VMS DECwindows Guide to
Application Programming

Order Number: AA-MG21B-TE

June 1990

This manual is a guide to creating applications using the XUI Toolkit, including
the User Interface Language (UIL) and the XUl Resource Manager (DRM).

Revision/Update Information: This manual supersedes the VMS
DECwindows Guide to Application
Programming, Version 5.3.

Software Version: ~ VMS Version 5.4

digital equipment corporation
maynard, massachusetis

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop—-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX vT

DECUS LiveLink UNIBUS XUl
DECwindows LNO3 VAX "
DECwriter MASSBUS VAXcluster dilgfiftla]l

The following are third-party trademarks:
PostScript is a registered trademark of Adobe Systems Incorporated.

X Window System, Version 11 and its derivations (X, X11, X Version 11, X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK4734

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE XXXi
CHAPTER 1 OVERVIEW OF THE XUl TOOLKIT 1-1
1.1 OVERVIEW OF XUl TOOLKIT COMPONENTS 1-1
1.1.1 User Interface Objects 1-2
1.1.2 X Toolkit Routines 1-3
1.1.3 Cut and Paste Routines 1-4
1.1.4 Application Development Tools ' 1-4
1.2 PROGRAMMING CONCEPTS 1-4
1.2.1 Creating the Form of Your Application 1-6
1.2.2 Associating Function with Form 1-7
1.3 WIDGETS IN THE XUI TOOLKIT 1-8
1.4 WIDGET ATTRIBUTES 1-14
14.1 Size and Position Attributes 1-14
1.4.2 Appearance Attributes 1-15
1.4.3 Callback Attributes 1-15
144 Assigning Values to Widget Attributes 1-15
CHAPTER 2 CREATING A VMS DECWINDOWS APPLICATION 2-1
21 OVERVIEW OF A VMS DECWINDOWS APPLICATION 21
2.2 SYMBOL DEFINITION FILES 2-2
2.3 INITIALIZING THE XUl TOOLKIT 2-4
2.3.1 Application Shell Widget 2-6

23.2 Using Multiple Shell Widgets 2-7

Contents

vi

CREATING THE WIDGETS IN THE INTERFACE

24 2-8
241 Using Low-Level Widget Creation Routines ; 2-9
24141 Using Low-Level Routines to Define the Parent/Child Relationship

of a Widget 2-10
2.4.1.2 Using Low-Level Routines to Define the Initial Appearance of a

Widget + 2-10
2413 Using Low-Level Routines to Associate Callback Routines with a

Widget - 2-12
24.2 Using High-Level Widget Creation Routines 2-14
2.4.2.1 Using High-Level Routines to Define the Parent/Child Relationship

of a Widget « 2-15
2422 Using High-Level Routines to Define the Initial Appearance of a

Widget « 2-15
2423 Using High-Level Routines to Associate Callback Routines with a

Widget « 2-16
24.3 Using UIL and DRM to Create Widgets 2-17
2.4.3.1 Using UIL to Define the Parent/Child Relationship of a

Widget + 2-18
243.2 Using UIL to Define the Initial Appearance of a Widget + 2-18
2433 Using UIL to Associate Callbacks with a Widget « 2—19
25 MANAGING THE WIDGETS IN THE INTERFACE 2-21
2.5.1 Managing a Single Child Widget 2-22
2.5.2 Managing Multiple Child Widgets 2-23
2.6 REALIZING THE WIDGETS IN THE INTERFACE 2-24
27 MAIN INPUT LOOP 2-25
2.8 CREATING A CALLBACK ROUTINE 2-27
2.8.1 Identifying the Widget Performing the Callback 2-27
2.8.2 Associating Application-Specific Data with a Widget 2-27
2.8.3 Widget-Specific Callback Data 2-27
2.8.4 Guidelines for Creating Callback Routines 2-29
2.9 MANIPULATING THE INTERFACE AT RUN TIME 2-30
2.9.1 Standard Widget Manipulation Routines 2-31
292 Widget-Specific Manipulation Routines 2-32

Contents

2.10 COMPLETE LISTING OF THE HELLO WORLD! SAMPLE
APPLICATION 2-32
2.10.1 Using Low-Level Routines to Create the Hello World! User
Interface 2-32
2.10.2 Using High-Level Routines to Create the Hello Worid! User
Interface 2-33
2.10.3 Using UIL and DRM to Create the Hello World! User Interface _ 2-35
2104 The Hello World! Sample Application Main Input Loop and Callback
Routine 2-38
CHAPTER 3 CREATING A USER INTERFACE USING UIL AND DRM 3-1
341 OVERVIEW OF UIL AND DRM 3-1
3.2 SPECIFYING A USER INTERFACE USING UIL—A SAMPLE
PROGRAM 3-4
3.2.1 Recommended UIL Coding Techniques 3-5
3.2.11 Naming Values and Objects * 3—6
3.2.1.2 Declaring Values, Identifiers, and Procedures « 3-6
3.2.1.3 Declaring Objects « 3-7
3.2.1.4 Using Local Definitions for Objects « 3—10
3.2.2 Creating a UIL Specification File 3-10
3.23 Structure of a UIL Module 3-11
3.24 Declaring the UIL Module 3-12
3.25 Using the UIL Constants Include File 3-13
3.2.6 Declaring Procedures in UIL 3-15
3.2.7 Declaring Values in UIL 3-16
3.2.7.1 Defining Arguments for Attached Dialog Box Widgets « 3-17
3.2.7.2 Defining Integer Values « 3-18
3273 Defining String Values » 3—18
3.2.74 Specifying Multiline Compound Strings « 3—-20
3.2.7.5 Defining String Table Values » 3-20
3.2.7.6 Defining Font Values « 3-21
3277 Defining Color Values « 3-22
3.2.7.8 Defining Pixmap Values « 3-23
3.2.8 Declaring Interface Objects in a UIL Module 3-24
3.2.8.1 Specifying Arguments in an Object Declaration + 3-25
3.2.8.2 Specifying Children in an Object Declaration + 3-26
3.2.8.3 Specifying Callbacks in an Object Declaration « 3-27
3.2.9 Specifying an Icon as a Widget Label 3-29

vii

Contents

3.3 CREATING A USER INTERFACE AT RUN TIME USING DRM 3-31
3.3.1 Accessing the UID File at Run Time 3-35
3.3.2 Deferring Fetching 3-37
333 Retrieving Literal Values from UID Files 3-38
3.34 Setting Values at Run Time Using UID Resources 3-40
335 Using an Object Definition as a Template 3-45
3.4 CUSTOMIZING A VMS DECWINDOWS INTERFACE USING UIL AND
DRM 3-49
3.4.1 Designing an International Application Using UIL and DRM _ 3-50
34.2 Specifying the User Interface for an International Application _ 3-52
343 Creating the User Interface for an International Application ____ 3-53
3.5 USING IDENTIFIERS IN UIL 3-57
3.6 USING SYMBOLIC REFERENCES TO WIDGET IDENTIFIERS IN
UIL 3-58
3.7 DEVELOPING AND TESTING PROTOTYPES USING UIL 3-59
3.7.1 Setting Up the UIL Module for Prototype Testing __________ 3-60
3.7.2 Setting Up the Application Program for Prototype Testing 3-62
3.8 USING UIL ON LARGE PROJECTS 3-63
3.9 WORKING WITH USER-DEFINED WIDGETS IN UIL 3-65
3.9.1 Defining Arguments and Reasons for a User-Defined Widget __ 3-66
3.9.2 Using a User-Defined Widget in an Interface Specification 3-68
3.9.3 Accessing a User-Defined Widget at Run Time 3-7
CHAPTER 4 CREATING A MAIN WINDOW WIDGET 4-1
4.1 OVERVIEW OF WINDOW WIDGETS 4-1
4.2 CHILDREN OF A MAIN WINDOW WIDGET 4-1
4.21 Menu Bar Widget 4-2
4.2.2 Command Window Widget 4-2
4.2.3 Scroll Bar Widgets 4-2
4.2.4 Work Area Widget 4-3

vili

Contents

4.3 CREATING A MAIN WINDOW WIDGET 44
4.3.1 Adding Children to a Main Window Widget 4-5
4.3.1.1 Using SET VALUES to Add Children to a Main Window
Widget * 4-6
43.1.2 Using the MAIN WINDOW SET AREAS Routine * 4-6
43.1.3 Accepting Main Window Widget Defaults « 4-6
4.3.2 Customizing the Main Window Widget : 4-7
433 Associating Callback Routines with a Main Window Widget __ 4-8
44 CREATING A SCROLL WINDOW WIDGET 4-8
44.1 Adding Children to a Scroll Window Widget 4-10
4411 Using SET VALUES to Add Children to a Scroll Window
Widget « 4-10 '
441.2 Using the SCROLL WINDOW SET AREAS Support
Routine * 4-10
4413 Accepting Scroll Window Widget Defaults « 4-11
4.5 CREATING A WINDOW WIDGET 4-11
4.5.1 Drawing Graphics in a Window Widget 4-12
4.5.2 Associating Callback Routines with a Window Widget 4-14
4.6 CREATING A COMMAND WINDOW WIDGET 4-15
4.6.1 Command Window Widget Support Routines 4-16
4.6.2 Specifying the Contents of the Command Line 4-16
4.6.3 Displaying Error Messages in the Command Window Widget _ 4-17
464 Defining Accelerators for the Command Window Widget 4-17
465 Customizing the Appearance of the Command Window Widget 4-17
4.6.5.1 Specifying the Command Line Prompt « 4-17
4.6.5.2 Specifying the Size and Content of the Command History
Window ¢ 4-17
4.6.6 Associating Callback Routines with the Command Window
Widget 4-18
‘CHAPTER 5 USING THE LABEL, SEPARATOR, AND BUTTON WIDGETS 5-1
5.1 OVERVIEW OF LABEL, SEPARATOR, AND BUTTON WIDGETS AND
5-1

GADGETS

Contents

5.2 CREATING A LABEL WIDGET OR GADGET 5-2
5.2.1 Customizing a Label Widget 5-3
5.2.1.1 Specifying the Size and Position of a Label Widget « 5-3
5.2.1.2 Specifying the Alignment in a Label Widget « 5-4
5.2.1.3 Specifying Margins in a Label Widget « 54
5.2.1.4 Specifying the Content of a Label Widget « 5-5
5.2.2 Customizing a Label Gadget 5-5
5.3 CREATING A SEPARATOR WIDGET OR GADGET 5-6
5.3.1 Customizing a Separator Widget or Gadget 5-7
54 CREATING A PUSH BUTTON WIDGET OR GADGET 5-7
5.4.1 Customizing a Push Button Widget 5-10
5.4.1.1 Specifying Highlighting Behavior « 5-10
5.4.1.2 Specifying Shadowing « 5-10
5.4.1.3 Specifying the Insensitive Pixmap ¢ 5-10
5.4.2 Customizing a Push Button Gadget 5-10
5.4.3 Associating Callback Routines with a Push Button Widget or

Gadget 5-11
5.5 CREATING A TOGGLE BUTTON WIDGET OR GADGET 5-12
5.5.1 Specifying the State of a Toggle Button Widget or Gadget ____ 5-16
5.5.2 Customizing a Toggle Button Widget 517
5.5.2.1 Specifying the Appearance of the Indicator « 5-17
5.5.2.2 Specifying On and Off Pixmaps « 517
55.3 Customizing a Toggle Button Gadget 5-18
5.5.4 Associating Callback Routines with a Toggle Button Widget or

Gadget 5-18
5.6 WORKING WITH COMPOUND STRINGS 5-19
5.6.1 Creating a Compound String 5-21
5.6.2 Creating Compound Strings with Multiple Segments 5-22
5.6.3 Manipulating a Compound String 5-23
5.6.4 Retrieving Information About a Compound String 5-23
5.6.5 Specifying Fonts 5-25
5.7 DEFINING ACCELERATORS FOR BUTTON WIDGETS AND

GADGETS 5-27
5.7.1 Defining the Accelerator Key or Key Combination 5-27
5.7.2 Adding an Accelerator to a Widget or Gadget 5-28
5.7.3 Installing an Accelerator in an Application 5-28
5.7.4 Specifying an Accelerator Label 5-29

Contents

5.7.5 Adding an Accelerator to the Hello World! Sample Application 5-30
CHAPTER 6 CREATING MENU WIDGETS 6~1

6.1 OVERVIEW OF MENU WIDGETS 6-1

6.2 MENU WIDGETS IN THE XUl TOOLKIT 6-1

6.2.1 Creating Menu ltems » : 6-2

6.2.2 Nesting Menu Widgets 6—-4

6.3 CREATING A WORK AREA MENU WIDGET 6-5

6.3.1 Customizing a Work Area Menu Widget 6-9

6.3.1.1 Specifying the Size of a Work Area Menu Widget » 6-9

6.3.1.2 Specifying the Arrangement of Menu ltems « 6-10

6.3.1.3 Specifying Margins and Spacing » 6-10

6.3.1.4 Determining Menu ltem Alignment + 6-11

6.3.1.5 Specifying Radio Button Exclusivity * 611

- 6.3.1.6 Restricting Menu ltems to Classes of Widgets + 6-11

6.3.2 Associating Callback Routines with a Work Area Menu Widget 6-12

6.4 CREATING A PULL-DOWN MENU WIDGET 6-12

6.4.1 Customizing the Appearance of a Pull-Down Menu Widget ___ 6-14

6.4.2 Associating Callback Routines with a Pull-Down Menu Widget 6-14

6.5 CREATING A MENU BAR WIDGET 6-15

6.5.1 Customizing a Menu Bar Widget 6-19

6.6 CREATING AN OPTION MENU WIDGET 6-19

6.6.1 Customizing an Option Menu Widget 6-23

6.6.1.1 Specifying the Initial Value of an Option Menu Widget « 6-23

6.6.1.2 Specifying the Label in an Option Menu Widget « 6-24

6.7 CREATING A POP-UP MENU WIDGET 6-24

6.7.1 Creating an Action Procedure 6-26

6.7.2 Adding an Action Procedure to a Widget - 6-27

6.7.3 Customizing a Pop-Up Menu Widget 6-31

6.74 6-31

Associating Callback Routines with a Pop-Up Menu Widget __

xi

Contents

CHAPTER 7 CREATING DIALOG BOX WIDGETS 7-1
7.1 OVERVIEW OF THE DIALOG BOX WIDGET 7-1
72 DIALOG BOX WIDGETS IN THE XUl TOOLKIT 7-1
7.2.1 Generic Dialog Box Widgets 7-1
7.2.1.1 Dialog Box Widget « 7-2
7.21.2 Attached Dialog Box Widget » 7-2
7.2.2 Standard Dialog Box Widgets 7-4
7.2.21 Message Box Widget « 74
7.2.2.2 Selection Box Widget « 74
7.3 STYLES OF DIALOG BOX WIDGETS 7-4
74 CREATING A DIALOG BOX WIDGET 7-5
7.41 Specifying the Layout of Children in a Dialog Box Widget 7-6
7.4.2 Customizing the Dialog Box Widget 7-10
7.4.2.1 Sizing and Resizing a Dialog Box Widget « 7-10
7.422 Positioning a Dialog Box Widget » 7-11
7.423 Selecting the Unit of Measure Used in a Dialog Box

Widget + 7-11
7.42.4 Defining Translations for Simple Text Widgets + 7-11
7.42.5 Assigning Accelerators to Child Widgets » 7-12
7.426 Grabbing the Input Focus « 7-12
7.43 Associating Callback Routines with a Dialog Box Widget 7-12
75 CREATING AN ATTACHED DIALOG BOX WIDGET 7-13
7.5.1 Defining Attachments in an Attached Dialog Box Widget 7-14
7.5.1.1 Attaching an Edge to the Attached Dialog Box * 7-16
7.5.1.2 Attaching an Edge to Another Child Widget « 7-17
7.5.1.3 Attaching an Edge to a Position in the Attached Dialog Box

Widget » 7-18
7.5.1.4 Accepting Default Attachments « 7-19
7.5.2 Using Attachment Attributes 7-19
7.5.3 Customizing an Attached Dialog Box Widget 7-21
7.5.3.1 Specifying the Default Spacing Between Child Widgets « 7-22
7.5.32 Defining the Default Denominator Used in Fraction

Positioning « 7-22
7.5.3.3 Controlling Resizing Behavior of Child Widgets ¢ 7-22
7.54 Associating Callback Routines with an Attached Dialog Box

Widget 7-22

xii

Contents

CHAPTER 8 CREATING A LIST BOX WIDGET 8-1
8.1 OVERVIEW OF THE LIST BOX WIDGET 8-1
8.2 CREATING A LIST BOX WIDGET 8-2
8.2.1 Creating an Item List 8-3
8.2.1.1 Creating an ltem List as an Array of Compound Strings « 8-3
8.2.1.2 Creating an ltem List Using the UIL STRING TABLE

Function * 8-5 ,
8.2.2 Selecting and Canceling Selections of List ltems 8-6
8.3 LIST BOX WIDGET SUPPORT ROUTINES 8-8
8.3.1 Adding and Deleting List Iltems at Run Time 89
8.3.1.1 Using SET VALUES to Add or Delete List ltems « 8-9
8.3.1.2 Using a Support Routine to Add an ltem to an ltem List « 8-10
8.3.1.3 Using a Support Routine to Delete an Item from an ltem

List - 8-10
8.3.2 Selecting and Canceling the Selection of List ltems at Run

Time 8-11

8.3.2.1 Using the SET VALUES Intrinsic Routine to Select List

Items » 8-11
8.3.2.2 Using a Support Routine to Select a List ltem « 8-11
8.3.2.3 Canceling the Selection of Items in an ltem List « 8-12
8.3.3 Customizing the Appearance of a List Box Widget 8-12
8.3.3.1 Specifying the Size of a List Box Widget + 8-12
8.3.3.2 Specifying List Items to Be Visible « 8-14
8.3.3.3 Specifying Margins and Spacing in a List Box Widget « 8—14
8.3.4 Associating Callbacks with a List Box Widget 8-15

CHAPTER 9 HANDLING TEXT 91
9.1 OVERVIEW OF TEXT WIDGETS 9-1
9.2 CREATING TEXT WIDGETS 94
9.2.1 Manipulating the Text Contents of the Text Widgets 9-6
9.2.1.1 Placing Text in a Text Widget + 9-6
9.2.1.2 Retrieving Text from a Text Widget « 9-7
9.2.1.3 Disabling Text Editing « 9-7
9.2.1.4 Limiting the Length of the Text « 9-8
9.2.2 Customizing the Appearance of the Text Widgets 9-8
9.2.2.1 Specifying Size - 9-8

xiii

Contents

9.2.2.2 Specifying Margins « 9-9

9.2.2.3 Controlling Resizing Behavior « 9-10

9.2.2.4 Contralling Text Cursor Appearance * 9-10

9.2.25 Positioning the Insertion Point + 9-11

9.2.2.6 Specifying Border Visibility and Color « 911

9.22.7 Identifying the Current Writing and. Editing Directions « 9-11

9.2.3 Handling Text Selections 9-12

9.2.3.1 Selecting Text « 9-12

9.23.2 Retrieving Selected Text » 9-12

9.2.3.3 Canceling the Selection of Text « 9-13

9.2.4 Associating Callbacks with Text Widgets 9-13
CHAPTER 10 USING THE SCALE AND THE SCROLL BAR WIDGETS 10-1

10.1 OVERVIEW OF THE SCALE WIDGET 10-1

10.2 CREATING A SCALE WIDGET 10-2

10.2.1 Determining the Range of Values 10-3

10.2.2 Customizing the Appearance of a Scale Widget 104

10.2.2.1 Specifying the Size of a Scale Widget « 10-4

10.2.2.2 Specifying the Orientation of the Scale Widget « 10-5

10.2.2.3 Specifying the Title of the Scale Widget » 10-5

10.2.2.4 Specifying the Color of the Slider « 10-6

10.2.2.5 Representing the Velue of the Scale « 10-6

10.2.2.6 Adding Labeled Tick Marks to a Scale Widget » 107

10.2.3 Associating Callbacks with a Scale Widget 10-8

10.3 OVERVIEW OF THE SCROLL BAR WIDGET 10-10

10.4 CREATING A SCROLL BAR WIDGET 10-11

10.4.1 Determining the Range of a Scroll Bar Widget 10-12

10.4.2 Specifying the Size of the Slider in a Scroll Bar Widget 10-13

10.4.3 Defining the Size of Increment and Decrement 10-13

10.4.4 Modifying the Action of the Stepping Arrows 10-14

10.4.5 Customizing the Appearance of the Scroll Bar Widget 10-14

10.4.6 Associating Callbacks with a Scroll Bar Widget 10-15

xiv

Contents

CHAPTER 11 USING THE COLOR MIXING WIDGET 11-1
1.1 OVERVIEW OF THE COLOR MIXING WIDGET 11-1
11.1.1 Color Models 11-1
11.1.2 Components of the Color Mixing Widget 11-2
11.1.21 Color Display Subwidget « 11-4
11.1.2.2 Color Model Option Menu Subwidget « 11-5
11.1.2.3 Color Mixer Subwidget « 11-5
11.1.24 Push Button Subwidgets * 11-6
11.1.25 Label Subwidgets * 11-7
11.1.2.6 Work Area Subwidget « 11-7
11.2 CREATING A COLOR MIXING WIDGET - N7
11.21 Setting and Retrieving New Color Values 1-8
11.2.2 Customizing the Color Mixing Widget 11-9
11.2.2.1 Specifying the Size 11-9
11.2.2.2 Specifying Margins « 11-9
11.2.2.3 Labeling the Color Mixing Widget « 11-10
11.2.2.4 Defining the Background Color of the Color Display

Subwidget ¢ 11-13

11.2.25 Adding a Work Area to the Color Mixing Widget » 11-13

11.3 SUPPORTING OTHER COLOR MODELS : 11-14

11.3.1 Replacing the Color Display Subwidget 11-14

11.3.2 Replacing the Color Mixer Subwidget 11-14

1.4 ASSOCIATING CALLBACKS WITH A COLOR MIXING WIDGET 11-14
- CHAPTER 12 USING HELP 12-1

12.1 OVERVIEW OF THE HELP WIDGET 12-1

12.1.1 Help Widget Terminology 12-3

12.2 HELP LIBRARY INFORMATION 12-3

12.2.1 VMS Help Library Enhancements 124

Contents

12.3 MODIFYING HELP WIDGET APPEARANCE 12-7
12.31 Help Widget Topic Information 12-7
124 USING THE HELP WIDGET 12-8
12.5 CONTEXT-SENSITIVE HELP 12-13

CHAPTER 13 USING THE CUT AND PASTE ROUTINES 13-1
13.1 OVERVIEW OF THE CUT AND PASTE ROUTINES 13-1
13.1.1 Communicating with Other Applications 13-3
13.1.2 implementing the Copy, Cut, and Paste Functions 13-3
13.2 COPYING DATA TO THE CLIPBOARD 13-5
13.2.1 Copying Data to the Clipboard by Name 13-9
13.2.2 Creating a Clipboard Callback Routine 13-10
13.2.3 Deleting Data from the Clipboard 13-11
13.24 Specifying Clipboard Data Formats 13-11
13.3 COPYING DATA FROM THE CLIPBOARD 13-11
134 INQUIRING ABOUT CLIPBOARD CONTENTS 13-15
13.5 QUICKCOPY IMPLEMENTATION 13-16
13.5.1 QuickCopy Message Types 13-16
13.5.2 Selection Threshold Resource 13-17
13.5.3 Implementing the QuickCopy Function 13-17
13.5.3.1 CopyFrom and MoveFrom Operations « 13-17
13.5.3.2 CopyTo and MoveTo Operations ¢ 13-22

CHAPTER 14 COMMUNICATING WITH THE WINDOW MANAGER 14-1
141 OVERVIEW 14-1

xvi

Contents

14.2 MAKING REQUESTS OF THE WINDOW MANAGER 14-1
14.2.1 Using Window Properties 14-2
14.2.1.1 Predefined Window Properties + 14-2
14.2.1.2 Vendor-Specific Window Properties + 14—4
14.2.2 Using Shell Widget Attributes 14-8
14.3 SETTING AND RETRIEVING PREDEFINED WINDOW MANAGER
PROPERTIES 14-8
14.4 SETTING AND RETRIEVING VENDOR-SPECIFIC WINDOW MANAGER
PROPERTIES 14-10
14.5 SETTING AND RETRIEVING SHELL WIDGET ATTRIBUTES 14-11
14.5.1 Setting Shell Widget Attributes at Widget Creation Time 14-11
14.5.2 Setting Shell Widget Attributes After Creation Time 14-13
14.6 RECEIVING MESSAGES FROM THE WINDOW MANAGER 14-14
14.7 CUSTOMIZING YOUR APPLICATION USING WINDOW MANAGER
HINTS 14-14
14.71 Customizing Your Main Application Window 14-17
14.7.1.1 Associating a Name with Your Main Application Window « 14-18
14.7.1.2 Specifying the Initial Size and Position of Your Application « 14-19
14.7.1.3 Customizing the Title Bar « 14-19
14.7.1.4 Including Shrink-to-lcon, Push-to-Back, and Resize Buttons in the
Title Bar « 14-22
14.7.2 Getting Information About Your Main Application Window __ 14-22
14.7.3 Customizing Your Application Icon 14-23
14.7.3.1 Specifying the Text in the Icon « 14-24
14.7.3.2 Specifying the Pixmap Used in Your Application Icon « 14-24
14.7.3.3 Using a Window in Your Icon * 14-26
14.7.3.4 Positioning Your Icon on the Display « 14-27
14.7.4 Specifying the Initial State of Your Application 14-27
14.7.5 Creating Transient and Sticky Windows 14-27
14.7.6 Bypassing the Window Manager 14-27
APPENDIX A USING THE DECTERM PORT ROUTINE A-1

DECTERM PORT

A-3

xvii

Contents

APPENDIX B USING THE VAX BINDINGS B-1
B.1 USING THE DECWINDOWS ADA PROGRAMMING INTERFACES B-1
B.1.1 Using the Ada Packages B-2
B.1.1.1 Package CDA - B-3
B.1.1.2 Package DDIF « B-3
B.1.1.3 Package DTIF « B-3
B.1.1.4 Package DWT - B-4
B.1.1.5 Package X - B4
B.1.2 Callbacks B-6
B.1.3 Tasking Considerations B-6
B.1.4 Ada Examples B-7
B.2 USING THE FORTRAN BINDINGS B-11
B.3 USING THE VAX PASCAL BINDINGS B-14

APPENDIX C INTERNATIONAL VERSION OF THE DECBURGER

APPLICATION c-1

APPENDIX D BUILDING YOUR OWN WIDGETS D-1
D.1 OVERVIEW OF WIDGETS D-1
D.1.1 Building a Widget D-1
D.1.2 Building a Sample Widget D-2
D.2 WIDGET CLASS DEFINITIONS D-10
D.21 Core Widgets D-10
D.2.1.1 CoreClassPart Structure « D-11
D.2.1.2 CorePart Structure « D-12
D.2.1.3 CorePart Default Values « D-12
D.2.2 Composite Widgets D-14
D.2.2.1 CompositeClassPart Structure » D-14
D.2.2.2 CompositePart Structure « D-14
D.2.2.3 CompositePart Default Values + D-15
D.2.3 Constraint Widgets D-15
D.2.3.1 ConstraintClassPart Structure « D-15
D.2.3.2 ConsiraintPart Structure + D-16

xviii

Contents

D.3 WIDGET CLASSING D-16
D.3.1 Widget Naming Conventions D-17
D.3.2 Widget Subclassing in Public .h Files D-18
D.3.3 Widget Subclassing in Private .h Files D-19
D.3.4 Widget Subclassing in .c Files D-20
D.3.5 Superclass Chaining D-23
D.3.6 Class Initialization D-24
D.3.7 Inheritance of Superclass Operations D-25
D.3.8 Invocation of Superclass Operations D-27
D.4 CREATING INSTANCES OF WIDGETS TO BUILD A USER
INTERFACE D-27
D.4.1 Widget Instance Initialization D-28
D.4.2 Constraint Widget Instance Initialization D-29
D.4.3 Nonwidget Data Initialization D-30
D.4.4 Widget Instance Window Creation D-30
- D45 Dynamic Data Deallocation D-31
D.4.6 Dynamic Constraint Data Deallocation D-32
D.5 COMPOSITE WIDGETS AND THEIR CHILDREN D-32
D.5.1 Addition of Children to a Composite Widget D-34
D.5.2 Insertion Order of Children D-34
D.5.3 Deleting Children D-35
D.5.4 Constrained Composite Widgets D-35
D.6 GEOMETRY MANAGEMENT D-37
D.6.1 Initiating Geometry Changes D-37
D.6.2 General Geometry Manager Requests D-38
D.6.3 Resize Requests D-39
D.6.4 Potential Geometry Changes D-39
D.6.5 Child Geometry Management D-40
D.6.6 Widget Placement and Sizing D41
D.6.7 Obtaining the Preferred Geometry D-42
D.6.8 Managing Size Changes D-43
D.7 EVENT MANAGEMENT D-44
D.7.1 X Event Filters D-44
D.7.1.1 Pointer Motion Compression ¢+ D-45
D.7.1.2 Enter/Leave Compression « D45
D.7.1.3 Exposure Compression ¢« D-45
D.7.2 Widget Exposure and Visibility D-45
D.7.2.1 Redisplay of a Widget + D45
D.7.22 Widget Visibility « D-47

Xix

Contents

D.7.3 X Event Handlers D47

D.8 RESOURCE MANAGEMENT D-48

D.8.1 Resource Lists D-48

D.8.2 Superclass to Subclass Chaining of Resource Lists D-52

D.8.3 Retrieving Subresources D-52

D.8.4 Obtaining Application Resources D-52

D.8.5 Resource Conversions D-52

D.8.5.1 Predefined Resource Converters « D-53

D.8.5.2 New Resource Conventers « D-54

D.8.6 Reading and Writing Widget Resource Fields D-56

D.8.6.1 Widget Subpart Resource Data « D-57

D.8.7 Setting Widget Resource Fields D-57

D.8.7.1 Specifying Widget State « D-57

D.8.7.2 Specifying Widget Geometry Values « D-58

D.8.7.3 Specifying Widget Constraint Information + D-59

D.8.7.4 Specifying the Widget Subpart Resources + D-59

D.9 TRANSLATION MANAGEMENT D-60

D.9.1 Action Tables D-60

D.9.2 Translating Action Names to Procedures D-61

D.9.3 Translation Tables D-62

D.9.3.1 Event Sequences « D-62

D.9.3.2 Action Sequences * D-63

D.9.4 Translation Table Syntax D-63

D.9.4.1 Modifier Names in a Translation Table « D-63

D.9.4.2 Event Types « D—66

D.9.4.3 Canonical Representation « D-68

D.9.5 Translation Table Management D-71

D.9.6 Using Accelerators D-71

D.9.7 Key Code to Key Symbol Conversions D-72
GLOSSARY Glossary-1
INDEX

XX

Contents

EXAMPLES
2-1

2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-1
2-12
2-13
2-14

2-15

2-16
2-17
2-18

3-1
3-2
3-3

3-5

3-7

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16

Including the XUI Toolkit Symbol Definition File in an

Application 2-3
Initializing the XUl Toolkit 24
Creating Your Own Application Context 2-5
Creating a User Interface Using Low-Level Routines 2-13
Creating a User Interface Using High-Level Routines 2-16
Using UIL to Define a Widget 2-19
Creating the Interface at Run Time UsingDRM ____ 2-21
Managing a Single Widget 2-22
Managing a Group of Child Widgets 2-23
Realizing a Widget Hierarchy 2-25
Entering the Main Input Loop 2-26
Hello World! Application Callback Routine 2-29
Adding a Work Procedure : 2-30
Setup Section of the Hello World! Application Using

Low-Level Routines 2-32
Setup Section of the Hello World! Application Using

High-Level Routines 2-34
Hello World! Application UIL Specification File 2-35
Hello World! Application Using UIL 2-36
Main Input Loop and Callback Routine of the Hello World!

Application 2-38
Widget Hierarchy in the DECburger UIL Module 3-10
UIL Module Structure 3-12
Module Declaration in the DECburger UIL Module 3-13
Constants from Include File in the DECburger UIL Module __ 3-14
Procedure Declaration in the DECburger UIL Module 3-16
Defining Integer Values in the DECburger UIL Module 3-18
Defining String Values in the DECburger UIL Module 3-19
Defining a String Table Value in the DECburger UIL Module _ 3-21
Declaring a Font Value in the DECburger UIL Module 3-21
Defining Colors in the DEChurger UIL Module 3-22
Defining a Color Table in the DECburger UIL Module 3-23
Defining an Icon in the DECburger UIL Module 3-24
Declaring an Object in the DECburger UIL Module 3-25
Specifying Children in the DECburger UIL Module 3-27
Specifying Multiple Procedures per Callback Reason 3-29
Using an Icon as a Label in the DECburger UIL Module 3-31

xxi

Contents

xxii

3-17

3-18
3-19
3-20

3-21
3-22
3-23
3-24
3-25

3-26
3-27

3-28

3-29

3-35

3-36
3-37
3-38
3-39
4-1
4-2
5-1
5-2

5-3

5-5

5-6

Initializing DRM and the XUl Toolkit in the DEChurger
Application

Declaring the UID Hierarchy for the DECburger Application _
Opening the UID Hierarchy for the DECburger Application _

Declaring a Vector of Names to Register for DRM in the
DECburger Application

Registering Names for DRM in the DECburger Application __
DEChurger UIL Module Setup for Deferred Fetching
Title Bar String for DECburger Application

Getting a Value from the UID File for the DECburger
Application

UIL Module for the FETCH SET VALUES Application
C Program for the FETCH SET VALUES Application

UIL Module Setup for the FETCH WIDGET OVERRIDE
Routine

Using the FETCH WIDGET OVERRIDE Routine in a C
Program

French UIL Module for the International DECburger
Application

C Program for the International DECburger Application ____
Using Identifiers in a UIL Module

Using Symbolic References in a UIL Module

Declarations in the DECburger UIL Module for Prototype
Testing

Declaring an Unimplemented Object in the DECburger UIL
Module

Definition of the Activate Routine in the DEChurger
Application

Sample Main UIL File
User-Defined XYZ Widget
Declaring the User-Defined XYZ Widget in a UIL Module ___
C Program for Displaying the XYZ User-Defined Widget
Main Window Created in the DECburger UIL Module

Performing Graphics Operations in a Window Widget
Push Button Gadgets in the DECburger Option Menu

Push Button Callback Procedure in the DECburger
Application

Creating the Radio Box Widget in the DECburger
Application

Setting the Initial State of a Toggle Button

Toggle Button Callback Procedure in the DECburger
Application

Creating a Compound String

3-35
3-36
3-36

5-12

515
5-16

5-19
5-22

Contents

4-8 Widget Attributes Accessible Using the High-Level Routine

WINDOW 4-12
4-9 Command Window Widget Creation Mechanisms 4-15
4-10 Widget Attributes Accessible Using the High-Level Routine

COMMAND WINDOW 4-15
4-11 Command Window Widget Support Routines 4-16
4-12 Command Window Widget Callbacks 4-18
5-1 Label Widget and Gadget Creation Mechanisms 5-2
5-2 Attributes Accessible Using the High-Level Routine LABEL _ 5-3
5-3 Separator Widget and Gadget Creation Mechanisms 5-6
5-4 Attributes Accessible Using the High-Level Routine

SEPARATOR 5-7
5-5 - Push Button Widget and Gadget Creation Mechanisms _____ 5-8
5-6 Attributes Accessible Using the High-Level Routine PUSH

BUTTON 5-8
5-7 Push Button Widget and Gadget Callbacks 5-11
5-8 Toggle Button Widget and Gadget Creation Mechanisms __ 5-12
59 Attributes Accessible Using the High-Level Routine TOGGLE

BUTTON 5-13
5-10 Toggle Button Widget and Gadget Callbacks 5-19
5-11 Compound String Routines , 5-20
6-1 Work Area Menu Widget Creation Mechanisms 6-6
6-2 Attributes Accessible Using the High-Level Routine MENU _. 6-6
6-3 XUI Toolkit Widget and Gadget Class Names 6-12
64 Pull-Down Menu Widget Creation Mechanisms 6-13
6-5 Pull-Down Menu Entry Widget and Gadget Creation

Mechanisms 6-13
6-6 Attributes Accessible Using the High-Level Routine MENU _ 6-14
6-7 Menu Bar Widget Creation Mechanisms 6-16
6-8 Attributes Accessible Using the High-Level Routine MENU

BAR 6-17
6-9 Option Menu Widget Creation Mechanisms ’ 6-20
6-10 Attributes Accessible Using the High-Level Routine OPTION

MENU 6-21
6-11 Pop-Up Menu Widget Creation Mechanisms 6-25
6-12 Attributes Accessible Using the High-Level Routine MENU _ 6-25
7-1 Dialog Box Widget Creation Mechanisms 7-5
7-2 Attributes Accessible Using the High-Level Routine DIALOG

BOX 7-6
7-3 Attached Dialog Box Widget Creation Mechanisms _________ 7-13
7-4 Attributes Accessible Using the High-Level Routine

ATTACHED DIALOG BOX 7-14

xxvii

- Contents

Xxviii

7-5
7-6
8-1
8-2

8-3

9-1
9-2
9-3

10-1
10-2
10-3
10-4
10-5
10-6

10-7
11-1
11-2
11-3
1-4
11-5
12-1
12-2
12-3
12-4
12-5
13-1
13-2
13-3

14-1.

14-2
14-3
14-4
14-5
14-6

14-7

Attachment Attributes 7-15
Attachment Constants for the Attached Dialog Box Widget _ 7-15
List Box Widget Creation Mechanisms 8-2
Attributes Accessible Using the High-Level Routine

LIST BOX 8-3
List Box Widget Support Routines 8-8
List Box Widget Callbacks 8-15
Text Widget Support Routines 9-3
Mechanisms for Creating Text Widgets 94
Attributes Accessible Using the High-Level Routines S TEXT

and CS TEXT 9-5
Text Widget Callbacks 9-14
Scale Widget Creation Mechanisms 10-2
Attributes Accessible Using the High-Level Routine SCALE _ 10-3
Horizontal and Vertical Orientation Constants 10-5
Scale Widget Callbacks 10-9
Scroll Bar Widget Creation Mechanisms 10-11
Attributes Accessible Using the High-Level Routine SCROLL

BAR 10-12
Scroll Widget Callbacks 10-15
Color Model Constants 11-5
Mechanisms for Creating the Color Mixing Widget 11-7
Support Routines for the Color Mixing Widget 11-9
Color Mixing Widget Label Attributes 11-10
Color Mixing Widget Callbacks 11-15
Help Widget Terminology 12-3
VMS Librarian Utility Extensions 12-5
Help Widget Appearance Attributes 12-7
Help Widget Topic Attributes 12-7
Help Widget Creation Routines 12-9
Cut and Paste Routines 13-1
Edit Menu Functions 13-5
QuickCopy Operations 13-16
Predefined Window Manager Properties 14-3
Members of the WM Hints Data Structure 14-4
Properties Defined by the DECwindows Window Manager __ 14-5
Members of the DEC WM Hints Data Structure 14-6
Members of the WM Decoration Geometry Data Structure _._ 14-8
Xlib Routines for Setting and Retrieving Predefined Window

Manager Properties 14-9

14-16

Common Tasks Performed with the Window Manager

14-8
B-1
B-2

TIIIRNE

Information Provided by the Window Manager
Subtype Definitions—Package DWT

Subtype Definitions—Package X
Default Values for the CorePart Structure

Default Values for the CompositePart Structure
Resource Types

Translation Table Modifiers

Event Types

Event Type Abbreviations for Translation Tables

Contents

14-17
B-4
B-4

D-13
D-15

D-64

D-66
D-67

XXix

Preface

This manual describes how to create an application using the XUI Toolkit,
including the User Interface Language (UIL) and the XUI Resource
Manager (DRM).

Intended Audience

This manual is intended for experienced programmers who want to learn
how to use the components of the VMS DECwindows programming
environment to create applications. Readers should be familiar with a
high-level programming language.

Document Structure

This manual is organized as follows:

Chapter 1 provides an overview of the XUI Toolkit, introduces the
basic programming concepts of using the XUI Toolkit, and introduces
the widgets in the XUI Toolkit.

Chapter 2 describes the basic structure of a typical application
program by examining a sample program, the Hello World!
application.

Chapter 3 describes how to create a user interface using the User
Interface Language (UIL) and the XUI Resource Manager (DRM).

Chapters 4 through 12 provide tutorials that show how to use the
widgets in the XUI Toolkit and include code examples to illustrate the
concepts described.

Chapter 13 describes how to use the cut and paste routines.

Chapter 14 describes how your application can communicate with the
window manager.

The manual includes the following appendixes:

Appendix A, Using the DECTERM PORT Routine, describes how to
create a terminal window on a local or remote node.

Appendix B, Using the VAX Bindings, presents three versions of the
Hello World! sample application created in Chapter 2. The appendix
includes versions of the program written in VAX Ada, VAX FORTRAN,
and VAX Pascal. The appendix also includes specific information about
using the Ada bindings.

Appendix C, International Version of the DECburger Application, is
the complete source listing for a version of DECburger that illustrates
how to internationalize an application using UIL and DRM. Chapter 3
describes this example.

xxxi

Preface

* Appendix D, Building Your Own Widgets, describes how to build your

own widgets.

* The Glossary defines key terms used in this manual.

Associated Documents

For more information about topics covered in this manual, see the
following manuals in the VMS DECwindows document set.

* XUI Style Guide

¢ VMS DECwindows Toolkit Routines Reference Manual

¢ VMS DECuwindows Xlib Routines Reference Manual

* VMS DECwindows Xlib Programming Volume

* VMS DECwindows User Interfacé Language Reference Manual

Conventions

XXXii

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

Ctri/x

[l

{

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

In examples, a key name is shown enclosed in a box
to indicate that you press a key on the keyboard. (In
text, a key name is not enclosed in a box.)

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory
name in a file specification or in the syntax of a
substring specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

5-7

5-9
5-10
5-11
6-1
6-2

6-3

6-5
6-6
7-1

7-2

7-3
8-1
8-2

8-3

8-5

8-7

9-1

9-2

10-1
10-2

10-3
104
10-5

10-6
11-1
12-1
12-2

Contents

Creating a Compound String with Multiple Segments 5-22
Extracting the Text Content from a Compound String 5-25
Specifying a Font 5-26
Adding an Accelerator to a Push Button Widget or Gadget _ 5-28
Adding an Accelerator to the Hello Worid! Application 5-30
Building a Work Area Menu 6-7
Creating the Menu Bar Widget in the DECbhurger

Application 6-17
Creating the Option Menu Widget in the DECbhurger

Application 6-22
Creating an Option Menu Widget with an Item Selected ____ 6-23
Action Procedure to Pop Up a Pop-Up Menu Widget 6-27
Creating a Pop-Up Menu Widget 6-28
Creating the Dialog Box Widget in the DECburger

Application 7-7
Creating the Children of the Dialog Box Widget in the

DECburger Application 7-8
Positioning Children in an Attached Dialog Box Widget _____ 7-19
Creating an Item List as an Array of Compound Strings 8-4
Creating an Item List Using the UIL STRING TABLE

Function 8-5
Selecting an item in an Item List 8-7
Adding an Item to a List Box Widget 8-10
Specifying the Size of the DECburger List Box Widget 8-13
Associating a Callback Routine with a List Box Widget 8-16
Callback Routine DEChurger Associates with the List Box

Widget 8-17
Defining the Simple Text Widget in the DECburger Sample

Application 9-5
Using the S TEXT GET STRING Support Routine in the

DECburger Sample Application 9-7
Determining the Range of Values 104
Setting Appearance Attributes of the Scale Widget in the

DECburger Sample Application 10-6
Labeling Points Along a Scale in a Scale Widget 10-7
Associating a Callback Routine with a Scale Widget 10-9
Scale Widget Callback Routine in the DECburger

Application 10-10
Specifying the Range of Values in a Scroll Bar Widget 10-13
Creating a Color Mixing Widget 11-8
Sample Help File 12-6
Creating a Help Widget 12-9

xxifi

Contents

12-3
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
14-1

14-2
14-3
144

14-5

14-6

FIGURES

xxiv

1-1
1-2
1-3

1-4
2-1
2-2

UIL Help Widget Implementation
Copying Data to the Clipboard

Copying Data from the Clipboard
Calling the OWN SELECTION Routine
Notifying the Receiving Application that Data Is Available __
Getting the Selection Value
Getting the Secondary Selection Data
QuickCopy Callback Routine
Sending a KILL_SELECTION Message

Assigning Values to Predefined Window Manager
Properties

Setting Vendor-Specific Window Manager Properties
Setting Shell Widget Attributes at Widget Creation Time ___

Using the SET VALUES Intrinsic Routine to Set Shell Widget
Attributes

Specifying the Shrink-to-lcon Pixmap Using the CHANGE
PROPERTY Xlib Routine

Using Shell Widget Attributes to Specify Your Application
Icon

Creating a DECterm on a Remote Node

Command Procedure to Compile, Link, and Run a DECterm
on a Remote Node

Hello World! Application in VAX Ada
Hello World! Application in VAX FORTRAN
Hello World! Application in VAX Pascal
C Program for the International Version of DECburger
Sample Widget

Modifying the Hello World! Application to Use the Sample
Widget

Compiling and Linking the Sample Widget
The .c File for a Label Widget

XUl Layered Architecture
Hello World! Application User Interface

Application Widget Hierarchy of the Hello World!
Application '

DECburger User Interface
Structure of an XUl Application
Relationship of Shell Widget to Application

12-11

13-6
13-12
13-18
13-18
13-20
13-21
13-22
13-23

14-9
14-10
14-12

14-13

14-20

14-25
A-1

A-2
B-7
B-11
B-15
C-2
D-3

D-9
D-10
D-21

1-2
1-5

1-7
1-12
2-2
2-7

2-3
2-4
2-5
31

00 O QR X

3-7

4-1
5-1
5-2

5-3
6-1
6-2

6-3

6~5

6-7

6-9
7-1
7-2
7-3

7-4

7-5
8-1
8-2
8-3
9-1
9-2
10-1
10-2

Argument Data Structure (VAX Binding)
Callback Routine Data Structure (VAX Binding)
Widget Callback Data Structure (VAX Binding)
Setting Up a User Interface Specified with UIL

Radio Box with Toggle Buttons in the DECburger
Application

Widget Hierarchy for the DECburger Radio Box Widget
Using an Icon in the DECburger Application Interface
Widget Creation in a DRM Fetch Operation
Sample Application Using the FETCH SET VALUES Routine

Using UID Hierarchies to Provide Alternatives or Refinements
to an Interface

Main Window Widget
Attributes for Setting Margins

Radio Box with Toggle Button Gadgets in the DECburger
Application

Hello World! Application with an Accelerator
Menu Widget

Relationship of Pull-Down Menu Widget and Puli-Down Menu
Entry Widget or Gadget

Widget Hierarchy of Nested Pull-Down Menu Widgets
Widget Hierarchy of a Work Area Menu
Laying Out Menu ltems
DECburger Menu Bar with a Pull-Down Menu Selected _____
Widget Hierarchy of the DECburger Menu Bar Widget
Option Menu Widget
Pop-Up Menu Widget
Resizing a Dialog Box Widget
Layout of the DEChurger Dialog Box Widget

Attaching an Edge of a Child Widget to the Attached Dialog
Box Widget

Attaching an Edge of a Child Widget to Another Child Widget
in an Attached Dialog Box Widget

Attaching an Edge to a Position in an Attached Dialog Box _
List Box Widget
List Box Widget Used in the DECburger User Interface
Margins and Spacing in a List Box Widget
Text Widgets
Default Configuration of the Text Widgets
Scale Widget
Scale Widget Sizing Attributes

Contents

2-11
2-12
2-28

3-2

6-10
6-15
6-19
6-20
6-31

7-3
7-10

7-16

7-17
7-18
8-1

8-15
9-2
9-9

10-2

10-5

XXv

Contents

10-3 Scroll Bar Widget : 10-10
11-1 Components of the Color Mixing Widget (HLS Color Model) . 11-3
11-2 Components of the Color Mixing Widget (RGB Color Model) 11-4
11-3 Labels in the Color Mixing Widget (HLS Color Model) 11-12
11-4 Labels in the Color Mixing Widget (RGB Color Model) ______ 11-13
12-1 Sample XUl Toolkit Help Widget 12-2
131 Edit Menu 13-4
14-1 DEC WM Hints Data Structure (VAX Binding) 14-6
14-2 WM Decoration Geometry Data Structure (VAX Binding) 14-7
14-3 _ Appearance of an Application Running Under the

DECwindows Window Manager 14-15
14-4 Customizable Aspects of the Main Application Window ___ 14-18
14-5 Informational Attributes Provided by the Window Manager _ 14-22
14-6 Customizable Aspects of Your Application icon 14-24

— ———
TABLES

1-1 Summary of XUl Toolkit Widgets 1-9
1-2 Widget Size and Position Attributes 1-14
1-3 Callback Attributes Supported by the Push Button Widget _ 1-15
2-1 Symbol Definition Files 2-3
2-2 Widget Creation Mechanisms 2-8
2-3 Standard Arguments Used with Low-Level Routines 2-10
2-4 Arguments Used with the High-Level Routine PUSH

BUTTON 2-14
2-5 Standard Widget Manipulation Routines 2-31
3-1 Optional UIL Module Header Clauses 3-12
3-2 UIL Compiler Rules for Checking Argument Type and '

Count 3-15
3-3 UIL Value Types 3-16
34 DRM Routines and Functions 3-34
4-1 Main Window Widget Creation Mechanisms 4-4
4-2 Widget Attributes Accessible Using the High-Level Routine

MAIN WINDOW 4-5
4-3 Child Widget Attributes of the Main Window Widget 4-6
44 Scroll Window Widget Creation Mechanisms 4-9
4-5 Widget Attributes Accessible Using the High-Level Routine

SCROLL WINDOW 4-9
4-6 Child Widget Attributes of the Scroll Window Widget 4-10
4-7 Window Widget Creation Mechanisms 4-11

xxvi

red ink

boldface text

UPPERCASE TEXT

numbers

Preface

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on.

For online versions of the book, user input is shown in
bold.

Boldface text represents the introduction of a new
term or the name of an argument, an atiribute, or a
reason.

Boldface text is also used to show user input in online
versions of the book.

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—binary,
octal, or hexadecimal—are explicitly indicated.

xxxiii

1 Overview of the XUl Toolkit

This chapter provides the following:

An overview of the XUI Toolkit components
An overview of basic XUI Toolkit programming concepts
A list of the widgets in the XUI Toolkit

1.1 Overview of XUl Toolkit Components

The XUI Toolkit is a set of run-time routines and application development
tools you can use to create application programs that implement the user
interface techniques and appearance guidelines specified in the XUI Style
Guide.

Using the XUI Toolkit, you can:

[]

Open a connection to a display device (workstation)
Create windows on the display
Perform output operations to windows

Receive notification of pointer or keyboard input through windows

The XUI Toolkit consists of the following components:

A set of user interface objects, called widgets, with run-time routines
to create them

A set of run-time routines to manipulate the widgets, called X Toolkit
intrinsics
A set of cut and paste routines to copy data between applications

A pair of application development tools, called the User Interface
Language (UIL) and the XUI Resource Manager (DRM)

Figure 1-1 illustrates the components of the XUI Toolkit and its
relationship to other layers of the XUI architecture. The following sections
describe each component of the XUI Toolkit.

Overview of the XUl Toolkit
1.1 Overview of XUl Toolkit Components

Figure 1—1 XUI Layered Architecture

Application
-~
User Interface High-Level Low-Level Cut
Language (UIL) | Routines Creation and
Routines Paste
XUl Routines
Resource > XUI Toolkit
Manager
X Toolkit (Intrinsics) P
Xiib
ZK-0084A-GE

1.1.1

User Interface Objects

The XUI Toolkit provides a set of user interface objects including menus,
push buttons, and scroll bars. These objects, called widgets, are the
building blocks of the user interface of an XUI application.

An XUI Toolkit widget is made up of a window packaged with input and
output capabilities. Some widgets display information, such as text or
graphics. Others are merely containers for other widgets. Some widgets
are output-only and do not react to pointer or keyboard input. Others
change their display in response to input and can invoke functions that an
application has attached to them. Table 1-1, in Section 1.3, lists all the
widgets provided by the XUI Toolkit.

Each widget supports a set of attributes, such as width, height, font, color,
and border width, that you can use to customize widget appearance and
function. The XUI Toolkit assigns default values to widget attributes to
create widgets that conform to the recommendations of the XUI Style
Guide. Section 1.4 describes these attributes.

The XUI Toolkit provides two versions of some widgets. These widgets
have variants, called gadgets, that have the same general appearance as
their widget counterparts but have restricted capabilities. Gadgets use
fewer system resources and can offer improved application performance.

For example, gadgets do not have an associated window, thus eliminating
the processing involved with creating a window. However, gadgets do not

Overview of the XUl Toolkit
1.2 Programming Concepts

Figure 1-2 Hello World! Application User Interface

EEH e
Press button once Press button once
to change label; to change label;
twice to exit. :> twice to exit.

Hello Hello X
World! World!

BH [HE EEH A&
Press button once Press button once
to change label; to change label;
twice to exit. :"> twice to exit.

| Good-bye Good-bye
Worid! World! g

< <

ZK-0201A-GE

The source files for the Hello World! sample application are included in
the examples directory (DECW$EXAMPLES:). To become familiar with a
basic VMS DECwindows application, run the sample application on your
workstation. To do this, copy the source files into your own directory, as
follows:

$ COPY DECWSEXAMPLES:HELLOWORLD.* *

Use the UIL compiler to compile the UIL module that defines the user
interface of the Hello World! application. (You must define the UIL
include file logical before invoking the compiler.) Then compile the Hello
World! C language program and link it with the XUI Toolkit shareable
image. The following summarizes this procedure:

$ DEFINE UIL$INCLUDE DECW$INCLUDE

$ UIL HELLOWORLD.UIL

$ CC HELLOWORLD.C

$ LINK/NODEB HELLOWORLD,SYS$INPUT/OPT
SYSSLIBRARY:DECW$DWTLIBSHR/SHARE

$ RUN HELLOWORLD

Overview of the XUI Toolkit
1.2 Programming Concepts

The XUI Toolkit includes a second example program called DECburger.
The DECburger sample application implements an order-entry system
for a fictitious fast food restaurant. In DECburger, the user interface is
made up of dozens of widgets (and gadgets). (Figure 1-4, in Section 1.3,
illustrates the user interface of the DECburger sample application.)

DECburger is designed only to illustrate examples of using the widgets
and gadgets in the XUI Toolkit. It is not meant as an example of interface
design.

The source files for the DECburger sample application are included in the
examples directory (DECW$EXAMPLES:). To run the sample program,
copy all the component source files and execute the command procedure
using the following commands:

$ COPY DECWSEXAMPLES:DECBURGER.* *

$ @DECBURGER.COM

1.2.1 Creating the Form of Your Application

You create a user interface for your application by arranging Wldgets

in parent/child relationships. Parent widgets control the behavior and
appearance of their children. In turn, their children can have children.
This layering of parent/child relationships creates the application
widget hierarchy. The application widget hierarchy mirrors the window
hierarchy maintained by the X Window System. Child widgets are clipped
by their parents just as subwindows are clipped by their superiors; that
is, the edge of a child widget cannot extend outside the boundaries of its
parent.

The XUI Toolkit includes one type of widget, called a pop-up widget,
that breaks the window hierarchy. Pop-up widgets can extend beyond the
boundaries of their parents. The XUI Toolkit includes several menu and
dialog box widgets that are pop-up widgets. For more information, see
Section 6.1 and Section 7.3.

Not every XUI Toolkit widget can be a parent. Widgets are either
composite widgets or primitive widgets. Composite widgets can be
parents or children of other composite widgets; primitive widgets can only
be children. .

The user interface of the Hello World! application is an example of

a simple application widget hierarchy made up of four widgets: an
application shell widget, a dialog box widget, a label widget, and a push
button widget. (Note that a real application could contain hundreds of
widgets.)

At the top of the application widget hierarchy of the Hello World! program
is the application shell widget. The application shell widget acts as

the mediator between the application program and the workstation
environment in which the application runs. Every XUI application

must have a shell widget at the top of its application widget hierarchy.
Section 2.3.1 provides more information about the application shell widget.

Overview of the XUl Toolkit
1.1 Overview of XUl Toolkit Components

provide access to all the attributes supported by their widget counterparts.
For more information about gadgets, see Section 5.1.

To build a user interface using widgets (or gadgets), you must create
instances of the widgets in your application program. When you create
a widget, you specify its parent/child relationship, its initial appearance,
and other characteristics of the widget by assigning values to widget
attributes. To create widgets and determine widget attributes, the XUI
Toolkit provides two sets of run-time routines, called low-level and
high-level routines.

Low-level widget creation routines provide access to the complete set of
attributes supported by a widget. Using these routines, you assign values
to widget attributes in a data structure called an argument list. You then
pass this argument list to the low-level routine. Section 2.4.1 describes
how to build a user interface using low-level routines.

High-level widget creation routines provide a more convenient way to
create widgets. Instead of assigning values to widget attributes in an
argument list, you pass the values of widget attributes as arguments
to the high-level routines. However, high-level routines provide access
to only a subset of a widget’s attributes at widget creation time. High-
level routines specify only the most commonly used widget attributes as
arguments. Section 2.4.2 describes how to build a user interface using
high-level routines.

Note that you always can use the widget manipulation routines (described
in Section 2.9) to access the complete set of widget attributes after a
widget has been created. However, it is more efficient to assign values

to widget attributes when you create the widget. For this reason, choose
the creation routine that provides access to the widget attributes you
need to set. The VMS DECwindows Toolkit Routines Reference Manual
provides complete information about XUI Toolkit high- and low-level
widget creation routines.

The application development tools UIL and DRM provide another way
to create the widgets in a user interface. For more information, see
Section 1.1.4.

1.1.2 X Toolkit Routines

X Toolkit routines, called intrinsics, let you manipulate widgets at run
time. The X Toolkit is a standard public domain routine library layered on
the X Window System, Version 11.

Intrinsics are the basis of every XUI application. You use intrinsics to do
the following:

¢ Initialize the XUI Toolkit
* Map and unmap widgets to the screen

* Process input from an application end user

Section 2.9.1 provides more information about intrinsics.

Overview of the XUl Toolkit
1.1 Overview of XUl Toolkit Components

You can also use intrinsics to build your own widgets. Appendix D provides
more information about this topic.

1.1.3 Cut and Paste Routines

The cut and paste routines provided by the XUI Toolkit are a set of run-
time routines you can use to copy data to or from applications. Chapter 13
describes the cut and paste routines.

1.1.4 Application Development Tools

The XUI Toolkit includes two closely related application development tools:
the User Interface Language (UIL) and the XUI Resource Manager (DRM).

UIL is a user interface definition language. Using UIL, you can specify
a user interface in a text file called a UIL specification file. You then
compile this file using the UIL compiler. At run time, your application
retrieves the compiled interface specification, called a UID file, using
DRM routines. DRM routines enable you to open the UID specification
file, retrieve the widget definitions from the file, create the widgets, and
build the user interface at run time. Use of DRM run-time routines
optimizes initialization and startup (that is, widget creation) for an XUI
application. Chapter 3 describes how to define a user interface in a UIL
file and how to use the DRM routines to create the user interface at run
time.

Using UIL and DRM, you can change the user interface specification
without having to recompile or relink your main application program.
This feature of UIL and DRM is particularly important for applications
developed for international markets. For example, you can create user
interfaces in several languages for a single application.

When you define widgets in a UIL specification file, you can access the
complete set of widget attributes. The UIL compiler checks that the values
you assign to attributes are of the data type expected by the widget.
High-level and low-level widget creation routines do not perform any
type-checking on attribute values.

1.2 Programming Concepts

14

The fundamental concept of programming with the XUI Toolkit is the
separation of form and function. Using the XUI Toolkit, you can consider
the form your application takes, its user interface, separately from the
routines that implement the functions of your application.

For example, the form of the sample Hello World! application is a push
button widget containing the text string "Hello World!". The function of
the Hello World! application is to change the wording of the text string in
the push button widget to "Goodbye World!". Figure 1-2 shows the user
interface of the Hello World! application as it initially appears and as it
changes when a user interacts with the interface.

Overview of the XUl Toolkit
1.2 Programming Concepts

The main widget of the Hello World! application is a dialog box widget.
This widget is the child of the application shell widget (an application
shell widget can only have one child). The dialog box widget, a composite
widget, is the parent of a push button widget and a label widget. The label
and push button widgets are children of the dialog box widget. The label
and push button widgets are examples of primitive widgets; they do not
support children. Figure 1-3 illustrates the widget hierarchy formed by
the user interface of the Hello World! application.

Figure 1-3 Application Widget Hierarchy of the Hello World!
Application

Shell
Widget

Dialog Box Widget

Push Button Label
Widget Widget

ZK-0204A-GE

Note that the application widget hierarchy should not be confused with
the widget class hierarchy. The application widget hierarchy defines the
parent/child relationship of widgets in a user interface. The widget class
hierarchy defines the subclass/superclass relationship of the widgets in
the XUI Toolkit. The widget class hierarchy determines which attributes
a widget inherits from its superclass and which attributes are unique to
a particular widget class. For more information about widget classes and
the widget class hierarchy, see Appendix D and the VMS DECwindows
Toolkit Routines Reference Manual.

1.2.2 Associating Function with Form

When a user invokes a VMS DECwindows application program, the initial
user interface of the application appears on the display. The application
then waits in an infinite loop for the user to interact with its interface.
Applications running in the VMS DECwindows environment perform their
functions only in response to user interaction with the interface.

When a user of your application interacts with a widget in its interface
using a pointing device, such as a mouse or the keyboard, the user action
causes a change in the state of the widget. Each widget supports a specific
set of such changes in its state that cause it to notify an application.

This flow of data from the interface to the application at run time is
accomplished through the callback mechanism. The callback mechanism

1-7

Overview of the XUl Toolkit
1.2 Programming Concepts

provides a one-way path of communication from the interface to the
application. This is the primary means an application has of getting input
from its interface.

A widget can define one or more callbacks depending on how many
changes in its state it is willing to communicate. Each particular set

of user actions that triggers a callback is called a reason. When a change
in state in the widget triggers a callback, your application executes the
routine you have associated with the widget. This routine is called a
callback routine. In this way, you associate the routines that implement
the functions of your application with the widgets that make up the user
interface of your application. You can associate more than one callback
routine with a single callback reason. When there is more than one
callback routine, the routines are executed in the order in which you
specify them.

For example, one callback reason supported by the push button widget

is the activate reason. This callback occurs when a user clicks MB1

on the push button widget. The Hello World! application associates its
function with the activate callback reason. (The VMS DECwindows
Toolkit Routines Reference Manual lists the callback reasons supported by
each widget.)

Note that reasons are not actions such as MB1 up; they are more abstract
concepts such as “activate.” The X Window System, on which the XUI
Toolkit is based, defines an action such as MB1 up that occurs in a window
as an event. The server is responsible for noting when an event occurs
in a window. An application that uses XUI Toolkit widgets need not

be concerned with events. XUI Toolkit widgets automatically notify
applications when the event or sequence of events the widget defines

as a reason occurs. For example, the push button widget defines the MB1
down/MB1 up sequence of events as the activate callback reason.

1.3 Widgets in the XUl Toolkit

The XUI Toolkit contains three types of widgets:
¢ Input/output widgets

These widgets provide the basic input and output capabilities of a user
interface, such as displaying text or graphics, allowing text editing,
and enabling a user to input values to your application. The widgets
that provide these functions are the label, push button, toggle button,
scale, scroll bar, and simple text widgets.

¢ Container widgets

These widgets act as containers for other widgets. You use these
widgets to gather together the widgets that provide access to the
functions of your application. The widgets that provide these functions
include the dialog box, attached dialog box, and main window
widgets. The XUI Toolkit includes some container widgets that

are preconfigured to perform commonly needed functions such as
presenting caution messages.

Overview of the XUl Toolkit
1.3 Widgets in the XUl Toolkit

® Choice widgets

These widgets present choices to the user of your application. The
widgets that provide these functions include the menu and list box
widgets. ‘

Table 1-1 lists all the widgets in the XUI Toolkit.

Table 1-1 Summary of XUl Toolkit Widgets

Widget Function

Input/Output Widgets

Compound string text Allows text to be entered and edited in multiple
characters sets and writing directions.

Label A rectangle containing read-only text or graphics.

Separator A dotted line used to graphically set off areas of a
user interface.

Push button A label widget with input capabilities. Used to invoke
an immediate action when selected.

Toggle button A label widget with input capabilities. Maintains state

information such as “on” or “off.” Usually contains a
graphical indicator that indicates its current state.

Scale An elongated rectangle that graphically represents a
range of values and is sensitive to user input. Users
can select a value within the range by moving a
slider or by clicking MB1 within the scale.

Scroll bar A widget designed to allow users to input information
relating to scrolling a work area. A scroll bar widget
contains an elongated rectangle that graphically
represents a range of values and is sensitive to user
input. Users can select a value within the range by
moving the slider that overlays the scroll region or by
clicking a mouse button within the scroll region. The
scroli bar widget also contains two arrow-shaped
buttons that implement the stepping functions.

Simple text Allows text to be entered and edited.

(continued on next page)

Overview of the XUl Toolkit
1.3 Widgets in the XUl Toolkit

Table 1-1 (Cont.) Summary of XUl Toolkit Widgets

Widget

Function

Container Widgets

Dialog box

Attached dialog box

Pop-up dialog box
Pop-up attached dialog box

Message box

Caution box
Work—in-progress box

Selection box

File selection
Main window

Command window

Scroll window

Window

Help

A box into which you can place other widgets. You
can use dialog boxes to solicit information from or
present information to a user.

A box into which you can place other widgets.
Note that, in an attached dialog box, you specify
the relative position of the child widgets instead of
specifying fixed positions. When a user resizes an
attached dialog box, the child widgets it contains
move and resize to maintain the original layout of
the box.

A variant of the dialog box that does not get clipped
by its parent.

A variant of the attached dialog box that does not
get clipped by its parent.

A type of dialog box that contains predefined child
widgets that allow you to display a message to the
user.

A version of the message box widget configured to
present a warning message to the user.

A version of the message box widget configured to
present a “Work in Progress” message.

A type of dialog box widget that contains predefined
child widgets that allow you to present a choice to
the user.

A special type of selection box widget that queries
the user for a file specification.

A tiling window that can contain a menu bar, scroll
bars, a command window, and a work area.

A window that contains a text entry field that allows
users to enter commands on a command line. This
widget includes a visible display of command history.

A convenience widget that automatically sizes the
slider on the scroll bars used with the window.

An empty rectangie in which you can perform
graphics operations. The window widget is the only
XUI Toolkit widget that supports graphics operations.

A widget that presents the user of an application
with information about a chosen topic.

1-10

(continued on next page)

Overview of the XUl Toolkit
1.3 Widgets in the XUl Toolkit

Table 1-1 (Cont.) Summary of XUl Toolkit Widgets

Widget Function
Choice Widgets
Color mixing A pop-up dialog box widget that enables users

Work area menu

Menu bar

Option menu

Pop-up menu

Pull-down menu entry

Pull-down menu

Radio box

List box

to define colors and provides users immediate
feedback by displaying the colors they define.

A rectangle containing menu items. This is the
generic menu widget.

A type of menu widget in which the menu items
cause a pull-down menu to appear on the display
when selected.

A type of menu widget that contains a descriptive
text label and a display of the current selection. The
actual menu containing the menu items, which is a
pull-down menu, appears on the display only when
the option menu is activated by the user.

A menu that appears on the display when the user
presses MB2; a pop-up menu can extend beyond
the borders of its parent.

A button-like widget that causes a pull-down menu
to appear.

A menu that appears on the display when a user
presses MB1 or MB2; a pull-down menu can extend
beyond the borders of its parent.

A type of work area menu in which a list of choices
is presented, only one of which can be selected at
any one time.

A rectangle containing a list of choices. List boxes
are typically used to present long lists of items. Only
a portion of the list is visible in the list box at any
time. The list box widget contains a scroll bar that
enables users to view the complete item list.

To illustrate these widgets, Figure 1-4 shows the DECburger user

interface.

1-1

Overview of the XUl Toolkit
1.3 Widgets in the XUl Toolkit

Figure 1-4 DECburger User Interface

Hamburgers

]E] Welcome to DECburger @
@Fie_ Edit Po) Order o ' 7

Dismiss Order Box...

Cancel Order
Submit Order
DECburger Order-Entry Box

eO Rare O Ketchup : gize| Medium : O
€ © Medium O Mustard - * | Orange Jui
: - ge Juice
QO Well Done [Pickle 0 . | Grape Juice
0 Onion : Col
0 Mayonnaise : o A%
’ @ 7N
(10) : Quantity (Jo ; | T
: . | Quantity 0]
Quantity @ @
| Apply » Dismiss [Reset @

@ Fries : Drinks

ZK-0136A~-GE

©® DECburger uses a main window widget as the base of the

1-12

application. The main window widget enables the DECburger
application to present some of its basic functions, such as placing
an order, as items in a menu bar widget.

The DECburger menu bar widget contains three menus: File, Edit,
and Order.

Each item in the DECburger menu bar widget is a pull-down menu
entry widget. When the user selects one of the menus in the menu
bar widget, a pull-down menu widget appears on the screen. The pull-
down menu widget disappears when the user releases MB1. In the
figure, the pull-down menu widget associated with the Order menu in
the menu bar widget is illustrated as if a user had selected that menu.
The pull-down menu widget itself is described in @.

Overview of the XUl Toolkit
1.3 Widgets in the XUl Toolkit

The pull-down menu widget displayed is the Order pull-down menu
widget DECburger uses when the order box is already displayed. The
contents of this menu vary depending on whether the order-entry box
is visible.

The DECburger order-entry box is a pop-up dialog box widget.
Pop-up widgets may extend beyond the boundaries of their parent
widgets.

DECburger uses a separator gadget to draw the vertical dotted lines
that mark the boundary of each section of the order-entry box.

To distinguish each section of the order-entry box, DECburger includes
a descriptive text label at the top of each section. Each of these text
labels is a label gadget.

DECburger uses a radio box widget to present a list of choices from
which the user can choose only one item at a time. Each item in the
radio box widget is implemented by a toggle button gadget.

To present a list of choices from which the user can select any number
of items, DECburger uses a work area menu widget. Each item in
the menu is a toggle button gadget.

To solicit quantity information, DECburger uses the scale widget.
Because scale widgets graphically present a range of values, they
prevent users from entering an incorrect value.

DECburger uses an option menu widget to present a list of choices
from which only one item can be selected at a time. Each item in the
option menu widget is a push button gadget. As with the pull-down
menu widget, the option menu only appears on the display when the
user presses MB1. In this way, the list of items does not take up any
display space until it is invoked. The option menu widget always
displays its current selection.

DECburger uses a simple text widget to handle another quantity
choice. The simple text widget enables the user to enter text from the
keyboard.

To present a long list of choices, DECburger uses the list box widget.
Only a portion of the entire list of items is visible in the list box as

it appears on the display. Users must use the scroll bar widget
included in the list box widget to view the complete list of items. List
box widgets can be configured to allow users to select more than one
item at a time.

- DECburger uses an attached dialog box widget to implement drink
‘quantity selection. The attached dialog box widget includes two push
button widgets with pixmap labels. The “up arrow” push button
increases the drink quantity; the “down arrow” push button decreases
the drink quantity. Note the use of push button widgets instead of
gadgets. You cannot use pixmap labels with push button gadgets. The
attached dialog box widget also includes two label gadgets to display
descriptive text and to present the current value selected by the user.

1-13

Overview of the XUI Toolkit
1.3 Widgets in the XUl Toolkit

@® DECburger uses a horizontally oriented work area menu widget
containing three push button widgets to implement the Apply,
Dismiss, and Reset functions. Note the use of push button widgets
instead of gadgets to allow DECburger to specify a larger font size to
emphasize these important functions. You cannot specify the font in
a gadget; gadgets use the font specified in their parent. (The figure
does not represent the actual font used in these buttons. To see this
attribute, run the DECburger application.)

1.4 Widget Attributes

Every XUI Toolkit widget supports a set of attributes you can use to
customize aspects of its appearance and function. A subset of these widget
attributes is supported by every XUI Toolkit widget. These are called
common widget attributes. In addition, most widgets support their
own unique attributes. The VMS DECwindows Toolkit Routines Reference
Manual describes the complete set of attributes that each widget supports.

All widgets support the following basic types of attributes:
* Size and position attributes (geometry management)

* Appearance attributes

¢ Callback attributes

1.4.1 Size and Position Attributes

1-14

All widgets support size and position attributes. Table 1-2 lists these
attributes.

Table 1-2 Widget Size and Position Attributes

Attribute Description

width Specifies the width of the widget in pixels

height Specifies the height of the widget in pixels

X Specifies the x-coordinate of the upper left corner of the widget
y Specifies the y-coordinate of the upper left corner of the widget

Note that, while you can specify the size and position of a widget using
these attributes, for many widgets it is preferable to let the widget define
its own size and position in the context in which it is used. The size and
position of a widget is controlled by its parent. A child can request to be
a certain size, but its parent makes the final decision. Parent widgets
must weigh the sizing and positioning needs of their other children. In
addition, parent widgets are children themselves and must negotiate their
space requirements with their parent. This negotiation between parent
and child for display space is called geometry management.

Overview of the XUI Toolkit
1.4 Widget Attributes

14,2 Appearance Attributes

All XUI Toolkit widgets support attributes that specify aspects of their
appearance. Many of these attributes are unique to each widget. For
example, the push button widget can appear on the display with a shadow
to give a three-dimensional impression. However, you can create push
buttons without shadows by setting the push button widget shadow
attribute to false.

If you do not set an appearance attribute of a widget, the XUI Toolkit uses
a default value. The default values for widget attributes create widgets
that conform to the recommendations of the XUI Style Guide.

1.4.3 Callback Attributes

All XUI Toolkit widgets support attributes that let you associate callback
routines with their callback reasons. For example, Table 1-3 lists the four
callback attributes supported by the push button widget.

Table 1-3 Callback Attributes Supported by the Push Button Widget

activate_callback Callback performed when a user clicks MB1 inside the push
button widget

arm_callback Callback performed when a user holds down MB1 inside the
push button widget

disarm_callback Caliback performed when a user moves the pointer cursor off
the push button widget without releasing MB1

help_callback . Callback performed when a user presses the Help key and
clicks MB1 in the push button widget

1.4.4 Assigning Values to Widget Attributes

When you create a widget, the XUI Toolkit determines the initial settings
of widget attributes from the following sources, checked in order:

1 The argument list supplied with the creation routine

2 The widget attribute database .

3 The default values contained in the widget

The XUI Toolkit first checks the argument list for attribute values. You
assign values to widget attributes when you create the widget using high-
level routines, low-level routines, or UIL/DRM. (See Section 2.4 for more
information about using these widget creation mechanisms.) If you have

specified any attribute values in an argument list, the XUI Toolkit assigns
this value to the widget when it creates it.

For any attributes to which you do not assign values, the XUI Toolkit
retrieves a default value from a database of attribute values.

1-15

Overview of the XUl Toolkit
1.4 Widget Attributes

If the XUI Toolkit cannot find a value for an attribute in an argument list
or an attribute database, the default value contained in the widget itself is
used. Each widget contains a default value for every attribute it supports.

1-16

? Creating a VMS DECwindows Application

This chapter describes how to create an application using the XUI Toolkit.
The chapter includes information about the following:

* XUI Toolkit symbol definition files

* Initializing the XUI Toolkit

* Creating the widgets in the user interface

¢ Managing the widgets in the user interface

¢ Realizing the widgets in the user interface

¢ Entering the main processing loop

* Creating a callback routine

¢ Manipulating the interface at run time

This chapter also includes complete listings for three versions of the Hello

World! sample application. Each version illustrates a different method for
creating the widgets in the interface.

2.1 Overview of a VMS DECwindows Application
A typical VMS DECwindows application consists of three sections:
~ & Initial setup of the user interface
* Main input loop

¢ Callback routines

£

In the first section, you create the widgets that make up the user interface
and make them appear on the display. In this section, you must perform
the following steps:

¢ Initialize the XUI Toolkit

* Create the widgets used in the interface

* Manage the widgets

* Realize the widgets to make them appear on the display

In the second section, your application enters an infinite loop in which it
waits for input from a user. When the event or sequence of events the
widget has defined as a reason occurs, the widget notifies the application
using the callback mechanism. Your application responds to this user
interaction by executing a callback routine.

The last section of your application contains the callback routines that
implement the functions of your application.

2-1

Creating a VMS DECwindows Application
2.1 Overview of a VMS DECwindows Application

Figure 2—-1 illustrates the structure of a typical VMS DECwindows
application.

Figure 2-1 Structure of an XUl Application

Set Up the
User

Interface

Callback Callback Callback
Routine Routine Routine oo
ZK-0140A-GE

The following sections describe the components of a VMS DECwindows
application and illustrate this structure by creating the Hello World!
application, introduced in Chapter 1.

2.2 Symbol Definition Files

2-2

Before you start setting up the user interface, you must include the XUI
Toolkit symbol definition file in your application. The XUI Toolkit routines
are available in the VAX binding and the MIT C binding. Use the symbol
definition file associated with the language and binding you are using

to write your application. Table 2-1 shows the symbol definition files
available for the VAX and MIT C bindings. The symbol definition files for
the VAX binding reside in SYS$LIBRARY:. The symbol definition files for
the MIT C binding reside in the DECW$INCLUDE: directory.

Creating a VMS DECwindows Application
2.2 Symbol Definition Files

Table 2-1 Symbol Definition Files

File Specification " Description

MIT C Binding

DwtAppl.h Contains symbol definitions (constants for commonly
used arguments, for example) of interest to application
developers

DwtWidget.h Contains symbol definitions of interest to programmers

who will be building their own widgets

VAX Binding

DECWS$DWTDEF' Contains symbol definitions (constants for commonly
used arguments, for example) of interest to application
developers

DECW$DWTWIDGETDEF' Contains symbol definitions of interest to programmers
who will be building their own widgets

1The file type for these files depends on the language. There is a symbol definition file available
for several languages (including VAX BASIC, VAX Pascal, VAX BLISS, VAX Ada, VAX PL/,
VAX MACRO, VAX C, and VAX FORTRAN).

The examples used in this chapter build the Hello World! application using
the C language with the MIT C binding. In Example 2-1, the Hello World!
application includes the symbol definition file. For more information about
the symbol definition files used with other languages and examples of
Hello World! written using the VAX binding, see Appendix B.

Example 2-1 Including the XUl Toolkit Symbol Definition File in an
Application

ﬂ#iﬁclude <decw$include/DwtAppl.h>
Bstatic void helloworld button_activate();
static DwtCallback callback_argl[2];

/***kkk%k%x% Main Program rrkkxxxkx/

Oint main(argc, argv)
unsigned int argc;
char **argv;

@ In this statement, the Hello World! application includes the XUI
Toolkit symbol definition file.

@ These declarations are used by the callback mechanism. Later sections
describe their use.

© This statement is the required starting point for a C program.

2-3

Creating a VMS DECwindows Application
2.3 Initializing the XUl Toolkit

2.3 Initializing the XUl Toolkit

To initialize the XUI Toolkit, use the INITIALIZE intrinsic routine. This
routine performs three essential startup functions:

¢ Establishes the connection between the application program and the
server

e Initializes internal XUI Toolkit data structures

* (Creates the application shell widget
The INITIALIZE routine takes the following arguments:

* A name you assign to the application, passed as a text string
* A class name you assign to the application, passed as a text string

* An array of options that instruct the application how to parse the
command line

¢ The number of command line option instructions
¢ The number of command line arguments passed at application startup

* An array of command line arguments passed as text strings

The name you assign to your application appears in the title bar of your
main window. Example 2-2 shows the initialization of the XUT Toolkit in
the Hello World! application.

Example 2-2 Initializing the XUl Toolkit

@vidget toplevel, helloworldmain, button, label;
Arg arglist([5];

@toplevel = XtInitialize("Hi", "helloworldclass",NULL, 0, &argc, argv);

XtSetArg(arglist[0], XtNallowShellResize, TRUE);
QXtSetValues(toplevel, arglist, 1):

© This statement creates variables to hold the identifiers of the widgets
used in the Hello World! application. The variable named toplevel
will hold the widget identifier returned by the INITIALIZE intrinsic
routine.

® The Hello World! application calls the intrinsic routine INITIALIZE
to initialize the XUI Toolkit. The Hello World! application names
the application with the text string "Hi". This text will appear in
the title bar of the application. The class name of the application
is the text string "helloworldclass. The Hello World! application
does not pass any command line option instructions or command line

2-4

Creating a VMS DECwindows Application
2.3 Initializing the XUI Toolkit

arguments. The INITIALIZE intrinsic routine returns the identifier of
the application shell widget in the variable foplevel.

© After creating the shell widget, the Hello World! application sets one
of the attributes of the shell widget using the intrinsic routine SET
VALUES. The attribute, named XtNallowShellResize, is set to true.
This enables the application shell widget to change its size if the child
of the shell widget requests a size change. The attribute is assigned
a value in an argument list. See Section 2.4.1.2 for information about
creating argument lists.

When you initialize the XUI Toolkit, you obtain an application context
for your application. An application context is an internal data structure
in which the XUI Toolkit maintains information about the state of your
application. For example, the XUI Toolkit stores the list of displays to
which your application has open connections in an application context.
This structure also contains the list of work procedures you register. (For
information about work procedures, see Section 2.8.4.) Every application
using the XUI Toolkit has an application context.

The INITIALIZE intrinsic routine creates a default application context
for your application. However, you can also explicitly create one for your
application by calling the CREATE APPLICATION CONTEXT intrinsic
routine. If you wish to create your own application context, you must use
the TOOLKIT INITIALIZE intrinsic routine to initialize the XUI Toolkit,
instead of the INITIALIZE intrinsic routine, and you must explicitly open
a connection to a display by calling the OPEN DISPLAY intrinsic routine.
In addition, you must create the application shell widget at the top of
your application widget hierarchy by calling the APPLICATION CREATE
SHELL intrinsic routine. The INITIALIZE intrinsic routine performs all
these tasks for you.

Example 2-3 shows the initialization of the XUI Toolkit in a version of the
the Hello World! application that creates its own application context.

Example 2-3 Creating Your Own Application Context

Widget toplevel, helloworldmain, button, label;

Arg arglist[5];
“XtAppContext
@pisplay *display;

context;

OxtToolkitinitialize () ;

Qcontext

edisplay

XtCreateApplicationContext () ;

XtOpenDisplay(context, "mynode::0", "Hi", "testclass",

NULL, O, &argc, &argv);

XtSetArg(arglist[ac], XtNallowShellResize, TRUE); ac++;

Btoplevel

XtAppCreateShell("Hi", "helloworldclass",

applicationShellWidgetClass, display, arglist, ac);

© Declaration of an application context.

2-5

Creating a VMS DECwindows Application
2.3 Initializing the XUl Toolkit

Declaration of a variable to hold a pointer to a display.

2]

© The TOOLKIT INITIALIZE intrinsic routine is called to initialize
the toolkit. This routine takes no arguments and does not return
anything.

©® The CREATE APPLICATION CONTEXT intrinsic routine returns an
application context. This application context will be used throughout
the application as an argument to other intrinsic routines.

©® The OPEN DISPLAY intrinsic routine is called to open a connection
to a display. You pass the application context as the first argument to
the routine. The XUI Toolkit maintains a list of open connections to
displays in the application context.

® The APPLICATION CREATE SHELL intrinsic routine is called
to create the application shell widget. This routine returns the
identifier of the application shell widget. Note that, when you use
the APPLICATION CREATE SHELL intrinsic routine, you can assign
values to shell widget attributes when you create the widget. When
you create the shell widget with the INITIALIZE intrinsic routine, you
must use the SET VALUES intrinsic routine to assign values to shell
widget attributes after it has been created.

Note that, if you create your own application context, you must use the
version of the intrinsic routines that accepts an application context as an
argument. Many intrinsic routines have two interfaces: one that takes
an application context as its first argument and one that does not. For
example, you would use the ADD TIMEOUT intrinsic routine if you accept
the default application context and you would use the APPLICATION
ADD TIMEOUT intrinsic routine if you create your own application
context. (For another example, see Section 2.7.) The routines without the
application context argument use the default application context. You can
use either set of routines to create a VMS DECwindows application.

2.3.1 Application Shell Widget

2-6

The application shell widget handles the interaction between the
application and the outside world; that is, the VMS DECwindows
environment in which it runs. When a user moves or resizes an
application running in the VMS DECwindows environment, the moving
and resizing of the application is controlled by the window manager.
Because more than one application can run in the VMS DECwindows
environment simultaneously, the window manager controls the sizing
and positioning of all applications that appear on a display. (For more
information about the window manager, see Chapter 14.)

An application shell widget is a rectangular window that sizes itself to
exactly fit its child. The child obscures the application shell widget on
the display. A shell widget can have only one child, which is typically the
widget at the top of your application widget hierarchy. Figure 2-2 is a
graphic representation of the relationship between the application shell
widget, the window manager, and your application.

Creating a VMS DECwindows Application
2.3 Initializing the XUl Toolkit

Figure 2-2 Relationship of Shell Widget to Application

Title Bar.
Y

Window —\
Manager
Window
_~
_~1
Application 4
Shell ™— Main Application
Widget Widget
Window Window

ZK-0397A-GE

2.3.2 Using Multiple Shell Widgets

An application should only call the INITIALIZE intrinsic routine once. To
have multiple windows for your application, you can do one of two things:

¢ Use a pop-up dialog box

¢ Create another shell widget

To create another shell widget, use the APPLICATION CREATE SHELL
or the CREATE POPUP SHELL intrinsic routine. The XUI Toolkit defines

several types of shell widgets. The application shell widget is typically the
top of an application widget hierarchy.

2-7

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2.4 Creating the Widgets in the Intérfacé

After initializing the XUI Toolkit and creating the application shell widget,
you must create the widgets that make up the user interface of your
application. When you create a widget, you specify three aspects of the
widget:

¢ The parent/child relationship of the widget
* The initial appearance of the widget
¢ The callback routines associated with the widget

When you create a widget, the XUI Toolkit allocates memory for the
internal data structures that define the widget. In addition, the parent of
the widget is notified that it is responsible for the widget being created.
Every widget in an application has a parent except for shell widgets
created by the APPLICATION CREATE SHELL intrinsic routme (or the
INITIALIZE intrinsic routine).

To release the memory allocated for a widget, use the intrinsic routine
DESTROY WIDGET. Because creating widgets consumes system
resources, do not destroy widgets that you may want to reuse in your
application. Instead, make widgets appear and disappear from the
display by manipulating their parent’s list of managed children. For
more information about this topic, see Section 2.5.

You can create the widgets that comprise a user interface by calling high-
level or low-level widget creation routines in your application program,

or you can define the interface in a'UIL module. Table 2-2 lists the UIL
object type, the high-level creation routine, and the low-level creation
routine for each widget in the XUI Toolkit. The following sections describe
how to use these mechanisms. Note that, for some widgets, the name of
the creation routine is different for the high-level routine and the low-level
routine. In addition, the UIL object type for some widgets is different than
the high- or low-level creation routine name.

Table 2-2 Widget Creation Mechanisms

Widget

UIL Object Type High-Level Routine Low-Level Routine

Attached dialog box

Caution box
Color mixing
Command window

Compound string
text

Dialog box
File selection

attached_dialog_box ATTACHED DIALOG ATTACHED DlALOG BOX CREATE
BOX

caution_box CAUTION BOX CAUTION BOX CREATE

color_mix No high-level routine - COLOR MIX CREATE

command_window COMMAND WINDOW COMMAND WINDOW CREATE

compound_str_text CSTEXT CSTEXT CREATE

dialog_box DIALOG BOX DIALOG BOX CREATE

file_selection FILE SELECTION * FILE SELECTION CREATE

2-8

(continued on next page)

2.4.1

Creating a VMS DECwindows Application

2.4 Creating the Widgets in the Interface

Table 2-2 (Cont.) Widget Creation Mechanisms

Widget UIL. Object Type High-Level Routine Low-Level Routine

Help help_box HELP HELP CREATE

Label label LABEL LABEL CREATE

List box list_box LIST BOX LIST BOX CREATE

Main window main_window MAIN WINDOW MAIN WINDOW CREATE

Menu bar menu_bar MENU BAR MENU BAR CREATE

Message box message_box MESSAGE BOX ' MESSAGE BOX CREATE
Option menu option_menu OPTION MENU OPTION MENU CREATE
Pop-up attached popup_attached_db ATTACHED DIALOG ATTACHED DIALOG BOX POPUP
dialog box BOX' CREATE

Pop-up dialog box popup_dialog_box DIALOG BOX' DIALOG BOX POPUP CREATE
Pop-up menu popup_menu MENU? MENU POPUP CREATE

Puli-down menu
entry

Pull-down menu
Push button
Radio box
Scale

Scroll bar

Scroll window
Selection box
Separator
Simple text
Toggle button
Window

Work area menu

Work-in-progress
box

pulldown_entry

pulldown_menu
push_button
radio_box
scale
scroll_bar
scroll_window
selection
separator
simple_text
toggle_button
window
work_area_menu

work_in_progress_
box

PULL DOWN MENU
ENTRY

MENU?

PUSH BUTTON
RADIO BOX
SCALE

SCROLL BAR
SCROLL WINDOW
SELECTION
SEPARATOR

S TEXT

TOGGLE BUTTON
WINDOW

MENU?

WORK BOX

PULL DOWN MENU ENTRY CREATE

MENU PULLDOWN CREATE
PUSH BUTTON CREATE
RADIO BOX CREATE
SCALE CREATE

SCROLL BAR CREATE
SCROLL WINDOW CREATE
SELECTION CREATE
SEPARATOR CREATE

S TEXT CREATE

TOGGLE BUTTON CREATE
WINDOW CREATE

MENU CREATE

WORK BOX CREATE

"The high-level routines DIALOG BOX and ATTACHED DIALOG BOX allow you to specify the pop-up variant in their style

argument.

2The high-level routine MENU allows you to specify whether the menu is a pop-up, pull-down, or work area menu in its format

argument.

Using Low-Level Widget Creation Routines

Every XUI Toolkit widget has a corresponding low-level widget creation
routine (listed in Table 2-2). By convention, the name of the routine is the
name of the widget followed by the word create. For example, the low-level
routine for the push button widget is called PUSH BUTTON CREATE.

2-9

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2-10

All low-level widget creation routines take the same four arguments.
Table 2—-3 describes these arguments.

Table 2-3 Standard Arguments Used with Low-Level Routines

parent_widget The widget identifier of the parent widget.

name A name you assign to the widget.

override_arglist The address of an argument list containing values for attributes
of the widget.

override_argcount The number of arguments in the argument list. If you do not

specify an argument list, this argument must be specified as 0.

24.1.1

Using Low-Level Routines to Define the Parent/Child Relationship of a Widget

You use the parent_widget argument to define the parent/child
relationship of the widget you are creating. Pass the widget identifier
of the parent as the value of this low-level routine argument. Note that
parent widgets must be created before their children.

In the following example, taken from the Hello World! application, the
push button widget is created as the child of the dialog box widget by
using the low-level widget creation routine PUSH BUTTON CREATE. The
widget identifier of the dialog box widget, helloworldmain, is passed as the
first argument to the routine.

button = DwtPushButtonCreate(helloworldmain, "button",arglist,4):

24.1.2 Using Low-Level Routines to Define the Initial Appearance of a Widget

You define the initial appearance of a widget by assigning values to widget
attributes. Each widget supports a set of attributes that controls aspects
of its appearance such as width and height. Using low-level routines, you
assign values to widget attributes in an argument list. If you assign a
value to an attribute that the widget does not support, the widget ignores
the value.

An argument list is an array of argument data structures. In each
argument data structure, which is defined by the XUI Toolkit, you
associate the name of the widget attribute with the value you want
assigned to that attribute. The following is the definition of the argument
data structure.

typedef struct {
char *name;
XtArgvVal wvalue;
} Arg, *ArgList;

Figure 2-3 details the VAX binding definition of this structure.

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

Figure 2-3 Argument Data Structure (VAX Binding)

31 0
arg_name

arg_value

ZK-0541A-GE

The XUI Toolkit defines the name of each widget attribute as a constant.
The VMS DECwindows Toolkit Routines Reference Manual lists the
complete set of attributes supported by each widget, with their associated
constants. '

Widget attributes can take a variety of values, such as integers or
character strings. The XUI Toolkit defines the value field of this data
structure as a longword, named XtArgVal. If the attribute value fits into
a longword, the value field of the structure contains the actual value. If
the size of the value exceeds a longword, the value field of the structure
contains a pointer to the value.

As a convenience, the XUI Toolkit provides a routine you can use to fill in
the argument data structures in an argument list. This intrinsic routine
SET ARG takes the following three arguments:

¢ The address of the argument list element
¢ The name of the widget attribute
* The value being assigned to the attribute

In the following example, taken from the Hello World! application, values
for push button widget attributes are specified in an argument list:

Arg arglist([5];

XtSetArg(arglist[0], DwtNx, 15);

XtSetArg(arglist[1], DwtNy, 40);

XtSetArg(arglist[2], DwtNactivateCallback, callback_arg):
XtSetArg(arglist[3], DwtNlabel, DwtLatinlString("Hello\nWorld!")):;

button = DwtPushButtonCreate (helloworldmain, "button",arglist,4):;

The attributes include the x- and y-coordinates that determine the position
of the push button widget and the text label the push button widget
contains. The argument list, named arglist, is declared as an array of
argument data structures. The address of the argument list is passed

as the third argument to the PUSH BUTTON CREATE routine. (The
fourth argument to the PUSH BUTTON CREATE routine is the number of
attributes specified in the argument list.)

2-11

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2-12

2.4.1.3 Using Low-Level Routines to Associate Callback Routines with a Widget

To use a low-level routine to associate a callback routine with a widget,
you must pass a callback routine list as the value of a callback attribute.
As with other widget attributes, using the low-level routine, you assign the
value to the attribute in an argument list (described in Section 2.4.1.2).

A callback routine list is a null-terminated array of callback routine data
structures. A callback routine data structure is an XUI Toolkit-defined
data structure that pairs the address of the callback routine with any
application-specific data you specify. This application-specific data is
called a tag. The following is the definition of the callback routine data
structure:

typedef struct {
VoidProc proc;
int tag;
} DwtCallback, *DwtCallbackPtr;

Figure 24 is the VAX binding definition of this data structure.
Figure 2-4 Callback Routine Data Structure (VAX Binding)

31 0
callback_proc

callback_tag

ZK-0268A-GE

The first field of the callback routine data structure contains the address
of the callback routine. The second field of the data structure contains the
actual tag value, if it can fit into a longword. If the tag cannot fit into a
longword, the tag field contains the address of the tag. A tag can be any
data you want to associate with the widget, such as an integer, text string,
or data structure. When the widget performs a callback, it passes this
data to your application. The XUI Toolkit performs no processing on this
data.

The Hello World! application associates the callback routine, named
helloworld_button_activate, with the push button widget attribute
activate_callback. Example 2—4 shows how the Hello World! application
creates a callback routine list by declaring an array, named callback_
arg, consisting of two callback routine data structures. The example
assigns the address of the callback routine and a tag value to members
of the callback routine data structure. Note that you must terminate a
callback routine list by assigning a null value to the last callback routine
structure.

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

Example 2-4 Creating a User Interface Using Low-Level Routines

.

@static void helloworld button activate();

@static DwtCallback callback_arg[2];

@Widget toplevel, helloworldmain, button, label;
Arg arglist[5]; :

ehelloworldmain = DwtDialogBoxCreate (toplevel, "MAINWIN", NULL, O):;

ecallback__arg[O] .proc = helloworld button_activate;
callback_arg[0].tag = 0O;
callback_arg[l].proc = NULL;

@XtSetArg (arglist[0], DwtNx, 15);
XtSetArg (arglist[l], DwtNy, 40);
XtSetArg (arglist[2], DwtNactivateCallback, callback_arg);

XtSetArg

Obutton =

(arglist[3], DwtNlabel, DwtLatinlString("Hello\nWorld!"));

DwtPushButtonCreate (hellowbrldmain, "button", arglist, 4):;

The Hello World! application makes a forward declaration of the
callback routine named helloworld_button_activate to be able to refer
to the routine in a callback routine list.

The Hello World! application declares the callback routine list as

“an array of callback routine data structures. Note that the array
contains two elements. ‘All callback routine lists must contain at least
two elements because a callback routine list is a null-terminated list.
Assign the value null to the last element of the array to signify the
end of the list. .

The Hello World! ‘application creates variables to hold the identifiers
of the widgets used in the application.

The Hello World! application creates the main widget of its user
interface, a dialog box widget, using the low-level routine DIALOG

- BOX CREATE. Note that the application does not set any widget

attributes of the dialog box. The override_arglist argument is passed
as null.

In these three statements, the example assigns values to elements of
the callback routine list. Each callback routine data structure contains
the address of a callback routine and a tag. The first statement
assigns the address of the callback routine used in the Hello World!
application as the value of the first member of the data structure.
The second statement assigns the tag value to the second member of

2-13

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

this data structure. The third statement assigns a null to a callback
routine data structure signifying the end of the callback routine list.

@® These four calls to the intrinsic routine SET ARG create the argument
list used to set attributes of the push button widget. In this argument
list, the Hello World! application positions the push button widget
within its parent by assigning values to its x- and y-coordinates. In
addition, the text string "Hello World!" is passed as the label the push
button widget will contain. A callback routine is associated with the
activate callback.

All text strings that are to appear on the display must be converted
to compound strings. The example shows how the text string used
as the label in the push button widget is converted into a compound
string using the routine LATIN1 STRING. Section 5.6 provides more
information about compound strings. (UIL performs this conversion
automatically. See Section 3.2.7.3 for more information.)

@ This statement creates the push button widget using the low-level
routine PUSH BUTTON CREATE. In the four standard arguments
to the low-level routine, the Hello World! application names the
dialog box widget as the parent of the push button widget, assigns the
name button to the widget, passes the address of the argument list
containing attribute values, and passes the number of attributes set in
the argument list.

2.4.2 Using High-Level Widget Creation Routines

2-14

Every XUI Toolkit widget has a corresponding high-level creation routine

(listed in Table 2-2). By convention, the name of the high-level routine is
the name of the widget. For example, the high-level routine for creating a
push button widget is called PUSH BUTTON.

All high-level widget creation routines take the same first two arguments.
These are the widget identifier of the parent widget and the name you
assign to the widget. The other arguments vary for each widget because,
instead of using an argument list to assign values to widget attributes, the
high-level routines accept attribute values as arguments to the routine.
As an example, Table 2—4 lists the arguments accepted by the high-level
routine used to create a push button widget.

Table 24 Arguments Used with the High-Level Routine PUSH BUTTON

parent_widget The widget identifier of the parent widget

name A name you assign to the widget

X The x-coordinate of the upper left corner of the widget
y . The y-coordinate of the upper left corner of the widget

(continued on next page)

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

Table 2—4 (Cont.) Arguments Used with the High-Level Routine PUSH

BUTTON
label The text string to be displayed in the widget
callback The address of a callback routine list
help_callback The address of a callback routine list

The VMS DECwindows Toolkit Routines Reference Manual describes the
arguments supported by each of the high-level routines.

2.4.2.1 Using High-Level Routines to Define the Parent/Child Relationship of a
Widget
As with low-level routines, you specify the parent of the widget in the
parent_widget argument. Pass the widget identifier of the parent as the
value of this high-level routine argument. Note that parent widgets must
be created before their children.

In the following example, the push button widget in the Hello World!
application is created as the child of the dialog box widget by using the
high-level widget creation routine PUSH BUTTON. The widget identifier
of the dialog box widget, helloworldmain, is passed as the first argument
to the routine.

button = DwtPushButton (helloworldmaih, "pbutton”, 15, 40,
DwtLatinlString ("Hello\nWorld!"), callback_arg, 0);

2.4.2.2 Using High-Level Routines to Define the Initial Appearance of a Widget
As with low-level routines, you specify the initial appearance of a widget
by assigning values to widget attributes. However, instead of assigning
values to widget attributes in an argument list, with a high-level routine
you pass the attribute values as arguments to the high-level routine. The
high-level routine arguments provide access to the same widget attributes
as the argument list used with a low-level routine. For example, the label
argument of the PUSH BUTTON routine provides access to the same
attribute as the label attribute used in an argument list.

Note that high-level widget creation routines only provide access to a
subset of the attributes supported by the widget at widget creation time.
You can use the widget manipulation routines (described in Section 2.9.2)
to access the complete set of widget attributes after the widget has been
created. However, it is more efficient to set widget attributes when you
create the widget.

In the following example, values for push button widget attributes are
specified as arguments to the PUSH BUTTON routine. The attributes
include the x- and y-coordinates that determine the position of the push
button widget in the dialog box widget and the text label the push button
widget contains.

button = DwtPushButton(helloworldmain, "button", 15, 40,
DwtLatinlString("Hello\nWorld!"), callback_arg, 0);

2-15

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2.4.2.3 Using High-Level Routines to Associate Callback Routines with a Widget
To use a high-level routine to associate a callback routine with a widget,
you must pass a callback routine list as the value of an argument to
the high-level routine. See Section 2.4.1.3 for information about how to
create a callback routine list. Each high-level routine includes arguments
associated with the callback supported by the widget.

The high-level routine might not define arguments for every callback
supported by a widget. In these cases, the callback routine is associated
with the callback reason the widget identifies as its main callback. For
example, the main callback supported by the push button widget is its
activate callback reason.

In Example 2-5, the Hello World! application associates the callback
routine with the push button widget by passing the address of a callback
routine list as an argument to the routine.

Example 2-5 Creating a User Interface Using High-Level Routines

@static void helloworld button_activate();

®static DwtCallback callback_argl2];
@Widget toplevel, helloworldmain, button, label;

Ohellovworldmain = DwtDialogBox (toplevel, "MAINWIN", TRUE,O,O,
DwtlLatinlString ("Hi"), DwtWorkarea, 0, 0);

Qcallback_arg[O] .proc = helloworld button_activate;
callback_arg[0].tag = 0;
callback arg(l].proc = NULL;

@button = DwtPushButton(helloworldmain, "button", 15, 40,
DwtLatinlString("Hello\nWorld!"), callback_arg, 0);

@ The example makes a forward declaration of the callback routine
named helloworld_button_activate to be able to refer to the routine in
a callback routine list.

® The example declares the callback routine list. The callback routine
list is declared as an array of callback routine data structures. Note
that the array contains two elements. All callback routine lists must
contain at least two elements because a callback routine list is a null-
terminated list. The last element of the array is always set to null to
signify the end of the list.

2-16

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

© The Hello World! application creates variables to hold the identifiers
of the widgets used in the application. The variable button will hold
the push button widget identifier.

O The Hello World! application creates the main widget of its user
interface, the dialog box widget, using the high-level routine DIALOG
BOX.

© As with the low-level routine, the Hello World! application creates a
callback routine list with these three assignment statements. This list
is used to associate a callback routine with a widget. Section 2.4.1.3
describes how to create a callback routine list.

@ This statement creates the push button widget using the high-level
routine PUSH BUTTON. In the arguments passed to the high-level
widget creation routine, the Hello World! application names the
parent of the push button widget and assigns the name "button" to
the widget. In addition, the Hello World! application passes values
for several widget attributes as arguments to the high-level routine.
These attributes include values for the x- and y-coordinates of the
push button widget, the text string to be contained in the push button
widget, and the address of a callback routine list.

As with the low-level widget creation routine, the example shows how
the text string used as the label in the push button widget is converted
into a compound string using the routine LATIN1 STRING. Section 5.6
provides more information about compound strings.

2.4.3 Using UIL and DRM to Create Widgets

Every XUI Toolkit widget has a corresponding UIL object type. By
convention, the UIL object type is the name of the widget made into a
single word using the underscore character. For example, the UIL object
type for the push button widget is push_button. Table 2-2 lists the UIL
object types for all XUI Toolkit widgets.

As with high- and low-level routines, you can use UIL to define the same
three aspects of the widgets in a user interface:

¢ The parent/child relationship of the widget
* The initial appearance of the widget

¢ The callback routines associated with the widget

Using UIL, you define these aspects of a widget in a UIL object
declaration. A UIL module can contain the object declarations of all the
widgets in an interface. You then compile this interface definition using
the UIL compiler and store the output in a file called a User Interface
Definition (UID) file. At run time, your application calls DRM routines to
open the UID file and fetch the compiled interface definition. The DRM
routine FETCH WIDGET creates the widgets according to the definitions
you specify in the UIL module. You can fetch the entire interface with one
call to the FETCH WIDGET routine.

2-17

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

This section provides a brief overview of how to define an interface in
a UIL module. For more information about using UIL and DRM, see
Chapter 3.

2.4.3.1 Using UIL to Define the Parent/Child Relationship of a Widget
Using UIL, you specify the children of a widget in the object declaration
of the parent, instead of specifying the parent of the widget when you
create the child (as with the high- and low-level routines). You specify
the children by name in the controls list section of the parent object
declaration.

In the following example from the Hello World! application UIL module,
the push button widget, named helloworld_button, is specified as the child
of the dialog box widget in the controls list of the dialog box widget object
declaration. (The label widget, named helloworld_label, which is the only
other child of the dialog box widget in the Hello World! application, also
appears in the controls list.)

object
helloworld main : dialog_box {
controls {
label helloworld label;
push_button helloworld button;
}i
}i

2.4.3.2 Using UIL to Define the Initial Appearance of a Widget
You define the initial appearance of a widget by assigning values to widget
attributes in the arguments list section of a UIL object declaration. UIL
defines a keyword that identifies every widget attribute. For example,
the keyword identifying the label attribute of a push button widget is
label_label. UIL provides access to the complete set of widget attributes.

In the following example from the Hello World! application UIL module,
values for push button widget attributes are specified in the arguments
list of the push button widget object declaration. The attributes include
the x- and y-coordinates that specify the position of the push button widget
and the text label the push button widget contains.

object
helloworld button : push button {
arguments {
x = 15;
y = 40;
label label = compound string(’Hello’,separate=true)&
compound_string(’'World!’);
Vi
callbacks {
activate = procedure helloworld button_activate();
}i
}:

2-18

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

2.4.3.3 Using UIL to Associate Callbacks with a Widget
You associate callbacks with a widget in the callbacks list section of
the object declaration. As with the other widget attributes, UIL defines
keywords to identify each of the callback attributes supported by a widget.
For example, the callback attribute for the activate reason supported by
the push button widget is identified by the ACTIVATE keyword. However,
you do not have to create a callback routine list to pass to the callback
attribute. In a UIL module, you declare the callback routine by name in
the procedure section of a UIL module. You can use this name to refer to
the callback routine in the remainder of the UIL module in callbacks lists.

You associate a tag with the callback routine by inserting the value
between the parentheses used in the procedure name. (The Hello World!
application does not use the tag feature. For an example of this capability,
see Section 3.2.6.)

In Example 2-6, the Hello World! application associates the callback
routine, named helloworld_button_activate, with the push button widget
by listing it in the callbacks list section of the object declaration.

Example 2-6 Using UIL to Define a Widget

aprocedure
helloworld_button_ activate();

@object
(3 helloworld main : dialog_box {
controls {

label helloworld label;
(4] push_button helloworld button;
}i
}i
object
helloworld button : push button {
6 arguments {
x = 15;
y = 40;
label_label = compound_string('Hello' , separate=true) &
compound_string(’World!’);
}:
@ callbacks {

activate = procedure helloworld button_activate();
}i
}i

© In this statement, Hello World! declares the callback routine in the
procedure section of a UIL module. The name of the callback routine
can be used throughout the UIL module. This procedure must also be

2-19

Creating a VMS DECwindows Apphcatlon
2.4 Creating the Widgets in the Interface

2-20

6

declared and registered with DRM i in your apphcatlon program (see

Example 2-17).
The UIL keyword OBJECT signifies the start of an object declaration.

This object declaration defines a dialog box widget using the UIL object
type dialog_box. The object declaration names the widget helloworld_
main.

In the object declaration of the dialog box widget, the parent/child
relationship of the push button widget is defined. The controls list
section lists the two widgets that are children of the dialog box widget
by their object type and the name assigned to them in the UIL module.
In the Hello World! application, the push button widget is named
helloworld_button.

In the object declaration of the push button widget, the initial
appearance of the push button widget is defined in the arguments
list section. The Hello World! application positions the push button

~widget by assigning values to the x- and y-coordinates. In addition, the

module creates a compound string containing the text "Hello World!"
and assigns it as the value of the label attribute of the push button
widget. To make the text "Hello World!" appear on two separate lines,
the UIL module uses the UIL keyword SEPARATE. The SEPARATE
function ensures that a newline character will appear after the word
"Hello". The module then creates the word "World!" as a separate
compound string and concatenates the two strings.

In the callbacks list section of the object declaration, the Hello World!
application associates a callback routine with the activate_callback
attribute.

At run time, you create the interface defined in the UIL module by using
the DRM routine FETCH WIDGET. Example 2-7 shows how the Hello
World! application uses DRM routines to open the interface definition
file, match the callback routines specified in the UIL module with their
addresses in the application program, and fetch the application widget
hierarchy.

Creating a VMS DECwindows Application
2.4 Creating the Widgets in the Interface

Example 2-7 Creating the Interface at Run Time Using DRM

(1 183 (DwtOpenHierarchy (1,vec,NULL, &s_DRMHierarchy) != DRMSuccess)
{
printf ("can’t open hierarchy"):;

}
ngtRegisterDRMNames (regvec, regnum) ;

©if (DwtFetchWidget (s_DRMHierarchy, "helloworld main"”, toplevel,
&ghelloworldmain, &class) != DRMSuccess)
printf ("can’t fetch interface"):

@ This statement opens the compiled interface definition file using the
DRM routine OPEN HIERARCHY.

® The example fills in the actual values of symbols used in the interface
definition file. For example, this call to the DRM routine REGISTER
DRM NAMES resolves references to addresses of callback routines.

© The example retrieves the main application widget, helloworld_main.
The DRM routine FETCH WIDGET retrieves the widget definitions
for all of its children as well. The FETCH WIDGET routine creates all
the widgets in the interface.

Procedures declared in a UID file cannot be bound to addresses prior to
running the program. This is a function usually done by the linker (which
accepts object modules as input). DRM provides a registration facility that
accepts the string name and the procedure address and maps the name to
the address.

For more information about use of the DRM routines, see Section 3.3.

2.5 Managing the Widgets in the Interface

Once you create the widgets of the user interface, the next step is to
manage them. Managing a widget adds the widget to its parent’s list

of managed children. The parent widget is responsible for the physical
layout of all of its children. When you manage a widget, the parent widget
calculates its space requirements to accommodate all of its managed
children. Managing a widget makes it displayable.

You can manage a single widget at a time using the intrinsic routine
MANAGE CHILD, or you can manage multiple children of the same
parent at the same time using the intrinsic routine MANAGE CHILDREN.
Section 2.5.1 and Section 2.5.2 describe these routines.

You can remove a widget from its parent’s list of managed children using
the UNMANAGE CHILD intrinsic routine. If the widget and its parent
appear on the display, removal causes the child to disappear from the
display. Removing a widget from its parent’s list of managed children does
not destroy the widget. You can make the widget reappear on the display

2-21

2.5.1

Creating a VMS DECwindows Application
2.5 Managing the Widgets in the Interface

by managing it again. To remove a group of children of the same parent in
a single call, use the UNMANAGE CHILDREN intrinsic routine.

Note that manipulating a parent’s list of managed children is a very
effective way to make widgets appear, disappear, and then reappear
during the execution of your application. Creating, destroying, and then
re-creating widgets at run time consumes many more system resources
and is less efficient.

To find out if a widget is currently managed, use the intrinsic routine IS
MANAGED. This routine takes one argument: the identifier of the w1dget
you are querying about.

Note that when using UIL to define a user interface, you do not have

to explicitly manage the widgets. By default, the DRM routine FETCH
WIDGET manages every widget it creates. You can override this default
by specifying the keyword UNMANAGED in the controls list section. Only
the topmost widget in the hierarchy being fetched needs to be managed
For more information, see Section 3.2.8.2.

Managing a Single Child Widget

Use the MANAGE CHILD intrinsic routine to add a single child widget
to the set of managed children of its parent. This routine takes one
argument: the identifier of the widget being managed. (You specify the
parent of the widget when you create it.) Example 2-8 shows how the
Hello World! application manages the push button widget.

Example 2-8 Managing a Single Widget

callback arg[O].proc = helloworld button_activate;
callback _arg([0].tag = 0;
callback_arg[l].proc = NULL;

XtSetArg (arglist[0], DwtNx, 15) ;

XtSetArg (arglist[l], DwtNy, 40);

XtSetArg (arglist[2], DwtNactivateCallback, callback_arg) ;

XtSetArg (arglist([3], DwtNlabel, DwtlatinlString("Hello\nWorld!")) ;
ﬂbutton = DwtPushButtonCreate(helloworldmain, "button", arglist, 4):;

@XtManageChild(button)

2-22

@ The example program creates the push button widget using the low-
level routine PUSH BUTTON CREATE. The parent of the push button
widget is specified in the first argument to the routine. The variable
button receives the widget identifier returned by the creation routine.

Creating a VMS DECwindows Application
2.5 Managing the Widgets in the Interface

@® The Hello World! application manages the push button widget in this
call to the MANAGE CHILD intrinsic routine. The variable button,
the only argument passed to the routine, contains the widget identifier
of the push button widget.

2.5.2 Managing Multiple Child Widgets

To manage a group of widgets in a single call, use the MANAGE
CHILDREN intrinsic routine. This routine takes two arguments: an
array of widget identifiers and the number of widget identifiers in the
array. All the widgets managed using the MANAGE CHILDREN intrinsic
routine must be children of the same parent.

After the parent widget has been realized (see Section 2.6), using
MANAGE CHILDREN to manage multiple children of the same parent
is more efficient than making multiple calls to MANAGE CHILD. With
MANAGE CHILDREN, the parent only has to calculate the layout of its
children once.

Example 2-9 is a version of the Hello World! application in which the
two children of the dialog box widget are managed using the MANAGE
CHILDREN intrinsic routine. The example creates the interface of the
Hello World! application using high-level widget creation routines. In the
Hello World! user interface, the dialog box widget has two children: a
label widget and a push button widget.

Example 2-9 Managing a Group of Child Widgets

Widget toplevel, helloworldmain;
QuidgetList main_children[2];
BOint count = 0;

Arg arglist(2];

helloworldmain = DwtDialogBox(toplevel, "MAINWIN", TRUE,O,O0,
DwtLatinlString ("Hi"), DwtWorkarea, 0, 0);

@Mmain_children[count++] = DwtLabel (helloworldmain, "label", 0, O,
DwtLatinlString ("Press button once\nto change label;\ntwice to exit."), 0);

callback_arg[0].proc = helloworld button_activate;
callback_arg[0].tag = O;
callback_arg(l].proc = NULL;

‘lnain_children[count++] = DwtPushButton(helloworldmain, "button", 15, 40,
DwtLatinlString ("Hello\nWorld!"), callback_arg, 0);

GDXtManageChildren(main_children, count);

2-23

Creating a VMS DECwindows Application
2.5 Managing the Widgets in the Interface

© To use the intrinsic routine MANAGE CHILDREN, you must create
an array of widget identifiers. The XUI Toolkit defines a data type,
WidgetList, that you use for this purpose. The example declares
an array, named main_children, composed of pointers to widget
identifiers.

® This statement declares a variable that will contain the number of
widget identifiers in the array.

® Hello World! creates the label widget child of the dialog box widget
using the high-level routine LABEL. The first element of the main_
children array receives the widget identifier returned by this routine.

® The Hello World! application creates the push button widget using the
high-level routine PUSH BUTTON. The second element of the main_
children array receives the widget identifier returned by this routine.

@ This version of the Hello World! application manages both children
of the dialog box widget at the same time by calling the MANAGE
CHILDREN intrinsic routine. The array of widget identifiers and
the number of widgets in the array are passed as arguments to the
routine. :

2.6 Realizing the Widgets in the Interface

2-24

As the last step in setting up a user interface, you make the widgets that
you have created and managed appear on a display by realizing them.
Realizing a widget creates a window for the widget and maps the window
to the display. For composite widgets (widgets with children), realizing the
widget also creates windows for all of the managed children of the widget -
and causes these windows to be mapped as well. Thus, you need only
realize the widget at the top of the widget hierarchy in a user interface to
cause the entire interface to appear on the display.

To realize a widget, use the intrinsic routine REALIZE WIDGET. This
routine takes one argument: the identifier of the widget being realized.

To find out if a widget is currently realized, use the intrinsic routine IS
REALIZED. This routine takes one argument: the identifier of the widget
you are querying about. '

Example 2-10 shows how the complete widget hierarchy of the Hello
World! application is realized in a single call to REALIZE WIDGET. The
Hello World! application realizes the shell widget, called zoplevel, returned
by the INITIALIZE intrinsic routine. By doing this, all the widgets below
the top-level widget in the widget hierarchy are realized in one call.

2.7

Creating a VMS DECwindows Application
2.6 Realizing the Widgets in the Interface

Example 2-10 Realizing a Widget Hierarchy

Widget toplevel, helloworldmain, button, label:
Arg arglist[5]:;

[**kxkxxk Set Up the User Interface Fxkkxxkx/
"toplevel = XtInitialize("Hi","helloworldclass",NULL, 0, &argc, argv):;

XtSetArg (arglist[0], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arglist, 1);

[FRxRE Create and manage the widgets using either ket
*kkk low-level routines, high-level routines, or UIL. *#**%/

@?XtRealizeWidget (toplevel) ;

[H**kkxkxx End of Set Up ‘r¥kkkkkx/

© In the example, the Hello World! application creates the shell widget
using the intrinsic routine INITIALIZE. This routine returns the
identifier of the shell widget.

@® After creating and managing the widgets in the interface, the example
realizes the widget at the top of the widget hierarchy, toplevel, causing
the entire widget hierarchy to appear on the display.

Main Input Loop

After setting up the interface, your application program must wait for
input from the user of the application. The widgets in the interface notify
your application when a user interacts with them. For example, when a
user moves the pointer cursor onto a push button widget and clicks MB1,
the widget notifies the application of this action by executing a callback.
You can perform any type of processing in response to these callbacks
using a callback routine.

To make your application loop while waiting for input, use the intrinsic
routine MAIN LOOP. The MAIN LOOP routine takes no arguments.
Example 2-11 shows the call to the MAIN LOOP routine used in the Hello

World! application.

2-25

Creating a VMS DECwindows Application
2.7 Main Input Loop

Example 2-11 Entering the Main Input Loop

#include <decw$include/DwtAppl.h>

static void helloworld button_activate();
static DwtCallback callback_arg[2];
J*xkkkkx%x Main Program *xkkkkkk/

int main(argc, argv)
unsigned int argc;
char **argv;

Widget toplevel, helloworldmain, button, label;
Arg arglist([5];
[**x**x%x**x* Set Up the User Interface *¥xkxkxx*xx/

toplevel = XtInitialize("Hi","helloworldclass",
NULL, 0, &argc, argv);

XtSetArg(arglist[0], XtNallowShellResize, TRUE);
XtSetValues(toplevel, arglist, 1);

[xEEk Create and manage the widgets using either F ok
KH KK low-level routines, high-level routines, or UIL. ***xx/

XtRealizeWidget (toplevel);
[RK Kk kkkk kK MAIN INPUT LOOP *kKkkkkkhkk [

XtMainLoop () ;

The MAIN LOOP routine encloses calls to the intrinsic routines NEXT
EVENT and DISPATCH EVENT in an infinite loop. The NEXT EVENT
intrinsic routine returns the value from the head of the input queue
associated with the application. The DISPATCH EVENT intrinsic
routine calls the appropriate event handlers and passes them the widget
identifier, the event, and the application-specific data registered with each
procedure. The MAIN LOOP routine never returns. Your application
should terminate from a callback routine as a result of a user action.

If you have created an application context, as described in Section 2.3, you
must use the APPLICATION MAIN LOOP intrinsic routine to enter an
event-processing loop. The APPLICATION MAIN LOOP intrinsic routine
takes one argument: the application context that you created using the
CREATE APPLICATION CONTEXT intrinsic routine. As with the MAIN
LOOP intrinsic routine, the APPLICATION MAIN LOOP intrinsic routine
never returns.

2-26

Creating a VMS DECwindows Application
2.8 Creating a Callback Routine

2.8 Creating a Callback Routine

You associate the functions of your application with its user interface using
callback routines. All callback routines have three standard arguments:

¢ The widget identifier of the widget making the callback
¢ The tag (application-specific data)
¢ The callback data structure (widget-specific data)

The following sections describe these arguments.

2.8.1 Identifying the Widget Performing the Callback

The first standard argument to a callback routine identifies the widget
performing the callback. The callback routine used in the Hello World!
application, shown in Example 2-12 in Section 2.8.3, uses this information
when it calls the SET VALUES intrinsic routine to change the text
contained in the push button widget.

2.8.2 Associating Application-Specific Data with a Widget

In the second standard argument to a callback routine, the tag, you

can associate data with a widget. The widget passes this data to your
application when it performs a callback. You can use this argument to
pass integers, text strings, application-specific data structures, or any
other type of data you define. The XUI Toolkit performs no processing on
this data; it simply passes it to your application when the widget executes
the callback routine. (The Hello World! application passes a 0 as its

tag value because it does not use this feature. However, the DECburger
sample application uses the tag argument to identify each widget in its
user interface.)

2.8.3 Widget-Specific Callback Data

In the third standard argument to a callback routine, the callback data
structure, the widget returns other data to your application. The content
of this data structure varies among the XUI Toolkit widgets. The VMS
DECwindows Toolkit Routines Reference Manual describes the callback
data returned by each widget. At a minimum, all XUI Toolkit widgets
that perform callbacks return the following data in their callback data
structure:

¢ The reason for the callback

¢ The address of the last event data structure on the X event queue

In the reason field of the callback data structure, the widget returns the
callback reason. The reason identifies the event or sequence of events that
caused the widget to perform the callback. The XUI Toolkit defines a set of
constants to identify each callback reason. Each widget supports its own
set of callback reasons. You can find out why the widget performed the
callback by reading the value of this field of the callback data structure.

2-27

Creating a VMS DECwindows Application
2.8 Creating a Callback Routine

2-28

You typically only need to read the reason field when using certain high-
level routines or if your application specifies the same callback routine

for different callback reasons. Using low-level routines or UIL, you can
associate a callback routine with a specific widget attribute associated with
a particular callback. For example, in the Hello World! application using
low-level routines, the callback routine is associated with the activate_
callback attribute. However, some high-level routines do not provide
access to every callback attribute supported by a widget. These routines
associate the callback routine list you pass as the value of the callback
argument with many callback attributes supported by the widget.

The event data structure contains information about the event that caused
the callback. For more information about the data returned in the event
data structure, see the VMS DECwindows Xlib Programming Volume.

The following is the definition of the minimum callback data structure
returned by every XUI Toolkit widget that performs a callback.

typedef struct {
int reason;
XEvent *event;
} DwtAnyCallbackStruct;

Figure 2-5 details the VAX definition of this data structure.
Figure 2-5 Widget Callback Data Structure (VAX Binding)

31 0
reason

event

ZK-0091A-GE

Example 2-12 shows the callback routine used with the Hello World!
application. The first time this routine is executed, it changes the text
of the label in the push button widget. The second time this routine is
executed, it causes the application to terminate.

~Creating a VMS DECwindows Application
2.8 Creating a Callback Routine

Example 2-12 Hello World! Application Callback Routine

@scatic void helloworld button_activate(widget, tag, callback_data)
Widget widget;
char *tag;
DwtAnyCallbackStruct *callback_data;

Arg arglist([2];
static int call count = 0;

call count += 1 ;
switch (call_count)
{
case 1:
@? XtSetArg(arglist([0], DwtNlabel, DwtlLatinlString ("Goodbye\nWorld!"));
XtSetArg(arglist[l], DwtNx, 11);
XtSetValues(widget, arglist, 2);
break ;
case 2:
exit (1) ;
break ;

®

©® The Hello World! callback routine uses the standard three arguments
that all callback routines must use.

® The Hello World! application sets up an argument list in which it
assigns values to two push button widget attributes. In the first
statement, the callback routine assigns a new text string to the label
attribute of the push button widget in an argument list. In the second
call to the SET ARG intrinsic routine, Hello World! assigns a new
value to the x-coordinate of the push button widget. The longer text
string requires this change in the x-coordinate to keep the push button
widget centered in the dialog box widget.

©® The Hello World! callback routine passes the argument list to the
intrinsic routine SET VALUES. This routine replaces the original
text string in the push button widget with the new text string
and repositions the push button by assigning a new value to the
x-coordinate using the x attribute.

2.8.4 Guidelines for Creating Callback Routines

Because your application needs to continually check the incoming event
queue, you should write callback routines that execute quickly. If your
application enters a callback routine that requires extensive processing
time (more than 0.25 of a second), your application could miss processing
important events. For example, if a portion of the user interface of your
application that had been obscured on the display becomes visible, the
widget needs to receive this expose event so that it can repaint the screen.

2-29

Creating a VMS DECwindows Application
2.8 Creating a Callback Routine

One way to perform lengthy processing without ignoring the event queue
is to perform the processing in a work procedure. A work procedure is
like a callback routine except that it is not associated with any particular
widget. Instead, you register work procedures with your application using
the ADD WORK PROC intrinsic routine. When the NEXT EVENT or
PROCESS EVENT intrinsic routines have no other events to process,
they call the work procedure that you registered. (The main input loop
of an application is an infinite loop that continually calls NEXT EVENT
to check the input queue for incoming events.) You can register multiple
work procedures; however, the last one added is the one that is executed.

You create a work procedure as you would create a callback routine except
that a work procedure only takes a tag as a standard argument. As

with a callback routine, the tag is any data that you specify. With work
procedures, you can use the tag to maintain state information on the
progress of the processing so that each time the NEXT EVENT intrinsic
routine calls the work procedure, it performs another segment of the
processing. As with standard callback routines, your application should
not remain in a work procedure for a long time without checking the input
queue.

A work procedure should always return a Boolean value. While it returns
false, the work procedure that you registered is called repeatedly. Once
your work procedure returns true, it is removed from the list of work
procedures. You can also explicitly remove a work procedure from the list
by calling the REMOVE WORK PROC intrinsic routine.

Example 2-13 illustrates how to add a work procedure.

Example 2-13 Adding a Work Procedure

Boolean work_proc();
int state;

XtAddWorkProc(work proc, &state);

Boolean work_proc(state)
int *state:;

{

/* perform processing */

2.9 Manipulating the Interface at Run Time

Callbacks provide a one-way communication path from the interface to the
application. To manipulate the interface once it has been displayed, you
must use widget manipulation routines.

2-30

Creating a VMS DECwindows Application
2.9 Manipulating the Interface at Run Time

The XUI Toolkit provide two types of widget manipulation routines:
¢ Standard widget manipulation routines

e Widget-specific manipulation routines

2.9.1 Standard Widget Manipulation Routines

The standard widget manipulation routines perform general operations
on all XUI Toolkit widgets. For example, using the standard widget
manipulation routine SET VALUES, you can assign a value to a widget
attribute after the widget has been created.

The X Toolkit intrinsics provide the standard widget manipulation routines
of the XUI Toolkit. Table 2-5 lists the commonly used intrinsics routines
that provide for standard widget manipulation.

Table 2-5 Standard Widget Manipulation Routines

Routine Function

REALIZE WIDGET Create the widget window and map it

DESTROY WIDGET . Destroy a widget including its window and data

GET VALUES Retrieve the value of one or more widget attributes

SET VALUES Set the value of one or more widget attributes

MANAGE CHILD Add a widget to a composite widget's list of managed
children

MANAGE CHILDREN Add a list of widgets to a composite widget's list of
managed children

UNMANAGE CHILD Remove a widget from a composite widget's list of

managed children

UNMANAGE CHILDREN Remove a list of widgets from a composite widget's list
of managed children

ADD CALLBACKS Add a callback routine to a widget
REMOVE CALLBACKS Remove a callback routine from a widget

The Hello World! application uses the standard widget manipulation
routine SET VALUES to change the text of the label displayed in the push
button widget.

As with any widget attribute, you can use the SET VALUES intrinsic
routine to assign a callback routine list as the value of a callback attribute.
However, the SET VALUES intrinsic routine destroys the existing callback
routine list when it assigns this new value. The callback routine list of

a widget can contain callbacks set up internally by the parent widget.

For this reason, the XUI Toolkit provides the intrinsic routines ADD
CALLBACKS and REMOVE CALLBACKS to add or delete callback
routines.

2-31

2.9.2

2.10

2.10.1

Creating a VMS DECwindows Application
2.9 Manipulating the Interface at Run Time

Widget-Specific Manipulation Routines

In addition to standard widget manipulation routines, the XUI Toolkit
includes many widget-specific manipulation routines. These routines
perform common operations associated with a particular widget. For
example, a toggle button widget, which indicates on and off states, has two
associated widget-specific manipulation routines that allow you to read the
current state or set the current state.

Complete Listing of the Hello World! Sample Application

The following sections contain the source code for three versions of the
Hello World! sample application. Each version illustrates a different
method of creating the widgets in the user interface. All three versions of
the program produce the same result.

Using Low-Level Routines to Create the Hello World! User Interface

Example 2-14 is the setup section of the Hello World! application that
uses low-level routines to create the widgets of the user interface.

Example 2-14 Setup Section of the Hello World! Application Using Low-Level Routines

#include <decw$include/DwtAppl.h>

static void helloworld button_activate();
static DwtCallback callback argl2]:;
/******** Main Program *****‘k*‘k/

int main(argc, argv)
unsigned int argc:
char **argv;

Widget toplevel, helloworldmain, button, label;
Arg arglist([5]:
/***x*k*k%k%x Set up the User Interface **x*k¥kx*/
toplevel = XtInitialize ("Hi","helloworldclass",NULL, 0, &argc, argv);

XtSetArg (arglist[0], XtNallowShellResize, TRUE);
XtSetvalues (toplevel, arglist, 1);

elloworldmain = DwtDialogBoxCreate oplevel, ’ ’ ;
" hell ldmai DwtDialogBoxC te (topl 1, "MAINWIN", NULL, O)

XtSetArg (arglist[0], DwtNlabel,
DwtLatinlString ("Press button once\nto change label;\ntwice to exit.")):

@? label = DwtLabelCreate (helloworldmain, "label", arglist, 1);
callback_arg[0].proc = helloworld button activate;

callback_arg[0].tag = 0;
callback_arg[l].proc = NULL;

(continued on next page)

2-32

Creating a VMS DECwindows Application
2.10 Complete Listing of the Hello World! Sample Application

Example 2-14 (Cont.) Setup Section of the Hello World! Application Using Low-Level Routines

XtSetArg (arglist[0], DwtNx, 15);

XtSetArg (arglist[l], DwtNy, 40):

XtSetArg (arglist([2], DwtNactivateCallback, callback arg):;

XtSetArg (arglist({3], DwtNlabel, DwtLatinlString("Hello\nWorld!")):

@’ button = DwtPushButtonCreate (helloworldmain, "button", arglist, 4);
XtManageChild (label):
XtManageChild (button):;
XtManageChild (helloworldmain);
XtRealizeWidget (toplevel);

/**%kx%%% End of Set Up *¥*xk%kk/

© This version of the Hello World! application uses the low-level routine
DIALOG BOX CREATE to create the dialog box widget. In the
example, the dialog box widget is created without setting any widget
attributes.

@® Hello World! creates the label widget with a call to the low-level
routine LABEL CREATE.

© Hello World! creates the only other widget in the application, the push
button widget, using the low-level routine PUSH BUTTON CREATE.

2.10.2 Using High-Level Routines to Create the Hello World! User Interface

Example 2-15 is the setup section of the Hello World! application that
uses high-level routines to create the widgets of the user interface.

2-33

Creating a VMS DECwindows Application
2.10 Complete Listing of the Hello World! Sample Application

Example 2-15 Setup Section of the Hello World! Application Using High-Level Routines

#include <decw$include/DwtAppl.h>

static void helloworld button_activate();
static DwtCallback callback_arg([2]:
J***Fxkkk%k Main Program Kxxxkkokk/

int main(argc, argv)
unsigned int argc;
char **argv;

Widget toplevel, helloworldmain, button, label;
Arg arglist[2]:
[R*KKkKk* Set up;the User Interface **xk**xkkkkkx/
toplevel = XtInitialize ("Hi","helloworldclass", NULL, 0, &argc, argv):

XtSetArg (arglist[0], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arglist, 1);

" helloworldmain = DwtDialogBox (toplevel, "MAINWIN", TRUE, 0, O,
DwtLatinlString ("Hi"), DwtWorkarea, 0, 0);

@D label = DwtLabel (helloworldmain, "label", 0, O,
DwtLatinlString ("Press button once\nto change label;\ntwice to exit."), 0);

callback_arg[0].proc = helloworld_button_activate;
callback_arg(0].tag = 0;
callback_arg{l].proc = NULL;

@, button = DwtPushButton (helloworldmain, "button", 15, 40,
DwtLatinlString ("Hello\nWorld!"), callback_arg, 0):

XtManageChild (label);
XtManageChild (button);
XtManageChild (helloworldmain);
XtRealizeWidget (toplevel);

J***xkxkx End of Set Up ‘rkxxkkkkkk/

@ This version of the Hello World! application uses the high-level routine

DIALOG BOX to create the dialog box widget.

® Hello World! creates the label widget with a call to the high-level
routine LABEL.

© Hello World! creates the only other widget in the application, the push

button widget, using the high-level routine PUSH BUTTON.

2-34

Creating a VMS DECwindows Application
2.10 Complete Listing of the Hello World! Sample Application

2.10.3 Using UIL and DRM to Create the Hello World! User Interface

Example 2-16 and Example 2-17 are the files that make up the
UIL/DRM version of the Hello World! application. Example 2-16 is the
UIL specification file for the Hello World! user interface; Example 2-17
is the main application program of the Hello World! application. In this
version, the application uses DRM routines to access the user interface
database created with UIL.

Example 2-16 Hello World! Application UIL Specification File

ﬂmodule helloworld
version = 'v2.0’
names = case_sensitive

@procedure
helloworld button_activate();

@object
helloworld main : dialog_box {
controls {
label helloworld label;
push_button helloworld button;
}i
bi

eobject
helloworld button : push_button {
arguments {
x = 15;
y = 40;
label label = compound string (’Hello’,separate=true)&
compound_string (‘World!’);
}:
callbacks {
activate = procedure helloworld button activate():;
}:
}:

@object
helloworld label : label {
arguments {
label label =
compound_string(’Press button once’, separate=true)&
compound_string(’to change label;’,separate=true)é&
compound_string(’twice to exit.’);
};
}:

@end module;

© Required statement to begin a UIL module. This statement assigns a
name and a version number to the UIL module, and declares that the
names of objects in the module are case sensitive.

- @ Procedure declaration of the callback routine to be associated with the
push button widget. Note that this routine is also declared in the main
application program for the Hello World! application.

2-35

Creating a VMS DECwindows Appllcatlon
2.10 Complete Listing of the Hello World! Sample Appllcatlon

© Object declaration of the main Hello World! application widget, the
dialog box widget. Note the listing of its two children in the controls
list section of the object declaration.

O Object declaration of the label widget child.
@ Object declaration of the push button widget.
@ Required statement to signify the end of the UIL specification file.

Example 2-17 Hello World! Applicatibn Using UIL -

#include <stdio.h>
#include <decw$include/DwtAppl.h>

Ostcatic DRMHierarchy s_DRMHierarchy;
@Ostatic char *vec[]={"helloworld.uid"};
@Ostatic DRMCode class ;

static void helloworld button_activate();

¢,static DRMCount regnum = 1 ;

@static DRMRegisterArg regvec[] = {
{"helloworld button activate", (caddr_t)helloworld button_activate}
}:

int main(argc, argv)
unsigned int argc;
char **argv;

{

(6 Widget toplevel, helloworldmain;
Arg arglist(l] ;

/**x*k*xx%k%x Set up the User Interface Fx*xxxkxx/
@ DwtInitializeDRM ();
toplevel = XtInitialize("Hi", "helloworldclass",NULL, 0, &argc, argv);

XtSetArg (arglist[0], XtNallowShellResize, TRUE) ;
XtSetValues (toplevel, arglist, 1) ;

@ if (DwtOpenHierarchy (1,vec,NULL, &s_DRMHierarchy) != DRMSuccess)
{
printf ("can’t open hierarchy");

}
(0] DwtRegisterDRMNames (regvec, regnum) ;

® ir (DwtFetchWidget (s_DRMHierarchy, "helloworld main", toplevel,
&helloworldmain, &class) 1= DRMSuccess)
printf("can’t fetch interface");

® XtManageChild (helloworldmain) ;
XtRealizeWildget (toplevel) ;

© The application declares a variable, named s_DRMHierarchy, which is
a pointer to a DRM data structure. This data structure describes the
DRM database hierarchy. The routine DwtOpenHierarchy returns the
value of s_DRMHierarchy.

2-36

Creating a VMS DECwindows Application

2.10 Complete Listing of the Hello World! Sample Application

The application specifies the name (or names) of the UID file in an
array of pointers to strings, named vec. Using DRM, you can specify a
hierarchy of UID files. A search for widgets involves a search through
this UID file hierarchy.

The example declares a variable, named class, to hold the DRM class
value returned by the FETCH WIDGET routine. (The class variable is
not used by the Hello World! application.)

The sample application initializes a variable that identifies the number
of names DRM must register. This is later used in the call to the DRM
routine REGISTER NAMES.

The application stores the name of the callback routine helloworld_
button_activate and its address in an array for later use by the DRM
routine REGISTER NAMES.

Note that this version of the Hello World! application only declares
two variables to hold widget identifiers. This version does not need
variables to hold the widget identifiers of the label or push button
widgets because it does not manipulate these widgets. DRM manages
the widgets automatically. The DRM routine FETCH WIDGET returns
the widget identifier of the topmost widget in the application hierarchy
when it creates the widgets. The application uses this widget identifier
when it manages the topmost widget in the hierarchy. You can retrieve
the widget identifiers for any widget created by DRM by requesting a
creation callback.

The DRM routine INITIALIZE DRM initializes DRM. An application
must initialize DRM before initializing the XUI Toolkit.

©® Using the DRM routine OPEN HIERARCHY, the application opens the

UID file that contains the definition of the Hello World! application
interface. The application specified the names of the UID files earlier
in ©.

The call to the DRM routine REGISTER DRM NAMES maps the
names of the callback procedures in the UIL specification file to the

actual procedures in the program. The names and corresponding
addresses were defined in ©.

In this call to the DRM routine FETCH WIDGET, the application

~ fetches the widget named helloworld_main from the hierarchy of UID

files. DRM retrieves the widget definition and creates the widget,
returning its widget identifier in the variable helloworldmain.

At the same time it creates the main widget of the Hello World!
application, FETCH WIDGET also fetches the definitions for all the
children of the specified widget and creates them as well.

The application manages the topmost widget in its widget hierarchy
and then realizes the widget, making the interface appear on the
screen.

2-37

Creating a VMS DECwindows Application
2.10 Complete Listing of the Hello World! Sample Application

2.10.4 The Hello World! Sample Application Main Input Loop and Callback
Routine

Example 2-18 is the main input loop and callback routine used by all
three versions of the Hello World! application.

Example 2-18 Main Input Loop and Callback Routine of the Hello World! Application

VLR T Main Input Loop KkKkkkkkk |

© xtMainLoop();

/***'k‘k*** Callback Routine ********/

@static void helloworld button_activate(widget, tag, callback_data)
Widget widget;
char *tag;
DwtAnyCallbackStruct *callback_data;

Arg arglist([2];
static int call_count = 0;

call count += 1 ;
switch (call_count)
{
case 1:
XtSetArg (arglist({0], DwtNlabel, DwtLatinlString ("Goodbye\nWorld!"));
XtSetArg (arglist(l], DwtNx, 11);
XtSetValues (widget, arglist, 2);
break ;
case 2:
exit (1);
break ;

© The Hello World! application enters its main input loop by calling the
intrinsic routine MAIN LOOP. You call this routine no matter how you
have created the interface.

® The callback routine used by the Hello World! application.

2-38

3 Creating a User Interface Using UIL and DRM

This chapter describes how to use the User Interface Language (UIL) to
specify a user interface for a VMS DECwindows application. The chapter
also describes how to access the compiled interface specification at run
time using the XUI Resource Manager (DRM).

3.1 Overview of UIL and DRM

The User Interface Language (UIL) is a specification language for
describing the initial state of a user interface for a VMS DECwindows
application. The specification describes the objects (for example, menu
widgets, dialog box widgets, label widgets, and push button widgets)
used in the interface and specifies the routines to be called when the
interface changes state (as a result of user interaction). You specify the
user interface in a UIL module, which you store in a UIL specification
file.

Using UIL, you can specify the following: ‘

¢ Objects (widgets and gadgets) that make up your interface
¢ Arguments (or resources) of the objects you specify

¢ (Callback routines and tags for each object

¢ The widget hierarchy for your application

* Literal values that can be fetched by the application

The UIL compiler has built-in tables containing information about
widgets. For every object (widget or gadget) in the XUI Toolkit, the UIL
compiler knows which widgets are valid children of the object, the object’s
arguments, and the valid callback reasons for the object. The UIL compiler
uses this information to check the validity of your interface specification
at compile time, thereby helping you reduce run-time errors. The VMS
DECwindows User Interface Language Reference Manual describes the
information stored in the UIL built-in tables.

The UIL compiler translates the UIL module into a User Interface
Definition (UID) file. You include DRM routine calls in your application
program that allow access to the UID file. During execution of the
application, DRM builds the arguments list and makes the necessary
calls to the widget creation routines in order to create the user interface.
By default, the newly created interface conforms to the XUI Style Guide.
UIL and DRM are components of the XUI Toolkit.

Using UIL and DRM offers many benefits. By specifying the widgets

in the interface in a separate UIL module, the size of your application
program (particularly in the setup portion) is greatly reduced. (Compare
the different versions of the Hello World! application in Section 2.10.)
Since the UIL specification exists in a separate file, you can change

3-1

Creating a User Interface Using UIL and DRM
3.1 Overview of UIL and DRM

the user interface with few, if any, changes to the application program.
This separation of form and function also allows you to develop multiple
interfaces (for example, in different languages) for a single application.

When you use UIL and DRM, you do not call high- or low-level widget
creation routines directly in your application program; you let UIL and
DRM do much of this work for you. DRM simplifies and automates the
widget creation process and allows the fastest possible initialization of a
VMS DECwindows application. For example, DRM automatically creates
shell widgets; you do not have to specify shell widgets in UIL. Since you do
not need to know the format of the widget creation routine calls, UIL can
be easier to learn. UIL and DRM are designed to be language independent
and to make applications portable. UIL and DRM hide XUI Toolkit data
structures and other programming details; you may not have to change
your application every time the XUI Toolkit changes.

Figure 3-1 shows the steps involved at run time to set up an interface that
was specified with UIL.

Figure 3-1 Setting Up a User Interface Specified with UIL

1. Initialization

® Initialize DRM

® Register user—defined classes (if any)

® Open UID Hierarchy
® Register names for DRM

Set Up the
User

2. Creation

Interface

® Fetch interface and create widgets

3. Realization
e

s

[] pRM Routine

Intrinsic Routine

Main
frput
%, Loop /

Calfoack] | Catlback] | Calback] g e s
Routine | | Routine Foutine
ZK-0166A~GE

3-2

As Figure 3-1 shows, settihg up an interface specified with UIL requires

the following steps:

1 Initialization

In the initialization step, the application program must make calls to
DRM and intrinsic routines in the following sequence:

¢ Initialize DRM.

Creating a User Interface Using UIL and DRM
3.1 Overview of UIL and DRM

The DRM routine INITIALIZE DRM prepares your application to
use DRM widget-fetching facilities.

¢ Register user-defined classes.

The DRM routine REGISTER CLASS saves the information
needed to access the widget creation routine for a user-defined
widget and to perform type conversion of user-defined arguments.
If you use only XUI Toolkit widgets and gadgets in your interface,
you do not call this routine. (Appendix D explains how to build
your own widgets.)

e Initialize the XUI Toolkit.

The intrinsic routine INITIALIZE parses the command line used
to invoke the application, opens the display, and initializes the XUI
Toolkit.

¢ Open the UID hierarchy.

The UID hierarchy is the set of UID files containing the widget
definitions for the user interface. The DRM routine OPEN
HIERARCHY opens these UID files.

¢ Register names for DRM.

The DRM routine REGISTER DRM NAMES registers names and
associated values for access by DRM. The values can be callback
routines, pointers to user-defined data, or any other values. DRM
uses this information to resolve symbolic references in UID files to
their run-time values.

Creation

In the creation step, you call the DRM routine FETCH WIDGET to
fetch the user interface. Fetching is a combination of widget creation
and children management. The DRM routine FETCH WIDGET
performs the following operations:

¢ Locates a widget description in the UID hierarchy

¢ Creates the widget and recursively creates the widget’s children
¢ Manages all children as specified in the UID descriptions

* Returns the widget identifier

You specify the top-level widget of the application (usually the main
window) and its parent (the widget identifier returned by the call to
INITIALIZE) in the call to FETCH WIDGET. As a result of this single
call, DRM fetches all widgets below the top-level widget in the widget
hierarchy.

You can defer fetching portions of an application interface until
requested by the end user. For example, you can defer fetching a
pull-down menu widget until the user activates the corresponding
pull-down menu entry. Consider deferring fetching of some portions of
your interface if you need to improve the startup performance of your
application. Deferred fetching is explained in Section 3.3.2.

3-3

Creating a User

Interface Using UIL and DRM

3.1 Overview of UIL and DRM

3 Realization

The steps to manage and realize a user interface created with UIL and
DRM are the same as those for an interface created with XUI Toolkit
routines:

¢ Manage the top-level widget.

The intrinsic routine MANAGE CHILD adds a child to the top-
level widget returned by the call to INITIALIZE. The entire widget
hierarchy below the top-level widget in the interface (usually the

main window widget) is automatically managed as a result of this
call to MANAGE CHILD.

¢ Realize the top-level widget.

The intrinsic routine REALIZE WIDGET displays the entire
fetched interface (the top-level widget and the widget hierarchy
below it) on the screen.

DRM’s role in a VMS DECwindows application is limited for the most part
to widget creation. DRM makes run-time calls that create widgets from
essentially invariant information (that is, information that does not change
from one invocation of the application to the next). Once DRM fetches a
widget (creates it and manages its children), all subsequent operations on
the widget—realization, managing children after initialization, getting and
setting resource values—must be done by run-time calls. After creation,
modification of widgets during application execution is accomplished
using widget manipulation routines. (DRM provides widget manipulation
routines, which are described in Section 3.3. Section 2.9 describes run-time
modification of widget attributes using XUI Toolkit routines.)

The VMS DECwindows User Interface Language Reference Manual
completely describes UIL. DRM routines are fully described in the VMS
DECwindows Toolkit Routines Reference Manual.

3.2 Specifying a User Interface Using UIL—A Sample Program

Note:

The examples in this section are based on the sample VMS DECwindows
application called DECburger, which is introduced in Section 1.2.
Specifically, this section explains how the interface for the DECburger
sample application is specified in UIL. Figure 1-4 shows the DECburger
interface.

Note that although the DECburger application is designed to show as
many different widgets and UIL coding techniques as possible, this
application does not use every feature of UIL. For a complete description
of UIL, see the VMS DECwindows User Interface Language Reference
Manual.

The examples in this section show only relevant portions of the UIL
module for the DECburger application. Section 3.3 shows the relevant
portions of the C language program for the DECburger application to
illustrate the use of DRM run-time routines.

In this section, reserved UIL keywords are shown in uppercase
letters in the text. This is for emphasis only and is not required

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

by the UIL compiler. If you specify that names and keywords in
your UIL module are case sensitive (see Section 3.2.4), you must
put keywords in lowercase letters.

Do not use reserved keywords as names in a UIL module. The
VMS DECwindows User Interface Language Reference Manual lists
reserved and nonreserved keywords.

To specify an interface using UIL, perform the following steps:
1 Create one or more UIL specification files with file type UIL.

The number of files you use to completely specify the interface
depends on the complexity of the application; the need for variations
(for example, English and French versions); and the size of the
development project team (on large projects, the UIL module can

be distributed over several files to avoid access competition).

2 Declare the UIL module (begin a module block).

The module block header contains some module-wide declarations
(such as case sensitivity for names and keywords in the module, the
default character set for compound strings, and identification of which
objects should be interpreted as gadgets).

3 Include the file containing useful UIL constants.

This file contains definitions of many constants you need to use to
specify objects in UIL (for example, to align label widgets or to orient
menu widgets). There is a file of constant definitions for each of the
MIT C and VAX bindings.

4 Declare the callback routines referenced in the object declarations.

For each object in the UIL module, associate these routines with
the callback reasons that the object supports. Define these callback
routines in the application program.

5 Declare the values (integers, strings, colors, and so on) you will use in
the object declarations.

6 Declare the interface objects (widgets and gadgets).

Declare interface objects in roughly the same order the objects appear
in the widget hierarchy. Figure 6—7 in Section 6.5 shows a portion of
the DECburger widget hierarchy.

7 End the module block.

3.21 Recommended UIL Coding Techniques

The DECburger UIL module shows recommended coding practices that
should improve your productivity and increase the flexibility of your
programs. This section explains how these practices can help you write
better UIL modules. Descriptions of the particulars appear in later .
sections of this chapter. The language elements and semantics of UIL
are similar to those in other high-level programming languages.

3-5

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

3-6

Naming Values and Objects

The names of constants, labels, colors, icons, and widgets in the
DECburger UIL module indicate their purpose in the application. For
example, the name for the constant having integer value 12 is k_burger_
rare. From its name, you can tell that this constant represents the choice
Rare on the Hamburgers menu.

Similarly, the names for objects (widgets and gadgets) indicate their
purpose in the application. In addition, object names should reflect the
object type. For example, you can tell by its name that the m_copy_button
is a button widget (of some kind) on a menu and is associated with the
Copy option.

3.2.1.2 Declaring Values, Identifiers, and Procedures

Group value declarations according to purpose and list them near the
beginning of the module. The UIL compiler requires only that values be
declared before you reference them. So, although you could have a value
section to declare a value immediately preceding an object section in which
the value is used, you will be able to look up the definition of a particular
value more easily if all declarations are in one place in the module.

In the DECburger UIL module, separate value sections are used to group
values as follows:

¢ Constants for positioning attached dialog boxes
* Constants for callback routines

* Labels and other text strings

¢ Fonts

* Colors

¢ Color tables

e Jcons

Having the constants for callback routines located in a single value section
makes it easier to cut this section from the UIL module and paste it into
the accompanying application program (since these constants must be
defined in the program as well as in the UIL module).

By setting up all labels as compound string values, rather than hardcoding
them in the object declarations, you can more easily change the labels
from one language to another. (Specify a string as a compound string by
using the UIL built-in function COMPOUND_STRING.)

In addition, declaring text strings as values allows the text string to
be reused by several objects, thereby saving space in the generated
UID file. For example, the value quantity_label is used three times in
the DECburger order dialog box widget, but only one compound string,
"Quantity", is stored in the UID file.

Note that some arguments for the simple text widget and the command
window widget accept only null-terminated strings. For example, labels
for these widgets must be declared as null-terminated text strings. The
UIL compiler automatically converts a null-terminated text string to a

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

compound string if the string value is used to specify an argument that
takes a compound string.

Similar to the value section, in the DECburger UIL module, all procedure
declarations for callback routines are listed in a single procedure section at
the beginning of the module, immediately following the module declaration
and include directive.

The DECburger application does not use identifiers (which function
like global variables). Treat identifier sections as you would treat value
sections. (Identifiers are described in Section 3.5.)

You can isolate visual appearance information in a single section of a UIL
module by declaring position and geometry values (for example, arguments
x, y, width, and height) as UIL values. Having this information readily
available in one place in the UIL module is very helpful for people who
must translate the interface into another language. Language changes
often require changes to widget size or position to accommodate different
string lengths.

3.2.1.3 Declaring Objects
Once all your values, identifiers, and callback routines are declared, the
rest of the UIL module consists of object declarations. The key technique
here is to structure your module to reflect the widget hierarchy of the
application interface. For example, in the DECburger UIL module,
the choices for how the hamburger should be cooked are presented in
a radio box widget having three children, which are toggle button widgets.
Figure 3-2 shows how this radio box widget looks in the DECburger
application interface.

3-7

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Figure 3-2 Radio Box with Toggle Buttons in the DECburger Application

Weicoms to DECburger
File St Crder

Hamburgers oo Fries = Drinks
O Rare £3 Ketchup Size| Medium <
@ Medium £ Mustard - Orange Juice
O Well Done g gﬁ;%;i: Grape Juice
[} Mayonnaise Cola A%
0 : ;
Quantity |10 R
-------- : Qusntity g N
Guaniity : N

i Apply E i Dismiss { Reset

ZK-0160A-GE

Figure 3-3 shows how these widgets are arranged in a hierarchy, which is
defined by the controls list for the radio box named burger_doneness_box.

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Figure 3-3 Widget Hierarchy for the DECburger Radio Box Widget

burger_doneness_box

radio_box

burger_rare

toggle_button

burger_medium

burger_well

toggle_bution

toggle_button

ZK-0159A-GE

Example 3—1 shows the object declaration in the UIL module for the
burger_doneness_box widget. Note that the children of the radio box
widget (the three toggle button widgets) are declared immediately
following the radio box object declaration. By ordering your object
declarations in this way, you can get an idea of the overall widget
hierarchy for your interface by scanning the UIL module.

3-9

3.2.2

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Example 3-1 Widget Hierérchy in the DECburger UIL Module

object
burger_ doneness_box : radio_box {
arguments {

}i

controls {
toggle_button burger_ rare;
toggle_button burger_medium;
toggle_button burger well;
}i

}i

object
burger rare : toggle button ({

}i

object
burger medium : toggle button {

}:

object
burger well : toggle button {

}:

3.2.14 Using Local Definitions for Objects

If you need to define an object that is used as a child of a single parent and
that will not be referenced by any other object in the UIL module, define
the object in the controls list for its parent rather than in an object section
of its own. This simplifies the UIL module and saves you from having to
create an artificial name for that object. Example 3—14 in Section 3.2.8.2

shows local definitions for the separator gadgets used in the DECburger
interface.

Creating a UIL Specification File

3-10

Store the UIL specification for a user interface in a UIL specification file.
The UIL specification file contains the definitions of user interface objects
and the values and callback routine names used in these definitions. The
UIL compiler assumes a default file type of UIL. The compiled version
of these definitions is stored in a User Interface Definition (UID) file.
Compile a UIL specification file using the DCL command UIL.

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

For example, if your interface specification is in the file
DECBURGER.UIL, you compile this file by entering the following
command:

$ UIL DECBURGER

By default, the compiled version of DECBURGER.UIL is named
DECBURGER.UID. Specify the name of the UID file in the UID hierarchy
list in your application program. (Section 3.3 describes how to use DRM to
access the information stored in UID files.)

When you compile your UIL specification file, you can use the /VERSION
qualifier. The /VERSION qualifier provides upward compatibility between
the UIL compiler in VMS Version 5.1 and that in VMS Version 5.3.

In particular, the /VERSION qualifier allows you to continue building
interfaces that will run under the XUI Toolkit in VMS Version 5.1 (for
example, the processing of newline characters that are embedded in
compound strings), while still being able to use the new UIL compiler
features implemented for VMS Version 5.3.

Allowable values for the /VERSION qualifier are V1 (for VMS Version 5.1)
and V2 (for VMS Version 5.3). The default is /VERSION=V2,

3.2.3 Structure of a UIL Module

The UIL specification file contains a module block that consists of a series
of value, identifier, procedure, list, and object sections. There can be any
number of these sections in a UIL module. The UIL has an include
directive that allows you to include the contents of another file in your
UIL module. You can use an include directive to specify one or more
complete sections. You can place the include directive wherever a section
is valid. You cannot specify a part of a section using an include directive.

You can also use the include directive to include a file of useful constants
you need to specify values for some attributes (such as style and
alignment). Section 3.2.5 describes this include file.

Example 3-2 shows the overall structure of a UIL module.

3-11

3.24

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Example 3-2 UIL Module Structure

t+

! Sample UIL module

!_

module example ! Module name
'+

! Place module header clauses here.

!_

t+

! Declare the VALUES, IDENTIFIERS, PROCEDURES, LISTS, and

! OBJECTS here.
[

end module;

Declaring the UIL Module

In the module declaration, you name the module and make module-wide
specifications by using one or more module header clauses. Table 3-1
briefly explains the optional UIL module header clauses you can use in the

module declaration.

Table 3—1 Optional UIL Module Header Clauses

Clause Purpose Default

Example

Version Allows you to ensure the None
correct version of the UIL
module is being used

Case sensitivity Specifies whether names and Case
keywords in the UIL module insensitive
are case sensitive

Default character set Specifies the default ISO_LATIN1
character set for string
literals in the compiled UIL
module

Object variant Specifies the default variant Widget
of objects defined in the
module on a type-by-type
basis

version = 'v2.0/

names = case_sensitive

character_set = iso_latin6

objects = { separator = gadget; push_
button = widget; toggle_button =
widget; labe! = gadget; }

Example 3-3 shows the module declaration for the DECburger UIL

module.

3-12

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Example 3-3 Module Declaration in the DECburger UIL Module

module decburger demo

version = 'v2.0’

names = case_sensitive

objects = {
separator = gadget ;
label = gadget ;
push_button = gadget ;
toggle_button = gadget ;
}

include file 'DwtAppl.uil’;

The name you specify in the UIL module declaration is stored in the UID
file when you compile the module. The module declaration for DECburger
specifies the following:

¢ DRM will identify the DECburger interface module by the name
decburger_demo.

¢ This is the first version of this module.
e Names are case sensitive.

¢ All separator, label, push button, and toggle button objects are gadgets
unless overridden in specific object declarations. All other types of
objects are widgets.

Note: Refer to the UIL built-in tables in the VMS DECwindows User
Interface Language Reference Manual to verify that you can
specify a gadget as a child of a particular object. Some objects
support only the widget variant of the push button and the toggle
button. You might need to override the default gadget variant
when defining a push button or toggle button that will be a child
of one of these objects. The definition of the up_value push button
in Example 3-16 in Section 3.2.9 shows how to override the default
gadget variant set for push buttons in the DECburger UIL module.

3.2.5 Using the UIL Constants Include File

The last line in Example 3-3 is an example of a UIL include directive.
When you compile the module, the UIL compiler replaces the include
directive with the contents of the specified file.

The file containing definitions of UIL constants is named DwtAppl.uil

for the MIT C binding and DECW$DWTDEF.UIL for the VAX binding.

By default, these files are located in the directories associated with the
logical names DECWS$INCLUDE: and SYS$LIBRARY:, respectively. The
UIL constants file must be included before its contents are referenced.
Therefore, include the UIL constants file immediately following the module
header.

3-13

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

The logical name UIL$INCLUDE, which points to the directory containing
the UIL constants file, is defined in the command procedure for building
and running the DECburger application (DECBURGER.COM). Therefore,
the file specification in the include directive does not need to contain

a directory specification. As long as you use the DECBURGER.COM
command procedure to run the DECburger application, the UIL constants
file will be included.

If you do not use the DECBURGER.COM command procedure to

build the DECburger application, you need to define the logical name
UIL$INCLUDE to point to the directory associated with the logical name
DECWS$INCLUDE, or you must completely specify the UIL constants file
in the include directive as follows:

include file ’'decw$include:DwtAppl.uil’;

The UIL module for the DECburger application makes use of some
of the constants defined in DwtAppl.uil. For example, the constants
DwtModeless and DwtOrientationVertical shown in Example 3—4
come from this include file.

Example 3-4 Constants from Include File in the DECburger UIL Module

object

control box : popup_dialog _box {
arguments {
title = k_decburger_ title;

style = DwtModeless;

y = 100;

margin_width = 20;

background color = lightblue;
}:

controls {

label burger label;

label fries_label;

label drink_label;

separator {arguments {
x = 110;
y = 10;

orientation = DwtOrientationVertical;
height = 180; };};

3-14

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

3.2.6 Declaring Procedures in UIL

Use a procedure declaration to declare a routine that can be used as a
callback routine for an object. You can reference the routine name in
object declarations that occur later in the UIL module.

As explained in Section 2.8, callback routines must be defined to accept
three parameters: the identifier of the widget triggering the callback, a
tag for user-defined information, and the callback data structure (which
is unique to each widget). The widget identifier and callback structure
parameters are under the control of the XUI Toolkit. The tag, however, is
under the control of the application program.

In a UIL module, you can specify the data type of the tag to be passed to
the corresponding callback routine at run time by putting the data type in
parentheses following the routine name. When you compile the module,
the UIL compiler checks that the argument you specify in references to
the routine is of this type. Note that the data type of the tag must be one
of the valid UIL types (see Table 3-3).

For example, in the following procedure declaration, the callback routine
named foggle_proc must be passed an integer tag at run time. The UIL
compiler checks that the parameter specified in any reference to the
routine named toggle_proc is an integer.

procedure
toggle_proc (integer) ;

While you may use any UIL data type to specify the type of a tag in a
procedure declaration, you must be able to represent that data type in the
high-level language you will be using to write your application program.
Some data types (such as integer, Boolean, and string) are common data
types recognized by most programming languages. Other UIL data types
(such as string tables) are more complicated and may require that you set
up an appropriate corresponding data structure in the application in order
to pass a tag of that type to a callback routine.

Table 3—2 summarizes the rules the UIL compiler follows for checking
the argument type and count. The way you declare the callback routine
determines which rule the UIL compiler uses to perform this checking.

Table 3-2 UIL Compiler Rules for Checking Argument Type and Count

Declaration Type Description of Rule

No parameters No argument type or argument count checking. You can
supply no arguments or one argument in the procedure

‘ reference.

() Checks that argument count is 0.

(ANY) Checks that argument count is 1. Does not check argument
type. Use ANY to prevent type checking on callback routine
tags.

(value_type) Checks for one argument of the specified value type.

3-15

3.2.7

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Example 3-5 shows that all callback routines in the DECburger UIL
module specify that argument type and argument count are to be checked
when the module is compiled.

Example 3-5 Procedure Declaration in the DECburger UIL Module

procedure

toggle_proc (integer) ;
activate_proc (integer);
create_proc (integer);
scale_proc (integer);
list_proc (integer) ;
quit_proc (string) ;

show_hide proc (integer);
pull_proc (integer) ;

You can also use a procedure declaration to specify the creation routine for
a user-defined widget. In this case, you must not specify any parameters.
The creation routine is invoked by DRM with the standard four arguments
passed to all low-level creation routines (see Section 2.4.1). Refer to

Section 3.9 for information about working with user-defined widgets in
UIL.

Declaring Values in UIL

A value declaration is a way of giving a name to a value expression. The
value name can be referenced by declarations that occur later in the
UIL module in any context where a value can be used. You must have
previously declared a value before you reference it.

Table 3-3 lists the supported value types in UIL. See the VMS
DECwindows User Interface Language Reference Manual for a complete
description of UIL values.

Table 3—-3 UIL Value Types

ANY

ARGUMENT
ASCIZ_STRING_TABLE
BOOLEAN
CLASS_REC_NAME
COLOR

COLOR_TABLE INTEGER
COMPOUND_STRING INTEGER_TABLE
COMPOUND_STRING_TABLE PIXMAP

FLOAT REASON

FONT STRING

FONT_TABLE TRANSLATION_TABLE

3-16

You can control whether values are local to the UIL module or globally
accessible by DRM by specifying one of the following keywords in the
value declaration:

¢ EXPORTED—A value that you declare as exported. This value
is stored in the UID file as a named resource and can be either
referenced by name in other UID files, or fetched from the UID file
by the application using DRM literal fetching routines.

Creating a User Interface Using UIL and DRM

3.2 Specifying a User Interface Using UIL—A Sample Program

e IMPORTED—A value that is defined as a named resource in a UID
file. When you declare a value as imported, DRM looks outside the
module in which the imported value is declared to get its value at
run time. DRM resolves this value declaration with the corresponding
exported declaration at application run time.

¢ PRIVATE—A value that is neither imported nor exported and is
not stored as a distinct named resource in the UID file. You can
reference a private value only in the UIL module containing the value
declaration.

EXPORTED, IMPORTED, and PRIVATE are reserved UIL keywords. By
default, values are private.

The DECburger application uses several kinds of values, as shown in

- the examples in the remainder of this section. There is a separate value

section for each type of value to make it easier to find the value declaration
during debugging.

3.2.7.1 = Defining Arguments for Attached Dialog Box Widgets

Note:

Use an attached dialog box widget when you want to position and size
the children of the dialog box widget relative to the other children in the
dialog box widget or to the dialog box widget itself. Using an attached
dialog box widget, you can omit the x, y, width, and height arguments in
favor of relationship expressions.

The attached dialog box widget is an object that allows the definition

of constraint arguments. That is, the attached dialog box widget has
arguments that constrain the geometry of its children, thereby overriding
the children’s arguments that specify position and size.

To supply constraint arguments, you include the constraint arguments in
the arguments list of the child object. The following example shows how
to define attachments for a push button. The VMS DECwindows User
Interface Language Reference Manual provides more information about
defining constraint arguments.

object
my_dialog box: dialog box {
arguments {
X 0;
y 0;
r

35;

(.|
N3

ow
i
controls {
push_button {
arguments {
adb_left_attachment = DwtAttachWidget;
adb_left_offset = 10;
}: :
}i
bi
}i

Do not defer the creation of any widget that is referenced in an
attachment. DRM requires all widgets referenced in attachments
to be created before the attachments can be resolved. If you defer
creation of a widget referenced in an attachment, the UIL module

3-17

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

3-18

will compile, but DRM will not be able to resolve the attachment;
the result is a run-time error.

Refer to Section 7.5 for more information about specifying and using
attached dialog box widgets in a VMS DECwindows application.

3.2.7.2 Defining Integer Values

Integer values are defined together in a single value section of the
DECburger UIL module. These integers are used as tags in the callback
routines. Example 3-6 shows a segment of this value section.

Example 3-6 Defining Integer Values in the DECburger UIL Module

value
k_create_order : 1;
k_order_pdme i 2;
k_file_ pdme : 3;
k_edit pdme : 4;
k_nyi ¢ 5;
k_apply : 65
k_dismiss t 7;
k_noapply : 8;
k_cancel_order : 9;
k_submit_order s 10;
k_order_box : 11;
k_burger rare : 12;
k_burger medium ¢ 13;
k_burger well : 14;
k_burger_ ketchup : 15;
k_burger mustard ¢ 16;
k_burger_onion 17;
k_burger_mayo : 18;
k_burger pickle : 19;
k_burger quantity : 20;

You can also use the INTEGER_TABLE function to define an array
of integer values. By using this method, you can pass more than
one integer value per callback reason. The VMSS DECwindows User

Interface Language Reference Manual provides more information about the
INTEGER_TABLE function.

3.2.7.3 Defining String Values

The next value section in the DECburger UIL module contains string
value declarations (see Example 3-7). These strings are the labels for

the various widgets used in the interface. Using values for widget labels
rather than hardcoding the labels in the specification makes it easier to
modify the interface (for example, from English to German). Putting all
label definitions together at the beginning of the module makes it easier to
find a label if you want to change it later. Also, a string resource declared
as a value can be shared by many objects, thereby reducing the size of the
UID file.

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

A compound string can be associated with a character set and, optionally,
a writing direction. Any text in a UIL module intended for dialog box
widget instructions, labels for push button widgets, titles, and so forth
should be declared as a compound string. In general, these strings require
customization for international markets and must include character set
information.

Because the label_label argument requires a compound string value,
the UIL compiler would have automatically converted these strings

to compound strings if they were declared as null-terminated strings.
However, the conversion process can waste space in the UID file. (See the
VMS DECwindows User Interface Language Reference Manual for more
information about data storage consumption.)

The exception, k_0_label_text, is used to define an argument for the simple
text widget; since this widget does not accept compound strings, the value
for k_0_label_text must be a null-terminated text string.

Because there is no default character set specified in the module header
and the individual string values do not specify a character set, the default
character set associated with all these compound strings is ISO_LATIN1.

Note that some value names are indented in the value section. This
indentation is not required but improves the readability of the UIL
module. Specifically, this indentation indicates the widget hierarchy.
For example, the widgets labeled Cut, Copy, Paste, Clear, and Select All
are children of the widget labeled Edit. (Section 3.2.8 explains how to
define the widget hierarchy.)

Example 3-7 Defining String Values in the DECburger UIL Module

value
k_decburger_title
: compound_ string ("DECburger Order-Entry Box");
k_nyi_ label text
: compound_string("Feature is not yet implemented"):;
k_file_label text : compound_string("File");

k_quit_label text : compound_string("Quit");
k_edit_label_text : compound string("Edit");
k_cut_dot_label text : compound_string("Cut");
k_copy_dot_label text : compound_string("Copy");
k_paste_dot_label text : compound_string("Paste");
k_clear_dot_label_ text : compound_string("Clear");
k_select_all label text : compound_string("Select All");
k_order label text : compound_string("Order");
k_show_controls_label text : compound string("Show Controls...");
k_cancel_order_label_text : compound_string("Cancel Order"):;
k_submit_order_ label text : compound string("Submit Order"):;

3-19

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

3-20

3.2.7.4 Specifying Multiline Compound Strings

In versions of VMS higher than 5.1 (for example, 5.3 and 5.4), the UIL
compiler does not consistently process newline characters (\n) that

are embedded in compound strings. The effect of a newline character
embedded in a compound string depends entirely on the character set you
specify, and the result may not always be a multiline compound string.

To guarantee that you create a multiline compound string, you must use
the SEPARATE clause in the COMPOUND_STRING function and the
concatenation operator (&) to join the segments into a multiline compound
string. The SEPARATE clause takes the form SEPARATE = boolean-
expression. For example, in VMS Version 5.1, the UIL compiler would
generate a multiline compound string from the following input:

value
sample string : compound_ string ("Hello\nWorld!");

To guarantee the same result in versions of VMS higher than 5.1 (for
example, 5.3 and 5.4), you must use the following syntax:

value .
sample linel : compound_string ("Hello", separate = true);
sample line2 : compound string ("World!");
sample _string : sample_linel & sample_line2;

To retain VMS Version 5.1 behavior of the newline character (\n) in a
compound string, compile your UIL specification file using the /VERSION
qualifier as follows:

$ UIL/VERSION=V1 MY FILE.UIL

See the VMS DECwindows User Interface Language Reference Manual
for more information on the COMPOUND_STRING function and the
/VERSION qualifier.

3.2.7.5 Defining String Table Values

A string table is a convenient way to express a table of compound strings.
Some widgets require a string table argument (such as the list box widget,
which is used for drink selection in the DECburger application).

Example 3-8 shows how to define a string table value in UIL.

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Example 3-8 Defining a String Table Value in the DECburger UIL Module

value

k_drinks_label_text : compound string("Drinks");
k_0_label text - 2 107
k_drink_list_ text :
string_table (’Apple Juice’, ’'Orange Juice’, ’Grape Juice’,
'Cola’, "Punch’,’Root beer’, ’'Water’,
’Ginger Ale’, ’Milk’, ’'Coffee’, 'Tea’);
k_drink_list select : string_table(’Apple Juice’);

The labels for the types of drinks are elements of the string table named
k_drink_list_text. Notice that Apple Juice is a single element in the string
table named k_drink_list_select. This value is passed to the drink_list_
box widget to show apple juice as the default drink selection. (Refer to
Section 8.2.2 for more information about showing default selection for the
list box widget.) ~

The UIL compiler automatically converts the strings in a string table
to compound strings, regardless of whether the strings are delimited by
quotation marks or apostrophes.

3.2.7.6 Defining Font Values
Use the FONT funection to declare a UIL value as a font.

Example 3-9 shows the declaration of a font value in the DECburger UIL
module. This value is used later as the value for the font_argument
attribute of the apply_button, can_button, and dismiss_button push button
widgets.

Example 3-9 Declaring a Font Value in the DECburger UIL Module

value :
k_button_font
: font (/-ADOBE-Courier-Bold-R-Normal--14~140-75-75-M-90~IS08859-1");

The VMS DECwindows Xlib Programming Volume lists the valid VMS

DECwindows font names you can use as the argument to the FONT
funtion.

Note that the UIL compiler converts a font to a font table when the font
value is used to specify an argument that requires a font table value.

3-21

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

3-22

3.2.7.7 Defining Color Values

Example 3-10 shows the value section in the DECburger module
containing color declarations.

Example 3-10 Defining Colors in the DECburger UIL Module

value
yellow : color(’yellow’, foreground):;
red : color(’red’, background);
green _ : color(’‘green’, foreground):
magenta : color (‘magenta’, background);
gold : color(’gold’, foreground);
lightblue : color(’lightblue’, background):

By using the COLOR function, you can designate a string as specifying a
color and then use that string for arguments requiring a color value. The
optional keywords FOREGROUND and BACKGROUND identify how the
color is to be displayed on a monochrome device.

The UIL compiler does not have built-in color names. Colors are a server-
dependent attribute of a widget. Colors are defined on each server,
according to the RGB (Red, Green, Blue) color model, and might have
different RGB values on each server. The string you specify as the color
argument to the COLOR function must be recognized by the server on
which your application runs.

In a UID file, colors are represented as a character string. DRM calls
X-level translation routines that convert the color string to the device-
specific pixel value. If you are running on a monochrome server, all colors
translate to black or white. If you.are on a color server, the color names
translate to their proper colors if the following two conditions are met:

¢ The color is defined.

¢ The color map is not yet full.

If the color map is full, even valid colors translate to black (foreground) or
white (background).

If you have VMS DECwindows software installed on your system, you
can see a listing of the color name strings understood by the VMS
DECwindows servers by entering the following command:

$ TYPE SYS$MANAGER:DECWS$SRGB.COM

The command procedure DECW$RGB.COM is executed during VMS
DECwindows startup to set up the mapping of color names to RGB
color indexes. These names are defined so that you can use reasonable
names, rather than specify numeric color levels, to pick colors. (The

server stores the equivalent numeric color levels of color names in the
XDEFAULTS.DAT file.)

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

3.2.7.8 Defining Pixmap Values
' Pixmap values are designed to let you specify labels that are graphic
images rather than text strings. Pixmap values are not directly supported
by UIL. Instead, UIL supports icons, which are a simplified form of
pixmap. You use a character to describe each pixel in the icon.

You can generate pixmaps in UIL in two ways:

¢ Define an icon using the ICON function (and optionally use the
COLOR_TABLE function to specify colors for the icon).

¢ Use the XBITMAPFILE function, specifying the name of an X bitmap

file that you created outside UIL to be used as the pixmap value.
Example 3-~11 shows the value section in the DECburger module
containing a color table declaration.

Example 3-11 Defining a Color Table in the DECburger UIL Module

value
button_ct : color_table(
yellow='o"’
,red=’ .’
,background color=’ ');

The colors you specify when defining a color table must have been
previously defined using the COLOR function. For example, in

Example 3-11, the colors yellow and red were previously defined (see
Example 3-10). Color tables must be private because the UIL compiler
must be able to interpret their contents at compilation time to construct an
icon. The colors within a color table, however, can be imported, exported,
or private.

Example 3-12 shows how the button_ct color table is used to specify an
icon pixmap. Referring to the definition shown in Example 3-11, each
lowercase o in the icon defined in Example 3—12 is replaced with the color
yellow, and each period (.) is replaced with the color red. Whatever color
is defined as the background color when the application is run replaces the
spaces.

In UIL, if you specify an argument of type pixmap, you should specify an
icon or X bitmap file as its value. Example 3-12 is given as the value of
the label on the drink quantity push button widget. (Refer to the definition
of the drink_quantity widget in Section 3.2.9.)

3-23

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Example 3-12 Defining an Icon in the DECburger UIL Module

value

drink_up_icon: icon(color_table=button_ct,
. ’

'l
.......... 00..ceeeanees 7y
......... O000.cevsneee 'y
........ 000000, s esevss ',
....... 00+:44:0000ceess 'y
...... O0:ieee0e00caeass ',
..... 00.ieeeee:0000aa. ',
OO0.vevsssone oo. ’
OO:evnonssonss ©0. ’
(o7 2 fole) ’
’

0000000000000000000000

’
’
14
’
’
0000000000000000000000 ,

B T T S RN
[o]
[¢]
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[o]
[o]

Each row in the icon must contain the same number of pixels and therefore
must contain the same number of characters. The height of the icon is
dictated by the number of rows. For example, the arrow icon defined in
Example 3-12 is 24 pixels wide and 20 pixels tall. (The rows of spaces

at the top and bottom of the pixmap and the spaces at the start and end
of each row are included in this count and are defined as the background
color in the button_ct color table.)

A default color table is used if you omit the color table argument. The
definition of the default color table is as follows:

color_table(background color = ’ ’/, foreground color = ’*’)

You can specify icons as imported, exported, or private.

3.2.8 Declaring Interface Objects in a UIL Module

3-24

Use an object declaration to define an instance of widget or gadget that
is to be stored in the UID file. The object declaration contains a sequence
of lists that define the arguments (also called widget-specific attributes),
children, and callback routines for the object. You can specify only one
list of each type for an object. As with values, you can specify an object as
imported, exported, or private (see Section 3.2.7).

-You can reference the object name in declarations that occur elsewhercin -

the UIL module, usually to specify one object as a child of another objeci.
This is useful for declaring a parent first, followed by the declarations for
all its children. (The declaration of the parent includes a list of the names
of its children.) In this way, the structure of your UIL module resembles
the widget hierarchy of your interface.

Creating a User Interface Using UIL and DRM

- 3.2 Specifying a User Interface Using UIL—A Sample Program

Some widget arguments accept a widget name (and the widget type) as

a value. This use of a widget name is called a symbolic reference to a
widget identifier and is explained in Section 3.6. You can also use a widget
name (and type) as the tag_value argument to a callback routine.

All references to an object name must be consistent with the type you
specified when you declared the object. (See Table 2-2 for a listing of UIL
object types.)

Example 3-13 shows how the file_menu widget is declared in the
DECburger UIL module. ‘

Example 3-13 Declaring an Object in the DECburger UIL Module

object
file menu : pulldown_menu {

arguments {
label label = k_file label_ text;
}i

controls {
push_button m_print_button;
push_button m_quit_button;
b
callbacks {
create = procedure create_proc (k_file menu);
}i
}i

As shown in Example 3-13, an object declaration generally consists of
" three parts: an arguments list, a controls list, and a callbacks list. These
parts are explained in the following sections.

3.2.8.1 Specifying Arguments in an Object Declaration

Note:

Use an arguments list to specify the arguments (attributes) for an object.
An arguments list defines which arguments are to be specified in the
override_arglist argument when the creation routine for a particular
object is called at run time. An arguments list also specifies the values
that these arguments are to have. The argument values you specify in
UIL take precedence over any other source (for example, user or XUI
Toolkit defaults). You identify an arguments list to the UIL compiler by
using the keyword ARGUMENTS.

Each entry in the list consists of the argument name and the argument
value. In Example 3-13, the file_menu widget has an argument named
label_label, and the value of the argument is %_file_label_text. (The value
k_file_label_text is a compound string defined in a value section at the
beginning of the module.) The VMS DECwindows User Interface Language
Reference Manual shows the UIL built-in arguments supported for each
widget in the XUI Toolkit (including their UIL data type and default value)
in an appendix. ,

UIL has its own generic data types for arguments that map to VAX
or MIT C binding data types. UIL forces you to specify argument
values of the correct data type and is more structured than the
XUI Toolkit in this regard. When you use UIL to specify an
interface, you must use UIL data types as indicated in the UIL

3-25

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

3-26

built-in tables in the VMS DECwindows User Interface Language
Reference Manual.

If you use the same argument name more than once in an arguments list,
the last entry supersedes all previous entries, and the compiler issues a
message.

If your application interface employs a user-defined widget, and this
widget has arguments that are not UIL built-ins, you need to define these
arguments with the ARGUMENT function. See the VMS DECwindows
User Interface Language Reference Manual for more information about the
ARGUMENT function.

3.2.8.2 Specifying Children in an Object Declaration

You use a controls list to define which widgets are children of, or controlled
by, a particular widget. The controls lists for all the widgets in a UIL
module define the widget hierarchy for an interface. If you specify that

a child is to be managed (which is the default), at run time the widget is
created and managed; if you specify that the child is to be removed from
the managed list at creation (by including the keyword UNMANAGED in
the controls list entry), the widget is only created. You identify a controls
list to the UIL compiler using the keyword CONTROLS.

For example, in Example 3-13, the objects m_print_button and m_quit_
button are children of the file_menu widget (which is a pull-down menu).
(For each widget in the XUI Toolkit, the VMS DECwindows User Interface
Language Reference Manual lists in an appendix the valid children of the
widget.) The objects m_print_button and m_quit_button are defined as
push button widgets, which are valid children of a pull-down menu widget
(UIL object type pulldown_menu).

In Example 3-14, the pop-up dialog box widget called control_box is a
top-level composite widget having a variety of widgets as children. Some
of these children are also composite widgets, having children of their
own. For example, the button_box and burger_doneness_box widgets are
declared later on in the module, and each of these has a controls list.

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Example 3—14 Specifying Children in the DECburger UIL Module

object

control_box : popup_dialog _box {
arguments {
title = k_decburger_title;
style = DwtModeless;
x = 300;
y = 100;
margin_width = 20;
background _color = lightblue;
}i

controls {

label burger_label;

label fries_label;

label drink_label;

separator {arguments {
x = 110;
y = 10;
orientation = DwtOrientationVertical;
height = 180; }:1};

separator {arguments {
x = 205;
y = 10;

orientation = DwtOrientationVertical;

height = 180; }:}:
work_area_menu button_box;

radio_box burger doneness_box;

Notice that the separator widgets are defined locally in the controls list for
control_box, rather than in object sections of their own. As a result, the
separator widgets do not have names and cannot be referenced by other
objects in this UIL module. However, the local definitions make it easier
for someone reading the UIL specification file to tell that the separator
widgets are used only by the control_box widget. When you define an
object locally, you do not need to create an artificial name for that object.

Unlike the arguments list (and the callbacks list, described in
Section 3.2.8.3), when you specify the same widget in a controls list

more than once, DRM creates multiple instances of the widget at run time

when it creates the parent widget.

3.2.8.3 Specifying Callbacks in an Object Declaration

Use a callbacks list to define which callback reasons are to be processed by
a particular widget at application run time. As shown in Example 3-13,
each entry in a callbacks list has a reason (in this example, create) and

the name of a callback routine (in this example, create_proc).

3-27

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

3-28

For XUI Toolkit widgets, the reason must be a UIL built-in name. For
a user-defined widget, you can reference a user-defined reason that
you previously specified by using the REASON function (see the VMS
DECwindows User Interface Language Reference Manual). If you use a
built-in reason in a widget definition, the UIL compiler ensures that the
reason is supported by the type of widget you are defining. The VMS
DECuwindows User Interface Language Reference Manual lists built-in
reasons for each widget in an appendix.

If you use the same reason more than once in a callbacks list, the last
entry that uses that reason supersedes all others, and the UIL compiler
issues a message.

You must have previously defined the routine name in a procedure
declaration. For an example of a procedure declaration, see Example 3-5.
In this example, the routine activate_proc was declared in the beginning of
the UIL module.

Since the UIL compiler produces a UID file rather than an object module,
the binding of the UIL name to the address of the routine entry point

is not done by the VMS Linker. Instead, the binding is established at
run time using the DRM routine REGISTER DRM NAMES. You call this
routine prior to fetching any widgets, giving it the UIL names and the
addresses of each callback routine. The name you register with DRM in
the application program must match the name you specified in the UIL
module. Section 3.3 explains how the DECburger callback routine names
are registered with DRM.

UIL also allows you to specify multiple procedures per callback reason by
defining the procedures as a type of list. Just as with any other list type,
you can define a procedures list either locally in an object declaration or in
a separate list section that you reference by name.

If you define a reason more than once (for example, when the reason is
defined in a referenced procedures list and in the callbacks list for the
object), all previous definitions are overridden by the latest definition.

Example 3-15 shows how to specify multiple callback procedures for the
activate reason locally in the callbacks list of an object declaration.

'3.2.9

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Example 3—-15 Specifying Multiple Procedures per Callback Reason

object
m_quit_button: push _button {
arguments {

.
}:

callbacks {
activate = procedures {
quit_proc (‘normal demo exit’); /* First proc for activate reason */
shutdown () /* Second proc for activate reason */

}:
}:
oo

The VMS DECwindows User Interface Language Reference Manual
contains more information on how to specify multiple callback procedures
per reason.

Specifying an Icon as a Widget Label

Figure 3—-4 highlights the drink quantity selector. This widget in the user
interface for the DECburger application uses icons for the labels on its
push button widgets. When the user clicks on the up arrow icon, the drink
quantity increases. When the user clicks on the down arrow icon, the
drink quantity decreases.

3-29

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Figure 3-4 Using an Icon in the DECburger Application Interface

i Weicoms to DECburger
File Edit COrder

- DECburger Order-Eniry Box
Hamburgers : Fries : Drinks
O Rare O Ketchup gize| Medium Apple Juice JEAS
@ Medium g Mustard Orange Juice
O Well Done Pickie Grape Juice
O Onion : Col
{1 Mayonnaise; o A4
0 : : 3
© Quantity 3:0 : : —;
: : Quantity 0 I
Quantity : : t

ZK-0161A-GE

Example 3-12 defined the icon named drink_up_icon. Example 3-16
shows how to specify this icon as a label for a push button widget. In
the DECburger UIL module, the icon named drink_up_icon is a pixmap
label argument to the up_value push button widget. In turn, the up_value
widget is controlled by the drink_quantity attached dialog box widget.

3-30

Creating a User Interface Using UIL and DRM
3.2 Specifying a User Interface Using UIL—A Sample Program

Example 3—-16 Using an Icon as a Label in the DECburger UIL Module

object
drink quantity : attached_dialog box {

arguments { :
x = 230;
y = 85;
bi

controls {
label quantity_label;
label value_label;
push_button up_value; R
push_button down_value;

. }i
};

object
up_value : push_button widget {
arguments {
y =20 ;
adb_left_attachment = DwtAttachWidget:;
adb_left_offset = 10 ;
adb_left_widget = label value_label ;
label _label_type = DwtPixmap:
label pixmap = drink_up_icon;
bio
callbacks {
activate = procedure activate_proc (k_drink_add);
}i .
bi

3.3 Creating a User Interface at Run Time Using DRM

The XUI Resource Manager (DRM) creates interface objects based on
definitions in UID files. Call DRM routines in your application program
to initialize DRM, to provide information required by DRM to interpret
information in UID files, and to create objects using UID definitions.

DRM also has routines that allow an application to read literal definitions
from UID files. You create these literal definitions when you declare a
value in UIL as exported. You can use these literals in your application
program for any purpose. Section 3.3.3 explains how to read literals from
UID files.

Similar to the way you can set values for a widget at run time using the
XUI Toolkit routine SET VALUES, DRM provides a routine that allows
you to set values at run time based on values stored in the UID file.
Section 3.3.4 explains how to set values using values in the UID file.

You can use a DRM routine to fetch a widget and override widget attribute
values or set values in addition to those you specified in a UIL module. In
effect, a single object definition can be used like a template. Section 3.3.5
describes this routine.

3-31

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

3-32

All definitions required to use DRM are contained in the file
decw$include:DwtAppl.h for the MIT C binding or in the file
SYS$SLIBRARY:DECW$DWTDEF.H for the VAX binding.

DRM does not replace, but rather complements, the X Resource Manager.
The X Resource Database (an in-memory database, stored in the
XDEFAULTS.DAT file) supplies default values. When you use UIL to
specify a user interface, you do not need to specify all argument values
(resources); you need to specify an argument only when you want to
override the default value stored in the X Resource Database. DRM
generates the override_arglist argument for the appropriate low-level
widget creation routines at run time.

Figure 3-5 shows how widget argument values are applied inside the
DRM fetch operation. The numbers @, @, and @ indicate the sequence
in which DRM searches for argument values and, therefore, the order of
precedence. (Once DRM finds an argument definition, it stops searching.)

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Figure 3-5 Widget Creation in a DRM Fetch Operation

UIL
Compiler

Application XUl
Xdefautts Defaults Toolkit

FETCH INITIALIZE Routine
WIDGET
Routine
(override_arglist) -
XRM Widget
Database Class
Records
Widget Creation Routine

Widget
Resources

ZK-0128A-GE

The examples showing how to create a user interface at run time using
DRM are based on the C program for the DECburger application.
(The DECburger application can be found in the examples directory

3-33

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

DECWS$EXAMPLES:. Section 1.2 describes how you can access these
files.) The DECburger application demonstrates the most commonly used
DRM routines. Table 3—4 briefly describes the DRM routines available
to you; a complete description of these routines is given in the VMS
DECwindows Toolkit Routines Reference Manual.

Table 3-4 DRM Routines and Functions

Routine or Function Name

Description

CLOSE HIERARCHY

DRM FREE RESOURCE CONTEXT
DRM GET RESOURCE CONTEXT

DRM HGET INDEXED LITERAL

DRM RC BUFFER

DRM RC SET TYPE
DRM RC SIZE

DRM RC TYPE

FETCH COLOR LITERAL

FETCH ICON LITERAL
FETCH INTERFACE MODULE
FETCH LITERAL

FETCH SET VALUES

FETCH WIDGET

FETCH WIDGET OVERRIDE

INITIALIZE DRM

Closes a UID hierarchy
Frees a resource context
Sets up a resource context

Fetches indexed (named) literals from a UID
hierarchy (preferred method for fetching literal
is to use either the FETCH COLOR LITERAL
the FETCH ICON LITERAL, or the FETCH
LITERAL routine)

Returns a pointer to the resource context
buffer

Modifies the resource context type
Returns the size of the resource context
Returns the resource context type

Fetches a named color literal from a UID
hierarchy

Fetches a named icon literal from a UID
hierarchy

Fetches all the objects defined in some
interface module in the UID hierarchy

Fetches a named string literal from a UID
hierarchy

Fetches the values to be set from literals
stored in UID files

Fetches any indexed (named) application
widget

Fetches any indexed (named) application
widget and overrides values stored in the UIC
file with those supplied in the routine call

Prepares an application to use DRM widget
fetching facilities

(continued on next page¢

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Table 3-4 (Cont.) DRM Routines and Functions

Routine or Function Name Description

OPEN HIERARCHY Allocates a hierarchy descriptor and opens all
the UID files in the hierarchy

REGISTER CLASS . Saves the information needed to access the

widget creation routine for a user-defined
widget using the information in UID files and to
perform type conversion of an arguments list

REGISTER DRM NAMES Registers a vector of names and associated
values for access by DRM

3.3.1 Accessing the UID File at Run Time

As explained in Section 3.1, a VMS DECwindows application whose
interface is specified in UIL must contain calls to the following routines:

¢ INITIALIZE DRM—Prepare the application for fetching and other
DRM facilities.

¢ REGISTER CLASS—Register user-defined widget classes with DRM
(not required for XUI Toolkit objects).

s INITIALIZE—Parse the command line used to invoke the application,
open the display, and initialize the XUI Toolkit.

¢ OPEN HIERARCHY—Bind the application program with the
appropriate interface definition.

¢ REGISTER DRM NAMES—Register values used to resolve symbolic
references in the interface definition.

The call to the INITIALIZE DRM routine must come before the call to the
INITIALIZE routine. Example 3-17 shows the initialization of DRM and
the XUI Toolkit in the DECburger application.

Example 3-17 Initializing DRM and the XUI Toolkit in the DECburger
Application

unsigned int main(argc, argv)
unsigned int argc;
char *argvl[];

DwtInitializeDRM() ;

toplevel_widget = XtInitialize("Welcome to DECburger",
"example",
NULL,
0,
&argc,
argv) ;

3-35

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

3-36

The compiled interface, described in one or more UIL modules, is
connected to the application by setting up a UID hierarchy at run time.
The names of the UID files containing the compiled interface definitions
are stored in an array. Because compiled UIL files are not object files
(OBJ extension), this run-time connection is necessary to bind an interface
with an application program. The DECburger application has a single
UIL module (DECBURGER.UIL), so the UID hierarchy consists of one
file (DECBURGER.UID). Example 3-18 shows the declaration of the UID
hierarchy for DECburger.

Example 3—-18 Declaring the UID Hierarchy for the DECburger
Application

- static DRMHierarchy s_DRMHierarchy;

static char *db_filename_vec[] =
{"decburger.uid"
}:

The name of the UID hierarchy is s_DRMHierarchy. The array containing
the names of the UID files in the UID hierarchy is db_filename_vec. In
Example 3-19, the application opens this UID hierarchy. At this point in
the application, DRM has access to the DECburger interface definition and
can fetch widgets.

Example 3—-19 Opening the UID Hierarchy for the DECburger
Application

if (DwtOpenHierarchy(db_filename_numn,
db_filename_vec,
NULL,
&s_DRMHierarchy)
!=DRMSuccess)
s_error("can’t open hierarchy"):;

The final step in preparing to use DRM to fetch widgets is to register a
vector of names and associated values. These values can be the names of
callback routines, pointers to user-defined data, or any other values. DRM
uses the information provided in this vector to resolve symbolic references
that occur in UID files to their run-time values. For callback routines,
the vector provides addresses required by the XUI Toolkit. For names
used as variables in UIL (identifiers), this information provides whatever
mapping the application requires. (The use of identifiers is explained in
Section 3.5.)

Example 3-20 shows the declaration of the names vector in the DECburger

C program. In the DECburger application, the names vector contains only

names of callback routines and their addresses.

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Example 3-20 Declaring a Vector of Names to Register for DRM in the
DECburger Application

static DRMRegisterArg reglist([] = {
{"activate_proc", (caddr_t) activate_proc},
{"create_proc", (caddr_t) create_proc},
{"list_proc", (caddr_t) list_proc},
{"pull_proc", (caddr_t) pull_proc},
{"quit_proc", (caddr_t) quit_proc},
{"scale_proc", (caddr_t) scale_proc},
{"show_hide_proc", (caddr_t) show_hide_proc},
{"show_label proc", (caddr_t) show_label proc},
{"toggle proc", (caddr_t) toggle_proc}

}:

static int reglist_num = (sizeof reglist / sizeof reglist [0]);

The names are registered in a call to the REGISTER DRM NAMES
routine, as shown in Example 3-21.

Example 3-21 Registering Names for DRM in the DECburger
Application

DthegisterDRMNames(reglist, reglist_num);

3.3.2 Deferring Fetching

DRM allows you to defer fetching off-screen widgets until the application
needs to display these widgets. There are two types of off-screen widgets:
pull-down and pop-up. Whenever DRM fetches an off-screen widget, it
also fetches the entire widget hierarchy below that widget. By deferring
fetching of off-screen widgets, you can reduce the time it takes to start up
your application.

The DECburger application uses deferred fetching. The pull-down menu
widgets for the File, Edit, and Order options are not fetched when the
main window widget is fetched. Instead, these menus are fetched and
created by individual calls to the FETCH WIDGET routine when the
corresponding pull-down menu entry widget is activated (selected by the
end user). You can use the FETCH WIDGET routine at any time to fetch
a widget that was not fetched at application startup.

The UIL module for the DECburger application is set up to allow either
deferred fetching or a single fetch to create the entire widget hierarchy.
To fetch the entire interface at once, remove the comment character (1)
from the controls list for the file_menu_entry, edit_menu_entry, and order_
menu_entry widgets. As long as the comment characters remain on the
controls list for the pull-down menu entries, their associated pull-down
menu widgets are no longer children; they are top-level widgets and can
be fetched individually. Example 3-22 shows the object declaration for the
file_menu_entry.

3-37

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Example 3-22 DECburger UIL Module Setup for Deferred Fetching

object
- file_menu_entry : pulldown_entry {

arguments {
label label = k_file_label text:;
}i

! controls {
! pulldown_menu file_ menu;
! }i
callbacks {
pulling = procedure pull_proc (k_file_ pdme);
create = procedure create proc (k_file_pdme):
bi
}i

When you remove the comment characters, the controls list on each pull-
down entry widget specifies the pull-down menu widget as a child. The
pull-down menu widgets are no longer top-level widgets; instead, they are
loaded when the pull-down entry is created (that is, when the DECburger
main window widget is fetched).

3.3.3 Retrieving Literal Values from UID Files

3-38

Using the literal fetching routines (FETCH COLOR LITERAL, FETCH
ICON LITERAL, and FETCH LITERAL), you can retrieve any named,
exported UIL value from a UID file at run time. These literal fetching
routines are particularly useful when you want to use a value in a context
other than for specifying an object. The three literal fetching routines
allow you to treat the UID file as a repository for all the programming
variables you need for your application interface. For example, you

can store the following as named, exported literals in a UIL module

for run-time retrieval:

¢ All the error messages to be displayed in a message box (stored in a
string table)

¢ An ASCIZ string used to query the operating system (for example,
to retrieve the correct version of the help library for a portable
application)

¢ Language-dependent strings
In the C program for the DECburger application, the text string displayed

in the title bar of the main window widget is supplied directly to the
INITIALIZE routing, as shown in Example 3-23.

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Example 3-23 Title Bar String for DECburger Application

toplevel_widget = XtInitialize ("Welcome to DECburger",

"example",
NULL,

0,

&argc,
argv);

Alternatively, this string could be specified in a UIL module as a named,
exported string, and retrieved from the UID file at run time with the

FETCH LITERAL routine.
In the following example, the string for the DECburger title bar is defined
in the UIL module:
value
k_welcome_text : exported ’'Welcome to DECburger’;

Example 3-24 shows the changes needed in the DECBURGER.C program
to get the title bar string from the UID file.

Example 3-24 Getting a Value from the UID File for the DECburger Application

@static char * welcome_text_ptr;

@static int dtype:

@Opwtretchliteral (s_DRMhierarchy, "k_welcome_text", NULL, &welcome_text_ptr, &dtype);

Oxtrree (welcome_text_ptr);

A character pointer to the string containing the text for the application
title that will be retrieved from the UID hierarchy. This pointer is
passed to the FETCH LITERAL routine, which is shown in @.

Data type of the returned literal.

The first parameter to the FETCH LITERAL routine is the identifier of
the UID hierarchy containing the named value (literal) to be fetched.

The second parameter specifies the named value (as specified in

UIL) to fetch from the UID hierarchy. This call to the FETCH
LITERAL routine fetches the literal named %_welcome_text from

the UID hierarchy named s_DRMhierarchy. Note that DRM does not
do any type conversion when it retrieves literal values from a UID file.

The third parameter to the FETCH LITERAL routine is the display.
You need to provide this parameter when fetching fonts and font lists.
You can use the intrinsic DISPLAY function on any widget identifier to
retrieve the display value.

The intrinsic routine FREE is used to free the memory used for the
welcome text string. You are responsible for freeing all allocated
storage after the fetched value is no longer needed.

3-39

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

3.3.4 Setting Values at Run Time Using UID Resources

The DRM routine FETCH SET VALUES allows you to modify at run
time an object that has already been created. The FETCH SET VALUES
routine works like the SET VALUES routine except that DRM fetches the
values to be set from named, exported resources (literals) in the UID file.
The fetched values are converted to the correct data type, if necessary,
and placed in the args argument for a call to the XUI Toolkit routine SET
VALUES. Since the FETCH SET VALUES routine looks for the literal
values in a UID file, the argument names you provide to the FETCH SET
VALUES routine must be UIL argument names (not XUI Toolkit attribute
names).

You can think of the FETCH SET VALUES routine as a convenience
routine that packages the functions provided by FETCH LITERAL and
SET VALUES.

The value member of the name and value pairs passed to FETCH SET
VALUES is the UIL name of the value, not an explicit value. When the
application calls FETCH SET VALUES, DRM looks up the names in the
UID file, then uses the values corresponding to those names to override
the original values in the object declaration. The FETCH SET VALUES
routine, therefore, allows you to keep all values used in an application in
the UIL module and not in the application program. (The values you pass
to the FETCH SET VALUES routine must be named, exported literals in
the UIL module.)

The FETCH SET VALUES routine offers the following advantages:

* It performs all the necessary UIL resource manipulation to make
the fetched UIL values usable by the XUI Toolkit. (For example, the
FETCH SET VALUES routine enables a UIL icon to act as a pixmap.)

¢ It lets you isolate a greater amount of interface information from
the application program (to achieve further separation of form and
function).

There are some limitations to the FETCH SET VALUES routine:

* All values in the args argument must be names of exported resources
listed in a UIL module (UID hierarchy); therefore, the application
cannot provide computed values from within the program itself as part
of the arguments list.

¢ It uses the SET VALUES routine, ignoring the possibility of the less
costly high-level routine that the widget itself may provide.

The examples in this section are based on a simple application that
displays text in two list box widgets. The text displayed in the second
list box widget depends on what the user selected in the first. Figure 3-6
shows the interface for this application.

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Figure 3-6 Sample Application Using the FETCH SET VALUES Routine

Materials Classifications

" File Edit Customize | , Help
2
Materials Material Types B
o Redwood a
Metal Dogwood
Waste [Birch |
O Pine O
_ ___lo
T — —o[]
ZK-0540A-GE

This application is well-suited to using the DRM routine FETCH SET
VALUES for the following reasons:

The data (list box widget contents) is all known in advance; that is, the
values themselves do not need to be computed at run time.

The data consists of tables of compound strings that appear in the user
interface and, therefore, must be translated for international markets.
(Strings that: must be translated should be stored in a UID file.)

The FETCH SET VALUES routine performs all the necessary
manipulations to make the string table usable by the list box. Because
the program will not be using the fetched string table directly but
intends only to modify the visual appearance of a widget based on
items in the table, the FETCH LITERAL routine is less convenient to
use.

Example 3-25 shows the UIL module for this application; Example 3-26
shows the C program. The segment of the UIL module shown in
Example 3-25 assumes that the module header, procedure declarations,
include files, and value declarations for each of the names used in the
example are in place.

Creating a User Interface Using'UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Example 3-25 UIL Module for the FETCH SET VALUES Application

value

cs_wood

compound_string ("Wood") ;

cst_materials_selected : string_ table(cs_wood);

G’cst_materials : exported string_table(

object

cst_type_1 : exported string_table(
"Redwood", "Dogwood", "Blrch" "Pine", "Cherry");

cs_wood, ! material type 1
"Metal", ! material type 2
"Waste"); ! material type 3

1l _count_type_1 : exported 5;

cst_type 2 : exported string_table(

"Aluminun",

1_count_type_2 : exported 5;

cst_type_3 : exported string table(
"Toxic","Solid", "Biodegradable", "Party Platforms");

1_count_type 3 : exported 4;

k_zero

exported 0;

materials_ListBox : list_box

{

}:

arguments

{

}:

= k_tst_materials_ListBox_x;
y = k tst materlals _ListBox_y;
width = k_;st_yaterlals_LlstBox_wid;
visible_items_count = 4;
items = cst_materials;
selected items = cst_materials_selected;
single_selection = true;
resize = DwtResizeFixed;

callbacks

{

}:

"Steel","Titanium", "Iron","Linoleun") ;

! Materials for type 1 (wood)

! Materials for type 2 (metal)

! Materials for type 3 (waste)

help = procedure tst_help proc(k_tst_materials_ListBox_key):
create = procedure tst create_proc(k tst materlals _ListBox);
single = procedure tst_31ngle_proc(k_tst_materlals_LlstBox),

(continued on next page)

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Example 3-25 (Cont.) UIL Module for the FETCH SET VALUES Application

types_ListBox : list_box

{

};

arguments

{

}z

x = k_tst_types_ListBox_x;

y = k_tst_types_ListBox_y;
width = k_tst_types_ListBox_wid;
visible_items_count = 4;

items = cst_type 1;
single_selection = true;

resize = DwtResizeFixed;

callbacks

{

}:

help = procedure tst_help_ proc(k_tst_types_ ListBox_key):;
create = procedure tst_create_proc(k_tst_types_ListBox);
single = procedure tst_single proc (k_tst_types_ListBox);

© Prefixes on value names indicate the type of value. For éxample,
¢s_ means compound string, cst_ means compound string table, and
l_ means longword integer.

@ This string table provides the contents for the Materials list box widget
(on the left in Figure 3-6). This string table does not need to follow
the naming scheme for the string table in the Material Types list box
widget (that is, cst_type_n) because the contents of the Materials list
box does not change once the application is realized. (The numbering
of the string tables in @ is vital to the proper functioning of the
Material Types list box widget. The string table for the Materials list
box widget could have been named anything.)

@ These string tables provide the contents for the various versions of
the Material Types list box widget (on the right in Figure 3-6). Each
one of these lists of strings corresponds (in order) to the string names
in the first list box widget (Materials). These tables are numbered
to facilitate programming. When the user selects an item in the
Materials list box widget, the index of the selected item will be
concatenated with the string "cst_type_" to form the name of one
of these tables. This named table will be retrieved with the FETCH
SET VALUES routine and placed in the Material Types list box widget.

Note that in addition to the string table, a count of the number of
items in the table is declared as an exported value. This is done
because using the SET VALUES routine on a list box widget requires
that three arguments be set: items, item_count, and selected_
items_count (which must be set to 0).

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

In the C program shown in Example 3-26, note the activation procedure
named ¢st_single_proc, where the user’s selection causes the program to
act.

Example 3-26 C Program for the FETCH SET VALUES Application

#define k_zero_name "k_zero"
#define k_table name_prefix "cst_type "
#define k_table_count_name_prefix "1 _count_type "

Qvoid tst_single_proc(w,object_index,callbackdata)

Widget w;
int *object_index;
DwtListBoxCallbackStruct *callbackdata;

{
@char *t_number;
Ochar t_table name{32] = k_table_name_prefix;
char t_table_count_name([32] = k_table count_name_prefix;

‘lArg r_override_arguments(3] =

®

{ {DwtNitems,NULL}, {DwtNitemsCount, NULL}, {DwtNselectedItemsCount, k_zero_name}};

switch (*object_index) -
{

case k_tst_materials_ListBox:

{

sprintf(&t_number;"%d",callbackdata—>item_number);

strepy (&t_table name[sizeof (k_table name prefix)-1], &t_number);
XtSetArg(r_override_arguments[0],DwtNitems, &t_table_name);

strcpy (ét_table_count_name([sizeof (k_table_count_name_prefix)-1], &t_number);
XtSetArg(r_override_arguments[l],DwtNitemsCount, &t_table_count_name);

DwtFetchSetValues (ar_DRMHierarchy,
object_ids[k_tst_types_ListBox],
r_override_arguments,3);

break;
}:

case k_tst_types_ListBox:
break;

}:

¥

© Routine that handles the single callback functions for any object.
When the user selects an item in a list box widget, the contents of a
neighboring list box are replaced. This routine uses the list box widget
callback structure named DwtListBoxCallbackStruct. This structure
contains the following fields: reason, event pointer, item, item_length,
and item_number.

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Used to form the string version of the item number.
Local character storage.
Override argument list for the FETCH SET VALUES routine.

User has selected an item from the Materials list box widget. The
application needs to place a new items list in the Material Types list
box widget. The string tables stored in the UID file are named cst_
type_"index number" and their count names are !_count_type_"index
number" (where "index number corresponds to the item’s position in
the list box widget). Using the index of the selected item from this
box, the application forms the name of the appropriate compound
string table.

Using the item number instead of the text value of the selection
separates the function of the application from the form (in this case,
the contents of the list box widgets) and reduces complexity. If the
program used the text value of the selected item as the means to
determine what to display, it would need to deal with possible invalid
characters for a UIL name in the text and would have to convert the
text value (a compound string) to a null-terminated string so that the
string could be passed to the XUI Toolkit routine SET VALUES.

Form the string version of the item number.

Form the name of the string table.

Form the name of the string table count.

Fill the Material Types list box widget with a new list of items.

Similar selection recording code goes here.

3.3.5 Using an Object Definition as a Template

The UID file stores object definitions that contain argument value
specifications. When DRM fetches the object, these values override XUI
Toolkit default values for the specified arguments when the object is
created.

You can use the FETCH WIDGET OVERRIDE routine to create a new
instance of an object, based on an existing object definition in the UID file,
and override values or set new values in addition to those you originally
specified in the UIL module. You do not have to define the new object in
the UIL module; instead, you supply the argument values in the call to the
FETCH WIDGET OVERRIDE routine. In effect, you can use an existing
object definition in the UIL module as a template, modifying the template
as needed when you create additional instances of the object at run time.

"When you call the FETCH WIDGET OVERRIDE routine, you pass a vector
of name and value pairs as the override_args argument. The name and
value pairs consist of the XUI Toolkit attribute name and an explicit value
for that attribute. These name and value pairs take precedence over any
arguments you specified in the UIL module. Note that since callbacks are
XUT Toolkit attributes, it is also possible to override the callbacks for an
object using the FETCH WIDGET OVERRIDE routine.

3-45

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

The FETCH WIDGET OVERRIDE routine is useful for specifying in the
application program those things that cannot be represented in UIL (such
as user-defined arguments that are data structures).

You can also use the FETCH WIDGET OVERRIDE routine when you have
to create many widgets that are very similar. Consider an application
interface that has a large number of push button widgets contained

in a dialog box widget. The push button widgets are the same except

for their y position and label. Instead of declaring each push button
widget individually, you can declare one push button and use the DRM
routine FETCH WIDGET OVERRIDE to use that definition as a template,
modifying the y position and label for each additional push button widget
at run time.

When you use the FETCH WIDGET OVERRIDE routine in an application,
you can use UIL identifiers to specify unique tag values for each callback
routine. Ordinarily, the tag is specified in the callback structure and
cannot be changed unless the callback is deleted and replaced. The
callback structure is not stored in the widget data, but is instead stored by
the intrinsics.

If you do not use identifiers for tag values, your callback routines must
contain a check for the parent of the calling widget or some other field

of the widget (as opposed to checking only the tag value) because it is
not possible to override just the tag value with the FETCH WIDGET
OVERRIDE routine. (Note, however, that it is possible to override the
entire callback declaration given in the UID file.) If you do not use an
identifier for the tag value, all instances of ihe muliiply feiched object
return identical tag values for all callbacks. If the callback routine checks
only the tag value, the callback routine could not distinguish which
instance made the call. Section 3.5 explains how to use UIL identifiers.

Another practical use of the FETCH WIDGET OVERRIDE routine is to
create objects with arguments whose values can be determined only at run
time (that is, values that are not known at UIL compilation time). For
example, the help widget (called help_box in UIL) has an argument called
help_library_spec, which is a full file specification (including the device
and directory). When developing portable applications, the form and
content of this file specification will vary depending on the target system
when the program is compiled. Using the FETCH WIDGET OVERRIDE
routine, you can set the value of the help_library_spec argument at run
time when the help widget is created.

Similarly, the help widget has a first_topic argument, which specifies the
help frame the user sees when the help widget initially appears on the
screen. You can significantly improve the performance of your application
by setting the value of the first_topic argument when the help widget

is fetched rather than setting this value using the SET VALUES routine
after the widget is created. (See Section 12.2 for information on how to
construct keys for retrieving help topics.)

Example 3-27 shows how to declare an object in UIL to take advantage of
the FETCH WIDGET OVERRIDE routine.

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Example 3-27 UIL Module Setup for the FETCH WIDGET OVERRIDE Routine

procedure
burger_help_ proc(compound_string);

value
k_fries quantity : compound_string("DECburger fries_guantity");

object
DECburger_help box : help box
{ -
arguments
{
title = k_decburger_help title;
default_position = true;
cols = 55;
application_name = k_decburger_ name;
}i
callbacks
{
create = procedure create_proc(k_help box);
}i
bi

object
fries_quantity : simple_text
{

callbacks
{
help = procedure burger_help_proc(k_fries_quantity);

}:

Example 3-28 shows the FETCH WIDGET OVERRIDE routine in a C
program.

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

Example 3-28 Using the FETCH WIDGET OVERRIDE Routine in a C Program

@ #ifdef vMs

define HELP_FILE_LOCATION "DECWSDECBURGER"
#else
define HELP_FILE_LOCATION "/usr/lib/help/decburger”
#endif
O static unsigned int burger_ help proc (w, tag, somecallbackstruct)
Widget *w;
DwtCompString *tag;
unsigned int *somecallbackstruct;

{

DRMType *dummy class:
Arg arglist(2]:

int 1 = 0;

if (widget_array(k_help_box] == 0)
{
XtSetArg(arglist[i], DwtNlibrarySpec,
DthatinlString(HELP_FILE_LOCATION)); i++;
o XtSetArg(arglist [i], DwtNfirstTopic, tag); i++;

if (DwtFetchWidgetOverride (
S_DRMHierarchy,

"DECburger help_box",
parent,

NULL,

arglist,

i,

&widget arraylk_help boxl.
&dummy class) != DRMSuccess)

printf ("DECburger: Can’t fetch help window\n"):;
return 0;

}:

}

() else
{
XtSetArg(arglist[0], DwtNfirstTopic, tag):
XtSetValues (widget_array(k _help box], arglist, 1):
}:

(5] if (!XtIsManaged(widget_array(k_help_box]))
XtManageChild (widget_array[k_help box]);
}
bi

@ Locations of the help library file on either VMS or ULTRIX.

@ The burger_help_proc routine must be added to the registration list
of callback routines. The formal parameters for this routine are as
follows:

¢ Identifier of the widget for which the user requests help
¢ Tag containing the key to the Help topic for the widget

* The standard callback structure tag is not required by the burger_
help_proc routine. The tag field contains all the information
relevant to the help reason (namely, the key to the Help topic

Creating a User Interface Using UIL and DRM
3.3 Creating a User Interface at Run Time Using DRM

@ Set the first topic as the help widget is created.
O The help widget has already been fetched, so reuse it.
@ Display the help widget.

3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

UIL offers the advantage of separating the form an interface takes from
the functions of the application. The form of the interface can change,
while the functions the application performs remain the same. By
specifying these varying forms of the interface in separate UIL modules,
you can change the interface by changing the definition of the UID
hierarchy (the set of UID files) in the application program and recompiling
and relinking the application.

For example, you can use a UID hierarchy to provide an application
“interface in several languages. The text on title bars, menu widgets,
and other interface objects can be displayed in the language of the end
user with minimal changes to the application program. In this case, the
multiple UIL modules are alternatives from which to choose at run time.

Another use of the UID hierarchy feature might be to isolate individual,
department, and division customizations to a corporate-style interface by
placing the customizations in separate UIL modules. In the application
program, the UID hierarchy declaration would list these files in the
following order: USER.UID, DEPT.UID, DIV.UID, and CORP.UID.
Starting with the first file in the list, DRM searches for value definitions.
If a value is defined in USER.UID (representing the user’s preferences),
that value is used to create the object. If a value is not specified in the
USER.UID file, DRM searches for the definition in the DEPT.UID file, and
so on. In this case, the multiple UIL modules represent refinements to a
base interface.

Figure 3-7 shows the alternative and refinement models for DRM
hierarchies.

Creating a User Interface Using UIL and DRM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

Figure 3-7 Using UID Hierarchies to Provide Alternatives or Refinements to an Interface

Refinement

A USER UID)

(UsERUD 3

Individual
User

(_ DEPT.UD)

Department
Customizations

UID Hierarchy \)
uiD

Alternative

TN Hierarchy
(DIVUID)

Division
Customizations

Language—-
Independent
Values

/‘;—‘\
(_ CORP.UID)

Corporate
uiD

\ Database)

ZK-0137A-GE

3.4.1 Designing an International Application Using UIL and DRM

3-50

You might need to develop a variety of interfaces for a VMS DECwindows
application, particularly if the application will be used by people who
speak different languages. This section describes two methods for
designing an international VMS DECwindows application, using the
DECburger application as an example.

In this section, the DECburger application is redesigned to support a
French version of the interface in addition to the English version. To
develop an international version of DECburger you must make the
following changes:

¢ Use the following files when writing the interface specification for the
international version of DECburger:

Creating a User Interface Using UIL and DRM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

Module Name Contents

ENGLISH.UIL English string values appearing in the interface, declared
as exported compound strings

FRENCH.UIL French translation of these string values, declared as
exported compound strings

DECBURGER_ Imported string declarations (to be read from either

INTL.UIL the French or English UIL module), all other value

declarations, procedure declarations, and object definitions

¢ Concatenate differently the strings displayed in the list box to confirm
- the user’s order. This avoids problems with noun-adjective order.

e Use a logical name in the application to switch between the two
versions of the interface. You must define this logical name to point
to either the FRENCH.UID file or the ENGLISH.UID file; place the
logical name before the DECBURGER_INTL.UID file in the UID
hierarchy list. :

These design changes are described in the following sections.

DECburger is a simple application, and therefore does not have some
common widgets such as a caution box or a help box. However, more

- complex applications with common widgets would use two additional files
to help developers internationalize applications. They are:

Module Name Contents

DwtXLatArg.UIL Common widgets whose labels (translatable text) are created
by default. These widgets include the following:

¢ Caution Box

« Command Window
+ File Selection

« Help Box

« Message Box

DwtXLatText.UIL Any language string values of the widgets that appear in the
DwtXLatArg.UIL.

The purpose of these two extra files is to make it easier and quicker

for developers to internationalize their applications. For example, most
applications use caution boxes, command windows, and help boxes. If you
are creating a French version of your specific application, you could modify
the text in DwtXLatText.UIL. Then you could append DwtXLatText.UIL

to FRENCH.UIL, and DwtXLatArg.UIL to DECBURGER_INTL.UIL to
create common French labels. You would also use FRENCH.UIL for labels
that are specific to your application. Other developers who are creating
French interfaces would also be able to use the same DwtXLatText. UIL
and DwtXLatArg.UIL files.

Use of these two files is described in the following sections.

3-51

Creating a User Interface Using UIL and DRM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

3.4.2

Specifying the User Interface for an International Application

As described in Section 3.4.1, the design for the international version of
DECburger calls for at least three separate UIL modules.

The UIL module in Example 3-29 shows the compound string literals for
the DECburger interface in French. This is a separate UIL module (called
FRENCH.UIL), not an edited version of the original DECburger UIL
module. There is a similar UIL module containing the English translation
of these strings. The name of this UIL module is ENGLISH.UIL.

Note that the default character set, ISO_LATIN1, contains the glyphs
required to represent French letters such as é and ¢.

Example 3-29 French UIL Module for the International DECburger Application

module french_literals

value

version = 'v2.0'
names = case_sensitive

k_welcome_text

k_decburger_title

k_file_ label text
k_quit_label text

k_quit_text

k_edit_label_ text
k_cut_dot_label text
k_copy_dot_label_ text
k_paste_dot_label_ text
k_clear dot_label_ text
k_select_all_label_text

k_order label text
k_show_controls_label_ text
k_cancel_order_label_ text
k_submit_order label_text
k_create_order_label_text
k_dismiss_order_ label text

k_hamburgers_label_text
k_rare_label_text
k_medium_label_ text
k_well done_label text
k_ketchup_label text
k_mustard_label_text
k_onion_ label text
k_mayonnaise_label_ text
k_pickle_label_ text
k_guantity_label text

k_fries_label text
k_size_label text
k_tiny label text
k_small_label_text
k_large_label_text
k_huge_ label_ text

k_drinks_label_ text
k_0_label text
k_apple_juice_text
k_drink_list_text

exported
exported
exported

: exported

exported
exported
exported
exported
exported
exported

: exported

exported
exported
exported

: exported

exported

: exported

exported
exported
exported
exported
exported
exported

: exported

exported
exported
exported
exported
exported
exported
exported
exported

: exported

exported
exported

. exported

exported

'Bienvenue au DECburger’;
"DECburger - Commandes";
"Fichier";
"Quitter";
"Quitter";
"Edition";

"Couper";

"Copier";

"Coller";

"Effacer tout";
"Sélectionner tout";
"Commande";

"Voir codes...";
"Annuler commande";
"Transmettre commande®;
"Commence";
"Terminé";
"Hamburgers";
"Saignant";

"A point";

"Trés cuit";
"Ketchup";
"Moutarde";
"Oignons";
"Mayonnaise";
"Cornichons";
"Quantité";
"Frites";

"Taille";
"Minuscule";
"Petit";

"GIOS",‘

"Enorme";
"Boissons";

||0ll’.

"Jus de pomme";

(continued on next page)

Creating a User Interface Using UIL and DRM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

Example 3-29 (Cont.) French UIL Module for the Intérnational DECburger Application

string_table ("Jus de pomme", "Jus d’orange",

"Jus de raisin", "Cola", "Punch",
"Root beer", "Eau", "Ginger Ale",
“Lait", "Café", "Thé");
k_drink_ list_select : exported string_table("Jus de pomme"):;
k_u_label text : exported "U";
k_d_label_text : exported "D";
k_apply_ label_text : exported "Appliquer"™;
k_reset_label text : exported "Remise & 0";
k_cancel_label_text : exported "Annulation";
k_dismiss_label_ text : exported "Terminé";

end module;

In the main UIL module for the international DECburger application
(called DECBURGER_INTL.UIL), the corresponding string literals are
declared as imported compound strings. For example, the declaration for
the label named k_fries_label_text is as follows:

k_fries_ label text : imported compound_string;

Both the French UIL module (shown in Example 3-29) and the English
UIL module (not shown) specify the corresponding values as exported
and give their definitions. For example, the English definition of the
k_fries_label_text label is "Fries"; the French definition is "Frites". You
choose which of these UIL modules to use at run time as explained in
Section 3.4.3.

If DECburger were a more complex application with a caution box

or a message box, the UIL module in Example 3-29 would remain
essentially the same. However, if you had common labels they would

be defined in DwtXLatText.UIL, and you would append DwtXLatTest.UIL
to FRENCH.UIL so that common labels and application-specific labels
would be in one file.

You would also append DthLatArg.UIL, which lists the arguments that
are translatable for the common widgets, to the DECBURGER_INTL.UIL
file.

You can find examples of DwtXLatText.UIL and DwtXLatArg.UIL in the
DECWS$INCLUDE area of your DECwindows development environment.

3.43 Creating the User Interface for an International Application

To create the interface for the international version of the DECburger
application, based on the redesigned UIL specification, you must make
several changes to the C program. Example 3-30 shows the relevant
portions of the C program for the international version of DECburger.

Creating a User Interface Using UIL and DRM

3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

Example 3-30 C Program for the International DECburger Application

@Ostatic char * welcome text ptr;
BOstatic DwtCompString latin_separator;
©static DRMResourceContextPtr resource_ctx;

static char *db_filename_vec(] =

(4] {"decburgerS$text",
"decburger_intl.uid",

b2

.

Ovoid get_literal (lit, ptr, compound)

char * 1lit;
char * * ptr;
int compound;

if (compound)

(* ptr) = DwtLatinlString(DwtDrmRCBuffer (resource_ctx)
else
(* ptr) = DwtDrmRCBuffer (resource_ctx);
}
@3 if (DwtDrmGetResourceContext (

NULL, /* Allocation routine */

NULL, /* Deallocation routine */

100, /* Size of buffer - arbitrary value */

& resource_ctx) !=DRMSuccess)
s_error ("can’t get resource context");

o Dwtfetchliteral ("k_welcome text", & welcome_text_ptr, 0);

(5] toplevel widget = XtInitialize(welcome_text_ptr,

(continued on next page)

Creating a User Interface Using UIL and DRM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

Example 3-30 (Cont.) C Program for the International DECburger Application

"example",
NULL,

0,

&argc,
argv);

@ Dwtfetchliteral ("k_apple_ juice_text", & current_drink, 1);
Dwtfetchliteral ("k_tiny label_ text", & current_fries, 1l);

@ pwtfetchliteral ("k_create_order_ label_text", & latin_create, 1);
Dwtfetchliteral ("k_dismiss_order_label text", & latin_dismiss, 1);
latin_space = DwtLatinlString(" "):
latin_separator = DwtLatinlString(": ");
latin_zero = DwtlLatinlString(" 0 ");

@®static void activate_proc(w, tag, reason)

switch (widget_num) {
case k_apply:)
if (quantity vector[k_burger_index] > 0) {

list_txt = name_vector(k_burger_ index];
list_txt = DwtCStrcat(list_txt, latin_separator);

sprintf(list_buffer, "%d ", quantity vector[k_burger index]):;
list_txt = DwtCStrcat (list_txt, DwtLatinlString(list_buffer)):

for (i = k_burger min; i <= k_burger max; it++)
if (toggle_array(i - k_burger min]) {
get_something(widget_array(i}, DwtNlabel, &txt);

list_txt = DwtCStrcat (list_txt, txt);
list_txt DwtCStrcat (list_txt, latin_space);

}
DwtListBoxAddItem(widget array[k_total_order], list_txt, 0);

© Pointer to title string. See Section 3.3.3 for details about fetching a
literal value from a UID file.

@ A variable initialized to the string ": ", used for concatenation in
several places throughout the application (see ®).

3-55

Creating a User Interface Using UIL and DRM
3.4 Customizing a VMS DECwindows Interface Using UIL and DRM

3-56

® Resource context required for the HGET INDEXED LITERAL call in

® 6 6 o906 o

the get_literal procedure (see @).

Logical name for the UID file containing the strings to be displayed ir
the interface (either English or French) listed as the first element of
the UID hierarchy array. This logical name must be defined to either
ENGLISH.UID or FRENCH.UID prior to running the application.

Procedure to get the application title from the UID hierarchy. This
procedure is described in Section 3.3.3.

Routine call to set up the resource context for retrieving strings.
Retrieve the application title string from the UID hierarchy.

Title string pointer is passed to the INITIALIZE routine (instead of tc
the actual string itself).

Initialize the current values of various items to match their initial
values in the UID hierarchy.

Set up the required compound strings. The strings are fetched from
the UID hierarchy in the international version.

Callback routine called by all push button widgets in DECburger.
This routine uses the tag to determine which widget made the call,
then displays the current order information in the list box widget.
The difference between this version of DECburger and the original
version is the manner in which the displayed strings are built. In the
international version, an ordered item is displayed in the list box as
follows:

Hamburgers: 2 medium

The routine gets the name of the qualifier (in this example, medium)
from the widget and adds the qualifier to the displayed string. This
allows orders to be displayed consistently regardless of noun-adjective
order in a particular language. Note the use of the latin_separator
literal (see @).

Similar statements occur later in the C program to display orders for
drinks and fries. '

To run the international version of DECburger, follow these steps:

1

3

Compile the files FRENCH.UIL, ENGLISH.UIL, and DECBURGER_
INTL.UIL.

If you had a more complex program, you would have appended the
DwtXLatText.UIL file to the FRENCH.UIL or ENGLISH.UIL file
before compiling.

Define the logical name DECBURGERS$TEXT to either FRENCH.UID
or ENGLISH.UID, depending on the language in which you want to
display the interface.

Compile, link, and run the C program.

Creating a User Interface Using UIL and DRM
3.5 Using Identifiers in UIL

3.5 Using Identifiers in UIL

Identifiers provide run-time binding of data to names that you specify in
a UIL module. Identifiers work like global variables in a programming
language.

List the names of identifiers in an identifier section in a UIL module. An
identifier section consists of the reserved keyword IDENTIFIER followed
by a list of names, with each name followed by a semicolon. You can use
these names later in the UIL module as either the value of an object
argument or the tag value to a callback routine. At run time, use the
DRM routine REGISTER DRM NAMES to bind the identifier name with
the data associated with the identifier. (See the VMS DECwindows Toolkit
Routines Reference Manual for information about the REGISTER DRM
NAMES routine.)

Since UIL has a single name space, you cannot use the name you used in
a value, object, or procedure declaration as an identifier name.

Your application can successively call the routine REGISTER DRM
NAMES with the same identifier names to supersede the value of that
name for all subsequent calls to DRM that might use these identifiers. For
example, you would use this procedure to change callback tags for objects
created from a template definition (see Section 3.3.5). :

Example 3-31 shows an identifier section in a UIL module.

Example 3-31 Using Identifiers in a UIL Module

MODULE id_example
NAMES =

IDENTIFIER

PROCEDURE
my_focus_callback (STRING):;

CASE_INSENSITIVE

my_focus_id;

OBJECT my _main : MAIN_WINDOW {

}:
END MODULE;

ARGUMENTS {
x = my_x_id;
y = my_y id;

CALLBACKS {
focus = PROCEDURE my_focus_callback (my_focus_id):

The UIL compiler does not do any type checking on the use of identifiers in
a UIL module. Unlike a UIL value, an identifier does not have a UIL data
type associated with it. You can use an identifier as an object argument or

- callback routine tag, regardless of the data type specified in the object or

procedure declaration.

357

Creating a User Interface Using UIL and DRM
3.5 Using Identifiers in UIL

To reference these identifier names in a UIL module, use the name of the
identifier wherever you want its value to be used. The value is determine
at run time. The UIL module in Example 3-31 shows identifiers used as
argument values and callback routine tags. However, you can reference a
identifier in any context where you can reference a value.

The identifiers my_x_id and my_y_id are used as argument values for the
main window widget, my_main. The position of the main window widget
may depend on the screen size of the terminal on which the interface is
displayed. Using identifiers, you can provide the values of x and y at run
time.

The identifier my_focus_id is specified as the tag to the callback routine
my_focus_callback. In the application program, you could allocate a data
structure and use my_focus_id to store the address of that data structure
When the focus reason occurs, the data structure is passed as the tag to
routine my_focus_callback.

3.6 Using Symbolic References to Widget Identifiers in UIL

3-58

Note:

The UIL compiler allows you to refer to a widget identifier symbolically
by using its name. This mechanism addresses the problem that the
UIL compiler views objects by name and the XUI Toolkit views objects
by widget identifier. Widget identifiers are defined at run time and are
therefore unavailable for use in a UIL module.

When you need to supply an argument that requires a widget identifier,
you can use the UIL name of that widget and its object type as the
argument. For example, the menu bar widget has an argument
DwtNMenuHelpWidget that expects the identifier of a widget (a pull-
down menu entry widget, for instance). You can give the name and object
type of the pull-down menu entry widget as the value for this argument.
Another practical use of a symbolic reference is to specify the default pus]
button widget (in a dialog box widget or radio box widget).

To specify a symbolic reference completely in UIL, you must
include the object type with the object name.

Example 3-32 shows the use of a symbolic reference.

Creating a User Interface Using UIL and DRM
3.6 Using Symbolic References to Widget Identifiers in UIL

Example 3-32 Using Symbolic References in a UIL Module

MODULE symbolic_ref_ example
NAMES = CASE_INSENSITIVE

OBJECT my_dialog box : DIALOG_BOX {
ARGUMENTS {
default_button = PUSH_BUTTON yes_button;

}:

CONTROLS {
PUSH_BUTTON yes_button;
PUSH_BUTTON no_button;
i
}i

OBJECT yes_button : PUSH_BUTTON {
ARGUMENTS {
label label = 'yes’;
bi
}i

OBJECT no_button : PUSH_BUTTON {
ARGUMENTS {
label label = ’'no’;
Vi
}i

END MODULE;

In Example 3-32, two push button widgets are defined as yes_button and
no_button. In the definition of the dialog box widget, the name yes_button
is given as the value for the default_button argument. Usually, the
default push button argument accepts a widget identifier. When you use
a symbolic reference (the object type and name of the yes_button widget)
as the value for the default push button argument, DRM substitutes the
widget identifier of the yes_button push button widget for its name at run
time.

There is a restriction on the use of symbolic references: the object name
you reference must be a descendant of the object being fetched in order
for DRM to find the referenced object; you cannot reference an arbitrary
object. DRM checks this at run time.

The UIL built-in tables listed in an appendix in the VMS DECwindows
User Interface Language Reference Manual indicate where symbolic
referencing of widget identifiers is acceptable by showing the term object
reference as the type of an argument.

3.7 Developing and Testing Prototypes Using UIL

UIL allows you to separate the form and function of a VMS DECwindows
application. Because changes in the representation or layout of the
interface do not require changes to the application program, you can
quickly see the impact of design changes on the interface. Once you
have in place the standard XUI Toolkit routine calls to create, manage,
and realize the interface, you can change the interface design by editing
the UIL module, recompiling only the UIL module, and rerunning the
application program.

3-59

Creating a User Interface Using UIL and DRM
3.7 Developing and Testing Prototypes Using UIL

The direct manipulation semantics of a VMS DECwindows interface
(that is, the appearance and behavior of the interface when the end
user interacts with it) are built into the XUI Toolkit objects themselves.
When you present the end user with an interface prototype, the end user
immediately gets the look and feel of the interface. For example, when
the user clicks on a push button widget, the highlighting feedback occurs
automatically. This reaction to manipulation by the user does not require
application routines.

The combination of these features (the separation of form and function
and the built-in look and feel of interface objects) can significantly
shorten the time required to develop a VMS DECwindows application.
Interface designers and application programmers can work essentially
independently (and, therefore, concurrently) without relying on one
another to finish.

Eventually, the interface and the functional routines are brought together
and tested as a unit. The DECburger application demonstrates a useful
technique you can use to test whether the callback routines in the
application are correctly registered with DRM, and whether the routines
are called correctly in response to the user’s interaction with the interface
This technique does not require all the functional routines to be in place,
s0 it is particularly useful during the prototyping phase.

In the DECburger application, the callback routine named activate_proc i
used to exercise the callbacks for features that are not yet implemented i
the application program. The activate_proc routine displays a message bo
widget bearing the message "Feature is not yet implemented" whenever
the user activates one of the nonfunctional features. Section 3.7.1 explain
what you need to do in UIL to use this prototype testing technique, and
Section 3.7.2 explains what you need to do in the application program.

3.7.1 Setting Up the UIL Module for Prototype Testing

To use the prototype testing technique demonstrated in the DECburger
application, you need to declare the following in the UIL module:

Resource Name in DECburger Declaration

activate_proc Routine to be called when the user activates
an interface object

k_nyi Callback tag that will be passed to this routine

nyi Message box to be fetched and displayed
when the routine is called with the callback ta

k_nyi_label_text String literal to define the message box iabel

All objects not fully implemented in DECburger (for example, the
operations on the Edit pull-down menu widget) use this technique.
Example 3-33 shows these declarations in the DECburger UIL module.

Creating a User Interface Using UIL and DRM
3.7 Developing and Testing Prototypes Using UIL

Example 3-33 Declarations in the DECburger UIL Module for Prototype Testing

procedure
o . activate_proc (integer);
;alue
k_nyi 55
;alue

k_nyi_label text
: compound_string("Feature is not yet implemented");

object

nyi :

}:

message_box {

arguments {
label label = k nyi_ label text;
default_position = true;

bi

callbacks {
create = procedure create_proc (k_nyi);
bi

Declares the activate routine (activate_proc) and specifies that the
routine must be passed an integer when called. :

Declares an integer literal, named %_nyi, to be used as the callback tag
passed to the activate routine (see Example 3-34).

Declares a compound string literal, named k_nyi_label_text, to be used
to specify the label of the message box widget that is fetched and
displayed when the activate routine is called (see ©).

Declares an instance of a message box widget to be fetched and
displayed when the user activates an object that does not have
functional code in the application.

Value of the string literal declared in @ will be used as the label of the
message box widget.

Here, k_nyi is used as the callback tag to the creation routine, create_
proc, to identify the message box widget as the widget that is being
created (note that the name of the message box widget is nyi). Do not
confuse this with the use of 2_nyi as the callback tag passed to the
activate routine (see Example 3-34).

Creating a User Interface Using UIL and DRM
3.7 Developing and Testing Prototypes Using UIL

Example 3-34 shows the definition of the push button widget associated
with the Copy operation on the Edit menu widget. The Copy operation in
DECburger is not implemented. Note that the 2_ny: callback tag is passed
to the activate routine for this push button widget. When the user clicks
on the Copy operation, the message box widget pops up, displaying the
"Feature is not yet implemented" message. The example in Section 3.7.2
shows the definition of the activate routine.

Example 3-34 Declaring an Unimplemented Object in the DECburger

UIL Module
object
m_copy_button : push_button {
arguments (

label label = k_copy dot_label text;
}i
callbacks {
activate = procedure activate_proc (k_nyi);
}i
}i

3.7.2 Setting Up the Application Program for Prototype Testing

In the C program for the DECburger application, the k_nyi callback and
the activate routine are defined as shown in Example 3-35. All push
button widgets in the DECburger application call back to this routine.
Ordinarily, the callback tag identifies which widget made the call. In the
case where the user selects an unimplemented feature, the callback tag
causes the application to display the "Feature is not yet implemented"
message.

Example 3-35 Definition of the Activate Routine in the DECburger Application

#define k_nyi

static void activate_proc(w, tag, reason)

unsigned long *reason;

int widget_num = *tag;
int i, value, fries num; .
char *txt, *fries text, *list_txt, list_buffer(20};
switch (widget_num) {
case k_nyi:
if (widget_array(k_nyi] == NULL)

(continued on next page

Creating a User Interface Using UIL and DRM
3.7 Developing and Testing Prototypes Using UIL

Example 3-35 (Cont.) Definition of the Activate Routine in the DECburger Application

{
if (DwtFetchWidget (s_DRMHierarchy, "nyi", toplevel_widget,
&widget_arrayl[k nyi], &dummy_class) != DRMSuccess) {
s_error("can’t fetch nyi widget");

}

(4] XtManageChild(widget_ array([k_nyil]):;
break;

Converts the tag to a widget number.

Sends a message when the user activates a push button widget
associated with a nonfunctional feature.

@ Fetches the message box widget from the UID file the first time the
activate routine is called with the k_nyi tag. Once the message box
has been fetched, it will be redisplayed (but not re-created) upon
subsequent calls with this tag.

® Pops up the message box widget saying "Feature is not yet
implemented".

3.8 Using UIL on Large Projects

When several programmers are working together to specify the interface
for a VMS DECwindows application, competition for access to the UIL
module can develop. Access competition can be eased if the UIL module is
broken up into several small files, with each containing a segment of the
total interface specification.

One approach to breaking up the UIL module is to construct a main UIL
file containing the following information.

e Comments describing copyright information, module history, project
information, and other relevant information.

¢ Global declarations, such as case sensitivity, objects clause, and
procedure declarations.

* A series of INCLUDE FILE statements (include directives). Each
include directive points to a UIL specification file containing some
portion of the interface specification.

Once you create a main UIL file, you should rarely need to change its
contents.

Example 3-36 shows a sample main UIL file. Note that there is no
technical reason to divide the user interface specification as in this
example. The purpose of using multiple UIL files here is simply to make

Creating a User Interface Using UIL and DRM
3.8 Using UIL on Large Projects

it easier for large programming project teams to work concurrently on the
same application interface.

Example 3-36 Sample Main UIL File

module big project
version = 2.0/

!******************************’k**‘k**
| %

I* COPYRIGHT (c) 1990 BY
!* XYZ CORPORATION

!* ALL RIGHTS RESERVED.
1%
Phkkkkhhhhhhhhhkhhhhhhhhhrhhhhhhhhhdhhhhhhhhhhhhkhhhhhhhhkhkhhkhhhhkkhrhhhkhkhkhk
1

L+

|

E o

CREATION DATE: 19-Apr-1990

1
!
{ MODIFIED BY:
! 04/19/90 JMK Create this main UIL file.
! 04/19/90 VPR Add some context-sensitive help text.
T4+
! NOTE: This file includes several other UIL specification files
! that collectively specify the user interface for BIG_PROJECT.
|

names = case_insensitive

(E
! These are the callback routines for the big project application.

procedure
BPROJ$Create_Callback_Routine (integer);
BPROJS$Destroy_Callback Routine (integer) ;
BPROJ$Help Callback_ Routine (integer) ;
BPROJ$Universal Callback_Routine (integer);
t++
! The following file contains value definitions (the "k_..." literals).

| J—
include file ’1ib$:bprojlits’;

V44

! The following files contain segments of the big project

! application interface.

]

! These files are self-contained and do not have any include directives.

include file ’1ib$:bprojwindow’; ! Defines windows and pull-down menus.
include file ’lib$:bprojdialog’; ! Defines dialog boxes
include file ’lib$:bprojother’; ! Defines miscellaneous objects such as

! caution boxes and pop—up menus.

end module;

Creating a User Interface Using UIL and DRM
3.8 Using UIL on Large Projects

In Example 3-36, the UIL specification for an application interface is
divided into the following files:

¢ Shared literals

The first included file defines all literals shared between the UIL
module and the application source code. These are the constants used
as tags to the callback routines (see Section 3.2.1).

¢ Main window widget

The second included file defines the main window widget for the
application. This might include a menu bar widget with associated
pull-down menu entry widgets, the work region, and other relevant
pieces.

¢ Dialog box widgets

The third included file defines all the dialog box widgets used in the
application.

* Other interface objects

The fourth included file defines all the other objects that do not fit into
the first three categories. This file might include display windows with
their menu bar widgets and work regions, pop-up menu widgets, and
the command dialog box widget.

It is a matter of style whether the included files themselves contain
include directives. Some programmers prefer to work with a single main
UIL file and know that this file names all of the remaining files needed to
complete the interface specification. Having a list of all needed files visible
in the main UIL file can be helpful, for example, to someone translating
the user interface into another language. All files can be accounted for
easily and included in the translation.

You can further simplify the translator’s job by isolating in a separate
include file all items that vary visually (for example, strings, x- and y-
coordinates, and width and height attributes) as a result of translation. In
this way, the translator can find in a single file all the values that need
to be translated. (Declare these items as values in the separate file and
reference the values in the object declarations in the primary UIL module.)

3.9 Working with User-Defined Widgets in UIL

You can extend the XUI Toolkit by building your own widgets. In UIL, a
widget you build yourself is called a user-defined widget and is identified
by the UIL object type user_defined. A user-defined widget can accept any
UIL built-in argument or callback reason. If needed, you can use UIL to
define your own arguments and callback reasons for a user-defined widget.
You can specify any object as a child of a user-defined widget.

To use a user-defined widget in an application interface, follow these steps
in the UIL module:

1 Define the arguments and callback reasons for the user-defined widget
that are not UIL built-ins. This can be done in line when declaring an

3-65

Creating a User Interface Using UIL and DRM
3.9 Working with User-Defined Widgets in UIL

instance of the user-defined widget or in one or more value sections (as
shown in Example 3-37).

2 Declare the creation routine for the user-defined widget.

Declare an instance of the user-defined widget. Use user_defined as
the object type and include the name of the widget creation routine in
the declaration.

In the application program, you must register the class of the user-defined
widget using the DRM routine REGISTER CLASS. Part of the information
you provide to the REGISTER CLASS routine is the name of the widget
creation routine. By registering the class (and creation routine), you allow
DRM to create a user-defined widget using the same mechanisms used to
create XUI Toolkit objects. You can specify the widget using UIL and fetch
the widget with DRM.

The examples in this section are based on a previously built user-defined
widget called the XYZ Widget. (Appendix D explains how to build a user-
defined widget.) The remainder of this section explains how to include the
XYZ Widget in an application interface using UIL and how to create the
widget at run time using DRM.

3.9.1 Defining Arguments and Reasons for a User-Defined Widget

3-66

The UIL compiler has built-in arguments and callback reasons that are
supported by objects in the XUI Toolkit. A user-defined widget can be built
having only standard XUI Toolkit arguments and reasons as its resources.
If your application interface uses a user-defined widget of this type, you
can use the UIL built-in argument names and callback reasons directly
when you declare an instance of the user-defined widget. If the user-
defined widget supports arguments and reasons that are not built into the
UIL compiler, you need to define these arguments and reasons using the
ARGUMENT and REASON functions, respectively, before specifying them.

Example 3-37 shows a UIL specification file that defines arguments and
callback reasons, and declares the creation routine, for the XYZ Widget.
This UIL specification file should be included in any UIL module in which
you declare an instance of the XYZ Widget.

Example 3-37 User-Defined XYZ Widget

Creating a User Interface Using UIL and DRM
3.9 Working with User-Defined Widgets in UIL

Q value
xyz_font_level 0
xyz_font_level 1 :
xyz_font_level 2
xyz_font_level 3 :
xyz_font_level 4
xyz_indent_margin :
Xyz_unit_level :
xXyz_page_level
xXyz_root_widget:
Xyz_root_entry:
xyz_display_mode:

xyz_fixed width _entries:

@ value

xyz_select_and confirm :

xyz_extend confirm :
xyz_entry selected :
xyz_entry unselected :
xyz_help requested:
xyz_attach_to_source
xyz_detach_from source
xyz_alter root :

xyz_selections_dragged :

Xyz_get_entry
xyz_dragging
xyz_dragging_end :
xyz_dragging_cancel

© value
XyzPositionTop :
XyzPositionMiddle :
XyzPositionBottom :

XyzDisplayOutline
XyzDisplayTopTree

1;
2;
3;

1;
2;

argument (’/fontLevell’ , font);
argument (’fontLevell’ , font):
argument (’/fontLevel2’ , font);
argument (’fontLevel3’ , font);
argument (’fontLevel4’ , font);
argument (’indentMargin’ , integer);
argument (‘unitlLevel’ , integer);
argument (’pageLevel’ , integer);
argument (’/rootWidget’ , integer);
argument (’/rootEntry’ , integer);
argument (’displayMode’ , integer);

argument

reason
reason
reason
reason
reason
reason
reason
reason
reason
reason
reason
reason
reason

e’ procedure XyzLowLevelCreate():;

(' fixedWidthEntries’ , boolean):;

(’ selectAndConfirmCallback’);
(' extendConfirmCallback’);
(’entrySelectedCallback’);
("entryUnselectedCallback’);
("helpCallback’);
(fattachToSourceCallback’) ;
(! detachFromSourceCallback’) ;
(‘alterRootCallback’) ;

(' selectionsDraggedCallback’) ;
(" getEntryCallback’) ;

(" draggingCallback’) ;

(* draggingEndCallback’) ;

(" draggingCancelCallback’) ;

© Defines UIL argument names for the XYZ Widget that are not built-in
XUI Toolkit arguments. The strings you pass to the ARGUMENT
function must match the names listed in the resource list structure in
the widget class record for the XYZ Widget. (Section D.2.2 describes
the contents of the widget class record.)

In addition to the string, specify the data type of the argument. Just
as for built-in arguments, when you declare an instance of the XYZ
Widget in a UIL module, the UIL compiler checks the data type of the
values you specify for these arguments. For example, the UIL compiler
checks that the value you specify for the xyz_indent_margin argument
is an integer.

Defines the XYZ Widget’s callback reasons that are not UIL built-in

reasons. The strings you pass to the REASON function must match
the names listed in the resource list structure in the widget class
record for the XYZ Widget. (Callback reasons, like UIL arguments, are
considered to be widget-specific attributes in the XUI Toolkit and are
defined as resources.)

3-67

3.9.2

Creating a User Interface Using UIL and DRM
3.9 Working with User-Defined Widgets in UIL

© Defines some integer literals for specifying arguments of the XYZ
Widget. These literals have names configured in the MIT C binding
style. In the VAX binding style, the names of these integer literals
would be configured as follows:

XYZ$C_POSITION_TOP
XYZ$C_POSITION_MIDDLE
XYZ$C_POSITION_BOTTOM
XYZ$C_DISPLAY_OUTLINE
XYZ$C_DISPLAY_TOP_TREE

O Declares the widget creation routine for the XYZ Widget. This creation
routine is registered with DRM through the REGISTER CLASS
routine (see Example 3-39).

Using a User-Defined Widget in an Interface Specification

Example 3-38 shows how to specify the XYZ Widget in a UIL module. This
UIL module includes the UIL spec1ﬁcat10n file shown in Example 3-37 as
XYZ_WIDGET.UIL.

Example 3-38 Declaring the User-Defined XYZ Widget in a UIL Module

module xyz example
names = case_sensitive

include file ’‘decw$include:DwtAppl.uil’;

© include file 'xyz_widget.uil’;

9 procedure
XyzAttach 0
XyzDetach 0
XyzExtended 0:
XyzConfirmed ()
XyzGetEntry ()
XyzSelected ();
XyzUnselected ()3
XyzDragged ():
XyzDragging 0
XyzDraggingEnd ()
create_proc 0
MenuQuit ()
MenuExpandAll ()

MenuCollapseAll ();

(continued on next page)

3-68

Creating a User Interface Using UIL and DRM
3.9 Working with User-Defined Widgets in UIL

Example 3-38 (Cont.). Declaring the User-Defined XYZ Widget in a UIL Module

(3] object
main : main_window
{ arguments
{
x = 0;
y = 0;
height = 0;

}i
controls
{ menu_bar main_menu;
user_defined xyz_widget;
)i
}i

o xyz_widget : user_ defined procedure XyzLowLevelCreate
{ arguments
{
x = 0;
y = 0;
height = 600;
width = 400;

(5] : xyz_display_mode = XyzDisplayOutline;
}:
callbacks
{ =xyz_attach_to_source = procedure XyzAttach():
xyz_detach from source = procedure XyzDetach():
Xyz_get_entry = procedure XyzGetEntry():
xyz_select_and_confirm = procedure XyzConfirmed();
xyz_extend_confirm = procedure XyzExtended():;
Xyz_entry selected = procedure XyzSelected();
xyz_entry unselected = procedure XyzUnselected();
xyz_selections_dragged = procedure XyzDragged():;
xyz_dragging = procedure XyzDragging();
xyz_dragging_end = procedure XyzDraggingEnd():
(6] create = procedure create proc();
}i
}i
7] main_menu: menu bar

{ arguments
{ orientation = DwtOrientationHorizontal;
}:
controls
{ pulldown_entry file_menu;
};
bi

(continued on next page)

3-69

“Creating a User Interface Using UIL and DRM
-3.9 Working with User-Defined Widgets in UIL

Example 3-38 (Cont.) Declaring the User-Defined XYZ Widget in a UIl. Module

file menu: pulldown_entry
{ arguments
{ label label = 'File’;
}i »
controls
{ pulldown menu
{ controls
{ push_button expand_all_button;
push_button collapse_all button;
push_button quit_button;
}i
}i
}i
}i

expand_all button: push_button

{ arguments
{ label_label = "Expand All";
}i

callbacks

{ activate = procedure MenuExpandAll () ;
}i

}:

collapse_all button: push_button

{ arguments
{ label_label = "Collapse All";
}i

callbacks

{ activate = procedure MenuCollapseAll();
};

};

quit_button: push_button

{ arguments
{ label_label = "Quit";
}i

callbacks)

{ activate = procedure MenuQuit();
}i

}i

end module;

Example 3-37.

program.

Include directive to include the definition of the XYZ Widget shown in
Declarations for the callback routines defined in the application
Declaration for the main window widget. The main window widget has

two children: a menu bar widget and the XYZ Widget.
Declaration for the XYZ Widget. Note that the object type is user_

defined and that the creation routine, XyzLowLevelCreate, is included

in the declaration.

3-70

3.9.3

Creating a User Interface Using UIL and DRM

3.9 Working with User-Defined Widgets in UIL

© The xyz_display_mode argument, defined with the ARGUMENT
function in Example 3-37, is specified using one of the integer literals

also defined in that example.
@ All widgets support the create reason.

@ The remaining objects declarations comprise the menu bar widget and
its pull-down menu widgets.

Accessing a User-Defined Widget at Run Time

Example 3-39 shows a C application program that displays the XYZ
Widget (defined in Example 3-37 and declared in Example 3-38).

Example 3-39 C Program for Displaying the XYZ User-Defined Widget

#include <decw$include/DwtAppl.h>
@ #include <decw$include/DECwWsXyz.h>

(2] globalref int xyzwidgetclassrec;

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

void XyzAttach

void
void
void
void
void
void
void
void
void
void
void
void
void

XyzDetach
XyzGetEntry
XyzConfirmed
XyzExtended
XyzSelected
XyzUnselected
XyzHelpRoutine
XyzDragged
XyzDragging
XyzDraggingEnd
create_proc
MenuQuit
MenuExpandAll

(O
0);
()
(O]
0
()
()
()
(O
() s
0:
O:
(0N
(O

void MenuCollapseAll ();

@D static DRMRegisterArg register_vector[] =

{

}:

{ "XyzAttach", (caddr_t) XyzAttach },

{ "XyzDetach", (caddr_t) XyzDetach },

{ "XyzGetEntry", (caddr_t) XyzGetEntry 1},

{ "XyzConfirmed", (caddr_t) XyzConfirmed },

{ "XyzExtended", (caddr_t) XyzExtended 1},

{ "XyzSelected", (caddr_t) XyzSelected },

{ "XyzUnselected", (caddr_t) XyzUnselected 1},
{ "XyzHelpRoutine", (caddr_t) XyzHelpRoutine },
{ "XyzDragged", (caddr_t) XyzDragged },

{ "XyzDragging", (caddr_t) XyzDragging },

{ "XyzDraggingEnd", (caddr_t) XyzDraggingEnd },
{ "create_proc, (caddr_t) create_proc },

{ "MenuQuit", (caddr_t) MenuQuit },

{ "MenuExpandAll", (caddr_t) MenuExpandAll },
{ "MenuCollapseAll", (caddr_t) MenuCollapseAll }

(continued on next page)

3-7

Creating a User Interface Using UIL and DRM
3.9 Working with User-Defined Widgets in UIL

Example 3—-39 (Cont.) C Program for Displaying the XYZ User-Defined Widget

#define register vector_length ((sizeof register vector) / \
(sizeof register vector(0]))

O static DRMHierarchy hierarchy_ id ;
static char *vec[]={"xyz example.uid"};
static DRMCode class ;

Widget toplevel;
Widget mainwindow;

(6] int main (arge, argv)
unsigned int argc;
char **argv;

Arg arguments[l];

DwtInitializeDRM() ;

if (DwtRegisterClass
(DRMwcUnknown,
XyzClassName,
"XyzLowLevelCreate",
XyzLowLevelCreate,
) &xyzwidgetclassrec)
!= DRMSuccess)
{
printf ("Can’t register XYz widget"):;
}

® toplevel = XtInitialize ("xyz", "xyz", NULL, 0, &argc, argv):
® if (DwtOpenHierarchy
(1,
vec,
NULL,

&hierarchy id)
!= DRMSuccess)
{
printf ("Can’t open hierarchy"):;

}
db DwtRegisterDRMNames (register_ vector, register_ vector length);

XtSetArg (arguments{0], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arguments, 1);

® if (DwtFetchWidget
(hierarchy id,
"main" ’
toplevel,
&mainwindow,
&class)
!= DRMSuccess)
{
printf ("Can’t fetch interface ");
}

XtManageChild (mainwindow);

XtRealizeWidget (toplevel):;

(continued on next page)

3-72

Creating a User Interface Using UIL and DRM
3.9 Working with User-Defined Widgets in UIL

Example 3-39 (Cont.) C Program for Displaying the XYZ User-Defined Widget

XtMainLoop() ;

return (0);

©® Includes XYZ declarations. (See Section D.3.3 for information on

widget subclassing in private .h files.)

® Provides a reference to the widget class record for the XYZ Widget

000

(named xyzwidgetclassrec). (Section D.2.1.1 explains how to construct
a widget class record for a user-defined widget.)

Declares callback routines defined (but not shown) later in the
program.

Defines the mapping between UIL procedure names and their
addresses.

Specifies the UID hierarchy list. The UID hierarchy for this
application consists of a single UID file, the compiled version of XYZ_
EXAMPLE.UIL. (Assume the UIL specification file has the same name
as the UIL module; see the module header in Example 3-38. The

file named XYZ_EXAMPLE.UIL includes the file XYZ_WIDGET.UIL,
shown in Example 3-37.)

Main routine.
Arguments for the widgets.
Initializes DRM.

Registers the XYZ widget class with DRM. This allows DRM to use
standard creation mechanisms to create the XYZ Widget (see @®). The
arguments passed to the REGISTER CLASS routine are as follows:

¢ DRMwcUnknown—Indicates that class is user-defined

‘e XyzClassName—Class name of XYZ widget, defined in

DECwWsXyz.h.
o “XyzLowLevelCreate”—Name of the low-level creation routine
¢ XyzLowLevelCreate—Address of the low-level creation routine
* &xyzwidgetclassrec—Pointer to the widget class record
Initializes the XUI Toolkit.
Defines the UID hierarchy.
Registers callback routine names with DRM.

3-73

Creating a User Interface Using UIL and DRM
3.9 Working with User-Defined Widgets in UIL

@® Fetches the interface (the main window widget with a menu bar
widget and the XYZ Widget in the work area). Note that the XYZ
Widget is treated like any XUI Toolkit widget. DRM calls the XYZ
Widget’s low-level creation routine (XyzLowLevelCreate) and passes
this routine the values for the x, y, width, height, and xyz_display_
mode arguments as specified in the UID file, using the standard
low-level routine format.

Note: In cases where one widget will not allow another type of widget
to be its child, you can declare as "user-defined'" the widget that
you want to be a child. For example, menu bars do not allow
attached dialog boxes as children. However, if you want to make
the attached dialog box the child of a menu bar, declare the
attached dialog box as a "user-defined" widget.

3-74

4 Creating a Main Window Widget

This chapter provides the following:
* An overview of the main window widget in the XUI Toolkit

* A detailed description of how to use the main window widget in an
application

In addition, this chaptér describes the three other window widgets closely
related to the main window widget:

¢ Command window widget
¢ Scroll window widget
* Window widget

4.1 Overview of Window Widgets

The first task your application program must perform is to create
a window on the display. Windows are the way your application
communicates with a user.

While all widgets create a window on a display, you typically base your
application widget hierarchy on one window, called a main window. The
main window presents all the primary functions of your application. In
addition, the main window usually provides a blank work area you can fill
in any way appropriate to your application. To provide these capabilities,
the XUI Toolkit includes the main window widget.

Other XUI Toolkit widgets provide blank areas, such as the dialog box
widgets (see Chapter 7). However, the main window widget provides
services these other widgets do not. For example, the main window
widget is the only XUI Toolkit widget that can automatically manage the
wrapping of a menu bar widget when necessary.

4.2 Children of a Main Window Widget -

A main window widget can have any number of child widgets; however,
only five of the managed children can be visible at any one time. Based on
widget type, the main window widget places each visible child within its
borders to create a standard layout. The following lists the five widgets
that can be visible children of a main window widget (all of these widgets
are optional):

¢ Menu bar widget
¢ Command window widget

* Horizontal scroll bar widget

4-1

Creating a Main Window Widget
4.2 Children of a Main Window Widget

¢ Vertical scroll bar widget
e Work area widget

4.2.1 Menu Bar Widget

A menu bar widget allows you to present a list of choices to the user. Many
applications use menu bar widgets to provide access to basic functions,
such as exiting, copying, and cut and paste. For this reason, menu bar
widgets are often used with the main window widget. See Section 6.5 for
more information about the menu bar widget.

The main window widget places the menu bar widget at the top of the
main window widget’s window. By default, the main window widget sizes
the menu bar widget so that its width extends across the entire window.
The menu bar widget determines its helght by what it needs to display the
choices it contains.

422 Command Window Widget

The command window widget provides users of your application with

the ability to enter commands on a command line using a keyboard.

The command widget contains a text entry area in which users of your
application can enter commands as text strings. Previously entered
commands can be recalled and edited. By default, the command window
displays the last two commands in a display area above the text entry
area. You can specify that more than two lines of command history appear
in this display. Section 4.6 provides more information about the command
window widget.

The main window widget places the command window widget at the
bottom of the main window widget’s window. By default, the main window
widget sizes the command window widget so that its width extends across
the entire window. Once the main window widget has been realized, you
cannot alter the height of the command window widget.

4.2.3 Scroll Bar Widgets

4-2

The scroll bar widgets enable users to view areas of the work area widget
that are not currently visible. The work area widget may not be able to fit
its entire contents into the size provided by the layout of the main window
widget. In this case, you can include scroll bar widgets in your main
window widget. Section 10.4 describes how to create scroll bar widgets.

The main window widget places the horizontal scroll bar widget just above
the command window widget. If there is no command window widget, the
horizontal scroll bar appears at the bottom of the main window widget.
You can only specify the height of the horizontal scroll bar widget. The
main window widget determines the width of the horizontal scroll bar
widget so that it extends across the entire window. If the main window
widget includes a vertical scroll bar widget, the width of the horizontal
scroll bar widget is the width of the main window widget minus the width
of the vertical scroll bar.

Creating a Main Window Widget
4.2 Children of a Main Window Widget

The main window widget places the vertical scroll bar widget on the right
edge of the main widget window widget. The vertical scroll bar appears
below the menu bar widget and above the command window widget, if
either of these widgets is present. You can only specify the width of a
vertical scroll bar widget. The main window widget determines the height
of the vertical scroll bar widget in relation to the height of the work area
window. If the main window widget includes a horizontal scroll bar widget,
the height of the vertical scroll bar widget is adjusted by the height of the
horizontal scroll bar widget.

4.24 Work Area Widget

The work area widget child comprises the remainder of the main window
widget. The main window widget places the work area widget in the area
under the menu bar widget, to the left of the vertical scroll bar widget, and
above the horizontal scroll bar widget, if any of these widgets is present.
You can specify both height and width dimensions of the work area widget.

For example, you can make a dialog box widget the work area widget of a
main window widget. You can then add as many children as you want to
the dialog box widget.

The scroll window widget is commonly used as a work area widget because
it can automatically update the size of the slider in the scroll bar widget.
The slider represents the portion of the work area widget that is currently
visible. If you use a scroll window widget, you do not have to have scroll
bar widgets as children of the main window widget. Section 4.4 describes
the scroll window widget.

The window widget is another widget that can be used as a work
area widget. The window widget is an empty rectangle that places no
restrictions on what it contains. The window widget is the only XUI
Toolkit widget that supports graphics operations.

Figure 4-1 illustrates the layout of a main window widget.

4-3

- Creating a Main Window Widget
4.2 Children of a Main Window Widget

Figure 4-1 Main Window Widget

Menu Bar .
| “; File Edit Text

Format Help

lakdsth lak lkajd sjdfa asdf alk ueab | Ik Kisdisdalj kafb O
lak{ lak lafka jata Ikatha keua akeu daywk kfor kforla D
fao kfjaco lado kdoc iasdf ghesa Hfgeo lafa sdkfeldf sdd
nadj foa sdo ferot osd od oifhrks os

stfgo odir od fjgnes kade ¢l lasdhe ksec ged adf gewk os
fak? lak lafka jata lkatka keua akeu dajwk kfor kioria
fao kffaco lado kdoe jasdf ghesa Hgeo lafu sdifeldi sdd
lakdsih lak ikajd sjdfa asdf alk veab 1k kisdisdalj kafb
q sdifa Hew os jwrk sd ad asd ksdqi ksnfa ks akldn Isd

e e . . Scroll Bar
stfgo odir od fjgnes knde i lasdhe ksec ged adf gowk os r
sdifa tew on jwrk sd ad asd Kksdgi kenfa ks akldn Isd
Work Area < i‘&f}};ﬁf}&ﬁ{;é{ﬁdg} kdoe igzz:sd'i' ghesa Ifgeo Ef‘f'ﬁ‘%d;if”." if sdd
lakf lak latka jata thatka keua akeu dajwk kfor kforla
fao kfjaco lado kdoe jasdf ghesa ifgeo lafa gher

AL

{
O
L]

>

dkdk ieka iielx/ksew ejejk Ipq jwl;;klljo pwwo pwiiwu
%‘i’m@nd | dkkvuiglwi iwoqd/eiwo yuow powl;.wghw wqpkc cm

ZK-0405A-GE

4.3 Creating a Main Window Widget

To create a main window widget, perform the following steps:

1 Create the main window widget.

Use any of the widget creation mechanisms listed in Table 4-1. The
choice of mechanism depends on the attributes you need to access.

Table 4-1 Main Window Widget Creation Mechanisms

High-level routine
Low-level routine

UIL object type

Use the MAIN WINDOW routine to create a main window
widget.

Use the MAIN WINDOW CREATE routine to create a main
window widget.

Use the main_window object type to define a main window

widget in a UIL module. At run time, the DRM routine FETCH
WIDGET creates the widget according to this definition.

4.3.1

Creating a Main Window Widget
4.3 Creating a Main Window Widget

2 Create the child widgets of the main window widget.

You create the child widgets specifying the main window widget as
their parent. For information about specifying where you want the
main window widget to place the children, see Section 4.3.1.

3 Manage the child widgets of the main window widget.

Use the MANAGE CHILD or the MANAGE CHILDREN intrinsic
routine to manage children of the main window widget. In UIL this
step is not necessary, since by default the DRM routine FETCH
WIDGET manages the widgets it creates at run time.

4 Manage the main window widget.

Use the intrinsic routine MANAGE CHILD to manage the main
window widget. In UIL this step is not necessary, since by default the
DRM routine FETCH WIDGET manages the widgets it creates at run
time.

After completing these steps, if the parent of the main window widget has
been realized, the main window widget will appear on the display.

Low-level routines and UIL provide access to the complete set of

widget attributes at creation time. High-level routines provide access

to only a subset of these widget attributes at widget creation time.

(To access attributes not available in a high-level routine, use the SET
VALUES intrinsic routine after the widget has been created.) The VMS
DECwindows Toolkit Routines Reference Manual describes the complete
list of attributes supported by the main window widget. Table 4-2 lists the
attributes available using the high-level routine MAIN WINDOW. Pass
the values for these attributes as arguments to the high-level routine.

Table 4-2 Widget Attributes Accessible Using the High-Level Routine

MAIN WINDOW
X The x-coordinate of the upper left corner of the widget
y The y-coordinate of the upper left corner of the widget
width The width of the widget
height The height of the widget

Adding Children to a Main Window Widget

You can add children to a main window widget in three ways:
¢ Use the SET VALUES intrinsic routine
¢ Use the MAIN WINDOW SET AREAS routine

® Accept the defaults of the main window widget

Creating a Main Window Widget
4.3 Creating a Main Window Widget

4.3.1.1

Using SET VALUES to Add Children to a Main Window Widget

The main window widget supports attributes that identify the child widget
to be used for each of its five designated areas (described in Section 4.2).
However, you cannot set these attributes at widget creation time because
you do not know the widget identifier of the child until you create the
children. You can only set these attributes after the main window widget
has been created.

As with any widget attribute, you can use the SET VALUES intrinsic
routine to assign values to these attributes after the widget has been
created. Specify the widget identifier of the child widget as the value
of these attributes. Table 4-3 lists these attributes of the main window
widget.

Table 4-3 Child Widget Attributes of the Main Window Widget
Attribute Value

command_window The widget identifier of the command window widget child

work_window The widget identifier of the widget that implements the work
area

menu_bar The widget identifier of the menu bar widget

horizontal_scroll_bar ~ The widget identifier of the horizontal scroll bar widget

vertical_scroll_bar The widget identifier of the vertical scroll bar widget

43.1.2 Using the MAIN WINDOW SET AREAS Routine

As a convenience, you can use the MAIN WINDOW SET AREAS routine
to specify all the child widgets to be used with a main window widget in
one call. This routine takes the following arguments:

* The widget identifier of the main window widget

¢ The widget identifier of the menu bar widget

* The widget identifier of the work area widget

* The widget identifier of the command window widget

¢ The widget identifier of the scroll bar widget with horizontal
orientation

¢ The widget identifier of the scroll bar widget with vertical orientation
You use the MAIN WINDOW SET AREAS routine after you have created

the main window widget and each of its children. Pass a null value as an
argument for any child widget not included in the main window.

4.3.1.3 Accepting Main Window Widget Defauits

If you do not explicitly specify which child widget should be used for each

area of a main window widget using the SET VALUES intrinsic routine or
the MAIN WINDOW SET AREAS routine, the main window widget selects
the widget to be used from its list of managed children. The main window
widget determines where to place its children based on the following rules:

* Any child widget that is a menu widget is used as the menu bar
widget.

Creating a Main Window Widget
4.3 Creating a Main Window Widget

¢ Any child widget that is a command window widget is used as the
command window widget.

* Any child widget that is a scroll bar widget is used as the scroll bar
widget. A scroll bar widget with its orientation attribute set to
horizontal is used as the horizontal scroll bar; a scroll bar widget with
its orientation attribute set to vertical is used as the vertical scroll
bar.

* A child widget of any other type is the work area widget.

The main window widget only considers currently managed children when
determining which children will implement its areas. If you manage
multiple children of the same type, the main window widget selects the
first one to appear in its window. A main window widget can have any
number of managed children; however, only five of these children can be
visible at any one time.

When a main window widget is resized, it recalculates the layout of its
children according to the same rules.

Customizing the Main Window Widget

The main window widget supports attributes that enable you to specify its
size and position.

You can specify the size of a main window widget using the common widget
attributes width and height. Specify these dimensions in pixels. If you
create the main window widget with these attributes set to 0, the main
window widget sizes itself to accommodate the size of all of its children. If
you specify values for these attributes, the main window sizes the children
to fit into the space allotted.

Specify the position of a main window widget using x and y attributes.
Specify these values in pixels.

Example 4-1 is the section from the DECburger UIL module in which the
main window is defined. Note that the width and height are explicitly set
to 0. The size of the main window widget will be determined by the size
requirements of its two children: the menu bar and the list box widgets.

4-7

Creating a Main Window Widget
4.3 Creating a Main Window Widget

Example 4-1 Main Window Created in the DECburger UIL Module

object
S _MAIN WINDOW : main_window {
arguments {
x = 10;
y = 20;
width = 0;
height = 0;
}i
controls {
menu_bar s_menu_bar;
list_box total_order;
}i
}i

4.3.3 Associating Callback Routines with a Main Window Widget

The main window widget executes a callback when it accepts the input
focus. When a user clicks MB1 on the title bar, the main window widget
will attempt to give the input focus to the work area widget or the
command window widget (in that order). If neither of these children
accepts the input focus and the accept_focus attribute is set to true, the
main window widget will accept the input focus.

To associate a callback routine with this callback, pass a callback routine
list to the main window widget as the value of the focus_callback
attribute.

The main window widget does not support the help callback.

4.4 Creating a Scroll Window Widget

A scroll window widget can be used as the work area widget of a main
window widget. In this case, the actual work area widget and the two
scroll bar widgets are children of the scroll window widget, not the main
window widget.

If the shown_value_automatic_horiz attribute is set to true, the

scroll window widget automatically sizes and positions the slider in

the horizontal scroll bar widget when your application moves the work
area widget horizontally in relation to the scroll window widget. If the
shown_value_automatic_vert attribute is set to true, the scroll window
widget automatically sizes and positions the slider in the vertical scroll
bar widget when your application moves the work area widget vertically in
relation to the scroll window widget.

To create a scroll window widget, perform the following steps:

1 Create the scroll window widget.

Creating a Main Window Widget
4.4 Creating a Scroll Window Widget

Use any of the widget creation mechanisms listed in Table 4—4. The
choice of mechanism depends on the attributes you need to access.

Table 44 Scroll Window Widget Creation Mechanisms

High-level routine Use the SCROLL WINDOW routine to create a scroll window
widget.

Low-level routine Use the SCROLL WINDOW CREATE routine to create a
scroll window widget.

UIL object type Use the scroll_window object type to define a scroll window

widget in a UIL module. At run time, the DRM routine FETCH
WIDGET creates the widget according to this definition.

2 Create the children of the scroll window widget.

The scroll window widget can have three children: a widget that
implements the work area and two scroll bar widgets. Use any of the
widget creation mechanisms to create these children.

3 Manage the children of the scroll window widget.

Use the MANAGE CHILD intrinsic routine to manage a single child.
Use MANAGE CHILDREN to manage a group of children. In UIL
this step is not necessary, since by default the DRM routine FETCH
WIDGET manages the widgets it creates at run time.

4 Manage the scroll window widget.

Use the intrinsic routine MANAGE CHILD to manage the widget.
In UIL this step is not necessary, since by default the DRM routine
FETCH WIDGET manages the widgets it creates at run time.

After you complete these steps, if the parent of the scroll window widget
has been realized, the scroll window widget will appear on the display.

Low-level routines and UIL provide access to the complete set of widget
attributes at creation time. High-level routines provide access to only

a subset of these widget attributes at widget creation time. (To access
attributes not available using the high-level routine, use the SET VALUE
intrinsic routine.) The VMS DECwindows Toolkit Routines Reference
Manual describes the complete list of attributes supported by the scroll
window widget. Table 4-5 lists the attributes available using the high-
level routine SCROLL WINDOW. Pass values for these attributes as
arguments to the routine.

Table 4-5 Widget Attributes Accessible Using the High-Level Routine

SCROLL WINDOW
X The x-coordinate of the upper left corner
y The y-coordinate of the upper left corner
width The width of the widget
height The height of the widget

4-9

Creating a Main Window Widget
4.4 Creating a Scroll Window Widget

4.4.1 Adding Children to a Scroll Window Widget

4-10

As with the main window widget, there are three ways to add children to
a scroll window widget:

® Use the SET VALUES intrinsic routine
* Use the SCROLL WINDOW SET AREAS routine
* Accept the defaults of the scroll window widget

Using SET VALUES to Add Children to a Scroll Window Widget

The scroll window widget supports attributes that identify the child widget
to be used for each of its three designated areas. However, you cannot

set these attributes at widget creation time because you do not know the
widget identifier of the child until you create the children. You can only
set these attributes after the scroll window widget has been created.

As with any widget attribute, you can use the SET VALUES intrinsic
routine to assign values to these attributes after the widget has been
created. Specify the widget identifier of the child widget as the value
of these attributes. Table 4-6 lists these attributes of the main window
widget.

Table 4-6 Child Widget Attributes of the Scroll Window Widget
Attribute Value

work_window The widget identifier of the widget that implements the work area
h_scroll The widget identifier of the horizontal scroll bar widget
v_scroll The widget identifier of the vertical scroll bar widget

4.4.1.2 Using the SCROLL WINDOW SET AREAS Support Routine

As a convenience, you can use the SCROLL WINDOW SET AREAS
routine to specify all the child widgets to be used with a main window
widget in one call. This routine takes the following arguments:

* The widget identifier of the scroll window widget

¢ The widget identifier of the scroll bar widget with horizontal
orientation

* The widget identifier of the scroll bar widget with vertical orientation

* The widget identifier of the work area widget

You use the SCROLL WINDOW SET AREAS routine after you have
created the scroll window widget and each of its children. Pass a null
value as an argument for any child widget not included in the scroll
window widget.

Creating a Main Window Widget
4.4 Creating a Scroll Window Widget

4.4.1.3 Accepting Scroll Window Widget Defaults
If you do not explicitly specify which child widget should be used for
each area of a scroll window widget using the SET VALUES intrinsic
routine or the SCROLL WINDOW SET AREAS routine, the scroll window
widget selects the widget to be used from its list of managed children. The
scroll window widget determines where to place its children based on the
following rules:

* Any child widget that is a scroll bar widget is used as the scroll bar
widget. A scroll bar widget with its orientation attribute set to
horizontal is used as the horizontal scroll bar; a scroll bar widget with
its orientation attribute set to vertical is used as the vertical scroll
bar.

* A child widget of any other type is the work area widget.
The scroll window widget considers only currently managed children in its

calculations. If you try to manage multiple children of the same type, the
scroll window widget only manages the first.

4.5 Creating a Window Widget

The window widget provides a blank, rectangular work space and imposes
no restrictions on what it contains. The window widget is the only XUI
Toolkit widget that supports graphics operations.

To create a window widget, perform the following steps:
1 Create the window widget.
Use any of the widget creation mechanisms listed in Table 4-7. The

choice of mechanism depends on the attributes you need to access.

Table 4-7 Window Widget Creation Mechanisms

High-level routine Use the WINDOW routine to create a window widget.

Low-level routine Use the WINDOW CREATE routine to create a window
widget.

UIL object type Use the window object type to define a window widget in a

UIL module. At run time, the DRM routine FETCH WIDGET
creates the widget according to this definition.

2 Manage the window widget.

Use the intrinsic routine MANAGE CHILD to manage the window
widget. In UIL this step is not necessary, since widgets created using
UIL are managed by default.

After you complete these steps, if the parent of the window widget has
been realized, the window widget will appear on the display.

Low-level routines and UIL provide access to the complete set of
widget attributes at creation time. High-level routines provide access
to only a subset of these widget attributes at widget creation time.
(To access attributes not available in a high-level routine, use the SET

4-11

Creating a Main Window Widget
4.5 Creating a Window Widget

. VALUES intrinsic routine after the widget has been created.) The VMS

DECwindows Toolkit Routines Reference Manual describes the complete
list of attributes supported by the window widget. Table 4-8 lists the
attributes available using the high-level routine WINDOW. Pass values for
these attributes as arguments to the routine.

Table 48 Widget Attributes Accessible Using the High-Level Routine

WINDOW
X The x-coordinate of the upper left corner
y The y-coordinate of the upper left corner
width The width of the widget
height The height of the widget
callback The address of a callback routine list

4.5.1 Drawing Graphics in a Window Widget

To draw graphics in a window widget, create a callback routine that
contains the graphics operations and associate the callback routine with
the expose callback of the window widget. Whenever the window widget
becomes visible on the screen, either when it is first created or when it
becomes visible after being obscured, it executes this callback routine.
You should always perform graphics operations from an expose callback
routine because your application is responsible for repainting your window
whenever an expose event occurs.

Example 4-2 draws a star using the DRAW LINES Xlib routine.

Example 4-2 Performing Graphics Operations in a Window Widget

#include <stdio>
#include <decw$include/DwtAppl.h>

Widget toplevel, graphics_window;
"Display *dpy;

indow win;
@GC gc;

static void draw_in_window();
DwtCallback cb_list[2];

int main(argc, argv)
unsigned int argce;
char **argv;

Arg arglist[15];

int ac = 0;

Screen *screen;
XSetWindowAttributes xswa;
XGCValues xgcv;

toplevel = XtInitialize ("Graphics Example","exampleclass",NULL, 0, &argc, argv);

4-12

(continued on next page)

Using the Label, Separator, and Button Widgets
5.1 Overview of Label, Separator, and Button Widgets and Gadgets

A toggle button widget, like a push button widget, is a text string or
pixmap inside a rectangular box with input and output capabilities. A
toggle button widget maintains state information. A user can turn a toggle
button widget on or off by clicking MB1. A toggle button widget usually
contains an indicator to distinguish it from a push button widget. An
indicator is a square or an oval, appearing at the left of the toggle button
label, that provides a visual cue to the current state of the toggle button.
For example, when the toggle button widget is on, the indicator is filled.

Use a push button widget to invoke an immediate action. Use a toggle
button widget to implement functions that can be in on or off states.

Because the label, separator, and button widgets have such widespread
usefulness, the XUI Toolkit provides the high-performance gadget version

of these widgets. Gadgets provide the same functional capabilities as their

widget counterparts but are not as customizable. By using gadgets instead .
of widgets wherever customization is not essential, you can improve the
performance of your application. You can only use gadgets as children of

menu widgets or dialog box widgets.

The label, separator, push button, and toggle button widgets, with the
pull-down menu entry widget described in Section 6.2.1, are the only
widgets in the XUI Toolkit with gadget counterparts.

Creating a Label Widget or Gadget .

To create a label widget or gadget, perform the following steps:
1 Create the label widget or gadget.

Use one of the widget or gadget creation mechanisms listed in
Table 5-1. Your choice of creation mechanism should depend on
how much you need to customize the widget or gadget. Section 5.2.2
describes the attributes supported by the label gadget.

Table 5—1 Label Widget and Gadget Creation Mechanisms .
Mechanism Widget Gadget
High-level routine Use the LABEL routine to create a label ~ There is no high-level gadget creation routine.
widget.
Low-level routine Use the LABEL CREATE routine to Use the LABEL GADGET CREATE routine to
create a label widget. " create a label gadget.

UIL object type

Use the label object type to define a label Use the label object type with the gadget
in a UIL module. At run time, the DRM qualifier.

routine FETCH WIDGET will create a

label widget according to this definition.

5-2

The label widget and the label gadget creation mechanisms return
widget identifiers to the application; the XUI Toolkit does not define a
gadget identifier.

5 Using the Label, Separator, and Button Widgets

This chapter provides the following:
® An overview of the label, separator, and button widgets and gadg

¢ A detailed description of how to include the label, button, and
separator widgets and gadgets in your application

¢ A description of how to use compound strings

¢ A description of how to define an additional mode of access, calle
accelerator, to functions associated with buttons

5.1 Overview of Label, Separator, and Button Widgets and Gadgets

Labels, separators, and buttons provide much of the basic input a
output capabilities in a VMS DECwindows application. Labels and
separators allow you to output text and graphics to a user interface.
(To handle text input, use the text widgets described in Chapter 9.) '
. push button and toggle button widgets allow you to provide users of
application with access to functions using a pointing device.

The XUI Toolkit includes a label widget, a separator widget, and tw:
button widgets: a push button and a toggle button. These widgets a1
primitive widgets; that is, they cannot be parents of other widgets.

A label widget is a text string or pixmap inside a rectangular box.

default, the borders of the rectangle do not appear on a display, althc

you can make them visible. A label widget is an inactive interface ok
. it does not support callbacks.

A separator widget is a vertical or horizontal dotted line. A separe
widget is an inactive interface object. Separator widgets can be thouy
as label widgets containing a predefined pixmap, which is a dotted li1

A push button widget is a text string or pixmap inside a rectangul:
with both input and output capabilities. When a user moves the poix
cursor onto a push button widget and presses MB1, the widget highli
to indicate a change in state. If the user then releases MB1 within t
borders of the push button widget, the widget performs a callback to
application. Push button widgets can be thought of as label widgets
added input capabilities: the text string or pixmap provides the outr
capabilities, and the callback mechanism provides the input capabilit

You can simulate push button activation using the ACTIVATE WIDG
convenience routine. This routine causes the push button widget yol
specify to highlight and perform a callback to your application. This

. capability can be useful if you provide users with more than one way
access a function associated with a push button widget. When the us
employs the alternate access, you can activate the push button widge
maintain a consistent interface.

Creating a Main Window Widget
4.5 Creating a Window Widget

Example 4-2 (Cont.) Performing Graphics Operations in a Window Widget

ac = 0;

XtSetArg(arglist[ac], XtNallowShellResize, TRUE); ac++;
XtSetArg(arglist[ac], XtNx, 150); act++;

XtSetArg(arglist{ac], XtNy, 150):; ac++;

XtSetValues(toplevel, arglist, ac):;

cb_list[0].proc = draw_in_window;
cb_list([0].tag = 0;
cb_list[1l].proc = NULL;

ac = 0;

XtSetArg(arglist([ac], DwtNwidth, 600); ac++;

XtSetArg(arglist[ac], DwtNheight, 600); ac++;

XtSetArg(arglist[ac], DwtNexposeCallback, cb_list); ac++;

o graphics_window = DwtWindowCreate(toplevel, "gwindow", arglist, ac);
XtManageChild(graphics_window);
XtRealizeWidget (toplevel):

dpy = XtDisplay(graphics_window);

win XtWindow(graphics_window);

screen = DefaultScreenOfDisplay (dpy) ;
/* Create graphics context. */

BlackPixelOfScreen (screen) ;
WhitePixelOfScreen (screen);
1;

xgcv. foreground
xgcv.background
xgcv.line width

wonn

f’ gc = XCreateGC (dpy, win, GCForeground | GCBackground
| GCLineWidth , &xgcv):

XtMainLoop () ;
}

Ostatic void draw_in_window(w, tag, callback_data)
Widget w;
char *tag;
DwtWindowCallbackStruct *callback data;

XPoint pt_arr(6];

pt_arr[0).x = 75;

pt_arr{0).y = 500;
pt_arr[l].x = 300;
pt_arr[l]l.y = 100;
pt_arr[2].x = 525;
pt_arr(2].y = 500;
pt_arr(3].x = 50;

pt_arr{3]l.y = 225;
pt_arr[4]).x = 575;
pt_arr(4].y = 225;
pt_arr(5].x = 75;

pt_arr(5}.y = 500;

(continued on next page)

4-13

Creating a Main Window Widget
4.5 Creating a Window Widget

Example 4-2 (Cont.) Performing Graphics Operations in a Window Widget

XDrawLines(dpy, win, gc, &pt_arr, 6, CoordModeOrigin);

This variable will hold a pointer to the display.
This variable will hold a window identifier.

This variable is a graphics context. For information about this data
structure, see the VMS DECwindows Xlib Programming Volume.

The WINDOW CREATE routine creates the window widget. In the
argument list passed to the creation routine, the example specifies the
size of the window widget and the callback routine to be associated
with the expose callback of the window widget.

The DISPLAY intrinsic routine returns a pointer to the display
associated with the window widget.

The WINDOW intrinsic routine returns the identifier of the window
associated with the window widget.

The DEFAULT SCREEN OF DISPLAY Xlib routine returns a pointer
to the screen on which the window widget is displayed.

The call to the CREATE GC Xlib routine defines the visible
characteristics of the line used in the drawing in a graphics context
structure. The line will be drawn in black.

In the callback routine associated with the expose event, the DRAW
LINES Xlib routine draws the star-shaped figure in the window
widget. The display, window, and graphics context are specified as
arguments to this routine. Whenever an expose event occurs in the
window widget, this callback routine will be executed, causing the star
to be drawn again.

®© ©¢ © o

4.5.2 Associating Callback Routines with a Window Widget

4-14

The window widget executes a callback when an expose event occurs
within its borders. An expose event occurs when the window widget is
mapped. Mapping occurs when the widget is realized for the first time,
when your application goes from iconified state to active state, or when
a portion of the widget that had previously been obscured by another
widget becomes visible. When the window widget performs a callback, it
returns the reason, the event structure that triggered the callback, and
the identifier of the window in which the exposure event occurred. For
more information about the data returned in the callback of the window
widget, see the VMS DECwindows Toolkit Routines Reference Manual.

To associate a callback routine with a window widget, pass a callback
routine list to the widget in the expose_callback attribute. See
Example 4-2 for an illustration.

Creating a Main Window Widget
4.6 Creating a Command Window Widget

4.6 Creating a Command Window Widget
To create a command window widget, perform the following steps:
1 Create the command window widget.
Use any of the widget creation mechanisms listed in Table 4-9. The

choice of mechanism depends on the attributes you need to access.

Table 4-9 Command Window Widget Creation Mechanisms

High-level routine Use the COMMAND WINDOW routine to create a command
window widget.

Low-level routine Use the COMMAND WINDOW CREATE routine to create a
command window widget.

UIL object type Use the command_window object type to define a command

window widget in a UIL module. At run time, the DRM
routine FETCH WIDGET creates the widget according to this
definition.

2 Manage the command window widget.

Use the intrinsic routine MANAGE CHILD to manage the command
window widget. In UIL this step is not necessary, since widgets
created with UIL are managed by default.

After you complete these steps, if the parent of the command window
widget has been realized, the command window widget will appear on the
display.

Low-level routines and UIL provide access to the complete set of widget
attributes at creation time. High-level routines provide access to

only a subset of these widget attributes at widget creation time. (To
access attributes not available using a high-level routine, use the SET
VALUES intrinsic routine after the widget has been created.) The VMS
DECwindows Toolkit Routines Reference Manual describes the complete
list of attributes supported by the command window widget. Table 4-10
lists the attributes available using the high-level routine COMMAND
WINDOW. Pass the values for these attributes as arguments to the
routine.

Table 4-10 Widget Attributes Accessible Using the High-Level Routine

COMMAND WINDOW
prompt String used as command line prompt
lines Number of command history lines displayed
callback Address of a callback routine list

help_callback Address of a callback routine list

4-15

Creating a Main Window Widget
4.6 Creating a Command Window Widget

4.6.1 COmmand Window Widget Support Routines

The XUI Toolkit provides a set of support routines that perform commonly
needed operations on a command window widget (listed in Table 4-11).
Use these routines to specify the text of the command line, append a string
to the current contents of the command line, or display error messages.

Table 4-11 Command Window Widget Support Routines

COMMAND APPEND Appends a text string onto the end of the text string
currently in the command line.

COMMAND ERROR MESSAGE Outputs an error message in the form of a text
string. The message appears in the command
history window of the command window widget.

COMMAND SET Replaces the contents of the command line with
the text string specified.

4.6.2 Specifying the Contents of the Command Line

4-16

After the command window widget appears on the display, the user of
your application can enter a.command string in its text entry area. Your
application can specify the initial contents of the text area of the command
window widget by assigning the address of text string as the value of the
value attribute. Note that this text string does not have to be converted
into a compound string.

If the text string ends with a carriage return or a line-feed character, the
command window widget executes the command, notifies your application
using the callback mechanism, moves the command line into the history
window, and issues a new prompt. The text string can also represent
multiple command lines.

To change the value of the command window widget after the widget

has been created, you can assign a new string as the value of the value
argument using the SET VALUES intrinsic routine or you can use the
command window support routine COMMAND SET. The COMMAND SET
routine takes the following arguments:

* The widget identifier of the command window widget
¢ The text to be placed in the command line

To add text to a command line, use the COMMAND APPEND support
routine. This routine takes the following two arguments:

* The widget identifier of the command window widget
¢ The text to be added to the command line

Creating a Main Window Widget
4.6 Creating a Command Window Widget

4.6.3 Displaying Error Messages in the Command Window Widget

To display error messages generated by command line execution, use the
COMMAND ERROR MESSAGE support routine. This routine accepts the
following arguments: ‘

¢ The widget identifier of the command window widget

¢ The text of the error message to be displayed

The error message appears in the command history area of the command
window widget.

4.6.4 Defining Accelerators for the Command Window Widget

You can define the actions performed by the command window widget
upon certain keyboard events using the t_translations attribute. Pass
a parsed translation table as the value of this attribute. You typically
use this attribute to define accelerators. See Section 6.7 for details about
translation tables. :

4.6.5 Customizing the Appearance of the Command Window Widget

The attributes of the command window widget enable you to customize the
following aspects of its appearance:

¢ The command line prompt
* The number of command lines visible in the command history window
You can assign values to widget attributes when you create the widget

using any of the widget creation mechanisms, or after the widget has been
created using the intrinsic routine SET VALUES.

4.6.5.1 Specifying the Command Line Prompt
You can specify the string of characters used as the command line prompt
using the prompt attribute. Specify the prompt as a text string. The
default prompt is the right angle bracket (>).

Note that you must convert the prompt text string into a compound string
before passing it to the command window widget.

4.6.5.2 Specifying the Size and Content of the Command History Window
You can use the lines attribute to specify how many command lines appear
in the command history window of the command window widget. Specify
the number of lines as an integer. By default, the command window
widget displays two command lines in its command history window.

4-17

4.6.6

Creating a Main Window Widget
4.6 Creating a Command Window Widget

Associating Callback Routines with the Command Window Widget

4-18

Using the callback mechanism, a command window widget notifies your
application when a change is made to the contents of the command line
or when a command is executed. A command is executed when the user
presses the Return key or your application passes a string containing a
return or line-feed character. When a command is executed, the command
window widget removes it from the command entry field and places it in
the command history. Your application must parse the command string
and execute the command in a callback routine.

The command window widget also.performs a callback when it accepts the
input focus.

When a command window widget performs a callback, it returns callback
data to the application. In this callback data, the command window widget
returns the text string that is the contents of the command line and the
length of the command line. For complete information about the data
returned in a callback by the command window widget, see the VMS
DECwindows Toolkit Routines Reference Manual.

To associate a callback routine with a command window widget callback,
pass a callback routine list to one of the command window widget callback
attributes. Table 4-12 describes what conditions trigger these callbacks
and the widget attributes you use to associate callback routines with
them.

Table 4-12 Command Window Widget Callbacks

Callback Attribute Description

value;callback The contents of the command line changed.

command_entered_callback The user has pressed the Return or the Line Feed
key.

focus_callback The command window widget has received the input
focus.

Using the Label, Separator, and Button Widgets
5.2 Creating a Label Widget or Gadget

2 Manage the label widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage the widget or
gadget.

After you complete these steps, if the parent of the label widget or gadget
has been realized, the label widget or gadget will appear on the display.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a
subset of these attributes at widget creation time. (To access attributes
not available in a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 5-2 lists the attributes
you can set if you use the high-level routine LABEL to create a label
widget. Pass the values of these attributes as arguments to the routine.

Table 5-2 Attributes Accessible Using the High-Level Routine LABEL

X The x-coordinate of the upper left corner

y The y-coordinate of the upper left corner

labl' The text or pixmap to be displayed in the label widget
help_callback The address of a callback routine list

1The high-level routines use this spelling for the label attribute to avoid conflicts with
programming languages in which "label” is a reserved word.

5.2.1 Customizing a Label Widget

The attributes of the label widget enable you to customize the following
aspects of its appearance and functioning:

* Size and position

e Alignment
¢ Margins
¢ Content

5.2.1.1 Specifying the Size and Position of a Label Widget
Use the common widget attributes width and height to specify the size
of a label widget. By default, a label widget sizes itself to fit the text
string or pixmap it contains. The parent widget of the label widget can
also determine the size of a label widget. For example, menu widgets
determine the dimensions of the widgets that implement the menu items
they contain.

You can specify that a label widget always attempt to fit the text or pixmap
it contains using the conform_to_text attribute. If you set this attribute
to true, the label widget will grow or shrink as the text or pixmap it
contains grows or shrinks.

Use the common widget attributes x and y to specify the position of a label
widget. You do not always need to specify the position of the label widget,
because the parent of the label widget will determine its position.

5-3

Using the Label, Separator, and Button Widgets
5.2 Creating a Label Widget or Gadget

5.2.1.2 Specifying the Alignment in a Label Widget
Use the alignment attribute to position the text string within the borders
of the label widget. You cannot align pixmaps contained in a label widget.
You can center the text string within the label widget, or you can align
the text string to the right side or to the left side of the label widget. The
VMS DECwindows Toolkit Routines Reference Manual lists the constants
used to indicate types of alignment.

5.2.1.3 Specifying Margins in a Label Widget
The label widget supports six margin attributes that you can use to
determine the amount of space surrounding the text or pixmap the widget
contains.

Specify the amount of space between the left border of the label widget
and the beginning of the text string or pixmap it contains in the margin_
width attribute. This value is also used as the right margin.

Specify the amount of space between the top border of the label widget and
the top of the text or pixmap in the label widget in the margin_height
attribute. This value is also used to determine the amount of space left
between the bottom side of the label widget and the bottom of the text or
pixmap it contains.

The other four margin attributes, margin_left, margin_right, margin_
top, and margin_bottom, determine the space surrounding the text or
pixmap contained in the label widget. A text string or pixmap is contained
within its own rectangle. Note that the borders of this inner rectangle
are distinct from the borders of the label widget. You cannot make this
inner rectangle visible. Using these attributes, you can specify margins
within this rectangle. For example, the distance between the left side of
the label widget and the first character in a text string can be the sum of
the margin_width and margin_left attributes.

Figure 5-1 illustrates these margins in a label widget.

Using the Label, Separator, and Button Widgets
5.2 Creating a Label Widget or Gadget

Figure 5-1 Attributes for Setting Margins

Label Widget

margin_height

margin_width__________________] _margin_width
e H :Q———-.-

i margin_top :

i in | * |

i margin_left Label margin_right E

I l

i margin_bottom i

; ' i

L l

margin_height

ZK-0199A-GE

5.2.1.4 Specifying the Content of a Label Widget
Use the label attribute to specify the text the label widget will contain.
You must pass the text to the label widget in the form of a compound
string. Section 5.6 describes how to convert text strings to compound
strings. Identify the type of label as a text string in the label_type
attribute.

Use the pixmap attribute to specify the pixmap used in a label widget.
Pass the identifier of the pixmap to the label in this attribute. You can
create a pixmap in the following three ways:

® Use the bitmap editor supplied with Xlib.
¢ Use the UIL built-in ICON function, described in Section 3.2.7.8.

¢ Use the DECpaint application, described in the VMS DECwindows
Desktop Applications Guide.

When using a pixmap in a label widget, yo{1 must specify the type of label
in the label_type attribute.

5.2.2 Customizing a Label Gadget

The label gadget provides access to only a subset of the attributes provided
by the label widget. The following list summarizes aspects of the label
gadget that you can customize:

* Size and position

e Alignment

5.3

Using the Label, Separator, and Button Widgets
5.2 Creating a Label Widget or Gadget

e Text content of the label

For information about assigning values to these attributes, see
Section 5.2.1.

The primary label widget attributes not supported by label gadgets are the
margin and pixmap attributes. However, the gadget version also does not
support certain common widget attributes supported by the label widget.
The attributes the gadget does not support deal mainly with aspects of the
appearance of the widget that relate to properties of the widget window.
To reduce their overhead and improve performance, gadgets do not have
an associated window. For the attributes of the label gadget you cannot
customize, the label gadget uses the value contained in its parent.

Specifically, the label gadget imposes the following restrictions:

¢ You cannot specify margins.

* You cannot specify a pixmap label.

¢ You cannot specify the color of the foreground, background, or border.

¢ You cannot specify the pixmap used as the foreground, background, or
border of a widget.

¢ You cannot specify a font.

Creating a Separator Widget or Gadget

To create a separator widget or gadget, perform the following steps:
1 Create the separator widget or gadget.

Use any of the widget or gadget creation mechanisms listed in

Table 5-3. Your choice of which creation mechanism to use depends on
how you want to configure the separator widget and which attributes
you need to set.

Table 5-3 Separator Widget and Gadget Creation Mechanisms

Mechanism

Widget Gadget

High-level routine
Low-level routine

UIL object type

Use the SEPARATOR routine to create a There is no high-level gadget creation routine.
separator widget.

Use the SEPARATOR CREATE routine to Use the SEPARATOR GADGET CREATE

create a separator widget. routine to create a separator gadget.
Use the separator object type to define Use the separator object type with the gadget
a separator in a UIL module. At run qualifier.

time, the DRM routine FETCH WIDGET
creates the object according to this
definition.

5-6

2 Manage the separator widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage a separator
widget or gadget.

‘Using the Label, Separator, and Button Widgets
5.3 Creating a Separator Widget or Gadget

After you complete these steps, if the parent of the separator has been
realized, the separator widget or gadget will appear on the display.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a
subset of these attributes at widget creation time. (To access attributes
not available in a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 5-4 lists the attributes
you can set if you use the high-level routine SEPARATOR to create a
separator widget. Pass the values of these attributes as arguments to the
routine.

Table 54 Attributes Accessible Using the High-Level Routine

SEPARATOR
X Specifies the x-coordinate of the upper left corner
y Specifies the y-coordinate of the upper left corner
orientation Specifies whether the separator widget is vertical or horizontal

5.3.1 Customizing a Separator Widget or Gadget

The separator widget and gadget support all of the attributes supported
by the label widget and gadget. For information about customizing a label
widget, see Section 5.2.1.

In addition, the separator widget and gadget support an attribute

with which you can specify their orientation. Separator widgets and
gadgets can have either a horizontal or a vertical orientation. Specify the
orientation of the separator widget or gadget in the orientation attribute
using the constants listed in the VMS DECwindows Toolkit Routines
Reference Manual.

5.4 Creating a Push Button Widget or Gadget | |
To create a push button widget or gadget, perform the following steps:
1 Create the push button widget or gadget.

Use any of the three widget or gadget creation mechanisms listed in
Table 5-5. The choice of creation mechanism depends on how you want
to configure the push button widget or gadget and which attributes you
need to set.

5-7

Using the Label, Separator, and Button Widgets
5.4 Creating a Push Button Widget or Gadget

Table 5-5 Push Button Widget and Gadget Creation Mechanisms

Mechanism

Widget Gadget

High-level routine
Low-level routine

UIL object type

Use the PUSH BUTTON routine to create There is no high-level gadget creation routine.
a push button widget. -

Use the PUSH BUTTON CREATE routine Use the PUSH BUTTON GADGET CREATE

to create a push button widget. routine to create a push button gadget.
Use the push_button object type to define Use the push_button object type with the gadget
a push button widget in a UIL module. qualifier.

At run time, the DRM routine FETCH
WIDGET will create the object according
to this definition.

2 DManage the push button widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage a push button
widget or gadget.

After you complete these steps, if the parent of the push button widget or
gadget has been realized, the push button widget or gadget will appear on
the display. '

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a
subset of these attributes at widget creation time. (To access attributes
not available using the high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 56 lists the attributes
you can set if you use the high-level routine PUSH BUTTON to create a
push button widget. Pass the values of these attributes as arguments to
the routine.

Table 5-6 Attributes Accessible Using the High-Level Routine PUSH

BUTTON
X The x-coordinate of the upper left corner
y The y-coordinate of the upper left corner
labl® The text to be displayed in the push button widget
callback The address of a callback routine list
help_callback The address of a callback routine list

1The high-level routines use this spelling for the label attribute to avoid conflicts with
programming languages in which "label” is a reserved word.

Example 5-1 is the section from the DECburger UIL module in which
the DECburger option menu widget is defined. The example creates the
individual items in the option menu widget as push button gadgets. This
is a typical use of push button widgets or gadgets.

Using the Label, Separator, and Button Widgets
5.4 Creating a Push Button Widget or Gadget

Example 5-1 Push Button Gadgets in the DECburger Option Menu

ﬂobject
fries_option_menu : option menu {
arguments {
x = 130;
y = 22;
label_label = k_size_label text;
menu_history = push_button medium fries;
}i
controls {
pulldown_menu fries_menu;
' }i
}i
gobject
fries_menu : pulldown_menu {
controls {

push_button tiny_ fries;
push_button small_fries;
push_button medium fries;
push_button large_fries;
push_button huge_fries;

};

}i

gobject
tiny fries : push_button {

arguments {
label label = k tiny label text;
bi

callbacks {
activate = procedure activate_proc (k_fries_tiny):;
};

}i

© The object declaration of the option menu widget lists its only child,
the pull-down menu widget. (See Section 6.6 for more information
about the option menu widget.)

@ In this object declaration of the pull-down menu widget, the five push
button gadgets that implement the menu items are listed as children
of the pull-down menu widget.

© This is the object declaration of the first push button gadget used in
the pull-down menu widget. Note that, because DECburger defines
gadgets as the default type for all the push buttons it uses, it does not
have to explicitly qualify the push_button object type with the gadget
qualifier. See Section 3.2.4 for more information about specifying
default object types.

In the object declarations for each push button gadget, DECburger
only specifies the text the gadget will contain. DECburger allows the
pull-down menu widget to determine the size and position of the push
button gadgets that are its children.

5-9

Using the Label, Separator, and Button Widgets
5.4 Creating a Push Button Widget or Gadget

5.4.1 Customizing a Push Button Widget

The push button widget supports all attributes supported by a
label widget. For information about customizing a label widget, see
Section 5.2.1.

In addition, the push button widget supports its own unique attributes
that enable you to customize the following aspects of its appearance and
functioning:

* Highlighting behavior
¢ Shadowing
* Pixmap used to indicate insensitive state

Specifying Highlighting Behavior

Use the border_highlight or the fill_highlight attribute to specify

how a push button widget is highlighted when selected by a user. If

you set the border_highlight attribute to true, the push button widget
indicates it has been selected by highlighting its border. (This is the
default behavior for push button widgets and gadgets in menus.) If you set
the fill_highlight attribute to true, the entire push button widget changes
color to indicate it has been selected by a user.

You also can use the common widget attributes highlight_pixel and
highlight_pixmap to specify the color or pixmap pattern used as the
highlight.

If you want your application to conform to the recommendations of the

XUTI Style Guide, accept the default values determined by the use of the
push button widget.

5.4.1.2 Specifying Shadowing

The shadow attribute enables the application to choose whether the push
button widget should appear with a shadow. The shadow provides push
button widgets with a three-dimensional look.

5.4.1.3 Specifying the Insensitive Pixmap
- Use the insensitive_pixmap attribute to specify the pixmap the push

button widget should contain when it is insensitive to user input.

5.4.2 Customizing a Push Button Gadget

5-10

Push button gadgets do not provide access to any attributes beyond those
supported by the label gadget. For information about customizing a label
widget, see Section 5.2.1.

Using the Label, Separator, and Button Widgets
5.4 Creating a Push Button Widget or Gadget

5.4.3 Associating Callback Routines with a Push Button Widget or Gadget

When activated, a push button widget or gadget notifies an application
using the callback mechanism. The push button widget or gadget is
activated when a user moves the pointer cursor onto it and clicks MB1.

In addition, the push button widget performs callbacks when a user moves
the pointer cursor onto the push button and holds down MB1. This user
interaction is said to arm the push button widget. The push button widget
also performs a callback when a user moves the pointer cursor off the push
button without releasing MB1. This user interaction is said to disarm the
push button widget. The push button gadget does not support the arm or
disarm callback reasons.

The push button widget and gadget both perform callbacks when the user
presses the Help key while simultaneously clicking MB1 inside a push
button widget or gadget.

When the push button widget or gadget performs a callback, it returns
callback data to your application. For complete information about the data
returned by the push button widget or gadget in a callback, see the VMS
DECuwindows Toolkit Routines Reference Manual.

To associate a callback routine with a push button widget or gadget, pass
a callback routine list to one of the callback attributes supported by the
widget or gadget. Table 5-7 lists the callback attributes supported by
the push button widget and gadget and the conditions that trigger these
callbacks.

Table 5-7 Push Button Widget and Gadget Callbacks
Callback Attribute Description

activate_callback A user has clicked MB1 on the push button widget or gadget.

arm_callback A user has moved the pointer cursor onto the push button
widget and is holding down MB1 (widget only).

disarm_callback A user has moved the pointer cursor off the push button
widget without releasing MB1 (widget only).

help_callback A user has pressed the Help key while the pointer cursor is

in the push button widget or gadget.

All the push button widgets and gadgets in the DECburger sample
application execute the same callback routine, called activate_proc, when
activated. DECburger uses the tag to determine which push button widget
or gadget performed the callback and then performs whatever processing
is required. Example 5-2 is a fragment from the callback routine in which
the callbacks from the option menu widget are handled. When a push
button gadget in the option menu widget is activated, DECburger reads
the text label in the activated push button gadget to retrieve the value of
the user’s selection.

5-11

5.5

Using the

Label, Separator, and Button Widgets

5.4 Creating a Push Button Widget or Gadget

Example 5-2

Push Button Callback Procedure in the DEChurger Application

static void a
Widget w;
int *tag;
unsigned

ctivate_proc(w, tag, reason)

long *reason;

int widget_num = *tag;

int i, va
char *txt

switch (w
{

case
case
case
case
case

g
b

lue, fries_num;
, *fries_text, *list_txt, list_buffer[20];

idget_num)

k_fries_tiny:

k fries small:
k_fries medium:
k_fries_large:

k_fries_huge:

et_something (w, DwtNlabel, ¤t_fries);
reak;

Creating a

Toggle Button Widget or Gadget
To create a toggle button widget or gadget, perform the following steps:
1 Create the toggle button widget or gadget.

Use any of the widget creation mechanisms listed in Table 5-8. The
choice of creation mechanism depends on how you want to customize
the toggle button widget and which attributes you need to set.

Table 5-8 Toggle Button Widget and Gadget Creation Mechanisms

Mechanism

Widget Gadget

High-level routine
Low-level routine

UIL object type

Use the TOGGLE BUTTON routine to There is no high-level gadget creation routine.
create a toggle button widget.

Use the TOGGLE BUTTON CREATE Use the TOGGLE BUTTON GADGET CREATE
routine to create a toggle button widget. routine to create a toggle button gadget.

Use the toggle_button object type to Use the toggle_button object type with the
define a toggle button widget in a UIL gadget qualifier.

module. At run time, the DRM routine

FETCH WIDGET creates the widget

according to this definition.

5-12

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

2 Manage the toggle button widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage a toggle button
widget or gadget.

After you complete these steps, if the parent of the toggle button widget or
gadget has been realized, the toggle button widget or gadget will appear
on the display.

Low-level routines and UIL provide access to the complete set of widget
attributes at widget creation time. High-level routines provide access

to only a subset of these attributes at widget creation time. (To access
attributes not available in a high-level routine, use the SET VALUES
intrinsic routine after the widget has been created.) Table 5-9 lists the
attributes you can set if you use the high-level routine TOGGLE BUTTON
to create a toggle button widget. Pass the values of these attributes as
arguments to the routine.

Table 5-9 Attributes Accessible Using the High-Level Routine TOGGLE

BUTTON
X The x-coordinate of the upper left corner
y The y-coordinate of the upper left corner
labl' The text to be displayed in the toggle button widget
value The state of the toggle button widget
callback The address of a callback routine list
help_callback The address of a callback routine list

1The high-level routines use this spelling for the label attribute to avoid conflicts with
programming languages in which "label" is a reserved word.)

The DECburger sample application uses toggle buttons in a radio box
widget. Figure 5-2 illustrates this widget as it appears in the DECburger
user interface.

5-13

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

Figure 5~2 Radio Box with Toggle Button Gadgets in the DECburger Application

e Welcoms to DEChurger

""" e Edit | Order

Hambusgers : Fries : Drinks
@) Rare O Ketchup g Medium A o
@ Medium £3 Mﬁustard ; - | Orange Juice
O WellDone {1 Pickle : | Grape Juice
{1 Onion : | col
{1 Mayomnaise: ? %4
0 :
73 ‘ Quantity |[0 ﬁ—-
: Guantity Y S
Quantity : NS
Apply Dismiss Reset

ZK-0160A-GE

In Example 5-3, the DECburger application creates the radio box widget
and the three toggle button gadgets that implement the items it contains.
Note that the only attribute explicitly set in the toggle button gadget
definitions is the text they will contain. DECburger allows the radio box
widget to determine the size of the toggle button gadgets.

5-14

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

Example 5-3 Creating the Radio Box Widget in the DECburger Application

object
burger doneness box : radio_box {

arguments
x = 10;
y = 22;
orientation = DwtOrientationVertical;
border_ width = 0;
};

» controls {

1) toggle_button burger_ rare;
toggle_button burger medium;
toggle_button burger_well:
}i

object
(2] burger rare : toggle_button {
arguments {
label_label = k_rare_label text;
}i
callbacks {
value_changed = procedure toggle_proc (k_burger rare);
create = procedure create proc (k_burger_rare);
};
};

object
burger medium : toggle_button {

arguments {
label label = k medium label_text;
-toggle_value = on;
}i

callbacks {
value_changed = procedure toggle proc (k_burger medium);
create = procedure create proc (k_burger_medium);
}i

};

object
burger well : toggle_button {

arguments {
label label = k_well done_label_text;
}i

callbacks { .
value_changed = procedure toggle proc (k_burger_well);
create = procedure create_proc (k_burger well);
}i

@ The controls section of the radio box widget object declaration lists the
three toggle button gadgets that are its children.

5-15

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

©® After defining the radio box widget, the DECburger UIL module
defines each of the three toggle button gadgets it contains. Note
that DECburger does not have to use the gadget qualifier with the
toggle_button object type because, at the beginning of the UIL module,
DECburger declares toggle button gadgets as the default of the toggle_
button object type. See Section 3.2.4 for more information about
specifying default object types.

For each toggle button gadget, DECburger passes the text string the
gadget will contain as the value of the label attribute (called label_
label in UIL). DECburger accepts defaults for all other toggle button
gadget attributes. The radio box widget determines the sizing and
positioning of the toggle button gadgets that are its children.

5.5.1 Specifying the State of a Toggle Button Widget or Gadget

The toggle button widget and gadget both maintain their current state

in their value attribute. You can set the current state of a toggle button
widget or gadget when you create it by setting this attribute on or off. The
VMS DECwindows Toolkit Routines Reference Manual lists the constants
used to indicate these values.

DECburger sets the initial value of one of the toggle button gadgets used
in the radio box widget. In this way, DECburger specifies the default
choice for the radio box widget. Example 5-4 shows the UIL object
declaration of the toggle button in which the value attribute is set to
on. (Note that, in UIL, this attribute is named toggle_value.)

Example 54 Setting the Initial State of a Toggle Button

object

burger medium :
arguments {
label label = k_medium label text;
toggle_value = on;

callbacks {
value_changed = procedure toggle proc (k_burger medium);
create = procedure create_proc (k_burger medium);

}i

toggle button {

5-16

After the toggle button widget or gadget has been created, you can read
the current state or set the current state using the GET VALUES and
SET VALUES intrinsics routines. Alternately, you can use the following
support routines provided by the XUI Toolkit for use with toggle button
widgets and gadgets:

¢ TOGGLE BUTTON GET STATE routine
* TOGGLE BUTTON SET STATE routine
The TOGGLE BUTTON GET STATE support routine retrieves the current

value of the toggle button widget or gadget. The routine takes as its only

argument the identifier of the toggle button widget or gadget whose state
you want to read.

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

The TOGGLE BUTTON SET STATE support routine allows you to set the
current value of the toggle button widget or gadget. This routine takes the
following arguments:

* The widget identifier of the toggle button widget or gadget
* The value you want the toggle button widget or gadget to have

¢ A Boolean variable that determines whether the toggle button widget
or gadget notifies your application that its value has changed

The DECburger sample application uses the TOGGLE BUTTON SET
STATE support routine to set the state of one of the toggle button gadgets
in the radio box widget when a user chooses to reset the user interface.

5.5.2 Customizing a Toggle Button Widget

The toggle button widget supports all the attributes supported by the
label widget. (For information about customizing a label widget, see
Section 5.2.1.) In addition to supporting these attributes, the toggle button
widget allows you to customize the following:

* The appearance of the indicator

¢ The pixmaps used to indicate on and off states when the widget is
sensitive

¢ The pixmaps used to indicate on and off states when the widget is
insensitive

5.5.2.1 Specifying the Appearance of the Indicator
Use the shape, spacing, and indicator attributes to specify the
appearance of the indicator and its presence in the toggle button widget.

To specify whether the indicator is square or oval, use the shape attribute.
The VMS DECwindows Toolkit Routines Reference Manual lists the
constants used to specify these values.

To specify the amount of space between the indicator and the start of the
label (if it is a text label) in the toggle button widget, use the spacing
attribute. Specify this value in pixels.

To specify whether the toggle button widget includes an indicator, use the

indicator attribute. Set this attribute to true to include an indicator in a
toggle button widget. The XUI Style Guide recommends that toggle button
widgets include an indicator.

If you set the visible_when_off attribute to true, the indicator will not be
visible in the toggle button widget when it is in its off state.

5.5.2.2 Specifying On and Off Pixmaps
To specify the pixmap label that appears in a toggle button widget, pass
the identifier of the pixmap in the pixmap_on and pixmap_off attributes.
You can specify two separate pixmaps that graphically represent the toggle
button in its on and off states.

5-17

5.5.3

5.5.4

Using the Label, Separator, and Button Widgets

5.5 Creating a Toggle Button Widget or Gadget

To specify the pixmap label that will appear in a toggle button widget
when it is insensitive to user input, pass the identifier of the pixmap in
the insensitive_pixmap_on and insensitive_pixmap_off attributes.

Customlzmg a Toggle Button Gadget

Toggle button gadgets support all attributes supported by the label gadget.
For information about customizing a label gadget, see Section 5.2.2.

In addition, with the toggle button gadget, you can customize the shape of
the indicator (see Section 5.5.2.1).

Associating Callback Routines with a Toggle Button Widget or Gadget

5-18

When its value changes, a toggle button widget or gadget notifies an
application using the callback mechanism. The value changes when a user
selects the toggle button widget or gadget by moving the pointer cursor
onto it and clicking MB1. Your application can also change the value of
the toggle button widget or gadget using the TOGGLE BUTTON SET
STATE support routine or the intrinsic routine SET VALUES.

In addition, the toggle button widget performs callbacks when a user
moves the pointer cursor onto it and holds down MB1. This user
interaction arms the toggle button widget. The toggle button widget
also performs a callback when a user moves the pointer cursor off of it
without releasing MB1. This user interaction disarms the toggle button
widget. The toggle button gadget does not support these callbacks.

The toggle button widget and gadget both perform callbacks when the user
presses the Help key while simultaneously clicking MB1 inside the toggle
button widget or gadget.

When the toggle button widget or gadget performs a callback, it returns
callback data to your application. In this callback data, the toggle button
widget or gadget returns its current value, along with other data. For
complete information about the data returned in a callback by the toggle
button widget or gadget, see the VMS DECwindows Toolkit Routines
Reference Manual.

To associate a callback routine with a toggle button widget or gadget,
pass. a callback routine list to one of the callback attributes they support.
Table 5-10 lists the callback attributes and the cond1t10ns that trigger
these callbacks.

Using the Label, Separator, and Button Widgets
5.5 Creating a Toggle Button Widget or Gadget

Table 5-10 Toggle Button Widget and Gadget Callbacks
Callback Attribute Description

value_changed A user has clicked MB1 on the toggle button widget or
gadget, causing it to change value, or your application
has assigned a value to the value attribute using the
SET VALUES intrinsic routine or the support routine
TOGGLE BUTTON SET STATE.

arm_callback A user has moved the pointer cursor onto the toggle
button widget and is holding down MB1 (widget only).
disarm_callback A user has moved the pointer cursor off the toggle
, button widget without releasing MB1 (widget only).
help_callback A user has pressed the Help key while the pointer

cursor is in the toggle button widget or gadget.

All the toggle button gadgets in the DECburger sample application use the
same callback routine, called toggle_proc, shown in Example 5-5. In the
callback routine, DECburger assigns the value returned in the callback
data to a position in an array, called toggle_array. DECburger uses the
array to store the current state of all its toggle buttons. In the callback
routine, DECburger determines which toggle button gadget performed the
callback by checking the tag field of the callback data.

Example 5-5 Toggle Button Callback Procedure in the DECburger
Application

static void toggle_proc(w, tag, toggle)
Widget w;
int *tag;
DwtTogglebuttonCallbackStruct *toggle;

toggle_arrayl[*tag - k_burger min] = toggle->value;

5.6 Working with Compound Strings

All the text labels used in XUI Toolkit widgets are compound strings.
For example, to specify the text in the label attribute of the label, push
button, or toggle button widget (or gadget), you must pass the address
of a compound string. (The simple text widget is the only XUI Toolkit
widget that does not accept compound strings. See Chapter 9 for more
information.)

5-19

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

5-20

A compound string is a Digital Document Interchange Format (DDIF) data
type that describes a text string not only by the characters it contains
but also by other aspects, such as the character set and writing direction
used to display the text on a workstation screen. A compound string can
be made up of multiple segments. You can specify a different character
set, writing direction, or other attribute for each different segment of a
compound string. (For an illustration of a compound string containing
multiple segments, see Figure 9-1 in Section 9.1.)

The XUI Toolkit includes a set of routines that enable you to perform the
following tasks on compound strings:

* Create a compound string

* Create a compound string made up of multiple segments
¢ Manipulate a compound string ‘

¢ Retrieve information about the compound string

* Specify fonts

Table 5-11 lists all the compound string routines in the XUI Toolkit.

Table 5~11 Compound String Routines

Routine Description

Creating a Compound String

CS STRING Creates a compound string, allowing you to specify all
aspects of the string including character set and writing
direction.

LATIN1 STRING Creates a compound string that uses the ISO Latin1
character set and the left-to-right writing direction.

STRING Creates a compound string, allowing you to specify

character set and writing direction.

Manipulating a Compound String

CS BYTE CMP Compares two compound strings to determine if they are
identical.

CS CAT Appends a copy of one compound string to the end of
another compound string.

CS COPY Copies a compound string.

CS EMPTY Determines if the compound string contains any text
segments.

CS LEN Returns the number of bytes in a compound string.

(continued on next page)

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

Table 5-11 (Cont.) Compound String Routines

Routine Description

Retrieving Information About a Compound String

GET NEXT SEGMENT Returns information about a segment of a compound
string.
INIT GET SEGMENT Initializes a compound string context.

STRING FREE CONTEXT Frees a compound string context.
STRING INIT CONTEXT = - Initializes a compound string context.

Specifying Fonts

ADD FONT LIST Adds an entry to a font list.
CREATE FONT LIST Creates a new font list.

5.6.1 Creating a Compound String

To create a compound string, pass a text string to one of the following
compound string creation routines. (You can also use the UIL built-
in function COMPOUND_STRING to create compound strings in a
UIL module. For more information about this built-in function, see
Section 3.2.7.4.)

¢ CS STRING routine
e STRING routine
¢ LATIN1 STRING routine

The CS STRING routine provides access to all the aspects of a compound
string that you can specify, including character set and writing direction.
The STRING and LATIN1 STRING routines are convenience routines
that use default values for certain aspects of a compound string. Using
the STRING routine, you can only specify the character set and writing
direction. The STRING routine uses default values for all other aspects
of a compound string. The LATIN1 STRING routine uses default values
for all of the aspects of a compound string. The LATIN1 STRING routine
creates a compound string that uses the ISO Latinl character set and the
left-to-right writing direction. Most English language applications can use
the LATIN1 STRING convenience routine.

The compound string routines take a standard text string as an argument
and create a compound string version of the text. Example 5-6 shows

an excerpt from the Hello World! sample application in which the text
contained in the label widget is defined. The example uses the LATIN1
STRING conversion routine to convert the text into a compound string.

5-21

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

Example 5-6 Creating a Compound String

XtSetArg (arglist [0],DwtNlabel,
DwtLatinlString ("Press button once\nto change label;\ntwice to exit. ")),

label = DwtLabelCreate(helloworldmain, "label", arglist, 1);

Note that the compound string routines allocate memory. Remember to
free the memory obtained by the compound string routines when the
compound string is no longer needed. Use the FREE intrinsic routine to
free the memory associated with a compound string.

5.6.2 Creating Compound Strings with Multiple Segments

To create a compound string with multiple segments, create each segment
as a separate compound string and then concatenate the strings using
the CS CAT routine. Use any of the routines described in Section 5.6.1 to
create the segments.

Example 5-7 illustrates how to create a compound string with multiple
segments.

Example 5-7 Creating a Compound String with Multiple Segments

@+¢include <cdaSdef.h>

@DwtCompString cstringl = DwtLatinlString("Compound string text widget");

@DwtCompString cstring2 = DwtString("Compound string text widget",
CDASK_ISO_LATINI,
DwtDirectionLeftDown);

@DwtCompString mixed_string = DwtCStrcat(cstringl, cstring2);

©® The Compound Document Architecture (CDA) symbol definition file,
named cdaddef.h, enables the example to use the CDA constants to
specify character sets.

® The LATIN1 STRING compound string routine creates a compound
string that uses the ISO Latinl character set and the left-to-right
writing direction.

® The STRING compound string routine allows you to specify the
character set and writing direction. In the example, the ISO Latinl
character set and the right-to-left writing direction are specified.

5-22

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

©® The CS CAT compound string routine concatenates the two compound
strings to create one compound string containing multiple segments.

5.6.3 Manipulating a Compound String

To compare, copy, determine the length, or determine the text content of a
compound string, use one of the following compound string manipulation
routines:

e CS BYTE CMP routine

¢ (S COPY routine

¢ CS LEN routine

e (CS EMPTY routine

To compare two compound strings, use the CS BYTE CMP routine. This
routine compares not only the text content of the compound strings, but

also the character set and writing direction. The routine returns zero (0) if
both compound strings are identical.

To copy a compound string, use the CS COPY routine. This routine makes
a byte-for-byte copy of the specified compound string.

To determine the length of a compound string, use the CS LEN routine.
The value returned by this routine includes all the components of the
compound string, not just the length of the text component.

To determine if a compound string contains any text, use the CS EMPTY
routine. The routine returns true (1) if the compound string does not
contain text.

5.6.4 Retrieving Information About a Compound String

You can use compound string routines to determine the following
information about a compound string:

e Text content
¢ Character set

* Writing direction

To obtain this information, perform the following steps:
1 Obtain an initialized compound string context for the compound string.

The compound string context is a data structure that contains
information about a particular compound string. You pass a compound
string to the STRING INIT CONTEXT routine with the address of a
compound string context. The routine fills the compound string context
with information about the compound string that you specified.

5-23

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

. 5-24

2 Extract information about the string from the compound string
context.

Use the GET NEXT SEGMENT routine to determine the text content,
character set, and writing direction of a compound string. If the
compound string is made up of more than one segment, the GET NEXT
SEGMENT routine returns information about the first segment and
returns a status value indicating that there are additional segments.
The following table lists all of the possible status values returned by
the GET NEXT SEGMENT routine.

Status Meaning

DwtEndCS End of compound string has been reached.
DwtFail Context is not valid.

DwiSuccess Normal completion.

DwtTruncate (VAX only) Text string was truncated to fit in the buffer described
by the static descriptor.

3 Free the compound string context.

Use the STRING FREE CONTEXT routine to free the compound string
context obtained by the STRING INIT CONTEXT routine.

You can also use the INIT GET SEGMENT routine to obtain an initialized
compound string context; however, the STRING INIT CONTEXT routine
is recommended because it offers better performance. If you use the INIT
GET SEGMENT routine, you do not need to free the compound string
context.

Example 5-8 shows how to use the GET NEXT SEGMENT routine to
extract the text content from the first segment of a compound string. Note
that extracting the text content from each segment of a compound string
and concatenating the text to create a single text string may not always
produce meaningful results.

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

Example 5-8 Extracting the Text Content from a Compound String

DwtCompString comp_string = DwtLatinlString("My compound string");

@DwtCompStringContext context;
char *result;
long status, charset, direction, lang, rend;

@Ostatus = DwtStringInitContext (&context, comp string);

if(status != DwtSuccess)

{
printf ("Cannot Initialize Compound String Context."):

}
else

{
@) status = DwtGetNextSegment (&context, &result, &charset,
&direction, &lang, &rend):

}
@’DthtringFreeContext(&context);

© The compound string context will hold information about a particular
compound string,

® The STRING INIT CONTEXT routine initializes the compound string
context with information about the compound string named comp_
string.

® The GET NEXT SEGMENT routine extracts the information about
this compound string from the compound string context. The text

content of the compound string is returned as a null-terminated array
of text characters in the result argument.

O The STRING FREE CONTEXT routine frees the compound string
context obtained earlier by the call to the STRING INIT CONTEXT
routine.

5.6.5 Specifying Fonts

To specify the font you want used to display text, you must create a font
list by using the compound string routine CREATE FONT LIST. A font list
is an internal data structure that associates font names with character set
identifiers. The XUI Toolkit specifies fonts in font lists because compound
strings can employ more than one character set and, consequently, might
require more than one font to display these character sets.

To add an additional font specification to an existing font list, use the ADD
FONT LIST routine.

5-25

Using the Label, Separator, and Button Widgets

5.6 Working with Compound Strings

The program in Example 5-9 creates a font list and uses it to specify the
font used in a simple text widget. (Use system default fonts whenever
possible to ensure that your application appears well integrated in the

VMS DECwindows environment.)
Example 5-9 Specifying a Font

#include <stdio>
#include <decw$include/DwtAppl.h>
@#include <cda$def.h>

Widget toplevel, main_db, text w;

int main(argc, argv)
unsigned int argc;
char **argv;

Arg arglist[15];
int ac = 0;

&argc, argv);

@? XFontStruct *font;
© DwtrFontList font list;
toplevel = XtInitialize("Font Example","exampleclass",NULL, O,
ac = 0;
XtSetArg(arglist[ac], XtNallowShellResize, TRUE); ac++;
XtSetArg(arglist[ac], XtNx, 150); ac++;
XtSetArg(arglist([ac]), XtNy, 150); act++;
XtSetValues(toplevel, arglist, ac):
ac = 0;
XtSetArg(arglist[ac), DwtNmarginHeight, 15); act+;
main_db = DwtDialogBoxCreate(toplevel, "MAINWIN", arglist, ac);
GD font = XLoadQueryFont (XtDisplay(toplevel),
: "—-*~Courier-BOLD-R-Normal--*=120-*=*-M-*=*=%*") ;
(5 font_list = DwtCreateFontList(font, CDASK_ISO LATIN1);
ac = 0;
f’ XtSetArg(arglist[ac], DwtNfont, font_list); act++;
XtSetArg(arglist[ac], DwtNvalue, "Sample text"); ac++;
XtSetArg(arglist[ac]l, DwtNx, 20); ac++;
XtSetArg(arglist[ac], DwtNy, 20); ac++;
XtSetArg(arglist[ac], DwtNrows, 1); ac++;
XtSetArg(arglist[ac], DwtNcols, 25); act+;
text_w = DwtSTextCreate(main_db, "textwidget", arglist, ac);
@ xtFree(font_list);

XtManageChild(text_w);
XtManageChild(main_db):
XtRealizeWidget (toplevel);
XtMainLoop () ;

The Compound Document Architecture (CDA) symbol definition file,

named cda$def.h, enables the example to use the CDA constants to

specify character sets.

5-26

The variable font is declared as a pointer to an X font structure.

Using the Label, Separator, and Button Widgets
5.6 Working with Compound Strings

© The variable font_list is declared as a font list.

O The LOAD QUERY FONT Xlib routine returns a pointer to the
specified font. This routine returns the address of an X font structure.
If the specified font cannot be loaded, the routine returns a null
pointer.

© The CREATE FONT LIST routine creates a font list. In the example,
the first argument to the CREATE FONT LIST routine specifies
the X font structure returned by the LOAD QUERY FONT routine.
The second argument to this routine is a constant that identifies the
character set.

® The font list is used to specify the font the simple text widget will use
to display text.

@ After using the font list, free the memory associated with the font list.

5.7 Defining Accelerators for Button Widgets and Gadgets

The primary mode of access to functions associated with push button
widgets and gadgets and toggle button widgets and gadgets is by clicking
a mouse button. However, you can also provide access to these same
functions using the keyboard. This alternate mode of access is called an
accelerator.

Defining an accelerator is a three-step process:

1 Create an event specification that defines the key or combination of
keys used as the accelerator.

2 Add the definition of the accelerator to the accelerator table of the
widget or gadget.

3 Install the event specification in the translation table of another
widget higher in the application widget hierarchy that can accept the
input focus.

You can optionally include a text label in the widget or gadget to provide a
visual cue to users that the widget has an accelerator.

5.7.1 Defining the Accelerator Key or Key Combination

You specify the key or combination of keys that will be the accelerator in
a translation table event specification. An event specification is a text
string that contains the event name (enclosed in angle brackets), the name
of the keyboard key, and any modifier keys, such as the control key. The
modifier keys precede the event name. Terminate the event specification
with a colon. Enclose the entire event specification with quotation marks.

As an example, to define the Ctrl/B key combination as an accelerator for
a push button, you create the following event specification:

"Ctrl<KeyPress>b:"

5-27

5.7.2

5.7.3

Using the Label,

Separator, and Button Widgets

5.7 Defining Accelerators for Button Widgets and Gadgets

In the example, the control key is the modifier key, specified by the
abbreviation Ctrl. Following the modifier key is the event name enclosed
in angle brackets. For an accelerator, the event is the pressing of a
keyboard key, specified by the event name KeyPress. Following the event
name, you specify the keyboard key that will be the accelerator. In the
example, this is the letter b. The colon terminates the event specification.
The entire event specification is enclosed with quotation marks. (For more
information about translation table syntax, see Section D.9.4.)

If you are defining the user interface of your application in a UIL
module, use the UIL built-in function TRANSLATION TABLE to create
an accelerator event specification. For more information, see the VMS
DECwindows User Interface Language Reference Manual.

Adding an Accelerator to a Widget or Gadget

Example 5-10 Adding

To add an accelerator definition to a widget or gadget, assign the
event specification as the value of the button_accelerator attribute.
Example 5-10 adds an accelerator to a push button widget. Note in the
example how the entire event specification is passed as the value of the
button_accelerator attribute.

an Accelerator to a Push Button Widget or Gadget

XtSetArg(arglist[0],
XtSetArg(arglist[1],
XtSetArg(arglist[2],
XtSetArg(arglist[3],
XtSetArg(arglist[4],
XtSetArg(arglist([5],

DwtNx, 10):

DwtNy, 40):;

DwtNactivateCallback, callback arg);
DwtNlabel, DwtLatinlString("Hello\nWorld!")):
DwtNacceleratorText, DwtLatinlString(""b"));
DwtNbuttonAccelerator, "Ctrl<KeyPress>b:");

button = DwtPushButtonCreate(helloworldmain, "button", arglist, 6):

Installing an Accelerator in an Application

5-28

After creating the widget or gadget with the accelerator, you must add
the accelerator to the translation table of a widget that is higher in the
application widget hierarchy and that can accept input focus. The push
button widget or gadget with the accelerator cannot accept input focus and
so cannot receive keyboard input. Therefore, you must choose a widget in
the application widget hierarchy that can accept input focus and install
the accelerator on that widget. The main window widget, the dialog box
widget, the attached dialog box widget, and the simple text widget are the
only XUI Toolkit widgets that accept input focus.

To install an accelerator on a widget, use either the INSTALL
ACCELERATORS or the INSTALL ALL ACCELERATORS intrinsic
routine, as in the following example:

XtInstallAllAccelerators(main_win, main_win);

Using the Label, Separator, and Button Widgets
5.7 Defining Accelerators for Button Widgets and Gadgets

The INSTALL ACCELERATORS and the INSTALL ALL
ACCELERATORS routines both accept the same arguments:

* The widget identifier of the destination widget

¢ The widget identifier of the source widget

The destination widget argument is the identifier of the widget on which
you want the accelerators installed. The source widget argument is the
identifier of the widget that contains the accelerators. For the INSTALL
ACCELERATORS routine, the source widget is a single widget. For the
INSTALL ALL ACCELERATORS routine, the source widget is a widget
hierarchy. The INSTALL ALL ACCELERATORS routine searches for
accelerators in the widget specified as the argument as well as all of the
widgets below it in the widget hierarchy.

5.7.4 Specifying an Accelerator Label

When you define an accelerator for a widget or gadget, you can optionally
include a text representation of the accelerator in the widget or gadget.
The text representation of the accelerator makes the user of the
application aware of the accelerator for the widget or gadget.

To include an accelerator label, pass the label, in the form of a compound
string, to the widget or gadget using the accelerator_text attribute, as in
the following example:

XtSetArg(arglist[4], DwtNacceleratorText, DwtLatinlString(""b")):;

The accelerator label you specify appears in the widget or gadget to the
right of the text label. Figure 5-3 shows the appearance of the Hello
World! application with the accelerator label "~b".

Figure 5-3 Hello World! Application with an Accelerator

[RE]| Hi FHE]

Press button once
to change label;
twice to exit.

Hello *b
Worid!

ZK-0202A~-GE

5-29

Using the Label, Separator, and Button Widgets
5.7 Defining Accelerators for Button Widgets and Gadgets

5.7.5 Adding an Accelerator to the Hello World! Sample Application

Example 5-11 modifies the Hello World! application to accept an
accelerator. This version of the Hello World! application adds a main
window widget to the application widget hierarchy of the Hello World!
application to enable the application to accept input focus. The widget
must be able to accept keyboard input to make use of accelerators. The
example explicitly sets the width and height of the main window widget to
0, causing the main window widget to size itself to fit its children.

Example 5-11 ' Adding an Accelerator to the Hello World! Application

#include stdio
#include <decw$include/DwtAppl.h>

static void helloworld button_activate ();
static DwtCallback callback arg(2];

int main (argc, argv)
unsigned int argc;
char **argv;

Widget toplevel, helloworldmain, button, label, main win;
Arg arglist[10]:;
toplevel = XtInitialize("Hi", "helloworldclass",NULL, 0, &argc, argv);

XtSetArg(arglist[0]}, XtNallowShellResize, TRUE);
XtSetValues (toplevel, arglist, 1);

XtSetArg(arglist[0], DwtNacceptFocus, TRUE);
XtSetArg(arglist[l], DwtNwidth, 0):

XtSetArg(arglist[2], DwtNheight, 0);

main_win = DwtMainWindowCreate (toplevel, "main", arglist, 3):

XtManageChild (main_win);
helloworldmain = DwtDialogBoxCreate (main_win, "d_box", arglist, 0);

XtSetArg(arglist[0], DwtNlabel, ,
DwtLatinlString ("Press button once\nto change label;\ntwice to exit.")):;

label = DwtLabelCreate(helloworldmain, "label", arglist, 1);
XtManageChild(label):;

callback_arg[0].proc = helloworld button_activate;
callback arg[0].tag = 0;
callback_arg(l].proc = NULL;

XtSetArg(arglist[0], DwtNx, 10):

XtSetArg(arglist[1l], DwtNy, 40):;

XtSetArg(arglist (2}, DwtNactivateCallback, callback_arg);
XtSetArg(arglist[3], DwtNlabel, DwtLatinlString("Hello\nWorld")):

(2] XtSetArg(arglist[4], DwtNacceleratorText, DwtLatinlString("*b"));
(3] XtSetArg(arglist[5]), DwtNbuttonAccelerator, "Ctrl<KeyPress>b:"):;

button = DwtPushButtonCreate(helloworldmain, "button", arglist, 6);
XtManageChild (button) ;

XtManageChild (helloworldmain) ;

XtRealizeWidget (toplevel) ;

(continued on next page)

5-30

Using the Label, Separator, and Button Widgets
5.7 Defining Accelerators for Button Widgets and Gadgets

Example 5-11 (Cont.) Adding an Accelerator to the Hello World! Application

O xtInstallAllaccelerators(main_win, main_win);
XtMainLoop() ;
}

static void helloworld button activate (widget, tag, callback data)
Widget widget;

char *tag;

DwtAnyCallbackStruct *callback_data;

{

Arg arglist([2];

static int call_count = 0;

call _count += 1;

switch (call_count) {
case 1:
XtSetArg(arglist[0], DwtNlabel, DwtLatinlString("Goodbye\nWorld")):;
XtSetArg(arglist([1l], DwtNx, 6);
XtSetvalues (widget, arglist, 2);
break;

case 2:
exit (0);
break:

})
}

© This version of the Hello World! application adds a main window
widget at the top of its application widget hierarchy. The main window
widget can accept input focus, which an application using accelerators
requires. In the argument list used to set the attributes of the main
window widget, the example sets the accept_focus attribute to true.

@ In this statement, the example program defines the accelerator label
that will appear to the right of the push button label. This information
tells the user what accelerator key works with this push button. Note
that, as with any other text label intended to appear on the display,
the accelerator text must be converted into a compound string. The
example converts the text string "Ab" into a compound string using
the LATIN1 STRING routine.

© The example assigns the event specification as the value of the
button_accelerator attribute in the argument list used to create
the push button widget. The information is passed as a text string.
(Note that the event specification does not have to be converted into
a compound string.) The sample program defines the Ctrl/B key
sequence as the accelerator.

O After the program realizes the entire widget hierarchy, including the
widget with the accelerator, the example installs the accelerator in the
translation table of an application widget that accepts input focus. The
example installs the accelerator on the main window widget, main_
win. In the INSTALL ALL ACCELERATORS routine, both the

5-31

Using the Label, Separator, and Button Widgets
5.7 Defining Accelerators for Button Widgets and Gadgets

5-32

source and the destination arguments are the same widget. Used as
the source argument, main_win represents the entire Hello World!
application widget hierarchy. As the destination, main_wir represents
the main window widget on which the accelerators are installed.

6 Creating Menu Widgets

This chapter includes the following:
* An overview of the menu widgets provided by the XUI Toolkit

* A detailed description of how to include a menu widget in your
application

6.1 Overview of Menu Widgets

Menu widgets allow you to present users with a list of choices. Users
can select an option or activate an applieation function by clicking a mouse
button on a menu item. You would typically use a menu widget to present
a list of choices that perform actions. To present long lists of choices, use
a list box widget. The list box widget allows users to scroll through long
lists of choices. Chapter 8 describes the list box widget.

6.2 Menu Widgets in the XUl Toolkit

A menu widget is a rectangular container for menu items. The XUI Toolkit
includes six menu widgets. All of the menu widgets are fundamentally the
same; that is, they all are rectangular containers. The menu widgets
differ in the type of user interaction they provide. The following are menu
widgets in the XUI Toolkit: ‘

¢ Work area menu widget
¢ Menu bar widget

¢ Option menu widget

¢ Radio box widget

¢ Pull-down menu widget

¢ Pop-up menu widget

The work area menu widget is the simplest menu widget. As with the
other widgets in the XUI Toolkit, the work area menu widget is the child
of a given parent widget and is clipped by that parent. You make work
area menus appear on a display and remove them from a display by adding
and removing them from their parent’s list of managed widgets. The menu
bar, option menu, and radio box widgets are all specially configured work
area menu widgets.

The pull-down and pop-up menu widgets are spring-loaded menu
widgets. Spring-loaded menu widgets appear on the display only when

a user presses a mouse button. They disappear when the user releases the
mouse button. The pull-down menu widget and the pop-up menu widget
are not clipped by their parent. ‘

6-1

Creating Menu Widgets
6.2 Menu Widgets in the XUl Toolkit

Pull-down menu widgets are spring-loaded on MB1 or MB2, depending

on what type of widget is the parent of the pull-down menu widget. If
the parent is a menu bar, work area menu, or option menu widget, the
pull-down menu widget is spring-loaded on MB1. If the parent is a pop-up
menu widget, the pull-down menu widget is spring-loaded on MB2, since
pop-up menu widgets are themselves spring-loaded on. MB2. The parent of
a pull-down menu widget must be another menu widget.

Pop-up menu widgets are spring-loaded on MB2. Pop-up menu widgets
appear on the display wherever the user has positioned the pointer cursor.

Figure 6-1 shows a work area menu widget. For an illustration of other
menu widgets, see the illustration of the DECburger application user
interface in Figure 1-4. (DECburger does not include a pop-up menu
widget. For an illustration of a pop-up menu widget, see Figure 6-9.)

Figure 6-1 Menu Widget

ltem A
itemB
ltemC
ltemD

ZK-0208A-GE

6.2.1 Creating Menu ltems

6-2

You build a menu by creating a menu widget with a group of child widgets
or gadgets that implement the menu items. Each item in a menu is a
widget or a gadget. The menu widget displays menu items in the order
you create them. You can dynamically change the contents of a menu
widget at run time by adding and removing the widgets and gadgets that
implement menu items from the menu widget’s list of managed children.

Menu items can be active or inactive. Active menu items are sensitive
to user interaction using a pointing device. Inactive menu items are
insensitive to user interaction.

Use the following XUI Toolkit widgets and gadgets to implement menu
items:

e Label
® Separator
¢ Push button

Creating Menu Widgets
6.2 Menu Widgets in the XUl Toolkit

* Toggle button

¢ Pull-down menu entry

Note: To improve the performance of your application, use gadgets
instead of widgets to implement menu items. For example, a
pull-down menu widget containing menu items that are gadgets
will appear on the display faster than a pull-down menu widget
containing menu items that are widgets.

Use label and separator widgets and gadgets to create inactive menu
items. Inactive menu items provide descriptive information to the user or
organize menu items into logical groups.

Use the push button and toggle button widgets and gadgets to create
active menu items. Active menu items gather input from the user or
activate application functions. Use the push button widget to implement
menu items that carry out actions. Use the toggle button widget to
implement menu items that require state information, such as on or off.
Section 5.4 describes how to create push button widgets and gadgets;
Section 5.5 describes how to create toggle button widgets and gadgets.

Use the pull-down menu entry widget or gadget to create an active menu
item that makes a pull-down menu widget appear on the display. When
a user selects the pull-down menu entry widget or gadget, the pull-down
menu widget you associated with it appears on the display. This is the
only way a user can access a pull-down menu.

Note the distinction between the pull-down menu widget and the pull-
down menu entry widget (or gadget). A pull-down menu widget, like all
menu widgets, is the rectangular container. A pull-down menu entry
widget is a push button-like widget through which users access a pull-
down menu widget. For example, you could create a menu bar widget
containing three menu items. Each menu item is a pull-down menu
entry widget. When a user selects an item in the menu bar widget,
the pull-down menu widget associated with the pull-down menu entry
widget appears on the display immediately below the menu item (or
immediately to the right of the item for vertically oriented menus).
Figure 6-2 illustrates these widgets.

Creating Menu Widgets
6.2 Menu Widgets in the XUl Toolkit

Figure 6-2 Relationship of Pull-Down Menu‘Widget and Pull-Down
Menu Entry Widget or Gadget

Welcome to DECburger [HIE]
File Edit gelf:L:
| I\PAuII-Dé)wn—/ Create Order Box |
enu Entry Pull-Down
Wldge'[................... /—— Menu Widget
Cancel Order
Submit Order
ZK-0446A-GE

You can specify the text string or pixmap that the pull-down menu entry
widget will contain. The pull-down menu entry gadget does not support
pixmaps. Pull-down menu entry widgets or gadgets can also contain a
hotspot. A hotspot is a graphical image that is sensitive to user input
using a mouse button. Pull-down menu entry widgets and gadgets contain
hotspots when they are used to create nested pull-down menu widgets.
(For more information about nesting menus, see Section 6.2.2.) In the
pull-down menu entry widget, you can specify the pixmap used for the
hotspot. The pull-down menu entry gadget does not allow you to specify
the hotspot pixmap.

6.2.2 Nesting Menu Widgets

By including a pull-down menu entry widget or gadget in a pull-down
menu widget, you can create a cascade of nested menus (also called
submenus). Figure 6-3 illustrates the application widget hierarchy of a
pull-down menu widget containing a nested pull-down menu widget.

Creating Menu Widgets
6.2 Menu Widgets in the XUl Toolkit

Figure 6-3 Widget Hierarchy of Nested Pull-Down Menu Widgets

Parent Widget of Menu

Menu Widget

Menu Entry Menu Entry Menu Entry
Pull-Down
Menu Entry

Pull-Down Menu

Menu Entry Menu Entry

ZK-0205A-GE

You can nest an unlimited number of menu widgets. However, the XUI
Style Guide recommends using no more than four levels of nested pull-
down menu widgets.

A pull-down menu widget activated from within another pull-down
menu, option menu, or pop-up menu widget appears on the display to
the immediate right of the pull-down menu entry widget that triggers it.
For this reason, these pull-down menu widgets are sometimes called pull-
right menu widgets. Pull-right menu widgets are functionally identical to
pull-down menu widgets.

6.3 Creating a Work Area Menu Widget
To create a work area menu widget, perform the following steps:
1 Create the work area menu widget.

Use any of the widget creation mechanisms listed in Table 6-1. The
choice of mechanism depends on the attributes of the widget you need
to access.

DECLIT AA VAX MBZiB

VMS DECwindows guide to
application programming

6-5

Creating Menu Widgets
6.3 Creating a Work Area Menu Widget

6-6

Table 6-1 Work Area Menu Widget Creation Mechanisms

High-level routine Use the MENU routine to create a work area menu widget.
Specify the type of menu in the format argument.

Low-level routine Use the MENU CREATE routine to create a work area menu
widget.

UIL object type Use the work_area_menu object type to define a work area

menu widget in a UIL module. At run time, the DRM routine
FETCH WIDGET creates the work area menu widget according
to this definition.

2 Create the children of the work area menu widget.

Use any of the widget creation mechanisms to create the widgets that
you want to appear as items in the menu. The child widgets appear in
the menu widget in the same order that you create them.

3 Manage the children of the work area menu widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
or the MANAGE CHILDREN routine to manage a group of children at
the same time.

4 Manage the work area menu widget.
Use the intrinsic routine MANAGE CHILD to manage the widget.

After you complete these steps, if the parent of the work area menu widget
has been realized, the work area menu widget and all of its children will
appear on the display.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
not available using a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 6-2 lists the attributes
you can set if you use the high-level routine MENU to create a work area
menu widget. Pass the values of these attributes as arguments to the
routine.

Table 6-2 Attributes Accessible Using the High-Level Routine MENU

X Specifies the x-coordinate of the upper left corner

y Specifies the y-coordinate of the upper left corner

format Specifies the type of menu: pull-down, pop-up, or work area

orientation Specifies whether the menu has a horizontal or vertical
orientation

map_callback Specifies the address of a callback routine list

entry_callback Specifies the address of a callback routine list

help_callback Specifies the address of a callback routine list

Creating Menu Widgets
6.3 Creating a Work Area Menu Widget

Example 6-1 creates a typical work area menu widget. The example
creates a work area menu widget with three push button widgets as its
children. The push button widgets are the menu items.

Example 6-1 Building a Work Area Menu

.

"Widget toplevel, parent_widget, menu;
WidgetList menu_items(3];

static void buttonl_callback();
static void button2_callback();
static void button3_callback();

static DwtCallback callback_list[2];

.

build menu ()

{

Arg arglist[5];
int count = 0;

XtSetArg(arglist[0], DwtNmarginWidth, 20):;
menu = DwtMenuCreate(parent widget, "menu", arglist, 1);

callback_list[0]}.proc = buttonl_callback;
callback_list[0].tag = 0;
callback_list[1].proc NULL;

XtSetArg(arglist[0], DwtNactivateCallback, callback list);
XtSetArg(arglist[1l], DwtNlabel, :
DwtLatinlString("Menu Item One"));

menu_items{count++] = DwtPushButtonCreate(menu, "buttonl", arglist,2);

callback_list[0].proc = button2_callback;
callback_list[0].tag 0;
callback list[1l].proc = NULL;

[

I

XtSetArg(arglist[0], DwtNactivateCallback, callback_list);
XtSetArg(arglist{1l], DwtNlabel,
DwtLatinlString("Menu Item Two"));

menu_items[count++] = DwtPushButtonCreate(menu, "button2", arglist, 2);
callback_list[0] .proc = button3 callback;

callback_list[0].tag = 0;

callback list[1l].proc = NULL;

XtSetArg(arglist(0], DwtNactivateCallback, callback_list);
XtSetArg(arglist[1l], DwtNlabel,
DwtLatinlString("Menu Item Three"));

menu_items[count++] = DwtPushButtonCreate(menu, "button3", arglist,2);

XtManageChildren(menu_items, count);

(continued on next page)

6-7

- Creating Menu Widgets

6.3 Creating a Work Area Menu Widget

Example 6-1 (Cont.) Building a Work Area Menu

® xtManageChild(menu);

}

The example declares variables to hold the widget identifiers for

the widgets in the application widget hierarchy. The variable menu
will hold the widget identifier of the work area menu widget. The
variable menu_items is an array of widget identifiers that will hold the
identifiers for the widgets that are the menu items.

The example creates the work area menu widget using the low-level
routine MENU CREATE. In the argument list, the example specifies

a margin width of 20 pixels in the margin_width attribute. The
argument list is passed to the widget creation routine along with a
count of the number of attributes set in the argument list.

After creating the work area menu widget, the sample program creates
the widgets that will be menu items. In the example, all the menu
items are push button widgets. Each push button widget is a child of
the work area menu widget. The sample program creates the push
button widgets using the low-level routine PUSH BUTTON CREATE.
For each push button widget, the sample program specifies a callback
routine list, callback_list, and the text of the label the push button
widget will contain. The widget identifier returned by each call to

the PUSH BUTTON CREATE routine is stored in the array of widget
identifiers, menu_items.

The example manages all the children of the work area menu widget
in a single call to the intrinsic routine MANAGE CHILDREN. All the
widgets managed in this call must be children of the same parent. The
sample program passes the address of the array of widget identifiers
and the number of widgets in the array as arguments to the routine.

The example manages the work area menu widget using the MANAGE
CHILD intrinsic routine.

Figure 6—4 illustrates the application widget hierarchy of the menu created
in Example 6-1.

~ Creating Menu Widgets
6.3 Creating a Work Area Menu Widget

Figure 64 Widget Hierarchy of a Work Area Menu

Parent Widget
of Menu

Menu Widget

Menu ltem Menu Iltem Menu ltem

ZK-0207A-GE

6.3.1 Customizing a Work Area Menu Widget

The attributes of the work area menu widget enable you to customize the
following aspects of its appearance and functioning:

* Size

* Arrangement of menu items

¢ Margins and spacing between menu items

¢ Alignment of menu items

¢ Radio button exclusivity

¢ Type of widget that can be a menu item

By default, the menu widget can change many of the visible attributes of
its child widgets to make the menu items appear uniform. For example,
the menu widget can set the border size, align labels, change margin
settings, and change the shape and visibility of a toggle button indicator.
However, you can specify that the menu widget leave these attributes

unchanged by setting the change_vis_atts attribute to false (this
attribute is true by default).

6.3.1.1 Specifying the Size of a Work Area Menu Widget
You can specify the size of a work area menu widget using the common
widget attributes width and height. Specify each dimension in pixels.
By default, work area menu widgets size themselves to accommodate their
children.

Work area menu widgets will grow to fit additional children to the degree.
the parent of the menu widget allows. When resized, work area menu
widgets recalculate the layout of their children. If the work area menu
widget cannot grow to accommodate its new children, the children are
clipped.

6-9

Creating Menu Widgets
6.3 Creating a Work Area Menu Widget

6-10

6.3.1.2 Specifying the Arrangement of Menu ltems

Use the menu_packing, menu_num_columns, and orientation
attributes to specify the arrangement of the child widgets in a work
area menu widget.

Use the menu_packing attribute to specify that the work area menu
widget arrange its children in columns. If you do this, you can also specify
the number of columns in the menu_num_columns attribute.

By default, work area menu widgets attempt to fit all their children as
efficiently as possible by wrapping them when necessary. Wrapping means
the work area menu widget starts a new column or row if the number

of children would cause the work area menu widget to grow beyond the
limitations set on the work area menu widget by its parent. You can
disable this default behavior using the menu_packing attribute. In this
case, you can determine the individual position of each child widget by
setting their x and y attributes.

6.3.1.3 Specifying Margins and Spacing

Use the margin_width, margin_height, and spacing attributes to
determine the amount of space surrounding each child of a work area
menu widget. Specify these attributes in pixels.

Figure 6-5 illustrates the margins in a work area menu widget.

Figure 6-5 Laying Out Menu items

Menu Widget

margin_height
margin_width ‘ margin_width
B e i

Menu ltem

spacing
Y
Menu ltem

margin_height

'

ZK-0200A-GE

You can also control the margins of the widgets that implement the menu
items by using the adjust_margin attribute. If you set this attribute
to true, the work area menu widget sets the internal margins of the

Creating Menu Widgets
6.3 Creating a Work Area Menu Widget

widgets that are the menu items so that the text they contain is aligned.
(Section 5.2.1.3 describes the margins of the label, separator, push button
and toggle button widgets and gadgets.)

6.3.1.4 Determining Menu Iltem Alignment
Use the menu_alignment and entry_alignment attributes to control
how the text in each child widget of the work area menu widget lines up.
If you set menu_alignment to true, the work area menu widget aligns
the text contained in each child widget of the work area menu widget.
Choose the type of alignment in the entry_alignment attribute. The text
can be centered, aligned to the right margin, or aligned to the left margin
of the child widget. The XUI Toolkit defines constants that indicate each
of these values. See the VMS DECwindows Toolkit Routines Reference
Manual for these constants.

You can also specify whether the active area of the menu item should
extend to the full width and height of the menu or whether it should
follow the true length of the menu item. If you set the menu_extend_
last_row attribute to true, the menu widget enlarges the active area of
menu items with shorter labels to match the length of the longest menu
item. Likewise, the height of the active area of the shortest menu item is
extended to match the height of the tallest menu item.

6.3.1.5 Specifying Radio Button Exclusivity
Use the menu_radio attribute to specify that only one item in a work
area menu widget can be selected at a time. This restriction is called radio
button exclusivity. If you set this attribute to true, you can also specify
that one item in the work area menu widget must always be selected by
setting the menu_always_one attribute to true.

A radio box widget is a work area menu with the menu_radio attribute
set to true by default.

6.3.1.6 Restricting Menu Items to Classes of Widgets

Use the menu_is_homogeneous and the menu_entry_class attribute
to restrict the type of widgets that can be children of a work area menu
widget. By setting the menu_is_homogeneous attribute to true, you
specify that the work area menu widget accept only one class of widget
as children. Specify the class of widgets that is allowed as children in the
menu_entry_class attribute by class name. Table 6-3 lists the widget
class names of the XUI Toolkit widgets commonly used as menu items.

6-11

Creating Menu Widgets |
6.3 Creating a Work Area Menu Widget

Table 6-3 XUI Toolkit Widget and Gadget Class Names

Class Name Widgets and Gadgets
labelwidgetclass Label widgets
separatorwidgetclass Separator widgets
pushbuttonwidgetclass Push button widgets
togglebuttonwidgetclass Toggle button widgets
labelgadgetclass Label gadgets
separatorgadgetclass Separator gadgets
pushbuttongadgetclass Push button gadgets
togglebuttongadgetclass Toggle button gadgets
pulldownwidgetclass Pull-down menu entry widgets

Note that when you restrict menu items to a certain class, widgets that
are subclasses of that widget will be excluded. For example, if you restrict
menu items to only the label widget, the push button and toggle button
widgets, which are subclasses of the label widget, will be excluded.

6.3.2 Associating Callback Routines with a Work Area Menu Widget

The input capabilities of a work area menu widget are provided mainly
by the child widgets it contains. For example, in a work area menu
containing push button widgets, it is the push button widgets that perform
callbacks when activated by a user. However, you can specify that all the
callbacks associated with the child widgets be redirected to a common
callback routine.

To associate a common callback routine with a work area menu widget,
pass a callback routine list to the work area menu widget in the entry_
callback attribute. If you do not specify a callback routine in this
argument, each child widget executes its own callback routine.

You can also associate a help callback routine with a work area menu
widget. To do this, pass a callback list to the widget in the help_callback
attribute. The application executes this routine when a user presses the
Help key while positioning the pointer cursor in an inactive area of the
work area menu widget and pressing MB1.

6.4 Creating a Pull-Down Menu Widget

6-12

To create a pull-down menu widget, perform the following steps:
1 Create the pull-down menu widget.

Use any of the widget creation mechanisms listed in Table 6—4. The
choice of mechanism depends on the attributes of the pull-down menu
you need to access.

Creating Menu Widgets
6.4 Creating a Pull-Down Menu Widget

Table 64 Puli-Down Menu Widget Creation Mechanisms

High-level routine Use the MENU routine to create a pull-down menu widget.

Specify the type of menu in the format argument.

Low-level routine Use the MENU PULLDOWN CREATE routine to create a

pull-down menu widget.

UIL object type Use the pulldown_menu object type to define a pull-down

menu widget in a UIL module. At run time, the DRM routine
FETCH WIDGET will create the. pull-down menu widget
according to this definition.

2

Create the children of the pull-down menu widget.

Use any of the widget creation mechanisms to create the widgets
that you want to appear as items in the pull-down menu widget. (For
information about creating label, separator, push button, or toggle
button widgets or gadgets, see Chapter 5.) The children appear in the
pull-down menu widget in the same order that you create them.

Create a pull-down menu entry widget or gadget.

Use any of the mechanisms listed in Table 6-5 to create a pull-down
menu entry widget or gadget. The choice of mechanism depends on the
attributes of the widget or gadget to which you want to assign values.
Pass the identifier of the pull-down menu widget you want associated
with the pull-down menu entry widget or gadget in the sub_menu_id
attribute of the pull-down menu entry widget.

Table 6-5 Pull-Down Menu Entry Widget and Gadget Creation Mechanisms

Mechanism

Widget

Gadget

High-level routine

Low-level routine

UIL object type

Use the PULL DOWN MENU ENTRY There is no high-level gadget creation routine.
routine to create a pull-down menu entry

widget.

Use the PULL DOWN MENU ENTRY Use the PULL DOWN MENU ENTRY GADGET
CREATE routine to create a pull-down CREATE routine to create a pull-down menu
menu entry widget. entry gadget.

Use the pulldown_entry object type to Use the pulldown_entry object type with the
define a pull-down menu entry widget gadget qualifier.

in a UIL module. At run time, the DRM
routine FETCH WIDGET creates the
widget according to this definition.

4

5

Manage the children of the pull-down menu widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
or the intrinsic routine MANAGE CHILDREN to manage a group of
children at the same time.

Manage the pull-down menu entry widget or gadget.

Use the intrinsic routine MANAGE CHILD to manage the widget or
gadget.

6-13

Creating Menu Widgets
6.4 Creating a Pull-Down Menu Widget

Note that you do not manage the pull-down menu widget.

After you complete these steps, if the parent of the pull-down menu widget
has been realized, the pull-down menu entry widget or gadget will appear
on the display. The pull-down menu widget and all of its managed children
do not appear on the display until a user activates the pull-down menu
entry widget or gadget by pressing MB1.

Low-level and UIL provide access to the complete set of attributes at
widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
not available using a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 6-6 lists the attributes
you can set if you use the high-level routine MENU to create a pull-down
menu widget. Pass the values of these attributes as arguments to the
routine.

Table 6-6 Attributes Accessible Using the High-Level Routine MENU

X Specifies the x-coordinate of the upper left corner.

y Specifies the y-coordinate of the upper left corner.

format Specifies the type of menu: pull-down, pop-up, or work area.

orientation Specifies whether the menu has a horizontal or vertical
orientation.

map_callback Specifies the address of a callback routine list.

entry_callback Specifies the address of a callback routine list.

help_callback Specifies the address of a callback routine list.

Example 6-2 in Section 6.5 illustrates how the pull-down menu widgets
used in the menu bar widget of the DECburger sample application are
created.

6.4.1 Customizing the Appearance of a Pull-Down Menu Widget

The pull-down menu widget supports the same set of attributes as the
work area menu widget. For information about customizing a work area
menu widget, see Section 6.3.1.

6.4.2 Associating Callback Routines with a Pull-Down Menu Widget

6-14

The pull-down menu widget supports the same callback attributes as
the work area menu widget. These callback attributes are described in
Section 6.3.2.

In addition, with the pull-down menu widget, you can associate callback
routines that get executed when the pull-down menu widget is about to
appear on the display (be mapped) or has disappeared from the display
(been unmapped). To associate a callback routine with these callbacks,
pass a callback routine list to the map_callback or unmap_callback
attributes.

6.5

Creating Menu Widgets
6.4 Creating a Pull-Down Menu Widget

For example, you could write a map callback routine that creates the

. children of the pull-down menu widget only when it is about to be mapped.

In this way, you perform this processing only when necessary, saving on
application startup time. ‘

The pull-down menu entry widget and gadget, in addition to causing a
pull-down menu widget to appear on the display, perform callbacks to your

- application when activated. Using the pulling callback attribute, you

can associate a callback routine with a pull-down menu entry widget or
gadget that gets called immediately before the pull-down menu widget is
mapped. For example, you could use this callback to defer creation of the
pull-down menu widget until it is needed.

Creating a Menu Bar Widget

A menu bar widget can have only the following widgets or gadgets as
children:

¢ Label widgets or gadgets
* Separator widgets or gadgets
¢ Pull-down menu entry widgets or gadgets

¢ Pull-down menu widgets

Use the label and separator widgets or gadgets to create inactive menu
items. Use the pull-down menu entry widget or gadget, which causes
pull-down menu widgets to appear on the display, to create active menu
items. The pull-down menu widget is also a child of the menu bar widget;
however, it does not appear as a visible item in the menu bar.

Figure 6—6 shows the meriu bar from the DECburger sample application.
In the illustration, the Order pull-down menu widget has been selected.

Figure 6-6 DECburger Menu Bar with a Pull-Down Menu Selected

Welcome to DECburger , HiE]
File Edit eIl
| hPAuII—Dé)wn—/ Create Order Box |
enu Entry Pull-Down
Wldget /_ Menu \Mdget
Cancel Order ‘
Submit Order
ZK-0446A-GE

To create a menu bar widget, perform the following steps:

1 Create the menu bar widget.

6-15

- Creating Menu Widgets
- 6.5 Creating a Menu Bar Widget

6-16

Use any of the widget creation mechanisms listed in Table 6—7. The
choice of mechanism depends on which attributes of the menu bar
widget you need to access.

Table 6-7 Menu Bar Widget Creation Mechanisms

High-level routine Use the MENU BAR routine to create a menu bar widget.

Low-level routine Use the MENU BAR CREATE routine to create a menu bar
widget.

UIL object type Use the menu_bar object type to define a menu bar widget in

a UIL module. At run time, the DRM routine FETCH WIDGET
creates the widget according to this definition.

2 Create the pull-down menu widgets associated with items in the menu
bar widget.

Section 6.4 describes how to create a pull-down menu widget.
3 Create the children of the menu bar widget.

For information about creating label or separator widgets or gadgets,
see Chapter 5. For information about creating a pull-down menu entry
widget, see Section 6.4. The children appear in the menu bar widget
in the same order that you create them.

Each pull-down menu entry widget that is a child of the menu bar
widget must have an associated pull-down menu widget. Pass the
widget identifier of the pull-down menu widget to the pull-down menu
entry widget using the sub_menu_id attribute.

4 Manage the children of the menu bar widget.

Use the intrinsic routine MANAGE CHILD to manage a single child of
the menu bar widget. Use the intrinsic routine MANAGE CHILDREN
to manage a group of children of the menu bar widget at one time.

5 Manage the menu bar widget.

Use the intrinsic routine MANAGE CHILD to manage the menu bar
widget.

After you complete these steps, if the parent of the menu bar widget has
been realized, the menu bar widget will appear on the display. Note that
you do not manage the pull-down menu widgets, even though they are
children of the menu bar widget. These widgets get managed when a user
activates a pull-down menu entry widget or gadget.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
not available using the high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 6-8 lists the attributes
you can set if you use the high-level routine MENU BAR to create a
menu bar widget. Pass the values of these attributes as arguments to the
routine.

Creating Menu Widgets
6.5 Creating a: Menu Bar Widget

Table 6-8 Attributes Accessible Using the High-Level Routine MENU
BAR

entry_callback Address of a callback routine list
help_callback Address of a callback routine list

Example 6-2 is the section of the UIL module in which the DECburger
menu bar widget is specified.

Example 6-2 Creating the Menu Bar Widget in the DECburger Application

"object
s_menu_bar : menu_bar {
@ arguments {
orientation = DWT$C_ORIENTATION_HORIZONTAL;
spacing = 15;

}i
controls {

(3] pulldown_entry file menu_entry;
pulldown_entry edit_menu_entry;
pulldown_entry order menu entry;

}i
}:

aobject
file_menu_entry : pulldown_entry {

arguments {
label_label = k_file label text;
bi
controls {
pulldown _menu file_menu;
}i
}i

eobject
file_menu : pulldown menu {

arguments {
label label = k file label_ text;
}:
controls {
push_button m_print_ button;
push_button m_quit_button;
}:
callbacks {
entry = procedure activate_proc (0);
}i
}i

(continued on next page)

6-17

Creating Menu Widgets
6.5 Creating a Menu Bar Widget

Example 6-2 (Cont.) Creating the Menu Bar Widget in the DECburger Application

@object

m_print_button : push button {

arguments {
label label = k print_dot_label text;
}i
callbacks {
activate = procedure activate_proc (k_nyi):
}i

6-18

@ In this UIL object declaration, DECburger defines an object named
s_menu_bar as a menu bar widget.

® In the argument section of the menu bar widget definition, DECburger
assigns values to two menu bar widget attributes. The first attribute
defines the orientation of the menu bar as horizontal. The second
attribute defines the amount of space between the items in pixels.

® In the controls section of the menu bar widget definition, DECburger
specifies that the menu bar widget has three pull-down menu entry
widgets as its children. DECburger names these widgets file_menu_
entry, edit_menu_entry, and order_menu_entry.

® In the UIL object declaration for the file_menu_entry pull-down menu
entry widget, DECburger specifies the text that will appear in the
pull-down menu entry widget as the value of the label attribute
(called label_label in UIL).

As a convenience, UIL allows you to specify a pull-down menu widget
as a child of a pull-down menu entry widget (in the controls section of
the object declaration). The pull-down menu widget is actually a child
"of the menu bar widget. If you use high- or low-level routines to create
a pull-down menu widget used as a child of a menu bar widget, specify
the menu bar widget as the parent.

@ The next widget definition is for the pull-down menu widget that
implements the File choice. This pull-down menu widget has two push
button widgets as its children (in its controls list).

® One of the children of the File pull-down menu is the Print push
button widget. This definition defines the label and the callback
routine used with the push button widget.

@ The UIL module goes on to create each child of the menu bar widget.

Figure 6-7 shows the widget hierarchy of the menu bar widget in the
DECburger application.

6.5.1

6.6

Creating Menu Widgets
6.5 Creating a Menu Bar Widget

Figure 67 Widget Hierarchy of the DECburger Menu Bar Widget

Main Window et o
Menu B
Menu Bar ’ W?c;\;et ar
File Menu Edit Menu Order Menu Pull-Down Menu
Entry Entry Entry Entry Widgets
File Menu Edit Menu Order Menu thl(J)’III’I—uD\?V\;:’r;etS
[Print | | quit | |Select| | cut || {Copy || |Cancell [Separator |
Show ;
Clear Paste Control Submit
N /\ /
Y Y
Push Button Gadgets Separator Gadget

ZK-0206A-GE

Customizing a Menu Bar Widget

The menu bar widget supports the same attributes as the work area menu
widget. Use the attributes described in Section 6.3.1 to size, position, and
customize aspects of the menu bar widget.

Creating an Option Menu Widget

An option menu widget is a rectangular box that contains a descriptive
text label and the current value of the menu. The current value of the
option menu widget is the active area of an option menu. When a user
presses MB1 in the active area of an option menu, a pull-down menu
widget appears on the display. The pull-down menu widget contains the
list of options.

Figure 6-8 illustrates an option menu widget and its components, both
before and after the option menu widget is selected by a user.

6-19

Creating Menu Widgets
6.6 Creating an Option Menu Widget

Figure 6-8 Option Menu Widget

Label Active Area

V4 ré
Labl [Morm Item‘\gl
, A\

Menu Item
Menu Item { ||
Menu ltem
Menu item
Menu Item
Menu ltem

—

ZK-0442A-GE

An option menu widget can have only one child: a pull-down menu widget.
When used with an option menu widget, a pull-down menu widget does
not require an associated pull-down menu entry widget. Instead, you pass
the widget identifier of the pull-down menu widget to the option menu
widget using the sub_menu_id attribute.

To create an option menu widget, perform the following steps:
1 Create the pull-down menu widget.

This is the pull-down menu widget that the option menu widget will
invoke. Section 6.4 describes how to create a pull-down menu widget.

2 Create the option menu widget.

Use any of the widget creation mechanisms listed in Table 6-9. The
choice of mechanism depends on the attributes of the option menu you
need to access. Section 6.6.1 describes the attributes supported by the
work area menu widget.

Table 6-9 Option Menu Widget Creation Mechanisms

High-level routine Use the OPTION MENU routine to create an option menu
widget.

Low-level routine Use the OPTION MENU CREATE routine to create an option
menu widget.

UIL object type Use the option_menu object type to define an option menu

widget in a UIL module. At run time, the DRM routine FETCH
WIDGET creates the widget according to this definition.

When you create the option menu widget, you must pass it the widget
identifier of the pull-down menu widget in the sub_menu_id attribute.

3 DManage the option menu widget.
Use the intrinsic routine MANAGE CHILD.

6-20

Creating Menu Widgets
6.6 Creating an Option Menu Widget

After you complete these steps, if the parent of the option menu widget
has been realized, the option menu widget will appear on the display.
The pull-down menu widget associated with the option menu widget only
appears on the display when a user activates the option menu widget by
pressing MB1.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
that are not available using the high-level routine, use the SET VALUES
intrinsic routine after the widget has been created.) Table 6-10 lists the
attributes you can set if you use the high-level routine OPTION MENU
to create an option menu widget. Pass the values of these attributes as
arguments to the routine.

Table 6-10 Attributes Accessible Using the High-Level Routine OPTION

MENU

X Specifies the x-coordinate of the upper left corner of the
widget.

y Specifies the y-coordinate of the upper left corner of the
widget.

labl' Specifies the text of the descriptive label.

orientation Specifies whether the menu has a horizontal or vertical

~ orientation.
entry_callback Specifies the address of a callback routine list.
help_callback Specifies the address of a callback routine list.

1The high-level routines use this spelling for the label attribute to avoid conflicts with
programming languages in which "label" is a reserved word.

Example 6-3 shows how the option menu widget used in the DECburger
application is created in the DECburger UIL module.

6-21

Creating Menu Widgets
6.6 Creating an Option Menu Widget

6-22

Example 6-3 Creating the Option Menu Widget in the DECburger

Application

"object

fries_option_menu : option_menu {

arguments {
x = 130;
y = 22;
label_label = k_size label text;
menu_history = push_button medium fries;
}i
controls {
pulldown menu fries_menu;
}i
bi

Qobject

fries_menu : pulldown_menu {

controls {

push_button tiny fries;
push_button small fries;
push_button medium_fries;
push_button large_fries;
push_button huge fries;

}:
}:

eobject

tiny_fries : push_button {

arguments {
label label = k_tiny label_ text;
}i ‘
callbacks {
activate = procedure activate proc (k_fries_tiny);
}:
}:

©® DECburger defines the option menu widget in this UIL object

declaration. DECburger positions the option menu widget within

the parent dialog box by assigning values to the x and y attributes. In
addition, DECburger specifies the label the option menu will contain as
the value of the label attribute (called label_label in UIL). DECburger
defines the initial value of the option menu widget by specifying the
widget identifier of a child of the pull-down menu widget in the menu_
history attribute. In the example, the push button widget named
medium_{fries is the initial value of the option menu widget.

In the controls list section of the option menu widget declaration,
DECburger defines the children of the option menu widget. For an
option menu this is a pull-down menu widget. Note that in UIL, the
pull-down menu widget appears in the controls list section of the object
declaration. Using the high- or low-level routines, you pass the widget

Creating Menu Widgets
6.6 Creating an Option Menu Widget

identifier of the pull-down menu widget to the option menu widget in
its sub_menu_id attribute.

© After defining the option menu widget, DECburger defines the pull-
down menu widget. The controls list of the pull-down menu widget
declaration lists the children of the pull-down menu widget. These
children will be the items in the pull-down menu widget.

The DECburger UIL module goes on to define each of the five push
button widgets that are children of the pull-down menu widget.

6.6.1 Customizing an Option Menu Widget

The option menu widget supports the same attributes as the work area
menu widget. Use the attributes described in Section 6.3.1 to size,
position, and customize aspects of the option menu widget.

In addition, the option menu widget supports other attributes that enable
you to specify the initial value of the option menu widget and the content
of the descriptive label it contains.

6.6.1.1 Specifying the Initial Value of an Option Menu Widget
The menu_history attribute contains the widget identifier of the child of
the menu widget that was last selected. Use the menu_history attribute
to specify the initial value of the option menu widget. For the option
menu widget, the selected item is actually a child of the pull-down menu
widget that implements the option menu widget’s list of choices. All menu
widgets support the menu_history attribute; however, the option menu
widget also displays the value of this attribute in its active area.

Example 6-4 shows how DECburger creates the default selection of the
option menu widget it uses in its interface. DECburger passes the widget
identifier of the push button widget child of the pull-down menu widget as
the value of the menu_history attribute.

Example 6—4 Creating an Option Menu Widget with an ltem Selected

ocbject

fries_option_menu : option_menu {
arguments {
x = 130;
y = 22;

label_label = k_size_ label text;
menu_history = push_button medium fries;
}i

controls {
pulldown_menu fries_menu;
}i

bi

6-23

Creating Menu Widgets
6.6 Creating an Option Menu Widget

6.6.1.2 Specifying the Label in an Option Menu Widget

Use the label attribute to specify the descriptive text contained in an
option menu widget. The option menu widget is the only menu widget that
supports a label attribute. Other menu widgets can have label widgets as
children, but only the option menu widget supports a label as an attribute.
Specify this label as a compound string.

6.7 Creating a Pop-Up Menu Widget

6-24

You create a pop-up menu widget as you would any other menu widget.
Create the pop-up menu widget, then create the widgets that will be items
in the menu as its children. Pop-up menu widgets differ from other menu
widgets in how you make them appear on the display. To make a pop-up
menu widget appear on the display, you must modify the action table and
the translation table of the pop-up menu widget’s parent.

To create a pop-up menu widget, perform the following steps:
1 Create an action procedure that displays the pop-up menu widget.

To create a pop-up menu widget, you must create an action procedure
that manages the pop-up menu widget when a user of the application
presses MB2. Section 6.7.1 describes how to create an action
procedure.

2 Create a translation table entry for the new action procedure.

A translation table maps an event to the name of an action procedure.
Section 6.7.2 describes how to create a translation table entry.

3 Create an action table entry for the new action procedure.

An action table maps the name of an action procedure to its address.
Section 6.7.2 describes how to create an action table entry.

4 Create the parent of the pop-up menu widget.

You must create the parent of a pop-up menu widget before you create
the pop-up menu widget itself. Use any of the three widget creation
mechanisms.

5 Manage the parent of the pop-up menu widget.
Use the intrinsic routine MANAGE CHILD to manage the widget.

6 Add the new action procedure to the translation table of the parent
widget of the pop-up menu widget.

You must add the pop-up action procedure to the action table of the
parent widget. When the user presses MB2 in the parent widget, the
parent widget will activate the pop-up action procedure. Section 6.7.2
describes this procedure.

7 Realize the parent of the pop-up menu widget.

You must realize the parent of the pop-up menu widget before you
create the pop-up menu widget.

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

8 Create the pop-up menu widget.

Use any of the widget creation mechanisms listed in Table 6-11. The
choice of mechanism depends on the attributes of the pop-up menu
widget you need to access.

Table 6-11 Pop-Up Menu Widget Creation Mechanisms

High-level routine Use the MENU routine to create a pop-up menu widget.
Specify the type in the format argument.

‘Low-level routine Use the MENU POPUP CREATE routine to create a pop-up
menu widget.

UIL object type Use the popup_menu object type to define a pop-up menu
widget in a UIL module. At run time, the DRM routine FETCH
WIDGET will create the widget according to this definition.

9 Create the children of the pop-up menu widget.

Use any of the widget creation mechanisms to create the widgets that
you want to appear as items in the pop-up menu widget. The widgets
are children of the pop-up menu widget. The children appear in the
menu in the order that you create them.

10 Manage the children of the pop-up menu widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
of the pop-up menu widget. Use the intrinsic routine MANAGE
CHILDREN to manage more than one child of the pop-up menu widget
in a single call.

When a user running the application moves the pointer cursor into the
parent widget of the pop-up menu widget and presses MB2, the pop-up
menu widget will appear on the display. Note that you manage the pop-up
menu widget in the action procedure you create.

Low-level routines and UIL provide access to the complete set of attributes
at widget creation time. High-level routines provide access to only a subset
of these widget attributes at widget creation time. (To access attributes
not available using a high-level routine, use the SET VALUES intrinsic
routine after the widget has been created.) Table 6-12 lists the attributes
you can set if you use the high-level routine MENU to create a pop-up
menu widget. Pass the values of these attributes as arguments to the
routine.

Table 6—12 Attributes Accessible Using the High-Level Routine MENU

X Specifies the x-coordinate of the upper left corner of the
widget.

y Specifies the y-coordinate of the upper left corner of the
widget.

(continued on next page)

6-25

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

Table 6-12 (Cont.) Attributes Accessible Using the High-Level Routine

MENU
format Specifies the type of menu: pull-down, pop-up, or work area.
orientation Specifies whether the menu has a horizontal or vertical
: orientation.
map_callback Specifies the address of a callback routine list.
entry_callback Specifies the address of a callback routine list.
help_callback Specifies the address of a callback routine list.

6.7.1 Creating an Action Procedure

6—-26

An action procedure is a procedure that is executed when a particular
event occurs in a widget. All widgets contain action procedures. For
example, when a user activates a push button widget by moving the
pointer cursor into the push button and pressing MB1, the push button
widget executes an action procedure.

To cause a pop-up menu widget to pop up on a display, you must create an
action procedure and add it to the set of action procedures known by the
parent of the pop-up menu widget. The action procedure you write must
perform the following two functions:

* Positioning the pop-up menu widget where the user of the application
has moved the pointer cursor

* Managing the pop-up menu widget

An action procedure must have the following four arguments:
* Widget in which the event occurred

¢ Event that occurred

® Parameters used by the action procedure

* Number of parameters passed to the action procedure

To position the pop-up menu widget where the user has placed the
pointer cursor, use the MENU POSITION routine. This routine takes
the following two arguments:

¢ The identifier of the menu widget to be positioned

® A pointer to the event data structure returned by the 'Widget

The event data structure contains information on where the event occurred
on the display. If you do not explicitly position the pop-up menu widget, it
appears in the upper left corner of the display. Note that the pop-up menu
widget must be realized before you call the MENU POSITION routine.

Use the intrinsic routine MANAGE CHILD to manage the pop-up menu
widget. Since its parent has already been realized, the pop-up menu

widget will appear on the display. Pop-up menu widgets disappear from
the display automatically when the user of the application releases MB2.

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

Example 6-5 is a sample action procedure that pops up a pop-up menu
widget.

Example 6-5 Action Procedure to Pop Up a Pop-Up Menu Widget

static void pop up(widget, event, params, num params)
Widget widget;
XButtonPressedEvent *event;
char **params;
int num_params;

if(!XtIsRealized(popup_menu)
XtRealizeWidget (popup _menu);

DwtMenuPosition(popup_menu, event);

XtManageChild(popup_menu) ;

6.7.2 Adding an Action Procedure to a Widget

To add a new action procedure to a widget, you must add entries for

the action procedure to the translation table and the action table of the
widget. The widgets in the XUI Toolkit map an event to the name of an
action procedure in their translation table and map the name of the action
procedure to the address of the action procedure in their action table.

A translation table is a text string containing a list of translations. The
translations are separated from each other by the newline character (\n).
Each translation pairs an event identifier, terminated by a colon, with the
name of an action procedure. Following is a sample translation table entry
that associates the MB2 press event with the action procedure illustrated
in Example 6-5. (See Section D.9.4 for more information about creating
translation table entries.)

static char popup translation_table[] = "<Btn2Down>: pop_up()";

An action table is an array of data structures that pair action procedure
names with their addresses. The XUI Toolkit defines this data structure
(XtActionRec). Following is a sample action table entry that associates the
name of the action procedure illustrated in Example 65 with its address:

static XtActionRec our_ action_table[] =
{

{ "pop_up", (caddr_t)pop_up }
}

Before you can add the new translation table entry to a widget, you must
convert the entry from its ASCII format to the binary format used by the
XUI Toolkit. Use the intrinsic routine PARSE TRANSLATION TABLE
to perform this step. This routine returns the parsed translation table
defined as the data type XtTranslations.

6-27

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

After converting the translation table entry, you can add the new
translation to the existing translation table entry by using the intrinsic
routine OVERRIDE TRANSLATIONS. This routine adds the new
translation to the translation table of the widget without destroying
the other translations in the table.

To add the new action table entry to an existing action table, use the
intrinsic routine ADD ACTIONS.

The sample program in Example 6-6 creates a pop-up menu widget.
Example 6-6 Creating a Pop-Up Menu Widget

#include <stdio>
#include <decw$include/DwtAppl.h>

static Widget toplevel, main_widget, popup_menu, label;
static WidgetList menu_items{5];

Ostatic void pop_up() ;
@static char popup_translation_table(] = "<Btn2Down>: pop_up()";

Ostatic XtActionsRec our_action_table[] =
{

{"pop_up", (XtActionProc)pop_up},
}i

int main(argc, argv)
unsigned int argc;
char **argv;
Arg arglist([5];
[*******% Set up the User Interface *kkkkkkk /
toplevel = XtInitialize ("Popup Demo", "demo",NULL, 0, &argc, argv):;

XtSetArg (arglist[0], XtNallowShellResize, TRUE);
XtSetValues (toplevel, arglist, 1);

XtSetArg (arglist[0], DwtNwidth, 300);
XtSetArg (arglist[1l], DwtNheight, 300):

(4] main_widget = DwtDialogBoxCreate(toplevel, "MAINWIN", arglist, 4);

XtSetArg (arglist[0], DwtNmarginLeft, 75):;
XtSetArg (arglist[1l], DwtNlabel,
DwtLatinlString("Move the pointer\nanywhere in this box\nand press MB2"));

(5] label = DwtLabelCreate(main_widget, "label", axglist, 2);

® xtManageChild(label);
XtManageChild(main_widget);

(continued on next page)

6-28

Creating Menu Widgets
- 6.7 Creating a Pop-Up Menu Widget

Example 6-6 (Cont.) Creating a Pop-Up Menu Widget

o handle mb2_press(main_widget);
(5] XtRealizeWidget (toplevel) ;

@ build popup_menu() ;

/******** Main Input Loop ***********/

XtMainLoop () ;

return (0);

}

@static void pop_up (widget, event, params,
Widget widget;

XButtonPressedEvent *event;
char **params;
int num_params;

if (!XtIsRealized(popup_menu)
XtRealizeWidget (popup_menu);

DwtMenuPosition(popup_menu, event);
XtManageChild (popup_menu);
}

Qhandle_mbz__press(widget)
Widget widget:
{
Arg arglist[2];
XtTranslations parsed_t_table;

XtAddActions(our_action_table, 1);
parsed_t_table =

num_params)

XtParseTranslationTable (popup_translation_table);

XtOverrideTranslations(widget, parsed t_table);

}

®vuilg |_popup_menu ()
{
Arg arglist([4];
int count = 0;

popup_menu = DwtMenuPopupCreate(main_widget, "button", NULL, 0);

XtSetArg(arglist[0],DwtNlabel, DwtLatinlString("Menu Item A "));

menu_items[count++] =

DwtPushButtonCreate(popup menu, "buttonl", arglist, 1);

XtSetArg(arglist[0],DwtNlabel, DwtLatinlString("Menu Item B ")):
menu_items[count++] = DwtPushButtonCreate(popup_menu, "button2", arglist, 1);

XtManageChildren(menu_items, count);

© This is a forward declaration of the action procedure that pops up the
pop-up menu widget under the pointer cursor. @ defines this action

procedure.

6-29

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

6-30

This statement creates an entry in a translation table, popup_
translation_table, that associates the event of a MB2 press with
the name of the pop-up action procedure, pop_up.

In this statement, the sample program creates an entry in an action
table, our_action_table, that associates the name of the action
procedure with the address of the procedure. The sample program
creates an action table entry for its pop-up action procedure.

The sample program creates a dialog box widget as the base of the
application widget hierarchy by calling the low-level routine DIALOG
BOX CREATE. This dialog box has as its children a label widget and
the pop-up menu widget.

This statement creates the label widget with a call to the low-level
routine LABEL, CREATE. This label widget puts the instructional
message “Move the pointer anywhere in this box and press MB2”
inside the dialog box widget. By setting the left margin of the label
widget, the label appears centered within the dialog box widget.

In these two calls to MANAGE CHILD, the sample program manages
the label and the dialog box widget. Note that the other child of

the main widget, the pop-up menu widget, does not get created or
managed at this point in the application. This is accomplished after
the dialog box widget has been realized.

The procedure handle_mb2_press adds the pop-up procedure to the
action table of the dialog box widget. @ details this routine.

In this call to the intrinsic routine REALIZE WIDGET, the sample
program causes the dialog box widget and its managed child to appear
on the display.

After realizing the widgets in the application widget hierarchy, the
sample program calls the procedure that builds the pop-up menu
widget. @ describes this procedure.

This is the application-written routine that causes the pop-up menu
widget to appear on the display. The routine pops up the pop-up menu
widget wherever the user has positioned the pointer cursor within its
parent. Section 6.7.1 describes this routine.

The handle_mb2_press routine performs all the processing necessary
to add the pop-up routine to the action table of a widget so that

it can manage the pop-up menu widget when a user presses MB2.
Section 6.7.2 describes this procedure.

This routine creates the pop-up menu widget and its children. The
child widgets will be items in the pop-up menu widget. Note that you
only manage the children of the pop-up menu widget. The pop-up
menu widget is managed in the action routine invoked when a user
presses MB2 in the parent widget.

Figure 6-9 illustrates how the pop-up menu created in Example 6-6
appears on the display. The figure shows how a user can position the
pointer cursor within the borders of the pop-up menu widget’s parent and,
by pressing MB2, make the pop-up menu widget appear on the display
over the pointer cursor position.

Creating Menu Widgets
6.7 Creating a Pop-Up Menu Widget

Figure 6-9 Pop-Up Menu Widget

Pop-UpDemo (MR [EH Pop-Up Demo]

Move the pointer Move the pointer
anywhere in this box anywhere in this box
and press MB2. and press MB2.

; Menu ltem A
R Menu ltem B

ZK-0203A-GE

6.7.3 Customizing a Pop-Up Menu Widget

The pop-up menu widget supports the same set of attributes as the work
area menu widget. For information about customizing a work area menu
widget, see Section 6.3.1.

6.7.4 Associating Callback Routines with a Pop-Up Menu Widget

The pop-up menu widget supports the same callbacks as the work area
menu widget. For information about these callbacks, see Section 6.3.1.

In addition, with the pop-up menu widget, you can associate callback
routines that get executed when the pop-up menu widget is about to
appear on the display (be mapped) or has disappeared from the display
(been unmapped). This notification enables an application to perform
processing or perform some other action before the pop-up menu widget
appears on the display or disappears from the display. To associate a
callback routine with these callbacks, pass a callback list to the map_
callback and unmap_callback attributes.

For example, you could write a map callback routine that creates the
children of the pop-up menu widget only when the pop-up menu widget is
about to be mapped. In this way, you perform this processing only when
necessary, saving on application startup time.

6-31

7.1

7.2

7.21

Creating Dialog Box Widgets

This chapter provides the following:
* An overview of the dialog box widgets in the XUI Toolkit

* A detailed description of how to include a dialog box widget in your
application

Overview of the Dialog Box Widget

A dialog box widget is a rectangular container for other widgets. You
use a dialog box widget to solicit information from, and present messages
to, users of your application. A dialog box widget can accept input focus to
allow users to perform input using the keyboard.

The Hello World! sample application and the DECburger sample
application both provide examples of dialog box widgets used as containers.
The Hello World! application uses a dialog box widget to contain the
label widget and the push button widget that implement the application
function. The DECburger order entry box is a dialog box widget that
contains dozens of widgets.

Dialog Box Widgets in the XUl Toolkit

A dialog box widget is a composite widget and, as such, its primary
function is to act as a container for other widgets. The XUI Toolkit
- provides several dialog box widgets that fall into two general categories:

* Generic dialog box widgets

¢ Standard dialog box widgets

The generic dialog box widgets are simply empty rectangles. You decide
what widgets they will contain to suit the needs of your application.

The standard dialog box widgets are preconfigured with child widgets to
perform certain commonly needed functions.

Generic Dialog Box Widgets
The XUI Toolkit provides two generic dialog box widgets:
* Dialog box widget
¢ Attached dialog box widget
Both widgets provide the same functional capabilities; they differ in how

you specify the layout of their child widgets and how this positioning is
maintained.

7-1

Creating Dialog Box Widgets
7.2 Dialog Box Widgets in the XUl Toolkit

7-2

7.2.1.1

Dialog Box Widget

In a dialog box widget, you create the layout of the child widgets by
positioning each child within the dialog box widget by its x- and y-
coordinates. This creates a fixed layout. If the dialog box widget is resized
by a user or by the request of one of its children, the borders of the dialog
box widget change, but the position of each child widget remains fixed. If
the dialog box widget is made smaller, a child widget can be partially or
completely clipped by the new boundaries of the parent.

In addition, the fixed layout of a dialog box widget creates font and
language dependences. If you make the font larger or smaller, you risk
upsetting the layout of the dialog box widget. Similarly, the text of a label
may be significantly longer or shorter in different languages. In these
cases, the child widgets may overlap, or labels may be clipped.

The Hello World! sample application provides an example of this behavior.
In the Hello World! application, a push button widget containing the

text string "Hello World!" appears centered in the dialog box when the
user interface initially appears. When the user activates the push button
widget, the text in the push button widget changes to "Good-bye World!".
Because this text string is longer, the push button widget resizes to
accommodate the new text. After being resized, the push button no longer
appears centered in the dialog box widget. For this reason, when the Hello
World! application changes the text, it also assigns a new value to the
x-coordinate of the push button widget so that it will remain centered in

‘the dialog box widget.

7.2.1.2 Attached Dialog Box Widget

To eliminate the limitations of the dialog box widget, the XUI Toolkit
includes the attached dialog box widget. In an attached dialog box widget,
you design the initial layout as you would with a normal dialog box widget.
However, instead of defining the fixed position of each child widget by its x-
and y-coordinates, you specify the position of the child widgets in relation
to other child widgets or in relation to the attached dialog box widget.

You specify the position of a child widget in an attached dialog box widget
by defining attachments between the child widget and its surroundings.
An attachment is a special widget attribute you can use with any XUI
Toolkit widget. The attachment defines the relationship between an
edge of a child widget to an edge of the attached dialog box, to another
child widget in the attached dialog box widget, or to a position within
the attached dialog box widget. When the attached dialog box widget is
resized, the child widgets can grow or shrink to maintain their original
layout in the attached dialog box and to avoid being clipped. Section 7.5.1
describes how to define attachments.

Figure 7-1 illustrates the resizing behavior of a dialog box widget and
an attached dialog box widget. The resizing behavior of the child widgets
depends on the types of attachments defined and their individual resizing
characteristics.

Creating Dialog Box Widgets
7.2 Dialog Box Widgets in the XUl Toolkit

Figure 7-1 Resizing a Dialog Box Widget

Initial Dialog Box

| d1pfj Kipd]

@ As Typed O Lowercase Only
O Mixed Case O Uppercase Only

Previous || Next II Dismiss

Resized Dialog Box

| d1pfj kipd kdjfkid lopiproiit io oddjo u uuy llls dif Ij dds ji]

@ As Typed O Lowercase Only
O Mixed Case O Uppercase Only

Previous Dismiss

Resized Attached Dialog Box

| d1pfj kipd kdjfkid lopiproiit io oddjo u uuy liis dif Ij dds jI

@ As Typed O Lowercase Only
O Mixed Case O Uppercase Only

Previous || Next II Dismiss

ZK-0406A-GE

7-3

Creating Dialog Box Widgets
7.2 Dialog Box Widgets in the XUl Toolkit

7.2,2 Standard Dialog Box Widgets

The XUI Toolkit provides a set of standard dialog box widgets that perform
commonly needed functions, such as presenting messages or selections.
The standard dialog box widgets are preconfigured to contain the child
widgets they need to implement their particular function. You do not have
to build these dialog box widgets out of their component widgets.

Following are the standard dialog box widgets. The widgets listed under
each of the two main standard dialog box widgets are variations of the
standard dialog box widgets that perform specialized functions.

* Message box widget

— Caution box widget

— Work-in-progress box widget
* Selection box widget

— File selection widget

7.22.1 Message Box Widget

\

A message box widget is a dialog box widget that contains a label widget
and can option contain a push button widget. You specify the text of
your message in the label widget. The push button widget allows the user
to acknowledge the message. Use the message box widget to present any
application-specific information to the user.

The XUI Toolkit provides two other versions of the message box widget
that you can use for specific types of messages. Use the caution box widget
to present a warning message to the user of your application. Use the
work-in-progress box widget to notify the user of your application that
processing is in progress.

7.2.2.2 Selection Box Widget

The selection box widget is a dialog box widget that contains a list box
widget and a simple text widget, and can optionally contain several push
button widgets. The list box presents the items of the selection.

The XUI Toolkit also provides a version of the selection widget, called the
file selection widget, that is designed to be used with directories of files.

7.3 Styles of Dialog Box Widgets

prrm——

7-4

The XUI Toolkit supports three styles of dialog box widgets:

"¢ Work area

¢ Modal
¢ Modeless

W widgets are clipped by their parents. The dialog box
widget in the Hello World! applicition is an example of a work area style

dialog box widget.

- Creating Dialog Box Widgets
7.3 Styles of Dialog Box Widgets

Modal and modeless dialog box widgets are pop-up widgets;

clipped by their parents. A modal dialog box widge causes an application
To suspend all other processing until the user responds to the query
presented by the dialog box widget. Modal dialog box widgets do not

support resizing. Modeless dialog box widgets have title bars and can
optionally be moved and resized by a user.

The dialog box widget in the DECburger sample application is an example
of a modeless pop-up dialog box widget. All standard dialog box widgets
are pop-up dialog box widgets.

7.4 Creating a Dialog Box Widget

The dialog box widget is a container for its child widgets. The child
widgets may themselves have children. For example, a dialog box widget
can contain a menu widget, which can contain many push button widgets.

To create a dialog box widget, perform the following steps:
1 Create the dialog box widget.

Use any of the widget creation mechanisms listed in Table 7-1. The
choice of creation mechanism depends on the attributes of the dialog
box you need to access to customize the dialog box widget.

Table 7-1 Dialog Box Widget Creation Mechanisms

High-level routine Use the DIALOG BOX routine to create any style of dialog box
widget. Indicate the style of the dialog box widget in the style
argument. ‘

Low-level routine Use the DIALOG BOX CREATE routine to create a work area
dialog box widget. To create a modal or modeless dialog box
widget, use the DIALOG BOX POPUP CREATE routine. Indicate
the style of the dialog box widget in the style attribute.

UIL object type Use the UIL object type dialog_box to define a work area dialog
box widget in a UIL module. To define a modal or modeless
dialog box widget, use the UIL object type popup_dialog_box. At
run time, the DRM routine FETCH WIDGET creates the widget
according to this definition.

2 Create the children of the dialog box widget.

Use any of the widget creation mechanisms to create the widgets you
want to appear inside the dialog box widget. In this step, position the
child widgets within the dialog box widget.

3 Manage the children of the dialog box widget.

Use the intrinsic routine MANAGE CHILD to manage a single child
widget; use the MANAGE CHILDREN routine to manage a group of
child widgets.

4 Manage the dialog box widget.

Use the intrinsic routine MANAGE CHILD to manage a single child .
widget.

7-5

Creating Dialog Box Widgets
7.4 Creating a Dialog Box Widget

After you complete these steps, if the parent of the dialog box widget has
been realized, the dialog box widget and all its managed children will
appear on the display.

Low-level widget creation routines and UIL provide access to the complete
set of attributes at creation time. High-level routines provide access to
only a subset of these widget attributes at widget creation time. (To assign
values to those widget attributes not accessible, you must use the SET
VALUES intrinsic routine after the widget has been created.) Table 7-2
lists the attributes you can set if you use the high-level routine DIALOG
BOX to create a dialog box widget. Pass the values of these attributes as
arguments to the routine.

Table 7-2 Attributes Accessible Using the High-Level Routine DIALOG

BOX

default_position A Boolean value that determines whether the x- and y-
coordinates should be ignored in favor of default positioning.

X Specifies the x-coordinate of the upper left corner of the
widget.

y Specifies the y-coordinate of the upper left corner of the
widget.

title Specifies the title displayed in the title bar (modeless dialog
boxes only).

style Specifies the style of dialog box: modal, modeless, or work
area.

map_callback Specifies the address of callback routine list.

help_callback Specifies the address of callback routine list.

7.4.1 Specifying the Layout of Children in a Dialog Box Widget

7-6

To position the child widgets within a dialog box widget, specify the x-
and y-coordinates for each child widget in their common widget attributes
x and y. The origin of the coordinate system is the upper left corner of
the dialog box widget. If you specify margins, the origin of the coordinate
system is offset by the amount of the margin.

The XUI Style Guide provides recommendations for the aesthetic
arrangement of child widgets in a dialog box widget.

As an example, the DECburger sample application creates its order entry
box as a dialog box widget. The DECburger dialog box widget contains
work area menu widgets, label widgets, separator widgets, a radio box
widget, a scale widget, an option menu widget, a simple text widget, and
a list box widget. Some of these child widgets (for example, the menu
widgets) have child widgets of their own. The following sections detail the
attributes of the dialog box widget using the DECburger order entry box
as an example. Example 7-1 presents the section of the DECburger UIL
module in which the dialog box widget is defined.

Creating Dialog Box Widgets
7.4 Creating a Dialog Box Widget

Example 7-1 Creating the Dialog Box Widget in the DECburger Application

"object

control_box : popup_dialog box {
arguments {

(2] title = k_decburger_title;

style = DwtModeless;

x = 300;

y = 100;

margin_width = 20;

background_color = lightblue;

}:
(3] controls {

label burger label;

label fries_label;

label drink_label;

separator {arguments {
x = 110;
y = 10;
orientation = DwtOrientationVertical;
height = 180; };};

separator {arguments {
x = 205;
y = 10; :
orientation = DwtOrientationVertical;
height = 180; };1}:

work_area_menu button_box;

radio_box burger_doneness_box;

work_area_menu
scale

burger toppings_menu;
burger_ quantity;
option_menu fries_option_menu;

label
simple_text

fries_quantity label;
fries_quantity:

list_box drin