

VMS I/O User’s Reference
Manual: Partl

Order Number: AA-LA84B-TE

June 1990

This document contains the information necessary to interface directly with
the 1/0O device drivers supplied as part of the VMS operating system. Several
examples of programming techniques are included. This document does not
contain information on I/O operations using the VMS Record Management
Services.

Revision/Update Information: This document supersedes the VMS /O
User’s Reference Manual: Part |,
Version 5.0.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and shouid
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
‘1o restrictions as set forth in subparagraph (c)(1) (i) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop—VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGi ReGIS VMS
DECnet HSC ULTRIX vT

DECUS LiveLink UNIBUS XUl
DECwindows LNO3 VAX "
DECwriter MASSBUS VAXcluster ﬂngﬂﬂn

The following are third-party trademarks:
IBM is a registered trademark of the International Business Machines Corporation.

PostScript is a registered trademark of Adobe Systems Incorporated.

ZK4513

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xxiii
CHAPTER 1 ACP—QIO INTERFACE 1-1

1.1 ACP FUNCTIONS AND ENCODING 1-2

1.2 FILE INFORMATION BLOCK (FIB) 1-3

1.3 ACP SUBFUNCTIONS 1-7

1.3.1 Directory Lookup 1-7

1.3.1.1 Input Parameters + 1-8

1.3.1.2 Operation « 1-9

1.3.1.3 Directory Entry Protection « 1-9

1.3.2 Access . 1-10

1.3.2.1 Input Parameters + 1-10

1.3.2.2 Operation « 1-11

133 Extend 1-11

1.3.3.1 Input Parameters + 1-11

1.3.3.2 Operation * 1-13

1.3.4 Truncate 1-13

1.3.4.1 Input Parameters « 1-13

1.3.4.2 Operation * 1-14

1.3.5 Read/Write Attributes 1-14

1.3.5.1 Input Parameters + 1-14

14 ACP QIO RECORD ATTRIBUTES AREA 1-19

1.5 ACP-QIO ATTRIBUTES STATISTICS BLOCK 1-21

1.6 MAJOR FUNCTIONS 1-22

1.6.1 Create File 1-22

1.6.1.1 Input Parameters + 1-23

1.6.1.2 Disk ACP Operation « 1-24

1.6.1.3 Directory Entry Creation » 1-26

1.6.1.4 Magnetic Tape ACP Operation « 1-26

1.6.2 Access File 1-26

1.6.2.1 Input Parameters « 1-26

Contents

1.6.2.2 Operation « 1-27

1.6.3 Deaccess File 1-28

1.6.3.1 Input Parameters « 1-28

1.6.3.2 Operation « 1-28

1.6.4 Modify File 1-28

1.6.4.1 Input Parameters + 1-29

1.6.4.2 Operation « 1-29

1.6.5 Delete File 1-29

1.6.5.1 Operation « 1-30

1.6.6 Mount 1-30

1.6.7 ACP Control 1-30

1.6.7.1 Input Parameters « 1-31

1.6.7.2 Magnetic Tape Control Functions ¢ 1-31

1.6.7.3 Miscellaneous Disk Control Functions + 1-32

1.6.7.4 Disk Quotas * 1-33

1.7 1/0 STATUS BLOCK 1-35
CHAPTER 2 CARD READER DRIVER 2-1

2.1 SUPPORTED CARD READER DEVICE 2-1

2.2 DRIVER FEATURES 2-1

2.2.1 Special Card Punch Combinations 2-1

2.2.1.1 End-of-File Condition « 2-2

22.1.2 Set Translation Mode « 2—-2

222 Submitting Batch Jobs Through the Card Reader 2-2

223 Passing Data to Commands and Images 2-3

224 Error Recovery 2-3

2.3 CARD READER DRIVER DEVICE INFORMATION 2-5

24 CARD READER FUNCTION CODES 2-5

2.4.1 Read 2-6

242 Sense Mode 2-7

2.4.3 Set Mode 2-7

2.4.31 Set Mode + 2-8

2.4.3.2 Set Characteristic « 210

vi

Contents

25 1/0 STATUS BLOCK 2-11
CHAPTER 3 DISK DRIVERS 3-1
3.1 SUPPORTED DISK DEVICES AND CONTROLLERS 3-1
3.1.1 UDAS50 UNIBUS Disk Adapter 3-3
3.1.2 KDAS50 Disk Controller 3-3
3.1.3 KDB50 Disk Controller 3-3
3.14 HSC-Series Controllers 3-3
3.1.5 Sll integral Adapter 3-4
3.1.6 KFQSA Adapter 3-5
3.1.7 RQDX3 Controller 3-5
3.1.8 RA70 and RA90 Disk Drives 3-5
3.1.9 RA60 Disk 3-5
3.1.10 RA80/RB80/RM80 and RA81 Fixed-Media Disks 3-5
3.1.1 RB02 and RL02 Cartridge Disk 3-6
3.1.12 RC25 Disk 3-6
3.1.13 RD-Series Disks 3-6
3.1.14 RF-Series Disks 3-7
3.1.15 RK06 and RKO7 Cartridge Disks 3-7
3.1.16 RMO03 and RM05 Pack Disks 3-7
3.1.17 RPO05 and RP06 Disk 3-7
3.1.18 RPO7 Fixed Media Disk 3-7
3.1.19 RRD40 and RRD50 Read-Only Memory (CDROM) 3-8
3.1.20 RX01 Console Disk 3-8
3.1.21 RX02 Disk 3-8
3.1.22 RX-Series Drives 3-9
3.1.22.1 RX23 « 3-9
3.1.22.2 RX33 « 3-10
3.1.22.3 RX50 « 3-10
3.1.23 RZ-Series Disks 3-10
3.1.24 TU58 Magnetic Tape (DECtape 1) 3-10
3.2 DRIVER FEATURES 3-11
3.2.1 Dual-Pathed Disks 3-11
3.22 Dual Porting MASSBUS Disks 3-12
3.2.21 Port Selection and Access Modes * 3-12
3.2.2.2 Disk Use and Restrictions « 3—13
3.2.2.3 Restriction on Dual-Ported Non-DSA Disks in a VAXcluster « 3—-13
3.23 Dual-Pathed DSA Disks 3-14
3.24 Dual-Porting HSC Disks 3-15
3.2.5 Dual-Pathed RF-Series Disks 3-15

vii

Contents

viii

3.2.6 Data Check 3-15
3.2.7 Overlapped Seeks 3-16
3.2.8 Error Recovery 3-17
3.2.8.1 Skip Sectoring « 3—17
3.2.9 Logical-to-Physical Translation (RX01 and RX02) 3-18
3.2.10 DIGITAL Storage Architecture (DSA) Devices 3-19
3.2.10.1 Bad Block Replacement and Forced Errors for DSA Disks ¢ 3-20
3.2.11 VAXstation 2000 and MicroVAX 2000 Disk Driver 3-21
3.2.12 SCSI Disk Class Driver 3-22
33 DISK DRIVER DEVICE INFORMATION 3-22
34 DISK FUNCTION CODES 3-24
341 Read 3-29
34.2 Write 3-30
3.43 Sense Mode 3-31
344 Set Density 3-31
345 Search 3-31
3.4.6 Pack Acknowledge 3-32
34.7 Unload 3-32
3.4.8 Available 3-33
34.9 Seek 3-33
3.4.10 Write Check 3-33
3.4.11 Set Preferred Path 3-34
3.4.11.1 Forcing a Path Change + 3-35
3.4.11.2 Using 10$_SETPRFPTH with Disks Dual Pathed Between

HSCs « 3-35
3.4.11.3 Using I0$_SETPRFPTH with Disks Dual Pathed Between VMS

Systems « 3-35
3.4.11.4 Using I0$_SETPRFPTH with Disks Accessed Through MSCP

Servers +» 3-36
3.4.11.5 Using 10$_SETPRFPTH with Phase | Volume Shadowing « 3-36
3.4.11.6 Using I0$_SETPRFPTH with Phase Il Volume Shadowing « 3-36
3.5 /0 STATUS BLOCK 3-36
3.6 DISK DRIVER PROGRAMMING EXAMPLE 3-37

Contents

CHAPTER 4 LABORATORY PERIPHERAL ACCELERATOR DRIVER 4-1
4.1 SUPPORTED DEVICE 41
41.1 LPA11-K Modes of Operation 4-1
4.1.2 Errors 4-2
4.2 SUPPORTING SOFTWARE 4-3
4.3 LPA11-K DEVICE INFORMATION 4-5
4.4 LPA11-K FUNCTION CODES 4-8
4.4.1 Load Microcode 4-8
442 Start Microprocessor 4-9
4.4.3 Initialize LPA11-K 4-9
4.4.4 Set Clock 4-10
4.4.5 Start Data Transfer Request 4-1
4.4.6 LPA11-K Data Transfer Stop Command 4-14
4.5 HIGH-LEVEL LANGUAGE INTERFACE 4-15
4,51 High-Level Language Support Routines 4-15
4511 Buffer Queue Control » 4-16
451.2 Subroutine Argument Usage * 4-16
4.5.2 LPASADSWP — Initiate Synchronous A/D Sampling Sweep ___ 4-19
4.5.3 LPASDASWP — Initiate Synchronous D/A Sweep 4-21
454 LPAS$DISWP — Initiate Synchronous Digital Input Sweep _______ 4-21
45.5 LPASDOSWP — Initiate Synchronous Digital Output Sweep ___ 4-22
45.6 LPASLAMSKS — Set LPA11-K Masks and NUM Buffer 4-23
45.7 LPA$SETADC — Set Channel Information for Sweeps 4-24
45.8 LPAS$SETIBF — Set IBUF Array for Sweeps 4-24
4.5.9 LPA$STPSWP — Stop In-Progress Sweep 4-25
4.5.10 LPA$CLOCKA — Clock A Control 4-26
4.5.11 LPA$CLOCKB — Clock B Control 4-26
4.5.12 LPA$XRATE — Compute Clock Rate and Preset Value 4-27
4513 LPASIBFSTS — Return Buffer Status 4-28
45.14 LPASIGTBUF — Return Buffer Number 4-28
4.5.15 L PASINXTBF — Set Next Buffer to Use 4-29
4.5.16 LPASIWTBUF — Return Next Buffer or Wait 4-30
4517 LLPASRLSBUF — Release Data Buffer 4-31
4.5.18 LPA$SRMVBUF — Remove Buffer from Device Queuve ______ 4-31
4.5.19 LPA$SCVADF — Convert A/D Input to Floating-Point 4-32
4.5.20 LPASFLT16 — Convert Unsigned 16-Bit Integer to

Floating-Point 4-32

ix

Contents

4.5.21 LPASLOADMC — Load Microcode and Initialize LPA11-K 4-32
4.6 I/0 STATUS BLOCK 4-33
4.7 LOADING LPA11-K MICROCODE 4-34
4.71 Microcode Loader Process 4-34
4.7.2 Operator Process 4-35
4.8 RSX-11M/M-PLUS AND VMS DIFFERENCES 4-35
4.8.1 General 4-35
4.8.2 Alighment and Length 4-36
4.8.3 Status Returns 4-36
4.8.4 Sweep Routines 4-36
4.9 LPA11-K PROGRAMMING EXAMPLES 4-37
4.9.1 LPA11-K High-Level Language Program (Program A) _______ 4-37
4.9.2 LPA11-K High-Level Language Program (ProgramB) _____ 4-39
4.9.3 LPA11-K QIO Functions Program (Program C) 4-44

CHAPTER 5 LINE PRINTER DRIVER 5-1
5.1 SUPPORTED LINE PRINTER DEVICES 5-1
5.1.1 LLP11 Line Printer Controller 5-1
5.1.2 DMF32 and DMB32 Line Printer Controllers 5-1
5.1.3 LP27 Line Printer 5-1
5.1.4 LA11 DECprinter | 5-2
5.15 LNO1 Laser Page Printer 5-2
5.1.6 LNO3 Laser Page Printer 5-2
5.2 DRIVER FEATURES 5-2
5.2.1 Output Character Formatting 5-2
5.2.2 Error Recovery : 5-3
5.3 LINE PRINTER DRIVER DEVICE INFORMATION 5-3
5.4 LINE PRINTER FUNCTION CODES 5-5
5.4.1 Write 5-5
5.4.1.1 Write Function Carriage Control « 5-6

54.2 Sense Printer Mode 5-9

Contents

5.4.3 Set Mode 5-9
5.5 /0 STATUS BLOCK 5-10
5.6 LINE PRINTER DRIVER PROGRAMMING EXAMPLE 5-11
CHAPTER 6 MAGNETIC TAPE DRIVERS 6-1
6.1 SUPPORTED MAGNETIC TAPE CONTROLLERS 6-3
6.1.1 TMO3 Magnetic Tape Controller 6-3
6.1.2 TS11 Magnetic Tape Controller 6-3
6.1.3 TM78 and TM79 Magnetic Tape Controllers 6-3
6.1.4 TU80 Magnetic Tape Subsystem 6-3
6.1.5 TU81 and TA81 Magnetic Tape Subsystems 6-3
6.1.6 TU81-Plus Magnetic Tape Subsystem
6.1.7 TAS0 Magnetic Tape Subsystem 6—4
6.1.8 RV20 Write-Once Optical Drive 64
6.1.9 TK50 Cartridge Tape System 6—4
6.1.10 TK70 Cartridge Tape System 6-5
6.1.11 TZ30 Cartridge Tape System 6-5
6.1.12 Read and Write Compatibility Among Cartridge Tape Systems . 6-5
6.2 DRIVER FEATURES 6-6
6.2.1 Dual Path Tape Drives 6-7
6.2.2 Dynamic Failover and Mount Verification 6-7
6.2.3 Tape Caching 6-8
6.2.4 Master Adapters and Slave Formatters 6-8
6.2.5 Data Check 6-8
6.2.6 Error Recovery 6-9
6.2.7 Streaming Tape Systems 6-10
6.3 MAGNETIC TAPE DRIVER DEVICE INFORMATION 6-11
6.4 MAGNETIC TAPE FUNCTION CODES 6-13
6.4.1 Read 6-17
6.4.2 Write 6-18
6.4.3 Rewind 6-19
6.4.4 Skip File 6-19
6.4.5 Skip Record 6-20

6.4.5.1 Logical End-of-Volume Detection « 6—20

xi

Contents

6.4.6 Write End-of-File 6-21
6.4.7 Rewind Offline 6—21
6.4.8 Unload 6-22
6.4.9 Sense Tape Mode 6-22
6.4.10 Set Mode 6-23
6.4.11 Data Security Erase 6-27
6.4.12 Pack Acknowledge 6-27
6.4.13 Available 6-27
6.4.14 Flush 6-27
6.5 /0 STATUS BLOCK 6-28
6.6 MAGNETIC TAPE DRIVER PROGRAMMING EXAMPLES 6-28
6.6.1 Magnetic Tape Data Program Example 6-28
6.6.2 Magnetic Tape Device Characteristic Program Example 6-33
6.6.3 Set Mode and Sense Mode Program Example 6-34
CHAPTER 7 MAILBOX DRIVER 7-1
7.1 MAILBOX OPERATIONS 7-1
711 Creating Mailboxes 7-1
7.1.2 Deleting Mailboxes 7-2
7.1.3 Mailbox Message Format 7-3
7.1.4 Mailbox Protection 7-4
7.2 MAILBOX DRIVER DEVICE INFORMATION 7-4
7.3 MAILBOX FUNCTION CODES 7-5
7.3.1 Read 7-5
7.3.2 Write 7-6
7.3.3 Write End-of-File Message 7-9
7.34 Set Attention AST 7-9
7.3.5 Set Protection 7-11
74 /0 STATUS BLOCK 7-12
7.5 MAILBOX DRIVER PROGRAMMING EXAMPLE 7-14

Xii

Contents

CHAPTER 8 TERMINAL DRIVER 8-1
8.1 SUPPORTED TERMINAL DEVICES 8-1
8.2 TERMINAL DRIVER FEATURES 8-2
8.2.1 Input Processing 8-3
8.2.1.1 Command Line Editing and Command Recall + 8-3
8.2.1.2 Control Characters and Special Keys « 8—4
8.2.1.3 Read Verify « 8-6
8.2.1.4 Escape and Control Sequences + 8-7
8.2.15 Type-Ahead Feature « 8-8
8.2.1.6 Line Terminators « 8-9
8.2.1.7 Special Operating Modes « 8-10
8.2.2 Output Processing 8-10
8.2.2.1 Duplex Modes « 8-10
8.2.2.2 Formatting of Qutput » 8-11
8.2.2.3 SET HOST Facility and Output Buffering « 8—11
8.2.3 Dial-Up Support 8-13
8.2.3.1 Modem Signal Control « 8-13
8.2.3.2 Hangup on Logging Out « 8-16
8.2.3.3 Preservation of a Process Across Hangups * 8-17
8.2.4 Terminal/Mailbox Interaction 8-17
8.2.5 Autobaud Detection 8-19
8.2.6 Out-of-Band Control Character Handling 8-19
8.3 TERMINAL DRIVER DEVICE INFORMATION 8-20
8.3.1 Terminal Characteristics Categories 8-25
8.4 TERMINAL FUNCTION CODES 8-26
8.4.1 Read 8-26
8.4.11 Function Modifier Codes for Read QIO Functions + 8-27
8.4.1.2 Read Function Terminators « 8-28
8.4.1.3 itemlist Read Operations « 8-29
8.4.1.4 Read Verify Function + 8-33
8.4.2 Write 8-34
8.4.2.1 Function Modifier Codes for Write QIO Functions + 8-35
8.4.2.2 Write Function Carriage Control « 8-36
8.4.3 Set Mode 8-38
8.4.3.1 Hangup Function Modifier + 8-42
8.43.2 Enable CTRL/C AST and Enable CTRL/Y AST Function

Modifiers « 8-42
8.4.3.3 Set Modem Function Modifier + 8—44
8.4.3.4 Loopback Function Modifier » 8-45

xiii

Contents

8.4.3.5 Enable Out-of-Band AST Function Modifier + 8—46

8.4.3.6 Broadcast Function Modifier « 8-46

8.4.4 LAT Port Driver QIO Interface 8-48

8.4.4.1 LAT Port Driver Functions « 8-49

8.4.4.2 Application Services Creation « 8-51

8.443 Hangup Notification » 8-52

8.4.5 Sense Mode and Sense Characteristics 8-53

8.4.5.1 Type-ahead Count Function Modifier « 8-54

8.4.5.2 Read Modem Function Modifier »+ 8-54

8.4.5.3 Broadcast Function Modifier « 8-55

8.5 /0 STATUS BLOCK 8-56

8.6 TERMINAL DRIVER PROGRAMMING EXAMPLES 8-59

8.6.1 Terminal I/O Program Example 8-59

8.6.2 Read Verify Program Example 8-70

8.6.3 LAT Application Device Program Example 8-74
CHAPTER 9 PSEUDOTERMINAL DRIVER 9-1

9.1 PSEUDOTERMINAL OPERATIONS 9-1

9.1.1 Creating a Pseudoterminal 9-1

9.1.2 Canceling a Request 9-2

9.1.3 Deleting a Pseudoterminal 9-2

9.2 PSEUDOTERMINAL DRIVER FEATURES 9-3

9.3 PSEUDOTERMINAL DRIVER DEVICE INFORMATION 9-3

9.4 /0 BUFFERS 9-4

9.5 PSEUDOTERMINAL FUNCTIONS 94

9.5.1 Reading Data 9-5

9.5.2 Writing Data 9-5

9.5.3 Using Write with Echo 9-5

9.5.4 Flow Control 9-6

9.5.5 Event Notification 9-6

9.5.5.1 Input Flow Control « 9-6

9.55.2 Output Stop « 9-7

9.5.5.3 Output Resume + 9-7

xiv

Contents

9.55.4 Characteristics Changed « 9-7
9.55.5 Output Abort « 9-7
9.5.5.6 Terminal Driver Read Evenis ¢ 9-7
9.6 PSEUDOTERMINAL DRIVER PROGRAMMING EXAMPLE 9-8
9.6.1 Design Overview 9-8
CHAPTER 10 SHADOW-SET VIRTUAL UNIT DRIVER 10-1
10.1 INTRODUCTION 10-1
10.2 PHASE | AND PHASE Il COMPATIBILITY 10-2
10.3 CONFIGURATIONS 10-2
10.3.1 Processors and Controllers 10-2
10.3.2 Compatible Disk Drives and Volumes 10-3
10.4 DRIVER FUNCTIONS 104
10.4.1 CRESHAD 104
10.4.2 ADDSHAD 10-5
10.4.3 COPYSHAD 10-6
10.4.4 REMSHAD 10-7
10.4.5 AVAILABLE 10-8
10.4.6 SENSECHAR 10-8
10.4.7 Read and Write Functions 10-9
10.5 ERROR PROCESSING 10-9
CHAPTER 11 USING THE VMS GENERIC SCSI CLASS DRIVER 11-1
11.1 OVERVIEW OF ScCSI 11-1

11.2 VMS SCSI CLASS/PORT ARCHITECTURE 11-2

Xv

Contents

1.3

OVERVIEW OF THE VMS GENERIC SCSI CLASS DRIVER

11-2

1.4 ACCESSING THE VMS GENERIC SCSI CLASS DRIVER 11-6
11.5 SCSI PORT FEATURES UNDER APPLICATION CONTROL 11-6
11.5.1 Setting the Data Transfer Mode 11-7
11.5.2 Enabling Disconnection and Reselection 11-7
11.5.3 Disabling Command Retry 11-8
11.5.4 Setting Command Timeouts 11-8
11.6 CONFIGURING A DEVICE USING THE GENERIC CLASS DRIVER 11-9
11.6.1 Disabling the Autoconfiguration of a SCSI Device 11-10
1.7 ASSIGNING A CHANNEL TO GKDRIVER 11-10
11.8 ISSUING A $QIO REQUEST TO THE GENERIC CLASS DRIVER 11-11
11.9 GENERIC SCSI CLASS DRIVER DEVICE INFORMATION 11-14
11.10 GENERIC SCSI CLASS DRIVER PROGRAMMING EXAMPLE 11-15
APPENDIX A 1/0 FUNCTION CODES A-1
A1 ACP-QIO INTERFACE DRIVER A-1
A2 CARD READER DRIVER A-2
A3 DISK DRIVERS A-2
A4 LABORATORY PERIPHERAL ACCELERATOR DRIVER A-4
A5 LINE PRINTER DRIVER A-5

xvi

Contents

A.6 MAGNETIC TAPE DRIVERS A-6
A7 MAILBOX DRIVER A-7
A8 TERMINAL DRIVER A-8
APPENDIX B TABLES B-1
B.1 TERMINAL SEQUENCES AND MODES B-9
APPENDIX C CONTROL CONNECTION ROUTINES C-1
PTD$SCANCEL c-2
PTD$CREATE Cc-3
PTD$DELETE C-6
PTD$READ Cc-7
PTD$SET_EVENT_NOTIFICATION Cc-9
PTD$WRITE C-12
INDEX
EXAMPLES
3-1 Disk Program Example 3-38
41 LPA11-K High-Level Language Program (Program A) 4-37
4-2 LPA11-K High-Level Language Program (Program B) 4-40
4-3 LPA11-K QIO Functions Program (ProgramC) 4-45
5-1 Line Printer Program Example 5-12
6-1 Magnetic Tape Data Program Example 6-29
6-2 Device Characteristic Program Example 6-33
6-3 Set Mode and Sense Mode Program Example 6-34
7-1 Mailbox Driver Program Example 7-14
8-1 Terminal Program Example 8-60
8-2 Read Verify Program Example 8-70
8-3 LAT Application Device Program 8-74

9-1 Sample Pseudocode for Pseudoterminal Driver Program ___ 9-9

Xvii

Contents

FIGURES

Xviii

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
2-1
2-2
2-3
2-4
2-5
31
3-2
3-3
3-4
3-5
3-6
4-1
4-2
4-3
4-4
5-1
5-2
5-3
5-4
5-5
5-6
6-1
6-2
6-3
6-4
6-5
6-6
7-1

ACP-QIO Interface

ACP Device- or Function-Dependent Arguments
ACP Device/Function Argument Descriptor Format
File Information Block Format

Typical Short File Information Block

Attribute Control Block Format

ACP—QIO Record Attributes Area

ACP-QIO Attributes Statistics Block

Quota File Transfer Block

I0SB Contents - ACP—QIO Functions

A Card Reader Batch Job

Binary and Packed Column Storage
Set Mode Characteristics Buffer

Set Characteristic Buffer

I0SB Contents

Disk Physical Address

Dual-Ported Disk Drives

Starting Physical Address

Physical Cylinder Number Format

I0SB Contents

10SB Contents for the Sense Mode Function

Relationship of Supporting Software to LPA11-K
Data Transfer Command Table

Buffer Queue Control

I/0 Functions IOSB Content

P4 Carriage Control Specifier

Write Function Carriage Control (Prefix and Postfix Coding)
Set Mode Buffer

Set Characteristics Buffer

I0SB Contents — Write Function

IOSB Contents — Set Mode Function

10$_SKIPFILE Argument
10$_SKIPRECORD Argument

Sense Mode P1 Buffer

Set Mode Characteristics Buffer

Set Characteristics Buffer

I0SB Contents

Multiple Mailbox Channels

1-1
1-3
1-3
1-4
1-5

1-15

1-19

1-21

1-35

1-35
2-3
2-7
2-8

2-11

2-11
3-9

3-12

3-28

3-28

3-36

3-37
4-5

4-13

4-17

4-33
5-6
5-8
5-9

5-10

5-11

5-11

6-19

6-20

6-23

6-24

6-25

6-28
7-3

7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
8-1
8-2
8-3

8-5
8-6
8-7

8-9

8-10
8-1
8-12
8-13
8-14
8-15
8-16
8-17

8-18
9-1

10-1
10-2
11-1
11-2
11-3
C-1

Typical Mailbox Message Format

Read Mailbox

Write Mailbox

Write Attention AST (Read Unsolicited Data)

Read Attention AST

Protection Mask

I0OSB Contents - Read Function

IOSB Contents - Write Function

10SB Contents - Set Protection Function

Modem Control - Two-Way Simultaneous Operation
Terminal Mailbox Message Format

Short and Long Forms of Terminator Mask Quadwords
Itemlist Read Descriptor

P4 Carriage Control Specifier

Write Function Carriage Control (Prefix and Postfix Coding)
Set Mode and Set Characteristics Buffers

Set Mode P1 Block

Relationship of Out-of-Band Function with Control
Characters

IO$M_LT_MAP_PORT ltem List

Sense Mode Characteristics Buffer

Sense Mode Characteristics Buffer (type-ahead)
Sense Mode P1 Block

0SB Contents—Read Function

10SB Contents—Itemlist Read Function

10SB Contents—Write Function

IOSB Contents—Set Mode, Set Characteristics, Sense Mode,
and Sense Characteristics Functions

0SB Contents—LAT Port Driver Function

Buffer Layout
I/O Status Block for Copy Operations

I/0 Status Block for Copy Information

VMS SCSI Class/Port Interface

Generic SCSI Class Driver Flow

SCSI_NOAUTO System Parameter

Device Characteristics Buffer

Contents

Xix

Contents

TABLES

XX

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
21
2-2
2-3
2-4

2-5
3-1
3-2
3-3
4-1
4-2
4-3

4-5

4-7
4-8
4-9
5-1
5-2
5-3

Contents of the File Information Block
FIB Fields (Lookup Control)
FIB Fields (Access Control)
FIB Fields (Extend Control)
FIB Fields (Truncate Control)
Attribute Control Block Fields
ACP—QIO Attributes
File Characteristics Bits
ACP Record Attributes Values
Contents of the Statistics Block
I0$_CREATE and the File Information Block
10$_ACCESS and the File Information Block
10$_ACPCONTROL and the File information Block

Magnetic Tape Operations and the File Information Block __
Disk Quota Functions (Enable/Disable)
Disk Quota Functions (Individual Entries)
Card Reader Device-independent Characteristics
Device-Dependent Characteristics for Card Readers
Card Reader 1/0 Functions

Set Mode and Set Characteristic Card Reader
Characteristics

Card Reader Codes
Supported Disk Devices
Disk Device Characteristics
Disk I/0 Functions
Minimum and Maximum Configurations per LPA11-K
LPA11-K Device-Independent Characteristics
LPA11-K Device-Dependent Characteristics

VAX Procedures for the LPA11-K
Subroutine Argument Usage
LPASIGTBUF Call — IBUFNO and IOSB Contents
LPASIWTBUF Call — IBUFNO and 10SB Contents
Program A Variables
Program B Variables
Printer Device-Independent Characteristics
Device-Dependent Characteristics for Line Printers

Write Function Carriage Control (FORTRAN: byte 0 not equal
to 0)

Write Function Carriage Control (P4 byte O equal to 0) ______

1-56

1-8
1-10
1-1
1-13
1-15
1-16
1-19
1-20
1-21
1-23
1-27
1-31
1-32
1-33
1-34

2-5

2-5

2-6

2-8
2-8
3-1
3-22
3-25
4-2
4-6
4-6
4-15
4-17
4-29
4-30
4-37
4-39

5-7
5-7

6~1
6-2
6-3

6-5
6-6

6-7
7-1
7-2
81
8-2
8-3

8-5
8-6
8-7

8-9
8-10

8-11
8-12
8-13
8-14

8-15
8-16
10-1
10-2
B-1
B-2

C-2

Supported Magnetic Tape Devices

Magnetic Tape Device-Independent Characteristics
Device-Dependent Information for Tape Devices

Extended Device Characteristics for Tape Devices
Magnetic Tape I/0 Functions

Set Mode and Set Characteristics Magnetic Tape
Characteristics

Extended Device Characteristics for Tape Devices

Mailbox Read and Write Operations
Mailbox Characteristics

Supported Terminal Devices

Terminal Control Characters

Control and Data Signals (Full Modem Mode Configuration)
Terminal Device-Independent Characteristics

Terminal Characteristics

Extended Terminal Characteristics

Read QIO Function Modifiers for the Terminal Driver

ltem Codes for Itemlist Read Operations for the Terminal
Driver

Write QIO Function Modifiers for the Terminal Driver

Write Function Carriage Control (FORTRAN: byte 0 not equal
to 0)

Write Function Carriage Control (P4 byte 0 = 0)
Broadcast Requester IDs

IO$M_LT_CONNECT Request Status

IO$M_LT MAP_PORT and IO$M_LT_RATING Request
Status

Byte IOSB+5 Status Information
LAT Rejection Codes

Hardware Devices That Support Volume Shadowing
Functions of the Shadow Set Virtual Unit Driver
DEC Multinational Character Set

Sequences and Modes

Control Connection Routines

Symbolic Names Defined by $PTDDEF Macro

Contents

6-1
6-11
6-11
6-12
6-13

6-26
626
7-1
7-5
8-1

8-16
8-20
8-21
8-22
8-27

8-30
8-35

8-37
8-38

8-50

8-51
8-58
8-58
10-3
10-4
B-1
B-10
.C-1
C-10

XXi

Preface

Intended Audience

This manual is intended for system programmers who want to take
advantage of the time and space savings that result from direct use of I/O
devices. Users of VMS who do not require such detailed knowledge of I/O
drivers can use the device-independent services described in the

VMS Record Management Services Manual.

Document Structure

This manual is organized into eleven chapters and three appendixes, as

follows:

¢ Chapter 1 describes the Queue I/O (QIO) interface to file system
ancillary control processes (ACPs).

¢ Chapters 2 through 11 describe the use of VMS file-structured and
real-time I/O device drivers, the drivers for storage devices such as
disks and magnetic tapes, and terminal devices supported by VMS:

Chapter 2 discusses the card reader driver.

Chapter 3 discusses disk drivers.

Chapter 4 discusses the LPA11-K driver.

Chapter 5 discusses the line printer drivers.

Chapter 6 discusses the magnetic tape drivers.

Chapter 7 discusses the mailbox driver.

Chapter 8 discusses the terminal driver.

Chapter 9 discusses the pseudoterminal driver.

Chapter 10 discusses the shadow-set virtual unit driver.

Chapter 11 discusses the VMS Generic Small Computer Systems
Interface (SCSI) class driver.

* Appendix A summarizes the QIO function codes, arguments, and
function modifiers used by the drivers listed above.

¢ Appendix B lists the DEC Multinational Character Set and the ANSI
and DIGITAL-private escape sequences for terminals.

* Appendix C describes the VAX calling standards for the control
connection routines.

xxiii

Preface

Associated Documents

The following documents provide additional information:

VMS System Services Reference Manual

VMS Software Information Management Handbook

VMS Software VMS System Software Handbook

Guide to VMS Programming Resources

VMS Record Management Services Manual

LPA11-K Laboratory Peripheral Accelerator User’s Guide

VMS Networking Manual

VMS System Messages and Recovery Procedures Reference Manual
VMS Device Support Manual

Conventions

The following conventions are used in this manual:

Ctri/x A sequence such as Ctrl/x indicates that you must

hold down the key labeled Ctrl while you press
another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must

first press and release the key labeled PF1, then
press and release another key or a pointing device
button.

In examples, a key name is shown enclosed in a box

xXiv

to indicate that you press a key on the keyboard. (In
text, a key name is not enclosed in a box.)

In examples, a horizontal ellipsis indicates one of the
following possibilities:

+ Additional optional arguments in a statement
have been omitted.

« The preceding item or items can be repeated one
or more times.

< Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

{}

red ink

boldface text

italic text

UPPERCASE TEXT

numbers

Preface

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory
name in a file specification or in the syntax of a
substring specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on.

For online versions of the book, user input is shown in
bold.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Boldface text is also used to show user input in online
versions of the book.

ltalic text represents information that can vary
in system messages (for example, Internal error
number).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—binary,
octal, or hexadecimal—are explicitly indicated.

XXV

1

ACP—QIO Interface

An ancillary control process (ACP) is a process that interfaces between the
user process and the driver, and performs functions that supplement the
driver’s functions. Virtual I/O operations involving file-structured devices
(disks and magnetic tapes) often require ACP intervention. In most cases,
ACP intervention is requested by VMS Record Management Services
(RMS) and is transparent to the user process. However, user processes can
request ACP functions directly by issuing a QIO request and specifying an
ACP function code, as shown in Figure 1-1.

Executing physical and logical I/O operations on a device being managed
by a file ACP will interfere with the operation of the ACP and will result
in unpredictable consequences, including system failure in certain cases.

In addition to the ACP, the VMS operating system also provides the XQP
(extended QIO processor) facility to supplement the QIO driver’s functions
when performing virtual I/O operations on file-structured devices (ACP
for Files—11 On-Disk Structure Level 1 and XQP for Files—11 On-Disk
Structure Level 2). However, rather than being a separate process, the
XQP executes as a kernel mode thread in the process of its caller.

This chapter describes the QIO interface to ACPs for disk and magnetic
tape devices (file system ACPs). The sample program in Chapter 6
performs QIO operations to the magnetic tape ACP.

Figure 1-1 ACP-QIO Interface

User
Process ACP

Driver

ZK-0635-GE

This section also describes a number of structures and field names of the
form xxx$name. A VAX MACRO program can define symbols of this form
by invoking the $xxxDEF macro.

The following macros are available in SYS$LIBRARY:STARLET.MLB:

$IODEF
$FIBDEF
$ATRDEF
$SBKDEF

ACP—QIO Interface

The following macros are available in SYS$LIBRARY:LIB.MLB:

$FATDEF
$DQFDEF
$FCHDEF

Programs written in BLISS-32 can use these symbols by referencing
them and including the correct library, SYS$LIBRARY:STARLET.L32
(for the macros listed under SYS$LIBRARY:STARLET.MLB),

and SYS$LIBRARY:LIB.L32 (for the macros listed under
SYS$LIBRARY:LIB.MLB).

References to ANSI refer to the American National Standard Magnetic
Tape Labels and File Structures for Information Interchange, ANSI
X3.27-1978.

1.1 ACP Functions and Encoding

All VMS ACP functions can be expressed using seven function codes and
four function modifiers. The function codes are as follows:

¢ I0$_CREATE—Creates a directory entry or file

e TO$_ACCESS—Searches a directory for a specified file and accesses
the file, if found

* I0$_DEACCESS—Deaccesses a file and, if specified, writes the final
attributes in the file header

e 10$_MODIFY—Modifies the file attributes and file allocation
¢ I0$_DELETE—Deletes a directory entry and file header

¢ I10$_MOUNT—Informs the ACP when a volume is mounted; requires
MOUNT privilege

o I0$_ACPCONTROL—Performs miscellaneous control functions

The function modifiers are:

¢ IO$M_ACCESS—Opens a file on the user’s channel

¢ JO$M_CREATE—Creates a file

e IO$M_DELETE—Deletes a file (or marks it for deletion)
¢ JO$M_DMOUNT—Dismounts a volume

In addition to the function codes and modifiers, VMS ACPs take five
device- or function-dependent arguments, as shown in Figure 1-2. The
first argument, P1, is the address of the file information block (FIB)
descriptor. Section 1.2 describes the FIB in detail.

The second argument, P2, is an optional argument used in directory
operations. It specifies the address of the descriptor for the file name
string to be entered in the directory.

ACP—AQIO Interface
1.1 ACP Functions and Encoding

Argument P3 is the address of a word to receive the resultant file name
string length. The resultant string is not padded. The actual length is
returned in P3. P4 is the address of a descriptor for a buffer to receive the
resultant file name string. Both of these arguments are optional.

Figure 1-2 ACP Device- or Function-Dependent Arguments

31 0
P1: Address of FIB Descriptor
P2: Address of File Name String Descriptor (Optional)
P3: | Address of Word to Receive Resultant String Length (Optional)
P4: Address of Resultant String Descriptor (Optional)
P5: Address of Attribute Control Block (Optional)
ZK-0636-GE

The fifth argument, P5, is an optional argument containing the address
of the attribute control block. Section 1.3.5 describes the attribute control
block in detail.

All areas of memory specified by the descriptors must be capable of being
read or written to.

Figure 1-3 shows the format for the descriptors. The count field is the
length in bytes of the item described.

Figure 1-3 ACP Device/Function Argument Descriptor Format

31 16 15 0
Not Used Count

Address

ZK-0637-GE

1.2 File Information Block (FIB)

The file information block (FIB) contains much of the information that is
exchanged between the user process and the ACP. Figure 1-4 shows the
format of the FIB. The FIB must be writable. Because the FIB is passed
by a descriptor (see Figure 1-3), its length can vary. Thus, a short FIB can
be used in ACP calls that do not need arguments near the end of the FIB.
The ACP treats the omitted portion of the FIB as if it were 0. Figure 1-5
shows the format of a typical short FIB that would be used to open an

1-3

ACP—QIO Interface
1.2 File Information Block (FIB)

existing file. Table 1-1 gives a brief description of each of the FIB fields.
More detailed descriptions are provided in Sections 1.3 and 1.6.

Figure 14 File Information Block Format

31 24 23 16 15 87 0
FIB$B_WSIZE FIBSL_ACCTL

FIB$W_FID

FIB$W_DID

FIB$L_WCC
FIB$W_CNTRLFUNC/FIB$W_EXCTL FIBSW_NMCTL
FIBSL_CNTRLVAL/FIB$L_EXSZ
FIB$SL_EXVBN
FIB$B_ALALIGN FIB$B_ALOPTS

I— FIBSW_ALLOC —_—

Reserved FIB$W_VERLIMIT
FIB$L_ACLCTX
FIBSL_ACL_STATUS
FIB$L_STATUS
FIB$L_ACL_ACCESS

ZK-0638-GE

1-4

ACP—QIO Interface
1.2 File Information Block (FIB)

Figure 1-5 Typical Short File Information Block

31 24 23 16 15 87 0
FIB$B_WSIZE FIBSL_ACCTL
FIBSW_FID
FIB$W_DID
FIBSL_WCC
+«— 0 FIBSW_NMCTL
+«— 0
ZK-0639-GE

Table 1-1 Contents of the File Information Block

Field Subfields Meaning

FIBSL_ACCTL Contains flag bits that control the access to the file. Sections
1.3.1.1, 1.3.2.1, 1.6.1.1, 1.6.4.1, and 1.6.5 describe the
FIB$L_ACCTL field flag bits.

FIB$B_WSIZE Controls the size of the file window used to map a disk file. If a
window size of 255 is specified, the file is mapped completely
through the use of segmented windows.

FIBSW_FID Specifies the file identification. You supply the file identifier

FIB3W_FID_NUM

FIBSW_FID_SEQ

FIBSW_FID_RVN

FIB$B_FID_RVN

FIB$B_FID_NMX
FIB$W_DID

FIB$W_DID_NUM
FIB$W_DID_SEQ
FIBSW_DID_RVN

when it is known; the ACP returns the file identifier when

it becomes known, for example, as a result of a create or
directory lookup. A 0 file identifier can be specified when an
operation is performed on a file that is already open on a
particular channel. The ACP returns the file identifier of the
open file. The following subfields are defined:

File number.

File sequence number.

Relative volume number (only for magnetic tape devices).
Relative volume number (only for disk devices).

File number extension (only for disk devices).

Contains the file identifier of the directory file. The following
subfields are defined:

File number.
File sequence number.
Relative volume number (only for magnetic tape devices).

(continued on next page)

ACP—QIO Interface

1.2 File Information Block (FIB)

Table 1—1 (Cont.) Contents of the File Information Block

Field

Subfields

Meaning

FIB$L_WCC

FIBSW_NMCTL

FIBSW_EXCTL

FIBSW_CNTRLFUNC

FIBSL_EXSZ

FIB$L_CNTRLVAL

FIBSL_EXVBN

FIB$B_ALOPTS

FIB$B_ALALIGN

FIBSW_ALLOC

FIB$W_VERLIMIT
FIBSL_ACLCTX

FIB$B_DID_RVN
FIB$B_DID_NMX

FIB$C_USEREOT

FIB$W_LOC_FID
FIB$W_LOC_NUM
FIB$W_LOC_SEQ
FIB$B_LOC_RVN
FIB$B_LOC_NMX
FIB$L_LOC_ADDR

Relative volume number (only for disk devices).

File number extension (only for disk devices).

Maintains position context when processing wildcard directory
operations.

Contains flag bits that control the processing of a name string
in a directory operation. Sections 1.3.1.1 and 1.6.1.1 describe
the FIBSW_NMCTL field flag bits.

Contains flag bits that specify extend control for disk devices.
Sections 1.3.3.1 and 1.3.4.1 describe the FIB$W_EXCTL field
flag bits.

In an 1I0$_ACPCONTROL function, this field contains the code
that specifies which ACP control function is to be performed
(see Section 1.6.7). This field overlays FIB$W_EXCTL.

User EOT mode. In an I0$_CREATE or I0$_ACCESS
function, you can set this mode on a per-file basis. {See
Sections 1.6.1 and 1.6.2.)

Specifies the number of blocks to be aliocated in an extend
operation on a disk file.

Contains a control function value used in an 10$_
ACPCONTROL function (see Section 1.6.7). The interpretation
of the value depends on the control function specified in
FIBSW_CNTRLFUNC. This field overlays FIB$L_EXSZ.

Specifies the starting disk file virtual block number at which a
file is to be truncated.

Contains option bits that control the placement of allocated
blocks. Section 1.3.3.1 describes the FIB$B_ALOPTS field flag
bits.

Contains the interpretation mode of the allocation
(FIB$W_ALLOC) field.

Contains the desired physical location of the blocks being
allocated. Interpretation of the field is controlled by the
FIB$B_ALALIGN field. The following subfields are defined:

Three-word related file ID for RFI placement.
Related file number.

Related file sequence number.

Related file RVN or placement RVN.

Related file number extension.

Placement LBN, cylinder, or VBN.

Contains the version limit of the directory entry.

Maintains position context when processing ACL attributes
from the attribute (P5) list.

(continued on next page)

ACP—AQIO Interface
1.2 File Information Block (FIB)

Table 1-1 (Cont.) Contents of the File Information Block
Field Subfields Meaning

FIBSL_ACL_STATUS Status of the requested ACL attribute operation, if any. The
ACL attributes are included in Table 1-7. If no ACL attributes
are given, SS$_NORMAL is returned here.

FIB$L_STATUS Access status. Applies to all major functions. The following
bits are supported:

FIB$V_ALT_REQ Set to indicate whether the alternate access bit is required for
the current operation. If not set, the alternate access bit is
optional.

FIBSV_ALT_GRANTED If FIB$V_ALT_REQ = 0, the FIB bit returned from the file
system is set if the alternate access check succeeded.

FIBSL_ALT_ACCESS A 32-bit mask that represents an access mask to check against
file protection; for example, opens a file for read access and
checks whether it can be deleted. The mask has the same
configuration as the standard protection mask.

1.3 ACP Subfunctions

The operations that the ACP performs can be organized into two
categories: major ACP functions and subfunctions. Each ACP operation
performs one major function. That function is specified by an I/O function
code, such as I0$_ACCESS, I0$_CREATE, or I0$_MODIFY. While
executing the major function, one or more subfunctions can be performed.
A subfunction is an operation such as looking up, accessing, or extending
a file. Most subfunctions can be executed by more than one of the major
functions. Sections 1.3.1 through 1.3.5 describe the following subfunctions
in detail:

* Directory Lookup

e Access
¢ Extend
¢ Truncate

¢ Read Attributes
e Write Attributes

Section 1.6, which contains the descriptions of the major functions, lists
the subfunctions available to each major function.

1.3.1 Directory Lookup

The directory lookup subfunction is used to search for a file in a disk
directory or on a magnetic tape. This subfunction can be invoked using
the major functions I0O$_ACCESS, I0$_MODIFY, I0$_DELETE, and
I0$_ACPCONTROL. A directory lookup occurs if the directory file ID field
in the FIB (FIB$W_DID) is a nonzero number.

ACP—QIO Interface
1.3 ACP Subfunctions

1.3.1.1 Input Parameters

Table 1-2 lists the FIB fields that control the processing of a lookup

subfunction.

Table 1-2 FIB Fields (Lookup Control)

Field Field Values Meaning
FIBSW_NMCTL Name string control. The following name control bits are
applicable to a lookup operation:
FIB$M_WILD Set if name string contains wildcards. Setting this bit causes

FIBSM_ALLNAM

FIBSM_ALLTYP
FIB$M_ALLVER
FIB$M_FINDFID
FIB$W_FID
FIB$W_DID
FIB$L_WCC
FIBSL_ACCTL
FIB$M_REWIND

wildcard context to be returned in FIB$L_WCC.

Set to match all name field values.

Set to match all field type values.

Set to match all version field values.

Set to search a directory for the file identifier in FIBSW_FID.

File identification. The file ID of the file found is returned in this
field.

Contains the file identifier of the directory file. This field must be a
nonzero number.

Maintains position context when processing wildcard directory
operations.

The following access control flag is applicable to a lookup
subfunction:

Set to rewind magnetic tape before lookup. If not set, a magnetic
tape is searched from its current position.

QIO arguments P2 through P6 are passed as values. The second
argument, P2, specifies the address of the descriptor for the file name
string to be searched for in the directory.

The file name string must have one of the following two formats:

name.type;version

name.type.version

The name and type can be any combination of alphanumeric characters,
and the dollar sign ($), asterisk (*), and percent (%) characters. The
version must consist of numeric characters optionally preceded by a minus
sign (—) (only for disk devices) or a single asterisk. The total number of
alphanumeric and percent characters in the name field and in the type
field must not exceed 39. Any number of additional asterisks can be

present.

If any of the bits FIBM_ALLNAM, FIBM_ALLTYP, and FIB$M_
ALLVER are set, then the contents of the corresponding field in the
name string are ignored and the contents are assumed to be an asterisk.

Note that the file name string cannot contain a directory string. The
directory is specified by the FIB§W_DID field (see Table 1-1). Only VMS
RMS can process directory strings.

ACP—QIO Interface
1.3 ACP Subfunctions

Argument P3 is the address of a word to receive the resultant file name
string length.

Argument P4 is the address of a descriptor for a buffer to receive the
resultant file name string. The resultant string is not padded. The P3 and
P4 arguments are optional.

1.3.1.2 Operation
The system searches either the directory file specified by FIB$W_DID
or the magnetic tape for the file name specified in the P2 file name
parameter. The actual file name found and its length are returned in the
P3 and P4 length and result string buffers. The file ID of the file found is
returned in FIB$W_FID and can be used in subsequent operations as the
major function is processed.

Zero and negative version numbers have special significance in a disk
lookup operation. Specifying 0 as a version number causes the latest
version of the file to be found. Specifying —1 locates the second most recent
version, —2 the third most recent, and so forth. Specifying a version of -0
locates the lowest numbered version of the file. For magnetic tape lookups,
a version number of 0 locates the first occurrence of the file encountered;
negative version numbers are not allowed.

Wildcard lookups are performed by specifying the appropriate wildcard
characters in the name string and setting FIB$M_WILD. (The name
control bits FIBM_ALLNAM, FIBM_ALLTYP, and FIB$M_ALLVER
can also be used in searching for wildcard entries, but they are intended
primarily for compatibility mode use.) On the first lookup, FIB$L_WCC
should contain zero entries. On each lookup, the ACP returns a nonzero
value in

FIB$L_WCC, which must be passed back on the next lookup call. In
addition, you must pass the resultant name string returned by the
previous lookup using the P4 result string buffer, and its length in the
P3 result length word. This string is used together with FIB$L_WCC to
continue the wildcard search at the correct position in the directory.

Perform a lookup by file ID by setting the name control bit FIBSM_
FINDFID. When this bit is set, the system searches the directory for an
entry containing the file ID specified in FIB$W_FID, and the name of the
entry found is returned in the P3 and P4 result parameters. Note that if
a directory contains multiple entries with the same file ID, only the first
entry can be located with this technique.

Lookups by file ID should be done only when the file name is not available,
because lookups by this method are often significantly slower than lookups
by file name.

1.3.1.3 Directory Entry Protection
A directory entry is protected with the same protection code as the file
itself. For example, if a file is protected against delete access, then the
file name has the same protection. Consequently, a nonprivileged user
(that is, a user who is not the volume owner or a user who does not have
SYSPRV) cannot rename a file because renaming a file is essentially the
same as deleting the file name. This protection is applied regardless of the
protection on the directory file.

1-9

1.3.2

ACP—QIO Interface
1.3 ACP Subfunctions

Nonprivileged users can neither write directly into a .DIR;1 directory file
nor turn off the directory bit in a directory file header.

Access

The access subfunction is used to open a file so that virtual read or write
operations can be performed. This subfunction can be invoked using the
major functions IO$_CREATE and I0$_ACCESS (see Sections 1.6.1 and
1.6.2). An access subfunction is performed if the IO$M_ACCESS modifier
is specified in the 1/0 function code.

1.3.2.1 Input Parameters

Table 1-3 lists the FIB fields that control the processing of an access

subfunction.

Table 1-3 FIB Fields (Access Control)

Field Field Values Meaning
FIBSL_ACCTL Specifies field values that control access to the file. The following
access control bits are applicable to the access subfunction:
FIBSM_WRITE Set for write access; clear for read-only access.

FIBSM_NOREAD

FIBSM_NOWRITE
FIBSM_NOTRUNC

FIB$M_DLOCK

FIB$M_UPDATE
FIB$M_READCK
FIB$M_WRITECK

FIB$M_EXECUTE

Set to deny read access to others. (You must have write privilege
to the file to use this option.)

Set to deny write access to others.

Set to prevent the file from being truncated; clear to allow
truncation.

Set to enable deaccess lock (close check). Used only for disk
devices.

Used to flag a file as inconsistent if the program currently
modifying the file terminates abnormally. If the program
deaccesses the file without performing a write attributes operation,
the file is marked as locked and cannot be accessed until it is
unlocked.

Set to position at start of a magnetic tape file when opening file
for write; clear to position at end-of-file.

Set to enable read checking of the file. Virtual reads to the file
are performed using a data check operation.

Set to enable write checking of the file. Virtual writes to the file
are performed using a data check operation.

Set to access the file in execute mode. The protection check is
made against the EXECUTE bit instead of the READ bit. Valid
only for requests issued from SUPERVISOR, EXEC, or KERNEL
mode.

1-10

(continued on next page)

1.3.3

ACP—QIO Interface
1.3 ACP Subfunctions

Table 1-3 (Cont.) FIB Fields (Access Control)

Field

Field Values

Meaning

FIB$B_WSIZE

FIB$W_FID

FIBEM_NOLOCK

FIB$M_
NORECORD

Set to override exclusive access to the file, allowing you to access
the file when another user has the file open with FIBSM_NOREAD
specified. You must have SYSPRYV privilege or ownership of the
volume to use this option. FIB$M_NOREAD and
FIBSM_NOWRITE must be clear for this option to work.

Set to inhibit recording of the file’s expiration date. If not set,
the file's expiration date can be modified, depending on the file
retention parameters of the volume.

Controls the size of the file window used to map a disk file. The
ACP uses the volume default if FIB$B_WSIZE is 0. A value of 1
to 127 indicates the number of retrieval pointers to be allocated to
the window. A value of —1 indicates that the window should be as
large as necessary to map the entire file. Note that the window is
charged to the user’'s BYTELIM quota.

Specifies the file identification of the file to be accessed.

1.3.2.2 Operation
The file is opened according to the access control specified (see Table 1-3).

Extend

The extend subfunction is used to allocate space to a disk file. This
subfunction can be invoked using the major I/O functions I0$_CREATE
and I0$_MODIFY (see Sections 1.6.1 and 1.6.4). The extend subfunction
is performed if the bit FIB§M_EXTEND is set in the extend control word

FIB$W_EXCTL.

1.3.3.1

Table 1-4 FIB Fields (Extend Control)

Input Parameters

Table 1-4 lists the FIB fields that control the processing of an extend

subfunction.

Field

Field Values

Meaning

FIBW_EXCTL

FIBSM_EXTEND
FIB$M_NOHDREXT
FIBSM_ALCON

FIB$M_ALCONB

Extend control flags. The following flags are applicable to the
extend subfunction:

Set to enable extension.
Set to inhibit generation of extension file headers.

Allocates contiguous space. The extend operation fails if the
necessary contiguous space is not available.

Aliocates the maximum amount of contiguous space.

(continued on next page)

1-11

ACP—QIO Interface
1.3 ACP Subfunctions

Table 1-4 (Cont.) FIB Fields (Extend Control)

Meaning

Field Field Values
FIBSM_FILCON
FIBSM_ALDEF

FIB$L_EXSZ

FIBSL_EXVBN

FIB$B_ALOPTS

FIBSM_EXACT

FIBSM_ONCYL

FIBSB_ALALIGN

(zero)
FIB$C_CYL
FIB$C_LBN

FIB$C_VBN

FIB$C_RFI

FIBSW_ALLOC

FIB$W_LOC_FID
FIBSW_LOC_NUM

If both FIB$M_ALCON and FIB$M_ALCONB are set, a single
contiguous area, whose size is the largest available but not
greater than the size requested, is allocated.

Marks the file contiguous. This bit can only be set if the file does
not have space already allocated to it.

Allocates the extend size (FIB$L_EXSZ) or the system default,
whichever is greater.

Specifies the number of blocks to allocate to the file.

The number of blocks actually allocated for this operation is
returned in this longword. More blocks than requested can be
allocated to meet cluster boundaries.

Returns the starting virtual block number of the blocks allocated.
FIBSL_EXVBN must initially contain 0 blocks.

Contains option bits that control the placement of allocated blocks.
The following bits are defined:

Set to require exact placement; clear to specify approximate
placement. |f this bit is set and the specified blocks are not
available, the extend operation fails.

Set to locate allocated space within a cylinder. This option
functions correctly only when FIBSM_ALCON or FIBSM_ALCONB
is specified.

Contains the interpretation mode of the allocation
(FIBSW_ALLOC) field. One of the following values can be
specified:

No placement data. The remainder of the allocation field is
ignored.

Location is specified as a byte relative volume number (RVN) in
FIB$B_LOC_RVN and a cylinder number in FIBSL_LOC_ADDR.

Location is specified as a byte RVN in FIB$B_LOC_RVN, followed
by a longword logical block number (LBN) in FIB$L_LOC_ADDR.

Location is specified as a longword virtual block number (VBN)
of the file being extended in FIB$L_LOC_ADDR. A 0 VBN or one
that fails to map indicates the end of the file.

Location is specified as a three-word file ID in FIBSW_LOC_FID,
followed by a longword VBN of that file in FIBSL_LOC_ADDR. A
0 file ID indicates the file being extended. A 0 VBN or one that
fails to map indicates the end of that file.

Contains the desired physical location of the blocks being
allocated. Interpretation of the field is controlled by the
FIB$B_ALALIGN field. The following subfields are defined:

Three-word related file ID for RFI placement.
Related file number.

1-12

(continued on next page)

1.3.4

ACP—QIO Interface
1.3 ACP Subfunctions

Table 14 (Cont.) FIB Fields (Extend Control)

Field

Field Values Meaning

FIB$W_LOC_SEQ Related file sequence number.
FIB$B_L.OC_RVN Related file RVN or placement RVN.
FIB$B_LOC_NMX Related file number extension.
FIB$L_LOC_ADDR Placement LBN, cylinder, or VBN.

1.3.3.2 Operation

The specified number of blocks are allocated and appended to the file.
The virtual block number assigned to the first block allocated is returned
in FIB$L_EXVBN. The actual number of blocks allocated is returned in
FIB$L_EXSZ.

The actual number of blocks allocated is also returned in the second
longword of the user’s I/0 status block. If a contiguous allocation (FIB$M_
ALCON) fails, the size of the largest contiguous space available on the
disk is returned in the second longword of the user’s I/O status block.

Truncate

The truncate subfunction is used to remove space from a disk file. This
subfunction can be invoked by the major I/O functions I0$_DEACCESS
and IO$_MODIFY (see Sections 1.6.3 and 1.6.4). The truncate subfunction
is performed if the bit FIB$M_TRUNCATE is set in the extend control
word FIB$W_EXCTL.

1.3.4.1

Input Parameters

Table 1-5 lists the FIB fields that control the processing of a truncate
subfunction.

Table 1-5 FIB Fields (Truncate Control)

Field

Field Values Meaning

FIB§W_EXCTL

FIBSL_EXSZ

Extend control flags. The following flags are applicable to the
truncate subfunction:

FIBSM_TRUNC Must be set to enable truncation.
FIB$M_MARKBAD Set to append the truncated blocks to the bad block file, instead

of returning them to the free storage pool. Only one cluster can
be deallocated. This is most easily accomplished by specifying
the last VBN of the file in FIB$L_EXVBN. SYSPRYV privilege or
ownership of the volume is required to deallocate blocks to the
bad block file.

Returns the actual number of blocks deallocated. FIB$L_EXSZ
must initially contain a value of 0.

(continued on next page)

1-13

ACP—QIO Interface
1.3 ACP Subfunctions

Table 1-5 (Cont.) FIB Fields (Truncate Control)

Field

Field Values Meaning

FIBSL_EXVBN

Specifies the first virtual block number to be removed from the file.
The actual starting virtual block number of the truncate operation
is returned in this field.

1.3.4.2 Operation

Blocks are deallocated from the file, starting with the virtual block
specified in FIB$L_EXVBN and continuing through the end of the file.
The actual number of blocks deallocated is returned in FIB$L_EXSZ. The
virtual block number of the first block actually deallocated is returned in
FIB$L_EXVBN. Because of cluster round-up, this value might be greater
than the value specified. If FIB§M_MARKBAD is specified, the truncation
VBN is rounded down instead of up, and the value returned in FIB$L _
EXVBN might be less than that specified.

The number of blocks by which FIB$L_EXVBN was rounded up is
returned in the second longword of the I/O status block.

The truncate subfunction normally requires exclusive access to the file at
run time. This means, for example, that a file cannot be truncated while
multiple writers have access to it.

An exception occurs when a truncate subfunction is requested for a write-
accessed file that allows other readers. Although the truncate subfunction
returns success status in this instance, the actual file truncation (the
return of the truncated blocks to free storage) is deferred until the

last reader deaccesses the file. If a new writer accesses the file after

the truncate subfunction is requested, but before the last deaccess, the
deferred truncation is ignored.

1.3.5 Read/Write Attributes

1-14

The read and write attributes subfunctions are used for operations such
as reading and writing file protection and creating and revising dates. A
read or write attributes operation is invoked by specifying an attribute list
with the QIO parameter P5. A read attributes operation can be invoked by
the major I/0 function IO$_ACCESS (see Section 1.6.2); a write attributes
operation can be invoked by the major I/O functions IO$_CREATE, 10$_
DEACCESS, and I0$_MODIFY (see Sections 1.6.1, 1.6.3, and 1.6.4).

1.3.5.1

Input Parameters

The read or write attributes subfunction is controlled by the attribute list
specified by P5. The list consists of a variable number of two longword
control blocks, terminated by a 0 longword, as shown in Figure 1-6. The
maximum number of attribute control blocks in one list is 30. Table 1-6
describes the attribute control block fields.

ACP—QIO Interface
1.3 ACP Subfunctions

Figure 1-6 Attribute Control Block Format

31 16 15 0
ATRSW_TYPE ATR$W_SIZE
ATR$L_ADDR
=~ (Additional Control Blocks) ~
0
ZK-0640-GE
Table 1-6 Attribute Control Block Fields
Field Meaning
ATR$W_SIZE Specifies the number of bytes of the attribute to be

transferred. Legal values are from 0 to the maximum size of
the particular attribute (see Table 1-7).

ATR$W_TYPE Identifies the individual attribute to be read or written.

ATR$L_ADDR Contains the buffer address of the memory space to or from
which the attribute is to be transferred. The attribute buffer
must be writable.

Table 1-7 lists the valid attributes for ACP-QIO functions. The maximum
size (in bytes) is determined by the required attribute configuration. For
example, the Radix—50 file name (ATR$S_FILNAM) uses only 6 bytes, but
it is always accompanied by the file type and file version, so a total of 10
bytes is required. Each attribute has two names: one for the code (for
example, ATR$C_UCHAR) and one for the size (for example,
ATR$S_UCHAR). '

1-15

ACP—QIO Interface
1.3 ACP Subfunctions

Table 1-7 ACP—QIO Attributes

Maximum
Size

Attribute Name' (bytes) Meaning

ATR$C_UCHAR? 4 4 4-byte file characteristics. (The file
characteristics bits are listed following
this table.)

ATR$C_RECATTR?® 32 Record attribute area. Section 1.4
describes the record attribute area in
detail.

ATR$C_FILNAM 10 6-byte Radix-50 file name plus
ATR$C_FILTYP and ATR$C_FILVER.

ATR$C_FILTYP 4 2-byte Radix-50 file type plus
ATR$C_FILVER.

ATR$C_FILVER 2 2-byte binary version number.

ATR$C_EXPDAT? 7 Expiration date in ASCII. Format:
DDMMMYY.

ATR$C_STATBLK® 32 Statistics block. Section 1.5
describes the statistics block in
detail.

ATR$C_HEADERS 512 Complete file header.

ATR$C_BLOCKSIZE 2 Magnetic tape block size.

ATR$C_USERLABEL® 80 User file label.

ATR$C_ASCDATES? 4 35 Revision count (2 binary bytes),
revision date, creation date, and
expiration date, in ASCII. Format:
DDMMMYY (revision date), HHMMSS
(time), DDMMMYY (creation date),
HHMMSS (time), DDMMMYY
(expiration date). (The format
contains no embedded spaces or
commas.)

ATR$C_ALCONTROL 14 Compatibility mode allocation data.

ATR$C_ENDLBLAST 4 End of magnetic tape label
processing; provides AST control
block.

1Attributes with an ATR$C_ prefix have two names: one with the ATR$C_ prefix for the code
and one with an ATR$S_ prefix for the size, which is not included in the list.

2protected (can be written to only by system or owner).

3Locked (cannot be written to while the file is locked against writers).

“Not supported on write operations to MTAACP; defaults are returned on read operations.
5Read only.

5Not supported for disk devices.

(continued on next page)

1-16

Table 1-7 (Cont.) ACP—QIO Attributes

ACP—QIO Interface
1.3 ACP Subfunctions

Maximum
Size
Attribute Name' (bytes) Meaning
ATR$C_ASCNAME 20 Disk: file name, type, and version, in
ASCI|, including punctuation. Format:
name.type;version.
Magnetic tape: contains 17-character
file identifier (ANSI a); no version
number. Overrides all other file name
and file type specifications if supplied
on input operations. If specified on
an access operation and you want
only a value to be returned, specify
(in ATR$W_SIZE) a buffer of greater
than 17 bytes.
ATR$C_CREDATE? 8 64-bit creation date and time.
ATR$C_REVDATE? @ 8 64-bit revision date and time.
ATR$C_EXPDATE? 8 64-bit expiration date and time.
ATR$C_BAKDATE® 10 8 64-bit backup date and time.
ATR$C_UIC? 4 4-byte file owner UIC.
ATR$C_FPRO? 3 2 File protection.
ATR$C_RPRO" 2 2-byte record protection.
ATR$C_ACLEVEL? 8 10 1 File access level.
ATR$C_SEMASK'® 8 File security mask and limit.
ATR$C_UIC_RO® 4 4-byte file owner UIC.
ATR$C_DIRSEQ'" 2 Directory update sequence count.
ATR$C_BACKLINK'® 6 File back link pointer.
ATR$C_JOURNAL'" 2 Journal control flags.
ATR$C_HDR1_ACC 1 ANSI magnetic tape header label
accessibility character.
ATR$C_ADDACLENT? ™ ™ 255 Add one or more access control
‘ entries.
ATR$C_DELACLENT? ' ™ 255 Remove an access control entry.
ATR$C_MODACLENT” @ ™ 255 Modify an ACL entry.

1Attributes with an ATR$C_ prefix have two names: one with the ATR$C_ prefix for the code
and one with an ATR$S__ prefix for the size, which is not included in the list.

2Protected (can be written to only by system or owner).

3Locked (cannot be written to while the file is locked against writers).

5Read only.

7Exclusive access required. This operation does not complete successfully if other readers or

writers are allowed.

1ONot supported for Files—11 On-Disk Structure Level 1 or magnetic tapes.
"The status from this attribute operation is returned in FIB$L_ACL_STATUS.

(continued on next page)

1-17

ACP—QIO Interface
1.3 ACP Subfunctions

1-18

Table 1-7 (Cont.) ACP—QIO Attributes

Maximum
Size
Attribute Name' (bytes) Meaning
ATR$C_FNDACLENT' " 255 Locate an ACL entry.
ATR$C_FNDACETYP'!® ™ 255 Find a specific type of ACE.
ATR$C_DELETEACL? © " 255 Delete the entire ACL, retaining any
unprotected entries.
ATR$C_READACL™ ' 512 Read the entire ACL or as much as
will fit in the supplied buffer. Only
complete ACEs are transferred.
Thus, the supplied buffer can not be
completely filled.
ATR$C_ACLLENGTH™ " 4 Return the length of the ACL.
ATR$C_READACE' 255 Read a single ACE.
ATR$C_RESERVED® '° 380 Modify reserve area.
ATR$C_HIGHWATER'" 4 High-water mark (user read-only).
ATR$C_PRIVS_USED® ° 4 Privileges used to gain access.
ATR$C_MATCHING_ACE® 255 ACE used to gain access (if any).
ATR$C_ACCESS_MODE 1 Access mode for following attribute
descriptors.
ATR$C_FILE_SPEC'™ 512 Convert FID to file specification.
ATR$C_BUFFER_OFFSET* 2 Offset length for ANSI magnetic tape
header label buffer.
ATR$C_DELETE_ALL7" 255 Delete the entire ACL.
ATR$C_GRANT _ACE"" 255 Return an ACE which grants or
denies access.
ATR$C_NEXT_ACE'™" 4 Step on to point to the next ACE in

the ACL.

' Attributes with an ATR$C_ prefix have two names: one with the ATR$C_ prefix for the code
and one with an ATR$S_ prefix for the size, which is not included in the list.

“Not supported on write operations to MTAACP; defaults are returned on read operations.

7Exclusive access required. This operation does not complete successfully if other readers or

writers are allowed.

8This attribute can only be retrieved on the initial file access or create operation.

®The actual length available can decrease if the file is extended in a noncontiguous manner or if

an ACL is applied to the file.

10Not supported for Files—11 On-Disk Structure Level 1 or magnetic tapes.
"The status from this attribute operation is returned in FIB$L_ACL_STATUS.

Table 1-8 lists the bits contained in the file characteristics longword,
which is read with the ATR$C_UCHAR attribute.

ACP—QIO Interface
1.3 ACP Subfunctions

Table 1-8 File Characteristics Bits

FCHNOBACKUP
FCH$M_READCHECK
FCH$M_WRITCHECK
FCH$M_CONTIGB
FCH$M_LOCKED
FCH$M_CONTIG
FCH$M_BADACL
FCH$M_SPOOL
FCH$M_DIRECTORY
FCH$M_BADBLOCK
FCH$M_MARKDEL
FCH$M_ERASE

File is not to be backed up.

Verify all read operations.

Verify all write operations.

Keep file as contiguous as possible.
File is deaccess-locked.

File is contiguous.

File’s ACL is corrupt.

File is an intermediate spool file.
File is a directory.

File contains bad blocks.

File is marked for deletion.

Erase file contents before deletion.

ACP QIO Record Attributes Area

Figure 1-7 shows the format of the record attributes area.

Figure 1-7 ACP—QIO Record Attributes Area

31 24 23 16 15 87 V]
FAT$W_RSIZE FAT$B_RATTRIB FAT$B_RTYPE*
FAT$L_HIBLK ‘
FAT$L_EFBLK 8
FAT$B_VFCSIZE | FAT$B BKTSIZE FAT$W_FFBYTE 1 z
FAT$W_DEFEXT FAT$W_MAXREC
FAT$W_GBC 20
(6 Bytes Reserved for Future Use) 24
FAT$W_VERSIONS Not Used 28
*FAT$V_RTYPE Bits 0-3; FAT$V_FILEORG Bits 4-7

ZK-0641-GE

1-19

ACP—QIO Interface
1.4 ACP QIO Record Attributes Area

Table 1-9 lists the record attributes values and their meanings.

Table 1-9 ACP Record Attributes Values

Field Value Meaning
FAT$B_RTYPE Record type. Contains FAT$V_RTYPE and
FAT$V_FILEORG.
FAT$V_RTYPE Record type. The following bit values are defined:
FAT$C_FIXED Fixed-length record
FAT$C_VARIABLE Variable-length record
FATSC_VFC Variable-length record with fixed
control
FAT$C_UNDEFINED Undefined record format (stream
binary)
FAT$C_STREAM RMS stream format

FAT$C_STREAMLF Stream terminated by LF
FAT$C_STREAMCR Stream terminated by CR

FAT$V_FILEORG File organization. The following bit values are defined:
FAT$C_DIRECT Direct file organization’
FAT$C_INDEXED Indexed file organization
FAT$C_RELATIVE Relative file organization
FAT$C_SEQUENTIAL Sequential file organization

FAT$B_RATTRIB Record attributes. The following bit values are defined:

FAT$M_FORTRANCC FORTRAN carriage control
FAT$M_IMPLIEDCC Implied carriage control

FAT$M_PRINTCC Print file carriage control
FAT$M_NOSPAN No spanned records
FATSW_RSIZE Record size in bytes.
FAT$L_HIBLK? Highest allocated VBN. The ACP maintains this field when

the file is extended or truncated. Attempts to modify this field
in a write attributes operation are ignored.

FAT$SW_HIBLKH High-order 16 bits

FATSW_HIBLKL Low-order 16 bits
FAT$L_EFBLK? 3 End-of-file VBN

FAT$SW_EFBLKH High-order 16 bits

FAT$SW_EFBLKL Low-order 16 bits
FAT$W_FFBYTE® First free byte in FATSL_EFBLK.
FAT$B_BKTSIZE Bucket size in blocks.

"Defined but not implemented.

2|nverted format field. The high- and low-order 16 bits are transposed for compatibility with
PDP-11 software.

3When the end-of-file position corresponds to a block boundary, by convention
FAT$L_EFBLK contains the end-of-file VBN plus 1, and FATSW_FFBYTE contains 0.

(continued on next page)

1-20

ACP—QIO Interface
1.4 ACP QIO Record Attributes Area

Table 1-9 (Cont.) ACP Record Attributes Values

Field Value Meaning

FAT$B_VFCSIZE Size in bytes of fixed-length control for VFC records.
FAT$W_MAXREC Maximum record size in bytes.

FAT$W_DEFEXT Default extend quantity.

FAT$W_GBC Global buffer count.

FAT$W_VERSIONS Default version limit; valid only if the file is a directory.

15 ACP-QIO Attributes Statistics Block

Figure 1-8 shows the format of the attributes statistics block. Table 1-10
lists the contents of this block.

Figure 1-8 ACP-QIO Attributes Statistics Block

31 16 15 87 0
SBK$L_STLBN

SBK$L_FILESIZE

SBK$L_FCB SBK$B_LCNT SBK$B_ACNT
(Not Used)
SBK$W_LCNT SBK$W_ACNT
SBK$W_TCNT SBK$W_WCNT

SBK$L_READS
SBK$L_WRITES

ZK-0642-GE
Table 1-10 Contents of the Statistics Block
Field Field Values Meaning
SBK$L_STLBN Contains the starting LBN of the file if the file is contiguous. If the

file is not contiguous, this field contains a value of 0. The LBN
appears as an inverted longword (the high- and low-order 16 bits
are transposed for PDP-11 compatibility). The following subfields
are defined:

(continued on next page)

1-21

1.6

1.6.1

ACP—QIO Interface

1.5 ACP-QIO Attributes Statistics Block

Table 1—10 (Cont.) Contents of the Statistics Block

Field Field Values

Meaning

SBK$W_STLBNH
SBK$W_STLBNL
SBK$L_FILESIZE

SBK$W_FILESIZH
SBK$W_FILESIZL

SBK$B_ACNT'

SBK$B_LCNT!

SBKS$L_FCB

SBK$W_ACNT'

SBK$W_LCNT?

SBK$W_WCNT'
SBK$W_TCNT!

SBK$L_READS
SBK$L_WRITES

Starting LBN (high-order 16 bits).
Starting LBN (low-order 16 bits).

Contains the size of the file in blocks. The file size appears as an
inverted longword (the high- and low-order 16 bits are transposed
for PDP-11 compatibility). The following subfields are defined:

File size (high-order 16 bits).

File size (low-order 16 bits).

Access count (low byte). Field is for PDP—11 compatibility.
Lock count (low byte). Field is for PDP-11 compatibility.
System pool address of the file's file control block.

Access count (number of channels with file open currently).

Lock count (the number of access operations that have locked the
file against writers).

Writer count (the number of channels that currently have the file
open for write).

Truncate lock count (the number of access operations that have
locked the file against truncation).

Number of read operations executed for file on this channel.
Number of write operations executed for file on this channel.

TAcc from proc on the local node in a cluster are counted.

Major Functions

The following sections describe the operation of the major ACP functions.
Each section describes the required and optional parameters for a
particular function, as well as the sequence in which the function is
performed. For clarity, when a major function invokes a subfunction, the
input parameters used by the subfunction are omitted.

Create File

Create file is a virtual I/O function that creates a directory entry or a file
on a disk device, or a file on a magnetic tape device.

The following is the function code:

* I0$_CREATE

1-22

ACP—QIO Interface
1.6 Major Functions

The following are the function modifiers:

IO$M_CREATE—Creates a file.
I0$M_ACCESS—Opens the file on your channel.

I0$M_DELETE—Marks the file for deletion (applicable only to disk
devices).

1.6.1.1

Input Parameters

The following are the device- or function-dependent arguments for
I0$_CREATE:

P1—The address of the file information block (FIB) descriptor.
P2--The address of the file name string descriptor (optional).

P3-—The address of the word that is to receive the length of the
resultant file name string (optional).

P4—The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).

P5—The address of a list of attribute descriptors (optional).

Table 1-11 lists fields in the FIB that are applicable to the IO$_CREATE
operation.

Table 1-11 I0$_CREATE and the File Information Block

Field

Field Values Meaning

FIBSL_ACCTL

FIBSW_CNTRLFUNC

Specifies field values that control access to the file. The
following bits are applicable to the I0$_CREATE function:

FIBSM_REWIND Set to rewind magnetic tape before creating the file. Any data

currently on the tape is overwritten.

FIB$M_CURPOS Set to create magnetic tape file at the current tape position.

(Note: a magnetic tape file is created at the end of the volume
set if neither FIBSM_REWIND nor FIB$M_CURPOS is set.) If
the tape is not positioned at the end of a file, FIB$M_CURPOS
creates a file at the next file position. Any data currently on the
tape past the current file position is overwritten.

FIBSM_WRITETHRU Specifies that the file header is to be written back to the disk. If

not specified and the file is opened, writing of the file header can
be deferred to some later time.

Specifies the following value, which allows you to control actions
subsequent to EOT detection on a magnetic tape file.

(continued on next page)

1-23

ACP—QIO Interface
1.6 Major Functions

Table 1-11 (Cont.) 10$_CREATE and the File Information Block

Field Field Values

Meaning

FIB$C_USEREOT

FIBSW_FID
FIBSW_DID
FIBSW_NMCTL

FIB$M_NEWVER
FIB$M_SUPERSEDE
FIB$M_LOWVER
FIB$M_HIGHVER

FIBSW_VERLIMIT

FIBSL_ACL_STATUS

Set on a per-file basis to specify user EOT mode. If this

bit is set, user EOT handling is enabled. When writing, if

EOT has been detected (considered a “serious exception”)
and user EOT handling is enabled, then the magnetic tape
system returns the alternate success code SS$_ENDOFTAPE.
When reading, if EOV is reached, then the alternate success
code SS$_ENDOFVOLUME is returned. In either case, all
subsequent I/O requests for the volume are completed with a
failure status return of SS$_SERIOUSEXCP. The driver does not
execute any I/O functions until the serious exception has been
explicitly cleared by issuing an 10$_ACPCONTROL function
(see Section 1.6.7). If the file is deaccessed or closed, the user
EOT mode is cleared after further processing of the magnetic
tape.

Contains the file ID of the file created or entered.
Contains the file identifier of the directory file.

Controls the processing of the file name in a directory operation.
The following bits are applicable to the 10$_CREATE function:

Set to create file of same name with next higher version number.
Only for disk devices.

Set to supersede an existing file of the same name, type, and
version. Only for disk devices.

Set on return if a lower numbered version of the file exists. Only
for disk devices.

Set on return if a higher numbered version of the file exists.
Only for disk devices.

Specifies the version limit for the directory entry created. Used
only for disk devices and only when the first version of a new
file is created. If 0, the directory default is used. If a directory
operation was performed, FIB$W_VERLIMIT always contains
the actual version limit of the file.

Status of the requested ACL attribute operation, if any. The ACL
attributes are included in Table 1-7. If no ACL attributes are
given, SS$_NORMAL is returned here.

1.6.1.2 Disk ACP Operation

If the modifier IO$M_CREATE is specified, a file is created. The file ID of
the file created is returned in FIB§W_FID. If the modifier IO$M_DELETE
is specified, the file is marked for deletion.

If a nonzero directory ID is specified in FIB§W_DID, a directory entry

is created. The file name specified by parameter P2 is entered in the
directory, together with the file ID in FIB$W_FID. (Section 1.3.1.1
describes the format for the file name string.) Wildcards are not permitted.
Negative version numbers are treated as equivalent to a 0 version number.
If a result string buffer and length are specified by P3 and P4, the actual
file name entered, and its length, are returned.

1-24

ACP—QIO Interface
1.6 Major Functions

The version number of the file receives the following treatment:

¢ If the version number in the specified file name is 0 or negative, the
directory entry created gets a version number one greater than the
highest previously existing version of that file (or version 1 if the file
did not previously exist).

e If the version number in the specified file name is a nonzero number
and FIBSM_NEWVER is set, the directory entry created gets a version
number one greater than the highest previously existing version of
that file, or the specified version number, whichever is greater.

¢ If the version number in the specified file name is a nonzero number
and the directory already contains a file of the same name, type,
and version, the previously existing file is set aside for deletion if
FIB$M_SUPERSEDE is specified. If FIB$M_SUPERSEDE is not
specified, the create operation fails with an SS$_DUPFILNAM status.

e If, after creating the new directory entry, the number of versions of the
file exceeds the version limit, the lowest numbered version is set aside
for deletion.

e If the file did not previously exist, the new directory entry is
given a version limit as follows: the version limit is taken from
FIB$W_VERLIMIT if it is a nonzero number; if it is 0, the version
limit is taken from the default version limit of the directory file; if the
default version limit of the directory file is 0, the version limit is set to
32,767 (the highest possible number).

The file name string entered in the directory is returned using the P3
and P4 result string parameters, if present. The file name string is

also written into the header. If no directory operation was requested
(FIB$W_DID is 0), the file name string specified by P2, if any, is written
into the file header.

If an attribute list is specified by P5, a write attributes subfunction is
performed (see Section 1.3.5).

If the modifier IOJM_ACCESS is specified, the file is opened (see
Section 1.3.2).

If the extend enable bit FIB$M_EXTEND is specified in the FIB, an extend
subfunction is performed (see Section 1.3.3).

Finally, if a file was set aside for deletion (IO$M_DELETE is specified),
that file is deleted. If the file is deleted because the FIB$M_SUPERSEDE
bit was set, the alternate success status SS$_SUPERSEDE is returned in
the I/O status block. If the file is deleted because the version limit was
exceeded, the alternate success status SS$_FILEPURGED is returned.

If an error occurs in the operation of an IO$_CREATE function, all actions
performed to that point are reversed (the file is neither created nor
changed), and the error status is returned to the user in the I/O status
block.

1-25

1.6.2

ACP—AQIO Interface
1.6 Major Functions

1.6.1.3 Directory Entry Creation

Creating a new version of a file eliminates default access to the previously
highest version of the file. For example, creating RESUME.TXT;4 masks
RESUME.TXT;3 so that the DCL command TYPE RESUME.TXT yields
the contents of version 4, not version 3. To protect the contents of the
earlier version of a file, the creator of a file must have write access to the
previous version of a file of the same name.

1.6.1.4 Magnetic Tape ACP Operation

No operation is performed unless the IO$M_CREATE modifier is specified.
The magnetic tape is positioned as specified by FIBSM_REWIND and
FIB$M_CURPOS, and the file is created. The name specified by the P2
parameter is written into the file header label.

If P5 specifies an attribute list, a write attributes subfunction is performed
(see Section 1.3.5).

If the modifier IO$M_ACCESS is specified, the file is opened (see
Section 1.3.2).

Access File

This virtual I/O function searches a directory on a disk device or a
magnetic tape for a specified file and accesses that file if found.

The following is the function code:
e IO$_ACCESS

The following are the function modifiers:
e IO$M_CREATE—Creates a file.
¢ IO$M_ACCESS—Opens the file on your channel.

1.6.2.1

1-26

Input Parameters

The following are the device- or function-dependent arguments for
I0$_ACCESS:

¢ P1—The address of the file information block (FIB) descriptor.
¢ P2—The address of the file name string descriptor (optional).

¢ P3—The address of the word that is to receive the length of the
resultant file name string (optional).

¢ P4—The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).

e P5—The address of a list of attribute descriptors (optional).

Table 1-12 lists FIB fields that are applicable to the I0$_ACCESS
operation.

ACP—QIO Interface
1.6 Major Functions

Table 1-12 10$_ACCESS and the File Information Block

Field

Field Values Meaning

FIBSW_CNTRLFUNC

FIBSW_VERLIMIT

FIBSL_ACL_STATUS

FIBSL_STATUS

FIB$L_ALT_ACCESS

Specifies the value that allows the user to control actions
subsequent to EOT detection on a magnetic tape file.

FIBSC_USEREOT Set on a per-file basis to specify user EOT mode. If this bit

is set, the magnetic tape driver notifies the magnetic tape
system when EOT has been detected (considered a “serious
exception”) when a file is accessed. In turn, the magnetic tape
system returns the alternate success code SS$_ENDOFTAPE
or SS$_ENDOFVOLUME. All subsequent I/O requests are
completed with a failure status return of SS$_SERIOUSEXP.
The driver does not execute any I/O functions until the serious
exception has been explicitly cleared by issuing an
10$_ACPCONTROL function (see Section 1.6.7). If the file

is deaccessed or closed, the user EOT maode is cleared after
further processing of the magnetic tape.

Receives the version limit for the file. Applicable only if
FIB$W_DID is a nonzero number (if a directory lookup is done).
Used only for disk devices.

Status of the requested ACL attribute operation, if any. The ACL
attributes are included in Table 1-7. If no ACL attributes are
given, SS$_NORMAL is returned here.

Alternate access status. The following bits are supported:

FIB$V_ALT_REQ Set to indicate whether the alternate access bit is required for
the current operation. If not set, the alternate access bit is
optional.

FIBSV_ALT_ If FIBSV_ALT_REQ = 0 and the alternate access check

GRANTED succeeded, the FIB bit returned from the file system is set.

A 32-bit mask that represents an access mask to check against
file protection; for example, to open a file for read and to check

whether it can be deleted. The mask has the same configuration
as the standard protection mask.

1.6.2.2 Operation

If a nonzero directory file ID is specified in FIB§W_DID, a lookup
subfunction is performed (see Section 1.3.1.) The version limit of the
file found is returned in FIB$W_VERLIMIT.

If the directory search fails with a ’file not found’ condition and the
I0$M_CREATE function modifier is specified, the function is reexecuted as
a CREATE. In that case, the argument interpretations for IO$_CREATE,
rather than those for I0$_ACCESS, apply.

If IO$M_ACCESS is specified, an access subfunction is performed to open
the file (see Section 1.3.2).

If P5 specifies an attribute list, a read attributes subfunction is performed
(see Section 1.3.5).

1-27

1.6.3

1.6.4

ACP—QIO Interface
1.6 Major Functions

Deaccess File

Deaccess file is a virtual I/O function that deaccesses a file and, if specified,
writes final attributes in the file header.

The following is the function code:
e I10$_DEACCESS

I0$_DEACCESS takes no function modifiers.

1.6.3.1 Input Parameters

The following are the device- or function-dependent arguments for
I0$_DEACCESS:

e P1—_The address of the file information block (FIB) descriptor.
¢ P5—The address of a list of attribute descriptors (optional).

The following FIB field is applicable to a IO$_DEACCESS function:

Field Meaning

FIB$W_FID File identification of the file being deaccessed. This field can
contain a value of 0. If it does not, it must match the file
identifier of the accessed file.

FIBSL_ACL_STATUS Status of the requested ACL attribute operation, if any. The
ACL attributes are included in Table 1—7. If no ACL attributes
are given, SS$_NORMAL is returned here.

1.6.3.2 Operation

For disk files, if P5 specifies an attribute control list and the file was
accessed for a write operation, a write attributes subfunction is performed
(see Section 1.3.5). If the file was opened for write, no attributes were
specified, and FIB$M_DLOCK was set when the file was accessed, the

deaccess lock bit is set in the file header, inhibiting further access to that
file.

For disk files, if the truncate enable bit FIBSM_TRUNCATE is specified in
the FIB, a truncate subfunction is performed (see Section 1.3.4).

Finally, the file is closed. Trailer labels are written for a magnetic tape file
that was opened for write.

Modify File

1-28

Modify file is a virtual I/O function that modifies the file attributes or
allocation of a disk file. The IO$_MODIFY function is not applicable to
magnetic tape.

The following is the function function code:

e IT0$_MODIFY
10$_MODIFY takes no function modifiers.

1.6.5

ACP—QIO Interface
1.6 Major Functions

1.6.4.1 Input Parameters
The following are the device- or function-dependent arguments for
I0$_MODIFY:
e P1—The address of the file information block (FIB) descriptor.
e P2—The address of the file name string descriptor (optional). If
specified, the directory is searched for the name.
¢ P3-—The address of the word that is to receive the length of the
resultant file name string (optional).
* P4 —The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).
* P5—_The address of a list of attribute descriptors (optional).
The following FIB fields are applicable to the I0$_MODIFY function:
Field Field Values Meaning
FIB$L_ACCTL Specifies field values that control access to the file. The

FIBSW_VERLIMIT
FIB$L_ACL_STATUS

following bits are applicable to the I0$_MODIFY function:

FIBSM_WRITETHRU Specifies that the file header is to be written back to the disk.

If not specified and the file is currently open, writing of the file
header can be deferred to some later time.

If a nonzero number, specifies the version limit for the file.

Status of the requested ACL attribute operation, if any. The ACL
attributes are included in Table 1-7. If no ACL attributes are
given, SS$_NORMAL is returned here.

1.6.4.2 Operation

If a nonzero directory ID is specified in FIB§W_DID, a lookup subfunction
is executed (see Section 1.3.1). If a nonzero version limit is specified in
FIB$W_VERLIMIT and the directory entry found is the latest version of
that file, the version limit is set to the value specified.

If P5 specifies an attribute list, a write attributes subfunction is performed
(see Section 1.3.5).

The file can be either extended or truncated. If FIB§M_EXTEND is
specified in the FIB, an extend subfunction is performed (see Section 1.3.3).
If FIBSM_TRUNCATE is specified in the FIB, a truncate subfunction is
performed (see Section 1.3.4). Extend and truncate operations cannot be
performed at the same time. '

Delete File

Delete file is a virtual I/O function that removes a directory entry or file
header from a disk volume.

The following is the function code:
* IO$_DELETE

1-29

1.6.6

1.6.7

ACP—AQIO Interface
1.6 Major Functions

The following is the function modifier:
¢ IO$M_DELETE—Deletes the file (or marks it for deletion).

The following are the device- or function-dependent arguments for
I0$_DELETE:

* P1—The address of the file information block (FIB) descriptor.
* P2—The address of the file name string descriptor (optional).

* P3—The address of the word that is to receive the length of the
resultant file name string (optional).

* P4—The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).

The following FIB fields are applicable to the IO$_DELETE function:

Field

Field Values Meaning

FIBSL_ACCTL

FIB$W_FID

Specifies field values that control access to the file. The
following bit is applicable to the I0$_DELETE function:

FIBSM_WRITETHRU Specifies that the file header is to be written back to the disk.

If not specified and the file is currently open, writing of the file
header can be deferred to some later time.

Specifies the file identification to be deleted.

1.6.5.1

Operation

If a nonzero directory ID is specified in FIB§W_DID, a lookup subfunction
is performed (see Section 1.8.1). The file name located is removed from the
directory.

If the function modifier IO$M_DELETE is specified, the file is marked for
deletion. If the file is not currently open, it is deleted immediately. If the
file is open, it is deleted when the last accessor closes it.

Mount

Mount is a virtual I/O function that informs the ACP when a disk or
magnetic tape volume is mounted. MOUNT privilege is required.
I0$_MOUNT takes no arguments or function modifiers. This function
is a part of the volume mounting operation only, and it is not meant for
general use. Most of the actual processing is performed by the MOUNT
command or the Mount Volume ($MOUNT) system service.

ACP Control

1-30

ACP Control is a virtual I/O function that performs miscellaneous control
functions, depending on the arguments specified.

The following is the function code:
¢ I10$_ACPCONTROL

ACP—QIO Interface
1.6 Major Functions

The following is the function modifier:
¢ I0$M_DMOUNT—Dismounts a volume.

1.6.7.1

Input Parameters

The following are the device- or function-dependent arguments for

10$_ACPCONTROL:

¢ P1—The address of the file information block (FIB) descriptor.
* P2—The address of the file name string descriptor (optional).

¢ P3—The address of the word that is to receive the length of the
resultant file name string (optional).

¢ P4—The address of a descriptor for a buffer that is to receive the
resultant file name string (optional).

Table 1-13 lists FIB fields that control the processing of the
10$_ACPCONTROL function.

Table 1-13 10$_ACPCONTROL and the File Information Block

Field

Field Values

Meaning

FIB$W_CNTRLFUNC
FIBSL_CNTRLVAL

FIBSL_ACL_STATUS

FIBSL_STATUS

FIBSL_ALT_ACCESS

FIBSV_ALT_REQ

FIB$V_ALT_GRANTED

Specifies the control function to be performed. This field
overlays FIBSW_EXCTL.

Specifies additional function-dependent data. This field
overlays FIBSL_EXSZ.

Status of the requested ACL attribute operation, if any.
The ACL attributes are included in Table 1-7. If no ACL
attributes are given, SS$_NORMAL is returned here.

Alternate access status. The following bits are supported:

Set to indicate whether the alternate access bit is required
for the current operation. If not set, the alternate access bit
is optional.

If FIB$V_ALT_REQ = 0 and the alternate access check
succeeded, the FIB bit returned from the file system is set.

A 32-bit mask that represents an access mask to check
against file protection; for example, to open a file for read
and to check whether it can be deleted or not. The mask
has the same configuration as the standard protection
mask.

1.6.7.2 Magnetic Tape Control Functions
Table 1-14 lists FIB field applicable to magnetic tape operations.

1-31

ACP—QIO Interface
1.6 Major Functions

Table 1—-14 Magnetic Tape Operations and the File Information Block

Field

Field Values

Meaning

FIBW_CNTRLFUNC

FIB$C_REWINDFIL
FIB$C_REWINDVOL
FIB$C_POSEND
FIB$C_NEXTVOL
FIB$C_SPACE

FIB$C_CLSEREXCP

Several ACP control functions are used for magnetic tape
positioning. These functions are specified by supplying a FIB
with P1 containing the FIB descriptor address. Modifiers and
parameters P2, P3, and P4 are not allowed. These functions
clear serious exceptions in magnetic tape drivers. The following
control functions can be specified to control magnetic tape
positioning:

Rewind to beginning-of-file.

Rewind to beginning-of-volume set.

Position to end-of-volume set.

Force next volume.

Space n blocks forward or backward. The FIB$L_CNTRLVAL
field specifies the number of magnetic tape blocks to space
forward if positive or to space backward if negative.

If set, clears the serious exception in the magnetic tape driver
(see FIB$C_USEREOT in Section 1.6.1 and Section 1.6.2). If
writing, this allows the user to write data blocks beyond the EOT
marker, which can result in the magnetic tape not conforming

to the ANSI standard for magnetic tapes (see ANSI Standard
X3.27-1978). If reading, this allows the user to handle the move
to the next volume or to stop reading the tape. The user should
not attempt to read past EOV.

1-32

1.6.7.3 Miscellaneous Disk Control Functions
Several ACP control functions are available for disk volume control. The
following function does not use parameters P2, P3, and P4:

IO$M_DMOUNT

Specifying the dismount modifier on the 10$_ACPCNTRL
function executes a dismount QIO. No parameters in the
FIB are used; the FIB can be omitted. This function does
not perform a dismount by itself, but is used to synchronize
the ACP with the DISMOUNT command and the Dismount
Volume ($DISMOUNT) system service.

The FIB§W_CNTRLFUNC field of the FIB specifies the following
miscellaneous control functions (with no modifier on the I0$_
ACPCONTROL function code). These functions use no other parameters.

FIB$C_REMAP

Remap a file. The file window for the file open on the user’s
channel is remapped so that it maps the entire file.

ACP—QIO Interface
1.6 Major Functions

FIB$C_LOCK_VOL Allocation lock the volume. Operations that change the file
structure, such as file creation, deletion, extension, and
deaccess, are not permitted. If such requests are queued to
the file system for an allocation-locked volume, they are not
processed until the FIB$C_UNLK_VOL function is issued to
unlock the volume.

To issue the FIB$C_LOCK_VOL function, you must have
either a system UIC or SYSPRYV privilege, or be the owner of
the volume.

FIB$C_UNLK_VOL Unlock the volume. Cancels FIB$C_LOCK_VOL. To issue
this function, you must have either a system UIC or SYSPRV
privilege, or be the owner of the volume.

1.6.7.4 Disk Quotas

Disk quota enforcement is enabled by a quota file on the volume, or

relative volume 1 if the file is on a volume set. The quota file appears in
the volume’s master file directory (MFD) under the name QUOTA.SYS;1.
This section describes the control functions that operate on the quota file.

Table 1-15 lists the enable and disable quota control functions.

Table 1-15 Disk Quota Functions (Enable/Disable)

Value

Meaning

FIBSC_ENA_QUOTA

FIB$C_DSA_QUOTA

Enable the disk quota file. If a nonzero directory file ID is specified in FIB$W_DID, a
lookup subfunction is performed to locate the quota file (see Section 1.3.1). To issue
this function, you must have either a system UIC or SYSPRYV privilege, or be the
owner of the volume.

The quota file specified by FIB§W_FID, if present, is accessed by the ACP, and quota
enforcement is turned on. By convention, the quota file is named [0,0JQUOTA.SYS;1.
Therefore, FIBSW_DID should contain the value 4,4,0 and the name string specified
with P2 should be “QUOTA.SYS;1".

Disable the disk quota file. The quota file is deaccessed and quota enforcement is
turned off. To issue this function, you must have either a system UIC or SYSPRV
privilege, or be the owner of the volume.

Table 1-16 lists the quota control functions that operate on individual
entries in the quota file. Each operation transfers quota file data to and
from the ACP using a quota data block. This block has the same format as
a record in the quota file. Figure 1-9 shows the format of this block.

I0$_ACPCONTROL functions that transfer quota file data between
the caller and the ACP use the following device- or function-dependent
arguments:

¢ P2—The address of a descriptor for the quota data block being sent to
the ACP.

e P3—The address of a word that returns the data length.

® P4—The address of a descriptor for a buffer to receive the quota data
block returned from the ACP.

1-33

ACP—QIO Interface

1.6 Major Functions

Table 1-16 Disk Quota Functions (Individual Entries)

Value

Meaning

FIB$C_ADD_QUOTA

FIB$C_EXA_QUOTA

FIB$C_MOD_QUOTA

FIB$C_REM_QUOTA

Add an entry to the disk quota file, using the UIC and quota specified in the P2
argument block. FIB$C_ADD_QUOTA requires write access to the quota file.

Examine a disk quota file entry. The entry whose UIC is specified in the P2 argument
block is returned in the P4 argument block, and its length is returned in the P3
argument word. Using two flags in FIBSL_CNTRLVAL, it is possible to search
through the quota file using wildcards. The two flags are:

FIBSM_ALL_MEM Match all UIC members
FIBSM_ALL GRP Match all UIC groups

The ACP maintains position context in FIBSL_WCC. On the first examine call, you
specify 0 in FIB$L_WCC; the ACP returns a nonzero value so that each succeeding
examine call returns the next matching entry.

Read access to the quota file is required to examine ali non-user entries.

Modify a disk quota file entry. The quota file entry specified by the UIC in the P2
argument block is modified according to the values in the block, as controlled by
three flags in FIBSL_CNTRLVAL:

FIB$M_MOD_PERM Change the permanent quota
FIBSM_MOD_OVER Change the overdraft quota
FIB$M_MOD_USE Change the usage data

The usage data can be changed only if the volume is locked by FIB$C_LOCK_VOL
(see Section 1.6.7.3). FIB$C_MOD_QUOTA requires write access to the quota file.

The P3 and P4 arguments return the modified quota entry to you.

By using the flags FIBSM_ALL_MEM and FIB$M_ALL_GRP, you can search through
the quota file using wildcards just as you would with the FIBSC_EXA_QUOTA
function.

Remove a disk quota file entry whose UIC is specified in the P2 argument block.
FIB$C_REM_QUOTA requires write access to the quota file.

The P3 and P4 arguments return the removed quota file entry to you.

By using the flags FIBSM_ALL_MEM and FIBSM_ALL_GRP, you can search through
the quota file using wildcards just as you would with the FIB$C_EXAQUOTA function.

1-34

1.7

ACP—QIO Interface
1.6 Major Functions

Figure 1-9 Quota File Transfer Block

31 0
Flags Longword (DQF$L_FLAGS)

User Identification Code (DQF$L_UIC)
Current Usage (DQF$L_USAGE)
Permanent Quota (DQF$L_PERMQUOTA)
Overdraft Limit (DQF$L_OVERDRAFT)

(Reserved for Future Use)

ZK-0643-GE

I/O Status Block

Figure 1-10 shows the I/O status block (I0OSB) for ACP-QIO functions.
Appendix A lists the status returns for these functions. (The VMS
System Messages and Recovery Procedures Reference Manual provides
explanations and suggested user actions for these returns.)

The file ACP returns a completion status in the first longword of the IOSB.
In an extend operation, the second longword is used to return the number
of blocks allocated to the file. If a contiguous extend operation
(FIB$M_ALCON) fails, the second longword is used to return the size of
the file after truncation.

Values returned in the IOSB are most useful during operations in
compatibility mode. When executing programs in the native mode, use
the values returned in FIB locations.

Figure 1-10 10SB Contents - ACP—QIO Functions

42 10SB

Not Used Status
+4
ZK-0644-GE

If an extend operation (including CREATE) was performed, I0SB+4
contains the number of blocks allocated, or the largest available contiguous
space if a contiguous extend operation failed. If a truncate operation was
performed, IOSB+4 contains the number of blocks added to the file size to
reach the next cluster boundary.

1-35

2

2.1

2.2

2.2.1

Card Reader Driver

This chapter describes the use of the VMS card reader driver that supports
the CR11 card reader.

Supported Card Reader Device

The CR11 card reader reads standard 80-column punched data cards.

Driver Features

The VMS card reader driver provides the following features:

* Support for multiple controllers of the same type; for example, more
than one CR11 can be used on the system

* Binary, packed Hollerith, and translated 026 or 029 read modes
* Unsolicited interrupt support for automatic card reader input spooling

* Special card punch combinations to indicate an end-of-file condition
and to set the translation mode

* Error recovery
The following sections describe the read modes, special card punch
combinations, and error recovery in greater detail.

The VMS operating system provides the following card reader device- or
function-dependent modifier bits for read data operations:

e IO$M_PACKED—Read packed Hollerith code
¢ I0$M_BINARY-—Read binary code

If IO$M_PACKED is set, the data is packed and stored in sequential bytes
of the input buffer. If IO$M_BINARY is set, the data is read and stored
in sequential words of the input buffer. IO$M_BINARY takes precedence
over JIO$M_PACKED.

The read mode can also be set by a special card punch combination that
sets the translation mode (see Section 2.2.1.2), or by the set mode function
(see Section 2.4.3).

Special Card Punch Combinations

The VMS card reader driver recognizes three special card punch
combinations in column 1 of a card. One combination signals an end-
of-file condition. The other two combinations set the current translation
mode.

2-1

Card Reader Driver
2.2 Driver Features

2.2.11

End-of-File Condition

A card with the 12-11-0-1-6-7-8-9 holes punched in column 1 signals an
end-of-file condition. If the read mode is binary, the first eight columns
must contain that punch combination.

2.2.1.2 Set Translation Mode

If the read mode is nonbinary, nonpacked Hollerith (the IO$M_BINARY
and IO$M_PACKED function modifiers are not set), the current
translation mode can be set to the 026 or 029 punch code. (Table 2-5 lists
the 026 and 029 punch codes.) A card with the 12-2-4-8 holes punched
in column 1 sets the translation mode to the 026 code. A card with the
12-0-2-4-6-8 holes punched in column 1 sets the translation mode to the
029 code. The translation mode can be changed as often as required.

If a translation mode card contains punched information in columns 2
through 80, it is ignored.

The system can read cards that were punched on an 026 punch or an 029
punch. By default, the translation mode is 029; that is, the system reads
cards from an 029 punch. However, you can change the translation mode
by using the following:

¢ The SET CARD_READER command
¢ Translation mode cards
Use the SET CARD_READER command, with the /026 or /029 qualifier,

to set the card reader to accept cards from either an 026 or an 029 card
punch,

Logical, virtual, and physical read functions result in only one card
being read. If a translation mode card is read, the read function is not
completed, and another card is read immediately.

2.2.2 Submitting Batch Jobs Through the Card Reader

2-2

When you submit a batch job through a system card reader, precede the
card deck containing the command procedure with cards containing JOB
and PASSWORD commands. These cards specify your user name and
password and, when executed, effect a login for you. The last card in
the deck must contain the EOJ (End of Job) command. The EOQOJ card is
equivalent to logging out. You can also use an overpunch card instead of
an EOJ card to signal the end of a job. To do this, use an EOF card
(12-11-0-1-6-7-8-9) overpunch or use the EOJ command. Figure 2-1
illustrates a card reader batch job.

223

2.2.4

Card Reader Driver
2.2 Driver Features

Figure 2-1 A Card Reader Batch Job

[$EOQU

i|-_|J—_Z.Command Input Stream...

$ PASSWORD HENRY
$ JOB HIGGINS

ZK-0812-GE

When the system reads a job from the card reader, it validates the

user name and password specified on the JOB and PASSWORD cards.
Then, it copies the entire card deck into a temporary disk file named
INPBATCH.COM in your default disk and directory, and it queues the
job for batch execution. Thereafter, processing is the same as for jobs
submitted interactively with the SUBMIT command. When the batch job
is completed, the operating system deletes the INPBATCH.COM file.

You can prevent other users from seeing your password by suppressing
printing when you keypunch the PASSWORD card.

Passing Data to Commands and Images

To pass data to commands and images in batch jobs that you submit
through a card reader, you can do the following:

® Include the data in the command procedure by placing the data on the
lines after the command or image that uses the data. Use the DECK
and EOD commands if the data lines begin with dollar signs.

e Temporarily redefine SYS$INPUT as a file by using the
DEFINE/USER_MODE command.

Error Recovery

The VMS card reader driver performs the following error recovery
operations:

e If the card reader is offline for 30 seconds, a “device not ready”
message is sent to the system operator.

¢ If a recoverable card reader failure is detected, a “device not ready”
message is sent every 30 seconds to the system operator.

2-3

Card Reader Driver
2.2 Driver Features

¢ The current operation is retried every two seconds to test for a changed
situation, such as the removal of an error condition.

* The current I/O operation can be canceled at the next timeout without
the card reader being online. When the card reader comes online,
device operation resumes automatically.

When a recoverable card reader failure is detected and an error message
is displayed on the system operator console, examine the card reader
indicator lights to determine the reason for the failure. Any errors that
occur must be fixed manually. The recovery is transparent to the user
program issuing the I/O request.

The four categories of card reader failures and their respective recovery
procedures are as follows:

* Pick check—The next card cannot be delivered from the input hopper
to the read mechanism. To recover from this error, remove the next
card to be read from the input hopper and smooth the leading edge
(the edge that enters the read mechanism first). Replace the card
in the input hopper and press the RESET button. The card reader
operation resumes automatically. If a pick check error occurs again on
the same card, remove the card from the input hopper and repunch
it. Place the duplicate card in the input hopper and press the RESET
button. If the problem persists, either an adjustment is required, or
nonstandard cards are in the input hopper.

¢ Stack check—The card just read did not stack properly in the output
hopper. To recover from this error, remove the last card read from
the output hopper and examine it. If it is excessively worn or
mutilated, repunch it. Place either card in the read station of the
input hopper and press the RESET button. The card reader operation
resumes automatically. If the stack check error recurs immediately, an
adjustment is required.

* Hopper check—Either the input hopper is empty or the output hopper
is full. To recover from this error, examine the input hopper and,
if empty, either load the next deck of input cards or an end-of-file
card. If the input hopper is not empty, remove the cards that have
accumulated in the output hopper and press the RESET button. The
card reader operation resumes automatically.

* Read check—The last card was read incorrectly. To recover from this
error, remove the last card from the output hopper and examine it. If
it is excessively worn, mutilated, or contains punches before column
0 or after column 80, repunch the card. Place either card in the read
station of the input hopper and press the RESET button. The card
reader operation resumes automatically. If the read check error recurs
immediately, an adjustment is necessary.

2-4

Card Reader Driver
2.3 Card Reader Driver Device Information

2.3 Card Reader Driver Device Information

You can obtain information on card reader characteristics by using the
Get Device/Volume Information ($GETDVI) system service. See the VMS
System Services Reference Manual.

$GETDVI returns card reader characteristics when you specify the item
codes DVI$_DEVCHAR and DVI$_DEVDEPEND. Tables 2-1 and 2-2
list these characteristics. The $DEVDEF macro defines the device-
independent characteristics; the $SCRDEF macro defines the device-
dependent characteristics.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and device
class names, which are defined by the $DCDEF macro. The device class
for card readers is DC$_CARD. The device type for the CR11 is DT$_CR11.
DVI$_DEVBUFSIZ returns the buffer size. The default buffer size to be
used for all card reader devices is 80 bytes.

Table 2-1 Card Reader Device-Independent Characteristics

Characteristic’ Meaning

Dynamic Bit (Conditionally Set)

DEV$M_AVL Device is online and available

Static Bits (Always Set)

DEV$M_IDV Device is capable of input
DEV$SM_REC Device is record-oriented

1Defined by the $DEVDEF macro.

Table 2-2 Device-Dependent Characteristics for Card Readers

Value' Meaning

CR$V_TMODE Specifies the translation mode for nonbinary, nonpacked Hollerith
CR$S_TMODE data transfers.> Possible values are:

CR$K_T026 Translate according to 026 punch code
CR$K_T029 Translate according to 029 punch code

Defined by the $CRDEF macro.
2Section 2.2.1.2 describes the set translation mode punch code.

24 Card Reader Function Codes

The VMS card reader can perform logical, virtual, and physical I/O
functions. Table 2-3 lists these functions and their function codes. These
functions are described in more detail in the sections that follow.

2-5

2.4.1

Card Reader Driver
2.4 Card Reader Function Codes

Table 2-3 Card Reader 1/O Functions

Function Code and Function
Arguments Type! Modifiers Function
10$_READLBLK P1,P2 L IO$M_BINARY Read logical block.
I0$M_PACKED
I0$_READVBLK P1,P2 \" I0$M_BINARY Read virtual block.
I0$M_PACKED
I0$_READPBLK P1,P2 P 10$M_BINARY Read physical block.
I0$M_PACKED
I0$_SENSEMODE L Sense the card reader
characteristics and return
them in the I/O status
block.
I0$_SETMODE P1 L Set card reader

characteristics for
subsequent operations.

I0$_SETCHAR P1 P Set card reader
characteristics for
subsequent operations.

1V = virtual; L = logical; P = physical

Read

2-6

Read is a function that reads data from the next card in the card reader
input hopper into the designated memory buffer in the specified format.
Only one card is read each time a read function is specified.

The VMS operating system provides the following read function codes:
¢ IO$_READVBLK—Read virtual block

¢ 10$_READLBLK—Read logical block

¢ 10$_READPBLK—Read physical block

The following function-dependent arguments are used with these codes:

¢ P1—The starting virtual address of the buffer that is to receive the
data

¢ P2—The number of bytes that are to be read in the specified format

The read binary function modifier (I0$M_BINARY) and the read packed
Hollerith function modifier I0$M_PACKED) can be used with all read
functions. If IO$M_BINARY is specified, successive columns of

data are stored in sequential word locations of the input buffer. If
10$M_PACKED is specified, successive columns of data are packed and
stored in sequential byte locations of the input buffer. If neither of these
function modifiers is specified, successive columns of data are translated
in the current mode (026 or 029) and are stored in sequential bytes of the
input buffer. Figure 2-2 shows how data is stored by IO$M_BINARY and
I0$M_PACKED.

2.4.2

2.4.3

Card Reader Driver
2.4 Card Reader Function Codes

Figure 2-2 Binary and Packed Column Storage

Binary Column (IO$M_BINARY):
15 12 11 0
* 12 11 01 2 34567 889

*Bits 12-15 are 0.
Packed Column (I0$M_PACKED):

7 3 2 0
12 11 0 9 8 n*

*n = 0 if no punches in rows 1-7.
=1ifapunchinrow 1.
=2 if apunch in row 2.

=7 if apunchinrow 7.

ZK-0646-GE

Regardless of the byte count specified by the P2 argument, a maximum
of 160 bytes of data for binary read operations and 80 bytes of data for
nonbinary read operations I0$M_PACKED, or 026 or 029 modes) are
transferred to the input buffer. If P2 specifies less than the maximum
quantity for the respective mode, only the number of bytes specified are
transferred; any remaining buffer locations are not filled with data.

Sense Mode

Sense mode is a function that senses the current device-dependent card
reader characteristics and returns them in the second longword of the I/O
status block (see Table 2-2). No device- or function-dependent arguments
are used with I0$_SENSEMODE.

Set Mode

Set mode operations affect the operation and characteristics of the
associated card reader device. The VMS operating system defines the
following types of set mode functions:

¢ Set mode

¢ Set characteristic

2-7

Card Reader Driver
2.4 Card Reader Function Codes

2-8

2.4.3.1

Set Mode

The set mode function affects the characteristics of the associated card
reader. Set mode is a logical I/O function and requires the access privilege
necessary to perform logical I/0. The following function code is provided.

* I0$_SETMODE

This function takes the following device- or function-dependent argument:

¢ P1—The address of a characteristics buffer

Figure 2-3 shows the quadword set mode characteristics buffer.

Figure 2-3 Set Mode Characteristics Buffer

31 16 15 0
Buffer Size Not Used

Card Reader Characteristics

ZK-0647-GE

Table 2-4 lists the card reader characteristics and their meanings. The
$CRDEF macro defines the characteristics values. Table 2-5 lists the 026
and 029 card reader codes.

Table 2-4 Set Mode and Set Characteristic Card Reader Characteristics

Value' Meaning

CR$V_TMODE Specifies the translation mode for nonbinary, nonpacked Hollerith
CR$S_TMODE data transfers. Possible values are:

CR$K_T026 Translate according to 026 punch code
CR$K_T029 Translate according to 029 punch code

1If neither the 026 nor 029 mode is specified, the default mode can be set by the
SET CARD_READER command.

Table 2-5 Card Reader Codes

Character ASCllg DEC029 DECO026
{ 173 120 120

} 175 110 110
SPACE 40 NONE NONE

(continued on next page)

Card Reader Driver
2.4 Card Reader Function Codes

Table 2-5 (Cont.) Card Reader Codes

Character ASCllg DEC029 DECO026
! 41 1182 1287
" 42 87 085
_ 43 83 086
$ 44 1183 1183
% 45 084 087
& 46 12 187
. 47 85 86

(50 1285 084
) 51 1185 1284
. 52 1184 1184
+ 53 1286 12

, 54 083 083
- 55 11 11

. 56 1283 1283
/ 57 01 01

0 60 0 0

1 61 1 1

2 62 2 2

3 63 3 3

4 64 4 4

5 65 5 5

6 66 6 6

7 67 7 7

8 70 8 8

9 71 9 9

: 72 82 1182
; 73 1186 082
< 74 1284 1286
- 75 86 83

> 76 086 186
? 77 087 1282
@ 100 84 84

A 101 121 12 1
B 102 122 122
c 103 123 123
D 104 12 4 124

(continued on next page)

2-9

Card Reader Driver
2.4 Card Reader Function Codes

Table 2-5 (Cont.) Card Reader Codes

Character ASClig DECO029 DEC026
E 105 125 125
F 106 126 126
G 107 127 127
H 110 128 128
| 111 129 129
J 112 111 111
K 113 112 112
L 114 113 113
M 115 114 114
N 116 115 15
0] 117 116 116
P 120 117 117
Q 121 118 118
R 122 119 119
S 123 02 02

T 124 03 03

U 125 04 04

\ 126 05 05
w 127 06 06

X 130 07 07

Y 131 08 08
Y4 132 09 09

[133 1282 1185
\ 134 1187 87

] 135 082 1285
torA 136 1287 85
«—or _ 137 085 82

Application programs that change specific card reader characteristics
should first use the I0$_SENSEMODE function to read the current
characteristics, modify them, and then use the set mode function to write
back the results. Failure to follow this sequence results in clearing any
previously set characteristic.

2.4.3.2 Set Characteristic
The set characteristic function also affects the characteristics of the
associated card reader device. Set characteristic is a physical I/O function,
and requires the access privilege necessary to perform physical I/O
functions. The following function code is provided:

e IO$_SETCHAR

2-10

2.5

Card Reader Driver
2.4 Card Reader Function Codes

This function takes the following device- or function-dependent argument:

¢ P1—The address of a characteristics buffer

Figure 2—-4 shows the set characteristic characteristics buffer.

Figure 2-4 Set Characteristic Buffer

31 16 15 8 7 0
Buffer Size Type Class

Card Reader Characteristics

ZK-0648-GE

The device type value is DT$_CR11. The device class value is DC$_CARD.
Table 2—4 lists the card reader characteristics for the Set Characteristic
function.

I/O Status Block

The I/O status block (IOSB) format for QIO functions on the card reader
is shown in Figure 2-5. Appendix A lists the status returns for these
functions. (The VMS System Messages and Recovery Procedures Reference
Manual provides explanations and suggested user actions for these
returns.) Table 2-2 lists the device-dependent data returned in the second
longword. The I0$_SENSEMODE function can be used to obtain this
data.

Figure 2-5 I0SB Contents

31 16 15 0
Byte Count Status

Device-Dependent Data

ZK-0649-GE

2-11

3 Disk Drivers

This chapter describes the use of VMS disk drivers. These drivers support
the devices listed in Table 3-1.

All disk drivers support Files—11 On-Disk Structure Level 1 and Level
2 file structures. Access to these file structures is through the DCL
commands INITIALIZE and MOUNT, followed by the VMS RMS calls
described in the VMS Record Management Services Manual. Files in
RT-11 format can be read or written with the file exchange facility
EXCHANGE.

3.1 Supported Disk Devices and Controllers

The following sections provide greater detail about the disk devices listed
in Table 3—-1. To obtain additional information about a device, use

the DCL command SHOW DEVICE with the /FULL qualifier, the Get
Device/Volume Information ($GETDVI) system service (from a program),
or the F$GETDVI lexical function (in a command line or command
procedure). Section 3.3 lists the information on disk devices returned

by $GETDVI.

Table 3-1 Supported Disk Devices

Disk Capacity
Device Code Type DSA (Logical Blocks/Drive)
RA60 DJ Removable Yes 400,176
RA70 DU Fixed Yes 547,041
RA80 DU Fixed Yes 236,964
RA81 DU Fixed Yes 891,072
RA82 DU Fixed Yes 1,216,665
RA90 DU Fixed Yes 2,343,750
RB0O2 DQ Cartridge No 20,480
RB80 DQ Fixed No 242,606
RC25 DA Fixed, Yes' 102,400?
Cartridge
RD32 DU Fixed Yes'? 83,204
RD51 DU Fixed Yes'? 21,600

Tincompatible with the UDA50, KDA50, KDB50, HSC40, HSC50, and HSC70 disk controllers.
251,200 fixed; 51,200 cartridge.

3The RD series of disk drives conforms to DSA when used with the RQDX series of controllers.
RD-series disk drives do not conform to DSA when used on a VAXstation 2000.

{continued on next page)

3-1

Disk Drivers

3.1 Supported Disk Devices and Controllers

3-2

Table 3—1 (Cont.) Supported Disk Devices

Disk Capacity
Device Code Type DSA (Logical Blocks/Drive)
RD52 DU Fixed Yes'?® 60,480
RD53 DU Fixed Yes!#® 138,672
RD54 DU Fixed Yes'? 311,200
RF30 DI Fixed Yes' 292,968
RF71 DI Fixed Yes' 781,250
RL0O2 DL Cartridge No 20,480
RMO03 DR Removable No 131,680
RMO05 DR Removable No 500,384
RM80 DR Fixed No 242,606
RP05 DB Removable No 171,798
RP06 DB Removable No 340,670
RP0O7 DR Fixed No 1,008,000
RK06 DM Cartridge No 27,126
RK07 DM Cartridge No 53,790
RRD40 DU or Optical Yes! 1,669,400
DK* Optical No 1,669,400
RRD50 DU Optical Yes! 1,669,400
RX01 DX Flexible No 494
RX02 DY Flexible No 4945
988 ¢
RX23 DU Flexible Yes' 2,734
RX33 DU Flexible Yes' 2,400
RX50 DU Flexible Yes! 800
Rz22 DK Fixed No 101,563
RZ23 DK Fixed No 203,125
RZ55 DK Fixed No 742,188
TU587 DD Cartridge No 512

Incompatible with the UDA50, KDA50, KDB50, HSC40, HSC50, and HSC70 disk controllers.

3The RD series of disk drives conforms to DSA when used with the RQDX series of controllers.
RD-series disk drives do not conform to DSA when used on a VAXstation 2000.

4SCSI interface RRD40 compact disc drive.
5Single density (See Section 3.3).
5Double density (See Section 3.3).

7A magnetic tape device, the TU58 operationally resembles a disk device. See Section 3.1.24
for a description of the TU58 in disk terms.

Disk Drivers
3.1 Supported Disk Devices and Controllers

3.1.1 UDA50 UNIBUS Disk Adapter

The UDA50 UNIBUS Disk Adapter (UDA50) is a microprocessor-based
disk controller for mass storage devices that implement the DIGITAL

Storage Architecture (DSA); for more information on the DSA, see
Section 3.2.3.

The UDA5O0 is used to connect any combination of four RA60, RA80, and
RAS81 disk drives to the UNIBUS. Two UDA50 controllers can be attached
to a single UNIBUS for a maximum of eight disk drives per UNIBUS.
On the VAX-11/780 processor, the VMS operating system supports one
UDAS5O on the first UNIBUS, which can accommodate certain other
options. Adding a second UDA50 requires a second UNIBUS. With the
exception of the first UNIBUS, a maximum of two UDA50s per UNIBUS
are supported. If two UDA50s are on a UNIBUS, no other options can

be placed on that UNIBUS. The VAX-11/730 processor supports only one
UDAS50 per UNIBUS.

The UDA50, in implementing DSA, takes over the control of the physical
disk unit. The VMS operating system processes request virtual or logical
I/0 on disks controlled by the UDA50. The VMS operating system maps
virtual block addresses into logical block addresses. The UDA50 then

resolves logical block addresses into physical block addresses on the disk.

The UDA50 corrects bad blocks on the disk by requesting that the disk
class driver revector a failing physical block to another, error-free
physical block on the disk; the logical block number is not changed (see
Section 3.2.10.1). Any bad blocks that might exist on a disk attached to a
UDAS5Q are transparent to the VMS operating system, which does logical
or virtual I/O to such a disk. The UDA50 also corrects most data errors.

3.1.2 KDA50 Disk Controller

The KDA50 disk controller is a two-module disk controller that allows the
RA-series DSA disk drives to be attached to Q-bus systems. The KDA50
performs the same functions as the UDA50 (see Section 3.1.1).

3.1.3 KDB50 Disk Controller

The KDB50 disk controller is a two-module disk controller that allows the
RA-series DSA disk drives to be attached to BI bus systems, such as the
VAX 8200 processor. The KDB50 performs the same functions as the
UDAS5O (see Section 3.1.1).

3.1.4 HSC-Series Controllers

The HSC series of intelligent disk controllers consists of the HSC40,

HSC50, and the HSC70. HSC controllers are high-speed, high-availability
controllers for mass storage devices that implement the DIGITAL Storage
Architecture (DSA); for more information about the DSA, see Section 3.2.3.
An HSC controller is connected to a processor by a Computer Interconnect

3-3

Disk Drivers
3.1 Supported Disk Devices and Controllers

(CI). The VMS operating system supports the use of the HSC40, HSC50,
HSC70 in controlling the RA family of disks.

The HSC40 can support up to 12 SDI disks from the SA or RA families
of disk drives or a combination of up to 12 SDI disk drives and TA-series
tape drives.

The HSC70 can support up to 32 SDI disks from the SA or RA families of
disk drives or a combination of SDI disk drives and TA-series tape drives.

HSC controllers, in implementing DSA, take over the control of the
physical disk unit. VMS operating system processes request virtual or
logical I/O on disks controlled by the HSC controller. The VMS operating
system maps virtual block addresses into logical block addresses. The
HSC controller then resolves logical block addresses into physical block
addresses on the disk.

HSC controllers correct bad blocks on the disk by revectoring a failing
physical block to another, error-free physical block on the disk; the logical
block number is not changed. The VMS operating system, which performs
logical or virtual I/O to such a disk, does not recognize that any bad blocks
might exist on a disk attached to an HSC controller. HSC controllers also
correct most data errors.

The HSC series of controllers provides access to disks despite most
hardware failures. Use of an HSC controller permits two or more
processors to access files on the same disk.

Note: Only one system should have write access to a Files-11 On-Disk
Structure Level 1 disk or to a foreign-mounted disk; all other
systems should only have read access to the disk. For Files-11
On-Disk Structure Level 2 volumes, the VMS operating system
enables read/write access to all nodes that are members of the
same VAXcluster.

HSC-series controllers allow you to add or subtract disks from the device
configuration without rebooting the system.

3.1.5 Sllintegral Adapter

The SII integral adapter on the MicroVAX 3300/3400 provides access
through the DIGITAL Small Storage Interconnect (DSSI) bus to a
maximum of seven storage devices.

The term dual-host refers to pairs of CPUs connected to a bus. In dual-
host configurations of pairs of MicroVAX 3300/3400 CPUs, the DSSI bus
must be connected between the SII integral adapters present on both
CPUs.

A maximum of six devices can be connected to the SII integral adapter in
dual-host configurations.

Disk Drivers
3.1 Supported Disk Devices and Controllers

3.1.6 KFQSA Adapter

The KFQSA adapter allows a maximum of seven storage devices for use
on Q-bus systems.

In dual-host configurations of pairs of MicroVAX 3800/3900 CPUs, the
DSSI bus must be connected between KFQSA adapters present on both
CPUs.

A maximum of six devices can be connected to the KFQSA adapter in
dual-host configurations.

3.1.7 RQDXS3 Controller

The RQDX3 is a Q-bus controller used with the RD series of Winchester-
type disk drives and the RX33 and RX50 flexible diskette drives.

3.1.8 RA70 and RA90 Disk Drives

The RAT70 is a 5.25-inch 280-megabyte (MB) high-performance DSA disk
drive that uses thin-film media. It has an average access time of 27.0
milliseconds (ms) and average seek time of 19.5 ms. The RA70 uses the
Standard Disk Interconnect (SDI) and the KDA50 controller, and can be
dual-ported.

The RA90 is a 1.2-gigabyte disk drive designed with thin-film heads and
9-inch thin-film media with an average seek time of 18.5 ms. The RA90
conforms to DSA and uses the SDI. Both the RA70 and RA90 disk drives
can be connected to medium-sized systems with the HSC-series controllers,
KDB50, or UDA50 controllers.

3.1.9 RAG60 Disk

The RA60 device uses high-capacity, removable media that provides 205
MB of usable storage (7.5 million bits of data per square inch) with
transfer rates of 1.9 MB per second (burst) and 950 KB per second
(sustained). The RA60 belongs to the DIGITAL Storage Architecture
(DSA) family of disk devices (see Section 3.2.3). It is connected to either
a UNIBUS Disk Adapter (UDA50) or an HSC50 controller. Up to four
disk drives can be connected to each UDA50. Up to 24 disk drives can be
connected to each HSC50.

3.1.10 RAS80/RB80/RM80 and RA81 Fixed-Media Disks

The R80 disk drive is a high-capacity, moving-head disk whose
nonremovable media consists of 14 data surfaces. Depending on how it
is connected to the system, the R80 is identified internally as an RAS80,
RB80, or RM80, as follows:

¢ RA80—An R80 connected to the system through a UNIBUS disk
adapter (UDA50) or an HSC50 controller. Up to four disk drives can

3-5

Disk Drivers

3.1 Supported Disk Devices and Controllers

be connected to each UDA50. Up to 24 disk drives can be connected to
each HSC50.

¢ RB80—An R80 connected to the system through an RB730 controller
on a VAX 11/730 processor. Of the maximum of four drives that can be
connected to an RB730 controller, only one can be an RB80.

* RM80—An R80 connected to the system through a MASSBUS adapter
(MBA). Up to eight disk drives can be connected to each MBA.

The RA81 is a high-capacity disk drive with nonremovable media that can
hold more than 890,000 blocks of data. This translates into more than
455 MB per spindle. The RA81 is connected to a UDA50 or an HSC50
controller. Up to four disk drives can be connected to each UDA50. Up to
24 drives can be connected to each HSC50.

The RA80 and RA81 belong to the DIGITAL Storage Architecture (DSA)
family of disk devices (see Section 3.2.3).

3.1.11 RBO02 and RL02 Cartridge Disk

The RLO2 cartridge disk is a removable, random-access mass storage
device with two data surfaces. The RL02 is connected to the system

by an RL11 controller that interfaces with the UNIBUS adapter. Up

to four R1.02 disk drives can be connected to each RL11 controller. For
physical I/O transfers, the track, sector, and cylinder parameters describe
a physical 256-byte RL02 sector (see Section 3.4).

When the RLO02 is connected to an RB730 controller on a VAX-11/730
processor, it is identified internally as an RB02 disk drive. Disk geometry
is unchanged and RLO2 disk packs can be exchanged between drives on
different controllers. Up to four drives can be connected to the RB730
controller.

3.1.12 RC25 Disk

The RC25 disk is a self-contained, Winchester-type, mass storage device
that consists of a disk adapter module, a disk drive, and an integrated
disk controller. The drive contains two 8-inch, double-sided disks. One of
the disks (RCF25) is a sealed, nonremovable, fixed-media disk. The other
disk is a removable cartridge disk that is sealed until it is loaded into the
disk drive. The disks share a common drive spindle, and together they
provide 52 million bytes of storage. Adapter modules interface the RC25
with either a UNIBUS system or a Q-bus system.

3.1.13 RD-Series Disks

3-6

The RD53 and RD54 are 5.25-inch, full-height, Winchester-type drives
with average access time of 38 ms and a data transfer rate of 0.625 MB
per second. The RD53 and RD54 have a formatted capacity of 71 MB and
159 MB, respectively. When used with the RQDX3 controller, the RD53
and RD54 are DSA disks.

Disk Drivers
3.1 Supported Disk Devices and Controllers

See Section 3.2.11 for information about using RD series disks on the
VAXSstation 2000.

3.1.14 RF-Series Disks

The RF series of Winchester-type disk drives consists of the RF30 and
the RF71. The RF30 is a 150-MB, 5.25-inch, half-height disk drive
while the RF71 is a 400-MB full-height disk drive. The RF30 and RF71
include an embedded controller for multihost access and a Mass Storage
Communications Protocol (MSCP) server. The RF71 has a peak data
transfer rate of 1.5 MB per second with average seek and access time of
21 ms and 29 ms, respectively.

Both the RF30 and RF71 disks use DIGITAL Storage System Interconnect
(DSSI) bus and host adapters.

3.1.15 RKO06 and RK07 Cartridge Disks

The RKO06 cartridge disk is a removable, random-access, bulk storage
device with three data surfaces. The RKO7 cartridge disk is a double-
density RK06. The RK06 and RKO07 are connected to the system by an
RK611 controller that interfaces to the UNIBUS adapter. Up to eight disk
drives can be connected to each RK611.

3.1.16 RMO03 and RMO05 Pack Disks

The RM03 and RMO05 pack disks are removable, moving-head disks that
consist of five data surfaces for the RM03 and 19 data surfaces for the
RMO5. These disks are connected to the system by a MASSBUS adapter
(MBA). Up to eight disk drives can be connected to each MBA.

3.1.17 RPO05 and RPO06 Disk

The RP05 and RP06 removable disks consist of 19 data surfaces and a
moving read/write head. The RP06 removable disk has approximately
twice the capacity of the RP05. These disks are connected to the system
by an MBA. Up to eight disk drives can be connected to each MBA.

3.1.18 RPO07 Fixed Media Disk

The RPO07 is a 516-MB, fixed media disk drive that attaches to the
MASSBUS of the VAX-11/780 system. The RP07 transfers data at 1.3
million bytes per second or as an option at a peak rate of 2.2 million
bytes per second. The nine platters rotate at 3600 rpm and their data
is accessed at an average speed of 31.3 milliseconds. These disks are
connected to the system by an MBA. Up to eight disk drives can be
connected to each MBA.

3-7

Disk Drivers
3.1 Supported Disk Devices and Controllers

3.1.19 RRD40 and RRD50 Read-Only Memory (CDROM)

The RRD40 and RRD50 are Compact Disc Read-Only Memory (CDROM)
devices that use replicated media with a formatted capacity of
_approximately 600 MB.

The RRD40 is a 5.25-inch half-height, front-loading table-top or embedded
device that attaches to the system using either the Small Computer
System Interface (SCSI) or Q-bus interface.

The RRD50 is a 5.25-inch, top-loading table-top device that attaches to the
system using a Q-bus interface.

The RRD40 has an average access time of 0.5 seconds while the average
access time for the RRD50 is 1.5 seconds. Both the RRD40 and RRD50
have a data transfer rate of 150 KB per second.

The media for the RRD40 and the RRD50 are removable 4.7-inch

(120 mm) compact disks. However, the media for the RRD40 are enclosed
in protective self-loading carriers. The RRD40 with a SCSI interface

is also available as an embedded unit. The RRD40 and RRD50 Q-bus
subsystems are standard disk MSCP devices.

3.1.20 RXO01 Console Disk

The RX01 disk uses a diskette. The disk is connected to the LSI console
on the VAX-11/780, which the driver accesses using the MTPR and MFPR
privileged instructions.

For logical and virtual block I/O operations, data is accessed with one block
resolution (four sectors). The sector numbers are interleaved to expedite
data transfers. Section 3.2.9 describes sector interleaving in greater detail.

For physical block I/O operations, the track, sector, and cylinder
parameters describe a physical, 128-byte RX01 sector (see Figure 3-1
and Section 3.4). Note that the driver does not apply track-to-track skew,
cylinder offset, or sector interleaving to this physical medium address.

3.1.21 RXO02 Disk

The RX02 disk is a mass storage device that uses removable diskettes.
The RX02 supports existing single-density, RX01-compatible diskettes. A
double-density mode allows diskettes to be recorded at twice the linear
density. An entire diskette must be formatted in either single or double
density. Mixed mode diskettes are not allowed.

The RX02 is connected to the system by an RX211 controller that
interfaces with the UNIBUS adapter. Up to two disk drives can be
controlled by each RX211.

3-8

Disk Drivers
3.1 Supported Disk Devices and Controllers

Figure 3—1 Disk Physical Address

31 16 15 87 0
P3: Cylinder Track Sector

(Except RX01 and RX02)

31 16 15 0
P3: Track. Sector

(RX01 and RX02 Only)

ZK-0652-GE

For logical and virtual block I/O operations, data is accessed with
single block resolution (four single-density sectors or two double-density
sectors). The sector numbers are interleaved to expedite data transfers.
Section 3.2.9 describes this feature in greater detail.

For physical block I/O operations, the track and sector parameters shown
in Figure 3-1 describe a physical sector (128 bytes in single density; 256
bytes in double density). The driver does not apply track-to-track skew,
cylinder offset, or sector interleaving to the physical medium address.

3.1.22 RX-Series Drives
The following sections describe the RX family of flexible diskette drives.

3.1.22.1 RX23
The RX23 device is a one-inch high, flexible diskette drive that uses
3.5-inch microfloppy diskettes. The RX23 drive can access standard-
and high-density media. The following table summarizes capacities for
standard- and high-density media.

3-9

Disk Drivers

3.1 Supported Disk Devices and Controllers

Density Unformatted Formatted
Standard 1.0 MB 700 KB
High 2.0 MB 1.4 MB

The RX23 is backwardly compatible in that it can read 1-MB media. It
can also read and write 2.0-MB double-sided, high-density (135 tracks per
inch) media.

The RX23 communicates with the controller using the ST506 fixed disk
interconnect (FDI).

3.1.22.2 RX33

The RX33 is a 1.2 MB, 5.25-inch, half-height diskette drive. The RX33

can record in either standard- or high-density mode. High-density mode
provides 1.2 MB of storage using 96 tracks per inch using double-sided,
high-density diskettes.

In standard-density mode, the RX33 drive is read- and write-compatible
with single-sided, standard-density RX50 diskettes.

3.1.22.3 RX50

The RX50 dual diskette drive stores data in fixed-length blocks on
5.25-inch 0.8-MB, flexible diskettes using preformatted headers. The RX50
can accommodate two diskettes simultaneously.

3.1.23 RZ-Series Disks

The RZ series of Winchester-type disk drives consists of the RZ22, RZ23,
and the RZ55. The RZ22 and RZ23 are 3.5-inch, half-height SCSI drives
with an average seek rate of 33 ms and an average data transfer rate of
1.25 MB per second. The RZ22 and RZ23 have a capacity of 52 MB and
104 MB, respectively.

The RZ55 is a 332-MB, 5.25-inch, full-height SCSI drive with an average
access rate of 24 ms.

3.1.24 TU58 Magnetic Tape (DECtape Il)

3-10

The TU58 is a random-access, mass storage magnetic tape device capable
of reading and writing 256K bytes per drive of data on block-addressable,
preformatted cartridges at 800 bits per inch. Unlike conventional magnetic
tape systems, which store information at variable positions on the tape,
the TUS58 stores information at fixed positions on the tape, as do magnetic
disk or floppy disk devices. Thus, blocks of data can be placed on tape

in a random fashion, without disturbing previously recorded data. In its
physical geometry, the tape is conceptually viewed as having one cylinder,
four tracks per cylinder, and 128 sectors per track. Each sector contains
one 512-byte block.

The TU58 uses two vectors. NUMVEC=2 is required on the CONNECT
command when specifying SYSGEN parameters.

3.2

3.2.1

Disk Drivers
3.1 Supported Disk Devices and Controllers

The TU58 interfaces with the UNIBUS adapter through a DL11-series
interface device. Both the TU58 and the DL11 should be set to 9600
baud. (Because the TU58 is attached to a DL11, the user cannot directly
access the TU58 registers if the TU58 is on the UNIBUS.) The DIGITAL
Terminals and Communications Handbook provides additional information
on the DL11. The TU58, which has its own controller, can access either
one or two tape drives.

Driver Features

VMS disk drivers provide the following features:

* Multiple controllers of the same type (except RB730), for example,
more than one MBA or RK611 can be used on the system

¢ Multiple disk drives per controller (The exact number depends on the
controller.)

¢ Different types of disk drives on a single controller
¢ Static dual porting (MBA drives only)
¢ Overlapped seeks (except RL02, RX01, RX02, and TU58)

* Data checks on a per-request, per-file, or per-volume basis (except
RX01 and RX02)

* Full recovery from power failure for online disk drives with volumes
mounted

¢ Extensive error recovery algorithms, such as error code correction and
offset (except RB02, RL02, RX01, RX02, and TU58); for DSA disks,
these algorithms are implemented in the controller

¢ Dynamic, as well as static, bad block handling

* Logging of device errors in a file that can be displayed by field service
personnel or customer personnel

* Online diagnostic support for drive level diagnostics

¢ Multiple-block, noncontiguous, virtual I/O operations at the driver
level

¢ Logical-to-physical sector translation (RX01 and RX02 only)

The following sections describe the data check, overlapped seek, error
recovery, and logical-to-physical translation features in greater detail.

Dual-Pathed Disks

A dual-pathed disk is a dual-ported disk that is accessible to all
the CPUs in the VAXcluster, not just to the CPUs that are connected
physically to the disk. Dual-pathed disks can be any of the following:

¢ Dual-ported MASSBUS disks
¢ Dual-ported HSC disks

3-1

Disk Drivers
3.2 Driver Features

* Dual-pathed DSA disks on local UDA50, KDA50, and KDB50
controllers

® Dual-ported RF-series disks

The term dual-pathed refers to the two paths through which clustered
CPUs can access a disk to which they are not directly connected. If one
path fails, the disk is accessed over the other path. (Note that with a
dual-ported MASSBUS disk, a CPU directly connected to the disk always
accesses it locally.)

3.2.2 Dual Porting MASSBUS Disks

The VMS MASSBUS disk drivers, DBDRIVER and DRDRIVER, support
static dual porting. Dual porting allows two MASSBUS controllers to
access the same disk drive. Figure 3-2 shows this configuration. The
RPO05, RP06, RP07, RM03, RM05, and RM80 disk drives can be ordered, or
upgraded in the field, with the MASSBUS dual port option.

Figure 3-2 Dual-Ported Disk Drives

VAX VAX
CPUA CPUB
Controller Controller
o Disk g
Drive
ZK-0650-GE

3.22.1 Port

3-12

Selection and Access Modes

The port select switches, on each disk drive, select the ports from which
the drive can be accessed. A drive can be in one of the following access
modes:

¢ Locked on Port A—The drive is in a single-port mode (Port A). It does
not respond to any request on Port B.

¢ Locked on Port B—The drive is in a single-port mode (Port B). It does
not respond to any request on Port A.

Disk Drivers
3.2 Driver Features

* Programmable A/B—The drive is capable of responding to requests on
either Port A or Port B. In this mode, the drive is always in one of the
following states:

— The drive is connected and responding to a request on Port A. It is
closed to requests on Port B.

— The drive is connected and responding to a request on Port B. It is
closed to requests on Port A.

— The drive is in a neutral state. It is equally available to requests
on either port on a first-come, first-serve basis.

The operational condition of the drive cannot be changed with the port
select switches after the drive becomes ready. To change from one mode to
another, the drive must be in a nonrotating condition. After the new mode
selection has been made, the drive must be restarted.

If a drive is in the neutral state and a disk controller either reads or
writes to a drive register, the drive immediately connects a port to the
requesting controller. For read operations, the drive remains connected
for the duration of the operation. For write operations, the drive remains
connected until a release command is issued by the device driver or a
one second timeout occurs. After the connected port is released from

its controller, the drive checks the other port’s request flag to determine
whether there has been a request on that port. If no request is pending,
the drive returns to the neutral state.

3.2.2.2 Disk Use and Restrictions

If the volume is mounted foreign, read/write operations can be performed
at both ports provided the user maintains control of where information is
stored on the disk.

The Autoconfigure Utility currently may not be able to locate the nonactive
port. For example, if a dual-ported disk drive is connected and responding
at Port A, the CPU attached to Port B might not be able to find Port B
with the Autoconfigure Utility. If this problem occurs, execute the
AUTOCONFIGURE ALL/LOG command after the system is running.

3.2.2.3 Restriction on Dual-Ported Non-DSA Disks in a VAXcluster

Note:

Do not use SYSGEN to AUTOCONFIGURE or CONFIGURE a dual-
ported, non-DSA disk that is already available on the system through
use of an MSCP server. Establishing a local connection to the disk when
a remote path is already known creates two uncoordinated paths to the
same disk. Use of these two paths may corrupt files and data on any
volume mounted on the drive.

If the disk is not dual-ported or is never served by an MSCP server
on the remote host, this restriction does not apply.

In a VAXcluster, dual-ported non-DSA disks (MASSBUS or UNIBUS) can
be connected between two nodes of the cluster. These disks can also be
made available to the rest of the cluster using the MSCP server on either
or both of the hosts to which a disk is connected.

3-13

Disk Drivers
3.2 Driver Features

If the local path to the disk is not found during the bootstrap, then the
MSCP server path from the other host will be the only available access
to the drive. The local path will not be found during a boot if any of the
following conditions exist:

* The port select switch for the drive is not enabled for this host.
¢ The disk, cable, or adapter hardware for the local path is broken.

¢ There is sufficient activity on the other port to hide the existence of
the port.

* The system is booted in such a way that the
SYSGEN AUTOCONFIGURE ALL command in the
SYS$SYSTEM:STARTUP.COM procedure was not executed.

Use of the disk is still possible through the MSCP server path.

After the configuration of the disk has reached this state, it is important
not to add the local path back into the system I/O database. Because the
VMS operating system does not provide an automatic method for adding
this local path, the only possible way that you can add this local path

is to use the Sysgen Utility (SYSGEN) qualifiers AUTOCONFIGURE or
CONFIGURE to configure the device. SYSGEN is currently not able to
detect the presence of the disk’s MSCP path, and will incorrectly build a
second set of data structures to describe it. Subsequent events could lead
to incompatible and uncoordinated file operations, which might corrupt the
volume.

To recover the local path to the disk, it is necessary to reboot the system
connected to that local path.

See the VMS VAXcluster Manual for additional information on dual-ported
disk operation.

3.2.3 Dual-Pathed DSA Disks

3-14

Note:

Note:

A dual-ported DSA disk can be failed over between the two CPUs that
serve it to the VAXcluster under the following conditions: (1) the same
disk controller letter and allocation class are specified on both CPUs and
(2) both CPUs are running the MSCP server.

Failure to observe these requirements can endanger data integrity.

However, because a DSA disk can be online to only one controller at a
time, only one of the CPUs can use its local connection to the disk. The
second CPU accesses the disk through the MSCP server. If the CPU
that is currently serving the disk fails, the other CPU detects the failure
and fails the disk over to its local connection. The disk is thereby made
available to the VAXcluster once more.

A dual-ported DSA disk may not be used as a system disk.

3.24

3.2.5

3.2.6

Disk Drivers
3.2 Driver Features

Dual-Porting HSC Disks

By design, HSC disks are cluster accessible. Therefore, if they are dual
ported, they are automatically dual pathed. CI-connected CPUs can access
a dual-pathed HSC disk by way of a path through either HSC-connected
device.

For each dual-ported HSC disk, you can control failover to a specific port
using the port select buttons on the front of each drive. By pressing either
port select button (A or B) on a particular drive, you can cause the device
fail over to the specified port.

With the port select button, you can select alternate ports to balance the
disk controller workload between two HSC subsystems. For example, you
could set half of your disks to use port A and set the other half to

use port B.

The port select buttons also allow you to fail over all the disks to an
alternate port manually when you anticipate the shutdown of one of the
HSC subsystems.

Dual-Pathed RF-Series Disks

Note:

In a dual-path configuration of pairs of MicroVAX 3300/3400 CPUs or
pairs of MicroVAX 3800/3900 CPUs using RF-series disks, CPUs have
concurrent access to any disk on the DSSI bus. A single disk is accessed
through two paths and can be served to all satellites by either CPU.

If either CPU fails, satellites can access their disks through the remaining
CPU. Note that failover occurs in the following situations: (1) when the
DSSI bus is connected between SII integral adapters on both MicroVAX
3300/3400 CPUs or (2) when the DSSI bus is connected between the
KFQSA adapters on pairs of MicroVAX 3300/3400s or pairs of MicroVAX
3800/3900s.

The DSSI bus should not be connected between a KFQSA adapter
on one CPU and an SII integral adapter on another.

Data Check

A data check is made after successful completion of a read or write
operation and, except for the TU58, compares the data in memory with the
data on disk to make sure they match.

Disk drivers support data checks at the following levels:

¢ Per request—You can specify the data check function modifier
(I0$M_DATACHECK) on a read logical block, write logical block, read
virtual block, write virtual block, read physical block, or write physical
block operation. IO$M_DATACHECK is not supported for the RX01
and RXO01 drivers.

3-15

Disk Drivers
3.2 Driver Features

¢ Per volume—You can specify the characteristics “data check all reads”
and “data check all writes” when the volume is mounted. The VMS
DCL Dictionary describes volume mounting and dismounting. The
VMS System Services Reference Manual describes the Mount Volume
($MOUNT) and Dismount Volume ($DISMOU) system services.

* Per file—You can specify the file access attributes “data check on read”
and “data check on write.” File access attributes are specified when
the file is accessed. Chapter 1 of this manual and the VMS Record
Management Services Manual describe file access.

Offset recovery is performed during a data check but Error Code
Correctable (ECC) correction is not performed (see Section 3.2.8). For
example, if a read operation is performed and an ECC correction is
applied, the data check would fail even though the data in memory is
correct. In this case, the driver returns a status code indicating that the
operation was successfully completed, but the data check could not be
performed because of an ECC correction.

Data checks on read operations are extremely rare, and you can either
accept the data as is, treat the ECC correction as an error, or accept the
data but immediately move it to another area on the disk volume.

A data check operation directed to a TU58 does not compare the data in
memory with the data on tape. Instead, either a read check or a write
check operation is performed (see Sections 3.4.1 and 3.4.2).

3.2.7 Overlapped Seeks

3-16

A seek operation involves moving the disk read/write heads to a specific
place on the disk without any transfer of data. All transfer functions,
including data checks, are preceded by an implicit seek operation (except
when the seek is inhibited by the physical I/O function modifier
IO$M_INHSEEK). Seek operations can be overlapped except on RL02,
RX01, RX02, TU58 drives, MicroVAX 2000, VAXstation 2000, or on
controllers with floppy disks (for example, RQDX3) when the disk is
executing I/0 requests. That is, when one drive performs a seek operation,
any number of other drives can also perform seek operations.

During the seek operation, the controller is free to perform transfers
on other units. Thus, seek operations can also overlap data transfer
operations. For example, at any one time, seven seeks and one data
transfer could be in progress on a single controller.

This overlapping is possible because, unlike I/O transfers, seek operations
do not require the controller once they are initiated. Therefore, seeks
are initiated before I/O transfers and other functions that require the
controller for extended periods.

All DSA controllers perform extensive seek optimization functions as part
of their operation; IO$M_INHSEEK has no effect on these controllers.

3.2.8

Disk Drivers
3.2 Driver Features

Error Recovery

Error recovery in the VMS operating system is aimed at performing
all possible operations to complete an I/O operation successfully. Error
recovery operations fall into the following categories:

¢ Handling special conditions such as power failure and interrupt
timeout.

¢ Retrying nonfatal controller and drive errors. For DSA and SCSI
disks, this function is implemented by the controller.

* Applying error correction information (not applicable for RB02, RL02,
RX01, RX02, and TU58). For DSA and SCSI disks, error correction is
implemented by the controller.

* Offsetting read heads to try to obtain a stronger recorded signal (not
applicable for RB02, RL02, RB80, RM80, RX01, RX02, and TU58). For
DSA and SCSI disks, this function is implemented by the controller.

The error recovery algorithm uses a combination of these four types of
error recovery operations to complete an I/O operation.

Power failure recovery consists of waiting for mounted drives to spin up
and come online, followed by reexecution of the I/O operation that was in
progress at the time of the power failure.

Device timeout is treated as a nonfatal error. The operation that was in
progress when the timeout occurred is reexecuted up to eight times before
a timeout error is returned.

Nonfatal controller/drive errors are executed up to eight times before a
fatal error is returned.

All normal error recovery procedures (nonspecial conditions) can be
inhibited by specifying the inhibit retry function modifier IO$M_
INHRETRY). If any error occurs and this modifier is specified, the virtual,
logical, or physical I/O operation is immediately terminated, and a failure
status is returned. This modifier has no effect on power recovery and
timeout recovery.

3.28.1 Skip Sectoring

Skip sectoring is a bad block treatment technique implemented on R80
disk drives (the RB80 and RM80 drives). In each track of 32 sectors,
one sector is reserved for bad block replacement. Consequently, an R80
drive has available only 31 sectors per track. The Get Device/Volume
Information ($GETDVI) system service returns this value.

You can detect bad blocks when a disk is formatted. Most formatters
place these blocks in a bad block file. On an R80 drive, the first bad block
encountered on a track is designated as a skip sector. This is accomplished
by setting a flag in the sector header on the disk and placing the block in
the skip sector file.

3-17

Disk Drivers
3.2 Driver Features

When a skip sector is encountered during a data transfer, it is skipped
over, and all remaining blocks in the track are shifted by one physical
block. For example, if block number 10 is a skip sector, and a transfer
request was made beginning at block 8 for four blocks, then blocks 8, 9, 11,
and 12 will be transferred. Block 10 will be “skipped.”

Because skip sectors are implemented at the device driver level, they are
not visible to you. The device appears to have 31 contiguous sectors per
track. Sector 32 is not directly addressable, although it is accessed if a
skip sector is present on the track.

3.2.9 Logical-to-Physical Translation (RX01 and RX02)

3-18

Logical block-to-physical sector translation on RX01 and RX02 drives
adheres to the standard VMS format. For each 512-byte logical block
selected, the driver reads or writes four 128-byte physical sectors (or

two 256-byte physical sectors if an RX02 is in double-density mode).

To minimize rotational latency, the physical sectors are interleaved.
Interleaving allows the processor time to complete a sector transfer before
the next sector in the block reaches the read/write heads. To allow for
track-to-track switch time, the next logical sector that falls on a new track
is skewed by six sectors. (There is no interleaving or skewing on read
physical block and write physical block 1/0 operations.) Logical blocks are
allocated starting at track 1; track O is not used.

The translation procedure, in more precise terms, is as follows:

1 Compute an uncorrected medium address using the following
dimensions:

Number of sectors per track = 26
Number of tracks per cylinder = 1
Number of cylinders per disk = 77

2 Correct the computed address for interleaving and track-to-track
skew (in that order) as shown in the following VAX FORTRAN
statements. ISECT is the sector address and ICYL is the cylinder
address computed in step 1:

Interleaving:

ITEMP = ISECT*2
IF (ISECT .GT. 12) ITEMP = ITEMP-25

ISECT = ITEMP

Skew:

ISECT = ISECT+(6*ICYL)
ISECT = MOD (ISECT, 26)

3 Set the sector number in the range of 1 through 26 as required by the
hardware:

ISECT = ISECT+1

Disk Drivers
3.2 Driver Features

4 Adjust the cylinder number to cylinder 1 (cylinder O is not used):
ICYL = ICYL+1

3.2.10 DIGITAL Storage Architecture (DSA) Devices

The DIGITAL Storage Architecture (DSA) is a collection of specifications
that cover all aspects of a mass storage product. The specifications are
grouped into the following general categories:

¢ Media format—Describes the structure of sectors on a disk and the
algorithms for replacing bad blocks

¢ Drive-to-controller interconnect—Describes the connection between a
drive and its controller

¢ Controller-to-host communications—Describes how hosts request
controllers to transfer data

Because the VMS operating system supports all DSA disks, it supports all
controller-to-host aspects of DSA. Some of these disks, such as the RA60,
RAS80, and RA81, use the standard drive-to-controller specifications. Other
disks, such as the RC25, RD51, RD52, RD53, and RX50, do not. Disk
systems that use the standard drive-to-controller specifications employ
the same hardware connections and use the HSC50, KDA50, KDB50,

and UDAS50 interchangeably. Disk systems that do not use the drive-
to-controller specifications provide their own internal controller, which
conforms to the controller-to-host specifications.

DSA disks differ from MASSBUS and UNIBUS disks in the following
ways:

¢ DSA disks contain no bad blocks. The hardware and the disk class
driver (DUDRIVER) function to ensure a logically contiguous range
of good blocks. If any block in the user area of the disk develops a
defective area, all further access to that block is revectored to a spare
good block. Consequently, it is never necessary to run the Bad Block
Locator Utility (BAD) on DSA disks. There is no manufacturer’s bad
block list and the file BADBLK.SYS is empty. (The Verify Utility,
which is invoked by the ANALYZE /DISK_STRUCTURE /READ_
CHECK command, can be used to check the integrity of newly received
disks.) See Section 3.2.10.1 for additional information about bad block
replacement for DSA disks.

¢ Insert a WAIT statement in your SYSTARTUP_V5.COM file prior to.
the first MOUNT statement for a DSA disk. The wait period should
be about two to four seconds for the UDA50 and about 30 seconds for
the HSC50. The wait time is controller-dependent and can be as much
as several minutes if the controller is offline or otherwise inoperative.
If this wait is omitted, the MOUNT request may fail with a “no such
device” status.

¢ The DUDRIVER and the DSA device controllers allow multiple,
concurrently outstanding QIO requests. The order in which these
requests complete might not be in the order in which they were issued.

3-19

Disk Drivers
3.2 Driver Features

¢ All DSA disks can be dual-ported, but only one HSC/UDA controller
can control a disk at a time (see Section 3.2.3).

¢ In many cases, you can attach a DSA disk to its controller on a
running VMS operating system and then use it without manual
intervention.

* DSA disks and the DUDRIVER do not accept physical QIO data
transfers or seek operations.

3.2.10.1 Bad Block Replacement and Forced Errors for DSA Disks
Disks that are built according to the DSA specifications appear to be error
free. Some number of logical blocks are always capable of recording data.
When a disk is formatted, every user-addressable logical block is mapped
to a functioning portion of the actual disk surface, which is known as
a physical block. The physical block has the true data storage capacity
represented by the logical block.

Additional physical blocks are set aside to replace blocks that fail
during normal disk operations. These extra physical blocks are called
replacement blocks. Whenever a physical block to which a logical
block is mapped begins to fail, the associated logical block is remapped
(revectored) to one of the replacement blocks. The process that revectors
logical blocks is called a bad block replacement operation. Bad block
replacement operations use data stored in a special area of the disk called
the Replacement and Caching Table (RCT).

When a drive-dependent error threshold is reached, the need for a bad
block replacement operation is declared. Depending on the controller
involved, the bad block replacement operation is performed either by

the controller itself (as is the case with HSCs) or by the host (as is the
case with UDAs). In either case, the same steps are performed. After
inspecting and altering the RCT, the failing block is read and its contents
are stored in a reserved section of the RCT.

The design goal of DSA disks is that this read operation proceeds without
error and that the RCT copy of the data is correct (as it was originally
written). The failing block is then tested with one or more data patterns.
If no errors are encountered in this test, the original data is copied back
to the original block and no further action is taken. If the data-pattern
test fails, the logical block is revectored to a replacement block. After

the block is revectored, the original data is copied back to the revectored
logical block. In all these cases, the original data is preserved and the bad
block replacement operation occurs without the user being aware that it
happened.

However, if the original data cannot be read from the failing block, a
best attempt copy of the data is stored in the RCT and the bad block
replacement operation proceeds. When the time comes to write-back the
original data, the best attempt data (stored in the RCT) is written back
with the forced error flag set. The forced error flag is a signal that the
data read is questionable. Reading a block that contains a forced error
flag causes the status SS$_FORCEDERROR to be returned. This status is
displayed by the following message:

%¥SYSTEM-F-FORCEDERROR, forced error flagged in last sector read

3-20

Disk Drivers
3.2 Driver Features

Writing into a block always clears the forced error flag.

Note that most VMS utilities and DCL commands treat the forced error
flag as a fatal error and terminate operation when they encounter it.
However, the Backup Utility (BACKUP) continues to operate in the
presence of most errors, including the forced error. BACKUP continues
to process the file, and the forced error flag is lost. Thus, data that was
formerly marked as questionable may become “correct” data.

System managers (and other users of BACKUP) should assume that forced
errors reported by BACKUP signal possible degradation of the data.

To determine what, if any, blocks on a given disk volume have the forced
error flag set, use the ANALYZE /DISK_STRUCTURE /READ_CHECK
command, which invokes the Verify Utility. The Verify Utility reads every
logical block allocated to every file on the disk and then reports (but
ignores) any forced error blocks encountered.

3.2.11 VAXstation 2000 and MicroVAX 2000 Disk Driver

The VAXstation 2000 and MicroVAX 2000 disk driver supports some DSA
disk operation. In particular, the driver supports block revectoring and
bad block replacement. This provides the system with a logically perfect
disk medium.

Like other DSA disks, if a serious error occurs during a replacement
operation, the disk is write-locked to prevent further changes. This is done
to preserve data integrity and minimize damage that could be caused by
failing hardware. Unlike other DSA disks, there is no visible indication
on the drive itself that the disk is write-locked. However, the following
indicators help you determine that the disk has become write-protected:

» ERRFMT messages show that the disk is write-locked.
¢ The disk enters mount verification and hangs.

¢ DCL command SHOW DEVICE output shows that the disk is write-
locked.

¢ Error messages from programs and utilities attempting to write to the
disk.

If the disk becomes write-locked, you should use the following procedure:

1 Shut down the system.

2 Use standalone BACKUP to create a full backup of the disk.

3 Format the disk with the disk formatter.

4

Restore the disk from the backup using standalone BACKUP. Note
that any files with sectors flagged with a forced error may be corrupted
and may need to be restored from a previous backup.

If errors occurring during replacement operations persist, call Digital
Customer Services.

3-21

Disk Drivers
3.2 Driver Features

3.2.12 SCSI Disk Class Driver

The VAXstation 3100, 3520, and 3540 contain a SCSI bus that provides
access to as many as seven SCSI disks. The SCSI disk class driver controls
SCSI disks on all of the above systems. Although, SCSI disks do not
conform to DSA, they do support the following error recovery features:

¢ Static and dynamic bad block replacement (BBR)
* Error correcting code (ECC)
¢ Reexecution of read or write operations within the SCSI drive

* Reexecution of read or write operations by the SCSI disk class driver

All SCSI disks supplied by Digital implement the REASSIGN BLOCKS
command which relocates data for a specific logical block to a different
physical location on the disk. The SCSI disk class driver reassigns the
block in the following instances: (1) when the retry threshold is exceeded
during an attempt to read or write a block of data on the disk or (2) when
an irrecoverable error occurs during a write operation.

Unlike DSA, there is no forced error flag in SCSI. Blocks that produce
irrecoverable errors during read operations are not reassigned in order to
prevent undetected loss of user data. Instead, the SCSI disk class driver
returns the SS$_PARITY status whenever a read operation results in an
irrecoverable error.

3.3 Disk Driver Device Information

3-22

You can obtain information on all disk device characteristics by using the
Get Device/Volume Information ($GETDVI) system service (see the VMS
System Services Reference Manual).

$GETDVI returns disk characteristics when you specify the item codes
DVI$_DEVCHAR and DVI$_DEVCHAR2. Table 3-2 lists the possible
characteristics for disk devices.

Table 3-2 Disk Device Characteristics

Characteristic’ Meaning

Dynamic Bits (Conditionally Set)

DEVSM_AVL Device is online and available.
DEV$M_CDP?? Dual-path device with two UCBs.
DEV$M_CLU? Device is available clusterwide.
DEV$M_2P? Device is dual-pathed.
DEV$M_FOR Device is foreign.

1Defined by the $DEVDEF macro.
2These bits are located in DVI$_DEVCHAR2,
3MASSBUS only.

(continued on next page)

Disk Drivers
3.3 Disk Driver Device Information

Table 3-2 (Cont.) Disk Device Characteristics

Characteristic® Meaning

Dynamic Bits (Conditionally Set)

DEVSM_MNT Volume is mounted.

DEV$M_RCK Perform data check all reads.

DEV$M_WCK Perform data check all writes.

DEV$M_MSCP? Device is accessed using the mass storage control
protocol.

DEV$M_RCT Disk contains Replacement and Caching Table.

DEV$M_SRV? For a VAXcluster, device is served by the MSCP
server.

Static Bits (Always Set)

DEV$M_FOD Device is file-oriented.

DEV$M_IDV Device is capable of input.
DEV$M_ODV Device is capable of output.
DEV$M_RND Device is capable of random access.
DEV$M_SHR Device is shareable.

1Defined by the $DEVDEF macro.
2These bits are located in DVI$_DEVCHAR2.

DVI$_DEVBUFSIZ returns the buffer size. The buffer size is the default
to be used for disk transfers (this default is normally 512 bytes). DVI$_
DEVTYPE and DVI$_DEVCLASS return the device type and class names,
which are defined by the $DCDEF macro. The disk model determines
the device type. For example, the device type for the RA81 is DT$_RAS1.
(Foreign device types take the form DT$_FD1 through DT$_FD8.) The
device class for disks is DC$_DISK.

DVI$_CYLINDERS returns the number of cylinders per volume (that is,
per disk), DVI$_TRACKS returns the number of tracks per cylinder, and
DVI$_SECTORS returns the number of sectors per track. Values are
returned as four-byte decimal numbers.

DVI$_MAXBLOCK returns the maximum number of blocks (1 block = 512
bytes) that can be contained on the volume (that is, on the disk). Values
are returned as four-byte decimal numbers. This information can be used,
for example, to determine the density of an RX02 diskette (single

density = 494 blocks, double density = 988 blocks).

3-23

3.4

Disk Drivers
3.4 Disk Function Codes

Disk Function Codes

3-24

Note:

VMS disk drivers can perform logical, virtual, and physical I/0 functions.
Foreign-mounted devices do not require privilege to perform logical and
virtual I/O requests.

Logical and physical I/O functions allow access to volume storage and
require only that the issuing process have access to the volume. However,
DSA disks and the disk class driver (DUDRIVER) do not accept physical
QIO data transfers or seek operations.

The results of logical and physical I/O operations are
unpredictable if an ancillary control process (ACP) or extended
QIO processing (XQP) is present.

Virtual I/O functions require an ACP for Files—11 On-Disk Structure
Level 1 files or an XQP for Files—11 On-Disk Structure Level 2 files.
Virtual I/0 functions must be executed in a prescribed order. First, you
create and access a file, then you write information to that file, and lastly
you deaccess the file. Subsequently, when you access the file, you read
the information, and then deaccess the file. Delete the file when the
information is no longer useful.

Non-DSA disk devices can read or write up to 65,535 bytes in a single
request. DSA devices connected to an HSC50 can transfer up to 4 billion
bytes in a single request. In all cases, the maximum size of the transfer
is limited by the number of pages that can be faulted into the process’s
working set, and then locked into physical memory. (The disk driver is
responsible for any memory management functions of this type.) The
size of the transfer does not affect the applicable quotas (direct I/0 count,
buffered I/O count, and AST count limit). These quotas refer to the
number of outstanding I/O operations of each type, not the size of the I/O
operation being performed.

The volume to which a logical or virtual function is directed must be
mounted for the function actually to be executed. If it is not mounted,
either a “device not mounted” or “invalid volume” status is returned in the
I/0 status block.

Table 3-3 lists the logical, virtual, and physical disk I/O functions and
their function codes. Chapter 1 describes the QIO level interface to the
disk device ACP.

Table 3-3 Disk I/O Functions

Disk Drivers

3.4 Disk Function Codes

Function
Function Code Arguments Type' Modifiers Function
10$_ACCESS P1, [P2],[P3],[P4],[P5] V IO$M_CREATE Search a directory for a
IO$M_ACCESS specified file and access the
file if found.
10$_ACPCONTROL P1,[P2],[P3],[P4},[P5] V IO$M_DMOUNT Perform miscellaneous
control functions.
10$_AVAILABLE P Clear volume valid; make
DSA units available.
10$_CREATE P1,[P2],[P3],[P4],[P5] V I0$M_CREATE Create a directory entry or a
IO$M_ACCESS file.
IO$M_DELETE
10$_DEACCESS P1,[P2],[P3],[P4],[P5] V Deaccess a file and,
if specified, write final
attributes in the file header.
IO$_DELETE P1,[P2],[P3],[P4],[P5] V IO$M_DELETE Remove a directory entry or
file header, or both.
10$_FORMAT P1 P Set density (RX02 only).
10$_MODIFY P1,[P2], [P3],[P4L,[P5] V Modify the file attributes or
allocation, or both.
10$_PACKACK P Update UCB fields if RX02;
initialize volume valid on
other devices. Bring DSA
units online.
I0$_READLBLK P1,P2,P3 L IO$M_DATACHECK? Read logical block.
IO$M_INHRETRY
10$_READPBLK P1,P2,P3 P IO$M_DATACHECK? Read physical block.
IO$M_INHRETRY
IO$M_INHSEEK?®
10$_READVBLK P1,P2,P3 \ IO$M_DATACHECK?® Read virtual block.
IO$M_INHRETRY
10$_SEARCH P1 P Search for specified block or
sector (only for TU58).
I0$_SEEK P1 P Seek to specified cylinder.®
I0$_SENSECHAR P Sense the device-dependent
characteristics and return
them in the I/O status block.
10$_SENSEMODE L Sense the device-dependent

characteristics and return
them in the I/O status block.

1V = virtual; L = logical; P = physical

2Not for RX01 and RX02

3Not for TU58, RX01, RX02, RB02, and RL0O2
5Not for DSA and SCSI disks

(continued on next page)

3-25

Disk Drivers

3.4 Disk Function Codes

Table 3-3 (Cont.)

Disk I/0 Functions

Function
Function Code Arguments Type' Modifiers Function
I0$_SETPRFPTH P1 P IO$M_FORCEPTH Specifies a preferred path
for DSA disks.
10$_UNLOAD P Clear volume valid; make
DSA units available and spin
down the volume.
I0$_WRITECHECK P1,P2,P3 P Verify data written to disk by
a previous write QIO.?
10$_WRITELBLK P1,P2,P3 L IO$M_DATACHECK? Write logical block.
I0$M_ERASE
10$M_INHRETRY
10$_WRITEPBLK P1,P2,P3 P IO$M_DATACHECK? Write physical block.®
I0$M_ERASE
IO$M_INHRETRY
IO$M_INHSEEK®
I0$M_DELDATA*
I0$_WRITEVBLK P1,P2,P3 \ I0$M_DATACHECK? Write virtual block.

IO$M_ERASE
IO$M_INHRETRY

1V = virtual; L = logical; P = physical

2Not for RX01 and RX02

3Not for TU58, RX01, RX02, RB02, and RL02

4RX02 only

5Not for DSA and SCSI disks

3-26

The function-dependent arguments for I0$_CREATE, I0$_ACCESS,
I0$_DEACCESS, 10$_MODIFY, and IO$_DELETE are as follows:

P1—The address of the file information block (FIB) descriptor.

P2—The address of the file name string descriptor (optional). If
specified, the name is entered in the directory specified by the FIB.

P3—The address of the word that is to receive the length of the
resulting file name string (optional).

P4—The address of a descriptor for a buffer that is to receive the
resulting file name string (optional).

P5—The address of a list of attribute descriptors (optional). If
specified, the indicated attributes are read (I0$_ACCESS) or written
(I0$_CREATE, I0$_DEACCESS, and 10$_MODIFY).

See Chapter 1 for more information on these functions.

The function-dependent arguments for I0$_READVBLK, 10$_
READLBLK, I0$_WRITEVBLK, and I0$_WRITELBLK are as follows:

P1—The starting virtual address of the buffer that is to receive the
data from a read operation; or, in the case of a write operation, the
virtual address of the buffer that is to be written on the disk.

Disk Drivers
3.4 Disk Function Codes

P2—The number of bytes that are to be read from the disk, or written
from memory to the disk. An even number must be specified if the
controller is an RK611, RL11, RX211, or UDA50.

P3—The starting virtual/logical disk address of the data to be
transferred in a read operation; or, in a write operation, the disk
address of the area that is to receive the data.

In a virtual read or write operation, the address is expressed as a
block number within the file, that is, block 1 of the file is virtual block
1. (Virtual block numbers are converted to logical block numbers using
mapping windows that are set up by the file system ACP process.)

In a logical read or write operation, the address is expressed as a block
number relative to the start of the disk. For example, the first sector
on the disk contains block 0 (or at least the beginning of block 0).

The function-dependent arguments for I0$_WRITEVBLK,
I0$_WRITELBLK, and I0$_WRITEPBLK functions that include the
IO$M_ERASE function modifier are as follows:

Note:

P1—The starting virtual address of the buffer that contains a four-
byte, user-specified erase pattern. If the P1 address is 0, a longword of
0 will be used for the erase pattern. If the P1 address is nonzero, the
contents of the four bytes starting at that address will be used as the
erase pattern. Digital recommends that the user specify a P1 address
of 0 to lower system overhead.

DSA disk controllers provide controlled, assisted erasing for
the IO$M_ERASE modifier (with virtual and logical write
functions) only when the erase pattern is all 0s. If a nonzero
erase pattern is used, there is a significant performance
degradation with these disks. DSA disks do not accept physical
QIO transfers.

P2—The number of bytes of erase pattern to write to the disk. The
number specified is rounded up to the next highest block boundary
(512 bytes).

P3—The starting virtual, logical, or physical disk address of the data
to be erased.

The function-dependent arguments for I0$_WRITECHECK,
I0$_READPBLK, and I0$_WRITEPBLK are as follows:

P1—The starting virtual address of the buffer that is to receive the
data in a read operation; or, in a write operation, the starting virtual
address of the buffer that is to be written on the disk. Passed by
reference.

P2—The number of bytes that are to be read from the disk, or written
from memory to the disk. Passed by value. An even number must be
specified if the controller is an RK611, RL11, or UDASO.

3-27

Disk Drivers
3.4 Disk Function Codes

* P3—The starting physical disk address of the data to be read in a
read operation; or, in a write operation, the starting physical address
of the disk area that is to receive the data. Passed by value. The
address is expressed as sector, track, and cylinder in the format shown
in Figure 3-3. (On the RX01 and RX02, the high word specifies the
track number rather than the cylinder number.) Check the UCB of a
currently mounted device to determine the maximum physical address
value for that type of device.

Note: On the RB80 and RM80, do not address cylinders 560 and 561.
These two cylinders are used for diagnostic testing only.

The function-dependent argument for I0$_SEARCH is as follows:

e P1—The physical disk address where the tape is positioned. The
address is expressed as sector, track, and cylinder in the format shown
in Figure 3-3.

Figure 3-3 Starting Physical Address

31 16 15 8 7 0
P3: Cylinder Track Sector

(Except RX01 and RX02)

31 16 15 0
P3: Track Sector

(RX01 and RX02 Only)

ZK-0652-GE

The function-dependent argument vfor I0$_SEEK is as follows:

* P1-—The physical cylinder number where the disk heads are
positioned. The address is expressed in the format shown in
Figure 3-4.

Figure 3—4 Physical Cylinder Number Format

31 16 15 0
Not Used Cyilinder

ZK-0653-GE

3-28

3.4.1

Disk Drivers
3.4 Disk Function Codes

The function dependent argument for I0O$_FORMAT is as follows:

e P1—The density at which an RX02 diskette is reformatted (see
Section 3.4.4).

Read

The read function reads data into a specified buffer from disk starting at a
specified disk address.

The VMS operating system provides the following read function codes:
e JO$_READVBLK—Read virtual block

e T0$_READLBLK—Read logical block

¢ I0$_READPBLK—Read physical block

If a read virtual block function is directed to a volume that is mounted
foreign, that function is converted to read logical block. If a read virtual
block function is directed to a volume that is mounted structured, the
volume is handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: P1, P2,
and P3. These arguments are described in Section 3.4.

The data check function modifier I0$M_DATACHECK) can be used with
all read functions. If this modifier is specified, a data check operation is
performed after the read operation completes. A data check operation is
also performed if the volume that has been read, or the volume on which
the file resides (virtual read), has the characteristic “data check all reads.”
Furthermore, a data check is performed after a virtual read if the file has
the attribute “data check on read.” The RX01 and RX02 drivers do not
support the data check function.

If IO$M_DATACHECK is specified with a read function code to a TU58,
or if the volume read has the characteristic “data check all reads,” a
read check operation is performed. This alters certain TU58 hardware
parameters when the tape is read. (The read threshold in the data

recovery circuit is increased; if the tape has any weak spots, errors are
detected.)

The data check function modifier to a disk or tape can return five error
codes in the I/O status block:

SS$_CTRLERR SS$ _DRVERR SS$_MEDOFL

SS$ NONEXDRV ~ SS$_NORMAL

If no errors are detected, the disk or tape data is considered reliable.

The inhibit retry function modifier (IO$M_INHRETRY) can be used
with all read functions. If this modifier is specified, all error recovery
attempts are inhibited. IO$M_INHRETRY takes precedence over IO$M _
DATACHECK. If both are specified and an error occurs, there is no
attempt at error recovery and no data check operation is performed. If
an error does not occur, the data check operation is performed.

3-29

3.4.2

Disk Drivers

3.4 Disk Function Codes

Write

3-30

The write function writes data from a specified buffer to disk starting at a
specified disk address.

The VMS operating system provides the following write function codes:
e I0$_WRITEVBLK—Write virtual block

¢ I0$_WRITELBLK—Write logical block

¢ I10$_WRITEPBLK—Write physical block

If a write virtual block function is directed to a volume that is mounted
foreign, the function is converted to write logical block. If a write virtual
block function is directed to a volume that is mounted structured, the
volume is handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: P1, P2,
and P3. These arguments are described in Section 3.4.

The data check function modifier (IO$M_DATACHECK) can be used with
all write operations. If this modifier is specified, a data check operation
is performed after the write operation completes. A data check operation
is also performed if the volume written, or the volume on which the file
resides (virtual write), has the characteristic “data check all writes.”
Furthermore, a data check is performed after a virtual write if the file has
the attribute “data check on write.” The RX01 and RX02 drivers do not
support the data check function.

If IO$M_DATACHECK is specified with a write function code to a TU5S,
or if the volume written has the characteristic “data check all writes,” a
write check operation is performed. The write check verifies data written
on the tape. First, the specified data is written on the tape. Then the tape
is reversed and the TUS58 controller reads the data internally to perform
a checksum verification. If the checksum verification is unsuccessful after
eight attempts, the write check operation is aborted and an error status is
returned.

The inhibit retry function modifier (IO$M_INHRETRY) can be used

with all write functions. If that modifier is specified, all error recovery
attempts are inhibited. IO$M_INHRETRY takes precedence over
IO$M_DATACHECK. If both IO$M_INHRETRY and I0$M_DATACHECK
are specified and an error occurs, there is no attempt at error recovery,
and no data check operation is performed. If an error does not occur, the
data check operation is performed. IO$M_INHRETRY has no affect on
DSA disks.

The write deleted data function modifier (IO$M_DELDATA) can be used
with the write physical block (I0$_WRITEPBLK) function to the RX02.
If this modifier is specified, a deleted data address mark instead of the
standard data address mark is written preceding the data. Otherwise,
the operation of the IO$_WRITEPBLK function is the same; write data is
transferred to the disk. When a successful read operation is performed on
this data, the status code SS$_RDDELDATA is returned in the I/O status
block rather than the usual SS$_NORMAL status code.

343

3.4.4

3.4.5

Disk Drivers
3.4 Disk Function Codes

The IO$M_ERASE function modifier can be used with all write function
codes to erase a user-selected part of a disk. This modifier propagates an
erase pattern through the specified range. Section 3.4 describes the write
function arguments to be used with IO$M_ERASE.

Sense mode operations obtain current disk device-dependent
characteristics that are returned to the caller in the second longword of
the I/O status block (see Figure 3-6). The VMS operating system provides
the following function codes:

¢ JO$_SENSEMODE—Sense characteristics
¢ I0$_SENSECHAR—Sense characteristics

I0$_SENSEMODE is a logical function. I0$_SENSECHAR is a physical
I/O function and requires the access privilege necessary to perform
physical I/O. No device- or function-dependent arguments are used with

The set density function assigns a new density to an entire RX02 floppy
diskette. The diskette is also reformatted: new data address marks

are written (single or double density) and all data fields are zeroed.

Set density is a physical I/O function and requires the access privilege
necessary to perform physical I/O. The following function code is provided:

- I0$_FORMAT takes the following function-dependent argument:

¢ P1—The density at which the diskette is reformatted:

0 = single density (default)
1 = single density
2 = double density

The set density operation should not be interrupted before it is completed
(about 15 seconds). If the operation is interrupted, the resulting diskette

might contain illegal data address marks in both densities. The diskette

must then be completely reformatted and the function reissued.

Sense Mode

either function.
Set Density

e I10$_FORMAT
Search

The search function positions a TU58 magnetic tape to the block specified.
Search is a physical I/O function and requires the access privilege
necessary to perform physical I/O. The VMS operating system provides

a single function code:

* IO$_SEARCH

3-31

3.4.6

3.4.7

Disk Drivers

3.4 Disk Function Codes

This function code takes the following function-dependent argument:

* Pl—Specifies the block where the read/write head will be positioned.
The low byte contains the sector number in the range 0 to 127; the
high byte contains the track number in the range 0 to 3.

I0$_SEARCH can save time between read and write operations. For
example, nearly 30 seconds are required to completely rewind a tape. If
the last read or write operation is near the end of the tape and the next
operation is near the beginning of the tape, the search operation can begin
after the last operation completes, and the tape will rewind while the
process is otherwise occupied. (The search QIO is not completed until the
search is completed. Consequently, if a $QIOW system service request is
issued, the process will be held up until the search is completed.)

Pack Acknowledge

The pack acknowledge function sets the volume valid bit for all disk
devices. Pack acknowledge is a physical I/O function and requires the
access privilege to perform physical I/O. If directed to an RX02 drive,
pack acknowledge also determines the diskette density and updates

the device-dependent information returned by $GETDVI item codes
DVI$_CYLINDERS, DVI$_TRACKS, DVI$_SECTORS, DVI$_DEVTYPE,
DVI$_CLASS, and DVI$_MAXBLOCK. If directed to a DSA disk, pack
acknowledge also sends the online packet to the controller. The following
function code is provided:

* I0$_PACKACK

This function code takes no function-dependent arguments.

10$_PACKACK must be the first function issued when a volume (pack,
cartridge, or diskette) is placed in a disk drive. IO$_PACKACK is issued
automatically when the DCL commands INITIALIZE or MOUNT are
issued.

For DSA disks, the I0O$_PACKACK function locks the drive’s port selector
on the port that initiated the pack acknowledge function.

In addition, the IO$_PACKACK function updates device-dependent
information about DSA disks returned by $GETDVI.

Unload

3-32

The unload function clears the volume valid bit for all disk drives, makes
DSA disks available, and issues an unload command to the drive (spins
down the volume). The unload function reverses the function performed
by pack acknowledge (see Section 3.4.6). The following function code is
provided:

* I0$_UNLOAD

This function takes no function-dependent arguments.

Disk Drivers
3.4 Disk Function Codes

3.4.8 Available

The available function clears the volume valid bit for all disk drives;
that is, it reverses the function performed by pack acknowledge (see
Section 3.4.6). No unload function is issued to the drive. Therefore, those
drives capable of spinning down do not spin down. The following function
code is provided:

* IO$_AVAILABLE

This function takes no function-dependent arguments.

3.49 Seek

The seek function directs the read/write heads to move to the cylinder
specified in the P1 argument (see Sections 3.2.7 and 3.4, and Figure 3—4).

3.4.10 Write Check

The write check function verifies that data was written to disk

correctly. The data to be checked is addressed using physical disk
addressing (sector, track, and cylinder) (see Figure 3-3). If the request
is directed to a DSA disk, you must specify a logical block number, even
though I0$_WRITECHECK is a physical I/O function. The following
function code is provided:

* I0$_WRITECHECK

A write QIO must be used to write data to disk before you enter this
command. I0$_WRITECHECK then reads the same block of data and
compares it with the data in the specified buffer. Three function-dependent
arguments are used with this code: P1, P2, and P3. These arguments are
described in Section 3.4.

I0$_WRITECHECK is similar to the IO$M_DATACHECK function
modifier for write QIOs, except that I0$_WRITECHECK does not write
the data to disk; it is specified after data is written by a separate write
QIO. Nonprivileged processes can use the IO$M_DATACHECK modifier
with I0$_WRITEVBLK (which does not require access privilege) to
determine whether data is written correctly. The RX01 and RX02 drivers
do not support the write check function.

The write check function and the data check function modifier to a TU58
can return six error codes in the I/O status block: SS$_NORMAL,
SS$_CTRLERR, SS$_DRVERR, SS$_MEDOFL, SS$_NONEXDRY, and
SS$_WRTLCK.

3~33

3.4.11

Disk Drivers

3.4 Disk Function Codes

Set Preferred Path

3-34

The set preferred path function specifies a preferred path for DSA disks.
This includes RA-series disks and disks accessed through the MSCP
server. If a preferred path is specified for a disk, the MSCP disk class
drivers (DUDRIVER and DSDRIVER) use the path as their first attempt
to locate the disk and bring it on line as a result of a DCL command
MOUNT or failover of an already mounted disk. In addition, you can
initiate failover of a mounted disk in order to force the disk to the
preferred path, or to use load-balancing information for disks accessed
through MSCP servers.

The function code is:
I0$_SETPRFPTH

The following is the function modifier:

¢ TO$M_FORCEPATH—causes the disk class driver to select the server
path with the highest load available rating.

The P1 parameter contains the address of a counted ASCII string
(.ASCIC). This string is the node name of the HSC or VMS system that
is the preferred path. The node name must match an existing node that
is known to the local node and if the node is a VMS system, it must be
running the MSCP server. This function does not move the disk to the
preferred path.

The PHYS_IO privilege is required for I0$_SETPRFPTH and
I0$M_FORCEPATH.

The following example shows the use of I0$_SETPRFPTH:

Sassigndef

$qgiodef

Siodef

Sexitdef
dev: .ascid /2543DUA48:/
chnl: .word 0
node: .ascic /HSC001/

.entry start,O

Sassign_s devnam=dev, -
' chan=chnl
blbc r0,done

Sgiow_s chan=chnl, -
func=#I0$_SETPRFPTH, -
pl=node

done:
Sexit_s r0

.end start

This updates the local node I/O database to indicate that node HSCO0O01 is
the preferred path for DUA48.

Disk Drivers
3.4 Disk Function Codes:

3.4.11.1 Forcing a Path Change
You can move a disk that is already mounted to its preferred path by
specifying the IO$M_FORCEPATH modifier. If a preferred path has not
been specified for a disk that is accessed through the MSCP server, the
IO$M_FORCEPATH function causes the disk class driver to use load-
balancing information to select the server path with the highest load
available rating.

IO$M_FORCEPATH does not accept any arguments. If you intend to
move a disk to its preferred path, you must specify the preferred path in a
separate $QIO function.

The following example shows use of the IO$M_FORCEPATH function

modifier:

Sassigndef

Sqiodef

$iodef

Sexitdef
dev: .ascid /254DUA197:/
chnl: .word 0

.entry start,0

$assign_s devnam=dev, -
chan=chnl

blbc r0, done

$giow_s chan=chnl, -

func=#<I0$_SETPRFPTH!IO$M_FORCEPATH>

done:
Sexit_s x0

.end start

Note that forcing a path change places the disk in mount verification. New
I/0 requests are suspended until mount verification is complete.

3.4.11.2 Using 10$_SETPRFPTH with Disks Dual Pathed Between HSCs
You can use the I0$_SETPRFPTH and I0$M_FORCEPATH functions
to load balance disks that are dual pathed between HSCs. The IO$M_
FORCEPATH function initiates failover of the disk on all nodes that
have it mounted and that have a direct path to the HSCs. Since the
node that issues the IO$M_FORCEPATH might not be the first one to
attempt failover of the disk, it is essential that all nodes that have direct
connections to the HSCs specify the same preferred path for the disk.
Only one node should issue the IO$M_FORCEPATH request.

3.4.11.3 Using 10$_SETPRFPTH with Disks Dual Pathed Between VMS Systems
You can use IO$M_FORCEPATH to load balance RA-series disks that
are dual pathed between VMS systems running the MSCP server. Both
serving nodes should specify the same preferred path. In order to move
the disk between VMS systems, the system that currently has the disk
on line through its local controller should issue the IO$M_FORCEPATH
request. The disk must be mounted on both serving nodes.

3-35

3.5

Disk Drivers
3.4 Disk Function Codes

3.4.11.4 Using 10$_SETPRFPTH with Disks Accessed Through MSCP Servers
You can specify a preferred path for disks that are accessed through MSCP
servers. However, this specification overrides any load-balancing decisions.

Note that if a disk can be accessed through both HSC and MSCP servers,
you need not specify the HSC as a preferred path. HSC paths are always
preferred to server paths.

Using I0$M_FORCEPATH without a preferred path causes the disk class
driver to move the disk to the server with the highest available capacity.

3.4.11.5 Using 10$_SETPRFPTH with Phase | Volume Shadowing
You can specify 10$_SETPRFPTH for shadow set members, but not
for virtual units. IO$M_FORCEPATH is not supported for shadow set
members or virtual units.

3.4.11.6 Using I0$_SETPRFPTH with Phase Il Volume Shadowing
I0$_SETPRFPTH and I0$M_FORCEPATH are supported for shadow set
members but not for virtual units.

I/0 Status Block

Figure 3-5 shows the I/O status block (IOSB) for all disk device QIO
functions except Sense Mode. Figure 3-6 shows the I/O status block
for the Sense Mode function. Appendix A lists the status messages for
all functions and devices. (The VMS System Messages and Recovery
Procedures Reference Manual provides explanations and suggested user
actions for these messages.)

Figure 3-5 10SB Contents

31 16 15 0
Byte Count
(Low—Order Word) Status
0 Byte Count
(High—Order Word)

ZK-0656-GE

The byte count is a 32-bit integer that gives the actual number of bytes
transferred to or from the process buffer.

Disk Drivers
3.5 /0 Status Block

Figure 3-6 10SB Contents for the Sense Mode Function

31 16 15 8 7 0
0 Status
Cylinders Tracks Sectors
ZK-0657-GE

The second longword of the I/O status block for the Sense Mode function
returns information about the cylinder, track, and sector configurations for
the particular device.

3.6 Disk Driver Programming Example

This sample program (Example 3-1) provides an example of optimizing
access time to a disk file. The program creates a file using VMS RMS,
stores information concerning the file, and closes the file. The program
then accesses the file and reads and writes to the file using the Queue I/O
($QI0) system service.

3-37

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 Disk Program Example

KKK AR K AR AR AR A AR KRR A AR A KRR AR A AKX AR AIAKR AR KR A AR A AR A RA KRR R A A Ak A hhkhkhhk ki hxx

.TITLE Disk Driver Programming Example
.IDENT /01/

; Define necessary symbols.

SFIBDEF ;Define file information block Offsets
$IODEF ;Define. I/0 function codes
SRMSDEF ;Define RMS-32 Return Status Values

; Local storage

; Define number of records to be processed.

NUM_RECS=100 ;One hundred records

;

; Allocate storage for necessary data structures.
; Allocate File Access Block.
; A file access block is required by RMS-32 to open and close a

; file.

;

FAB_BLOCK: ;

SFAB ALQ = 100,- ;Initial file size is to be
- ;100 blocks
FAC = PUT, - ;File Access Type is output
FNA = FILE_NAME, - ;File name string address
FNS = FILE_SIZE,- ;File name string size
FOP = CTG, - ;File is to be contiguous
MRS = 512,- ;Maximum record size is 512
- ;bytes
NAM = NAM BLOCK, -~ ;File name block address
ORG = SEQ, - ;File organization is to be
- ;sequential
REM = FIX ;Record format is fixed length

; Allocate file information block.

’

H A file information block is required as an argument in the
H Queue I/0 system service call that accesses a file.
’
FIB_BLOCK: ;
.BLKB FIBSK_LENGTH ;

;
; Allocate file information block descriptor.

;

FIB_DESCR: ;
.LONG FIBSK_LENGTH ;Length of the file
;information block
.LONG FIB_BLOCK ;Address of the file

;information block

(continued on next page)

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

; Allocate File Name Block

; A file name block is required by RMS-32 to return information
; concerning a file (for example, the resultant file name string
; after logical name translation and defaults have been applied).
NAM_BLOCK: ;

$NAM ;

; Allocate Record Access Block

; A record access block is required by RMS-32 for record
; operations on a file.
RAB_BLOCK:
SRAB FAB = FAB BLOCK, - ;File access block address
RAC = SEQ, - ;Record access is to be
- ;sequential
RBF = RECORD_BUFFER, - ;Record buffer address
RSZ = 512 ;Record buffer size

; Allocate direct address buffer
BLOCK_BUFFER:
.BLKB 1024 ;Direct access buffer is 1024
sbytes
; Allocate space to store channel number returned by the $SASSIGN
; Channel system service.
DEVICE_ CHANNEL: ;
.BLKW 1 ;

; Allocate device name string and descriptor.

.
7

DEVICE_ DESCR: ;
. LONG 20$-10% ;Length of device name string
. LONG 108 ;Address of device name string
108: .ASCII /SYSSDISK/ ;Device on which created file
;will reside
208: ;Reference label to calculate
;length

; Allocate file name string and define string length symbol.

.
r

FILE_NAME: H
.ASCII /SYSS$DISK:MYDATAFIL.DAT/ ;File name string

FILE_SIZE=.-FILE NAME ;File name string length

’

; Allocate I/O status quadword storage.

~

(continued on next page)

3-39

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

IO_STATUS:
.BLKQ 1

~e Ne

; Allocate output record buffer.
RECORD_BUFFER: ;
.BLKB 512 ;Record buffer is 512 bytes

~e

AR R AR A A A AR AR A A AR AR A KA A AR AR A AR AR A A AR AR KR AR A A KA AR AR AR A AKRARAR AR AR A kkdohk

Start Program

Ne Ne N N N

AKKKA KA KK A AR KKK KAKRAAKAA A KA A A AAAAKRAAKRARKAAAN AR KRR AN ARAA A AN Ak Ak khhhkhhdhhhkx

; The purpose of the program is to create a file called MYDATAFIL.DAT
; using RMS-32; store information concerning the file; write 100
records, each containing its record number in every byte;

close the file; and then access, read, and write the file directly,
using the Queue I/O system service. TIf any errors are detected, the
program returns to its caller with the final error status in
register RO.

Ne Ne Ne Se N

.ENTRY DISK_EXAMPLE, "M<R2,R3,R4,R5,R6> ;Program starting

;address
;
; First create the file and open it, using RMS-32.
PART 1: ;FPirst part of example
SCREATE FAB = FAB_BLOCK ;Create and open file
BLBC RO, 208 ;If low bit = 0, creation
;failure

Second, connect the record access block to the created file.

~e Ne N

SCONNECT RAB = RAB_BLOCK ;Connect the record access
;block

BLBC RO, 308 ;If low bit = 0, creation
;failure

Now write 100 records, each containing its record number.

Ne Ne S

MOVZBL #NUM_RECS, R6 ;Set record write loop count
;
; Fill each byte of the record to be written with its record number.
H

10s$: SUBB3 R6, #NUM_RECS+1,R5 ;Calculate record number
MOVC5 #0, (R6) ,R5,#512,RECORD_BUFFER ;Fill record buffer

Now use RMS-32 to write the record into the newly created file.

Ne Ne N

(continued on next page)

Disk Drivers

3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

$PUT RAB = RAB_BLOCK ;Put record in file
BLBC RO, 30$;If low bit = 0, put failure
SOBGTR R6,10$% ;Any more records to write?

The file creation part of the example is almost complete. All that
remains to be done is to store the file information returned by
RMS-32 and close the file.

~e Yo Ne N

MOVW NAM_BLOCK+NAM$W_FID,FIB_BLOCK+FIB$W_FID ;Save file
;identification

MOVW NAM_BLOCK+NAM$W_FID+2,FIB_BLOCK+FIB$W_FID+2 ; Save
; sequence number

MOVW NAM BLOCK+NAMS$W FID+4,FIB BLOCK+FIBS$W FID+4 ;Save
;relative volume

$CLOSE FAB = FAB BLOCK ;Close file
BLBS RO, PART 2 ;If low bit set, successful
;close
208 RET ;Return with RMS error status

Record stream connection or put record failure.

Ne Ne N

; Close file and return status.

.

308: PUSHL RO ;Save error status
SCLOSE FAB = FAB BLOCK ;Close file
POPL RO ;Retrieve error status
RET ;Return with RMS error status

; The second part of the example illustrates accessing the previously
; created file directly using the Queue I/0 system service, randomly
; reading and writing various parts of the file, and then deaccessing
; the file.

; First, assign a channel to the appropriate device and access the

; file.

PART 2: ;

SASSIGN_S DEVNAM = DEVICE DESCR,- ;Assign a channel to file
CHAN = DEVICE_CHANNEL ;device

BLBC RO, 20$;If low bit = 0, assign
;failure
MOVL #FIB$M_NOWRITE!FIB$M_WRITE,— ;Set for read/write

FIB_BLOCK+FIB$L_ACCTL raccess
SQIOW_S CHAN = DEVICE CHANNEL,~ ;Access file on device channel

FUNC = #IOS_ACCESS!IO$M_ACCESS,— ;I/0 function is
- ;access file
IOSB = IO_STATUS,- ;Address of I/0 status
- ; quadword
Pl = FIB_DESCR ;Address of information block
;jdescriptor
BLBC RO, 108 ;If low bit = 0, access
;failure
MOVZWL IO_STATUS,RO ;Get final I/O completion
;status

(continued on next page)

Disk Drivers

3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

10$:

208:

r

BLBS

PUSHL

RO, 308

RO

$DASSGN_S CHAN = DEVICE CHANNEL

POPL
RET

RO

;If low bit set, successful
;I/0 function

;Save error status

;Deassign file device channel
;Retrieve error status
;Return with I/O error status

; The file is now ready to be read and written randomly. Since the

Ne Ne N Ne

~.

records are fixed length and exactly one block long, the record
number corresponds to the virtual block number of the record in the
file. Thus a particular record can be read or written simply by
specifying its record number in the file.

; The following code reads two records at a time and checks to see
; that they contain their respective record numbers in every byte.

; The records are
; This results in
; record 2 having

then written back into the file in reverse order.
record 1 having the old contents of record 2 and
the old contents of record 1, and so forth. After

; the example has been run, it is suggested that the file dump

; utility be used

308

.
’

MOVZBL #1,R6

to verify the change in data positioning.

;Set starting record (block)
;number

; Read next two records into block buffer.

.
’

408:

.
’

$QI0 S

BSBB

CHAN = DEVICE_CHANNEL, -
FUNC = #I0$_READVBLK, -~
IOSB = IO_STATUS, -

Pl = BLOCK_BUFFER, -

P2 = #1024,-
P3 = R6
508

;Read next two records from
;file channel

;I/0 function is read virtual
;block

;Address of I/0 status

; quadword

;Address of I/0 buffer

;Size of I/0 buffer
;Starting virtual block of
;transfer

;Check I/O completion status

;7 Check each record to make sure it contains the correct data.

7

Ne Ne we N

SKPC

BNEQ

ADDL3
SKPC

BNEQ

R6,#512,BLOCK_BUFFER

603

#1,R6,R5

;Skip over equal record
;numbers in data

;If not equal, data match
;failure
;Calculate even record number

R5,#512,BLOCK_BUFFER+512 ;Skip over equal record

60$

Record data matches.

;jnumbers in data
;If not equal, data match
;failure

Write records in reverse order in file.

3-42

(continued on next page)

Disk Drivers
3.6 Disk Driver Programming Example

Example 3-1 (Cont.) Disk Program Example

$QTOW_S CHAN = DEVICE CHANNEL, -

FUNC = #I0$_WRITEVBLK, -
IOSB = IO_STATUS, -
P1 = BLOCK_BUFFER+512, -

P2 = #512,-
P3 = R6
BSBB 50%
ADDL3 #1,R6,R5
$QIOW_S CHAN = DEVICE_CHANNEL, -
FUNC = #I0$_WRITEVBLK, -
IOSB = IO_STATUS, -
Pl = BLOCK_ BUFFER, -
P2 = $#512,-
P3 = R5
BSBB 50%
ACBB #NUM_RECS-1,#2,R6,40$
BRB 708
;
; Check I/O completion status.
50%: BLBC RO, 703
MOVZWL IO STATUS,RO
BLBC RO, 708
RSB

;
; Record number mismatch in data.

.
’

605: MNEGL #4,R0
;

; All records have been read, verified,

4

708 PUSHL RO
$QIOW_S CHAN = DEVICE_CHANNEL, -

FUNC = #I0$_DEACCESS

$DASSGN_S CHAN = DEVICE_CHANNEL
POPL RO
RET
.END DISK_EXAMPLE

;Write even-~numbered record in
;odd slot

;I/0 function is write virtual
;block

;Address of I/0 status
;quadword

;Address of even record buffer
;Length of even record buffer
;Record number of odd record
;Check I/0 completion status
;Calculate even record number
jWrite odd numbered record in
;even slot

;I/0 function is write virtual
;block

;Address of I/0 status
;quadword

;Address of odd record buffer
;Length of odd record buffer
;Record number of even record
;Check I/0 completion status
;Any more records to be read?

i

;If low bit = 0, service

; failure

;Get final I/O completion
;status

;If low bit = 0, I/0 function
;failure

;Set dummy error status value

and odd/even pairs inverted

;Save final status

;Deaccess file

;I/0 function is deaccess file
;Deassign file device channel
;Retrieve final status

’

4 Laboratory Peripheral Accelerator Driver

This chapter describes the VMS laboratory peripheral accelerator
(LPA11-K) driver and the high-level language procedure library that
interfaces with it. The procedure library is implemented with callable
assembly language routines that translate arguments into the format
required by the LPA11-K driver and that handle buffer chaining
operations. Routines for loading the microcode and initializing the device
are also described.

Refer to the LPA11-K Laboratory Peripheral Accelerator User’s Guide for
additional information.

4.1 Supported Device

The LPA11-K is a peripheral device that controls analog-to-digital (A/D)
and digital-to-analog (D/A) converters, digital I/O registers, and real-time
clocks. It is connected to the VAX processor through the UNIBUS adapter.

The LPA11-K is a fast, flexible microprocessor subsystem designed for
applications requiring high-speed, concurrent data acquisition and data
reduction. The LPA11-K allows aggregate analog input and output rates of
up to 150,000 samples per second. The maximum aggregate digital input
and output rate is 15,000 samples per second.

Table 4-1 lists the useful minimum and maximum LPA11-K configurations
supported by the VMS operating system.

411 LPA11-K Modes of Operation
The LPA11-K operates in two modes: dedicated and multirequest.

In dedicated mode, only one user (one request), can be active at a time, and
only analog I/O data transfers are supported. Up to two A/D converters
can be controlled simultaneously. One D/A converter can be controlled at a
time. Sampling is initiated either by an overflow of the real-time clock or
by an externally supplied signal. Dedicated mode provides sampling rates
of up to 150,000 samples per second.

4-1

4.1.2

Laboratory Peripheral Accelerator Driver
4.1 Supported Device

Table 4-1 Minimum and Maximum Configurations per LPA11-K

Minimum Maximum

1 DD11-Cx or Dx backplane 2 DD11-Cx or Dx backplanes

1 KW11-K real-time clock 1 KW11-K real-time clock

1 of the following: 2 AD11-K A/D converters
AD11-K A/D converter 2 AM11-K multiplexers for AD11-K converters
AA11-K A/D converter 1 AA11-K D/A converter

DR11-K digital I/O register 5 DR11-K digital I/O registers

In multirequest mode, sampling from all of the devices listed in Table 4-1
is supported. The LPA11-K operates like a multicontroller device; up to
eight requests (from one through eight users) can be active simultaneously.
The sampling rate for each user is a multiple of the common real-time
clock rate. Independent rates can be maintained for each user. Both

the sampling rate and the device type are specified as part of each data
transfer request. Multirequest mode provides a maximum aggregate
sampling rate of 15,000 samples per second.

Errors

4-2

The LPA11-K returns the following classes of errors:

1 Errors associated with the issuance of a new LPA11-K command
(SS$_DEVCMDERR)

2 Errors associated with an active data transfer request
(SS$_DEVREQERR)

3 Fatal hardware errors that affect all LPA11-K activity
(SS$_CTRLERR)

The LPA11-K Laboratory Peripheral Accelerator User’s Guide lists these
three classes of errors and the specific error codes for each class. The
LPA11-K aborts all active requests if any of the following conditions occur:

* Power failure
* Device timeout

e Tatal error

Power failure is reported to any active users when power is recovered.

The LADRIVER times out all $QIOs after two seconds if they have not
completed. The driver does not provide any parameters that allow the
user to change the length of the timeout.

Laboratory Peripheral Accelerator Driver
4.1 Supported Device

The timeout period applied to all $QIOs can be changed with the following
PATCH commands executed from a privileged account:

$ PATCH SYS$SYSTEM:LADRIVER.EXE/OUTPUT=SYS$SYSTEM: LADRIVER.EXE
PATCH> SET ECO 25
PATCH> REPLACE/INSTRUCTION LASTIMEOUT VALUE

OLD> ' PUSHL I~#00000002"
OLD> EXIT
NEW> ' PUSHL I~#0000003C
NEW> EXIT

PATCH> UPDATE
PATCH> EXIT

Substitute the desired timeout value for the “0000003C” in the example
above. When you reboot, the system loads the new copy. of the driver
containing the new timeout value.

Device timeouts are monitored only when a new command is issued. For
data transfers, the time between buffer full interrupts is not defined.
Thus, no timeout errors are reported on a buffer-to-buffer basis.

If a required resource is not available to a process, an error message
is returned immediately. The driver does not place the process in the
resource wait mode.

4.2 Supporting Software

The LPA11-K is supported by a device driver, a high-level language
procedure library of support routines, and routines for loading the
microcode and initializing the device. The system software and support
routines provide a control path for synchronizing the use of buffers,
specifying requests, and starting and stopping requests; the actual data
algorithms for the laboratory data acquisition I/0 devices are accomplished
by the LPA11-K.

The LPA11-K driver and the associated I/O interface have the following

features:
¢ They permit multiple LPA11-K subsystems on a single UNIBUS
adapter.

¢ They operate as an integral part of the VMS operating system.

¢ They can be loaded on a running VMS operating system without
relinking the executive.

¢ They handle I/O requests, function dispatching, UNIBUS adapter
map allocation, interrupts, and error reporting for multiple LPA11-K
subsystems.

¢ The LPA11-K functions as a multibuffered device. Up to eight buffer
areas can be defined per request. Up to eight requests can be handled
simultaneously. Buffer areas can be reused after the data they contain
is processed.

4-3

Laboratory Peripheral Accelerator Driver
4.2 Supporting Software

Because the LPA11-K chains buffer areas automatically, a start data
transfer request can transfer an infinite and noninterrupted amount of
data.

Multiple ASTs are dynamically queued by the driver to indicate when
a buffer has been filled (the data is available for processing) or emptied
(the buffer is available for new data).

The high-level language support routines have the following features:

They translate arguments provided in the high-level language calls
into the format required for the Queue I/0 interface.

They provide a buffer chaining capability for a multibuffering
environment by maintaining queues of used, in use, and available
buffers.

They adhere to all VMS conventions for calling sequences, use of
shareable resources, and reentrancy.

They can be part of a resident global library, or they can be linked into
a process image as needed.

The routines for loading microcode and initializing devices have the
following features:

They execute, as separate processes, images that issue I/O requests.
These 1/O requests initiate microcode image loading, start the
LPA11-K subsystem, and automatically configure the peripheral
devices on the LPA11-K internal 1I/0 bus.

They can be executed at the request of the user or an operator.
They can be executed at the request of other processes.

They can be executed automatically when the system is initialized and
On pOWer recovery.

Figure 4-1 shows the relationship of the supporting software to the
LPA1l-K.

Laboratory Peripheral Accelerator Driver
4.2 Supporting Software

Figure 4-1 Relationship of Supporting Software to LPA11-K

pCode Loading
and Device
Initialization
Routines

QIO Requests

o — o ——— — ——— — t_ T - - - = " . S - o — = ———y

i VMS Operating System

QIO LPA11-K

y

High-Level
Language
Support
Routines

T

AE— Chaining

LPA11-K

1
1
1
1
1
1
i
[
Interface Driver !
L}
1
1
1
1
1

[m———m—m -

?

Buffer

Routines

High-Level
Application
Program

Data
Buffer Data
Areas

ZK-0658-GE

4.3 LPA11-K Device Information

You can obtain information on all peripheral data acquisition devices
on the LPA11-K internal I/O bus by using the Get Volume Information
($GETDVI) system service. (See the VMS System Services Reference
Manual.)

$GETDVI returns device characteristics when you specify the item
codes DVI$_DEVCHAR and DVI$_DEVDEPEND. Tables 4-2 and 4-3
list these characteristics. The $DEVDEF macro defines the device-
independent characteristics; the $LADEF macro defines the device-
dependent characteristics. Device-dependent characteristics are set by
the set clock, initialize, and load microcode I/O functions to any one of, or
a combination of, the values listed in Table 4-3.

4-5

Laboratory Peripheral Accelerator Driver

4.3 LPA11-K Device Information

4-6

DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device
type names, which are defined by the $DCDEF macro. The device class for
the LPA11-K is DC$_REALTIME; the device type is DT$_LPA11.
DVI$_DEVBUFSIZ is not applicable to the LPA11-K.

Table 4-2 LPA11-K Device-Independent Characteristics

Characteristic’

Meaning

Dynamic Bit (Conditionally Set)

DEV$M_AVL Device is online and available.
Static Bits (Always Set)
DEV$M_IDV Device is capable of input.
DEV$M_ODV Device is capable of output.
DEV$M_RTM Device is real-time.
DEV$M_SHR Devjce is shareable.

Defined by the $DEVDEF macro.

Table 4-3 LPA11-K Device-Dependent Characteristics

Field'

Meaning

LA$M_MCVALID
LASV_MCVALID

LA$V_MCTYPE
LA$S_MCTYPE

The load microcode {/O function (I0$_LOADMCODE) was
performed successfully. LASM_MCVALID is set by
I0$_LOADMCODE. Each microword is verified by reading it
back and comparing it with the specified value.
LA$M_MCVALID is cleared if there is no match.

The microcode type, set by the load microcode /O function
(l0$_LOADMCODE), is one of the following values:

Value

Meaning

LA$K_MRMCODE
LA$K_ADMCODE

LA$K_DAMCODE

Microcode type is in multirequest
mode.

Microcode type is in dedicated A/D
mode.

Microcode type is in dedicated D/A
mode.

1Defined by the $LADEF macro.

(continued on next page)

Laboratory Peripheral Accelerator Driver
4.3 LPA11-K Device Information

Table 4-3 (Cont.) LPA11-K Device-Dependent Characteristics

Field' Meaning
LA$V_CONFIG The bit positions, set by the initialize 1/O function
LA$S_CONFIG (IO$_INITIALIZE), for the peripheral data acquisition devices

on the LPA11-K internal I/O bus are one or more of the

following:

Value Meaning

LA$V_CLOCKA Clock A

LA$M_CLOCKA

LA$V_CLOCKB Clock B

LA$M_CLOCKB

LASV_AD1 A/D device 1

LASM_AD1

LA$V_AD2 A/D device 2

LASM_AD2

LASV_DA D/A device 1

LA$SM_DA

LA$V_DIO1 Digital /O buffer 1

LA$M_DIOA

LA$V_DIO2 Digital I/O buffer 2

LA$M_DIO2

LA$V_DIO3 Digital I/O buffer 3

LASM_DIOS

LASV_DIO4 Digital I/O buffer 4

LA$M_DIO4

LA$V_DIO5 Digital I/O buffer 5

LA$M_DIO5
LASV_RATE The Clock A rate, which is set by the set clock function
LA$S_RATE (I0$_SETCLOCK), is one of the following values:

Value Meaning

N o o b~ w NN -+ o

Stopped

1 MHz

100 kHz

10 kHz

1 kHz

100 Hz
Schmidt trigger
Line frequency

Defined by the $LADEF macro.

(continued on next page)

4-7

4.4

4.41

Laboratory Peripheral Accelerator Driver
4.3 LPA11-K Device Information

Table 4-3 (Cont.) LPA11-K Device-Dependent Characteristics
Field' Meaning

LA$V_PRESET The Clock A preset value set by the set clock function

LA$S_PRESET (I0$_SETCLOCK). (The value is in two’s complement form in
the range 0 through 65,535.) The clock rate divided by the
clock preset value yields the clock overflow rate.

1Defined by the $LADEF macro.

LPA11-K Function Codes

The LPA11-K I/O functions are as follows:
¢ Load the microcode into the LPA11-K.
¢ Start the LPA11-K microprocessor.

* Initialize the LPA11-K subsystem.

* Set the LPA11-K real-time clock rate.

e Start a data transfer request.

The first three functions are normally performed by the loader process, not
by the user’s data transfer program. See Section 4.5.21 for a description of
the loader process interface.

The Cancel I/O on Channel ($CANCEL) system service is used to abort
data transfers.

Load Microcode

4-8

This I/O function resets the LPA11-K and loads an image of LPA11-K
microcode. Physical I/O privilege is required. The following function code
is provided:

e 10$_LOADMCODE—Load microcode

The load microcode function takes the following device- or function-
dependent arguments:

¢ P1—The starting virtual address of the microcode image that is to be
loaded into the LPA11-K

* P2—The number of bytes (usually 2048) that are to be loaded

¢ P3—The starting microprogram address (usually 0) in the LPA11-K
that is to receive the microcode

If any data transfer requests are active at the time a load microcode
request is issued, the load request is rejected and SS$_DEVACTIVE is
returned in the I/O status block.

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

Each microword is verified by comparing it with the specified value in
memory. If all words match (the microcode was loaded successfully)

the driver sets the microcode valid bit (LA$V_MCVALID) in the device-
dependent characteristics longword (see Table 4-3). If there is no

match, SS$_DATACHECK is returned in the I/O status block and
LA$V_MCVALID is cleared to indicate that the microcode was not properly
loaded. If the microcode was loaded successfully, the driver stores one of
the microcode type values (LASK_MRCODE, LA$K_ADCODE, or
LA$K_DAMCODE) in the characteristics longword.

After a load microcode function is completed, the second word of the I/O
status block contains the number of bytes loaded.

4.4.2 Start Microprocessor

This I/O function resets the LPA11-K and starts (or restarts) the LPA11-K
microprocessor. Physical I/O privilege is required. The following function
code is provided:

e I0$_STARTMPROC—Start microprocessor

This function code takes no device- or function-dependent arguments.

The start microprocessor function can return five error codes in the I/0
status block (see Section 4.6):

SS$_CTRLERR SS$_DEVACTIVE SS$_MCNOTVALID
SS$_POWERFAIL SS$_TIMEOUT

The LPA11-K Laboratory Peripheral Accelerator User’s Guide provides
additional information on error codes.

4.4.3 Initialize LPA11-K

This I/O function issues a subsystem initialize command to the LPA11-K.
This command specifies LPA11-K laboratory I/0 device addresses and
other table information for the subsystem. It is issued only once after
restarting the subsystem and before any other LPA11-K command is given.
Physical 1/0 privilege is required. The VMS operating system defines the
following function code:

* IO$_INITIALIZE—Initialize LPA11-K

The initialize LPA11-K function takes the following device- or function-
dependent arguments:

¢ P1—The starting, word-aligned, virtual address of the initialize
command table in the user process. This table is read once by the
LPA11-K during the execution of the initialize command. See the
LPA11-K Laboratory Peripheral Accelerator User’s Guide for additional
information.

e P2—Length of the initialize command buffer (always 278 bytes).

4-9

4.4.4

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

If the initialize function is completed successfully, the appropriate device
configuration values are set in the device-dependent characteristics
longword (see Table 4-3).

The initialize function can return the following 10 error codes in the I/O
status block:

SS$_BUFNOTALIGN SS$_CANCEL SS$_CTRLERR
SS$_DEVCMDERR SS$_INCLENGTH SS$_INSFMAPREG
SS$_IVMODE S$S$_MCNOTVALID SS$_POWERFAIL
SS_TIMEOUT

If a device specified in the initialize command table is not in the
LPA11-K configuration, an error condition (SS$_DEVCMDERR) occurs
and the address of the first device not found is returned in the LPA11-K
maintenance status register (see Section 4.6). A program can use this
characteristic to poll the LPA11-K and determine the current device
configuration.

Set Clock

4-10

Note:

This virtual function issues a clock control command to the LPA11-K. The
clock control command specifies information necessary to start, stop, or
change the sample rate at which the real-time clock runs on the LPA11-K
subsystem.

If the LPA11-K has more than one user, caution should be
exercised when the clock rate is changed. In multirequest mode, a
change in the clock rate affects all users.

The following function code is provided:
* I0$_SETCLOCK—Set clock

The set clock function takes the following device- or function-dependent
arguments:

* P2—Mode of operation. The VMS operating system defines the
following clock start mode word (hexadecimal) values:

Value Meaning

1 KW11-K Clock A
11 KW11-K Clock B

¢ P3—Clock control and status. The VMS operating system defines the
following clock status word (hexadecimal) values:

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

Value Meaning

0 Stop clock
143 1 MHz clock rate
145 100 kHz clock rate
147 10 kHz clock rate
149 1 kHz clock rate

14B 100 Hz clock rate
14D Clock rate is Schmidt trigger 1
14F Clock rate is line frequency

¢ P4—The two’s complement of the real-time clock preset value. The
range is 16 bits for the KW11-K Clock A and 8 bits for the KW11-K
Clock B.

The LPA11-K Laboratory Peripheral Accelerator User’s Guide describes the
clock start mode word and the clock status word in greater detail.

If the set clock function is completed successfully for Clock A, the clock
rate and preset values are stored in the device-dependent characteristics
longword (see Table 4-3).

The set clock function can return six error codes in the I/0 status block
(see Section 4.6):

SS8$_CANCEL SS$_CTRLERR SS$_DEVCMDERR
SS$_MCNOTVALID SS$_POWERFAIL SS$_TIMEOUT

The LPA11-K Laboratory Peripheral Accelerator User’s Guide provides
additional information on error codes.

4.45 Start Data Transfer Request

This virtual I/O function issues a data transfer start command that
specifies the buffer addresses, sample mode, and sample parameters used
by the LPA11-K. This information is passed to the data transfer command
table. The following function code is provided:

¢ [0$_STARTDATA—Start data transfer request

The start data transfer request function takes the following function
modifier:

* IO$M_SETEVF—Set event flag

The start data transfer request function takes the following device- or
function-dependent arguments:

¢ P1—The starting virtual address of the data transfer command table
in the user’s process.

* P2—The length in bytes (always 40) of the data transfer command
table.

4-11

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

4-12

¢ P3—The AST address of the normal buffer completion AST routine
(optional).

¢ P4—The AST address of the buffer overrun completion AST routine
(optional). This argument is used only when the buffer overrun bit
(LA$M_BFROVRN) is set, that is, when a buffer overrun condition is
classified as a nonfatal error.

A buffer overrun condition differs from a data overrun condition. The
LPA11-K fetches data from, or stores data in, memory. If data cannot be
fetched quickly enough (for example, when there is too much UNIBUS
activity) a data underrun condition occurs. If data cannot be stored
quickly enough, a data overrun condition occurs. After each buffer is filled
or emptied, the LPA11-K obtains the index number of the next buffer to
process from the user status word (USW). (See the LPA11-K Laboratory
Peripheral Accelerator User’s Guide.) A buffer overrun condition occurs if
the LPA11-K fills or empties buffers faster than the application program
can supply new buffers. For example, buffer overrun can occur when the
sampling rate is too high, the buffers are too small, or the system load is
too heavy.

The LPA11-K driver accesses the 10-longword data transfer command
table, shown in Figure 4-2, when the data transfer start command is
processed. After the command is accepted and data transfers begin, the
driver does not access the table.

In the first longword of the data transfer command table, the first two
bytes contain the LPA11-K start data transfer request mode word. (The
LPA11-K Laboratory Peripheral Accelerator User’s Guide describes the
functions of this word.)

The third byte contains the number (0-7) of the highest buffer available
and the buffer overrun flag bit (bit 23; values: LASM_BFROVRN and
LA$V_BFROVRN). If this bit is set, a buffer overrun condition is a
nonfatal error.

The second longword contains the user status word address (see the
LPA11-K Laboratory Peripheral Accelerator User’s Guide). This virtual
address points to a two-byte area in the user-process space and must be
word aligned.

The third longword contains the size (in bytes) of the overall buffer area.
The virtual address in the fourth longword is the beginning address of
this area. This address must be longword aligned. The overall buffer area
contains a specified number of buffers (the number of the highest available
buffer specified in the first longword plus one). Individual buffers are
subject to length restrictions: in multirequest mode the length must be in
multiples of two bytes; in dedicated mode the length must be in multiples
of four bytes. All data buffers are virtually contiguous for each data
transfer request.

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

Figure 4-2 Data Transfer Command Table

31 24 23 16 15 87 0
Highest Available
Buffer and Buffer Mode
Overrun Bit

User Status Word Address

Overall Data Buffer Length

Overall Data Buffer Address

Random Channel List Length

Random Channel List Address

Start
Channel
Channel Delay
Increment Nurmber
Dwell Number of Channels
Event Digital
Digital Trigger Mask Mark Trigger
Channel Channel
Event Mark Mask
ZK-0660~GE

The fifth and sixth longwords contain the random channel list (RCL)
length and address, respectively. The RCL address must be word aligned.
The last word in the RCL must have bit 15 set. (See the LPAII-K

Laboratory Peripheral Accelerator User’s Guide for additional information
on the RCL.)

The seventh through tenth longwords contain LPA11-K-specific sample
parameters. The driver passes these parameters directly to the LPA11-K.
(See the LPA11-K Laboratory Peripheral Accelerator User’s Guide for a
detailed description of their functions.)

4-13

Laboratory Peripheral Accelerator Driver
4.4 LPA11-K Function Codes

The start data transfer request function can return the following 15 error
codes in the I/O status block (see Section 4.6):

SS$_ABORT SS$_BUFNOTALIGN SS$_CANCEL
SS$_CTRLERR SS$ DEVCMDERR SS$_DEVREQERR
SS$_EXQUOTA SS$_INCLENGTH SS$_INSFBUFDP
SS$_INSFMAPREG SS$_INSFMEM SS$_MCNOTVALID
SS$_PARITY SS$_POWERFAIL SS$_TIMEOUT

Data buffers are chained and reused as the LPA11-K and the user process
dispose of the data. As each buffer is filled or emptied, the LPA11-K driver
notifies the application process either by setting the event flag specified by
the QIO request efn argument or by queuing an AST. Since buffer use is
a continuing process, the event flag is set or the AST is queued a number
of times. The user process must clear the event flag (or receive the AST),
process the data, and specify the next buffer for the LPA11-K to use.

If the set event flag function modifier IO$M_SETEVF) is specified, the
event flag is set repeatedly: when the data transfer request is started,
after each buffer completion, and when the request completes. If IO$M_
SETEVF is not specified, the event flag is set only when the request
completes.

ASTs are preferred over event flags for synchronizing a program with the
LPA11-K, because AST delivery is a queued process, while the setting of
event flags is not. If only event flags are used, buffer status may be lost.

Three AST addresses can be specified. For normal data buffer transactions
the AST address specified in the P3 argument is used. If the buffer
overrun bit in the data transfer command table is set and an overrun
condition occurs, the AST address specified in the P4 argument is used.
The AST address specified in the astadr argument of the QIO request is
used when the entire data transfer request is completed. The astprm
argument specified in the QIO request is passed to all three AST routines.

If insufficient dynamic memory is available to allocate an AST block, an
error (SS$_INSFMEM) is returned. If the user does not have sufficient
AST quota remaining to allocate an AST block, an error (SS$_EXQUOTA)
is returned. In either case, the request is stopped. Normally, there are
never more than three outstanding ASTs per LPA11-K request.

4.4.6 LPA11-K Data Transfer Stop Command

4-14

The Cancel I/0 on Channel ($CANCEL) system service is used to abort
data transfers for a particular process. When the LPA11-K driver receives
a $CANCEL request, a data transfer stop command is issued to the
LPA11-K.

To stop a data transfer, set bit 14 of the user status word. If this bit is
set, the transfer stops at the end of the next buffer transaction (see the
LPA11-K Laboratory Peripheral Accelerator User’s Guide).

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4.5 High-Level Language Interface

The VMS operating system supports several program-callable procedures
that provide access to the LPA11-K. The formats of these calls are
documented in this manual for VAX FORTRAN users. VAX MACRO users

must set up a standard VMS argument block and issue the standard
CALL procedure. (VAX MACRO users can also access the LPA11-K
directly through the use of the device-specific QIO functions described
in Section 4.4.) Users of other high-level languages must specify the
proper subroutine or procedure invocation.

High-Level Language Support Routines

The VMS operating system provides 20 high-level language procedures for
the LPA11-K. These procedures are divided into four classes. Table 4-4
lists the classes and the VAX procedures for the LPA11-K.

Table 4-4 VAX Procedures for the LPA11-K

Class Subroutine Function

Sweep Control LPASADSWP Start A/D converter sweep
LPA$DASWP Start D/A converter sweep
LPASDISWP Start digital input sweep
LPA$DOSWP Start digital output sweep
LPASLAMSKS Specify LPA11-K controller and digital mask

words

LPASSETADC Specify channel select parameters
LPASSETIBF Specify buffer parameters
LPASSTPSWP Stop sweep

Clock control LPASCLOCKA Set Clock A rate
LPA$CLOCKB Set Clock B rate
LPASXRATE Compute clock rate and preset value

Data Buffer LPASIBFSTS Return buffer status

Control LPASIGTBUF Return next available buffer
LPASINXTBF Alter buffer order
LPASIWTBUF Return next buffer or wait
LPASRLSBUF Release buffer to LPA11-K
LPA$SRMVBUF Remove buffer from device queue

Miscellaneous LPA$SCVADF Convert A/D input to floating point
LPASFLT16 Convert unsigned integer to floating point
LPASLOADMC Load microcode and initialize LPA11-K

4-15

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4-16

4.5.1.1

Buffer Queue Control

This section is provided for informational purposes only.

Buffer queue control for data transfers by LPA11-K subroutines involves
the use of the following queues:

¢ Device queue (DVQ)
e User queue (USQ)
¢ In-use queue IUQ)

Each data transfer request can specify from one through eight data buffer
areas. The user specifies these buffers by address. During execution of the
request, the LPA11-K assigns an index from 0 through 7 when a buffer is
referenced.

The DVQ contains the indexes of all the buffers that the user has released
(buffers made available to be filled or emptied by the LPA11-K). For output
functions (D/A and digital output), these buffers contain data to be output
by the LPA11-K. For input functions (A/D and digital input), these buffers
are empty and waiting to be filled by the LPA11-K.

The USQ contains the indexes of all buffers that are waiting to be returned
to the user. The LPASIWTBUF and LPA$IGTBUF calls are used to return
the index of the next buffer in the USQ. For output functions (D/A and
digital output), these buffers are empty and waiting to be filled by the
application program. For input functions (A/D and digital input), these
buffers contain data to be processed by the application program.

The IUQ contains the indexes of all buffers that are currently being
processed by the LPA11-K. Normally, the IUQ contains the indexes of the
following buffers:

¢ The buffer currently being filled or emptied by the LPA11-K

* The next buffer to be filled or emptied by the LPA11-K. (This is the
buffer specified by the next buffer index field in the user status word.)

Because the LPA11-K driver requires that at least one buffer be ready
when the input or output sweep is started, the user must call the
LPASRLSBUF subroutine before the sweep is initiated.

Figure 4-3 shows the flow between the buffer queues.

45.1.2 Subroutine Argument Usage

Table 4-5 describes the general use of the subroutine arguments. The
subroutine descriptions in the following sections contain additional
information on argument usage. The (IBUF), (BUF), and (ICHN) (random
channel list address) arguments must be aligned on specific boundaries.

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Figure 4-3 Buffer Queue Control

Buffer 0
Buffer Overrun
AST Handler
LPAGICTBUR
Normal Buffer Normal Buffer (To Epplication
AST Handler AST Handler Program)
———»
A
Head Head Head
Device In-Use User
Queue Queue Queue
Tail Tail Tal

LPA$RLSBUF
(From Application

Program)

ZK-0661-GE

Table 4-5 Subroutine Argument Usage

Argument

Meaning

IBUF

LBUF

A 50-longword array initialized by the LPA$SETIBF subroutine. IBUF is the impure area used by
the buffer management subroutines. A unique IBUF array is required for each simultaneously
active request. IBUF must be longword aligned.

The first quadword in the IBUF array is an /O status block (I0SB) for high-level language
subroutines. The LPASIGTBUF and LPASIWTBUF subroutines fill this quadword with the current
and completion status (see Section 4.6).

Specifies the size of each data buffer in words (must be even for dedicated mode sweeps).

All buffers are the same size. The minimum value for LBUF is 6 for multirequest mode data
transfers and 258 for dedicated mode data transfers. The aggregate size of the assigned buffers
must be less than 32,768 words. Thus, the maximum size of each buffer (in words) is limited to
32,768 divided by the number of buffers. The LBUF argument length is one word.

(continued on next page)

4-17

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Table 4-5 (Cont.) Subroutine Argument Usage

Argument Meaning

NBUF Specifies the number of times the buffers are to be filled during the life of the request. If
0 (default) is specified, sampling is indefinite and must be stopped with the LPASSTPSWP
subroutine. The NBUF argument length is one longword. ‘

MODE Specifies sampling options. MODE bit values are listed in the appropriate subroutine descriptions.
The default is 0. MODE values can be added to specify several options. No options are mutually
exclusive, although not all bits can be applicable at the same time. The MODE argument length
is one word.

IRATE Specifies the clock rate as follows:

Value Meaning
-1 Direct-coupled Schmidt trigger 1 (Clock A only)
0 Clock B overflow or no rate
1 1 MHz
2 100 kHz
3 10 kHz
4 1 kHz
5 100 Hz
6 Schmidt trigger
7 Line frequency
The IRATE argument length is one longword.

IPRSET Specifies the hardware clock preset value. This value is the two’s complement of the desired
number of clock ticks between clock interrupts. (The maximum value is 0, the two’s complement
of 65,536.) IPRSET can be computed by the LPASXRATE subroutine. The IPRSET argument
length is one word.

DWELL Specifies the number of hardware clock overflows between sample sequences in multirequest

mode. For example, if DWELL is 20 and NCHN is 3, then after 20 clock overflows one channel
is sampled on each of the next three successive overflows; no sampling occurs for the next 20
clock overflows. This allows different users to use different sample rates with the same hardware
clock overflow rate. In dedicated mode, the hardware clock overflow rate controls sampling and
DWELL is not accessed. Default for DWELL is 1. The DWELL argument length is one word.

4-18

(continued on next page)

4.5.2

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Table 4-5 (Cont.) Subroutine Argument Usage

Argument

Meaning

IEFN

LDELAY

ICHN

NCHN

IND

Specifies the event flag number or completion routine address. The selected event flag is set at
the end of each buffer transaction. If IEFN is O (default), event flag 22 is used.

IEFN can also specify the address of a completion routine. This routine is called by the buffer
management routine when a buffer is available and when the request is terminated, either
successfully or with an error. The standard VMS calling and return sequences are used. The
completion routine is called from an AST routine and is therefore at AST level.

If IEFN specifies the address of a completion routine, the program must call the LPASIGTBUF
subroutine to obtain the next buffer. If IEFN specifies an event flag, the program must call the
LPASIWTBUF subroutine to obtain the next buffer and must use the %VAL operator:

, $VAL(3), (Event flag 3)

, BFRFULL, (Address of completion
routine)

The IEFN argument length is one longword.

If multiple sweeps are initiated, they must use different event flags. The software does not
enforce this policy.

Event flag 28 is reserved for use by the LPASCLOCKA and LPA$CLOCKB subroutines. If either
of these subroutines is included in the user program, event flag 23 cannot be used. Also, if IEFN
is defaulted, event flag 22 cannot be used in the user program.

Specifies the delay, in IRATE units, from the start event until the first sample is taken. The
maximum value is 65,535; default is 1. The LDELAY argument length is one word. The LPA11-K
supports the LDELAY argument in muttirequest mode only.

Specifies the number of the first I/O channel to be sampled. Default is channel 0. The ICHN
argument length is one byte. The channel number is not the same as the channel assigned to
the device by the $ASSIGN system service. The LPA11-K uses the channel number to specify
the multiplexer address of an A/D, D/A, or digital /O device on the LPA11-K internal I/O bus.

Specifies the number of /O device channels to sample in a sample sequence. Default is 1. If
the NCHN argument is 1, the single channel bit is set in the mode word of the start request
descriptor array (RDA) when the sweep is started. The RDA contains the information needed
by the LPA11-K for each command (see the LPA11-K Laboratory Peripheral Accelerator User’s
Guide). The NCHN argument length is one word.

Receives the VMS success or failure code of the call. The IND argument length is one longword.

LPASADSWP — Initiate Synchronous A/D Sampling Sweep

The LPASADSWP subroutine initiates A/D sampling through an AD11-K.
The format of the LPASADSWP subroutine call is as follows:

CALL LPASADSWP (IBUF LBUF,[NBUF],[MODE],[DWELL],[IEFN],-
[LDELAY],[ICHN],[NCHN,[IND])

4-19

Laboratory Peripheral Accelerator Driver

4.5 High-Level Language Interface

4-20

Arguments are as described in Section 4.5.1.2, with the following

additions:
MODE

IND

Specifies sampling options. The VMS operating system defines the
following sampling option values:

Value

Meaning

32

64

512

1024

2048

4096

8192
16384

Paraliel A/D conversion sample algorithm is used if dual A/D
converters are specified (value = 8192). Absence of this bit
implies the serial A/D conversion sample algorithm.

Multirequest mode request. Absence of this bit implies a
dedicated mode request.

External trigger (Schmidt trigger 1). Dedicated mode only. This
value is used when a user-supplied external sweep trigger

is desired. The external trigger is supplied by the KW11-K
(Schmidt trigger 1 output) to the AD11-K (external start input).
If MODE=512, the user process must specify a Clock A rate of
—1 for proper A/D sampling. This is nonclock-driven sampling
(see Section 4.5.10). (The LPA11-K Laboratory Peripheral
Accelerator User’s Guide provides additional information on the
use of external triggers.)

Time stamped sampling with Clock B. The double word consists
of one data word followed by the value of the LPA11-K’s internal
16-bit counter at the time of the sample (see the LPA11-K
Laboratory Peripheral Accelerator User’'s Guide). Multirequest
mode only.

Event marking. Multirequest mode only. (The LPA11-K
Laboratory Peripheral Accelerator User’s Guide describes
event marking.)

Start method. If selected, the digital input start method is used.
If not selected, the immediate start method is used. Multirequest
mode only.

Dual A/D converters are to be used. Dedicated mode only.

Buffer overrun is a nonfatal error. The LPA11-K will automatically
default to fill buffer 0 if a buffer overrun condition occurs.

If MODE is defaulted, A/D sampling starts immediately with absolute
channel addressing in dedicated mode. The LPA11-K does not support
delays in dedicated mode.

Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPASRLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed by
the LPASSETIBF subroutine call.

1 = successful sweep started
nnn = VMS status code

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

453 LPASDASWP — Initiate Synchronous D/A Sweep
The LPA$DASWP subroutine initiates D/A output to an AA11-K.
The format for the LPASDASWP subroutine call is as follows:

CALL LPA$DASWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],-
[LDELAY],[ICHN],[NCHN],[IND])

Arguments are as described in Section 4.5.1.2, with the following
additions:

MODE Specifies the sampling options. The VMS operating system defines the
following start criteria values:

Value Meaning

0 Immediate start. This is the default value for MODE.
64 Multirequest mode. If not selected, this request is for dedicated
mode.

4096 Start method. If selected, the digital input start method is used.
If not selected, the immediate start method is used. Multirequest
mode only.

16384 Buffer overrun is a nonfatal error. The LPA11-K will automatically
default to empty buffer 0 if a buffer overrun condition occurs.

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPASRLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed by
the LPASSETIBF subroutine call.

1 = successful sweep started
nnn = VMS status code

454 LPAS$DISWP — Initiate Synchronous Digital Input Sweep

The LPA$DISWP subroutine initiates digital input through a DR11-K. It
is applicable in multirequest mode only.

The format of the LPA$DISWP subroutine call is as follows:

CALL LPASDISWP (IBUF,LBUF[NBUF],[MODE],[DWELL],[IEFN],-
[LDELAY],[ICHN],[NCHN],[IND])

4-21

Laboratory Peripheral Accelerator Driver

4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, with the following

additions:

MODE Specifies sampling options. The VMS operating system defines the
following sampling option values:

Value Meaning

0 Immediate start. This is the default value for MODE.

512 External trigger for DR11-K. (The LPA11-K Laboratory Peripheral
Accelerator User’s Guide describes the use of external triggers.)

1024 Time stamped sampling with Clock B. The double word
consists of one data word followed by the value of the internal
LPA11-K 16-bit counter at the time of the sample (see the
LPA11-K Laboratory Peripheral Accelerator User's Guide).

2048 Event marking. (The LPA11-K Laboratory Peripheral Accelerator
User’s Guide describes event marking.)

4096 Start method. If selected, the start method is digital input. If not
selected, the start method is immediate. Multirequest mode only.

16384 Buffer overrun is a nonfatal error. The LPA11-K will automatically
default to fill buffer O if a buffer overrun condition occurs.

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPASRLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed by
the LPA$SETIBF subroutine call.

1 = successful sweep started

nnn = VMS status code

4.5.5 LPASDOSWP — Initiate Synchronous Digital Output Sweep

The LPA$DOSWP subroutine initiates digital output through a DR11-K. It
is applicable in multirequest mode only.

The format of the LPA$DOSWP subroutine call is as follows:

CALL LPA$DOSWP (IBUF,LBUF,[NBUF],[MODE][DWELL],[IEFN],-
[LDELAY],[ICHN],[NCHN],[IND])

4-22

4.5.6

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, plus the following:

MODE Specifies sampling options. The VMS operating system defines the
following values:

Value Meaning

0 Immediate start. This is the default value for MODE.

512 External trigger for DR11-K. (The LPA17-K Laboratory Peripheral
Accelerator User’s Guide describes the use of external triggers.)

4096 Start method. If selected, digital input start. If not selected,
immediate start.

16384 Buffer overrun is a nonfatal error. The LPA11-K will automatically
default to empty buffer 0 if a buffer overrun condition occurs.

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF
subroutine was not previously called; LPASRLSBUF subroutine was not
previously called; size of data buffers disagrees with the size computed by
the LPA$SETIBF subroutine call.

1 = successful sweep started
nnn = VMS status code

LPASLAMSKS — Set LPA11-K Masks and NUM Buffer

The LPA$LAMSKS subroutine initializes a user buffer that contains a
number to append to the logical name LPA11$, a digital start word mask,
an event mark mask, and channel numbers for the two masks.

The LPASLAMSKS subroutine must be called in the following cases:

¢ Ifusers intend to use digital input starting or event marking

e Ifusers do not want to use the default of LAAO assigned to LPA11$0
¢ If multiple LPA11-Ks are used

The format of the LPASLAMSKS subroutine call is as follows:
CALL LPASLAMSKS (LAMSKB,[NUMJ[IUNIT],[IDSC],[IEMC],[IDSW],[IEMW],[IND])

Argument descriptions are as follows:

LAMSKB Specifies a four-word array.

NUM Specifies the number appended to LPA11$. The sweep is started on
the LPA11-K assigned to LPA11$num.

IUNIT Not used. This argument is present for compatibility only.

IDSC Specifies the digital START word channel. Range is 0 through 4.
The IDSC argument length is one byte.

IEMC Specifies the event MARK word channel. Range is 0 through 4. The
IEMC argument length is one byte.

IDSW Specifies the digital START word mask. The IDSW argument length
is one word.

4-23

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

IEMW Specifies the event MARK word mask. The IEMW argument length
is one word.
IND Always equal to 1 (success). This argument is present for

compatibility only.

- 4.5.7 LPASSETADC — Set Channel Information for Sweeps

The LPA$SETADC subroutine establishes channel start and increment
information for the sweep control subroutines (see Table 4—4). It must be
called to initialize IBUF before the LPA$SETADC subroutine is called.

The LPA$SETADC subroutine can be called in either of the following
formats:

CALL LPA$SETADC (IBUF,[IFLAG],[ICHN],[NCHN],[INC],[IND])
or

IND=LPA$SETADC (IBUF[IFLAG],[ICHN],[NCHN],[INC])
Argument descriptions are as follows:

IND Returns the success or failure status as follows:
0 = LPASSETIBF was not called prior to the LPA$SETADC call
1 = LPA$SETADC call successful

IBUF The IBUF array specified in the LPASSETIBF call.
IFLAG Reserved. This argument is present for compatibility only.
ICHN Specifies the first channel number. Range is 0 through 255; default

is 0. The ICHN argument length is one longword.

If INC = 0, ICHN is the address of a random channel list. This
address must be word aligned.

NCHN Specifies the number of samples taken per sample sequence.
Default is 1.
INC Specifies the channel increment. Default is 1. If INC is 0, ICHN is

the address of a random channel list. The INC argument length is
one longword.

4.5.8 LPAS$SETIBF — Set IBUF Array for Sweeps

4-24

The LPA$SETIBF subroutine initializes the IBUF array for use with the
following subroutines:

LPASADSWP LPA$DASWP LPA$DISWP
LPA$DOSWP LPASIBFSTS LPASIGTBUF
LPASINXTBF LPASIWTBUF LPA$SRLSBUF
LPASRMVBUF LPASSETADC LPA$STPSWP

The format of the LPA$SETIBF subroutine call is as follows:
CALL LPAS$SETIBF (IBUF,[IND],[LAMSKB],BUFO,[BUF1,...,.BUF7])

4.5.9

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, with the following
additions:

IBUF Specifies a 50-longword array that is initialized by this subroutine.
IBUF must be longword-aligned. (See Table 4-5 for additional
information on IBUF.)

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: incorrect number
of arguments; IBUF array not longword-aligned; buffer addresses not
equidistant.

1 = IBUF initialized successfully

LAMSKB Specifies the name of a four-word array. This array allows the use of
multiple LPA11-Ks within the same program because the argument
used to start the sweep is specified by the LPASLAMSKS subroutine
call. (See Section 4.5.6 for a description of the LPASLAMSKS
subroutine.)

BUFo, ... Specify the names of the buffers. A maximum of eight buffers can
be specified. At least two buffers must be specified to provide
continuous sampling. The LPA11-K driver requires that all buffers
be contiguous. To ensure this, the LPA$SETIBF subroutine verifies
that all buffer addresses are equidistant. Buffers must be longword-
aligned.

LPA$STPSWP — Stop In-Progress Sweep

The LPA$STPSWP subroutine allows you to stop a sweep that is in
progress.

The format of the LPA$STPSWP subroutine call is as follows:
CALL LPA$STPSWP (IBUF,[IWHEN],[IND])

Arguments are as described in Section 4.5.1.2, with the following
additions:

IBUF The IBUF array specified in the LPASADSWP, LPASDASWP,
LPA$DISWP, or LPASDOSWP subroutine call that initiated the
sweep.

IWHEN Specifies when to stop the sweep. The VMS operating system

defines the following values:

0 = Abort sweep immediately. Uses the SCANCEL system service.
This is the default sweep stop.

1 = Stop sweep when the current buffer transaction is completed.
(This is the preferred way to stop requests.)

IND Receives a success or failure code in the standard VMS format:

1 = Success

nnn = VMS error code issued by the $CANCEL system service
Note that when the LPA$STPSWP subroutine is returned, the sweep
cannot be stopped. If it is necessary to wait until the sweep has stopped,

you can call the LPASTWTBUF subroutine in a loop until it returns
IBUFNO = -1 (see Section 4.5.16).

4-25

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

4.5.10 LPA$CLOCKA — Clock A Control

The LPA$CLOCKA subroutine sets the clock rate for Clock A.
The format of the LPASCLOCKA subroutine call is as follows:
CALL LPA$CLOCKA (IRATE,IPRSET,[IND],[NUM])

Arguments are as described in Section 4.5.1.2, with the following

4.5.11

additions:
IRATE

IPRSET

IND

NUM

Specifies the clock rate. One of the following values must be
specified:

Value Meaning

-1 Direct-coupled Schmidt trigger 1. Used only for A/D
sweeps in dedicated mode, that is, MODE = 512 (see
Section 4.5.2).

Clock B overflow or no rate
1 MHz

100 kHz

10 kHz

1 kHz

100 Hz

Schmidt trigger 1

Line frequency

N O oA O =+ O

Specifies the clock preset value. Maximum of 16 bits. The
LPA$SXRATE subroutine can be used to calculate this value. The
clock rate divided by the clock preset value yields the clock overflow
rate.

Receives a success or failure code as follows:

1 = Clock A set successfully

nnn = VMS error code indicating an 1O error

Specifies the number to be appended to the logical name LPA11$.
The default value is 0. This subroutine sets Clock A on the LPA11-K
assigned to LPA11$num.

LPASCLOCKB — Clock B Control

The LPASCLOCKB subroutine provides the user with control of the
KW11-K Clock B.

The format of the LPA$CLOCKB subroutine call is as follows:
CALL LPASCLOCKB ([IRATE],IPRSET,MODE,[IND],[INUM])

4-26

Laboratory Peripheral Accelerator Driver
4.5 High-Level Language Interface

Arguments are as described in Section 4.5.1.2, with the following

additions:

IRATE

IPRSET

MODE

iND

NUM

Specifies the clock rate. One of the following must be specified:

Value Meaning

Stops Clock B

1 MHz

100 kHz

10 kHz

1 kHz

100 Hz

Schmidt trigger 3
Line frequency

No o~ O N 2O

If IRATE is 0 (default), the clock is stopped and the IPRSET and
MODE arguments are ignored.

Specifies the preset value by which the clock rate is divided to yield
the overflow rate. Maximum of eight bits. Overflow events can be
used to drive Clock A. The LPA$XRATE subroutine can be used to
calculate the IPRSET value.

Specifies options. The VMS operating system defines the following:
1 = Clock B operates in noninterrupt mode.

2 = The feed B to A bit in the Clock B status register will be set (see
the LPA11-K Laboratory P<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>