

VMS DECwindows Device
Driver Manual

Order Number: AA-MG28A-TE

December 1988

This manual describes the DECwindows device driver software on
workstations that run VMS. It may be used when you write a DECwindows
driver for a device connected to a VAX workstation. It describes the
DECwindows driver/server architecture, the various drivers, driver
components, their routines, macros, and data structures. It also describes
the driver/server interface and methods by which a driver and server call and
pass information.

Revision/Update Information: This is a new manual; it does not
supersede any previous manual.

Software Version: VMS Version 5.1

digital equipment corporation
maynard, massachusetts

December 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1988.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASS BUS VAX RMS
DDIF PrintServer 40 VAXstation
DEC Q-bus VMS
DECnet ReGIS VT
DEC US ULTRIX XUI
DECwindows UNIBUS
DIGITAL VAX

mamaama™ LN03 VAXcluster

The following are third-party trademarks:

Postscript is a registered trademark of Adobe Systems, Inc.

X Window System, Version 11 and its derivations (X, X11 , X Version 11 , X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK4735

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use DIGITAL-supported devices, such as the LN03 laser
printer and PostScript printers (PrintServer 40 or LN03R ScriptPrinter),
to produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xiii

CHAPTER 1 INTRODUCTION 1-1

1.1 ABOUT THIS MANUAL 1-1

1.2 DECWINDOWS ARCHITECTURE 1-1

1.3 DECWINDOWS DEVICE DRIVERS 1-3
1.3.1 Features Supported by the Device Drivers 1-5

1.4 DRIVER ARCHITECTURE 1-6
1.4.1 Driver/Server Interface 1-9
1.4.2 Common Driver Function 1-9
1.4.3 Port/Class Input Driver Function 1-9
1.4.4 Output Driver Function 1-10

CHAPTER2 COMMON DRIVER/SERVER INTERFACE 2-1

2.1 DRIVER/SERVER COMMON BUFFER 2-1
2.1.1 Input Queue and Motion History Buffer 2-2
2.1.2 Input Queue Event Packet 2-3
2.1.3 Queue Processing of Input 2-4

2.2 $QIO COMMON INTERFACE 2-5

2.3 $QIO CALLS TO DECWINDOWS DRIVERS 2-5
$QIO SYSTEM SERVICE 2-6

2.4 SENSE MODE CALLS 2-7
SENSE KEYBOARD INFORMATION 2-8
SENSE KEYBOARD LED 2-10
SENSE MOTION COMPRESSION 2-11
SENSE POINTER ACCELERATION 2-12

v

Contents

SENSE PSEUDOMOUSE KEY 2-13
SENSE OPERATOR WINDOW KEY 2-14
SENSE SCREEN SAVER TIMEOUT 2-15
GET DEVICE INFORMATION 2-16

2.5 SET MODE CALLS 2-17
ENABLE INPUT 2-18
INITIALIZE MOTION BUFFER 2-19
SET ATTACH SCREEN 2-20
SET CURSOR PATTERN 2-21
SET CURSOR POSITION 2-22
SET KEYBOARD !NFORMATION 2-23
SET KEYBOARD LED 2-25
SET MOTION COMPRESSION 2-26
SET OPERATOR WINDOW KEY 2-27
SET POINTER ACCELERATION 2-28
SET PSEUDOMOUSE KEY 2-29
SET SCREEN SAVER TIMEOUT 2-30
RING KEYBOARD BELL 2-31

CHAPTER 3 WRITING A PORT INPUT DRIVER 3-1

3.1 OVERVIEW 3-1

3.2 PORT DRIVER PROGRAM ENTRY 3-1

3.3 PORT INPUT DRIVER ROUTINES 3-2
PORT_ABORT 3-3
PORT_RESUME 3-4
PORT_SET_LINE 3-5
PORT_STARTIO 3-6
CONTROLLER INITIALIZATION ROUTINE 3-7
UNIT INITIALIZATION ROUTINE 3-8

vi

Contents

CHAPTER4 WRITING A CLASS INPUT DRIVER 4-1

4.1 OVERVIEW 4-1

4.2 CLASS DRIVER PROGRAM ENTRY 4-1

4.3 CLASS INPUT DRIVER ROUTINES 4-2
CLASS_DDT 4-3
CLASS_GETNXT 4-4

CLASS_PUTNXT 4-5
CONTROLLER INITIALIZATION ROUTINE 4-6
UNIT INITIALIZATION ROUTINE 4-7

CHAPTERS COMMON DRIVER 5-1

5.1 OVERVIEW 5-1

5.2 COMMON DRIVER PROGRAM ENTRY 5-2

?.3 COMMON DRIVER ROUTINES FOR CLASS SERVICE 5-3
COMMON_POS_CURSOR 5-4
COMMON_SETUP _INPUT_UCB 5-5

5.4 COMMON DRIVER ROUTINES FOR OUTPUT SERVICE 5-6
COMMON_SETUP _OUTPUT_UCB 5-7
COMMON_VSYNC 5-8

5.5 COMMON DRIVER VECTORED DATA 5-9
COMMON_DDT 5-10
COMMON_FLAGS 5-11

5.6 COMMON DRIVER FDT ROUTINES FOR $QIO SERVICE 5-12
5.6.1 General 5-12
5.6.2 FDT Sense-Mode Routines 5-13
5.6.3 FDT Set-Mode Routines 5-13
5.6.4 FDT Output Routines 5-14

vii

Contents

CHAPTERS OUTPUT DRIVER 6-1

6.1 OVERVIEW 6-1

6.2 OUTPUT DRIVER PROGRAM ENTRY 6-1

6.3 OUTPUT DRIVER ROUTINES 6-2

6.4 QUEUE PROCESSING OF OUTPUT 6-3

6.5 $QIO OUTPUT INTERFACE 6-4

6.6 $QIO CALLS TO OUTPUT DRIVER 6-4

$QIO SYSTEM SERVICE 6-5

6.7 OUTPUT $QIO CALLS 6-6

CREATE GPO 6-7

QUEUE GPB 6-8
GPB WAIT 6-9

APPENDIX A DATA STRUCTURES A-1

A.1 DEVICE INFORMATION BLOCK (DVI) A-2

A.2 INPUT BUFFER CONTROL BLOCK (INB) A-5

A.3 INPUT PACKET (INP) A-8

A.4 KEYBOARD INFORMATION BLOCK (KIB) A-10

A.5 MOTION HISTORY BUFFER (MHB) A-11

A.6 UNIT CONTROL BLOCK FOR INPUT DEVICE A-12
A.6.1 UCB/DECwindows Common Input Extension (DWI) A-13
A.6.2 UCB/DECwindows Keyboard Input Extension (DWI) A-15
A.6.3 UCB/DECwindows Pointer Input Extension (DWI) A-18

viii

A.7
A.7.1

A.8

A.9

A.10

A.11

APPENDIX B

B.1

B.2

B.3

INDEX

UNIT CONTROL BLOCK FOR OUTPUT DEVICE
UCB/DECwindows Common Output Extension (UCB/DECW)

CLASS VECTOR TABLE

COMMON VECTOR TABLE

PORT VECTOR TABLE

OUTPUT VECTOR TABLE

DEVICE DRIVER MACROS

GENERAL DEVICE DRIVER MACROS

COMMON_CTRL_INIT B-2

COMMON_UNIT_INIT B-3

$DECW_COMMON_READY B-4

$DECWGBL B-5

INPUT QUEUE AND PACKET PROCESSING MACROS

GET_FREE_KB_PACKET B-7

GET_LAST_EVENT_PACKET B-8

PUT_INPUT_ON_QUEUE B-9

VECTOR TABLE GENERATION MACROS

$VECINI B-11

$VEC B-12

$VECEND B-13

Contents

A-20
A-21

A-25

A-26

A-26

A-28

B-1

B-1

B-6

B-10

ix

Contents

FIGURES
1-1 DECwindows Architecture 1-2

1-2 DECwindows Driver Architecture for Busless CPUs 1-7

1-3 DECwindows Driver Architecture for Q22-Bus CPUs 1-8

2-1 Input Buffer General Structure 2-1

2-2 Motion History Buffer General Structure 2-3

2-3 Queue Event Packet Format 2-4

2-4 Input Queue and Free Queue 2-5

2-5 Keyboard Information Block 2-8

2-6 Keyboard Information Block 2-23

A-1 Device Information Block (DVI) A-2

A-2 Input Buffer Control Block (INB) A-5

A-3 Input Packet Data (INP) A-8

A-4 Keyboard Information Block A-10

A-5 Motion History Buffer Data Structure A-11

A-6 Unit Control Block General Structure A-13

A-7 UCB/DECwindows Common Input Extension A-14

A-8 UCB/DECwindows Keyboard Input Extension A-15

A-9 UCB/DECwindows Pointer Input Extension A-18

A-10 Unit Control Block Output Device General Structure A-21

A-11 UCB/DECwindows Common Output Extension A-21

A-12 Class Vector Table Data Structure A-25

A-13 Common Vector Table Data Structure A-26

A-14 Port Vector Table Data Structure A-27

TABLES
1-1 Driver Software/Hardware Relationship 1-4

2-1 Argument Data for Sense Keyboard Information $QIO Call 2-8

2-2 Keyboard Information Block Fields 2-9

2-3 Argument Data for Sense Keyboard LED $QIO Call 2-10

2-4 Argument Data for Sense Motion Compression $QIO Call 2-11

2-5 Argument Data for Sense Pointer Acceleration $QIO Call 2-12

2-6 Argument Data for Sense Pseudomouse Key $QIO Call -- 2-13

2-7 Argument Data for Sense Operator Window Key $QIO Call 2-14

2-8 Argument Data for Sense Screen Save Timeout $QIO Call 2-15

2-9 Argument Data for Device Information $QIO Call 2-16

x

Contents

2-10 Argument Data for Enable Input $QIO Call 2-18

2-11 Argument Data for Initialize Motion Buffer $QIO Call 2-19

2-12 Argument Data for Set Attach Screen $QIO Call 2-20

2-13 Argument Data for Set Cursor Pattern $QIO Call 2-21

2-14 Argument Data for Set Cursor Position $QIO Call 2-22

2-15 Argument Data for Set Keyboard Information $QIO Call 2-23

2-16 Keyboard Information Block Fields 2-24

2-17 Argument Data for Set Keyboard LED State $QIO Call -- 2-25

2-18 Argument Data for Set Motion Compression $QIO Call -- 2-26

2-19 Argument Data for Set Operator Window Key $QIO Call -- 2-27

2-20 Argument Data for Set Pointer Acceleration $QIO Call 2-28

2-21 Argument Data for Set Pseudomouse Key $QIO Call 2-29

2-22 Argument Data for Set Screen Saver $QIO Call 2-30

2-23 Argument Data for Ring Keyboard Bell $QIO Call 2-31

5-1 Common Driver Services 5-1

5-2 Common Flags Word 5-11

5-3 Registers Loaded by the $QIO System Service 5-12

5-4 Common Driver FDTs and Function Codes 5-13

6-1 Output Vector Table Routines 6-2

6-2 Argument Data for Create GPO $QIO Call 6-7

6-3 Argument Data for Queue GPB $QIO Call 6-8

6-4 Argument Data for GPB Wait $QIO Call 6-9

A-1 Device Information Block Fields A-3

A-2 Input Buffer Control Block Fields A-6

A-3 Input Packet Fields A-8

A-4 Keyboard Information Block Fields A-10

A-5 Motion History Buffer Fields A-11

A-6 UCB/DECwindows Common Input Extension Fields A-14

A-7 UCB/DECwindows Keyboard Input Extension Fields A-16

A-8 UCB/DECwindows Pointer Input Extension Fields A-19

A-9 UCB/DECwindows Common Output Extension Fields A-23

A-10 Class Vector Table Fields A-25

A-11 Common Vector Table Fields A-26

A-12 Port Vector Table Fields A-27

A-13 Output Vector Table Fields A-28

B-1 Structure Definition Macros Called by $DECWGBL B-5

xi

Preface

The VMS DECwindows Device Driver Manual provides information needed
to understand the driver software and system, and to write a DECwindows
driver for an input device. The DECwindows software described in
this document is designed to run with VMS Version 5.0 or later and is
associated with a certain family of workstations specified in this manual.
The manual provides DECwindows data structures, routines, and code
examples for the programmer.

Intended Audience
This manual is intended for system programmers who are already familiar
with VAX processors and the VMS operating system. Although the
discussion of the device driver architecture and components applies
specifically to DECwindows workstations with keyboard and mouse,
the information also applies to other serial input devices. The driver
design described is based on Q22-bus CPU/controller type (VCB01NCB02)
hardware.

Structure of This Document
The manual presents the DECwindows architecture and its main
components and functions and then describes the driver/server interface,
driver entry points, driver services and routines, and information needed
to write a driver. The appendixes contain reference material such as the
DECwindows data structures and macros.

If you are coding a server, Chapter 2 and Chapter 6 provide required
information concerning $QIO calls for programming devices. The manual
contains the following chapters:

• Chapter 1 presents the X Window System concept and introduces the
components of the DECwindows architecture. It describes the main
software components and their functions, hardware relationships, and
DECwindows requirements.

• Chapter 2 describes the common driver queue and server interface.
It describes the data format of the serial line interface, queue
management and communication protocols. It also describes the
$QIO common interface and $QIO calls made from the server.

• Chapters 3 and 4 describe the port and class input drivers. Both
chapters provide program entry points and information required to
write a DECwindows input driver. Chapter 3 describes how to write a
port driver and presents the input driver routines that process input
data and manage the devices. These driver routines handle interrupts
and manage the controller ports. Chapter 4 describes how to write
a class driver and presents the routines that process input data and
manipulate the input queue.

xiii

Preface

• Chapter 5 presents common driver program information and routines
that provide common DECwindows services. It provides information
concerning management of the queue interface to the server, calls for
service in other drivers, and $QIO preprocessing. It also describes the
FDT routines, organization, and preprocessing services provided.

• Chapter 6 presents output driver program information and the
vectored output routines that provide video and cursor image control,
operator window control, and device-dependent $QIO services.

• Appendix A describes the data structures that make up the
DECwindows 1/0 subsystem database. Each data structure is shown
in a figure and has an accompanying table that defines each field.

• Appendix B presents the macros for all the common and input driver
module software. It describes general driver macros, input queue and
packet processing macros, and vector generation macros.

Associated Documents

xiv

Because the DECwindows software is integrated with VMS, references are
often made to the VMS driver software or 1/0 subsystem that is described
in the VMS Device Support Manual. If you are writing a DECwindows
device driver, refer to both this manual and the VMS Device Support
Manual for basic driver design. Before reading the VMS DECwindows
Device Driver Manual, you should have an understanding of the material
discussed in the following documents:

• VMS Device Support Manual

• 1/0-related portions ($QIO) of the VMS System Services Reference
Manual

• Terminal driver section of VMS I I 0 User's Reference Manual: Part I

You may also find useful some of the material in your workstation's
technical manual. Other related information may be found in the following
books:

• VAX/VMS Internals and Data Structures

• Guide to Setting Up a VMS System

• VMS System Dump Analyzer Utility Manual

• VMS DECwindows Guide to Xlib Programming: VAX Binding

• VMS DECwindows Xlib Routines Reference Manual

Conventions

Preface

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

PB1,PB2, PB3, PB4

881, 882

Ctrl/x

PF1 x

()

[]

{ }

boldface text

italic text

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

PB1, PB2, PB3, and PB4 indicate buttons on the
puck.

881 and 882 indicate buttons on the stylus.

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

A sequence such as PF1 x indicates that you must
first press and release the key labeled PF1, then
press and release another key or a poin,tfr'lg device
button.

A key name is shown enclosed to indicate that 'you
press a key on the keyboard.

In examples, a horizontal ellipsis indicates one of the
following possibilities:

Additional optional arguments in a statement
have been omitted.
The preceding item or items can be repeated one
or more times.

Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or
all of the choices.

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Italic text represents information that can vary
in system messages (for example, Internal error
number).

xv

Preface

UPPERCASE TEXT

UPPERCASE TEXT

numbers

xvi

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ).

Uppercase letters indicate the name of a routine, the
name of a file, the name of a file protection code, or
the abbreviation for a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadecimal-are explicitly indicated.

1 Introduction

The VMS DECwindows software provides a complete environment
for developing and interacting with graphics-oriented applications.
The DECwindows software presents a common network-transparent
application programming environment for windowing, graphics, and
user interface services. It is a single-appearance interface that is based
upon the industry-standard X Window System, Version 11. The system
comprises several components: a server, device drivers, the network
protocol and transport mechanisms, and the DECwindows Xlib and Toolkit
programming libraries.

1.1 About This Manual
This document focuses on the device driver software that provides the
DECwindows device interface. The document provides the necessary
information for writing either a port driver or a class driver and for
understanding the DECwindows device driver contents and concepts.
Accessing the hardware directly is beyond the scope of this manual. You
should refer to the hardware documentation for hardware information and
to the VMS Device Support Manual for VMS device driver information
concerning port/class driver programming and the related VMS data
structures. It may be necessary to refer to the DECwindows data
structures described in Appendix A while you read the chapters.

This chapter introduces the various drivers that make up the DECwindows
device interface. A brief overview of the layers of DECwindows software
that are above the device drivers is presented first.

1.2 DECwindows Architecture
The DECwindows architecture shown in Figure 1-1 identifies and
illustrates the hierarchical layers of the DECwindows software from high­
level programs of the user/application layer to the low-level programs
of the device driver layer. As the figure illustrates, applications do not
program to or call the drivers directly. All driver functions are available
to application programs through the use ofXlib routines or DECwindows
toolkit routines.

1-1

Introduction
1.2 DECwindows Architecture

1-2

Figure 1-1 DECwindows Architecture

Applications (Clients)
User Interface

l
Toolkit Routines

l
Xlib Routines

Programming Library

l
Network Routines

Transport

I
DECwindows Server

X11 standard

l
DECwindows Device Drivers

l
Hardware

Screens and Input Devices

ZK-0089A-GE

Xlib is a library of more than 300 medium-level routines for creating and
managing a window environment. The routines define the mapping of the
Xll network protocol to a pro~edure library. Xlib provides a way for client
applications to communicate with the DECwindows server without having
to deal explicitly with the network protocol or server. Client applications
can directly call the Xlib routines to manage DECwindows resources such
as windows, color maps, input devices, and bitmap graphics services. Xlib
then converts these routines into protocol requests that the transport
sends to the server.

Introduction
1.2 DECwindows Architecture

The DECwindows Toolkit is built on top of Xlib and provides convenient
access to the Xlib features. The toolkit allows a programmer to use the
power of the Xlib routines from a higher level of access. It streamlines the
coding and saves time in the programming task.

The transport is a general or transparent data transfer mechanism within
DECnet; it does not interpret or need to recognize the particular format of
the data that it transfers. The transport operates symmetrically on both
ends of the client/server connection in that it buffers and sends requests
in the form of output data transfers to the server and sends input events,
errors, and replies in the form of input data transfers to Xlib.

The server program is a lower-level component of the architecture that
allows application interfaces to interact with all supported systems in the
same way. The server converts the transport layer request to a command
that can be executed by the appropriate device driver.

When the user of an application enters data, the server receives input from
the device drivers and passes event packets back through the transport
layers to Xlib and DECwindows Toolkit routines. The server supports
asynchronous input to the application and asynchronous output from the
application to the device.

1.3 DECwindows Device Drivers
DECwindows workstation device drivers are the lowest level of the
DECwindows system, providing the device interface and support functions.
The following are the family of VAX workstations that DECwindows
currently supports:

• VAXstation II

• VAXstation 11/GPX

• VAXstation 2000

• VAXstation 2000/GPX

• VAXstation 3000 series

The drivers support screens, keyboards, and system pointing devices.
The server design and device driver support also allow nonstandard or
"extension" input devices to be added. You can add nonstandard devices
such as tablets and dial boxes1 that require you to add your own input
driver module to the driver software. Table 1-1 shows the relationship
of the driver software modules to the various workstation families and
hardware units. The table includes the device name used for each device
in the VMS 1/0 database.

As shown in Table 1-1, IKDRIVER and IMDRIVER are class input
drivers. IKDRIVER supports LK201 keyboard byte-stream processing
and IMDRIVER supports mouse data input processing.

1 A dial box is an analog control device having a set of knobs for variable adjustment to various graphic
images and movements on the screen.

1-3

Introduction
1.3 DECwindows Device Drivers

Table 1-1 Driver Software/Hardware Relationship

Class Input Driver Hardware Unit Device Name Device

IKDRIVER Pseudodevice IKAO LK201 keyboard

IMDRIVER Pseudodevice IMAO VSXXX mouse or tablet

(You rd river) Pseudodevice Uxxx (Yourdevice)

Hardware
Port Input Driver Unit/Controller Device Name System Type

YEDRIVER Serial line 0 TIAO VAXstation 2000 (monochrome and color)
Serial line 1 TIA1

GAADRIVER Serial line 0 GAA1 VAXstation 3000 series and 11/GPX
Serial line 1 GAA2

GCADRIVER Serial line O GCA1 VAXstation II monochrome
Serial line 1 GCA2

DZDRIVER DZQ11, DZV11 TI VAXstation II, MicroVAX II
0211, DZ32 TI Large VAX systems

YFDRIVER DHV11, DHU11 TX MicroVAX II

Hardware
Output Driver Unit/Controller Device Name Workstation Type with VR260 Monitor

GABDRIVER Busless CPU and GPX GAAO VAXstation 2000/GPX
video controller

GCBDRIVER Busless CPU and B/W GCAO VAXstation 2000 (monochrome)
video controller

GAADRIVER1 Q22-bus CPU and GAAO VAXstation 11/GPX,
VCB02 video controller VAXstation 3000 series

GCADRIVER1 Q22-bus CPU and GCAO VAXstation II (monochrome)
VCB01 video controller

Hardware
Common Driver Unit/Controller Device Name System Type

IN DRIVER All DECwindows INAO All DECwindows systems
driver/server interfaces

1 The output driver also contains the port input driver software.

1-4

The GxBDRIVERs are output drivers for the VAXstation 2000.
GABDRIVER supports output data processing to a VAXstation 2000 color
monitor; GCBDRIVER supports output to a VAXstation 2000 monochrome
monitor.

The GxADRIVERs are output drivers for the VAXstation II and the
VAXstation 3000 series. GAADRIVER supports output data processing to
a VAXstation color monitor; GCADRIVER supports output to a VAXstation
II monochrome monitor. Note that the port input driver component is built
into these output drivers.

INDRIVER is the common DECwindows driver required for each
workstation server interface.

1.3.1

Introduction
1.3 DECwindows Device Drivers

YEDRIVER is the port input driver required for the VAXstation 2000
input devices. DZDRIVER and YFDRIVER are only used for nonstandard
workstation input devices. These port drivers are not described in this
manual.

The modular DECwindows architecture allows for expansion, utilizing
other device-specific driver extensions, including ones not furnished by
DIGITAL. However, you cannot add a driver for input devices other than
a keyboard or system pointing device without a server extension. Because
server and Xlib extensions are not implemented in this release, such a
driver cannot be adtled. You can replace an existing driver with a new one.
For example, you can replace a class input mouse driver with one for a
tablet.

Features Supported by the Device Drivers
VMS drivers supplied with DECwindows software provide the following
functionality:

• Keyboard, pointer, and button input

• Color services

• Monochrome frame buffer system

• Cursor services

• Device characteristics information

• Input queue

• Tablet input (as a system pointing device)

• Graphics output

• Multiscreen support

• Pointer acceleration control

• Mouse motion event prebuffering and compression

• Keyboard pseudomouse

All window management is performed by the server, therefore there are no
window services within the driver. The drivers treat the physical screen
as a single rectangular bitmap.

Keyboard input is supplied in the form of raw LK201 scan codes.
According to the Xll standard protocol, translation services are available
using Xlib routines. Key autorepeat is simulated by the drivers. The
LK201 keys are set in up/down transition detection mode. The drivers
support the pseudomouse feature where the keyboard can simulate the
mouse functions in the event of mouse failure. Pointer acceleration can
be controlled by calls to a $QIO system service and Xll type acceleration
table in the driver. The driver provides mouse motion event prebuffering
and compression for improved motion event system response. These
features are selectable by the server using the $QIO interface.

1-5

Introduction
1.3 DECwindows Device Drivers

The drivers also provide multiscreen support interfacing a single input
device with multiple output devices. Screens of multiple DECwindows
workstations can be attached to a single pointing device. The pointer can
move off the top of one screen into the bottom of another, or off screen to
the right or left into another. After a screen saver timeout, all screens
come alive with any mouse movement or keystroke.

1.4 Driver Architecture

1-6

A DECwindows workstation device driver is divided into multiple driver
modules. The following lists the modules that make up a DECwindows
driver:

• Class input driver

• Port input driver

• Output driver

• Common driver

The division of the DECwindows driver into various modules provides
flexibility and ease of coding in terms of driver development and ease of
upgrade for the varied workstation types and devices. The various driver
modules communicate by means of vector tables and shared data in the
unit control block.

The architecture of the software modules or basic subsystems for
workstation families with busless CPUs is shown in Figure 1-2. Input
drivers process data from the keyboard or mouse and pass it to the
server. The input drivers also process output data, such as keyboard
LED information, from the server to the keyboard. An output driver
processes graphics and windowing requests in the form of output data that
pass from the server to the monitor.

Workstation families with Q22 bus-based CPUs and VCB01NCB02
video controllers use the GxADRIVER modules. For these, the driver
architecture differs slightly in that the port input driver software is part of
the output driver module, as shown in Figure 1-3. However, the port/class
input characteristic of a DECwindows device interface remains the same.

Introduction
1.4 Driver Architecture

Figure 1-2 DECwindows Driver Architecture for Busless CPUs

GxBDRIVERs
Output
Driver

Monitor

Server

roueue Interface and
$010 Interface

IN DRIVER
Common Driver

IKDRIVER IMDRIVER
Keyboard Mouse

YEDRIVER
Keyboard and

Mouse

Extension
Device A

YFDRIVER
Device

A

Extension
Device B

Extension
Device

B

~ DHV11 11 ?
VSxxx Mouse Device A Device B

LK201 Keyboard

Common
Drivers

Class Input
Drivers

Port Input
Drivers

Devices

ZK-0022A-GE

1-7

Introduction
1.4 Driver Architecture

Figure 1-3 DECwindows Driver Architecture for Q22-Bus CPUs

Output
Driver

Server

,--Queue Interface and
$010 Interface

IND RIVER
Common Driver

IKDRIVER IMDRIVER
Keyboard Mouse

Extension
Device A

Extension
Device B

GxADRIVERs YFDRIVER
Device

Extension
Device

B

....__ ____,

Monitor

Keyboard and
Mouse A

~ DHV11 I I ?
VSxxx Mouse Device A Device B

LK201 Keyboard

Common
Drivers

Class Input
Drivers

Port Input
Drivers

Devices

ZK-0023A-GE

1-8

1.4.1

1.4.2

1.4.3

Driver/Server Interface

Introduction
1.4 Driver Architecture

As shown in Figure 1-2 and Figure 1-3, the DECwindows driver presents
two interfaces to the server; a queue interface and a $QIO interface.

Queue interface is an input event queue in memory that is shared
between the server and drivers. This queue is interlocked for correct
operation on multiprocessor workstations. The input queue receives all
input events as they are generated by the drivers. A driver timestamps
each input event as it inserts the event on the queue. Asynchronous input
events supported by the drivers include the following:

• Key presses and releases

• Mouse movement

• Mouse button presses and releases

The use of a single queue ensures that all input is correctly time ordered
when the server reads it.

$QIO interface is the second driver/server interface, which is also
common to VMS device drivers. Generally only the DECwindows server
should make $QIO calls or access the queue. Applications should use the
DECwindows library (Xlib) routines to perform these functions.

Common Driver Function
The common driver (INDRIVER) is the interface between an input or an
output driver and the DECwindows server. It monitors the input queue
and supports the server protocol of the interface. The common driver
handles device-independent processing and functions that are common to
all workstations. Common driver $QIO service routines support $QIO calls
from the server. Getting device information or parsing $QIO parameters
for all the device drivers are examples of the common driver function.

Port/Class Input Driver Function
The input drivers handle input data transfers from the keyboard, mouse,
tablet and other input devices to the common driver and on to the server.
They are developed based on a modular port/class driver interface
designed for VMS that allows for new input devices or serial line hardware
to be easily added. Port/class input drivers are bound together by means
of the system UCB data structure and form a port/class interface. Note
that parts of the full VMS terminal port/class software are not used by
DECwindows. The VMS terminal port/class software is described in the
VMS Device Support Manual.

The port drivers provided by VMS receive interrupts from and transmit
data to the hardware ports. Port drivers service input serial lines only.
These serial lines may be part of the graphics hardware (VCB02 controller)
or a standard serial line controller (VAXstation 2000 DZ controller). Data
received by the port driver is passed to the appropriate class driver for
interpretation.

1-9

1.4.4

Introduction
1.4 Driver Architecture

The class drivers provided by VMS include the keyboard driver
(IKDRIVER) and the mouse driver (IMDRIVER). A class driver interprets
a byte stream from an input device and then formats the data into an
event packet for the input queue. Because each input device, such as a
keyboard or tablet, must interpret a different byte stream protocol, there
is one class driver per input device type on a system.

Output Driver Function

1-10

The output driver processes graphics and windowing requests from the
server to the screen. Output drivers manage the output functions of
the video controller. For example, the output driver performs all device­
dependent processing, such as receiving device interrupts, manipulating
the color map, drawing, and managing the current state of the graphics
hardware. Note that the output modules (GxADRIVERs) also contain port
input driver software, as shown in Figure 1-3.

In addition to the input queue, some DECwindows video devices use an
output queue. For instance, drivers for color devices support an output
queue, while monochrome drivers do not. This queue is the interface
for drawing operations from the server (or applications). Like the input
queue, the output queue is in nonpaged pool shared by the driver and
the server. Drawing packets are inserted into the queue by the server.
The driver removes the packets from the queue and executes them in the
queued order.

2 Common Driver/Server Interface

The common driver/server link is made up of two interface types; the
common input queue interface and the common $QIO interface. The
main DECwindows device driver interface to the server is a buffer
containing a queue of event packets formatted for the Xll standard
protocol. This chapter describes the buffer/input queue and the protocol
of the driver/server interface. Also described is the $QIO interface. The
service mechanism that supports the $QIO calls is described in Chapter 5.
Data structures referenced in this chapter are described in detail in
Appendix A.

2.1 Driver/Server Common Buffer
The common driver manages an input buffer that the driver shares with
the server. Figure 2-1 illustrates the input buffer structure with its
queues. The shared input buffer is a block allocated in nonpaged pool.
It contains a control block or header and two queues: an input event
queue and a free queue. The queues are self-relative interlocked queues
that provide an efficient communication path for frequent driver/server
operations. Using the input buffer control block (INB), the common driver
monitors each queue containing input event packets (INPs). Each packet
stored in the buffer contains a forward and a backward pointer (FLINK
and BLINK) to complete the event chain that defines each self-relative
queue.

Figure 2-1 Input Buffer General Structure

Input Buffer Control Block

Input Queue
and

Free Queue
Packets

l+-INB

,- Keyboard and button
events, empty packets

ZK-0026A-GE

2-1

2.1.1

Common Driver/Server Interface
2.1 Driver/Server Common Buffer

Input Queue and Motion History Buffer

2-2

The server may create a pointer motion history buffer (MHB) to improve
system response to pointer movement. The input queue always maintains
the most recent motion events along with other input device events for the
server. However, if the motion compression feature is enabled, the server
may not receive all of the motion events generated in the input queue.
If the server requires motion events that were not delivered because of
motion compression, the server can access the motion history buffer for the
older motion events.

Like the INB, the MHB is allocated in nonpaged pool. The server issues an
Initialize Motion History $QIO call (described in this chapter) specifying
the desired size in pages. The ring buffer (shown in Figure 2-2) contains
a control block or header in the first 16 bytes, followed by a ring of 8-
byte motion history packets (MHPs) throughout the remaining allocated
space. Like the input buffer, the motion history buffer contains active
event packets and free packets. When a server/driver searches the queue,
the oldest motion history event packet and free packet are located in the
ring with put and get pointers in the MHB header. Each motion history
packet contains the x and y movement with an event timestamp. Refer to
Appendix A for detailed field information.

Once an MHB is created, a pointer motion event is first stored in a motion
history packet in the MHB and then copied into an input packet in the
input buffer shared with the server. However, the server may disable the
MHB by setting the INB$V _MHB_BUSY bit, which forces the buffering of
all events by way of the input buffer only.

When motion event compression is enabled (by the Set Motion
Compression $QIO), the motion event decoder removes the oldest motion
event packet from the input queue as it inserts the newest event. Thus,
the removed events (oldest of a large burst of pointer motion and/or those
not yet retrieved by the server) are lost, yielding motion compression.
The number of lost motion events or motion compression hits is stored in
counter DWI$L_PTR_MOTION_COMP _HIT. However, if necessary, the
server program can recover lost events by accessing the motion history
buffer, instead of the input queue from which they are missing.

2.1.2

Common Driver/Server Interface
2.1 Driver/Server Common Buffer

Figure 2-2 Motion History Buffer General Structure

Motion History Control Block

Motion History Ring Buffer

Motion History Packets

Input Queue Event Packet

14-- MHB header

,.-- Pointer motion
event packets,
empty packets

ZK-0167 A-GE

The input packet structure (INP) in the input queue defines the
packet format used in the interface between the device driver and the
DECwindows server. The basic DECwindows format of the input packet,
shown in Figure 2-3, is compatible with the X event in the X Window
System protocol.

Depending on the driver, some fields in the input packet of certain events
may vary. The packet illustrated in Figure 2-3 is a typical keyboard-
or mouse-generated input event for key/button transitions and mouse
motion. The first 12 bytes (3 longwords) are common to all event types
(see Figure 2-3). The event information is always 32 bytes long, excluding
the forward/backward pointers (FLINK/BLINK). The FLINK and BLINK
pointers link (in proper order) all the event packets of the input queue.
Refer to Appendix A for detailed field information.

2-3

2.1.3

Common Driver/Server Interface
2.1 Driver/Server Common Buffer

Figure 2-3 Queue Event Packet Format

INP$L_FLINK +INP

INP$L_BLINK

INP$W_SEQUENCE INP$8_DETAIL I INP$8_TYPE +-Event Header

INP$L_ TIMESTAMP

INP$L_ROOT _WIN

INP$L_EVENT _WIN

INP$L_CHILD_WIN

INP$W_ROOT_Y INP$W_ROOT_X

INP$W_EVENT _ Y INP$W_EVENT_X

INP$W _KEY _BUTTON_MASK

ZK-0088A-GE

Queue Processing of Input

2-4

There is one input queue and one free queue for each keyboard/mouse pair
for input. As events occur in the device, the class driver gets a free packet
from the free queue and inserts it into the input queue. The class driver
links all active keyboard and pointer event packets in the input queue
using the forward link (FLINK) and backward link (BLINK) INP fields
(see Figure 2-4).

Because there is a single input queue shared by the input devices, packet­
link pointers ensure that all events are correctly time ordered when they
are read by the server. The size of the input queue varies inversely with
the size of the free queue; as more packets move to the input queue, the
number of free packets diminishes.

The common driver checks the queue at timed intervals to see if there is
input. During the hardware vertical retrace interval (VSYNC) the driver
checks the INPUT_QUEUE_FLINK pointer in the input buffer control
block (INB). If the queue is not empty or the queue is not being accessed
by the server, the driver wakes the server to signal the presence of input.

When the server responds, the server processes the event data, removes
the event packet from the input queue, and inserts the packet on the free
queue. The server processes each event packet in the queue until the
queue is empty.

Common Driver/Server Interface
2.1 Driver/Server Common Buffer

Figure 2-4 Input Queue and Free Queue

Event
Packet

Input Queue

2.2 $QIO Common Interface

Free
Packet

Free Queue

ZK-0090A-GE

The INDRIVER module contains function decision table (FDT) routines
that make up a $QIO common interface. The $QIO common interface
provides for initialization and information requests from the server or
server extension to a device. The $QIO interface is used for infrequent
operations that do not require synchronization with input or output
requests or when notification upon completion of a request is needed.

2.3 $QIO Calls to DECwindows Drivers
This section presents the output $QIO calls used in a server that are
supported by services within the DECwindows common driver. The $QIO
system service format is presented first.

$QIO calls must be issued to a physical device, as they cannot be directed
to a pseudodevice (such as IKAO for the keyboard decoder). Initially,
using the $ASSIGN system service, the appropriate device name is
assigned to an 1/0 channel. The channel number entry is required for
the chan parameter in the $QIO system service call. Physical device
names on a GPX workstation are GAAO for output to the screen,
GAA.1 for the keyboard, and GAA.2 for the mouse (see Table 1-1).
Note that the DECwindows environment provides logical names
(DECW$WORKSTATION, DECW$KEYBOARD, and DECW$POINTER) to
point to the physical device.

2-5

Common Driver/Server Interface
$QIO System Service

$QIO System Service

FORMAT

arguments

2-6

The Queue 110 Request system service queues an 110 request to a channel
associated with a device. The SYS$QIO format described next applies to all
the $010 calls presented in this chapter. For more information on SYS$QIO
refer to VMS System Services Reference Manual.

SYS$QIO [efn],chan,func,[iosb],[astadr],[astprm]
,p 1,p2,p3[,p4][,p5][,p6]

efn is the event flag number of the I/O operation. The efn argument is a
longword containing the number of the event flag.

chan is the I/O channel assigned ($ASSIGN) to the device name to which
the request is directed. The chan argument is a longword containing the
number of the I/O channel; h,owever, $QIO uses only the low-order word.

func is the device-specific function code specifying the operation to be
performed. The func argument is a longword containing the function
code.

iosb is the I/O status block to receive the final completion status of the I/O
operation. The iosb argument is the address of the quadword I/O status
block.

astadr is the AST service routine to be executed when the I/O completes.
The astadr argument is the address of a longword that is the entry mask
to the AST routine.

astprm is the AST parameter to be passed to the AST service routine.
The astprm argument is a longword containing the AST parameter.

pl is the function modifier specifying the service being called within the
basic function code (I0$K_DECW _xxx).

p2 to p6 are the function-specific parameters being passed.

Common Driver/Server Interface
2.4 Sense Mode Calls

2.4 Sense Mode Calls

The FDT sense mode routines within the common driver service the $010
sense mode function calls from a server. The following sense mode calls are
supported by the DECwindows common driver.

Sense Keyboard Information

Sense Keyboard LED

• Sense Motion Compression

Sense Operator Window Key

Sense Pointer Acceleration

Sense Pseudomouse Key

Sense Screen Saver

Get Device Information

This section defines the specific argument data required for each $010 call
within the sense mode functions serviced by the common driver. Each of
these calls requires the 10$_SENSEMODE function code.

2-7

Common Driver/Server Interface
Sense Keyboard Information

Sense Keyboard Information

The Sense Keyboard Information $010 function returns the current functional
characteristics or information concerning the keyboard device. Table 2-1
provides the argument information required for the Sense Keyboard
Information $010 call.

Figure 2-5 and Table 2-2 show and define the data structure that passes the
keyboard information requested for the $010 call.

Table 2-1 Argument Data for Sense Keyboard Information $QIO Call

$QIO Argument Required Data

tune 10$_SENSEMODE function code.

p1 10$K_DECW_KB_INFO function modifier.

p2 Address of the keyboard information (characteristics) block (KIB).

p3 Address of the longword that stores the length of the keyboard
information block.

p4, p5, p6 Set to 0.

Figure 2-5 Keyboard Information Block

l
"t" - - , - 1 ena e masK yes i'jf' KIB$L ENABLE MASK 256 b't bl (32 b t) l 0

KIB$L_KEYCLICK_ VOL 32

KIB$L_BELL_ VOL 36

KIB$L_AUTO_ON_OFF 40

2-8

Common Driver/Server Interface
Sense Keyboard Information

Table 2-2 Keyboard Information Block Fields

Field Name Contents

KIB$L_ENABLE_MASK Entry to the 256-bit autorepeat enable mask for the LK201
keys. The mask defines which keys are in autorepeat
mode. The bits are numbered O through 255 and each bit
position corresponds directly to a specific key position on
an LK201 keyboard. For example, using decimal keycode
numbering, mask-bit 90 corresponds to the 90 key position
(F5) on the LK201 keyboard.

KIB$L_KEYCLICK_ VOL A longword specifying the current keyclick volume in
percent. A value of 100 indicates the loudest click while a
O indicates the click is off. A value of -1 indicates that a
default value of 70 percent volume is set.

KIB$L_BELL_ VOL A longword specifying the current bell volume in percent.
A value of 100 indicates the loudest ring is set while a
0 indicates the bell is off. A value of -1 indicates that a
default volume of 70 percent is set.

KIB$L_AUTO_ON_OFF A value of 0 that indicates the autorepeat feature is
disabled for all keys. A value of 1 indicates that autorepeat
is enabled for the keys specified (bits set) in the KIB$L_
ENABLE_MASK.

2-9

Common Driver/Server Interface
Sense Keyboard LED

Sense Keyboard LED

2-10

The Sense Keyboard LED $010 function gets the current status of the
keyboard LEDs. The target device is the keyboard. Table 2-3 provides the
argument information required for the Sense Keyboard LED $010 call.

Table 2-3 Argument Data for Sense Keyboard LED $QIO Call

$QIO Argument Required Data

tune 10$_SENSEMODE function code.

p1 10$K_DECW_KB_LED function modifier.

p3 Address of the longword keyboard status mask (DW1$L_KB_
LIGHTS). Mask bits correspond to the keyboard LEDs as follows:
DECW$M_LIGHT1 Wait

DECW$M_LIGHT2 Compose

DECW$M_LIGHT3 Lock

DECW$M_LIGHT 4 Hold Screen
A mask bit is 1 when the LED is on, or O when the LED is off.

p2,p4, p5,p6 Set to 0.

Common Driver/Server Interface
Sense Motion Compression

Sense Motion Compression

The Sense Motion Compression $010 function gets the status of a
pointing device's motion compression mode. The $010 returns the motion
compression flag bit status in p2. The target is the pointing device. Table 2-4
provides the argument information required for the Sense Motion Compression
$010 call.

Table 2-4 Argument Data for Sense Motion Compression $QIO Call

$QIO Argument Required Data

func 10$_SENSEMODE function code.

p1 10$K_DECW_MOTION_COMP function modifier.

p2 Address of the motion compression state longword. The longword
contains 1 when motion compression is on, or O when motion
compression is off.

p3, p4, p5, p6 Set to 0.

2-11

Common Driver/Server Interface
Sense Pointer Acceleration

Sense Pointer Acceleration

2-12

The Sense Pointer Acceleration $010 function gets the state of the pointer
acceleration table and threshold used by the acceleration routine. The $010
returns the addresses of the pointer acceleration values from the pointer input
UCB extension (DW1$W_PTR_ACCEL_NUM, DW1$W_PTR_ACCEL_DEN,
and DWl$W_PTR_ACCEL_ THR, in p2, p3, and p4, respectively). The target
is the pointing device. Table 2-5 provides the argument information required
for the Sense Pointer Acceleration $010 call.

Table 2-5 Argument Data for Sense Pointer Acceleration $QIO Call

$QIO Argument Required Data

func 10$_SENSEMODE function code.

p1 10$K_DECW_PTR_ACCEL function modifier.

p2 Address of the word that stores the pointer acceleration numerator
(DWl$W_PTR_ACCEL_NUM).

p3 Address of the word that stores the pointer acceleration
denominator (DWl$W_PTR_ACCEL_DEN).

p4 Address of the word that stores the pointer acceleration threshold
(DWl$W _PTR_ACCEL_ THR).

p5, p6 Set to 0.

Common Driver/Server Interface
Sense Pseudomouse Key

Sense Pseudomouse Key

The Sense Pseudomouse Key $010 function gets the key code information
that invokes the pseudomouse mode. The $010 returns the selection key and
selection key modifier codes in use from the keyboard input UCB extension
(DWl$B_KB_PMOUSE_KEY and DWl$B_KB_PMOUSE_MOD). The target
device is the keyboard. Table 2-6 provides the argument information required
for the Sense Pseudomouse Key $010 call.

Table 2-6 Argument Data for Sense Pseudomouse Key $QIO Call

$QIO Argument Required Data

func 10$_SENSEMODE function code.

p1 10$K_DECW_PMOUSE_KEY function modifier.

p2 Address of the byte containing the LK201 key code that selects
the pseudomouse mode.

p3 Address of the longword that contains the pseudomouse selection
modifier key code.

p4, p5, p6 Set to 0.

2-13

Common Driver/Server Interface
Sense Operator Window Key

Sense Operator Window Key

2-14

The Sense Operator Window Key $010 function finds the key code that
invokes the operator window. The target device is the keyboard. Table 2-7
provides the argument information required for the Sense Operator Window
Key $010 call.

Table 2-7 Argument Data for Sense Operator Window Key $QIO Call

$QIO Argument Required Data

func 10$_SENSEMODE function code.

p1 10$K_DECW_OPWIN_KEY function modifier.

p2 Address of the byte containing the LK201 key code that selects
the operator window.

p3 Address of the longword mask that specifies whether a control
or shift key is used as a modifier in the selection of the operator
window mode.

p4, p5, p6 Set to O.

Common Driver/Server Interface
Sense Screen Saver Timeout

Sense Screen Saver Timeout

The Sense Screen Saver Timeout $010 function gets the current screen saver
timeout value in seconds. The target device is the output monitor. Table 2-8
provides the required argument information for the Set Screen Saver Timeout
$010 call.

Table 2-8 Argument Data for Sense Screen Save Timeout $QIO Call

$QIO Argument Required Data

tune 10$_SENSEMODE function code.

p1 10$K_DECW_SCRSAV function modifier.

p2 Address of the longword specifying the current timeout in
seconds. A value of 0 indicates that the screen saver function is
disabled.

p3, p4, p5, p6 Set to O.

2-15

Common Driver/Server Interface
Get Device Information

Get Device Information

2-16

The Get Device Information $010 sense-mode function returns the address
and size of the device information block (DVI). The target device is the output
display. The function returns a pointer to the (read-only) DVI block. The
DVI contains static device information such as the size of the memory frame
buffer, the resolution of the screen, the number of bits per pixel in the frame
buffer, the number of cursor planes and the width and height of the cursor
bitmap. See the DVI block in Figure A-1 and Table A-1 for more detailed field
information. Table 2-9 provides the required argument information for the Get
Device Information $010 call.

Table 2-9 Argument Data for Device Information $QIO Call

$QIO Argument Required Data

tune 10$_SENSEMODE function code.

p1 10$K_DECW_DEVICE_INFO function modifier.

p2 Address that stores the DVI block address.

p3 Address that stores the DVI block length.

p4, p5, p6 Set to O.

2.5 Set Mode Calls

Common Driver/Server Interface
2.5 Set Mode Calls

The FDT set-mode routines within the common driver service the $010
function calls from a server that set various device characteristics. The
following set-mode calls are supported by the DECwindows common driver:

Enable Input

Initialize Motion Buffer

Set Attach Screen

Set Cursor Pattern

Set Cursor Position

Set Keyboard Information

Set Keyboard LED

Set Motion Compression

Set Operator Window Key

• Set Pointer Acceleration

Set Pseudomouse Key

Set Screen Saver

Ring Keyboard Bell

This section defines the specific argument data required for each $010 call
within the set-mode functions serviced by the common driver. Each of these
calls requires the 10$_SETMODE function code.

2-17

Common Driver/Server Interface
Enable Input

Enable Input

2-18

The Enable Input $010 set-mode function creates a nonpaged shared
memory buffer for communication between the driver and the caller. This
$QIO function returns the page frame numbers (PFNs) of the buffer. The
caller then calls the $CRMPSC system service to map the PFNs (PFNMAP)
into its process address space. The target device is the keyboard. However,
all input devices share the input queue within the buffer (INB). If this is not the
first request to build the buffer, the $QIO function just returns the data for the
buffer previously allocated.

The size parameter (p2) is an inpuVoutput parameter. The caller requests a
buffer size and the common driver returns the size in pages (INB$L_PFN_
COUNT). The input queue and free lists are initialized on the first invocation.
Table 2-10 provides the required argument information for the Enable Input
$QIO call.

Table 2-10 Argument Data for Enable Input $QIO Call

$QIO Argument Required Data

tune 10$_SETMODE function code.

p1 10$K_DECW_ENABLE_INPUT function modifier.

p2 The size (number of pages) of the input buffer.

p3 Address of the array of PFN longwords.

p4, p5, p6 Set to O.

Common Driver/Server Interface
Initialize Motion Buffer

Initialize Motion Buffer

The Initialize Motion Buffer $010 function creates the motion history buffer
(MHB) data structure, initializes its fields, and returns the buffer size in pages.
Pointing device motion events are stored in 8-byte packets (MHPs); thus the
buffer event capacity is determined as follows:

N events= (N buffer_pages * 512 - 16 byte MHB header)/ 8

The number of pages for the buffer is specified in the p2 parameter of the
$010 call. The address of the number of pages allocated is returned in p2.
By default, the motion history buffer is disabled when DECwindows starts up.
Table 2-11 provides the argument information required for the Initialize Motion
Buffer $010 call.

Table 2-11 Argument Data for Initialize Motion Buffer $QIO Call

$010 Argument Required Data

func 10$_SETMODE function code.

p1 10$K_DECW_MOTION_BUFFER_INIT function modifier.

p2 Size of the motion history buffer in pages.

p3, p4, p5, p6 Set to 0.

2-19

Common Driver/Server Interface
Set Attach Screen

Set Attach Screen

2-20

The Set Attach Screen $010 set-mode function attaches the target screen
to an input device or to another screen. The specific attach-screen function
is selected with parameter p2 (see Table 2-12). All attached screens work
with the same input pointing device. The $010 system service also tests the
output device being called to ensure that it is a DECwindows workstation type.
Table 2-12 provides the required argument information for the Set Attach
Screen $010 call. The attach-screen function has the following conditional
characteristics and features:

If more than one screen is attached to the single pointing device, one
pointer is shared among the screens. Positioning the pointer on one
screen removes it from all the others.

If two screens are not attached to the same input pointing device, the
screens cannot be attached to one another.

As a screen is attached to an input pointing device, it is detached from all
other screens.

Table 2-12 Argument Data for Set Attach Screen $QIO Call

$QIO Arg

func

p1
p2

p3

p4

p5, p6

Required Data

10$_SETMODE function code.

10$K_DECW_ATTACH_SCREEN function modifier.

The specific function requested in the options of the attach-screen
submodifier group.

10$K_DECW_AS_ TO_INPUT

10$K_DECW_AS_ TO_RIGHT

10$K_DECW_AS_TO_LEFT

Attaches screen to pointing device

Attaches screen to the right of the
active screen

Attaches screen to the left of the
active screen

10$K_DECW_AS_TO_TOP Attaches screen to the top of the
active screen

10$K_DECW_AS_TO_BOTTOM Attaches screen to the bottom of the
active screen

A string descriptor naming the device being connected to.

A number passed back to the server in the INP$L_ROOT _WIN field of
the input packet.

Set to 0.

Common Driver/Server Interface
Set Cursor Pattern

Set Cursor Pattern

The Set Cursor Pattern $010 set-mode function sets the cursor (pointer)
pattern.

Much of the cursor information is stored in the UCB common output extension
(DECW). The bitmap image length differs in single-plane and multiplane
cursor systems. The caller must check the system type and pass the correct
image length. To obtain the address of the DVI block where the number of
cursor planes is stored, use the Get Device Information $010 call.

The style (p5) is a longword that specifies how the cursor is presented against
the background screen. Possible values are

O dynamic NANO

dynamic OR

2 NANO

3 OR

The p5 parameter is not used for multiplane cursor systems. Table 2-13
provides the required argument information for the Set Cursor Pattern $010
call.

Table 2-13 Argument Data for Set Cursor Pattern $QIO Call

$QIO Argument Required Data

tune 10$_SETMODE function code.

p1 10$K_DECW_CURSOR_PATTERN function modifier.

p2 Address of the bitmap image.

p3 Length (number of words) of the bitmap.

p4 A longword defining the hotspot x-, y-coordinates.

p5 Defines the cursor display style.

p6 Set to O.

2-21

.
Common Driver/Server Interface
Set Cursor Position

Set Cursor Position

2-22

The Set Cursor Position $010 set-mode function sets the cursor x and y
position. It returns a SS$_BADPARAM message if the cursor (pointer) is out
of range along the x- and y-axes. If multiple screens are attached to a single
mouse, it removes the mouse from all other attached screens and places
the pointer on the home screen. The target device is the output display. The
cursor information is stored in the UCB common output extension (DECW).
Table 2-14 provides the required argument information for the Set Cursor
Position $010 call.

Table 2-14 Argument Data for Set Cursor Position $QIO Call

$QIO Argument Required Data

tune 10$_SETMODE function code.

p1 10$K_DECW_CURSOR_POSITION function modifier.

p2 Defines the x position of the cursor on the screen.

p3 Defines the y position of the cursor on the screen.

p4, p5, p6 Set to O.

Common Driver/Server Interface
Set Keyboard Information

Set Keyboard Information

The Set Keyboard Information $010 set-mode function enables/disables
keyboard functions and sets various functional characteristics of the keyboard
device. Table 2-15 provides the argument information required for the Set
Keyboard Information $010 call.

Figure 2-6 and Table 2-16 show and define the data structure that passes
required keyboard information for the $QIO call.

Table 2-15 Argument Data for Set Keyboard Information $QIO Call

$QIO Argument Required Data

func 10$_SETMODE function code.

p1 10$K_DECW_KB_INFO function modifier is used to set or adjust
the keyclick and bell volume and to set the alphanumeric keys
(main keyboard) in up/down transition mode of event reporting.
An 10$M_DECW_KEYCLICK optional function modifier is used
to set the keyclick volume, 10$M_DECW_BELL is used to set
the bell volume, and 10$M_DECW_AUTOREPEAT is used to
enable/disable the autorepeat feature.

p2 Address of the keyboard information (characteristics) block (KIB).

p3 Specifies the length of the keyboard information block (KIB$S_
KBD_INFO).

p4 Defines the up/down or down-only transition mode of the
alphanumeric keys. A value of 1 sets the FLAG$V _MAIN_
KB_UPDOWN bit in the UCB keyboard input extension, enabling
the up/down mode. A value of O selects the down-only transition
mode for alphanumeric key events.

p5, p6 Set to 0.

Figure 2-6 Keyboard Information Block

L
~ - - '

- 1 ena e mas yes i-p KIB$L ENABLE MASK 256 b"t bl k (32 b t) 1 0

KIB$L_KEYCLICK_ VOL 32

KIB$L_BELL_ VOL 36

KIB$L_AUTO_ON_OFF 40

2-23

Common Driver/Server Interface
Set Keyboard Information

2-24

Table 2-16 Keyboard Information Block Fields

Field Name Contents

KIB$L_ENABLE_MASK Entry to the 256-bit autorepeat enable mask for the LK201
keys. The mask defines which keys are in autorepeat
mode. The bits are numbered O through 255 and each bit
position corresponds directly to a specific key position on
an LK201 keyboard. For example, using decimal keycode
numbering, mask-bit 90 corresponds to the 90 key position
(F5) on the LK201 keyboard.

KIB$L_KEYCLICK_ VOL A longword specifying the keyclick volume in percent. A
value of 100 specifies the loudest click while a O turns the
click off. A value of -1 provides a default volume of 70
percent.

KIB$L_BELL_ VOL A longword specifying the bell volume in percent. A value
of 100 specifies the loudest ring while a 0 turns the bell
off. A value of -1 provides a default volume of 70 percent.

KIB$L_AUTO_ON_OFF A value of 0 disables the autorepeat feature for all keys. A
value of 1 enables autorepeat for the keys specified (bits
set) in the KIB$L_ENABLE_MASK.

Common Driver/Server Interface
Set Keyboard LED

Set Keyboard LED

The Set Keyboard LED $010 function sets the state of the keyboard LEDs.
The target device is the keyboard. Table 2-17 provides the argument
information required for the Set Keyboard LED $010 call.

Table 2-17 Argument Data for Set Keyboard LED State $QIO Call

$QIO Argument Required Data

tune 10$_SETMODE function code.

p1 10$K_DECW_KB_LED function modifier.

p2 A value of 1 turns the p3 LEDs on, or a value of 0 turns the p3
LEDs off.

p3 A longword LED mask to set the keyboard lights to the state
specified in p2. The mask bits correspond to the keyboard LEDs
as follows:
DECW$M_LIGHT1 Wait

DECW$M_LIGHT2 Compose

DECW$M_LIGHT3 Lock

DECW$M_LIGHT 4 Hold Screen

p4,p5, p6 Set to 0.

Note: The keyboard class driver ignores this $QIO for the Wait and Lock
LEDs. The lock LED corresponds to the lock key on the LK201
keyboard and the wait LED identifies the keyboard pseudomouse
mode.

2-25

Common Driver/Server Interface
Set Motion Compression

Set Motion Compression

2-26

The Set Motion Compression $010 function sets or clears the pointing
device's motion compression mode. A value of 1 in the p2 parameter turns
on the compression mode, a value of O turns it off. The motion compression
bit (FLAG$V_MOTION_COMP) is located in DWl$L_PTR_CTRL of the input
UCB extension. The target is the pointing device. Table 2-18 provides the
argument information required for the Set Motion Compression $010 call.

Table 2-18 Argument Data for Set Motion Compression $QIO Call

$QIO Argument Required Data

tune 10$_SETMODE function code.

p1 10$K_DECW_MOTION_COMP function modifier.

p2 A value of 1 sets motion compression on, or a value of 0 turns
motion compression off.

p3, p4, p5, p6 Set to 0.

Common Driver/Server Interface
Set Operator Window Key

Set Operator Window Key

The Set Operator Window Key $010 set-mode function sets the key code that
invokes the operator window. If the key code p2 is not set, CTRUF2 is the
operator key default. The target device is the keyboard. Table 2-19 provides
the required argument information for the Set Operator Window Key $010
call.

Table 2-19 Argument Data for Set Operator Window Key $QIO Call

$QIO Argument Required Data

tune 10$_SETMODE function code.

p1 10$K_DECW_OPWIN_KEY function modifier.

p2 Byte specifying the LK201 key code that invokes the operator
window. If set to 0, p3 is ignored and CTRUF2 is established as
the default.

p3 Longword mask that specifies either a shift or control selection
modifier key (INP$M_CONTROLMASK or INP$M_SHIFTMASK).
The default selectors for the operator window mode are CTRUF2.
If a modifier is not used, p3 must be 0.

p4, p5, p6 Set to O.

2-27

Common Driver/Server Interface
Set Pointer Acceleration

Set Pointer Acceleration

2-28

The Set Pointer Acceleration $010 function sets the pointer acceleration
table states and the acceleration threshold value. The p2, p3, and p4
parameters set states DWl$W_PTR_ACCEL_NUM, DWl$W_PTR_ACCEL_
DEN, and DWl$W_PTR_ACCEL_ THR, respectively, in the pointer input UCB
extension. The target is the pointer device. Table 2-20 provides the argument
information required for the Set Pointer Acceleration $010 call.

Table 2-20 Argument Data for Set Pointer Acceleration $QIO Call

$QIO Argument Required Data

func 10$_SETMODE function code.

p1 10$K_DECW_PTR_ACCEL function modifier.

p2 A word containing the pointer acceleration numerator for DWl$W_
PTR_ACCEL_NUM and the acceleration routine.

p3 A word containing the pointer acceleration denominator for
DWl$W_PTR_ACCEL_DEN and the acceleration routine. The
default is 1.

p4 A word containing the pointer acceleration threshold for DWl$W_
PTR_ACCEL_THR and the acceleration routine.

p5, p6 Set to 0.

Common Driver/Server Interface
Set Pseudomouse Key

Set Pseudomouse Key

The Set Pseudomouse Key $QIO function sets the key code to select the
pseudomouse mode. The $QIO sets both the key and the key modifier scan
codes in the keyboard input UCB extension (DWl$B_KB_PMOUSE_KEY and
DWl$B_KB_PMOUSE_MOD). The default is CTRUF3. The target device is
the keyboard. Table 2-21 provides the argument information required for the
Set Pseudomouse Key $QIO call.

Table 2-21 Argument Data for Set Pseudomouse Key $QIO Call

$QIO Argument Required Data

func 10$_SETMODE function code.

p1 10$K_DECW_PMOUSE_KEY function modifier.

p2 The select pseudomouse key code. The default is 5~s for key F3
on an LK201 keyboard.

p3 A longword mask that specifies either a shift or control selection
modifier key (INP$M_CONTROLMASK or INP$M_SHIFTMASK).
The default selectors for the pseudomouse mode are CTRUF3. If
it is not used, p3 must equal 0.

p4, p5, p6 Set to 0.

2-29

Common Driver/Server Interface
Set Screen Saver Timeout

Set Screen Saver Timeout

2-30

The Set Screen Saver Timeout $010 function enables or disables the screen
saver function and sets the screen saver timeout value in seconds. The target
device is the output monitor. Table 2-22 provides the required argument
information for the Set Screen Saver $010 call.

Table 2-22 Argument Data for Set Screen Saver $QIO Call

$QIO Argument Required Data

func 10$_SETMODE function code.

p1 10$K_DECW_SCRSAV function modifier is used for setting a
timeout value. An 10$M_DECW_RESET _SCRSAV optional
function modifier is used to turn the screen saver off, or a 10$M_
DECW_FORCE_SCRSAV function modifier is used to activate the
screen saver.

p2

p3,p4, p5,p6

Specifies the timeout value in seconds. If p2 is set to 0, the
screen saver function is disabled.

Set to 0.

Common Driver/Server Interface
Ring Keyboard Bell

Ring Keyboard Bell

The Ring Keyboard Bell $010 function rings the keyboard bell at a specified
volume. The target device is the keyboard. Table 2-23 provides the argument
information required for the Ring Keyboard Bell $010 call.

Table 2-23 Argument Data for Ring Keyboard Bell $QIO Call

$QIO Argument Required Data

tune 10$_SETMODE function code.

p1 10$K_DECW_RING_BELL function modifier.

p2 Specifies the ring volume in percent. A value of 100 specifies the
loudest ring while a O turns the bell off. A value of -1 provides
a default volume of 70 percent or rings the bell at the current
volume if previously set.

p3, p4, p5, p6 Set to 0.

2-31

3 Writing a Port Input Driver

3.1 Overview

Input driver software that makes up the device input DECwindows
interface divides into two categories: class input drivers and port input
drivers. This chapter describes the function, routines, and program entry
points of a DECwindows port input driver.

More information concerning the data structures referenced in this chapter
may be found in Appendix A. Macros are described in Appendix B. When
you write a new driver according to the DECwindows requirements in this
manual, consult the VMS Device Support Manual for basic driver design
and the chapter on terminal class and port drivers for specific port/class
information.

The port input driver is the device-dependent part of a DECwindows
device driver. The port driver is sometimes referred to as the "interrupt"
driver. It processes hardware interrupts and passes an uninterpreted byte
stream of data to a class driver, where it is decoded into an Xll event
packet.

The port driver contains device-dependent routines of a VMS terminal
driver that are specific to a controller/CPU type. They bind together
by means of the UCB to form a port/class interface for a DECwindows
device-dependent driver.

The port driver contains the driver prologue table (DPT) data structure;
initialization macros; device, unit, and controller initialization routines, a
start 1/0 routine; port routines; and any additional device-dependent code,
such as an interrupt service routine. VMS currently supports the port
input driver (YEDRIVER) for workstations listed in Table 1-1.

The driver also contains the controller initialization and unit initialization
routines that are startup routines required by VMS. They invoke macros
needed by the port/class interface.

3.2 Port Driver Program Entry·
Class drivers and output drivers call port routines to perform port-specific
hardware functions. Routines of the port input driver are entered by way
of a vector table. The port vector table is a data structure that allows the
class driver to find the appropriate port routine. Each entry name is a
specific vector table offset that points to the port routine. Therefore, each
name is used as a symbolic offset. The port routine symbolic addresses in
the table are as follows:

• PORT_STARTIO

• PORT_SET_LINE

3-1

Writing a Port Input Driver
3.2 Port Driver Program Entry

• PORT_ABORT

• PORT_RESUME

The port driver builds the vector table by invoking the $VECINI macro,
the $VEC macro for each table entry, and the $VECEND macro that
terminates the structure. The COMMON_CTRL_INIT macro within the
controller initialization routine relocates the table. Macros are described
in Appendix Band the routines are in this chapter. A vectored port
routine call example follows:

MOVL UCB$L_TT_PORT(R5),Rl ;get vector table address
JSB @PORT_STARTIO(Rl) ;call port start I/0 routine

3.3 Port Input Driver Routines

3-2

The port input driver contains three types of routines: startup, initiate,
and service routines. This section describes in alphabetical order the
vectored routines that are part of the port input driver module.

Writing a Port Input Driver
PORT_ABORT

PORT ABORT

input

The PORT _ABORT routine commands the port to abort any currently active
output activity. This port service routine may be called from the class input
driver at any time and invalidates the data stored in UCB$L_ TT _OUTADR.

Location Contents

RS Input UCB address

3-3

Writing a Port Input Driver
PORT_RESUME

PORT RESUME

input

3-4

The PORT _RESUME routine directs the port to resume any previously
stopped output. The port must allow this routine to be called at any time
(whether the output is active or was already stopped). This routine ensures
that the hardware is enabled for output.

Location Contents

R5 Input UCB address

Writing a Port Input Driver
PORT_SET_LINE

PORT SET LINE

input

output

The PORT_SET_LINE routine changes the serial line characteristics. This
initiate routine is called whenever any serial line characteristic in UCB$L_
DEVDEPEND or UCB$L_DEVDEPEND2 is changed or when speed, parity,
or automatic flow control are changed, or DMA is enabled/disabled. This
is the only port routine that can write the fields UCB$L_DEVDEPEND and
UCB$L_DEVDEPEND2.

Location

RS

UCB$8_ TT _MAINT

UCB$B_ TT _PARITY

UCB$8_ TT _SPEED

UCB$B_ TT _PRTCTL

UCB$L_DEVDEPEND

UCB$L_DEVDEPND2

Location

R4

Contents

Input UCB address

Maintenance parameters

Parity, stop bits, and frame size

Low byte that defines transmit speed, high byte that
defines receive speed or is 0

OMA and AUTOXOFF-enable flags

First longword for device-dependent status

Second longword for device-dependent status

Contents

Destroyed

3-5

Writing a Port Input Driver
PORT_STARTIO

PORT STARTIO

The PORT_STARTIO initiate routine starts output on a serial line that is
currently inactive. It enables output interrupts on an idle controller unit. It is
always called with a character key (data byte) or a burst of data.

input

output

3-6

Location

R3

R5

UCB$B_TT_OUTYPE

UCB$L_ TT _OUTADR

UCB$B_TT_OUTLEN

Location

RO through R4

R5

Contents

Character to output (single character only)

Input UCB address

0 if no character to output, 1 if one character to output,
or a negative value if data burst to output

Address of burst if UCB$B_TT_OUTYPE is negative

Length of data burst

Contents

Destroyed

UCB address

Writing a Port Input Driver
Controller Initialization Routine

Controller Initialization Routine

input

output

The controller initialization routine prepares a controller or hardware interface
for operation. The routine is entered at system startup and during recovery
after power failure and is always called at IPL$_POWER. The routine resets
the controller unit. This routine invokes the COMMON_CTRL_INIT macro to
relocate the driver vector table. The DPT _STORE macro places the address
of this routine in the CAB.

Note that before invoking the COMMON_CTRL_INIT macro, a DECwindows
port driver should invoke the $DECW_COMMON_READY macro to ensure
that the common driver is loaded. If the common driver is not loaded, the
driver does not operate on calls to the common service routines and the
system may crash.

Location

R4

RS
R6

RS

Location

RO, R1, R2

Contents

CSR address of the port

IDB address of the controller unit

DOB address of the controller unit

CRB address of the controller unit

Contents

Destroyed

3-7

Writing a Port Input Driver
Unit Initialization Routine

Unit Initialization Routine

input

output

3-8

The unit initialization routine sets up each individual device. The routine
loads specific UCB locations with hardware unit requirements or controller­
specific data, binds the class and port drivers, readies the hardware for input
and output, and takes any necessary action should a power failure occur.
The initialization routine loads the port vector table address into UCB field
UCB$L_ TT _PORT. This routine is invoked each time a unit is created. This
routine is always called at IPL$_POWER. The DPT _STORE macro places the
address of this routine in the CRB and sets the unit's DDT to the address of
the common DDT.

Location Contents

R4 CSR address of the unit

RS Input UCB address of the unit

Location Contents

R4 Preserved

RS Preserved

4 Writing a Class Input Driver

4.1 Overview

Input driver software that makes up the device input DECwindows
interface divides into two categories: class input drivers and port input
drivers. This chapter describes the function, routines, and program entry
of a DECwindows class input driver.

More information concerning the data structures referenced in this chapter
may be found in Appendix A. Macros are described in Appendix B. When
you write a new driver according to the DECwindows requirements in this
manual, consult the VMS Device Support Manual for basic driver design
and the chapter on terminal class and port drivers for specific port/class
information.

The class input driver is the device-independent part of a device driver. A
DECwindows class driver decodes serial device data and formats it into
event packets for the server. The class driver is sometimes referred
to as the "decoder" driver, as the serial data is decoded into events.
Decoded events reported to the server include pointer motion, mouse
button transitions, and key transitions.

A DECwindows class driver contains routines that implement the various
device input, byte-stream, decoding functions that are independent
of the controller/CPU type. These class routines specifically support
the DECwindows standard interface. The port driver contains device­
dependent routines of a VMS terminal driver that are specific to a
controller/CPU type.

The DECwindows device drivers use only a subset of the full VMS
terminal port/class interface. They bind together by means of the device
UCB to form a pprt/class interface for a DECwindows device-dependent
driver. DECwindows software currently supports the class input drivers
for the keyboard and mouse (IKDRIVER, IMDRIVER) listed in Table 1-1.

The driver also contains controller initialization and unit initialization
routines that are startup routines required by VMS. They invoke macros
needed by the port/class interface.

4.2 Class Driver Program Entry
Routines of the class driver are entered by way of a vector table. The
vector table is a data structure that allows other drivers to find the
appropriate class routine. Each entry name is a specific offset that points

4-1

Writing a Class Input Driver
4.2 Class Driver Program Entry

to the class routine. Therefore, each name is used as a symbolic offset.
The class routine symbolic addresses in the table are as follows:

• CLASS_PUTNXT

• CLASS_GETNXT

• CLASS_DDT

The class driver builds the vector table by invoking the $VECINI macro,
the $VEC macro for each table entry, and the $VECEND macro that
terminates the structure. The COMMON_CTRL_INIT macro within the
controller initialization routine relocates the table. Macros are described
in Appendix B and the routines are discussed in this chapter.

The class driver routines are entry points from the common, port, and
output drivers. Driver calls to some of these routines for queue interface
refer to symbolic offsets in the class vector table. A vectored class routine
is called by a JSB instruction. Class routine call examples follow:

#1 MOVL UCB$L_TT_CLASS(R5),R0 ;get vector table address
JSB @CLASS_PUTNXT(RO) ;call class routine

#2 JSB @UCB$L_TT_PUTNXT(R5) ;use offset directly in UCB
;to find routine

Note that, because the get-next-character and put-next-character routines
are the most heavily used class driver routines, their addresses are stored
in the terminal extension UCB. Fields UCB$L_TT_PUTNXT and UCB$L_
TT_GETNXT provide direct access to the class driver. It is therefore
possible to use one instruction (method 2), assuming R5 contains the UCB
base address. This eliminates the move instruction (vector to general
register) required in method 1.

4.3 Class Input Driver Routines

4-2

This section describes in alphabetical order the routines in a class input
driver. The routines in this section are common to both the keyboard and
mouse drivers (IKDRIVER and IMDRIVER).

CLASS DDT

Writing a Class Input Driver
CLASS_DDT

This entry in the class driver vector table points to the driver dispatch table
(DDT). It is simply an offset to the table and not to a routine. The CLASS_
UNIT_INIT macro uses the CLASS_DDT entry point to load the address of the
DDT into the UCB. The DDT is described in the VMS Device Support Manual.

4-3

Writing a Class Input Driver
CLASS_GETNXT

CLASS GETNXT

input

output

4-4

The CLASS_GETNXT routine returns to the caller with the next byte to be
output from the SILO buffer. The port driver calls CLASS_GETNXT whenever
it has finished processing an output request to see if there are more output
requests in the SILO buffer. The CLASS_GETNXT routines calls the GET_
ONE_BYTE routine that gets the data byte in the SILO. For example, in a
keyboard driver, this routine passes LED (light) information from the SILO
buffer to the keyboard.

Location

RS

Location

UCB$B_TT_OUTYPE

UCB$L_ TT _OUTADR

UCB$B_TT_OUTLEN

RS

All other registers

Contents

Input UCB address

Contents

O if there is no data to be output, 1 if one character is in
R3, or a negative value if there is a data burst to output

Address of burst if UCB$B_TT_OUTYPE is negative

Length of data burst

UCB address

Destroyed

Writing a Class Input Driver
CLASS_PUTNXT

CLASS PUTNXT

input

output

The CLASS_PUTNXT routine is called by a port driver to pass input data from
the serial line to the input queue. CLASS_PUTNXT decodes the data and
converts it to an x event in the form of an input packet. It uses the GET_
FREE_KB_PACKET macro to get a free packet and it terminates processing
by invoking the PUT_INPUT_ON_QUEUE macro to insert the event in the
input queue.

Note that the input and free queues are self-relative queues that must be
accessed using interlocked instructions. The GET _FREE_KB_PACKET macro
remc,ves a free packet from the free queue using the REMQHI instruction.
The routine then decodes the byte stream setting the event data in the packet,
and the PUT_INPUT_ON_QUEUE macro inserts the packet in the input queue
using the INSQTI instruction.

Location

RO
R3

R5

Location

UCB$B_TT_OUTYPE

UCB$L_ TT _OUTADR

UCB$W_ TT_OUTLEN

RO
R5

All other registers

Contents

CSR

Input data byte

Input UCB address

Contents

0 if no data to be output, 1 if one character in R3, or a
negative value if data burst to output

Address of first character in burst (burst mode only)

Length of data burst (burst mode only)

Preserved

UCB address

Destroyed

4-5

Writing a Class Input Driver
Controller Initialization Routine

Controller Initialization Routine

input

output

4-6

The controller initialization routine prepares a controller or hardware interface
for operation. The routine is entered at system startup and during recovery
after power failure and is always called at IPL$_POWER. The routine resets
the controller unit. This routine invokes the COMMON_CTRL_INIT macro to
relocate the driver vector table.

Note that before invoking the COMMON_CTRL_INIT macro, a DECwindows
class driver should invoke the $DECW_COMMON_READY macro to ensure
that the common driver is loaded. If the common driver is not loaded, the
driver does not operate on calls to the common service routines and the
system may crash.

Location

R4

RS
R6

RS

Location

RO, R1, R2

Contents

CSR address of the controller

IDB address of the controller

DOB address of the controller

CAB address of the controller

Contents

Destroyed

Writing a Class Input Driver
Unit Initialization Routine

Unit Initialization Routine

input

output

The unit initialization routine in the class driver sets up each device unit.
The routine loads specific UCB locations with hardware unit requirements or
controller-specific data, binds the class and port drivers, readies the hardware
for input and output, and takes any necessary action should a power failure
occur. The initialization routine loads the class vector table address into UCB
field UCB$L_ TT _CLASS. The unit initialization routine calls the COMMON_
UNIT _INIT macro, which sets the driver dispatch table address (CLASS_DDT)
in the class vector table to that of the common DDT. This routine is run each
time a unit is created. This routine is always called at IPL$_POWER.

Location Contents

R4 CSR address of the unit

R5 Input UCB address of the unit

Location Contents

R4 Preserved

R5 Preserved

4-7

5 Common Driver

5.1 Overview

This chapter describes the function, routines, and program entry of the
DECwindows common driver. The chapter also describes the routines that
service the $QIO interface. The $QIO calls are described in Chapter 2 and
Chapter 6. More information concerning the data structures referenced in
this chapter may be found in Appendix A.

The DECwindows common device driver (INDRIVER) is the DECwindows
server interface to the input and output drivers and performs the device­
independent functions of a workstation. The common device interface
comprises routines, an input queue for the primary server interface, and a
$QIO interface.

The common driver contains a set of DECwindows routines called by
output drivers and class input drivers. It also contains routines required
by VMS for all device drivers to communicate with the VMS system.
Function decision table (FDT) routines within the driver service the $QIO
interface.

DECwindows output and class drivers locate and call common driver
service routines directly, through the common vector table, or indirectly,
by invoking macros. For example, moving the mouse may necessitate
moving the cursor. Because cursor movement is controlled by the graphics
controller, class drivers access this function in the output driver by way of
the common driver.

The common driver services and macros provided are listed in Table 5-1.
As outlined in the table, the common driver routine descriptions that
follow in this chapter are grouped according to type of service.

Table 5-1 Common Driver Services

Type of Service

Class

Class

Class

Class

Output

Output

Output

Symbol

COMMON_CTRL_INIT

COMMON_UNIT_INIT

COMMON_POS_CURSOR

COMMON_SETUP _INPUT _UCB

COMMON_CTRL_INIT

COMMON_UNIT_INIT

COMMON_SETUP _OUTPUT_UCB

Description

Macro to relocate vector table

Macro to set DDT to class DDT

Routine to position cursor

Routine to set up input UCB

Macro to relocate vector table

Macro to set DDT to class DDT

Routine to set up output UCB

(continued on next page)

5-1

Common Driver
5.1 Overview

Table 5-1 (Cont.)

Type of Service

Output

VMS

VMS

VMS

VMS data

VMS data

Type of Service

VMS FDT

VMS FDT

$010

$010

Common Driver Services

Symbol

COMMON_ VSYNC

CONTROL_INIT

UNIT_INIT

CANCEL

COMMON_DDT

COMMON_FLAGS

Mode

Output request

Output request

Sense

Set

Description

Routine to perform VSYNC timed functions

Controller initialization routine

Unit initialization routine

Cancel routine

Driver dispatch table

Common flag-bits data word

Description

Routine for buffered 1/0 output preprocessing

Routine for direct 1/0 output preprocessing

Routine for sense mode of device

Routine for set mode of device

5.2 Common Driver Program Entry

5-2

DECwindows routines in the common driver for class and output services
are entered by means of a vector table. The common vector table is a data
structure that allows a driver to find the appropriate service routine. Each
entry name is a specific vector table offset (relative to the beginning of
the common driver) that points to the common routine. Therefore, each
name may be used as a symbolic offset into the table. The service routine
symbolic addresses appear in the table as follows:

• COMMON_DDT

• COMMON_POS_CURSOR

• COMMON_SETUP _INPUT_UCB

• COMMON_SETUP _OUTPUT_UCB

• COMMON_VSYNC

• COMMON_FLAGS

The common driver builds the vector table by invoking the $VECINI
macro, the $VEC macro for each table entry, and the $VECEND macro
that terminates the structure. A macro within the controller initialization
routine relocates the table. The routines are described in this chapter and
the macros in Appendix B.

Driver calls to these common vectored routines refer to symbolic offsets
in the common vector table. When INDRIVER is loaded, DECW$GL_
VECTOR is a global location that contains the address of the common
vector table. A common routine call example follows:

MOVL GADECW$GL_VECTOR,RO ;get global pointer to vector table
JSB @COMMON_VSYNC(RO) ;call the COMMON_VSYNC routine

Common Driver
5.3 Common Driver Routines for Class Service

5.3 Common Driver Routines for Class Service
The common driver module contains class service routines that are
required by class drivers. This section presents the common driver class
service routines in alphabetical order. The class service routines are as
follows:

• COMMON_POS_CURSOR

• COMMON_SETUP _INPUT_UCB

5-3

Common Driver
COMMON_POS_CURSOR

COMMON POS CURSOR

input

5-4

The COMMON_POS_CURSOR routine positions the cursor (pointer)
according to the location specified in the UCB (UCB$W_DECW_CURSOR_X
and UCB$W_DECW_CURSOR_ Y). The cursor position adjusts to the hotspot
and is clipped to the physical screen boundaries.

Location Contents

RS Output UCB address

Common Driver
COMMON_SETUP _INPUT_UCB

COMMON SETUP INPUT UCB

input

output

The COMMON_SETUP _INPUT _UCB routine clears most fields of the class
input UCB and sets the system defaults where required. It is called by the
port driver's unit initialization routine.

Location

RO

R5

Location

RO, R1, R2

Contents

A value that determines which characteristics to set as
follows:

Value Meaning

0 An unknown device

+ 1 System keyboard

-1 System pointing device

Address of the input UCB being initialized

Contents

Destroyed

5-5

Common Driver
5.4 Common Driver Routines for Output Service

5.4 Common Driver Routines for Output Service

5-6

The common driver module contains output service routines that are
common among output drivers. This section presents the common driver
output service routines in alphabetical order. The output service routines
are as follows:

• COMMON_SETUP_OUTPUT_UCB

• COMMON_ VSYNC

Common Driver
COMMON_SETUP_OUTPUT_UCB

COMMON SETUP OUTPUT UCB

input

output

The COMMON_SETUP _OUTPUT_UCB routine clears most fields of the
output UCB and sets the system defaults where required (screen saver
and starting cursor position). This routine is called by an output driver's
unit initialization routine. COMMON_SETUP _OUTPUT _UCB allocates and
initializes a device information block (DVI) and then calls the OUTPUT _SET_
DVI routine, which loads device-specific values into the DVI fields.

Location Contents

RS Output UCB address

Location Contents

RO Status

5-7

Common Driver
COMMON_ VSYNC

COMMON VSYNC

input

output

5-8

The COMMON_ VSYNC routine performs time-sensitive processing during
the vertical synchronization (VSYNC) interval. Because most output drivers
receive a vertical SYNC interrupt to perform the necessary hardware functions,
the output driver also calls the COMMON_ VSYNC routine from its interrupt
service routine. Because this call is inherently timer based, the COMMON_
VSYNC routine periodically checks whether the screen saver function should
be enabled or disabled. It also checks the input queue at this interval and
determines whether the server needs to be notified of new input.

Location Contents

R5 Output UCB address

Location Contents

RO Status

All other registers Preserved

5.5 Common Driver Vectored Data

Common Driver
5.5 Common Driver Vectored Data

The common driver module contains vectored data structures that are
required for DECwindows global driver service. This section presents the
vectored data segments. Offset entry names to vectored data segments are
as follows:

• COMMON_DDT

• COMMON_FLAGS

5-9

Common Driver
COMMON_DDT

COMMON DDT

5-10

This entry in the common driver vector table points to the driver dispatch table
(DDT). It is simply an offset to the DDT and not a routine. The COMMON_
UNIT_INIT macro uses the COMMON_DDT entry point when loading the
address of the DDT into the UCB. The DDT is described in the VMS Device
Support Manual.

COMMON FLAGS

Common Driver
COMMON_FLAGS

This entry in the common driver vector table points to the driver common flags
longword (COMMON_FLAG_BITS). It is simply an offset to the common flag
bits or global flags and not a routine. The $DECW_COMMON_READY macro
uses the flag bits to sense whether the drivers are loaded. The common bits
in the flags longword are listed in Table 5-2.

Table 5-2 Common Flags Word

Bits Description

FLAGS$V _KB_DECODER Bit 0 is set when the keyboard class driver is loaded.

FLAGS$V _PTR_DECODER Bit 1 is set when the pointer class driver is loaded.

5-11

Common Driver
5.6 Common Driver FDT Routines for $QIO Service

5.6 Common Driver FDT Routines for $QIO Service

5.6.1 General

5-12

The $QIO common interface provides for initialization and information
requests from a server or extension to a device. The common driver
module contains function decision table (FDT) routines that service the
$QIO calls in the common interface. The specific requirements and form
of each $QIO call are described in Chapter 2. This section discusses the
functions of the common driver FDT routines.

When a user process calls the SYS$QIO system service, the system service
uses the I/O function code specified in the request to scan the driver FDT
and selects one or more of the FDT routines provided by the common
driver. The common driver performs device-independent processing and
then calls the output or input driver for any device-dependent processing.
For example, during a cursor pattern $QIO service, the common driver
validates the parameters and then calls the appropriate output driver to
change the cursor.

To prepare for an I/O operation, FDT routines perform such tasks as
allocating buffers in system space and validating the device-dependent
arguments (pl through p6) of the I/O request.

Before calling an FDT routine, the $QIO system service sets up the
contents of certain registers, as listed in Table 5-3.

Table 5-3 Registers Loaded by the $QIO System Service

Register

RO
R3

R4

RS

R6

R7

AP

Contents

Address of FDT routine being called

Address of IRP for current 1/0 request

Address of process control block (PCB) of current process

Address of UCB of device assigned to user-specified process-1/0
channel

Address of CCB that describes user-specified process-1/0 channel

Bit number of user-specified 1/0 function code

Address of first $010 parameter (p1)

The common driver contains the preprocessor FDT routines and uses the
FUNCTAB macro to build a function decision table that lists valid function
codes for a given preprocessor. These function codes are entry points to
the FDT routines that perform I/O processing for each function specified in
the $QIO service call. A list of the common driver FDT function codes and
functions is shown in Table 5-4.

5.6.2

5.6.3

Common Driver
5.6 Common Driver FDT Routines for $QIO Service

Table 5-4 Common Driver FDTs and Function Codes

Function Code Description

10$_SENSEMODE Sense mode of device

10$_SENSECHAR Sense device characteristics

10$_SETMODE Set mode of device

10$_SETCHAR Set device characterisitics

10$_DECW_OUTPUT_BUFFERED_FDT Preprocess buffered 1/0 output FDT

10$_DECW_OUTPUT_DIRECT_FDT Preprocess direct 1/0 output FDT

The following sections describe the $QIO functions and modifiers processed
by the device-dependent FDT routines that make up the $QIO common
interface.

FDT Sense-Mode Routines
The sense-mode FDT routines service $QIO requests to retrieve device
information or characteristics. The function modifier passed in the pl
argument selects the appropriate subroutine in the FDT sense-mode
routine table for the specific sense-mode function. When the FDT routine
exits, it either queues the 1/0 request, finishes processing the 1/0, or
aborts the 1/0. The following are valid function services as listed in the
FDT_SENSEM table that point to the appropriate sense-mode subroutine.

• DEVICE_INFO

• SENSE_KB_INFO

• SENSE_KB_LED

• SENSE_PMOUSE_KEY

• SENSE_PTR_ACCEL

• SENSE_OPWIN_KEY

• SENSE_MOTION_COMP

• SENSE_SCREEN_SAVER

FDT Set-Mode Routines
The set-mode FDT routines service $QIO requests to set various device
characteristics. The function modifier passed in the pl parameter selects
the appropriate subroutine in the FDT set-mode routine table for the
specific set-mode function. When the FDT routine exits, it either queues
the 1/0 request, calls the output driver to complete the request, finishes
processing the 1/0, or aborts the 1/0. The following are valid function
services as listed in the FDT_SETM table that point to the appropriate
set-mode subroutine.

• ENABLE_INPUT

• MOTION_BUFFER_INIT

5-13

5.6.4

Common Driver
5.6 Common Driver FDT Routines for $QIO Service

• SET_ATTACH_SCREEN

• SET_CURSOR_PATTERN

• SET_CURSOR_POS

• SET_KB_INFO

• SET_KB_LED

• SET_MOTION_COMP

• SET_OPWIN_KEY

• SET_PMOUSE_KEY

• SET_PTR_ACCEL

• SET_SCREEN_SAVER

• RING_BELL

FDT Output Routines

5-14

The FDT common driver output routines provide $QIO services that
preprocess a $QIO output request. The output routines check whether
the device being addressed is capable of providing output, then vectors
the request to the appropriate FDT parsing routine in the output driver
(using the output vector table). The routines preprocess both direct 1/0
and buffered 1/0 output requests.

• FDT_OUTPUT_B

• FDT_OUTPUT_D

6 Output Driver

6.1 Overview

This chapter describes the vectored output routines that process graphics
requests from the server to the screen. The output driver operates on
the video controller that manages output functions of the graphics
hardware. Details for the standard VMS routines may be found in the
VMS documentation. Macros called by the output routines are described
in Appendix B. More information concerning data structures referenced in
this chapter may be found in Appendix A.

The current DECwindows output device drivers (GxxDRIVER modules)
provide device-dependent driver support for monochrome and color
graphics (GPX) controllers. The drivers and their associated workstations
are shown in Table 1-1. The drivers provide services for DECwindows and
VMS, as well as services for $QIO requests for output to screen displays.
The output driver for a color (GPX) workstation interprets direct memory
access (DMA) packets from the server and presents the packet data to the
graphics hardware. The output driver for monochrome workstations uses
a monochrome frame buffer (MFB) for issuing output data to the graphics
hardware. The drivers may contain routines, macros, and services to
execute draw requests, copy data between host memory and video memory,
load template RAM, manipulate the cursor, modify the color map, and get
or set device-specific information for $QIO requests.

6.2 Output Driver Program Entry
DECwindows routines of the output cL..;ver are entered by way of a vector
table. The output vector table is a data structure that allows the common
driver to find the appropriate service routine. Each entry name is an
address (relative to the beginning of the output driver prologue table)
of a service routine. Each name may be used as a symbolic offset into
the table. The service routine symbolic addresses in the table appear as
follows:

• OUTPUT_ CLEAR_ CURSOR

• OUTPUT_CURSOR_PATTERN

• OUTPUT_DISABLE_ VIDEO

• OUTPUT_ENABLE_VIDEO

• OUTPUT_BUFFERED_FDT

• OUTPUT_POS_CURSOR

• OUTPUT_CANCEL

• OUTPUT_DIRECT_FDT

6-1

Output Driver
6.2 Output Driver Program Entry

• OUTPUT_SET_DVI

• OUTPUT_OPWIN_ VISIBLE

• OUTPUT_OPWIN_UP

• OUTPUT_OPWIN_DOWN

• OUTPUT_OPWIN_RESIZE

The output driver builds the vector table by invoking the $VECINI macro,
the $VEC macro for each table entry, and the $VECEND macro that
terminates the structure. The macro COMMON_CTRL_INIT within the
controller initialization routine relocates the table. Macros are described
in Appendix B and the routines are described in this chapter. A vectored
output routine call example follows:

MOVL UCB$L_DECW_OUTPUT_VECTOR(R5),Rl ;get vector table address
JSB @OUTPUT_CURSOR_PATTERN(Rl) ;load the cursor pattern

6.3 Output Driver Routines

6-2

The vectored output routines provide video and cursor image control,
operator window control, start and cancel 110, and device-dependent $QIO
service. Table 6-1 lists and briefly describes the vectored routines that
are part of the code of the output driver module. When called, all routines
assume that R5 contains the output UCB starting address. The OPWIN
(operator window) routines in the table are only valid for workstations
that are the active system console.

Table 6-1 Output Vector Table Routines

Vector Name Routine Function

OUTPUT_CLEAR_CURSOR The clear-cursor routine redraws the cursor with
all zeros (nulls the cursor). (Not used in the GPX
drivers.)

OUTPUT_CURSOR_PATTERN The cursor-pattern routine sets or loads the cursor
pattern in UCB$L_DECW_CURSOR_PATTERN of
the UCB output extension.

OUTPUT _DISABLE_ VIDEO The disable-video routine and macro disables the
video display output (for example, screen-save).

OUTPUT_ENABLE_VIDEO The routine and macro enable the video display
output.

OUTPUT_BUFFERED_FDT The buffered-FDT routine parses $010 calls from
the common driver that specify the buffered output
mode of $010 processing in the function code.
The routine also checks the validity of the function
code in the p1 parameter being passed in the call.

(continued on next page)

Output Driver
6.3 Output Driver Routines

Table 6-1 (Cont.) Output Vector Table Routines

Vector Name

OUTPUT_POS_CURSOR

OUTPUT _CANCEL

OUTPUT _DIRECT_FDT

OUTPUT_SET_DVI

OUTPUT_OPWIN_VISIBLE

OUTPUT_OPWIN_UP

OUTPUT_OPWIN_DOWN

OUTPUT _OPWIN_RESIZE

6.4 Queue Processing of Output

Routine Function

The routine positions the cursor on the screen
according to the x- and y-coordinates defined in
fields UCB$W_OD_CURSOR_X and UCB$W_OD_
CURSOR_Y.

The FDT cancel routine is called by the common
driver to cancel all IRPs in the wait queue. The
routine cancels or aborts all outstanding 1/0
requests.

The direct-FDT routine parses $010 calls from the
common driver that specify the direct output mode
of $010 processing. The routine also validates the
function code in the p1 parameter being passed in
the call.

The routine sets or initializes fields in the device
information block (DVI).

Vector to the check-for-operator-window-mode­
capability routine in the output driver subroutine
module.

Vector to the display-operator-window routine in
the output driver subroutine module.

Vector to the remove-operator-window routine in
the output driver subroutine module.

Vector to the resize-operator-window routine in
the output driver subroutine module. Makes the
window smaller to adapt to the window system.

The mechanism for passing data between server and output driver is an
output queue. The output queue is a pair of interlocked queues: a GPX
packet buffer (GPB) command queue and a GPB free queue. The queues
consist of GPB packet buffers and their associated control blocks. The
GPB buffers contain various command packets generated for the server
output. These structures exist in nonpaged memory and are accessed by
the server by mapping PFNs into PO process space.

Like the common driver and input queue, the server and output driver use
an interlocked queue instruction to remove data packet buffers from the
command queue (REMQHI) and to insert free packets on the free queue
(INSQTI).

6-3

Output Driver
6.5 $QIO Output Interface

6.5 $QIO Output Interface
The GADRIVER module contains function decision table (FDT) routines
that provide a $QIO output interface. The $QIO interface is for color/DMA
drivers only. A main FDT parsing routine and its FDT subroutines service
all incoming $QIO calls from the server/common driver interface. The
output driver does not maintain its separate FDT table. The specific FDT
routines are accessed through the vectored routines that initialize and
manipulate the output packet data structures.

6.6 $QIO Calls to Output Driver

6-4

This section presents the output $QIO calls used in a server that are
supported by services within the DECwindows output driver. The $QIO
system service format is presented first.

$QIO calls must be issued to a physical device. Initially, using the
$ASSIGN system service, the appropriate device name is assigned to
an I/O channel. The channel number entry is required for chan in the
$QIO system service call. Physical device names on a GPX workstation
are GAAO for output to the screen, GAA.1 for the keyboard, and GAA2
for the mouse (see Table 1-1). Note that the DECwindows environment
provides logical names (DECW$WORKSTATION, DECW$KEYBOARD,
and DECW$POINTER) to point to the physical device.

Output Driver
$QIO System Service

$QIO System Service

FORMAT

arguments

The Queue 1/0 Request service queues an 1/0 request to a channel
associated with a device. The SYS$QIO format described next applies to all
the $010 calls presented in this chapter. For more information on SYS$QIO
refer to VMS System Services Reference Manual.

SVS$QIO [efn],chan,func,[iosb],[astadr],[astprm]
,p 1,p2,p3[,p4][,p5][,p6]

efn is the event flag number of the I/O operation. The efn argument is a
longword containing the number of the event flag.

chan is the I/O channel assigned ($ASSIGN) to the device name to which
the request is directed. The chan argument is a longword containing the
number of the I/O channel; however, $QIO uses only the low-order word.

func is the device-specific function code specifying the operation to be
performed. The func argument is a longword containing the function
code.

iosb is the I/O status block to receive the final completion status of the I/O
operation. The iosb argument is the address of the quadword I/O status
block.

astadr is the AST service routine to be executed when the I/O completes.
The astadr argument is the address of a longword that is the entry mask
to the AST routine.

astprm is the AST parameter to be passed to the AST service routine.
The astprm argument is a longword containing the AST parameter.

pl is the function modifier specifying the specific service being called
within the basic function code.

p2 to p6 are the function-specific parameters being passed.

6-5

Output Driver
6. 7 Output $QIO Calls

6.7 Output $QIO Calls

6-6

The $010 interface is for color/OMA drivers only. Using $010 calls, OMA
packet data passes directly to the output driver using a set of packet data
structures in an output queue that is created by the output driver. The
following $010 calls that create the output queue interface are supported
by the OECwindows output driver.

Create GPO

• Queue GPB

GPB Wait

This section defines the specific argument information required for the various
$010 calls serviced by the output driver. The calls use the 10$_0ECW_
OUTPUT_OIRECT_FOT or the 10$_0ECW_OUTPUT_BUFFEREO_FOT
function code.

Create GPO

Output Driver
Create GPO

The create GPX physical data (Create GPO) $010 function creates a GPX
shared memory data block. A $010 call to this service allocates and maps
a contiguous region of memory from nonpaged pool for the entire output
queue holding all GPBs. The region is mapped so it is accessible by the
hardware and VMS. The block size in pages must be specified in p2. If a
GPO already exists, the GPD block is reinitialized. Table 6-2 provides the
required argument information for the Create GPO $010 call. The service
returns p2 and p3 parameters defining the existing block size and starting
PFN, and the service also updates the 1/0 status block (IOSB) with the same
information.

Table 6-2 Argument Data for Create GPO $QIO Call

$QIO Argument Required Data

func 10$_DECW_OUTPUT_DIRECT_FDT or 10$_DECW_OUTPUT_
BUFFERED_FDT function code.

p1 10$K_DECW_CREATE_GPD function modifier.

p2 Size of the GPX physical data block in pages.

p3 Page frame number (PFN) of the first page of the data block. (A
return parameter only. Within the first page is a table listing the
remaining PFNs that make up the GPD.)

6-7

Output Driver
Queue GPB

Queue GPB

6-8

The queue GPX packet buffer (Queue GPB) $QIO function inserts a newly
formed GPB in the command queue. This service is also known as INSQTI
GPB, because of its insert-on-queue function. Table 6-3 provides the required
argument information for the Queue GPB $QIO call.

Table 6-3 Argument Data for Queue GPB $QIO Call

$QIO Argument Required Data

func 10$_DECW_OUTPUT_DIRECT_FDT or 10$_DECW_OUTPUT_
BUFFERED_FDT function code

p1 10$K_DECW_INSQTl_GPB function modifier

p2 Offset of the new GPB within the GPD data block

p3 Start of user buffer (optional)

p4 Length of user buffer (optional)

GPB Wait

Output Driver
GPB Wait

The GPX packet buffer wait (GPB Wait) $010 function suspends the 1/0
request when there are no free GPX packet buffers. The $010 completes
when there are one or more GPBs on the free queue. Table 6-4 provides the
required argument information for the GPB Wait $010 call.

Table 6-4 Argument Data for GPB Wait $QIO Call

$QIO Argument Required Data

tune 10$_DECW_OUTPUT_DIRECT_FDT or 10$_DECW_OUTPUT_
BUFFERED_FDT function code

p1 10$K_DECW_GPBWAIT function modifier

6-9

A Data Structures

The DECwindows device driver software requires an I/O database that
contains both the standard VMS data structures and data structures
specific to DECwindows. The data structures provide information to the
VMS operating system and to drivers that help monitor status of and
control the functions of the I/O subsystem. All of the data structures are
allocated space in nonpaged system memory. DECwindows common and
input driver structures are defined by the DECwindows global macro
$DECWGBL. The data structures in the following list are described in
this appendix. These are the specific sources of data for the DECwindows
device drivers.

DVI

INB

INP

KIB

MHB

UCB/DWl/DECW

UCB/DWI/KB

UCB/DWI/PTA

UCB/DE CW

Vector Tables

Device information block

Input buffer control block

Input packet structure

Keyboard information block

Motion history buffer

Unit control block, DECwindows common input extension

Unit control block, DECwindows keyboard input extension

Unit control block, DECwindows pointer input extension

Unit control block, DECwindows common output extension

For class, common, port, and output drivers

The VMS data structures listed below are also used by DECwindows
device driver modules. These data structures are described in the VMS
Device Support Manual and the VAX/VMS Internals and Data Structures
book.

ACB AST control block

CAB Channel request block

DOB Device data block

DDT Driver dispatch table

DPT Driver prologue table

FDT Function decision table

IDB Interrupt dispatch block

IRP 1/0 request packet

ORB Object rights block

UCB Unit control block (main system portion)

UCBx Unit control block (class/port terminal extensions)

A-1

Data Structures
A.1 Device Information Block (DVI}

A.1 Device Information Block (DVI)
The device information block (DVI) in the 1/0 database provides
DECwindows device-specific information, primarily concerning the color
graphics (GPX) workstation. The fields define system defaults and static
device information and are.read access only (see Figure A-1). Table A-1
lists and defines the fields of the block. The length of the data structure is
defined by the constant DVI$K_LENGTH.

Figure A-1 Device Information Block (DVI)

DVl$L_FLINK 0

DVl$L_BLINK 4

DV1$B_SUB_ TYPE l DVl$B_TYPE DVl$W_SIZE 8

DV1$L_FLAGS 12

DVl$B_SPARE_ 1 T VSYNC_INTERVAL COMPRESSION_ TYPE DVl$B_WS_ TYPE 16

DVl$L_SCRSAV _TIMEOUT 20

DVl$W_COLOR_MAP _ENTRIES DV1$B_COLOR_MAPS SYSTEM_COLOR_MAP 24

DVl$B_Cl_SPARE_ 1 l DVl$B_CURSORS SYSTEM_ CURSOR DVl$B_BITS_PER_RGB 28

N DVl$B_CURSOR_PLANES (16 bytes) ,.L, 32

DVl$B_CURSOR_WIDTH (16 bytes)

I~---------------------DV-l-$B ___ C_U_R_S_O_R __ H_E_IG_H_T--(1-6-by-te_s_)---------------------fI64

DV1$B CURSOR TYPE (16 b t) 80 "'!"' - - yes ~?

DVl$L_ VIDEO_STARTING_PFN 96

BITS_PER_PIX_BTP l BITS_PER_PIXEL DVl$W_ VIDEO_PAGE_COUNT 100

DV1$W_ VIDEO_MEM_HEIGHT DVl$W_ VIDEO_MEM_WIDTH 104

DVl$W_ONSCREEN_ Y _ORIGIN DVl$W_ONSCREEN_X_ORIGIN 108

DVl$W_ONSCREEN_HEIGHT DVl$W_ONSCREEN_WIDTH 112

(continued on next page)

A-2

Data Structures
A.1 Device Information Block {DVI)

Figure A-1 (Cont.) Device Information Block (DVI)

DV1$W_OPWIN_ Y _ORIGIN DVl$W_OPWIN_X_ORIGIN 116

DVl$W_OPWIN_HEIGHT DVl$W_OPWIN_WIDTH 120

DVl$W_ TABLET _HEIGHT DVl$W_ TABLET_WIDTH 124

DV1$L_LEGSS_START 128

DV1$L_LEGSS_SIZE 132

DVl$L_LEGO_PO_MASK 136

DV1$W_LEGO_PO

Table A-1 Device Information Block Fields

Field Name

DVl$L_FLINK

DV1$L_BLINK

DV1$W_SIZE

DVl$B_TYPE

DVl$B_SUB_TYPE

DVl$L_FLAGS

DVl$B_WS_ TYPE

DVl$B_COMPRESSION_ TYPE

DVl$B_ VSYNC_INTERVAL

DVl$L_SRCSAV _TIMEOUT

DVl$B_SYSTEM_COLOR_MAPS

Contents

The forward link to the next DVI structure (not implemented).

The backward link to the previous DVI structure (not implemented).

Total size in bytes of the device information block.

Defines the system or major type of data structure (DECwindows) that is read
by the System Dump Analyzer (SDA). The common driver writes the symbolic
constant DYN$C_DECW in this field when the common driver creates the
DVI.

Defines the specific (subtype) data structure (DVI) within the major type that
is read by the SDA. The common driver writes the symbolic constant DYN$C_
DECW_DVI in this field when the common driver creates the DVI.

A 32-bit field containing screen status bits. Mask bits in this field correspond
to two possible states:

DVl$V_PSEUDO_COLOR Bit 0, set if any color maps exist.

DVl$V _SCRSAV _ENABLED Bit 1, set if screen saver is enabled.

The code for the workstation type.

An 8-bit field containing status bits concerning device compression
characteristics. Mask bits in this field correspond to two possible states:

DVl$V_NONE Bit 0, set if device hardware does not perform bit
compression.

DVl$V_FCC Bit 1, set if device hardware has the FCC bit-
compression feature.

The vertical synchronization (VSYNC) interval in milliseconds.

The screen saver timeout in seconds.

The default number of the system color map.

(continued on next page)

A-3

Data Structures
A.1 Device Information Block (DVI)

Table A-1 {Cont.) Device Information Block Fields

Field Name

DVl$B_COLOR_MAPS

DV1$W_COLOR_MAP _ENTRIES

DV1$B_BITS_PER_RGB

DVl$B_SYSTEM_CURSOR

DV1$B_CURSORS

DV1$B_CURSOR_PLANES

DVl$B_CURSOR_WIDTH

DV1$B_CURSOR_HEIGHT

DV1$B_CURSOR_ TYPE

DV1$L_ VIDEO_STARTING_PFN

DVl$W_VIDEO_PAGE_COUNT

DVl$B_BITS_PER_PIXEL

DV1$B_BITS_PER_PIX_BTP

DVl$W_VIDEO_MEM_WIDTH

DV1$W_ VIDEO_MEM_HEIGHT

DV1$W_ONSCREEN_X_ORIGIN

DV1$W_ONSCREEN_ Y _ORIGIN

DVl$W_ONSCREEN_WIDTH

DV1$W_ONSCREEN_HEIGHT

DVl$W_OPWIN_X_ORIGIN

DVl$W_OPWIN_ Y _ORIGIN

DVl$W_OPWIN_WIDTH

DVl$W_OPWIN_HEIGHT

DVl$W_ TABLET _WIDTH

DVl$W_ TABLET _HEIGHT

DVl$L_LEGSS_START

DV1$L_LEGSS_SIZE

DVl$L_LEGO_PO_MASK

DVl$W_LEGO_PO

A-4

Contents

The number of color maps.

The maximum number of colormap entries.

The number of bits for every red/green/blue (RGB) pixel.

The default system cursor number.

The number of hardware cursors.

The address of the array (MAX16_CURSOR) for planes in the hardware
cursor. (The last 15 bytes are reserved..)

The address of the array (MAX16_CURSOR) for the width of the cursor
pattern. (The last 15 bytes are reserved.)

The address of the array (MAX16_CURSOR) for the height of the cursor
pattern. (The last 15 bytes are reserved.)

The address of the array (MAX16_CURSOR) for the cursor type in the
hardware cursor. Contains the DVl$V_COLOR_CURSOR bit, which is set if
the cursor has color or is clear if the cursor is monochrome.

A signed longword specifying the starting page frame number.

A signed word indicating the number of pages in the monochrome frame
buffer.

The number of bits for every pixel in the monochrome frame buffer.

The number of bits for every pixel in the bitmap-to-processor (BTP) operation.

Screen width in pixels.

Screen height in pixels.

Defines the left screen margin (offset) in pixels to the visible screen point
(visible 0).

Defines the top screen margin (offset) in pixels to the visible screen point
(visible 0).

Defines the width in pixels of the visible screen (frame buffer width).

Defines the height in pixels of the visible screen (frame buffer height).

Defines the left screen margin (offset) in pixels to the start of the operator
window.

Defines the top screen margin (offset) in pixels to the start of the operator
window.

Defines the width in pixels of the operator window.

Defines the height in pixels of the operator window.

Defines the width of the tablet.

Defines the height of the tablet.

Reserved.

Reserved.

Reserved.

Reserved.

Data Structures
A.2 Input Buffer Control Block (INB)

A.2 Input Buffer Control Block (INB)
The input buffer control block (INB) in the 1/0 database defines the
control block for the input queue buffer. INB provides control of the
server/driver interface and pointers to the input queue and free packets
(see Figure A-2). Table A-2 lists and defines the fields of the buffer.

One ACB (AST control block) is required for each input queue. An ACB is
allocated at offset INB$B_ACB within the INB structure. It is defined by
$ACBDEF and the 28-byte length is specified by ACB$K_LENGTH. The
INB is defined in module $DECWCOMMON and the length is specified by
INB$K_LENGTH.

Figure A-2 Input Buffer Control Block (INB)

INB$L_INPUT _QUEUE_FLINK 0

INB$L_INPUT _QUEUE_BLINK 4

INB$B_SUB_TYPE T INB$B_TYPE INB$W_SIZE 8

INB$L_ VSYNC_UCB 12

INB$L_FREE_QUEUE_FLINK 16

INB$L_FREE_QUEUE_BLINK 20

INB$L_NOHISTORY _FREE_FLINK 24

INB$L_NOHISTORY _FREE_BLINK 28

INB$L_HISTORY _BUFFER 32

INB$L_HISTORY _SIZE 36

INB$L_FLAGS 40

~~ INB$B_ACB (28 bytes) ~~ 44

INB$L_SAVED_PID 72

INB$W_NON_INT _BOX_ Y1 INB$W_NON_INT _BOX_X1 76

INB$W_NON_INT _BOX_ Y2 INB$W_NON_INT _BOX_X2 80

INB$W_ VERSION INB$B_FILL 1 I INB$B_SAVED_RMOD 84

INB$L_ TIMESTAMP _MONTH 88

INB$L_ TIMESTAMP _MS 92

{continued on next page)

A-5

Data Structures
A.2 Input Buffer Control Block (INB)

Figure A-2 (Cont.) Input Buffer Control Block (INB)

INB$W_SCHED_FLAGS 1 INB$W_SCHED_QUANTUM 96

INB$L_COUNTER1 100

INB$L_ COUNTER2 104

INB$L_COUNTER3 108

INB$L_COUNTER4 112

INB$L_PFN_COUNT 116

INB$L_PFN_LIST 120

Table A-2 Input Buffer Control Block Fields

Field Name

INB$L_INPUT _QUEUE_FLINK

INB$L_INPUT _QUEUE_BLINK

INB$W_SIZE

INB$B_TYPE

INB$B_SUB_TYPE

INB$L_ VSYNC_UCB

INB$L_FREE_QUEUE_FLINK

INB$L_FREE_QUEUE_BLINK

INB$L_NOHISTORY _FLINK

INB$L_NOHISTORY _BLINK

INB$L_HISTORY _BUFFER

INB$L_HISTORY _SIZE

A-6

Contents

The forward link to the first or next input packet structure (INP) in the input
queue.

The backward link to the last or previous input packet structure (INP) in the
input queue.

Total size in bytes of the input buffer.

Defines the system or major type of data structure (DECwindows) that is read
by the System Dump Analyzer (SDA). The common driver writes the symbolic
constant DYN$C_DECW in this field when the common driver creates the
INB.

Defines the specific (subtype) data structure (INB) within the major type that
is read by the SDA. The common driver writes the symbolic constant DYN$C_
DECW_INB in this field when the common driver creates the INB.

The pointer to the output UCB whose driver first reported a vertical
synchronization (VSYNC) interval.

The forward link to the next free packet in the free queue.

The backward link to the previous free packet in the free queue.

Reserved.

Reserved.

A pointer to the motion history buffer (MHB).

The current size in pages of the motion history buffer.

(continued on next page)

Data Structures
A.2 Input Buffer Control Block (INB)

Table A-2 (Cont.) Input Buffer Control Block Fields

Field Name

INB$L_FLAGS

INB$B_ACB

INB$L_SAVED_PID

INB$W_NON_INT _BOX_X1

IN8$W_NON_INT_BOX_ Y1

INB$W_NON_INT_BOX_X2

INB$W_NON_INT_BOX_ Y2

INB$B_SAVED_RMOD

INB$W_ VERSION

INB$L_ TIMESTAMP _MONTH

INB$L_ TIMESTAMP _MS

INB$L_SCHED _QUANTUM

INB$W_SCHED_FLAGS

INB$L_COUNTER1

INB$L_ COUNTER2

INB$L_ COUNTER3

INB$L_COUNTER4

INB$L_PFN_ COUNT

INB$L_PFN_LIST

Contents

A 32-bit field containing interface status bits. Mask bits in this field correspond
to five possible states:
INB$V _ACB_BUSY Bit 0, AST already queued.

INB$V _AWAKE Bit 1, AST not required for server.

INB$V _SERVER_ TIMED Bit 2, if set, check server (AST-inhibit) timer for
zero before sending AST.

INB$V _NON_INT _BOX Bit 3, if set, motion event data is inhibited when
pointer is in the noninterest box.

INB$V _MHB_BUSY Bit 4, if set, the motion history buffer is busy with
the server or is disabled by the server. A value of
0 enables the buffer.

A pointer to the AST control block 28-byte array.

The process ID of the device that sent the AST. EXE$QIO obtains the process
identification from the PCB and writes the value into this field.

Address of the first x-axis pointer events noninterest box.

Address of the first y-axis pointer events noninterest box.

Address of the second x-axis pointer events noninterest box.

Address of the second y-axis pointer events noninterest box.

The access mode value of the process at the time of the 1/0 request.
EXE$QIO obtains the processor access mode from the PSL and writes the
value into this field.

The INB version number.

The timestamp with month.

Timestamp to the nearest millisecond.

Event time slice ir, server schedule.

A 16-bit field containing interface status bits concerning event scheduling in
the server. Mask bits in this field correspond to three possible states:

INB$V _INPUT _PENDING Bit 0, packet in queue.

INB$V_QUANTUM_
EXPIRED

INB$V _SCHED_ YIELD

Reserved.

Reserved.

Reserved.

Reserved.

Bit 1, time slot expired.

Bit 2, yield to a higher priority event.

A pointer to the page frame counter indicating the number of PFNs for the
shared buffer.

A pointer to the page frame number list.

A-7

Data Structures
A.3 Input Packet (INP)

A.3 Input Packet (INP)
The input packet (INP) data structure defines the packet format used in
the interface between the common device driver and the DECwindows
server. The basic DECwindows format of the input packet conforms with
the X event format in the X Window System protocol.

Some fields in the packets of certain events may vary. The packet
illustrated in Figure A-3 is a typical input event generated by a pointing
device or keyboard. Input events include key, button, and pointer
motion events. The first 12 bytes (three longwords) are common to all
events. The event information is always 32 bytes, excluding the prefixed
forward/backward pointers (FLINK/BLINK) for VMS. Table A-3 defines
the fields of the packet.

Figure A-3 Input Packet Data (INP)

INP$A_FLINK 0

INP$A_BLINK 4

INP$W_SEQUENCE INP$B_DETAIL 1 INP$B_TYPE 8

INP$W_ROOT _ Y

INP$W_EVENT_Y

unused

Table A-3 Input Packet Fields

Field Name

INP$L_FLINK

INP$L_BLINK

INP$B_TYPE

A-8

INP$L_ TIMESTAMP 12

INP$L_ROOT _WIN 16

INP$L_EVENT _WIN 20

INP$L_CHILD_WIN 24

INP$W_ROOT_X 28

INP$W_EVENT _X 32

INP$W_KEY _BUTTON_MASK 36

Contents

The forward link to the next INP structure. This field is filled in by the class
driver queue routines.

The backward link to the previous INP structure. This field is filled in by the
class driver queue routines.

Specifies the X11 event type. The class driver writes the packet type in this
field when it creates the IN P.

(continued on next page)

Data Structures
A.3 Input Packet {INP)

Table A-3 (Cont.) Input Packet Fields

Field Name

INP$B_DETAIL

INP$W_SEQUENCE

INP$L_ TIMESTAMP

INP$L_ROOT_WIN

INP$L_EVENT_WIN

INP$L_CHILD_WIN

INP$W_ROOT _X

INP$W_ROOT_ Y

INP$W_EVENT _X

INP$W_EVENT_ Y

INP$W_KEY_BUTTON_MASK

Contents

A keyboard/mouse event code specifying a key/button state. Possible key
definition states: KEYPRESS, KEYRELEASE. Possible mouse definition
states: BUTTONPRESS, BUTTONRELEASE, and MOTIONNOT!FY.

The packet sequence number in the transmission session.

The date/time at packet creation.

The pointer to a root window data structure in the display application.

The pointer to the display window data structure in the application where the
current activity is referenced.

The pointer to a child display window in the application associated with the
current activity. (The parent is the event window data structure.)

A value in pixels specifying the horizontal placement of the upper left corner
of the root window on the screen.

A value in pixels specifying the vertical placement of the upper left corner of
the root window on the screen.

A value in pixels specifying the pointer movement (left, right, distance) along
the x-axis.

A value in pixels specifying the pointer movement (up, down, distance) along
the y-axis.

A 16-bit mask marking the bit position that defines a specific function for a
key or button. Bits in this field identify specific functions of the input event as
follows:

INP$V _SHIFTMASK Bit 0, shift key pressed.

INP$V _CAPSLOCKMASK

INP$V _CONTROLMASK

INP$V _MOD1 MASK

INP$V _MOD2MASK

INP$V _MOD3MASK

INP$V _MOD4MASK

INP$V _MOD5MASK

INP$V_BUTTON1MASK

INP$V _BUTTON2MASK

INP$V _BUTTON3MASK

INP$V _BUTTON4MASK

INP$V _BUTTON5MASK

INP$V _UNUSED1 MASK

INP$V_UNUSED2MASK

INP$V _ANYMODIFIER

Bit 1, caps lock key pressed.

Bit 2, control key pressed.

Bit 3, the key pressed is modifying MB1.

Bit 4, the key pressed is modifying MB2.

Bit 5, the key pressed is modifying MB3.

Bit 6, the key pressed is modifying MB4.

Bit 7, the key pressed is modifying MB5.

Bit 8, MB1 is pressed.

Bit 9, MB2 is pressed.

Bit 10, MB3 is pressed.

Bit 11 , MB4 is pressed.

Bit 12, MB5 is pressed.

Bit 13, reserved.

Bit 14, reserved.

Bit 15, set when any grab button or grab key
modifier is pressed.

A-9

Data Structures
A.4 Keyboard Information Block {KIB)

A.4 Keyboard Information Block (KIB)
The keyboard information block (KIB) in the I/O database contains
keyboard characteristics that are used in the execution of the keyboard
information $QIO system service. Data is passed between server and
driver by the system service reading/writing the KIB during the keyboard
information sense/set mode $QIO call. The p2 $QIO parameter points
to the starting address of the block. The fields define bell and keyclick
volume and autorepeat information (see Figure A-4). Table A-4 lists and
defines the fields of the block. The length of the data structure is defined
by the constant KIB$S_KBD_INFO.

Figure A-4 Keyboard Information Block

l .,..

A-10

- - '
- I e ,,., KIB$L ENABLE MASK 256 b't nable mask (32 bytes) 1 0

KIB$L_KEYCLICK_ VOL 32

KIB$L_BELL_ VOL 36

KIB$L_AUTO_ON_OFF 40

Table A-4 Keyboard Information Block Fields

Field Name Contents

KIB$L_ENABLE_MASK Entry to the 256-bit autorepeat enable mask for the LK201
keys. The mask defines which keys are in autorepeat
mode. The bits are numbered 0 through 255 and each
bit position corresponds to a specific key position on an
LK201 keyboard. For example, using decimal keycode
numbering, mask-bit 90 corresponds to the 90 key position
on the LK201 keyboard.

KIB$L_KEYCLICK_ VOL A longword specifying the keyclick volume in percent. A
value of 100 specifies the loudest click while a O turns the
keyclick off. A value of -1 provides a default volume of 70
percent.

KIB$L_BELL_ VOL A longword specifying the bell volume in percent. A value
of 100 specifies the loudest ring while a O turns the bell
off. A value of -1 provides a default volume of 70 percent.

KIB$L_AUTO_ON_OFF Defines the state of the autorepeat feature. A value of O
turns autorepeat on and a value of 1 turns it off.

Data Structures
A.5 Motion History Buffer (MHB)

A.5 Motion History Buffer {MHB)
The motion history buffer (MHB) data structure in the 1/0 database
provides a storage area for pointing device movements as history events.
The buffer structure contains a 16-byte control block or header at the
top followed by (starting at address 16:J.o) 8-byte motion history packets
(MHPs) that make up a ring buffer. Each history packet contains an
x-axis and y-axis movement with an event timestamp (see Figure A-5).
Table A-5 lists and defines the fields of the motion history buffer.

The MHB header and MHP packets are defined by the $DECWCOMMON
macro. The MHB header length is defined by constant MHB$S_MHB_
STRUCT and the MHP packet length (8 bytes) is defined by MHP$K_
LENGTH. Field MHB$L_PUT_PTR points to the next free packet and
field MHB$L_GET_PTR points to the oldest pointer motion event. Field
MHB$L_END _PTR points to the last byte in the buffer.

Figure A-5 Motion History Buffer Data Structure

MHB$L_PUT _PTR

MHB$L_GET_PTR

MHB$B_SUBTYPE I MHB$B_TYPE J MHB$W_SIZE

MHB$L_END_PTR

MHP$W_EVENT_ Y l MHP$W_EVENT_X

MHP$L_ TIMESTAMP

next event packet I next event packet

next event packet

remaining event packets

Table A-5 Motion History Buffer Fields

Field Name

MHB$L_PUT _PTR

MHB$L_GET_PTR

MHB$W_SIZE

Contents

Points to the next or oldest free packet in the ring.

Points to the oldest motion event packet in the ring.

Size in bytes of the history buffer.

0

4

8

12

16

20

24

28

32

(continued on next page)

A-11

Data Structures
A.5 Motion History Buffer (MHB)

Table A-5 (Cont.) Motion History Buffer Fields

Field Name

MHB$B_TYPE

MHB$B_SUB_ TYPE

MHB$L_END_PTR

MHB$T_RING

MHP$W_EVENT _X

MHP$W_EVENT_ Y

MHP$L_ TIMESTAMP

Contents

Defines the system or major type of data structure
{DECwindows) that is read by the System Dump Analyzer
{SDA). The common driver writes the symbolic constant
DYN$C_DECW in this field when the common driver
creates the MHB.

Defines the specific {subtype) data structure {MHB) within
the major type that is read by the SDA. The common
driver writes the symbolic constant DYN$C_DECW_MHB
in this field when the common driver creates the MHB.

Points to the last free packet in the ring.

Starting address of the ring buffer packet area.

A packet event value in pixels specifying the pointer
movement {left, right, distance) along the x-axis.

A packet event value in pixels specifying the pointer
movement (up, down, distance) along the y-axis.

A packet event value specifying the date/time of the
pointer movement.

A.6 Unit Control Block for Input Device

A-12

A unit control block (UCB) data structure is a variable-length block in the
I/O database that describes the characteristics of a single device unit. The
driver-loading procedure creates some static fields. The operating system
and device drivers can read and modify all nonstatic fields of the UCB.

The general UCB structure for an input device with a port/class interface
is shown in Figure A-6. It contains five sections: the system section (base
UCB), the class driver terminal section, the DECwindows input device
extension, the port driver terminal section, and the port extension region.

The system section of the terminal driver UCB contains the fields of the
UCB that are present in all of the UCBs on the system. The length of the
system UCB is defined by UCB$K_LENGTH.

The class driver terminal section of the UCB contains fields that are
needed by the class driver. These fields have names of the form UCB$x_
TT_fieldname, where x denotes the field size and fieldname is the name
of the field. The UCB$K_TT_LENGTH constant defines the length of the
class driver section of the UCB.

The DECwindows input extension section contains fields that are needed
by all DECwindows device drivers for communication and processing.
These fields have names of the form DWI$x_fieldname, where x denotes
the field size and fieldname is the name of the field. Symbol UCB$L_
DECW _I_DWI is always the address of the input extension starting
address.

A.6.1

Data Structures
A.6 Unit Control Block for Input Device

The port driver terminal section of the UCB contains fields that both the
class and port driver must access. These fields have names of the form
UCB$x_TP _fieldname, where x denotes the field size and fieldname is the
name of the field. Although a port driver may not actually use all these
fields, they are needed by other software.

The terminal port extension region is defined by the terminal port driver.
It can be any length and contain any context that the port driver needs in
order to execute the port functions.

Figure A-6 Unit Control Block General Structure

UCB$x_xxxx

System Section
Base UCB

UCB$x_ TT _xxxx

Terminal
Class Driver Section

0
UCB$L_DECW_l_DWI ~ DWl$x_DECW_xxxx

UCB$x_ TP _xxxx DECwindows Common
Input UCB Extension

~------------------------- B8 Terminal DWl$x_KB_xxxx
Port Driver Section

i-----Keyboard Input UCB Extension B8

DW1$x_PTR_xxxx
Port Driver Extension Region

Pointer Input UCB Extension

ZK-0024A-GE

UCB/DECwindows Common Input Extension {DWI)
Each terminal device on the system has its own UCB, including VMS
terminal extensions for port and class drivers (described in an appendix
of the VMS Device Support Manual). A DECwindows UCB includes a
common input extension (DWI/DECW) and a device-specific extension
(see Figure A-6). UCB class driver section field UCB$L_DECW _l_DWI
points to the DWI extension starting address. Note that field UCB$L_TT_
WFLINK is overwritten and redefined as UCB$L_DECW _I_DWI when the

A-13

Data Structures
A.6 Unit Control Block for Input Device

DECwindows extension is created by macro $DECWINPUTUCB (invoked
by $DECWGBL). The common DWI extension length is specified at BSia
(18410) by DWI$K_DECW_COMMON_LENGTH.

This section describes the DWI common input extension structure (see
Figure A-7). Table A-6 lists and defines the fields of the DECwindows
UCB common input extension.

Figure A-7 UCB/DECwindows Common Input Extension

DWl$L_DECW_INB

DWl$L_DECW_OUTPUT _UCB

DW1$L_DECW_DEV _CHARS

DWl$L_DECW_PRIVATE

DW1$L_DECW_SILO

~~ DWl$T_DECW_SILO (136 bytes) *
reserved l DECW_DEV _TYPE 1

DWl$L_DECW_INIT _VECTOR 1

DW1$L_DECW_FUNC_ VECTOR 1

DWl$L_DECW_UART 1

0

4

8

12

16

20

56

60

64

68

~ reserved 12 b tes ~ l _____ y) ____ r
Table A-6 UCB/DECwindows Common Input Extension Fields

Field Name

DWl$L_DECW_INB

DW1$L_DECW_OUTPUT _UCB

DW1$L_DECW_DEV _CHARS

DWl$L_DECW_PRIVATE

A-14

Contents

Pointer to the INB header.

Pointer to the start of the output UCB.

Pointer to the DVI.

Defines the escape point for extensions (reserved for DIGITAL).

(continued on next page)

A.6.2

Data Structures
A.6 Unit Control Block for Input Device

Table A-6 (Cont.) UCB/DECwindows Common Input Extension Fields

Field Name Contents

DWl$L_DECW_SILO Pointer to the start of the SIL01 block.

DWl$T_DECW_SILO The SILO buffer area (block) defined by the $SILODEF macro.

DWl$B_DECW_DEV_TYPE A byte that defines the input device type (mouse/keyboard).

DWl$L_DECW_INIT_VECTOR Offset to the initialization routine that starts the device self test.

DW1$L_DECW_FUNC_ VECTOR Offset to the powerfail function routine.

DWl$L_DECW_UART Address of the UART/CSR2 for the serial input device.

1 SILO is a software version of a Service In Logical Order buffer for serial input and output data in the channel associated with
the UCB.
2UART is a universal asynchronous receiver/transmitter chip for serial interfaces and CSR is the Control/Status Register.

UCB/DECwindows Keyboard Input Extension (DWI)
Each input device requires a specific block of information that is
contiguous with the end of the common UCB input extension. The specific
device extension information starts at address B816 (18410). This section
describes the DWI keyboard input extension structure that is shown in
Figure A-8 starting at DWI$L_KB_LAST_CHAR (18410). Table A-7 lists
and defines the fields of the DECwindows UCB keyboard input extension.

UCB class driver section field UCB$L_DECW _I_DWI points to the DWI
common input extension starting address. Note that field UCB$L_TT_
WFLINK is overwritten and redefined as UCB$L_DECW _I_DWI when
macro $DECWINPUTUCB creates the DECwindows extension. The
common DWI extension length is specified as B816 (18410) by DWI$K_
DECW_COMMON_LENGTH and the keyboard extension length is
specified as 11416 (27610) by DWI$K_KB_LENGTH.

Figure A-8 UCB/DECwindows Keyboard Input Extension

l
"fl DEC . d Win OWS c ommon npu t E t x ens1on (184 b t) yes 1 0

"'"'

DWl$L_KB_LAST _CHAR 184

DWl$L_KB_AUTORTIME 188

DWl$L_KB_LIGHTS 192

DWl$L_KB_CTRL 196

KB_HOLD_MOD l DW1$B_KB_HOLD_KEY KB_OPWIN_MOD KB_OPWIN_KEY 200

DWl$B_KB_BELL_ VOL KB_KEYCLICK_ VOL 204

(continued on next page)

A-15

Data Structures
A.6 Unit Control Block for Input Device

Figure A-8 (Cont.) UCB/DECwindows Keyboard Input Extension

l
DWl$T _KB_DOWNONLY, down-only key transition buffer (32 bytes)

l 236

......__ _____ ---1268 I
DWl$T _KB_AUTOREPEAT, autorepeat buffer (32 bytes) ~~..,

DWl$T KB KEYDOWN k d 't' b ff (32 b t))p
- - '

ey own- rans1 ion u er yes •!"'

KB_PMOUSE_MOD] KB_PMOUSE_KEY] 300

DW1$L_KB_FIRST _OUTPUT _UCB 304

DWl$L_KB_PMOUSE_METRO 308

DWl$L_KB_PMOUSE_LATCH 312

reserved 3"16

Table A-7 UCB/DECwindows Keyboard Input Extension Fields

Field Name

DWl$L_KB_LAST _CHAR

DW1$L_KB_AUTORTIME

DWl$L_KB_LIGHTS

DW1$L_KB_CTRL

A-16

Contents

Defines the last input character.

Defines the autorepeat time (metronome) in milliseconds.

Defines the keyboard lights (LEDs).

Contains the status input flags using macro $VIELD from the controller CSR.
Mask flag bits in this field correspond to ten possible states:

FLAG$V_SHIFT Bit 0 defines the state of the Shift key.

FLAG$V _LOCK Bit 1 defines the state of the Lock key.

FLAG$V _CTRL Bit 2 defines the state of the Ctrl key.

FLAG$V _BUTTONDOWN

FLAG$V _LOCKDOWN

FLAG$V_AUTOREPEAT

Bit 3 indicates that a mouse button down
transition occurred.

Bit 4 defines the up/down state of the lock
key

Bit 5 indicates that the software autorepeat
timer is enabled/disabled.

{continued on next page)

Data Structures
A.6 Unit Control Block for Input Device

Table A-7 (Cont.) UCB/DECwindows Keyboard Input Extension Fields

Field Name

DWl$B_KB_OPWIN_KEY

DWl$B_KB_OPWIN_MOD

DWl$B_KB_HOLD_KEY

DWl$B_KB_HOLD_MOD

DWl$B_KB_KEYCLICK_ VOL

DWl$B_KB_BELL_ VOL

DW1$T _KB_DOWNONLY

DWl$T _KB_AUTOREPEAT

DWl$T _KB_KEYDOWN

DWl$B_KB_PMOUSE_KEY

DWl$B_KB_PMOUSE_MOD

DWl$L_FIRST_OUTPUT_UCB

DWl$L_KB_PMOUSE_METRO

DWl$L_KB_PMOUSE_LATCH

Contents

FLAG$V _UART _KEYBOARD Bit 6 indicates that the serial port (UART)
for the keyboard is enabled/disabled.

FLAG$V _PMOUSE Bit 7 indicates that the pseudomouse mode
is enabled/disabled.

FLAG$V_AUTOREPEAT_OFF Bit 8 is the global autorepeat flag. A value
of O indicates the autorepeat mode, a value
of 1 indicates the up/down mode with no
keys in autorepeat.

FLAG$V_MAIN_KB_UPDOWN Bit 9 indicates the up/down mode for the
main keyboard.

Specifies the primary key to invoke the operator window.

Defines the modifier key (Ctrl or Shift) used with the primary key to invoke the
operator window.

Specifies the primary key to invoke the hold-screen mode.

Defines the modifier key (Ctrl or Shift) used with the primary key to invoke the
hold-screen mode.

Defines the keyclick volume.

Defines the bell volume.

Starting address of the 32-byte down-only key transition buffer for all LK201
key codes.

Starting address of the software autorepeat flag buffer for all LK201 key
codes.

Starting address of the 32-byte current key down transition buffer for all LK201
key codes.

Defines the primary key to invoke the pseudomouse mode.

Defines the modifier key (Ctrl or Shift) used with the primary key to invoke
pseudomouse mode.

Defines the first output device connected.

Counter for the autorepeat pseudomouse.

Defines the keyboard keys for the pseudomouse buttons/latches. To simulate
a button hold down for the keyboard user, a latch key is provided with each
mouse-button key. Within the longword, four bytes define the latch keys
corresponding to the simulated mouse buttons as follows:
DWl$B_PMOUSE_LATCH1 Defines the keyboard key (raw key code) to

latch the MB1 key.

DWl$B_PMOUSE_LATCH2

DWl$B_PMOUSE_LATCH3

DWl$B_PMOUSE_LATCH_
SAVE

Defines the keyboard key (raw key code) to
latch the MB2 key.

Defines the keyboard key (raw key code) to
latch the MB3 key.

Defines the keyboard key (raw key code)
that is currently latched.

A-17

A.6.3

Data Structures
A.6 Unit Control Block for Input Device

UCB/DECwindows Pointer Input Extension (DWI)
Each input device requires a specific block of information that is
contiguous with the end of the common UCB input extension. The
specific device extension information starts at address B81a (18410).
This section describes the DWI pointer input extension structure for
mouse device information that is shown in Figure A-9 starting at DWI$L_
PTR_DECODE_RTN (18410). Table A-8 lists and defines the fields of the
DECwindows UCB pointer input extension.

UCB class driver section field UCB$L_DECW _I_DWI points to the DWI
common input extension starting address. Note that field UCB$L_TT_
WFLINK is overwritten and redefined as UCB$L_DECW _I_DWI when
macro $DECWINPUTUCB creates the DECwindows extension. The
common DWI extension length is specified as B816 (18410) by DWI$K_
DECW _COMMON_LENGTH and the pointer extension length is specified
as 11C16 (28410) by DWI$K_PTR_LENGTH.

Figure A-9 UCB/DECwindows Pointer Input Extension

l
"'t' DEC . d wm ows c ommon npu t E t x ens1on (184 b t) yes 1 0 i-p

i

DWl$L_PTR_DECODE_RTN 1 84

DW1$L_PTR_CTRL 1 88

DWl$F _PTR_ TABLET _XRATIO 1 92

DW1$F _PTR_ TABLET_ YRATIO 1 96

DWl$W_PTR_OLDBUT DW1$W_PTR_NEWBUT 200

DWl$W_PTR_BUTTONS DW1$W_PTR_BUT _STATUS 204

DWl$W_PTR_ TABLET_ YPIX DWl$W_PTR_ TABLET _XPIX 208

DW1$B_PTR_COUNT J DWl$B_PTR_SIZE 212

~~ DWl$B_PTR_MAP _ARRAY (32 bytes) ~~

DW1$B_PTR_DELTA_X l DW1$B_PTR_BUT_NUM 244

l DWl$B_PTR_DELTA_ Y 248

~~ DWl$T_PTR_BUFFER, pointer data buffer (10 bytes) ~~

DWl$B_PTR_ QUAD_CNT 1 256

DWl$W_PTR_ACCEL_DEN DWl$W_PTR_ACCEL_NUM 260

(continued on next page)

A-18

Data Structures
A.6 Unit Control Block for Input Device

Figure A-9 (Cont.) UCB/DECwindows Pointer Input Extension

reserved I DWl$W_PTR_ACCEL_ THR 264

DWl$L_PTR_MOTION_COMP _HIT 268

reserved 272

Table A-8 UCB/DECwindows Pointer Input Extension Fields

Field Name

DWl$L_PTR_DECODE_RTN

DW1$L_PTR_CTRL

DWl$F _PTR_ TABLET _XRATIO

DWl$F _PTR_ TABLET_ YRATIO

DWl$W_PTR_NEWBUT

DWl$W_PTR_OLDBUT

DWl$W_PTR_BUT _STATUS

DWl$W_PTR_BUTTONS

DWl$W_PTR_ TABLET _XPIX

DW1$W_PTR_ TABLET_ YPIX

DW1$B_PTR_SIZE

DWl$B_PTR_COUNT

DWl$B_PTR_MAP _ARRAY

DWl$B_BUT_NUM

DWl$B_PTR_DELTA_X

Contents

Points to the specific decoding routine for the serial data.

Contains the pointing device status input flags by way of macro $VIELD from
the controller CSR. Mask flag bits in this field correspond to five possible
states:

FLAG$V_QUAD_MOUSE Bit 0 specifies that a QV mouse1 is
connected.

FLAG$V _SERIAL_MOUSE

FLAG$V _SERIAL_ TABLET

FLAG$V _STYLUS

Bit 1 specifies that a serial mouse is
connected.

Bit 2 specifies that a serial tablet is
connected.

Bit 3 specifies that a stylus is connected.

FLAG$V_MOTION_COMP Bit 4 indicates the pointer motion
compression mode.

Pointer to the tablet x-ratio array.

Pointer to the tablet y-ratio array.

Contains the new button status.

Contains the old button status.

Current button status.

Button status in raw format.

Defines the tablet/stylus x position.

Defines the tablet/stylus y position.

Defines the number of bytes for every pointer report.

Defines the byte count of the pointer data buffer.

Starting address of the 32-byte pointer mapping array.

Defines the number of buttons mapped.

Defines the change in x position.

1 QV mouse is an older version pointing device (model VS1 OX-EA).

(continued on next page)

A-19

Data Structures
A.6 Unit Control Block for Input Device

Table A-8 (Cont.) UCB/DECwindows Pointer Input Extension Fields

Field Name Contents

DW1$B_PTR_DELTA_ Y Defines the change in y position.

DWl$T _PTR_BUFFER

DWl$B_PTR_QUAD_CNT

DWl$B_PTR_KEYBOARD_UCB

DWl$W_PTR_ACCEL_NUM

DWl$W_PTR_ACCEL_DEN

DWl$W_PTR_ACCEL_ THR

DWl$L_PTR_MOTION_COMP _HIT

Starting address of the 10-byte pointer data buffer.

Contains the byte count for a QV mouse.1

Points to the keyboard UCB when there is no output device.

Defines the pointer acceleration table numerator.

Defines the pointer acceleration table denominator.

Defines the pointer acceleration threshold.

Defines the count of motion compression hits that indicates the number of
lost pointer-motion events stored in the motion history buffer.

1 QV mouse is an older version pointing device (model VS1 OX-EA).

A.7 Unit Control Block for Output Device

A-20

A unit control block (UCB) data structure is a variable-length block in
the 1/0 database that describes the characteristics of a single device.
The driver loading procedure creates some static fields. VMS and device
drivers can read and modify all nonstatic fields of the UCB.

The general UCB structure for an output device for DECwindows is shown
in Figure A-10. It contains three sections: the system section (base UCB),
the DECwindows common output extension, and the DECwindows output
device-specific extension.

The system section of the terminal driver UCB contains the fields of the
UCB that are present in all of the UCBs on the system. The length of the
system UCB is defined by UCB$K_LENGTH.

The common output extension of the UCB contains fields that are required
by all DECwindows output drivers. These fields have names of the form
UCB$x_DECW _fieldname, where x denotes the field size and fieldname is
the name of the field. The UCB$K_DECW_COMMON_LENGTH constant
defines the length of the common output extension.

The output-device-specific extension of the UCB contains fields that both
the output driver and the device must access. These fields have names
of the form UCB$x_zz_fieldname, where x denotes the field size, where zz
sometimes implies the controller type, and fieldname is the name of the
field.

A.7.1

Data Structures
A. 7 Unit Control Block for Output Device

Figure A-10 Unit Control Block Output Device General Structure

UCB$x_xxxx

System Section
Base UCB

UCB$x_DECW_xxxx

DECwindows Common
Output Extension

UCB$x_zz_xxxx

DECwindows Device
Specific Output Extension

ZK-0025A-GE

UCB/DECwindows Common Output Extension {UCB/DECW)
A DECwindows output device UCB includes a DECwindows common
output extension (DECW) to the main system UCB. This section
describes the structure of the UCB/DECW common output extension
(see Figure A-11). The main system UCB is described in an appendix of
the VMS Device Support Manual. Table A-9 lists and defines the fields of
the DECwindows UCB common output extension.

The output extension is created by macro $DECWOUTPUTUCB (invoked
by $DECWGBL) and follows the system base UCB starting at symbolic
offset UCB$K_LENGTH. The output common extension length is defined
by UCB$K_DECW _COMMON_LENGTH.

Figure A-11 UCB/DECwindows Common Output Extension

UCB$L_DECW_OUTPUT_VECTOR

UCB$L_DECW_DVI

0

4

(continued on next page)

A-21

Data Structures
A. 7 Unit Control Block for Output Device

Figure A-11 (Cont.) UCB/DECwindows Common Output Extension

UCB$L_DECW_KB_UCB 8

UC8$L_DECW_PTR_UCB 12

UC8$L_DECW_CSR 16

UC8$L_DECW_ TIMER 20

UC8$L_DECW_SCRSAV _TIMEOUT 24

UCB$L_DECW_CTRL 28

UC8$L_DECW_CURSOR_PATTERN 32

UCB$L_DECW_WAIT _FLINK 36

UC8$L_DECW_WAIT _BLINK 40

UC8$L_DECW_VSYNC_INTERVAL 44

UC8$L_DECW_HW_PTR_UCB 48

UC8$L_DECW_HW_KB_UCB 52

UC8$L_DECW_ATTACHED_FLINK 56

UCB$L __ DECW_ATTACHED_BLINK 60

UC8$W_DECW_SNIFF _STYLE UCB$W_DECW_NEG_VSYNC_MS 64

UC8$W_DECW_CURSOR_X UCB$W_DECW_SNIFF _CYCLE 68

UC8$W_DECW_CURSOR_XOFF UC8$W_DECW_CURSOR_Y 72

UC8$W_DECW_MAX_X UCB$W_DECW_CURSOR_YOFF 76

UC8$W_DECW_MAXCURS_X UC8$W_DECW_MAX_ Y 80

UCB$W_DECW_SCRSAV_CYCLE UCB$W_DECW_MAXCURS_Y 84

UC8$W_DECW_RED_CURSOR UC8$W_DECW_CURSOR_LENGTH 88

red hotspot red background 92

green background UC8$W_DECW_GREEN_CURSOR 96

UC8$W_DECW_BLUE_CURSOR green hotspot 100

blue hotspot blue background 104

reserved I DECW_SCRSAV _LIGHTS DECW_LAST _ Y J UC8$8_DECW_LAST_X 108

(continued on next page)

A-22

Data Structures
A.7 Unit Control Block for Output Device

Figure A-11 (Cont.) UCB/DECwindows Common Output Extension

reserved 1 12

UCB$L_DECW_ABOVE 1 16

UCB$L_DECW_BELOW 1 20

UCB$L_DECW_ONRIGHT 1 24

UCB$L_DECW_ONLEFT 1 28

UCB$L_DECW_SCREEN_INFO 1 32

UCB$W_DECW_CURS_HEIGHT] UCB$W_DECW_CURS_WIDTH 1 36

~~ reserved 36 b es ~

1...___ ____ yt_) ___ r
Table A-9 UCB/DECwindows Common Output Extension Fields

Field Name

UCB$L_DECW_OUTPUT_VECTOR

UCB$L_DECW_DVI

UCB$L_DECW_KB_UCB

UCB$L_DECW_PTR_UCB

UCB$L_DECW_CSR

UCB$L_DECW_ TIMER

UCB$L_DECW_SCRSAV _TIMEOUT

UCB$L_DECW_CTRL

Contents

Address of the output vector table.

Pointer to the DVI.

Address of the keyboard UCB.

Address of the mouse UCB.

Address of the monitor Control and Status Register (CSR).

Contains the vertical synchronization (VSYNC) timer value (16.6
milliseconds to zero).

Defines the screen saver timeout period.

Defines the control/status field for workstation configuration information.
Bits in this longword field specify the workstation configuration as follows:

FLAG$V_SCRSAV_ON Bit 0, set if screen saver is active.

FLAG$V_RESET_SCRSAV

FLAG$V_RELOAD_DONE

FLAG$V _CONSOLE

FLAG$V _OPWIN_ACTIVE

Bit 1 is set to reset screen saver.

Bit 2, set when driver is reloaded.

Bit 3, set when console is available for
this device.

Bit 4, set when the operator window
is active. (Check operator reference
count for O and expected F2 key.)

(continued on next page)

A-23

Data Structures
A. 7 Unit Control Block for Output Device

Table A-9 (Cont.) UCB/DECwindows Common Output Extension Fields

Field Name

UCB$L_DECW_CURSOR_PATTERN

UCB$L_DECW_WAIT _FLINK

UCB$L_DECW_WAIT _BLINK

UCB$L_DECW_ VSYNC_INTERVAL

UCB$L_DECW_HW_PTR_UCB

UCB$L_DECW_HW_KB_UCB

UCB$L_DECW_ATTACHED_FLINK

UCB$L_DECW_ATTACHED_BLINK

UCB$W_DECW_NEG_VSYNC_MS

UCB$W_DECW_SNIFF _STYLE

UCB$W_DECW_SNIFF _CYCLE

UCB$W_DECW_CURSOR_X

UCB$W_DECW_CURSOR_ Y

UCB$W_DECW_CURSOR_XOFF

UCB$W_DECW_CURSOR_YOFF

UCB$W_DECW_MAX_X

UCB$W_DECW_MAX_ Y

UCB$W_DECW_MAXCURS_X

UCB$W_DECW_MAXCURS_Y

UCB$W_DECW_SCRSAV_CYCLE

UCB$W_DECW_CURSOR_LENGTH

UCB$W_DECW_RED_CURSOR

UCB$W_DECW_GREEN_CURSOR

UCB$W_DECW_BLUE_CURSOR

UCB$B_DECW_LAST _X

UCB$B_DECW_LAST_Y

UCB$B_DECW_SCRSAV _LIGHTS

A-24

Contents

FLAG$V_CTRL_INIT_
SUCCESS

FLAG$V _CURSOR_OFF _
SCREEN

Address of cursor pattern bits.

Bit 5, set when controller initialization
completes successfully.

Bit 6, set if cursor is on another screen.

Defines the forward link in the IRP wait list (during first system
initialization only).

Defines the backward link in the IRP wait list (during first system
initialization only).

Defines the VSYNC interval in milliseconds.

Address of the pointing device UCB on this workstation.

Address of the keyboard UCB on this workstation.

Defines the forward link in the list of attached screens.

Defines the backward link in the list of attached screens.

Contains the negated VSYNC interval in milliseconds.

Defines the cursor style that is checked at every sniff cycle. A value of O
defines a black cursor, a value of 1 defines a white cursor, and a value of
2 defines a two-plane (black outlined) cursor.

The sniff cycle defines the interval (the number of vertical SYNCs for
VAXstation II, black and white only) at which the hotspot and cursor
characteristics are checked. Typically, the cursor characteristics are
checked on every tenth vertical SYNC. A value of 10 selects every tenth
vertical SYNC as the sniff cycle.

Defines the current cursor x position.

Defines the current cursor y position.

Defines the current cursor x position offset.

Defines the current cursor y position offset.

Defines the maximum x position of the screen (minus one).

Defines the maximum y position of the screen (minus one).

Address of the maximum x-coordinate of the cursor.

Address of the maximum y-coordinate of the cursor.

Defines the screen saver cycle count.

Defines the cursor pattern length.

Three words defining the red foreground, red background, and hotspot.

Three words defining the green foreground, background, and hotspot.

Three words defining the blue foreground, background, and hotspot.

Defines the previous cursor x position.

Defines the previous cursor y position.

Defines the active keyboard lights during screen save.

{continued on next page)

Data Structures
A. 7 Unit Control Block for Output Device

Table A-9 (Cont.) UCB/DECwindows Common Output Extension Fields

Field Name

UCB$L_DECW_ABOVE

UCB$L_DECW_BELOW

UCB$L_DECW_ONRIGHT

UCB$L_DECW_CNLEFT

UCB$L_DECW_SCREEN_INFO

UCB$W_DECW_CURS_WIDTH

UCB$W_DECW_CURS_HEIGHT

A.8 Class Vector Table

Contents

UCB of screen above this one.

UCB of screen below this one.

UCB of screen to the right of this one.

UCB of screen to the left of this one.

Defines the screen information passed to the server.

Defines the cursor width boundary for hotspot location checking.

Defines the cursor height boundary for hotspot location checking.

The class vector table (IK$VECTOR or IM$VECTOR) data structure
contains vectors to the routines of the class driver module (see
Figure A-12). The driver builds the data structure using the $VECINI,
$VEC, and $VECEND macros. Table A-10 lists and defines the fields of
the data structure.

Figure A-12 Class Vector Table Data Structure

CLASS_PUTNXT

CLASS_GETNXT

reserved

reserved

CLASS_DDT

reserved

Table A-10 Class Vector Table Fields

Field Name

CLASS_PUTNXT

Contents

Points to the put-next-input-data-on-queue routine
(IK$PUTNXT) in the class input driver module.

0

4

8

12

16

20

CLASS_GETNXT Points to the get-next-byte-for-output routine (IK$GETNXT)
in the class input driver module.

CLASS_DDT Points to the class driver dispatch table.

A-25

Data Structures
A.9 Common Vector Table

A.9 Common Vector Table

A.10

The common vector table (DECW _COMMON_ VECTOR) data structure in
the 1/0 database contains vectors to the routines and data segments of
the common driver module (see Figure A-13). The driver builds the data
structure using the $VECINI, $VEC, and $VECEND macros. Table A-11
lists and defines the fields of the data structure.

Figure A-13 Common Vector Table Data Structure

COMMON_DDT 0

COMMON_POS_CURSOR 4

COMMON_SETUP _INPUT_UCB 8

COMMON_SETUP _OUTPUT_UCB 12

COMMON_ VSYNC 16

reserved 20

COMMON_FLAGS 24

reserved 28

Table A-11 Common Vector Table Fields

Field Name Contents

COMMON_DDT

COMMON_POS_CURSOR

COMMON_SETUP _INPUT_UCB

Pointer to the driver dispatch table (IN$DDT).

Points to the cursor positioning routine (IN$POS_CURSOR).

Points to the UCB setup routine (IN$SETUP _INPUT_UCB) for the input
drivers.

COMMON_SETUP _OUTPUT _UCB Points to the UCB setup routine (IN$SETUP _OUTPUT_UCB) for the output
driver.

COMMON_ VSYNC

COMMON_FLAGS

Port Vector Table

A-26

Points to the vertical retrace timer routine (IN$VSYNC) for a time mark in
the common driver code.

Points to the flags longword in the common driver that stores global status.

The port vector table (PORT_ VECTOR) data structure in the 1/0 database
contains vectors to the routines of the input port driver module (see
Figure A-14). The driver builds the data structure using the $VECINI,
$VEC, and $VECEND macros. Table A-12 lists and defines the fields of
the data structure.

Data Structures
A.10 Port Vector Table

Figure A-14 Port Vector Table Data Structure

PORT _STARTIO 0

reserved 4

PORT_SET_LINE 8

PORT _DS_SET 12

PORT_XON 16

PORT_XOFF 20

PORT_STOP 24

reserved 28

PORT_ABORT 32

PORT_RESUME 36

PORT_SET_MODEM 40

reserved 44

PORT_MAINT 48

reserved 52

reserved 56

reserved 60

Table A-12 Port Vector Table Fields

Field Name

PORT _STARTIO

PORT_SET_LINE

PORT _DS_SET

PORT_XOFF

Contents

Vector to the start 1/0 routine in the port input driver
module.

Points to the set-terminal-line-characteristics routine in the
port input driver module.

Points to the set-modem-output-signals routine in the port
input driver module.

Points to the send XOFF routine 'in the port input driver
module.

(continued on next page)

A-27

A.11

Data Structures
A.10 Port Vector Table

Table A-12 (Cont.) Port Vector Table Fields

Field Name

PORT_XON

PORT_STOP

PORT_ABORT

PORT _RESUME

PORT _SET _MODEM

PORT_MAINT

Contents

Points to the send XON routine in the port input driver
module.

Points to the reset-active-output routine in the port input
driver module.

Points to the abort-active-output routine in the port input
driver module.

Points to the resume-stopped-output routine in the port
input driver module.

Points to the initialize-modem-polling routine in the port
input driver module.

Points to the DZ11 maintenance routine in the port input
driver module.

Output Vector Table
The output vector table (GA$VECTOR or GC$VECTOR) data structure
contains vectors to the routines of the output driver module. The output
driver builds the data structure using the $VECINI, $VEC, and $VECEND
macros. Table A-13 lists and defines the fields of the data structure.

-Table A-13 Output Vector Table Fields

Field Name

OUTPUT_CLEAR_CURSOR

OUTPUT_CURSOR_PATTERN

OUTPUT _DISABLE_ VIDEO

OUTPUT _ENABLE_ VIDEO

OUTPUT_BUFFERED_FDT

OUTPUT_POS_CURSOR

OUTPUT_CANCEL

OUTPUT _DIRECT _FDT

OUTPUT _SET _DVI

A-28

Contents

Points to the clear-cursor routine (CLEAR_CURSOR) in the output driver
subroutine module (not used in GPX drivers).

Points to the set- or load-cursor-pattern routine in the output driver subroutine
module.

Points to the disable-video routine (DISABLE_ VIDEO) in the main output
driver module.

Points to the enable-video routine (ENABLE_ VIDEO) in the main output driver
module.

Points to the FDT-parsing routine (GA$FDTPARSE) in the main GPX output
driver module.

Points to the position-cursor routine in the output driver subroutine module.

Points to the cancel-1/0 routine (GA$CANCEL) in the GPX main output driver
module.

Points to the FDT-parsing routine (GA$FDTPARSE) in the main GPX output
driver module.

Points to the set- or initialize-the-DVl-data-structure routine in the output driver
subroutine module.

(continued on next page)

Data Structures
A.11 Output Vector Table

Table A-13 (Cont.) Output Vector Table Fields

Field Name

OUTPUT _OPWIN_ VISIBLE

OUTPUT_OPWIN_UP

OUTPUT_OPWIN_DOWN

OUTPUT _OPWIN_RESIZE

Contents

Points to the check-for-operator-window-mode-capability routine in the output
driver subroutine module.

Points to the display-operator-window routine in the output driver subroutine
module.

Points to the remove-operator-window routine in the output driver subroutine
module.

Points to the resize-operator-window routine in the output driver subroutine
module.

A-29

B Device Driver Macros

Macros within device driver software modules ensure consistency and
simplify the coding of the DECwindows interface. This appendix describes
the macros used in the various driver modules. They are presented in
three groups:

• General device driver

• Input queue and packet processing

• Vector generation

B.1 General Device Driver Macros
This section describes the VMS macros that provide general services
within the device driver modules. Information concerning data structures
referenced in this chapter may be found in Appendix A. The general device
driver macros are as follows:

• COMMON_CTRL_INIT

• COMMON_UNIT_INIT

• $DECW_COMMON_READY

• $DECWGBL

B-1

Device Driver Macros
COMMON_CTRL_INIT

COMMON CTRL INIT

FORMAT

arguments

output

B-2

The COMMON_CTRL_INIT macro relocates a vector table generated by the
$VEC macro. The controller initialization routine containing this macro is
called at system startup and during recovery after power failure.

COMMON_CTRL_INIT dpt, vector

dpt is a symbolic name of the driver prologue table.

vector is the address of the table generated by $VEC.

Location

RO
R1

Contents

Destroyed

Destroyed

Device Driver Macros
COMMON_UNIT_INIT

COMMON UNIT INIT

FORMAT

input

output

The COMMON_UNIT_INIT macro sets the driver dispatch table field in the
device data block and UCB to contain the address of the common DDT. This
macro contains the common code for the unit initialization routine that is run
whenever a unit is created.

COMMON_UNIT _INIT

Location

RO
R5

Location

R1

R2

Contents

Address of the DDT for this unit

UCB address

Contents

Destroyed

Destroyed

8-3

Device Driver Macros
$DECW_COMMON_READY

$DECW_COMMON_READY

FORMAT

output

8-4

The $DECW_COMMON_READY macro senses whether the common drivers
are loaded. The macro is used by all DECwindows drivers that depend on
a common driver to operate. It checks for the presence of the common
driver (INDRIVER) by examining the symbol DECW$GL_ VECTOR, set by the
driver's controller initialization routine. It then checks for keyboard and mouse
class drivers by looking at the flags longword (indexed from the common
vector).

$DECW_COMMON_READY

Location

RO

Contents

Contains a value of 0 when the common driver is not
loaded. Contains a value of 1 when all common drivers
are loaded.

$DECWGBL

Device Driver Macros
$DECWGBL

The $DECWGBL macro is an external definition that defines the DECwindows
common, input, and output driver data structures. The global macro directly
calls other structure definition macros within the various DECwindows and
VMS modules (see Table B-1) that define the 1/0 database.

Table B-1 Structure Definition Macros Called by $DECWGBL

Macro Name

$TTYVECDEF

$SILODEF

$DECWDEF

$DECWCMNINPUCB

$DECWPTRINPUCB

$DECWKBINPUCB

$DECWOUTPUTUCB

$DECWCOMMON

Macro Function

Defines the port and class vector tables.

Defines the SILO block.

Defines the DVI, KIB, and INP data structures.

Defines the common input extension (DWl$x_DECW_)
and calls $TTYUCBDEF to link the device-specific input
extension structure.

Defines the pointing device input UCB extension (DW1$x_
PTR_).

Defines the keyboard input UCB extension (DWl$x_KB_).

Defines the output device UCB extension (UCB$x_
DECW_).

Defines the INB and MHB, the common vector and output
vector tables, common flag word (COMMON_FLAGS), and
calls the dynamic definition macro $DYNDEF.

B-5

Device Driver Macros
B.2 Input Queue and Packet Processing Macros

B.2 Input Queue and Packet Processing Macros

B-6

This section describes the macros that are used in a class input driver
module to acquire free input packets and insert them into the input queue.
The input queue and packet-processing macros are as follows:

• GET_FREE_KB_PACKET

• GET_LAST_EVENT_PACKET

• PUT_INPUT_ON_QUEUE

Device Driver Macros
GET_FREE_KB_PACKET

GET FREE KB PACKET

FORMAT

input

output

The GET _FREE_KB_PACKET macro returns the address of a free packet in
R1 if one is available. If a packet is not available, O is returned in R1. It uses
the interlocked queue instruction (REMQHI) to remove the packet from the
free queue.

GET_FREE_KB_PACKET

Location

RS

Location

R1

R2

Contents

UCB address of the input device

Contents

Address of the free packet; O if there is none

Destroyed

B-7

Device Driver Macros
GET_LAST_EVENT_PACKET

GET LAST EVENT PACKET

FORMAT

arguments

input

output

B-8

The GET _LAST _EVENT _PACKET macro removes a specified type event
packet from the tail of the input queue for motion compression. The macro
tests the packet type (INP$B_ TYPE) to ensure that it matches the event_type
argument in the macro call. If a match is found, the macro increments the
motion compression count (DW1$L_PTR_MOTION_COMP _HIT) and returns
the free-queue address of the removed input packet in R1. If an event_type
(typically, X$MOTION_NOTIFY) packet is not found, it reinserts the packet in
the input queue and returns a O in R1.

GET_LAST_EVENT_PACKET evenLtype

event_type defines the Xll event (X$MOTION_NOTIFY) for which the
packet is removed from the input queue for compression.

Location

R5

Location

R1

R2

DWl$L_PTR_MOTION_
COMP _HIT

Contents

UCB address of the input device

Contents

Address of the removed packet; O if there is none

Destroyed

Motion compression count, incremented by one if the
specified event type packet is found

Device Driver Macros
PUT _INPUT_ ON_ QUEUE

PUT_INPUT_ON_QUEUE

FORMAT

input

output

The PUT_INPUT_ON_QUEUE macro inserts an input packet onto the
input queue shared with the server. The macro uses the interlocked queue
instruction INSQTI for queue insertion and uses the queue header information
from the UCB to select the right input queue.

PUT _INPUT_ ON_ QUEUE

Location

R1

RS

Location

R2

Contents

Address of the input event packet

UCB address of the input device

Contents

Destroyed

8-9

Device Driver Macros
B.3 Vector Table Generation Macros

B.3 Vector Table Generation Macros

B-10

This section describes the VMS macros that should be used to generate
the various vector tables. Using these macros ensures the generation of
a valid table, even if the vector table is expanded in new releases. The
vector table generation macros are as follows:

• $VECINI

• $VEC

• $VECEND

$VECINI

FORMAT

arguments

Device Driver Macros
$VECINI

The $VECINI macro generates and initializes the vector table. The table is
initialized with the entries pointing to the driver's null routine. Subsequent
calls to $VEC fill the table with the addresses of the real entry points.

$VECINI drivername, nu/Lroutine, [prefix]

drivername defines the driver prefix, usually two alphabetic characters.

null_routine defines the address of the driver's null entry point.

prefix defines the prefix to be added to the generated symbols (for
instance, PORT_, CLASS_, COMMON_, OUTPUT_). PORT_ is the default.

Note: The null routine should simply contain an RSB instruction. It is
called for any function that the driver does not support.

8-11

Device Driver Macros
$VEC

$VEC

FORMAT

arguments

B-12

The $VEC macro generates fields (vectors) and validates the vector table
entry. Each invocation of the $VEC macro specifies the entry argument.
However, a driver need not supply the address of a routine for each entry in
the table. The $VEC macro constructs a valid table regardless of how many
entries are supplied. The $VEC macro accepts the entry names minus the
driver type prefix (PORT_ or CLASS_ or OUTPUT_). (For examples, refer to
the figures for the class or port vector table data structures in Appendix A.)
The $VECINI macro defines the prefix applied to the entries: PORT_ for the
port vector table and CLASS_ for the class vector table. This macro ensures
that a working table is generated, or that you are notified of any error by
message. Note that a driver accesses the table using the symbolic offset
names shown in the vector table data structures of Appendix A.

$VEC entry, routine

entry defines the name of the table entry.

routine defines the name of the routine being inserted in the entry.

$VECEND

FORMAT

arguments

Device Driver Macros
$VECEND

The $VECEND macro generates the longword of zeros that terminates the
vector table list and sets the location counter to the correct position. The
exact placement of $VECEND in the sequence of $VEC entries marks the
end of the vector table.

$VECEND [end]

end is a flag controlling the generation of the end of the vector table. This
argument is generally omitted so that the $VECEND macro can generate
the end of the vector table. Otherwise, the $VECEND macro does not
generate the end of the table.

B-13

Index

A
ACB (AST control block)

use of• A-5
Architecture

DECwindows • 1-1
driver/server interface • 1-9
driver modules• 1-6 to 1-1 O

$ASSIGN system service
use of• 2-5, 6-4

AST (asynchronous system trap)• A-6
Attached screen

See Multiscreen
Autorepeat

count• A-16
key-enable mask • 2-8, 2-23
keys• 2-8, 2-23
on/off• 2-8, 2-23, A-16
time• A-16

B
Bit compression • A-3
Buffered 1/0 output

preprocessing• 5-14
Byte stream

decoding• 4-1
processing• 1-9, 3-1
putting next byte in queue • 4-5

c
Cancel 1/0 routine • 6-2
Class input driver• 4-1

building the vector table for• 4-2
function of • 1-9, 4-1
program entry• 4-1
vectored routines • 4-2

Class vector table • A-25
CLASS_DDT data structure• 4-3
CLASS_GETNXT routine• 4-4
CLASS_PUTNXT routine• 4-5

Color graphics

See GPX
Color map • A-3
Color pixel bits • A-3
Command packet

function of• 6-3
inserting • 6-3
removing • 6-3

Common buffer interface
for driver/server• 2-1

Common driver• 5-1
building the vector table for • 5-2
function of• 1-9, 5-1
program entry • 5-2
services • 5-1
vectored routines• 5-3

Common driver/server interface• 2-1
Common flags longword

common symbolic offset • 5-11
Common input queue • 2-1
Common vector table • A-26
COMMON_CTRL_INIT macro• B-2
COMMON_DDT data structure • 5-1 O
COMMON_FLAGS

use of• B-4
COMMON_FLAGS data structure• 5-11
COMMON_POS_CURSOR routine• 5-4
COMMON_SETUP _INPUT_UCB routine• 5-5
COMMON_SETUP _OUTPUT_UCB routine• 5-7
COMMON_UNIT_INIT macro• B-3
COMMON_ VSYNC routine • 5-8
Controller initialization macro • B-2
Controller initialization routine• 3-7, 4-6
Create GPO $010 call • 6-7
CSR• A-14
Cursor (pointer)

clearing pattern routine • 6-2
height• A-3
hotspot • A-23
limits • A-23
number• A-3
pattern • A-23
pattern address • A-23
pattern color • A-23
planes• A-3
position • A-23
positioning routines • 5-4, 6-2

lndex-1

Index

Cursor (pointer) (cont'd.)

setting pattern• 2-21
setting pattern routine • 6-2
setting position • 2-22
style• A-23
type• A-3
width• A-3

D
Data structures • A-1 to A-29

class vector table• A-25
common vector table • A-26
DECW (UCB, DECwindows common output

extension)• A-21
definition • B-5
DVI (device information block)• A-2
DWl/DECW (UCB, DECwindows common input

extension)• A-13
DWI/KB (UCB, DECwindows keyboard input

extension)• A-15
DWI/PTA (UCB, DECwindows pointer input

extension)• A-18
INB (input buffer control block) • A-5
INP (input packet) • A-8
KIB (keyboard information block)• A-10
MHB (motion history buffer)• A-11
output vector table • A-28
port vector table• A-26
vectored• 5-9

Data structures vectored
CLASS_DDT • 4-3
COMMON_DDT• 5-10
COMMON_FLAGS • 5-11

DDT (driver dispatch table)
class symbolic offset • 4-3
common symbolic offset• 5-10
setting address of• B-3

Decoder driver
See Class input driver

DECW$GL_ VECTOR common vector• 5-2
DECW (UCB, DECwindows common output

extension)
data structure• A-21
using• 2-21, 2-22

$DECWCMNINPUCB macro· B-5
$DECWCOMMON macro• B-5
$DECWDEF macro • B-5
$DECWGBL macro • B-5

using• A-1

lndex-2

DECwindows
architecture• 1-1
driver software • 1-3
software • 1-1

DECwindows common input UCB extension

See DWI
DECwindows common output extension

See DECW
DECwindows keyboard input UCB extension

See DWI
DECwindows pointer input UCB extension

See DWI
$DECWINPUTUCB macro

use of• A-13
$DECWKBINPUCB macro• B-5
$DECWOUTPUTUCB macro • B-5

use of• A-21
$DECW_COMMON_READY macro• B-4
Device, hardware• 1-4
Device-dependent code • 3-1
Device driver

class input • 1-6, 1-9
color support • 1-10
common• 1-6, 1-9
DECwindows • 1-3
features supported • 1-5
functions• 1-9
GAADRIVER • 1-4
GABDRIVER • 1-4
GCADRIVER • 1-4
GCBDRIVER • 1-4
IKDRIVER • 1-4
IMDRIVER • 1-4
INDRIVER • 1-4
loading • B-4
macros • B-1
modules • 1-3
monochrome support • 1-10
output • 1-6, 1-1 0
port input• 1-6, 1-9
sensing • B-4
YEDRIVER • 1-4
YFDRIVER • 1-4

Device-independent code • 4-1
Device-independent processing • 5-12
Device information

sensing • 2-16
Device information block

See DVI
Device initialization• 3-8, 4-7
Device initialization macro • B-3

Device name • 1-4, 2-5, 6-4
Device type • A-14
Dial box • 1-3
Direct 1/0 output

preprocessing• 5-14
DMA (direct memory access)

packet processing• 6-1, 6-6
Driver

See Device driver
Driver/server interface

See Common driver/server interface
Driver/server interface architecture • 1-9
Driver module architecture • 1-6
DVI (device information block)• A-2

initializing • 5-7
setting field routine • 6-2
use of• 2-16, 2-21

DWl$L_KB_LIGHTS data• 2-10, 2-25
DWI (UCB, DECwindows input extension)

data structure for common input
(UCB/DWl/DECW) • A-13

data structure for keyboard input (UCB/DWI/KB) •
A-15

data structure for pointer input (UCB/DWI/PTA) •
A-18

$DYNDEF macro• B-5
DZDRIVER module• 1-4

E
Enable input $010 call • 2-18
Event code

input packet• A-8
Event packet

finding free• B-7
for input queue • 2-3
format• 2-3
function of • 2-3
inserting • 2-1 , 2-4
queuing • B-9
removing • 2-1, 2-4
removing last motion • B-8

Event window
input packet • A-8

Extension • 1-3
driver• 1-5
server• 1-5

F
FDT (function decision table)• 2-5, 5-1

building • 5-12
control routines • 6-2
function codes • 5-12
function of • 5-12, 6-4
parsing $010s • 6-4
routines • 5-12

FDT routines • 5-12
output • 5-14
preprocessor • 5-14
sense-mode• 5-13
set-mode • 5-13
use of• 2-7, 2-17

Free packet
removing• B-7

Free queue • 2-1 to 2-5
empty• 6-9
processing • B-7

Function
of common driver • 1-9
of output driver • 1-1 O
of port/class driver• 1-9

Function code • 2-6, 6-5
listing of • 5-12

Function decision table
See FDT

Function modifier• 2-6, 6-5

G
GAADRIVER module• 1-4
GABDRIVER module • 1-4
GADRIVER module • 6-4
GCADRIVER module• 1-4
GCBDRIVER module• 1-4
Get device information $010 call• 2-16
GET_FREE_KB_PACKET macro• B-7
GET _LAST _EVENT _PACKET macro• B-8
Global definitions • B-5
Global flags • 5-11
GPB (GPX packet buffer)• 6-6

function of• 6-3
inserting • 6-8
queuing • 6-8
waiting for • 6-9

GPB wait $010 call• 6-9

Index

lndex-3

Index

GPO (GPX physical data) block· 6-6
creating • 6-7
function of • 6-3
page allocation • 6-7

GPX (color graphics)• 6-1
GPX packet buffer

See GPB
GPX physical data

See GPO

H
Hardware

bit compression • A-3
supported by drivers• 1-3

Hardware, graphics • 6-1
Hardware interrupt processing• 1-9, 3-1

I
1/0 channel number• 2-5, 6-4
1/0 database • A-1

defining • 8-5
110 request

processing • 5-12
suspending • 6-9

IKORIVER module• 1-3, 4-1
IMORIVER module• 1-3, 4-1
INB (input buffer)

creating • 2-18
function of • 2-1
general structure • 2-1
initializing • 2-1
packet queuing pointers • A-6
page allocation • 2-18
page frame list• A-6
page frame numbers • A-6
timestamp • A-6

INB (input buffer control block)• A-5
INORIVER module• 1-4, 5-1

Also see Common driver• 2-5
Initialization

See System startup
Initialize motion buffer $010 call • 2-19
INP (input packet)• A-8

event code • A-8
event window • A-8

lndex-4

INP (input packet) (cont'd.)

free• 8-7
function of • 2-3
inserting • 8-9
key/button activity• A-8
packet pointers • A-8
processing macro• 8-9
removing• 8-8
root window • A-8
transmission sequence • A-8

Input buffer control block

See IN8
Input event packet• 2-1

See also INP
Input packet

See INP
Input queue • 2-1 to 2-5

interlocked• 8-7, 8-9
processing• 4-5
processing macros • 8-6

Interface
common $010 • 2-5
common input queue • 2-1
OECwindows • 1-1
driver/server • 2-1
port/class• 1-9, 3-1, 4-1

Interlocked instructions~ 4-5, 6-3
Interlocked queues • 1-9, 2-1, 4-5, 6-3
Interrupt driv0r

See Port input driver
Interrupts

See Hardware interrupt processing
10$K_OECW_AS_ T0_80TTOM function

submodifier • 2-20
10$K_OECW_AS_ TO _INPUT function submodifier •

2-20
10$K_OECW_AS_TO_LEFT function submodifier •

2-20
10$K_OECW_AS_ TO_RIGHT function submodifier •

2-20
10$K_OECW_AS_ TO_ TOP function submodifier •

2-20
10$K_OECW_ATTACH_SCREEN function modifier•

2-20
10$K_OECW_CREATE_GPO function modifier• 6-7
10$K_OECW_CURSOR_PATIERN function

modifier • 2-21, 2-22
10$K_OECW_OEVICE_INFO function modifier•

2-16
10$K_OECW_ENA8LE_INPUT function modifier•

2-18

10$K_DECW_GPBWAIT function modifier• 6-9
10$K_DECW_INSQTl_GPB function modifier• 6-8
10$K_DECW_KB_INFO function modifier• 2-8
10$K_DECW_KB_LED function modifier• 2-10,

2-25
10$K_DECW_MOTION_BU FFER_IN IT function

modifier • 2-19
10$K_DECW_MOTION_COMP function modifier•

2-11, 2-26
10$K_DECW_OPWIN_KEY function modifier• 2_....14,

2-27
10$K_DECW_PMOUSE_KEY function modifier•

2-13, 2-29
10$K_DECW_PTR_ACCEL function modifier• 2-12,

2-28
10$K_DECW_RING_BELL function modifier• 2-31
10$K_DECW_SCRSAV function modifier• 2-15,

2-30
10$M_DECW_FORCE_SCRSAV function modifier•

2-30
10$M_DECW_RESET_SCRSAV function modifier•

2-30
10$_DECW_OUTPUT_BUFFERED_FDT function

code• 6-6
10$_DECW_OUTPUT_DIRECT_FDT function code•

6-6
10$_SENSEMODE function code• 2-7
10$_SETMODE function code• 2-17
IOSB (1/0 status block) • 2-6, 6-5

use of• 6-7

K
Keyboard

adjusting bell volume • 2-23
adjusting keyclick volume • 2-23
autorepeat • A-16
bell volume• 2-8, A-16
characteristics • 2-8, 2-10, 2-23, 2-31
control/status• A-16
database • A-15
driver function • 1-9
functions • 1-5
keyclick volume • 2-8, A-16
LEDs• 2~10,2-25,A-16
ringing bell • 2-31
sensing information • 2-8, 2-1 O
setting bell volume • 2-31
setting information • 2-23
setting LEDs • 2-25

Keyboard (cont'd.)

up/down mode • A-16
Keyboard driver

See Class input driver, IKDRIVER module
Keyboard information block

See KIB
Keyboard pseudomouse

See Pseudomouse
KIB$L_AUTO_ON_OFF data• 2-8, 2-23
KIB$L_BELL_ VOL data• 2-8, 2-23
KIB$L_ENABLE_MASK data• 2-8, 2-23
KIB$L_KEYCLICK_ VOL data • 2-8, 2-23
KIB (keyboard information block)• A-10

using • 2-8, 2-23

L
Lights

See Keyboard LEDs
Logical name • 2-5, 6-4

M
Macros

COMMON_CTRL_INIT • B-2
COMMON_UNIT_INIT • B-3
$DECWGBL • B-5
$DECW_COMMON_READY • B-4
device driver • B-1
for device drivers • B-1 to B-5

Index

for input queue and packet processing • B-6 to
B-9

for vector table generation• B-10 to B-13
GET_FREE_KB_PACKET • B-7
GET_LAST_EVENT_PACKET • B-8
PUT_INPUT_ON_QUEUE • B-9
system initialization • B-1
$VEC • B-12
$VECEND • B-13
$VECINI • B-11

MFB (monochrome frame buffer)
function of• 6-1
pages• A-3
starting page • A-3

MHB (motion history buffer) • A-11
creating • 2-19
function of• 2-2

lndex-5

Index

MHB (motion history buffer) (cont'd.)

general structure • 2-2
initializing• 2-2
packet pointers • A-11
page allocation • 2-19
size• A-11

MHP (motion history packet)
creating • 2-19
data structure• A-11
mouse event movement • A-11
movement timestamp • A-11

Monitor • 1-6
See also Screens
color map • A-3
control/status • A-23
CSR• A-23

Motion
compression • 1-5, 2-2, 2-11, 2-26
compression count • A-19
compression counting• 8-8
compression hit • B-8
event processing macro • 8-8
events• 1-5, 2-2
noninterest box • A-6
noninterest events • A-6
sensing compression information• 2-11
setting compression on/off • 2-26
x-axis • A-11
y-axis• A-11

Motion history buffer

See MHB
Motion history buffer operation

See MHB
Motion history packet

See MHP
Mouse

button status • A-19
byte count • A-19
control/status • A-19
database • A-18
driver function• 1-9
functions • 1-5
motion event • 1-5
position • A-19

Mouse driver
See Class input driver, IMDRIVER module

Multiscreen
attaching mouse to • 2-20
attaching screen for• 2-20
disabling • 2-22
function • 1-5

lndex-6

Multiscreen (cont'd.)

setting attach-screen information• 2-20
UCB addresses• A-23

N
Noninterest box

events• A-6
Nonstandard devices

adding• 1-3

0
Operator window

control/status • A-16
control routines • 6-2
height• A-3
position • A-3
selection-key information• 2-14
selection keys • 2-27, A-16
sensing selection key • 2-14
setting selection key • 2-27
width• A-3

Output driver
building the vector table • 6-2
function • 1-10, 6-1
vectored routines • 6-2

Output queue • 1-10
creating• 6-6
description • 6-3
function of• 6-3
packet processing • 6-6

Output request
getting next byte from SILO• 4-4

Output requests • 6-1
Output vector table • A-28

function of • 6-1
OUTPUT_BUFFERED_FDT vectored routine• 6-2
OUTPUT_CANCEL vectored routine• 6-2
OUTPUT_CLEAR_CURSOR vectored routine• 6-2
OUTPUT_CURSOR_PATTERN vectored routine•

6-2
OUTPUT _DIRECT _FDT vectored routine• 6-2
OUTPUT _DISABLE_ VIDEO vectored routine• 6-2
OUTPUT_ENABLE_VIDEO vectored routine• 6-2
OUTPUT_OPWIN_DOWN vectored routine• 6-2
OUTPUT_OPWIN_RESIZE vectored routine• 6-2
OUTPUT_OPWIN_UP vectored routine• 6-2

OUTPUT_OPWIN_VISIBLE vectored routine• 6-2
OUTPUT_POS_CURSOR vectored routine• 6-2
OUTPUT _SET _DVI vectored routine• 6-2

p
Packet processing • B-6
Pixel

BTP bits • A-3
color bits • A-3
monochrome bits • A-3
screen height• A-3
screen width• A-3

Pointer
acceleration• 1-5, 2-12, 2-28
acceleration table • 2-12, 2-28, A-19
for multiscreen • 2-20
sensing acceleration information • 2-12
setting acceleration information • 2-28

Pointer pattern

See Cursor
Pointer position

See Cursor
Port/class input

putting next byte in queue • 4-5
Port/class interface• 1-9, 3-1
Port/class output

getting next byte from SILO• 4-4
Port input driver• 3-1

building the vector table• 3-2
function• 1-9, 3-1
program entry • 3-1
vectored routines• 3-2

Port output
aborting • 3-3
enabling • 3-4
resuming • 3-4
starting • 3-6

Port vector table • A-26
PORT _ABORT routine • 3-3
PORT_RESUME routine• 3-4
PORT _SET _LINE routine • 3-5
PORT _STARTIO routine• 3-6
Powerfail

offset • A-14
Program entry

class input driver• 4-1
common driver • 5-2
output driver • 6-1 to 6-2

Program entry (cont'd.)

port input driver• 3-1
Programming

for class driver • 4-1
for port driver • 3-1

Pseudomouse • 1-5
enable/disable • A-16
latch keys • A-16
selection-key information • 2-13
selection keys • 2-29, A-16
sensing selection key • 2-13
setting selection key• 2-29

PUT_INPUT_ON_QUEUE macro• B-9

Q
$QIO call requirements

creating GPO• 6-7
enabling input• 2-18
getting device information • 2-16
GPB wait• 6-9
initializing motion buffer• 2-19
queue GPB • 6-8
ringing keyboard bell• 2-31
sensing keyboard information • 2-8
sensing keyboard LED • 2-1 O
sensing motion compression • 2-11
sensing operator window key• 2-14
sensing pointer acceleration • 2-12
sensing pseudomouse key • 2-13
sensing screen saver timeout• 2-15
setting attach screen• 2-20
setting cursor pattern• 2-21
setting cursor position• 2-22
setting keyboard information • 2-23
setting keyboard LED • 2-25
setting motion compression • 2-26
setting operator window key • 2-27
setting pointer acceleration • 2-28
setting pseudomouse key• 2-29
setting screen saver • 2-30

$QIO calls
sense mode• 2-7 to 2-16
set mode• 2-17 to 2-31
to DECwindows input drivers • 2-5
to output driver • 6-4

$QIO common interface
function of• 2-5
sense mode calls• 2-7
set mode calls • 2-17

Index

lndex-7

Index

$QIO interface • 1-9, 2-5, 6-4
$QIO output interface • 6-4
$QIO system service • 2-5, 6-4

format of • 2-6, 6-5
registers• 5-12

Queue GPB $QIO call• 6-8
Queue interface• 1-9

motion history • A-11
output• 6-3
packet pointers• A-8
queuing pointers • A-6

Queue organization • 2-4
Queue processing

of input• 2-4, 4-5
of output • 6-3

Queues
free queue • 2-1 to 2-5, 6-3
input queue • 2-1 to 2-5
output queue • 6-3

QV mouse• A-19
control/status• A-19

R
Registers

for $QIO system service • 5-12
Ring buffer• 2-2

start• A-11
Ring keyboard bell $QIO call• 2-31
Routines

CLASS_GETNXT • 4-4
CLASS_PUTNXT • 4-5
COMMON_POS_CURSOR • 5-4
COMMON_SETUP _INPUT_UCB • 5-5
COMMON_SETUP _OUTPUT_UCB • 5-7
COMMON_ VSYNC • 5-8
controller initialization• 3-7, 4-6
for class input drivers• 4-2 to 4-7
for common driver $QIO service• 5-12 to 5-14
for common driver class service • 5-3 to 5-5
for common driver output service • 5-6 to 5-8
for output driver • 6-2
for output driver FDT • 6-4
for port input drivers• 3-2 to 3-8
OUTPUT _BUFFERED_FDT • 6-2
OUTPUT_CANCEL• 6-2
OUTPUT_CLEAR_CURSOR • 6-2
OUTPUT_CURSOR_PATTERN • 6-2
OUTPUT_DIRECT_FDT • 6-2

lndex-8

Routines (cont'd.)

OUTPUT_DISABLE_ VIDEO• 6-2
OUTPUT_ENABLE_VIDEO • 6-2
OUTPUT_OPWIN_DOWN • 6-2
OUTPUT_OPWIN_RESIZE • 6-2
OUTPUT_OPWIN_UP • 6-2
OUTPUT_OPWIN_VISIBLE • 6-2
OUTPUT_POS_CURSOR • 6-2
OUTPUT_SET_DVI• 6-2
PORT_ABORT• 3-3
PORT _RESUME• 3-4
PORT_SET_LINE • 3-5
PORT _STARTIO • 3-6
unit initialization • 3-8, 4-7

s
Screen

margin• A-3
size• A-3
visible position • A-3

Screen saver
cycle count• A-23
LEDs• A-23
processing • 5-8
sensing timeout values • 2-15
setting on/off • 2-30
setting timeout values • 2-30
timeout information • 2-15
timeout period• A-3, A-23

Self test
offset • A-14

Sense keyboard information $QIO call • 2-8
Sense keyboard LED $QIO call • 2-1 O
Sense-mode FDT routine modifiers • 5-13
Sense-mode FDT routines

processing• 5-13
Sense motion compression $QIO call• 2-11
Sense operator window key $QIO call • 2-14
Sense pointer acceleration $QIO call • 2-12
Sense pseudomouse key $010 call • 2-13
Sense screen saver timeout $QIO call • 2-15
Serial line • 1-3, 1-9

controller • 1-9
data byte • 3-6
setting characteristics• 3-5

Server
AST status • A-6
event scheduling • A-6
function • 1-3

Server (cont'd.)

$010 interface • 2-5, 6-4
queue interface • 1-9, 2-1, 6-3
queue processing • 2-4
scheduler time slice • A-6
screen information • A-23

Services
class input driver• 4-1 to 4-7
common driver• 5-1 to 5-14
device driver macros • B-1
output driver • 6-1 to 6-9
port input driver• 3-1 to 3-8
vectored data • 5-9

Set attach screen $010 call • 2-20
Set cursor pattern $010 call • 2-21
Set cursor position $010 call • 2-22
Set keyboard information $010 call • 2-23
Set keyboard LED $010 call • 2-25
Set-mode FDT routine modifiers· 5-13
Set-mode FDT routines

processing • 5-13
Set motion compression $010 call • 2-26
Set operator window key $010 call• 2-27
Set pointer acceleration $010 call • 2-28
Set pseudomouse key $010 call • 2-29
Set screen saver timeout $010 call• 2-30
SILO buffer• A-14

creating • B-5
definition • B-5
processing • 4-4

$SILODEF macro • B-5
SILO processing

of output• 4-4
Software

See DECwindows software
Symbolic offset

common flags longword • 5-11
driver dispatch table • 4-3, 5-1 O
of class vector • 4-1
of common vector• 5-2
of output vector • 6-1
of port vector • 3-1

Symbolic offsets
generating • B-12

SYS$010 system service
use of• 5-12

System recovery• 3-7, 3-8, 4-6, 4-7, B-1
System startup• 3-7, 3-8, 4-6, 4-7, B-1

T
Tablet• 1-3

control/status • A-19
driver function • 1-9
height• A-3
width• A-3

Tablet driver

Index

See Class input driver, IMDRIVER module
Technical description

common driver/server interface • 2-1
device drivers • 1-1 to 1-1 O
motion history buffer• 2-2

Timestamp
input buffer • A-6
input packet • A-8
motion history packet • A-11

$TTYUCBDEF macro• B-5
$TTYVECDEF macro • B-5

u
UART• A-14

input CSR • A-14
UCB$L_DECW_l_DWI field

function of• A-13
UCB$L_DEVDEPEND

setting fields • 3-5
UCB$L_DEVDEPEN 02

setting fields • 3-5
UCB$L_TT_GETNXT field• 4-2
UCB$L_ TT _PUTNXT field • 4-2
UCB (unit control block)

extension definition • B-5
for input device • A-12 to A-20

initializing routine • 5-5
for output device • A-20 to A-25

initializing routine• 5-7
initializing• 3-8,4-7, B-3
input, general structure • A-13
output, general structure • A-20

Unit control block
See UCB

Unit creation • 3-8, 4-7, B-3
Unit initialization macro • B-3
Unit initialization routine• 3-8, 4-7

lndex-9

Index

v
$VECEND macro• B-13
$VECINI macro• B-11
$VEC macro • B-12
Vectored data segments

CLASS_DDT • 4-3
COMMON_DDT • 5-10
COMMON_FLAGS • 5-11
for common driver service • 5-9

Vectored routines
for class input • 4-1
for common driver • 5-2
for output • 6-2
for port input• 3-1

Vectors
See Vector table

Vector table
building• B-1 O
class driver • A-25
common driver • A-26
definition • 8-5
ending • B-13
generating field entries • B-12
initializing• B-11
macros • B-1 O
output driver • A-28
port driver • A-26
relocation • B-2

Video display
enable/disable routines • 6-2

VSYNC (vertical synchronization)
interval routine • 5-8
interval time• A-3, A-23
timer• A-23
UCB• A-6

w
Workstation

control/status • A-23
GPX output • 6-1
hardware/software • 1-3
monochrome output • 6-1
supported by DECwindows • 1-3
type• A-3

Writing a device driver
for class input • 4-1

lndex-10

Writing a device driver (cont'd.)

for port input• 3-1

x
X event• 2-3

format• A-8
Xlib • 1-2
X Window System• 1-1

y
YEDRIVER module• 1-4, 3-1
YFDRIVER module• 1-4

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SDC Order Processing - WMO/E15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

1 For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS DECwindows Device
Driver Manual

AA-MG28A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Nametritle

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

- Do Not Tear - Fold Here and Tape -------------------[lllr--------------­
No Postage

~nmnoma™ ~:::i~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. I

1n the
United States

·- Do Not Tear - Fold Here --

I
I
I
I
I
I

Reader's Comments VMS DECWindows Device
Driver Manual

AA-MG28A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

N amefl'itle

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-;;~~;~:Id Here and Tape ------------------~1nr-------;~~~~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

·- Do Not Tear - Fold Here --

I
I
I
I
I

