VMS System Services
Reference Manual

Order Number: AA-LAGIB-TE

November 1991

This manual describes a set of routines that the VMS operating system
uses to control resources, to allow process communication, to control
I/0, and to perform other such operating-system functions.

Revision/Update Information: This manual supersedes the VMS
System Services Reference Manual,
Version 5.4.

Software Version: VMS Version 5.5

Digital Equipment Corporation
Maynard, Massachusetts

November 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. ’

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1991.
All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DECdtm, DECnet, DECwindows,
Digital, HSC, MASSBUS, MicroVAX, MicroVAX II, MSCP, RA, RC, RK, RL, RM, RP, RX, TA, TS,
TU, VAX, VAX Ada, VAX BASIC, VAX C, VAXcluster, VAX COBOL, VAX CORAL 66, VAX DIBOL,
VAX FORTRAN, VAX MACRO, VAX Pagcal, VAX Volume Shadowing, VAX-~11/750, VAX-11/780, VAX

6000, VAX 8200, VAX 8250, VAX 8300, VAX 8350, VAX 8530, VAX 8550, VAX 8600, VAX 9000, VAXft,
VAXstation, VMS, and the DIGITAL logo.

ZK4527

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

Preface vii

System Service Descriptions

SABORT_TRANS . . .ottt e SYS-3
$SABORT_TRANSW . . .ottt e e SYS-7
SADD_HOLDER . .. \o vttt e e e SYS-8
SADD_IDENT ... oottt et et SYS-11
SADISTEo e et e e e e e e SYS-14
SADIWSL . . oottt e e e SYS-17
SALLOC . .« o e e et e SYS-19
SASCEFC oottt e e e e SYS-22
SASCTIM . . .o e et e e e e e e e e SYs-26
SASCTOID . . . o v et et e e e e SYS-29
SASSIGN . . et et e SYS-31
SBINTIM ovvoee e et e e e e SYS-36
SBRETHRU . . . oottt e e e e e e e SYS-39
$BRKTHRUW\ttt et e e SYS-47
SCANCEL . ..ottt e e e e SYS-48
SCANEXH . . . oo ottt e e e SYS-50
$CANTIM . ..o, P SYS-51
SCANWAK . . . o e ettt e e e SYS-53
SCHANGE_ACLot oe e e SYS-56
$CHECK_ACCESS . . . e ottt et e SYS-62
$CHEKPRO . .. oottt P SYS-67
SCLREF . . . oottt e e SYS-74
SCMEXEC . . v oottt e e e e e SYS-75
SCMERNLottt et e SYS-77
SCREATE RDB . ..o\ ottt et e e e e e SYS-79
SCRELNM . . .o oottt e e e e e SYS-81
SCRELNT ..\ttt e e e e e SYS-87
SCREMBX . . .o oot e et e e e e SYS-93
$CREPRCovviinannn... e SYS-100
SCRETVA . . . oottt e e e e SYS-114
SCRMPSC . . .ottt e e e e SYS-117
$SDACEFC . . .ottt e e e e SYS-127
SDALLOC . ..o ottt ettt e e e SYS-129
SDASSGN . ot SYS-131
SDCLAST oottt e e e e SYS-133

SDCLCMHo e SYS-135

SDCLEXH . ..ottt et e e SYS-137
SDELLNM . ..ottt et e e SYS-139
SDELMBX . . oottt SYS-142
SDELPRC ..\ttt ittt e SYS-144
SDELTVA .« oot ottt e e e e e SYS-147
BDEQ . . o ot SYS-149
SDEVICE_SCAN . .ottt e SYS-154
BDGBLSC .o oot SYS-158
SDISMOU ..\ttt e e e e e SYS-161
SDLCEFC ..ottt e e e SYS-165
BN S o o SYS-167
BN SW . ot SYS-195
SEND_TRANS . . oot SYS-196
SEND_TRANSW . oottt e e e SYS-201
BENQ . . o oo SYS-202
BENQW .o SYS-213
SERAPAT . . . oo oottt e SYS-214
BEXIT . oottt SYS-217
SEXPREG . . ot ottt e SYS-218
SFAO/SFAOL . . .ottt e e SYS-221
SFILESCAN . . . ot ottt e e e e e SYS-237
SFIND_HELDt e SYS-241
$FIND_HOLDERottt et e e e e SYS-244
S$FINISH_RDB . . . oottt e e e e e SYS-247
SFORCEX . . ittt e SYS-249
SFORMAT ACL . . o oottt e e e SYS-252
$FORMAT_AUDIT . . . o ottt et et e e e e SYS-262
SGETDVIL . . ottt e SYS-266
SCETDVIW . ..ottt e e e e SYS-285
SGETIPL ..ot e SYS-286
BGETIPIW . . oottt e SYS-305
SOETLERI . . . oottt e e e e e e SYS-306
SGETLRIW . . .ot e e SYS-318
BGETMSG . . o ettt et et SYS-319
SGETQUIL . . .ottt e e SYS-323
SGETQUIW . . ottt e e e e SYS-365
BGETSYI . .ottt SYS-366
BOETSYIW . oottt SYS-381
SGETTIM . . . oottt e e e e e SYS-382
SOGETUAL . . .ottt e e SYS-383
SCGRANTID .. oottt e et e e e e e e e e SYS-395
$SHASH PASSWORD\ttt e SYS-399
SHIBER . . . ottt SYS—402
BIDTOASC . ot ottt et e e SYS-404
SINTIT_VOL . oottt e e e e SYS—407
SLOKPAG . .ot o et ottt SYS-420

BLRWSET . .. e SYS-422

SMGBLSC . . oottt e SYS-425
$MOD_HOLDERo oottt e e SYS—-430
$MOD_IDENTottt et e e e e SYS-433
SMOUNT . ..ottt ettt e SYS-436
SMTACCESS .« . oottt e e SYS-451
SNUMTIM . . . oottt e e e e e e e SYS-455
S$PARSE ACL . . .ottt e e e SYS-457
$PROCESS_SCAN . .« oot et e e e e e i SYS-460
SPURGWS . . oottt e e e SYS-473
SPUTMSG .« . o e e ettt e e e SYS-475
QIO . oot SYS-483
BAIOW .« . ottt et e e SYS-488
SREADEFttt SYS-489
SRELEASE VP . ..o e SYS-491
$REM_HOLDERottt e SYS-492
SREM_IDENT . . .ot et e e e e e SYS-494
$RESTORE_VP_EXCEPTIONttt SYS-496
$RESTORE_VP_STATE oo et ettt SYS—-498
SRESUME . . . oottt e e e e e e SYS-500
SREVOKID . ..ottt e e e SYS-503
$SAVE_VP_EXCEPTION oottt e e e SYS-507
SSCHDWEK . . . o oottt e e e e e e SYS-509
BSETAST . . oottt e SYS-512
SSETEF . . o o oottt e e e e SYS-514
SSETEXV . . oottt et e e e SYS-515
S$SETIME . . . oottt et e e e SYS-517
$SETIMR . . oo oo et e e e e e e e e e e SYS-519
SSETPRA . . . oo vt et SYS-522
SSETPRI . . oottt e e e e SYS-524
SSETPRN . . . oottt e e e e e e SYS-527
S$SETPRT . . . oo oottt e e e e e e SYS-529
SSETPRYV . . o o oottt e e SYS-533
SSETRWM . . o oottt e e e e SYS-538
SSETSTE - . o oo e eeee e e e e e e e e e SYS-540
SSETSWM . . oo vttt et e e e SYS-542
SSETUAL . . o oottt e e e e e SYS-544
$SNDERR . . . o oottt e et e e e e SYS-556
SSNDIBC . . o oo vt e et e e SYS-558
SSNDIBCW . oottt e e e e e SYS-614
BSNDOPR . . o oottt e e SYS-615
$START TRANS . . oottt et e e e SYS-629
$START TRANSW . . .o o vttt e SYS-633
SSUSPND . . oottt e e e SYS-634
SSYNCH . . oottt e SYS-637
SYSSRMSRUNDWN . . .ottt e et e e e e SYS-639
SYS$SETDDIR ... o'oovveeeeeeaeannnn. e SYS-641

SYSSSETDFPROT . . . oottt e et e SYS-643

STRNLNM ... oott et e SYS-645
SULKPAG ..« v v e SYS-651
SULWSET .« . . oottt e e e e e e SYS-653
SUNWIND . . . v SYS-655
SUPDSEC . . .« ot e e e e e e e e SYS-657
SUPDSECW . . . o oo ettt e e e e e e e SYS-662
SWAITER . . . o oo et e e e e e e e e e e SYS-663
SWAKE . . o\t e e e e SYS-665
SWELAND . . oo e e e e e e e e SYS-668
SWEFLOR . . o oottt e e e e e SYS-670

A Obsolete Services

Index

Tables
SYS—-1 $ABORT TRANS Option Flag, .. SYS-3
SYS-2 Abort Reason Codeso iiit i e e SYS-5
SYS-3 User Privileges.o e SYS-101
SYS—4 Required and Optional Arguments for the $SCRMPSC Service SYS-121
SYS-5 Item Codes and Their Data Types i, SYS-182
SYS-6 $END_TRANS Option Flag, SYS-197
SYS-7 Abort Reason Codesttt e SYS-197
SYS-8 Legal QUECVT Conversionsouutvneneuuunnennnean SYS-208
SYS-9 List of $FAO Directives v vt veei it SYS-224
SYS-10 $FAO Output Field Lengths and Fill Characters SYS-227
SYS-11 Attributes of an Identifier e SYS-298
SYS-12 Flags Used with $PROCESS_SCANot SYS-468
SYS-13 User Privileges.ttt e SYS-534
SYS-14 CPU Time Limit Decision Table.0 ... SYS-580
SYS-15 Working Set Decision Table SYS-603
SYS-16 $START_TRANS Option Flags., SYS-629

vi

Preface

This manual provides reference information about the system services on the VMS
operating system.

You can use VMS system services only in programs written in languages that
produce native code for the VAX hardware. At present these languages include
VAX MACRO and the following high-level languages:

VAX Ada

VAX BASIC
VAX BLISS-32
VAX C

VAX COBOL
VAX COBOL-74
VAX CORAL
VAX DIBOL
VAX FORTRAN
VAX Pascal
VAX PL/1

Intended Audience

This manual is intended for system and application programmers who want to call
system services.

Document Structure

This manual provides detailed reference information about each system service.
This information is presented using the documentation format described in the
Introduction to VMS System Services. Service descriptions appear in alphabetical
order by service name. Appendix A lists the obsolete services and the current
services that have replaced them.

For information and guidelines about using the system services, see the
Introduction to VMS System Services.

Associated Documents

The Introduction to VMS System Services describes how to use the system services.

The VAX Procedure Calling and Condition Handling Standard, which is
documented in the Introduction to VMS System Routines, contains useful
information for anyone who wants to call system services.

VAX MACRO programmers can find additional information about calling system
services in the VAX MACRO and Instruction Set Reference Manual.

vii

High-level language programmers can find additional information about calling
system services in the language reference manual and language user’s guide
provided with the VAX language.

The following documents may also b_e useful:

* Guide to Using VMS Command Procedures
* Guide to VMS File Applications

* Guide to VMS System Security

e VMS Networking Manual

e VMS Record Management Services Manual
o VMS I/0 User’s Reference Manual: Part I
* VMS I/0 User’s Reference Manual: Part 11

For a complete list and description of the manuals in the VMS document set, see
the Overview of VMS Documentation.

Conventions

The following conventions are used in this manual:

viii

Ctrl/x

PF1 x

O

[l

A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key
or a pointing device button.

A sequence such as PF1 x indicates that you must first
press and release the key labeled PF1, then press and
release another key or a pointing device button.

In examples, a horizontal ellipsis indicates one of the
following possibilities:

e Additional optional arguments in a statement have
been omitted.

* The preceding item or items can be repeated one or
more times.

e Additional parameters, values, or other information
can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the
choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory name
in a file specification or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text

italic text

UPPERCASE TEXT

numbers

Boldface text represents the introduction of a new term
or the name of an argument, an attribute, or a reason.

Italic text represents information that can vary in
system messages (for example, Internal error number).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for a
system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—binary,
octal, or hexadecimal—are explicitly indicated.

- See the Introduction to VMS System Services for additional conventions used in

this document.

System Service Descriptions

System services provide basic operating system functions, interprocess
communication, and various control resources to VMS users. This document
provides the reference material needed by users to implement system services.
See the Introduction to VMS System Services for an explanation of the
documentation conventions used in the following system service descriptions.

System Service Descriptions
SABORT_TRANS

$SABORT_TRANS—Abort Transaction

Aborts a transaction.

Format

SYS$ABORT_TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,freason]]
Returns

VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

Longword condition value. All system services (except $EXIT) return by

immediate value a condition value in RO. Condition values that this service

returns are listed in the Condition Values Returned section.
Arguments

efn

VMS Usage: ef number

type: longword (unsigned)

access: read only

mechanism: by value

Number of the event flag to be set. The efn argument is a longword containing
this number; however, ABORT_TRANS uses only the low-order byte. If you do
not specify the efn, $ABORT_TRANS uses the default value 0.

flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Flags specifying options for $ABORT_TRANS. The flags argument is a longword
bit mask that is the logical OR of each bit set, in which each bit corresponds to
an option. The $DDTMDEF macro defines a symbolic name for each flag bit.

DDTM$M_SYNC, the only flag currently defined, is described in Table SYS-1.

Table SYS-1 $ABORT_TRANS Option Flag
Flag Description

DDTM$M_SYNC Indicates successful synchronous completion by
returning SS$_SYNCH. When synchronous completion is
successful, the completion AST address is not called, the
IOSB is not written, and the event flag is not set.

SYS-3

System Service Descriptions
SABORT_TRANS

SYS-4

iosb

VMS Usage: io_status_block

type: quadword (unsigned)
access: write only

mechanism: by reference

I/O status block (IOSB) to receive the final completion status of the request. The
iosb argument is the address of the quadword I/O status block.

The following diagram shows the structure of the I/O status block. Symbolic
names for abort reason codes that may be returned are in $DDTMMSGDEF. See
Table SYS-2 for a list of abort reason codes.

31 15 0
Reserved by Digital Condition Value
Abort Reason Code
ZK-3667A-GE

astadr
VMS Usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

AST service routine to be executed. The astadr argument is the address of the
entry mask of this routine. In the case of synchronous completion, the call might
not take place. Refer to the description of DDTM$M_SYNC in Table SYS-1.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the ABORT_TRANS service.

Note that the completion AST will not be called if SS$_SYNCH is returned in RO.

astprm

VMS Usage: user_arg

type: longword (unsigned)
access: - read only

mechanism: by value

AST parameter passed to the AST service routine specified by the astadr
argument. The astprm argument is a longword.

tid

VMS Usage: transaction_id

type: octaword (unsigned)
access: read only

mechanism: by reference

Pointer to the transaction identifier (TID) that designates the transaction to be
aborted. The default value for this parameter is the process default transaction.

reason

VMS Usage: cond_value

type: longword (unsigned)
access: read only

mechanism: by value

Description

System Service Descriptions
$ABORT_TRANS

The reason why the calling process is aborting the transaction. This must be
a valid abort reason code. Symbolic names for the valid abort reason codes are
defined in the $DDTMMSGDEF module. See Table SYS-2 for a list of abort
reason codes. The default value for this parameter is DDTM$_ABORTED.

Table SYS—2 Abort Reason Codes

Symbol

Description

DDTM$_ABORTED

DDTM$_COMM_FAIL
DDTMS$_INTEGRITY
DDTM$_LOG_FAIL
DDTM$_PART _SERIAL
DDTM$_PART TIMEOUT

DDTM$_SEG_FAIL
DDTM$_SERIALIZATION

DDTM$_SYNC_FAIL
DDTM$_TIMEOUT

DDTM$_UNKNOWN
DDTM$_VETOED

Application called $ABORT_TRANS without
giving a reason.

A communication link failed.

Integrity constraint check failed.

A write operation to the transaction log failed.
Resource manager serialization check failed.

A timeout specified by a resource manager
expired before a commit decision was made.

Process or image failed.

DECdtm transaction manager serialization check
failed.

Transaction was not globally synchronized.

A timeout specified on $START TRANS expired
before a commit decision was made.

Reason unknown.

A resource manager aborted the transaction
without giving a reason.

The Abort Transaction service aborts a specific transaction by invalidating the
transaction identifier (TID) and instructing all resource managers involved to
nullify all the actions of the transaction. This system service can be called only

by the same process that called $START TRANS.

The $ABORT_TRANS service can be successfully called before the transaction is
committed. A transaction is committed when the commit record is written to the
transaction log file.

To differentiate the causes of transaction failures, an abort reason argument may
be provided when an application calls SABORT_TRANS. There is no provision
for returning more than one reason. If multiple abort reasons are supplied by the
application or resource managers, then the coordinating transaction manager will
make an arbitrary decision and return one reason.

$ABORT_TRANS will not complete asynchronously until all resource managers
in the same process have acknowledged phase 2 of the 2-phase commit processing
and DECdtm quotas charged for the transaction have been returned.

Required Privileges
None

Required Quota
ASTLM

SYS-5

| System Service Descriptions
$ABORT_TRANS

Related Services

$ABORT_TRANSW, $SEND_TRANS, $SEND_TRANSW, $START_TRANS,

$START_TRANSW

For more information, see the chapter on DECdtm services in the Introduction to

VMS System Services.

Condition Values Returned

SS$_NORMAL
SS$_SYNCH

SS$_ACCVIO
SS$_BADPARAM

SS$_EXASTLM
SS$_ILLEFC

SS$_INSFMEM
SS$_NOCURTID

SS$_NOSUCHTID
SS$_WRONGSTATE

The operation was successfully queued.

The synchronous operation completed
successfully.

The IOSB or TID cannot be read by the caller, or
the IOSB cannot be written by the caller.

The options flags are invalid, or an invalid abort
reason code was specified.

The process has exceeded its AST limit quota.
The efn argument specifies an illegal flag
number.

There is insulfficient system dynamic memory for
the operation.

The calling process does not currently have a
default transaction.

The designated TID is unknown.

The transaction is in the wrong state for the

attempted operation. The application has already
called $END_TRANS.

Condition Values Returned in the 1/0 Status Block

Same as those returned in RO. A value of SS$ NORMAL returned in the I/O
status block indicates that the service completed successfully.

SYS-6

System Service Descriptions
$SABORT_TRANSW

SABORT_TRANSW—Abort Transaction and Wait

Format

Aborts a transaction and waits.

$ABORT_TRANSW completes synchronously; that is, it returns to the caller after
the request has completed.

For asynchronous completion, use the Abort Transaction (JABORT_TRANS)
service, which returns without waiting for the operation to complete.

In all other respects, SABORT_TRANSW is identical to ABORT_TRANS. For all
other information about the $ABORT_TRANSW service, refer to the section on
$ABORT_TRANS.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$ABORT_TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[reason]]

SYS-7

System Service Descriptions
$ADD_HOLDER

$ADD_HOLDER—Add Holder Record to Rights Database

Adds a specified holder record to a target identifier.

Format
SYS$ADD_HOLDER id ,holder ,[attrib]
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.
Arguments
id
VMS Usage: rights_id
type: longword (unsigned)
access: read only

mechanism: by value

Target identifier granted to the specified holder when $ADD_HOLDER completes
execution. The id argument is a longword containing the binary value of the
target identifier.

holder

VMS Usage: rights_holder

type: quadword (unsigned)
access: read only

mechanism: by reference

Holder identifier that is granted access to the target identifier when $ADD_
HOLDER completes execution. The holder argument is the address of a
quadword data structure that consists of a longword containing the holder’s
UIC identifier followed by a longword containing a value of 0.

attrib

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Attributes to be placed in the holder record when the $ADD_HOLDER completes
execution. The attrib argument is a longword containing a bit mask specifying
the attributes. A holder is granted a spemﬁed attribute only if the target
identifier has the attribute.

SYS-8

System Service Descriptions
$ADD_HOLDER

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($}KGBDEF). The
symbolic name for each bit position is listed in the following table.

Bit Position Meaning When Set
KGB$V_DYNAMIC Allows the unprivileged holder to add or remove the
identifier from the process rights list

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier

Description

The Add Holder Record to Rights Database service registers the specified user as
a holder of the specified identifier with the rights database.

Required Privileges

You need write access to the rights database to use this service. If the database is
in SYS$SYSTEM, which is the default, you need SYSPRV privilege to grant write
access to the database.

Required Quota
None

Related Services

$ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_
RDB, $FORMAT _ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The holder argument cannot be read by the
caller.

SS$_BADPARAM The specified attributes contain invalid attribute
flags.

SS$_DUPIDENT The specified holder already exists in the rights
database for this identifier.

SS$_INSFMEM The process dynamic memory is insufficient for
opening the rights database.

SS$_IVIDENT The specified identifier or holder is of an invalid

format, the specified holder is 0, or the specified
identifier and holder are equal.

SS$_NOSUCHID The specified identifier does not exist in the
rights database, or the specified holder identifier
does not exist in the rights database.

RMS$_PRV The user does not have write access to the rights
database.

SYS-9

System Service Descriptions
$ADD_HOLDER

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

SYS-10

System Service Descriptions
SADD_IDENT

$ADD_IDENT—AdJd Identifier to Rights Database

Format

Returns

Arguments

Adds the specified identifier to the rights database.

SYS$ADD_IDENT name ,[id] ,[attrib] , [resid]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

name

VMS Usage: char-string

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Identifier name to be added to the rights database when $ADD_IDENT completes
execution. The name argument is the address of a character-string descriptor
pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters, including
dollar signs ($) and underscores (_), and must contain at least one nonnumeric
character. Any lowercase characters specified are automatically converted to
uppercase. '

id

VMS Usage: rights_id

type: longword (unsigned)
access: read only

mechanism: by value

Identifier to be created when $ADD_IDENT completes execution. The id
argument is a longword containing the binary value of the identifier to be
created.

If the id argument is omitted, $ADD_IDENT selects a unique available value
from the general identifier space and returns it in resid, if it is specified.

attrib

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

SYS-11

System Service Descriptions
$SADD_IDENT

Description

Attributes placed in the identifier’s record when $ADD_IDENT completes
execution. The attrib argument is a longword containing a bit mask that
specifies the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($}KGBDEF). The
symbolic name for each bit position is listed in the following table.

Bit Position Meaning When Set
KGB$V_DYNAMIC Allows the unprivileged holder to add or remove the
identifier from the process rights list.

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier.

resid

VMS Usage: rights_id

type: longword (unsigned)
access: write only

mechanism: by reference

Identifier value assigned by the system when $ADD_IDENT completes execution.
The resid argument is the address of a longword in which the system-assigned
identifier value is written.

The Add Identifier to Rights Database service adds the specified identifier to the
rights database.

Required Privileges

You need write access to the rights database to use this service. If the database is
in SYS$SYSTEM, which is the default, you need SYSPRV privilege to grant write
access to the database.

Required Quota
None

Related Services

$ADD_HOLDER, $ASCTOID, $CHANGE_ACL, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_

RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS-12

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The name argument cannot be read by the
caller, or the resid argument cannot be written
by the caller.

SS$_BADPARAM
SS$_DUPIDENT
SS$_DUPLNAM
SS$_INSFMEM

SS$_IVIDENT
RMS$_PRV

System Service Descriptions
$SADD_IDENT

The specified attributes contain invalid attribute
flags.

The specified identifier already exists in the
rights database.

The specified identifier name already exists in
the rights database.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management

Services Manual.

SYS-13

System Service Descriptions

$ADJSTK

$ADJSTK—Adjust Outer Mode Stack Pointer

Format

Returns

Arguments

SYS-14

Modifies the stack pointer for a less privileged access mode. The VMS operating
system uses this service to modify a stack pointer for a less privileged access
mode after placing arguments on the stack.

SYS$ADJSTK [acmode] ,[adjust] ,newadr

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

acmode

VMS Usage: access_mode

type: - longword (unsigned)
access: read only

mechanism: by value

Access mode for which the stack pointer is to be adjusted. The acmode argument
is this longword value. If not specified, the default value 0 (kernel access mode)
is used.

adjust

VMS Usage: word_signed
type: word (signed)
access: read only

mechanism: by value

Signed adjustment value used to modify the value specified by the newadr
argument. The adjust argument is a signed longword, which is the adjustment
value.

Only the low-order word of this argument is used. The value specified by the
low-order word is added to or subtracted from (depending on the sign) the value
specified by the newadr argument. The result is loaded into the stack pointer for
the specified access mode.

If the adjust argument is not specified or is specified as 0, the stack pointer is
loaded with the value specified by the newadr argument.

For additional information about the various combinations of values for adjust
and newadpr, see the Description section.

Description

System Service Descriptions

SADJSTK
newadr
VMS Usage: address
type: longword (unsigned)
access: modify

mechanism: by reference

Value that $ADJUST is to adjust. The newadr argument is the address of this
longword value. The value specified by this argument is both read and written
by $ADJSTK. The $ADJSTK service reads the value specified and adjusts it by
the value of the adjust argument (if specified). After this adjustment is made,
$ADJSTK writes the adjusted value back into the longword specified by newadr
and then loads the stack pointer with the adjusted value.

If the value specified by newadr is 0, the current value of the stack pointer is
adjusted by the value specified by adjust. This new value is then written back
into newadr, and the stack pointer is modified.

For additional information about the various combinations of values for adjust
and newadr, see the Description section.

The Adjust Outer Mode Stack Pointer service modifies the stack pointer for a less
privileged access mode. The operating system uses this service to modify a stack
pointer for a less privileged access mode after placing arguments on the stack.

Combinations of zero and nonzero values for the adjust and newadr arguments
provide the following results:

If the adjust And the Value

Argument Specified by The Stack

Specifies: newadr lIs: Pointer Is:

0 0 Not changed

0 An address Loaded with the address specified
A value 0 Adjusted by the specified value

A value An address Loaded with the specified address,

adjusted by the specified value

In all cases, the updated stack pointer value is written into the value specified by
the newadr argument.

Required Privileges

None

Required Quota
None

Related Services

$ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

SYS-15

System Service Descriptions
$ADJSTK

Condition Values Returned
SS$_NORMAL

SS$_ACCVIO

SS$_NOPRIV

SYS-16

The service completed successfully.

The value specified by newadr or a portion of
the new stack segment cannot be written by the
caller.

The specified access mode is equal to or more
privileged than the calling access mode.

System Service Descriptions
$ADJWSL

$ADJWSL—Adjust Working Set Limit

Format

Returns

Arguments

Description

Adjusts a process’s current working set limit by the specified number of pages and
returns the new value to the caller. The working set limit specifies the maximum
number of process pages that can be resident in physical memory.

SYS$SADJWSL [pagent] [wsetim]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pagcent

VMS Usage: longword_signed
type: longword (signed)
access: read only

mechanism: by value

Signed adjustment value specifying the number of pages to add to (if positive) or
subtract from (if negative) the current working set limit. The pagent argument
is this signed longword value.

If pagent is not specified or is specified as 0, no adjustment is made and the
current working set limit is returned in the longword specified by the wsetlm
argument (if this argument is specified).

wsetim

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

Value of the working set limit, returned by $ADJWSL. The wsetlm argument is
the address of this longword value. The wsetlm argument specifies the newly
adjusted value if pagent is specified, and it specifies the old, unadjusted value if
pagent is not specified.

The Adjust Working Set Limit service adjusts a process’s current working set
limit by the specified number of pages and returns the new value to the caller.
The working set limit specifies the maximum number of process pages that can
be resident in physical memory.

SYS-17

System Service Descriptions

$ADJWSL

If a program attempts to adjust the working set limit beyond the system-defined
upper and lower limits, no error condition is returned; instead, the working set
limit is adjusted to the maximum or minimum size allowed.

Required Privileges
None

Required Quota

The initial value of a process’s working set limit is controlled by the working set
default (WSDEFAULT) quota. The maximum value to which it can be increased
is controlled by the working set extent (WSEXTENT) quota; the minimum value
to which it can be decreased is limited by the SYSGEN parameter MINWSCNT.

Related Services

$ADJSTK, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SYS-18

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The longword specified by wsetlm cannot be
written by the caller.

System Service Descriptions
$ALLOC

SALLOC—Allocate Device

Format

Returns

Arguments

Allocates a device for exclusive use by a process and its subprocesses. No other
process can allocate the device or assign channels to it until the image that called
$ALLOC exits or explicitly deallocates the device with the Deallocate Device
($DALLOC) service.

SYS$ALLOC devnam ,[phylen] ,[phybuf] ,[acmode] ,[flags]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

devham

VMS Usage: device_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Device name of the device to be allocated. The devnam argument is the address
of a character string descriptor pointing to the device name string.

The string can be either a physical device name or a logical name. If it is a logical
name, it must translate to a physical device name.

phylen

VMS Usage: word_unsigned
type: word (unsigned)
access: write only

mechanism: by reference

Word into which $ALLOC writes the length of the device name string for the
device it has allocated. The phylen argument is the address of this word.

phybuf

VMS Usage: device_name

type: character-coded text string
access: write only

mechanism: by descriptor—fixed length string descriptor

Buffer into which $ALLOC writes the device name string for the device it has
allocated. The phybuf argument is the address of a character string descriptor
pointing to this buffer.

SYsS-19

System Service Descriptions

$ALLOC

Description

SYS-20

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode to be associated with the allocated device. The acmode argument is
a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. Only equal
or more privileged access modes can deallocate the device.

flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Longword of status flags indicating whether to interpret the devnam argument
as the type of device to be allocated. Only one flag exists, bit 0. When it is set,
the $ALLOC service allocates the first available device that has the type specified
in the devnam argument.

This feature is available for the following mass storage devices.

"RA60 RAS80 RAS81 RC25
RCF25 RKO06 RKO7 RLO1
RLO2 RMO3 RMO5 RMS80
RP04 RP05 RP06 RPO7
RXO01 RX02 TA78 TA81
TS11 TU16 TU58 TU77
TU78 TU80 TU81

The Allocate Device service allocates a device for exclusive use by a process and
its subprocesses. No other process can allocate the device or assign channels to it
until the image that called $ALLOC exits or explicitly deallocates the device with
the Deallocate Device ($DALLOC) service.

When a process calls the Assign I/O Channel ($ASSIGN) service to assign a
channel to a nonshareable, nonspooled device, such as a terminal or line printer,
the device is implicitly allocated to the process.

You can use this service only to allocate devices that either exist on the host
system or are made available to the host system in a VAXcluster environment.
Required Privileges

The calling process must have ALLSPOOL privilege to allocate a spooled device.

Required Quota
None.

Related Services

$ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL
SS$_BUFFEROVF
SS$_DEVALRALLOC

SS$_ACCVIO

SS$_DEVALLOC

SS$_DEVMOUNT
SS$_DEVOFFLINE
SS$_IVDEVNAM
SS$_IVLOGNAM
SS$_IVSTSFLG
SS$_NODEVAVL

SS$_NONLOCAL
SS$_NOPRIV

SS$_NOSUCHDEV

SS$_TEMPLATEDEV

System Service Descriptions
$ALLOC

The service completed successfully.

The service completed successfully. The physical
name returned overflowed the buffer provided,
and has been truncated.

The service completed successfully. The device
was already allocated to the calling process.

The device name string, string descriptor, or
physical name buffer descriptor cannot be read
by the caller, or the physical name buffer cannot
be written by the caller.

The device is already allocated to another
process, or an attempt to allocate an unmounted
shareable device failed because other processes
had channels assigned to the device.

The specified device is currently mounted and
cannot be allocated, or the device is a mailbox.

The specified device is marked off line.
The device name string contains invalid
characters, or no device name string was
specified.

The device name string has a length of 0 or has
more than 63 characters.

The bits set in the longword of status flags are
invalid.

The specified device in a genéric search exists
but is allocated to another user.

The device is on a remote node.

The requesting process attempted to allocate a
spooled device and does not have the required
privilege, or the device protection or access
control list (or both) denies access.

The specified device does not exist in the host
system. This error is usually the result of a
typographical error.

The process attempted to allocate a template
device; a template device cannot be allocated.

The $ALLOC service can also return any condition value returned by $ENQ. For
a list of these condition values, see the description of $ENQ.

SYS-21

System Service Descriptions

$ASCEFC

$ASCEFC—Associate Common Event Flag Cluster

Format

Returns

Arguments

SYS-22

Associates a named common event flag cluster with a process to execute the
current image and to be assigned a process-local cluster number for use with
other event flag services. If the named cluster does not exist but the process has
suitable privilege, the service creates the cluster.

SYS$ASCEFC efn ,name ,[prot] ,[perm]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0. Condition values that this service
returns are listed in the Condition Values Returned section.

efn

VMS Usage: ef number

type: longword (unsigned)
access: read only

mechanism: by value

Number of any event flag contained within the desired common event flag
cluster. The efn argument is a longword value specifying this number; however,
$ASCEFC uses only the low-order byte.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127. (Clusters 0 and 1 are process-local event flag clusters.)

To associate with common event flag cluster 2, specify any flag number in the
cluster (64 to 95); to associate with common event flag cluster 3, specify any event
flag number in the cluster (96 to 127).

name

VMS Usage: ef_cluster_name

type: character-coded text string
access: read only

mechanism: by descriptor-fixed length string descriptor

Name of the common event flag cluster with which to associate. The name
argument is the address of a character string descriptor pointing to this name
string.

Common event flag clusters are accessible only to processes having the same
UIC group number, and each such process must associate with the cluster using
the same name (specified in the name argument). The VMS operating system
implicitly associates the group UIC number with the name, making the name
unique to a UIC group.

Description

System Service Descriptions

$ASCEFC
prot
VMS Usage: boolean
type: byte (unsigned)
access: read only

mechanism: by value

Protection specifier that allows or disallows access to the common event flag
cluster for processes with the same UIC group number as the creating process.
The prot argument is a longword value, which is interpreted as Boolean.

The default value O specifies that any process with the same UIC group number
as the creating process may access the event flag cluster. The value 1 specifies
that only processes having the UIC of the creating process can access the event
flag cluster.

perm
VMS Usage: boolean

type: byte (unsigned)
access: read only

mechanism: by value

Permanent specifier that marks a common event flag cluster as either permanent
or temporary. The perm argument is a longword value, which is interpreted as
Boolean.

The default value 0 specifies that the cluster is temporary. The value 1 specifies
that the cluster is permanent.

The Associate Common Event Flag Cluster service associates a named common
event flag cluster with a process for the execution of the current image and to be
assigned a process-local cluster number for use with other event flag services.

When a process associates with a common event flag cluster, that cluster’s
reference count is increased by 1. The reference count is decreased when a
process disassociates from the cluster, whether explicitly with the Disassociate
Common Event Flag Cluster (SDACEFC) service or implicitly at image exit.

Temporary clusters are automatically deleted when their reference count goes
to 0; you must explicitly mark permanent clusters for deletion with the Delete
Common Event Flag Cluster ($DLCEFC) service.

Because the $ASCEFC service automatically creates the common event flag
cluster if it does not already exist, cooperating processes need not be concerned
with which process executes first to create the cluster. The first process to call
$ASCEFC creates the cluster and the others associate with it regardless of the
order in which they call the service.

The initial state for all event flags in a newly created common event flag cluster
is 0.

If a process has already associated a cluster number with a named common event
flag cluster and then issues another call to $ASCEFC with the same cluster
number, the service disassociates the number from its first assignment before
associating it with its second.

SYS-23

System Service Descriptions

$ASCEFC

If you previously called any system service that will set an event flag (and the
event flag is contained within the cluster being reassigned), the event flag will be
set in the newly associated named cluster, not in the previously associated named
cluster.

For more information about common event flag clusters in shared memory, refer
to the Introduction to VMS System Services.

Required Privileges

The calling process must have PRMCEB privilege to create a permanent common
event flag cluster.

Required Quota

Creation of temporary common event flag clusters uses the quota of the process
for timer queue entries (TQELM); the creation of a permanent cluster does not
affect the quota. The quota is restored to the creator of the cluster when all
processes associated with the cluster have disassociated.

Related Services

$CLREF, $DACEFC, $DLCEFC, $READEF, $SETEF, $WAITFR, $WFLAND,
$WFLOR

Condition Values Returned

SYS-24

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The cluster name string or string descriptor
cannot be read by the caller.

SS$_EXPORTQUOTA The process has exceeded the number of event

flag clusters with which processes on this port of
the multiport (shared) memory can associate.
SS$_EXQUOTA The process has exceeded its timer queue

entry quota; this quota controls the creation
of temporary common event flag clusters.

SS$_INSFMEM The system dynamic memory is insufficient for
completing the service.
SS$_ILLEFC You specified an illegal event flag number. The

cluster number must be in the range of event
flags 64 through 127.

SS$_INTERLOCK The bit map lock for allocating common event
flag clusters from the specified shared memory is
locked by another process.

SS$_IVLOGNAM The cluster name string has a length of 0 or has
more than 15 characters.

SS$_NOPRIV

SS$_NOSHMBLOCK

SS$_SHMNOTCNT

System Service Descriptions
$ASCEFC

The process does not have the privilege to create
a permanent cluster; the process does not have
the privilege to create a common event flag
cluster in memory shared by multiple processors,
or the protection applied to an existing cluster by
its creator prohibits association.

The common event flag cluster has no shared
memory control block available.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

SYS-25

System Service Descriptions

$ASCTIM

$ASCTIM—Convert Binary Time to ASCII String

Format

Returns

Arguments

SYS-26

Converts an absolute or delta time from 64-bit system time format to an ASCII
string.

SYSS$ASCTIM [timlen] ,timbuf ,[timadr] ,[cvtflg]

VMS Usage: cond_value

type: longword (unsigned)
access: - write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

timien :
VMS Usage: word_unsigned
type: word (unsigned)
access: write only

mechanism: by reference

Length (in bytes) of the ASCII string returned by $ASCTIM. The timlen
argument is the address of a word containing this length.

timbuf

VMS Usage: time_name

type: character-coded text string
access: write only

mechanism: by descriptor—fixed length string descriptor

Buffer into which $ASCTIM writes the ASCII string. The timbuf argument is
the address of a character string descriptor pointing to the buffer.

The buffer length specified in the timbuf argument, together with the cvtflg
argument, controls what information is returned.

timadr

VMS Usage: date_time
type: quadword
access: read only

mechanism: by reference

Time value that $ASCTIM is to convert. The timadr argument is the address
of this 64-bit time value. A positive time value represents an absolute time. A
negative time value represents a delta time. If you specify a delta time, it must
be less than 10,000 days.

If timadr is not specified or is specified as 0 (the default), $ASCTIM returns the
current date and time. .

Description

System Service Descriptions

SASCTIM
cvifig
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Conversion indicator specifying which date and time fields $ASCTIM should
return. The evtflg argument is a longword value, which is interpreted as
Boolean. The value 1 specifies that $ASCTIM should return only the hour,
minute, second, and hundredths-of-second fields. The default value 0 specifies
that $ASCTIM should return the full date and time.

The Convert Binary Time to ASCII String service converts an absolute or delta
time from 64-bit system time format to an ASCII string. The service executes at
the access mode of the caller and does not check whether address arguments are
accessible before it executes. Therefore, an access violation causes an exception
condition if the input time value cannot be read or the output buffer or buffer
length cannot be written.

This service does not check the length of the argument list, and therefore cannot
return the SS$_INSFARG (insufficient arguments) condition value.

The ASCII strings returned have the following formats:
* Absolute Time: dd-mmm-yyyy hh:mm:ss.cc
¢ Delta Time: dddd hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for
each field in the absolute time and delta time formats.

Length
Field (Bytes) Contents Range of Values
dd 2 Day of month 1-31
- 1 Hyphen ' Required syntax
mmm 3 Month JAN, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC

- 1 Hyphen Required syntax
yyyy 4 Year 1858-9999
blank n Blank Required syntax
hh 2 Hour 00-23

1 Colon Required syntax
mm 2 Minutes 00-59

1 Colon Required syntax
ss 2 Seconds 00-59

1 Period Required syntax
cc 2 Hundredths-of- 00-99

second

dddd 4 Number of days 000-9999

(in 24-hr units)

Month abbreviations must be uppercase.

SYS-27

System Service Descriptions
$ASCTIM

The hundredths-of-second field now represents a true fraction; for example, the
string .1 represents ten-hundredths of a second (one-tenth of a second); the string
.01 represents one-hundredth of a second.

Also, you can add a third digit to the hundredths-of-second field; this
thousandths-of-second digit is used to round the hundredths-of-second value.
Digits beyond the thousandths-of-second digits are ignored.

The results of specifying some possible combinations for the values of the cvtflg
and timbuf arguments are as follows.

Buffer Length CVTFLG Information
Time Value Specified Argument Returned
Absolute 23 0 Date and time
Absolute 12 0 Date
Absolute 11 1 Time
Delta 16 0 Days and time
Delta 11 1 Time

Required Privileges
None

Required Quota
None

Related Services

$BINTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_BUFFEROVF The buffer length specified in the timbuf
argument is too small.

SS$_IVTIME The specified delta time is equal to or greater

than 10,000 days.

SYS-28

System Service Descriptions
$ASCTOID

$ASCTOID—Translate Identifier Name to Identifier

Format

Returns

Arguments

Translates the specified identifier name into its binary identifier value.

SYS$ASCTOID name fid] ,[attrib]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

name

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Identifier name translated when $ASCTOID completes execution. The name
argument is the address of a character-string descriptor pointing to the identifier
name.

id

VMS Usage: rights_id

type: longword (unsigned)
access: write only

mechanism: by reference

Identifier value resulting when $ASCTOID completes execution. The id argument
is the address of a longword in which the identifier value is written.

attrib

VMS Usage: mask_longword
type: longword (unsigned)
access: write only

mechanism: by reference

Attributes associated with the identifier returned in id when $ASCTOID
completes execution. The attrib argument is the address of a longword
containing a bit mask specifying the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro $KGBDEF library. The
symbolic names for each bit position are listed in the following table.

SYS-29

System Service Descriptions

$SASCTOID

Description

Bit Position Meaning When Set
KGB$V_DYNAMIC Allows the unprivileged holder to add or remove the
identifier from the process rights list.

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier.

The Translate Identifier Name to Identifier service converts the specified
identifier name to its binary identifier value. Note that when you use wildcards
with this service, the records are returned alphabetically by identifier name.

Required Privileges
None

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $CHANGE_ACL, $CHECK_ACCESS,
$CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER,
$FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS-30

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The name argument cannot be read by the
caller, or the id or attrib arguments cannot be
written by the caller.

SS$_INSFMEM The process dynamic memory is insufficient for
opening the rights database.

SS$_IVIDENT The specified identifier is of invalid format.

SS$_NOSUCHID The specified identifier name does not exist in
the rights database.

RMS$_PRV The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

System Service Descriptions
$ASSIGN

$ASSIGN—Assign I/0 Channel

Provides a process with an I/O channel so that input/output operations can be
performed on a device, or establishes a logical link with a remote node on a

network.
Format
SYS$ASSIGN devnam ,chan ,facmode] ,[mbxnam] ,[flags]
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section. '
Arguments
devnam
VMS Usage: device_name
type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name of the device to which $ASSIGN is to assign a channel. The devnam
argument is the address of a character string descriptor pointing to the device
name string.

If the device name contains a double colon (::), the system assigns a channel to
the first available network device (NET:) and performs an access function on the

network.

chan

VMS Usage: channel

type: word (unsigned)
access: write only

mechanism: by reference

Number of the channel that is assigned. The chan argument is the address of a
word into which $ASSIGN writes the channel number.

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode to be associated with the channel. The acmode argument specifies
the access mode. The $PSLDEF macro defines the following symbols for the four
access modes.

SYS-31

System Service Descriptions

$ASSIGN

SYS-32

Symbol Access Mode Numeric Value
PSL$C_KERNEL Kernel 0
PSL$C_EXEC Executive 1
PSL$C_SUPER Supervisor 2
PSL$C_USER User 3

The specified access mode and the access mode of the caller are compared. The
less privileged (but the higher numeric valued) of the two access modes becomes
the access mode associated with the assigned channel. I/O operations on the
channel can be performed only from equal and more privileged access modes. For
more information, see the section on access modes in the Introduction to VMS
System Services.

mbxnam

VMS Usage: device_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Logical name of the mailbox to be associated with the device. The mbxnam
argument is the address of a character string descriptor pointing to the logical
name string.

If you specify mbxnam as 0, no mailbox is associated with the device. This is the
default.

You must specify the mbxnam argument when performing a nontransparent,
task-to-task, DECnet-to-VAX operation.

Only the owner of a device can associate a mailbox with the device; the owner of a
device is the process that has allocated the device, whether implicitly or explicitly.
Only one mailbox can be associated with a device at any one time.

A mailbox cannot be associated with a device if the device has forelgn (DEV$M_
FOR) or shareable (DEV$M_SHR) characteristics.

A mailbox is disassociated from a device when the channel that associated it is
deassigned.

If a mailbox is associated with a device, the device driver can send status
information to the mailbox. For example, if the device is a terminal, this
information might indicate dialup, hangup, or the reception of unsolicited input;
if the device is a network device, it might indicate that the network is connected
or perhaps that the line is down.

For details on the nature and format of the information returned to the mailbox,
refer to the VMS I/0 User’s Reference Manual: Part 1.

flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

The flags argument is an optional device-specific argument. It is a longword bit
mask. For more information regarding the applicability of the flags argument for
a particular device, see the VMS I/0 User’s Reference Manual: Part I and the
VMS I/0 User’s Reference Manual: Part 1.

System Service Descriptions
$ASSIGN

Description

The Assign I/O Channel service (1) provides a process with an I/O channel so
that input/output operations can be performed on a device. This service (2)
establishes a logical link with a remote node on a network.

Channels remain assigned until they are explicitly deassigned with the Deassign
I/0O Channel ($DASSGN) service or, if they are user-mode channels, until the
image that assigned the channel exits.

The $ASSIGN service establishes a path to a device but does not check whether
the caller can actually perform input/output operations to the device. Privilege
and protection restrictions can be applied by the device drivers.

Required Privileges

The calling process must have NETMBX privilege to perform network operations
and system dynamic memory is required if the target device is on a remote
system.

Required Quota

If the target of the assignment is on a remote node, the process needs sufficient
buffer quota to allocate a network control block.

Related Services

$ALLOC, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_REMOTE The service completed successfully. A logical link
is established with the target on a remote node.

SS$_ABORT A physical line went down during a network

connect operation.

SS$_ACCVIO The device or mailbox name string or string
descriptor cannot be read by the caller, or the
channel number cannot be written by the caller.

SS$_CONNECFAIL For network operations, the connection to a
network object timed out or failed.
SS$_DEVACTIVE You specified a mailbox name, but a mailbox is
already associated with the device.
SS$_DEVALLOC The device is allocated to another process.
S_DEVNOTMBX You specified a logical name for the associated

mailbox, but the logical name refers to a device
that is not a mailbox.

SS$_EXQUOTA The target of the assignment is on a remote node
and the process has insufficient buffer quota to
allocate a network control block.

SS$_FILALRACC For network operations, a logical link already
exists on the channel.

SYS-33

System Service Descriptions

$ASSIGN

SYS-34

SS$_DEVOFFLINE

SS$_INSFMEM

SS$_INVLOGIN

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_LINKEXIT

SS$_NOIOCHAN
SS$_NOLINKS

SS$_NOPRIV

SS$_NOSUCHDEV

SS$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_NOSUCHUSER

SS$_PROTOCOL

SS$_REJECT

For network operations, the physical link is
shutting down.

The target of the assignment is on a remote node
and there is insufficient system dynamic memory
to complete the request.

For network operations, the access control
information was found to be invalid at the remote
node.

No device name was specified, the logical name
translation failed, or the device or mailbox name
string contains invalid characters. If the device
name is a target on a remote node, this status
code indicates that the Network Connect Block
has an invalid format.

The device or mailbox name string has a length
of 0 or has more than 63 characters.

For network operations, the network partner
task was started, but exited before confirming
the logical link (that is, $ASSIGN to SYS$NET).

No I/O channel is available for assignment.

For network operations, no logical links are
available. The maximum number of logical links
as set for the NCP executor MAXIMUM LINKS
parameter was exceeded.

For network operations, the issuing task does not
have the required privilege to perform network
operations or to confirm the specified logical link.

The specified device or mailbox does not exist,
or, for DECnet-to-VAX operations, the network
device driver is not loaded (for example, the
DECnet-to-VAX software is not currently running
on the local VAX node).

The specified network node is nonexistent or
unavailable.

For network operations, the network object
number is unknown at the remote node; for
a TASK= connect, the named DCL command
procedure file cannot be found at the remote
node.

For network operations, the remote node could
not recognize the login information supplied with
the connection request.

For network operations, a network protocol
error occurred, most likely because of a network
software error.

The network connect was rejected by the network
software or by the partner at the remote node,
or the target image exited before the connect
confirm could be issued.

SS$_REMRSRC

SS$_SHUT

SS$_THIRDPARTY

SS$_TOOMUCHDATA

SS$_UNREACHABLE

System Service Descriptions
$ASSIGN

For network operations, the link could not be
established because system resources at the
remote node were insufficient.

For network operations, the local or remote node
is no longer accepting connections.

For network operations, the logical link
connection was terminated by a third party
(for example, the system manager).

For network operations, the task specified too
much optional or interrupt data.

For network operations, the remote node is
currently unreachable.

SYS-35

System Service Descriptions

$BINTIM

$BINTIM—Convert ASCII String to Binary Time

Format

Returns

Arguments

Converts an ASCII string to an absolute or delta time value in the system 64-bit
time format suitable for input to the Set Timer ($SETIMR) or Schedule Wakeup
($SCHDWK) service.

SYS$BINTIM timbuf ,timadr

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

timbuf

VMS Usage: time_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Buffer that holds the ASCII time to be converted. The timbuf argument specifies

_ the address of a character string descriptor pointing to the VMS time string. The

Description

SYS-36

VMS time string specifies the absolute or delta time to be converted by $BINTIM.
The VMS Data Type Table describes the VMS time string.

timadr

VMS Usage: date_time
type: quadword
access: write only

mechanism: by reference

Time value that $BINTIM has converted. The timadr argument is the address of
the VMS quadword system time, which receives the converted time.

The Convert ASCII String to Binary Time service converts an ASCII string to an
absolute or delta time value in the system 64-bit time format suitable for input to
the Set Timer ($SETIMR) or Schedule Wakeup ($SCHDWK) service. The service
executes at the access mode of the caller and does not check whether address
arguments are accessible before it executes. Therefore, an access violation causes
an exception condition if the input buffer or buffer descriptor cannot be read or
the output buffer cannot be written.

This service does not check the length of the argument list and therefore cannot
return the SS$_INSFARG (insufficient arguments) error status code. If the
service does not receive enough arguments (for example, if you omit required
commas in the call), errors may result.

System Service Descriptions
$BINTIM

The required ASCII input strings have the following format:
* Absolute Time: dd-mmm-yyyy hh:mm:ss.cc
* Delta Time: dddd hh:mm:ss.cc

The following table lists the length (in bytes), contents, and range of values for
each field in the absolute time and delta time formats.

Length
Field (Bytes) Contents Range of Values
dd 2 Day of month 1-31
- 1 Hyphen Required syntax
mmm 3 Month - JAN, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC

- 1 Hyphen Required syntax
yyyy 4 Year 1858-9999
blank n Blank Required syntax
hh 2 Hour 00-23

1 Colon Required syntax
mm 2 Minutes 00-59

1 Colon Required syntax
S8 2 Seconds 00-59

1 Period Required syntax
cc 2 Hundredths of a 00-99

second

dddd 4 Number of days 000-9999

(in 24-hour units)

Note that month abbreviations must be uppercase and that the hundredths-of-
second field represents a true fraction. For example, the string .1 represents
ten-hundredths of a second (one-tenth of a second) and the string .01 represents
one-hundredth of a second. Note also that you can add a third digit to the
hundredths-of-second field; this thousandths-of-second digit is used to round the
hundredths-of-second value. Digits beyond the thousandths-of-second digit are
ignored.

The following two syntax rules apply to specifying the ASCII input string:

¢ Youcan omit any of the date and time fields.

For absolute time values, the $BINTIM service supplies the current system
date and time for nonspecified fields. Trailing fields can be truncated. If
leading fields are omitted, you must specify the punctuation (hyphens, blanks,
colons, periods). For example, the following string results in an absolute time
of 12:00 on the current day:

-- 12:00:00.00

SYS-37

System Service Descriptions

$BINTIM

For delta time values, the $BINTIM service uses a default value of 0

for unspecified hours, minutes, and seconds fields. Trailing fields can be
truncated. If you omit leading fields from the time value, you must specify
the punctuation (blanks, colons, periods). If the number of days in the delta
time is 0, you must specify a 0. For example, the following string results in a
delta time of 10 seconds: '

0 ::10
Note the space between the 0 in the day field and the two colons.

¢ For both absolute and delta time values, there can be any number of leading
blanks, and any number of blanks between fields normally delimited by
blanks. However, there can be no embedded blanks within either the date or
time field.

Required Privileges

None

Required Quota
None

Related Services

$ASCTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

Example

SYS-38

SS$_NORMAL The service completed successfully.

SS$_IVTIME The syntax of the specified ASCII string is
invalid, or the time component is out of range.

Column 1 of the following table lists legal input strings to the $BINTIM service;
column 2 lists the $BINTIM output of these strings translated through the
Convert Binary Time to ASCII String ($ASCTIM) system service. The current
date is assumed to be 30-DEC-1990 04:15:28.00.

Input to $BINTIM $ASCTIM Output String
——:50 30-DEC-1990 04:50:28.00
-—1990 0:0:0.0 29-DEC-1990 00:00:00.00
30-DEC-1990 12:32:1.1161 30-DEC-1990 12:32:01.12
29-DEC-1990 16:35:0.0 29-DEC-1990 16:35:00.00
0:.1 0 00:00:00.10

0 ::.06 0 00:00:00.06

5 3:18:32.068 5 03:18:32:07

20 12: 20 12:00:00.00

05 0 05:00:00.00

System Service Descriptions
$BRKTHRU

$BRKTHRU—Breakthrough

Format

Returns

Arguments

Sends a message to one or more terminals. The $BRKTHRU service completes
asynchronously; that is, it returns to the caller after queuing the message request,
without waiting for the message to be written to the specified terminals.

For synchronous completion, use the Breakthrough and Wait ($BRKTHRUW)
service. The $BRKTHRUW service is identical to the $BRKTHRU service in
every way except that $BRKTHRUW returns to the caller after the message is
written to the specified terminals.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

The $BRKTHRU service supersedes the Broadcast ($BRDCST) service. When
writing new programs, you should use $BRKTHRU instead of $BRDCST. When
updating old programs, you should change all uses of $BRDCST to $BRKTHRU.

SYS$BRKTHRU [efn] ,msgbuf [,sendto] [,sndtyp] [,iosb] [,carcon] [,flags] [,reqid]
[fimout] [,astadr] [,astprm]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0. Condition values that this service
returns are listed in the Condition Values Returned section.

efn

VMS Usage: ef_number

type: longword (unsigned)
access: read only

mechanism: by value

Number of the event flag to be set when the message has been written to the
specified terminals. The efn argument is a longword containing this number;
however, $BRKTHRU uses only the low-order byte.

When the message request is queued, $BRKTHRU clears the specified event
flag (or event flag 0 if efn is not specified). Then, after the message is sent,
$BRKTHRU sets the specified event flag (or event flag 0).

msgbuf

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Message text to be sent to the speciﬁéd terminals. The msgbuf argument is the
address of a descriptor pointing to this message text.

SYS-39

System Service Descriptions
$BRKTHRU

The $BRKTHRU service allows the message text to be as long as 16,350 bytes;
however, both the SYSGEN parameter MAXBUF and the caller’s available
process space can affect the maximum length of the message text.

sendto

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name of a single device (terminal) or single user name to which the message is
to be sent. The sendto argument is the address of a descriptor pointing to this
name.

The sendto argument is used in conjunction with the sndtyp argument.
When sndtyp specifies BRK$C_DEVICE or BRK$C_USERNAME, the sendto
argument is required.

If you do not specify sndtyp or if sndtyp does not specify BRK$C_DEVICE
or BRK$C_USERNAME, you should not specify sendto; if sendto is specified,
$BRKTHRU ignores it.

sndtyp

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Terminal type to which $BRKTHRU is to send the message. The sndtyp
argument is a longword value specifying the terminal type.

Each terminal type has a symbolic name, which is defined by the $BRKDEF
macro. The following table describes each terminal type.

Terminal Type Description

BRK$C_ALLUSERS When specified, $BRKTHRU sends the message to all
users who are currently logged in to the system.

BRK$C_ALLTERMS When specified, $BRKTHRU sends the message to all
terminals at which users are logged in and to all other
terminals that are connected to the system except
those with the AUTOBAUD characteristic set.

BRK$C_DEVICE When specified, S BRKTHRU sends the message to
a single terminal; you must specify the name of the
terminal by using the sendto argument.

BRK$C_USERNAME When specified, $BRKTHRU sends the message to a
user with a specified user name; you must specify the
user name by using the sendto argument.

iosb

VMS Usage: io_status_block

type: quadword (unsigned)
access: write only

mechanism: by reference

SYS-40

System Service Descriptions
$BRKTHRU

I/O status block that is to receive the final completion status. The iosb argument
is the address of this quadword block.

When the iosb argument is specified, $BRKTHRU sets the quadword to O when
it queues the message request. Then, after the message is sent to the specified

terminals, $BRKTHRU returns four informational items, one item per word, in

the quadword I/O status block.

These informational items indicate the status of the messages sent only to
terminals and mailboxes on the local VAX node; these items do not include the
status of messages sent to terminals and mailboxes on other VAX nodes in a
VAXcluster system.

The following table shows each word of the quadword block and the informational
item it contains.

Word Informational ltem

1 A condition value describing the final completion status.

2 A decimal number indicating the number of terminals and mailboxes to
which $BRKTHRU successfully sent the message.

3 A decimal number indicating the number of terminals to which

$BRKTHRU failed to send the message because the write to the
terminals timed out.

4 A decimal number indicating the number of terminals to which
$BRKTHRU failed to send the message because the terminals were
set to the NOBROADCAST characteristic (by using the DCL command
SET TERMINAL/NOBROADCAST).

carcon

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Carriage control specifier indicating the carriage control sequence to follow the
message that $BRKTHRU sends to the terminals. The earcon argument is a
longword containing the carriage control specifier.

For a list of the carriage control specifiers that you can use in the earcon
argument, refer to the VMS I/0 User’s Reference Volume.

If you do not specify the carcon argument, BRKTHRU uses a default value of
32, which represents a space in the ASCII character set. The message format
resulting from this default value is a line feed, the message text, and a carriage
return.

The carcon argument has no effect on message formatting specified by the
BRK$M_SCREEN flag in the flags argument. See the description of the flags
argument. ‘

flags

VMS Usage: mask_longword
type: longword (unsigned)
access:; read only

mechanism: by value

SYS-41

System Service Descriptions
$BRKTHRU

Flag bit mask specifying options for the $BRKTHRU operation. The flags
argument is a longword value that is the logical OR of each desired flag option.

Each flag option has a symbolic name. The $BRKDEF macro defines the following

symbolic names.

Symbolic Name

Description

BRK$V_ERASE_LINES

BRK$M_SCREEN

BRK$M_BOTTOM

BRK$M_NOREFRESH

BRK$M_CLUSTER

When specified with the BRK$M_SCREEN flag,
BRK$V_ERASE_LINES causes a specified number of
lines to be cleared from the screen before the message
is displayed. When BRK$M_SCREEN is not also
specified, BRK$V_ERASE_LINES is ignored.

Unlike the other Boolean flags, BRK$V_ERASE_
LINES specifies a 1-byte integer in the range 0 to 24.
It -occupies the first byte in the longword flag mask.
In coding the call to $BRKTHRU, specify the desired
integer value in the OR operation with any other
desired flags.

When specified, $BRKTHRU sends screen-formatted
messages as well as messages formatted through
the use of the carcon argument. $BRKTHRU sends
screen-formatted messages to terminals with the
DEC_CRT characteristic, and it sends messages
formatted by carcon to those without the DEC_CRT
characteristic. You set the DEC_CRT characteristic
for the terminal by using the DCL command SET
TERMINAL/DEC_CRT.

A screen-formatted message is displayed at the top
of the terminal screen, and the cursor is repositioned
at the point it was prior to the broadcast message.
However, the BRK$V_ERASE_LINES and BRK$M_
BOTTOM flags also affect the display.

When BRK$M_BOTTOM is specified and BRK$M_
SCREEN is also specified, $BRKTHRU writes the
message to the bottom of the terminal screen instead
of the top. BRK$M_BOTTOM is ignored if the
BRK$M_SCREEN flag is not set.

When BRK$M_NOREFRESH is specified,
$BRKTHRU, after writing the message to the screen,
does not redisplay the last line of a read operation
that was interrupted by the broadcast message. This
flag is useful only when the BRK$M_SCREEN flag is
not specified, because BRK$M_NOREFRESH is the
default for screen-formatted messages.

Specifying BRK$M_CLUSTER enables $BRKTHRU
to send the message to terminals or mailboxes on
other VAX nodes in a VAXcluster. If BRK$M _
CLUSTER is not specified, $BRKTHRU sends
messages only to terminals or mailboxes on the
local VAX node.

SYS-42

System Service Descriptions

$BRKTHRU
reqid
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Class requestor identification, which identifies to $BRKTHRU the application
(or image) that is calling $BRKTHRU. The reqid argument is this longword
identification value.

The reqid argument is used by several VMS images that send messages to
terminals and can be used by as many as 16 different user images as well.

When such an image calls $BRKTHRU, specifying reqid, $BRKTHRU notifies
the terminal that this image wants to write to the terminal. This makes it
possible for you to allow the image to write or prevent it from writing to the
terminal.

To prevent a particular image from writing to your terminal, you use the image’s
name in the DCL command SET TERMINAL/NOBROADCAST=image-name.
Note that image-name in this DCL command is the same as the value of the
reqid argument that the image passed to $BRKTHRU.

For example, you can prevent the VMS Mail Utility (which is an
image) from writing to the terminal by issuing the DCL command SET
BROADCAST=NOMAIL.

The $BRKDEF macro defines class names that are used by several VMS
components. These components specify their class names by using the reqid
argument in calls to $BRKTHRU. The $BRKDEF macro also defines 16 class
names (BRK$C_USER1 through BRK$C_USER16) for the use of user images
that call $BRKTHRU. The class names and the components to which they
correspond are as follows.

Class Name Component

BRK$C_GENERAL This class name is used by (1) the VMS image
invoked by the DCL command REPLY and (2) the
callers of the $BRKTHRU service. This is the default
if the reqid argument is not specified.

BRK$C_PHONE This class name is used by the VMS Phone Facility.
BRK$C_MAIL This class name is used by the VMS Mail Utility.
BRK$C_DCL This class name is used by the DIGITAL Command

Language (DCL) interpreter for the Ctrl/T command,
which displays the process status.

BRK$C_QUEUE This class name is used by the VMS queue manager,
which manages print and batch jobs.

BRK$C_SHUTDOWN This class name is used by the VMS system shutdown
image, which is invoked by the DCL command REPLY
/ID=SHUTDOWN.

SYS-43

System Service Descriptions

$BRKTHRU
Class Name Component
BRK$C_URGENT This class name is used by the VMS image invoked
by the DCL command REPLY/ID=URGENT.
BRK$C_USER1 These class names can be used by user-written
through BRK$C_ images.
USER16
timout
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Timeout value, which is the number of seconds that must elapse before an
attempted write by $BRKTHRU to a terminal is considered to have failed. The
timout argument is this longword value (in seconds).

Because $BRKTHRU calls the $QIO service to perform write operations to the
terminal, the timeout value specifies the number of seconds allotted to $QIO to
perform a single write operation to the terminal.

If you do not specify the timout argument, $BRKTHRU uses a default value of 0
- seconds, which specifies infinite time (no timeout occurs).

The value specified by timout can be 0 or any number greater than 4; the
numbers 1, 2, 3, and 4 are illegal.

When you press Ctrl/S or the No Scroll key, $BRKTHRU cannot send a message
to the terminal. In such a case, the value of timout is usually exceeded and the
attempted write to the terminal fails.

astadr

VMS Usage: ast_procedure

type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

AST service routine to be executed after $BRKTHRU has sent the message to the
specified terminals. The astadr argument is the address of the entry mask of
this routine.

If you specify astadr, the AST routine executes at the same access mode as the
caller of $BRKTHRU.

astprm

VMS Usage: user_arg

type: longword (unsigned)
access: read only

mechanism: by value

AST parameter to be passed to the AST routine specified by the astadr argument.
The astprm argument specifies this longword parameter.

SYS-44

Description

System Service Descriptions
$BRKTHRU

The Breakthrough service sends a message to one or more terminals. The
$BRKTHRU service completes asynchronously; that is, it returns to the caller
after queuing the message request without waiting for the message to be written
to the specified terminals.

The $BRKTHRU service operates by assigning a channel (by using the $ASSIGN
service) to the terminal and then writing to the terminal (by using the $QIO
service). When calling $QIO, $BRKTHRU specifies the I0$_WRITEVBLK
function code, together with the IO$M_BREAKTHRU, IO$M_CANCTRLO, and
(optionally) IO$M_REFRESH function modifiers.

The current state of the terminal determines if and when the broadcast message
is displayed on the screen. For example:

e If the terminal is performing a read operation when $BRKTHRU sends the
message, the read operation is suspended, the message is displayed, and
then the line that was being read when the read operation was suspended is
redisplayed (equivalent to the action produced by CTRIL/R).

e If the terminal is performing a write operation when $BRKTHRU sends
the message, the message is displayed after the current write operation has
completed.

e If the terminal has the NOBROADCAST characteristic set for all images, or
if you have disabled the receiving of messages from the image that is issuing
the $BRKTHRU call (see the description of the reqid argument), the message
is not displayed.

After the message is displayed, the terminal is returned to the state it was in
prior to receiving the message.

Required Privileges

The calling process must have OPER privilege to send a message to more than
one terminal or to a terminal that is allocated to another user.

The calling process must have WORLD privilege to send a message to a specific
user by specifying the BRK$C_USERNAME symbolic code for the sndtyp
argument.

Required Quota

The $BRKTHRU service allows the message text to be as long as 16,350 bytes;
however, both the SYSGEN parameter MAXBUF and the caller’s available
process buffered I/0 byte count limit (BYTLM) quota must be sufficient to handle
the message.

Related Services

$ALLOC, $ASSIGN, $BRKTHRUW, $CANCEL, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT VOL, $MOUNT, $PUTMSG, $QIO0,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

SYS-45

System Service Descriptions
$BRKTHRU

Condition Values Returned
SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXQUOTA

SS$_INSFMEM

SS$_NONLOCAL
SS$_NOOPER

SS$_NOSUCHDEV

The service completed successfully.

The message buffer, message buffer descriptor,
device name string, or device name string
descriptor cannot be read by the caller.

The message length exceeds 16,350 bytes; the
process’s buffered I/O byte count limit (BYTLM)
quota is insufficient; the message length exceeds
the value specified by the SYSGEN parameter
MAXBUF; the value of the TIMOUT parameter
is nonzero and less than 4 seconds; the value of
the REQID is outside the range 0 to 63; or the
value of the SNDTYP is not one of the legal ones
listed.

The process has exceeded its buffer space quota
and has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) service.

The system dynamic memory is insufficient
for completing the request and the process
has disabled resource wait mode with the Set
Resource Wait Mode ($SETRWM) service.

The device is on a remote node.

The process does not have the necessary OPER
privilege.

The specified terminal does not exist, or it cannot
receive the message.

Condition Values Returned in the 1/0 Status Block
Any condition values returned by the $ASSIGN, $FAO, $GETDVI, $GETJPI, or

$QIO service.

SYS-46

System Service Descriptions
$BRKTHRUW

$BRKTHRUW—Breakthrough and Wait

Format

Sends a message to one or more terminals. The $BRKTHRUW service operates
synchronously; that is, it returns to the caller after the message has been sent to
the specified terminals.

For asynchronous operations, use the Breakthrough ($BRKTHRU) service;
$BRKTHRU returns to the caller after queuing the message request, without
waiting for the message to be delivered.

Aside from the preceding, $BRKTHRUW is identical to $BRKTHRU. For all
other information about the $BRKTHRUW service, refer to the description of
$BRKTHRU.

For additional information about system service completion, refer to the
documentation of the Synchronize ($SYNCH) service and to the Introduction
to VMS System Services.

The $BRKTHRU and $BRKTHRUW services supersede the Broadcast
($BRDCST) service. When writing new programs, you should use $BRKTHRU
or $BRKTHRUW instead of $BRDCST. When updating old programs, you should
change all uses of $BRDCST to $BRKTHRU or $BRKTHRUW. $BRDCST is now
an obsolete system service and is no longer being enhanced.

SYS$BRKTHRUW [efn] ,msgbuf [,sendto] [,sndtyp] [,iosb] [,carcon] [,flags] [,reqid]
[timout] [,astadr] [,astprm]

SYS-47

System Service Descriptions

$CANCEL

S$CANCEL—Cancel I/0 on Channel

Format

Returns

Argument

Description

SYS-48

Cancels all pending I/0 requests on a specified channel. In general, this includes
all I/O requests that are queued as well as the request currently in progress.

SYS$CANCEL chan

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

chan

VMS Usage: channel v
type: word (unsigned)
access: read only

mechanism: by value

I/0 channel on which I/O is to be canceled. The chan argument is a word
containing the charinel number.

The Cancel I/O on Channel service cancels all pending I/0O requests on a specified
channel. In general, this includes all I/O requests that are queued, as well as the
request currently in progress.

When you cancel a request currently in progress, the driver is notified
immediately. The actual cancellation might occur immediately, depending on
the logical state of the driver. When cancellation does occur, the following action
for I/O in progress, similar to that for queued requests, takes place:

1. The specified event flag is set.

2. The first word of the I/O status block, if specified, is set to SS$_CANCEL if
the I/O request is queued, or to SS$_ABORT if the I/O is in progress.

3. The AST, if specified, is queued.

Proper synchronization between this service and the actual canceling of I/O
requests requires the issuing process to wait for I/O completion in the normal
manner and then note that the I/O has been canceled.

If the /O operation is a virtual I/O operation involving a disk or tape ACP, the
I/0 cannot be canceled. In the case of a magnetic tape, however, cancellation
might occur if the device driver is hung.

Outstanding I/O requests are automatically canceled at image exit.

System Service Descriptions
$CANCEL

Required Privileges

To cancel I/O on a channel, the access mode of the calling process must be equal
to or more privileged than the access mode that the process had when it originally
made the channel assignment.

Required Quota

The $CANCEL service requires system dynamic memory and uses the process’s
buffered I/0 limit (BIOLM) quota.

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CREMBX, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO0,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_EXQUOTA The process has exceeded its buffered I/O limit
(BIOLM) quota.

SS$_INSFMEM The system dynamic memory is insufficient for
canceling the I/0.
SS$_IVCHAN You specified an invalid channel, that is, a

channel number of 0 or a number larger than the
number of channels available.

SS$_NOPRIV The specified channel is not assigned or was
assigned from a more privileged access mode.

SYS-49

System Service Descriptions

$CANEXH

$CANEXH—Cancel Exit Handler

Format

Returns

Argument

Deletes an exit control block from the list of control blocks for the calling access
mode. Exit control blocks are declared by the Declare Exit Handler ($DCLEXH)
service and are queued according to access mode in a last-in first-out order.

SYS$CANEXH [desblk]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

desblk

VMS Usage: exit_handler_block
type: longword (unsigned)
access: read only

mechanism: by reference

Control block describing the exit handler to be canceled. If you do not specify the
desblk argument or specify it as 0, all exit control blocks are canceled for the
current access mode. The desblk argument is the address of this control block.

Condition Values Returned

SYS-50

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The first longword of the exit control block or the
first longword of a previous exit control block in
the list cannot be read by the caller, or the first
longword of the preceding control block cannot be
written by the caller.

SS$_IVSSRQ The call to the service is invalid because it was
made from kernel mode.
SS$_NOHANDLER The specified exit handler does not exist.

System Service Descriptions
$CANTIM

S$CANTIM—Cancel Timer

Format

Returns

Arguments

Cancels all or a selected subset of the Set Timer requests previously issued by
the current image executing in a process. Cancellation is based on the request
identification specified in the Set Timer ($SETIMR) service. If you give the same
request identification to more than one timer request, all requests with that
request identification are canceled.

SYS$CANTIM [reqidt] ,[acmode]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

reqidt

VMS Usage: user_arg

type: longword (unsigned)
access: read only

mechanism: by value

Request identification of the timer requests to be canceled. If you specify it as 0
(the default), all timer requests are canceled. The reqidt argument is a longword
containing this identification. ‘

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode of the requests to be canceled. The acmode argument is a longword
containing the access mode. The $PSLDEF macro defines the following symbols
for the four access modes.

Symbol Access Mode
PSL$C_KERNEL Kernel
PSL$C_EXEC Executive
PSL$C_SUPER Supervisor
PSL$C_USER User

The most privileged access mode used is the access mode of the caller.

SYS-51

System Service Descriptions

$CANTIM

Description

The Cancel Timer Request service cancels all or a selected subset of the Set
Timer requests previously issued by the current image executing in a process.
Cancellation is based on the request identification specified in the Set Timer
($SETIMR) service. If you give the same request identification to more than one
timer request, all requests with that request identification are canceled.

Outstanding timer requests are automatically canceled at image exit.

Required Privileges

The calling process can cancel only timer requests that are issued by a process
whose access mode is equal to or less privileged than that of the calling process.
Required Quota

Canceled timer requests are restored to the process’s quota for timer queue
entries (TQELM quota).

Related Services

$ASCTIM, $BINTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

SYS-52

SS$ NORMAL The service completed successfully.

System Service Descriptions
$CANWAK

$CANWAK—Cancel Wakeup

Format

Returns

Arguments

Removes all scheduled wakeup requests for a process from the timer queue,
including those made by the caller or by other processes. The Schedule Wakeup
($SCHDWK) service makes scheduled wakeup requests.

SYS$CANWAK [pidadr] ,[prcnam]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr

VMS Usage: process_id

type: longword (unsigned)
access: modify

mechanism: by reference

Process identification (PID) of the process for which wakeups are to be canceled.
The pidadr argument is the address of a longword specifying the PID. The
pidadr argument can refer to a process running on the local node or a process
running on ancther node in the cluster.

prcnam

VMS Usage: process_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name of the process for which wakeups are to be canceled. The prenam
argument is the address of a character string descriptor pointing to the process
name string. A process running on the local node can be identified with a 1- to
15-character string. To identify a process on a particular node on a cluster, specify
the full process name, which includes the node name as well as the process name.
The full process name can contain up to 23 characters.

The VMS operating system interprets the UIC group number of the calling
process as part of the process name; the names of processes are unique to UIC
groups. Because of this, you can use the prenam argument only on behalf of
processes in the same group as the calling process.

SYS-63

System Service Descriptions

$CANWAK

Description

The Cancel Wakeup service removes from the timer queue all scheduled wakeup
requests for a process, including those made by the caller or by other processes.
The Schedule Wakeup ($SCHDWK) service makes scheduled wakeup requests.

If the longword at address pidadr is 0, the PID of the target process is returned.

If you specify neither the pidadr nor the prenam argument, scheduled wakeup
requests for the calling process are canceled.

Pending wakeup requests issued by the current image are automatically canceled
at image exit.

This service cancels only wakeup requests that have been scheduled; it does not
cancel wakeup requests made with the Wake Process from Hibernation ($WAKE)
service.

Required Privileges
Depending on the operation, the calling process might need one of the listed
privileges to use $CANWAK:

* You need GROUP privilege to cancel wakeups for processes in the same group
that do not have the same UIC.

* You need WORLD privilege to cancel wakeups for any process in the system.

Required Quota
Canceled wakeup requests are restored to the process’s AST limit (ASTLM) quota.

Related Services

$ASCTIM, $BINTIM, $CANTIM, $GETTIM, $NUMTIM, $SCHDWK, $SETIME,
$SETIMR

Condition Values Returned

SYS-54

SS$ NORMAL The service completed successfully.

SS$_ACCVIO- The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

SS$_INCOMPAT The remote node is running a version of VMS
that is incompatible.

SS$_IVLOGNAM The process name string has a length of 0 or has
more than 15 characters.

SS$_NONEXPR The specified process does not exist, or you
specified an invalid process identification.

SS$_NOPRIV The process does not have the privilege to cancel

wakeups for the specified process.

System Service Descriptions

$CANWAK
SS$_NOSUCHNODE The process name refers to a node that is not
currently recognized as part of the cluster.
SS$_REMRSRC The remote node has insufficient resources to

respond to the request. (Bring this error to the
attention of your system manager.)
SS$_UNREACHABLE The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS-55

System Service Descriptions
$CHANGE_ACL

$CHANGE_ACL—Change Access Control List

Creates or modifies an object’s access control list.

Format
SYS$CHANGE_ACL [chan] ,objtyp ,[objnam] ,itmlst ,[acmode] ,[nullarg] ,[contxt]
J[nullarg] [,nullarg]
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.
Arguments
chan
VMS Usage: channel
type: word (unsigned)
access: read only

mechanism: by value

Number of the I/O channel assigned to the object whose ACL is modified when
$CHANGE_ACL completes execution. The chan argument is a word that
contains the number of the channel. If you specify objnam, you must omit chan
or specify it as 0.

objtyp

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

Type of object whose ACL is modified when $CHANGE_ACL completes execution.
The objtyp argument is the address of a longword containing a value indicating
whether the object is a file or a device. The symbols are defined in the system
macro $ACLDEF library. The values and their meanings are listed in the

following table.
Value Meaning
ACL$C_CAPABILITY Object is a restricted resource; use the
' reserved name VECTOR.
ACL$C _DEVICE Object is a device.
ACL$C_FILE Object is a Files—11 On-Disk Structure
Level 2 file.

ACL$C_GROUP_GLOBAL_SECTION Object is a group global section.

SYS-56

System Service Descriptions
$CHANGE_ACL

Value Meaning
ACL$C_JOBCTL_QUEUE Object is a batch or print queue.
ACL$C_LOGICAL_NAME_TABLE Object is a logical name table.

ACL$C_SYSTEM_GLOBAL_SECTION Object is a system global section.

objnam

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor-fixed length string descriptor

Name of the object whose ACL is modified when $CHANGE_ACL completes
execution. The objnam argument is the address of a character-string descriptor
that points to the name of the object. The maximum length of objnam depends
on the VMS syntax for the objects listed in the objtyp argument.

itmist

VMS Usage: item_list_3

type: longword (unsigned)
access: read only

mechanism: by reference

Modifications to be made to the ACL when $CHANGE_ACL completes execution.
The itmlst argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated

by a longword of 0. The following diagram depicts the format of a single item
descriptor.

31 15 0
item Code Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Iltem Descriptor Fields

buffer length

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer in which the service is to write the information. The length of the buffer
needed depends upon the item code specified in the item code field of the item
descriptor. If the value of buffer length is too small, the service truncates the
data.

item code

A word containing a user-supplied symbolic code specifying the item of
information that the service is to return.

SYS-57

System Service Descriptions
$CHANGE_ACL

SYS-58

buffer address
A longword containing the user-supplied address of the buffer in which the
service is to write the information.

return length address

A longword that normally contains the user-supplied address of a word in which
the service writes the length in bytes of the information it returned. This is not
used by $CHANGE_ACL and should contain a 0.

$CHANGE_ACL returns an ACE as the result of read, grant, and find operations.
In subsequent read, grant, and find type operations, the service does not return
the same ACE, but rather the next ACE meeting the desired criteria. With

a find ACL operation, however, the behavior is slightly different. A read or
grant following a FNDACLENT uses the ACE located with the FNDACLENT to
perform the read or grant operation.

When you add an ACE with ACL$C_ADDACLENT or locate an ACE with
ACL$C_FNDACETYP or ACL$C_FNDACLENT, $CHANGE_ACL searches the
ACL for a match for the ACE in the ACE buffer. The $CHANGE_ACL service
does not always make a match based on the entire ACE buffer; instead, the ACE
type determines how $CHANGE_ACL makes a match. For example:

* A default protection ACE (ACE$C_DIRDEF) matches only on the type field
(ACE$B_TYPE). An ACL can have only one default protection ACE because
$CHANGE_ACL stops searching after it locates a match.

* An identifier ACE (ACE$C_KEYID) matches on the flags (ACE$W_FLAGS)
and identifier (ACE$L_KEY) fields.

e An alarm ACE (ACE$C_ALARM) matches on the flags (ACE$W_FLAGS) and
access mask (ACE$L_ACCESS) fields. '

e All other ACE types match on the entire ACE buffer.

Because $CHANGE_ACL uses these matching rules, adding an ACE sometimes
results in the replacement of another ACE. For example, if you add an identifier
ACE with the same flags and identifier fields but with a different access mask,
the new ACE replaces the old ACE. When you add an ACE on the top of an ACL,
$CHANGE_ACL deletes any matching ACE. If you add an ACE below a matching
ACE in an ACL, the added ACE has no effect.

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by reference

Access mode to use in checking file access protection. The acmode argument is
the address of a longword containing the access mode. The acmode argument
defaults to kernel mode; however, the system compares acmode against the
caller’s access mode and uses the least privileged mode.

The access modes listed in the following table, together with their symbols, are
defined in the system macro $PSLDEF library.

Item Codes

System Service Descriptions
$CHANGE_ACL

Symbol Access Mode

PSL$C_USER User
PSL$C_SUPER Supervisor
PSL$C_EXEC Executive
PSL$C_KERNEL Kernel

nullarg

VMS Usage: null_arg

type: longword (unsigned)
access: read only

mechanism: by value

Reserved for future use.

contxt

VMS Usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Context value that points to an ACE. The contxt argument is the address of a
longword containing the context value.

The symbols for the item codes are defined in the system macro library
($ACLDEF). The values and their meanings are described in the following
list.

ACLSC_ACLLENGTH
Returns the size, in bytes, of the object’s ACL. The bufadr argument points to a
longword that contains the size.

ACL$C_ADDACLENT

Adds an ACE to the beginning of the ACL when contxt is 0, to the end of

the ACL when contxt is —1, or at a location pointed to by a prior ACL$C_
FNDACETYP or ACL$C_FNDACLENT. The bufadr argument points to a
variable-length data structure containing the ACE to be added. You can add more
than one ACE with ACL$C_ADDACLENT;, however, buflen must contain the
total size of all ACEs contained in the buffer.

$CHANGE_ACL returns an error for a READACE, FNDACETYP, or GRANT _
ACE operation in which the buffer is too small to hold the entire ACE. The
operation attempts to move as much of the ACE as possible, truncating where
necessary, and returns the status SS§_IVBUFLEN. A subsequent read ACE, find
ACE type, or grant ACE operation does not return the same ACE, but the next
one that meets the desired criteria.

ACL$C_DELACLENT
Deletes the ACE pointed to by bufadr or, if bufadr is specified as 0, the ACE
pointed to by a prior ACL$C_FNDACETYP or ACL$C_FNDACLENT.

ACL$C_DELETEACL
Deletes the entire ACL with the exception of protected ACEs.

SYS-59

System Service Descriptions
$CHANGE_ACL

SYS-60

ACL$C_DELETE_ALL
When you specify ACL$C_DELETE ALL $CHANGE_ACL deletes the entire
Access Control List (ACL), including protected entries.

ACL$C_FNDACETYP
Locates an ACE of the type pointed to by bufadr.

ACL$C_FNDACLENT
Locates the ACE pointed to by bufadr.

ACL$SC_GRANT_ACE

When you specify ACL$C_GRANT_ACE, $CHANGE_ACL reads the next ACE
that matches the process’s identifiers into the buffer pointed to by bufadr. The
returned ACE might grant or deny access to the object. Since an ACL can have
more than one matching ACE, you should proceed as follows:

1. Specify an initial value of 0 for contxt.

2. Call $CHANGE_ACL repeatedly, without changing the value of contxt, and
test for the return status SS$§_ NOMOREACE, which means that the ACL has
no more matching entries.

ACLSC_NEXT_ACE

When you specify ACL$C_NEXT_ACE, $CHANGE_ACL advances through an
ACL, one ACE at a time. The contxt argument defines the initial and final
positions. The value of contxt itself is derived from the previous ACL$C_
FNDACETYP, ACL$C_FNDACLENT, or ACL$C_GRANT_ACE operation.

ACL$C_RLOCK_ACL

Obtains a read lock on an object in order to lock out all writers to the object’s
ACL. Regardless of the caller’s mode, ACL locks are user-mode locks so that all
access modes will interlock ACLs correctly.

ACL$C_WLOCK_ACL

Obtains an exclusive lock on an object in order to lock out all other readers
and writers to the object’s ACL. Regardless of the caller’s mode, ACL locks are
user-mode locks so that all access modes will interlock ACLs correctly.

ACL$C_MODACLENT
Replaces the ACE pointed to by a prior ACL$C_FNDACETYP or ACL$C_
FNDACLENT with the ACE pointed to by bufadr.

ACL$C_READACE
Reads the ACE pointed to by ACL$C_FNDACETYP or ACL$C_FNDACLENT into
the buffer pointed to by bufadr.

ACL$C_READACL

Reads the object’s ACL. You should initially set the contxt argument to 0.
Complete ACEs are read into the buffer pointed to by bufadr. $CHANGE_ACL
returns an error in a READACL operation when a buffer is too small to hold at
least one ACE. The following read or find operation starts with the ACE following
the last one moved to the buffer. As long as $CHANGE_ACL moves one ACE,
the operation returns success status. However, when the first ACE does not fit
in the buffer, $CHANGE_ACL truncates the ACE and returns the status SS$_
IVBUFLEN. The subsequent read operation returns the next ACE.

Description

System Service Descriptions
$CHANGE_ACL

ACLSC_UNLOCK_ACL
Releases the lock obtained with ACL$C_RLOCK_ACL or ACL$C_WLOCK_ACL.

The Change Access Control List service creates or modifies an object’s ACL. For
information about the various types of ACLs and their associated formats, see the
description of the $FORMAT_ACL service. For information about how to convert
an ASCII string to an ACE, see the description of the $PARSE_ACL service.

Required Privileges
None

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHECK_ACCESS, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_
RDB, $FORMAT ACL, $FORMAT _AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL The service completed successfully.
SS$_ACCVIO The string or its descriptor cannot be read by the
caller; the buffer descriptor cannot be read by the

caller; the buffer cannot be written by the caller;
or the buffer is too small to hold the ACL entry.

SS$_BADPARAM You specified an invalid object type, attribute
code, item size, or access mode.
SS$_INCONOLCK VMS encountered an irrecoverable error. Please

submit a Software Performance Report (SPR)
that describes conditions leading to the error.

SS$_INSFARG The objtyp argument is not specified, or neither
chan nor objnam is specified.

SS$_IVACL The format of the access control list entry is
invalid.

SS$_NOPRIV You do not have privileges for the requested
action.

SS$_NOTQUEUED An attempt to take a write lock on an object fails

because a write lock is already held by another
process on that object.

SYS-61

System Service Descriptions
$CHECK_ACCESS

SCHECK_ ACCESS—Check Access

Format

Returns

Arguments

Determines on behalf of a third-party user whether that user can access the
object specified.

SYS$CHECK_ACCESS objtyp ,objnam ,usrnam ,itmist

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

objtyp

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

Type of object being accessed. The objtyp argument is the address of a longword
containing a value specifying the type of object. The appropriate symbols are
listed in the following table and are defined in the system macro $ACLDEF
library.

Symbol Meaning
ACL$C_CAPABILITY _ Object is a restricted resource; use the
: reserved name VECTOR.
ACL$C_DEVICE Object is a device.
ACL$C_FILE Object is a Files—11 On-Disk Structure
Level 2 file.

ACL$C_GROUP_GLOBAL_SECTION Object is a group global section.

SYS-62

ACL$C_SYSTEM_GLOBAL_SECTION Object is a system global section.

ACL$C_LOGICAL_NAME_TABLE Object is a logical name table.
objnam

VMS Usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor-fixed length string descriptor

Name of the object being accessed. The objnam argument is the address of a
character-string descriptor pointing to the object name.

System Service Descriptions
$CHECK_ACCESS

usrnam

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor-fixed length string descriptor

Name of the user attempting access. The usrnam argument is the address

of a descriptor that points to a character string that contains the name of the
user attempting to gain access to the specified object. The user name string can
contain a maximum of 12 alphanumeric characters.

itmist

VMS Usage: item_list_3

type: longword (unsigned)
access: read only

mechanism: by reference

Attributes describing how the object is to be accessed and information returned
after SCHECK_ACCESS performs the protection check (for instance, security
alarm information). '

For each item code, you must include a set of four elements and end the list
with a longword containing the value 0 (CHP$_END), as shown in the following
diagram.

31 15 0
Item Code Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Item Descriptor Fields

buffer length

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer in which the service is to write the information. The length of the buffer
needed depends upon the item code specified in the item code field of the item
descriptor. If the value of buffer length is too small, the service truncates the
data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that the service is to return.

buffer address
A longword containing the user-supplied address of the buffer in which the
service is to write the information.

SYS-63

Systém Service Descriptions
$CHECK_ACCESS

Item Codes

SYS-64

return length address

A longword containing the address of a word-long buffer in which SYS§CHECK _
ACCESS writes the number of bytes written to the buffer pointed to by bufadr.

If the buffer pointed to by bufadr is used to pass information to SYS$CHECK _

ACCESS, retlenadr is ignored but must be included.

All items are optional. If you do not specify the access type item code (CHP$_
ACCESS), read access is assumed.

The item codes used with $CHECK_ACCESS are described in the following list
and are defined in the $CHPDEF system macro library.

CHP$_ACCESS

A longword bit mask that represents the desired access (SARMDEF). Only those
bits set in CHP$_ACCESS are checked against the protection of the object to
determine whether access is granted.

The default for CHP$_ACCESS is READ and SET FLAG. Default definitions are
found in the $ARMDEF macro.

The following table shows the correct settings for CHP$_ACCESS and CHP$_
FLAG item codes to obtain a desired operation.

Desired Operation Setting for CHP$_ACCESS Setting for CHP$_FLAG

READ ARMS$M_READ CHP$V_READ or CHP$V_
USERREADALL

WRITE ARMS$M_READ + CHP$V_READ + CHP$V_WRITE

ARMS$M_WRITE

EXECUTE ARM$M_EXECUTE CHP$V_READ or CHP$V_
USERREADALL

DELETE ARM$M_DELETE CHP$V_READ + CHP$V_WRITE

CHANGE ARM$M_CONTROL CHP$V_READ + CHP$V_WRITE

PROTECTION ~

CHP$_ACMODE

A byte that defines the accessor’s processor access mode ($PSLDEF). The
following access modes and their symbols are defined in the system macro library
($PSLDEF). Objects supported by the VMS operating system do not consider
access mode in determining object access.

Symbol Access Mode
PSL$C_USER User
PSL$C_SUPER Supervisor
PSL$C_EXEC Executive

PSL$C_KERNEL Kernel

The default for CHP$_ACMODE is the caller’s mode.

Description

System Service Descriptions
$CHECK_ACCESS

CHP$_FLAG

A longword that defines the accessor’s access to the object. The symbols in the
following table are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set by using the prefix CHP$M rather
than CHP$V.

Symbol Access
CHP$V_READ Accessor has read access.
CHP$V_WRITE Accessor has write access.

CHP$V_USEREADALL Accessor is eligible for READALL privilege.

The default for CHP$_FLAG is CHP$V_READ + CHP$V_USEREADALL.

CHP$_ALARMNAME
A character string that contains the alarm name. If the object does not have
security alarms enabled, SYS$CHECK_ACCESS returns retlenadr as 0.

CHP$_AUDITNAME
A character string that contains the alarm name. If the object does not have
auditing enabled, SYSSCHECK_ACCESS returns retlenadr as 0.

CHP$_MATCHEDACE

A variable-length data structure containing the first identifier ACE in the ACL
that allowed the accessor to access the object. The SYSSFORMAT_ACL system
services describes the format of an identifier ACE.

CHP$_PRIVUSED
A longword mask of flags that represent the privileges used to gain access. The
following symbols are offsets to the bits within the longword.

Symbol Meaning

CHP$_SYSPRV SYSPRV was used to gain the requested access.
CHP$_GRPPRV GRPPRYV was used to gain the requested access.
CHP$_BYPASS BYPASS was used to gain the requested access.

CHP$_READALL READALL was used to gain the requested access.

You can also obtain the values as masks with the appropriate bit set by using the
prefix CHP$M rather than CHP$V. The symbols are defined in the system macro
library (SCHPDEF).

The Check Access system service invokes the standard VMS access check
mechanism, $CHKPRO, to determine whether a named user is allowed the
described access to a named object. A file server, for example, might check the
access attributes of a user who attempts to access a file (the object).

If the user can access the object, SYS$CHECK_ACCESS returns the SS$_
NORMAL status code; otherwise, SYS$CHECK_ACCESS returns SS$_NOPRIV.

The arguments accepted by this service specify the name and type of object being
accessed, the name of the user requesting access to the object, the type of access
desired, and the type of information returned.

SYS-65

System Service Descriptions
$CHECK_ACCESS

An alarm-name string is returned when an alarm ACE is present and an alarm
record is to be written. A nonzero string length specifies the presence of an alarm
request; if no alarm is requested, a zero length is returned. Note that alarms can
be requested whether the protection check succeeds or fails.

Required Privileges

~ None

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHKPRO,
$CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS-66

SS$_NORMAL The service completed successfully; the desired
access is granted.
SS$_ACCVIO The item list cannot be read by the caller, or one

of the buffers specified in the item list cannot be
written by the caller.

SS$_INSFMEM Identifiers granted to the user exceed the number
allowed.

SS$_NOCALLPRIV Caller lacks privilege for attempted operation.

SS$_NOPRIV The desired access is not granted.

SS$_NOSUCHSEC The specified global section does not exist.

SS$_UNSUPPORTED Operations on remote object are not supported.

System Service Descriptions
$CHKPRO

S$CHKPRO—Check Access Protection

Format

Returns

Argument

Determines whether an accessor with the specified rights and privileges can
access an object with the specified attributes.

SYS$CHKPRO itmist

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

itmist

VMS Usage: item_list_3

type: longword (unsigned)
access: read only

mechanism: by reference

Protection attributes of the object and the rights and privileges of the accessor.
The itmlst argument is the address of an item list of descriptors used to specify
the protection attributes of the object and the rights and privileges of the accessor.

Item Descriptor Fields

buffer length

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer in which the service is to write the information. The length of the buffer
needed depends upon the item code specified in the item code field of the item
descriptor. If the value of buffer length is too small, the service truncates the
data.

item code

A word containing a user-supplied symbolic code specifying the item of
information that the service is to return. The item codes are defined in the
$ACLDEF system macro library.

buffer address
A longword containing the user-supplied address of the buffer used to transfer
information.

return length address

A longword that normally contains the user-supplied address of a word in which
the service writes the length in bytes of the information it returned. This is not
used by $CHKPRO and should contain a 0.

SYS-67

System Service Descriptions

$CHKPRO

Item Codes

SYS-68

31 15 0
ltem Code Buffer Length

Buffer Address

~Return Length Address

ZK-1705-GE

All items are optional.

In all cases, except the item code CHP$_ACMODE, the routine uses the value of
the current process. If the CHP$_ACMODE item code is not specified, the routine
uses the kernel mode value, which is 0. The access mode protection is compared
to a field that is reserved for future use by Digital. The access mode protection,

which defaults to 0, is compared to the Digital-reserved field, which also contains
0. Therefore, if CHP$_ACMODE is not specified, the check succeeds.

Specifying any particular protection attribute causes that protection check to be

-made; any protection attribute not specified is not checked. Rights and privileges

specified are used as needed. If a protection check requires any right or privilege
not specified in the item list, the right or privilege of the caller’s process is used.

The item codes used with $CHKPRO are described in following list and are
defined in the $CHPDEF system macro library.

CHP$_ACCESS

A longword bit mask representing the type of access desired (JARMDEF). Be
aware that the $CHKPRO service does not interpret the bits in the access mask;
instead, it compares them against the object’s protection mask (CHP$_PROT).
Any bits not specified by CHP$_ACCESS or CHP$_PROT are assumed to be clear,
which grants access.

CHP$_ACMODE
A byte that defines the accessor’s processor access mode. The following access
modes and their symbols are defined in the $PLSDEF macro.

Symbol Access Mode
PSL$C_USER User
PSL$C_SUPER Supervisor
PSL$C_EXEC Executive
PSL$C_KERNEL Kernel

CHP$_ADDRIGHTS

A vector that points to an additional rlghts list segment to be appended to
existing rights list. Each entry of the rights list is a quadword data structure
consisting of a longword containing the identifier value, followed by a longword
containing a mask identifying the attributes of the holder. The SYS$CHKPRO
service ignores the attributes.

System Service Descriptions
$CHKPRO

A maximum of 11 rights descriptors is allowed. If you specify CHP$_
ADDRIGHTS without specifying CHP$_RIGHTS, the accessor’s rights list
consists of the rights list specified by the CHP$_ADDRIGHTS item codes and the

rights list of the current process.

If you specify CHP$_RIGHTS and CHP$_ADDRIGHTS, you should be aware of
the following:

e CHP$_RIGHTS must come first.

¢ The accessor’s UIC is the identifier of the first entry in the rights list specified
by the CHP$_RIGHTS item code.

¢ The accessor’s rights list consists of the rights list specified by the CHP$_
RIGHTS item code and the CHP$_ADDRIGHTS item codes.

CHPS$_FLAGS

A longword that defines the accessor’s access to the object. The symbols in the
next table are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set by using the prefix CHP$M rather
than CHP$V. The following symbols are defined only in the system macro library
($CHPDEF).

Symbol Access ;
CHP$V_READ Accessor is making a read access.
CHP$V_WRITE Accessor is making a write access.

CHP$V_USEREADALL Accessor is eligible for READALL privilege.

Because the access mask (CHP$_ACCESS) is not interpreted by $CHKPRO,
CHP$FLAGS is used to determine whether the accessor is making a read or write
access to the object, or both.

CHP$_PRIV ,

A quadword that defines an accessor’s privilege mask. To form the symbolic
names for the bits in the privilege mask, you must preface the name of the
privileges with PRV$V_. For example, the bit associated with the BYPASS
privilege is PRV$V_BYPASS. The privilege symbols are defined in the system
macro library ($PRVDEF).

CHPS$_RIGHTS :

A vector that points to an accessor’s rights list. The accessor’s UIC is the
identifier of the first entry in the rights list. The accessor’s rights list consists of
the rights list specified by CHP$_RIGHTS and optionally the rights list specified
by the CHP$_ADDRIGHTS item codes.

CHPS$_ACL

A vector that points to an object’s access control list. The buffer address, bufadr,
specifies a buffer containing one or more ACEs. The number that specifies the
length of the CHP$_ACL buffer, buflen, must be equal to the sum of all ACE
lengths. The format of the ACE structure depends on the value of the second byte
in the structure, which specifies the ACE type. The SYS$FORMAT_ACL system
service description describes each ACE type and its format.

You can specify the CHP$_ACL item multiple times to point to multiple segments
of an access control list. You can specify a maximum of 20 segments. The
segments are processed in the order specified. '

SYS-69

System Service Descriptions
$CHKPRO

CHP$_MODE
A byte that defines the object’s owner access mode. The following access modes
of the object’s owner and their symbols are defined in the system macro library

($PSLDEF).

Symbol Access Mode
PSL$C_USER User
PSL$C_SUPER Supervisor
PSL$C_EXEC Executive
PSL$C_KERNEL Kernel
CHP$_MODES

A quadword that defines the object’s access mode protection. You specify a 2-
bit access mode as shown in CHP$_MODE for each possible access type. The
following diagram illustrates the format of an access mode vector for bit numbers.

31 109876543210
I (R [Il I I I CIDIEIWIR

e e e e
63 32
ZK-1943-GE

Each pair of bits in the access mode vector represents the access mode for the
particular type of access. For example, bits <6:7> represent the access mode
value used to check for delete access.

CHP$_OWNER
A longword describing the object’s owner identifier (UIC or general identifier).
This might be either a UIC format identifier or a general identifier.

Note

CHP$_OWNER is used in conjunction with the CHP$_PROT item code.

CHPS$_PROT
A vector describing the object’s “SOGW” protection mask. The following diagram
depicts the format for describing the object’s protection.

SYS-70

System Service Descriptions
$CHKPRO

15 11 7 3 0 Access Bits
World Group Owner | System | 0-3

4-7

8-11

12-15

16-19
20-23

24-27

J SO R N S I ——

‘_ e N S T E e S—

¢ +— +— 4+ =+ — 4+ — 4 —
‘._ S e o o U S —

28-31

»

ZK-1704-GE

The first word contains the first four protection bits for each field, the second
word the next four protection bits, and so on. If a bit is clear, access is granted.
By convention, the first five protection bits are (from right to left in each field
of the first word) read, write, execute, delete, and (in the low-order bit in each
field of the second word) control access. You can specify the CHP$_PROT item
in increments of words; if a short buffer is given, zeros are assumed for the
remainder.

The $CHKPRO service compares the low-order four bits of CHP$_ACCESS
against one of the 4-bit fields in the low-order word of CHP$_PROT, the next
four bits of CHP$_ACCESS against one of the 4-bit fields in the next word of
CHP$_PROT, and so on. The $CHKPRO service chooses a field of CHP$_PROT
based on the privileges specified for the accessor (CHP$_PRIV), the UICs of the
accessor (CHP$_RIGHTS or CHP$_ADDRIGHTS, or both), and the object’s owner
(CHP$_OWNER).

You must also specify the identifier of the object’s owner with CHP$_OWNER
when you use CHP$_PROT. :

CHP$_ALARMNAME
A character string that contains the alarm record. If the object does not have
security alarms enabled, SYS$CHKPRO returns retlenadr as 0.

CHP$_MATCHEDACE

This output item is a variable-length data structure containing the first identifier
ACE in the object’s ACL that allowed or denied the accessor to access the object.
The SYS$FORMAT_ACL system service describes the format of an identifier
ACE.

CHP$_PRIVUSED
A longword mask of flags representing privileges used to gain the requested
access. The following symbols are used as offsets to the bits within the longword.

SYS-71

System Service Descriptions

$CHKPRO

Description

SYS-72

Symbol Meaning :

CHP$V_SYSPRV Uses SYSPRYV to gain the requested access
CHP$V_GRPPRV Uses GRPPRYV to gain the requested access
CHP$V_BYPASS Uses BYPASS to gain the requested access

CHP$V_READALL Uses READALL to gain the requested access

You can also obtain the values as masks with the appropriate bit set by using the
prefix CHP$M rather than. CHP$V. The symbols are defined in the system macro
library ($CHPDEF).

The Check Access Protection service determines whether an accessor with the
specified rights and privileges can access an object with the specified attributes.
The service invokes the system’s access protection check, which permits layered
products and other subsystems to build protected structures that are consistent
with the protection facilities provided by the base operating system. The service
also allows a privileged subsystem to perform protection checks on behalf of a
requester.

If the accessor can access the object, SYS$CHKPRO returns the SS$§_NORMAL
status code; otherwise, SYS$CHKPRO returns SS$_NOPRIV.

The item list arguments accepted by this service permit you to specify the
protection of the object being accessed, the rights and privileges of the accessor,
and the type of access desired.

When a protection check is to be invoked on the behalf of another process, the
privilege mask (CHP$_PRIV) is usually mandatory.

An alarm name string is returned when an alarm ACE is present and an
alarm record is to be written. A nonzero string length (as returned in the item
descriptor) specifies the presence of an alarm request; if none is requested, a
length of 0 is returned. Note that you can request alarms whether the protection
check succeeds or fails.

For a flowchart detailing the operation of $CHKPRO, see the chapter on security
services in the Introduction to VMS System Services.

Required Privileges
None

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK _
ACCESS, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_HOLDER,
$FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

System Service Descriptions

$SCHKPRO
Condition Values Returned
SS$_NORMAL The service completed successfully; the desired
access is granted.
SS$_ACCVIO The item list cannot be read by the caller, or one

of the buffers specified in the item list cannot be
written by the caller.

SS$_ACLFULL More than 20 CHP$_ACL items were given.

SS$_BADPARAM The argument is invalid.

SS$_IVACL You supplied an invalid ACL segment with the
CHP$_ACL item.

SS$_NOPRIV The desired access is not granted.

SS$_RIGHTSFULL More than 11 CHP$_ADDRIGHTS items were
given. :

SYS-73

System Service Descriptions
$CLREF

$CLREF—Clear Event Flag

Clears (sets to 0) an event flag in a local or common event flag cluster.

Format
SYS$CLREF efn
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.
Argument
efn
VMS Usage: ef_number
type: longword (unsigned)
access: read only

mechanism: by value

Number of the event flag to be cleared. The efn argument is a longword
containing this number; however, $CLREF uses only the low-order byte.

Condition Values Returned

SS$_WASCLR The service completed successfully. The specified
event flag was previously 0.

SS$_WASSET The service completed successfully. The specified
event flag was previously 1.

SS$_ILLEFC You specified an illegal event flag number.

SS$_UNASEFC The process is not associated with the cluster

containing the specified event flag.

SYS-74

System Service Descriptions
$CMEXEC

$CMEXEC—Change to Executive Mode

Format

Returns

Arguments

Description

Changes the access mode of the calling process to executive mode.

SYSSCMEXEC routin ,[arglst]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

routin

VMS Usage: procedure

type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

Routine to be executed while the process is in executive mode. The routin
argument is the address of the entry point to this routine.

argist

VMS Usage: arg_list

type: longword (unsigned)
access: read only

mechanism: by reference

Argument list to be passed to the routine specified by the routin argument. The
arglst argument is the address of this argument list.

The Change to Executive Mode service allows a process to change its access mode
to executive, execute a specified routine, and then return to the access mode in
effect before the call was issued.

The $CMEXEC service uses standard procedure calling conventions to pass
control to the specified routine. If no argument list is specified, the argument
pointer (AP) contains a 0. However, to conform to the VAX Procedure Calling
Standard, you must not omit the arglist argument.

When you use the $CMEXEC service, the system service dispatcher modifies both
RO and R1 before entry into the target routine. The specified routine must exit
with a RET instruction and should place a status value in R0 before returning.

SYS-75

System Service Descriptions

$CMEXEC

All of the Change Mode system services are intended to allow for the execution
of a routine at an access mode more (not less) privileged than the access mode
from which the call is made. If $CMEXEC is called while a process is executing
in kernel mode, the routine specified by the routin argument executes in kernel
mode, not executive mode.

Required Privileges

To call this service, the process must either have CMEXEC or CMKRNL privilege
or be currently executing in executive or kernel mode.

Required Quota

None

Related Services
None

Condition Values Returned

SYS-76

SS$_NOPRIV The process does not have the privilege to change
mode to executive.

All other values The routine executed returns all other values.

System Service Descriptions
$CMKRNL

$CMKRNL—Change to Kernel Mode

Format

Returns

Arguments

Description

Changes the access mode of the calling process to kernel mode. This service
allows a process to change its access mode to kernel, execute a specified routine,
and then return to the access mode in effect before the call was issued.

SYS$CMKRNL routin ,[arglst]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

routin

VMS Usage: procedure

type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

Routine to be executed while the process is in kernel mode. The routin argument
is the address of the entry point to this routine.

arglst

VMS Usage: arg list

type: longword (unsigned)
access: read only

mechanism: by reference

Argument list to be passed to the routine specified by the routin argument. The
arglst argument is the address of this argument list.

The Change to Kernel Mode service allows a process to change its access mode to
kernel, execute a specified routine, and then return to the access mode in effect
before the call was issued.

The $CMKRNL service uses standard procedure calling conventions to pass
control to the specified routine. If no argument list is specified, the argument
pointer (AP) contains a 0. However, to conform to the VAX Procedure Calling
Standard, you must not omit the arglist argument. Programs should not
use registers R2 through R11 to pass context between the calling and called
procedures.

SYS-77

System Service Descriptions

$CMKRNL

When you use the $§CMKRNL service, the system service dispatcher modifies both
RO, R1, R2, and R4 before entry into the target routine. The specified routine
must exit with a RET instruction and should place a status value in RO before
returning.

The system loads R4 with the address of the Process Control Block (PCB).
Required Privileges

To call the $CMKRNL service, a process must either have CMKRNL privilege or
be currently executing in executive or kernel mode.

Required Quota
None

Related Services '
None

Condition Values Returned

SYS-78

SS$_NOPRIV The process does not have the privilege to change
mode to kernel.

All other values The routine executed returns all other values.

System Service Descriptions
$CREATE_RDB

$CREATE_RDB—Create Rights Database

Format

Returns

Argument

Description

Initializes a rights database.

SYS$CREATE_RDB [sysid]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

sysid

VMS Usage: system_access_id
type: quadword (unsigned)
access: read only

mechanism: by reference

System identification value associated with the rights database when $CREATE_
RDB completes execution. The sysid argument is the address of a quadword
containing the system identification value. If you omit sysid, the current system
time in 64-bit format is used.

The Create Rights Database initializes a rights database. The database name
is the file equated to the logical name RIGHTSLIST, which must be defined

as a system logical name from executive mode. If the logical name does not
exist, the database is created in SYS$COMMON:[SYSEXE] with the file name
RIGHTSLIST.DAT. If the database already exists, SCREATE_RDB fails with the
error RMS$_FEX.

Required Privileges

You need write access to the rights database to use this service. If the database
is in SYS$SYSTEM (which is the default), you need SYSPRYV privilege to grant
write access to the database.

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK _
ACCESS, $CHKPRO, $ERAPAT, $FIND_HELD, $FIND_HOLDER, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

SYS-79

System Service Descriptions
$CREATE_RDB

Condition Values Returned

SYS-80

SS$_NORMAL
SS$_ACCVIO
SS$_INSFMEM

RMS$_FEX

RMS$_PRV

The service completed successfully.
The sysid argument cannot be read by the caller.

The process dynamic memory is insufficient for
opening the rights database.

A rights database already exists. To create a new
one, you must explicitly delete or rename the old
one.

The user does not have write access to
SYS$SYSTEM.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management

Services Manual.

System Service Descriptions
$CRELNM

$CRELNM—Create Logical Name

Format

Returns

Arguments

Creates a logical name and specifies its equivalence names.

SYS$CRELNM [attr] ,tabnam-,lognam ,[acmode] ,[itmlst]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

attr

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by reference

Attributes to be associated with the logical name. The attr argument is the
address of a longword bit mask specifying these attributes.

Each bit in the longword corresponds to an attribute and has a symbolic name.
These symbolic names are defined by the SLNMDEF macro. To specify an
attribute, specify its symbolic name or set its corresponding bit. The longword
bit mask is the logical OR of all desired attributes. All undefined bits in the
longword must be 0.

If you do not specify this argument or specify it as 0 (no bits set), no attributes
are associated with the logical name.

The attributes are as follows.

Attribute Description

LNM$M_CONFINE If set, the logical name is not copied from the process to
its spawned subprocesses. You create a subprocess with
the DCL command SPAWN or the LIB§SPAWN Run-
Time Library routine. If the logical name is placed into
a process-private table that has the CONFINE attribute,
the CONFINE attribute is automatically associated with
the logical name. This applies only to process-private
logical names. '

LNM$M_NO_ALIAS If set, the logical name cannot be duplicated in this table
at an outer access mode. If another logical name with
the same name already exists in the table at an outer
access mode, it is deleted.

SYS-81

System Service Descriptions

$CRELNM

SYS~-82

tabnam

VMS Usage: logical_name

type: character-coded text string
access: read only

mechanism: by descriptor-fixed length string descriptor

Name of the table in which to create the logical name. The tabnam argument is
the address of a descriptor that points to the name of this table. This argument
is required.

If tabnam is not the name of a logical name table, it is assumed to be a logical
name and is translated iteratively until either the name of a logical name table is
found or the number of translations allowed by the system has been performed.
If tabnam translates to a list of logical name tables, the logical name is entered
into the first table in the list.

You need SYSNAM or SYSPRV privilege to specify the system table, and
GRPNAM or SYSPRYV privilege to specify the group table.

You need SYSPRYV privilege to specify the system directory table LNM$SYSTEM_
DIRECTORY.

lognam

VMS Usage: logical_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name of the logical name to be created. The lognam argument is the address
of a descriptor that points to the logical name string. Logical name strings of
logical names created within either the system or process directory table must
consist of alphanumeric characters, dollar signs ($), and underscores (_); the
maximum length is 31 characters. The maximum length of logical name strings
created within other tables is 255 characters with no restrictions on the types of
characters that can be used. This argument is required.

acmode

VMS Usage: access_mode
type: byte (unsigned)
access: read only

mechanism: by reference

Access mode to be associated with the logical name. The acmode argument is
the address of a byte that specifies the access mode.

The access mode associated with the logical name is determined by maximizing
the access mode of the caller with the access mode specified by the acmode
argument, which means that the less privileged of the two is used. Symbols for
the four access modes are defined by the $PSLDEF macro.

You cannot specify an access mode more privileged than that of the containing
table. However, if the caller has SYSNAM privilege, then the specified access
mode is associated with the logical name regardless of the access mode of the
caller. '

If you omit this argument or specify it as 0, the access mode of the caller is
associated with the logical name.

System Service Descriptions

$CRELNM
itmist
VMS Usage: item_list_3
type: longword (unsigned)
access: read only

mechanism: by reference

Item list describing the equivalence names to be defined for the logical name and
information to be returned to the caller. The itmlst argument is the address of a
list of item descriptors, each of which specifies information about an equivalence
name. The list of item descriptors is terminated by a longword of 0. The following
diagram depicts the format of a single item descriptor.

31 15 0
Item Code Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Item Descriptor Fields

Item Codes

buffer length

A word specifying the number of bytes in the buffer pointed to by the buffer
address field. The length of the buffer needed depends upon the item code
specified in the item code field of the item descriptor. If the value of buffer
length is too small, the service truncates the data.

item code

A word that contains a symbolic code that describes the information in the buffer
or the information to be returned to the buffer, pointed to by the buffer address
field. The item codes are listed in the Item Codes section.

buffer address
A longword containing the address of the buffer that receives or passes
information.

return length address

A longword containing the address of a word that receives the actual length
in bytes of the information returned by $CRELNM in the buffer pointed to by
the buffer address field. The return length address field is used only when
the item code specified is LNM$_TABLE. Although this field is ignored for all
other item codes, it must nevertheless be present as a placeholder in each item
descriptor.

LNM$_ATTRIBUTES

When you specify LNM$_ATTRIBUTES, the buffer address field of the item
descriptor points to a longword bit mask that specifies the current translation
attributes for the logical name. The current translation attributes are applied to
all subsequently specified equivalence strings until another LNM$_ATTRIBUTES
item descriptor is encountered in the item list. The symbolic names for these

SYS-83

System Service Descriptions

$CRELNM

Description

SYS~84

attributes are defined by the $LNMDEF macro. The symbolic name and
description of each attribute are as follows.

Attribute Description

LNM$M_CONCEALED If set,' RMS interprets the equivalence name as a device
name or logical name with the LNM$M_CONCEALED
attribute.

LNM$M_TERMINAL If set, further iterative logical name translation on the
equivalence name is not to be performed.

LNM$_CHAIN

When you specify LNM$_CHAIN, the buffer address field of the item descriptor
points to another item list that §CRELNM is to process immediately after it has
processed the current item list.

If you specify the LNM$_CHAIN item code, it must be the last item code in the
current item list.

LNM$_STRING

When you specify LNM$_STRING, the buffer address field of the item
descriptor points to a buffer containing a user-specified equivalence name for the
logical name. The maximum length of the equivalence string is 255 characters.

When $CRELNM encounters an item descriptor with the item code LNM$_
STRING, it creates an equivalence name entry for the logical name using the
most recently specified values for LNM$_ATTRIBUTES. The equivalence name
entry includes the following information:

* Name specified by LNM$_STRING.

* Next available index value. Each equivalence is assigned a unique value from
0 to 127.

* Attributes specified by the most recently encountered item descriptor with
item code LNM$_ATTRIBUTES (if these are present in the item list).

Therefore, you should construct the item list so that the LNM$_ATTRIBUTES
item codes immediately precede the LNM$_STRING item code or codes to which

they apply.

LNM$_TABLE

When you specify LNM$_TABLE, the buffer address field of the item descriptor
points to a buffer in which $§CRELNM writes the name of the logical name table
in which it entered the logical name. The return length address field points to
a word that contains a buffer that specifies the length in bytes of the information
returned by $CRELNM. The maximum length of the name of a logical name table
is 31 characters.

This item code can appear anywhere in the item list.

The Create Logical Name service creates a logical name and specifies its
equivalence name. Note that VMS logical names are case sensitive.

Required Privileges

System Service Descriptions
$CRELNM

The calling process must have the following:

* Write access to shareable tables to create logical names in those tables

* SYSNAM privilege to create supervisor, executive, or kernel mode logical
names. See the acmode argument.

¢ GRPNAM or SYSPRYV privilege to enter a logical name into the group logical

name table

¢ SYSNAM or SYSPRYV privilege to enter a logical name into the system logical

name table

Required Quota

The quota for the specified logical name table must be sufficient for the credtion

of the logical name.

Related Services

$CRELNT, $DELLNM, $TRNLNM

Condition Values Returned

SS$_NORMAL

SS$_SUPERSEDE

SS$_BUFFEROVF

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPLNAM

SS$_EXLNMQUOTA

SS$_INSFMEM

The service completed successfully; the logical
name has been created.

The service completed successfully; the logical
name has been created and a previously existing
logical name with the same name has been
deleted.

The service completed successfully; the buffer
length field in an item descriptor specified an
insufficient value, so the buffer was not large
enough to hold the requested data.

The service cannot access the locations specified
by one or more arguments.

One or more arguments have an invalid value, or
a logical name table name or logical name was
not specified.

An attempt was made to create a logical name
with the same name as an already existing
logical name, and the existing logical name was
created at a more privileged access mode and
with the LNM$M_NO_ALIAS attribute.

The quota associated with the specified logical
name table for the creation of the logical name is
insufficient.

The dynamic memory is insufficient for the
creation of the logical name.

SYS-85

System Service Descriptions
$CRELNM

SS$_IVLOGNAM

SS$_IVLOGTAB

SS$_NOLOGTAB

SS$_NOPRIV

SYS-86

The tabnam argument, lognam argument, or
the equivalence string specifies a string whose
length is not in the required range of 1 through
255 characters. The lognam argument specifies
a string whose length is not in the required range
of 1 to 31 characters for directory table entries.

The tabnam argument does not specify a logical
name table.

Either the specified logical name table does

not exist or the logical name translation of the
table name exceeded the allowable depth of 10
translations.

The caller lacks the necessary privilege to create
the logical name.

System Service Descriptions
$CRELNT

$CRELNT—Create Logical Name Table

Creates a process-private or shareable logical name table.

Format

SYS$CRELNT [attr] ,[resnam] ,[reslen] ,[quota]
,[promsk] ,[tabnam] ,partab ,[acmode]

Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

Arguments
attr
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference
Attributes to affect the creation of the logical name table and to be associated
with the newly created logical name table. The attr argument is the address of a
longword bit mask specifying these attributes.
Each bit in the longword corresponds to an attribute and has a symbolic name.
These symbolic names are defined by the $LNMDEF macro. To specify an
attribute, specify its symbolic name or set its corresponding bit. The longword bit
mask is the logical OR of all desired attributes. All unused bits in the longword
must be 0.
If you do not specify this argument or specify it as 0 (no bits set), no attributes
are associated with the logical name table or affect the creation of the new table.
The following table describes each attribute.

Attribute Description

LNM$M_CONFINE If set, the logical name table is not copied from the process to its

spawned subprocesses. You create a subprocess with the DCL
command SPAWN or the Run-Time Library LIB$SPAWN routine.
You can specify this attribute only for process-private logical name
tables; it is ignored for shareable tables.

SYS-87

System Service Descriptions

$CRELNT

Attribute

Description

The state of this bit is also propagated from the parent table to the
newly created table and can be overridden only if the parent table
does not have the bit set. Thus, if the parent table has the LNM$M_
CONFINE attribute, the newly created table will also have it, no
matter what is specified in the attr argument. On the other hand,
if the parent table does not have the LNM$M_CONFINE attribute,
the newly created table can be given this attribute through the attr
argument.

The process-private directory table LNM$PROCESS_DIRECTORY
does not have the LNM$M_CONFINE attribute.

LNM$M_CREATE_IF If set, a new logical name table is created only if the specified table

name is not already entered at the specified access mode in the
appropriate directory table. If the table name exists, a new table is
not created and no modification is made to the existing table name.
This holds true even if the existing name has differing attributes or
quota values, or even if it is not the name of a logical name table.

If LNM$M_CREATE_IF is not set, the new logical name table will
supersede any existing table name with the same access mode within
the appropriate directory table. Setting this attribute is useful when
two or more users want to create and use the same table but do not
want to synchronize its creation.

LNM$M_NO_ALIAS If set, the name of the logical name table cannot be duplicated at an

outer access mode within the appropriate directory table. If this name
already exists at an outer access mode, it is deleted.

SYS-88

reshnam

VMS Usage: logical_name

type: character-coded text string
access: write only

mechanism: by descriptor—fixed length string descriptor

Name of the newly created logical name table, returned by $CRELNT. The
resnam argument is the address of a descriptor pointing to this name. The name
is a character string whose maximum length is 31 characters.

reslen

VMS Usage: word_unsigned
type: word (unsigned)
access: write only

mechanism: by reference

Length in bytes of the name of the newly created logical name table, returned by
$CRELNT. The reslen argument is the address of a word to receive this length.

quota

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

Maximum number of bytes of memory to be allocated for logical names contained
in this logical name table. The quota argument is the address of a longword
specifying this value.

System Service Descriptions
$CRELNT

If you specify no quota value, the logical name table has an infinite quota. Note
that a shareable table created with infinite quota permits users with write access
to that table to consume system dynamic memory without limit.

promsk

VMS Usage: file_protection
type: word (unsigned)
access: read only

mechanism: by reference

Protection mask to be associated with the newly created shareable logical name
table. The promsk argument is the address of a word that contains a value that
represents four 4-bit fields, where each field describes the type of access allowed
for system, owner, group, and world users. The following diagram depicts these
protection bits.

World Group Owner System

D(E|W|R(D|E(W|R|D|E|W|R{D|E|W|R
1514131211109 8 7 6 56 4 3 2 1 0
ZK-1706-GE

Each field consists of four bits specifying protection for the logical name table.
The remaining bits in the protection mask are as follows:

* Read privileges allow access to names in the logical name table.

* Write privileges allow creation and deletion of names within the logical name
table.

¢ Delete privileges allow deletion of the logical name table.

Note

The “E” protection bit is reserved by Digital.

If a bit is clear, access is granted. If you omit the mask, complete access is
granted to system and owner, and no access is granted to world and group.

tabnam

VMS Usage: logical_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

The name of the new logical name table. The tabnam argument is the address
of a character string descriptor pointing to this name string. Table names are
contained in either the process or system directory table (LNM$PROCESS_
DIRECTORY or LNM$SYSTEM_DIRECTORY). Therefore, table names must
consist of alphanumeric characters, dollar signs ($), and underscores (_); the
maximum length is 31 characters.

If you do not specify this argument, a default name in the format LNM$xxxx is
used, where xxxx is a unique hexadecimal number.

You need SYSPRYV privilege to specify the name of a shareable logical name table.

SYS-89

System Service Descriptions

$CRELNT

Description

SYS-90

partab

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name string for the parent table name. The partab argument is the address
of a character string descriptor pointing to this name string. If the parent table
is shareable, then the newly created table is shareable and is entered into the
system directory LNM$SYSTEM_DIRECTORY. If the parent table is process-
private, then the newly created table is process-private and is entered in the
process directory LNM$PROCESS_DIRECTORY. You need SYSPRYV privilege
or write access to the system directory to create a named shareable table. This
argument is required.

acmode

VMS Usage: access_mode
type: byte (unsigned)
access: read only

mechanism: by reference

Access mode to be associated with the newly created logical name table. The
acmode argument is the address of a byte containing this access mode. The
$PSLDEF macro defines symbolic names for the four access modes.

If you do not specify the acmode argument or specify it as 0, the access mode of
the caller is associated with the newly created logical name table.

The access mode associated with the logical name table is determined by
maximizing the access mode of the caller with the access mode specified by
the acmode. The less privileged of the two access modes is used.

However, if the caller has SYSNAM privilege, then the specified access mode is
associated with the logical name table, regardless of the access mode of the caller.

Access modes associated with logical name tables govern logical name table
processing and provide a protection mechanism that prevents the deletion of
inner access mode logical name tables by nonprivileged users. You cannot specify
an access mode more privileged than that of the parent table.

A logical name table with supervisor mode access can contain supervisor mode
and user mode logical names and can be a parent to supervisor mode and user
mode logical name tables, but cannot contain executive or kernel mode logical
names or be a parent to executive or kernel mode logical name tables.

You need SYSNAM privilege to specify executive or kernel mode access for a
logical name table.

The Create Logical Name Table service creates a process-private or a shareable
logical name table.

The $CRELNT service uses the following system resources:
e System paged dynamic memory to create a shareable logical name table

* Process dynamic memory to create a process-private logical name table

System Service Descriptions
$CRELNT

The parent table governs whether the new table is process-private or shareable.
If the parent table is process-private, so is the new table; if the parent table is
shareable, so is the new table.

Note that VMS logical names are case sensitive.

Required Privileges

You need the SYSPRV privilege to create a shareable table, and you need the
SYSNAM privilege to create a table at an access mode more privileged than that
of the calling process.

Required Quota

The parent table must have sufficient quota for the creation of the new table.

Related Services
$CRELNM, $DELLNM, $TRNLNM

Condition Values Returned

SS$_NORMAL The service completed successfully; the logical
name table already exists.

SS$_LNMCREATED The service completed successfully; the logical
name table was created.

SS$_SUPERSEDE The service completed successfully; the logical

name table was created and its logical name
superseded already existing logical names in the
directory table.

SS$_ACCVIO The service cannot access the locations specified
by one or more arguments.

SS$ BADPARAM One or more arguments have an invalid value, or
a parent logical name table was not specified.

SS$_DUPLNAM You attempted to create a logical name table

with the same name as an already existing
name within the appropriate directory table,
and the existing name was created at a more
privileged access mode with the LNM$M_NO_
ALIAS attribute.

SS$_EXLNMQUOTA The parent table has insufficient quota for the
creation of the new table.

SS$_INSFMEM The dynamic memory is insufficient for the
creation of the table.

SS$_IVLOGNAM The partab argument specifies a string whose
length is not within the required range of 1 to 31
characters. .

SS$_IVLOGTAB The tabnam argument is not alphanumeric or

specifies a string whose length is not within the
required range of 1 to 31 characters.

SS$_NOLOGTAB The parent logical name table does not exist.

SYS-91

System Service Descriptions
SCRELNT

SS$_NOPRIV
SS$_PARENT_DEL

SS$_RESULTOVF

SYS-92

The caller lacks the necessary privilege to create
the table.

The creation of the new table would have
resulted in the deletion of the parent table.

The table name buffer is not large enough to
contain the name of the new table.

System Service Descriptions
$CREMBX

$CREMBX—Create Mailbox and Assign Channel

Creates a virtual mailbox device named MBArn and assigns an I/O channel to
it. The system provides the unit number n when it creates the mailbox. If a
logical name is specified and a mailbox with the specified name already exists,
the $CREMBX service assigns a channel to the existing mailbox.

Format
SYS$CREMBX [prmflg] ,chan ,[maxmsg] ,[bufquo] ,[promsk] ,Jacmode] ,[lognam]
[flags]
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.
Arguments
prmflg
VMS Usage: boolean
type: byte (unsigned)
access: read only

mechanism: by value

Indicator specifying whether the created mailbox is to be permanent or temporary.
The prmflg argument is a byte value. The value 1 specifies a permanent mailbox;
the value 0, which is the default, specifies a temporary mailbox. Any other values
result in an error.

chan

VMS Usage: channel
type: word
access: write only

mechanism: by reference

Channel number assigned by $CREMBX to the mailbox. The chan argument is
the address of a word into which $CREMBX writes the channel number.

maxmsg

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Maximum size (in bytes) of a message that can be sent to the mailbox. The
maxmsg argument is a longword value containing this size. If you do not specify
maxmsg or specify it as 0, the VMS operating system provides a default value.

SYS-93

System Service Descriptions

$CREMBX

SYS-94

bufquo

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Number of bytes of system dynamic memory that can be used to buffer messages
sent to the mailbox. The bufquo argument is a word value containing this
number. If you do not specify the bufquo argument or specify it as 0, the VMS
operating system provides a default value.

The maximum value that you can specify with the bufquo argument is 65355.
For a temporary mailbox, this value must be less than or equal to the process
buffer quota.

promsk

VMS Usage: file_protection

type: longword (unsigned)
access: read only

mechanism: by value

Protection mask to be associated with the created mailbox. The promsk
argument is a longword value that is the combined value of the bits set in

the protection mask. Cleared bits grant access and set bits deny access to each of
the four classes of user: world, group, owner, and system. The following diagram
depicts these protection bits.

World Group Owner System
LIPIWIR|L|PIW|RIL]P|W|R|L|[P|W|R
151413121110 9 8 76 54 3 2 1 0

ZK-1707-GE

If you do not specify the promsk argument or specify it as 0, read, write,
physical, and logical access are granted to all users.

The logical access bit must be clear for the class of user requiring access to the
mailbox. The access bit must be clear for all categories of user because logical
access is required to read or write to a mailbox; thus, setting or clearing the read
and write access bits is meaningless unless the logical access bit is also cleared.

The physical access bit is ignored for all categories of user.

Logical access also allows you to queue read or write attention ASTs.

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode to be associated with the channel to which the mailbox is assigned.
The acmode argument is a longword containing the access mode. The $PSLDEF
macro defines the following symbols for the four access modes.

\ System Service Descriptions

$CREMBX
Symbol Access Mode Numeric Value
PSL$C_KERNEL Kernel 0
PSL$C_EXEC Executive 1
PSL$C_SUPER Supervisor 2
PSL$C_USER User 3

The most privileged access mode used is the access mode of the caller. The
specified access mode and the access mode of the caller are compared. The less
privileged (but the higher numeric valued) of the two access modes becomes the
access mode associated with the assigned channel. I/O operations on the channel
can be performed only from equal or more privileged access modes.

lognam

VMS Usage: logical_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Logical name to be assigned to the mailbox. The lognam argument is the address
of a character string descriptor pointing to the logical name string.

The equivalence name for the mailbox is MBA#n. The equivalence name is marked
with the terminal attribute. Processes can use the logical name to assign other
1/0 channels to the mailbox.

For permanent mailboxes, the $CREMBX service enters the specified logical
name, if any, in the LNM$PERMANENT_MAILBOX logical name table and,
for temporary mailboxes, into the LNM$TEMPORARY_MAILBOX logical name
table.

flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

The flags argument is used for specifying options for the assign operation that
occurs in $CREMBX. The flags argument is a longword bit mask that enables
the user to specify that the channel assigned to the mailbox is a READ ONLY or
WRITE ONLY channel. If the flags argument is not specified, then the default
channel behavior is READ/WRITE. The $CMBDEF macro defines a symbolic
name for each flag bit. The following table describes each flag.

Flag Description

CMB$M_READONLY When this flag is specified, $CREMBX assigns a read-
only channel to the mailbox device. An attempt to
issue a QIO WRITE operation on the mailbox channel
will result in an illegal I/O operation error.

CMB$M_WRITEONLY When this flag is specified, $CREMBX assigns a write-
only channel to the mailbox device. An attempt to
issue a QIO READ operation on the mailbox channel
results in an illegal I/O operation error.

SYS-95

System Service Descriptions

$CREMBX

Description

For more information about the flags argument, see the VMS I/0 User’s
Reference Manual: Part I.

The Create Mailbox and Assign Channel service creates a virtual mailbox device
named MBA7n and assigns an I/O channel to it. The system provides the unit
number n when it creates the mailbox. If a mailbox with the specified name
already exists, the $CREMBX service assigns a channel to the existing mailbox.

The $CREMBX service uses system dynamic memory to allocate a device
database for the mailbox and for an entry in the logical name table (if a logical
name is specified).

When a temporary mailbox is created, the process’s buffered I/O byte count
(BYTLM) quota is reduced by the amount specified in the bufquo argument.
The size of the mailbox unit control block and the logical name (if specified) are
also subtracted from the quota. The quota is returned to the process when the
mailbox is deleted.

* After the process creates a mailbox, it and other processes can assign additional

SYS-96

channels to it by calling the Assign I/O Channel ($ASSIGN) or Create Mailbox
($CREMBX) service. If the mailbox already exists, the $CREMBX service assigns
a channel to that mailbox; in this way, cooperating processes need not consider
which process must execute first to create the mailbox.

A channel assigned to the mailbox READ ONLY is considered a READER. A
channel assigned to the mailbox WRITE ONLY is considered a WRITER. A
channel assigned to the mailbox READ/WRITE is considered both a WRITER and
READER.

A temporary mailbox is deleted when no more channels are assigned to it.

A permanent mailbox must be explicitly marked for deletion with the Delete
Mailbox ($DELMBX) service; its actual deletion occurs when no more channels
are assigned to it.

A mailbox is treated as a shareable device; it cannot, however, be mounted or
allocated.

The mailbox unit number is determinted when the mailbox is created. A
process can obtain the unit number of the created mailbox by calling the Get
Device/Volume Information ($GETDVI) service using the channel returned by
$CREMBX.

Mailboxes are assigned sequentially increasing numbers (from 1 to a maximum
of 9999) as they are created. When all unit numbers have been used, the system
starts numbering again at unit 1. Logical names or mailbox names should be
used to identify a mailbox between cooperating processes.

Default values for the maximum message size and the buffer quota (an
appropriate multiple of the message size) are determined for a specific

system during system generation. The SYSGEN parameter DEFMBXMXMSG
determines the maximum message size; the SYSGEN parameter
DEFMBXBUFQUO determines the buffer quota. For termination mailboxes,
the maximum message size must be at least as large as the termination message
(currently 84 bytes).

When you specify a logical name for a temporary mailbox, the $CREMBX service
enters the name into the LNM$TEMPORARY_MAILBOX logical name table.

System Service Descriptions
$CREMBX

Normally, LNM$TEMPORARY_MAILBOX specifies LNM$JOB, the jobwide
logical name table; thus, only processes in the same job as the process that first
creates the mailbox can use the logical name to access the temporary mailbox.
If you want to use the temporary mailbox to enable communication between
processes in different jobs, you must redefine LNM$TEMPORARY_MAILBOX
in the process logical name directory table (LNM$PROCESS_DIRECTORY) to
specify a logical name table that those processes can access.

For instance, if you want to use the mailbox as a communication device for
processes in the same group, you must redefine LNM$TEMPORARY_MAILBOX
to specify LNM$GROUP, the group logical name table. The following DCL
command assigns temporary mailbox logical names to the group logical name
table:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$TEMPORARY MAILBOX LNM$GROUP

When you specify a logical name for a permanent mailbox, the system enters
the name in the logical name table specified by the logical name table name
LNM$PERMANENT _MAILBOX, which normally specifies LNM$SYSTEM, the
system logical name table. If you want the logical name that you specify for the
mailbox to be entered in a logical name table other than the system logical name
table, you must redefine LNM$PERMANENT MAILBOX to specify the desired
table. For more information about logical name tables, see the Introduction to
VMS System Services.

If you redefine either LNM$TEMPORARY_MAILBOX or LNM$PERMANENT_
MAILBOX, be sure that the name of the new table appears in the logical name
table LNM$FILE_DEV. RMS and the I/O system services use LNM$FILE_DEV
to translate I/O device names. If the logical name table specified by either
LNM$TEMPORARY_MAILBOX or LNM$PERMANENT_MAILBOX does not
appear in LNM$FILE_DEYV, the system will be unable to translate the logical
name of your mailbox and therefore will be unable to access your mailbox as an
I/O device.

If you redirect a logical name table to point to a process-private table, then the
following occurs:

* Other processes cannot access the mailbox by its name.

* If the creating process issues a second call to $CREMBX, a different mailbox
is created and a channel is assigned to the new mailbox. (If the creating
process issues a second call to $CREMBX using a shared logical name, a
second channel is assigned to the existing mailbox.)

* The logical name is not deleted when the mailbox disappears.

Required Privileges

Depending on the operation, the calling process might need one of the following
privileges to use $CREMBX:

* TMPMBX privilege whenever the prmflg argument is specified as 0. However,
a process which has PRMMBX privilege will also meet this requirement.

* PRMMBX privilege whenever the prmflg argument is specified as 1.

* SYSNAM privilege to place a logical name for a mailbox in the system logical
name table

* GRPNAM privilege to place a logical name for a mailbox in the group logical
name table

SYS-97

System Service Descriptions

$CREMBX

Required Quota

The calling process must have sufficient buffer I/0 byte count (BYTLM) quota to
allocate the mailbox UCB or to satisfy buffer requirements. When a temporary
mailbox is created, the process’s buffered I/O byte count (BYTLM) quota is
reduced by the amount specified in the bufquo argument. The size of the mailbox
unit control block and the logical name (if specified) are also subtracted from the
quota. The quota is returned to the process when the mailbox is deleted.

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $DALLOC,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-98

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM

SS$_EXBYTLM

SS$_INSFMEM

SS$_INTERLOCK

SS$_IVLOGNAM
SS$_IVSTSFLG

SS$_NOIOCHAN
SS$_NOPRIV

SS$_NOSHMBLOCK

SS$_OPINCOMPL

The service completed successfully.

The logical name string or string descriptor
cannot be read by the caller, or the channel
number cannot be written by the caller.

The bufquo argument specified a value greater
than approximately 65355, which is 65535 minus
the size of a mailbox unit control block (UCB).

The process has insufficient buffer I/O byte count
(BYTLM) quota to allocate the mailbox UCB or
to satisfy buffer requirements.

The system dynamic memory is insufficient for
completing the service.

The bit map lock for allocating mailboxes from
the specified shared memory is locked by another
process.

The logical name string has a length of 0 or has
more than 255 characters.

The bit set in the prmflg argument is undefined;
this argument can have a value of 1 or 0.

No I/O channel is available for assignment.

The process does not have the privilege to create
a temporary mailbox, a permanent mailbox, a
mailbox in memory that is shared by multiple
processors, or a logical name.

No shared memory mailbox control block is
available for use to create a new mailbox.

A duplicate unit number was encountered while
linking a shared memory mailbox UCB. If this
condition value is returned, submit an SPR to
Digital.

SS$_SHMNOTCNCT

SS$_TOOMANYLNAM

System Service Descriptions
$CREMBX

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the

-string, an improperly assigned logical name, or

the failure to identify the multiport memory as
shared at system generation time.
The logical name translation of the string named

in the lognam argument exceeded the allowed
depth.

SYS-99

System Service Descriptions

$CREPRC

SCREPRC—Create Process

Format

Returns

Arguments

S$YS-100

Creates a subprocess or detached process on behalf of the calling process.

SYS$CREPRC [pidadr] ,[image] ,[input] ,[output] ,[error] ,[prvadr] ,[quota] ,[prcnam]
,[baspri] ,[uic] ,[mbxunt] ,[stsflg]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr

VMS Usage: process_id

type: longword (unsigned)
access: write only '

mechanism: by reference

Process identification (PID) of the newly created process. The pidadr argument
is the address of a longword into which $CREPRC writes the PID.

image

VMS Usage: logical_name

type: character-coded text string
access: read only

mechanism: by descriptor-fixed length string descriptor

Name of the image to be activated in the newly created process. The image
argument is the address of a character string descriptor pointing to the file
specification of the image.

The image name can have a maximum of 63 characters. If the image name
contains a logical name, the equivalence name must be in a logical name table
that the created process can access.

input

VMS Usage: logical_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Equivalence name to be associated with the logical name SYS$INPUT in the
logical name table of the created process. The input argument is the address of a
character string descriptor pointing to the equivalence name string.

System Service Descriptions

$CREPRC
output
VMS Usage: logical_name
type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Equivalence name to be associated with the logical name SYS$OUTPUT in the
logical name table of the created process. The output argument is the address of
a character string descriptor pointing to the equivalence name string.

error

VMS Usage: logical _name

type: character-coded text string
access: read only

mechanism: by descriptor-fixed length string descriptor

Equivalence name to be associated with the logical name SYS$ERROR in the
logical name table of the created process. The error argument is the address of a
character string descriptor pointing to the equivalence name string.

Note that the error argument is ignored if the image argument specifies
SYS$SYSTEM:LOGINOUT.EXE; in this case, SYS$ERROR points to
SYS$OUTPUT.

prvadr

VMS Usage: mask_privileges
type: quadword (unsigned)
access: read only

mechanism: by reference

Privileges to be given to the created process. The prvadr argument is the
address of a quadword bit vector wherein each bit corresponds to a privilege;
setting a bit gives the privilege. If the prvadr argument is not specified, the
current privileges are used.

Each bit has a symbolic name; the $PRVDEF macro defines these names. You
form the bit vector by specifying the symbolic name of each desired privilege in
a logical OR operation. Table SYS-3 gives the symbolic name and description of
each privilege.

Table SYS-3 User Privileges

Privilege Symbolic Name Description

ALLSPOOL PRV$V_ALLSPOOL Allocate a spooled device
BUGCHK PRV$V_BUGCHK Make bugcheck error log entries
BYPASS PRV$V_BYPASS Bypass UIC-based protection
CMEXEC PRV$V_CMEXEC Change mode to executive
CMKRNL PRV$V_CMKRNL Change mode to kernel
DETACH PRV$V_DETACH Create detached processes
DIAGNOSE PRV$V_DIAGNOSE Can diagnose devices

DOWNGRADE PRV$V_DOWNGRADE Can downgrade classification

(continued on next page)

SYS-101

System Service Descriptions
$CREPRC

Table SYS-3 (Cont.) User Privileges

Privilege Symbolic Name Description

EXQUOTA PRV$V_EXQUOTA Can exceed quotas

GROUP PRV$V_GROUP Group process control

GRPNAM PRV$V_GRPNAM Place name in group logical
name table

GRPPRV PRV$V_GRPPRV Group access via system
protection field

LOG_IO PRV$V_LOG_IO Perform logical I/O operations

MOUNT PRV$V_MOUNT Issue mount volume QIO

NETMBX PRV$V_NETMBX Create a network device

ACNT PRV$V_NOACNT Create processes for which no
accounting is done

OPER PRV$V_OPER All operator privileges

PFNMAP PRV$V_PFNMAP Map to section by physical page
frame number

PHY_IO PRV$V_PHY_IO Perform physical I/O operations

PRMCEB PRV$V_PRMCEB Create permanent common event
flag clusters

PRMGBL PRV$V_PRMGBL Create permanent global sections

PRMMBX PRV$V_PRMMBX Create permanent mailboxes

PSWAPM PRV$V_PSWAPM Change process swap mode

READALL PRV$V_READALL Possess read access to everything

SECURITY PRV$V_SECURITY Can perform security functions

ALTPRI PRV$V_SETPRI Set (alter) any process priority

SETPRV PRV$V_SETPRV Set any process privileges

SHARE PRV$V_SHARE Can assign a channel to a non-
shared device

SYSGBL PRV$V_SYSGBL Create system global sections

SYSLCK PRV$V_SYSLCK Queue systemwide locks

SYSNAM PRV$V_SYSNAM Place name in system logical

: name table

SYSPRV PRV$V_SYSPRV Access files and other resources
as if you have a system UIC

TMPMBX PRV$V_TMPMBX Create temporary mailboxes

UPGRADE PRV$V_UPGRADE Can upgrade classification

VOLPRO PRV$V_VOLPRO Override volume protection

WORLD PRV$V_WORLD World process control

Note that the names of the privilege bits PRV$V_NOACNT and PRV$V_SETPRI
correspond to the names of the DCL privileges ACNT and ALTPRI, yet have

different names.

System Service Descriptions
$CREPRC

You need the user privilege SETPRV to grant a process any privileges other than
your own. If the caller does not have this privilege, the mask is minimized with

the current privileges of the creating process; any privileges the creating process
does not have are not granted, but no error status code is returned.

quota

VMS Usage: item_quota_list
type: longword (unsigned)
access: read only

mechanism: by reference

Process quotas to be established for the created process. These quotas limit the
created process’s use of system resources. The quota argument is the address of
a list of quota descriptors, where each quota descriptor consists of a 1-byte quota
name followed by a longword that specifies the desired value for that quota. The
list of quota descriptors is terminated by the symbolic name PQL$_LISTEND.

If you do not specify the quota argument or specify it as 0, the VMS operating
system supplies a default value for each quota. ’

For example, in VAX MACRO you can specify a quota list, as follows.

QLIST: .BYTE PQLS_PRCLM ; Limit number of subprocesses
.LONG 2 ; Max = 2 subprocesses

.BYTE PQLS_ASTLM ; Limit number of asts

.LONG 6 ; Max = 6 outstanding asts

.BYTE PQLS_LISTEND ; End of quota list

The $PQLDEF macro defines symbolic names for quotas.

Individual Quota Descriptions A description of each quota follows. The
description of each quota lists its minimum value (a SYSGEN parameter), its
default value (a SYSGEN parameter), and whether it is deductible, nondeductible,
or pooled. These terms have the following meaning.

Minimum value You cannot create a process if it does not have a quota
equal to or greater than this minimum. You obtain the
minimum value for a quota by running SYSGEN to
display the corresponding SYSGEN parameter.

Default value If the quota list does not specify a value for a particular
quota, the system assigns the process this default value.
You obtain the default value by running SYSGEN to
display the corresponding SYSGEN parameter.

Deductible quota When you create a subprocess, the value for a deductible
quota is subtracted from the creating process’s current
quota and is returned to the creating process when
the subprocess is deleted. There is currently only one
deductible quota, the CPU time limit. Note that quotas
are never deducted from the creating process when a
detached process is created.

Nondeductible quota Nondeductible quotas are established and maintained
separately for each process and subprocess.

SYS-103

System Service Descriptions

$CREPRC

SYS-104

Pooled quota Pooled quotas are established when a detached process
is created, and they are shared by that process and all
its descendent subprocesses. Charges against pooled
quota values are subtracted from the current available
totals as they are used and are added back to the total
when they are not being used.

To run SYSGEN to determine the minimum and default values of a quota, enter
the following sequence of commands.

$ RUN SYSSSYSTEM:SYSGEN
SYSGEN> SHOW/PQL

Minimum values are named PQL_Mxxxxx, where xxxxx are the last five
characters of the quota name.

Default values are named PQL_Dxxxxx, where xxxxx are the last five characters
of the quota name.

Individual Quotas

PQL$_ASTLM

AST limit. This quota restricts both the number of outstanding AST routines
specified in system service calls that accept an AST address and the number of
scheduled wakeup requests that can be issued.

Minimum: PQL_MASTLM
Default: PQL_DASTLM
Nondeductible

PQLS$_BIOLM

Buffered I/O limit. This quota limits the number of outstanding system-buffered
I/O operations. A buffered I/O operation is one that uses an intermediate buffer
from the system pool rather than a buffer specified in a process’s $QIO request.

Minimum: PQL_MBIOLM
Default: PQL_DBIOLM
Nondeductible

PQL$_BYTLM
Buffered I/O byte count quota. This quota limits the amount of system space that
can be used to buffer I/O operations or to create temporary mailboxes.

Minimum: PQL_MBYTLM
Default: PQL_DBYTLM
Pooled

PQL$_CPULM
CPU time limit, specified in units of 10 milliseconds. This quota limits the total
amount of CPU time that a created process can use. When it has exhausted

its CPU time limit quota, the created process is deleted and the status code
SS$_EXCPUTIM is returned.

If you do not specify this quota and the created process is a detached process, the
detached process receives a default value of 0, that is, unlimited CPU time.

If you do not specify this quota and the created process is a subprocess, the
subprocess receives half the CPU time limit quota of the creating process.

System Service Descriptions
$CREPRC

If you specify this quota as 0, the created process has unlimited CPU time,
provided the creating process also has unlimited CPU time. If, however, the
creating process does not have unlimited CPU time, the created process receives
half the CPU time limit quota of the creating process.

The CPU time limit quota is a consumable quota; that is, the amount of CPU
time used by the created process is not returned to the creating process when the
created process is deleted.

Minimum: PQL_MCPULM
Default: PQL_DCPULM
Deductible

PQLS$_DIOLM

Direct I/O quota. This quota limits the number of outstanding direct I/O
operations. A direct I/O operation is one for which the system locks the pages
containing the associated I/O buffer in memory for the duration of the I/O
operation.

Minimum: PQL_MDIOLM
Default: PQL_DDIOLM
Nondeductible

PQL$_ENQLM
Lock request quota. This quota limits the number of lock requests that a process
can queue.

Minimum: PQL_MENQLM
Default: PQL_DENQLM
Pooled

PQLS$_FILLM
Open file quota. This quota limits the number of files that a process can have
open at one time.

Minimum: PQL_MFILLM
Default: PQL_DFILLM
Pooled

PQL$_JTQUOTA

Job table quota. This quota limits the number of bytes of system paged pool used
for the job logical name table. If the process being created is a subprocess, this
item is ignored.

Minimum: PQL_MJTQUOTA
Default: PQL_DJTQUOTA
Deductible

PQL$_PGFLQUOTA
Paging file quota. This quota limits the number of pages that can be used to
provide secondary storage in the paging file for the execution of a process.

Minimum: PQL_MPGFLQUOTA
Default: PQL_DPGFLQUOTA
Pooled

SYS-105

System Service Descriptions

$CREPRC

SYS-106

PQL$_PRCLM
Subprocess quota. This quota limits the number of subprocesses a process can
create.

Minimum: PQL_MPRCLM
Default: PQL_DPRCLM
Pooled

PQL$_TQELM

Timer queue entry quota. This quota limits both the number of timer queue
requests a process can have outstanding and the creation of temporary common
event flag clusters.

Minimum: PQL_MTQELM
Default: PQL_DTQELM
Pooled

PQLS$_WSDEFAULT

Default working set size. This quota defines the number of pages in the default
working set for any image the process executes. The working set size quota
determines the maximum size you can specify for this quota.

Minimum: PQL_MWSDEFAULT
Default: PQL_DWSDEFAULT
Nondeductible

PQL$_WSEXTENT

Working set expansion quota. This quota limits the maximum size to which
an image can expand its working set size with the Adjust Working Set Limit
($ADJWSL) system service.

Minimum: PQL_MWSEXTENT
Default: PQL_DWSEXTENT
Nondeductible

PQL$_WSQUOTA

Working set size quota. This quota limits the maximum size to which an image
can lock pages in its working set with the Lock Pages in Memory ($LCKPAG)
system service.

Minimum: PQL_MWSQUOTA
Default: PQL_DWSQUOTA
Nondeductible

Use of the Quota List The values specified in the quota list are not necessarily
the quotas that are actually assigned to the created process. The $CREPRC
service performs the following steps to determine the quota values that are
assigned:

1. It constructs a default quota list for the process being created, assigning it
the default values for all quotas. Default values are SYSGEN parameters and
so might vary from system to system.

2. It reads the specified quota list, if any, and updates the corresponding items
in the default list. If the quota list contains multiple entries for a quota, only
the last specification is used.

System Service Descriptions
$CREPRC

3. For each item in the updated quota list, it compares the quota value with
the minimum value required (also a SYSGEN parameter) and uses the larger
value. Then, the following occurs:

¢ If a subprocess is being created or if a detached process is being created
and the creating process does not have DETACH privilege, the resulting
value is compared with the current value of the corresponding quota of
the creating process and the lesser value is used.

Then, if the quota is a deductible quota, that value is deducted from the
creating process’s quota, and a check is performed to ensure that the
creating process will still have at least the minimum quota required. If
not, the condition value SS$_EXQUOTA is returned and the subprocess
or detached process is not created.

Pooled quota values are ignored.

¢ If a detached process is being created and the creating process has
DETACH privilege, the resulting value is not compared with the current
value of the corresponding quota of the creating process and the resulting
value is not deducted from the creating process’s quota. The $CREPRC
service does not check that a specified quota value exceeds the maximum
allowed by the system.

prcnam

VMS Usage: process_name

type: character-coded text string
access: read only

mechanism: by descriptor-fixed length string descriptor

Process name to be assigned to the created process. The prenam argument is the
address of a character string descriptor pointing to a 1- to 15-character process
name string. '

If a subprocess is being created, the process name is implicitly qualified by the
UIC group number of the creating process. If a detached process is being created,
the process name is qualified by the group number specified in the uic argument.

baspri

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Base priority to be assigned to the created process. The baspri argument is a
longword value in the range 0 to 31, where 31 is the highest priority and 0 is the
lowest. Usual priorities are in the range 0 to 15, and real-time priorities are in
the range 16 to 31.

If the baspri argument is not specified, the priority defaults to 2 for VAX MACRO
and VAX BLISS-32 and to 0 for all other languages. If you want a subprocess to
have a higher priority than its creating process, you must have ALTPRI privilege
to raise the priority level. If the caller does not have this privilege, the specified
base priority is compared with the caller’s priority and the lower of the two values
is used.

SYS-107

System Service Descriptions

$CREPRC

SYS-108

uic

VMS Usage: uic

type: longword (unsigned)
access: read only

mechanism: by value

User identification code (UIC) to be assigned to the created process. The uic
argument is a longword value containing the UIC.

If you do not specify the uic argument or specify it as 0 (the default), $CREPRC
creates a process and assigns it the UIC of the creating process.

If you specify a nonzero value for the uic argument, $CREPRC creates a detached
process. This value is interpreted as a 32-bit octal number, with two 16-bit fields:

bits 0-15—member number
bits 16-31—group number

You need DETACH privilege to create a detached process with a UIC that is
different from the UIC of the creating process.

If the image parameter specifies the LOGINOUT.EXE, the UIC of the created
process will be the UIC of the caller of $CREPRC, and the UIC parameter is
ignored.

mbxunt

VMS Usage: word_unsigned
type: word (unsigned)
access: read only

mechanism: by value

Unit number of a mailbox to receive a termination message when the created
process is deleted. The mbxunt argument is a word containing this number.

If you do not specify the mbxunt argument or specify it as 0 (the default), the
VMS operating system sends no termination message when it deletes the process.

The Get Device/Volume Information ($GETDVI) service must be used to obtain
the unit number of the mailbox.

If you specify the mbxunt argument, the mailbox is used only after the created
process actually terminates. At that time, the $ASSIGN service is issued for the
mailbox in the context of the terminating process and an accounting message is
sent to the mailbox. If the mailbox no longer exists, cannot be assigned, or is full,
the error is treated as if no mailbox had been specified.

The accounting message is sent before process rundown is initiated but after

the process name has been set to null. Thus, a significant interval of time can
occur between the sending of the accounting message and the final deletion of the
process.

To receive the accounting message, the caller must issue a read to the mailbox.
When the I/O completes, the second longword of the I/O status block, if one is
specified, contains the process identification of the deleted process.

The $ACCDEF macro defines symbolic names for offsets of fields within the
accounting message. The offsets, their symbolic names, and the contents of each
field are shown in the following table. Unless stated otherwise, the length of the
field is 4 bytes.

System Service Descriptions

$CREPRC
Offset Symbolic Name Contents
0 ACC$W_MSGTYP MSG$_DELPROC (2 bytes)
2 Not used (2 bytes)
4 ACC$L_FINALSTS Exit status code
8 ACC$L_PID Process identification
12 : Not used (4 bytes)
16 ACC$Q_TERMTIME Current time in system format at
process termination (8 bytes)
24 ACC$T_ACCOUNT Account name for process, blank
filled (8 bytes)
32 ACC$T_USERNAME User name, blank filled (12 bytes)
44 ACC$L_CPUTIM CPU time used by the process, in
10-millisecond units
48 ACCS$L_PAGEFLTS Number of page faults incurred by
the process
52 ACC$L_PGFLPEAK Peak paging file usage
56 ACCS$L_WSPEAK Peak working set size
60 ACC$L_BIOCNT Count of buffered I/O operations
performed by the process
64 ACCS$L_DIOCNT Count of direct I/O operations
performed by the process
68 ACC$L_VOLUMES Count of volumes mounted by the
process
72 ACC$Q_LOGIN Time, in system format, that
process logged in (8 bytes)
80 ACC$L_OWNER Process identification of owner
The length of the termination message is equated to the constant ACC$K_
TERMLEN.
stsflg
VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Options selected for the created process. The stsflg argument is a longword bit
vector wherein a bit corresponds to an option. Only bits 0 to 10 are used; bits 11
to 31 are reserved and must be 0.

Each option (bit) has a symbolic name, which the $PRCDEF macro defines. You
construct the stsflg argument by performing a logical OR operation using the
symbolic names of each desired option. The following table describes the symbolic
name of each option.

SYS-109

System Service Descriptions

$CREPRC

SYS-110

Symbolic Name

Description

PRC$M_SSRWAIT
PRC$M_SSFEXCU
PRC$M_PSWAPM

PRC$M_NOACNT
PRC$M_BATCH
PRC$M_HIBER

PRC$M_IMGDMP

PRC$M_NOUAF

PRC$M_NETWRK

PRC$M_DISAWS
PRC$M_DETACH
PRC$M_INTER

Disable resource wait mode.

Enable system service failure exception mode.
Inhibit process swapping. PSWAPM privilege is
required.

Do not perform accounting. NOACNT privilege is
required.

Create a batch process. DETACH privilege is
required.

Force process to hibernate before it executes the
image.

Enable image dump facility. If an image terminates
due to an unhandled condition, the image dump
facility writes the contents of the address space to a
file in your current default directory. The file name

is the same as the name of the terminated image.
The file type is DMP.

Do not check authorization file if the process is
detached and the image is LOGINOUT.EXE. You
should not specify this option if a subprocess is
being created.

In previous versions of VMS, the symbolic name

of this option was PRC$M_LOGIN. The symbolic
name has been changed to more accurately denote
the effect of setting this bit. For compatibility with
existing user programs, you can still specify this bit
as PRC$M_LOGIN.

Create a process that is a network connect object.
DETACH privilege required.

Disable system initiated working set adjustment.
Create a detached process.

Create an interactive process. This option is
meaningful only if the image argument specifies
SYS$SYSTEM:LOGINOUT.EXE. The purpose of
this option is to provide you with information
about the process. When you specify this
option, it identifies the process as one that is in
communication with another user, an interactive
process. For example, if you make an inquiry,
using the DCL lexical function F$MODE, about
a process that has specified the PRC$M_INTER
option, F$MODE returns the value INTERACTIVE.

Description

System Service Descriptions
$CREPRC

Symbolic Name Description

PRC$M_NOPASSWORD Do not display the Username: and Password:
prompts if the process is interactive and detached
and the image is SYS$SYSTEM:LOGINOUT.EXE.
If you specify this option in your call to $CREPRC,
the process created by the call is logged in under
the user name associated with the creating process.
If you do not specify this option for an interactive
process, SYS$SYSTEM:LOGINOUT.EXE prompts
you for the user name and password to be associated
with the process. The prompts are displayed at the
SYS$INPUT device.

Note that options PRCM_BATCH, PRCM_INTER, PRCM_UAF, PRCM_
NETWRK, and PRC$M_NOPASSWORD are intended for use by Digital software.
Complete documentation of the possible ramifications of their use is not provided.

The Create Process service creates a subprocess or detached process on behalf of
the calling process. The $CREPRC service requires system dynamic memory.

A detached process is a fully independent process. For example, the process that
the system creates when you log in is a detached process. ’

A subprocess, on the other hand, is related to its creating process in a treelike
structure; it receives a portion of the creating process’s resource quotas and
must terminate before the creating process. The uic argument or the PRC$M_
DETACH flag controls whether the created process is a subprocess or a detached
process.

Some error conditions are not detected until the created process executes.
These conditions include an invalid or nonexistent image; invalid SYS$INPUT,
SYS$OUTPUT, or SYS$ERROR logical name equivalence; inadequate quotas; or
insufficient privilege to execute the requested image.

All subprocesses created by a process must terminate before the creating process
can be deleted. If subprocesses exist when their creating process is deleted, they
are automatically deleted.

A created process is unable to run an image that calls the Run-Time Library
procedure LIB$DO_COMMAND unless the process was created with the
image argument specifying SYS$SYSTEM:LOGINOUT.EXE. This is so because
SYS$SYSTEM:LOGINOUT.EXE causes a command language interpreter to be
mapped into the created process, a prerequisite for calling LIB§DO_COMMAND.

A detached process is considered an interactive process only if (1) the process
is created with the PRC$M_INTER option specified and (2) SYS$INPUT is not
defined as a file-oriented device.

SYS-111

System Service Descriptions

$CREPRC

Required Privileges
The calling process must have the following:

e DETACH privilege to create any of the following types of process:

— A detached process with a UIC that is different from the UIC of the
calling process

— A batch process
— A network process

o ALTPRI privilege to create a subprocess with a higher base priority than the
calling process

* SETPRV privilege to create a process with privileges that the calling process
does not have

* PSWAPM privilege to create a process with process swap mode disabled
¢ NOACNT privilege to create a process with accounting functions disabled
¢ NETMBX privilege to create a network connect object

Required Quota

The number of subprocesses that a process can create is controlled by the
subprocess (PRCLM) quota; this quota is returned when a subprocess is deleted.

The number of detached processes that a process can create with the same user
name is controlled by the MAXDETACH entry in the user authorization file
(UAF).

When a subprocess is created, the value of any deductible quota is subtracted
from the total value the creating process has available, and when the subprocess
is deleted, the unused portion of any deductible quota is added back to the
total available to the creating process. Any pooled quota value is shared by the
creating process and all its subprocesses.

Related Services

$CANEXH, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRYV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SYS-112

SS$_ACCVIO The caller cannot read a specified input string
or string descriptor, the privilege list, or the
quota list; or the caller cannot write the process

identification.
SS$_DUPLNAM The specified process name duplicates one
already specified within that group.
SS$_EXPRCLM The creation of a detached process failed because

the creating process already reached its limit for
the creation of detached processes. This limit

is established by the MAXDETACH quota in
the user authorization file (UAF) of the creating
process.

SS$_EXQUOTA

SS$_INSFMEM
SS$_INSSWAPSPACE

SS$_IVLOGNAM

SS$_IVQUOTAL
SS$_IVSTSFLG
SS$_NOPRIV

SS$_NORMAL
SS$_NOSLOT

System Service Descriptions
$CREPRC

At least one of the three following conditions is
true:

e The process has exceeded its quota for the
creation of subprocesses.

* A quota value specified for the creation of
a subprocess exceeds the creating process’s
corresponding quota.

* The quota is deductible and the remaining
quota for the creating process would be less
than the minimum.

. The system dynamic memory is insufficient for

the requested operation.

The swap space is insufficient for creating the
process.

At least one of the following two conditions is
true:

* The specified process name has a length of 0
or has more than 15 characters.

¢ The specified image name, input name,
output name, or error name has more than
255 characters.

The quota list is not in the proper format.
You set a reserved status flag.

The caller violated one of the privilege
restrictions.

The service completed successfully.

No process control block is available; in other
words, the maximum number of processes that
can exist concurrently in the system has been
reached.

SYS-113

System Service Descriptions
$CRETVA

$CRETVA—Create Virtual Address Space

Adds a range of demand-zero allocation pages to a process’s virtual address space
for the execution of the current image.

Format
SYS$CRETVA inadr ,[retadr] ,Jacmode]
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.
Arguments
inadr
VMS Usage: address_range
type: longword (unsigned)
access: read only

mechanism: by reference

Address of a 2-longword array containing the starting and ending virtual
addresses of the pages to be created. If the starting and ending virtual addresses
are the same, a single page is created. Only the virtual page number portion of
the virtual addresses is used; the low-order nine bits are ignored.

retadr

VMS Usage: address_range

type: longword (unsigned)
access: write only

mechanism: by reference-array reference or descriptor

Address of a 2-longword array to receive the starting and ending virtual addresses
of the pages created.

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode and protection for the new pages. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines the following
symbols for the four access modes.

SYS-114

Description

System Service Descriptions

SCRETVA
Symbol Access Mode
PSL$C_KERNEL Kernel
PSL$C_EXEC Executive

PSL$C_SUPER Supervisor
PSL$C_USER User

The most privileged access mode used is the access mode of the caller. The
protection of the pages is read/write for the resultant access mode and those more
privileged.

The Create Virtual Address Space service adds a range of demand-zero allocation
pages to a process’s virtual address space for the execution of the current image.

Pages are created starting at the address contained in the first longword of
the location addressed by the inadr argument and ending with the second
longword. The ending address can be lower than the starting address. The
retadr argument indicates the byte addresses of the pages created.

If an error occurs while pages are being created, the retadr argument, if
specified, indicates the pages that were successfully created before the error
occurred. If no pages were created, both longwords of the retadr argument
contain the value —1.

If $CRETVA creates pages that already exist, the service deletes those pages if
they are not owned by a more privileged access mode than that of the caller. Any
such deleted pages are reinitialized as demand-zero pages.

Required Privileges
None

Required Quota

The paging file quota (PGFLQUOTA) of the process must be sufficient to
accommodate the increased size of the virtual address space.

Related Services

$ADJSTK, $ADJWSL, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

The Expand Program/Control Region ($EXPREG) service also adds pages to a
process’s virtual address space.

Note

Do not use the $CRETVA system service in conjunction with other
user-written procedures or Digital-supplied procedures (including Run-
Time Library procedures). This system service provides no means to
communicate a change in virtual address space with other routines.
Digital recommends that you use either SEXPREG or the Run-Time
Library procedure Allocate Virtual Memory (LIB$GET_VM) to get
memory. You can find documentation on LIB§GET_VM in the VMS
Run-Time Library Routines Volume. When using $DELTVA, you should
take care to delete only pages that you have specifically created.

SYS-115

System Service Descriptions
$CRETVA

Condition Values Returned
SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA
SS$_INSFWSL

SS$_NOPRIV

SS$_PAGOWNVIO

SS$_VASFULL

SYS-116

The service completed successfully.

The inadr argument cannot be read by the
caller, or the retadr argument cannot be written
by the caller.

The process has exceeded its paging file quota.

The process’s working set limit is not large
enough to accommodate the increased size of the
virtual address space.

A page in the specified range is in the system
address space.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

The process’s virtual address space is full; no
space is available in the page tables for the
requested pages.

System Service Descriptions
$CRMPSC

$CRMPSC—Create and Map Section

Allows a process to associate (map) a section of its address space with (1) a
specified section of a file (a disk file section) or (2) specified physical addresses
represented by page frame numbers (a page frame section). This service also
allows the process to create either type of section and to specify that the section
be available only to the creating process (private section) or to all processes that
map to it (global section).

Format
SYSSCRMPSC [inadr] ,[retadr] ,[acmode] ,[flags] ,[gsdnam] ,[ident] ,[relpag] ,[chan]
[pagent] ,[vbn] ,[prot] ,[pfc]
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.
Arguments
inadr
VMS Usage: address_range
type: longword (unsigned)
access: read only

mechanism: by reference

Starting and ending virtual addresses into which the section is to be mapped.
The inadr argument is the address of a 2-longword array containing, in order,
the starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used; the low-order nine bits are ignored.

If the starting and ending virtual addresses are the same, a single page is
mapped, unless you set the SEC$M_EXPREG bit in the flags argument. If you
set this bit, the specified address determines only whether the section is mapped
in the program (P0) or control (P1) region. Normally, when using the SEC$M_
EXPREG flag the INADR should refer to the program region (PO space).

If you do not specify the inadr argument or specify it as 0, the section is not

mapped.

retadr

VMS Usage: address_range

type: longword (unsigned)
access: write only

mechanism: by reference—array reference or descriptor

Starting and ending process virtual addresses into which the section was actually
mapped by $CRMPSC. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

SYS-117

System Service Descriptions

$CRMPSC
acmode .
VMS Usage: access_mode
type: longword (unsigned)
access: read only

mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode. The $PSLDEF.
macro defines the following symbols for the four access modes.

Symbol Access Mode
PSL$C_KERNEL Kernel
PSL$C_EXEC Executive
PSL$C_SUPER Supervisor
PSL$C_USER User

The most privileged access mode used is the access mode of the caller.

flags ;

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Flag mask specifying the type of section to be created or mapped to, as well as
its characteristics. The flags argument is a longword bit vector wherein each bit
corresponds to a flag. The $SECDEF macro defines a symbolic name for each
flag. You construct the flags argument by performing a logical OR operation on
the symbol names for all desired flags. The following table describes each flag
and the default value that it supersedes.

Flag . Description

SEC$M_GBL Pages form a global section. The default is private
section.

SEC$M_CRF Pages are copy-on-reference. By default, pages are
shared. '

SEC$M_DZRO Pages are demand-zero pages. By default, they are
not zeroed when copied.

SEC$M_EXPREG Pages are mapped into the first available space. By

default, pages are mapped into the range specified
by the inadr argument.

SEC$M_WRT Pages form a read/write section. By default, pages
form a read-only section.

SEC$M_PERM Pages are permanent. By default, pages are
temporary.

SYS-118

System Service Descriptions
$CRMPSC

Flag Description

SEC$M_PFNMAP Pages form a page-frame section. By default, pages
form a disk-file section. Pages mapped by SEC$M_
PFNMAP are not included in or charged against
the process’s working set; they are always valid. Do
not lock these pages in the working set by using
$LKWSET; this can result in a machine check if
they are in I/O space.

SEC$M_SYSGBL Pages form a system global section. By default,
pages form a group global section.

SEC$M_PAGFIL Pages form a global page-file section. By default,
pages form a disk-file section.

SEC$M_EXECUTE Pages are mapped if the caller has execute access.

This flag is valid only (1) when specified from
executive or kernel mode and (2) when the SEC$M_
GBL flag is also specified. By default, the pages are
mapped whether or not the caller has execute
access.

SEC$M_NO_OVERMAP Pages cannot overmap existing address space. Note
that, by default, pages can overmap existing address

space.
gsdnam
VMS Usage: section_name
type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name of the global section. The gsdnam argument is the address of a character
string descriptor pointing to this name string.

For group global sections, the VMS operating system interprets the UIC group as
part of the global section name; thus, the names of global sections are unique to
UIC groups.

ident

VMS Usage: section_id

type: quadword (unsigned)
access: read only

mechanism: by reference

Identification value specifying the version number of a global section and, for
processes mapping to an existing global section, the criteria for matching the
identification. The ident argument is the address of a quadword structure
containing three fields.

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

SYS-119

System Service Descriptions

$CRMPSC

SYS-120

The first longword specifies, in its low-order three bits, the matching criteria. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows.

Value/Name Match Criteria

0 SEC$K_MATALL Match all versions of the section.

1 SEC$K_MATEQU Match only if major and minor identifications match.
2 SEC$K_MATLEQ Match if the major identifications are equal and the

minor identification of the mapper is less than or
equal to the minor identification of the global section.

When a section is mapped at creation time, the match control field is ignored.

If you do not specify the ident argument or specify it as 0 (the default), the
version number and match control fields default to 0.

relpag

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Relative page number within the global section of the first page in the section to
be mapped. The relpag argument is a longword containing this page number.

You use this argument only for global sections. If you do not specify the relpag
argument or specify it as 0 (the default), the global section is mapped beginning
with the first virtual block in the file. This argument must be 0 for demand-zero
sections in memory shared by multiple processors.

chan

VMS Usage: channel

type: word (unsigned)
access: read only

mechanism: by value

Number of the channel on which the file has been accessed. The chan argument
is a word containing this number.

The file must have been accessed with the VMS RMS macro $OPEN; the file
options parameter (FOP) in the FAB must indicate a user file open (UFO
keyword). The access mode at which the channel was opened must be the same
as or less privileged than the access mode of the caller.

pagcnt

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Number of pages in the section. The pagent argument is a longword containing
this number.

The specified page count is compared with the number of pages in the section file;
if they are different, the lower value is used. If you do not specify the page count
or specify it as 0 (the default), the size of the section file is used. However, for
physical page frame sections, this argument must not be 0.

System Service Descriptions

$CRMPSC
vbn
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Virtual block number in the file that marks the beginning of the section. The vbn
argument is a longword containing this number. If you do not specify the vbn
argument or specify it as 0 (the default), the section is created beginning with the
first virtual block in the file.

If you specified page frame number mapping (by setting the SEC$M_PFNMAP
flag), the vbn argument specifies the page frame number where the section
begins in memory.

Table SYS—4 depicts which arguments are required and which are optional for
three different uses of the §CRMPSC service.

Table SYS-4 Required and Optional Arguments for the $CRMPSC Service

Create/Map Map Global' Create/Map

Argument Global Section Section Private Section
inadr Optional® Required Required
retadr Optional Optional Optional
acmode Optional Optional Optional
flags

SEC$M_GBL Required Ignored Not used
SEC$M_CRF? Optional Not used Optional
SEC$M_DZRO3 Optional Not used Optional
SEC$M_EXPREG Optional Optional Optional
SEC$M_PERM Optional? Not used Not used
SEC$M_PFNMAP Optional Not used Not used
SEC$M_SYSGBL Optional Optional Not used
SEC$M_WRT Optional Optional Optional
SEC$M_PAGFIL Optional Not used Not used
gsdnam Required Required Not used

IThe Map Global Section ($MGBLSC) service maps an existing global section.

2You can omit the inadr argument only if you want to create but not map a global section; however,
in such a case, you must make the section permanent because temporary sections are automatically
deleted when no processes are mapped to them. You cannot omit the inadr argument for demand-zero
sections in memory shared by multiple processors.

3For physical page frame sections: vbn specifies the starting page frame number; chan must be 0;
relpag and pfe are not used; and the SEC$M_CRF and SEC$M_DZRO flag bit settings are invalid.
For page-file sections, chan must be 0, and relpag and pfc are not used.

(continued on next page)

SYS—121

System Service Descriptions

$CRMPSC

SYS-122

Table SYS—4 (Cont.) Required and Optional Arguments for the $CRMPSC

Service
Create/Map Map Global Create/Map
Argument Global Section Section Private Section
ident Optional Optional Not used
relpag? Optional Optional Not used
chan’ Required Required
pagcent Required Required
vbn3 ~ Optional Optional
prbt Optional Not used
pfc? Optional* Optional

Lipe Map Global Section ($MGBLSC) service maps an existing global section.

3For physical page frame sections: vbn specifies the starting page frame number; chan must be 0;
relpag and pfc are not used; and the SEC$M_CRF and SEC$M_DZRO flag bit settings are invalid.
For page-file sections, chan must be 0, and relpag and pfc are not used.

4This argument is not used for global sections in memory shared by multiple processors.

prot

VMS Usage: file_protection

type: longword (unsigned)
access: read only

mechanism: by value

Numeric value representing the protection mask to be applied to the global
section. You logically OR this value with the protection mask associated with the
file; if the file protection does not allow access to a particular category of user and
the protection mask allows access, access is denied.

The mask contains four 4-bit fields. Bits are read from right to left in each field.
The following diagram depicts the mask.

World Group Owner System

DIE|W|R|D|IE|W/ R[D|E|W|R{D|E|W|R
1514131211109 8 76 56 4 3 2 1 0

ZK-1706-GE

Cleared bits indicate that read, write, execute, and delete access, in that order,
are granted to the particular category of user.

Description

System Service Descriptions
$CRMPSC

Only read, write, and execute access are meaningful for section protection. Delete
access bits are ignored. The $CRMPSC service checks the execute access bit only
for calls from executive or kernel mode.

If you do not specify the prot argument or specify it as 0, read access and write
access are granted to all users.

pfc

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Page fault cluster size indicating how many pages are to be brought into memory
when a page fault occurs for a single page. This argument is not used for page-
file sections, physical page frame sections, or global sections in memory shared by
multiple processors.

The Create and Map Section service allows a process to associate (map) a section
of its address space with (1) a specified section of a file (a disk file section) or
(2) specified physical addresses represented by page frame numbers (a page
frame section). This service also allows the process to create either type of section
and to specify that the section be available only to the creating process (private
section) or to all processes that map to it (global section).

Creating a disk file section involves defining all or part of a disk file as a section.
Mapping a disk file section involves making a correspondence between virtual
blocks in the file and pages in the caller’s virtual address space. If the $CRMPSC
service specifies a global section that already exists, the service maps it.

Any section created is created as entire pages. See the Memory Management
chapter in the Introduction to VMS System Services.

Depending on the actual operation requested, certain arguments are required
or optional. Table SYS—4 summarizes how the $CRMPSC service interprets the
arguments passed to it and under what circumstances it requires or ignores
arguments.

The $CRMPSC service returns the virtual addresses of the pages created in the
retadr argument, if specified. The section is mapped from a low address to a
high address, whether the section is mapped in the program or control region.

If an error occurs during the mapping of a global section, the retadr argument,
if specified, indicates the pages that were successfully mapped when the error
occurred. If no pages were mapped, both longwords of the retadr argument
contain the value —1.

The SEC$M_PFNMAP flag setting identifies the memory for the section as
starting at the page frame number specified in the vbn argument and extending
for the number of pages specified in the pagent argument. Setting the SEC$M_
PFNMAP flag places restrictions on the following arguments.

SYS-123

System Service Descriptions

$CRMPSC

SYS-124

Argument Restriction

relpag Does not apply

chan Must be 0

pagent Must be specified; cannot be 0

vbn Specifies first page frame to be mapped

pfc Does not apply

SEC$M_CRF Must be 0

SEC$M_DZRO Must be 0

SEC$M_PERM Must be 1 if the flags SEC$M_GBL or SEC$M_SYSGBL
are set

Setting the SEC$M_PAGFIL flag places the following restrictions on the following
flags.

SEC$M_CRF Must be 0

SEC$M_GBL Must be 1

SEC$M_PFNMAP Must be 0

The flags argument bits 4 through 13 and 18 through 31 must be 0.

The flag bit SEC$M_WRT applies only to the way in which the newly created
section is mapped. For a file to be made writable, the channel used to open the
file must allow write access to the file.

If the flag bit SEC$M_SYSGBL is set, the flag bit SEC$M_GBL must be set also.

Required Privileges
If $CRMPSC specifies a global section and the SSSNOPRIV condition value is

returned, the process might not have the required privilege to create that section.
In order to create global sections, the process must have the following privileges:

‘e SYSGBL privilege to create a system global section

* PRMGBL privilege to create a permanent global section
¢ PFNMAP privilege to create a page frame section

e SHMEM privilege to create a global section in memory shared by multiple
processors

Note that you do not need PFNMAP privilege to map an existing page frame
section or SHMEM privilege to map an existing global section in memory shared
by multiple processors.

Required Quota

If the section pages are copy-on-reference, the process must have sufficient paging
file quota (PGFLQUOTA). The systemwide number of global page-file pages is
limited by the SYSGEN parameter GBLPAGFIL.

Related Services

$ADJSTK, $ADJWSL, $CRETVA, $DELTVA, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_NORMAL

SS$_CREATED

SS$_ACCVIO

SS$_ENDOFFILE

SS$_EXBYTLM

SS$_EXGBLPAGFIL

SS$_EXPORTQUOTA

SS$_EXQUOTA

SS$_GPTFULL

SS$_GSDFULL

SS$_ILLPAGCNT
SS$_INSFMEM

SS$_INSFWSL

SS$_INTERLOCK

SS$_IVCHAN

SS$_IVCHNLSEC
SS$_IVLOGNAM

System Service Descriptions
$CRMPSC

The service completed successfully. The specified
global section already exists and has been
mapped.

The service completed successfully. The specified
global section did not previously exist and has
been created.

The inadr argument, gsdnam argument, or
name descriptor cannot be read by the caller; or
the retadr argument cannot be written by the
caller.

The starting virtual block number specified is
beyond the logical end-of-file, or the value in the
relpag argument is greater than or equal to the
value in the pagent argument.

The process has exceeded the byte count quota;
the system was unable to map the requested file.

The process has exceeded the systemwide limit
on global page-file pages; no part of the section
was mapped.

The process has exceeded the number of global
sections that processes on this port of the
multiport (shared) memory can create.

The process exceeded its paging file quota while
creating copy-on-reference or page-file-backing-
store pages.

There is no more room in the system global page
table to set up page table entries for the section.

There is no more room in the system space
allocated to maintain control information for
global sections.

The page count value is negative or is 0 for a
physical page frame section.

Not enough pages are available in the specified
shared memory to create the section.

The process’s working set limit is not large
enough to accommodate the increased size of the
address space.

The bit map lock for allocating global sections
from the specified shared memory is locked by
another process.

An invalid channel number was specified, that is,
a channel number of 0 or a number larger than
the number of channels available.

The channel number specified is currently active.
The specified global section name has a length of
0 or has more than 15 characters.

SYS-125

System Service Descriptions

$CRMPSC

SYS-126

SS$_IVLVEC

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_NOPRIV

SS$_NOSHMBLOCK
SS$_NOTFILEDEV

SS$_NOWRT

SS$_PAGOWNVIO
SS$_SECTBLFUL

SS$_SHMNOTCNCT

SS$_TOOMANYLNAM

SS$_VA_IN_USE

SS$_VASFULL

The specified section was not installed using the
/PROTECT qualifier.

An invalid flag, a reserved flag, a flag requiring
a privilege you lack, or an invalid combination of
flags was specified.

The match control field of the global section
identification is invalid.

The process does not have the privileges to
create a system global section (SYSGBL) or a
permanent group global section (PRMGBL).

The process does not have the privilege to create
a section starting at a specific physical page
frame number (PFNMAP).

The process does not have the privilege to create
a global section in memory shared by multiple
processors (SHMEM).

A page in the input address range is in the
system address space.

The specified channel is not assigned or was
assigned from a more privileged access mode.

No shared memory control block for global
sections is available.

The device is not a file-oriented, random-access,
or directory device.

The section cannot be written to because the flag
bit SEC$M_WRT is set, the file is read only, and
the flag bit SEC$M_CRF is not set.

A page in the specified input address range is
owned by a more privileged access mode.

There are no entries available in the system
global section table.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

The logical name translation of the gsdnam
argument exceeded the allowed depth.

A page in the specified input address range
is already mapped and the flag SEC$M_NO_
OVERMAP is set.

The process’s virtual address space is full; no
space is available in the page tables for the pages
created to contain the mapped global section.

System Service Descriptions
$DACEFC

$DACEFC—Disassociate Common Event Flag Cluster

Format

Returns

Argument

Description

Releases the calling process’s association with a common event flag cluster.

SYS$DACEFC efn

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

efn

VMS Usage: ef number

type: longword (unsigned)
access: read only

mechanism: by value

Number of any event flag in the common cluster to be disassociated. The efn
argument is a longword containing this number; however, $DACEFC uses only
the low-order byte. The number must be in the range of 64 through 95 for cluster
2, and 96 through 127 for cluster 3.

The Disassociate Common Event Flag Cluster service disassociates the calling
process from a common event flag cluster and decreases the count of processes
associated with the cluster accordingly. When the image associated with a cluster
exits, the system disassociates the cluster. When the count of processes associated
with a temporary cluster or with a permanent cluster that is marked for deletion
reaches 0, the cluster is automatically deleted.

If a process issues this service specifying an event flag cluster with which it is not
associated, the service completes successfully.

Required Privileges
None

Required Quota

- None

Related Services

$ASCEFC, $CLREF, $DLCEFC, $READEF, $SETEF, $WAITFR, $WFLAND,
$WFLOR

SYS-127

System Service Descriptions
$DACEFC

Condition Values Returned
SS$_NORMAL

SS$_ILLEFC

SS$_INTERLOCK

SYS-128

The service completed successfully.

You specified an illegal event flag number. The
number must be in the range of event flags 64
through 127.

The bit map lock for allocating common event
flag clusters from the specified shared memory is
locked by another process.

System Service Descriptions
$DALLOC

S$DALLOC—Deallocate Device

Format

Returns

Arguments

Deallocates a previously allocated device.

SYS$DALLOC [devnam] ,[acmode]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

devnam

VMS Usage: device_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name of the device to be deallocated. The devnam argument is the address of a
character string descriptor pointing to the device name string. The string might
be either a physical device name or a logical name. If it is a logical name, it must
translate to a physical device name.

If you do not specify a device name, all devices allocated by the process from
access modes equal to or less privileged than that specified are deallocated.

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode from which the deallocation is to be performed. The acmode
argument is a longword containing the access mode. The $PSLDEF macro defines
the following symbols for the four access modes.

Symbol Access Mode
PSL$C_KERNEL Kernel
PSL$C_EXEC Executive
PSL$C_SUPER Supervisor .
PSL$C_USER User

The most privileged access mode used is the access mode of the caller.

SYS-129

System Service Descriptions

$DALLOC

Description

The Deallocate Device service deallocates a previously allocated device. The
issuing process relinquishes exclusive use of the device, thus allowing other
processes to assign or allocate that device. You can deallocate an allocated device
only from access modes equal to or more privileged than the access mode from
which the original allocation was made.

This service does not deallocate a device if, at the time of deallocation, the issuing
process has one or more I/O channels assigned to the device; in such a case, the
device remains allocated.

At image exit, the system automatically deallocates all devices that are allocated
at user mode.

If you attempt to deallocate a mailbox, success is returned but no operation is
performed.

Required Privileges
None

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-130

SS$ NORMAL The service completed successfully.

SS$_ACCVIO The device name string or string descriptor
cannot be read by the caller.

SS$_DEVASSIGN The device cannot be deallocated because the
process still has channels assigned to it.

SS$_DEVNOTALLOC The device is not allocated to the requesting
process.

SS$_IVDEVNAM You did not specify a device name string, or the
device name string contains invalid characters.

SS$_IVLOGNAM The device name string has a length of 0 or has
more than 63 characters.

SS$_NONLOCAL The device is on a remote node.

SS$_NOPRIV The device was allocated from a more privileged
access mode.

SS$_NOSUCHDEV The specified device does not exist in the host
system.

System Service Descriptions
$DASSGN

$DASSGN—Deassign I/0 Channel

Format

Returns

Argument

Description

Deassigns (releases) an I/O channel previously acquired using the Assign I/O
Channel ($ASSIGN) service.

SYS$DASSGN chan

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service -
returns are listed in the Condition Values Returned section.

chan

VMS Usage: channel

type: word (unsigned)
access: read only

mechanism: by value

Number of the I/O channel to be deassigned. The chan argument is a word
containing this number.

The Deassign I/O Channel service deassigns (releases) an I/O channel that it
acquired using the Assign I/O Channel ($ASSIGN) service. You can deassign an
I/O channel only from an access mode equal to or more privileged than the access
mode from which the original channel assignment was made.

When you deassign a channel, any outstanding I/O requests on the channel are
canceled. If a file is open on the specified channel, the file is closed.

If a mailbox was associated with the device when the channel was assigned, the
link to the mailbox is cleared.

If the I/O channel was assigned for a network operation, the network link is
disconnected.

If the specified channel is the last channel assigned to a device that has been
marked for dismounting, the device is dismounted.

I/0 channels assigned from user mode are automatically deassigned at image
exit.

Required Privileges
None

Required Quota
None

SYS-131

System Service Descriptions
$DASSGN

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_IVCHAN You specified an invalid channel number, that is,
a channel number of 0 or a number larger than
the number of channels available.

SS$_NOPRIV The specified channel is not assigned or was
assigned from a more privileged access mode.

SYS-132

System Service Descriptions
$DCLAST

SDCLAST—Declare AST

Format

Returns

Arguments

Description

Queues an AST for the calling access mode or for a less privileged access mode.

SYS$DCLAST astadr ,[astprm] ,Jacmode]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

astadr

VMS Usage: ast_procedure

type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

AST service routine to be executed. The astadr argument is the address of the
entry mask of this routine.

astprm

VMS Usage: user_arg

type: longword (unsigned)
access: read only

mechanism: by value

AST parameter to be passed to the AST routine specified by the astadr argument.
The astprm argument is a longword containing this parameter.

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode for which the AST is to be declared. The most privileged access
mode used is the access mode of the caller. The resultant mode is the access
mode for which the AST is declared.

The Declare AST service queues an AST for the calling access mode or for a less
privileged access mode. For example, a routine executing in supervisor mode can
declare an AST for either supervisor or user mode.

SYS-133

System Service Descriptions

$DCLAST

The service does not validate the address of the AST service routine. If you
specify an illegal address (such as 0), an access violation occurs when the AST
service routine is given control.

Required Privileges

None

Required Quota

The $DCLAST service requires system dynamic memory and uses the AST limit
(ASTLM) quota of the process.

Related Services
$SETAST, $SETPRA

For more information, see the chapter on AST services in the Introduction to
VMS System Services.

Condition Values Returned

SYS-134

SS$_NORMAL The service completed successfully.

SS$_EXQUOTA The process has exceeded its AST limit (ASTLM)
quota.

SS$_INSFMEM The system dynamic memory is insufficient for

completing the service.

System Service Descriptions
$DCLCMH

$DCLCMH—Declare Change Mode or Compatibility Mode Handler

Format

Returns

Arguments

Specifies the address of a routine to receive control when (1) a Change Mode to
User or Change Mode to Supervisor instruction trap occurs, or (2) a compatibility
mode fault occurs.

SYS$DCLCMH addres ,[prvhnd] ,[type]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

addres

VMS Usage: address

type: longword (unsigned)
access: read only

mechanism: by reference

Routine to receive control when a change mode trap or a compatibility mode fault
occurs. The addres argument is the exception handling code in the address space
of the calling process.

If you specify the addres argument as 0, $DCLCMH clears the previously
declared handler.

prvhnd

VMS Usage: address

type: longword (unsigned)
access: write only

mechanism: by reference

Address of a previously declared handler. The prvhnd argument is the address
of a longword containing the address of the previously declared handler.

type

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Handler type indicator. The type argument is a longword value. The value 0
(the default) indicates that a change mode handler is to be declared for the access
mode at which the request is issued; the value 1 specifies that a compatibility
mode handler is to be declared.

SYS-135

System Service Descriptions

$DCLCMH

Description

The Declare Change Mode or Compatibility Mode Handler service specifies

the address of a routine to receive control when (1) a Change Mode to User

or Change Mode to Supervisor instruction trap occurs, or (2) a compatibility
mode fault occurs. A change mode handler provides users with a dispatching
mechanism similar to that used for system service calls. It allows a routine
that executes in supervisor mode to be called from user mode. You declare the
change mode handler from supervisor mode; then when the process executing
in user mode issues a Change Mode to Supervisor instruction, the change mode
handler receives control and executes in supervisor mode. The top longword

of the stack contains the zero-extended change mode code. The change mode
handler must exit by removing the change mode code from the stack and issuing
an REI instruction.

The operating system uses compatibility mode handlers to bypass normal
condition handling procedures when an image executing in compatibility

mode causes a compatibility mode exception. Before transferring control to

the compatibility mode handler, the system saves the compatibility exception
code, the registers RO through R6, and the PC and PSL in a 10-longword array
starting at the location CTL$AL_CMCNTX. Before the compatibility mode
handler exits, it must restore the saved registers RO through R6, push the saved
PC and PSL onto the stack, and exit by issuing an REI instruction. -

Required Privileges

You can declare a change mode or compatibility mode handler only from user or
supervisor mode.

Required Quota

None

Related Services
$SETEXV, $SETSFM, $UNWIND

Condition Values Returned

SYS-136

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The longword to receive the address of the
previous change mode handler cannot be written
by the caller.

System Service Descriptions
$DCLEXH

$DCLEXH—Declare Exit Handler

Format

Returns

Argument

Description

Declares an exit handling routine that receives control when an image exits.

SYS$DCLEXH desblk

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

desblk

VMS Usage: exit_handler_block
type: longword (unsigned)
access: read only

mechanism: by reference

Exit handler control block. The desblk argument is the address of this control
block. This control block, which describes the exit handler, is depicted in the
following diagram.)

31 0
Forward Link (Used by VMS only)

Exit Handler Address

These 3 bytes must be 0 arg. count
Address Condition Value (Written by VMS)

Additional argument for the
exit handler; these are optional;
one argument per longword ::I;’

Al

ZK-1714-GE

The Declare Exit Handler service declares an exit handling routine that receives
control when an image exits. Image exit normally occurs when the image
currently executing in a process returns control to the operating system. Image
exit might also occur when you call the Exit ($EXIT) or Force Exit ($FORCEX)
service.

SYS-137

System Service Descriptions

$DCLEXH

Exit handlers are described by exit control blocks. The operating system
maintains a separate list of these control blocks for user, supervisor, and executive
modes. The $DCLEXH service adds the description of an exit handler to the front
of one of these lists. The actual list to which the exit control block is added is
determined by the access mode of the caller.

At image exit, the exit handlers declared from user mode are called first; they are
called in the reverse order from which they were declared.

Each exit handler is executed only once; it must be redeclared before it can be
executed again. The exit handling routine is called as a normal procedure with
the argument list specified in the third through nth longwords of the exit control
block. The first argument is the address of a longword to receive a system status
code indicating the reason for exit; the system always fills in this longword before
calling the exit handler.

You can call this service only from user, supervisor, and executive modes.

Required Privileges
None

Required Quota
None

Related Services

$CANEXH, $CREPRC, $DELPRC, $EXIT, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

The Cancel Exit Handler ($CANEXH) service removes an exit control block from
the list.

Condition Values Returned

SYS-138

SS$_NORMAL ‘ The service completed successfully.

SS$_ACCVIO The first longword of the exit control block cannot
be written by the caller.

SS$_IVSSRQ The call to the service is invalid because it was
made from kernel mode.

SS$._NOHANDLER The exit handler control block address was not

specified or was specified as 0.

System Service Descriptions
$DELLNM

$DELLNM—Delete Logical Name

Format

Returns

Arguments

Deletes all logical names with the specified name at the specified access mode
or outer access mode, or it deletes all the logical names with the specified access
mode or outer access mode in a specified table.

SYS$DELLNM tabnam ,[lognam] ,[acmode]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

tabnam

VMS Usage: logical_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name of a logical name table or a list of tables to be searched for the logical name
to be deleted. The tabnam argument is the address of a descriptor that points to
the table name. This argument is required.

If tabnam is not the name of a logical name table, it is assumed to be a logical
name and is translated iteratively until either the name of a logical name table is
found or the number of translations allowed by the system has been performed.

If tabnam translates to the name of a list of tables, $DELLNM does the
following:

e If you specify the lognam argument, $DELLNM searches (in order) each
table in the list until it finds the first table that contains the specified logical
name. If the logical name is at the specified access mode, $DELLNM then
deletes occurrences of the logical name at the specified access mode and at
outer access modes within the table.

* If you do not specify the lognam argument, $DELLNM deletes all of the
logical names at the specified access mode or at outer access modes from the
first table in the list whose access mode is equal to or less privileged than the
caller’s access mode.

SYS-~139

System Service Descriptions

$SDELLNM

Description

SYS-140

lognam

VMS Usage: logical_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Logical name to be deleted. The lognam argument is the address of a descriptor
that points to the logical name string.

acmode

VMS Usage: access_mode
type: byte (unsigned)
access: read only

mechanism: by reference

Access mode to be used in the delete operation. The acmode argument is the
address of a byte containing this access mode. The $PSLDEF macro defines
symbolic names for the four access modes.

You determine the access mode actually used in the delete operation by
maximizing the access mode of the caller with the access mode specified by
the acmode argument; that is, the less privileged of the two is used.

However, if you have SYSNAM privilege, the delete operation is executed at the
specified access mode regardless of the caller’s access mode.

If you omit this argument or specify it as 0, the access mode of the caller is used
in the delete operation. The access mode used in the delete operation determines
which tables are used and which names are deleted.

The Delete Logical Name service deletes all logical names with the specified
name at the specified access mode or outer access mode, or it deletes all the
logical names with the specified access mode or outer access mode in a specified
table. If any logical names being deleted are also the names of logical name
tables, then all of the logical names contained within those tables and all of their
subtables are also deleted. ’

Required Privileges

Depending on the operation, the calling process might need one of the following
privileges to use $DELLNM:

* Write access to the logical name table that contains a logical name to delete
the logical name from a shareable table

e Either delete access to the logical name table or write access to the directory
table that contains the table name to delete a shareable logical name table

¢ SYSNAM privilege to delete either a logical name or table at an inner access
mode

e GRPNAM or SYSPRYV privilege to delete a logical name from a group table
¢ SYSNAM or SYSPRYV privilege to delete a logical name from a system table

Required Quota
None

Related Services
$CRELNM, $CRELNT, $TRNLNM

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM

SS$_IVLOGNAM

SS$_IVLOGTAB

SS$_NOLOGNAM

SS$_NOLOGTAB
SS$_NOPRIV

SS$_TOOMANYLNAM

System Service Descriptions
$DELLNM

The service completed successfully.

The service cannot access the locations specified
by one or more arguments.

One or more arguments have an invalid value, or
a logical name table name was not specified.

The lognam argument specifies a string whose

length is not in the required range of 1 through
255 characters.

The tabnam argument does not specify a logical
name table.

The specified logical name table does not exist, or
a logical name with an access mode equal to or
less privileged than the caller’s access mode does
not exist in the logical name table.

The specified logical name table does not exist.
The caller lacks the necessary privilege to delete
the logical name.

The logical name translation of the table name
exceeded the allowable depth (10 translations).

SYS-141

System Service Descriptions

$DELMBX

$DELMBX—Delete Mailbox

Format

Returns

Argument

Description

SYS-142

Marks a permanent mailbox for deletion.

SYS$DELMBX chan

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0. Condition values that this service
returns are listed in the Condition Values Returned section.

chan

VMS Usage: channel

type: word (unsigned)
access: read only

mechanism: by value

Number of the channel assigned to the mailbox that is to be deleted. The chan
argument is a word containing this number.

The Delete Mailbox service marks a permanent mailbox for deletion. The actual
deletion of the mailbox and of its associated logical name assignment occur when
no more I/O channels are assigned to the mailbox.

You can delete a mailbox only from an access mode equal to or more privileged
than the access mode from which the mailbox channel was assigned. Temporary
mailboxes are automatically deleted when their reference count goes to 0.

The $DELMBX service does not deassign the channel assigned by the caller,
if any. The caller must deassign the channel with the Deassign I/O Channel
($DASSGN) service.

Required Privileges
You need PRMMBX privilege to delete a permanent mailbox.

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DEVICE_SCAN, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL
SS$_DEVNOTMBX

SS$_INTERLOCK

SS$_IVCHAN

SS$_NOPRIV

System Service Descriptions
$DELMBX

The service completed successfully.

The specified channel is not assigned to a
mailbox.

The bit map lock for allocating mailboxes from
the specified shared memory is locked by another
process.

You specified an invalid channel number, that is,
a channel number of 0 or a number larger than
the number of channels available.

The specified channel is not assigned to a device;
the process does not have the privilege to delete
a permanent mailbox or a mailbox in memory
shared by multiple processors; or the access mode
of the caller is less privileged than the access
mode from which the channel was assigned.

SYS-143

System Service Descriptions

$DELPRC

SDELPRC—Delete Process

Format

Returns

Arguments

SYS-144

Allows a process to delete itself or another process.

SYS$DELPRC [pidadr] ,[prcnam]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Lohgword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr

VMS Usage: process_id

type: longword (unsigned)
access: modify

mechanism: by reference

Process identification (PID) of the process to be deleted. The pidadr argument is
the address of a longword that contains the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the cluster.

You must specify the pidadr argument to delete processes in other UIC groups.

prcnam

VMS Usage: process_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Process name of the process to be deleted. The prenam is the address of a
character string descriptor pointing to the process name string. A process

" running on the local node can be identified with a 1- to 15-character string. To

identify a process on a particular node on a cluster, specify the full process name,
which includes the node name as well as the process name. The full process name
can contain up to 23 characters.

You use the prenam argument to delete only processes in the same UIC group
as the calling process, because process names are unique to UIC groups, and
the VMS operating system uses the UIC group number of the calling process to
interpret the process name specified by the prenam argument.

You must use the pidadr argument to delete processes in other groups.

Description

System Service Descriptions
$DELPRC

The Delete Process service allows a process to delete itself or another process.
If you specify neither the pidadr nor prenam argument, $DELPRC deletes the
calling process; control is not returned. If the longword at address pidadr is O,
the PID of the target process is returned. This system service requires system
dynamic memory.

When you delete a process or subprocess, a termination message is sent to its
creating process, provided the mailbox to receive the message still exists and
the creating process has access to the mailbox. The termination message is sent
before the final rundown is initiated; thus, the creating process might receive the
message before the process deletion is complete.

Due to the complexity of the required rundown operations, a significant time
interval occurs between a delete request and the actual deletion of the process.
However, the $DELPRC service returns to the caller immediately after initiating
the rundown operation.

If you issue subsequent delete requests for a process currently being deleted, the
requests return immediately with a successful completion status. For a complete
list of the actions performed by the system when it deletes a process, see the
Introduction to VMS System Services.

Required Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $DELPRC:

* GROUP privilege to delete processes in the same group that do not have the
same UIC

¢ WORLD privilege to delete any process in the system

Required Quota

None. Deductible resource quotas granted to subprocesses are returned to the
creating process when the subprocesses are deleted.

Related Services

$CANEXH, $CREPRC, $DCLEXH, $EXIT, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRYV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

SS$_INCOMPAT The remote node is running a version of VMS
that is incompatible.

SS$_INSFMEM The system dynamic memory is insufficient for
completing the operation.

SS$_NONEXPR The specified process does not exist, or an invalid

process identification was specified.

SYS-145

System Service Descriptions

$DELPRC

SYS-146

SS$_NOPRIV
SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

The caller does not have the privilege to delete
the specified process.

The process name refers to a node that is not
currently recognized as part of the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

System Service Descriptions
$DELTVA

$DELTVA—Delete Virtual Address Space

Deletes a range of addresses from a process’s virtual address space. Upon
successful completion of the service, the deleted pages are inaccessible, and
references to them cause access violations. '

Format
SYS$DELTVA inadr ,[retadr} ,[acmode]
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0. Condition values that this service
returns are listed in the Condition Values Returned section.
Arguments
inadr
VMS Usage: address_range
type: longword (unsigned)
access: read only

mechanism: by reference

Starting and ending virtual addresses of the pages to be deleted. The inadr
argument is the address of a 2-longword array containing, in order, the starting
and the ending process virtual addresses. If the starting and ending virtual
addresses are the same, a single page is deleted. Only the virtual page number
portion of each virtual address is used; the low-order nine bits are ignored.

The $DELTVA service deletes pages starting at the address contained in the
second longword of the inadr argument and ending at the address in the first
longword. Thus, if you use the same address array for both the Create Virtual
Address Space (JCRETVA) and the $DELTVA services, the pages are deleted in
the reverse order from which they were created.

retadr

VMS Usage: address_range

type: longword (unsigned)
access: ~ write only

mechanism: by reference

Starting and ending process virtual addresses of the pages that $DELTVA has
deleted. The retadr argument is the address of a 2-longword array containing, in
order, the starting and ending process virtual addresses.

SYS-147

System Service Descriptions

$DELTVA

Description

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode on behalf of which the service is to be performed. The acmode
argument is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. The calling
process can delete pages only if those pages are owned by an access mode equal
to or less privileged than the access mode of the calling process.

The Delete Virtual Address Space service deletes a range of addresses from a
process’s virtual address space. Upon successful completion of the service, the
deleted pages are inaccessible, and references to them cause access violations. If
any of the pages in the specified range have already been deleted or do not exist,
the service continues as if the pages were successfully deleted.

If an error occurs while pages are being deleted, the retadr argument specifies
the pages that were successfully deleted before the error occurred. If no pages are
deleted, both longwords in the return address array contain the value —1.
Required Privileges

None

Required Quota
None

Related Services

$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DGBLSC, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SYS-148

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The input address array cannot be read by the
caller, or the return address array cannot be
written by the caller.

SS$_NOPRIV A page in the specified range is in the system
address space.
SS$_PAGOWNVIO A page in the specified range is owned by an

access mode more privileged than the access
mode of the caller.

System Service Descriptions
$DEQ

$DEQ—Dequeue Lock Request

Format

Returns

Arguments

Dequeues (unlocks) granted locks; dequeues the sublocks of a lock; or cancels an
ungranted lock request. The calling process must have previously acquired the
lock or queued the lock request by calling the Enqueue Lock Request (SENQ)
service.

SYS$DEQ [Ikid] ,[valblk] ,Jacmode] ,[flags]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

Ikid

VMS Usage: lock_id

type: longword (unsigned)
access: read only

mechanism: by value

Lock identification of the lock to be dequeued. The lkid argument specifies this
lock identification.

Note that if you do not specify the lkid argument, you must specify the LCK$M_
DEQALL flag in the flags argument.

When you specify the LCK$M_DEQALL flag in the flags argument, different
values (or no value) for the lkid argument produce varying behavior:

¢ When you do not specify the lkid argument (or specify it as 0) and you do
specify the LCK$M_DEQALL flag, $DEQ dequeues all locks held by the
process, at access modes equal to or less privileged than the effective access
mode, on all resources. The effective access mode is the least privileged of the
caller’s access mode and the access mode specified in the acmode argument.

* When you specify the lkid argument as a nonzero value together with the
LCK$M_DEQALL flag, $DEQ dequeues all sublocks of the lock identified
by 1kid; it does not dequeue the lock identified by lkid. For this operation,
$DEQ ignores the LCK$M_CANCEL flag if it is set. A sublock of a lock is
a lock that was created when the parid argument in the call to $ENQ was
specified, where parid is the lock ID of the parent lock.

If you omit the lkid argument (or specify it as 0) and the LCK$M_DEQALL
flag is not set, the $DEQ service returns the invalid lock ID condition value
(SS$_IVLOCKID).

SYS-149

System Service Descriptions

$DEQ

SYS-150

valblk

VMS Usage: lock_value_block
type: longword (unsigned)
access: modify

mechanism: by reference

Lock value block for the resource associated with the lock to be dequeued. The
valblk argument is the address of the 16-byte lock value block. When you specify
the LCK$M_DEQALL flag, you cannot use this argument.

When a protected write (PW) or exclusive (EX) mode lock is being dequeued and
you specify a lock value block in the valblk argument, the contents of that lock
value block are written to the lock value block in the lock database. Further, if
the lock value block in the lock database was marked as invalid, that condition is
cleared; the block becomes valid.

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode of the lock to be dequeued. The acmode argument is a longword
containing the access mode.

The acmode argument is valid only if the LCK$M_DEQALL flag of the flags
argument is set. The $PSLDEF macro defines the following symbols for the four
access modes.

Symbol Access Mode
PSL$C_KERNEL Kernel
PSL$C_EXEC Executive
PSL$C_SUPER Supervisor
PSL$C_USER User

When dequeuing locks, $DEQ maximizes the access mode of the caller and the
specified acmode argument. The maximized access mode is the less privileged
of the caller’s access mode and the acmode argument. If you do not specify
the acmode argument, $DEQ uses the caller’s access mode. Only those locks
with an access mode that is equal to or less than the maximized access mode

. are dequeued. For more information about access modes see the chapter Calling

System Services in the Introduction to VMS System Services.

flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Flags specifying options for the $DEQ operation. The flags argument is
a longword bit mask that is the logical OR of each bit set, where each bit
corresponds to an option.

Note that if you do not specify the 1kid argument, you must specify the LCK$M_
DEQALL flag in the flags argument.

System Service Descriptions
$DEQ

A symbolic name for each flag bit is defined by the $LCKDEF macro. The
following table describes each flag.

Flag

Description

LCK$M_DEQALL

LCK$M_CANCEL

When you specify this flag, $DEQ dequeues multiple
locks, depending on the value of the lkid argument.
Refer to the description of the lkid argument for details.
The acmode argument is ignored if the LCK$M_DQALL
flag is not set. If you specify LCK$M_DEQALL, the
LCK$M_CANCEL flag, if set, is ignored.

When you specify this flag, $DEQ attempts to cancel a
lock request that was queued by $ENQ. You can cancel
only a waiting request. When the request is canceled,
$DEQ returns the condition value SS$_NORMAL.

If you attempt to cancel a granted lock, the request
fails and $DEQ returns the condition value SS$_
CANCELGRANT. There are two types of waiting
requests that can be canceled:

* A request for a new lock
* A request to convert an existing lock

When canceling a new lock request, the following action
is taken:

e If a completion AST was requested, the AST is
queued for delivery and SS$_ABORT is stored in the
lock status block.

When canceling a request to convert an existing lock,
the conversion request is canceled. The existing granted
lock remains unchanged. The following specific actions
are taken:

¢ The blocking AST address specified for the existing
granted lock is queued for delivery if the granted
mode of the existing lock is blocking other waiting
requests.

e If a completion AST was specified by the conversion
request, the completion AST is queued for delivery
with SS$_CANCEL status stored in the lock status
block that was specified by the conversion request.

If you specify the LCK$M_DEQALL flag, the LCK$M_
CANCEL flag is ignored.

SYS-151

System Service Descriptions

$DEQ

Description

SYS-152

Flag Description

LCK$M_INVVALBLK When you specify this flag, $DEQ marks the lock
value block, which is maintained for the resource in
the lock database, as invalid. The lock value block
remains marked as invalid until it is again written
to. The Description section of the $ENQ service
provides additional information about lock value block
invalidation.
This flag is ignored if (1) the lock mode of the lock being
dequeued is not protected write or exclusive, or (2) you
specify the LCK$M_CANCEL flag.

The Dequeue Lock Request system service dequeues (unlocks) granted locks and
waiting lock requests. The calling process must have previously acquired the lock
or queued the lock request by calling the Enqueue Lock Request ($ENQ) service.

Action taken by the $DEQ service depends on the current state (granted or
waiting) and the type of lock request (new lock or conversion request) to be
dequeued.

When dequeuing a granted lock, the $DEQ service returns the condition value
SS$_NORMAL and the following specific action is taken:

* Any queued blocking ASTs that have not been delivered are removed from the
process’s AST queues.

There are two types of waiting requests that can be dequeued:
* A request for a new lock
* A request to convert an existing lock

When dequeuing a new lock request, the $DEQ service returns the condition
value SS$_NORMAL and the following specific action is taken:

e If a completion AST was requested, the completion AST is queued for delivery
with SS$_ABORT stored in the lock status block.

When dequeuing a lock for which there is a conversion request waiting, the
existing lock and its conversion request are dequeued. The $DEQ service returns
the condition value SS$_NORMAL and the following specific actions are taken:

¢ If a blocking AST was queued to the process, it is removed from the process’s
AST queue. '

e If a completion AST was specified by the conversion request, the completion
AST is queued for delivery with SS$_ABORT status stored in the lock status
block that was specified by the conversion request.

When a protected write (PW) or exclusive (EX) mode lock is being dequeued and
you specify a lock value block in the valblk argument, the contents of that lock
value block are written to the lock value block in the lock database.

If you specify the LCK$M_INVVALBLK flag in the flags argument and the lock
mode of the lock being dequeued is PW or EX, the lock value block in the lock
database is marked as invalid whether or not a lock value block was specified in
the valblk argument.

System Service Descriptions
$DEQ

The $DEQ, $ENQ, $ENQW, and $GETLKI services together provide the user
interface to the VMS lock management facility. For additional information about
lock management, refer to the descriptions of these other services and to the
Introduction to VMS System Services.

Required Privileges
None

Required Quota
None

Related Services

$ENQ, $ENQW, $GETLKI, $GETLKIW

Condition Values Returned

SS$_ACCVIO

SS$_CANCELGRANT

SS$_IVLOCKID

SS$_NORMAL
SS$_SUBLOCKS

The value block specified by the valblk argument
cannot be accessed by the caller.

The LCK$M_CANCEL flag in the flags
argument was specified, but the lock request that
$DEQ was to cancel had already been granted.

An invalid or nonexistent lock identification

was specified or the process does not have the
privilege to dequeue a lock at the specified access
mode.

The lock was dequeued successfully.
The lock has sublocks and cannot be dequeued.

SYS-153

System Service Descriptions
$DEVICE_SCAN

SDEVICE_SCAN—Scan for Devices

Format

Returns

Arguments

SYS-154

Returns the names of all devices that match a specified set of search criteria.

SYS$DEVICE_SCAN return_devnam ,retlen ,[search_devnam] [itmlst] ,[contxt]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

return_devnam

VMS Usage: char_string

type: character-coded text string

access: write only

mechanism: by descriptor-fixed length string descriptor

Buffer to receive the device name. The return_devnam argument is the address
of a character string descriptor pointing to a buffer into which $DEVICE_SCAN
writes the name of the first or next device that matches the specified search
criteria. The maximum size of any device name is 64 bytes.

retlen

VMS Usage: word_unsigned
type: word (unsigned)
access: write only

mechanism: by reference

Length of the device name string returned by $DEVICE_SCAN. The retlen
argument is the address of a word into which $DEVICE_SCAN writes the length
of the device name string.

search_devnam

VMS Usage: device_name

type: character-coded text string

access: read only

mechanism: by descriptor—fixed length string descriptor

Name of the device for which $DEVICE_SCAN is to search. The search_
devnam argument accepts the standard wildcard characters, the asterisk (%),
which matches any sequence of characters, and the percent sign (%), which
matches any one character. If the search_devnam does not include a wildcard
character, an exact match is used for comparison. For example, to match all unit
0 DU devices on any controller, specify *DU%0. This string is compared to the
most complete device name (DVI$_ALLDEVNAM). Only uppercase characters are
accepted.

System Service Descriptions
$DEVICE_SCAN

itmlist

VMS Usage: item_list_3

type: longword_unsigned
access: read only

mechanism: by reference

Item list specifying search criteria used to identify the device names for return by
$DEVICE_SCAN. The itmlst argument is the address of a list of item descriptors,
each of which describes one search criterion. The list of item descriptors is
terminated by a longword of 0.

The following diagram depicts the format of a single item descriptor.

31 15 0
Item Code Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Item Descriptor Fields

buffer length

A word containing a user-supplied integer specifying the length (in bytes) of the
buffer from which $DEVICE_SCAN is to read the information. The length of the
buffer needed depends upon the item code specified in the item code field of the
item descriptor.

item code

A word containing a user-supplied symbolic code specifying the item of
information that $DEVICE_SCAN is to return. The $DVSDEF macro defines
these codes. Each item code is described after this list of item descriptor fields.

buffer address :
A longword containing the user-supplied address of the buffer from which
$DEVICE_SCAN is to read the information.

return length address
This field is not currently used.

contxt

VMS Usage: quadword_unsigned:
type: quadword (unsigned)
access: modify

mechanism: by reference

Value used to indicate the current position of a $DEVICE_SCAN search. The
contxt argument is the address of the quadword that receives this information.
On the initial call, the quadword should contain 0.

SYS-155

System Service Descriptions
$DEVICE_SCAN

Item Codes

Description

SYS-156

DVS$_DEVCLASS
An input value item code that specifies, as an unsigned longword, the device class
being searched. The $DCDEF macro defines these classes.

The DVS$_DEVCLASS argument is a longword containing this number; however,
DVS$_DEVCLASS uses only the low-order byte of the longword. ‘

DVS$_DEVTYPE
An input value item code that specifies, as an unsigned longword, the device type
for which $DEVICE_SCAN is going to search. The $DCDEF macro defines these

types.
The DVS$_DEVTYPE argument is a longword containing this number; however,
DVS$_DEVTYPE uses only the low-order byte of the longword. DVS$_DEVTYPE

should be used in conjunction with $DVS_DEVCLASS to specify the device type
being searched for.

The Device Scan system service returns the names of all devices that match a
specified set of search criteria. The names returned by $DEVICE_SCAN can then
be passed to another service, for example, $§GETDVI or $MOUNT.

The device names are returned for one process per call. A context value is used
to continue multiple calls to $DEVICE_SCAN.

$DEVICE_SCAN allows wildcard searches based on device names, device classes,
and device types. It also provides the ability to perform a wildcard search on
other device-related services.

$DEVICE_SCAN makes it possible to combine search criteria. For example, to
find only RA82 devices, use the following selection criteria:

DVS$_DEVCLASS = DCS$_DISK and DVSS_DEVTYPE = DT$_RA82

To find all mailboxes with MB as part of the device name (excluding mailboxes
such as NLAO), use the following selection criteria:

DVS$_DEVCLASS = DC$_MAILBOX and DEVNAM = *MB*

Required Privileges

None

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DISMOU, $GETDVI, $GETDVIW,
$GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM
SS$_NOSUCHDEV

SS$_NOMOREDEV

System Service Descriptions
$DEVICE_SCAN

The service completed successfully.

The search_devnam, itmlst, or contxt
argument cannot be read by the caller, or the
retlen, return_devnam, or contxt argument
cannot be written by the caller.

The contxt argument contains an invalid value,
or the item list contains an invalid item code.

The specified device does not exist on the host
system.

No more devices match the specified search
criteria.

SYS-157

System Service Descriptions

$DGBLSC

$SDGBLSC—Delete Global Section

Format

Returns

Arguments

SYS-158

Marks an existing permanent global section for deletion. The actual deletion of
the global section takes place when all processes that have mapped the global
section have deleted the mapped pages.

SYS$DGBLSC [flags] ,gsdnam ,[ident]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0. Condition values that this service
returns are listed in the Condition Values Returned section. '

flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Mask indicating global section characteristics. The flags argument is a longword
value. A value of 0 (the default) specifies a group global section; a value of
SEC$M_SYSGBL specifies a system global section.

gsdnam

VMS Usage: section_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name of the global section to be deleted. The gsdnam argument is the address
of a character string descriptor pointing to this name string.

For group global sections, the VMS operating system interprets the group UIC as
part of the global section name; thus, the names of global sections are unique to
UIC groups.

ident

VMS Usage: section_id

type: quadword (unsigned)
access: read only

mechanism: by reference

Identification value specifying the version number of the global section to be
deleted and the matching criteria to be applied. The ident argument is the
address of a quadword structure containing three fields.

Description

System Service Descriptions
$DGBLSC

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. Values for these fields can be assigned by installation
convention to differentiate versions of global sections. If you specify no version
number when creating a section, processes that specify a version number when
mapping cannot access the global section.

The first longword specifies, in its low-order three bits, the matching criteria.
The valid values, the symbolic names by which they can be specified, and their
meanings are listed in the following table.

Value Name Match Criteria

0 SEC$K_MATALL Match all versions of the section

1 SEC$K_MATEQU Match only if major and minor identifications
match

2 SEC$K_MATLEQ Match if the major identifications are equal and

the minor identification of the mapper is less
than or equal to the minor identification of the
global section

If you specify no address or specify it as 0 (the default), the version number and
match control fields default to 0.

The Delete Global Section service marks an existing permanent global section for
deletion. The actual deletion of the global section takes place when all processes
that have mapped the global section have deleted the mapped pages.

After a global section has been marked for deletion, any process that attempts to
map it receives the warning return status code SS$_NOSUCHSEC.

Temporary global sections are automatically deleted when the count of processes
using the section goes to 0.

A section located in memory that is shared by multiple processors can be marked
for deletion only by a process running on the same processor that created the
section.

Required Privileges
Depending on the operation, the calling process might need one or more of the
following privileges:

¢ SYSGBL privilege to delete a system global section
¢ PRMGBL privilege to delete a permanent global section
* PFNMAP privilege to delete a page frame section

e SHMEM privilege to delete a global section located in memory shared by
multiple processors

Required Quota
None

SYS-159

System Service Descriptions

$DGBLSC

Related Services

$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $EXPREG, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

The $DGBLSC service does not unmap a global section from a process’s virtual
address space. To do this, the process should call the Delete Virtual Address
Space ($DELTVA) service, which deletes the pages to which the section is mapped.

Condition Values Returned

SYS-160

SS$_NORMAL
SS$_ACCVIO

SS$_INTERLOCK

SS$_IVLOGNAM
SS$_IVSECFLG
SS$_IVSECIDCTL

SS$_NOPRIV

SS$_NOSUCHSEC

SS$_NOTCREATOR

SS$_SHMNOTCNCT

SS$_TOOMANYLNAM

The service completed successfully.

The global section name or name descriptor or
the section identification field cannot be read by
the caller.

The bit map lock for allocating global sections
from the specified shared memory is locked by
another process.

The global section name has a length of 0 or has
more than 15 characters.

You set an invalid flag, reserved flag, or flag
requiring a user privilege.

The section identification match control field is
invalid.

The caller does not have the privilege to delete a
system global section, does not have read/write
access to a group global section, or does not have
the privilege to delete a global section located in
memory that is shared by multiple processors.

The specified global section does not exist, or the
identifications do not match.

The section is in memory shared by multiple
processors and was created by a process on
another processor.

The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

The logical name translation of the gsdnam
string exceeded the allowed depth of 10.

System Service Descriptions
$DISMOU

$DISMOU—Dismount Volume

Format

Returns

Arguments

Dismounts a mounted volume or volume sets.

SYS$DISMOU devnam ,[flags]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

devnam

VMS Usage: device_name

type: character-coded text string
access: read only

mechanism: by descriptor-fixed length string descriptor

Device name of the device to be dismounted. The devnam argument is the
address of a character string descriptor pointing to the device name string. The
string can be either a physical device name or a logical name. If it is a logical
name, it must translate to a physical device name.

flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

A longword bit vector specifying options for the dismount operation. The

flags argument is a longword bit vector wherein a bit, when set, selects the
corresponding option. Each bit has a symbolic name; these names are defined by
the $DMTDEF macro. The flags and their meanings are listed in the following
table.

Flag Meaning

DMT$M_ABORT The volume is to be dismounted even if the
caller did not mount the volume. If the volume
was mounted with MNT$M_SHARE specified,
$DISMOU dismounts the volume for all of the
users who mounted it.

SYS-161

System Service Descriptions
$DISMOU

Flag

Meaning

DMT$M_CLUSTER

DMT$M_NOUNLOAD

DMT$M_OVR_CHECKS

DMT$M_UNIT

DMT$M_UNLOAD

To specify DMT$M_ABORT, the caller must:
(1) have GRPNAM privilege for a group
volume, (2) have SYSNAM privilege for a
system volume, or (3) either own the volume or
have VOLPRO privilege.

The volume is to be dismounted clusterwide,
that is, from all nodes in the VAXcluster
system. $DISMOU dismounts the volume
from the caller’s node first and then from every
other node in the existing cluster.

DMT$M_CLUSTER dismounts only system or
group volumes. To dismount a group volume
clusterwide, the caller must have GRPNAM
privilege. To dismount a system volume
clusterwide, the caller must have SYSNAM
privilege.

DMT$M_CLUSTER has no effect if the system
is not a member of a cluster. DMT$M_
CLUSTER applies only to disks.

Specifies that the volume is not to be physically
unloaded after the dismount. If both the
DMT$M_UNLOAD and DMT$M_NOUNLOAD
flags are specified, the DMT$M_NOUNLOAD
flag is ignored. If neither flag is specified,

the volume is physically unloaded, unless

the DMT$M_NOUNLOAD flag was specified
on the $MOUNT system service or the
/NOUNLOAD qualifier was specified on the
MOUNT command when the volume was
mounted.

Specifies that the volume should be dismounted
without checking for open files, spooled devices,
installed images, or installed swap and page
files.

The specified device, rather than the entire
volume set, is dismounted.

Specifies that the volume is to be physically
unloaded after the dismount. If both the
DMT$M_UNLOAD and DMT$M_NOUNLOAD
flags are specified, the DMT$M_NOUNLOAD
flag is ignored. If neither flag is specified,
the volume is physically unloaded, unless
the DMT$M_NOUNLOAD flag was specified
on the $MOUNT system service or the
/NOUNLOAD qualifier was specified on the
MOUNT command when the volume was
mounted.

SYS-162

Description

System Service Descriptions
$DISMOU

The Dismount Volume service dismounts a mounted volume or volume sets. To
dismount a private volume, the caller must own the volume.

When you issue the $DISMOU service, $DISMOU removes the volume from your
list of mounted volumes, deletes the logical name (if any) associated with the
volume, and decrements the mount count.

If the mount count does not equal 0 after being decremented, $DISMOU does not
mark the volume for dismounting (because the volume must have been mounted
shared). In this case, the total effect for the issuing process is that the process is
denied access to the volume and a logical name entry is deleted.

If the mount count equals 0 after being decremented, $DISMOU marks the
volume for dismounting. After marking the volume for dismounting, $DISMOU
waits until the volume is idle before dismounting it. A native volume is idle when
no user has an open file to the volume, and a foreign volume is idle when no
channels are assigned to the volume.

Native volumes are Files—11 structured disks or ANSI-structured tapes. Foreign
volumes are not Files—11 or ANSI structured media.

After a volume is dismounted, nonpaged pool is returned to the system. Paged
pool is also returned if you mounted the volume using the /GROUP or /SYSTEM
qualifier.

If a volume is part of a Files—11 volume set and the flag bit DMT$V_UNIT is not
set, the entire volume set is dismounted.

When a Files—11 volume has been marked for dismount, new channels can be
assigned to the volume, but no new files can be opened.

Note that the SS$_NORMAL status code indicates only that $DISMOU has
successfully performed one or more of the actions just described: decremented
the mount count, marked the volume for dismount, or dismounted the volume.
The only way to determine that the dismount has actually occurred is to check
the device characteristics using the Get Device/Volume Information ($GETDVI)
service.

By specifying the DVI$_DEVCHAR item code in a call to $§GETDVI, you can learn
whether a volume is mounted (it is if the DEV$V_MNT bit is set) or whether it is
marked for dismounting (it is if the DEV$M_DMT bit is set). If DEVSV_MNT is
clear or if DEV$M_DMT is set, the mount count is 0.

Required Privileges

Depending on the operation, the calling process might need one of the following
privileges to use $DISMOU:

¢ GRPNAM privilege to dismount a volume mounted with the /GROUP qualifier

e SYSNAM privilege to dismount a volume mounted with the /SYSTEM
qualifier

Required Quota
None

SYS-163

System Service Descriptions

$DISMOU

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,

' $DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $GETDVI, $GETDVIW:

$GETMSG, $GETQUIL, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-164

SS$_NORMAL
SS$_ACCVIO

SS$_DEVALLOC

SS$_DEVOFFLINE
SS$_DEVNOTMOUNT
SS$_IVDEVNAM
SS$_IVLOGNAM

SS$_NOGRPNAM
SS$_NOIOCHAN

SS$_NONLOCAL
SS$_NOSUCHDEV
SS$_NOSYSNAM

SS$_NOTFILEDEV

The service completed successfully.

The device name descriptor cannot be read or
does not describe a readable device name.

The device is allocated to another process and
cannot be dismounted by the caller.

The specified device is not available.
The specified device is not mounted.
The device name string is not valid.

The device logical name has a length of 0 or is
longer than the allowable logical name length.

GRPNAM privilege is required to dismount a
volume mounted for groupwide access.

No I/O channel is available. To use $DISMOU, a
channel must be assigned to the volume.

The device is on a remote node.
The specified device does not exist.

SYSNAM privilege is required to dismount a
volume mounted for systemwide access.

The specified device is not file structured.

System Service Descriptions
$DLCEFC

$DLCEFC—Delete Common Event Flag Cluster

Format

Returns

Argument

Description

Marks a permanent common event flag cluster for deletion.

SYS$DLCEFC name

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

name

VMS Usage: ef cluster_name

type: character-coded text string
access: read only

mechanism: by descriptoréﬁxed length string descriptor

Name of the common event flag cluster to be deleted. The name argument is the
address of a character string descriptor pointing to the name of the cluster.

The names of event flag clusters are unique to UIC groups, and the UIC group
number of the calling process is part of the name. Refer to the Introduction to
VMS System Services for more information on this argument.

The Delete Common Event Flag Cluster service marks a permanent common
event flag cluster for deletion. The cluster is actually deleted when no more
processes are associated with it. The $DLCEFC service does not disassociate

a process from a common event flag cluster; the Disassociate Common Event
Flag Cluster ($DACEFC) service does this. However, the system disassociates a
process from an event flag cluster at image exit.

If the cluster has already been deleted or does not exist, the $DLCEFC service
returns the status code SS$_NORMAL.

Required Privileges
To delete a common event flag cluster, the calling process must either have
PRMCERB privilege or have the same UIC as the process that created the cluster.

Required Quota
None

Related Services
$ASCEFC, $CLREF, $DACEFC, $READEF, $SETEF, $WAITFR, $WFLAND,
$WFLOR

SYS-165

System Service Descriptions
$DLCEFC

Condition Values Returned

SS$_NORMAL
SS$_IVLOGNAM

SS$_NOPRIV

SYS-166

The service completed successfully.

The cluster name string has a length of 0 or has
more than 15 characters.

The process does not have the privilege to delete
a permanent common event flag cluster, or the
process does not have the privilege to delete a
common event flag cluster in memory shared by
multiple processors.

System Service Descriptions
$DNS

$DNS—Distributed Name Service Clerk

Format

Returns

Arguments

The DIGITAL Distributed Name Service (DECdns) Clerk allows client
applications to store resource names and addresses.

The $DNS system service completes asynchronously; that is, it returns to the
client immediately after making a name service call. The status returned to
the client call indicates whether a request was successfully queued to the name
service.

The DIGITAL Distributed Name Service (DECdns) Clerk Wait ($DNSW) system
service is the synchronous equivalent of $DNS. $DNSW is identical to $DNS in
every way except that $DNSW returns to the caller after the operation completes.

SYS$DNS [efn] ,func ,itmist [,dnsb] [,astadr] [,astprm]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services return by immediate value a
return value in RO. Condition values returned by this call are listed in the
section Condition Values Returned in the $DNS Status Block. Errors returned
here are from the DECdns clerk and server.

efn

VMS Usage: ef number

type: longword (unsigned)
access: read only

mechanism: by value

Number of the event flag to be set when $DNS completes. The efn argument is a
longword containing this number. The efn argument is optional; if not specified,
event flag 0 is set.

When $DNS begins execution, it clears the event flag. Even if the service
encounters an error and completes without queuing a name service request, the
specified event flag is set.

func

VMS Usage: function_code

type: longword (unsigned)
" access: read only

mechanism: by value

Function code specifying the action that $DNS is to perform. The fune argument
is a longword containing this function code.

SYS-167

System Service Descriptions

$DNS

A single call to $DNS can specify one function code. Most function codes require
or allow for additional information to be passed in the call with the itmlst
argument.

itmist

VMS Usage: item_list_3

type: longword (unsigned)
access: read only

mechanism: by reference

Item list supplying information to be used in performing the function specified
by the func argument. The itmlst argument is the address of the item list.

The item list consists of one or more item descriptors, each of which is three
longwords. The descriptors can be in any order in the item list. Each item
descriptor specifies an item code. Item codes are specified as either input

or output parameters. Input parameters modify functions, set context, or
describe the information to be returned. Output parameters return the requested
information. The item list is terminated by a longword of 0.

The item list is a standard VMS format item list. The following figure depicts the
general structure of an item descriptor.

31 15 0
Item Code Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Descriptor Fields

SYS-168

item code

A word containing a symbolic code describing the nature of the information
currently in the buffer or to be returned in the buffer. The location of the buffer
is pointed to by the buffer address field. Each item code has a symbolic name that
is defined by the $DNSDEF macro. This section provides a detailed description of
item codes following the description of function codes.

buffer length

A word specifying the length of the buffer; the buffer either supplies information
to be used by $DNS or receives information from $DNS. The required length of
the buffer varies depending on the item code specified; each item code description
specifies the required length.

buffer address
A longword containing the address of the buffer that specifies or receives the
information.

return length address

A longword containing the address of a word specifying the actual length in
bytes of the information returned by $DNS. The information resides in a buffer
identified by the buffer address field. The field applies to output item list entries

System Service Descriptions

$DNS
only and must be 0 for input entries. If the return length address is 0, it is
ignored.
dnsb
VMS Usage: dns_status_block
type: quadword (unsigned)
access: write only

mechanism: by reference

Status block to receive the final completion status of the $DNS operation. The
dnsb argument is the address of the quadword $DNS status block.

The following figure depicts the structure of a $DNS status block.

31 0
return status
reserved outlinked inoutdirect
\ /
V
qualifying status
ZK-1080A-GE

Status Block Fields

return status

Set on completion of a DECdns clerk request to indicate the success or failure of
the operation. Check the qualifying status word for additional information about
a request marked as successful.

qualifying status

This field consists of two flags that provide additional information about a
successful request to the DECdns server. The two flags are DNS$V_DNSB_
INOUTDIRECT and DNS$V_DNSB_OUTLINKED and are defined as follows:

¢ DNS$V_DNSB_INOUTDIRECT—Indicates whether the members were found
in the top level group or in one of the subgroups. The values are defined as
follows:

1: The member was found in the top-level group.
0: The member was found in one of the subgroups of the top-level group.

¢ DNS$V_DNSB_OUTLINKED—If set, indicates that one or more soft links
were encountered while resolving the name specified in a call.

Functions that access the DECdns server return a qualifying status. Name
conversion functions do not return qualifying status.

astadr

VMS Usage: ast_procedure

type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

Asynchronous system trap (AST) routine to be executed when I/O completes. The
astadr argument, which is the address of a longword value, is the entry mask to
the AST routine.

SYS-169

System Service Descriptions

$DNS

The AST routine executes in the access mode of the caller of $DNS.

astprm

VMS Usage: wuser_arg

type: longword (unsigned)
access: read only

mechanism: by value

Asynchronous system trap parameter passed to the AST service routine. The
astprm argument is a longword value containing the AST parameter.

Function Codes

SYS-170

DNS$_ADD_REPLICA

This request adds a directory replica in the specified clearinghouse. Specify
the item code DNS$_REPLICATYPE as either a secondary directory (DNS$K_
SECONDARY) or a read-only directory (DNS$K_READONLY).

You must have control access to the directory being replicated and write access to
the new replica’s clearinghouse.

You must specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_DIRECTORY
DNS$_REPLICATYPE

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:
DNS$V_DNSB_OUTLINKED

DNS$_ALLOW_CH
This request permits a directory to store clearinghouse objects. This request
takes as input the name of a directory (DNS$_DIRECTORY).

You must have control access to the parent directory.

You must specify the following input value item code:
DNS$_DIRECTORY

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_CREATE_DIRECTORY
This request creates a master directory in the specified clearinghouse.

You must have write or control access to the parent directory and Write access to
the master replica’s clearinghouse.

You must specify the following input value item code:
DNS$_DIRECTORY

System Service Descriptions
$DNS

You may specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_WAIT

You may specify the following output value item code:
DNS$_OUTCTS

DNS$_CREATE_LINK

This request creates a soft link to a directory, object, soft link, or clearinghouse
in the namespace. Specify the target to which the soft link points in the DNS$_
TARGETNAME item code. Use the DNS$ RESOLVE_NAME function code to
check the existence of the target.

You must have write or control access to the directory in which the soft link is
being created.

You must specify the following input value item codes:

DNS$_LINKNAME
DNS$_TARGETNAME

You may specify the following input value item codes:

DNS$_CONF
DNS$_EXPIRETIME
DNS$_EXTENDTIME
DNS$_WAIT

You may specify the following output value item code:
DNS$_OUTCTS

DNS$_CREATE_OBJECT

This request creates an object in the namespace. Initially, the object has

the attributes of DNSCTS, DNSUTS, DNS$Class, DNS$ClassVersion, and
DNS$ACS. The name service creates the DNSCTS, DNSUTS, and DNS$ACS
attributes. The client application supplies the DNS$Class and DNS$ClassVersion
attributes. You can add additional attributes using the DNS$_MODIFY_
ATTRIBUTE function.

The DECdns clerk cannot guarantee that an object has been created. Another
DNS$_CREATE_OBJECT request could supersede the object created by your
call. To verify an object creation, wait until the directory is skulked and then
check to see if the requested object is present. If the value of the directory’s
DNS$ALLUPTO attribute is greater than the DNS$CTS of the object, your object
has been successfully created.

If specified, DNS$_OUTCTS holds the creation timestamp of the newly created
object. :

This function code returns the following:

SS$_NORMAL

DNS$_ENTRYEXISTS

DNS$_INVALID_OBJECTNAME
DNS$_INVALID_CLASSNAME

Any condition listed in the section Condition Values Returned

You must have write access to the directory where the object will reside.

SYS-171

System Service Descriptions
$DNS

You must specify the following input value item codes:

DNS$_CLASS
DNS$_OBJECTNAME
DNS$_VERSION

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

You may specify the following output value item code:
DNS$_OUTCTS

DNS$_DELETE_DIRECTORY
This request removes a directory from the namespace.

You must have delete access to the directory being deleted and write, control, or
delete access to the parent directory.

You must specify the following input value item code:
DNS$_DIRECTORY
You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_DELETE_OBJECT
This request removes the specified object from the namespace.

This function code returns the following:

S5S$_NORMAL
DNS$_INVALID_OBJECTNAME
Any condition listed in the section Condition Values Returned

You must have delete access to the object.

You must specify the following input value item code:
DNS$_OBJECTNAME

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:
DNS$V_DNSB_OUTLINKED

'DNS$_DISALLOW_CH
This request prevents a directory from storing clearinghouse objects. This request
takes as input the name of a directory (DNS$_DIRECTORY).

You must have control access to the parent directory, and read or control access to
any child directories.

You must specify the following input value item code:
DNS$_DIRECTORY

SYS-172

System Service Descriptions
$DNS

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_ENUMERATE_ATTRIBUTES

This request returns a set of attribute names in DNS$_OUTATTRIBUTESET
that are associated with the directory, object, soft link, or clearinghouse. Specify
the entry type in the DNS$_LOOKINGFOR item code. The function returns
either DNS$K_SET or DNS$K_SINGLE along with the set of attribute names.

To manipulate the attribute names returned by this call, you should use the
DNS$REMOVE_FIRST_SET_VALUE run-time library routine.

The DECdns clerk enumerates attributes in alphabetical order. A return status
of DNS$_MOREDATA implies that not all attributes have been enumerated.
You should make further calls, setting DNS$_CONTEXTVARNAME to the last
attribute in the set returned, until the procedure returns SS$_NORMAL.

This function code returns the following:

SS$_NORMAL

DNS$_MOREDATA

DNS$_INVALID_ENTRYNAME
DNS$_INVALID_CONTEXTNAME

Any condition listed in the section Condition Values Returned

You must have read access to the directory, object, soft link, or clearinghouse.
You must specify the following input value item codes:

DNS$_ENTRY
DNS$_LOOKINGFOR

You must specify the following output value item code:
DNS$_OUTATTRIBUTESET
You may specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_WAIT

You may specify the following output value item code:
DNS$_CONTEXTVARNAME
$DNS returns the following qualifying status:

DNS$V_DNSB_OUTLINKED

DNS$_ENUMERATE_CHILDREN

This request takes as input a directory name with an optional simple name that
uses a wildcard. The DECdns clerk matches the input against child directory
entries in the specified directory.

The DECdns clerk returns a set of simple names of child directories in the target
directory that match the name with the wildcard. A null set is returned when
there is no match or the directory has no child directories.

SYS-173

System Service Descriptions

$DNS

SYS-174

To manipulate the values returned by this call, you should use the
DNS$REMOVE_FIRST SET VALUE run-time routine. The value returned
is a simple name.

The clerk enumerates child directories in alphabetical order. If the call returns
DNS$_MOREDATA, not all child directories have been enumerated and the
client should make further calls, setting DNS$_CONTEXTVARNAME to the last
child directory in the set returned, until the procedure returns SS$_NORMAL.
Subsequent calls return the child directories, starting with the directory specified
in DNS$_CONTEXTVARNAME and continuing in alphabetical order.

This function code returns the following:

SS$_NORMAL

DNS$_MOREDATA
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_WILDCARDNAME

You must have read access to the parent directory.

You must specify the following input value item code:
DNS$_DIRECTORY

You must specify the following output value item code:
DNS$_OUTCHILDREN

You may specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARNAM
DNS$_WAIT :
DNS$_WILDCARD

You may specify the following output value item code:
DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:
DNS$V_DNSB_OUTLINKED

DNS$_ENUMERATE_OBJECTS

This request takes as input the directory name, a simple name that can use a
wildcard, and a class name that uses a wildcard. The DECdns clerk matches
these against objects in the directory. If a wildcard and class filter are not
specified, all objects in the directory are returned.

The function returns (in DNS$_OUTOBJECTS) a set of simple names of object
entries in the directory that match the name with the wildcard. The function also
returns the class of the object entries, if specified with DNS$_RETURNCLASS. If
no object entries match the wildcard or the directory contains no object entries, a
null set is returned.

To manipulate the values returned by this call, you should use the
DNS$REMOVE_FIRST SET _VALUE run-time routine. The value returned
is a simple name structure.

System Service Descriptions
$DNS

The clerk enumerates objects in alphabetical order. If the call returns DNS$_
MOREDATA, not all objects have been enumerated and the client should make
further calls, setting DNS$_CONTEXTVARNAME to the last object in the

set returned, until the procedure returns SS$_NORMAL. If the class filter is
specified, only those objects of the specified classes are returned.

This function code returns the following:

SS$_NORMAL

DNS$_MOREDATA
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_WILDCARDNAME
DNS$_INVALID_CLASSNAME

You must have read access to the directory.

You must specify the following input value item code:
DNS$_DIRECTORY

You must specify the following output value item code:
DNS$_OUTOBJECTS

You may specify the following input value item codes:

DNS$_CLASSFILTER
DNS$_CONF
DNS$_CONTEXTVARNAME
DNS$_RETURNCLASS
DNS$_WAIT
DNS$_WILDCARD

You may specify the following output value item code:
DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:
DNS$V_DNSB_OUTLINKED

DNS$_ENUMERATE_SOFTLINKS

This request takes as input the name of a directory and a wildcarded simple
name. The DECdns clerk matches these against soft links in the directory. It -
returns (in DNS$_OUTSOFTLINKS) a set consisting of simple names of soft links
in the directory that match the wildcarded name. If no soft link entries match
the wildcard or the directory contains no soft links, a null set is returned.

If no wildcard is specified, then all soft links in the directory are returned.

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST
SET_VALUE run-time library routine. The value returned is a simple name.

The clerk enumerates soft links in alphabetical order. If the call returns DNS$_
MOREDATA, not all matching soft links have been enumerated and the client
should make further calls, setting DNS$_CONTEXTVARNAME to the last soft
link in the set returned, until the procedure returns SS$_NORMAL.

SYS-175

System Service Descriptions
$DNS

This function code returns the following:

SS$_NORMAL
DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_CONTEXTNAME
DNS$_INVALID_WILDCARDNAME

You must have read access to the directory.

You must specify the following input value item code:
DNS$_DIRECTORY

You must specify the following output value item code:
DNS$_OUTSOFTLINKS

You may specify the following input value item codes:

DNS$_CONF 4
DNS$_CONTEXTVARNAME
DNS$_WAIT
DNS$_WILDCARD

You may specify the following output value item code:
DNS$_CONTEXTVARNAME

$DNS returns the following qualifying status:
DNS$V_DNSB_OUTLINKED

DNS$ FULL _OPAQUE_TO_STRING

This request converts a full name in opaque format to its equivalent in string
format. To prevent the namespace nickname from being included in the string
name, set the byte referred to by DNS$_SUPPRESS_NSNAME to 1.

This function code returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:
DNS$_FROMFULLNAME

You must specify the following output value item code:
DNS$_TOSTRINGNAME

You may specify the following input value item code:

DNS$_SUPPRESS_NSNAME

DNS$_MODIFY_ATTRIBUTE
This request applies one update to the specified entry in the namespace. The
update operations are as follows:

¢ Add or remove an attribute.

¢ Add or remove an attribute value from either a single-valued attribute or a
set-valued attribute.

SYS-176

System Service Descriptions
$DNS

To add a value to a single-valued or set-valued attribute, specify a value in
the DNS$_MODVALUE item code. If you do not specify a value for a single-
valued attribute, you receive the error DNS$_INVALIDUPDATE. Single-valued
attributes cannot exist without a value.

If you do not specify a value for a set-valued attribute, the clerk creates the
attribute with an empty set.

To delete an attribute value, use the DNS$_MODVALUE item code to remove
the specified value from an attribute set. If you do not specify the item code, the
name service removes the attribute and all its values.

This function code returns the following:

SS$_NORMAL
DNS$_WRONGATTRIBUTETYPE
DNS$_INVALIDUPDATE
DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You must have write or delete access to the directory, object, soft link, or
clearinghouse whose attribute is being modified, depending on whether the
operation adds or removes the attribute.

You must specify the following input value item codes:

DNS$_ATTRIBUTENAME
DNS$_ATTRIBUTETYPE
DNS$_ENTRY
DNS$_LOOKINGFOR
DNS$_MODOPERATION

You may specify the following input value item codes:

DNS$_CONF
DNS$_MODVALUE
DNS$_WAIT

$DNS returns the following qualifying status:
DNS$V_DNSB_OUTLINKED

DNS$_NEW_EPOCH :

This request reconstructs an entire replica set of a directory and synchronizes the
copies to recover as much of the original directory state as possible. The function
can also be used to change a replica type for configuration management purposes.

This request takes as input the full name of a clearinghouse (DNS$_
CLEARINGHOUSE) and directory (DNS$_DIRECTORY). Specify, optionally,
the full names of clearinghouses in which to store secondary and read-only
replicas (DNS$_SECCHSET and DNS$_READCHSET).

You must have control access to the parent directory and write access to each
clearinghouse for which the replica type will be changed from its current value to
a new value.

You must specify the following input value item codes:

DNS$_CLEARINGHOUS
DNS$_DIRECTORY

SYS-177

System Service Descriptions

$DNS

SYS-178

You may specify the following input value item codes:

DNS$ READCHSET
DNS$_SECCHSET

DNS$_PARSE_FULLNAME_STRING

This request takes a full name in string format and converts it to its equivalent
in opaque format. If you specify the DNS$_NEXTCHAR_PTR item code, the
clerk examines the name specified in DNS$_FROMSTRINGNAME for invalid
characters. The buffer returns the address of the character in the name that
immediately follows a valid DECdns name.

This function code returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:
DNS$_FROMSTRINGNAME

You must specify the following output value item code:
DNS$_TOFULLNAME

You may specify the following input value item code:
DNS$_NEXTCHAR_PTR

DNS$_PARSE_SIMPLENAME_STRING

This request takes a simple name in string format and converts it to its
equivalent in opaque format. If you specify the DNS$_NEXTCHAR_PTR item
code, the clerk examines the name specified in DNS$_FROMSTRINGNAME for
invalid characters. The buffer returns the address of the character in that name
that immediately follows a valid DECdns name.

This function code return the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:
DNS$_FROMSTRINGNAME

You must specify the following output value item code:
DNS$_TOSIMPLENAME

You may specify the following input value item code:
DNS$_NEXTCHAR_PTR

DNS$_READ_ATTRIBUTE
This request returns (in DNS$_OUTVALSET) a set whose members are the
values of the specified attribute.

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_
SET_VALUE run-time library routine. The run-time library routine returns the
value of a single-valued attribute or the first value from a set-valued attribute.
The contents of DNS$_OUTVALSET are passed to DNS$REMOVE_FIRST_SET_
VALUE, and the routine returns the value of the attribute.

System Service Descriptions
$DNS

The attribute values are returned in the order in which they were created. If the
call returns DNS$_MOREDATA, not all of the set members have been returned.
The client application can make further calls, setting DNS$_CONTEXTVARTIME
to the timestamp of the last attribute in the set returned, until the procedure
returns SS$§_NORMAL.

If the client sets the DNS$_MAYBEMORE item code to 1, the name service
attempts to make subsequent DNS$_READ_ATTRIBUTE calls for the same value
more efficient. ’

This function code returns the following:

SS$_NORMAL

DNS$_MOREDATA
DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You must have read access to the object whose attribute is to be read.
You must specify the following input value item codes:

DNS$_ATTRIBUTENAME
DNS$_ENTRY
DNS$_LOOKINGFOR

You must specify the following output value item code:
DNS$_OUTVALSET
You may specify the following input value item codes:

DNS$_CONF
DNS$_CONTEXTVARTIME
DNS$_MAYBEMORE
DNS$_WAIT

You may specify the following output value item code:
DNS$_CONTEXTVARTIME

$DNS returns the followiﬂg qualifying status:
DNS$V_DNSB_OUTLINKED

DNS$_REMOVE_LINK

This request deletes a soft link from the namespace. Only the soft link is deleted.
Any DECdns name that is referenced by the soft link remains unaffected by the
operation. '

You must have delete access to the soft link, or delete or control access to its
parent directory.

You must specify the following input value item code:
DNS$_LINKNAME
You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_REMOVE_REPLICA
This request removes the specified replica of a directory.

SYS-179

System Service Descriptions

$DNS

SYS-180

You must have control access to the replica being removed and write access to the
replica’s clearinghouse.

You must specify the following input value item codes:

DNS$_CLEARINGHOUSE
DNS$_DIRECTORY

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

DNS$_RESOLVE_NAME
This request follows a chain of soft links to its target. The function returns the
full name of the target.

Applications that maintain their own databases of opaque DECdns names should
use DNS$_RESOLVE_NAME any time they receive the qualifying status DNS$V_
DNSB_OUTLINKED. The qualifying status indicates that a soft link was followed
to make the request to the DECdns server. After receiving the resolved name,
the application should store it, so future references to the name do not incur the
overhead of following a soft link.

If the application provides a name that does not contain any soft links, DNS$_
NOTLINKED status is returned. If the target of any of the chain of soft links
followed does not exist, the DNS$_DANGLINGLINK status is returned. To obtain
the target of any particular soft link, use the DNS$_READ_ATTRIBUTE function
with DNS$_LOOKINGFOR set to DNS$K_SOFTLINK and request the attribute
DNS$LINKTARGET. This can be useful in discovering which link in a chain does
not point to an existing target. If the DECdns clerk detects a loop, it returns
DNS$ POSSIBLECYCLE status.

This function code returns the following:

SS$_NORMAL
DNS$_INVALID_LINKNAME
DNS$_NOTLINKED
DNS$_POSSIBLECYCLE

You must have read access to each of the soft links in the chain.

You must specify the following input value item code:
DNS$_LINKNAME

You must specify the following output value item code:
DNS$_OUTNAME

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:
DNS$V_DNSB_OUTLINKED

DNS$_SIMPLE_OPAQUE_TO_STRING
This request takes a simple name in opaque format and converts it to its
equivalent in string format.

System Service Descriptions
$DNS

This function code returns the following:

SS$_NORMAL
DNS$_INVALIDNAME

You must specify the following input value item code:
DNS$_FROMSIMPLENAME

You must specify the following output value item code:
DNS$_TOSTRINGNAME

DNS$_SKULK

This request attempts to ensure that all replicas of the specified directory have
absorbed all updates applied to any replica prior to the time the skulk began.
Successful update of the replica set requires all replicas to be available for an
extended time.

You must have control access to the directory being skulked.
You must specify the following input value item code:

DNS$_DIRECTORY
DNS$_TEST_ATTRIBUTE
This request tests an object for the presence of a particular attribute value. This

function returns DNS$_TRUE in the $DNS status block if the specified attribute
has one of the following characteristics:

¢ It is a single-valued attribute and its value matches the specified value.

e It is a set-valued attribute and the attribute contains the specified value as
one of its members.

If the attribute is not present or if the specified attribute does not exist, the
function returns DNS$_FALSE in the $DNS status block.

This function call returns the following:

DNS$_INVALID_ENTRYNAME
DNS$_INVALID_ATTRIBUTENAME

You must have test or read access to the directory, object, soft link, or
clearinghouse whose attribute is to be tested.

You must specify the following input value item codes:

DNS$_ATTRIBUTENAME
DNS$_ENTRY
DNS$_LOOKINGFOR
DNS$_VALUE

You may specify the following input value item codes:

DNS$_CONF
DNS$_WAIT

$DNS returns the following qualifying status:
DNS$V_DNSB_OUTLINKED

SYS-181

System Service Descriptions

$DNS

Item Codes

SYS-182

DNS$_TEST_GROUP

This request tests a group object for a particular member. It returns DNS$_
TRUE in the $DNS status block if the specified member is a member of the
specified group (or a subgroup thereof), and DNS$_FALSE otherwise. If the clerk
searches a subgroup and one or more of the subgroups is unavailable, the clerk
returns the status encountered in trying to access that group.

The DNS$_INOUTDIRECT argument, on input, controls the scope of the search.
If you set this item code to 1, the clerk searches only the top-level group. If you
set it to 0, the clerk searches all of the subgroups. On output, the clerk returns
a 1 in the DNS$V_DNSB_INOUTDIRECT qualifying status if the member

was found in the top-level group; it returns a 0 if the member was found in a
subgroup. :

This function code returns the following:

SS$_NORMAL
DNS$_NOTAGROUP
DNS$_INVALID_GROUPNAME
DNS$_INVALID_MEMBERNAME

You must have test or read access to each of the groups being tested or control
access to their respective directories.

You must specify the following input value item codes:

DNS$_GROUP
DNS$_MEMBER

You may specify the following input value item codes:

DNS$_CONF
DNS$_INOUTDIRECT
DNS$_WAIT

$DNS returns the following qualifying status:

DNS$V_DNSB_INOUTDIRECT
DNS$V_DNSB_OUTLINKED

Table SYS-5 provides a summary of item codes that are valid as an item
descriptor in the itmlst argument. The table lists the item codes and their data
types. Complete descriptions of each item code are provided after the table.

Table SYS-5 Item Codes and Their Data Types

Item Code Data Type

DNS$_ATTRIBUTENAME An opaque simple name, which is limited to
31 ISO Latin-1 characters.

DNS$_ATTRIBUTETYPE A single byte, indicating whether the attribute

is a set (DNSK$_SET) or a single value
(DNS$K_SINGLE), followed by an opaque
simple name.

(continued on next page)

System Service Descriptions
$DNS

Table SYS-5 (Cont.) Iltem Codes and Their Data Types

Item Code

Data Type

DNS$_CLASS
DNS$_CLASSFILTER
DNS$_CLEARINGHOUSE
DNS$_CONF

DNS$_CONTEXTVARNAME
DNS$_CONTEXTVARTIME
DNS$_DIRECTORY
DNS$_ENTRY

DNS$_EXPIRETIME
DNS$_EXTENDTIME

DNS$_FROMFULLNAME
DNS$_FROMSIMPLENAME
DNS$_FROMSTRINGNAME

DNS$_GROUP
DNS$_INOUTDIRECT

DNS$_LINKNAME
DNS$_LOOKINGFOR

DNS$_MAYBEMORE

DNS$_MEMBER

DNS$_MODOPERATION

An opaque simple name, limited to 31 ISO
Latin-1 characters.

An opaque simple name that can contain a
wildecard.

An opaque simple name of a clearinghouse.
The confidence setting, which is a 1-byte
field with the value DNSK_LOW, DNSK _
MEDIUM, or DNS$K_HIGH

An opaque simple name.

A creation timestamp (CTS).

An opaque full name of a directory.

An opaque full name of a directory, soft link,
group, or clearinghouse.

A quadword VMS absolute time
representation.

A quadword VMS relative time
representation.

An opaque full name.

An opaque simple name.

A full or simple name consisting of a string
of ISO-1 Latin characters. The length of the
name is length stored separately in an item
list.

An opaque full name.

A 1-byte Boolean field. Valid values are 0 and
1.

An opaque full name of a soft link.

A 1-byte field. Valid values are DNS$K_
OBJECT, DNS$K_SOFTLINK, DNS$K_
CHILDDIRECTORY, DNS$K_DIRECTORY, or
DNS$K_CLEARINGHOUSE.

A 1-byte Boolean field. Valid values are
DNS$_FALSE and DNS$_TRUE.

A single byte, indicating whether the
member is a principal (DNS$K_GRPMEM_
NOT_GROUP) or another group (DNS$K_
GRPMEM_IS_GROUP), followed by the
opaque full name of the member.

A value indicating that an attribute is
being added (DNS$K_PRESENT) or deleted
(DNS$K_ABSENT).

(continued on next page)

sYs-183

System Service Descriptions

$DNS

SYS-184

Table SYS-5 (Cont.) Iltem Codes and Their Data Types

item Code

Data Type

DNS$_MODVALUE
DNS$_NEXTCHAR_PTR
DNS$_OBJECTNAME
DNS$_OUTATTRIBUTESET
DNS$_OUTCHILDREN

DNS$_OUTCTS
DNS$_OUTNAME
DNS$_OUTOBJECTS
DNS$_OUTSOFTLINKS

DNS$_OUTVALSET
DNS$_READCHSET
DNS$_REPLICATYPE
DNS$_RETURNCLASS

DNS$_SECCHSET
DNS$_SUPPRESS_NSNAME

DNS$_TARGETNAME

DNS$_TOFULLNAME

DNS$_TOSIMPLENAME

DNS$_TOSTRINGNAME

DNS$_VALUE

The structure of this value is dependent on
the application.

The address of an invalid character following
a valid full or simple name.

An opaque full name.

DNS$K_SET or DNS$K_SINGLE in the first
byte followed by a single or set of attribute
names.

A set of opaque simple names of the child
directories found in the parent directory.

A timestamp.
An opaque full name.

A set of opaque simple names. Optionally,
each simple name can be followed by the
value of the DNS$Class attribute.

A set of opaque simple names of the soft links
for an object.

A set of attribute values.
An opaque full name of a read-only directory.

The type of directory replica. Valid values are
secondary replica (DNS$K_SECONDARY) and
read-only replica (DNS$K_READONLY).

A flag indicating that the value of DNS$Class
is returned in DNS$_OUTOBJECTS.
An opaque full name of a secondary directory.

A 1-byte value: a value of DNS$_TRUE
suppresses the namespace name, and a value
of DNS$_FALSE returns the namespace
name.

The opaque full name of an entry in the
namespace to which a soft link will point.
The opaque full name of an object.

The maximum output of DNS$PARSE_
FULLNAME_STRING is 402 bytes.

An opaque simple name. It can be no longer
than 257 bytes.

A name string of ISO-1 Latin characters. The
name length is stored separately in an item
list.

An attribute value in string format.
(continued on next page)

System Service Descriptions

$DNS
Table SYS-5 (Cont.) Item Codes and Their Data Types
Item Code Data Type
DNS$_VERSION A 2-byte field: the first byte contains the

major version number, the second contains the
minor version number.

DNS$_WAIT A quadword VMS time representation.
DNS$_WILDCARD An opaque simple name containing a wildcard
character.

This section describes each item code.

DNS$_ATTRIBUTENAME
The DNS$_ATTRIBUTENAME item code specifies the opaque simple name of an
attribute. An attribute name cannot be longer than 31 characters.

DNS$_ATTRIBUTETYPE
The DNS$_ATTRIBUTETYPE item code specifies whether an attribute is set
valued (DNS$K_SET) or single valued (DNS$K_SINGLE).

DNS$_CLASS

The DNS$_CLASS item code specifies the DNS$Class attribute of an object for
the $DNS function DNS$_CREATE_OBJECT. DNS$_CLASS is an opaque simple
name.

DNS$_CLASSFILTER .

DNS$_CLASSFILTER specifies a filter that limits the scope of an enumeration
to those objects belonging to a certain class or group of classes. DNS$_
CLASSFILTER is used by the $DNS function DNS$_ENUMERATE_OBJECTS.
DNS$_CLASSFILTER is an opaque simple name, which can contain a wildcard
(either the asterisk or question mark). ’

DNS$_CLASSFILTER is optional. A wildcard simple name using an asterisk (*)
is used by default, meaning that objects of all classes are enumerated.

DNS$_CLEARINGHOUSE
DNS$_CLEARINGHOUSE specifies the clearinghouse in which the directory will
be added or removed. DNS$_CLEARINGHOUSE is an opaque full name.

DNS$_CONF

DNS$_CONTF specifies for $DNS whether to use the clerk’s cache or a DECdns
server to complete the request. DNS$_CONTF is 1 byte long and can take one of
the following values.

Confidence Level Description

DNS$K_LOW On read requests, services the DECdns request from the
clerk’s cache. On create or modify requests, services the
request from a master or secondary directory.

DNS$K_MEDIUM Bypasses any cached information and services the
request directly from a DECdns server.
DNS$K_HIGH Services the request from the master directory.

SYS-185

System Service Descriptions

$DNS

SYS-186

DNS$_CONTF is optional; if it is not specified, the DECdns clerk assumes a value
of DNS$K_LOW.

DNS$_CONTEXTVARNAME

DNS$_CONTEXTVARNAME specifies and returns a context for the enumeration
functions. On input, specify null to set the initial context. On output, DNS$_
CONTEXTVARNAME returns the opaque simple name of the last item
enumerated.

DNS$_CONTEXTVARNAME is optional. If you do not specify or you specify a
null value for the context variable item, the clerk returns the results from the
beginning of the set. To restart an enumeration where it left off, specify the last
value returned in DNS$_CONTEXTVARNAME.

DNS$_CONTEXTVARTIME ;
DNS$_CONTEXTVARTIME specifies and returns a timestamp for the DNS$_
READ_ATTRIBUTE function. On input, specify a timestamp to set up the
context for reading attributes. On output, DNS$_CONTEXTVARNAME returns
the timestamp of the last item read.

DNS$_CONTEXTVARTIME is optional. If you do not specify or you specify a
null value for the context variable item, the clerk returns the results from the
beginning of the set. To restart a read operation where it left off, specify the last
value returned in DNS$CONTEXTVARTIME.

DNS$_DIRECTORY ’
DNS$_DIRECTORY specifies the directory in which the child directories, soft
links, or objects to be enumerated reside. DNS$_DIRECTORY is an opaque full
name.

DNS$_ENTRY
DNS$_ENTRY specifies the opaque full name of an object, soft link, directory, or
clearinghouse in the namespace.

DNS$_EXPIRETIME

DNS$_EXPIRETIME specifies the absolute time when the soft link will expire.
The clerk deletes the soft link at the expiration time. If this item code is a null
value, the clerk neither checks nor deletes the link.

DNS$_EXTENDTIME

DNS$_EXTENDTIME specifies an extension factor to be added to the absolute
time if the soft link still exists. A new expiration time is created by adding the
expiration time and the extend time together.

DNS$_FROMFULLNAME
DNS$_FROMFULLNAME specifies for the DNS$_FULL_OPAQUE_TO_STRING
function the opaque full name that is to be converted into string format.

DNS$_FROMSIMPLENAME

DNS$_FROMSIMPLENAME specifies for the DNS$_SIMPLE_OPAQUE_TO_
STRING function the opaque simple name that is to be converted into string
format.

DNS$_FROMSTRINGNAME

DNS$_FROMSTRINGNAME specifies a simple or full name in string format for
the parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_PARSE_
SIMPLENAME_STRING that is to be converted to opaque format.

System Service Descriptions
$DNS

DNS$_GROUP

DNS$_GROUP specifies for the DNS$_TEST GROUP function the opaque full
name of the group that is to be tested. DNS$_GROUP must be the name of a
group object.

DNS$_INOUTDIRECT
DNS$_INOUTDIRECT specifies a value that controls the scope of a test for group
membership.

Value Definition

1 Tests the top-level group specified by the DNS$_GROUP item (the
default).

0 Tests all subgroups of the group named in DNS$_GROUP.

DNS$_INOUTDIRECT is a single-byte value.

DNS$_LINKNAME
DNS$_LINKNAME specifies the opaque full name of a soft link.

DNS$_LOOKINGFOR
DNS$_LOOKINGFOR specifies the type of entry in the namespace on which the
call is to operate. DNS$_LOOKINGFOR can take one of the following values:

* DNS$K_DIRECTORY

¢ DNS$K_OBJECT

* DNS$K_CHILDDIRECTORY
* DNS$K_SOFTLINK

* DNS$K_CLEARINGHOUSE

DNS$_MAYBEMORE

DNS$_MAYBEMORE is used with the DNS$_READ_ATTRIBUTE function

to indicate that the results of the read operation are to be cached. This is a
single-byte item.

When this item is set to 1, the clerk returns all of the entry’s attributes in the

return buffer. The clerk caches all of this information to make later lookups of
attribute information for the same entry quicker and more efficient.

If you do not specify this item, only the requested information is returned.

DNS$_MEMBER
DNS$_MEMBER specifies for the DNS$_TEST_GROUP function of $DNS the
opaque full name of a member that is to be tested for inclusion within a given

group.

DNS$_MODOPERATION

DNS$_MODOPERATION specifies for the DNS$_MODIFY_ATTRIBUTE function
the type of operation that is to take place. There are two types of modifications:
adding an attribute or deleting an attribute. To add an attribute, specify DNS$K_
PRESENT. To delete an attribute, specify DNS$K_ABSENT.

SYS-187

System Service Descriptions

$DNS

SYS-188

DNS$_MODVALUE

DNS$_MODVALUE specifies for the DNS$_MODIFY_ATTRIBUTE function the
value that is to be added to or deleted from an attribute. The structure of this
value is dependent on the application.

DNS$_MODVALUE is an optional argument that affects the overall operation of
the DNS$_MODIFY_ATTRIBUTE function. Note that the DNS$_MODVALUE
item code must be specified to add a single-valued attribute. You can specify a
null value for a set-valued attribute. (See the DNS$_MODIFY_ATTRIBUTE item
code description for more information.)

DNS$_NEXTCHAR_PTR

DNS$_NEXTCHAR_PTR is an optional item code that can be used with the
parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_PARSE_
SIMPLENAME_STRING to return the address of an invalid character that
immediately follows a valid DECdns name. This option is most useful when
applications are parsing command line strings.

Without this item code, the parse functions return an error if any portion of the
name string is invalid.

DNS$_OBJECTNAME
DNS$_OBJECTNAME specifies the opaque full name of an object.

DNS$_OUTATTRIBUTESET

DNS$_OUTATTRIBUTESET returns a set of enumerated attribute names. This
item code is used with the DNS$_ENUMERATE_ATTRIBUTES functions. The
item code returns either DNS$K_SET or DNS$K_SINGLE along with the set of
attribute names.

The names returned in this set can be extracted from the buffer with the
DNS$REMOVE_FIRST_SET_VALUE routine. The resulting values are contained
in the $DNSATTRSPECDEF structure. This 1-byte structure indicates whether
an attribute is set-valued or single-valued followed by an opaque simple name.

DNS$_OUTCHILDREN
DNS$_OUTCHILDREN returns the set of opaque simple names enumerated by
the DNS$_ENUMERATE_CHILDREN function.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_VALUE run-time library routine. These values are
the opaque simple names of the child directories found in the parent directory.

DNS$_OUTCTS
DNS$_OUTCTS returns the timestamp (CTS) that the specified entry received
when it was created. This item code is optional and can be used by the $DNS
create functions.

DNS$_OUTNAME
DNS$_OUTNAME returns the opaque full name of the target pointed to by a soft
link. This item code is used with the DNS$_RESOLVE_NAME function.

DNS$_OUTOBJECTS
DNS$_OUTOBJECTS returns the set of opaque simple names enumerated by the
DNS$_ENUMERATE_OBJECTS function.

System Service Descriptions
$DNS

Each object name is followed by the object’s class if you specify the DNS$_
RETURNCLASS item code on input. The object’s class is the value of the
DNS$Class attribute.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_VALUE run-time library routine. The resulting
values are the opaque simple names of the objects found in the directory.

DNS$_OUTSOFTLINKS
DNS$_OUTSOFTLINKS returns the set of opaque simple names enumerated by
the DNS$_ENUMERATE_SOFTLINKS function.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_VALUE run-time library routine. The resulting
values are the opaque simple names of the soft links found in the directory.

DNS$_OUTVALSET
DNS$_OUTVALSET returns for the DNS$_READ_ATTRIBUTE function a set of
values for the given attribute.

You can extract the values resulting from the enumeration using the
DNS$REMOVE_FIRST_SET_VALUE run-time library routine. The extracted
values are the values of the attribute.

DNS$_READCHSET
DNS$_READCHSET specifies the names of clearinghouses that contain read-only
replicas of the directory being reconstructed with DNS$_NEW_EPOCH.

DNS$_REPLICATYPE

DNS$_REPLICATYPE specifies the type of directory replica being added in the
specified clearinghouse. You can add a secondary replica (DNS$K_SECONDARY)
or a read-only replica (DNS$K_READONLY).

DNS$_RETURNCLASS

DNS$_RETURNCLASS specifies that the class of object entries enumerated with
the DNS$_ENUMERATE_OBJECTS function should be returned along with the
object names in the DNS$_OUTOBJECTS item code. The object’s class is the
value of the DNS$Class attribute.

DNS$_SECCHSET
DNS$_SECCHSET specifies the names of clearinghouses that contain secondary
replicas of the directory being reconstructed with DNS$_NEW_EPOCH.

DNS$_SUPPRESS_NSNAME

DNS$_SUPPRESS_NSNAME specifies that the leading namespace name should
not be returned in the converted full name string. This item code is used by the
DNS$_FULL_OPAQUE_TO_STRING function. This is an optional single-byte

value.

A value of 1 suppresses the leading namespace name in the resulting full name
string.

DNS$_TARGETNAME

DNS$_TARGETNAME specifies the name of an existing entry in the namespace
to which the soft link will point. This item code is used by the DNS$_CREATE_
LINK function.

SYS-189

System Service Descriptions

$DNS

Description

SYS-190

DNS$_TOFULLNAME
DNS$_TOFULLNAME returns for the DNS$_PARSE_FULLNAME_STRING
function the address of a buffer that contains the resulting opaque full name.

DNS$_TOSIMPLENAME

DNS$_TOSIMPLENAME specifies for the DNS$_PARSE_SIMPLENAME _
STRING function the address of a buffer that will contain the resulting opaque
simple name.

DNS$_TOSTRINGNAME

DNS$_TOSTRINGNAME returns the string name resulting from one of the
conversion functions: DNS$_FULL_OPAQUE_TO_STRING or DNS$_SIMPLE _
OPAQUE_TO_STRING. DNS$_TOSTRINGNAME has the following structure:

[NS_name:] [.] Namestring [.Namestring]

¢ NS_name, if present, is a local system representation of the NSCTS, the
unique identifier of the DECdns server. The DECdns clerk supplies a
namespace name (node-name_NS) if the value is omitted.

* Namestring represents a simple name component. Multiple simple names are
separated by periods.

DNS$_VALUE
DNS$_VALUE specifies for the DNS$_TEST _ATTRIBUTE function the value that
is to be tested. This item contains the address of a buffer holding the value.

DNS$_VERSION

DNS$_VERSION specifies the DNS$ClassVersion attribute for the DNS$_
CREATE_OBJECT function. This is a 2-byte structure: the first byte contains
the major version number, the second contains the minor version number.

DNS$_WAIT

DNS$_WAIT enables the client to specify a timeout value to wait for a
call to complete. If the timeout expires, the call returns either DNS$K_
TIMEOUTNOTDONE or DNS$K_TIMEOUTMAYBEDONE, depending on
whether the namespace was updated by the incomplete operation.

The parameter is optional; if it is not specified, a default timeout value of 30
seconds is assumed.

DNS$_WILDCARD

DNS$_WILDCARD is an optional item code that specifies to the enumeration
functions of $DNS the opaque simple name used to limit the scope of the
enumeration. (The simple name does not have to use a wildcard.) Only those
simple names that match the wildcard are returned by the enumeration.

Table SYS-5 provides a summary of the data types for $DNS item codes. The
data types define the encoding of each item list element.

The $DNS system service provides a low-level interface between an application
(client) and DECdns. The DECdns clerk interface is used to create, delete, modify,
and retrieve DECdns names in a namespace.

System Service Descriptions
$DNS

A single system service call supports the DECdns clerk. It has two main
parameters:

* A function code identifying the particular service to perform
* An item list specifying all the parameters for the required function

The use of this item list is similar to that of other system services that use a
single item list for both input and output operations.

The $DNS system service performs DECnet I/0 on behalf of the DECdns client.
It requires system dynamic memory to construct a database to queue the I/O
request and may require additional memory on a device-dependent basis.

In addition to the system services, DECdns provides a set of callable run-time
library routines. You can use the clerk run-time library routines to manipulate
output from the system service and to write data that can be specified in a system
service function code.

For further information, see the following documents:

¢ For an overview of DECdns and DECdns programming concepts, see the
Guide to Programming with DECdns. '

* For an introduction to DECdns system services, see the Introduction to VMS
System Services.

* For a complete description of the clerk run-time routines, see the VMS RTL
DECdns (DNS$) Manual.

Required Privileges

None

Required Quota

* The buffered I/O byte count (BYTLM) quota for the process

* The quota for buffered I/O limit (BIOLM) or direct I/O limit (DIOLM) for the
process

¢ The AST limit (ASTLM) quota, if an AST service routine is specified, for the
process

Related Services
$DNSW

Condition Values Returned

SS$_NORMAL Normal completion of the request.

SS$_BADPARAM Either an item code in the item list is out of
range or the item list contains more than the
maximum allowable number of items.

SYS-191

System Service Descriptions

$DNS

Condition Values Returned in the $DNS Status Block

SYS-192

DNS$_ACCESSDENIED

DNS$_BADCLOCK
DNS$_BADEPOCH

DNS$_BADITEMBUFFER

DNS$_CACHELOCKED
DNS$_CLEARINGHOUSEDOWN
DNS$_CLERKBUG
DNS$_CONFLICTINGARGUMENTS

DNS$_DAN GLINGLINK
DNS$_DATACORRUPTION
DNS$_ENTRYEXISTS
DNS$_FALSE
DNS$_INVALIDARGUMENT
DNS$_INVALID_ATTRIBUTENAME

DNS$_INVALID_CLASSNAME

 DNS$_INVALID_

CLEARINGHOUSENAME
DNS$_INVALID_CONTEXTNAME

DNS$_INVALID_DIRECTORYNAME
DNS$_INVALID_ENTRYNAME

DNS$_INVALIDFUNCTION
DNS$_INVALID_GROUPNAME

Caller does not have required access
to the entry in question. This error is
returned only if the client has some
access to the entry. Otherwise, the
unknown entry status is returned.

The clock at the name server has a
value outside the permissible range.

Copies of directories are not
synchronized.

Invalid output item buffer detected.
(This normally indicates that the
buffer has been modified during the
call.)

Global client cache locked.
Clearinghouse is not available.
Internal clerk error detected.

Two or more optional arguments
conflict; they cannot be specified in
the same function call.

Soft link points to nonexistent target.

An error occurred in accessing the
data stored at a clearinghouse. The
clearinghouse may be corrupted.

An entry with the same full name
already exists in the namespace.

Unsuccessful test operation.

A syntactically incorrect, out of
range, or otherwise inappropriate
argument was specified in the call.

The name given for function is not a
valid DECdns attribute name.

The name given for function is not a
valid DECdns class name.

The name given for function is not a
valid DECdns clearinghouse name.

The name given for function is not a
valid DECdns context name.

The name given for function is not a
valid DECdns directory name.

The name given for function is not a
valid DECdns entry name.

Invalid function specified.

The name given for function is not a
valid DECdns group name.

DNS$_INVALIDITEM
DNS$_INVALID_LINKNAME
DNS$_INVALID_MEMBERNAME
DNS$_INVALIDNAME
DNS$_INVALID_NSNAME
DNS$_INVALID_OBJECTNAME
DNS$_INVALID_TARGETNAME

DNS$_INVALIDUPDATE

DNS$_INVALID_WILDCARDNAME
DNS$_LOGICAL_ERROR
DNS$_MISSINGITEM
DNS$_MOREDATA

DNS$_NAMESERVERBUG

DNS$_NOCACHE
DNS$_NOCOMMUNICATION

DNS$_NONSNAME
DNS$_NONSRESOURCES

DNS$_NOTAGROUP

DNS$_NOTIMPLEMENTED

DNS$_NOTLINKED

System Service Descriptions
$DNS

Invalid item code was specified in the
item list.

The name given for function is not a
valid DECdns soft link name.

The name given for function is not a
valid DECdns member name.

A name containing invalid characters
was specified in the call.

Namespace name given in name
string is not a valid DECdns name.

The name given for function is not a
valid DECdns object name.

The name given for function is not a
valid DECdns target name.

An update was attempted to an
attribute that cannot be directly
modified by the client.

The name given for function is not a
valid DECdns wildcard name.

Error translating logical name in
given string.

Required item code is missing from
the item list.

More output data to be returned.

A name server encountered an
implementation bug. Please submit
an SPR.

Client cache file not initialized.

No communication was possible
with any name server capable of
processing the request. Check NCP
event 353.5 for the DECnet error.
Unknown namespace name specified.

The call could not be performed due

to lack of memory or communication
resources at the local node to process
the request.

The full name given is not the name
of a group.

This function is defined by the

architecture as optional and is not
available in this implementation.

A soft link is not contained in the
name.

§YS-193

System Service Descriptions

$DNS

SYS-194

DNS$_NOTNAMESERVER

DNS$_NOTSUPPORTED

DNS$_POSSIBLECYCLE
DNS$_RESOURCEERROR
DNS$_TIMEOUTMAYBEDONE

DNS$_TIMEOUTNOTDONE

DNS$_TRUE
DNS$_UNKNOWNCLEARINGHOUSE
DNS$_UNKNOWNENTRY
DNS$_UNTRUSTEDCH

DNS$_WRONGATTRIBUTETYPE

The node contacted by the clerk
does not have a DECdns server
running. This can happen when the
application supplies the clerk with
inaccurate replica information.

This version of the architecture does
not support the requested function.

Loop detected in soft link or group.
Failure to obtain system resource.

The operation did not complete in
the time allotted. Modifications may
or may not have been made to the
namespace.

The operation did not complete in the
time allotted. No modifications have

been performed even if the operation
requested them.

Successful test operation.
The clearinghouse does not exist.

Either the requested entry does not
exist or the client does not have
access to the entry.

A DECdns server is not included in
the object’s access control set.

The caller specified an attribute type
that did not match the actual type of
the attribute.

System Service Descriptions
$SDNSW

SDNSW—Distributed Name Service Clerk

Format

The DECdns clerk is the client interface to the DIGITAL Distributed Name
Service.

The $DNSW service completes synchronously; that is, it returns to the caller after
the operation completes.

For asynchronous completion, use the $DNS service, which returns to the caller
immediately after making a name service call. The return status to the client call
indicates whether a request was successfully queued to the name service.

In all other respects, $DNSW is identical to $DNS. Refer to the $DNS description
for complete information about the $DNSW service.

SYS$DNSW [efn] ,func ,itmist [,dnsb] [,astadr] [,astprm]

SYS-195

System Service Descriptions
SEND_TRANS

SEND_TRANS—ENd Transaction

Format

Returns

Arguments

SYS~-196

Initiates processing commitment for the transaction. This service performs
both phases of the commitment. Consequently, it returns a failure status
(SS$_ABORT) if the first of the phases does not complete successfully or if
an error occurs that makes it impossible to commit the transaction.

SYS$END_TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid]]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

efn

VMS Usage: ef number

type: longword (unsigned)
access: read only

mechanism: by value

Number of the event flag to be set. The efn argument is a longword containing
this number; however, SEND_TRANS uses only the low-order byte. If you do not
specify efn, SEND_TRANS uses the default value 0.

flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Flags specifying options for SEND_TRANS. The flags argument is a longword bit
mask that is the logical OR of each bit set, in which each bit corresponds to an
option. The $DDTMDEF macro defines a symbolic name for each flag bit.

DDTM$M_SYNC, the only flag currently defined, is described in Table SYS-6.

System Service Desériptions

SEND_TRANS
Table SYS—6 $SEND_TRANS Option Flag
Flag Description
DDTM$M_SYNC Indicates successful synchronous completion by

returning SS$_SYNCH. When synchronous completion is
successful, the completion AST address is not called, the
IOSB is not written, and the event flag is not set.

iosb

VMS Usage: io_status_block

type: quadword (unsigned)
access: write only

mechanism: by reference

I/O status block (IOSB) to receive the final completion status of the request. The
iosb argument is the address of the quadword I/O status block. If the transaction
ends by being aborted, an abort reason code is returned in the IOSB.

The following diagram shows the structure of the I/O status block. Symbolic
names for abort reason codes that are returned are in $DDTMMSGDEF. See
Table SYS—7 for a list of abort reason codes.

31 15 0
Reserved by Digital Condition Value

Abort Reason Code

ZK-3667A-GE

Table SYS-7 Abort Reason Codes

Symbol Description

DDTM$_ABORTED Application called $ABORT_TRANS without
giving a reason.

DDTM$_COMM_FAIL A communication link failed.

DDTM$_INTEGRITY Integrity constraint check failed.

DDTM$_LOG_FAIL A write operation to the transaction log failed.

DDTM$_PART_SERIAL Resource manager serialization check failed.

DDTM$_PART TIMEOUT A timeout specified by a resource manager
expired before a commit decision was made.

DDTM$_SEG_FAIL Process or image failed.

DDTM$_SERIALIZATION DECdtm transaction manager serialization check
failed.

DDTM$_SYNC_FAIL Transaction was not globally synchronized.

(continued on next page)

SYS-197

System Service Descriptions
$SEND_TRANS

Description

SYS-198

Table SYS-7 (Cont.) Abort Reason Codes

Symbol Description

DDTM$_TIMEOUT A timeout specified on $START_TRANS expired
before a commit decision was made.

DDTM$_UNKNOWN Reason unknown.

DDTM$_VETOED A resource manager aborted the transaction

without giving a reason.

astadr

VMS Usage: ast_procedure

type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

AST service routine to be executed when the $END_TRANS service completes.
The astadr argument is the address of the entry mask of this routine. In the case

of synchronous completion, the call might not take place. Refer to the description
of DDTM$M_SYNC in Table SYS-6.

If you specify astadr, the AST routine executes at the same access mode as the
caller of the $END_TRANS service.

Note that the completion AST will not be called if SS$_SYNCH is returned in RO.

astprm

VMS Usage: user_arg

type: longword (unsigned)
access: read only

mechanism: by value

AST parameter passed to the AST service routine specified by the astadr
argument. The astprm argument is a longword.

tid

VMS Usage: transaction_id

type: octaword (unsigned)
access: read only

mechanism: by reference

Pointer to the transaction identifier (TID) that designates the transaction to be
ended. The default value for this parameter is the process default transaction.

The End Transaction service requests the DECdtm services to commit a
transaction. When $END_TRANS is called, the DECdtm transaction manager
initiates a commit protocol to inform all the transaction’s participants (any
resource managers and transaction managers involved in the transaction) to start
commit processing.

$END_TRANS can be called only by the same process that called the
$START _TRANS service.

System Service Descriptions
$END_TRANS

As part of the commit processing, the DECdtm transaction manager queries all
participants to verify whether they can complete their work on the transaction.
If all the participants respond that they can complete their work, the transaction
manager orders the participants to commit the transaction. A transaction is
complete when all its actions, such as changes to databases, are made permanent.

If an application calls $ABORT_TRANS or $ABORT_TRANSW, or if any of the
participants have failed to prepare successfully, the transaction is aborted. For
example, a resource manager might fail to prepare successfully due to a process
failure, machine failure, or hardware failure. In the abort phase, the transaction
manager orders all participants to abort the transaction and roll back their
transaction processing work. Thus, none of the actions of the transaction are
made permanent.

Note that if the timout argument has been specified when calling the Start
Transaction service, then the transaction will be aborted if the transaction
exceeds the time specified in the timout argument.

$END_TRANS returns a failure status (SS$_ABORT) if the prepare phase does
not complete successfully or if an error occurs that makes it impossible to commit
the transaction. In this event, an abort reason code is returned in the second
longword in the IOSB.

$END_TRANS will not complete asynchronously until all resource managers in
the same process have acknowledged phase 2 of the 2-phase commit processing
and DECdtm quotas charged for the transaction have been returned.

Required Privileges
None

Required Quota
ASTLM

Related Services
$ABORT_TRANS, $ABORT_TRANSW, $END_TRANSW, $START TRANS,
$START _TRANSW

For more information, see the chapter on DECdtm services in the Introduction to
VMS System Services.

Condition Values Returned

SS$_NORMAL The operation was successfully queued.
SS$_SYNCH The synchronous operation completed
successfully.
SS$_ABORT The transaction aborted during processing.
SS$_ACCVIO The IOSB or TID cannot be read by the caller, or
the IOSB cannot be written by the caller.
SS$_BADPARAM The option flags are invalid, or the application
did not call $START_TRANS for this transaction.
SS$_EXASTLM ~ The process has exceeded its AST limit quota.
SS$_ILLEFC The efn argument specifies an illegal flag
number.

SYS-199

System Service Descriptions

$END_TRANS

SS$_INSFMEM There is insufficient system dynamic memory for
the operation.

SS$_NOCURTID The calling process does not currently have a
default transaction.

SS$_NOSUCHTID The désignated TID is unknown.

SS$_WRONGACMODE The transaction was started in an inner access
mode.

SS$_WRONGSTATE The transaction is in the wrong state for the
. attempted operation. The application has already
called $END_TRANS or $ABORT_TRANS.
Condition Values Returned in the I/O Status Block

Same as those returned in RO. A value of SS$_NORMAL returned in the I/O
status block indicates that the service completed successfully.

SYS-200

System Service Descriptions
$SEND_TRANSW

SEND TRANSW—End Transaction and Wait

Format

Initiates processing commitment for the transaction. This service performs
both phases of the commitment. Consequently, it returns a failure status
(SS$_ABORT) if the first of the phases does not complete successfully or if an
error occurs that makes it impossible to commit the transaction.

$END_TRANSW completes synchronously; that is, it returns to the caller after
the request has completed.

For asynchronous completion, you use the End Transaction (SEND_TRANS)
system service, which returns without waiting for the operation to complete.

In all other respects, SEND_TRANSW is identical to $END_TRANS. For all other
information about $END_TRANSW, refer to the section on $END_TRANS.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$END_TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid]]

SYS-201

System Service Descriptions

$ENQ

$ENQ—Enqueue Lock Request

Format

Returns

Arguments

SYS-202

Queues a new lock or lock conversion on a resource.

The $ENQ, SENQW, $DEQ (Dequeue Lock Request), and $GETLKI (Get Lock
Information) services together provide the user interface to the VMS lock
management facility. Refer to the descriptions of these other services and to
the Introduction to VMS System Services for additional information about lock
management.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System Services.

SYS$ENQ [efn] ,lkmode ,lksb [,flags] [,resnam] [,parid] [,astadr] [,astprm] [,blkast]
[,acmode] [,nullarg]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

efn

VMS Usage: ef_ number

type: longword (unsigned)
access: read only

mechanism: by value

Number of the event flag to be set when the request has been granted or
canceled. Cancellation occurs if you use $DEQ with the cancel modifier or if the
waiting request is chosen to break a deadlock. The efn argument is a longword
containing this number; however, $ENQ uses only the low-order byte.

Upon request initiation, ENQ clears the specified event flag (or event flag 0

if efn was not specified). Then, when the lock request is granted, the specified
event flag (or event flag 0) is set unless you specified the LCK$M_SYNCSTS flag
in the flags argument.

Ikmode

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Lock mode requested. The lkmode argument is a longword specifying this lock
mode.

System Service Descriptions
$ENQ

Each lock mode has a symbolic name. The $LCKDEF macro defines these
symbolic names. The following table gives the symbolic name and description for
each lock mode.

Lock Mode Description

LCK$K_NLMODE Null mode. This mode grants no access to the resource
but serves rather as a placeholder and indicator of future
interest in the resource. The null mode does not inhibit
locking at other lock modes; further, it prevents the
deletion of the resource and lock value block, which would
otherwise occur if the locks held at the other lock modes
were dequeued.

LCK$K_CRMODE Concurrent read. This mode grants the caller read access
to the resource while permitting write access to the
resource by other users. This mode is used to read data
from a resource in an unprotected manner, because other
users can modify that data as it is being read. This
mode is typically used when additional locking is being
performed at a finer granularity with sublocks.

LCK$K_CWMODE Concurrent write. This mode grants the caller write
access to the resource while permitting write access to the
resource by other users. This mode is used to write data
to a resource in an unprotected fashion, because other
-users can simultaneously write data to the resource. This
mode is typically used when additional locking is being
performed at a finer granularity with sublocks.

LCK$K_PRMODE Protected read. This mode grants the caller read access
to the resource while permitting only read access to the
resource by other users. Write access is not allowed. This
is the traditional share lock.

LCK$K_PWMODE Protected write. This mode grants the caller write access
to the resource while permitting only read access to
the resource by other users; the other users must have
specified concurrent read mode access. No other writers
are allowed access to the resource. This is the traditional
update lock.

LCK$K_EXMODE Exclusive. The exclusive mode grants the caller write

access to the resource and allows no access to the resource
by other users. This is the traditional exclusive lock.

lksb
VMS Usage: lock_status_block

. type: longword (unsigned)
access: write only

mechanism: by reference

Lock status block in which $ENQ writes the final completion status of the
operation. The lksb argument is the address of the 8-byte lock status block.

SYS-203

System Service Descriptions

$ENQ

The lock status block can optionally contain a 16-byte lock value block. When you
specify the LCK$M_VALBLK flag in the flags argument, the lock status block
contains a lock value block; in this case, the 16-byte lock value block appears
beginning at the first byte following the eighth byte of the lock status block,
bringing the total length of the lock status block to 24 bytes.

The following diagram shows the format of the lock status block and the optional
lock value block.

31 15 0
Reserved VMS Condition Value

Lock Identification

16-byte Lock Value Block
(Used only when the LCKSM_VALBLK flag is set)

ZK-1708-GE

Lock Status Block Fields

SYS-204

condition value

A word in which $ENQ writes a VMS condition value describing the final
disposition of the lock request, for example, whether the lock was granted,
converted, and so on. The condition values returned in this field are described
in the Condition Values Returned in the Lock Status section, which appears
following the list of condition values returned in RO. ,

reserved
A word reserved by Digital.

lock identification
A longword containing the identification of the lock.

For a new lock, $ENQ writes the lock identification of the requested lock into this
longword when the lock request is queued.

For a lock conversion on an existing lock, you must supply the lock identification
of the existing lock in this field.

lock value block
A user-defined, 16-byte structure containing information about the resource. This
information is interpreted only by the user program.

When a process acquires a lock on a resource, the lock management facility
provides that process with a process-private copy of the lock value block
associated with the resource, provided that process has specified the LCK$M_
VALBLK flag in the flags argument. The copy provided to the process is a copy
of the lock value block stored in the lock manager’s database.

The copy of the lock value block maintained in the lock database is updated in
the following way: whenever a process either (1) dequeues a lock at protected
write (PW) or exclusive (EX) mode or (2) converts a lock at one of these modes to
a lower lock mode, VMS stores the caller’s lock value block in the lock database,
provided the caller has specified the LCK$M_VALBLK flag.

System Service Descriptions
$ENQ

Callers of $ENQ are provided with copies of the updated lock value block from
the lock database in the following way: when $ENQ grants a new lock to the
caller or converts the caller’s existing lock to a higher lock mode, $ENQ copies the
lock value block from the lock database to the caller’s lock value block, provided
the caller has specified the LCK$M_VALBLK flag.

The Description section describes events that can cause the lock value block to
become invalid.

flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Flags specifying options for the $ENQ operation. The flags argument is
a longword bit mask that is the logical OR of each bit set, where each bit
corresponds to an option.

The $LCKDEF macro defines a symbolic name for each flag bit. The following
table describes each flag.

Flag Description

LCK$M_NOQUEUE When this flag is specified, $ENQ does not queue
the lock request unless the lock can be granted
immediately. By default, $ENQ always queues the
request.
If you specify LCK$M_NOQUEUE in a lock conversion
operation and the conversion cannot be granted
immediately, the lock remains in the original lock
mode.

LCK$M_SYNCSTS When you specify this flag, $ENQ returns the
successful condition value SS$_SYNCH in RO if the
lock request is granted immediately; in this case, no
completion AST is delivered and no event flag is set.
If the lock request is queued successfully but cannot
be granted immediately, $ENQ returns the condition
value SS$_NORMAL in RO; then when the request is
granted, $ENQ sets the event flag and queues an AST
if the astadr argument was specified.

LCK$M_SYSTEM When you specify this flag, the resource name is
interpreted as systemwide. By default, resource names
are qualified by the UIC group number of the creating
process. This flag is ignored in lock conversions.

LCK$M_VALBLK When you specify this flag, the lock status block
contains a lock value block. See the description of
the lksb argument for more information.

LCK$M_CONVERT When you specify this flag, $ENQ performs a lock
conversion. In this case, the caller must supply (in
the second longword of the lock status block) the lock
identification of the lock to be converted.

SYS-205

System Service Descriptions

$ENQ

SYS-206

Flag

Description

LCK$M_NODLCKWT

LCK$M_NODLCKBLK

By specifying this flag, a process indicates to the

lock management services that it is not blocked

from execution while waiting for the lock request to
complete. For example, a lock request might be left
outstanding on the waiting queue as a signaling device
between processes.

This flag helps to prevent false deadlocks by providing
the lock management services with additional
information about the process issuing the lock request.
When you set this flag, the lock management services
do not consider this lock when trying to detect deadlock
conditions.

A process should specify the LCK$M_NODLCKWT flag
only in a call to the $ENQ system service. The SENQW
system service waits for the lock request to be granted
before returning to the caller; therefore, specifying the
LCK$M_NODLCKWT flag in a call to the $ENQW
system service defeats the purpose of the flag and can
result in a genuine deadlock being ignored.

The lock management services make use of the
LCK$M_NODLCKWT flag only when the lock specified
by the call to $ENQ is in either the waiting or the
conversion queue.

Improper use of the LCK$M_NODLCKWT flag can
result in the lock management services ignoring
genuine deadlocks.

By specifying this flag, a process indicates to the lock
management services that, if this lock is blocking
another lock request, the process intends to give up
this lock on demand. When you specify this flag, the
lock management services do not consider this lock as
blocking other locks when trying to detect deadlock
conditions.

A process typically specifies the LCK$M_NODLCKBLK
flag only when it also specifies a blocking AST. Blocking
ASTs notify processes with granted locks that another
process with an incompatible lock mode has been
queued to access the same resource. Use of blocking
ASTs can cause false deadlocks, because the lock
management services detect a blocking condition, even
though a blocking AST has been specified; however,
the blocking condition will disappear as soon as the
process holding the lock executes, receives the blocking
AST, and dequeues the lock. Specifying the LCK$M_
NODLCKBLK flag prevents this type of false deadlock.

System Service Descriptions
$ENQ

Flag

Description

LCK$M_NOQUOTA

LCK$M_CVTSYS

LCK$M_EXPEDITE

LCK$M_QUECVT

To enable blocking ASTs, the blkast argument of the
$ENQ system service must contain the address of a
blocking AST service routine. If the process specifies
the LCK$M_NODLCKBLK flag, the blocking AST
service routine should either dequeue the lock or
convert it to a lower lock mode without issuing any
new lock requests. If the blocking AST routine does
otherwise, a genuine deadlock could be ignored.

The lock management services make use of the
LCK$M_NODLCKBLK flag only when the lock
specified by the call to $ENQ has been granted.
Improper use of the LCK$M_NODLCKBLK flag can
result in the lock management services ignoring
genuine deadlocks.

This flag is reserved by Digital. When you set this
flag, the calling process is not charged Enqueue Limit
(ENQLM) quota for this new lock. The calling process
must be running in executive or kernel mode to set this
flag. This flag is ignored for lock conversions.

This flag is reserved by Digital. When you set this
flag, the lock is converted from a process-owned lock
to a system-owned lock. The calling process must be
running in executive or kernel mode to set this flag.

This flag is valid only for new lock requests. Specifying
this flag allows a request to be granted immediately,
provided the requested mode when granted would not
block any currently queued requests in the resource
conversion and wait queues. Currently, this flag is
valid only for NLMODE requests. If this flag is
specified for any other lock mode, the request will

fail and an error of SS$_UNSUPPORTED returned.

This flag is valid only for conversion operations. A
conversion request with the LCK$M_QUECVT flag
set will be forced to wait behind any already queued
conversions.

The conversion request is granted immediately, if there
are no already queued conversions.

The QUECVT behavior is valid only for a subset of all
possible conversions. Table SYS-8 defines the legal set
of conversion requests for LCK$M_QUECVT. Illegal
conversion requests are failed with SS$_BADPARAM
returned.

SYS-207

System Service Descriptions

$ENQ

SYS-208

Table SYS-8 Legal QUECVT Conversions

Lock Mode Lock Mode to Which Lock Is Converted

at Which

Lock Is Held NL CR cw PR PW EX
NL No Yes Yes Yes Yes Yes
CR No No Yes Yes Yes Yes
CW No No No Yes Yes Yes
PR No No Yes No Yes Yes
PW No No No No No Yes
EX No No No No No No

Key to Lock Modes

NL—Null lock
CR—Concurrent read
CW—Concurrent write
PR—Protected read
PW—Protected write
EX—Exclusive lock

resnam

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Name of the resource to be locked by this lock. The resnam argument is the
address of a character string descriptor pointing to this name. The name string
can be from 1 to 31 bytes in length.

If you are creating a new lock, the resnam argument should be specified because
the default value for the resnam argument produces an error when it is used to
create a lock. The resnam argument is ignored for lock conversions.

parid

VMS Usage: lock_id

type: longword (unsigned)
access: read only

mechanism: by value

Lock identification of the parent lock. The parid argument is a longword
containing this identification value.

If you do not specify this argument or specify it as 0, $ENQ assumes that the
lock does not have a parent lock. This argument is optional for new locks and is
ignored for lock conversions.

astadr

VMS Usage: ast_procedure

type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

AST service routine to be executed when the lock is either granted or converted.
The astadr argument is the address of the entry mask of this routine. The AST
is also delivered when the lock or conversion request is canceled. Cancellation

System Service Descriptions
$ENQ

occurs if you use $DEQ with the cancel modifier or if the waiting request is
chosen to break a deadlock.

If you specify the astadr argument, the AST routine executes at the same access
mode as the caller of $ENQ.

astprm

VMS Usage: user_arg

type: longword (unsigned)
access: read only

mechanism: by value

AST parameter to be passed to the AST routine specified by the astadr argument.
The astprm argument specifies this longword parameter.

bikast

VMS Usage: ast_procedure

type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

Blocking AST routine to be called whenever this lock is granted and is blocking
any other lock requests. The blkast argument is the address of the entry mask
to this routine.

You can pass a parameter to this routine by using the astprm argument.

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode to be associated with the resource name. For more information on
the components of the resource name, see the Resource Names section in the
Introduction to VMS System Services. The acmode argument indicates the least
privileged access mode from which locks can be queued on the resource.

This argument does not affect the access mode associated with the lock or its
blocking and completion ASTs. The acmode argument is a longword containing
the access mode. The $PSLDEF macro defines the following symbols for the four
access modes.

Symbol Access Mode
PSL$C_KERNEL Kernel
PSL$C_EXEC Executive
PSL$C_SUPER Supervisor
PSL$C_USER User

The $ENQ service associates an access mode with the lock in the following way:

e If you specified a parent lock (with the parid argument), $ENQ uses the
access mode associated with the parent lock and ignores both the acmode
argument and the caller’s access mode.

SYS-209

System Service Descriptions

$ENQ

Description

SYS-210

e If the lock has no parent lock (you did not specify the parid argument or
specified it as 0), $ENQ uses the least privileged of the caller’s access mode
and the access mode specified by the acmode argument. If you do not specify
the acmode argument, $ENQ uses the caller’s access mode.

nullarg

VMS Usage: null_arg

type: longword (unsigned)
access: read only

mechanism: by value

Placeholding argument reserved by Digital.

The Enqueue Lock Request service queues a new lock or lock conversion on

a resource. The $ENQ service completes asynchronously; that is, it returns

to the caller after queuing the lock request without waiting for the lock to be
either granted or converted. For synchronous completion, use the Enqueue Lock
Request and Wait ($ENQW) service. The $ENQW service is identical to the
$ENQ service in every way except that SENQW returns to the caller when the
lock is either granted or converted.

The $ENQ service uses system dynamic memory for the creation of the lock and
resource blocks.

When $ENQ queues a lock request, it returns the status of the request in RO
and writes the lock identification of the lock in the lock status block. Then,
when the lock request is granted, $ENQ writes the final completion status in the
lock status block, sets the event flag, and calls the AST routine if this has been
requested. .

When $ENQW queues a lock request, it returns status in RO and in the lock
status block when the lock has been either granted or converted. Where
applicable, it simultaneously sets the event flag and calls the AST routine.

Invalidation of the Lock Value Block In some situations, the lock value block
can become invalid. In these situations, $ENQ warns the caller by returning the
condition value SS$_VALNOTVALID in the lock status block, provided the caller
has specified the flag LCK$M_VALBLK in the flags argument.

The SS$_VALNOTVALID condition value is a warning message, not an error
message. Therefore, the $ENQ service grants the requested lock and returns this
warning on all subsequent calls to $ENQ until either a new lock value block is
written to the lock database or the resource is deleted. Resource deletion occurs
when no locks are associated with the resource.

The following events can cause the lock value block to become invalid:

e If any process holding a protected write or exclusive mode lock on a resource
is terminated abnormally, the lock value block becomes invalid.

¢ If a VAX node in a VAXcluster fails and a process on that node was holding
(or might have been holding) a protected write or exclusive mode lock on the
resource, the lock value block becomes invalid.

System Service Descriptions
$ENQ

e If a process holding a protected write or exclusive mode lock on the resource
calls the Dequeue Lock Request ($DEQ) service to dequeue this lock and
specifies the flag LCK$M_INVVALBLK in the flags argument, the lock value
block maintained in the lock database is marked invalid.

Required Privileges
To queue a lock on a systemwide resource, the calling process must either have
SYSLCK privilege or be executing in executive or kernel mode.

To specify a parent lock when queuing a lock, the access mode of the caller must
be equal to, or less privileged than, the access mode associated with the parent
lock.

To queue a lock conversion, the access mode associated with the lock being
converted must be equal to, or less privileged than, the access mode of the calling
process.

Required Quota
* Enqueue Limit (ENQLM) quota

e AST limit (ASTLM) quota in lock conversion requests that you specify either
the astadr or blkast argument

Related Services
$DEQ, $SENQW, $GETLKI, $GETLKIW

Condition Values Returned

SS$_ACCVIO The lock status block or the resource name
cannot be read.

SS$_BADPARAM You specified an invalid lock mode in the lkmode
argument. '

SS$_CVTUNGRANT You attempted a lock conversion on a lock that is
not currently granted.

SS$_EXDEPTH The limit of levels of sublocks has been exceeded.

SS$_EXENQLM The process has exceeded its Enqueue Limit
(ENQLM) quota.

SS$_INSFMEM : The system dynamic memory is insufficient for
creating the necessary data structures.

SS$_IVBUFLEN The length of the resource name was either 0 or
greater than 31.

SS$_IVLOCKID You specified an invalid or nonexistent lock

identification, or the lock identified by the lock
identification has an associated access mode that
is more privileged than the caller’s, or the access
mode of the parent was less privileged than that
of the caller.

SS$_NOLOCKID No lock identification was available for the lock
request.
SS$_NORMAL The service completed successfully; the lock

request was successfully queued.

SYSs-211

System Service Descriptions
$SENQ

SS$_NOSYSLCK

SS$_NOTQUEUED

SS$_PARNOTGRANT

SS$_SYNCH

The LCK$M_SYSTEM flag in the flags argument
was specified, but the caller lacks the necessary
SYSLCK privilege.

The lock request was not queued; the LCK$M_
NOQUEUE flag in the flags argument was
specified, and $ENQ was not able to grant the
lock request immediately.

The parent lock specified in the parid argument
was not granted.

The service completed successfully; the LCK$M_
SYNCSTS flag in the flags argument was
specified, and $ENQ was able to grant the lock
request immediately.

Condition Values Returned in the Lock Status Block

SS$_NORMAL
SS$_ABORT

SS$_CANCEL

SS$_DEADLOCK
SS$_VALNOTVALID

SYS-212

The service completed successfully; the lock was
successfully granted or converted.

The lock was dequeued (by the $DEQ service)
before $ENQ could grant the lock.

The lock conversion request has been canceled
and the lock has been regranted at its previous
lock mode. This condition value is returned when
$ENQ queues a lock conversion request, the
request has not been granted yet (it is in the
conversion queue), and, in the interim, the $DEQ
service is called (with the LCK$M_CANCEL flag
specified) to cancel this lock conversion request.
If the lock is granted before $DEQ can cancel the
conversion request, the call to $DEQ returns the
condition value SS$_CANCELGRANT, and the
call to $ENQ returns SS$_NORMAL.

A deadlock was detected.

The lock value block is marked invalid. This
warning message is returned only if the caller
has specified the flag LCK$M_VALBLK in the
flags argument. Note that the lock has been
successfully granted despite the return of this
warning message. Refer to the Description
section for a complete discussion of lock value
block invalidation.

System Service Descriptions
$SENQW

$ENQW—Enqueue Lock Request and Wait

Format

The Enqueue Lock Request and Wait service queues a lock on a resource. The
$ENQW service completes synchronously; that is, it returns to the caller when the
lock has been either granted or converted. For asynchronous completion, use the
Enqueue Lock Request (S ENQ) service; $ENQ returns to the caller after queuing
the lock request, without waiting for the lock to be either granted or converted.
In all other respects, SENQW is identical to $ENQ. Refer to the documentation of
$ENQ for all other information about the $ENQW service.

For additional information about system service completion, refer to the
documentation of the Synchronize ($SYNCH) service and to the Introduction
to VMS System Services.

The $ENQ, $SENQW, $DEQ, and $GETLKI services together provide the user
interface to the VMS lock management facility. For additional information about
lock management, refer to the descriptions of these other services and to the
Introduction to VMS System Services.

SYS$SENQW [efn] ,lkmode ,lksb [,flags] [,resnam] [,parid] [,astadr] [,astprm] [,blkast]
[,acmode] [,nullarg]

SYS-213

System Service Descriptions

SERAPAT

$SERAPAT—Get Security Erase Pattern

Format

Returns

Arguments

SYS-214

Generates a security erase pattern.

SYSS$SERAPAT [type] ,[count] ,[patadr]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

type

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Type of storage to be written over with the erase pattern. The type argument is
a longword containing the type of storage. The three storage types, together with
their symbolic names, are defined by the SERADEF macro and are listed in the
following table.

Storage Type Symbolic Name
Main memory ERA$K MEMORY
Disk ERA$K _DISK
Tape ERA$K_TAPE
count

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Number of times that $ERAPAT has been called in a single security erase
operation. The count argument is a longword containing the iteration count.

You should call the $ERAPAT service initially with the count argument set to
1, the second time with the count argument set to 2, and so on, until the status
code SS$_NOTRAN is returned.

patadr

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only

mechanism: by reference

Description

System Service Descriptions
SERAPAT

Security erase pattern to be written. The patadr argument is the address of a
longword into which the security erase pattern is to be written.

The Get Security Erase Pattern service generates a security erase pattern that
can be written into memory areas containing outdated but sensitive data to make
it unreadable. This service is used primarily by the VMS operating system, but
it can also be used by users who want to perform security erase operations on
foreign disks.

You should call the $ERAPAT service iteratively until the completion status
SS$_NOTRAN is returned.

The following example demonstrates how to use the $ERAPAT service to perform
a security erase to a disk. Note that, after each call to $ERAPAT, a test for the
status SS$_NOTRAN is made. If SS$_NOTRAN has not been returned, $QIO is
called to write the pattern returned by $ERAPAT onto the disk. After this write,
$ERAPAT is called again and the cycle is repeated until the code SS$_NOTRAN
is returned, at which point the security erase procedure is complete.

; Code fragment that erases 20 blocks (blocks 15 through 34)

; on a disk
PATTERN:
LONG 0 ; Cell to contain output from SERAPAT
CHANNEL:
.WORD 0 ; Channel assigned to disk device
DEVICE: .ASCID /DISK:/ ; Disk device name
SASSIGN_S DEVNAM=DISK, - ; Assign a channel to the device
CHAN=CHANNEL
BLBC RO, EXIT ; Branch if error
MOVL #1, R2 ; Set initial count
$ERADEF ; Macro to define names
; used by SERAPAT
10s: SERAPAT_S - ; Call the $ERAPAT service
COUNT=R2, -
TYPE=#ERASK_DISK, -
PATADR=PATTERN
BLBC RO, EXIT ; Branch if error
CMPL #5SS_NOTRAN, RO ; Are we done?
BEQL EXIT ; Branch if so
$QIO_S CHAN=CHANNEL, -
FUNC=#I0S$_WRITELBLK!IO$M_ERASE, - ; Call
P1=PATTERN, - ; to the $QI0 service
P2=#<20%*512>, - ; to write the erase
P3=#15 ; pattern
INCL R2 ; Increase count
BRB 108
EXIT:

SYS-215

System Service Descriptions

SERAPAT

Required Privileges
None

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $FIND_HELD, $FIND_HOLDER,
$FINISH_RDB, $FORMAT ACL, $FORMAT AUDIT, $GRANTID, $HASH
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SYS-216

SS$_ACCVIO The patadr argument cannot be written by the
caller.

SS$_BADPARAM The type argument or count argument is
invalid.

SS$_NORMAL The service completed successfully; proceed with
the next erase step.

SS$_NOTRAN The service completed successfully; security erase
completed.

System Service Descriptions
$SEXIT

$SEXIT—EXit

Format

Argument

Description

Initiates image rundown when the current image in a process completes
execution. Control normally returns to the command interpreter.

SYS$EXIT [code]

code

VMS Usage: cond_value

type: longword (unsigned)
access: read only

mechanism: by value

Longword value to be saved in the process header as the completion status of the
current image. If you do not specify this argument in a macro call, a value of 1 is
passed as the completion code for VAX MACRO and VAX BLISS-32, and a value
of 0 is passed for other languages. You can test this value at the command level

to provide conditional command execution.

The $EXIT service is unlike all other system services in that it does not return
status codes in RO or anywhere else. The $EXIT service does not return control
to the caller; it performs an exit to the command interpreter or causes the process
to terminate if no command interpreter is present.

For a summary of the actions taken by the system at image exit, see the
Introduction to VMS System Services.

Required Privileges

None

Required Quota
None

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $FORCEX, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRYV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

None

SYS-217

System Service Descriptions

$SEXPREG

$EXPREG—Expand Program/Control Region

Format

Returns

Arguments

SYS-218

Adds a specified number of new virtual pages to a process’s program region or
control region for the execution of the current image. Expansion occurs at the
current end of that region’s virtual address space.

SYS$EXPREG pagent [retadr] [acmode] ,[region]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pagent

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Number of pages to add to the current end of the program or control region. The
pagent argument is a longword value containing this number.

retadr

VMS Usage: address_range

type: longword (unsigned)
access: write only

mechanism: by reference

Starting and ending process virtual addresses of the pages that $EXPREG has
actually added. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

acmode

VMS Usage: access_mode

type: longword (unsigned)
access: read only

mechanism: by value

Access mode to be associated with the newly added pages. The acmode argument
is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller.

The newly added pages are given the following protection: (1) read and write
access for access modes equal to or more privileged than the access mode used in
the call, and (2) no access for access modes less privileged than that used in the
call.

Description

System Service Descriptions

SEXPREG
region
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by value

Number specifying which program region is to be expanded. The region
argument is a longword value. A value of 0 (the default) specifies that the
program region (PO region) is to be expanded. A value of 1 specifies that the
control region (P1 region) is to be expanded.

The Expand Program/Control Region service adds a specified number of new
virtual pages to a process’s program region or control region for the execution of
the current image. Expansion occurs at the current end of that region’s virtual
address space.

The new pages, which were previously inaccessible to the process, are created as
demand-zero pages.

Because the bottom of the user stack is normally located at the end of the control
region, expanding the control region is equivalent to expanding the user stack.
The effect is to increase the available stack space by the specified number of
pages.

The starting address returned is always the first available page in the designated
region; therefore, the ending address is smaller than the starting address when
the control region is expanded and is larger than the starting address when the
program region is expanded.

If an error occurs while pages are being added, the retadr argument (if specified)
indicates the pages that were successfully added before the error occurred. If no
pages were added, both longwords of the retadr argument contain the value -1.

Required Privileges
None

Required Quota

The process’s paging file quota (PGFLQUOTA) must be sufficient to accommodate
the increased size of the virtual address space.

Related Services

$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $LCKPAG,
$LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Typically, the information returned in the location addressed by the retadr
argument (if specified) can be used as the input range to the Delete Virtual
Address Space ($DELTVA) service.

SYS-219

System Service Descriptions
$SEXPREG

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The return address array cannot be written by
the caller. '

SS$_EXQUOTA The process exceeded its paging file quota.

SS$_ILLPAGCNT The specified page count was less than 1.

SS$_INSFWSL The process’s working set limit is not large

enough to accommodate the increased virtual
address space.

SS$_VASFULL The process’s virtual address space is full. No
space is available in the process page table for
the requested regions.

SYS-220

System Service Descriptions
$FAO/$FAOL

$FAO/$SFAOL—Formatted ASCIl Output Services

Format

Returns

Arguments

The Formatted ASCII Output service (1) converts a binary value into an ASCII
character string in decimal, hexadecimal, or octal notation and returns the
character string in an output string, and (2) inserts variable character string
data into an output string.

The Formatted ASCII Output with List Parameter service provides an alternate
method for specifying input parameters when calling the $FAO system service.

The formats for both services are shown in the Format section.

SYS$FAO ctrstr ,[outlen] ,outbuf ,[p1]...[pN]
SYS$FAOL ctrstr ,[outlen] ,outbuf [,prmist]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

ctrstr

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor—-fixed length string descriptor

Control string passed to $FAO that contains the text to be output together with
one or more $FAO directives. $FAO directives are used to specify repeat counts
or the output field length, or both, and they are preceded by an exclamation point
(!). The etrstr argument is the address of a character string descriptor pointing
to the control string. The formatting of the $FAO directives is described in the
Description section.

There is no restriction on the length of the control string nor on the number of
$FAO directives it can contain. However, if an exclamation point must appear
in the output string, it must be represented in the control string by a double
exclamation point (!!). A single exclamation point in the control string indicates
to $FAO that the next characters are to be interpreted as FAO directives.

When $FAO processes the control string, it writes to the output buffer each
character that is not part of an $FAO directive.

If the $FAO directive is valid, $FAO processes it. If the directive requires a
parameter, $FAO processes the next consecutive parameter in the specified
parameter list. If the $FAO directive is not valid, $FAQ terminates and returns a
condition value in RO.

SYS-221

System Service Descriptions
$FAO/$FAOL

SYS-222

Table SYS-9 lists and describes the $FAQ directives. Table SYS-10 shows the
$FAO output field lengths and their fill characters.

The $FAO service reads parameters from the argument list specified in the

call; these arguments have the names p1, p2, p3, and so on, up to pl17. Each
argument specifies one parameter. Because $FAO accepts a maximum of 17
parameters in a single call, you must use $FAOL if the number of parameters
exceeds 17. The $FAOL service accepts any number of parameters used with the
prmlst argument.

outlen

VMS Usage: word_unsigned
type: word (unsigned)
access: write only

mechanism: by reference

Length in bytes of the fully formatted output string returned by $FAO. The
outlen argument is the address of a word containing this value.

outbuf

VMS Usage: char_string

type: character-coded text string
access: write only

mechanism: by descriptor—fixed length string descriptor

Output buffer into which $FAO writes the fully formatted output string. The
outbuf argument is the address of a character string descriptor pointing to the
output buffer.

p1 to pn

VMS Usage: varying arg
type: longword (signed)
access: read only

mechanism: by value

$FAO directive parameters. The pl argument is a longword containing the
parameter needed by the first $FAO directive encountered in the control string,
the p2 argument is a longword containing the parameter needed for the second
$FAQ directive, and so on for the remaining arguments up to p17. If an $FAO
directive does not require a parameter, that $FAO directive is processed without
reading a parameter from the argument list.

Depending on the directive, a parameter can be a value to be converted, an
address of a string to be inserted into the output string, or a length or argument
count. Each directive in the control string might require a corresponding
parameter or parameters.

prmist

VMS Usage: vector_longword_unsigned
type: longword (unsigned)
access: read only

mechanism: by reference

List of $FAO directive parameters to be passed to $FAOL. The prmlst argument
is the address of a list of longwords wherein each longword is a parameter. The
$FAOL service processes these parameters sequentially as it encounters, in the
control string, $FAO directives that require parameters.

Description

System Service Descriptions
$SFAO/SFAOL

The parameter list can be a data structure that already exists in a program and
from which certain values are to be extracted.

The Formatted ASCII Output service (1) converts a binary value into an ASCII
character string in decimal, hexadecimal, or octal notation and returns the
character string in an output string, and (2) inserts variable character string
data into an output string.

The Formatted ASCII Output with List Parameter ($FAOL) service provides an
alternate way to specify input parameters for a call to the $FAO system service.
The formats for both $FAO and $FAOL are shown in the Format section.

The $FAO_S macro form uses a PUSHL instruction for all parameters (p1
through p17) passed to the service; if you specify a symbolic address, it must be
preceded with a number sign (#) or loaded into a register.

You can specify a maximum of 17 parameters on the $FAO macro. If more than
17 parameters are required, use the $FAOL macro.

This service does not check the length of the argument list and therefore cannot
return the SS$_INSFARG (insufficient arguments) error status code. If the
service does not receive a sufficient number of arguments (for example, if you
omit required commas in the call), you might not get the desired result.

$FAO Directives $FAOQ directives can appear anywhere in the control string.
The general format of an $FAO directive is as follows:

IDD

The exclamation point (!) specifies that the following characters are to be
interpreted as an $FAQ directive, and the characters DD represent a 1- or
2-character $FAO directive.

Note

When the characters of the $FAQ directive are alphabetic, they must be
uppercase.

An $FAOQ directive can optionally specify the following:
* A repeat count. The format is as follows:
In(DD)

In this case n is a decimal value specifying the number of times that $FAOQ is
to repeat the directive. If the directive requires a parameter or parameters,
$FAO uses successive parameters from the parameter list for each repetition
of the directive; it does not use the same parameters for each repetition. The
parentheses are required syntax.

* An output field length. The format is as follows:
'mDD

In this case m is a decimal value specifying the length of the field (within
the output string) into which $FAOQ is to write the output resulting from the
directive. The length is expressed as a number of characters.

SYS-223

System Service Descriptions
$FAO/$FAOL

SYS-224

You

Both a repeat count and output field length. In this case the format is as
follows:

In(mDD)

can specify repeat counts and output field lengths as variables by using a

number sign (#) in place of an absolute numeric value.

If you specify a number sign for a repeat count, the next parameter passed to
$FAO must contain the count.

If you specify a number sign for an output field length, the next parameter .
must contain the length value.

If you specify a number sign for both the output field length and for the
repeat count, only one length parameter is required; each output string will
have the specified length.

If you specify a number sign for the repeat count, the output field length, or
both, the parameters specifying the count, length, or both must precede other
parameters required by the directive.

Table SYS-9 lists $FAO directives.

Tab

le SYS-9 List of $FAO Directives

Dire

ctive Description

Dire

ctives for Character String Substitution

1AC

IAF

IAS

Inserts a counted ASCII string. It requires one parameter: the
address of the string to be inserted. The first byte of the string
must contain the length in characters of the string.

Inserts an ASCII string. It requires two parameters: the length
of the string and the address of the string. Each of these
parameters is a separate argument.

Inserts an ASCII string and replaces all nonprintable ASCII codes
with periods (.). It requires two parameters: the length of the
string and the address of the string. Each of these parameters is
a separate argument.

Inserts an ASCID string. It requires one parameter: the
address of a character string descriptor pointing to the string.
$FAO assumes that the descriptor is a CLASS_S (static) string
descriptor. Other descriptor types might give improper results.
Inserts a zero-terminated (ASCIZ) string. It requires one
parameter: address of a zero-terminated string.

(continued on next page)

System Service Descriptions
$FAO/$FAOL

Table SYS-9 (Cont.) List of $FAO Directives

Directive

Description

Directives for Zero-Filled Numeric Conversion

10B

IOW

0L

IXw

XL

ZB

1ZW

1ZL

Converts a byte value to the ASCII representation of the value’s
octal equivalent. It requires one parameter: the value to be
converted. $FAO uses only the low-order byte of the longword
parameter.

Converts a word value to the ASCII representation of the value’s
octal equivalent. It requires one parameter: the value to be
converted. $FAO uses only the low-order word of the longword
parameter.

Converts a longword value to the ASCII representation of the
value’s octal equivalent. It requires one parameter: the value to
be converted.

Converts a byte value to the ASCII representation of the value’s
hexadecimal equivalent. It requires one parameter: the value to
be converted. $FAO uses only the low-order byte of the longword
parameter.

Converts a word value to the ASCII representation of the value’s

hexadecimal equivalent. It requires one parameter: the value to

be converted. $FAO uses only the low-order word of the longword
parameter.

Converts a longword value to the ASCII representation of the
value’s hexadecimal equivalent. It requires one parameter: the
value to be converted. '

Converts an unsigned byte value to the ASCII representation of
the value’s decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order byte of the
longword parameter.

Converts an unsigned word value to the ASCII representation of
the value’s decimal equivalent. It requires one parameter: the
value to be converted. $FAQ uses only the low-order word of the
longword parameter. :

Converts an unsigned longword value to the ASCII representation
of the value’s decimal equivalent. It requires one parameter: the
value to be converted.

Directives for Blank-Filled Numeric Conversion

UB

oW

Converts an unsigned byte value to the ASCII representation of
the value’s decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order byte of the
longword parameter.

Converts an unsigned word value to the ASCII representation of
the value’s decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order word of the
longword parameter. ’

(continued on next page)

SYS-225

System Service Descriptions
$FAO/$FAOL

SYS-226

Table SYS-9 (Cont.) List of $FAO Directives

Directive

Description

Directives for Blank-Filled Numeric Conversion

UL

ISB

ISW

ISL

Converts an unsigned longword value to the ASCII representation
of the value’s decimal equivalent. It requires one parameter: the
value to be converted.

Converts a signed byte value to the ASCII representation of
the value’s decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order byte of the
longword parameter.

Converts a signed word value to the ASCII representation of
the value’s decimal equivalent. It requires one parameter: the
value to be converted. $FAO uses only the low-order word of the
longword parameter.

Converts a signed longword value to the ASCII representation of

the value’s decimal equivalent. It requires one parameter: the
value to be converted.

Directives for Output String Formatting

i

1%T

1%U

1%1

1%D

Inserts a new line, that is, a carriage return and line feed. It
takes no parameters.

Inserts a tab. It takes no parameters.
Inserts a form feed. It takes no parameters.
Inserts an exclamation point. It takes no parameters.

Inserts the letter S if the most recently converted numeric value
is not 1. An uppercase S is inserted if the character before the
1%S directive is an uppercase character; a lowercase S is inserted
if the character is lowercase.

Inserts the system time. It takes one parameter: the address of
a quadword time value to be converted to ASCIIL. If you specify O,
the current system time is inserted.

Converts a longword integer UIC to a standard UIC specification
in the format [xxx,yyyl, where xxx is the group number and yyy is
the member number. It takes one parameter: a longword integer.
The directive inserts the surrounding brackets ([]) and comma

)

Converts a longword to the appropriate alphanumeric identifier.
If the longword represents a UIC, surrounding brackets ([1) and
comma (,) are added as necessary. If no identifier exists and the
longword represents a UIC, the longword is formatted as in !%U.
Otherwise it is formatted as in XL with a preceding !%X added
to the formatted result.

Inserts the system date and time. It takes one parameter: the
address of a quadword time value to be converted to ASCII. If you
specify 0, the current system date and time is inserted.

(continued on next page)

System Service Descriptions

$FAO/$FAOL
Table SYS-9 (Cont.) List of $FAO Directives
Directive Description
Directives for Output String Formatting
In%C Inserts a character string when the most recently evaluated

argument has the value n. (Recommended for use with
multilingual products.)

1%E Inserts a character string when the value of the most recently
evaluated argument does not match any preceding 'n%C
directives. (Recommended for use with multilingual products.)

1%F Makes the end of a plurals statement.
In< See description of next directive (!>).
> This directive and the preceding one (!In<) are used together

to define an output field width of n characters within which all
data and directives to the right of In< and to the left of !> are
left-justified and blank-filled. It takes no parameters.

In*e Repeats the character ¢ in the output string n times.

Directives for Parameter Interpretation

- Causes $FAO to reuse the most recently used parameter in the
list. It takes no parameters.

1+ Causes $FAO to skip the next parameter in the list. It takes no

parameters.

Table SYS-10 shows the $FAO output field lengths and their fill characters.

' Table SYS-10 $FAO Output Field Lengths and Fill Characters

Action When Explicit

Action When Explicit Output Field Length
Conversion/Substitution Default Length of Output Output Field Length Is Is Shorter Than
Type Field Longer Than Default Default
Hexadecimal ASCII result is right- ASCII result is
Byte 2 (zero-filled) justified and blank- truncated on the
Word 4 (zero-filled) filled to the specified left.
Longword 8 (zero-filled) length.
Octal Hexadecimal or octal
Byte 3 (zero-filled) output is always zero-
Word 6 (zero-filled) filled to the default
Longword 11 (zero-filled) output field length,

then blank-filled to
specified length.

(continued on next page)

§YS-227

System Service Descriptions
$FAO/SFAOL

Table SYS-10 (Cont.) $FAO Output Field Lengths and Fill Characters

Conversion/Substitution Default Length of Output
Type Field

Action When Explicit
Output Field Length Is
Longer Than Default

Action When Explicit
Output Field Length
Is Shorter Than
Default

As many characters as
necessary

Signed or unsigned
decimal

As many characters as
necessary

Unsigned zero-filled
decimal

ASCII string
substitution

Length of input
character string

ASCII result is right-

justified and blank-
filled to the specified
length.

ASCII result is right-
justified and zero-filled
to the specified length.

ASCII string is left-
justified and blank-

filled to the specified
length.

Signed and
unsigned decimal
output fields and
completely filled
with asterisks (*).

ASCII string is
truncated on the
right.

Required Privileges
None

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_ACCVIO

The ctrstr, pl through pn or prmlst arguments

cannot be read, or the outlen argument cannot

be written (it can specify 0).
You specified an invalid directive in the $FAO

SS$_BADPARAM

control string.

SS$_BUFFEROVF

The service completed successfully. The

formatted output string overflowed the output
buffer and has been truncated.

SS$_NORMAL

$FAO Control String Examples

The service completed successfully.

Each of the following examples shows an $FAO control string with several
directives, parameters defined as input for the directives, and the calls to
$FAO to format the output strings.

Each example is accompanied by notes. These notes show the output string
created by the call to $FAO and describe in more detail some considerations
for using directives. The sample output strings show the underscore character
(_) for each space in all places where $FAO output contains multiple spaces.

SYS-228

System Service Descriptions
$FAO/$FAOL

Each of the first 10 examples (numbered 1 through 10) refers to the following
output fields but does not include these fields within the examples.
FAODESC: ; Descriptor for output buffer
.LONG 80 ; Output buffer length
.ADDRESS -
FAOBUF ; Address of buffer
FAOBUF: .BLKB 80 ; 80-character buffer

FAOLEN: .BLKW 1 Receive length of output
BLKW 1 Reserve word for $QIO

Each of the 10 examples also assumes that each call to $FAO will be followed
by a call to $QIO to write the output string produced by $FAO. The $QIO
system service requires that the length be specified as a longword; therefore,
an extra word (commented as Reserve word for $QIO in the previous code
example) is provided following the word defined to receive the length of the
output string returned by $FAO.

The final example (numbered 11) shows a segment of a VAX FORTRAN
program used to output an ASCII string.

$FAO macro - illustrating !AC, !AS, !AD, and !/ directives

Control String and input parameters

.
1
i
H
;
i
;
S

LEEPSTR: .ASCID "!/SAILORS: !AC !AS !AD" ; Descriptor for control
; string
WINKEN: .ASCIC /WINKEN/ ; Counted ASCII string
BLINKEN:
.ASCID /BLINKEN/ ; Character string descriptor
NOD: .ASCIT /NOD/ ; ASCII string

NODLEN: .LONG NODLEN-NOD ; Length of ASCII string

; Call to SFAO
SFAO_S CTRSTR=SLEEPSTR, -

OUTLEN=FAQOLEN, -
QUTBUF=FAODESC, -
P1=#WINKEN, -
P2=#BLINKEN, -
P3=NODLEN, -
P4=#NOD

$FAO writes the following output string into FAOBUF:
<CR><KEY> (LF\TEXT) SAILORS: WINKEN BLINKEN NOD

The Y/ directive provides a cairiage-return/line-feed character (shown as
<CR><KEY>(LF\ TEXT)) for terminal output.

The !AC directive requires the address of a counted ASCII string (pl
argument); the number sign (#) is required to specify the parameter, so
that the PUSHL instruction used by the $FAO macro pushes the address
rather than its contents.

The !AS directive requires the address of a character string descriptor (p2
argument).

The !AD directive requires two parameters: the length of the string to be
substituted (p3 argument) and its address (p4 argument).

SYS-229

System Service Descriptions

$FAO/$SFAOL

SYS-230

$FAO macro - illustrating !!, and !'AS directives, repeat count,
output field length

Control string and input parameters

I
.
1
!
7
7
7
7

NAMESTR:
LASCID /UNABLE TO LOCATE !3(8AS)!!/ ; Descriptor for
; control string
JONES: .ASCID /JONES/ ; Name descriptor
HARRIS: .ASCID /HARRIS/ ; Name descriptor

WILSON: .ASCID /WILSON/ ; Name descriptor

; Call to SFAO
SFAO_S CTRSTR=NAMESTR, -
OUTLEN=FAQCLEN, -
OUTBUF=FAQODESC, -
P1=#JONES, -
P2=#HARRIS, -
P3=#WILSON

$FAO writes the following output string into FAOBUF:
UNABLE TO LOCATE JONES___HARRIS_ WILSON_ !

The !3(8AS) directive contains a repeat count: three parameters (addresses of
character string descriptors) are required. $FAO left-justifies each string into
a field of eight characters (the output field length specified).

The double exclamation point directive (!!) supplies a literal exclamation
point (!) in the output.

If the directive were specified without an output field length, that is, if
the directive were specified as !3(AS), the three output fields would be
concatenated, as follows:

UNABLE TO LOCATE JONESHARRISWILSON!

System Service Descriptions
$FAO/$FAOL

SFAQ macro - illustrating !UL, !XL, !SL directives

Control strings and input parameters for next three examples

Descriptor for control string (longword conversion)
ONGSTR:
.ASCID /VALUES !UL (DEC) !XL (HEX) !SL ({(SIGNED)/

B e =e Se me e we o~

; Descriptor for control string (byte conversion)
BYTESTR:
LASCID /VALUES !UB (DEC) !XB (HEX) !SB (SIGNED)/

VALL: .LONG 200 . Decimal 200

VAL2: .LONG 300 ; Decimal 300

VAL3: .LONG -400 ; Negative 400

; Example 3: Call to SFAO
$FAO_S CTRSTR=LONGSTR, -
OUTBUF=FAODESC, -
OUTLEN=FAOLEN, ~
P1=VAL1l, -
P2=VAL2, -
P3=VAL3

$FAO writes the following output string:

VALUES 200 (DEC) 0000012C (HEX) -400 (SIGNED)

The longword value 200 is converted to decimal, the value 300 is converted to
hexadecimal, and the value —400 is converted to signed decimal. The ASCII

results of each conversion are placed in the appropriate position in the output
string.

Note that the hexadecimal output string has eight characters and is zero-filled
to the left. This is the default output length for hexadecimal longwords.

; SFAOL macro - illustrating !UL, !'XL, !SL directives
; Call to $FAQOL
SFAOL_S CTRSTR=LONGSTR, -
QUTBUF=FAQODESC, -

OUTLEN=FAOLEN, -
PRMLST=VALL

$FAO writes the following output string:
VALUES 200 (DEC) 0000012C (HEX) -400 (SIGNED)

The results are the same as the results of Example 3. However, unlike the
$FAO macro, which requires each parameter on the call to be specified, the
$FAOL macro points to a list of consecutive longwords, which $FAO reads as
parameters.

SYS-231

System Service Descriptions

$FAO/$FAOL

SYS-232

H
; SFAOL macro - illustrating !UB, !XB, !SB directives

; Call to SFAOL

SFAOL_S CTRSTR=BYTESTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC, -
PRMLST=VAL1

$FAO writes the following output string:
VALUES 200 (DEC) 2C (HEX) 112 (SIGNED)

The input parameters are the same as those for Example 4. However, the
control string (BYTESTR) specifies that byte values are to be converted.
$FAO uses the low-order byte of each longword parameter passed to it. The
high-order three bytes are not evaluated. Compare these results with the
results of Example 4.

$FAO macro - illustrating !XwW, !ZW, !- directives, repeat count,
output field length

; Control string
MULTSTR:
LASCID /HEX: !2(6XW) ZERO-DEC: !2(-)!2(7ZwW)/

; Call to SFAO
SFAO_S CTRSTR=MULTSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC, ~
P1=#10000, -
P2=#9999

$FAO writes the following output string:
HEX:___2710__270F ZERO-DEC: 00100000009999

Each of the directives !2(6XW) and !2(7ZW) contains repeat counts and output
lengths. First, $FAO performs the !XW directive twice, using the low-order
word of the numeric parameters passed. The output length specified is two
characters longer than the default output field width of hexadecimal word
conversion, so two spaces are placed between the resulting ASCII strings.

The !- directive causes $FAO to back up over the parameter list. A repeat
count is specified with the directive so that $FAO skips back over two
parameters; then, it uses the same two parameters for the !ZW directive. The
1ZW directive causes the output string to be zero-filled to the specified length,
in this example, seven characters. Thus, there are no spaces between the
output fields. '

Systein Service Descriptions
$FAO/$FAOL

SFAOL macro - illustrating !AS, !UB, !%S, !- directives, variable
repeat count

Control string and input parameters

RGSTR: .ASCID /!AS RECEIVED !UB ARG!%S: !-!#(4UB)/

LISTA: .ADDRESS -

ORION ; Address of name string
JLONG 3 ; Number of args in list
JLONG 10 ; Argument 1
JLONG 123 ; Argument 2
JLONG 210 ; Argument 3

LISTB: .ADDRESS -

LYRA ; Address of name string
JLONG 1 ; Number of args in list
.LONG 255 ; Argument 1

Descriptor for process ORION

ORION: .ASCID /ORION/

LYRA: .ASCID /LYRA/ Descriptor for process LYRA

; Calls to SFAO

'

SFAOL_S CTRSTR=ARGSTR,
OUTLEN=FAOLEN,
OUTBUF=FAODESC, -
PRMLST=LISTA

SFAOL_S CTRSTR=ARGSTR,
OUTLEN=FAOLEN, -
OUTBUF=FAODESC, -
PRMLST=LISTB

After the first call to $FAOL, $FAO writes the following output string:
ORION RECEIVED 3 ARGS:__ 10 123 210

Following the second call, $FAO writes the following output string:
LYRA RECEIVED 1 ARG:_ 255

In each of the examples, the PRMLST argument points to a different
parameter list; each list contains, in the first longword, the address of a
character string descriptor. The second longword begins an argument list,
with the number of arguments remaining in the list. The control string
uses this second longword twice: first to output the value contained in the
longword, and then to provide the repeat count to output the number of
arguments in the list (the !- directive indicates that $FAO should reuse the
parameter).

The %S directive provides a conditional plural. When the last value
converted has a value not equal to 1, $FAO outputs the character S; if
the valueisa 1 (as in Example 2), $FAO does not output the character S.

The output field length defines a width of four characters for each byte value
converted, to provide spacing between the output fields.

SYS-233

System Service Descriptions

$FAO/$FAOL

SYS-234

$FAO macro- illustrating !n*c (repeat character), !%D directives;

Control string

3~ o~ me me el

IMESTR:
.ASCID /!5*> NOW IS: !%D/

; Call to SFAO
SFAO_S CTRSTR=TIMESTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC, -
Pl=#0

$FAO writes the following output string:
>>>>> NOW IS: dd-mmm-yyyy hh:mm:ss.cc

where:

dd is the day of the month

mmm is the month

yyyy is the year

hh:mm:ss.cc is the time in hours, minutes, seconds, and hundredths of

a second

The !5*> directive requests $FAO to write five greater-than (>) characters
into the output string. Because there is a space after the directive, $FAO also
writes a space after the greater-than characters on output.

The 1%D directive requires the address of a quadword time value, which must
be in the system time format. However, when the address of the time value
is specified as 0, $FAO uses the current date and time. For information on
how to obtain system time values in the required format, see the Iniroduction
to VMS System Services. For a detailed description of the ASCII date and
time string returned, see the discussion of the Convert Binary Time to ASCII
String (JASCTIM) system service.

$FAO macro - illustrating !%D and !3%T (with output field lengths), !n
(with variable repeat count)

; Control string
DAYTIMSTR:
LASCID /DATE: !11%D!S*_TIME: !5%T/

; Call to SFAO
SFAO_S CTRSTR=DAYTIMSTR, -
OUTLEN=FAQOLEN, -
OUTBUF=FAODESC, -
P1=#0, -
pP2=#5, -
P3=#0

10.

System Service Descriptions
$FAO/$FAOL

$FAO writes the following output string:
DATE: dd-mmm-yyyy TIME: hh:mm

An output length of 11 bytes is specified with the %D directive so that $FAO
truncates the time from the date and time string, and outputs only the date.

The '#_ directive requests that the underscore character (_) be repeated the
number of times specified by the next parameter. Because p2 is specified as
5, five underscores are written into the output string.

The !%T directive normally returns the full system time. The !5%T directive
provides an output length for the time; only the hours and minutes fields of
the time string are written into the output buffer.

$FAO macro - illustrating !< and !> (define field width), !'AC, and !UL

Control string and parameters

WIDTHSTR:

.ASCID /!25<VAR: !AC VAL: 'UL!>TOTAL:!7UL/
VARINAME:

JASCIC /INVENTORY/ ; Variable 1 name
VARL: . LONG 334 ; Current value
VAR1TOT:

. LONG 6554 ; Var 1 total
VAR2NAME :

LASCIC /SALES/ ; Var 2 name
VAR2: .LONG 280 ; Current value
VAR2TOT:

.LONG 10750 ; Var 2 total

; Calls to SFRAO
$FAO_S CTRSTR=WIDTHSTR, -
OUTLEN=FAQOLEN, -
OUTBUF=FAQODESC, -
P1=#VARINAME, -
P2=VAR1, -
P3=VARITOT

$FAO_S CTRSTR=WIDTHSTR, -
OUTLEN=FACLEN, -
OUTBUF=FAODESC, -
P1=#VAR2NAME, -
P2=VAR2Z, -
P3=VAR2TOT

After the first call to $FAO, $FAO writes the following output string:
VAR: INVENTORY VAL: 334_ TOTAL:__ 6554

After the second call, $FAO writes the following output string:
VAR: SALES VAL: 280 TOTAL:__10750

SYS—-235

System Service Descriptions

$FAO/$FAOL

11.

SYS-236

The 125< directive requests an output field width of 25 characters; the end
of the field is delimited by the !> directive. Within the field defined are two
directives, !AC and !UL. The strings substituted by these directives can vary
in length, but the entire field always has 25 characters.

The !7UL directive formats the longword passed in each example (p2
argument) and right-justifies the result in a 7-character output field.

INTEGER STATUS,
2 SYSSFAQ,
2 SYSSFAOL

! Resultant string

CHARACTER*80 OUTSTRING
INTEGER*2 LEN

! Array for directives in $FAOL
INTEGER*4 PARAMS (2)

! File name and error number
CHARACTER*80 FILE

INTEGER*4 FILE_LEN,

2 ERROR

! Descriptor for SFAOL
INTEGER*4 DESCR(2)

! These variables would generally be set following an error
FILE = ' [BOELITZ])TESTING.DAT' :

FILE_LEN = 18

ERROR = 25

! Call SFAO

STATUS = SYSSFAO ('File !AS aborted at error !SL’,
2 LEN,

2 QUTSTRING,

2 FILE(1:FILE_LEN),

2 $VAL (ERROR))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

TYPE *,'From SYSSFAO:'
TYPE *,QUTSTRING (1:LEN)

! Set up descriptor for filename

DESCR(1) = FILE_LEN ! Length

DESCR(2) = $LOC(FILE) ! Address

! Set up array for directives

PARAMS (1) = %LOC(DESCR) ! File name

PARAMS (2) = ERROR ! Error number

! Call SFAOL

STATUS = SYSSFAOL (’'File !AS aborted at error !SL',
2 LEN,

2 QUTSTRING,

2 PARAMS)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL{STATUS))

TYPE *,’From SYSSFAOL: '
TYPE *,0UTSTRING (1:LEN)

END

This example shows a segment of a VAX FORTRAN program used to output
the following string:

FILE [BOELITZ]TESTING.DAT ABORTED AT ERROR 25

System Service Descriptions
SFILESCAN

$FILESCAN—Scan String for File Specification

Format

Returns

Arguments

Searches a string for a file specification and parses the components of that file
specification.

SYS$FILESCAN srcstr ,valuelst [fldflags]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

srestr _

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

String to be searched for the file specification. The srestr argument is the
address of a descriptor pointing to this string.

valuelst

VMS Usage: item_list_2

type: longword (unsigned)
access: modify

mechanism: by reference

Item list specifying which components of the file specification are to be returned
by $FILESCAN. The components are the node, device, directory, file name, file
type, and version number. The itmlst argument is the address of a list of item
descriptors wherein each item descriptor specifies one component. The list of item
descriptors is terminated by a longword of 0.

The following diagram depicts a single item descriptor.

31 15 0
ltem Code Component Length

Component Address

ZK-1709-GE

SYS-237

System Service Descriptions

$FILESCAN

Item Descriptor Fields

Item Codes

SYS-238

component length

A word in which $FILESCAN writes the length (in characters) of the requested
component. If $FILESCAN does not locate the component, it returns the value 0
in this field and in the component address field and returns the SS$_NORMAL
condition value.

item code
A user-supplied, word-length symbolic code that specifies the component desired.
The $FSCNDEF macro defines the item codes.

component address
A longword in which $FILESCAN writes the starting address of the component.
This address points to a location in the input string itself.

fidflags

VMS Usage: mask_longword
type: longword (unsigned)
access: write only

mechanism: by reference

Longword flag mask in which $FILESCAN sets a bit for each file specification
component found in the input string. The fldflags argument is the address of
this longword flag mask.

The $FSCNDEF macro defines a symbolic name for each significant flag bit. The
following table shows the file specification component that corresponds to the
symbolic name of each flag bit.

Symbolic Name Corresponding Component
FSCN$V_NODE Node name
FSCN$V_DEVICE Device name
FSCN$V_ROOT Root directory name string
FSCN$V_DIRECTORY Directory name
FSCN$V_NAME File name

FSCN$V_TYPE File type
FSCN$V_VERSION Version number

The fldflags argument is optional. When you want to know which components of
a file specification are present in a string but do not need to know the contents or
length of these components, you should specify fldflags instead of valuelst.

FSCN$_FILESPEC

When you specify FSCN$_FILESPEC, $FILESCAN returns the length and
starting address of the full file specification. The full file specification contains
the node, device, directory, name, type, and version.

FSCN$_NODE

When you specify FSCN$_NODE, $FILESCAN returns the length and starting
address of the node name. The node name includes the double colon (::), as well
as an access control string (if present).

Description

System Service Descriptions
SFILESCAN

FSCN$_DEVICE
When you specify FSCN$_DEVICE, $FILESCAN returns the length and starting
address of the device name. The device name includes the single colon (:).

FSCN$_ROOT

When you specify FSCN$_ROOT, $FILESCAN returns the length and starting
address of the root directory string. The root directory name string includes the
square brackets ([1) or angle brackets (<>).

FSCN$_DIRECTORY

When you specify FSCN$_DIRECTORY, $FILESCAN returns the length and
starting address of the directory name. The directory name includes the square
brackets ([]) or angle brackets (<>).

FSCN$_NAME
When you specify FSCN$_NAME, $FILESCAN returns the length and starting
address of the file name. The file name includes no syntactical elements.

In addition, when you specify FSCN$_NAME, $FILESCAN returns the length
and starting address of a quuted file specification following a node name (as in the
specification NODE::“FILE-SPEC”. The beginning and ending quotation marks
are included.

FSCN$_TYPE
When you specify FSCN$_TYPE, $FILESCAN returns the length and starting
address of the file type. The file type includes the preceding period (.).

FSCN$_VERSION

When you specify FSCN$_VERSION, $FILESCAN returns the length and
starting address of the file version number. The file version number includes the
preceding period (.) or semicolon (;) delimiter.

The Scan String for File Specification service searches a string for a file
specification and parses the components of that file specification. When
$FILESCAN locates a partial file specification (for example, DISK:[FOOY)), it
returns the length and starting address of those components that were requested
in the item list and were found in the string. If a component was requested in
the item list but not found in the string, $FILESCAN returns a length of 0 and
starting address of 0 to the component length and component address fields
of the item descriptor for that component.

The information returned about all of the individual components describes the
entire contiguous file specification string. For example, to extract only the file
name and file type from a full file specification string, you can add the length of
these two components and use the address of the first component (file name).

The $FILESCAN service does not perform comprehensive syntax checking.
Specifically, it does not check that a component has a valid length.

However, $FILESCAN does check for the following information:

¢ The component must have required syntactical elements; for example, a
directory component must be enclosed in brackets and a node name must be
followed by a double colon (::).

SYS-239

System Service Descriptions

$FILESCAN

e The component must not contain invalid characters. Invalid characters are
specific to each component. For example, a comma (,) is a valid character in
a directory component but not in a file type component.

* Spaces, tabs, and carriage returns are permitted within quoted strings, but
are invalid anywhere else.

Invalid characters are treated as terminators. For example, if $FILESCAN
encounters a space within a file name component, it assumes that the space
terminates the full file specification string.

The $FILESCAN service recognizes the DEC Multinational alphabetical
characters (such as a) as alphanumeric characters.

The $FILESCAN service does not (1) assume default values for unspecified file
specification components, (2) perform logical name translation on components,
(3) perform wildcard processing, or (4) perform directory lookups.

Required Privileges
None

Required Quota
None

Related Services

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS-240

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The service could not read the string pointed to
by the srestr argument or could not write to an
item descriptor in the item list specified by the
valuelst argument.

SS$_BADPARAM The item list contains an invalid item code.

System Service Descriptions
$FIND_HELD

$FIND_HELD—Find Identifiers Held by User

Format

Returns

Arguments

Returns the identifiers held by a specified holder.

SYSSFIND_HELD holder ,[id] ,[attrib] ,[contxt]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

holder

VMS Usage: rights_holder

type: quadword (unsigned)
access: read only

mechanism: by reference

Holder whose identifiers are to be found when $FIND_HELD completes execution.
The holder argument is the address of a quadword data structure containing the
holder identifier. This quadword data structure consists of a longword containing
the holder UIC, followed by a longword containing the value 0.

id

VMS Usage: rights_id

type: longword (unsigned)
access: write only

mechanism: by reference

Identifier value found when $FIND_HELD completes execution. The id argument
is the address of a longword containing the identifier value with which the holder
is associated.

attrib

VMS Usage: mask_longword
type: longword (unsigned)
access: write only

mechanism: by reference

Attributes associated with the identifier returned in id when $FIND_HELD
completes execution. The attrib argument is the address of a longword
containing a bit mask specifying the attributes.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library (SKGBDEF). The
following are the symbols for each bit position.

SYS-241

System Service Descriptions

SFIND_HELD
Bit Position Meaning When Set
KGB$V_DYNAMIC Allows the unprivileged holder to add or remove the

Description

SYS-242

identifier from the process rights list

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier

contxt

VMS Usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Context value used when repeatedly calling $FIND_HELD. The contxt argument
is the address of a longword used while searching for all identifiers. The context
value must be initialized to 0, and the resulting context of each call to $FIND_
HELD must be presented to each subsequent call. After contxt is passed to
SYS$FIND_HELD, you must not modify its value.

The Find Identifier Held by User service returns the identifiers associated

with the specified holder. To determine all the identifiers held by the specified
holder, call SYS$FIND_HELD repeatedly until it returns the status code SS$_
NOSUCHID. When SS$_NOSUCHID is returned, $FIND_HELD has returned all
the identifiers, cleared the context value, and deallocated the record stream.

If you complete your calls to SYS$FIND_HELD before SS$_NOSUCHID is
returned, you use SYS$FINISH_RDB to clear the context value and deallocate
the record stream.

Note that, when you use wildcards with this service, the records are returned in
the order that they were originally written because the first record is located on
the basis of the holder ID. Thus, all the target records have the same holder ID
or, in other words, they have duplicate keys, which leads to retrieval in the order
in which they were written.

Required Privileges
None

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HOLDER, $FINISH_
RDB, $FORMAT ACL, $FORMAT_AUDIT, $GRANTID, $HASH _PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$_IVCHAN
SS$_INSFMEM
SS$_IVIDENT
SS$_NOIOCHAN

SS$_NOSUCHID

RMS$_PRV

System Service Descriptions
$FIND_HELD

The service completed successfully.

The id argument cannot be read by the caller, or
the holder, attrib, or contxt argument cannot
be written by the caller.

The contents of the contxt longword are not
valid.

The process dynamic memory is insufficient for
opening the rights database.

The specified holder identifier is of invalid
format.

No more rights database context streams are
available.

The specified holder identifier does not exist, or
no further identifiers are held by the specified
holder.

You do not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management

Services Manual.

$YS-243

System Service Descriptions
SFIND_HOLDER

SFIND_HOLDER—Find Holder of Identifier

Returns the holder of a specified identifier.

Format
SYSS$FIND_HOLDER id ,[holder] ,[attrib] ,[contxt]
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.
Arguments
id
VMS Usage: rights_id
type: longword (unsigned)
access: read only

mechanism: by value

Binary identifier value whose holders are found by $FIND_HOLDER. The id
argument is a longword containing the binary identifier value.

holder

VMS Usage: rights_holder

type: quadword (unsigned)
access: write only

mechanism: by reference

Holder identifier returned when $FIND_HOLDER completes execution. The
holder argument is the address of a quadword containing the holder identifier.
The first longword contains the UIC of the holder with the high-order word
containing the group number and the low-order word containing the member
number. The second longword contains the value 0.

attrib

VMS Usage: mask_longword
type: longword (unsigned)
access: write only

mechanism: by reference

Mask of attributes associated with the holder record speciﬁed by holder. The
attrib argument is the address of a longword containing the attribute mask.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The symbols are defined in the system macro library ($KGBDEF). The
following are the symbols for each bit position.

SYS-244

Description

System Service Descriptions
$FIND_HOLDER

Bit Position Meaning When Set
KGB$V_DYNAMIC Allows the unprivileged holder to add or remove the
identifier from the process rights list

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier

contxt

VMS Usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Context value used while searching for all the holders of the specified identifier
when executing $FIND_HOLDER. The contxt argument is the address of

a longword containing the context value. When calling $FIND_HOLDER
repeatedly, contxt must be set initially to 0 and the resulting context of each
call to SFIND_HOLDER must be presented to each subsequent call. After the
argument is passed to SYS$FIND_HOLDER, you must not modify its value.

The Find Holder of Identifier service returns the holder of the specified identifier.
To determine all the holders of the specified identifier, you call SYS$FIND_
HOLDER repeatedly until it returns the status code SS$_NOSUCHID, which
indicates that $FIND_HOLDER has returned all identifiers, cleared the context
longword, and deallocated the record stream. If you complete your calls to
$FIND_HOLDER before SS$_NOSUCHID is returned, you use the $FINISH_
RDB service to clear the context value and deallocate the record stream.

Note that when you use wildcards with this service, the records are returned in
the order in which they were originally written. (This action results from the fact
that the first record is located on the basis of the identifier. Thus, all the target
records have the same identifier or, in other words, they have duplicate keys,
which leads to retrieval in the order in which they were written.)

Required Privileges
None

Required Quota
None

Related Services ;

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FINISH_
RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_PASSWORD,
$IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ACL,
$REM_HOLDER, $REM_IDENT, $REVOKID

S$YS-245

System Service Descriptions
$FIND_HOLDER

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The id argument cannot be read by the caller, or
the holder, attrib, or contxt argument cannot
be written by the caller.

SS$_IVCHAN The contents of the contxt longword are not
valid.

SS$_INSFMEM The process dynamic memory is insufficient for
opening the rights database.

SS$_IVIDENT The specified identifier or holder identifier is of
invalid format.

SS$_NOIOCHAN No more rights database context streams are
available.

SS$ NOSUCHID The specified identifier does not exist in the

rights database, or no further holders exist for
the specified identifier.

RMS$_PRV The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management
Services Manual.

SYS-246

System Service Descriptions
$FINISH_RDB

$FINISH_RDB—Terminate Rights Database Context

Format

Returns

Argument

Descriptidn

Deallocates the record stream and clears the context value used with $FIND_
HELD, $FIND_HOLDER, or $IDTOASC.

SYS$FINISH_RDB contxt

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values that this service
returns are listed in the Condition Values Returned section.

contxt

VMS Usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Context value to be cleared when $FINISH_RDB completes execution. The
contxt argument is a longword containing the address of the context value.

The Terminate Rights Database Context service clears the context longword
and deallocates the record stream associated with a sequence of rights database
lookups performed by the $IDTOASC, $FIND_HOLDER, and $FIND_HELD
services.

If you repeatedly call $IDTOASC, $FIND_HOLDER, or $FIND_HELD until
SS$_NOSUCHID is returned, you do not need to call $FINISH_RDB because the
record stream has already been deallocated and the context longword has already
been cleared.

Required Privileges
None

Required Quota
None

Related Services

$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, $HASH_
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS,
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

SYS-247

System Service Descriptions
$FINISH_RDB

Condition Values Returned

SYS-248

SS$_NORMAL
SS$_ACCVIO

SS$_IVCHAN

The service completed successfully.
The contxt argument cannot be written by the
caller.

The contents of the contxt longword are not
valid.

Because the rights database is an indexed file accessed with VMS RMS, this
service can also return RMS status codes associated with operations on indexed
files. For descriptions of these status codes, refer to the VMS Record Management

Services Manual.

System Service Descriptions
$FORCEX

SFORCEX—Force Exit

Format

Returns

Arguments

Causes an Exit ($EXIT) service call to be issued on behalf of a specified process.

SYS$FORCEX [pidadr] ,[prcnam] ,[code]

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.

pidadr

VMS Usage: process_id

type: longword (unsigned)
access: modify

mechanism: by reference

Process identification (PID) of the process to be forced to exit. The pidadr
argument is the address of a longword containing the PID. The pidadr argument
can refer to a process running on the local node or a process running on another
node in the cluster.

The pidadr argument is optional but must be specified if the process that is to be
forced to exit is not in the same UIC group as the calling process.

prcham
VMS Usage: process_name

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Process name of the process that is to be forced to exit. The prcnam argument is
the address of a character string descriptor pointing to the process name string.
A process running on the local node can be identified with a 1- to 15-character
string. To identify a process on a particular node on a cluster, specify the full
process name, which includes the node name as well as the process name. The
full process name can contain up to 23 characters.

The prenam argument can be used only on behalf of processes in the same UIC
group as the calling process. To force processes in other groups to exit, you must
specify the pidadr argument. This restriction exists because the VMS operating
system interprets the UIC group number of the calling process as part of the
specified process name; the names of processes are unique to UIC groups.

SYS-249

System Service Descriptions

$FORCEX

Description

SYS-250

code

VMS Usage: cond_value

type: longword (unsigned)
access: read only

mechanism: by value

Completion code value to be used as the exit parameter. The code argument is
a longword containing this value. If you do not specify the code argument, the
value 0 is passed as the completion code.

If you specify neither the pidadr nor the prenam argument, the caller is forced
to exit and control is not returned.

If the longword at address pidadr is 0, the PID of the target process is returned.
The Force Exit system service requires system dynamic memory.

The image executing in the target process follows normal exit procedures. For
example, if any exit handlers have been specified, they gain control before the
actual exit occurs. Use the Delete Process ($DELPRC) service if you do not want
a normal exit.

When a forced exit is requested for a process, a user-mode AST is queued for the
target process. The AST routine causes the $EXIT service call to be issued by the
target process. Because the AST mechanism is used, user mode ASTs must be
enabled for the target process, or no exit occurs until ASTs are reenabled. Thus,
for example, a suspended process cannot be stopped by $FORCEX. The process
that calls $FORCEX receives no notification that the exit is not being performed.

If an exit handler resumes normal processing, the process will not exit. In
particular, if the program is written in Ada and there is a task within the
program that will not terminate, the program will not exit.

The $FORCEX service completes successfully if a force exit request is already in
effect for the target process but the exit is not yet completed.

Required Privileges

Depending on the operation, the calling process may need a certain privilege to
use $FORCEX:

* You need GROUP privilege to force an exit for a process in the same group
that does not have the same UIC as the calling process.

* You need WORLD privilege to force an exit for any process in the system.

Required Quota
None

Related Services

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $GETJPI, $GETJPIW,
$HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRY,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO
SS$_INCOMPAT
SS$_INSFMEM
SS$_IVLOGNAM
SS$_NONEXPR
SS$_NOPRIV
SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

System Service Descriptions
$FORCEX

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.
The remote node is running an incompatible
version of the VMS operating system.

The system dynamic memory is insufficient for
the operation.

The process name string has a length equal to 0
or greater than 15.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to force
an exit for the specified process.

The process name refers to a node that is not
currently recognized as part of the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS-251

System Service Descriptions
$FORMAT_ACL

$FORMAT_ACL—Format Access Control List Entry

Formats the specified ACL entry (ACE) into a text string.

Format
SYS$FORMAT_ACL aclent [acllen] ,aclstr ,[width] ,[trmdsc] ,[indent] ,faccnam]
J[nullarg]
Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed in the Condition Values Returned section.
Arguments
aclent
VMS Usage: char_string
type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Description of the ACE formatted when $FORMAT _ACL completes execution.
The aclent argument is the address of a descriptor pointing to a buffer containing
the description of the input ACE. The first byte of the buffer contains the length
of the ACE; the second byte contains a value that identifies the type of ACE,
which in turn determines the ACE format.

For more information about the ACE format, see the Description section.

acllen

VMS Usage: word_unsigned
type: word (unsigned)
access: write only

mechanism: by reference

Length of the output string resulting when $FORMAT_ACL completes execution.
The acllen argument is the address of a word containing the number of
characters written to aclstr.

acistr

VMS Usage: char_string

type: character-coded text string
access: write only

mechanism: by descriptor—fixed length string descriptor

Formatted ACE resulting when $FORMAT_ACL completes its execution. The
aclstr argument is the address of a string descriptor pointing to a buffer
containing the output string.

SYS-252

System Service Descriptions
$FORMAT_ACL

width

VMS Usage: word_unsigned
type: word (unsigned)
access: read only

mechanism: by reference

Maximum width of the formatted ACE resulting when $FORMAT_ACL completes
its execution. The width argument is the address of a word containing the
maximum width of the formatted ACE. If this argument is omitted or contains
the value 0, an infinite length display line is assumed. When the width is
exceeded, the character specified by trmdsc is inserted.

trmdsc

VMS Usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor—fixed length string descriptor

Line termination characters used in the formatted ACE. The trmdsc argument
is the address of a descriptor pointing to a character string containing the
termination characters that are inserted for each formatted ACE when the width
has been exceeded.

indent

VMS Usage: word_unsigned
type: word (unsigned)
access: read only

mechanism: by reference

Number of blank characters beginning each line. of the formatted ACE. The
indent argument is the address of a word containing the number of blank
characters that you want inserted at the beginning of each formatted ACE.

accnam

VMS Usage: access_bit_names
type: longword (unsigned)
access: read only

mechanism: by reference

Names of the bits in the access mask when executing the $FORMAT_ACL. The
accnam argument is the address of an array of 32 quadword descriptors that
define the names of the bits in the access mask. Each element points to the name
of a bit. The first element names bit 0, the second element names bit 1, and so
on. If you omit acenam, the following names are used:

Bit Name

Bit 0 READ

Bit 1 WRITE
Bit 2 EXECUTE
Bit 3 DELETE
Bit 4 CONTROL
Bit 5 BIT 5

SYS-253

System Service Descriptions
$FORMAT_ACL

Description

SYS-254

Bit Name

Bit 6 BIT_6

Bit 31 BIT_ 31

nullarg

VMS Usage: null_arg

type: longword (unsigned)
access: read only

mechanism: by value

Placeholding argument reserved by Digital.

The Format Access Control List Entry service formats the specified ACL entry
(ACE) into text string representation. There are four types of ACE:

e Alarm ACE

* Application ACE

* Directory default ACE
¢ Identifier ACE

The format for each of the ACE types is described in the following sections and
the byte offsets and type values for each ACE type are defined in the $ACEDEF

system macro library.

Alarm ACE
The access alarm ACE sets a security alarm. Its format is as follows.
flags type length
access
alarm name
ZK-1710-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name Description

length ACE$B_SIZE Byte containing the length in bytes of
the ACE buffer

type AC}E$B_TYPE Byte containing the type value

ACE$C_ALARM

System Service Descriptions
$SFORMAT_ACL

Field Symbol Name Description

flags ACE$W_FLAGS Word containing alarm ACE
information and ACE type-
independent information

access ACES$L_ACCESS Longword containing a mask

indicating the access modes to be
watched

alarm name ACES$T _AUDITNAME Character string containing the alarm

name

The flag field contains information specific to alarm ACEs and information
applicable to all types of ACEs. The following symbols are bit offsets to the alarm

ACE information.

Bit Position Meaning When Set

ACE$V_SUCCESS Indicates that the alarm is raised when access is
successful

ACE$V_FAILURE Indicates that the alarm is raised when access fails

The following symbols are bit offsets to ACE information that is independent of

ACE type.

Bit Position Meaning When Set

ACE$V_DEFAULT

ACE$V_HIDDEN

ACE$V_NOPROPAGATE

ACE$V_PROTECTED

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This option is applicable only for an ACE in a
directory file’s ACL.

This ACE is application dependent. You cannot
use the DCL ACL commands and the ACL

editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

This ACE is not propagated among versions of the
same file.

This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

The following symbol values are offsets to bits within the access mask. You can
also obtain the symbol values as masks with the appropriate bit set using the
prefix ACE$M rather than ACE$V.

Bit Meaning When Set
ACE$V_READ Read access is monitored.
ACE$V_WRITE Write access is monitored.

ACE$V_EXECUTE Execute access is monitored.

SYS-255

System Service Descriptions
$FORMAT_ACL

SYS-256

Bit Meaning When Set

ACE$V_DELETE Delete access is monitored.
ACE$V_CONTROL Modification of the access field is monitored.

Application ACE
The application ACE contains application dependent information. Its format is as
follows.

Flags Type Length

Application Mask

Application Information

ZK-1711-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name Description

length ACE$B_SIZE Byte containing the length in
bytes of the ACE buffer.

type ACE$B_TYPE Byte containing the type value
ACE$C_INFO.

flags ACE$W_FLAGS Word containing application

ACE information and ACE
type-independent information.

application mask ACES$L_INFO_FLAGS Longword containing a mask
defined and used by the

application.
application ACE$T_INFO_START Variable length data structure
information defined and used by the

application. The length of this
data is implied by length field.

The flag field contains information specific to application ACEs and information
applicable to all types of ACEs. The following symbol is a bit offset to the
application ACE information.

Bit Meaning When Set

ACE$V_INFO_TYPE Four-bit field containing a value indicating whether
the application is a CSS application (ACE$C_CSS) or
a customer application (ACE$C_CUST)

The following symbols are bit offsets to ACE information that is independent of
ACE type.

System Service Descriptions
$FORMAT_ACL

Bit

Meaning When Set

ACE$V_DEFAULT

ACE$V_HIDDEN

ACE$V_NOPROPAGATE

ACE$V_PROTECTED

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This bit is applicable only for an ACE in a
directory file’s ACL.

This bit is application dependent. You cannot
use the DCL ACL commands and the ACL
editor to change the setting; the DCL command
DIRECTORY/ACL does not display it.

This ACE is not propagated between versions of
the same file.

This ACE is not deleted if the entire ACL is
deleted; instead you must delete this ACE
explicitly.

Directory Default ACE

The directory default ACE specifies the UIC-based protection for all files created
in the directory. You can use this type of ACE only in the ACL of a directory file.
Its format is as follows.

Flags Type Length
Spare
System
Owner
Group
World
ZK-1712-GE

The following table describes the ACE fields and lists the symbol name for each.

Field Symbol Name Description

length ACE$B_SIZE Byte containing the length in bytes of the
ACE buffer.

type ACE$B_TYPE Byte containing the type value ACE$C_
DIRDEF.

flags ACE$W_FLAGS Word containing ACE type-independent
information.

spare ACE$L_SPARE1 Longword that is reserved for future use
and must be 0.

system ACE$L_SYS_PROT Longword containing a mask indicating the

access mode granted to system users. Each
bit represents one type of access.

SYS-257

System Service Descriptions
$FORMAT_ACL

SYS-258

Field Symbol Name

Description

owner ACE$L_OWN_PROT Longword containing a mask indicating the

access mode granted to the owner. Each bit
represents one type of access.

group ACE$L_GRP_PROT Longword containing a mask indicating the

access mode granted to group users. Each
bit represents one type of access.

world ACE$L_WOR_PROT Longword containing a mask indicating the

access mode granted to the world. Each bit
represents one type of access.

The flag field contains information applicable to all types of ACEs. The following
symbols are bit offsets to ACE information that is independent of ACE type.

Bit Position

Meaning When Set

ACE$V_DEFAULT

ACE$V_HIDDEN

ACE$V_NOPROPAGATE

ACE$V_PROTECTED

This ACE is added to the ACL of any file created
in the directory whose ACL contains this ACE.
This option is applicable only for an ACE in a
directory file’s ACL.

This ACE is application dependent. You cannot
use the DCL ACL comman