsystem command lines.

$ DTM
DTM> HELP COPY TEST DESCRIPTION

1.2.2 Canceling Commands
If you want to cancel a command before it has completed, press CTRL/C. If

you press CTRL/C during a wildcard transaction that updates the library,
DEC/Test Manager completes the current transaction, but does not continue.

Introduction to DEC/Test Manager 1-5

When you enter a DEC/Test Manager command from DCL and then press
CTRL/C during execution of the command, DEC/Test Manager returns
control to DCL level. If you enter the command from the DEC/Test Manager
subsystem prompt level, DEC/Test Manager obtains control as indicated by
the DTM> prompt.

1.3 Getting Started

This section shows fundamental DEC/Test Manager features. To get you
started using DEC/Test Manager, this section shows a DEC/Test Manager
session with an interactive terminal test. Noninteractive and DECwindows
tests are described later in this manual.

The example in this section is designed so that you can recreate a DEC/Test
Manager session at a terminal or workstation. The interactive terminal
example demonstrates the following:

¢ Invoking DEC/Test Manager

* Creating a new DEC/Test Manager library

¢ Selecting an existing DEC/Test Manager library
¢ Creating a test

¢ Showing a test within DEC/Test Manager

* Recording a test

* (Creating a collection

¢ Showing a collection within DEC/Test Manager
¢ Executing the test in a collection

¢ Comparing the test results to the expected output
¢ Examining the test results

Example 1-1 uses the VMS Mail Utility (MAIL) and shows you how to use
DEC/Test Manager to test some of the MAIL commands.

The reverse numbers refer you to the command line explanation in the list
that follows the example.

Phrases enclosed in quotation marks (") are remarks that are associated
with the command being issued. For most commands, DEC/Test Manager
prompts you for a remark if you do not include one on the command line. A
null remark string is permitted.

1-6 Introduction to DEC/Test Manager

Example 1-1: Sample Interactive Terminal Session

6 $ CREATE/DIRECTORY [.DTMLIB]
$ DM

DTM> CREATE LIBRARY [.DTMLIB] "New DEC/Test Manager Library"
$DTM—-S-CREATED, DEC/Test Manager library DUAl: [USER(Q1.DTMLIB] created

eDTM> CREATE TEST DESCRIPTION MAIL TEST/INTERACTIVE

e_Remark: Going to record a MAIL test
$DTM-I-DEFAULTED, benchmark file name defaulted to MAIL_TEST.BMK
$DTM-I-DEFAULTED, template file name defaulted to MAIL_TEST.SESSION
$DTM-S-CREATED, test description MAIL _TEST created

@DTM> SHOW TEST_DESCRIPTION
Test Descriptions in DEC/Test Manager Library DUAl: [USERO1l.DTMLIB]

MAIL_TEST "Going to record a MAIL test"
Template = MAIL TEST.SESSION
Benchmark = MAIL TEST.BMK
Prologue = None Specified
Epilogue = None Specified

aDTM> RECORD MAIL TEST "Recording Mail on the terminal"
%DTM-I-BEGIN, your interactive test session is now beginning...
Type CTRL/P twice to terminate the session.

© s ser sroapcasT=NONE
$ MAIL

@MAIL) SHOW PERSONAL_NAME
Your personal name is "DEC/Test Manager — Project Q41327".

0MAIL> SET PERSONAL NAME "DEC/Test Manager - Engineer USERO1"

@MAIL> SHOW personal name
Your personal name is "DEC/Test Manager - Engineer USERO1l".

MAIL> EXIT

$ set broadcast=all

$ ~p ~P

P

$DTM-I-BMK_SAVED, benchmark has been saved in file DUALl: [USERO1l.DTMLIB]MAIL_TEST
.BMK;1

%DTM-S-RECORDED, test MAIL_ TEST has been successfully recorded in file DUAL: [USE
RO1]MAIL_TEST.SESSION

(continued on next page)

Introduction to DEC/Test Manager 1-7

Example 1-1 (Cont.): Sample Interactive Terminal Session

G@DTM> CREATE COLLECTION MAIL_COLL MAIL TEST "Creating the MAIL test collection”
$DTM-S-CREATED, collection MAIL COLL created

GDTM> SHOW COLLECTION

Collections in DEC/Test Manager Library DUAl: [USERO1l.DTMLIB]

MAIL COLL 1 test 27-0CT-1989 09:49:38
Command: CREATE COLLECTION MAIL COLL MAIL TEST “Creating the MAIL test
collection®

Status: not run
@DTM> RUN MAIL COLL
Starting MAIL TEST test run...

$DTM-I-BEGIN, your interactive test session is now beginning...
$ SET BROADCAST=NONE
$ MAIL

@ MAIL> SHOW PERSONAL NAME
Your personal name is "DEC/Test Manager - Engineer USERO1".

MAIL> SET PERSONAL NAME "DEC/Test Manager - Engineer USEROL1"

MAIL> SHOW PERSONAL_NAME
Your personal name is "DEC/Test Manager ~ Engineer USERO1".

MAIL> EXIT

$ SET BROADCAST=ALL

$

$DTM-S-CONCLUDED, your interactive test session has concluded

Performing post-run cleanup with comparison...

$DTM-I-UNSUCCESS, the comparison for the test MAIL_TEST was unsuccessful
$DTM-S-COMPARED, collection MAIL_COLL compared

@DTM> REVIEW MAIL COLL
Collection MAIL_COLL with 1 test was created on 27-0OCT-1989 09:49:38 by the
command:
CREATE COLLECTION MAIL_COLL MAIL_TEST "Creating the MAIL test
collection"
Last Review Status = not previously reviewed
Success count = 0
@ Unsuccessful count
New test count = 0
Updated test count = 0
Comparisons aborted = 0
Test not run count = 0

1

Result Description MAIL_TEST Comparison Status : Unsuccessful

(continued on next page;

1-8 Introduction to DEC/Test Manager

Example 1-1 (Cont.): Sample Interactive Terminal Session

@ DTM_REVIEW> SHOW/DIFFERENCES

D DTM REVIEW> EXIT
$DTM-S-EXIT, leaving Review subsystem

BDorM> EXIT
$

Create an empty subdirectory for use as a DEC/Test Manager library.
Invoke DEC/Test Manager.

Create a new DEC/Test Manager library and assign it to the empty sub-
directory. When you create a library, DEC/Test Manager automatically
sets this as the current library; you do not need to explicitly set the
library.

Create the test description called MAIL,_TEST and designate it as an
interactive terminal test.

When you do not supply a comment to the CREATE TEST
DESCRIPTION command, DEC/Test Manager prompts you for one.

Show the test descriptions in the current library.

Record the MAIL_TEST test. Note that DEC/Test Manager spawned to
DCL.

Disallow messages to be broadcast on the terminal so that incoming
messages will not interfere with the test recording.

Invoke the Mail Utility.

Show the current personal name. In this case, no personal name was
set.

Set the personal name.

Show the personal name again.

Exit from the Mail Utility.

Reset the terminal to receive broadcast messages.

End the recording session by pressing CTRL/P twice. The AP characters
are not echoed on the terminal, but a AP character appears below the
place where you ended the recording session.

Create the collection MAIL, COLL and include the MAIL_TEST test
in it.

Introduction to DEC/Test Manager 1-9

1-10

®e e

Show the collection information.
Run the MAIL_COLL collection interactively.

Note here that when DEC/Test Manager issues the SHOW PERSONAL
NAME command from the session file, the Mail Utility displays the
previously stored personal name and not the message that was displaye
when the test was recorded. The result of this command will cause the
test to be unsuccessful.

After the collection run ends and the test has been compared, invoke
the Review subsystem to review the MAIL_COLL collection. DEC/Test
Manager automatically displays collection statistics for MAIL_COLL.

DEC/Test Manager marked the test as unsuccessful because the result
file differed from the benchmark file.

Enter the SHOW/DIFFERENCES command. The screens were omitted
from this example but you can display them by pressing the RETURN
key or specifying the NEXT command to view subsequent difference file
records.

Type CTRL/Z to exit from the Review subsystem.
Enter the EXIT command to exit from the Review subsystem.
Enter the EXIT command to exit from DEC/Test Manager.

Introduction to DEC/Test Manager

Chapter 2
Using DEC/Test Manager in DECwindows

This chapter describes using DEC/Test Manager in a DECwindows
environment; it provides an overview and a sample session.

2.1 Overview
To invoke the DEC/Test Manager DECwindows interface, enter the following
command from a DECwindows terminal emulator window:
$ DTM/INTERFACE=DECWINDOWS

Figure 2-1 shows the initial DEC/Test Manager title bar and the main
menus you can select from the menu bar.

Using DEC/Test Manager in DECwindows 2-1

Figure 2-1

: DEC/Test Manager DECwindows Title Bar and Main Menus

DEC/Test Manager: Copyright © Digital Equipment Corporation. 1989. All Rights Reservd. ‘
[Library _ view Maintenance _Testng ___ Help
m_ m Maintenance
Open... Update Create Review B Overview...
verify.. | expand > | | Modify Display . Using DTM Helb...
Modify... Collapse 28 Recreate... Submit. About...
create... || Caiection Oclets Run...
Tasks.. Test Compare...
Close View || Group Remove SWP
Exit Variable Record B
History Play >
Newl:—) Extraetl:—)
Close View Restore .22
Mask.
Filter.

Figure 2-1 shows the menus separated from the menu bar to show you all
the DEC/Test Manager main menus at once; you can pull down only one
main menu at a time.

2.1.1 Getting Help

You can obtain DEC/Test Manager Help in a DECwindows environment by
pulling down the Help menu.

You can also get context-sensitive help in the following way:

1. Press and hold the HELP key (F15).
2. Move the pointer to the item you want help on and release MB1.

2.1.2 Displaying DEC/Test Manager Information in DECwindows
You can display files and view information on result descriptions, collection

tests, groups, variables, and history through views. The views are the
DECwindows equivalent of the character cell interface SHOW commands.

2-2 Using DEC/Test Manager in DECwindows

DEC/Test Manager displays the collection view when you invoke DEC/Test
Manager. To obtain a view of collections, tests, groups, variables, or history,
perform the following steps:

1. Pull down the View menu.
2. Choose one of the views from the menu.
You can obtain more detail by double clicking on an item (test, group,

collection, variable, or library). If an item is expanded fully, double clicking
collapses the item into the previous level of information.

Figure 2-2 shows a collection view with the MAIL, COLLECTION collection
expanded.

Figure 2-2: Expanded Collection View

DEC/Test Manager: Collection View &
Library View Maintenance Testing Hel
=] Library DUAL:[USEROL.DTMLIB]

B3 MATL._COLLECTION
1 tests 31-0cT-1989 07:21:12
Command: CREA COLL MAIL_COLLECTION MAIL_TEST /VERI/NOPROL/NOEPIL/COMP=(WID=132) "Coll
Status : has been run, compared, being reviewed
Counts :
Successful comnt: 0 Unsuccessful count: 1
New test count: 0 Updated test count: 0
Test not xun count: 8 Comparisons aborted: 0
Prologue : None Specified
Epilogue : None Specified
Template Directory : None Specified
Template Class : 1+
Benchmark Directoxy : Nome Specified
Benchmaxk Class 1 1

[eeeeees—] 1]

Last Reviewed : 31-0c1-1989 07:28:08
MAIL_TEST parison " fol®
[Benchmark File DUAL: [USEROL.DTMLIB]MAIL_TEST.BMK
(A Result File DUAL: [USEROL.DTMLIB. MATL_COLLECTION]MAIL_TEST.RES
[Difference File DUAL: [USERO1.DTMLIB. MAIL_COLLECTION]MATL_TEST.DIF
at — 1] 1D

To view result, benchmark, or difference files, expand the view as described
in the previous steps and double click on a file name.

Using DEC/Test Manager in DECwindows 2-3

2.1.3 DEC/Test Manager Command Correlation

Most DEC/Test Manager commands have a corresponding menu path in
the DECwindows interface; however, there is not a complete one-to-one
correspondence because of added functions available in the DECwindows
interface.

There is no corresponding DECwindows action for the DEC/Test Manager
SPAWN and ATTACH commands, because DECwindows enables you to
create another process without having to spawn out of a process.

2.2 Sample DECwindows Session

This sample session uses the DECwindows Mail Utility (MAIL) to show
you how to use DEC/Test Manager to test a DECwindows application. This
section describes the following DEC/Test Manager DECwindows topics:

* Creating a DEC/Test Manager library
¢ Creating a test description

* Recording a test

¢ Creating a collection

¢ Running a collection

¢ Reviewing the results

¢ Updating the benchmark

* Creating masked regions

NOTE

Many of the figures in this section show dialog boxes from which
you initiate tasks. These figures also show the menu and menu
item from which the dialog box is invoked.

2.2.1 Creating a Library
Figure 2-3 shows how to create a new DEC/Test Manager library. If you

want to specify an existing library, choose the Open... menu item and specif}
the library in the subsequent dialog box.

2-4 Using DEC/Test Manager in DECwindows

NOTE

You must create an empty VMS directory before you can create a
DEC/Test Manager library.

Figure 2-3: Creating a DEC/Test Manager Library

DEC/Test Manager
View Malintenance Testing Hel
open...
Verify... | createlibeary ®a
Modify...
Libr: .DTMLIB.
v |Lomue]

Remark I Creating a DEC/Test Manager Library]
Benchmark directory I}

Template directory |

Prologue I§

Epilogue ‘

l 0K ﬂ l Cancel I

deC_—————————————————1DD]°®

<]

[

2.2.2 Creating a Test

Figure 2—-4 shows how to create a DECwindows test. The command to run
the DECwindows Mail facility is on this dialog box.

Using DEC/Test Manager in DECwindows 2-5

Figure 2-4: Creating a DECwindows Test

¥ DEC/Test Manager: Collection View R
Library View e Testing Help
{2 Library DuAl:[us e [DECwindows... | 2

Modify E cCollection... Terminal... 1=
Recreate... Group... Noninteractive...
Delete .Y variable..
Insert [History...
Remove B
Create DECwindows Test H
Test |maIL_TEST]
Remark]DECwindows MAIL tes€
Template |}
Benchmark Ii
Prologue |§
Epilogue II ©
| [<]
a7 Variables II d
s || -

Command |RUN SYS$SYSTEM:DECWSMAIL]

Comparison type
@ Screens O Characters O Records

E 0K ﬂ I Cancel I

2.2.3 Recording a Test
Figure 2-5 shows a sample Record dialog box and how to invoke it. If you

click on the test name before invoking the Record dialog box, the test name
automatically appears in the Test field.

2-6 Using DEC/Test Manager in DECwindows

Figure 2-5: Recording a DECwindows Test

DEC/Test Manager: Test View
Library View Maintenance Hel

{2} Library DUAL:[USERO1.DTMLIB] Review =
Defanlt template directory: SYS!
neﬁt benclmark dir y: D Display
De t collection prologue: Nowe
Defanlt collection epilogue: None Submit.
Nusber of collections: 0 Run...
:f ;::;::wnpum. % Compatre...
Nunber of variables: 0

] »an_tesT

[DECwindows... |
Play g Terminal...
Prologue = None ifid Extract B

Test |MAIL_TEST

gs
4"
]
Ranmn
d
HH
H
HEE RS- : ;
¢
[l eeeeee— > 1] i

Remark |Going to record DECwindows MAIL

3 D>

Display [pECWSDISPLAY

Keysym IEanFEs

O Input file

I
[prologue O variables
] Epilogue W Log

l OK ' | Cancel I

When you record the DECwindows test, ensure that the conditions of the
test at its start are the same as at its end. This enables you to run a
DECwindows input file without dependencies on an initialized workstation.

For example, creating a solid background, making icons of all applications,
placing the icons in a consistent order all help to ensure that start and end
conditions are equal. See Section 3.5.3 for more information about recording
DECwindows tests.

Using DEC/Test Manager in DECwindows 2-7

Figure 2-6 shows the Ready to Record dialog box. After you acknowledge
the Ready to Record dialog box, you can set the conditions of the test before
you press the Compose Character key and the S key at the same time to
start recording the test.

Figure 2-6: Ready to Record Dialog Box

@ DEC/Test Manager: Test View H&R
Library View Maintenance Testing Hel
fS)Library DUAL:[USERO1.DTMLIB}
nefanlt: tmplate directory: SK:[]
dhrectory: DR |
nefault collection proloque:
Defanlt collectif

Nurber of collec|
Number of test d

N""‘bn x er g g‘““’l’ * Ready to Record **

[»an_tEsT COMPOSE S Starts record
Type COMPOSE P Stops record
Tenplate COMPOSEM Marks screen
Benchmark

Prologue After entering a command, listen for the beep.
Epilo The beep indicates that DTM is ready to record.

If after entering COMPOSE S you do not hear a beep,
pause several seconds and retry the command

il
i
<
%
A e—— > 1) |

o—— 1D

2-8 Using DEC/Test Manager in DECwindows

Figure 2-7 shows the DECwindows Mail Utility window and the User
Attributes dialog box.

Figure 2-7: Sample DECwindows Recording Session

Mail G
File Edit Pick Create-Send Read Maintenance Customize Help
B MAIL <]

fal
&1 INBOX
it WASTEBASKET
Mail: User attributes LAl
Number of undelivered messages: 0
User Name: USERD1
Personal Name: DEC/Test Manager — Engineer USERO1 o
Fi ding Add i 4
a “ orwarding ress: Ii =5
" i y
“ Mail Directory: DUAT:[USER01] Deleto

Name of folder for deleted mail: |\'!ASTEBA5KEI§

Empty wastebasket upon closing drawer

When Figure 2-7 is displayed on your screen, you press the Compose
Character key and the M key at the same time; this marks the screen

for comparison in subsequent test executions. Because you only test the
attributes in the User Attributes dialog box, you need mark only this screen.
See Chapter 3 for more information on recording sequence keys.

When you finish recording the test, press the Compose Character key and
the P key at the same time.

Using DEC/Test Manager in DECwindows 2-8

2.2.4 Creating a Collection

Figure 2-8 shows how to create the MAIL_COLLECTION collection. The
MAIL_TEST test is the only test in the collection.

Figure 2-8: Creating a Collection

¥ DEC/Test Manager: Test View

Default

F]mam_tEST
Tenplate
Benchmark
Prologue
Epilo
\’atialg:]ﬁs

Groups
Command

Library View
Library DUAL:[USH

Number of groups: Insert
Number of variabll Remove

= DECwi]|
= MAIL_|
= MAIL_|
= None
= None
= Nane
= None
= RUN §|

P

Type =

e

Testing

Test D
Gl collection... |

t| History...

indows MATL test"

Collection | MAIL_COLLECTION

Remark I Collection for the MAIL_TEST test

Tests IMAlL_TEST

PN
ate O
Default bemchmark Modify
Default collectic| Recreate... Group...
Default collectig]
Nunber of collect| Delete H wvariable...
bor of bost dg| o]
Groups |{
Verif?!
4 O
<|

Ql

‘Options...l I Cancel I

H OK !I

NOTE

Before you execute the MAIL_COLLECTION collection, you
must modify the attributes on the User Attributes dialog box to
simulate a change in the MAIL application so that differences
occur in the comparison; this is done to emulate changes in
software. In the sample session, the User Attributes dialog box is
modified in the following ways:

* The personal name is changed from “DEC/Test Manager -
Engineer USER01” to “DEC/Test Manager - Project Q121459”.
e A forwarding address is added: USER44.

¢ The “WASTEBASKET” folder specification is changed to
“WASTE”.

2-10 Using DEGC/Test Manager in DECwindows

¢ The Empty Wastebasket Upon Closing Drawer button is
disabled.

2.2.5 Executing a Collection

Figure 2-9 shows how to execute the MAIL_COLLECTION collection. After
specifying the Collection and Remark fields, click on the OK button.

Figure 2-9: Executing a Collection

5

@ DEC/Test Manager: Collection View

Library View Maintenance

fZ)Library DUAL:[USERO1.DTMLIB] Review B
[MATL_COLLECTION “1 Display

Extract [
Restore B

Filter...

Collection |Mm|._c0LLEcr|oni

2 2Rin 0B
i | |F .
s ‘
ggi ||
[T ————— Y]

a Remark l Running the MAIL_TEST tes{ —
Confirm
[Log file |§

Output]}

ll OK I | Cancel |

Using DEC/Test Manager in DECwindows 2-11

2.2.6 Displaying a Test Result

When you review a DECwindows test, DEC/Test Manager provides you with
a benchmark image file and a result image file, and shows any differences
between the two.

DEC/Test Manager displays screen images in windows that you can scroll
and pan with resize and reposition capabilities. Scrolling and panning
provide screen image movement within a window.

To view the differences in the MAIL_TEST benchmark and result files,
expand the collection and test to show the benchmark, result, and difference
files. Then double click on the difference file.

Figure 2-10 shows the differences between the MAIL_TEST benchmark and
the MAIL_TEST result files. The differences are shown in XOR (exclusive
OR) mode, which means that when the pixels are compared, those that do
not match are displayed (Figure 2-10 shows these in white); those that
match are not displayed.

The following list describes the differences:

* The change from “WASTEBASKET” to “WASTE” shows the difference
(“BASKET”) in two places.

¢ The addition of the forwarding address, USER44, shows with the text
entry cursor also moved.

¢ The disabled button is visible.

¢ The jumbled part of the difference image is where the characters
“Engineer USER01” and “Prioject Q121459” are superimposed on one
another; DEC/Test Manager shows the pixels that do not match between
these two sets of characters.

2-12 Using DEC/Test Manager in DECwindows

Figure 2-10: Viewing Differences

Display Result File

Display

USER44
Screen 1

| @ Differences
| @ Scroll together

Next

First

[File Edit Pick Create—Send Read Maintenance Customize

B AL
B INBOX

f Previaus !

it WASTEBASKET u
;@ Mail: User Attributes
Number of undelivered messages: 0
User Name: USERO1
Personal Name: DEC/TPst Manager - Engineer USERO1
Forwarding Address: H o
< _
J Mail Directory: DUAT:[USERO1] 2]
R.
Deliver Name of folder for deleted mail: l WASTEBASKET] Delete
Empty wastebasket upon closing drawer L
[a]s] 1 10|00

Using DEC/Test Manager in DECwindows 2-13

2.2.7 Updating a Benchmark File

Figure 2-11 shows you how to update the benchmark file for the MAIL_
TEST test. Note that the test was selected before choosing the Update mem
item.

Figure 2-11: Updating a Benchmark Image

DEC/Test Manager: Collection View
Library View Maintenance

=
e

1
L T I —]+ |] b

fS)Library DUAL:[USERO1.DTMLIB] Open...
[MATL_COLLECTION ~| visplay Update...
1 tests 31-0CT-1989 0F:21f woovreroeerereeeeed L_E_J
Bmmd CREA COLL m:l:l. _COLLEC] Sulunit.. Close

OEPIL/COMP=(WID=132) "Coll

: has been| gyp

| Campare...

cm.lnts
Successful count 0
New test coumt: 0
l'rm not rum count 0
Prologue

Epilogue :
Template Directory :
Template Class PR PR S
Benclmark Directory : 1

Benchrark €lass : 1

| Mask.., 53
Filtee.. L_TEST.BMK
[Result File DUAL: [USEROL . DTMLIB. MATL_COLLECTION]MATL_TEST.RES
(] pifference File DUAL: [USEROL.DTMLIB . MATL_COLLECTION]MATL_TEST.DIF

Selected
| | ———————
C]_— MAIL_TEST ﬁ D
A%
4l 3
Test IE

Remark lUpdating the MAIL_TEST Benchmark]

Confirm

H OK !I 'Cancell

2-14 Using DEC/Test Manager in DECwindows

2.2.8 Creating a Benchmark Mask

Several factors can cause a test to fail with undesirable results. For
example, if mail is received during the sample session described in this
chapter, the icons in the DECwindows Mail facility can become altered. To
ensure that areas of a DECwindows application that you have no interest in
do not affect a test result comparison, you can create areas called masks on
benchmark images using the DEC/Test Manager Mask Editor. Areas that
are masked are not compared when DEC/Test Manager compares the results
of a test execution against the benchmark image.

Generally, areas are masked on a benchmark image after recording the
test and before executing the test to mask out run-dependent image data
and maximize the chances for successful comparison status for the test.
However, you can create masked areas on a benchmark image at any time.

To invoke the Mask Editor, click on the DECwindows test then pull down
the Testing menu and choose the Mask... menu item. The benchmark image
is automatically loaded into the Mask Editor.

To create a mask on a benchmark image, perform the following steps:

1. Move the pointer to the beginning of the area to mask and press and
hold MB1.

2. Move the pointer to the opposite corner of the area to mask and release
MBL1.

Figure 2-12 shows the benchmark image from Figure 2-7 with three masks
already defined over some icons (shown as striped rectangles) and a mask in
the process of being defined over the Number of Delivered Messages number
field (when MBI is released, it will also display a striped rectangle).

Using DEC/Test Manager in DECwindows 2-15

Figure 2-12: Applying Masks to a Benchmark Image

DEC/Test Managet:

T

‘ Number of undelivered messages: 0 B

N .
User Name: USERO1

Personal Name: ’ D est Manager - Eng|

Forwarding Address:

Display
=
'a" 1?4] @ image @ Mask

Select screen

To save a masked image file, pull down the File menu and choose the Save
menu item; the Mask Editor saves the image and masks in the same file
name as the one you read into the Mask Editor.

Pull down the File menu and choose Quit before saving the image file and
masks to leave the Mask Editor without updating the image file; choose Quit
after saving the image file and masks to exit from the Mask Editor.

You can delete a mask by double clicking on a defined mask.

You can move a mask by placing the pointer on the mask you want to move,
pressing and holding MB2, and releasing MB2 when you move the mask to
the new area.

Masked areas do not become part of the benchmark image. DEC/Test
Manager stores the coordinates of the masked areas in the image file, but
you determine whether to compare the image with or without the mask.

If you create masked areas on a benchmark file, the masks are used by
default. If you do not want previously-created mask areas to be applied to a
result comparison, you must explicitly specify ignoring masks on the Create
Collection or Compare dialog boxes.

2-16 Using DEC/Test Manager in DECwindows

Chapter 3

Creating Tests

The three basic components of a DEC/Test Manager test system are as

follows:
¢ The DEC/Test Manager library
¢ Tests

¢ Collections

This chapter describes libraries and tests and provides information on the
following topics:

¢ DEC/Test Manager history

¢ Test descriptions

* Noninteractive tests

¢ Interactive terminal tests

¢ Input files created from session files

3.1 DEC/Test Manager Libraries

DEC/Test Manager stores the information it needs to manage a test system
in a VMS directory called a DEC/Test Manager library. Figure 3-1 shows a
customized DEC/Test Manager library and its structure, showing template
files and benchmark files stored in their own directories instead of in the
default directory and the DEC/Test Manager library directory.

Creating Tests 3-1

Figure 3-1: Overview of a Custom DEC/Test Manager Library

Defauit
Directory
Template Benchmark
Directory DEC/Test Manager Library Directory Directory
* Template files ” * Benchmark
Library files files
Test information
Collection information
Group information
Variable information
Collection Collection Collection
Subdirectory Subdirectory Subdirectory
* Collection
information
¢ Test resulis
ZK-2082-GE

3.1.1 Creating a DEC/Test Manager Library

To create a DEC/Test Manager library, you must first create a VMS directory,
then invoke DEC/Test Manager and enter the CREATE LIBRARY command
as shown in the following procedure:

$ CREATE/DIRECTORY [.DTMLIB]
$ DTM
DTM> CREATE LIBRARY [.DTMLIB] "New DEC/Test Manager library"

%DTM-S-CREATED, DEC/Test Manager library DUAO: [USERO1.DTMLIB] created
DTM>

"o

The phrase enclosed in quotation marks (" ") following the library speci-
fication is a remark that you associate with the library you are creating,
DEC/Test Manager prompts you for a remark if you do not include one on
the command line, but a null remark string is permitted.

3-2 Creating Tests

DEC/Test Manager creates a subdirectory in the library for each collection
you create. Do not create subdirectories or files in a directory containing the
DEC/Test Manager library or any of its subdirectories. Do not set the default
directory to be a DEC/Test Manager library or any of its subdirectories.

If you put files in these subdirectories, they are deleted along with the
collection files when you instruct DEC/Test Manager to delete the collections.

NOTE

VMS limits directory trees to a depth of eight; because DEC/Test
Manager may create subdirectories, you should not create a
library in an eighth-level directory.

3.1.2 Setting a Library

When you invoke DEC/Test Manager, you must explicitly specify the library
you want to use to store files. You do this by selecting an existing library by
using the SET LIBRARY command.

The CREATE LIBRARY command performs an implicit SET LIBRARY
command so that you can use DEC/Test Manager commands with the
library just created. However, after you have created one or more DEC/Test
Manager libraries, you must set the default DEC/Test Manager library

for subsequent sessions. For example, to select the library you created in
Section 3.1.1, type the following command at the DCL prompt:

$ DTM SET LIBRARY [.DTMLIB]
$DTM-S-LIBIS, DEC/Test Manager library is DUAO: [USERO1.DTMLIB]

After you select a library, all DEC/Test Manager commands you enter refer
to that library until you select another library, create another library, or log
out.

Setting a Benchmark Directory

DEC/Test Manager places benchmark files in the current DEC/Test Manager
library. You can specify anotker directory using the SET BENCHMARK _
DIRECTORY command, as follows:

DTM> SET BENCHMARK DIRECTORY DUAO: [USERO1.BMK]

_Remark: "New default benchmark directory"

$DTM-S-NEWDEF, DUAO:[USER01.BMK] is the new default collection benchmark
directory

DTM>

See Chapter 7 for information about storing files outside the DEC/Test
Manager library, such as in a VAX DEC/Code Management System (CMS)
library.

Creating Tests 3-3

Setting a Template Directory

DEC/Test Manager places template files in the current directory. You can
specify another directory using the SET TEMPLATE_DIRECTORY com-
mand, as follows:

DTM> SET TEMPLATE_DIRECTORY DUAO: [USERO1l.TMPL]
_Remark: "New default template directory"
$DTM-S-NEWDEF, DUAO: [USERO1.TMPL] is the new default
collection template directory

DTM>

See Chapter 7 for information about storing files outside the DEC/Test
Manager library.
NOTE

In a DECwindows environment, you can set default benchmark
and template directories and collection prologue and epilogue files
using the Create Library or Modify Library dialog box.

3.1.3 Displaying DEC/Test Manager Library information

You can obtain library information in two forms:

® As a directory and file specification
¢ As a summary

Use the SHOW LIBRARY command to display library directory and file
specification information for the current library. For example:

DTM> SHOW LIBRARY
Your DEC/Test Manager library is DUAO: [USERO1.DTMLIB]

Use the SHOW ALL command to display library summary information for
the current library. For example:

3-4 Creating Tests

DTM> SHOW ALL

Description of DEC/Test Manager Library DUAO: [USER01l.DTMLIB]

Default template directory: DUAO: [USERO1l.TEMPLATES] "
Default benchmark directory: DUAQO: [USER(O1l.BENCHMARKS] ""
Default collection prologue: None Specified

Default collection epilogue: None Specified

Number of collections: 20
Number of test descriptions: 152
Number of groups: 18
Number of variables: 9

If one of these entities does not exist for the library, the message NONE
SPECIFIED is displayed. You can also place the library summary infor-
mation into a file by specifying the /OUTPUT qualifier. See the Command
Dictionary for more information about the SHOW LIBRARY command.

3.1.4 DEC/Test Manager History

DTM>

When you create a new DEC/Test Manager library, DEC/Test Manager
automatically creates a history for that library. Whenever you issue a
DEC/Test Manager command that alters the library, DEC/Test Manager
enters that command and its associated remark into the history.

The SHOW HISTORY command displays a chronological list of library trans-
actions. See the SHOW HISTORY command in the Command Dictionary for
a list of the commands that are logged into the history.

You can list all of the history transactions by entering the following com-
mand:

SHOW HISTORY

History in DEC/ TEST MANAGER Library DUAO: [USER01.DTMLIB]

25-JAN-1990 12:03:54 USERO1 CREATE LIBRARY DUAO: [USERO1.DTMLIB] "Test

library"

25-JAN-1990 12:04:12 USERO1 CREATE TEST_DESCRIPTION MAIL_TEST/INTERACTIVE
"Going to record a MAIL test"
25-JAN-1990 12:05:32 USEROL RECORD MAIL TEST "Recording MAIL on the terminal”

DTM>

You can also choose the types of history transactions that you want to
display. The following example instructs DEC/Test Manager to display all
the RECORD commands for the MAIL, TEST tests that were made by user
USERO1.

Creating Tests 3-5

DTM> SHOW HISTORY MAIL_TEST/TRANSACTION=RECORD/USER=USERO1
History in DEC/TEST MANAGER Library DUAO: [USER01.DTMLIB]
25-JAN-1990 12:05:32 USERO1 RECORD MAIL_TEST "Recording MAIL on the terminal"

DTM>

3.1.4.1 Adding a Remark to the History

Use the REMARK command to add a remark to the history; for example, to
note an unusual occurrence or mark a milestone in the testing system. The
following example shows a remark being added to the history:

DTM> REMARK "End of Version 3.0 Testing"

$DTM~S-REMARK, remark added to history file
DTM>

DEC/Test Manager enters the remark into the history, as in the following
example:

14-NOV-1990 13:01:32 USERO1l REMARK "End of Version 3.0 Testing"

3.1.4.2 Deleting History information

You can delete all or part of the history information for a DEC/Test Manager
library with the DELETE HISTORY command. Deleted history information
is written to a HISTORY.OUT file in the default directory. Once history
information is deleted from the history, it cannot be replaced. DEC/Test
Manager enters the deletion in the history as in the following example:

1-JUN-1990 15:03:55 USERQO1 REMARK "Deleting the old information"

You can delete the entire history information, as shown in the following
example. DEC/Test Manager prompts you with the current date and time
from which to delete the history records back to the first record.

DTM> DELETE HISTORY "Deleting all the old information"
Confirm DELETE HISTORY/BEFORE=14-Nov-1990 [Y/N] (N): Y
$DTM-S-HISTDEL, 323 history records deleted

DTM>

Also, you can delete a portion of the history information from a specified
date and time back to the beginning of the history, as shown in the following
example:

DTM> DELETE HISTORY/BEFORE=1-JUN-1990 "Deleting the old information"
Confirm DELETE HISTORY/BEFORE=1-Jun-1990 [Y/N] (N): Y
$DTM-S~-HISTDEL, 150 history records deleted

DTM>

3-6 Creating Tests

See the Command Dictionary for complete information about the DELETE
HISTORY command.

3.2 DEC/Test Manager Tests

You write tests for one or more of the following reasons:
¢ To ensure that the introduction of a new software component does not
produce a negative impact on existing software components.

* To ensure that changes to the environment outside of the application
do not affect the application itself. For example, an upgraded operating
system or a change in an error message file should not affect the
application (other than to issue new error messages).

¢ To test error and boundary conditions in the application.

DEC/Test Manager supports three types of tests. Table 3—1 describes those
tests.

Table 3-1: DEC/Test Manager Test Types

Test Type Description

Noninteractive A test whose template file is a DCL command procedure.

Interactive A test that includes recorded input and output from applica-

Terminal tions in a terminal environment. You create an interactive
terminal test by recording a test in a terminal environment.

Interactive A test that includes recorded input and output from ap-

DECwindows plications in a DECwindows environment. You create a
DECwindows test by recording a test in a DECwindows
environment.

To create an interactive terminal test or a DECwindows test, you begin
by running the software application you want to test. DEC/Test Manager
records the interactive input and the application’s output and places them
in separate files. The file of the recorded input is called a session file, and
has a default file type of .SESSION; the file of the recorded output is the
benchmark file, and has a default type of .BMK.

Creating Tests 3-7

3.3 Test Descriptions

A test description identifies a test and its related files to DEC/Test
Manager. A test description consists of a set of fields that identify the files
and other entities (filters and variables) associated with the test; it contain
the information DEC/Test Manager needs to run that particular test. This
section describes how to display, copy, modify, and delete test descriptions.

3.3.1 Creating Test Descriptions

You create a test description by using the CREATE TEST DESCRIPTION
command with qualifiers to specify the test description fields.

The least amount of information you can provide in a test description is
the test name. Table 3-2 shows all the fields that you can specify in a
test description. See the CREATE TEST_DESCRIPTION command in
the Command Dictionary for more information about specifying the test
description fields.

Table 3-2: Test Description Fields

Field Field Type Function

Test name Name string Identifies the test description.

Test prologue File specification Identifies a DCL command file that runs immedi-
ately before the template file. You use a prologue
file to set up any special environment that the
test requires. Output from a prologue file does not
appear in the test results.

Test epilogue File specification Identifies a DCL command file that runs immedi-

ately after the template file. You use an epilogue
file to clean up operations or to apply user-created
filters to the result file. Unlike the prologue file, th
epilogue file can directly alter the test results.

(continued on next page

3-8 Creating Tests

Table 3-2 (Cont.): Test Description Fields

Field

Field Type Function

Template

Benchmark

Variables

Groups
Test type

Command

Comparison
type
Filters

Remark

Identifies a DCL command file for a noninter-
active test or the session file for an interactive
terminal or DECwindows test. This field defaults
to test-name.SESSION for an interactive termi-
nal or DECwindows test and test-name.COM for
noninteractive tests.

File specification

File specification Identifies a file that contains the expected test
output. It is the standard against which DEC/Test
Manager compares the results of a test run. This

field defaults to test-name.BMK.

Identifies the variables and associated values used
with the template, prologue, or epilogue files for this
test.

Identifies the groups to which the test description
belongs.

Name string and value

Name string

Boolean flags Identifies either interactive terminal, DECwindows,

or noninteractive tests.

DCL command Identifies a DCL command to be spawned when
a DECwindows test is recorded or executed in a
collection. This command can be used to invoke

applications for inclusion in the test.

Value Identifies the comparison type: secreen, record, or

character.

Identifies one or more filters to remove run-time
dependent information from the result file.

Identifies a comment that you add to the history.

Boolean flags
(One flag per filter type)

Quoted string

The following example shows you how to create an interactive terminal test
and then record the session file for the test:

DTM> CREATE TEST_DESCRIPTION MAIL TEST /INTERACTIVE

_Remark: Going to record a MAIL test

%DTM-I-DEFAULTED, benchmark file name defaulted to MAIL_TEST.BMK
$DTM-I-DEFAULTED, template file name defaulted to MAIL_ TEST.SESSION
$DTM-S-CREATED, test description MAIL TEST created

DTM> RECORD MAIL_TEST "Recording MAIL on the terminal"
$DTM-I-BEGIN, your interactive test session is now beginning...
Type CTRL/P twice to terminate the session.

$

Creating Tests 3-9

3.3.2 Displaying Test Descriptions

Use the SHOW TEST_DESCRIPTION command to display a test descrip-
tion. The following example displays the contents of the test description
SEND_MAIL_TEST:

DTM> SHOW TEST_ DESCRIPTION SEND MAIL_TEST
Test descriptions in DEC/Test Manager Library DUAO: [USERO1l.DTMLIB]

SEND_MAIL TEST "MAIL SEND command test"
Template = SEND_MAIL_ TEST.COM
Benchmark = SEND_MAIL_TEST.BMK
Prologue = None Specified
Epilogue = None Specified

You can display more than one test by specifying test names or group names,
or you can use wildcards.

Depending on the qualifiers you specify, the SHOW TEST _DESCRIPTION
command displays the following information about tests:

¢ Group names

¢ Type of test (noninteractive, interactive, or DECwindows)
* Benchmark file specification

¢ Epilogue file specification

* Prologue file specification

* Template file specification

¢ Command string

¢ Filters

® Variables

You can also use qualifiers to display all the test description information or
a portion of it; the default qualifier is INTERMEDIATE. See the SHOW
TEST_DESCRIPTION command in the Command Dictionary for more
information about these qualifiers.

3.3.3 Copying Test Descriptions

3-10

Use the COPY TEST_DESCRIPTION command to create an exact or
modified copy of a test description in the DEC/Test Manager library. This
command enables you to create a series of similar test descriptions without
repeatedly entering the CREATE TEST _DESCRIPTION command. You can
modify some of the field values for each new test description.

Creating Tests

The following restrictions apply to the COPY TEST_DESCRIPTION
command:

¢ You cannot use wildcards.

¢ You cannot change the value of the benchmark field; you must use the
benchmark associated with the existing test.

¢ When you specify the /NOTEMPLATE qualifier, DEC/Test Manager uses
the default template file name.

* You cannot change the test type.

Although you can specify new values for some of the fields of a new test
description, you must either copy a test description with its filter, variable,
and group field values intact or eliminate the field values altogether;

you cannot modify these values when you copy the test description. You
can eliminate these field values with the COPY TEST_DESCRIPTION
negating qualifiers. (For example, /NOFILTER is a negating qualifier that
disassociates filters from the new test description.)

If you use a negating qualifier, DEC/Test Manager either removes the value
of the qualifier or reverts the value to its DEC/Test Manager default value.
See the Command Dictionary for more information about the COPY TEST_
DESCRIPTION command, its qualifiers, and its negating qualifiers.

Example 3—1 shows how to create several similar test descriptions for a
noninteractive test called MAIL_TEST_NONINT:

The test description generated by the CREATE TEST_DESCRIPTION
command sets up the prologue and epilogue files. Subsequent COPY TEST_
DESCRIPTION commands create new tests using the first test description,
MAIL_TEST _NONINT. By default, the prologue and epilogue files that

are associated with MAIL_TEST_NONINT are copied into the SHOW_ALL _
TEST and SEND_MAIL_TEST test descriptions. However, the MAIL_TEST_
NONINT, SHOW_ALL_TEST, and SEND_MAIL_TEST test descriptions
have different template files.

If you do not specify any qualifiers, the value for the test description fields
are copied from the existing test description to the new test description.

Creating Tests 3-11

Example 3-1: Copying Test Descriptions

DTM> CREATE TEST_DESCRIPTION MAIL_ TEST NONINT -

_DTM> /TEMPLATE—MAIL NONINT. COM/NOINTERACTIVE -
_DTM> /PROLOGUE-NOBROADCAST COM/EPILOGUE=BROADCAST.COM

_Remark: Creating a MAIL test

%DTM-I-DEFAULTED, benchmark file name defaulted to MATL_ TEST_NONINT.BMK
%DTM~I-DEFAULTED, template file name defaulted to MAIL TEST NONINT.COM
%DTM-S-CREATED, test description MAIL_TEST NONINT created

DTM>

DTM> COPY TEST DESCRIPTION MAIL_TEST NONINT SHOW_ALL_TEST -
_DTM> /TEMPLATE=SHOW_ALL_ NONINT.COM
_Remark: Copied margin test into SHOW_ALL TEST with new template file
$DTM-I-DEFAULTED, benchmark file name defaulted to SHOW_ALL_TEST.BMK
$DTM-I-COPIED, test description MAIL TEST NONINT copied
-DTM-S-CREATED, test description SHOW_ALL_TEST created

DTM>

DTM> COPY TEST DESCRIPTION MAIL_TEST NONINT SEND MAIL TEST -

_DTM> /TEMPLATE—MAIL TEMPLATE. COM

Remark. Copied margin test into SEND_MAIL_TEST with new template file
¥DTM-I- -DEFAULTED, benchmark file name defaulted to SEND_MAIL_TEST.BMK
$DTM~I-COPIED, test description MAIL_TEST NONINT copled
~-DTM-S-CREATED, test description SEND_MAIL_TEST created

DTM>

3.3.4 Modifying Test Descriptions

Use the MODIFY TEST_DESCRIPTION command to modify a test descrip-
tion to include or exclude a prologue file, an epilogue file, filters, variables,
or other test description attributes.

You can add or delete all test description fields (except the template field) by
using the MODIFY TEST_DESCRIPTION qualifiers. If you add a field that
already exists, the addition overrides the current value of the existing field.

For example, you can replace the current epilogue file with the epilogue file

named NODCL_BROADCAST.COM:

DTM> MODIFY TEST_DESCRIPTION MAIL TEST/EPILOGUE=NODCL_BROADCAST.COM
_Remark: Using a different epilogue file

$DTM-S-MODIFIED, test_description MAIL_TEST modified

DTM>

If you use a negating qualifier, DEC/Test Manager either removes the value
of the qualifier or reverts the value to its DEC/Test Manager default value.
See the Command Dictionary for more information about the MODIFY
TEST_DESCRIPTION qualifiers and negating qualifiers.

3-12 Creating Tests

Modifications remain in effect until you explicitly remove a value from the
test description, or modify the test description again. The following example
removes an existing prologue file specification from a test description called
MAIL_TEST. If the prologue file exists in the DEC/Test Manager library, it
is deleted; if it exists outside the DEC/Test Manager library, it is not deleted.
DEC/Test Manager issues informational messages that inform you of these
conditions.

DTM> MODIFY TEST DESCRIPTION MAIL TEST /NOPROLOGUE
_Remark: Deleting the prologue

$DTM-S-MODIFIED, test_description MAIL TEST modified
DTM>

Only the test description fields you specify with the MODIFY TEST_
DESCRIPTION command are affected when you modify a test description.

DEC/Test Manager ignores negating qualifiers specified for fields for which
no value was assigned. For example, the /NOPROLOGUE qualifier is
ignored if no prologue file had been previously assigned.

3.3.5 Deleting Test Descriptions

Use the DELETE TEST_DESCRIPTION command to delete a test de-
scription from the DEC/Test Manager library. If the test description has a
benchmark file that resides in the DEC/Test Manager library, the bench-
mark file is also deleted. If the benchmark file is outside the library, it is
unaffected.

The DELETE TEST_DESCRIPTION command has no effect on any result
files or difference files that were produced for this test during a collection
run. DEC/Test Manager deletes result and difference files with the collection
rather than with the test description, because these files are associated with
the collection.

The following example deletes the test description SHOW_ALL_TEST.
Because the benchmark is in the DEC/Test Manager library, it also is
deleted.

DTM> DELETE TEST DESCRIPTION SHOW_ALL TEST

_Remark: Deleting the revised Test for sending mail

Confirm deletion of test_description SHOW_ALL_TEST [Y/N] (N): Y
%DTM-S-DELETED, test_description SHOW_ALL_TEST deleted

DTM>

You cannot delete a test description while it is a member of any group.
Use the REMOVE TEST _DESCRIPTION command to remove a test
description from all groups to which it belongs. Then use the DELETE
TEST_DESCRIPTION command to delete the test description.

Creating Tests 3-13

3.4 Creating Noninteractive Tests

To create a noninteractive test in DEC/Test Manager, you must perform the
following steps:

1. Write the test.
2. Write the template file.
3. Create the test description.

3.4.1 Writing a Noninteractive Test

You write a noninteractive test by invoking a text editor outside of
DEC/Test Manager and creating a DCL command procedure to run the
noninteractive application you want to test. The DCL command procedure
in Example 3-2 issues several MAIL utility commands and sends a messag:
to user USERO1.

Example 3-2: Sample Noninteractive Test File

$! *%% SEND MAIL TEST *%*x%
$t SEND_MAIL TEST.COM
$t

$mail

set personal "DEC/Test Manager - Project Q"
send/subject="Mail test procedure”

USERO1

This test message is sent by Electronic mail using a DCL
procedure to test the MAIL utility.

$mail

show personal_ name

exit

3.4.2 Writing a Template File for a Noninteractive Test

The template file for a noninteractive test can be the test itself. For
example, the test in Example 3-2 can be executed by itself. If the template
file is the test itself, you do not need to create a new template file to execut
your test.

3-14 Creating Tests

The template file for a noninteractive test can also be a DCL command
procedure that executes the specified test and performs some action before
and after the test is executed. In Example 3-3, the template file disables
broadcast messages to be displayed before invoking the test and enables the
broadcast messages after the test is run.

NOTE

You can also use a test prologue file and test epilogue file to
perform these actions. Chapter 6 describes using prologue and
epilogue files.

Example 3-3: Sample Noninteractive Test Template File

$! *** MAIL TEMPLATE ***
St MAIL_TEMPLATE.COM
$!

$ SET BROADCAST=NONE
$ @SEND_MAIL_TEST
$ SET BROADCAST=ALL

3.4.3 Creating a Noninteractive Test Description

To create a noninteractive test description for a test, use the CREATE
TEST_DESCRIPTION command (/NOINTERACTIVE is the default quali-
fier), as shown in the following example:

DTM> CREATE TEST DESCRIPTION SEND_MAIL TEST/TEMPLATE=MAIL_ TEMPLATE.COM
_Remark: Test for sending mail

%DTM-I-DEFAULTED, benchmark file name defaulted to SEND_MAIL_TEST.BMK
$DTM-S~-CREATED, test description SEND_MAIL TEST created

DTM>

The existence of files is not verified at test creation time. You can specify
that the following files be associated with a test description (the template
file is required):

¢ Template file (defaults to test-name.COM)

¢ Benchmark file (defaults to test-name.BMK)
¢ Prologue file

¢ Epilogue file

See the Command Dictionary for more information about the CREATE
TEST_DESCRIPTION command.

Creating Tests 3-15

3.5 Creating Interactive Tests

You can record two types of tests:

e Interactive terminal tests
e DECwindows tests

NOTE

The term display device indicates either a terminal screen
device or a workstation screen device.

During record, DEC/Test Manager captures all input and output generated
on the display device to create an interactive terminal or DECwindows test.
The basic concept is the same for both terminal and DECwindows sessions;
that is, DEC/Test Manager records and places the input into a template file
and the output into a benchmark file.

To create an interactive terminal test description, you must specify the
CREATE TEST_DESCRIPTION command with the /INTERACTIVE
qualifier. To create a DECwindows test description, you must specify
the CREATE TEST_DESCRIPTION command with the /DECWINDOWS
qualifier.

Session Files

A template file has a default file type of .SESSION for both terminal and
DECwindows tests, but you can specify any file type by using the CREATE
TEST_DESCRIPTION command with the /TEMPLATE qualifier. See the
CREATE TEST _DESCRIPTION command in the Command Dictionary for
more information about changing the session file type.

The stream of input that is recorded at an interactive recording session is
placed in a test template file with the .SESSION file type. Specifically, a
template file, also called a session file, contains the following data:

* A description of the type of display device on which you recorded the test
¢ A record of all input during the recording session
¢ Additional control and timing information

See Chapter 8 for more information about session files.

3-16 Creating Tests

Benchmark Files

A benchmark file contains the expected output for the test’s execution; it is
a standard by which other test results can be judged. DEC/Test Manager
compares a benchmark file to the result file, which is generated using the
input from a recorded session file when you run a test within a collection. A
benchmark file has a default file type of .BMK.

3.5.1 Recording Tests

The RECORD command records a specified test. If you do not specify
an input file, DEC/Test Manager records input from the display device,
keyboard, and pointer device.

If you specify an input file on the RECORD command line, DEC/Test
Manager records from the input file. Chapter 8 describes terminal input
files. Chapter 9 describes DECwindows input files.

3.5.1.1 Recording Key Sequences

DEC/Test Manager provides two sets of recording key sequences, depending
on the type of test you are recording. During a recording session, these key
sequences can be used to mark screens for comparison, or to terminate the
recording session.

To enter record key sequences for terminal tests, first type the termination
character (the default termination character is AP (CTRL/P)), then type a
valid command character. If you type an invalid command character, the
terminal bell sounds once (unless it is disabled). To override the default
termination character, use the /TERMINATION_CHARACTER qualifier on
the RECORD command.

To enter record key sequences for DECwindows tests, press the command
keysym (key symbol) key in conjunction with a valid command character.

A keysym is a value associated with a key on the keyboard. The default
command keysym key is the Compose key. The workstation bell sounds once
when the execution of a valid command completes. If you type an invalid
command character, the workstation bell sounds three times (unless it is
disabled).

To override the default command keysym key, use the /KEYSYM qualifier on
the RECORD command. Table 3-3 shows the recording key sequences for
both terminal and DECwindows tests.

Creating Tests 3-17

Table 3-3: Recording Key Sequences

Function

DECwindows
Terminal Test Test
CTRL/P-B
CTRL/P-!
CTRL/P-E
CTRL/P-CTRL/P Compose/P
CTRL/P-?
CTRL/P-I
CTRL/P-M Compose/M
CTRL/P-CTRL/Z Compose/Z

Starts automatic screen comparison
and ends manual screen comparison :
terminal-based tests.

Invokes an editor so that you can ent
a comment into the session file. You
end the comment by pressing CTRL/
in a terminal session file.

Ends automatic screen comparison a1
begins manual screen comparison for
terminal-based tests.

Ends the recording session and retur
control to the previous command leve
When you end a recording session
this way, DEC/Test Manager saves tk
session and benchmark files.

Displays the current screen comparis
mode and lists the available recordin
functions.

Inserts an input file into the session
file you are recording. DEC/Test
Manager prompts you for the input fi
specification.

Marks a screen for comparison.
DEC/Test Manager automatically
compares all screens for terminal-bas
tests. This control key sequence is us
in terminal-based tests when automa
comparison is disabled. This is the a1
way to mark screens for DECwindow
tests.

Ends an interactive recording sessior
and saves the session file but does nc
save the benchmark file.

3-18 Creating Tests

(continued on next pag

Table 3-3 (Cont.): Recording Key Sequences

DECwindows
Terminal Test Test Function

CTRL/P-W Invokes a prompt for you to specify a
wait time. You issue this control key
sequence at the place in a session file
that you want the wait to occur. When
the session file is subsequently played
or executed, the wait time is included
in the session file.

CTRL/P-CTRL/C Compose/C Aborts an interactive recording session
without saving any of the generated
files.

Compose/S Starts a DECwindows recording
session.

3.5.1.2 Exiting from a Recording Session

To exit from a terminal recording session, press CTRL/P twice or press
Compose/P for a DECwindows recording session. Control returns to the DCL
level if you recorded a test from the DCL prompt, to the DEC/Test Manager
level if you recorded a test from the DTM> prompt, or to the

DEC/Test Manager DECwindows interface.

3.5.1.3 Redefining the Termination Character

The default termination character for interactive terminal tests is CTRL/P;
the default for DECwindows tests is Compose/P. To redefine the termination
character, you use the RECORD command with the /TERMINATION_
CHARACTER qualifier.

The termination character can be any single character. To specify a control
key sequence, enter a circumflex (*) followed by the character you want to
use. For example, to enter the termination character AD (CTRL/D), enter a
circumflex followed by a D, as shown in the following example:

DTM> RECORD MAIL TEST/TERMINATION_CHARACTER="D ""
Type CTRL/D twice to terminate the session.

Creating Tests 3-19

You can also specify a termination character with a decimal value that
translates into an ASCII character. For example, decimal 12 translates to
AL (CTRL/L); using 12 produces the following results:

DTM> RECORD MAIL TEST/TERMINATION_ CHARACTER=12 ""
Type CTRL/L twice to terminate the session.

3.5.1.4 Redefining the Command Keysym Key

You can redefine the command keysym key for a DECwindows test by using
the RECORD command with the /KEYSYM qualifier.

The command keysym key must be in the DECwindows Latin-1 keysym
encodings. Display the file DECW$INCLUDE:KEYSYMDEF.H with the
DCL TYPE command to view a listing of the Latin-1 keysym keys.

You can specify a keysym key on the /KEYSYM qualifier by entering its dec
imal or hexadecimal encoding. For example, to use CTRL as the command
key symbol, enter the following command:

DTM> RECORD test-name/KEYSYM=0Oxffe3
The following sections describe recording options that you can use in variou

combinations to tailor your recording environment. See Chapter 6 for more
information about tailoring the test system.

3.5.2 Interactive Terminal Recording

The template file for an interactive terminal test is the recorded terminal
session file that DEC/Test Manager produces when you use the RECORD
command. An interactive terminal test requires user input from a terminal
keyboard. For example, an interactive terminal test could be a forms
program that requests information from you.

DEC/Test Manager subsequently uses the recorded session file to supply
data to applications in future test runs to ensure that the applications you
are testing have not regressed. You can have DEC/Test Manager execute th
interactive session file on the screen or in batch mode. Either way, DEC/Tes
Manager supplies the input data that was recorded.

If your interactive terminal session will need a screen size larger than 24
lines by 132 columns, set the display device to the largest size it will need
during recording before you begin the recording session.

3-20 Creating Tests

Example 1-1 in Chapter 1 shows the recording of an interactive terminal
session.

3.5.3 Interactive DECwindows Recording

An interactive DECwindows test records DECwindows environment input
from the keyboard and from the pointer device. Tests performed in the
DECwindows environment are recorded by specifying the DEC/Test Manager
RECORD command or by pulling down the Testing menu, choosing the
Record menu item, and choosing the DECwindows... submenu item.
DEC/Test Manager uses the recorded session file to supply the input data
when you subsequently test an application or applications, just as with
interactive terminal tests.

Before recording a DECwindows test, you should ensure that the conditions
of the test at its start are reproduced when the test is executed. This
enables you to run a DECwindows session file repeatedly in one play back,
without dependencies on an initialized workstation.

For example, iconizing all windows and ordering the icons at the start of a
test enables you to reproduce the start condition of a test. It also enables
you to mask out small portions of the workstation screen using the mask
editor. See Section 2.2.8 for information about masking portions of the
workstation screen.

To significantly reduce the size of benchmark and result files, set the
workstation background to a solid color during recording and testing.

DEC/Test Manager uses compression techniques to minimize the size of a
benchmark file.

When marking screens for comparison on a color workstation, DEC/Test
Manager converts the screen image to bitonal. To ensure proper image
comparison, the colors displayed on the screen must be of sufficiently high
and low intensity (bright and dark) such that they are converted to black
and white as expected.

You can invoke an application or run a command file at the start of a
DECwindows recording session by entering a command in the Command
field in the Create DECwindows Test dialog box; you can also use the
CREATE TEST_DESCRIPTION command with the DECWINDOWS and
/COMMAND qualifier.

Creating Tests 3-21

NOTE

There is no automatic comparison in a DECwindows recording
session. Screens must be explicitly marked for comparison.

See Chapter 2 for a sample interactive DECwindows recording session.

3.6 Creating an Input File from a Session File

An input file is a textual representation of a session file that you can edit

by using the text editor of your choice. The EXTRACT command extracts a
input file from an interactive terminal or DECwindows session file without

altering the session file.

You can create a new session file, using an input file, by specifying the
/INPUT qualifier with the RECORD command. The /INPUT qualifier
specifies the input file to be read.

See Chapter 8 and the Command Dictionary for complete information abouf

using the EXTRACT command to create input files from terminal session
files.

See Chapter 9 and the Command Dictionary for complete information aboui
using the EXTRACT command to create input files from DECwindows
session files.

3.7 Playing Back an Interactive Test
DEC/Test Manager provides two methods for playing back an interactive
terminal or DECwindows test:
* Use the PLAY command to playback a session file interactively.
¢ TUse the CREATE COLLECTION and RUN commands to execute a test.

The PLAY command executes a specific session file. The file is not played
back as part of a collection and the results of the playback are not comparec
The RUN command executes a collection of tests interactively; results may
be compared.

Chapter 4 describes how to create collections and run tests.

3-22 Creating Tests

3.7.1 Playing an Interactive Terminal Session

To play an interactive terminal session file, use the PLAY command with the
/INTERACTIVE qualifier. For example:

DTM> PLAY MAIL TEST.SESSION/INTERACTIVE
$DTM-I-BEGIN, your interactive test session is now beginning

$DTM-S-CONCLUDED, your interactive test session has concluded
DTM>

A session file is executed as if it was being run on the same type of display
device on which it was recorded. If the display device characteristics differ
from those for the recording display device, the output may not appear as
you would expect.

3.7.2 Playing an Interactive DECwindows Session

To play an interactive DECwindows session file, use the PLAY command
with the /DECWINDOWS qualifier. For example:

DTM> PLAY MAIL TEST.SESSION/DECWINDOWS

DTM>

If the test corresponding to the session file has a DCL command associated
with it, specify the DCL command with the /COMMAND qualifier.

NOTE

To play a DECwindows session file, DEC/Test Manager requires
a physical workstation, and its DECwindows server. Do not use
the mouse or keyboard while a DECwindows session file is being
played. This may cause the session file to be played incorrectly.

3.8 Processing Considerations for Interactive Terminal Tests

The following sections describe processing considerations and restrictions
on the types of interactive terminal applications you can test when using
DEC/Test Manager.

Creating Tests 3-23

3.8.1 Time-Dependent Applications

DEC/Test Manager cannot execute the test at the same speed at which it
was recorded; therefore, time-dependent screens marked for comparison
usually do not match, and the comparison of the test results usually are
unsuccessful. For example, you cannot test the VMS Phone Utility because
your input as the person initiating the call depends on the person you are
calling answering your call. These two time-dependent events cannot be
consistently duplicated.

Other examples of timing-dependent applications are those that are sub-
mitted as a batch job or executed as a subprocess. You cannot test timing-
dependent applications unless the application is a submitted batch job with
the DCL SYNCHRONIZE command. Using the SYNCHRONIZE command,
you have the choice of either waiting for the batch job or subprocess to finisl
or performing other operations with the application. The VAX Language-
Sensitive Editor (LSE) COMPILE command is an example of this type of
timing-dependent application.

3.8.2 CTRL/C or CTRL/Y

While recording a test, you should not press CTRL/C or CTRL/Y except

at a point where the application being tested is expecting input. Pressing
CTRL/C or CTRL/Y at a point other than where the application is expecting
input terminates the application at a random point that generally cannot
be duplicated when you run the test. For example, if you press CTRL/C

or CTRL/Y while output is being displayed during testing of the DCL
DIRECTORY command, you create a screen that cannot be consistently
duplicated; the comparison of the test results is usually unsuccessful.

3.8.3 Type-Ahead

If you must test an application built on a tool that uses the type-ahead
feature (such as the VAX Text Processing Utility (VAXTPU) or the VAX
Language-Sensitive Editor (LSE)), set your terminal to /NOTYPEAHEAD
before you record the interactive terminal session. DEC/Test Manager does
not support the testing of interactive applications that behave differently
when you type ahead. Recorded terminal sessions are always played back
without the type-ahead feature. Thus, if you record a test with the type-
ahead feature, DEC/Test Manager plays it back without that feature and th
comparison of the test results usually is unsuccessful.

3-24 Creating Tests

You do not need to set your terminal to /NOTYPEAHEAD when you play
back the recorded terminal session or when you read from an input file.

3.8.4 Applications That Accept Unsolicited Input

You can use DEC/Test Manager to test only those applications that accept
input after prompting for it. You cannot test programs such as the VMS
Monitor Utility (MONITOR) with DEC/Test Manager. MONITOR displays
screen after screen of continuously changing statistical information about
the system. After you invoke MONITOR, it does not prompt you for input;
it displays information until you terminate it by pressing CTRL/Z. The
termination occurs in a way that cannot be consistently duplicated; thus, the
comparison of the test results usually is unsuccessful.

3.8.5 Device Type and Terminal Characteristics

If DEC/Test Manager does not recognize the device type of the terminal
you are using to record the interactive terminal session, it defaults to a
VT100-compatible terminal. Chapter 8 describes the significance of device
type and terminal characteristics when recording an interactive terminal
session.

3.9 Processing Considerations for DECwindows Tests

The following sections describe processing considerations and restrictions on

the types of DECwindows applications you can test when using DEC/Test
Manager.

3.9.1 Playing DECwindows Tests

Tests played in a DECwindows environment play at a different rate than
those played in an interactive terminal environment.

During interactive terminal test playback, session files are generally played
at a rate faster than the rate at which they were recorded. This is because
DEC/Test Manager detects when an application is ready for more input, and
sends session file input to the application as fast as it will accept it.

Creating Tests 3-25

However, during DECwindows testing, DEC/Test Manager does not detect
when an application is ready for more input. Thus, DECwindows sessions
are played in real time. When a session file is played, keyboard and mouse
movements are played back at the same speed at which they were recorded.
For example, if you press a key at 10-second intervals while recording a test,
the keypress events are repeated at 10-second intervals when you play the
session file.

DECwindows sessions are played in real time whether the session is played
as part of a test execution (using the RUN or SUBMIT commands) or played
separately (using the PLAY command).

CAUTION

Because a DECwindows test is played in real time, it may be
affected by other processes that may degrade system performance.

You must ensure that no unanticipated loads are placed on the system while
a DECwindows session file is playing, or you may not get the desired results.
For example, to test the program Calendar, use the following steps:

1. Select the Calendar entry from the Session Manager Applications menu.

2. When the Calendar appears on the screen (after approximately 10
seconds) use its features as desired as part of the test recording.

3. Complete the test recording, initialize your environment for the test, and
start playing the session file.

Suppose you have another active process that is compiling at the same time
as the test play. When you play the session file, the Calendar may take 15
seconds to appear instead of the 10 seconds it took to appear when the test
was originally recorded. Because the DECwindows session file is playing

in real time, the keyboard and mouse input that occur in the Calendar
program during the test recording session is sent to the workstation before
the Calendar appears on the screen and is able to accept input. The input is
then lost and the session file fails to play as expected.

You can work around real time restrictions by applying these solutions:

¢ Use a dedicated system for DECwindows testing. Do not run other
programs that use CPU cycles during the DECwindows test.

e Extract an input file from a DECwindows session file (using the
EXTRACT command) and enter synchronization points into the
DECwindows Session, or change the timing factors in keyboard or
mouse movement records so that the test will play at a slower rate in
critical sections (see Chapter 9 for more information on extracting from
session files).

3-26 Creating Tests

3.9.2 Storing DECwindows Benchmark and Result Files

Screen image data stored in DECwindows benchmark and result files
requires significant disk storage space. DEC/Test Manager compresses the
image data to save storage space. However, DEC/Test Manager cannot
successfully compress screen images where a patterned background is used
(for example, the DECwindows default background). You should customize
your screen background to display a solid color before invoking DEC/Test
Manager in the DECwindows environment.

3.9.3 Environment Initialization

You must ensure that the DECwindows environment is in the same state
for a play as it was when the session file was recorded. Factors which may
affect the environment include applications with windows displayed and
window positions.

Creating Tests 3-27

Chapter 4

Organizing and Executing Test Collections

This chapter describes how to use DEC/Test Manager to organize and run
test collections; it provides information on the following topics:

¢ Selecting tests to execute and organizing them into collections
¢ Executing collections in batch mode

¢ Executing collections interactively at a terminal or DECwindows
workstation

* Stopping collections

¢ Displaying the collection summary
¢ Deleting collections

* Re-creating collections

¢ Comparing test results

4.1 Creating Collections

A collection is a snapshot of specified test descriptions and the DEC/Test
Manager library as they exist at the time you create the collection. You
must organize tests into collections before you can execute them to produce
result files for comparison.

Collections are stored in a DEC/Test Manager library. They can have
prologue files, epilogue files, and variables associated with them, though
the prologue files and epilogue files must be stored in locations other than
the DEC/Test Manager library (VAX DEC/Code Management System (CMS)
libraries, for example; see Chapter 7).

As test descriptions change, you must re-create the collection to reflect those
changes. You can include a test description in more than one collection.

Organizing and Executing Test Collections 4-1

You create a collection by using the CREATE COLLECTION command,
which generates a command file that accesses the specified set of tests and
their related files.

When you create a collection, DEC/Test Manager reads each test description
you specified; it then runs each test in the collection alphabetically by test
name.

Collection names cannot begin with the characters DTM$. The test group
expression selects the tests to be placed in the collection. Valid test

group expressions are test names, group names (to indicate that all the
test descriptions in the group should be part of the collection), or a list
containing any combination of these. You must use the /GROUP qualifier to
label group names and group expressions in a test group expression. You
can use wildcards.

The following example shows how to create the collection MAIL_COLL and
include all tests that begin with the string MAIL:

DTM> CREATE COLLECTION MAIL COLL MAIL* "Tests of MAIL commands"
$DTM-S-CREATED, collection MAIL COLL created

If you modify test descriptions or the contents of groups after including
them in a collection, those changes are not reflected in the collection unless
you re-create it using the RECREATE command. For example, if you
delete the MATL, SHOW_ALL _TEST test description after you create the
MAIL_COLL collection, the MAIL_COLL collection still contains pointers to
the files associated with MAIL_SHOW_ALL_TEST. If you then try to run
this collection, it will not run properly because DEC/Test Manager will try to
find the deleted test.

You do not have to re-create a collection for benchmark files because they
may be updated; this is the only exception. Section 4.5 describes the
RECREATE command.

When you create a collection, DEC/Test Manager attempts to resolve all the
file specifications in each test description and any file specifications included
with the CREATE COLLECTION command. If DEC/Test Manager fails to
find one or more of the required files, it lists the files and does not create the
collection. However, if the only file that DEC/Test Manager cannot find is
the benchmark file for a test, DEC/Test Manager creates the collection and
treats the test with the missing benchmark file as a new test.

If you specify the CREATE COLLECTION command with the /NOVERIFY
qualifier, DEC/Test Manager creates the collection but resolves only those
file specifications included on the command line.

4~2 Organizing and Executing Test Collections

Collection prologue and epilogue files are command files that are run before
and after (respectively) a collection is executed. They may be used to set up
an environment for the entire collection; they are similar to test prologue
and epilogue files. DEC/Test Manager also provides collection-wide variables
to tailor the test environment (see Chapter 6).

The following example creates a collection containing one test description
and immediately submits it to the batch queue:

DTM> CREATE COLLECTION RUN_MAIL RMTEST/NOVERIFY/SUBMIT=(NOTIFY) -
_DTM> /PROLOGUE=SETUP.COM "First run of test RMTEST"

® The first parameter identifies the collection name as RUN_MAIL.

* The second parameter, RMTEST, identifies the test you want to include
in the collection and to run.

* The /INOVERIFY qualifier specifies that DEC/Test Manager is to create
the collection without verifying the existence of any files associated with
the test description.

¢ The /SUBMIT qualifier specifies that DEC/Test Manager is to submit the
collection to the batch queue as soon as the collection is created. The
NOTIFY keyword specifies that you will be notified when the batch job
has completed.

¢ The /PROLOGUE=SETUP.COM qualifier specifies that SETUP.COM is
the collection prologue. Because the collection prologue file SETUP.COM
is issued with the CREATE COLLECTION command (it is associated
with the collection), DEC/Test Manager verifies the existence of this file
even if you specify the /NOVERIFY qualifier.

4.2 Executing Collections

When you execute a collection, DEC/Test Manager sets up the test en-
vironment and executes all the tests in the collection. Each test in a
collection generates a separate result file. The result file contains the
output generated by the template file. The result file is used for comparison
against a test’s benchmark file. Section 4.6 describes comparing test results.
See Chapter 2 for information on executing collections in a DECwindows
environment.

DEC/Test Manager associates the result file with a test by adding its name
to the result description for the test. Result descriptions are described in
Chapter 5. -

Organizing and Executing Test Collections 4-3

You can have DEC/Test Manager execute collections interactively or in
batch. Although DECwindows tests may be executed in batch mode, they
still require a physical workstation and its DECwindows server in order
to be played. See Chapter 9 for more information on playing DECwindows
tests.

NOTE

When you interactively execute the tests in a large collection, you
can tie up the display device for a long time. Consider executing
large collections in batch; the results are the same, provided the
batch and interactive environments are the same.

If your login command file sets up your interactive environment
differently than it sets up your batch environment, the results
may vary for the same test executed both interactively and in
batch mode. For more information, see the Guide to Using DCL
and Command Procedures on VMS.

All tests in a collection are executed during the collection run. After the
collection has executed and has been compared, you can examine the test
results by using the Review subsystem (see Chapter 5).

When you submit a collection for execution in batch, or execute it interac-
tively, DEC/Test Manager performs the following tasks:

1. Defines the DTM$COLLECTION_NAME variable (defined by DEC/Test
Manager as the collection name)

2. Defines any global variables
3. Executes the collection prologue file, if one exists

4. Calls a generic command file in the DEC/Test Manager library that
performs the following tasks on each test:

a. Defines any local variables

b. Defines the DTM$TEST NAME logical name (defined by DEC/Test
Manager as the test name of the current test)

Executes the test prologue, if one exists

e o

Executes the test template

e. Defines the DTM$RESULT logical name (defined by DEC/Test
Manager as the test result file name of the current test)

Executes the test epilogue, if one exists

Executes DEC/Test Manager-provided filters, if any are associated
with the test

h. TUndefines local variables

4-4 Organizing and Executing Test Collections

i. Undefines the DTM$RESULT logical name
5. Compares the result file with the benchmark file
6. Executes the collection epilogue, if one exists

4.2.1

Executing Collections in Batch

DEC/Test Manager provides two ways to execute a collection in batch:

¢ Use the CREATE COLLECTION command with the /SUBMIT qualifier
to automatically submit the collection to the batch queue after creating
it. You can also specify any of the SUBMIT command qualifiers.

e Use the SUBMIT command to submit the collection.

If you use the CREATE COLLECTION command with the default qualifier
/NOSUBMIT, you must use the SUBMIT command to execute the collection
in batch. The following example shows how to submit a collection:

DTM> SUBMIT MAIL_COLL/NOTIFY/LOG_FILE=[]/QUEUE=SYS$LARGE

%DTM-S-SUBMITTED, collection MAIL COLL submitted

-DTM-I-TEXT, Job MAIL_COLL (queue SYS$LARGE entry 1000) started on
SYSSLARGE

See the Command Dictionary for more information about the SUBMIT
command and its qualifiers.

You can submit a collection to a batch queue more than once. However,

if you attempt to resubmit a collection that you have executed and not
reviewed, DEC/Test Manager prompts you to confirm that you want to
resubmit the collection without reviewing it. To eliminate the confirmation
prompt when resubmitting a collection without reviewing it, specify the
SUBMIT command with the /INOCONFIRM qualifier.

4.2.2 Executing Collections Interactively

You can execute a collection interactively by using the RUN command.
The collection you execute can contain any combination of noninteractive,
interactive terminal and DECwindows tests.

If you specify a test name rather than an existing collection name as the
parameter for the RUN command, DEC/Test Manager prompts you for
automatic collection creation. Collections created this way contain only the
specified test and have the same collection name as the test name.

Organizing and Executing Test Collections 4-5

The RUN command displays the output of each test on the screen. If you
want to see messages from the prologue or epilogue file, specify the
/LOG_FILE qualifier.

The following example runs the collection SEND_MAIL_COLL on your
display device. (Example 3-2 in Chapter 3 shows the SEND_MAIL_TEST
test.) The output of this test is as follows:

DTM> RUN SEND_MAIL COLL "running the send mail test"
Starting SEND MAIL TEST test run...

Your personal name is "DEC/Test Manager - Project Q"
Performing post-run cleanup with comparison...
$DTM-I-NEWTEST, test SEND_MAIL TEST is a New test
$DTM-S-COMPARED, collection SEND_MAIL_COLL compared
DTM>

Section 4.6 describes how to compare the results of the execution of tests
in a collection with the benchmark files of each test in a collection. See
Chapter 9 for information about playing DECwindows tests.

4.2.3 Stopping the Execution of Collections

Use the STOP command to terminate a collection executing in batch; this
command stops execution of the collection and cleans up the DEC/Test
Manager library.

Press CTRL/C (rather than CTRL/Y) to terminate a collection running
interactively.

If you stop an executing collection with a command other than the STOP
command or a CTRL/C, or if the system crashes while a collection is
executing, errors will occur and you will not be able to review the collection.
Pressing CTRL/C or typing the STOP command to terminate a collection
run allows DEC/Test Manager to restore its library to a consistent state and
to perform necessary post-run cleanup after the collection run stops. See
Chapter 7 for instructions on how to recover the library, review the executed
tests, and rerun the tests that did not execute.

The following example stops the execution of the collection MSGTEST. Note
that the /CONFIRM qualifier is specified to have DEC/Test Manager issue a
confirmation message (/NOCONFIRM is the default qualifier).

DTM> STOP MSGTEST /CONFIRM "Stopping collection run"
Confirm stop of collection MSGTEST [Y/N] (N): Y
$DTM-S-STOPPED, collection MSGTEST stopped

DTM>

4-6 Organizing and Executing Test Collections

4.3 Displaying a Collection Summary

Use the SHOW COLLECTION command to display a brief listing of the
attributes of a collection.

You can specify qualifiers to determine the amount of information to be
displayed about a collection. With the default INTERMEDIATE qualifier,
the collection summary displays the following information:

¢ The collection name

* The number of tests in the collection

¢ The time the collection was created

¢ The command that created the collection and the remark associated with
it

¢ The collection’s status—whether it has been run, compared, reviewed,
rerun, or stopped

¢ The status of the tests in the collection—how many are successful,
unsuccessful, new, updated, not run, or whose comparison aborted

The following example displays a summary of information for the collection
MSGTEST.

DTM> SHOW COLLECTION MSGTEST
Collections in DEC/Test Manager Library DUAO: [USER01l.DTMLIB]

MSGTEST 4 test 31-MAY-1988 11:09:17 "Group of message tests"
Command: CREATE COLLECTION MSGTEST INFOMSGTEST/GROUP

"Messages"
Status: has been run, compared, not reviewed
Successful count: 0 Unsuccessful count: 0
New test count: 4 Updated test count: 0
Test not run count: O Comparisons Aborted: 0

DTM>

See the Command Dictionary for more information about the SHOW
COLLECTION command and its qualifiers.

4.4 Deleting Collections

Use the DELETE COLLECTION command to delete a collection. You should
delete a collection after you review it and no longer need the results. When
you delete a collection, all collection-related files are deleted. Benchmark
files, test descriptions, and groups, including any groups created during a
Review session, are not deleted.

Organizing and Executing Test Collections 4-7

You can delete several collections at a time by using wildcards, or use
commas to separate collection names in a list.

You cannot delete a collection while it is being run or while it is in use.

When you issue the DELETE COLLECTION command, DEC/Test Manager
displays each collection name before it is deleted and requests you for
confirmation. The following example deletes the collection MSGTEST.

DTM> DELETE COLLECTION MSGTEST "no longer needed"
Confirm deletion of collection MSGTEST [Y/N] (N): Y
%$DTM-S-DELETED, collection MSGTEST deleted

DTM>

NOTE

Your ability to delete a collection depends on the protection of the
files in the collection and your VMS privileges. See Section 7.3 for
more information about file protection.

4.5 Re-creating Collections

Use the RECREATE command to re-create a collection. You will need to
re-create a collection if you have changed one or more of the files required
by tests in the collection, or if you have changed other information in the
library since you created the collection. You cannot re-create a collection
after you have deleted it.

CAUTION

Ensure that the prologue and epilogue files associated with the
collection and template, prologue, and epilogue files associated
with the tests in the collection exist in their proper directories. If
DEC/Test Manager cannot find the template, prologue, or epilogue
files specified on the original CREATE TEST_DESCRIPTION
command, the original collection is deleted but a new collection is
not created.

When you create a collection, DEC/Test Manager stores the command in
the DEC/Test Manager database. When you re-create a collection using the
RECREATE command, DEC/Test Manager uses the command stored in the
database so that none of the file specifications or qualifiers are changed.

4-8 Organizing and Executing Test Collections

4.6 Comparing Test Results

For every test in a collection that runs to completion, DEC/Test Manager
compares the result file against the benchmark file (if it exists), saves the

comparison status for the test, and saves any differences in a difference file.
If the benchmark file and result file match, DEC/Test Manager deletes the
result file.

If you specify the CREATE COLLECTION command with the
/NOCOMPARE qualifier, or if a collection is only partially run, you must use
the COMPARE command to manually compare the existing result files with
the appropriate benchmark files.

A collection may only partially run for one of the following reasons:
* You press CTRL/C to abort an interactive execution

¢ You use the STOP command to stop a collection you submitted to batch
¢ DEC/Test Manager terminates abnormally

You must compare the results of a test before you can review them. You can
specify one of three types of test comparisons:

¢ Screen comparison (using the COMPARE command with the /SCREENS
qualifier; available for interactive terminal and DECwindows tests only)

* Record comparison (using the COMPARE command with the /RECORDS
qualifier; available for noninteractive and interactive terminal tests only)

¢ Character comparison (using the COMPARE command with the
/CHARACTERS qualifier; available for noninteractive and interactive
terminal tests only)

Table 4-1 lists the comparison status reported by DEC/Test Manager for
each test.

Table 4-1: Comparison Status Values

Comparison Status Meaning

Comparison aborted A test whose comparison could not be completed. The
benchmark file exists, but the result file and difference file
might not.

(continued on next page)

Organizing and Executing Test Collections 4-9

Table 4-1 (Cont.): Comparison Status Values

Comparison Status Meaning

New test A test that does not have a benchmark file. A result file was
. produced, but no difference file exists.

Not run A test that did not run in a partially run collection. A
benchmark file might exist. No result file or difference file
exists.

Successful A test whose benchmark and result files match. The result
file has been deleted and no difference file exists.

Unsuccessful A test whose benchmark and result files do not match. A
difference file exists.

Updated A test whose benchmark file has been updated after the

comparison has been performed for a collection. No result
file or difference file exists.

You can use the /IGNORE qualifier to specify types of special characters
that DEC/Test Manager should ignore during a comparison. You can use the
/FULL qualifier to specify that both identical and different data be included
in the comparison report of the difference file.

See the Command Dictionary for complete information about the COMPARE
command and its qualifiers.

After running and comparing a collection, you can review the test results
and the comparison statuses with DEC/Test Manager. Reviewing a collection
gives you access to the results of a collection run and to other collection
information. The Review subsystem is described in Chapter 5.

4.7 Recomparing Partially Compared Collections

If the comparison of a collection is terminated abnormally before comparing
the whole collection, you can recompare the collection using the COMPARE
command.

DEC/Test Manager does not recompare previously compared tests that had a
successful comparison status.

NOTE

If you need to recompare a collection, do not review the partially
compared collection. You cannot compare a collection that has
been reviewed.

4-10 Organizing and Executing Test Collections

Chapter 5

Reviewing Test Results

This chapter shows you how to review test results in the terminal
environment and in the DECwindows environment; it provides information
on the following topics:

¢ Review concepts
— Output files
— Comparison statuses
— Specifying result descriptions
¢ Examining test results
— Using the Review subsystem
— Displaying test results
— Printing test results
¢ Working with test results
~ Updating and Creating benchmark files
— Reviewing partially run collections

5.1 Review Concepts

When you execute a collection, DEC/Test Manager compares the test results
with the benchmark file for each test that has been run. If the comparison
is unsuccessful (differences are detected), DEC/Test Manager creates a
difference file. If the comparison is successful (no differences are detected),
then the result file is deleted and no difference file is created.

Reviewing Test Results 5-1

You can then review the differences using the Review subsystem, which
gives you access to the results obtained by executing the collection, as well
as to other information about the collection. It also enables you to invoke
the VAX Performance and Coverage Analyzer (PCA) to gather performance
and coverage data for the test. Section 5.2 describes the Review subsystem.
Using VAXset describes using DEC/Test Manager with PCA.

You must execute and compare a collection before it can be reviewed. See
Section 5.3.3 for instructions for reviewing a partially run collection.

In a DECwindows environment, you can review test results by direct
manipulation in the collection view. However, if you need to update
benchmark files, you must pull down the Testing menu, choose the Review
menu item, and choose the Open menu item to lock the collection so that
only you can perform an update operation.

This section describes result descriptions, test output files, and comparison
statuses: concepts that apply to both the terminal and the DECwindows
environments.

5.1.1 Using Result Descriptions

Result descriptions contain information about test output and comparison
statuses. In the same way that a test description contains information about
test files, DEC/Test Manager creates a result description that summarizes
information about the test results (see Section 5.1.1.1).

The result description name for a test is the same as its test name. Each
result description corresponds to a test description. A result description
contains the following information:

* The result description name.

* The comparison status of the test.

¢ Whether the output files exist; if the benchmark file exists, DEC/Test
Manager displays its file specification.

The following example shows the result description format in a terminal
environment.

DTM_REVIEW> SHOW MAIL TEST
Result Description MAIL_TEST Comparison Status : Successful

Benchmark File MAIL TEST.BMK
Result file does not exist
Difference file does not exist

DTM_REVIEW>

5-2 Reviewing Test Results

5.1.1.1 OQOutput Files

After DEC/Test Manager records, or executes and compares a collection, it
may generate one to three output files, depending on its comparison status.
Table 5-1 shows the possible output files.

Table 5-1: DEC/Test Manager Output Files

Output File Description

Benchmark Contains the expected output for the test.

For an interactive terminal test that has a benchmark file,
DEC/Test Manager also creates the file test-name.BMK_SCREENS.
This file contains printable copies of the interactive screen images
corresponding to the information in the benchmark file.

Result Contains the results of a test’s execution within a collection.

For an interactive terminal test that has a result file, DEC/Test
Manager also creates the file test-name.RES_SCREENS. This file
contains printable copies of the interactive screen images correspond-
ing to the information in the result file.

Difference Contains the differences between the benchmark and result files.

This file is created during comparison of the benchmark and result
files. A difference file is created only if differences exist between the
benchmark and result files.

5.1.1.2 Comparison Status

For every test in a collection that runs to completion, DEC/Test Manager
compares the result file with the benchmark file (if it exists) and reports the
result as the comparison status for the test. Chapter 4 describes comparison
statuses. They are listed briefly as follows:

* Comparison aborted
® New test

¢ Not run

* Successful

* TUnsuccessful

¢ TUbpdated

Reviewing Test Results 5-3

5.1.2 Specifying Result Descriptions

When reviewing the results for a collection of tests in the Review subsyster
you should note the following general concepts:

* You can specify each result description both by its result description
name and by its comparison status. You can organize sets of result
descriptions that have similar characteristics in the following ways:

— By specifying a result description expression (result description
names containing wildcards). For example:

DTM_REVIEW> SHOW MAIL*
— By specifying one or more comparison status qualifiers. For exampl
DTM_REVIEW> SHOW/UNSUCCESSFUL

— By specifying a result description expression with one or more
comparison status qualifiers. For example:

DTM REVIEW> SHOW MAIL* /UNSUCCESSFUL

¢ For the SHOW and PRINT commands, you can also specify output file
qualifiers to print or display output files. For example, you can enter th
SHOW * /SUCCESS/BENCHMARK command to display the benchmark
files for all successful tests.

¢ When you enter a Review subsystem command that accepts the re-
sult description expression and the comparison status qualifiers, the
information in Table 5-2 applies.

5-4 Reviewing Test Results

Table 5-2: Result Descriptions and Comparison Status Qualifier Variations for the

SHOW Command
Comparison

Result Status

Descriptions Qualifiers Result of the Command

None None Shows the current result description.

None One or more Shows all result descriptions with the specified compar-
ison statuses; DEC/Test Manager interprets the result
description parameter of the SHOW command as the wild-
card parameter. For example, you can enter SHOW/FILES
/SUCCESS/NEW to display the comparison status and to
display whether output files exist for all successful and new
result descriptions. The current result description position
remains unchanged when you specify the SHOW command
without specifying a result description.

One None Shows the specified result description and makes it the
current result description. For example, you can enter
SHOW RMTEST to display the result file for result descrip-
tion RMTEST and then make RMTEST the current result
description.

One One or more Shows the specified result description, makes it the cur-

One or more
(using wild-
cards)

One or more

None

One or more

rent result description, and ignores the comparison status
qualifiers. For example, you can enter SHOW/SUCCESS
RMTEST to display the result file for result description
RMTEST and then make RMTEST the current result
description. DEC/Test Manager ignores the /SUCCESS
qualifier with this command and displays the result file.

Shows all result descriptions matching the result description
expression, but it does not change the review position of the
current result description. For example, you can make the
current position the RMTEST result description and then
enter SHOW /RESULT *RM* to display the result files for
all result descriptions matching *RM#*; the review position
remains on RMTEST.

Shows all result descriptions that match both the result
description expression and any of the comparison status
qualifiers. For example, if you enter INSERT/UNSUCCESS
/NOT_RUN *RM*, all test descriptions that match *RM*
and have the unsuccessful or not run comparison status are
marked for insertion into a group when you exit from the
Review subsystem.

Reviewing Test Results 5-5

5.2 Examining Test Results

The procedure for examining test results after executing test collections is
summarized in the following steps:

1. Invoke the Review subsystem.

2. Examine the collection summary information.
3. Examine the results for each test.
4

Examine one or more of the output files referenced in the result
description: the result, difference, or benchmark files.

You can examine test results by issuing the SHOW and PRINT commands.
The SHOW command displays information about result descriptions and
displays their output files on the display device. The PRINT command
prints copies of specified output files.

5.2.1 Using the Review Subsystem

This section provides an overview of the Review subsystem and shows you
how to use it to locate test results in a terminal environment. The Review
subsystem exists only in a terminal environment; DECwindows tests cannot
be reviewed in a terminal environment. You review DECwindows test
results using views in the DECwindows environment (see Chapter 2).

5.2.1.1 Review Subsystem Overview

The REVIEW command invokes the Review subsystem, which you use to ex-
amine the test results of a collection execution. In a terminal environment,
the Review subsystem is indicated by the DTM_REVIEW> prompt.

When you use the REVIEW command with the name of a collection, as in
the following example, DEC/Test Manager automatically displays a summary
of the specified collection. If you specify the REVIEW command without a
collection name, DEC/Test Manager prompts you for one. The following
example shows you how to invoke the Review subsystem for the MSGTEST
collection.

5-6 Reviewing Test Results

DTM> REVIEW MSGTEST
Collection MSGTEST with 4 tests was created on 20-MAY-1988 10:46:34 by the command:
CREATE COLLECTION MSGTEST MSGTEST/GROUP "Creating collection MSGTEST"
Last Review Date = 23-MAY-1988 10:04:45
Success count = 0
Unsuccessful count = 0
New test count = 4
Updated test count = 0
Comparisons aborted = 0
Test not run count = 0

Result Description MESSAGE_1 Comparison Status : New Test

DTM_REVIEW>
To exit from the Review subsystem, type EXIT at the DTM_REVIEW> prompt
or press CTRL/Z. Control returns to the DCL level if you invoked the Review

subsystem from the DCL prompt ($); control returns to the DEC/Test
Manager level if you invoked the Review subsystem from the DTM> prompt.

5.2.1.2 Primary and Read-only Reviewers

The primary reviewer can insert tests into groups, and update bench-
marks in a DECwindows environment. In a DECwindows environment, test
results are accessed using the view windows; being a primary reviewer in
the DECwindows environment is necessary only when you insert tests into
groups or update benchmarks. See Chapter 2 for information about using
DEC/Test Manager views.

Only one person at a time can be the primary reviewer of a collection. If
you try to access a collection as a primary reviewer while it is already being
reviewed by another primary reviewer, you receive an error message. You
are designated a primary reviewer of a collection if you enter the REVIEW
command without the /READ_ONLY qualifier.

You are designated a read-only reviewer of a collection by entering the
REVIEW command with the /READ_ONLY qualifier. You can peruse the
result descriptions (see Section 5.1.1) and print files, but you cannot make
any changes to the result descriptions. Read-only reviewers cannot update
benchmarks or insert tests into groups. DEC/Test Manager allows multiple
read-only reviewers.

As a read-only reviewer, you may obtain inaccurate information if you enter
a SHOW command when the primary reviewer is updating benchmark files.
Under the same circumstances, the Collection Summary Information also
may be incorrect and files queued for printing may disappear.

As a read-only reviewer, you can use the PRINT/NOW command to avoid
having files you select for printing disappear. See the PRINT command in
the Command Dictionary section for more information.

Reviewing Test Results 5-7

5.2.1.3 Canceling Review Subsystem Commands

Press CTRL/C to cancel a transaction while it is being processed and to
return control to the DTM_REVIEW> prompt.

If you press CTRL/C during a wildcard transaction that updates the library
DEC/Test Manager finishes updating the file it was processing at the time
you pressed CTRL/C before it returns to the DTM_REVIEW> prompt.

If you press CTRL/C at the DTM_REVIEW> prompt, DEC/Test Manager termi

nates the Review session as if you had entered the EXIT command with the
/NOPRINT and /NOINSERT qualifiers.

5.2.1.4 Locating Test Results in the Review Subsystem

When you enter the Review subsystem, the first result description of a col-
lection is set as the current location. Test results are arranged sequentially
by result description name.

To place a result description in the current review location, use one of the
Review subsystem commands from Table 5-3, or press the RETURN key to
move to the next result description.

Table 5-3: Locating Test Results

Command Description _

FIRST Moves you to the first result description in the collection.
LAST Moves you to the last result description in the collection.
NEXT Moves you to the next result description in the collection. You

can use the comparison status to move to the next test with the
specified comparison status. For example, to move to the next
unsuccessful test in a collection, specify NEXT/UNSUCCESSFUL.
You can also move forward a specified number of tests in a collec-
tion; for example, NEXT 3 moves you forward three tests in the
collection. Further, you can combine the comparison status and th
count parameters to move forward to specific tests.

(continued on next page

5-8 Reviewing Test Results

Table 5-3 (Cont.): Locating Test Resuits

Command Description

BACK Moves you to the previous result description in the collection. You
can use the comparison status to move to the previous test with the
specified comparison status. For example, to move to the previous
unsuccessful test in a collection, specify BACK/UNSUCCESSFUL.
You can also move backward a specified number of tests in a
collection; for example, BACK 3 moves you backward three tests in
the collection. Further, you can combine the comparison status and
the count parameters to move backward to specific tests.

SELECT Moves you to a specific result description that you specify by its
result description name. For example:

DTM_REVIEW> SELECT INFOMSGTEST

You can use the comparison statuses to locate a set of result descriptions.
For example, you can show all of the unsuccessful tests in a collection as
shown in the following example:

DTM _REVIEW> SHOW/UNSUCCESSFUL
Result Description MSGTEST Comparison Status : Unsuccessful

Benchmark File is DUAO: [USERO1.DTMLIB]MSGTEST.BMK
Result file is present
Difference file is present

Result Description INFOMSGTEST Comparison Status : Unsuccessful

Benchmark File is DUAO: [USER01.DTMLIB]INFOMSGTEST.BMK
Result file is present
Difference file is present

DTM_REVIEW>

For more information about the comparison status qualifiers, see the Review
subsystem SHOW or PRINT commands in the Command Dictionary section.

 Locating Test Results with DECwindows

"'Dependlng on the view you want, you can expand a view to access the -

o mformatmn you want by performmg the following steps:

1. Ensure you have a collection view displayed.
2. Double click on the collection you want to review.

Reviewing Test Results 5-8

5.2.1.5 Using the Review Subsystem Keypads

The Review subsystem has several default keypads that you can use to is:
commands in the command-line interface. The keypads are intended for
use in the terminal environment. You can redefine these keypads to creai
custom keypads. Chapter 6 shows how to redefine the keypad keys for ar
of the default keypads. This section describes the following default keypa

¢ Review subsystem
¢ SHOW/BENCHMARK and SHOW/RESULT
e SHOW/DIFFERENCES

In the following illustrations, the white area of a key indicates that you c:
issue the command by pressing the corresponding key. The shaded area ¢
a key indicates that you can issue the command by pressing PF1 then th
corresponding key.

For example, to display a benchmark file using the Review subsystem
keypad (Figure 5-1), press KP9. To print a benchmark file, press PF1, th
KP9.

NOTE

The corresponding number keys on the keyboard give you the
same movement as pressing the numbers on the keypad.

Within the Review subsystem, pressing CTRL/H displays HELP, pressing
CTRL/W refreshes the screen, and pressing CTRL/Z terminates display of
the result, benchmark, or difference file and returns control to the Reviev
subsystem.

Figure 5-1 shows the default Review subsystem keypad, which has most
the keypad keys defined.

5-10 Reviewing Test Results

Figure 5-1: Review Subsystem Default Keypad

7
Show Dif

ZK-4749-GE

Table 54 describes the key definitions in Figure 5-1.

Table 54: Key Definitions for the Review Subsystem Keypad

Key Sequence Key Definition

KPO Displays the next test in a collection.
PF1-KPO Displays the previous test in a collection.
KP1 Displays the next unsuccessful test in a collection.

(continued on next page)

Reviewing Test Results 5-11

Table 54 (Cont.): Key Definitions for the Review Subsystem Keypad

Key Sequence Key Definition

PF1-KP1 Displays the previous unsuccessful test in a collection.

KP2 Displays the next new test in a collection.

PF1-KP2 Displays the previous new test in a collection.

KP3 Displays the next updated test in a collection.

PF1-KP3 Displays the previous updated test in a collection.

KP4 Queues the file for immediate printing.

KPé6 Updates the current test in a collection.

KP7 Issues the SHOW command with the /DIFFERENCES qualifier
and displays the differences.

PF1-KP7 Prints the difference file.

KP8 Issues the SHOW/RESULTS command and displays the result
file.

PF1-KP8 Prints the result file.

KP9 Issues the SHOW/BENCHMARK command and displays the
benchmark file.

PF1-KP9 Prints the benchmark file.

period (KP.) Displays the first screen.

PF1-period Displays the last screen.

(KP.)

comma (KP,) Issues the SPAWN command causing you to temporarily exit fror
DEC/Test Manager.

PFl-comma Issues the ATTACH command to attach you to the parent proces

(KP,) (return to the DEC/Test Manager Review subsystem).

Dash (KP-) Displays the collection summary.

PF2 Toggles the HELP display. If the HELP display is on the screen,

pressing PF2 removes it. If the HELP display is not on the
screen, pressing PF2 displays it.

Figure 5-2 shows the default SHOW/BENCHMARK, SHOW/RESULT,
and DISPLAY/BENCHMARK keypad. This keypad is enabled under the
following circumstances:

¢ When you press either KP8 or KP9 on the default Review subsystem
keypad (see Figure 5-1)

* When you issue the SHOW command with the /BENCHMARK or
/RESULT qualifier from the Review subsystem command line

5-12 Reviewing Test Results

* When you specify the DISPLAY'BENCHMARK command from the
DEC/Test Manager command line

Figure 5-2: Review Subsystem SHOW/RESULT, SHOW/BENCHMARK, and
DISPLAY/BENCHMARK Keypad

ZK-4750-GE

Reviewing Test Results 5-13

Table 5-5 describes the key definitions in Figure 5-2.

Table 5-5: Key Definitions for the SHOW/RESULT, SHOW/BENCHMARK,
and DISPLAY/BENCHMARK Keypad

Key Sequence Key Definition

KPO Displays the next screen.

KP1 Displays the previous screen.

KP5 Displays the first screen in the file.

KP7 Toggles the screen number display. If the screen number display

is on the screen, pressing KP7 removes it. If the screen number
display is not on the screen, pressing KP7 displays it.

PF2 Toggles the HELP display. If the HELP display is on the screen,
pressing PF2 removes it. If the HELP display is not on the
screen, pressing PF2 displays it.

Figure 5-3 shows the SHOW/DIFFERENCES keypad. When you press
KP7 on the Review keypad, or issue the SHOW command with the
/DIFFERENCES qualifier from the Review subsystem command line,
the default Review subsystem SHOW/DIFFERENCES keypad becomes
available.

5-14 Reviewing Test Results

Figure 5-3: Review Subsystem SHOW/DIFFERENCES Default Keypad

Screen

ZK-4751-GE

Table 5-6 describes the key definitions in Figure 5-3.

Table 5-6: Key Definitions for the SHOW/DIFFERENCES Keypad

Key Sequence Key Definition

KPO Displays the next screen.
KP1 Displays the previous screen.

(continued on next page)

Reviewing Test Results 5-15

Table 5-6 (Cont.): Key Definitions for the SHOW/DIFFERENCES Keypad

Key Sequence

Key Definition

KP3

PF2

Shifts split-screen mode. If the top (or bottom) half of the result

and benchmark files is displayed, pressing KP3 displays the othes
half of the two screens. If the right (or left) half of the result and
benchmark screens is displayed, pressing KP3 displays the other
half of the two screens.

Changes highlighting of differences for screens that have not
been displayed. Differences are highlighted in bold reverse video.
You can change this so that differences are underlined. Pressing
KP4 changes highlighting for the screens that have not been
displayed. After a screen is displayed, you cannot change the waj
its differences are highlighted.

Displays the first screen in the file.

Toggles the screen number. If the screen number is on the screen
pressing KP7 removes it. If the screen number is not displayed,
pressing KP7 displays it.

Toggles split-screen mode. If you are in full screen mode, pressing
KP8 puts you in split-screen mode. If you are in split-screen
mode, pressing KP8 switches you between horizontal split-screen
mode and vertical split-screen mode.

Toggles full-screen mode. If you are in split-screen mode, pressing
KP9 puts you in full-screen mode. If you are in full-screen mode,
pressing KP9 switches you between displaying full screens from
the result and benchmark files.

Toggles the HELP display. If HELP is displayed, pressing PF2
removes it. If HELP is not displayed, pressing PF2 displays it.

5.2.2 Displaying Test Results

This section describes how to display test results in the terminal en-
vironment. See Chapter 2 for information about displaying tests in a
DECwindows environment.

The Review subsystem SHOW command displays information about result
descriptions and displays the output files associated with result descriptions
to the display device (SYS$OUTPUT).

5-16 Reviewing Test Results

You can specify a result description expression with the SHOW command,
which identifies the result descriptions about which information is to be
displayed. If you specify no result description, DEC/Test Manager displays
information about the current result description.

The following qualifiers enable you to display specified output files individu-
ally or in groups:

/BENCHMARK
/DIFFERENCE
/RESULT

If you do not include an output file qualifier, DEC/Test Manager displays
information about the specified result descriptions rather than an output
file.

The following qualifiers enable you to display groups of result descriptions
that have the same comparison status.

/COMPARISON_ABORTED
/NEW

/NOT_RUN
/SUCCESSFUL
/UNSUCCESSFUL
/UPDATED

The SHOW command also takes the following qualifiers:

/FILES
/OUTPUT
/SUMMARY

The /FILES qualifier displays the comparison status for result descriptions
and states whether each output file exists. You cannot use the /FILES
qualifier with the /SUMMARY qualifier.

The /OUTPUT qualifier directs the output to a specified file.

The /SUMMARY qualifier displays the collection summary information; the
information displayed when you invoke the Review subsystem. You cannot
use the /SUMMARY qualifier with the comparison status or the /FILES
qualifier.

When you enter the SHOW command to display an output file for any
type of test, DEC/Test Manager automatically recognizes the test as a
noninteractive or interactive terminal test and displays it accordingly. The
following example shows the output for a noninteractive terminal test.

Reviewing Test Results 5-17

DTM_REVIEW> SHOW/BENCHMARK
Benchmark File DUAQ: [USERO1.DTMLIB]MSGTEST.BMK For Result Description
MSGTEST

DTM_REVIEW>

When you enter a SHOW command with an output file qualifier for an in-
teractive terminal test, DEC/Test Manager displays the result or benchmark
files screen by screen, record by record, or character by character (depending
on comparison type).

For a comparison using the /SCREENS qualifier, the differences are dis-
played in split-screen mode; the top half of a result file screen is displayed
on the top half of the screen, and the top half of the corresponding bench-
mark screen is displayed on the bottom half of the screen. You can also view
the differences in a full-screen mode.

When you enter the SHOW command with the /RESULT or /BENCHMARK
qualifiers, an initial banner screen (Screen 0) is displayed. Subsequent
screens are numbered for easy referencing. Pressing RETURN accesses the
next screen. Figure 5-4 shows Screen 0 for a benchmark file. Screen 0 for a
result file is similar.

Figure 5-4: DEC/Test Manager Benchmark File Screen 0

[VDEC Test Manager

|
| INTERACTIVE DISPLAY |

Version 3.1

Tuype PF2 for help.
Use keypad 0 to move to next screen.

Type CTRL/Z to exit.

METL_TEST.OCL

=k file OUAL: (USEROL, OTMLIEBIMAIL_TEST_QCL. EM

When you display a result or benchmark file, the specified file is displayed
screen by screen. The screen number, initially on the top right corner of
the screen, shows the number of the screen and the type of file currently
displayed.

5-18 Reviewing Test Results

To view other screens in the result and benchmark files, you must use the
default keypad for the SHOW/RESULT and SHOW/BENCHMARK screens.
Section 5.2.1.5 describes the SHOW/RESULT or SHOW/BENCHMARK
keypad keys and their associated functions.

When you enter the SHOW command with the /DIFFERENCE qualifier, an
initial banner screen (Screen 0) is displayed, as shown in Figure 5-5.

Figure 5-5: DEC/Test Manager Difference File Screen 0

Interactive Compare
Version 3.1

Type PF2 for help.

FEIL_TEZT_DOL

Ol L (USERGL OTHMLIE. MATL _COLL)METIL_TEST

Interactive Compare

Version 3.1
Type CTRL/Z to exit.

FHIL_TEZT_OCL

File DUl [UZEROGL OTHMLIE]MATL_TEST_GOL . EMb

When you display a difference file, you are in horizontal split-screen mode
by default; the terminal screen is divided horizontally into two windows.
The top window displays the top half of a screen from the result file, and the
bottom window displays the top half of the corresponding screen from the
benchmark file.

To view other screens in the result or benchmark file, you must use the
default keypad for the SHOW/DIFFERENCES screen. Section 5.2.1.5
describes the SHOW/DIFFERENCES keypad keys and their associated
functions.

Reviewing Test Results 5-19

5.2.3 Printing Test Results

The Review subsystem PRINT command marks the specified output files for
placement in the default printer queue.

NOTE

The PRINT command does not apply to DECwindows files.
DECwindows result, benchmark, and difference files are stored in
DDIF format. They may require conversion to another format for
printing.

The PRINT command does not queue the selected files for printing until
after you exit from the Review subsystem with the EXIT command or by
pressing CTRL/Z. If you leave the Review subsystem by pressing CTRL/C or
entering the EXIT/NOPRINT/NOINSERT command, the selected files are
not printed.

If you do not include an output file qualifier, DEC/Test Manager prints the
result file associated with the current result description.

In addition to the output file and comparison status qualifiers, and the
standard print qualifiers, the PRINT command also takes the following
qualifiers:

/INOILOG
/NOW
/SELECTED

The /INOILOG qualifier controls whether DEC/Test Manager displays
informational and success messages on the display device. The /LOG
qualifier is the default.

The /NOW qualifier places all specified files immediately in the print queue.

The /SELECTED qualifier concatenates all files already selected for printing
with the currently specified files and immediately places them in the print
queue.

NOTE

If you select a result file for printing and subsequently update the
benchmark file for that test before the result file has been queued
for printing, the result file is deleted and is no longer printable.

5-20 Reviewing Test Resdults

5.3 Working with Test Results

This section summarizes the procedures for working with test results in the
Review subsystem. You must be the primary reviewer of a collection before
you can update any benchmark files.

While in the Review subsystem, you can use the UPDATE command to
create or replace a benchmark file for a test. The UPDATE command makes
the new benchmark file out of the current result file for the specified result
descriptions. DEC/Test Manager also provides DECwindows menu access for
updating functions.

If a benchmark file already exists in the DEC/Test Manager library, it is
deleted when you enter the UPDATE command. If a benchmark file already
exists but is outside the DEC/Test Manager library, DEC/Test Manager
informs you of this and replaces it as the benchmark file; it does not delete
the old file.

Section 5.3.1 shows how to use Review subsystem commands to replace a
test’s benchmark file; Section 5.3.2 shows how to use Review subsystem
commands to create a benchmark file for a new test.

See Chapter 2 for information on updating a benchmark file in a
DECwindows environment.

5.3.1 Updating an Existing Benchmark File

You might want to update an existing benchmark file if you have changed
an application in a way that would change the expected results for a test.

Example 5-1 assumes that you previously examined the result file or
difference file and determined that the result file should replace the old
benchmark file. First, locate the result description for the test by entering
the SELECT command in the Review subsystem. Then, enter the UPDATE
command.

Reviewing Test Results 5-21

Example 5-1: Updating a Benchmark File

DTM REVIEW> SELECT MSGTEST
Result Description MSGTEST Comparison Status : Unsuccessful

DTM_REVIEW> UPDATE
%DTM_I UPDATED, the benchmark for test MSGTEST has been updated

DTM_REVIEW>

The result file is renamed as the benchmark file and the reference to the
former benchmark file is removed. If the former benchmark file is in the
DEC/Test Manager library, it is deleted.

When you update a benchmark file that is stored in a VAX DEC/Code
Management System (CMS) library, DEC/Test Manager reserves the existing
benchmark element in the CMS library and replaces it with the result file
from the current test run. If you specified a CMS generation for the existing
benchmark file with the CREATE COLLECTION/CLASS command,
DEC/Test Manager inserts the updated benchmark file as the new genera-
tion in the specified CMS class.

If you update the benchmark file for an interactive terminal test, the file
containing benchmark screens is also updated. If you update the benchmark
file for a DECwindows test, any masks in the existing benchmark are
transferred to the new benchmark.

5.3.2 Creating a Benchmark File for a New Test

You might want to create a benchmark file for a new test. This section
shows you how to do it in the Review Subsystem.

Use the Review subsystem to create a benchmark file for a new test
in a terminal environment. The following tasks are accomplished in
Example 5-2:

¢ Invoking the Review subsystem to review a collection
¢ Locating the result description for a test
¢ Displaying a result file

¢ Creating a benchmark file for the test by renaming the result file as the
benchmark file (using UPDATE)

¢ Showing the collection summary
¢ Printing the newly created benchmark file

5-22 Reviewing Test Results

The reverse-print numbers refer to the command line explanations in the list
that follows the example. Note that when you omit the result description
expression, the SHOW, UPDATE, and PRINT commands all refer to the
current result description.

Example 5-2: Creating a Benchmark File

0 DTM> REVIEW MAIL_ COLL

Collection MAIL COLL with 1 test was created on 31-OCT-1988 07:19:16

by the command:
CREATE COLLECTION MAIL COLL MAIL TEST "Creating the MAIL test

collection"

Last Review Status = not previously reviewed
Success count = 0
Unsuccessful count
New test count =1
Updated test count = 0
Comparisons aborted = 0
Test not run count = 0

0

Result Description MAIL_TEST Comparison status : New test

@ DTM REVIEW> SHOW/RESULT

@® pry_REVIEW> UPDATE
$DTM-I-UPDATED, the benchmark file for test MAIL TEST has been updated

9 DTM_REVIEW> SHOW/SUMMARY
Collection MAIL COLL with 1 test was created on 31-OCT-1988 07:19:16
by the command:
CREATE COLLECTION MAIL COLL MAIL TEST "Creating the MAIL test
collection"
Last Review Date = 02-NOV-1988 08:19:20
Success count = 0
Unsuccessful count = 0
New test count = 0
Updated test count = 1
Comparisons aborted = 0
Test not run count = 0

© DTM_REVIEW> PRINT/BENCHMARK
%DTM-S-PRINT, file DUAO:[USERO1.DTMLIBIMAIL_ TEST.BMK of test MAIL_TEST
selected for printing

@ prM REVIEW> EXIT
$DTM-S-PRINTQD, print job has been sent to the print queue
~-DTM-I-TEXT, Job MAIL TEST (queue SYS$PRINT, entry 710)started on SYS$PRINT
$DTM-EXIT, leaving Review subsystem
DTM>

Reviewing Test Results 5-23

© Invoke the Review subsystem to review the MAIL_COLL collection.
Note that the collection was not reviewed previously and that it contain
one new test, MAIL_TEST.

® Display a result file to determine whether the results are correct. It is
unnecessary to specify the result description name, because MAIL,_TES
is the current result description. If the results are correct, you can ther
make this file the benchmark file for the test. Because MAIL_TEST is
a noninteractive test, DEC/Test Manager displays the result file on the
screen.

©® Use the UPDATE command to create a benchmark file for the test by
renaming the result file as the benchmark file. This command creates
a benchmark file for MAIL_TEST from its result file, deletes the result
file, and changes the comparison status of the test from new to updated
DEC/Test Manager stores the benchmark file in the DEC/Test Manager
library and uses it as the benchmark file for MAIL, TEST when the tesi
is run in future collections.

If you are creating the benchmark file for an interactive test, the file
containing benchmark screens (test-name.BMK_SCREENS) is also
created. These files are printable for interactive terminal tests.

® Show the collection summary. Note that the New test count field value
is 0 and that the Updated test count field value is 1.

© Print the newly created benchmark file with the PRINT command.
O Exit from the Review subsystem.

NOTE

When you create a new benchmark file in a VAX DEC/Code
Management System (CMS) library, DEC/Test Manager creates
a new benchmark element in the specified CMS library. If you
specify a CMS class with the CREATE COLLECTION/CLASS
command, DEC/Test Manager inserts the new benchmark file as
a generation in the class. See Chapter 7 for more information
about using VAX DEC/Code Management System with DEC/Test
Manager.

5-24 Reviewing Test Resuits

5.3.3 Reviewing Partially Run Collections

A partially run collection may occur for one of the following reasons:

* You stopped a collection by typing the STOP command if the:collection
was executing in batch, or by pressing CTRL/C or CTRL/Y if the -
collection was running interactively.

* Your collection terminated abnormally during execution.

* You used the DCL DELETE command with the /ENTRY qualifier to stop
a collection of tests running in batch.

* Someone stopped the process executing the collection.

Issuing the STOP command is the recommended way to terminate a
collection executing in batch. Pressing CTRL/C is the recommended way to
stop a collection that is running interactively. Taking either of these actions
causes DEC/Test Manager to clean up the DEC/Test Manager library, after
which you must enter the COMPARE command to compare the partially run
collection before reviewing it.

If you do not use the STOP command or press CTRL/C to stop a collection,
errors may occur and you will not be able to compare or review the collec-
tion. Before using the collection, you must enter the VERIFY/RECOVER
command to clean up the library, correct the errors, and mark the tests that
did not run. Then, you must enter the COMPARE command to compare the
partially run collection. Finally, you must enter the REVIEW command to
initiate a Review session for the partially run collection.

NOTE

For partially run or partially compared collections, all tests that
did not run are marked with the not run comparison status. In
both cases, you must perform a comparison before reviewing the
collection.

If you review the collection before comparing it, DEC/Test
Manager will not allow you to compare the collection later. If
the collection is stopped after some tests have been compared,
those tests will retain the correct comparison status.

Reviewing Test Results 5-25

Reviewing a partially run collection is especially important if the collection
is large. Following the instructions just described, you should prepare

the partially run collection for review. Then, from the Review subsystem,
examine the tests that ran and use the INSERT/NOT_RUN command to
create a group containing all the tests that did not run. This group can then
be included in a collection, executed, and reviewed. Creating a group while
reviewing a collection is described in Chapter 6.

5-26 Reviewing Test Resulis

Chapter 6

Tailoring Your Test System

This chapter describes features of DEC/Test Manager that you can use to
tailor your DEC/Test Manager test system to suit your testing needs; it
provides information on the following topics:

¢ Using prologue and epilogue files
¢ (Creating and using groups

e Using variables

* Using filters

¢ Using masks

¢ Defining keypad keys

¢ Using command files

¢ Creating initialization files

* Spawning and attaching processes

6.1 Using Prologue and Epilogue Files

Prologue and epilogue files are command files that enable you to control
the environment in which DEC/Test Manager runs your tests. You store
prologues and epilogues outside the DEC/Test Manager library, in VMS
directories or in VAX DEC/Code Management System (CMS) libraries.

You use prologues to set up test conditions before executing a test in a
collection or before executing the collection as a whole. You use epilogues to
clean up or filter files after executing a test in a collection or after executing
the collection as a whole.

Tailoring Your Test System 6-1

Table 6-1 describes the various prologue and epilogue files.

Table 6-1: Prologue and Epilogue Files

File Description

Test prologue Associated with a specific test description, it is executed before
the test template file is executed.

Test epilogue Associated with a specific test description, it is executed after

the test template executes and DTM$RESULT is defined, but
before the DEC/Test Manager-provided filters are run.

Collection prologue Associated with a collection, it is executed whenever
the collection is executed after the global variables and

DTM$COLLECTION_NAME are defined, but before any tests
are executed.

Collection epilogue Associated with a collection, it is executed after the collection
is executed and is the last file executed.

6.1.1 Test Prologue and Epilogue Files

You create test prologue and epilogue files using a text editor and associate
them with tests using one of the following commands with the /PROLOGUE
and /EPILOGUE qualifiers:

¢ CREATE TEST_DESCRIPTION
* MODIFY TEST_DESCRIPTION

In a DECwindows environment, you specify test prologue and test epilogue
files in text entry fields on the Create Test... or Modify Test... dialog box.

Test prologue and epilogue files are associated with a specific test description
and are executed whenever the test is executed.

A prologue file can set up an environment for the test template file. For
example, a test prologue file can define local variables, FETCH elements
from a CMS library, or set default values.

An epilogue file can clean up the environment after the template file is run.
Test epilogue files can also remove run-dependent data from a test’s result
file. By running a test once and checking for run-dependent data in the
result file, you can determine the need to filter run-dependent data with an
epilogue file. See Section 6.3.3.3 and Section 6.4 for more information.

6-2 Tailoring Your Test System

You can disassociate a prologue or epilogue file from a test description
by specifying the MODIFY TEST_DESCRIPTION command with the
/NOPROLOGUE or /NOEPILOGUE qualifiers. This does not delete the
prologue or epilogue file.

Example 1-1 in Chapter 1 shows the disabling and enabling of broad-

cast messages as part of a recorded test. However, it is possible

that broadcast messages could appear in the recording before the

SET BROADCAST=NONE command was entered, or after the SET
BROADCAST=ALL command was entered and before the test recording
was terminated. By placing these commands into test prologue and epilogue
files, you eliminate that possibility. The following sections show you how to
place these commands into test prologue and epilogue files.

Example 6-1 shows a simple test prologue file to disable broadcast messages
before test recording begins.

Example 6-1: Sample Test Prologue File

$! DTMNOBROADCAST.COM

$!

$! Disable broadcast messages before recording.
$!

$ SET BROADCAST=NONE

$!

To establish this test prologue file for the MAIL_TEST test, specify the
following command:

DTM> MODIFY TEST_DESCRIPTION MAIL TEST -

_DTM> /PROLOGUE=DUAO: [USERO1.PROLIB]DTMNOBROADCAST.COM
_Remark: Adding the prologue to disable broadcast messages
$DTM-S-MODIFIED, test description MAIL TEST modified

DTM>

Example 6-2 shows a simple test epilogue file to enable broadcast messages
after test recording concludes.

Tailoring Your Test System 6-3

Example 6-2: Sample Test Epilogue File

$! RESETBROADCAST.COM

$1

$! Re-enable broadcast messages after recording.
$!

$ SET BROADCAST=ALL

5!

To establish this test epilogue file for the MAIL_TEST test, specify the
following command:

DTM> MODIFY TEST_DESCRIPTION MAIL TEST -

_DTM> /EPILOGUE=DUAO: [USERO1.EPILIB]RESETBROADCAST.COM
_Remark: Adding the epilogue to re-enable broadcast messages
%¥DTM~-S-MODIFIED, test description MAIL_TEST modified

DTM>

6.1.2 Collection Prologues and Epilogues

You create collection prologue and epilogue files using a text editor and
set up the default collection command file specifications for the DEC/Test
Manager library using one of the following commands:

* SET PROLOGUE
* SET EPILOGUE

To set collection prologue and epilogue files in a DECwindows environment,
perform the following steps:

1. Pull down the Library menu.

2. Choose the Create... or Modify... menu item.

3. Fill in the Prologue and Epilogue text entry fields.

When you associate prologue and epilogue files with a library using the
SET PROLOGUE and SET EPILOGUE commands, those files become the
default prologue and epilogue files for any collections you create. The default
prologue and epilogue files are invoked whenever you execute one of those
collections.

To cancel the default files, specify the SET NOPROLOGUE and SET
NOEPILOGUE commands.

To associate different prologue and epilogue files when creating subsequent
collections, specify new files with the CREATE COLLECTION command and
the /PROLOGUE and /EPILOGUE qualifiers.

6-4 Tailoring Your Test System

In a DECwindows environment, you specify collection prologue and collection
epilogue files in text entry fields on the Create Collection... dialog box.

To create a collection that does not use the default collection prologue
and epilogue files, specify the CREATE COLLECTION command with the
/NOPROLOGUE and /NOEPILOGUE qualifiers.

Example 6-3 shows a sample collection prologue file that does two things:

1. Tests the DEC/Test Manager variable USE_PCA to determine whether
to process the VAX Performance and Coverage Analyzer (PCA) Collector
initialization file.

2. Defines the Collector initialization file according to the DEC/Test
Manager variable USE_PCA_INIT_FILE. Running the PCA Collector
during a test is especially useful for determining which code paths
are being exercised by the tests themselves. See the Guide to VAX
Performance and Coverage Analyzer for information about PCA. See
Using VAXset for information about using DEC/Test Manager with PCA.

Example 6-3: Sample Collection Prologue File

$! --- COLLECTION PROLOGUE.COM ---
$E Collection prologue file for running the Collector in batch mode
:) SET VERIFY
]
:; TRANSLIT:==$'FS$LOGICAL ("TRANSLIT")’
z% Test DTM variable to determine whether or not to run PCA prologue
z: IF USE_PCA .EQS. "FALSE" THEN EXIT
zi Define the Collector initialization file
1
2; DEFINE PCACSINIT USE_PCA INIT FILE
gi End of collection prologue file

To establish this collection prologue file as the default prologue file for
subsequently created test collections, specify the following command:

DTM> SET PROLOGUE DUAQ: [USERO1.DTM CMSLIB]COLLECTION_ PROLOGUE.COM

In this example, the prologue file exists in the CMS library.

Tailoring Your Test System 6-5

Example 6-4 shows an epilogue file that sends the results of the tests in
a collection to the project leader through the VMS Mail Utility (MAIL).
The collection name is identified by the DEC/Test Manager logical name
DTM$COLLECTION_NAME; the project leader is identified with the mail
address, USERS7.

Example 6-4: Sample Collection Epilogue File

$! —--- COLLECTION_EPILOGUE.COM ---

$! Collection epilogue file for mailing test results to USERS87,

$! upon completion of the test run.

$!

$ DTM SHOW COLLECTION ‘DTM$COLLECTION NAME’/FULL-

$ /OUTPUT='DTM$COLLECTION NAME’ .REPORT

$!

$ MAIL ‘DTM$COLLECTION_ NAME’ .REPORT/SUBJECT="Collection summary" USER87
$!

$! End of collection epilogue file

To establish this epilogue file as the default epilogue file for subsequently
created test collections, specify the following command:

DTM> SET EPILOGUE DUAQ: [USER(01.DTM CMSLIB]COLLECTION_EPILOGUE.COM

In this example, the epilogue file exists in the CMS library.

6.2 Grouping Tests

You can classify test descriptions by placing them into categories called
groups. You identify each group in the library with a group name, which
is unique in the current library. As a result, you need only specify a group
name rather than a long list of individual test descriptions when referencing
the tests in a group.

This section describes the DEC/Test Manager commands that perform the
following actions:

¢ Create a group

¢ Change the contents of a group
¢ Delete a group

* Build a hierarchy of groups

6-6 Tailoring Your Test System

Table 6-2 shows the commands that operate on groups and their correspond-
ing functions.

Table 6-2: Group Commands

Command Function

CREATE GROUP Creates an empty group into which you can
insert tests or groups.

DELETE GROUP Deletes an existing group. A group must be
empty before it can be deleted.

INSERT GROUP Places a group inside another group.

INSERT TEST_DESCRIPTION Places a test inside an existing group.

MODIFY GROUP Replaces the remark associated with an existing
group.

REMOVE GROUP Removes a group from another group.

REMOVE TEST_DESCRIPTION Removes a test from an existing group.

SHOW GROUP Lists the group’s name, its contents, and its

creation remark.

6.2.1 Organizing Tests into Groups

After you create a group name with the CREATE GROUP command, you
can insert one or more tests by listing the test names with the INSERT
TEST_DESCRIPTION command. You can use wildeards when you specify
test names to be inserted into a group. Tests are associated together by
group name only; they are not relocated or copied.

Example 6-5 shows how to create several groups in a terminal environment;
it uses CREATE GROUP, INSERT TEST_DESCRIPTION, and INSERT
GROUP commands.

Tailoring Your Test System 6-7

Example 6-5: Creating Groups

°DTM> CREATE GROUP BOUNDARIES "Creating Group BOUNDARIES"

%$DTM-S-CREATED, group BOUNDARIES created

DTM> CREATE GROUP LMARGIN "Creating Group LMARGIN"
$DTM-S—-CREATED, group LMARGIN created

DTM> CREATE GROUP RMARGIN "Creating Group RMARGIN"
$DTM-S-CREATED, group RMARGIN created

DTM> CREATE GROUP MARGINS "Creating Group MARGINS"
%$DTM-S-CREATED, group MARGINS created

9 DTM> INSERT TEST DESCRIPTION LMTEST1,LMTESTZ2,LMTEST3 LMARGIN
_Remark: Grouping the left margin tests
%$DTM-I-INSERTED, test description LMTEST1 inserted into group LMARGIN
$DTM-I-INSERTED, test description LMTEST2 inserted into group LMARGIN
%DTM-I-INSERTED, test description LMTEST3 inserted into group LMARGIN
%$DTM~-S-INSERTIONS, 3 insertions completed

G’DTM> INSERT TEST_DESCRIPTION RMTEST1,RMTEST2,RMTEST3,RMTEST4 RMARGIN
_Remark: Grouping the right margin tests
$DTM-I-INSERTED, test description RMTEST1 inserted into group RMARGIN
$DTM~I-INSERTED, test description RMTEST2 inserted into group RMARGIN
$DTM-I-INSERTED, test description RMTEST3 inserted into group RMARGIN
$DTM-I-INSERTED, test description RMTEST4 inserted into group RMARGIN
$DTM-S-INSERTIONS, 4 insertions completed

eDTM> INSERT GROUP LMARGIN,RMARGIN MARGINS
_Remark: Grouping the margin tests together under MARGINS
$DTM-I-INSERTED, group LMARGIN inserted into group MARGINS
$DTM-I-INSERTED, group RMARGIN inserted into group MARGINS
$DTM~S-INSERTIONS, 2 insertions completed

eDTM> INSERT GROUP MARGINS BOUNDARIES
_Remark: Grouping the margin groups into a boundaries group
$DTM-I-INSERTED, group MARGINS inserted into group BOUNDARIES
DTM>

Create four empty groups: BOUNDARIES, LMARGIN, RMARGIN, and
MARGINS.

Insert three left margin tests into the LMARGIN group.
Insert four right margin tests into the RMARGIN group.

Insert the two groups LMARGIN and RMARGIN into the group
MARGINS.

Insert the group MARGINS into the group BOUNDARIES.

When you insert a group into another group, you create a group hierarchy
Figure 61 shows the BOUNDARIES groups hierarchy.

6-8 Tailoring Your Test System

Figure 6-1: Sample Group Hierarchy

BOUNDARIES
!
MARGINS
/ \
LMARGIN RMARGIN

6.2.2 Displaying a Group Structure

Use the SHOW GROUP command to display the structure of groups for
the current library by specifying the SHOW GROUP command. You can
display different amounts of information about the groups in a library with
the SHOW GROUP qualifiers (see the Command Dictionary section for
more information). The following example shows the output for the SHOW
GROUP command with the /FULL qualifier for the project library:

DTM> SHOW GROUP/FULL
Groups in DEC/Test Manager Library DUAO: [USERO1l.PROJECT]

BOUNDARIES "Creating Group BOUNDARIES"
MARGINS/Group

LMARGIN/Group
LMTEST1
LMTEST2
LMTEST3

RMARGIN/Group
RMTEST1
RMTEST2
RMTEST3
RMTEST4

LMARGIN "Creating Group LMARGIN"
LMTEST1
LMTEST2
LMTEST3

MARGINS "Creating Group MARGINS"
LMARGIN/Group
LMTEST1
LMTEST2
LMTEST3
RMARGIN/Group
RMTEST1
RMTEST2
RMTEST3
RMTEST4

Tailoring Your Test System 6-9

RMARGIN "Creating Group RMARGIN"
RMTEST1
RMTEST2
RMTEST3
RMTEST4
DTM>

6.2.3 Removing Tests and Subgroups from Groups

Use the REMOVE TEST_DESCRIPTION to disassociate tests from a group
Use the REMOVE GROUP commands to disassociate groups from a group.
These commands reverse the actions of the INSERT TEST_DESCRIPTION
and INSERT GROUP commands. The remove commands do not delete any
tests or groups.

The following example removes a single test from the LMARGIN group:

DTM> REMOVE TEST_ DESCRIPTION LMTEST2 LMARGIN

_Remark: Removing test 2 from LMARGIN

Confirm removal of test description LMTEST2 from group LMARGIN ([Y/N] (N): Y
$DTM-I-REMOVED, test description LMTEST2 removed from group LMARGIN

DTM>

The following example removes the RMARGIN subgroup from the
MARGINS group:

DTM> REMOVE GROUP RMARGIN MARGINS "Removing RMARGIN from MARGINS"
Confirm removal of group RMARGIN from group MARGINS [Y/N] (N): Y
$DTM-I-REMOVED, group RMARGIN removed from group MARGINS

DTM>

6.2.4 Deleting Groups

When you create a group, DEC/Test Manager continues to associate that
name with a group, even if the group no longer contains tests. You can
delete the associated group name by specifying the DELETE GROUP
command.

Before you can delete a group, you must remove all test or group association
from that group, using the REMOVE TEST_DESCRIPTION and REMOVE
GROUP commands, as described in Section 6.2.3. The following example
removes all the tests from the RMARGIN group, then deletes the RMARGID?
group.

6-10 Tailoring Your Test System

DTM> REMOVE TEST DESCRIPTION * RMARGIN

_Remark: Preparing to delete group RMARGIN
Confirm removal of test description RMTEST1 from group RMARGIN [Y/N] (N):
$DTM-I-REMOVED, test description RMTEST1 removed from group RMARGIN

Confirm removal of test description RMTEST4 from group RMARGIN [Y/N] (N):
$DTM-I-REMOVED, test description RMTEST4 removed from group RMARGIN
$DTM-S-REMOVALS, 4 removals completed

DTM> DELETE GROUP RMARGIN "Deleting the RMARGIN group"

Confirm deletion of group RMARGIN [Y/N] (N): Y

$DTM-S-DELETED, group RMARGIN deleted

DTM>

6.3 Using Variables

A DEC/Test Manager variable is a user-defined VMS symbol or logical
name that you use in DEC/Test Manager tests, prologue files, and epilogue
files.

Use the CREATE VARIABLE command to add a variable to the DEC/Test
Manager library. Use the MODIFY VARIABLE to change file names. For
example, you might want to use a variable to replace a file name in a
template file. See the Command Dictionary for more information about
the CREATE VARIABLE and MODIFY VARIABLE commands and their
qualifiers.

NOTE

P1 through P8 and any variable name with the prefix DTM$ are
reserved for exclusive use by DEC/Test Manager. You receive a
warning if you attempt to create a variable with these names.

A DEC/Test Manager variable can be global or local in scope. A global
variable is associated with all tests in a collection; a local variable is defined
only during a specific test execution. Local variables must be associated
with specific test descriptions by using the CREATE TEST_DESCRIPTION
or MODIFY TEST_DESCRIPTION command with the /VARIABLE qualifier.
When you create a collection, DEC/Test Manager associates all existing
global variables with the collection and defines them at the start of every
collection.

If you redefine a global variable or create a new global variable in the
DEC/Test Manager library, use the RECREATE command to re-create the
collection and associate it with the new global variables.

Tailoring Your Test System 6-11

The following example shows you how to use the CREATE VARIABLE
command to create a global variable. If you have a test that issues many
SUBMIT commands and you do not want to print all the LOG files that the
test generates, you can create a variable with variable name SUBMIT and
give it the variable value SUBMIT/NOPRINTER, as shown in this example.

DTM> CREATE VARIABLE SUBMIT "SUBMIT/NOPRINTER"/GLOBAL/SYMBOL
_Remark: "Redefine the SUBMIT command"

Any test that uses the SUBMIT command subsequent to this command
uses the new definition, as if you had entered the following command before
executing the test:

$ SUBMIT == SUBMIT/NOPRINTER

NOTE

Avoid assigning values to global variables from within template,
prologue, or epilogue files. Instead, let DEC/Test Manager assign
the indicated value before the template, prologue, or epilogue file
is executed.

Global variable values can be overridden for an individual test that requires
special handling. See Section 6.3.2 for more information.

A local variable can be accessed by a single test when you include that
variable in the test description. To use a local variable, you must do the
following:

1. Specify the CREATE VARIABLE or MODIFY VARIABLE command with
the /LOCAL qualifier to define the variable as a local variable.

2. Specify the variable using the CREATE TEST_DESCRIPTION or
MODIFY TEST_DESCRIPTION command with the /VARIABLE
qualifier, as shown in the following example:

DTM> CREATE TEST_DESCRIPTION MECHANIX -
_DTM> /VARIABLE=(SBMT="SUBMIT/NOPRINTER")

3. Use the variable in the template file, prologue file, or epilogue file of
specific test descriptions.

Wherever the SUBMIT variable is used in the MECHANIX test, DEC/Test
Manager translates the variable to SUBMIT/NOPRINTER. Other tests are
unaffected by this local definition of the SUBMIT variable.

You can disassociate variables from an existing test description by using
the MODIFY TEST_DESCRIPTION command with the /NOVARIABLE
qualifier.

6-12 Tailoring Your Test System

6.3.1 Modifying and Deleting Variables

You can modify one or more variable characteristics and delete variables.

To modify variable characteristics, use the MODIFY VARIABLE command
with one or more of its qualifiers. For example, you can change the default
value of a variable, as shown in the following example:

DTM> MODIFY VARIABLE INPUT_FILE/VALUE=INPUT.RNO
_Remark: "Replacing value of INPUT_FILE with INPUT.RNO"
$DTM-S-MODIFIED, variable INPUT FILE modified.

The variable expression parameter can be a variable name, a wildcard
character, a wildeard in combination with a variable name, or a list of these
separated by commas.

To delete a variable from the DEC/Test Manager library, use the DELETE
VARIABLE command, as shown in the following example:

DTM> DELETE VARIABLE INPUT _FILE "Deleting the INPUT FILE variable"
Confirm deletion of variable INPUT FILE [Y/N] (N): Y
$DTM-S-DELETED, variable INPUT FILE deleted.

NOTE

DEC/Test Manager will not delete a variable that is associated
with a test description. If you attempt to delete several variables
with a variable expression and one or more of them is associated
with a test description, DEC/Test Manager deletes only those
variables not associated with a test description. Use the MODIFY
TEST_DESCRIPTION/NOVARIABLE command to disassociate
variables from test descriptions.

See the Command Dictionary for more information about modifying and
deleting variables.

6.3.2 Overriding Variable Default Values

Most tests use a variable’s default value. However, certain tests may require
special handling and require special variable values. For example, you may
want to use one template file to run several tests. You can do this by using
a variable in the template file to override the variable’s value for each test
description.

Tailoring Your Test System 6-13

Example 6-6 performs the following actions:

® Creates the variable TEMPLDIR, with DUAO:[USER01.TMP] as its
value.

¢ Modifies the variable’s value so that when it is used with the test
description MECHANIX, its value is DUAO:[USER01.PROJECT.TMP].

Example 6-6: Overriding Variables

DTM> CREATE VARIABLE TEMPLDIR DUAO: [USERO1l.TMP]/GLOBAL
_Remark: Template Directory

%$DTM-S-CREATED, logical variable TEMPLDIR created

DTM> MODIFY TEST DESCRIPTION MECHANIX -

_DTM> /VARIABLE=(TEMPLDIR=DUAOQ: [USERO1.PROJECT.TMP])

_Remark: "Change variable value when used in MECHANIX"
%$DTM-S-MODIFIED, test description MECHANIX modified
DTM>

You can override the default value of a global variable when you create a col
lection. To do this, use the CREATE COLLECTION/VARIABLE command.
The following example creates the collection KEYTESTS and, for this collec-
tion only, changes the value of TEMPLDIR to DUAQ:[USER01.TEST.TMP]I.

DTM> CREATE COLLECTION KEYTESTS * -
_DTM> /VARIABLE=(TEMPLDIR="DUAO: [USEROl.TEST.TMP]")-
_Remark: New template directory for this collection

The test descriptions in collection KEYTESTS that are explicitly associated
with the variable TEMPLDIR are not permanently affected by the override
value. For example, MECHANIX in KEYTESTS will still have the value
DUAO:[USER01.PROJECT.TMP], despite the collection override value.

NOTE

You should override variables sparingly because you are changing
the variable’s value from earlier test runs. This may cause the
actual test output to differ from the expected test output. In
addition, any changes in variable values may affect the prologue
and epilogue files. As a result, you must examine the differences
and result files to discover whether the actual test output is what
you expected.

6-14 Tailoring Your Test System

6.3.3 Using Variables Defined by DEC/Test Manager

DEC/Test Manager supplies built-in variables that you can use in template
files, prologue files, and epilogue files. The following sections describe these
built-in variables and provide examples of how to use each one.

6.3.3.1 DTM$COLLECTION_NAME Global Symbol

DEC/Test Manager defines the VMS global symbol DTM$COLLECTION_
NAME to be the current collection name before the collection prologue file
executes. It is available for use in any prologue, epilogue, or template file in
the collection.

For example, you can obtain a quick report of the status of a collection at
the end of the run, and you can be informed when the collection is finished,
by having the collection epilogue file do the following:

* Invoke DEC/Test Manager.

¢ Enter the SHOW COLLECTION command with the /FULL qualifier
using DTM$COLLECTION_NAME to specify the collection name.

* Invoke the VMS Mail Utility (MAIL) to send you the output of this
command.

See Example 6—4 for the sample collection epilogue file.

6.3.3.2 DTMS$TEST_NAME Local Symbol

DEC/Test Manager establishes the VMS local symbol DTM$TEST _NAME as
the test name field of the test description. You can use DTM$TEST NAME
in template files, in test epilogue files, and in test prologue files.

The following example shows how you can write the file MAIL_
TEMPLATE.COM (the template file associated with test description SEND_
MAIL_TEST) using DTM$TEST_NAME. If you create a modified copy of
SEND_MAIL_TEST (the test description that previously used template

file MAIL_TEMPLATE.COM) and call the modified copy REPLY_MAIL_
TEST, you can generalize MAIL,_TEMPLATE.COM to run with both SEND_
MAIL_TEST and REPLY_MAIL_TEST by using DTM$TEST_NAME in the
template file. Example 6—7 shows the more general template file.

Tailoring Your Test System 6-15

Example 6-7: Using the DTM$TEST_NAME Local Symbol

$! --- MAIL TEMPLATE.COM ---

$! TEMPLATE file for MAIL message sending commands
$!

$ @'dtm$test_name’ .COM

$!

$! This new template file can be used with any test whose test
$! name is the same as that of the input file.

6.3.3.3 DTM$RESULT Logical Name

DEC/Test Manager establishes the VMS logical name DTM$RESULT as th
logical equivalent to the file specification for the test result file. DEC/Test
Manager defines DTM$RESULT immediately after the test template file
executes and just before the test epilogue file executes. It is deassigned aft
the test epilogue file executes and therefore exists only during test epilogus
file execution.

DTM$RESULT enables you to create the epilogue file to filter run-dependes
information from the result file. To do this, the epilogue file runs the resul
file through a text editor, such as EDT.

Example 6-8 shows an epilogue file that invokes EDT to remove from the
result file all lines that contain VMS run information on the amount of
memory used. The epilogue file deletes all lines containing the phrase
“Memory Used:”.

NOTE

DEC/Test Manager DECwindows result files are in DDIF format.
Attempts to alter these files may corrupt them.

Example 6-8: Using the DTM$RESULT Logical Name

$! MEM.FIL -- Eliminate any "Memory Used:"
$! messages from .RES files.

$ EDIT/EDT DTM$RESULT

c; 32767 ('Memory Used:’ dl) ex

EXIT

$ PURGE DTMSRESULT

6-16 Tailoring Your Test System

6.3.3.4 DTMSDECWS$DISPLAY Logical Name

You can define the DTM$DECW$DISPLAY logical name to identify the
DECwindows display that DEC/Test Manager is to use for recording or
playing DECwindows tests. The DTM$DECWS$DISPLAY logical name is
defined in the same way the DECW$DISPLAY logical name in VMS is
defined. See the VMS DECwindows User’s Guide for more information
about defining the DECW$DISPLAY logical name.

For example, you can set the DEC/Test Manager record and playback
workstation as the WSA1 workstation device by specifying the following
command:

$ DEFINE DTM$DECW$SDISPLAY _WSAl:

By default, DEC/Test Manager uses the default DECwindows display,
generally determined by the DECW$DISPLAY logical name. The /DISPLAY
qualifier overrides all display determination options on the RECORD and
PLAY commands.

You can use DECW$DISPLAY to record or play DECwindows tests on
another workstation.

If a command is associated with a DECwindows test, you must ensure that
any applications the command may invoke connects to the DECwindows
display that DEC/Test Manager will use for record or playback functions.

6.3.3.5 DTMSDELAY_TIMEOUT Logical Name

During interactive terminal test playback, DEC/Test Manager sends termi-
nal input to an application as fast as the application will accept it. Under
some circumstances, an application may never directly request input (with a
QIO), but may check input queues periodically for the presence of input.

For interactive terminal test play back, DEC/Test Manager cannot detect
when the application is ready for input, but by default, waits 7 seconds and
then sends input, thus allowing the test to continue.

For DECwindows tests, test synchronization can be accomplished by editing
an input file (see Chapter 9). When synchronization points are encountered
in a DECwindows session file, DEC/Test Manager waits for a specified
DECwindows display event to occur before continuing to send input.
DEC/Test Manager waits 7 seconds, by default, but you can specify another
timeout value.

Tailoring Your Test System 6-17

You can use DTM$DELAY_TIMEOUT to specify your own delay timeout
value. The value must be specified as a standard VMS delta time. For
example, to set a timeout value of 15 seconds, enter the following logical
definition:

$ DEFINE DTM$DELAY_ TIMEOUT "0 00:00:15.0"

6.3.3.6 DTM$OMIT_PRINTABLE_SCREENS Logical Name

When DEC/Test Manager compares interactive tests while running a col-
lection, DEC/Test Manager can optionally create printable versions of the
result (RES_SCREENS) and the benchmark ((BMK_SCREENS) files. The
files are only used for printing by the PRINT command with the /RESULT
/BENCHMARK qualifiers during the subsequent REVIEW of the collectio:
test results. The files can grow to be quite large depending on the quantit
of screens compared during the collection run.

DEC/Test Manager creates printable screens files when you specify to do
so based on the value of the logical name, DTM$OMIT _PRINTABLE_
SCREENS, which can be set in the collection prologue procedure.

If the logical name is not defined or set to a value of 0, the default action
is to create the printable screens. If the logical name is defined and set tc
a value of 1, the printable screens are not created during the comparison «
the test results. Enter the following logical definition to omit creating the
printable screens:

$ DEFINE DTM$OMIT PRINTABLE_SCREENS 1

6.4 Using Filters

DEC/Test Manager enables you to filter data that varies in test results fro
one test run to the next. DEC/Test Manager also enables you to filter date
during the recording of a test to produce a filtered benchmark file.

DEC/Test Manager filters operate by changing specified data types (like tix
stamps) to ASCII characters of a standard format. For example, a VMS tir
stamp of 13:20:23.0002 can be changed to hh:mm:ss.xxxx.

The following commands provide ways to specify filtering:

¢ CREATE TEST_DESCRIPTION/FILTER=keyword
MODIFY TEST_DESCRIPTION/FILTER=keyword

6-18 Tailoring Your Test System

Using the CREATE TEST _DESCRIPTION or MODIFY TEST_
DESCRIPTION command with the /FILTER qualifier, the specified
filters are to be applied only to the test being created. See Section 6.4.1.
When a test is run in a collection, the filters associated with it are
applied to the result file.

¢ RECORD testname/FILTERS

Using the RECORD command with the /FILTERS qualifier when the
test is recorded causes DEC/Test Manager to apply the filters associated
with the test description to the benchmark file (if a benchmark file is
produced).

* FILTER file-specification/qualifier

Using the FILTER command, the specified filters are to be applied to the
specified file, which can be any VMS file and does not necessarily need
to be applied to DEC/Test Manager files. See Section 6.4.2.

Test result files are filtered when the test is run in a collection. The filtering
is performed after the test epilogue file has been run.

See the CREATE TEST_DESCRIPTION, FILTER, and MODIFY TEST_
DESCRIPTION commands in the Command Dictionary for the types of
filters you can use.

DECwindows tests cannot have filters associated with them. DECwindows
tests use the Mask Editor to create areas that cause DEC/Test Manager to
ignore image data in screen comparisons. See Chapter 2 for information on
filtering DECwindows result and benchmark files.

NOTE

Use caution with filters because the original unfiltered result file
is deleted after the filtering occurs, leaving only the filtered file.
Using filters on interactive tests that contain escape sequences
can delete information that is essential to the test.

6.4.1 Associating and Disabling Test Filters

Use the CREATE TEST_DESCRIPTION or MODIFY TEST_DESCRIPTION
command with the /FILTER qualifier to associate filters with a specific test
description.

When the test is executed, DEC/Test Manager filters the result file (after the
epilogue file is run).

Tailoring Your Test System 6-19

Use the MODIFY TEST_DESCRIPTION command with the /NOFILTER
qualifier to disable any specified filter from a specific test. The following
example shows how to remove the DATE filter from the MAIL_TEST test
description:

DTM> MODIFY TEST DESCRIPTION MAIL_TEST/NOFILTER=DATE
_Remark: Disabling the DATE filter

NOTE

If you modify filters for a test description, you must subse-
quently use the RECREATE command to re-create any collections
containing the test.

The SHOW TEST_DESCRIPTION with the /FULL or /FILTER qualifier list
the filters associated with a specific test description.

6.4.2 Applying File Filters

To apply any or all of the filters to a file (inside or outside of a DEC/Test
Manager library), use the FILTER command. The following command filter
the time and date from the benchmark file of the MAIL_TEST test:

DTM> FILTER MAIL TEST.BMK/TIME/DATE "Filter out time and date stamps"

6.5 Defining Keypad Keys

DEC/Test Manager supplies you with four default operations keypads for
the terminal environment, depending on the DEC/Test Manager subsystem
that you are using. Keypad definitions are not recognized by the DEC/Test
Manager DECwindows interface. This section describes the DEC/Test
Manager system default keypad. The other keypads are described in
Chapter 5.

The DEC/Test Manager keypad is available when you invoke DEC/Test
Manager. The GOLD key (PF1), the HELP key (PF2), and the ENTER
(RETURN) keys are already defined; the rest of the keys on the keypad are
undefined. You can define a key to execute up to two DEC/Test Manager
commands by specifying one command to execute when you press the
defined key and by specifying another command to execute when you press
the GOLD key and then the defined key. You can create a custom keypad b;
defining keys to execute often-used commands or command strings that are
very long.

6-20 Tailoring Your Test System

When you create key definitions with the DEFINE/KEY command, these
definitions are in effect only for the current DEC/Test Manager session. The
next time you invoke DEC/Test Manager, only the default key definitions
will be in effect. To save key definitions and to use them in every DEC/Test
Manager session you initiate, include the key definitions in a DEC/Test
Manager initialization file. This file is executed whenever you invoke
DEC/Test Manager. For more information on initialization files, see
Section 6.6.2.

If you have key definitions that you want to save but do not necessarily want

to use every time you invoke DEC/Test Manager, store them in a command
file.

You can define the keypad keys to execute DEC/Test Manager commands
in a single keystroke by using the DEFINE/KEY command. The following
example defines KP5 to set the default DEC/Test Manager library:

DTM> DEFINE/KEY KP5 "SET LIBRARY DUAO: [USER01.LIB_A]"/TERMINATE
DTM>

If you subsequently press KP5, the following text is displayed:

DTM> SET LIBRARY DUAO: [USER01.LIB A]
$DTM-S-LIBIS, DEC/Test Manager library is DUAO: [USER01.LIB_A]
DTM>

GOLD command keys are the same as regular command keys except that
you must press the GOLD key (PF1) before pressing the command key. This
enables you to have two commands associated with one keypad key. You
can define the GOLD keypad keys to execute DEC/Test Manager commands
in two keystrokes by using the DEFINE/KEY command with the /SET
STATE=GOLD_DTM qualifier. The following example defines GOLD KP5 to
set the default DEC/Test Manager library to a different library from the one
in the previous example:

DTM> DEFINE/KEY KP5 /IF_STATE=GOLD DTM/TERM -
_DTM> "SET LIBRARY DUAQ: [USERO1.LIB B]"/TERMINATE
DTM>

If you subsequently press GOLD KP5, the following text is displayed:
DTM> SET LIBRARY DUAO: [USER01.LIB_B]

$DTM-S-LIBIS, DEC/Test Manager library is DUAO: [USERO1.LIB_B]

DTM> ‘

See the DEFINE/KEY command in the Command Dictionary for more
information on defining keys.

Tailoring Your Test System 6-21

6.6 Using Command Files

A DEC/Test Manager command file is a file containing one or more
DEC/Test Manager commands. A DEC/Test Manager command file has a
file type of .COM and is executed by using the @ character. The format for
executing a command file is as follows:

DTM> @file-specification

When you invoke a command file, its commands execute in sequence.

You can nest command files within command files. When a command file
encounters a nested command file, DEC/Test Manager stops processing the
original command file and begins executing the newly encountered comman
file. When DEC/Test Manager completes the nested command file, DEC/Tes
Manager resumes processing of the original command file.

NOTE

DEC/Test Manager does not check for recursive command files. If
you have a command file that invokes itself, or invokes another
command file that invokes the original command file, you will
create an infinite loop.

An EXIT command in a command file causes DEC/Test Manager to
terminate the subsystem that is running. It does not necessarily terminate
execution of the command file. For example, if the command file issues the
EXIT command from the Review subsystem, control returns to the DEC/Tes
Manager level. If an EXIT command terminates the DEC/Test Manager
session, execution of the command file terminates.

If the command file causes an error or warning to occur, execution of the
command file stops and no subsequent commands are executed.

6.6.1 Creating and Invoking a Command File

You create DEC/Test Manager command files with a text editor and invoke
them from the DEC/Test Manager subsystem level, from the Review
subsystem level, or from within another command file. If you include only :
file name with the @file-specification command, DEC/Test Manager assume:
a file type of .COM.

In a DEC/Test Manager command file, if you specify a DEC/Test Manager
command but omit a required parameter, DEC/Test Manager prompts you
for the missing parameter.

6-22 Tailoring Your Test System

When you invoke DEC/Test Manager from a DCL command procedure, be
sure to supply all required command parameters. If you omit a required
parameter for which you would be prompted if you entered the command
interactively, DCL reads the next line in the command file as the missing
parameter rather than as a separate command. The second command is lost.

6.6.2 Creating a DEC/Test Manager Initialization Command File

Use the DEFINE command to define a DEC/Test Manager initialization com-
mand file. DEC/Test Manager provides the VMS logical name DTM$INIT
that you define to identify a command file that you want DEC/Test Manager
to execute each time you invoke DEC/Test Manager.

A typical initialization command file would contain the commands you enter
every time you invoke DEC/Test Manager. For example, it could contain
the command to select a DEC/Test Manager library and the commands to
define keys on the DEC/Test Manager keypad. Example 6-9 establishes
the DEC/Test Manager library as [USER01.DTMLIB] and defines several
keypad keys on the DEC/Test Manager keypad.

Example 6-9: Sample Initialization Command File

!Initialization file to set library and define keys

!{Establish the library

SET LIBRARY DUAO: [USERO1l.DTMLIB]

{Define keypad keys

]
DEFINE/KEY
DEFINE/KEY
DEFINE/KEY
DEFINE/KEY

KP3/IF_STATE=DTM "SHOW COLLECTION */FULL"/TERMINATE

PF4/IF STATE=GOLD_DTM "SET LIBRARY DUAO:[USERO1.LIB_A]"/TERMINATE
KP1/IF_STATE=REVIEW "NEXT/SUCCESSFUL"/TERMINATE
KP1/IF_STATE=GOLD_REVIEW "BACK/SUCCESSFUL"/TERMINATE

You can suppress the initialization command file execution by invoking
DEC/Test Manager with the /NOINIT qualifier, as shown in the following
example:

$ DTM/NOINIT

Tailoring Your Test System 6-23

6.7 Spawning or Attaching to Another Process

You can use the SPAWN or ATTACH commands at both the DEC/Test
Manager prompt (DTM>) and the Review prompt (DTM_REVIEW>). These
commands enable you to create one or more subprocesses of your parent
process, and to move between these processes.

NOTE

The SPAWN and ATTACH commands have no corresponding
action in a DECwindows environment.

The SPAWN command enables you to create (spawn) a subprocess and to
attach your terminal or workstation to the subprocess. You can create a

subprocess to issue DCL commands, to read an electronic mail message,

or to create another DEC/Test Manager session. The ATTACH command
enables you to switch to other subprocesses.

If you specify a DCL command as a parameter to the SPAWN command,
the DCL command is executed and control is returned immediately to the
DEC/Test Manager session. If you do not include a DCL command, the
DCL prompt displays, and you can then issue DCL commands. As each
command terminates, the DCL prompt reappears. You can return to the
parent process by logging out of the subprocess or by issuing the ATTACH
command.

6-24 Tailoring Your Test System

Chapter 7

Maintaining a DEC/Test Manager Library

This chapter describes various methods and commands for maintaining a
DEC/Test Manager library; it provides information on the following topics:

¢ Correcting an invalid DEC/Test Manager library
* Storing files outside a DEC/Test Manager library

e How to set up security features for a DEC/Test Manager library and its
files

7.1 Correcting an Invalid DEC/Test Manager Library

If an abrupt process, termination, job termination, or a system failure occurs
while a DEC/Test Manager library-altering command is executing, the
library is considered invalid. DEC/Test Manager can detect errors in the
library structure, its files, and its collections. DEC/Test Manager enables
you to recover from these errors in structure.

To recover an invalid library, you must verify its structure by specifying the
VERIFY command.

When you enter the VERIFY command to recover an invalid library,
DEC/Test Manager performs an evaluation on the current DEC/Test
Manager library to ensure that the library and its files have a valid
structure. The VERIFY command also consolidates disk space.

If the library is valid, the command executes successfully. You can use the
VERIFY command on valid libraries; it does not damage a properly created
DEC/Test Manager library.

If you specify the VERIFY command with the /RECOVER qualifier, and
DEC/Test Manager fails to return the library to a valid state, you must
restore it from backup.

Maintaining a DEC/Test Manager Library 7-1

If DEC/Test Manager encounters subdirectories that are not associated
with a current collection while restoring the library, you are prompted
for confirmation of deletion of these subdirectories. You should not create
subdirectories in any DEC/Test Manager library.

If a collection run is terminated other than with the STOP command or by
pressing CTRL/C, that collection is locked and you are not able to review it.
In this case, the VERIFY command with the /RECOVER qualifier unlocks
the library and marks the tests that did not run.

After entering the VERIFY command with the /RECOVER qualifier,
compare and then review the collection. While reviewing the collection, you
can create a group containing the tests that did not run. After leaving the
Review subsystem, you can execute that group of tests.

If you issue the VERIFY command with the /REPAIR qualifier, DEC/Test
Manager attempts to reclaim loose blocks in the current DEC/Test Manager
library and deletes illegal files found in the library.

7.2 Storing Files Outside a DEC/Test Manager Library

You must store template files, test prologue and epilogue files, and collection
prologue and epilogue files outside the DEC/Test Manager library, in VMS
directories, VAX DEC/Code Management System (CMS) libraries, or both.
You can store benchmark files inside or outside a DEC/Test Manager library.

7.2.1 Setting Benchmark and Template Directories

Use the SET BENCHMARK_DIRECTORY and SET TEMPLATE _
DIRECTORY commands to establish default benchmark and template
directories for the current DEC/Test Manager library. DEC/Test Manager
processes files faster when you use default benchmark and template
directories rather than specifying a directory with each file name.

If you do not specify default benchmark and template directories, DEC/Test
Manager uses your current default directory (SYS$DISK:[]) for template
files and the DEC/Test Manager library (DTM$LIB) for benchmark files.

In a DECwindows environment, default benchmark and template directories
are specified on the Create Library or Modify Library dialog box. The Create
Library dialog box is shown in Chapter 2.

7-2 Maintaining a DEC/Test Manager Library

After you create or modify a test description, you can override the default
directories for the current DEC/Test Manager library (if defaults exist) by
using the CREATE COLLECTION command with the /' BENCHMARK _
DIRECTORY and /TEMPLATE_DIRECTORY qualifiers. The specified
directories are used for the benchmark and template files for the collection
being created.

To remove a default benchmark or template directory without replacing it,
enter the SET NOBENCHMARK_DIRECTORY or the SET NOTEMPLATE _
DIRECTORY command. These commands return the benchmark directory
to DTM$LIB and the template directory to SYS$DISK:[].

7.2.2 Storing Files in CMS Libraries

Table 7-1:

DEC/Test Manager enables you to store your benchmark and template

files in one or more VAX DEC/Code Management System (CMS) libraries.
To do this, you must create the CMS libraries. Then use their directory
specifications in DEC/Test Manager commands, as described in the following
list:

¢ Create a directory and make it a CMS library. This directory cannot be
a subdirectory of the DEC/Test Manager library. See the Guide to VAX
DEC/Code Management System for information about setting up a CMS
library.

* Include the directory specification for the CMS library in the appropriate
DEC/Test Manager command (any command where you can specify a
directory specification for a file).

DEC/Test Manager Action in CMS Libraries

User Action

DEC/Test Manager Action in CMS

Specify benchmark and template DEC/Test Manager always evaluates directory specifications

files

to determine whether the directory specifications refer to CMS
libraries. If a directory name is a CMS library, DEC/Test
Manager issues the appropriate CMS commands to access the
files.

(continued on next page)

Maintaining a DEC/Test Manager Library 7-3

Table 7-1 (Cont.): DEC/Test Manager Action in CMS Libraries

User Action

DEC/Test Manager Action in CMS

Execute a collection

Compare a collection

Update an existing benchmark
file from the Review subsystem

Create a new benchmark file

Print or display a benchmark file

Record an interactive test whose
template and benchmark files
are stored in CMS libraries

DEC/Test Manager translates the file name into a CMS
element name and accesses the appropriate CMS element. If
a CMS class is also specified with the /CLASS qualifier with
the CREATE COLLECTION command, DEC/Test Manager
accesses the indicated generation of the element.

DEC/Test Manager fetches a copy of the template element fro
the CMS library and deletes the copy after using it.

DEC/Test Manager compares the result file with the specified
benchmark element in the CMS library. If a CMS class is
specified for the benchmark element, DEC/Test Manager
compares the result file with the appropriate generation of th
benchmark element.

DEC/Test Manager retrieves and reserves the specified bench-
mark element from the CMS library. DEC/Test Manager then
replaces the reserved benchmark element with the result file
from the current test run.

If you specify a CMS class for the benchmark file, DEC/Test
Manager places the result file in the appropriate benchmark
generation. If you update a benchmark generation other than
the latest, a variant line D is created. If the variant line

D already exists, the update fails and DEC/Test Manager
unreserves the benchmark element.

DEC/Test Manager creates a new benchmark element in the
CMS library.

DEC/Test Manager fetches a copy of the benchmark element
from the CMS library and deletes the benchmark file copy aft
printing or displaying it.

DEC/Test Manager creates new elements for new benchmark
and template files if the files do not already exist. If they do
exist, DEC/Test Manager replaces them with new benchmark
and template files.

If the directory specification portion of the file specification identifies a CMi
library, DEC/Test Manager fetches a copy of the latest generation of the
specified prologue or epilogue file from the CMS library. You cannot specify
CMS classes for prologue and epilogue files.

7-4 Maintaining a DEC/Test Manager Library

7.3 Security Features

You can protect DEC/Test Manager files and libraries with two mechanisms:
user identification code (UIC) based protection and access control list
(ACL) protection. You protect the files and libraries; DEC/Test Manager does
not define protection for library directories or library files.

UIC protection grants or denies access based on a user’s UIC code. ACL
protection grants or denies access based on a list of users. With ACLs you
can specify access for a set of users who are not in the same UIC group.

The following procedure shows the steps VMS performs in determining
access to a library directory or library file:
1. Evaluate the ACL (if present).

2. If no ACL is present, or the ACL does not prohibit access, evaluate the
UIC.

3. Evaluate the privileges; if a user has GRPPRV, READALL, and SYSPRV
privileges, or if a user has BYPASS privileges, VMS grants access even
if the ACL and UIC protections deny access.

7.3.1 Assigning UIC Protection

Every file has a user identification code protection associated with it. UIC
protection is determined by an owner UIC and a protection code. UIC
protection controls access to directories and files. When you attempt to gain
access to a directory or file, the system checks for existing ACLs; it then
checks the UIC protection code.

See the VMS DCL Concepts Manual or the VMS DCL Dictionary for more
information about UIC protection.

You can use the Digital Command Language (DCL) command SET
PROTECTION to specify a particular protection setting for the library
directory and for other DEC/Test Manager files. The following example sets
the protection to allow system, owner, and group access to a library but deny
world access to the library contained in the [PROJ.TESTING] directory:

$ SET PROTECTION=(S:RWE,O:RWE,G:RWE,W) [PROJ]TESTING.DIR

The following example uses the SET PROTECTION command to set the
protection for an individual file within the library directory.

$ SET PROTECTION=(S:RWED,O:RWED,G:RW, W) [PROJ.TESTING]OODTM.CON

Maintaining a DEC/Test Manager Library 7-5

To use all DEC/Test Manager commands in a library, you must have the
minimum access privileges (shown in Table 7—2) defined for your process:

Table 7-2: Privileges Required for DEC/Test Manager Library Users

Object Privilege
Library directory RW
Control file (00DTM.CON) RW
History file (00DTM.HIS) RW
All collection subdirectories (collection-name.DIR) RWD
All collection control files (collection-name.CON) in the collection RWD
subdirectories

Generic command file (DTM$$TEST_RECORD.COM) used to RD
record collections

Generic command file (DTM$$TEST_RUN.COM) used to run RD
collections

All other files in the library directory RD
All other files in the collection subdirectories RD
DEC/Test Manager images (SYS$SYSTEM:DTM.EXE, E
DTMSHR.EXE, and

DTM$XTRAP.EXE)

If you enable read-only access to a library directory or to the library control
file, users cannot make changes to the contents of the library, execute tests,
review tests, or perform comparisons. If you do not enable write access

to the collection control files, users cannot review collections. You should
enable group read and write access to these files.

When you create the library, enable read, write, and delete access to every
file in the library for at least one user. The three types of access are needed
to execute the VERIFY command with the /RECOVER qualifier.

NOTE

If you have SYSPRV privileges, file protection problems may occur
when you issue a DEC/Test Manager command that creates files
in a directory or library owned by another user because having
SYSPRYV privileges changes the ownership of files that are created
in a directory owned by another user.

7-6 Maintaining a DEC/Test Manager Library

You can restrict a person’s access to library files by using a UIC protec-
tion or ACL. If you do not use ACLs, all users of a particular DEC/Test
Manager library must be in the same user group. If you want to define
more selective protection (where various individuals in the user group have
differing access), you can use ACLs for the library directory and its files and
subdirectories.

The following sections summarize the procedures you can use to define the
access to a DEC/Test Manager library. For more information, see the VMS
DCL Dictionary and the Guide to VMS System Security.

7.3.2 Assigning ACL Protection

An ACL consists of access control entries (ACEs) that grant or deny access
to a library directory file or library file to specific users. ACLs used with
library directory files enable you to define access to an entire library. ACLs
used with library files enable you to establish specific control over access
to library contents. Generally, VMS ACLs are used in conjunction with the
standard UIC-based protection as a way to fine-tune protection.

See the VMS DCL Dictionary for more information on these commands. See
the Guide to VMS System Security for more information on using ACLs and
ACEs.

7.3.2.1 Using ACLs on Library Directories

Directory ACLs provide three means of controlling access to a DEC/Test
Manager library:

¢ By controlling access to the directory file itself, as shown in the following
example:

$ SET FILE/ACL=(IDENTIFIER=DBASEGRP, ACCESS=READ+WRITE) DTMLIB.DIR

This ACE grants READ and WRITE access to the directory file
DTMLIB.DIR to users who have the DBASEGRP identifier.

* By specifying a default UIC protection to be assigned to each new
file created in the directory. To set a specific UIC protection, use the
DEFAULT_PROTECTION keyword as the first field of an ACE, as
shown in the following example:

$ SET FILE/ACL=(DEFAULT_PROTECTION, S:RWED, O:RWED,G:RWED) DTMLIB.DIR

Maintaining a DEC/Test Manager Library 7-7

This ACE specifies that the UIC protection (S:RWED,O:RWED,G:RWED)
be applied to each new file created in the directory. (It does not affect
any files that may already exist in the directory.) If no other ACEs
impose stricter limitations, the system, owner, and group users are
granted full use of the library.

¢ By specifying a default identifier-based protection to be assigned to each
file created in the directory. To specify a default identifier ACE, use the
OPTIONS=DEFAULT keyword in the second field of an ACE that is
applied to a directory file, as shown in the following example:

$ SET FILE/ACL=(IDENTIFIER=DBASEGRP, OPTIONS=DEFAULT, ACCESS=READ+WRITE+DELETE)

The OPTIONS=DEFAULT keyword directs the operating system to
duplicate this ACE in the ACL of every new file that is created in the

directory. This ACE grants read, write, and delete access to users who
have the DBASEGRP identifier.

7.3.2.2 Using ACLs on Library Files

To control library access further, you can set the file protection for each file
in the library.

Table 7-3 shows a list of the DEC/Test Manager commands and the protec-
tion required for each object that the command accesses. Not all the
DEC/Test Manager commands are shown, because they do not all require
access privileges.

Table 7-3: Privileges Required for Individual DEC/Test Manager Commands

Library
Library Control Collection Library Collection

Command Directory File Subdirectories Files Files
COMPARE RW RW RW RW RWD
COPY TEST_DESCRIPTION RW RW RW

CREATE COLLECTION RW RW RW RW RWD
CREATE GROUP RW RW w

CREATE LIBRARY RW? RW w

CREATE TEST_DESCRIPTION RW RW RW

1The directory must be empty.

(continued on next page)

7-8 Maintaining a DEC/Test Manager Library

Table 7-3 (Cont.): Privileges Required for Individual DEC/Test Manager Commands

Library

Library Control Collection Library Collection
Command Directory File Subdirectories Files Files
CREATE VARIABLE RW RW w
DELETE COLLECTION RW RW RD RW RD
DELETE GROUP RW RW A
DELETE HISTORY RW R RWD
DELETE TEST_DESCRIPTION RW RW RWD
DELETE VARIABLE RW RW w
DISPLAY RW RW R
EXIT (REVIEW) RW RW RW R
INSERT GROUP RW RW w
INSERT TEST_DESCRIPTION RW RW w
MODIFY GROUP RW RW w
MODIFY TEST_DESCRIPTION RW RW RWD
MODIFY VARIABLE RW RW w
RECORD RW RW w
RECREATE RW RW RWD RWD RWD
REMARK RW A
REMOVE GROUP RW RW A
REMOVE TEST_DESCRIPTION RW RW w
REVIEW RW RW R RWD RWD
RUN RW RW RW RW RWD
SET BENCHMARK _ RW RW RW
DIRECTORY
SET EPILOGUE RW RW RW
SET LIBRARY R R RW
SET PROLOGUE RW RW RW
SET TEMPLATE_DIRECTORY RW RW RW
SHOW ALL R R

(continued on next page)

Maintaining a DEC/Test Manager Library 7-9

Table 7-3 (Cont.): Privileges Required for Individual DEC/Test Manager Commands

Library

Library Control Collection Library Collection
Command Directory File Subdirectories Files Files
SHOW BENCHMARK _ R R
DIRECTORY
SHOW COLLECTION/FULL R R R R R
SHOW EPILOGUE R R
SHOW GROUP R R
SHOW HISTORY R R
SHOW LIBRARY R R
SHOW PROLOGUE R R
SHOW TEMPLATE_ R R
DIRECTORY
SHOW TEST_DESCRIPTION R R
SHOW VARIABLE R R
SHOW VERSION R R
STOP RW RW RW w RW
SUBMIT RW RW RW RW RWD
VERIFY RW R R w R
VERIFY/RECOVER RW RW RD RW RWD

To propagate a UIC protection, use the DEFAULT _PROTECTION keyword
in the first field of a directory ACE, as shown in the following example:

(IDENTIFIER=TESTGRP, OPTIONS=DEFAULT, S:RWED, O:RWED, G:RWED)

This ACE specifies that the UIC protection (S:RWED,O0:RWED,G:RWED)
is applied to each new file created in the directory. (It does not affect any
files that may already exist in the directory.) If no ACEs impose stricter
limitations, the system, owner, and group users (as defined by the UIC) are
granted full use of the library.

To propagate an identifier-based protection mask, use the
OPTIONS=DEFAULT keyword in the second field of a directory ACE.

For example:

(IDENTIFIER=TESTGRP, OPTIONS=DEFAULT, ACCESS=READ+WRITE+DELETE)

7-10 Maintaining a DEC/Test Manager Library

The OPTIONS=DEFAULT keyword directs the operating system to duplicate
this ACE in the ACL of every new file that is created in the library. This
ACE then grants read, write, and delete access to users who have the
TESTGRP identifier.

Maintaining a DEC/Test Manager Library 7-11

Chapter 8

Working with Terminal Session Files

This chapter describes session files and input files for terminal-based tests
and discusses how they are used. The material in this chapter applies only
to session files for interactive terminal tests. It presents information on the
following topics:

¢ The format of session files
* The format of input files
® (Creating an input file
— from an existing session file
— using an editor
¢ Recording a session file from an input file

A terminal session file contains a record of an interactive terminal session
recorded for the purpose of interactively testing a program with DEC/Test
Manager. A session file has the default file type .SESSION and contains a
description of the type of terminal on which you recorded a terminal session,
a record of all keystrokes you input during the terminal session, a record of
all system output during the terminal session, and additional control and
timing information.

An input file contains a textual representation of all or part of an interactive
terminal session. You can read input files and edit them with any editor.
An input file has the default file type .INP and contains a record of all
characters you input during an interactive terminal session and special
strings, which are textual representations of nonprinting actions (such as

a backspace) and recording functions contained in session files. An input
file does not contain a record of characters output for the system during the
terminal session.

Working with Terminal Session Files 8-1

Input files can be used in place of manually recording a test. By editing an
input file, you can change the input sent to an application during the test.
You can also add wait records to control synchronization or mark additional
screens for comparison.

Input files for interactive terminal tests can be used to repeat a sequence
of input that may be required in multiple tests; they can also be used to
perform common set-up or clean-up operations. For example:

DTM> RECORD testname/INPUT=SETUP.INP/APPEND

The previous command directs DEC/Test Manager to record the test by
taking input from the file SETUP.INP and, when the file is empty, by taking
input from the user.

The user can also use an input file while a terminal recording session is
in progress by pressing CTRL/P-I. DEC/Test Manager prompts you for the
name of the input file. When the input file has been exhausted, the user
may continue recording. See Chapter 3 for more information on entering
commands during a recording session.

NOTE

DEC/Test Manager works only with session files produced from
properly generated input files and with unmodified session files
it creates. If you write programs to create session files, or if you
edit or otherwise modify session files, do so using input files as
described in this chapter.

Session files created or modified outside of DEC/Test Manager
may not be upwardly compatible with future versions of DEC/Test
Manager. Session files from properly generated input files are
upwardly compatible.

8.1 Terminal Session Files

A terminal session file consists of a record containing a 12-byte terminal
characteristics block followed by a sequence of records, each beginning
with a 1-character record type. Section 8.1.2.1 describes the record structure
of a session file.

8-2 Working with Terminal Session Files

8.1.1 Sample Session File

The following example shows the session file from recording a terminal
session where the DCL command SHOW DEFAULT is entered. Entering
the RECORD command to record the session file results in the following
terminal session.

$ DTM

DTM> CREATE TEST DESCRIPTION

_test name: testl

_Remark: Creating a simple session file

DTM> RECORD testl

$DTM-I-DEFAULTED, benchmark file name defaulted to TEST1.BMK
$DTM-I-DEFAULTED, template file name defaulted to TEST1.SESSION
%$DTM-I-BEGIN, your interactive test séssion is now beginning...
Type CTRL/P twice to terminate the session.

$ SHOW DEFAULT
DUAO: [USERO1.DTMLIB]
$ "P"P

“P

$DTM-I-BMK SAVED, benchmark has been saved in file

DUAO: [USERO1.DTMLIB] TEST1.BMK; 1

$DTM-S-RECORDED, test TEST1l has been successfully recorded in
DUAO: [USERO1.DTMLIB]} TEST1.SESSION

DTM>

Example 8—1 shows the session file, TEST1.SESSION, which was produced
by DEC/Test Manager for this interactive terminal session. Records begin-
ning with an I indicate the input received; an O indicates the output being
generated.

Working with Terminal Session Files 8-3

Example 8-1: Sample Session File

@ B P e<XAD>~S AKX D P<X82>)
! DTM V3.1 RECORD V3.1l

O<CR>
O<KEY> (LF\ TEXT)
o~e@
0$
o

O oa
Is
Os
Ih
Oh
Io
Oo
Iw
Oow
TO :00:01.0
I
(o]
Id
od
Ie
Oe
If
Oof
Ia
Oa
Tu
Ou
Il
ol
It
ot
I<CR>
O<CR>
O<KEY> (LF\TEXT)
O<CR>
O DUAO: [USERO1.DTMLIB]
O<CR>
O<KEY> (LF\TEXT)
O<CR>
O<CR>
O<KEY> (LF\TEXT)
o~e@
0$

o
® oa

The indicated records contain the following:

© The terminal characteristics block
® A comment record

8-4 Working with Terminal Session Files

©® A CTRL/A, indicating that DEC/Test Manager will compare this screen

8.1.2 Terminal Session File Structure

Because both timing and system load can affect the performance of the
system and the application being tested, two or more session files recorded
independently may result in completely different, yet valid, session files.
This occurs even though you typed exactly the same keystrokes when
recording both terminal sessions. Thus, performing a source comparison on
two session files yields no useful information.

Because most VMS terminal drivers are full duplex, when dealing with
session files you should consider input and output to be asynchronous
events. You can be typing input while the system is simultaneously writing
output. As a result, input and output may appear mixed in a session file.

For example, if you were to type input such as ABCDEF, first you would
type A and a few milliseconds later the system would output A. Then you
would type B and the system would output B, and so on. The corresponding
session file contains a record showing that you typed A, followed by records
showing that the system output A, you typed B, the system output B, and so
on. This sequence is shown in the following partial session file.

Both the speed at which you type and system response time affect the
session file. If you type quickly or if system response is slow, for example,
the session file will be different from a session file recorded under different
conditions. For the same input (ABCDEF), another session file recorded
under different conditions might contain a record showing that you entered
AB, followed by A from the system, C from you, then BC from the system,
and so on. This sequence is shown in the following partial session file.

Working with Terminal Session Files 8-5

Iab
Oa
Ic
Obc
Ide
Ode
If
of

Although you typed the same input, ABCDEF, both times and the system
echoed back the same letters, the two session files are different. Session
files recorded under different circumstances will vary, but all session files
are equally valid.

The session file will be further varied if the program outputs something to
the screen other than what you type. For example, the program might out-
put X whenever you type A or it might output nothing at all. Asynchronou:
events, for example, entering CTRL/T or a broadcast write that occurs whil
the system is echoing input, will change the session file.

The terminal driver may also arbitrarily place text in a buffer or split it int
groups before generating output. Even though a program may have issued
a 6-character QIO to output ABCDEF, the terminal driver may output the
text as two groups, ABCD followed by EF; or as 6 separate characters; or
as a single 6-character string. The terminal driver may even output the
text appended to some previously entered text that has not yet been output
Each elementary operation of the terminal driver results in a separate
record being written to the session file. Thus, each record in the session file
describes a single terminal-driver operation.

DEC/Test Manager also writes additional timing and control information to
the session file.

8.1.2.1 Record Structure of Session Files

The record structure of a session file is extremely important. You must not
change it except as described in this section.

8-6 Working with Terminal Session Files

Terminal Characteristics Block

The first record in a session file is a 12-byte (12-character) information
block called a terminal characteristics block. This block of information
describes the type of terminal on which the terminal session was recorded
and the characteristics of that terminal. The terminal characteristics block
is described in the VMS I/0 User’s Reference Manual: Part 1 and is shown
in Figure 8-1.

Figure 8-1: Format of the Terminal Characteristics Block

31 24 23 16 15 87 0
Buffer Size * Type Class
Page Length Basic Terminal Characteristics

Extended Terminal Characteristics

* Page Width P2=12

ZK-0693-GE

The 12 bytes in the record are stored low order to high order as three
longwords. The record conforms to the structure returned by a sensemode

terminal QIO with a P2 parameter of 12. The first byte has the value
DC$_TERM.

NOTE

You must not change the terminal characteristics block in any
way. Any change to this record may invalidate the entire file. Do
not add bytes to this record or delete bytes from it. This record
must contain exactly 12 bytes.

Working with Terminal Session Files 8-7

Subsequent Records

All subsequent records in the session file begin with a record type, which
is a 1-byte indicator that describes the contents of the record. The record
type is a number, usually represented by its corresponding ASCII character.
For example, the decimal number 66 is referred to by the letter B. Table 8-
shows the formats for all possible record types.

Table 8-1: Session File Record Types

Record
Type Meaning

Description

B BEGIN_COMPARE

C COMPARE_
SCREEN

E END_COMPARE

I INPUT

0 OUTPUT

T TIMING

w WAIT

Restarts automatic screen compare terminated
by a previous E record. When an input point

is reached, DEC/Test Manager automatically
marks the current screen for comparison with the
corresponding screen in the benchmark file.

Marks the current screen for comparison, even
though automatic screen comparison is turned off.

Terminates automatic screen compare. When an
input point is reached, DEC/Test Manager auto-
matically marks the current screen for comparison
with the corresponding screen in the benchmark
file.

Contains characters you input, that is, characters
you type at the terminal. This record usually
contains only one character. These characters do
not automatically echo to the screen unless the
terminal is set in half-duplex mode. This input is
usually echoed in a subsequent O record.

Labels the record as containing characters output
by the system and displayed on the terminal.

Contains a standard VMS delta time specification.
This time interval represents the clock time
elapsed between the previous I (INPUT) record and
the next I record.

Contains a standard VMS delta time specification.
It produces a pause of the specified length in the
input stream when the terminal session is played
back.

8-8 Working with Terminal Session Files

(continued on next page)

Table 8-1 (Cont.): Session File Record Types

Record

Type Meaning Description

! BEGIN_ Contains a comment. This record is ignored.
COMMENT

0 Null or OUTPUT This record type is supported for compatibility,

though its use is not recommended. DEC/Test
Manager interprets this as an O record.

1 CTRI/A or INPUT This record type is supported for compatibility
though its use is not recommended. DEC/Test
Manager interprets this as an I record.

The T and W (TIMING and WAIT) records contain standard VMS delta time
specifications. A sample time interval of 2.3 seconds would appear in a T
record as follows:

TO :00:02.3
It would appear in a W record as follows:
WO :00:02.3

In T records, the time interval represents the elapsed clock time between the
previous and next I records. DEC/Test Manager does not normally record
timing intervals of less than 1 second.

When DEC/Test Manager replays a terminal session, T records cause a time
delay on the input stream when DEC/Test Manager replays the session at
the speed at which it was recorded.

In W records, this time interval causes a pause in the input stream of the
specified duration.

8.1.2.2 Modifying Session Files Directly

Seemingly harmless changes, such as changing the case of letters in a
session file to all uppercase or all lowercase, may invalidate the entire file;
this action changes the case and, therefore, the meaning of characters inside
control and escape sequences.

Passing a session file through some editors (such as TECO) may change the
record structure, or add or remove new line characters such as line feed or
return characters. These changes invalidate the session file.

Working with Terminal Session Files 8-9

In general, splitting a record or combining two consecutive records may
invalidate the entire session file. If you modify the records in a session

file directly, observe the guidelines in the following sections. It is recom-
mended that you modify session files indirectly using input files. Section 8.2
describes input files.

Modifying O Records

You can combine two consecutive O records into a single O record. When
you do this, drop the O character from the second record.

You can split an O record into multiple O records. When you do this, begin
each new record with an O record type. '

You must preserve the number of CTRL/A characters in the output stream.
A single CTRIL/A character represents a point where the program is request-
ing input and where DEC/Test Manager compares screens. Two consecutive
CTRL/A characters represent an input point where automatic screen com-
parison is suppressed.

The terminal driver inserts a CTRL/A character into the output stream
whenever the program issues an input QIO. If the program prompts for
the input, the CTRL/A character appears after the prompt. Additionally,
DEC/Test Manager sometimes inserts CTRL/A characters into the session
file to mark input points for comparison.

Modifying | Records

You can combine two consecutive I records into a single I record. When you
do this, drop the I character from the second record.

You can split an I record into multiple I records. When you do this, begin
each new record with an I record type.

Modifying B, C, and E Records

The B, C, and E (BEGIN_COMPARE, COMPARE_SCREEN, and END_
COMPARE) records can occur in the session file only as the next record
immediately following an O record that ends with a CTRL/A character. The
one exception to this is a B, C, or E record, which can be the first noncom-
ment record in the file immediately following the terminal characteristics
block. If a B, C, or E record occurs in a session file, that file must also
contain at least one O record. The number of CTRL/A characters in the file
must agree with the number of CTRL/A characters output by the interactive
terminal session when it is run with the PLAY command.

8-10 Working with Terminal Session Files

Modifying T and W Records

You can modify T and W records or you can delete them to change or remove
timing information. When modifying this record, you must enter the delta
time in a valid format as specified in the VMS System Services Reference
Manual. This is not necessarily in the format that DEC/Test Manager uses.
Do not omit any required punctuation.

The behavior of some programs varies depending on the speed of user
input. Removing or modifying timing information for such programs could
adversely affect the way these programs run.

8.2 Input Files

Input files contain a textual representation of an interactive terminal session
as recorded by DEC/Test Manager in a session file. Input files contain the
following information:

¢ Input for the terminal session—the characters that were typed when you
recorded the terminal session

¢ All nonprinting characters and recording functions represented as
special strings

You can create input files in several ways. You can record an input file from
an existing session file using the EXTRACT command, or you can create

an input file using any text editor. You can also use a combination of these
techniques. For example, you can edit an existing test script to reformat it
as an input file.

8.2.1 Sample Input File

The following example shows the input file generated from the session file
TEST1.SESSION, recorded in Section 8.1.1. Enter the EXTRACT command
to generate the input file. Supply the name of the session file from which
the input file is to be extracted, and designate a name for the input file.

DTM> EXTRACT

_sSession file: TEST1.SESSION
_input file: TEST1.INP

$DTM~-S-EXTRACTED, input file DUAO: [USERO1l.DTMLIB]TEST1.INP created
DTM>

Working with Terminal Session Files 8-11

The following input file, TEST1.INP, was produced by the EXTRACT
command:

SHOW DEFAULT {<CR>}

The input file TEST1.INP contains the text entered during the terminal
session (the DCL command SHOW DEFAULT) and the special string
{<CR>}, which terminates the entered text. Notice that output supplied by
the system is not included in the input file. You can edit this input file anc
then use it to generate a new session file.

8.2.2 Special Strings

All nonprinting characters and recording functions found in session files ar
replaced in input files by special strings, which have the following format:
{special-string}

Special strings are textual representations for nonprinting characters and
recording functions. They are enclosed within braces ({ }).

8.2.2.1 Types of Special Strings Recognized by DEC/Test Manager
DEC/Test Manager recognizes the following types of special strings:

* Control and nonprinting characters—mnemonic control character name
and decimal integer values for control characters available in both 7-bi
and 8-bit environments

¢ Common names for nonprinting characters

¢ 8.bit control characters—mnemonic control character names and decim
integer values for control characters available only in 8-bit environmen

¢ Key names

— Names written on keyboard keys (with underscores substituted for
spaces)

— Names for the arrow keys
— Names for the editing keys
= Names for the keypad keys
— Names for the function keys
¢ Names for the recording functions

8-12 Working with Terminal Session Files

When you extract an input file from a session file, DEC/Test Manager
translates each nonprinting character and recording function in the session
file into the appropriate special string. When you generate a session file
from an input file, DEC/Test Manager retranslates the special strings.
Table 8-2 lists the translations performed when extracting an input file from
a session file. Tables 8-3 through 8-9 list the translations performed when
recording a session file from an input file.

Control Characters and Common Names of Nonprinting Characters

DEC/Test Manager recognizes the following formats for control characters
and nonprinting characters:

¢ Special strings for control characters of the forms {CTRL/x} and {*x}.

For example, DEC/Test Manager interprets both {CTRL/A} and {*A} as
the same control character.

* Special strings for all mnemonic control character names listed in the
ASCII 7-bit and 8-bit character tables surrounded by angle brackets
(<>).

For example, DEC/Test Manager interprets {<SOH>} and {<IND>}.

* Special strings for all integer decimal values for control characters listed
in the ASCII 7-bit and 8-bit character tables.

For example, DEC/Test Manager interprets {27} as ESC.
DEC/Test Manager ignores leading zeros on integer decimal values.
* Special strings for common names for nonprinting characters:

{<BACK_SPACE>}
{<DELETE>}
{<ENTER>}

{<ESC>)
{<ESCAPE>}
{<FORM_FEED>}
{<LINE_FEED>}
{<PAGE>}
{<RETURN>}
{SPACE]}, {<SP>}, {32}, and regular spaces { } are all recognized as
the space character
{(<KEY>(TAB\ TEXT)}

Tables 8-3 and 8-4 list the special string translations that DEC/Test
Manager performs for control characters. Table 8-3 also lists the special
string translations for common names for nonprinting characters. Consult a
terminal manual for tables on ASCII 7-bit and 8-bit codes.

Working with Terminal Session Files 8-13

Key Names
DEC/Test Manager recognizes special strings for the following:

¢ Names written on the keyboard keys with underscores (_) substituted
for spaces. For example, DEC/Test Manager recognizes {RETURN]},
{LINE_FEED}, and {PF1)}.

¢ TFunction keys by name. For example, DEC/Test Manager recognizes
both {F12} and {BS} (see Table 8-5).

¢ Editing keys by name. For example, DEC/Test Manager recognizes
{REMOVE]}, (NEXT_SCREEN]}, and {NEXT} (see Table 8-6).

¢ Keypad keys by name. For example, DEC/Test Manager recognizes
{KP3}, {MINUS}, and (ENTER} (see Table 8-7).

¢ Arrow keys by name. For example, DEC/Test Manager recognizes both
{UP_ARROW]) and {UP} (see Table 8-8).

NOTE

Tables 8-5 through 8-8, located at the end of this chapter, list the
special string translations that DEC/Test Manager performs for
key names.

Recording Functions

DEC/Test Manager recognizes the following special strings for the recordin
functions:

{BEGIN_COMMENT} and (END_COMMENT}
{BEGIN_COMPARE]} and {END_COMPARE}
{COMPARE_SCREEN}

{DELAY]}

{WAIT)

Use these special strings in input files to avoid making the input file de-
pendent on a particular termination character. For example, if you enter
{CTRL/P)C in an input file to mark a screen for comparison, the input file
and all session files generated from it must be used in conjunction with th
termination character CTRL/P. But if you enter {COMPARE_SCREEN] to
mark a screen for comparison, the input file and all session files generated
from it can be used in conjunction with any termination character.

Table 8-9 lists the special string translations that DEC/Test Manager
performs for the recording functions.

8-14 Working with Terminal Session Files

8.2.2.2 Using Special Strings in Input Files

DEC/Test Manager’s interpretation of special strings in input files is not case
sensitive. You can use uppercase or lowercase characters, or a combination
of the two when you enter a special string in an input file.

When processing input files, DEC/Test Manager does not interpret the end
of a record as the end of input. Therefore, you must be careful to enter a
special string corresponding to a carriage return, (for example, {<CR>}) at
the end of any input normally terminated with a carriage return.

To include text enclosed within braces ({ }) in the input file, enter double
braces around the text, (for example, {{ text }}). When processing the input
file, DEC/Test Manager translates the double braces to single braces;
DEC/Test Manager does not interpret the text contained within the braces
as a special string.

Use the special string equivalents for the recording functions when writing
an input file. This avoids building a dependency on a particular termination
character into an input file.

When you enter a comment in an input file, enclose the comment between
the {(BEGIN_COMMENT} and {(END_COMMENT) special strings. Enter the
{BEGIN_COMMENT)} and (END_COMMENT} special strings on separate
lines because DEC/Test Manager ignores the remainder of the line following
these special strings. You must begin each line of comment text with the
comment character (!).

Do not nest input files. DEC/Test Manager ignores INSERT recording
functions (CTRL/P I) when they occur in input files.

8.3 Creating Input Files

You can create an input file using a text editor or you can use the EXTRACT
command to create an input file from a session file. When the input file is
complete and correctly formatted, you can then use it to record a session file.

NOTE

When you create a terminal input file, you should use the same
type of display device on which the session file was created. If you
do not, you may cause the input file and session to have different
characteristics.

Working with Terminal Session Files 8-15

When you extract an input file from a session file, you may not
be able to re-create the session file except by using a display
device of the same type as the display device used to record the
original recording session, especially if the recording display
device handles 8-bit characters and the extracting display device
handles 7-bit characters.

8.3.1 Extracting an Input File from a Session File

The EXTRACT command extracts an input file from an existing session file
without altering the session file. The format for the EXTRACT command is
as follows:

DTM> EXTRACT session-file-specification [input-file-specification/INTERACTIVE

The session file specification is the file specification of the session file from
which DEC/Test Manager is to extract an input file. If you specify a file
name for the session file without specifying a file type, the file type defaults
to .SESSION.

The input file specification is the file specification for the input file being
created. If you do not specify an input file specification, the file specificatior
defaults to session-file-name.INP. If you specify an input file name without
specifying a file type, the file type defaults to .INP.

You can store both files in VAX DEC/Code Management System (CMS)
libraries. The EXTRACT command can fetch the session file from a CMS
library and place the input file in the CMS library.

If you subsequently record a session file from an input file stored in a CMS
library, you must first fetch the input file from the CMS library by issuing
the appropriate CMS commands.

The EXTRACT command takes the /NOJLOG and /TERMINATION_
CHARACTER qualifiers. The /TERMINATION_CHARACTER qualifier
specifies the termination character that DEC/Test Manager is to use when
translating the recording functions in the session file to special strings in th
input file. If the interactive terminal session you are recording does not use
the default termination character (CTRL/P), you need not specify a different
termination character. If the interactive terminal session you are recording
uses CTRL/P for its own purposes, you must specify a different termination
character.

When DEC/Test Manager extracts the input file from the session file, the
following occurs:

¢ All input in the session file is written to the input file.

8-16 Working with Terminal Session Files

¢ All nonprinting characters and recording functions are translated to
special strings—text delimited by braces ({ }).

* Any braces appearing in the text of the session file are doubled in the
input file.

The following example extracts the input file TEST1_A.INP from the session
file TEST1.SESSION:

DTM> EXTRACT TEST1.SESSION TEST1_A.INP

%$DTM-S-EXTRACTED, input file DUAQ: [USERO1.DTMLIB)TEST1_A.INP created
DTM>

8.3.2 Creating an Input File with a Text Editor

You can create an input file using any text editor. See Section 8.2.2.2 for
information on using special strings in input files.

The following example shows a sample input file created with a text editor.

{BEGIN_COMMENT}

! This is a sample input file. When used, it calls up EDT
! to create a file, enters some text into the buffer, and
! moves around that text, finally quitting without saving
! the file.

{END_COMMENT}

edit/edt sample.tmp{<CR>}

change {<CR>}

{BEGIN_COMMENT}

! Enter the text into the buffer.

{END_COMMENT}

This is the first line of the file.{<CR>}

This is the

second line of the file.{<CR>}

{UP_ARROW)} {UP} {KP2}

{SPACE}This is more of the first line.

{CTRL/Z}

quit{<CR>}

8.4 Recording a Session File from an Input File

You can record a session file from an input file in two ways:

* By using the /INPUT qualifier on a RECORD command

¢ By entering the INSERT recording function (CTRL/P I) while recording
an interactive terminal session

Working with Terminal Session Files 8-17

8.4.1 Using the /INPUT Qualifier

The RECORD command with the /INPUT qualifier specifies that DEC/Test
Manager record a new session file by initiating an interactive terminal
session and taking input from the specified input file. If you do not also
specify the /APPEND qualifier, DEC/Test Manager terminates the interactiv
terminal session when the input file is exhausted. If you include both the
/INPUT and /APPEND qualifiers, DEC/Test Manager leaves the terminal
in record mode when the input file is exhausted. You can then continue the

terminal session interactively and terminate it by entering the termination
character (CTRL/P) twice.

The following example initiates an interactive terminal session to create
session file TEST2.SESSION, takes all input from input file TEST2.INP, an
terminates the terminal session when TEST2.INP is exhausted.

DTM> RECORD/INPUT=TEST2.INP

_Remark: Recording TESTZ.SESSION from TESTZ2.INP
$DTM-I-DEFAULTED, benchmark file name defaulted to TEST2.BMK
$DTM-I-DEFAULTED, template file name defaulted to TEST2.SESSION
$DTM-I-BEGIN, your interactive test session is now beginning...

$ show default
DUAQ: [USERO1.DTMLIB]

“P

$DTM-I-BMK SAVED, benchmark has been saved in file
DUAQ: [USEROL1.DTMLIB]TEST2.BMK; 1
$DTM-S-RECORDED, test TEST2 has been successfully recorded in
DUAO: [USERO1.DTMLIB] TEST2.SESSION
DTM>

The following example initiates an interactive terminal session to create
the session file SAMPLE_TEST.SESSION, takes input from the input file
SAMPLE_TEST.INP until the file is exhausted, and leaves the terminal in
record mode:

8-18 Working with Terminal Session Files

DTM> RECORD/INPUT=SAMPLE_TEST.INP

_Remark: Recording a sample session file

$DTM-I-DEFAULTED, benchmark file name defaulted to SAMPLE_TEST.BMK
$DTM-I-DEFAULTED, template file name defaulted to SAMPLE_TEST.SESSION
%$DTM-I-BEGIN, your interactive test session is now beginning...

Type CTRL/P twice to terminate the session.

$ show default
DUAO: [USERQO1.DTMLIB]
$ show time

$ “P"P
P

$DTM-I-BMK_SAVED, benchmark has been saved in file

DUAQ: [USER01.DTMLIB] SAMPLE_TEST.BMK;1

$DTM-S-RECORDED, test SAMPLE_TEST has been successfully recorded in
DUAO: [USERQ1.DTMLIB] SAMPLE_TEST.SESSION

DTM>

8.4.2 Using the INSERT Recording Function

When you enter the INSERT recording function CTRL/P-I during an active
recording session, it specifies that DEC/Test Manager is to take input from
the specified input file. When you enter the INSERT recording function,
DEC/Test Manager prompts you for the file specification for a single input
file. DEC/Test Manager then takes input from the specified input file and
returns control to the terminal when the input file is exhausted.

Example 8-2 shows how to insert an input file during a recording session.

During a terminal session, you can read input from multiple input files
sequentially. The input files cannot be nested. DEC/Test Manager ignores
any INSERT recording functions in an input file.

8.4.3 Terminal Characteristics

The process of creating an input file is not terminal specific. When you ex-
tract an input file from a session file, all control codes and other nonprinting
characters are translated to special strings regardless of whether they have
meaning to the terminal you are using to perform the translation.

Working with Terminal Session Files 8-19

Example 8-2: Inserting an Input File into a Recording Session

DTM> RECORD/INPUT=SAMPTEST.INP

_test name: SAMPTEST

_Remark: Recording SAMPTEST.SESSION from SAMPTEST.INP
$DTM~I-DEFAULTED, benchmark file name defaulted to SAMPTEST.BMK
$DTM-I-DEFAULTED, template file name defaulted to SAMPTEST.SESSION
$DTM-I-BEGIN, your interactive test session is now beginning...
Type CTRL/P twice to terminate the session.

“PI

_Input file: SAMPTEST2.INP

~P"P
P

$DTM-I-BMK_SAVED, benchmark has been saved in file

DUAO: [USERO1.DTMLIB] SAMPTEST .BMK; 1

$DTM-S~RECORDED, test SAMPTEST has been successfully recorded in
DUAO: [USERO1.DTMLIB] SAMPTEST.SESSION

DTM>

The process of creating a session file from an input file is terminal specific.
When you record a session file, DEC/Test Manager translates all special
strings back to control codes and other nonprinting characters based on the
terminal characteristics for the recording terminal. If DEC/Test Manager
encounters a special string that it cannot translate for the recording
terminal, the braces are stripped off the special string and the characters
representing the untranslated special string are printed in the session file.
They are also displayed on the terminal screen along with an error message

When you record a session file, the terminal characteristics for the recording
terminal become the first record of that session file. That session file is
guaranteed to run on terminals of the same type as the recording terminal.
The session file may or may not run on other terminal types.

8-20 Working with Terminal Session Files

NOTE

You may encounter problems rerecording a session file on a
VT100-series terminal if the session file was originally recorded
on a VT200-series terminal. Problems will occur if the original
session file contains control codes that are restricted to use in
an 8-bit compatible environment. Table 8—4 lists these codes.
DEC/Test Manager cannot translate these 8-bit control codes for
use in a 7-bit environment.

If you record an interactive terminal session on a VI'100-series
terminal and extract an input file from this session file, you will
be able to successfully record the edited terminal session again on
either a VT'100- or VT200-series terminal.

8.4.4 Type-Ahead

Anything you type on a terminal while input is being taken from an input
file will have no immediate effect on the terminal session. All or part of
what you type may be stored as type-ahead and may appear when the input
file is exhausted and control is returned to the terminal.

8.5 Translation Tables

Table 8-2 describes translation of nonprinting characters and control codes
when an input file is extracted from a session file.

Table 8-2: Translation of Nonprinting Characters and Control Codes When Extracting
an Input File from a Session File

Translated Special

Code in Session File String in Input File
Recording 8-bit Control
Mnemonic Function String Escape Sequence Special String
- — <CSI> A <ESC> A {UP_ARROW}
and <SS3>A and <ESC>[A
and <ESC>0 A

(continued on next page)

Working with Terminal Session Files 8-21

Table 8-2 (Cont.): Translation of Nonprinting Characters and Control Codes When
Extracting an Input File from a Session File

Translated Special
Code in Session File String in Input File
Recording 8-bit Control
Mnemonic Function String Escape Sequence Special String
— — <CSI> B <ESC> B {DOWN_ARROW}
and <SS3> B and <ESC>[B
and <ESC>0 B
—_ —_ <CSI> C <ESC> C {LEFT_ARROW}
and <SS3> C and <ESC>[C
and <ESC>0 C
— — <CSI> D <ESC> D {RIGHT _ARROW}
and <SS3> D and <ESC>[D
and <ESC>0 D
— —_ <SS3> P <ESC> P {PF1}
and <ESC>0 P
— —_ <SS3> Q <ESC> Q {PF2}
and <ESC>0 Q
— —_ <SS3> R <ESC> R {PF3}
and <ESC>0 R
—_ — <SS83> S <ESC> S {PF4}
and <ESC>0 S
— —_— <SS3>1 <ESC>? 1 {COMMA}
and <ESC>01
— — <SS3>m <ESC>? m {MINUS}
and <ESC>0 m
— —_ <SS3>n <ESC>? n {PERIOD}
and <ESC>0 n
— — <S883> M <ESC>? M {ENTER}
and <ESC>0 M
— — <883>p <ESC>? p {KPO}
and <ESC>0 p
— — <S83> q <ESC>? q {KP1}
and <ESC>0 q

8-22 Working with Terminal Session Files

(continued on next page)

Table 8-2 (Cont.): Translation of Nonprinting Characters and Control Codes When
Extracting an Input File from a Session File

Translated Special

Code in Session File String in Input File
Recording 8-bit Control

Mnemonic Function String Escape Sequence Special String

— — <SS3>r <ESC>? r {KP2}
and <ESC>0r

—_ —_ <SS3> s <ESC>? s {KP3}
and <ESC>0 s

—_ —_— <SS83> t <ESC>? t {KP4}
and <ESC>0 t

— —_— <S83>u <ESC>? u {KP5}
and <ESC>0 u

—_ — <SS3>v <ESC>? v {KP6}
and <ESC>0 v

— — <SS3> w <ESC>? w {(KP7}
and <ESC>0 w

— — <SS3> x <ESC>? x {KP8}
and <ESC>0 x

— — <SS3>y <ESC>? y {KP9}
and <ESC>0 y

— — <CSI> 17~ <ESC>[17~ {F6}

— — <CSI> 18~ <ESC>[18~ F7n

— — <CSI> 19~ <ESC>[19~ {F8}

—_ — <CSI> 21~ <ESC>[21~ {F10}

— —_ <CSI> 23~ <ESC>[23~ {F11}

— — <CSI> 24~ <ESC>[24~ {F12}

—_ — <CSI> 25~ <ESC>[25~ {F13}

— — <CSI> 26~ <ESC>[26~ {F14}

— — <CSI> 28~ <ESC>[28~ {F15}

— — <CSI> 29~ <ESC>[29~ {F16}

—_ —_ <CSI> 31~ <ESC>[31~ {F17}

(continued on next page)

Working with Terminal Session Files 8-23

Table 8-2 (Cont.): Translation of Nonprinting Characters and Control Codes When
Extracting an Input File from a Session File

Translated Special
Code in Session File String in Input File
Recording 8-bit Control
Mnemonic Function String Escape Sequence Special String
— — <CSI> 32~ <ESC>[32~ {F18}
—_ — <CSI> 33~ <ESC>[33~ {F19}
— —_ <CSI> 34~ <ESC>[34~ {F20}
— —_ <CSI> 1~ <ESC>[1~ {FIND)}
— — <CSI> 2~ <ESC>[2~ {INSERT_HERE}
— — <CSI> 3~ <ESC>[3~ {REMOVE}
— — <CSI> 4~ <ESC>[4~ {SELECT}
— — <CSI> 5~ <ESC>[5~ {PREV_SCREEN}
— — <CSI> 6~ <ESC>{ 6~ {NEXT_SCREEN)}
<NUL> — — — {CTRL/@}
<SOH> — — — {CTRL/A}
<STX> — — — {CTRL/B}
<ETX> — — — {CTRL/C}
<EOT> — — — {CTRL/D}
<ENQ> — —_ — {CTRL/E}
<ACK> — — — {CTRL/F}
<BEL> — — — {CTRL/G}
<BS> —_ — — {<BS>}
<HT> —_ —_ — {<TAB>}
<LF> — —_ —_ {<LF>}
<VT> —_ - — — {CTRL/K}
<FF> — —_ — {<FF>}
<CR> —_ — — {<CR>}
<S0> — — — {CTRL/N}
<SI> —_ — — {CTRL/O})

(continued on next page

8-24 Working with Terminal Session Files

Table 8-2 (Cont.): Translation of Nonprinting Characters and Control Codes When
Extracting an Input File from a Session File

Translated Special

Code in Session File String in Input File

Recording 8-bit Control
Mnemonic Function String Escape Sequence Special String
<DLE> —_ — — {CTRL/P}
<DC1> — — — {CTRL/Q}
<DC2> — —_ —_ {CTRL/R}
<DC3> — — — {CTRL/S}
<DC4> - — — {CTRL/T}
<NAK> — — — {CTRL/U}
<SYN> — —_ — {CTRL/V}
<ETB> — —_ — {CTRL/W}
<CAN> — — — {CTRL/X}
 — —_ — {CTRL/Y}
<SUB> —_ — — {CTRL/Z}
<ESC> —_ — — {<ESC>}
<FS> — —_ — {CTRL/\}
<GS> — — — {CTRL/}}
<RS> —_— —_ —_ {CTRL/A}
<US> — —_ — {CTRL/}
 —_ — —_ {}
<IND> — —_ — {<IND>}
<NEL> —_ —_ —_ {<NEL>}
<SSA> — — — {<SSA>}
<ESA> —_ —_ — {<ESA>}
<HTS> —_ — —_ {<HTS>}
<HTJ> — —_ — {<HTJ>}
<VTS> — — — {<VTS>}
<PLD> —_ — — {<PLD>}

(continued on next page)

Working with Terminal Session Files 8-25

Table 8-2 (Cont.): Translation of Nonprinting Characters and Control Codes When
Extracting an Input File from a Session File

Translated Special

Code in Session File String in Input File
Recording 8-bit Control
Mnemonic Function String Escape Sequence Special String
<PLU> —_ — — {<PLU>}
<RI> — — — {<RI>}
<S82> — —_ — {<SS2>})
<SS3> —_ — —_ {<SS3>}
<DCS> — — — {<DCS>}
<PU1> — — — {<PU15}
<PU2> — — — {<PU25}
<STS> — — — {<STS>}
<CCH> — — — {<CCH>}
<MW> —_ — —_ {<MW>}
<SPA> _ —_ — {<SPA>}
<EPA> —_ — — {<EPA>}
<CSI> —_ — —_ {<CSI>}
<ST> — —_ — {<ST>}
<0SC> — — — {<OSC>}
<PM> — — — {<PM>}
<APC> — — — {<APC>}
— 4+ —_ —_ {BEGIN_COMMENT}
— - — — {END_COMMENT}
— CTRL/P' B — — {BEGIN_COMPARE}
— CTRL/P! C — — {COMPARE_SCREEN}
—_ CTRL/P' E — — {END_COMPARE}
—_ CTRL/P' W — - {(WAIT}

1CTRL/P is used here only as an example. The actual value will be the termination character specified when
the session file was recorded.

Table 8-3 describes special string translations for control and nonprinting
characters when a session file is recorded from an input file. Where
applicable, special strings for common names of nonprinting characters are

8-26 Working with Terminal Session Files

listed with the mnemonic for the control character. For example,
{BACK_SPACE]} is listed with {CTRL/H]}.

Table 8-3: Translation of Special Strings Representing Control and Nonprinting
Characters When Recording a Session File from an Input File

Special Strings in Input File Translation in Session File
Decimal
Control Character Mnemonics Value
{CTRL/@} {~@} {<NUL>} {0} NUL
{CTRL/A} {rA) {<SOH>} {1} SOH
{CTRL/B} {*B} {<STX>} {2} STX
{CTRL/C} {rC) {<ETX>} {3} ETX
{CTRL/D} {~AD} {<EOT>} {4} EOT
{CTRL/E} {AE} {<ENQ>} {5} ENQ
{CTRL/F} {*F} {<ACK>} {6} ACK
{CTRL/G} {~rG} {<BEL>} {7} BEL
{CTRL/H} {(*H} {<BS>} {8} BS
and
{BACK_SPACE}
{CTRL/T} {1} {<HT>} {9} HT
and {TAB}
{CTRL/J} {~rd} {<LF>} {10} LF
and
{LINE_FEED}
{CTRL/K} {(*"K} {<VT>} {11} vT
{CTRL/L} {~L} {<FF>} {12} FF
and {PAGE}
and
{FORM_FEED}
{CTRL/M} {*M} {<CR>} {13} CR
and
{RETURN}
{CTRL/N} {AN} {<SO>} {14} SO
{CTRL/O} {~0} {<SI>} {15} SI

(continued on next page)

Working with Terminal Session Files 8-27

Table 8-3 (Cont.): Translation of Special Strings Representing Control and Nonprinting
Characters When Recording a Session File from an Input File

Special Strings in Input File Translation in Session File
Decimal
Control Character Mnemonics Value
{CTRL/P} {~P} {<DLE>} {16} DLE
{CTRL/Q} {~Q} {<DC1>} {17 DC1
{CTRL/R} {*R} {<DC2>} {18) DC2
{CTRL/S} {"S} {<DC3>} {19} DC3
{CTRL/T} {~T} {<DC4>} {20} DC4
{CTRL/U} {~rU} {<NAK>} {21} NAK
{CTRL/V} "V} {<SYN>} 22} SYN
{CTRL/W} "W} {<ETB>} {23) ETB
{CTRL/X} "X} {<CAN>} {24} CAN
{CTRL/Y} {*Y} {} {25) EM
{CTRL/Z} {rZ} {<SUB>} {26} SUB
{CTRL/[} " {<ESC>} 27 ESC
{ESCAPE}
and
{ESC}
{CTRL/\} {"\} {<FS>} {28} FS
{CTRL/]} {1 {<GS>} {29} GS
{CTRL/~} {~~} {<RS>} {30} RS
{CTRL/?} "~ <US>} {31} Us
and (CTRL/_} and {*_}
{DELETE} —_ {} {128} DEL
{SPACE} —_ —_ — (a space character)

Table 8-4 describes special string translations for 8-bit control characters
when a session file is recorded from an input file. These control characters
are available only in 8-bit environments.

8-28 Working with Terminal Session Files

Table 8-4: Translation of Special Strings Representing 8-Bit Control
Characters When Recording a Session File from an Input File

Special String in Input File Translation in Session File

Mnemonic Decimal Value

{<IND>} {132} IND
{<NEL>} {133} NEL
{<SSA>} {134} SSA
{<ESA>} {135} ESA
{<HTS>} {136} HTS
{<HTJ>} {137} HTJ
{<VTS>} {138} VTS
{<PLD>} {139} PLD
{<PLU>} {140} PLU
{<RI>} {141} RI
{<SS2>} (142} SS2
{<SS3>} {143} SS3
{<DCS>} {144} DCS
{<PU1>} {145} PU1
{<PU2>} {146} PU2
{<STS>} {147} STS
{<CCH>} {148} CCH
{<MW>} {149} MW
{<SPA>} {150} SPA
{<EPA>} (151} EPA
{<CSI>} {155} CSI
{<ST>} {156} ST
{<OSC>} {157} 0SsC
{<PM>}) {158} PM
{<APC>} {159} APC

Table 8-5 describes special string translations for codes generated by the
function keys when a session file is recorded from an input file.

Working with Terminal Session Files 8-29

Table 8-5: Translation of Special Strings Representing the Function Key
Codes When Recording a Session File from an Input File

Special String in Input File Translation in Session File
VT200 Mode VT100 and VT52 Mode

{F6} CSI 17~ —
and ESC [17~

{F7} CSI 18~ —
and ESC [* 18~

{F8} CSI 19~ —
and ESC [! 19~

{F9} CSI 20~ —
and ESC [! 20~

{F10} CSI 21~ —
and ESC [! 21~

{F11} and {ESC} CSI 23~ ESC
and ESC [* 23~

{F12} and {BS} CSI 24~ BS
and ESC [! 24~

{F13} and {LF} CSI 25~ LF
and ESC [! 25~

{F14} CSI 26~ —_—
and ESC [* 26~

{F15} and {HELP} CSI 28~ —
and ESC [! 28~

{F16} and {DO} CSI 29~ —_
and ESC [* 29~

{F17} CSI 31~ —_
and ESC [* 31~

{F18} CSI 32~ —_
and ESC [* 32~

{F19} CSI 33~ —
and ESC [* 33~

{F20} CSI 34~ —

and ESC [* 34~

1ESC [is the 7-bit code extension equivalent for the 8-bit control string CSI.

Table 8-6 describes special string translations for codes associated with
editing keys when a session file is recorded from an input file.

8-30 Working with Terminal Session Files

Table 8-6: Translation of Special Strings Representing the Editing Key
Codes When Recording a Session File from an Input File

Special String in Input

File Translation in Session File
VT200 Mode VT100 and VT52 Modes

{FIND} CSI 1~ and ESC [! 1~ —

{INSERT_HERE} CSI 2~ and ESC [! 2~ —

and {INSERT}

{REMOVE} CSI 3~ and ESC [* 3~ —

{SELECT} CSI 4~ and ESC [! 4~ —

{PREV_SCREEN} CSI 5~ and ESC ['5~ —

and {(PREV)

{NEXT_SCREEN} CSI 6~ and ESC ['6~ —

and (NEXT}

1ESC [is the 7-bit code extension equivalent for the 8-bit control string CSI.

Table 8-7 describes special string translations for codes associated with the
keypad keys when a session file is recorded from an input file.

Table 8-7: Translation of Special Strings Representing the Keypad Key Codes When

Recording a Session File from an Input File

Special String
in Input File Translation in Session File
ANSI Mode! VT52 Mode'
Numeric Application Numeric Application
Keypad Mode Keypad Mode Keypad Mode Keypad Mode
{KP0} 0 SS3 p 0 ESC?p
and ESC 0% p
{KP1} 1 SS3 q 1 ESC?q
and ESC 0% q

LANSI mode applies to VT200 and VT100 modes. VT52 mode is an ANSI-incompatible mode.

2ESC O is the 7-bit code extension equivalent for the 8-bit control string SS3.

(continued on next page)

Working with Terminal Session Files 8-31

Table 8-7 (Cont.): Translation of Special Strings Representing the Keypad Key Codes
When Recording a Session File from an Input File

Special String
in Input File Translation in Session File
ANSI Mode! VT52 Mode?
Numeric Application Numeric Application
Keypad Mode Keypad Mode Keypad Mode Keypad Mode

{KP2} 2 SS3r 2 ESC?r
and ESC O%r

{KP3} 3 SS3 s 3 ESC?s
and ESC 0% s

{KP4} 4 SS3t 4 ESC?t
and ESC 0% t

{KP5} 5 SS3 u 5 ESC?u
and ESC 0% u

{KP6) 6 SS3 v 6 ESC?v
and ESC O? v

{KPT} 7 SS3 w 7 ESC?w
and ESC O? w

{KP8} 8 SS3 x 8 ESC?x
and ESC 0% x

{KP9} 9 SS3 y 9 ESC?y
and ESC O% y

{COMMA} , (comma) SS31 , (comma) ESC?1
and ESC 0% 1

{MINUS} - (minus) SS3 m - (minus) ESC?m
and ESC O? m

{PERIOD} . (period) SS3 n . (period) ESC?n
and ESC 0% n

{ENTER} CR SS3 M CR ESC?M
and ESC 0’ M

{PF1} SS3 P SS3 P ESCP ESCP

and ESC O? P and ESC O? P

1ANSI mode applies to VT'200 and VT100 modes. VT52 mode is an ANSI-incompatible mode.
2ESC O is the 7-bit code extension equivalent for the 8-bit control string SS3.

(continued on next page)

8-32 Working with Terminal Session Files

Table 8-7 (Cont.): Translation of Special Strings Representing the Keypad Key Codes
When Recording a Session File from an Input File

Special String
in Input File Translation in Session File
ANSI Mode! VT52 Mode'
Numeric Application Numeric Application
Keypad Mode Keypad Mode Keypad Mode Keypad Mode
{PF2} SS3 Q SS3 Q ESC Q ESC Q
and ESC 0% Q and ESC 02 Q
{PF3} SS3 R SS3 R ESCR ESCR
and ESC O’ R and ESC O? R
{PF4} SS3 S SS3 8 ESCS ESC S

and ESC 0% S and ESC O §?

1ANSI mode applies to VT200 and VT100 modes. VT52 mode is an ANSI-incompatible mode.
2ESC O is the 7-bit code extension equivalent for the 8-bit control string SS3.

Table 8-8 describes special string translations for arrow key codes when a
session file is recorded from an input file.

Table 8-8: Translation of Special Strings Representing the Arrow Key Codes When
Recording a Session File from an Input File

Special String in
Input File Translation in Session File
ANSI Mode! VT52 Mode'
Cursor Key Cursor Key Cursor Key Cursor Key
Mode Reset Mode Set Mode Reset Mode Set
Normal Application Normal Application
{UP_ARROW} CSI A SS3 A ESCA ESC A
and {UP} and and
ESC®A ESC 0% A

1ANSI mode applies to VT200 and VT100 modes. VT52 mode is an ANSI-incompatible mode.
2ESC O is the 7-bit code extension equivalent for the 8-bit control string SS3.
3ESC [is the 7-bit code extension equivalent for the 8-bit control string CSIL

(continued on next page)

Working with Terminal Session Files 8-33

Table 8-8 (Cont.):

Translation of Special Strings Representing the Arrow Key Codes

When Recording a Session File from an Input File

Special String in
Input File Translation in Session File
ANSI Mode! VT52 Mode!
Cursor Key Cursor Key Cursor Key Cursor Key
Mode Reset Mode Set Mode Reset Mode Set
Normal Application Normal -Application
{DOWN_ARROW} CSI B SS3 B ESCB ESCB
and {DOWN]} and and
ESC[®B ESCO0?B
{RIGHT_ARROW]} CSIC SS3 C ESCC ESCC
and (RIGHT} and and
ESC2C ESC 0% C
{LEFT_ARROW} CSID SS3 D ESCD ESCD
and {LEFT} and and
ESC[®D ESC0?D

1ANSI mode applies to VT200 and VT'100 modes. VT52 mode is an ANSI-incompatible mode.
2ESC O is the 7-bit code extension equivalent for the 8-bit control string SS3.
3ESC [is the 7-bit code extension equivalent for the 8-bit control string CSI.

8-34 Working with Terminal Session Files

Table 8-9 describes special string translations for codes associated with
recording functions when a session file is recorded from an input file.

Table 8-9: Translation of Special Strings Representing the Recording
Functions When Recording a Session File from an Input File

Special String in Input File

Translation in Session File

{BEGIN_COMPARE}

{COMPARE_SCREEN}

{END_COMPARE}
{DELAY}

{WAIT}

DLE' B
DLE! C
DLE'E
DLE'D
DLE'W

1 DLE (CTRL/P) is used here only as an example. The actual value will be the termination

character specified when the session file is recorded.

(continued on next page)

Table 8-9 (Cont.): Translation of Special Strings Representing the
Recording Functions When Recording a Session File
from an Input File

Special String in Input File Translation in Session File
{BEGIN_COMMENT} DLE!!
{END_COMMENT} SUB (CTRL/Z)

1 DLE (CTRL/P) is used here only as an example. The actual value will be the termination
character specified when the session file is recorded.

Working with Terminal Session Files 8-35

Chapter 9
Working with DECwindows Session Files

When you record a DECwindows test, DEC/Test Manager creates a binary
session file that you can convert to ASCII format using the EXTRACT
command. To create an ASCII input file from a DECwindows session file,
pull down the Testing menu and choose the Extract menu item and the
DECwindows... submenu item. Then fill in the DECwindows Extract dialog
box.

You can also create an ASCII input file from a DECwindows session file
using the following command:

DTM> EXTRACT DW_TEST.SESSION/DECWINDOWS
DEC/Test Manager creates a file called DW_TEST.INP.
You can use an input file to perform the following operations:

¢ Make comments on the various parts of the input file that compose a
task

¢ Place synchronization points in the input file
¢ Change the time delays between input events
* Add looping to parts of the input file

¢ Send informational messages to a terminal when you play back the
session file

Working with DECwindows Session Files 9-1

9.1 Creating a DECwindows Input File

A DECwindows session file is a binary file containing machine-readable
data. When you use the EXTRACT command, the DECwindows session file
is translated to ASCII text (the input file). Example 9-1 shows a sample
session file that has been translated into an input file.

NOTE

The mouse motion events in Example 9-1 and subsequent session
file examples have been edited to show only the first and last
MotionNotify events in a sequence.

Example 9-1: DECwindows Input File

$ DTM EXTRACT DW_TEST.SESSION/DECWINDOWS

$ TYPE DW_TEST.INP

KeyPress 00:00.40 d
KeyRelease 00:00.00 d
KeyPress 00:00.19 i
KeyRelease 00:00.00 i
.ImageText8 di

KeyPress 00:00.22 r
KeyRelease 00:00.00 r
.ImageText8 r

KeyPress 00:00.40 <SPACE>
KeyRelease 00:00.00 <SPACE>
.ImageText8

KeyPress 00:00.28 <SHIFT>
KeyPress 00:00.19 *
KeyRelease 00:00.00 *
.ImageText8 *

KeyRelease 00:00.16 <SHIFT>
KeyPress 00:00.67 .
KeyRelease 00:00.00 .
.ImageText8 .

KeyPress 00:00.07 b
KeyRelease 00:00.00 b

. ImageText8 b

KeyPress 00:00.30 i
KeyRelease 00:00.00 i

. ImageText8 i

KeyPress 00:00.30 n
KeyRelease 00:00.00 n

(continued on next page

9-2 Working with DECwindows Session Files

Example 9-1 (Cont.):

DECwindows Input File

. ImageText8
KeyPress
KeyPress
KeyRelease
.ImageText8
KeyRelease
KeyPress
.ImageText8
KeyRelease
KeyPress
KeyRelease

. ImageText8
KeyPress
KeyRelease

. ImageText8
KeyPress
KeyRelease

. ImageText8
KeyPress
KeyRelease
.ImageText8
.ImageText8
MotionNotify
MotionNotify
ButtonPress
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
ButtonRelease
.PolyText8
.ImageText8
.ImageText8
.ImageText8
MotionNotify
MotionNotify
ButtonPress
.PolyText8
.PolyText8
.PolyTexts8
.PolyText8
ButtonRelease
.PolyText8
MotionNotify
MotionNotify
ButtonPress
.PolyText8
.PolyText8
.PolyText8

n

00:00.24
00:00.11
00:00.00
*

00:00.17
00:00.02

00:00.12
00:00.20
00:00.00
a
00:00.22
00:00.00
r N
00:00.27
00:00.00

y
00:00.23
00:00.08
es found
Baggit>
00:02.41
00:00.11
00:00.28
Commands
off top
Display
e Window
ications
Terminal
Quit
00:00.67
Commands
$ dir
es found
$
00:00.03
00:00.28
00:00.01
Edit
Copy
Paste
lect All
00:00.54
Edit
00:00.30
00:00.17
00:00.00
ustomize
indow...
splay...

<SHIFT>
*

*

<SHIFT>
<DELETE>

<DELETE>
a
a

r

Yy
y

<RETURN>
<RETURN>

85
134
MB1 134

MB1 134

133
222
MB1 222

MBI 222

223
273
MB1 273

105
110
110

110

109
111
111

111

111
111
111

(continued on next page)

Working with DECwindows Session Files 9-3

E)Eample 9-1 (Cont.): DECwindows Input File

.PolyText8 neral...
.PolyText8 board...
.PolyText8 ction...
.PolyText8 Settings
.PolyText8 Defaults
.PolyText8 from...
.PolyText8 Settings
.PolyText8 gs as...
ButtonRelease 00:01.02 MBI 273 111
.PolyText8 ustomize

9.2 Creating a DECwindows Session File from a
DECwindows Input File

DEC/Test Manager also enables you to translate an ASCII input file back
into session file format using the RESTORE command; to do this, pull
down the Testing menu, choose the Restore menu item, then choose the
DECwindows... submenu item and fill in the DECwindows Restore dialog
box.

You can also translate an ASCII input file to a DECwindows session file
using the following command:

DTM> RESTORE DW_TEST.INP/DECWINDOWS

DEC/Test Manager translates the ASCII input file into a binary
DECwindows session file called DW_TEST.SESSION. If you make an
error editing the input file, DEC/Test Manager issues an error message
with the line number of the error; a session file is created but it will be
incomplete.

You can also create a DECwindows session file with an input file by issuing
the DEC/Test Manager RECORD command with the /INPUT qualifier. In
addition to the session file, this will also generate a new benchmark for the
test.

94 Working with DECwindows Session Files

9.3 Editing a DECwindows Input File

Table 9-1 shows the types of editing that you can perform on an input file.

Table 9-1:

Input File Editing Operations

Edit Command Description

Loop # and
EndLoop #

SendConsole

00:00.00

An exclamation mark in the first column indicates descriptive
text that will not be played back as part of the session file.

An asterisk in the first column, replacing a period, pauses the
play back mechanism from sending input events to the worksta-
tion until a record containing the selected output text has been
received from the workstation.

The Loop # and EndLoop # commands indicate where DEC/Test
Manager is to repeat the input and output events from the
session file. A matched pair of numbers are specified with each
loop pair to identify different looping sequences; nested loop
sequences are allowed.

The SendConsole command sends text to SYS$OUTPUT at
specified intervals during the play back of a session file.

You can change the times shown in an input file for shorter or
longer time periods between input events. Do not change the
position of the time stamp or you will cause syntax errors.

You also can record several tasks into several session files and then extract
them into input files which can be merged.

9.3.1 Commenting Input Files

Records in an input file that have an exclamation mark (!) in column

one are comments. When a session file is created from the input file, the
comments will be placed into the session file, however, they will be ignored
when the session file is played. Example 9-2 shows a partial input file with

comments.

Working with DECwindows Session Files 9-5

Example 9-2: Commented Input File

This input file executes the DCL DIRECTORY command and then causes MBl t«
click on the Commands, Edit, and Customize menus of a terminal emulator.

1
]
!
!
! Motions have been edited to show only the starting and ending X and Y
]

]

coordinates.
KeyPress 00:00.40 d
KeyRelease 00:00.00 d
!
! End

9.3.2 Synchronizing Play Back

Input events can be lost if they are sent to a workstation before a worksta-

tion can process the input. For example, if the mouse clicks on a menu item
that has not yet appeared on the screen, the application will not be notified
of the selection, and any following input will be meaningless.

You can edit an input file to send data to the workstation (or SYS$OUTPUT
when the workstation is in a ready state.

You can specify synchronization records that cause the playback system,
when it reads the record, to stop sending data to the workstation until the
workstation returns specified output text to the playback system. When the
outnut text is received from the workstation, the playback system resumes
sending input data to the workstation.

You should add synchronization records where you would normally wait for
the application to send data to the workstation. For example, a synchro-
nization record should be placed on the last item of a menu that will be
pulled down during play back. When the last menu item is drawn on the
workstation, the playback system begins the next mouse motion event.

Output records sent from the workstation have a period (.) in column
one. If you change the period to an asterisk (*), the record becomes a
synchronization record for play back.

Data records contain the last eight characters of a text output request string
If the string is less than or equal to eight characters, the whole string is
contained in the output record.

9-6 Working with DECwindows Session Files

Example 9-3 shows a partial input file with synchronization records.

Example 9-3: Adding Synchronization Points

.ImageText8 es found

*ImageText8 Baggit>
MotionNotify 00:02.41 85 105
MotionNotify 00:00.11 134 110

]
H

! Pop up the Command menu on a terminal emulator
1

ButtonPress 00:00.28 MB1 134 110
*PolyText8 Quit

ButtonRelease 00:00.67 MB1 134 110
*PolyText8 Commands

!

! End

A synchronization record must be unique back to (but not including) the
previous synchronization record. Consecutive and equal text strings can be
synchronization records. However, you cannot have an unmarked output
record with the same text string as the previous synchronization record, or a
warning message is issued.

9.3.3 Repeating Tasks in an Input File

You can repeat tasks within an input file using the Loop and EndLoop
commands. For example, to repeat pulling down a menu, place a Loop
command before a ButtonPress record and place an EndLoop command after
the ButtonRelease and the last menu item in the menu.

Loop and EndLoop commands must begin in the second column. The

pair must be assigned a number, which specifies the number of times to
repeat the task. You can nest Loop and EndLoop commands. The Loop and
EndLoop command keywords are case sensitive.

Working with DECwindows Session Files 9-7

Example 9—4 shows an input file that repeats the entire sequence five time
and repeats pulling down the Commands menu twice.

Example 9-4: Adding Loops to an Input File

This input file executes the DCL DIRECTORY command and then causes MB1
click on the Commands, Edit, and Customize menus of a terminal emulator

Motions have been edited to show only the starting and ending X and Y
coordinates.

Repeat this input file five times.

Gt b b b 4 bm em b=

Loop 5

KeyPress 00:00.40 d

KeyRelease 00:00.00 d
MotionNotify 00:02.41 85 105
MotionNotify 00:00.11 134 110

Pop up the Commands menu on a terminal emulator
Repeat this task twice.

—— = o=

Loop 2

ButtonPress 00:00.28 MB1 134 110
.PolyText8 Commands

.PolyText8 off top

.PolyText8 Display

.PolyText8 e Window

.PolyText8 ications

.PolyText8 Terminal

*PolyText8 Quit

ButtonRelease 00:00.67 MB1 134 110
*PolyText8 Commands

.ImageText8 $ dir

.ImageText8 es found

.ImageText8 $

EndLoop 2

End Commands menu

-m e

EndLoop 5

End

9-8 Working with DECwindows Session Files

9.3.4 Creating Informational Messages

You can place informational messages in an input file. When converted to a
session file and played back, these messages can be sent to SYS$OUTPUT.
An informational message does not affect the session file and can help by
identifying processing points in a session file.

To create an informational message, specify the SendConsole command
beginning in column two with a following message. The SendConsole
command is case sensitive.

Example 9-5 shows the entire input file with informational messages and
all previous edits.

Example 9-5: Creating Informational Messages

This input file executes the DCL DIRECTORY command and then causes MBl to
click on the Commands, Edit, and Customize menus of a terminal emulator.

Motions have been edited to show only the starting and ending X and Y
coordinates.

Repeat this input file five times.

-t b= s s b b e s

Loop 5

SendConsole ...Starting main loop...
KeyPress 00:00.40 4
KeyRelease 00:00.00 d
KeyPress 00:00.19 i
KeyRelease 00:00.00 1
.ImageText8 di

KeyPress 00:00.22 r
KeyRelease 00:00.00 r
.ImageText8 r

KeyPress 00:00.40 <SPACE>
KeyRelease 00:00.00 <SPACE>
.ImageText8

KeyPress 00:00.28 <SHIFT>
KeyPress 00:00.19 *
KeyRelease 00:00.00 *
.ImageText8 *

KeyRelease 00:00.16 <SHIFT>
KeyPress 00:00.67 .
KeyRelease 00:00.00 .
.ImageText8 N

KeyPress 00:00.07 b
KeyRelease 00:00.00 b

(continued on next page)

Working with DECwindows Session Files 9-9

Example 9-5 (Cont.): Creating Informational Messages

.ImageText8
KeyPress
KeyRelease
.ImageText8
KeyPress
KeyRelease
.ImageText8
KeyPress
KeyPress
KeyRelease
.ImageText8
KeyRelease
KeyPress
. ImageText8
KeyRelease
KeyPress
KeyRelease
.ImageText8
KeyPress
KeyRelease
. ImageText8
KeyPress
KeyRelease
.ImageText8
KeyPress
KeyRelease
.ImageText8
*ImageText8

MotionNotify
MotionNotify

-t s =

Loop 2
SendConsole
ButtonPress
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
*PolyText8

ButtonRelease

*PolyText8
.ImageText8
. ImageText8
.ImageText8
EndLoop 2

b
00:00.30
00:00.00
i
00:00.30
00:00.00
n
00:00.24
00:00.11
00:00.00
*
00:00.17
00:00.02

00:00.12
00:00.20
00:00.00
a

00:00.22
00:00.00
r

00:00.27
00:00.00

y

00:00.23
00:00.08
es found
Baggit>
00:02.41
00:00.11

Pop up the Commands menu
Repeat this task twice.

i
i
n

n

<SHIFT>
*

*

<SHIFT>
<DELETE>

<DELETE>
a
a

r
r

y
y

<RETURN>
<RETURN>
85 105
134 110

on a terminal emulator

.. .Commands menu loop...

00:00.28
Commands
off top
Display
e Window
ications
Terminal
Quit
00:00.67
Commands
$ dir

es found
$

End Commands menu

MB1 134 110

MB1 134 110

9-10 Working with DECwindows Session Files

(continued on next pag

Example 9-5 (Cont.): Creating Informational Messages

! Pop up the Edit menu on a terminal

|
MotionNotify
MotionNotify
SendConsole
ButtonPress
.PolyText8
.PolyText8
.PolyText8
*PolyText8
ButtonRelease

*PolyText8
!

End Edit menu

00:00.03 133
00:00.28 222
...Edit Menu...

00:00.01 MB1 222
Edit

Copy

Paste

lect All

00:00.54 MB1 222
Edit

emulator

109
111

111

111

1
!
! Pop up the Customize menu on a terminal emulator
]

MotionNotify
MotionNotify
SendConsole
ButtonPress
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
.PolyText8
*PolyText8
ButtonRelease
*PolyText8

- =t

EndLoop 5

End input

-

SendConsole

00:00.30 223
00:00.17 273

111
111

...Customize Menu...

00:00.00 MB1 273
ustomize
indow...
splay...
neral...
board...
ction...
Settings
Defaults
from...
Settings
gs as...
00:01.02 MB1 273
ustomize

End Customize menu

111

111

...input file Complete...

9.3.5 Changing the Times of input Events

You can change the times shown in an input file for shorter or longer time
periods between input events by editing the time stamps. Do not change the
position of the time stamp.

Working with DECwindows Session Files 9-11

Chapter 10

DEC/Test Manager Callable Interface

This chapter describes the callable interface for DEC/Test Manager.
DTM$DTM is a high-level entry point that enables calling programs to pass
a DCL command line to DEC/Test Manager for processing. DTM$DTM
parses and executes the command line, and then returns to the calling
program. It can return all DEC/Test Manager return codes and CLI$ errors.
The DTM$DTM routine provides a full command-line level interface into
DEC/Test Manager.

10.1 Calling Sequence for DTM$DTM

The format for using DTM$DTM is as follows:

DTM$DTM([command_line],
[msg_routine],
[prompt_routine],
[confirm_routine],
[output_routine],
[width],
[init_flagl)
To perform confirmations, prompting, or display output, you must supply

callback routines. The following sections describe these callback routines
and other parameters to the DTM$DTM routine.

DEC/Test Manager Callable Interface 10-1

10.1.1 Command Line (command_line)

Type: char_string
Access: read
Mechanism: by descriptor

The command line parameter specifies the address of a string descriptor tha
contains a command line. If you specify a value of 0, DEC/Test Manager
calls the prompt_routine if specified to obtain a command line. If you do noi
specify this argument or a prompt routine, DEC/Test Manager returns the
error RMS$_EOF (end of file detected).

10.1.2 Message Routine (msg_routine)

Type: procedure
Access: read
Mechanism: by reference

The message routine specifies a message handler routine. See Section 10.4
for information about writing a message handler routine.

10.1.3 Prompt Routine (prompt_routine)

Type: procedure
Access: ~ read
Mechanism: by reference

The prompt routine parameter specifies the address of a callback routine
that is called when the caller specifies a missing or incomplete line.

If you do not specify a prompt callback, DEC/Test Manager does not prompt
you, but operates as if a callback had been specified and had returned the
status RMS$_EOF (except in the case of prompting for a DEC/Test Manage:
remark, where the status is RMS$_NORMAL). The RMS$_EOF return
status causes termination of command parsing (as if the user had pressed
CTRL/Z at the DCL prompt).

The prompt callback routine is called with three parameters:

10-2 DEC/Test Manager Callable Interface

response_string
Specifies the address of a descriptor that points to the character string into
which the prompt routine writes the text in response to the prompt.

prompt_string
Specifies a string descriptor containing the prompt string, passed by
reference.

response_string_length
Specifies the number of bytes written into response-string by the prompt
routine.

NOTE

The parameters you specify for the prompt routine parallel the
parameters for the Run Time Library (RTL) routine, LIB§GET _
INPUT, allowing LIB$GET_INPUT to be specified as your callback
routine.

10.1.4 Confirmation Routine (confirm_routine)

Type: procedure
Access: read
Mechanism: by reference

When the /CONFIRM qualifier is specified as part of the command line, the
confirmation routine parameter specifies the address of a callback routine
that is used, rather than specifying direct terminal input.

This routine works in either of two modes. It may return a string in the
response string parameter or the status of whatever operation it used

to obtain the string (for example, LIB§GET_INPUT or $QIO status).
Table 10-1 describes the valid values that may be returned in the response
string.

DEC/Test Manager Callable Interface 10-3

Table 10-1: Confirm_Routine Response String

String Meaning

YES, 1, true Indicates positive confirmation

ALL Indicates positive confirmation and that future actions of the
current call to DEC/Test Manager should be carried out without
confirmation

NO, 0, false Indicates negative confirmation

QUIT Indicates negative confirmation and that DEC/Test Manager

performs no further actions

The confirmation routine may also return a DEC/Test Manager confirmation
status code as in Table 10-2:

Table 10-2: Confirm Routine Return Status

Return Code Meaning
DTM$_CONFIRM Yes
DTM$_NOCONFIRM No
DTM$_ALL All
DTM$_STOPPED Quit

If the callback routine returns one of these codes, then any string returned
is ignored. The callback routine should return a status of DTM$_NORMAL
when returning a response string.

For confirmations where ALL and QUIT are not meaningful, ALL is
equivalent to YES and QUIT is equivalent to NO.

If you do not specify a confirm callback routine, DEC/Test Manager does
not request confirmation. It operates as if a callback had been specified and
had returned the string YES. DEC/Test Manager then proceeds with the
operation.

If an invalid response is given, DEC/Test Manager prompts you again. Note
that any response can be abbreviated to a single character. If a null string
is returned, DEC/Test Manager defaults to NO.

The confirm callback routine is called with two parameters:

104 DEC/Test Manager Callable Interface

response_string

Specifies the address of a descriptor that points to the character string into
which the confirm routine writes the text in response to the confirmation
prompt.

prompt_string
Specifies a string descriptor passed by reference for the prompt string, which
can then be displayed to the user.

10.1.5 Output Routine (output_routine)

Type: procedure
Access: read
Mechanism: by reference

The output routine parameter specifies the address of a callback routine

to handle output usually sent to SYS$OUTPUT. For example, all output
from a SHOW command is directed to SYS$OUTPUT (in the absence of an
overriding /OUTPUT qualifier). Note also that if you specify the /OUTPUT
qualifier to redirect terminal output to a file, DEC/Test Manager opens,
writes to, and closes the file normally and does not use the output callback
routine. This callback also receives the output for the commands specifying
the /OUTPUT=SYS$OUTPUT qualifier.

If you do not specify output_routine, DEC/Test Manager writes all output to
SYS$OUTPUT.

The output callback routine is called with one parameter:

output_string
Specifies a string descriptor for the output string, passed by reference.

10.1.6 Output Width (width)

Type: longword_signed
Access: read
Mechanism; by reference

The output width parameter specifies the maximum width of text that can
be sent to the output callback routine. If you do not specify this argument,
or you specify a value of 0 or less, the terminal width is used. If this is
unavailable, the width defaults to 132 characters.

DEC/Test Manager Callable Interface 10-5

10.1.7 Initialization Flag (init_flag)

Type: longword_signed
Access: read
Mechanism: by reference

The initialization flag parameter specifies whether DEC/Test Manager
processes an existing DEC/Test Manager initialization command file before
processing the passed command line. If this argument is not specified, the
default is to execute the initialization file. Specifying a 0 value suppresses
the execution of the initialization command file.

10.2 Rules for Writing DEC/Test Manager Callback Routines

The following list describes rules to follow when you write DEC/Test
Manager callback routines:

*

Every callback routine must return control to DEC/Test Manager. If
your routine does not return control to DEC/Test Manager, DEC/Test
Manager cannot finish the transaction and the library remains locked.
(If your library becomes locked, you must use the VERIFY command
with the /RECOVER qualifier to unlock it.) In addition, any resources
used to process the command are not released.

Callback routines must return a defined condition value to

DEC/Test Manager. You can use DTM$_NORMAL to indicate successful
completion of the callback routine, or you can return a condition code
from a VMS system service or other system software. DEC/Test Manager
checks for the DTM$_EOF and RMS$_EOF values, and also checks the
low-order bit to determine if the status code indicates success.

A success code directs DEC/Test Manager to continue processing. If
more data awaits processing, DEC/Test Manager calls the callback
routine again.

If the callback routine encounters an error during processing, it aborts
the DEC/Test Manager call by returning an error status. This causes
the DEC/Test Manager call to exit.

10-6 DEC/Test Manager Callable Interface

10.3 Handling Error Conditions

DEC/Test Manager handles error conditions in one of two ways:

¢ If the condition is not fatal, DEC/Test Manager calls a message handler.
You can provide a message routine to handle messages (see Section 10.4),
or, if you do not-provide a message routine, DEC/Test Manager calls its
own message handler.

e If the condition is fatal, DEC/Test Manager signals the error. Fatal
conditions are those situations where execution cannot continue.
DEC/Test Manager does not call the message routine under these
circumstances.

If you have established a condition handler in the calling program and the
condition handler encounters a fatal return value, do not return a value

of SS$_CONTINUE from the condition handler or signal SS$_CONTINUE
again, and do not issue additional calls to DEC/Test Manager until you have
exited and entered the image again. The fatal error indicates that DEC/Test
Manager cannot continue with the current invocation of the image.

If you supply a routine for input or output and you establish a condition
handler within this routine, do not exit from the image (through either the
condition handler or the routine itself).

To exit the image, you should return an error (any status with the low

bit clear) from your routine, causing DEC/Test Manager to terminate with
DTM$_USERERR status. DTM$_USERERR status indicates that a callback
routine returned an error.

10.4 Writing an Error Message Handler

DEC/Test Manager directs all diagnostic messages to the default destina-
tions SYS$OUTPUT and SYS$ERROR. However, you can write your own
routine to handle messages. When you specify the msg_routine parameter to
the DTM$DTM routine, DEC/Test Manager passes control to your message
handler instead of using the default handler. DEC/Test Manager does not
call your message handler routine if a fatal condition occurs, but instead
notifies you by signaling the condition. If you receive a fatal error message,
you should exit and enter DEC/Test Manager again; do not attempt to recall
DEC/Test Manager within the same image invocation if DEC/Test Manager
detected a fatal error.

DEC/Test Manager Callable Interface 10-7

DEC/Test Manager passes the following parameters in the order shown with
each call to msg_routine:

(signal_array, mechanism_array)

signal_array

Type: vector_longword_unsigned
Access: read
Mechanism: by reference

Specifies a standard VMS signal array.

mechanism_array

Type: vector_longword_unsigned
Access: read
Mechanism: by reference

Specifies a standard VMS mechanism array.

The following list describes rules to follow when you write message-handling
routines:

* Do not invoke any DEC/Test Manager routines from a message routine.

¢ Do not use the LIBSESTABLISH Run-Time Library routine to enable
the message routine as the exception handler for a DEC/Test Manager
call. DEC/Test Manager uses its own exception handlers and calls the
user-supplied message routine under the correct circumstances. (The
message routine is only for handling messages, not for general exception
handling during the execution of a DEC/Test Manager routine.)

10.5 Linking with the DEC/Test Manager Image

You need to specify the DEC/Test Manager shareable image to the DCL
LINK command. You explicitly reference the DEC/Test Manager shareable
image (SYS$SHARE: DTMSHR.EXE) by specifying the linker option as

follows:
$ LINK filename[,...],SYSSINPUT/OPTIONS
SYSS$SHARE :DTMSHR .EXE/SHARE

10-8 DEC/Test Manager Callable Interface

Command Dictionary

The Command Dictionary describes the elements of the DEC/Test Manager
command line and defines the syntax rules for entering commands. It also
describes each DEC/Test Manager command.

1 Command Format

DEC/Test Manager commands have the following format:

DTM> command [parameter...] [/qualifier...] “remark”

Table CD-1 describes the command line elements.

Table CD-1: DEC/Test Manager Command Line Elements

Element

Description

Command

Parameter

/Qualifier

Remark

Describes the DEC/Test Manager action. Commands are a
required part of the DEC/Test Manager command line.

Specifies information required by some commands. Refer to
the specific commands in this dictionary to determine whether
a command requires parameters.

Modifies the DEC/Test Manager action in a specific way.
Qualifiers are an optional part of the DEC/Test Manager
command line and can be placed anywhere on the command
line after the command, in any combination. One exception
to this occurs with test group expression qualifiers, which you
must specify immediately following the test group expression
to which it refers.

Associates a comment with any library-changing command
to be logged in the history log file. Remarks are required
on library-changing commands, although null remarks are
acceptable.

The following sections describe the formats for the DEC/Test Manager
commands, parameters, qualifiers, and parameter qualifiers.

You can abbreviate DEC/Test Manager commands by specifying the
minimum number of characters that uniquely identifies the command.

1.1 Command Parameters

Parameter values for the DEC/Test Manager commands consist of the

following:

* Collection names and expressions

* Group names and expressions

¢ Test names and expressions

Command Dictionary CD-3

¢ Variable names and expressions

¢ Variable values

¢ Result description names and expressions
¢ Object expressions

* Test group expressions

¢ File names

You can use the same name for a collection, group, test description, or
variable. You cannot use names beginning with DTM$, nor can you use
the variable names P1 through P8. These names are reserved for use by
DEC/Test Manager.

A name refers to a single item such as a collection, group, test, variable, and
result description.

An expression refers to one or more items such as collections, groups, tests,
variables, result descriptions, objects, and test groups.

Collection expressions, group expressions, result description expressions,
test expressions, and variable expressions all contain names of the same
type. For example, a collection expression contains only collection names
and expressions that resolve to collection names.

NOTE

You cannot list items in result description expressions.

Object expressions and test group expressions contain more than one type
of name. Object expressions can contain test names, group names, and
collection names. Test group expressions can contain only test names and
group names.

Expressions permit the use of wildcards. Use a comma to separate items in
a list.

1.2 Qualifiers

DEC/Test Manager uses command qualifiers and parameter qualifiers. The
following sections describe both types of qualifiers and their uses.

CD—4 Command Dictionary

1.2.1 Command Qualifiers

Command qualifiers modify the command; you can place them anywhere on
the command line after the command and in any combination. You can enter
command qualifiers before or after any parameters and before or after the
remark. Some command qualifiers require a value.

If input is taken from a command file or if the command is issued in batch,
the action is performed without confirmation, regardless of whether you
specified the /CONFIRM or /NOCONFIRM qualifier.

1.2.2 Parameter Qualifiers
The two parameter qualifiers are /GROUP and /TEST_DESCRIPTION.

You use parameter qualifiers only with test group expressions to differenti-
ate the items contained in the test group expression as representing either
tests or groups.

The position of these qualifiers is significant. The /GROUP parameter quali-
fier identifies the item that it follows as a group name. Similarly, the /TEST
DESCRIPTION parameter qualifier identifies as a test name the item that it
follows. The default parameter qualifier is /TEST_DESCRIPTION. Thus, if
no parameter qualifier follows an item in a test group expression, DEC/Test
Manager identifies that item as a test name. For example:

LMTEST1,LMTESTS/GROUP,RMTEST

In this test group expression, DEC/Test Manager identifies LMTEST1 and
RMTEST as test names and LMTESTS as a group name.

1.3 Remark

A remark is a comment that is associated with any command that modifies
the DEC/Test Manager library. A remark can consist of up to 255 printable
ASCII characters; the total command line length follows VMS conventions,
so remarks are truncated if necessary. If a remark includes any space
characters, you must enclose the remark in quotation marks (" "). A remark
is required with any library-modifying commands, but the remark can be
null. Remarks are stored in the DEC/Test Manager history log file.

If you do not specify a remark on a library-modifying command, DEC/Test
Manager prompts you for one. You do not need to include quotation marks
with these remarks.

Command Dictionary CD-5

The remark parameter specifies the remark logged with the COPY or
MODIFY command in the history file. The remark qualifier specifies the
remark associated with the modified or copied group, test description, or
variable.

You can also add a remark to the history by using the REMARK command.
This command enables you to log any comments, not just usual events.

2 File Specification Format

Whenever you specify a file for use in DEC/Test Manager, you must use
a standard VMS file specification. For a complete description of a file
specification, see the VMS DCL Concepts Manual. The format for a file
specification is as follows:

node::device:[directorylfilename.type

3 Command Descriptions

The commands in this section are arranged in alphabetical order with each
command description containing the following:

¢ Command Format

* Restrictions, if any

¢ Command parameters

¢ Descriptions of the command

¢ Command qualifiers (defaults, if any, are marked (D))

¢ Parameter qualifiers, if any (defaults, if any, are marked (D))

¢ Examples

The REVIEW command places DEC/Test Manager at a subsystem level.
The commands used at this level are discussed in Section 4. The REVIEW

subcommands are documented with the same format as the other DEC/Test
Manager commands.

CD-6 Command Dictionary

@file-specification

@file-specification

Executes DEC/Test Manager commands contained in the specified file.

Format
@file-specification

Command Qualifiers Defaults
None None

Command Parameter

file-specification
Specifies the command procedure to execute. If the file specification does not
include a file type, DEC/Test Manager uses the default file type .COM.

Description

The @file-specification command executes the commands in the specified file.
The file can contain any DEC/Test Manager command, including another
@file-specification command.

When DEC/Test Manager executes an EXIT command or reaches the end
of the command procedure, control is returned to the current command
level. The invoking command stream can be either the terminal or another
command procedure.

Do not preface the commands in the specified file with the DTM command
or dollar sign ($). For example, enter SHOW LIBRARY, not DTM SHOW
LIBRARY or $ SHOW LIBRARY.

Command Dictionary CD-7

@file-specification

Example

DTM> G@GMAIL TEST

%$DTM-S-LIBIS, DEC/Test Manager library is DUAQ: [USERO1.DTMLIB]
$DTM-S-RESUBMITTED, collection MAIL TEST has been resubmitted

-DTM-I-TEXT, Job MAIL TEST (queue SYSS$BATCH, entry 18) started on SYS$BATCI
DTM>

This example executes the command procedure MAIL_TEST.COM containing
the commands SET LIBRARY DUAOQ:[USER01.DTMLIB] and SUBMIT
MAIL_TEST.

CD-8 Command Dictionary

ATTACH

ATTACH

Switches control from your current process to another process in your job.

Format

ATTACH |[process-name] [/qualifier]

Command Qualifiers Defaults
/IDENTIFICATION=pid None
/PARENT None

Command Parameter

process-name
Specifies an existing process to which you want to attach your terminal.

If you specify either the [DENTIFICATION or /PARENT qualifier, do not
specify the process name parameter or the other qualifier. If you do not
specify a qualifier, you must specify a process name.

Description

The ATTACH command enables you to change control to a subprocesses
created with the SPAWN command or to reconnect to a parent (original)
process.

You can use the ATTACH command in conjunction with the SPAWN/WAIT
command to return to a DEC/Test Manager session without terminating the
subprocess. See the SPAWN command for more information.

Command Dictionary CD-9

ATTACH

Command Qualifiers

/IDENTIFICATION=pid
Specifies the process identification (PID) of the process to which you want

to attach your terminal. You can omit the leading zeros when you specify ¢
PID.

If you specify the /IDENTIFICATION qualifier, do not specify the process
name parameter or the /PARENT qualifier. If you do not specify a qualifiex
you must specify a process name.

/PARENT
Specifies that the process you want to attach to is your original (parent)
process.

If you specify the /PARENT qualifier, do not specify the process name
parameter or the /IDENTIFICATION qualifier. If you do not specify a
qualifier, you must specify a process name.

Example

MAIL> SPAWN DTM

DTM> ATTACH/PARENT
You have 0 new messages.

MAIL>

This example uses the VMS Mail Utility (MAIL) command SPAWN to creat
a subprocess running DEC/Test Manager. The DEC/Test Manager ATTACH
command is then used to attach the terminal back to the MAIL session, the
parent process.

CD-10 Command Dictionary

COMPARE

COMPARE

Compares the result file produced for each test description in a collection
with its corresponding benchmark file.

Format
COMPARE collection-name [/qualifier...]
Command Qualifiers Defaults
/CHARACTERS See text
/FULL None
/IGNORE=(keyword,...) None
/INOJLOG /LOG
/[NOJPARALLEL /NOPARALLEL
/RECORDS /RECORDS (for noninteractive tests)
/SCREENS /SCREENS (for interactive tests)
/SENTINEL=("begin-delimiter","end-delimiter") None
/WIDTH=n /WIDTH=132

Command Parameter

collection-name

Specifies a name that identifies a collection of test descriptions to be
compared. A collection name consists of up to 39 characters. You must
specify a collection name; you cannot specify a collection expression
containing wildcard characters or a list.

Description

The COMPARE command prepares a collection to be reviewed by comparing
the results generated for each test that was run to the test’s benchmark
file. This command works only with a collection that has been run but not
reviewed.

Command Dictionary CD-11

COMPARE

The COMPARE command compares the results of interactive terminal and
DECwindows tests, and noninteractive tests. You can compare interactive
tests in three ways:

* Screen by screen using the /SCREENS qualifier

¢ Record by record using the /RECORDS qualifier (noninteractive and
terminal tests only)

¢ Character by character using the /CHARACTERS qualifier
(noninteractive and terminal tests only)

When you perform the comparison character by character, record boundarie
in the result file are ignored. Line feed and escape characters are used to
break the output into lines, which are then processed for differences.

DEC/Test Manager informs you if you use the COMPARE command with a
collection that has already been compared. DEC/Test Manager automaticall
compares collections when they are executed. To prevent a collection from
being automatically compared, specify the INOCOMPARE qualifier with
the CREATE COLLECTION command. You cannot use the COMPARE
command with a collection that is in use.

The COMPARE command compares the completed part of a partially run
collection. If you have a collection that does not run to completion, you can
compare and review the tests in the collection that did run. A partially run
collection results if the system crashes while the collection is executing,

if you terminate the RUN command by pressing CTRL/C, or if you stop
execution of the collection with the STOP command.

The following table shows the results, comparison statuses, and file
statuses that can occur for a collection as a result of issuing the COMPARE

commands.

Result Comparison Status File Status

No Differences Successful Result file deleted

Differences Unsuccessful Result file created, difference file

created

CD-12 Command Dictionary

COMPARE

Result Comparison Status File Status

No Benchmark New Test You can create a benchmark file for
this test while reviewing the test
results from the Review subsystem
with the Review subsystem
UPDATE command.

If you store your benchmark files in a CMS library, DEC/Test Manager
searches the CMS library for your benchmark files. If DEC/Test Manager
finds that a result file has not been generated for a test, it marks the test as
not run.

If an error occurs while a comparison is being performed, the test being
compared is given the comparison status of comparison aborted. The
comparison status for a test is included in the test’s result description.

Command Qualifiers

/CHARACTERS
Performs a character-by-character comparison of the results file with the
benchmark file.

The default is /SCREENS for interactive tests and /RECORDS for
noninteractive tests.

/FULL

For noninteractive and interactive terminal tests, the /FULL qualifier
includes a complete listing of the text in the difference file that was identical
and a listing of the differences encountered when the result file and
benchmark file are compared.

/IGNORE=keyword
The /IGNORE qualifier enables you to specify that various aspects of
benchmark and result files are to be ignored during comparison.

Command Dictionary CD-13

COMPARE

The following keywords apply to noninteractive and interactive terminal

tests, only.

Keyword Result

CASE Ignores any differences between the case of alphabetic
characters (A,a,B,b, ...)

FORM-FEEDS Ignores form-feed characters

LEADING_BLANKS Ignores leading blanks and tabs

SPACING Treats multiple blanks and tabs as a single space

TRAILING_BLANKS Ignores trailing blanks and tabs

For interactive terminal tests, if you specify the IGNORE and /SCREENS
qualifiers together, DEC/Test Manager performs the comparison screen by
screen and ignores the /IGNORE qualifier.

If you specify more than one keyword, separate the keywords with commas
and enclose the list in parentheses. The output file (your result file) is not
changed in any way by the /IGNORE qualifier.

The following keyword applies to DECwindows tests only.

Keyword Result

MASK Ignores masked areas defined on DECwindows
benchmark images

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

/PARALLEL

/NOPARALLEL (D)

Specifies whether the lines that do not match in the result and benchmark
files are formatted side by side.

If you specify the [NOJPARALLEL and /SCREENS qualifiers together,
DEC/Test Manager performs the comparison screen by screen and ignores
the /[/INOJPARALLEL qualifier.

CD-14 Command Dictionary

COMPARE

/RECORDS

For noninteractive and interactive terminal tests, the /RECORDS qualifier
performs a record-by-record comparison of the result and benchmark
files. The default is /SCREENS for interactive tests and /RECORDS for
noninteractive tests.

Records are identical only if they contain the same characters. Use this type
of comparison only when you expect the record in which a string appears to
be the same each time a comparison is performed.

Use caution when specifying the /RECORDS qualifier for an interactive test
because the records in the result file are not guaranteed to be written the
same way each time the test runs. You might want to use the /RECORDS
qualifier for an interactive test whose result file is not generated by

DEC/Test Manager, for example, if you rename a test output file to be
DTM$RESULT.

/SCREENS

Performs a screen-by-screen comparison of the result and benchmark files
for an interactive test. The default is /SCREENS for interactive tests and
/RECORDS for noninteractive tests.

/SENTINEL=("begin-delimiter", "end-delimiter")

Specifies a pair of strings used to delimit a section of text to be ignored
during the comparison of result and benchmark files for noninteractive tests.
The delimiters can be up to 256 characters per line, and must be unique.
Any text between and including the delimiters is treated as if it did not
exist.

If you do not enclose the sentinel strings in quotation marks, they are
converted to uppercase before the comparison of the files. Sentinel strings
may contain any characters, but if you include spaces or tabs, they must be
enclosed in quotation marks.

/WIDTH=n

For noninteractive and interactive terminal tests that were compared with
the /CHARACTERS or /RECORDS qualifier, the /WIDTH qualifier specifies
the maximum width allowed for the differences report. The minimum width
is 48 columns and the maximum width is 511 columns. The default value is
132 columns.

Command Dictionary CD-15

COMPARE

Example

DTM> COMPARE MAIL COLL

$DTM-I-SUCCEEDED, the comparison for the test MAIL_TEST succeeded
$DTM-I-SUCCEEDED, the comparison for the test SEND MAIL_ TEST succeeded
$DTM-S~COMPARED, collection MAIL_ COLL compared

This example compares the results for all tests in the collection
MAIL_COLL. For each test, DEC/Test Manager deletes the result files

for tests whose benchmark and result files match, and it creates a differen:
file for tests whose benchmark and result files differ.

CD-16 Command Dictionary

CONVERT LIBRARY

CONVERT LIBRARY

Converts DEC/Test Manager libraries created with a version of DEC/Test
Manager prior to Version 2.0 for use with the current version of DEC/Test
Manager.

Format

CONVERT LIBRARY existing-library-name new-library-name

Command Qualifiers Defaults
None None

Command Parameters

existing-library-name
Specifies the directory for the existing DEC/Test Manager library you want
to convert.

new-library-name
Specifies the directory for the new DEC/Test Manager library you want to
create.

Description

The CONVERT LIBRARY command creates a copy of an existing DEC/Test
Manager library and converts the copy for use with this version of DEC/Test
Manager. Libraries created with DEC/Test Manager Version 2.0 or later do
not need to be converted. Conversion maintains everything in your existing
library except collections. The existing library is not altered.

Before converting a library, first create an empty directory to contain the
new, converted library.

Command Dictionary CD-17

CONVERT LIBRARY

Example

$ CREATE/DIRECTORY [project.vllib]

$ DIM

DTM> CONVERT LIBRARY [project.V1lib] {project.v2lib}

$DTM-S-COPIED, V1 variables copied

$DTM-S-COPIED, V1 groups copied

$DTM-S-COPIED, V1 test descriptions copied

-DTM-S-CONVERTED, your V1 library has been successfully converted to V2

This example first creates a new directory to contain the converted library.
Then the DEC/Test Manager system is entered and the existing library

is converted. The benchmark files are not copied because they are stored
outside the DEC/Test Manager library in a benchmark directory. They are
accessible to the new library.

CD-18 Command Dictionary

COPY TEST_DESCRIPTION

COPY TEST_DESCRIPTION

Copies an existing test description.

Format
COPY TEST_DESCRIPTION test-name1 test-name2 [/qualifier...]
"remarkr
Command Qualifiers Defaults
/INOJCOMMAND=command Current command
/COMPARISON_TYPE=keyword Current default
/INOJEPILOGUE-=file-specification Current test epilogue
/NOFILTERS Current filters
/NOGROUPS Current group memberships
/INOJLOG LOG
/INOJPROLOGUE-=file-specification Current test prologue
/INO]JREMARK="remark” Current remark
/INOJTEMPLATE-=file-specification Current template
/NOVARIABLES Current variables
Restrictions

e The /COMMAND qualifier applies to DECwindows tests only.

® The /NOFILTERS qualifier applies to interactive and noninteractive
terminal tests only.

Command Parameters

test-name1

Specifies the name of the test description to be copied. You cannot use
wildcards to specify the test name parameters. The test-namel and
test-name2 parameters must be different; you cannot copy a test description
to itself.

Command Dictionary CD-19

COPY TEST_DESCRIPTION

test-name2

Specifies the name of the test description to be created. You cannot use
wildcards to specify the test name parameters. The test-namel and
test-name2 parameters must be different.

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "); the exception to this rule is when you specify
remark string at the remark prompt. If you do not provide a remark strin
you are prompted for one, however, a null remark is permitted. This rema
is associated with the COPY TEST_DESCRIPTION command and is logge
with it in the history file.

Description

The COPY TEST_DESCRIPTION command makes a copy of an existing
test description. This enables you to create several similar test descriptior
without entering information into all the test description fields. You can
copy a test description as it is, or you can modify test description fields by
specifying qualifier values. Because DEC/Test Manager does not permit y¢
to have two test descriptions with the same name, the name for the new t
description must be unique.

When you copy a test description, only the information in the fields you
specify with command qualifiers is modified; information in the remaining
test description fields is copied as is from the existing test description.

The new test description belongs to the same groups as the existing test
description; it is associated with the same variables as the existing test
description. If the test description you are copying describes an interactiv
test, the new test is marked interactive.

Command Qualifiers

/COMMAND=command

By default, the new test description has the same command as the
copied test description. If you specify the /COMMAND qualifier, you
associate a new command with the new test description. If you specify th

CD-20 Command Dictionary

COPY TEST_DESCRIPTION

/NOCOMMAND qualifier, the associated command is not copied with the
test description. The qualifier applies to DECwindows tests only.

/COMPARISON_TYPE=keyword

Specifies how the result and benchmark files are to be compared. A
comparison type is not associated with the test description. The valid values
for keyword are as follows:

Keyword Meaning
CHARACTERS Compares files character by character.
RECORDS Compares files record by record. This is the default for

noninteractive terminal tests.

SCREENS Compares files screen by screen; screens not marked are
not compared. This is the default for interactive terminal
and DECwindows tests.

DECwindows tests can only use the SCREENS comparison

type. The SCREENS comparison type is also the default
comparison type for interactive terminal tests. If you specify the
/COMPARISON_TYPE=SCREENS qualifier for a noninteractive test,
this value is ignored.

/EPILOGUE=file-specification

/NOEPILOGUE

Determines whether a test epilogue file is associated with the test
description. The epilogue file associated with the existing test description is
also associated with the new test description.

The /EPILOGUE qualifier causes the specified epilogue file to replace
the existing epilogue file. The /NOEPILOGUE qualifier specifies that no
epilogue file be associated with the new test description.

/NOFILTERS

Specifies that no filters be associated with the new test description. By
default, the filters associated with the existing interactive or noninteractive
terminal test descriptions are also associated with the new test descriptions.

Command Dictionary CD-21

COPY TEST_DESCRIPTION

/NOGROUPS

Specifies that the new test description does not belong to any groups. If you
do not specify this qualifier, the new test description belongs to the same
group (or groups) as the previous test description.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages On your screen.

/PROLOGUE=file-specification

/NOPROLOGUE

Determines whether a test prologue file is associated with the test
description. The prologue file associated with the existing test description i
also associated with the new test description.

The /PROLOGUE qualifier causes the specified prologue file to replace
the existing prologue file. The /NOPROLOGUE qualifier specifies that no
prologue file be associated with the new test description.

/REMARK="string"

/NOREMARK

Determines whether a remark is associated with the new test description.
By default, the remark associated with the new test description will be

a copy of the remark associated with the existing test description. This
remark is associated with the test description you are creating; it is not the
remark logged with the COPY TEST DESCRIPTION command.

The /REMARK qualifier replaces the remark currently associated with the
test description with the remark you specify. The /NOREMARK qualifier
specifies that no remark be associated with the new test description.

/TEMPLATE=file-specification

/NOTEMPLATE

If you do not specify this qualifier, the existing template file is copied for th
new test. If you specify the /TEMPLATE qualifier, the existing template fil¢
is replaced by the specified template file. If you specify the /NOTEMPLATE
qualifier, DEC/Test Manager creates the template file name in the form
test-name.COM for a noninteractive test and test-name.SESSION for an
interactive or DECwindows test.

CD-22 Command Dictionary

COPY TEST_DESCRIPTION

/NOVARIABLES

Specifies that no variables be associated with the new test description. If
you do not specify this qualifier, the variables associated with the old test
description are associated with the new test description.

Example

DTM> COPY TEST_DESCRIPTION MAIL_TEST SHOW_ALL TEST/PROLOGUE=NEWPRO.COM
_Remark: SHOW ALL test with new prologue file

$DTM-I-DEFAULTED, benchmark file name defaulted to SHOW_ALL_TEST.BMK
¥DTM-S-COPIED, test description MAIL TEST copied

-DTM-S-CREATED, test description SHOW_ALL TEST created

DTM>

This example creates a copy of the existing test description, MAIL_TEST,
and names the copy, SHOW_ALL_TEST. The prologue file named
NEWPRO.COM is associated with the new test description.

Command Dictionary CD-23

CREATE COLLECTION

CREATE COLLECTION

Designates a set of tests as a collection.

Format

CREATE COLLECTION collection-name test-group-expression

[/qualifier...] »remark-

Command Qualifiers Defaults
/INO]BENCHMARK_DIRECTORY=directory-specification See text
/CLASS=(keyword=class-name,...) See text
/INOJCOMPARE[=(keyword,...)] /COMPARE
/[INOJEPILOGUE-=file-specification Current collection epilogue
/INOJLOG /LOG
/[INO]PROLOGUE-=file-specification Current collection prologue
/SENTINEL=("begin-delimiter","end-delimiter") None
/[NOISUBMIT[=keyword,...] /NOSUBMIT
/INOJTEMPLATE_DIRECTORY=directory-specification See text
/VARIABLE=(variable-name=variable-value,...) See text
/INO]VERIFY IVERIFY
Parameter Qualifiers Defaults
/GROUP [TEST_DESCRIPTION
/TEST_DESCRIPTION [TEST_DESCRIPTION

Command Parameters

collection-name

Identifies a set of tests that are run as a collection. A collection name
consists of up to 39 characters. You cannot use wildcards to specify the
collection name parameter. The collection name cannot begin with DTMS$;
names with this prefix are reserved for use by DEC/Test Manager.

CD-24 Command Dictionary

CREATE COLLECTION

test-group-expr ession

Specifies items of a test expression or a group expression, including test
names, group names, and wildcard forms of these names. Separate items
in a test group expression with commas. Identify each item as either a
test description or a group with the /GROUP or /TEST _DESCRIPTION
parameter qualifiers.

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "); the exception to this rule is when you specify
a remark string at the remark prompt.

If you do not provide a remark string, you are prompted for one. However, a
null remark is permitted.

Description

The CREATE COLLECTION command organizes a set of files that will
be treated as a single entity for running tests. A collection can contain
any combination of test types. You can execute a collection of tests either
interactively or in batch mode. However, DECwindows tests require a
connection to a workstation’s DECwindows server to run in batch mode.

The CREATE COLLECTION command constructs a set of tests by taking
a “snapshot” of the test descriptions at the time the collection is created.
Therefore, any changes subsequently made to test descriptions contained in
the collection are not reflected in the collection. However, changes made to
files referenced by the collection may affect the collection at run time.

You can execute a collection interactively by using the RUN command, or
noninteractively in batch mode by using the /SUBMIT command qualifier.
If you choose to execute your tests in batch mode, DEC/Test Manager uses
the collection name you specified as the name of the batch job. You can also
execute a collection again with either the RUN or SUBMIT command.

DEC/Test Manager verifies the existence of files associated with the test
descriptions in the collection when the collection is created. If a test
description you include in a collection does not exist, the collection is not
created. The collection is also not created if a variable you specify (on the
CREATE COLLECTION command line) is not global or does not exist.

Command Dictionary CcD-25

CREATE COLLECTION

If you specify the /NOVERIFY qualifier, DEC/Test Manager creates the
collection without verifying the existence of files associated with tests in
the collection. When the collection is executed, DEC/Test Manager may not
execute the tests if files that are supposed to be associated with them are
missing.

Command Qualifiers

/BENCHMARK _DIRECTORY=directory-specification
/NOBENCHMARK_DIRECTORY

Determines whether DEC/Test Manager should search the default
benchmark directory for benchmark files for the specified collection.

If you do not include a directory, DEC/Test Manager searches the default
benchmark directory for the benchmark file established by the SET
BENCHMARK_DIRECTORY command.

If you include a directory in the benchmark file specification for a test within
the collection, DEC/Test Manager searches that directory for the benchmark
file and (if found) overrides the default directory. The directory you specify
can be either another directory or a CMS library.

The /NOBENCHMARK_DIRECTORY qualifier overrides the default
benchmark directory for the specified collection. DEC/Test Manager
searches your default directory for all benchmark files without directory
specifications.

/CLASS=(keyword=class-name,...)

Specifies the optional CMS class for benchmark files and template files
stored in CMS libraries. The keywords, BENCHMARK and TEMPLATE,
designate the name of the specific set of generations of elements. If you
do not specify a class and the file is stored in a CMS library, the latest
generation on the main line of descent is used. See the Guide to VAX
DEC /Code Management System for more information about classes.

You can specify the same class names for your benchmark and template files.
If you specify both keywords, separate them with a comma and enclose the
list in parentheses. If you specify only one keyword, omit the parentheses.

CD-26 Command Dictionary

CREATE COLLECTION

/COMPARE([=(keyword,...)]

/NOCOMPARE

Determines whether DEC/Test Manager compares the results of each test
with its benchmark file (the file that contains expected test results) after the
collection is executed. The default is /COMPARE.

The /COMPARE qualifier specifies that DEC/Test Manager is to compare all
tests after the collection is executed. A collection must be compared before
it can be reviewed. Any differences between the results for a test and its
benchmark file are recorded in a difference file for that test. Tests without
benchmarks can be compared, but will be marked with the comparison
status of new test.

When you review tests, you can have benchmark files generated for them.
When you enter the /COMPARE qualifier, the COMPARE command default
qualifiers ((SCREENS, /LOG, and /WIDTH=132) are in effect. You can
optionally specify any of the following COMPARE command qualifiers as
keywords:

CHARACTERS
FULL
IGNORE=keyword
[NOJPARALLEL
RECORDS
SCREENS
WIDTH

The /COMPARE qualifier keywords have the same effect as the COMPARE
command qualifiers. See the COMPARE command qualifiers for a
description of the /COMPARE qualifier keywords.

If you specify more than one keyword, separate the keywords with commas
and enclose the list in parentheses. If you specify only one keyword, you can
omit the parentheses.

The /NOCOMPARE qualifier prevents the automatic comparison that
DEC/Test Manager ordinarily performs when the collection is executed. You
can use the COMPARE command later to compare test results for collections
created with the /NOCOMPARE qualifier.

Command Dictionary CD-27

CREATE COLLECTION

/EPILOGUE-=file-specification

/NOEPILOGUE

Determines whether the default collection epilogue is run with this
collection.

The /EPILOGUE qualifier overrides the default collection epilogue file for
this collection. The /NOEPILOGUE qualifier runs a collection without a
collection epilogue. This qualifier has no effect on individual test epilogues.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

/PROLOGUE-=file-specification

/NOPROLOGUE

Determines whether the default collection prologue is run with this
collection.

The /PROLOGUE qualifier overrides the default collection prologue file
for this collection. The /NOPROLOGUE qualifier runs a collection without
a collection prologue file. This qualifier has no effect on individual test
prologues.

/SENTINEL=("begin-delimiter", "end-delimiter")

Specifies a pair of strings used to delimit a section of text to be ignored
during the comparison of result and benchmark files for a noninteractive
test. The delimiters can be up to 256 characters per line, and must be
unique. Any text between and including the delimiters is treated as if it dic
not exist.

If you do not enclose the sentinel strings in quotation marks, they are
converted to uppercase before the comparison of the files. Sentinel strings
may contain any characters, but if you include spaces or tabs, they must be
enclosed in quotation marks.

/SUBMIT[=(keyword.,...)]

/NOSUBMIT (D)

Determines whether the collection is executed immediately after it is
created. You can submit collections that contain DECwindows tests but
DEC/Test Manager must be connected to a DECwindows server for the test:
to execute.

CD-28 Command Dictionary

CREATE COLLECTION

The /SUBMIT qualifier executes the collection in batch mode immediately
after the collection is created. When you enter the /SUBMIT qualifier, the
SUBMIT command qualifiers (KEEP and /LOG) are in effect. You can
optionally specify any of the following SUBMIT command qualifiers as
keywords:

AFTER [NOJCHARACTERISTICS CPUTIME
[NOJHOLD [NOIKEEP [NOILOG_FILE
NAME [NOINOTIFY [NOJPRINTER
PRIORITY QUEUE [NOJUSER
WSDEFAULT WSEXTENT WSQUOTA

If you specify more than one keyword, separate the keywords with commas
and enclose the list in parentheses. If you specify only one keyword, you can
omit the parentheses.

The /NOSUBMIT qualifier creates the collection without submitting it to the
batch queue. To run the collection, use the SUBMIT command.

/TEMPLATE_DIRECTORY=directory-specification
/NOTEMPLATE_DIRECTORY

Determines whether DEC/Test Manager should search the default template
directory for template files for the specified collection.

If you do not include a directory, DEC/Test Manager searches the
default template directory for the template file established by the SET
TEMPLATE_DIRECTORY command.

If you include a directory in the template file specification for a test within
the collection, DEC/Test Manager searches that directory for the template
file. The directory you specify can be either another directory or a CMS
library.

The /NOTEMPLATE_DIRECTORY qualifier overrides the default template
directory for the specified collection. DEC/Test Manager searches your
default directory for all template files without directory specifications.

/VARIABLE=(variable-name=variable-value,...)

Overrides the values of the specified global variables for this collection. If
you override the value for more than one variable, separate the variables

with commas and enclose the list in parentheses. If you override only one
variable, omit the parentheses.

Command Dictionary CD-29

CREATE COLLECTION

/VERIFY (D)

/NOVERIFY

Specifies whether DEC/Test Manager is to verify the existence of files
associated with all test descriptions before creating the collection. If a
referenced file does not exist, DEC/Test Manager does not create the
collection.

The /NOVERIFY qualifier causes DEC/Test Manager to create the collection
without verifying the existence of files associated with all test descriptions
before creating the collection. If a file associated with a test description is
missing when a collection executes, DEC/Test Manager may not run that
test.

Parameter Qualifiers

/GROUP

Identifies the immediately preceding item in the test group expression as a
group. If a test group expression is a list, use this qualifier after each item
in the list that designates a group. The default is /TEST _DESCRIPTION.

/TEST_DESCRIPTION
Identifies the immediately preceding item in the test group expression as a
test expression. This is the default.

Examples

1. DTM> CREATE COLLECTION MAIL_COLL MAIL*/NOPROLOGUE
_Remark: Tests of MAIL commands
$DTM-S-CREATED, collection MAIL_COLL created

This example creates the collection MAIL_COLL. It uses a qualifier
to specify that there is to be no collection prologue file associated with
this collection, and uses wildeards to specify which tests go into the
collection.

CD-30 Command Dictionary

CREATE COLLECTION

9. DTM> CREATE COLLECTION MAIL PLUS MAIL*, -
DTM> SEND_NONINT/GROUP
“Remark: More MAIL tests
%$DTM-S-CREATED, collection MAIL PLUS created

This example creates the collection MAIL_PLUS. The test group
expression specifies all tests that begin with MAIL, and all tests in the
group SEND_NONINT at the time the collection is created.

Command Dictionary CD-31

CREATE GROUP

CREATE GROUP

Creates a group in the DEC/Test Manager library.

Format
CREATE GROUP group-name [/qualifier] »remark-

Command Qualifier Default
/[NOJLOG /LOG

Command Qualifier

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

Command Parameters

group-name

Identifies a group—a category you create to organize tests. A group name
consists of up to 39 characters and follows the same syntax rules as for file
names.

You cannot use wildeards to specify the group name parameter. You cannot
begin the group name with DTM$; names with this prefix are reserved for
use by DEC/Test Manager. A group name must be unique among group
names in this DEC/Test Manager library. DEC/Test Manager informs you of
any error in naming.

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "). The exception to this rule is when you specify
a remark string at the remark prompt. If you do not provide a remark
string, you are prompted for one. However, a null remark is permitted.

CD-32 Command Dictionary

CREATE GROUP

Description

The CREATE GROUP command creates an empty group in the DEC/Test
Manager library. After you create a group, you can include test descriptions
and other groups in the group with the INSERT TEST_DESCRIPTION and
the INSERT GROUP commands.

Example

DTM> CREATE GROUP SEND_NONINT
_Remark: Tests of MAIL commands that send text (SEND, REPLY, etc)
$DTM-S-CREATED, group SEND_NONINT created

This example creates the group SEND_NONINT.

Command Dictionary CD-33

CREATE LIBRARY

CREATE LIBRARY

Creates a DEC/Test Manager library in an empty VMS directory.

Format
CREATE LIBRARY directory-specification [/qualifier] »remark-
Command Qualifier Default
/INOJLOG /LOG

Restrictions

* Do not create subdirectories of the directory containing the DEC/Test
Manager library. DEC/Test Manager recognizes that they are not part of
the library and may delete them.

* Do not create or modify files in the DEC/Test Manager library and do
not delete files from the DEC/Test Manager library.

* Do not access the DEC/Test Manager library with commands other than
DEC/Test Manager commands. Use only DEC/Test Manager Review
subsystem commands to access test run output files.

Command Parameters

directory-specification

Specifies an empty directory that you have created with the DCL
CREATE/DIRECTORY command. The directory specification must follow
VMS specifications for directory names. Do not specify your current default
directory or a directory that contains files.

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "). The exception to this rule is when you specify
a remark string at the remark prompt. If you do not provide a remark
string, you are prompted for one. However, a null remark is permitted.

CD-34 Command Dictionary

CREATE LIBRARY

Description

The CREATE LIBRARY command creates a DEC/Test Manager library in an
empty VMS directory. The library contains the files that DEC/Test Manager
needs to describe, run, and review tests.

You can store benchmark files and template files in the DEC/Test Manager
library or in CMS libraries. You must store all other files outside the
DEC/Test Manager library in another directory or in a CMS library. If you
do this, you must inform DEC/Test Manager where the files are stored.

You may find it useful to create a separate library for each project for which
you use DEC/Test Manager.

Command Qualifier

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

Example

$ CREATE/DIR [USER0O1.DTMLIB]

$ DTM

DTM>

DTM> CREATE LIBRARY [USERO1.DTMLIB]

%$DTM-S-CREATED, DTM library DUAO: [USERO1.DTMLIB] created

This example shows how to create a DEC/Test Manager library by first
creating an empty directory, DTMLIB.DIR, and then using the CREATE
LIBRARY command to turn this directory into a DEC/Test Manager library.

Command Dictionary CD-35

CREATE TEST_DESCRIPTION

CREATE TEST_DESCRIPTION

Creates a test description in the DEC/Test Manager library.

Format

CREATE TEST_DESCRIPTION test-name [/qualifier...] »remark~
Command Qualifiers Defaults
/BENCHMARK-=file-specification /BENCHMARK=test-name.BMK
/COMMAND="DCL-command" None
/COMPARISON_TYPE=keyword None
/DECWINDOWS None
/EPILOGUE-=file-specification None
/FILTER=(keyword,...) None
/INOJINTERACTIVE /NOINTERACTIVE
/INOJLOG /LOG
/PROLOGUE-=file-specification None
/TEMPLATE=file-specification See text

/VARIABLE=(variable-name[=variable-value],...) None

Restrictions

¢ The /COMMAND qualifier applies to DECwindows tests only.
* The /FILTER qualifier applies to noninteractive and terminal tests only.

Command Parameters

test-name

Specifies a unique name for a test description. A test name consists of up
to 39 characters and follows the same syntax rules as for file names. You
cannot use wildcards to specify the test name parameter. The test name
cannot begin with DTM$ because names with this prefix are reserved for
use by DEC/Test Manager.

CD-36 Command Dictionary

CREATE TEST_DESCRIPTION

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "). The exception to this rule is when you specify
a remark string at the remark prompt. If you do not provide a remark
string, you are prompted for one. However, a null remark is permitted.

Description

The CREATE TEST_DESCRIPTION command creates a test description
in the DEC/Test Manager library. A test description is all the information
associated with a specific test.

The test name parameter specifies a value for the test name field of the test
description. You can specify values for the other test description fields by
supplying values for the appropriate command qualifiers.

The test name is the unique identifier of the test description and is the only
means of access to a test description. The /TEMPLATE qualifier specifies
the template file for this test. A template file is a command file that is a
test or a recorded interactive session. If you do not specify a template file
name at the time you create a test description, DEC/Test Manager supplies
a default file name of the form test-name.COM unless you specified the
/INTERACTIVE or /DECWINDOWS qualifier, in which case the default file
name is test-name.SESSION.

When you create a test description, you can include file specifications for
the template, benchmark, prologue, or epilogue field, regardless of whether
the specified file exists. DEC/Test Manager does not check whether the files
exist; it creates the test description with the file names you supply or with
default file names.

If you specify a name for the variable field, the variable must exist. If
the variable does not exist, DEC/Test Manager will not create the test
description.

When you create a collection to run your test, DEC/Test Manager searches
for all the files specified in the test description. If a file is missing, the
collection is not created. If you specify the /NOVERIFY qualifier on the
CREATE COLLECTION command, DEC/Test Manager creates the collection
without verifying that the files exist.

Command Dictionary CD-37

CREATE TEST_DESCRIPTION

When the collection is created, DEC/Test Manager resolves the logical name
If you use a logical name in a file specification for a CREATE
TEST_DESCRIPTION qualifier value, the logical name is not resolved until
you place the test in a collection. If you specify the NOVERIFY qualifier
on the CREATE COLLECTION command, DEC/Test Manager creates the
collection without resolving the logical name.

Command Qualifiers

/BENCHMARK-=file-specification

Specifies the file to contain the expected output from the test’s execution.
DEC/Test Manager supplies a file name of the form test-name.BMK. If your
file specification includes a directory specification, it overrides the default
benchmark directory for the library. Benchmark files may be located in the
DEC/Test Manager library, in another directory, or in a CMS library.

/COMMAND="DCL-command"

Specifies a command to be executed before the test is recorded or executed.
Use this qualifier to start applications for inclusion in the test. This qualifie;
applies to DECwindows tests only.

/COMPARISON_TYPE=keyword

Specifies how the result and benchmark files are to be compared. A
comparison type is not associated with the test description. The valid values
for keyword are as follows:

Keyword Meaning

CHARACTERS Compares files character by character.

RECORDS Compares files record by record. This is the default for
noninteractive terminal tests.

SCREENS Compares files screen by screen; screens not marked are
not compared. This is the default for interactive terminal
and DECwindows tests.

DECwindows tests can only use the SCREENS comparison type. The
SCREENS comparison type is also the default comparison type for inter-
active terminal tests. If you specify the /COMPARISON_TYPE=SCREENS
qualifier for a noninteractive test, this value is ignored.

CD-38 Command Dictionary

/DECWINDOWS

CREATE TEST_DESCRIPTION

Specifies that the test being created is marked as a DECwindows test.

/EPILOGUE-=file-specification

Adds the specified epilogue file to the test description. The test epilogue file
is run immediately after the test template file is executed. This epilogue file
is unrelated to the collection epilogue file.

You cannot store epilogue files in the DEC/Test Manager library; store them
in another directory or in a CMS library.

/FILTER=(keyword,...)

Available for interactive and noninteractive terminal tests only, the /FILTER
qualifier selects one or more filters to remove run-time data from the result
file that the test run produces. The valid values for keyword are as follows:

Keyword Filter
ALL Specifies that all the filters in this table be used
DATE Where the date form is abbreviated, the date filter replaces

date stamps by substituting a “d” for each displayed number
of the day of the month, an “m” for each displayed letter

of the month, and a “y” for each displayed number of the
year, Where the date form is spelled out, the month name is
replaced by “month”, the numeric day is replaced by “day”,
and the year is replaced by “year”.

The following list shows some examples of the date filtering
functions; this list is not all inclusive.

17-0CT-1989 with dd-mmm-yyyy

17 OCT 89 with dd mmm yy
89.0CT.17 with yy.mmm.dd

10/17/89 with mm/dd/yy

1989/10/17 with yyyy/mm/dd

October 17, 1989 with month day, year
Oct. 17, 1989 with month day, year
17.0ctober.1989 with day.month.year
89-October-17 with year-month-day

Command Dictionary CD-39

CREATE TEST_DESCRIPTION

Keyword Filter

TIME Replaces time stamps with the following forms:

15:37:53.22 with hh:mm:ss.xxxx
15:37:53 with hh:mm:ss

15:37 with hh:mm

3:37 PM with hh:mm xm
15H37m with hhHmmm

15H37 with hhHmm’

15.37 h with hh.mm h

15 h 37"53 s with hh h mm"ss s
15 h 37 min with hh h mm min
k1 15.37 with kl hh.mm

h 15.37 with h hh.mm

FILE_NAMES Replaces the file names with FILENAME.EXT
DIRECTORIES Replaces the directory specification field in the file

specification with DISK:[DIRECTORY]
TRACE_BACK Replaces 8-bit memory addresses with xxxxxxxx
VERSION Replaces file versions with VERSION

If you specify more than one keyword, separate the keywords with commas
and enclose the list in parentheses. If you specify only one keyword, omit
the parentheses.

/ANTERACTIVE

/NOINTERACTIVE (D)

Specifies whether the test being created is marked as an interactive terminal
test.

The /INTERACTIVE qualifier marks a test description as containing an
interactive terminal test. The /NOINTERACTIVE qualifier marks a test
description as containing a noninteractive test.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

/PROLOGUE-=file-specification
Adds the specified prologue file to the test description.

CD—40 Command Dictionary

CREATE TEST_DESCRIPTION

The test prologue file is run immediately before the test template file is
executed. This prologue file is unrelated to the collection prologue file.

You cannot store prologue files in the DEC/Test Manager library; store them
in another directory or in a CMS library.

/TEMPLATE-=file-specification

Specifies the command file that runs a test, the file containing an interactive
terminal or DECwindows session. DEC/Test Manager supplies a template
file name of the form test-name.COM for noninteractive tests and
test-name.SESSION for interactive and DECwindows tests. If your file
specification includes a directory specification, DEC/Test Manager ignores
the default template directory.

You cannot store template files that you create, except SESSION files, in
the DEC/Test Manager library; store them in another directory, or in a CMS
library.

/VARIABLE=(variable-name[=variable-value],...)

Enables you to associate existing variables with the test description you
are creating. The variables you specify must be defined in the DEC/Test
Manager library by using the CREATE VARIABLE command. A variable
associated with a test description by this qualifier is local in scope.

The /VARIABLE qualifier also enables you to redefine values for the
variables you specify. If you specify an optional value, the variable takes on
that value only for this test description; the value of the original variable is
unaffected.

If you specify more than one variable name, separate the names with
commas and enclose the list in parentheses. If you specify only one variable
name, omit the parentheses. You cannot use wildeards.

Examples

1. DTM> CREATE TEST_DESCRIPTION SEND_MAIL_ TEST
_Remark: Send a message test.
$DTM-I-DEFAULTED, benchmark file name defaulted to SEND_MAIL_TEST.BMK
$DTM-I-DEFAULTED, template file name defaulted to SEND_MAIL_TEST.COM
$DTM-S-CREATED, test description SEND_MAIL_TEST created.

This example creates a noninteractive test description with the test
name SEND_MAIL_TEST.

Command Dictionary CD-41

CREATE TEST_DESCRIPTION

2. DTM> CREATE TEST DESCRIPTION/TEMPLATE=MAIL_INT.COM -
_DTM> /INTERACTIVE/PROLOGUE=NOBROADCAST.COM/EPILOGUE=BROADCAST .COM
_test name: MAIL_TEST_INT
_Remark: Creating a MAIL test
$DTM-I-DEFAULTED, benchmark file name defaulted to MAIL TEST_INT.BMK
$DTM-I-DEFAULTED, template file name defaulted to MAIL TEST INT.SESSIO!
$DTM-S-CREATED, test description MAIL_TEST_INT created

This example creates an interactive test description MAIL_TEST_INT
and includes template, prologue, and epilogue file names. Note that
DEC/Test Manager. prompts for the test name and remark.

CD-42 Command Dictionary

CREATE VARIABLE

CREATE VARIABLE

Defines a variable in the DEC/Test Manager library.

Format

CREATE VARIABLE variable-name variable-value [/qualifier...]

nremark-
Command Qualifiers Defaults
/GLOBAL /LOCAL
/LOCAL /LOCAL
/[INOJLOG ILOG
/LOGICAL /SYMBOL
/NUMERIC See text
/STRING See text
/SYMBOL /SYMBOL

Command Parameters

variable-name

Specifies a variable’s name, which must be unique, consist of up to 39
characters, and follow VMS rules for file names. You cannot use wildcards,
the variable names P1 through P8, or variable names beginning with DTM$,
which are reserved for use by DEC/Test Manager.

variable-value
Specifies the variable’s value. This value remains in effect until you redefine
it for a particular test description.

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "). The exception to this rule is when you specify
a remark string at the remark prompt. If you do not provide a remark
string, you are prompted for one. However, a null remark is permitted.

Command Dictionary CD-43

CREATE VARIABLE

Description

The CREATE VARIABLE command defines a variable in the current
DEC/Test Manager library. Only variables defined in the library can be
included in test descriptions or collections.

You specify the default value for a variable with the variable value
parameter. If you do not supply a variable value, DEC/Test Manager
prompts you for one. Optional qualifiers enable you to specify how the
variable is to be handled during processing. You can override this value for
a particular test description.

You specify the value of a variable with the variable value parameter. You
specify its use as a local or global variable with the /GLOBAL or /LOCAL
qualifier. You specify its use as a symbol or logical name with the /SYMBOL
or /LOGICAL qualifier.

If you do not specify the /SYMBOL or /LOGICAL qualifier, DEC/Test
Manager creates the variable as a symbol. If a variable is defined as a
symbol, you must further define the variable value as either a text string by
using the /STRING qualifier, or a numeric value by using the /NUMERIC
qualifier. If you do not use one of these qualifiers, DEC/Test Manager
interprets a quoted variable value as a text string and an unquoted variable
value as a numerical value.

When using the /NUMERIC and /STRING qualifiers, you must place DCL
operators such as the plus sign (+) and minus (-) in a quoted string to be
used as arithmetic operators. DEC/Test Manager attempts to prevent the
generation of syntactically incorrect DCL assignment statements. Therefore,
numeric symbol variables and logical variables cannot have a null value.

Command Qualifiers

/GLOBAL

Defines the variable as being accessible to all tests in all collections.
You cannot specify both /[LOCAL and /GLOBAL with the same CREATE
VARIABLE command. The default is /LOCAL.

CD—44 Command Dictionary

CREATE VARIABLE

/LOCAL

Defines the variable as being accessible only to an individual test that
references it in its test description. The default is /LOCAL. You cannot
specify both /LOCAL and /GLOBAL with the same CREATE VARIABLE
command.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

/LOGICAL

Defines the variable as a VMS logical name. You cannot specify both
/LOGICAL and /SYMBOL with the same CREATE VARIABLE command.
The default is /SYMBOL.

/NUMERIC

Used only with the /SYMBOL qualifier, the NUMERIC qualifier defines

the symbol type as a numeric value. Use this qualifier to define a quoted
symbol value as numeric. You cannot specify both /NUMERIC and /STRING
with the same CREATE VARIABLE command. If the variable value is not
enclosed in quotation marks (" "), the variable type is defined as a numeric
value.

/STRING

Used with the /SYMBOL qualifier, the /STRING qualifier defines a symbol
type as a text string. Use this qualifier to define an unquoted symbol value
as a text string. You cannot specify both /NUMERIC and /STRING with the
same CREATE VARIABLE command. If the variable value is enclosed in
quotation marks (" "), the variable type is defined as a text string.

/SYMBOL

Defines the variable to be a VMS symbol. When you specify a variable as

a symbol with the /SYMBOL qualifier, you must further define it as either
a numeric value (with the /NUMERIC qualifier) or a text string (with the
/STRING qualifier). You cannot specify both /[LOGICAL and /SYMBOL with
the same CREATE VARIABLE command. The default is /SYMBOL.

Command Dictionary CD-45

CREATE VARIABLE

Example

DTM> CREATE VARIABLE/SYMBOL/LOCAL INPUT_FILE "emptyfil"
_Remark: Name of input file, with an empty file as the default

$DTM-S-CREATED, symbol variable INPUT_FILE created.

This example creates the variable INPUT_FILE. It is defined as a local
symbol, with a default value of emptyfil. The quotation marks indicate thai
the value is a string.

CD—46 Command Dictionary

DEFINE/KEY

Defines a key to execute a command string.
Format
DEFINE/KEY key-name ~command-string~ [/qualifier...]
Command Qualifiers Defaults
/INOJECHO /ECHO
/INOJIF_STATE=(state-name,...) Current state
/INOJLOCK_STATE /NOLOCK_STATE
/INOISET_STATE=state-name Current state
/INOJTERMINATE /NOTERMINATE
|
Restrictions

¢ Key definitions apply only to terminal environments.

¢ The DEFINE/KEY command can only be used at the DEC/Test Manager
subsystem level.

Command Parameters

key-name
Specifies the key to define. You can use the DEFINE/KEY command to

define the following keys:

PF1 to PF4

KPO to KP9
period (.)
comma (,)
minus (-)
Enter

left arrow («)
right arrow (—)

Command Dictionary CD—47

DEFINE/KEY

Find (E1)

Insert Here (E2)
Remove (E3)
Select (E4)

Prev Screen (E5)
Next Screen (E6)
Help

Do

F6 to F20

command-string

Specifies the command string to be entered when you press the defined key
The command string can be a DEC/Test Manager command. If the commar
contains any spaces, enclose the command string in quotation marks (" ").

Description

The DEFINE/KEY command defines a key to issue a DEC/Test Manager
command. You can customize your keyboard by defining keys to issue ofter
used commands or command strings that are long.

The definitions you create with the DEFINE/KEY command are in effect
only for the current DEC/Test Manager session; the next time you invoke
DEC/Test Manager, only the default key definitions will be in effect. To
save your key definitions for use in every DEC/Test Manager session,
include them in a DEC/Test Manager initialization file. This file is execute
whenever you invoke DEC/Test Manager as a subsystem. See Section 6.6.2
for more information on the initialization file.

If you have key definitions that you want to save but do not necessarily
want to use every time you invoke DEC/Test Manager, define them in a
command procedure.

DEC/Test Manager provides a set of default definitions. You can use the
DEFINE/KEY command to replace these definitions or to define certain
undefined keys. Pressing the PF2 key displays the default key definitions.

The state name value used with the /IF_STATE, /LOCK_STATE, and
/SET_STATE qualifiers can be any alphanumeric string. The state names
defined by DEC/Test Manager are DTM and GOLD_DTM.

CD-48 Command Dictionary

DEFINE/KEY

You can define the GOLD key (PF1) to execute DEC/Test Manager
commands in two keystrokes by using the DEFINE/KEY command with the
/SET_STATE=GOLD_DTM qualifier. By doing this, you can provide two
definitions to the same key. For example, you can define KP1 to issue the
CREATE GROUP command and define GOLD-KP1 to issue the MODIFY
GROUP command.

Command Qualifiers

/ECHO (D)

/NOECHO

Specifies whether the command is displayed on your screen after you press
the defined key. You cannot specify both the /NOECHO qualifier and the
/NOTERMINATE qualifier.

/IF_STATE=(state-name,...)

/NOIF_STATE

Specifies a list of states, any one of which must be set to enable the specified
key definition. The default is the current state. DEC/Test Manager defines
the two state names as DTM and GOLD_DTM. The /NOIF_STATE qualifier
selects the current state.

/LOCK_STATE

/NOLOCK_STATE (D)

Specifies the state specified with the /SET_STATE qualifier until you use the
/SET_STATE qualifier again to change it.

/SET_STATE=state-name

/NOSET_STATE

Associates a state with the key you are defining. The default is the
current state. DEC/Test Manager defines the two state names as DTM
and GOLD_DTM. You cannot define a key specifying both the /SET_STATE
qualifier and the /TERMINATE qualifier. The /NOSET_STATE qualifier
selects the current state.

Command Dictionary CD-49

DEFINE/KEY

/TERMINATE

/NOTERMINATE (D)

Determines whether the specified command string executes when you press
the defined key. When you use the /NOTERMINATE qualifier, you must
press the RETURN key to execute a command. You cannot specify both the
/SET_STATE qualifier and the /TERMINATE qualifier or the /NOECHO
qualifier with the NOTERMINATE qualifier.

Examples

1. DTM> DEFINE/KEY KP5 "SET LIBRARY DUAO: [USERO1.LIB_A]"/TERMINATE
DTM>

If you subsequently press keypad 5, the following text is displayed:

DTM> SET LIBRARY DUAQ: {USERO1.LIB_A]
$DTM-S-LIBIS, DEC/Test Manager library is DUAQ: [USERO1.LIB_A]
DTM>

2. DTM> DEFINE/KEY KP5 /IF_STATE=GOLD_DTM -
_DTM> "SET LIBRARY DUAOQ: [USERO1.LIB B]"/TERMINATE
DTM>

This example defines GOLD keypad 5 to set the default DEC/Test
Manager library to a different library than the one in the previous
example. If you subsequently press GOLD Keypad 5, the following text
is displayed:

DTM> SET LIBRARY DUAQ:[USEROLl.LIB_B]
%$DTM-S-LIBIS, DEC/Test Manager library is DUAO:[USERO1.LIB B]
DTM>

CD-50 Command Dictionary

DELETE COLLECTION

DELETE COLLECTION

Deletes the specified collection and any associated difference and result files
from the DEC/Test Manager library.

Format

DELETE COLLECTION collection-expression [/qualifier...]

“remark-
Command Qualifiers Defaults
/[NOJCONFIRM /CONFiRM
/INOJLOG /LOG

Command Parameters

collection-expression

Specifies the collections to delete. The collection expression can be a
collection name or a list of names separated by commas. You can use
wildcards.

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "). The exception to this rule is when you specify
a remark string at the remark prompt. If you do not provide a remark
string, you are prompted for one. However, a null remark is permitted.

Description

The DELETE COLLECTION command deletes one or more specified
collections and any related difference or result files from the DEC/Test
Manager library.

Command Dictionary CD-51

DELETE COLLECTION

You cannot delete a collection that is in use. -Also, you must have sufficien
privileges to delete the files. If the collection run ended abnormally and yo
are unable to delete a collection, use the VERIFY/RECOVER command anu
then reissue the DELETE COLLECTION command.

This command does not affect benchmark files.

Command Qualifiers

/CONFIRM (D)

/NOCONFIRM

Controls whether DEC/Test Manager prompts you to confirm each deletion
Valid responses are Yes, No, All, or Quit.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen. The default is /LOG.

Examples

1. DTM> DELETE COLLECTION MAIL COLL "No longer needed"
Confirm deletion of collection MAIL_COLL [Y/N] (N): vy
%DTM-I-DELETED, collection MAIL COLL deleted
$DTM~S-DELETIONS, 1 deletion completed

This example deletes the collection MAIL,_COLL. The default /CONFIR
qualifier is in effect.

2. DTM> DELETE COLLECTION *MAIL* "Deleting all MAIL collections"
Confirm deletion of collection MAIL_COLL [Y/N] (N): Y
$DTM-I-DELETED, collection MAIL COLL deleted
Confirm deletion of collection DELETE MAIL_COLL [Y/N] (N): Y
%$DTM-I-DELETED, collection DELETE_MAIL_COLL deleted
%$DTM-S-DELETIONS, 2 deletions completed

This example deletes all the collections that contain MAIL as part of
their name. The default /CONFIRM qualifier is in effect.

CD-52 Command Dictionary

DELETE GROUP

DELETE GROUP

Deletes a group from the DEC/Test Manager library.

Format
DELETE GROUP group-expression [/qualifier...] ~remark»
Command Qualifiers Defaults
/[NOJCONFIRM /CONFIRM
/[NOJLOG /LOG
Restriction

* You cannot delete a group if it contains any test descriptions or other
groups, or if it is a subgroup of another group. If any test descriptions
or groups are still in the group when you issue the DELETE GROUP
command, DEC/Test Manager reports that the specified group has not
been deleted.

Command Parameters

group-expression
Specifies the groups to delete. The group expression can be a group name or
a list of group names separated by commas. You can use wildcards.

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "). The exception to this rule is when you specify
a remark string at the remark prompt. If you do not provide a remark
string, you are prompted for one. However, a null remark is permitted.

Command Dictionary CD-53

DELETE GROUP

Description

The DELETE GROUP command deletes a group from the DEC/Test
Manager library.

The SHOW GROUP/MEMBER command lists the groups of which the
specified group is a member. The SHOW GROUP/CONTENTS command
lists the groups and test descriptions contained in this group. Use the
REMOVE TEST_DESCRIPTION command to remove test descriptions from
the group. Use the REMOVE GROUP command to remove subgroups of the
group or to remove the group from another group.

Command Qualifiers

/CONFIRM (D)

/NOCONFIRM

Controls whether DEC/Test Manager prompts you to confirm each deletion.
Valid responses are Yes, No, All, or Quit.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

Examples

1. DTM> DELETE GROUP MAIL NONINT/NOCONFIRM "Getting rid of this group"
%$DTM-S-DELETED, group MAIL NONINT deleted

This example deletes the group MAIL,_NONINT. You are not prompted
for confirmation because the /NOCONFIRM qualifier is in effect.

CD-54 Command Dictionary

DELETE GROUP

DTM> DELETE GROUP * "Deleting all groups"
Confirm deletion of group MATH [Y/N] (N): ALL
$DTM-I~-DELETED, group MATH deleted
$DTM-I-DELETED, group RELOP deleted
$DTM-I-DELETED, group VARS deleted
%$DTM-S-DELETIONS, 3 deletions completed

This example deletes all the groups in the library. The default
/CONFIRM qualifier is in effect. By typing ALL, you indicate that
all groups can be deleted without further requests for confirmation.

Command Dictionary CD-55

DELETE HISTORY

DELETE HISTORY

Deletes history information from the history file.

Format

DELETE HISTORY [/qualifier...] ~remark~

Command Qualifiers Defaults
/BEFORE=time See text
/[INOJCONFIRM /CONFIRM
/INOILOG /LOG

/OUTPUTI[=file-specification] /OUTPUT=HISTORY.OUT

Command Parameter

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "). The exception to this rule is when you specif
a remark string at the remark prompt. If you do not provide a remark
string, you are prompted for one. However, a null remark is permitted.

Description

The DELETE HISTORY command removes history information from the
history file. You specify the history information that you want removed
by using the /BEFORE qualifier. That information is then placed in a file
named HISTORY.OUT in your current directory. After you have removed
information from the history file, you cannot replace it.

The DELETE HISTORY command is logged in the history file in the usual
manner. In addition, it is also logged in the file at the point where history
information is being deleted; the log entry takes the following form:

date time user-name REMARK "PREVIOUS HISTORY DELETED"

CD-56 Command Dictionary

DELETE HISTORY

Command Qualifiers

/BEFORE=time

Deletes all history information from the history file dated prior to the
specified date. The deleted information is replaced by a single entry stating
that history information has been deleted from the history file.

If you omit the /BEFORE qualifier, the default is to remove information that
was logged prior to the time you enter the command. If you include the
/BEFORE qualifier and do not specify a time, the default is TODAY.

You can specify the time as an absolute, delta, or combination time value, or
as one of the following keywords: TODAY, TOMORROW, or YESTERDAY.
DEC/Test Manager interprets TOMORROW as the time at which you enter
the DELETE HISTORY command.

/CONFIRM (D)

/NOCONFIRM

Controls whether DEC/Test Manager prompts you to confirm each deletion.
Valid responses are Yes, No, All, or Quit.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

/OUTPUT[=file-specification]
Sends output from the DELETE HISTORY command to the specified file.

The output is written to a file called HISTORY.OUT in your current
directory if you do not specify the /OUTPUT qualifier. If you specify the file
name without the file type, the file type defaults to .LIS.

Command Dictionary CD-57

DELETE HISTORY

Example

DTM> DELETE HISTORY /BEFORE=08~JAN "Deleting old information"
Confirm DELETE HISTORY/BEFORE=8-Jan-1989 [Y/N}] (N): Y
$DTM-S-HISTDEL, 150 history records deleted

DTM>

This example deletes all history records in the history file recorded before
January 8, 1989. The deleted information is replaced with the following
record:

* 8~JAN-1989 00:00:00 SMITH REMARK "PREVIOUS HISTORY DELETED"

CD-58 Command Dictionary

DELETE TEST_DESCRIPTION

DELETETEST_DESCRIPTION

Deletes a test description from the DEC/Test Manager library.

Format
DELETE TEST_DESCRIPTION test-expression [/qualifier...]
wremark-
Command Qualifiers Defaults
/INOJCONFIRM /CONFIRM
/NOJLOG /LOG
Restrictions

You cannot delete a test description if it belongs to a group. Use the
REMOVE TEST _DESCRIPTION command to remove a test description
from a group. Use the SHOW TEST _DESCRIPTION/GROUPS command
to display the groups to which the test description belongs.

Do not delete a test description that is part of an existing collection. If
you delete a test description that is part of a collection, you may see
error messages when you issue other DEC/Test Manager commands. For
example, if you review a collection from which you have deleted a test
description and its associated benchmark file for a noninteractive test,
you will see a message indicating that the result description contains
errors and you will be unable to examine the benchmark file for this
result description. If you delete the test description and benchmark file
for an interactive test that uses a screen comparison, you will be unable
to examine any of the files associated with the test.

Command Dictionary CD-59

DELETE TEST_DESCRIPTION

Command Parameters

test-expression
Specifies the test descriptions to delete. The test expression can be a test
name or a list of test names separated by commas. You can use wildcards.

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "). The exception to this rule is when you specif}
a remark string at the remark prompt. If you do not provide a remark
string, you are prompted for one. However, a null remark is permitted.

Description

The DELETE TEST_DESCRIPTION command deletes the specified test
description from the library. It also deletes the test description’s benchmark
file if it exists in the DEC/Test Manager library. If the benchmark file is
outside the DEC/Test Manager library (in another directory or in a CMS
library), DEC/Test Manager deletes the test description but does not delete
the benchmark file.

Result and difference files generated after a test run are not affected by the
DELETE TEST_DESCRIPTION command. See the DELETE COLLECTIO!
command description for information about deleting these files.

Command Qualifiers

/CONFIRM (D)

/NOCONFIRM

Controls whether DEC/Test Manager prompts you to confirm each deletion.
Valid responses are Yes, No, All, or Quit.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages On your screen.

CD-60 Command Dictionary

DELETE TEST_DESCRIPTION

Examples

1. DTM> DELETE TEST_DESCRIPTION/NOCONFIRM RMTEST "Deleting RMTEST"
%DTM-S-DELETED, test_description RMTEST deleted

This example deletes the test description RMTEST. The /NOCONFIRM
qualifier is in effect.

2. DTM> DELETE TEST DESCRIPTION/NOCONFIRM *TEST*
_Remark: Deleting all MAIL tests
%DTM-I-DELETED, test_description MAIL_TEST deleted
$DTM-I-DELETED, test_description RMTEST deleted
$DTM-I-DELETED, test_description SEND_MAIL_TEST deleted
$DTM-I-DELETED, test_description TEST TUBE deleted
$DTM-S-DELETIONS, 4 test_descriptions deleted

This example deletes from the current library all the test descriptions
that contain TEST as part of their name. The /NOCONFIRM qualifier is
in effect.

Command Dictionary CD-61

DELETE VARIABLE

DELETE VARIABLE

Deletes specified variables from the DEC/Test Manager library.

Format
DELETE VARIABLE variable-expression [/qualifier...] ~remark~
Command Qualifiers Defaults
/[NO]JCONFIRM /CONFIRM
/[NOJLOG /LOG
Restriction

¢ If you attempt to delete several variables and one or more of them are
associated with test descriptions, DEC/Test Manager deletes only those
variables not associated with a test description.

Command Parameters

variable-expression

Specifies the variables to delete. The variable expression can be a variable
name or a list of variable names separated by commas. You can use
wildcards.

remark

Specifies a string that contains a comment. You must specify a remark
within quotation marks (" "). The exception to this rule is when you specify
a remark string at the remark prompt. If you do not provide a remark
string, you are prompted for one. However, a null remark is permitted.

CD-62 Command Dictionary

DELETE VARIABLE

Description

The DELETE VARIABLE command deletes one or more specified variables
from the DEC/Test Manager library.

This command does not delete any variables currently associated with a test
description. If you attempt such a deletion, DEC/Test Manager issues an
error message. Use the SHOW VARIABLE/TEST DESCRIPTION command
to list the test descriptions with which a variable is associated. Use the
MODIFY TEST DESCRIPTION command to disassociate a variable from a
test description.

Variables are described in Chapter 6.

Command Qualifiers

/CONFIRM (D)

/NOCONFIRM

Controls whether DEC/Test Manager prompts you to confirm each deletion.
Valid responses are Yes, No, All, or Quit.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

Example

DTM> DELETE VARIABLE INPUT_FILE "Deleting variable INPUT FILE"
Confirm deletion of variable INPUT_FILE [Y/N] (N): ¥y
%DTM-S-DELETED, variable INPUT_FILE deleted.

This example deletes the variable INPUT_FILE. The default /CONFIRM
qualifier is in effect.

Command Dictionary CD-63

DISPLAY

DISPLAY

Displays the benchmark file for a specified interactive terminal test.

Format
DISPLAY test-name [/qualifier]

Command Qualifier Default
/BENCHMARK /BENCHMARK

Command Parameter

test-name ;

Specifies the name of the test description for an interactive terminal test
whose benchmark file is to be displayed. You cannot use wildcards to specify
the test name parameter.

Description

The DISPLAY command displays the benchmark file as it existed when it
was created. For example, if the benchmark file contains dates or times tha
were recorded when the test was created, those dates or times are displayed
rather than the current date or time. Commands in the benchmark file are
not executed.

The DISPLAY command with the / BENCHMARK qualifier searches for the
benchmark file in the default benchmark directory, unless this default is
overridden by a benchmark directory specified on the test description.

Command Qualifier

/BENCHMARK
Specifies that the benchmark file associated with the specified interactive
terminal test is to be displayed. The default is to display the benchmark file

CD-64 Command Dictionary

DISPLAY

Example

DTM> DISPLAY/BENCHMARK MEMO_TEST

This example displays the banner screen, Screen 0, for interactive display.
Follow the directions on the screen to display your benchmark file. See
Chapter 5 for more information about displaying benchmark files for
interactive terminal tests.

Command Dictionary CD-65

DTM

Invokes the DEC/Test Manager. You enter the DTM command at the DCL

prompt ($).
Format

DTM [qualifier]

Command Qualifiers Defaults

/INOJINIT /INIT

/INTERFACE-=interface /INTERFACE=CHARACTER_CELL
Description

Issuing the DTM command on the DCL command line invokes DEC/Test
Manager and displays the DTM> prompt. To exit from the DEC/Test
Manager system, type the EXIT command or press CTRL/Z.

Issuing the DTM command with the /INTERFACE=DECWINDOWS
qualifier invokes DEC/Test Manager and displays the DEC/Test Manager
main window. The /INTERFACE=DECWINDOWS qualifier is valid only in a
workstation environment. To exit from the DEC/Test Manager DECwindows
interface, pull down the File menu and choose Exit.

Command Qualifier

/INIT (D)

/NOINIT

Specifies whether DEC/Test Manager executes the initialization file (defined
by the logical name DTMS$INIT) when invoked. The default is to execute
any existing initialization file whenever you invoke DEC/Test Manager.

CD-66 Command Dictionary

DTM

/INTERFACE=interface

Specifies that DEC/Test Manager is to run in the character cell
(terminal) or DECwindows environment. The options for this qualifier
are CHARACTER_CELL (the default) and DECWINDOWS.

Example

$ DTM
DTM>

This example shows how to invoke the DEC/Test Manager system.

Command Dictionary CD-67

EXIT

EXIT

Terminates a DEC/Test Manager session.

Format
EXIT
Command Qualifiers Defaults
None None

Description
The EXIT command terminates a DEC/Test Manager session and returns
control to the DCL command line level. You can also press CTRL/Z to
terminate a DEC/Test Manager session.

Example

DTM> EXIT
$

This example terminates a DEC/Test Manager session.

CD-68 Command Dictionary

EXTRACT

EXTRACT

Extracts an input file from an interactive terminal or DECwindows session
file.

Format

EXTRACT session-file-specification [input-file-specification]
[qualifier...]

Command Qualifiers Defaults
/DECWINDOWS /INTERACTIVE
/INTERACTIVE /INTERACTIVE
/NOILOG /LOG
/TERMINATION_CHARACTER=character /TERMINATION_CHARACTER="P
Restriction
¢ The EXTRACT command is used for interactive terminal and
DECwindows tests only.
¢ The /TERMINATION_CHARACTER qualifier applies to terminal tests
only.

Command Parameters

session-file-specification

Specifies an existing session file. If you enter a file name only, DEC/Test
Manager supplies the file type .SESSION. If the session file is in a CMS
library, DEC/Test Manager executes a CMS FETCH command for the session
file element and deletes the element when done.

input-file-specification

Specifies the file specification for the input file to be created. If you omit this
parameter, DEC/Test Manager uses the session file name and supplies the
file type .INP. If the input file is to be placed in a CMS library, DEC/Test

Command Dictionary CD-69

EXTRACT

Manager executes either a CMS CREATE ELEMENT command or CMS
RESERVE and REPLACE commands to place the file in the specified CMS
library.

Description

The EXTRACT command extracts an input file from a terminal or
DECwindows session file without altering the session file. An input file
is a text file you can edit using the text editor of your choice.

See Chapter 8 for information about using the EXTRACT command with
terminal session files.

See Chapter 9 for information about using the EXTRACT command with
DECwindows session files.

Command Qualifiers

/DECWINDOWS
Specifies that the session file is a recorded DECwindows session.

/ANTERACTIVE (D)
Specifies that the session file is a recorded terminal session.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages on your screen.

/TERMINATION_CHARACTER=character

Specifies the character that DEC/Test Manager interprets as the termination
character when you extract the input file from the terminal session file.
DEC/Test Manager uses this information when translating recording
functions in the session file to special strings in the input file.

If you used a termination character other than the default termination
character CTRL/P when recording the session file, specify that termination
character on the EXTRACT command line.

CD-70 Command Dictionary

EXTRACT

The termination character can be any single character, such as an asterisk
(*), or a control sequence, such as CTRL/P. To specify a control character,
enter a circumflex () followed by a letter. For example, to enter the
termination character sequence CTRL/D, enter a circumflex followed by a
D ((TERMINATION_CHARACTER="D). You can also specify a termination
character by its ASCII decimal representation. For example, you can use
the ASCII number 16 to specify CTRL/P.

Examples

1. DTM> EXTRACT SAMPLE.SESSION SAMPLE.INP
DTM-S-EXTRACTED, input file SAMPLE.INP created

This example creates the terminal input file SAMPLE.INP. You can edit
this file and use it in conjunction with the RECORD/INPUT command.

2. DTM> EXTRACT/DECWINDOWS DECW_SAMPLE.SESSION DECW_SAMPLE.INP

DTM-S-EXTRACTED, input file SAMPLE.INP created

This example creates the DECwindows input file DECW_SAMPLE.INP.
You can edit this file and use it in conjunction with the RECORD/INPUT
command.

Command Dictionary CD-71

FILTER

FILTER

Replaces run-time-dependent information with constants in a specified file.
You can use DEC/Test Manager filters on DEC/Test Manager files and other
ASCII files.

Format
FILTER file-specification [/qualifier...]

Command Qualifiers Default

/ALL No filters
/DATE /DATE
/DIRECTORIES /DIRECTORIES
/FILE_NAMES /FILE_NAMES
/INOILOG LOG

/TIME /TIME
/TRACEBACK /TRACEBACK
/VERSION /VERSION

Restrictions

* The FILTER command is for use with noninteractive and terminal tests
only.

Command Parameter

file-specification
Specifies the file to be filtered.

CD-72 Command Dictionary

FILTER

Description

The FILTER command enables you to replace run-time-dependent
information with constants so that the run-time information does not
cause differences when a comparison is performed.

You can use DEC/Test Manager filters on both DEC/Test Manager files and
other ASCII files. This command enables you to prepare benchmarks for
associations with tests or to see how result files would look if filters were
run on them.

You process the file using each of the specified filters. As each specified filter
is run on the file, a new version of the file is created; the latest version has
all the specified filters run on it. DEC/Test Manager purges all intermediate
files.

Command Qualifiers

/ALL
Specifies that all the filters be run on the specified file.

/DATE

Where the date form is abbreviated, the date filter replaces date stamps by
substituting a “d” for each displayed number of the day of the month, an “m”
for each displayed letter of the month, and a “y” for each displayed number
of the year. Where the date form is spelled out, the month name is replaced
by “month”, the numeric day is replaced by “day”, and the year is replaced
by “year”.

The following list shows some examples of the date filtering functions; this
list is not all inclusive.

17-0CT-1989 with dd-mmm-yyyy

17 OCT 89 with dd mmm yy
89.0CT.17 with yymmm.dd

10/17/89 with mm/dd/yy

1989/10/17 with yyyy/mm/dd

October 17, 1989 with month day, year
Oct. 17, 1989 with month day, year
17.0ctober.1989 with day.month.year

Command Dictionary CD-73

FILTER

89-October-17 with year-month-day

/DIRECTORIES

Replaces the directory specification field in the file specification with
DISK:[DIRECTORY].

/FILE_NAMES
Replaces the file names with FILENAME EXT.

/LOG (D)

/NOLOG

Controls whether DEC/Test Manager displays informational and success
messages On your screen.

/TIME
Replaces time stamps with the following forms:

15:37:53.22 with hh:mm:ss.xxxx
15:37:53 with hh:mm:ss

15:37 with hh:mm

3:37 PM with hh:mm xm
15H37m with hhHmmm
15H37 with hhHmm’

15.37 h with hh.mm h

15 h 37"53 s with hh h mm"ss s
15 h 37 min with hh h mm min
k1 15.37 with kl hh.mm

h 15.37 with h hh.mm

/TRACE_BACK
Replaces 8-bit memory addresses with xxxxxxxx.

/VERSION
Replaces file versions with VERSION.

Example

DTM> FILTER/ALL DUAO: [USERO1l.DTMLIB]FILTER.BMK ""
$DTM-S-FILTERED, expression successfully filtered

This example runs the six standard filters on the file FILTER.BMK.

CD-74 Command Dictionary

HELP

HELP

Displays help text for DEC/Test Manager and Review subsystem commands.

Format

HELP [topic]

Command Qualifiers Defaults
None None

Command Parameter

topic
Specifies a topic about which you want information.

Description

The HELP command displays DEC/Test Manager information on your
screen. You can access general DEC/Test Manager Help, which provides
further information for specific DEC/Test Manager topics, or you can access
specific DEC/Test Manager topics directly. If you do not specify a topic
parameter, you get a display of available help features and instructions for
displaying the text.

Examples

1. DTM> HELP COPY TEST