
VMS

Guide to VMS Programming Resources

Order Number AA-LA57A-TE

Guide to VMS
Programming Resources

Order Number: AA-LA5 7 A-TE

April 1988

This guide contains practical guidelines for using VMS program
development tools. Major VMS program development resources are
reviewed and examples of using these resources are provided. References
for more specific information on each topic are also provided.

Revision/Update Information: This document supersedes the Guide to
Programming on VAX/VMS,
Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~urnua~u™ DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4522

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xix

CHAPTER 1 OVERVIEW 1-1

1.1 VMS TEXT PROCESSORS 1-3
1.1.1 EDT Editor 1-3
1. 1. 1. 1 Keypad Editing Mode • 1-3
1.1. 1.2 Line Editing Mode • 1-3
1.1.1.3 Nokeypad Editing Mode • 1-4
1.1.2 VAX Text Processing Utility 1-4
1.1.2.1 EVE• 1-5
1.1.2.2 EDT Keypad Emulation in EVE • 1-5
1.1.2.3 VT 100, WPS, and Numeric Keypad Emulation in EVE • 1-5

1.2 VAX COMPILERS, INTERPRETERS, AND THE ASSEMBLER 1-5
1.2.1 VAX Common Language Environment 1-5
1.2.2 VAX Ada 1-5
1.2.3 VAX APL 1-6
1.2.4 VAX BASIC 1-6
1.2.5 VAX BLISS-32 1-6
1.2.6 VAXC 1-7
1.2.7 VAX COBOL 1-7
1.2.8 VAX DIBOL 1-8
1.2.9 VAX FORTRAN 1-8
1.2.10 VAX LISP 1-8
1.2.11 VAX MACRO 1-9
1.2.12 VAX PASCAL 1-9
1.2.13 VAX PL/I 1-10
1.2.14 VAX RPG II 1-10
1.2.15 VAX SCAN 1-11

1.3 LINKER 1-11
1.3.1 Using Options Files 1-11
1.3.2 Using Image Maps 1-11
1.3.3 Using LIBRARIAN with the Linker 1-12
1.3.4 Linker Input and Output 1-12
1.3.5 Linker Command Summary 1-13
1.3.6 Additional Features 1-13

v

Contents

1.4 DEBUGGERS 1-14
1.4.1 Symbolic Debugger 1-14
1.4.2 Delta/XDelta Utility 1-15

1.5 PROGRAMMING UTILITIES 1-16
1.5.1 Command Definition Utility 1-16
1.5. 1 .. 1 Defining a New Command • 1-1 6
1.5.1.2 Modifying the Process and System Command Tables • 1-16
1.5.1.3 Creating a New Command Table • 1-17
1.5.1.4 Parsing the Command String • 1-1 7
1.5.2 Librarian Utility 1-17
1.5.2.1 Types of Libraries • 1-18
1.5.2.2 Linking Your Program with Libraries • 1-18
1.5.2.3 Assigning Logical Names to Libraries • 1-18
1.5.2.4 Sharing Code Using Text Libraries • 1-18
1.5.2.5 Manipulating Libraries Using the LIBRARY Command • 1-19
1.5.3 Message Utility 1-19
1.5.4 Patch Utility 1-20
1.5.5 SUMSLP Utility 1-20
1.5.6 System Dump Analyzer 1-21
1.5.7 National Character Set Utility 1-22

1.6 CALLABLE SYSTEM ROUTINES 1-22
1.6.1 1/0 Operations 1-23
1.6.2 Security Procedures 1-23
1.6.3 File Management 1-23
1.6.4 Memory Management 1-23
1.6.5 Screen Management 1-23
1.6.6 Math Operations 1-24
1.6.7 Event Synchronization 1-24
1.6.8 Calling Utility Routines 1-24
1.6.9 Run-Time Library (RTL) Routines 1-24
1.6.10 System Services 1-29
1.6.11 Utility Routines 1-34
1.6.12 VMS Record Management Services 1-35
1.6. 12. 1 Device Support • 1-36
1.6.12.2 VMS RMS File Control Blocks • 1-36
1.6.12.3 VMS RMS Record Control Blocks • 1-36
1.6.12.4 VMS RMS Macros• 1-37
1.6.13 VMS Record Management Services Utilities 1-38
1.6.13.1 ANAL YZE/RMS_FILE • 1-3~
1.6.13.2 CONVERT and CONVERT /RECLAIM • 1-39
1.6.13.3 CREA TE/FOL and EDIT /FOL • 1-39

vi

Contents

1.7 SYSTEM PROGRAMMING 1-40

CHAPTER 2 USING PROCESSES 2-1

2.1 CREATING PROCESSES 2-1
2.1.1 Types of Processes 2-1
2.1.2 Modes of Execution 2-1
2.1.3 Creating Spawned Subprocesses 2-2
2.1.3.1 Creating a Spawned Subprocess Using LIB$SPA WN • 2-2
2.1.3.2 Creating a Spawned Subprocess Using SYS$CREPRC • 2-3
2.1.3.3 Creating a Spawned Subprocess Using

PPL$CREA TE_PROCESS • 2-4
2.1.3.4 Debugging Within a Subprocess • 2-5
2.1.4 Creating Detached Processes 2-7

2.2 MANAGING PROCESSES 2-8
2.2.1 Obtaining Process Information 2-9
2.2.2 Setting Privileges 2-12
2.2.3 Scheduling Processes 2-12
2.2.4 Changing Process Names 2-13
2.2.5 Controlling Process Execution 2-14
2.2.6 Deleting Processes 2-15

CHAPTER 3 COMMUNICATION 3-1

3.1 COMMUNICATING WITHIN A PROCESS 3-1
3.1.1 Local Event Flags 3-2
3.1.2 Logical Names 3-2
3.1.2.1 Using Logical Name Tables • 3-2
3.1.2.2 Access Modes • 3-Z
3.1.2.3 Creating and Accessing Logical Names • 3-2
3.1.3 Command Language Interpreter Symbols 3-5
3.1.3.1 When to Use Global Symbols • 3-5
3.1.3.2 When to Use Local Symbols • 3-6
3.1.4 Creating and Using Global Symbols 3-6
3.1.5 Common Blocks 3-6
3.1.5.1 How the Process Common Block Is Created • 3-6
3.1.5.2 Modifying or Deleting Data in the Common Block • 3-6
3.1.5.3 Specifying Other Types of Data • 3-6

3.2 INTERPROCESS COMMUNICATION 3-7
3.2.1 Mailboxes 3-7

, vii

Contents

3.2.1.1 Creating a Mailbox • 3-8
3.2.1.2 Temporary and Permanent Mailboxes • 3-8
3.2.1.3 Reading and Writing Data to a Mailbox • 3-9
3.2.1.4 Synchronous Mailbox 1/0 • 3-10
3.2.1.5 Immediate Mailbox 1/0 • 3-12
3.2.1.6 Asynchronous Mailbox 1/0 • 3-16

3.3 SYSTEM INFORMATION 3-20
3.3.1 Timer Statistics 3-20
3.3.2 System Time 3-23
3.3.2.1 Absolute Time Format • 3-23
3.3.2.2 Delta Time Format • 3-23
3.3.2.3 Current Time • 3-23
3.3.2.4 Time Manipulation • 3-24

3.4 INTERSYSTEM COMMUNICATION 3-26
3.4.1 Requesting a Network Connection 3-26
3.4.2 Completing a Network Connection 3-27
3.4.3 Exchanging Messages 3-28
3.4.4 Terminating a Network Connection 3-30

CHAPTER 4 SYNCHRONIZATION 4-1

4.1 SYNCHRONIZING OPERATIONS WITH EVENT FLAGS 4-1

4.1.1 Types of Event Flags 4-1

4.1.2 General Guidelines for Using Event Flags 4-2
4.1.3 Using Local Event Flags 4-3
4.1.4 Using Common Event Flags 4-4
4.1.4.1 Associating a Name with a Common Event Flag Cluster • 4-4
4.1.4.2 Temporary Common Event Flag Clusters • 4-4
4.1.4.3 Permanent Common Event Flag Clusters • 4-5

4.2 USING ASYNCHRONOUS SYSTEM TRAPS 4-7

4.3 SPECIFYING A TIME FOR PROGRAM EXECUTION 4-8
4.3.1 Using Processes for Timing 4-8
4.3.1.1 Specified Time • 4-9
4.3.1.2 Timed Intervals • 4-10
4.3.2 Placing Entries in the System Timer Queue 4-11

4.4 SYNCHRONOUS AND ASYNCHRONOUS SYSTEM
SERVICES 4-12

viii

4.5 USING THE LOCK MANAGER
4.5.1 Requesting a Lock
4.5.2 Requesting a Null Lock

4.6 USING THE PARALLEL PROCESSING RUN-TIME LIBRARY
ROUTINES

4.6.1 Using Subprocesses
4.6.2 Using Spin Locks
4.6.3 Using Semaphores
4.6.4 Using Barrier Synchronization

4.7 WRITING APPLICATIONS FOR A VMS MULTIPROCESSING
ENVIRONMENT

4.7.1 Writable Global Sections
4.7.2 Synchronization Using Process Priority

4.8 PASSING CONTROL TO ANOTHER IMAGE
4.8.1 Invoking a Command Image
4.8.2 Invoking a Noncommand Image

CHAPTER 5 SHAREABLE RESOURCES

5.1
5.1.1
5. 1. 1. 1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.2

5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.2
5.2.3
5.2.4
5.2.5
5.2;5.1
5.2.5.2
5.2.6
5.2.6.1

SHARING PROGRAM CODE
Object Libraries

System- and User-Defined Default Object Libraries • 5-2
How the Linker Searches Libraries • 5-2
Creating an Object Library • 5-2
Managing an Object Library • 5-2

Text and Macro Libraries

SHAREABLE IMAGES
Transfer Vectors

Why Use Transfer Vectors? • 5-4
Deleting Transfer Vectors • 5-4

GSMATCH Option
UNIVERSAL Option
Creating Shareable Images
Shareable Image Libraries

Adding or Replacing Shareable Images • 5-8
Listing or Deleting Shareable Images • 5-8

Linking Shareable Images
Default File Type and Location of Shareable Images• 5-9

Contents

4-13
4-14
4-15

4-15
4-16
4-16
4-17
4-17

4-18
4-18
4-19

4-19
4-19
4-20

5-1

5-1
5-1

5-3

5-3
5-3

5-5
5-5
5-6
5-8

5-8

ix

Contents

5.2.6.2 Alternate Location of Shareable Images • 5-9
5.2.7 Shared Images 5-10
5.2.7.1 Creating a Shared Image • 5-10
5.2.7.2 If the Shared Image Is in Memory • 5-10
5.2.7.3 If the Shared Image Is Not in Memory • 5-10

5.3 SYMBOLS 5-10
5.3.1 Defining Symbols 5-11
5.3.2 Local and Global Symbols 5-11
5.3.3 Resolving Global Symbols 5-11
5.3.3.1 Explicitly Named Modules and Libraries • 5-1 2
5.3.3.2 System Default Libraries • 5-1 2
5.3.3.3 User Default Libraries • 5-12
5.3.3.4 Making a Library Available for System-wide Use • 5-12
5.3.3.5 Macro Libraries • 5-13
5.3.4 Sharing Data 5-13
5.3.4.1 Installed Common Blocks • 5-1 3
5.3.4.2 Global Sections • 5-1 5
5.3.4.3 VMS RMS Shared Files • 5-19

CHAPTER 6 SECURITY FEATURES 6-1

6.1 RIGHTS DATABASE 6-1

6.2 SYSTEM SERVICES AND SECURITY 6-1

6.3 PRIVILEGED IMAGES 6-2

CHAPTER 7 INPUT/OUTPUT OPERATIONS 7-1

7.1 CHOOSING 1/0 TECHNIQUES 7-1
7.1.1 Simple User 1/0 7-1
7.1.2 Complex User 1/0 7-2
7.1.3 Reading and Writing Data to Files 7-2
7.1.4 Reading and Writing Data to Devices 7-2
7.1.5 Broadcast Messages and Special 1/0 Actions 7-2

7.2 USING SYS$1NPUT AND SYS$0UTPUT 7-2
7.2.1 Default Input and Output Devices 7-2

x

Contents

7.2.2 Reading and Writing to Alternate Devices and External
Files 7-3

7.3 WORKING WITH SIMPLE USER 1/0 7-3
7.3.1 Default Devices for Simple 1/0 7-3
7.3.2 Getting a Line of Input 7-4
7.3.3 Getting Several Lines of Input 7-5
7.3.4 Writing Simple Output 7-6

7.4 WORKING WITH COMPLEX USER 1/0 7-7
7.4.1 Pasteboards 7-8
7.4. 1.1 Creating a Pasteboard • 7-9
7.4.1.2 Deleting a Pasteboard • 7-9
7.4.1.3 Setting Screen Dimensions and Background Color • 7-9
7.4.2 Virtual Displays 7-10
7.4.2.1 Creating a Virtual Display• 7-10
7.4.2.2 Pasting Virtual Displays • 7-11
7.4.2.3 Rearranging Virtual Displays • 7-13
7.4.2.4 Removing Virtual Displays • 7-14
7.4.2.5 Modifying a Virtual Display• 7-15
7.4.2.6 Using Spawned Subprocesses• 7-16
7.4.3 Viewports 7-17
7.4.4 Writing Text to Virtual Display 7-17
7.4.4.1 Positioning the Cursor• 7-17
7.4.4.2 Writing Data Character by Character• 7-18
7.4.4.3 Writing Data Line by Line • 7-19
7.4.4.4 Drawing Lines • 7-20
7.4.4.5 Deleting Text • 7-21
7.4.5 Using Menus 7-22
7.4.6 Reading Data 7-23
7.4.6.1 Reading from a Display• 7-23
7.4.6.2 Reading from a Virtual Keyboard• 7-24
7.4.6.3 Reading from the Keypad• 7-25
7.4.6.4 Reading Composed Input • 7-28
7.4.7 Controlling Screen Updates 7-31
7.4.8 Modularity 7-31

7.5 SPECIAL INPUT/OUPUT ACTIONS 7-33
7.5.1 CTRL/C and CTRL/Y Interrupts 7-33
7.5.2 Unsolicited Input 7-36
7.5.3 Type-Ahead Buffer 7-39
7.5.4 Echo 7-40
7.5.5 Timeout 7-41
7.5.6 Lowercase to Uppercase Conversion 7-42
7.5.7 Line Editing and Control Actions 7-42

xi

Contents

7.5.8 Broadcasts 7-43
7.5.8.1 Default Handling of Broadcasts • 7-43
7.5.8.2 How to Create Alternate Broadcast Handlers • 7-44

7.6 SYS$QIO AND SYS$QIOW SYSTEM SERVICES 7-45
7.6.1 Read Operations 7-46
7.6.2 Write Operations 7-49
7.6.3 Checking the Device Type 7-50
7.6.4 Terminal Characteristics 7-51
7.6.5 Record Terminators 7-53
7.6.6 File Terminators 7-54

CHAPTER 8 FILE 1/0 8-1

8.1 FILE ATTRIBUTES 8-1

8.2 FILE ACCESS STRATEGIES 8-1
8.2.1 Complete Access 8-1
8.2.2 Record-by-Record Access 8-1
8.2.3 Discrete Records 8-2
8.2.4 Sequential and Indexed Files 8-2
8.2.5 Protection and Access 8-2
8.2.5.1 Read Only Access • 8-2
8.2.5.2 Shared Access • 8-2
8.2.6 Specifying File Attributes 8-3

8.3 LOADING AND UNLOADING A DATABASE 8-4
8.3.1 Using SYS$CRMPSC 8-4
8.3.1.1 Mapping a File • 8-5
8.3.1.2 User-Open Routine• 8-8
8.3.1.3 Initializing a Mapped Database • 8-9
8.3.1.4 Saving a Mapped File • 8-9
8.3.1.5 Example of Per-Record Processing of Entire Database • 8-1 0

8.4 SORTING AND MERGING SEQUENTIAL FILES 8-13
8.4.1 Using the File and Record Interface 8-14
8.4.2 Multiple Sort Operations 8-14
8.4.3 Passing Key Information 8-14
8.4.4 Sorting with the File Interface 8-15
8.4.5 Sorting with the Record Interface 8-16
8.4.6 Merging with the File Interface 8-19
8.4.7 Merging with the Record Interface 8-21

xii

Contents

8.5 DATA COMPRESSION AND EXPANSION 8-25
8.5.1 Compression Routines 8-26
8.5.2 Expansion Routines 8-32

8.6 LIBRARIAN UTILITY ROUTINES 8-35
8.6.1 Creating, Opening, and Closing Libraries 8-36
8.6.2 Adding Modules 8-40
8.6.3 Deleting Modules 8-42
8.6.4 Extracting Modules 8-43
8.6.5 Using Multiple Keys and Multiple Indexes 8-45
8.6.6 Accessing Module Headers 8-48
8.6.7 Reading Library Headers 8-50
8.6.8 Displaying Help Text 8-52
8.6.9 Listing and Processing Index Entries 8-53

8.7 FILE DEFINITION LANGUAGE 8-54
8.7.1 Creating an FOL File 8-55
8.7. 1.1 Using the FDL Editor • 8-55
8.7.1.2 Using the Characteristics of an Existing Data File • 8-55
8.7.2 Applying an FOL File to a Data File 8-57
8.7.2.1 Creating a New Data File • 8-57
8.7.2.2 Modifying an Existing Data File • 8-58

8.8 USER-OPEN ROUTINES 8-58
8.8.1 Opening a File 8-59
8.8.1.1 Specifying USEROPEN • 8-59
8.8.1.2 Writing the User-Open Routine • 8-59
8.8.1.3 Setting FAB and RAB Fields • 8-60

CHAPTER 9 CONDITION HANDLING 9-1

9.1 GENERAL ERROR HANDLING 9-1
9.1.1 Condition Code and Message 9-1
9.1.2 Return Status Convention 9-2
9.1.2.1 Testing Returned Condition Codes • 9-3
9.1.2.2 Testing SS$_NQPRIV and SS$_EXQUOT A • 9-3
9.1.3 Signaling Mechanism 9-5
9.1.3.1 Default Condition Handling • 9-5
9.1.3.2 Changing a Signal to a Return Status • 9-6

9.2 DEFINING CONDITION CODES AND MESSAGES 9-7
9.2.1 Creating the Message Source File 9-7

xiii

Contents

9.2.1.1 Specifying the Facility • 9-8
9.2.1.2 Specifying the Severity • 9-8
9.2.1.3 Specifying Condition Names and Messages• 9-9
9.2.1.4 Specifying Variables in the Message Text• 9-9
9.2.2 Compiling and Linking the Messages 9-9
9.2.2.1 Linking the Message Object Module • 9-9
9.2.2.2 Accessing the Message Object Module from Multiple

Programs • 9-10
9.2.2.3 Modifying a Message Source Module • 9-10
9.2.2.4 Accessing Modified Messages Without Relinking• 9-10
9.2.3 Signaling User-Defined Codes and Messages 9-10
9.2.3.1 Signaling with Global Symbols • 9-11
9.2.3.2 Signaling with Local Symbols • 9-11
9.2.3.3 Specifying FAQ Parameters • 9-12

9.3 CONDITION HANDLERS 9-12
9.3.1 Establishing a Condition Handler 9-14
9.3.2 Writing a Condition Handler 9-14
9.3.2.1 The Signal Array • 9-14
9.3.2.2 The Mechanism Array • 9-1 5
9.3.2.3 Comparing the Signaled Condition with an Expected

Condition • 9-1 6
9.3.2.4 Exiting From the Condition Handler • 9-1 7
9.3.2.5 Returning Control to the Program • 9-18
9.3.3 Debugging 9-20
9.3.4 Condition Handler Functions 9-20
9.3.4.1 Modifying Condition Codes • 9-20
9.3.4.2 Displaying Messages • 9-22
9.3.4.3 Chaining Messages • 9-23
9.3.4.4 Logging Messages • 9-24
9.3.5 System-Defined Arithmetic Condition Handlers 9-26

9.4 EXIT HANDLERS 9-26
9.4.1 Establishing an Exit Handler 9-27
9.4.2 Writing an Exit Handler 9-29
9.4.3 Debugging an Exit Handler 9-30

CHAPTER 10 MEMORY MANAGEMENT 10-1

10.1 USING RTL ROUTINES 10-1

10.2 USING SYSTEM SEVICES 10-2
10.2.1 Working with Address Space 10-3
10.2.2 Adjusting Working Sets 10-3

xiv

Contents

INDEX

EXAMPLES
1-1 Defining a New Command 1-17

1-2 Message Source File 1-19

2-1 Obtaining the Process Name 2-10

2-2 Obtaining Different Types of Process Information 2-11

3-1 Creating a Spawned Subprocess 3-3

3-2 Opening a Mailbox 3-10

3-3 Synchronous 1/0 Using a Mailbox 3-11

3-4 Immediate 1/0 Using a Mailbox 3-13

3-5 Asynchronous 1/0 Using a Mailbox 3-17

3-6 Displaying and Writing Timer Statistics 3-21

3-7 Calculating and Displaying the Time 3-25

3-8 Exchanging Messages 3-28

4-1 Executing a Program Using Delta Time 4-10

4-2 Executing a Program at Timed Intervals 4-11

4-3 Requesting a Null Lock 4-15

5-1 Interprocess Communication Using Global Sections 5-16

7-1 Reading a Line of Data 7-4

7-2 Reading a Varying Number of Input Records 7-5

7-3 Associating a Pasteboard with a Terminal 7-8

7-4 Modifying the Screen Dimensions and Background Color - 7-9

7-5 Defining and Pasting Virtual Displays 7-11

7-6 Scrolling Forward Through a Display 7-19

7-7 Scrolling Backward Through the Display 7-20

7-8 Creating a Statistics Display 7-21

7-9 Reading Data from a Virtual Keyboard 7-24

7-10 Reading Data from the Keypad 7-26

7-11 Redefining Keys 7-29

7-12 Using Interrupts to Perform 1/0 7-35

7-13 Receiving Unsolicited Input from a Virtual Keyboard 7-37

7-14 Trapping Broadcast Messages 7-44

7-15 Reading Data from the Terminal Synchronously 7-46

7-16 Reading Data from the Terminal Asynchronously 7-48

7-17 Writing Character Data to a Terminal 7-49

7-18 Using SYS$GETDVIW to Verify the Device Name 7-50

7-19 Disabling the HOSTSYNCH Terminal Characteristic 7-52

xv

Contents

8-1 Mapping a Data File to the Common Block 8-6
8-2 Using a User-Open Routine 8-8
8-3 Closing a Mapped File 8-10
8-4 Creating a Sequential File of Fixed-Length Records 8-11
8-5 Updating a Sequential File 8-12
8-6 Sorting a Sequential File Using the File Interface 8-15
8-7 Sorting a Sequential File Using the Record Interface 8-17
8-8 Merging Sequential Files Using the File Interface 8-20
8-9 Merging Sequential Files Using the Record Interface 8-22
8-10 Compressing Data 8-27
8-11 Expanding Data 8-33
8-12 Creating, Opening, and Closing a Text Library 8-37
8-13 Adding Modules to a Text Library 8-40
8-14 Deleting Modules from a Text Library 8-42
8-15 Extracting Modules from a Text Library 8-44
8-16 Associating Keys with Modules 8-45
8-17 Listing Keys Associated with a Module 8-47
8-18 Displaying the Module Header 8-49
8-19 Reading Library Headers 8-51
8-20 Displaying Text from a Help Library 8-52
8-21 Displaying Index Entries 8-54
8-22 Creating an FOL File 8-56

FIGURES
5-1 How the Linker Uses Transfer Vector Address 5-4
7-1 Defining and Pasting Virtual Displays 7-12

7-2 Moving a Virtual Display 7-13
7-3 Repasting a Virtual Display 7-14
7-4 Popping a Virtual Display 7-15
7-5 Statistics Display 7-21
9-1 Structure of a Condition Code 9-2
9-2 Structure of a Signal Array 9-15
9-3 Structure of a Mechanism Array 9-16
9-4 Structure of an Exit Handler 9-28

xvi

Contents

TABLES
1-1 Types of Libraries 1-18
1-2 RTL General Programming Tasks (LI 8$) Routines 1-25
1-3 RTL Screen Management (SMG$) Routines 1-27
1-4 Summary of System Services 1-30
1-5 Utility Routine Summary 1-35
1-6 User Control Blocks 1-37
2-1 Detached Processes and Spawned Subprocesses 2-2
2-2 Comparison of LIB$SPAWN, SYS$CREPRC, and

PPL$CREATE_PROCESS 2-5
2-3 Routines and Commands for Managing Processes 2-8
2-4 Comparison of Hibernation and Suspension 2-14
4-1 Event Flags 4-2
4-2 Event Flag Routines 4-3
4-3 Time Statistics System Services 4-9
4-4 Lock Manager Routines 4-14
6-1 Security System Services 6-2
7-1 SYS$1NPUT and SYS$0UTPUT Values 7-2
7-2 Setting Video Attributes 7-16
9-1 Privilege Errors 9-3
9-2 Quota Errors 9-4

xvii

Preface

Intended Audience
This document is intended for experienced programmers working in the VMS
operating system environment.

Document Structure
The Guide to VMS Programming Resources is designed to help programmers
understand and use the features offered by the VMS operating system. This
guide is not intended to be a complete description of any one programming
language (see the Associated Documents section for related documentation);
instead, it focuses on the tasks that typically confront programmers and
suggests ways to use the VMS operating system features to accomplish those
tasks.

An overview of all programming resources is provided in the first
chapter. The rest of the document is organized according to the following
programming tasks:

• Using processes

• Communicating with the system, with other programs, and with other
program components

• Synchronizing program execution

• Sharing program code and data

• Using system security features

• Completing 1/0 tasks

• Condition handling

• Allocating and deallocating memory

Associated Documents
For additional information on topics covered in this document, refer to the
following documents:

•
•
•
•
•
•
•
•
•

The documentation set for your programming language

VMS Debugger Manual

VMS Command Definition Utility Manual

VMS Librarian Utility Manual

VMS Linker Utility Manual

VMS Message Utility Manual

VMS Patch Utility Manual

VMS SUMSLP Utility Manual

VMS Utility Routines Manual

xix

Preface

Conventions

xx

• VMS System Services Volume

• VMS Run-Time Library Routines Volume

• VMS Record Management Services Manual

• VMS Analyze /RMSJile Utility Manual

• VMS Convert and Convert/Reclaim Utility Manual

• VMS File Definition Language Facility Manual

• VMS National Character Set Utility Manual

• VMS I/O User's Reference Volume

• VMS Delta/XDelta Utility Manual

• VMS System Dump Analyzer Utility Manual

• VMS Device Support Manual

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$ TYPE MYFILE.DAT

input-file, ...

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what .the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Convention

[logical-name]

quotation marks
apostrophes

Preface

Meaning

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (") . The term
apostrophe (·) is used to refer to a single
quotation mark.

xxi

1 Overview

The VMS operating system offers a wide range of tools and resources to make
program development efficient for programmers at all levels. Depending on
how you program, what language you are using, or the type of program you
are developing, you can utilize several VMS resources to make programming
easier.

This chapter outlines the VMS tools and resources that are available and
explains the capabilities and functions of each and how you might use
them. It also lists sources of additional information about each of the topics
reviewed.

The following VMS operating system software components and optional
software products are described: '

• The EDT editor and the VAX Text Processing Utility for creating and
editing source files

• Several VAX programming language compilers and interpreters, plus the
assembler, including:

VAX Ada

VAX APL

VAX BASIC

VAX BLISS-32

VAXC

VAX COBOL

VAX DIBOL

VAX FORTRAN

VAX LISP

VAX MACRO

VAX PASCAL

VAX PL/I

VAX RPG II

VAX SCAN

• Programming utilities that perform linking and debugging as follows:

Linker Utility

VMS Symbolic Debugger and the Delta/XDelta Utility for debugging
programs

• Additional programming utilities for program development as follows:

Command Definition Utility for creating new DCL-level commands to
invoke your program.

1-1

Overview

1-2

Librarian Utility for creating and managing libraries of modules

Message Utility for creating new messages for use in your program

Patch Utility for changing executable code after it has been compiled
or assembled

SUMSLP Utility, a batch-oriented editor, for applying multiple update
files to a single input file

National Character Set Utility for defining collating sequences and
string conversion functions

System Dump Analyzer for determining the cause of a system failure

• Callable system routines that you can call from any high-level or
assembly language program are as follows:

Run-time library routines

System services

Utility routines

VMS Record Management Services

• The following VMS RMS utilities, which allow you to create different file
formats:

Analyze/RMS-File Utility

Convert and Convert/Reclaim Utilities

File Definition Language Utility

• System programming information for 1/0 operations and device drivers

• VMS operating system features to use for maximizing program efficiency,
including:

Creating, controlling, and deleting processes

Communicating with other components

Synchronizing events

Sharing resources

Using system security

Implementing input/ output procedures

Condition handling

Managing memory

Overview
1.1 VMS Text Processors

1 .1 VMS Text Processors

1.1.1 EDT Editor

1.1.1.1

1.1.1.2

You can use either the EDT editor or the VAX Text Processing Utility
(VAXTPU) to create and modify source files.

Choose the text processor that is best for you, based on what you are used to
(that is, using a keypad or line commands) and the type of features you want.
The Extensible VAX Editor (EVE) is a VAXTPU-based text editing interface. In
general, the EVE interface offers more functionality than EDT, especially for
complicated editing tasks. With the EVE interface, more line commands and
more built-in procedures are available, and you can create multiple windows
to view separate files (or buffers) at the same time.

EDT is an interactive text editor having the following capabilities:

• Three types of editing modes: keypad mode for screen-oriented editing,
line mode for line-number editing, and nokeypad mode for defining your
own key sequences. You can use any mode you prefer and you can
switch back and forth during a single editing session.

• Journaling to protect your editing session in the event of a system
interruption.

• Multiple buffers.

• Access to as many files as you need.

• Startup command files to initialize the EDT editing environment to your
own needs.

• EDT macros to automate repetitive editing procedures.

For more information on using EDT, refer to the VAX EDT Reference Manual.

Keypad Editing Mode
In keypad mode, the text is displayed by screen. You use one-key or
two-key sequences from the numeric keypad to execute common editing
procedures such as cursor movement, deletion, insertion, text search, text
replacement, and cut and paste. With keypad mode, you can define your own
key sequences in a EDT initialization file to complete individualized editing
functions. To define key sequences, you bind a series of nokeypad commands
to a particular key sequence not currently being used.

Line Editing Mode
In line mode, the text is displayed one line at a time. With this mode, you
can access text according to line number. To edit the text, you enter line
commands that complete all the editing functions available in keypad mode.
However, you cannot define your own key sequences.

1-3

1.1.2

Overview·
1.1 VMS Text Processors

1.1.1.3 Nokeypad Editing Mode
Nokeypad mode is used primarily on VTlOO-series and VT52 terminals.
Text appears on the upper lines of the screen. As you type commands, they
are displayed at the bottom of the screen. When you press RETURN, EDT
processes the commands.

Use the nokeypad commands to create key sequences for keypad mode. You
can bind any key sequence to a series of editing commands.

VAX Text Processing Utility

1-4

The VAX Text Processing Utility (VAXTPU) is a high-performance, text
processor that can be used to create text editing interfaces such as EVE.
VAXTPU has the following features:

• A high-level procedure language with several data types, relational
operators, error interception, looping, case language statements, and
built-in procedures

• A compiler for the V AXTPU procedure language

• An interpreter for the VAXTPU procedure language

• The EVE editing interface which, in addition to the EVE keypad, provides
EDT, VTlOO, WPS, and numeric keypad emulation

With these tools, you can further customize the EVE editing interface or create
your own editing interface designed for your own programming needs.

Special features offered with VAXTPU include the following:

• Multiple buffers

• Multiple windows

• Multiple subprocesses

• Text processing in batch mode

• Insert or overstrike text entry

• Free or bound cursor motion

• Learn sequences

• Pattern matching

• Key definition

For most uses, the EVE editing interface is preferable over EDT because
of these advanced features and the ability to design your own customized
interface within EVE or using VAXTPU. For further information about
using VAXTPU, refer to the Guide to VMS Text Processing and the VAX
Text Processing Utility Manual.

Overview
1.1 VMS Text Processors

1.1.2.1 EVE

1.1.2.2

1.1.2.3

The EVE editing interface is installed with VAXTPU. EVE is easy to learn and
fast to use. Most common editing functions are accessed by pressing a single
key on the EVE keypad. EVE commands and special VAXTPU features and
advanced functions are invoked by entering commands on the EVE command
line. With EVE, you can design your own editing keypad and learn sequences
by using initialization files and section files.

EDT Keypad Emulation in EVE
If you are an experienced EDT user, you can redefine the default EVE keypad
bindings to emulate an EDT keypad using the EVE command SET KEYPAD
EDT. EDT keypad emulation in EVE provides most of the functions of the
EDT keypad and binds these functions to the same keys that EDT uses. A
subset of EDT line commands, as well as the VAXTPU commands, is also
available.

VT100, WPS, and Numeric Keypad Emulation in EVE
The EVE editing interface also supports VTlOO, WPS, and numeric keypad
emulation.

1 .2 VAX Compilers, Interpreters, and the Assembler

1.2.1

1.2.2

The VMS operating system supports a variety of language compilers and
interpreters that translate source code to object code. Each language
has features suitable to different types of programming uses. The VAX
programming languages are optional software products.

Most of the VAX programming languages can fully utilize the resources of
the VMS operating system. All VAX languages can access any of the callable
routines (system services, utility routines, run-time library routines, and
record management services). Most VAX languages are fully supported by the
Symbolic Debugger. VAX APL, VAX DIBOL, and VAX LISP have their own
symbolic debugger utility.

VAX Common Language Environment

VAX Ada

All VAX languages support mixed-language programming. VAX languages
adhere to the VAX Procedure Calling and Condition Handling Standard,
that is, a program written in any VAX programming language can contain
calls to procedures written in other VAX languages. For more information
about the VAX Procedure Calling and Condition Handling Standard, refer to
Introduction to VMS System Routines.

VAX Ada for the VMS operating system is a complete implementation of
the Ada programming language; it conforms fully to the ANSI standard and
is validated by the Ada Validation Office. VAX Ada features include the
following:

• The VAX Ada library manager allowing shared use of a compilation
library, shared compiled VAX Ada code either by reference or copy, use
of individual libraries as sublibraries of team libraries, and automatic
recompilation of obsolete units.

1-5

1.2.3

1.2.4

1.2.5

Overview
1.2 VAX Compilers, Interpreters, and the Assembler

VAX APL

VAX BASIC

VAX BLISS-32

1-6

• Individual units (subprograms, tasks, packages, generic units) that can be
compiled separately.

• Strong typing to ensure the integrity of data types. Type checking is done
at compile time.

• Data abstraction to free your programmer from needing to know
specifically how VAX Ada implements data types, executable statements,
and so forth.

• Ability to define system features (for example, memory size) that can limit
program scope for each application.

• Use of tasks within the language to support parallel processing.

• Ada-defined exception handling to recover from error conditions. User­
defined exception handling is also available.

The VAX APL interpreter provides a built-in editor, debugger, system
communications facility, and file system. It automatically reserves space
for variables, formats input and output statements, and manipulates rows and
columns of data without loops. It can call another VAX APL program and
have data returned as a result.

VAX BASIC can be used as either an interpreter or a compiler. Using it as
an interpreter, you can execute unnumbered statements at any time. You
can also compile source files to create object modules. VAX BASIC is fully
supported by the VMS Symbolic Debugger; it can access callable system
routines and call procedures written in other languages. All modules are
written in position-independent code and can be run as fully reentrant code.

VAX BLISS-32 sqpports development of modular software according to
structured programming ~oncepts by providing an advanced set of language
features. It provides access to most of the hardware features of the VAX
system.

VAX BLISS-32 programs include the following features that allow programs
to be transported to other DIGITAL computer systems:

• High-level language constructs may be transferred from one machine to
another with little or no alteration.

• Machine-specific functions can be separated from the common, mainline
code via modularization, macros, and special Library and Require files
(separate files that can be invoked from a BLISS program).

• Machine-specific characters can be passed to BLISS data structures with
the use of parameters.

1.2.6 VAXC

1.2.7 VAX COBOL

Overview
1.2 VAX Compilers, Interpreters, and the Assembler

VAX C is fully supported within the VMS operating system environment; it
can use any of the utilities and can invoke the callable system routines. It
is a full implementation of the C programming language with the following
additional features to improve its performance within the VMS operating
system environment:

• Set of structured control flow operators

• Set of mathematical and logical operators

• Data typing and conversions

• Consistent data declarations and data references

• Compiler optimized code, along with listing and cross-referenced storage
map

• Common set of run-time support routines for accomplishing common
tasks such as I/O or math routines (many UNIX-specific routines have
been emulated)

• New keywords for sharing data among program modules to allow for
easy reference to VAX MACRO programs and VMS callable system
routines

VAX COBOL is compatible with the ANSI-standard COBOL. It also supports
an embedded data manipulation language (DML) interface to DIGITAL's
CODASYL-compliant Database Management System. It allows access to
common record definitions stored in the Common Data Dictionary. It is fully
supported by the VMS operating system environment, including access to
all utilities and the ability to invoke the callable system routines and to use
object modules from other language programs.

VAX COBOL supports the following features:

• Full report-writing capabilities

• Form and report creation on terminals, with screen handling

• Complete sequential, relative, and indexed I/O

• All data types for ANSI COBOL, plus packed decimal, floating point,
double floating point, and address data types

• Structured programming statements such as EVALUATE for CASE-like
statement, scope-delimited statements to reduce use of GO TO, and inline
PERFORM statements

1-7

Overview
1.2 VAX Compilers, Interpreters, and the Assembler

1.2.8 VAX DIBOL

1.2.9 VAX FORTRAN

1.2.10 VAX LISP

1-8

VAX DIBOL is designed specifically for interactive data processing. It includes
a compiler, a debugger, and a set of utility programs that facilitate data
handling, data storing, and interprogram communication. VAX DIBOL can
invoke VMS Record Management Services (RMS), system services, utility
routines, and run-time library routines. It can use object modules produced
from any other VAX language program.

The VAX DIBOL compiler produces a source file listing, symbol table, label
table, error report, error listing, and cross-reference listing. The VAX DIBOL
Debugger Tool (DDT) allows you to examine or change program data at run
time, to set breakpoints, and to examine the flow of execution. The other
utilities include a VAX DIBOL Message Manager that stores and retrieves
messages for VAX DIBOL programs and the VAX DIBOL Message Status that
allows you to examine and delete any messages currently being held by the
Message Manager.

VAX FORTRAN supports the ANSI-standard FORTRAN-77 and provides full
support for many industry-standard FORTRAN features based on
FORTRAN-66. It takes full advantage of the following VMS features:

•
•
•

•
•
•
•

Supports all VMS RMS file formats

Can access any object module generated by other languages

Can create shareable images usable by any program written in a native
language

Has a high optimization compiler

Can invoke all callable system routines

Has record structure and Common Data Dictionary support

Can use all programming utilities

VAX LISP has a fully interactive interpreter and a compiler. VAX LISP can
use many VMS resources including calling object modules written in any
other VAX language, invoking VMS RMS and the other callable system
routines, and using the VMS utilities. It includes its own debugger that
enables examination of a running program, step execution, and traces.

1 .2.11 VAX MACRO

1 .2.12 VAX PASCAL

Overview
1.2 VAX Compilers, Interpreters, and the Assembler

VAX MACRO is an assembly language for programming the VAX computer
under the VMS operating system. The instruction set includes approximately
130 instructions and 70 directives, which enable complex programming
statements. It can use all VMS resources; it can invoke any callable system
routine, use the VMS Symbolic Debugger and other utilities, and call any
object module written in another VAX language.

General assembler directives can perform the following operations:

• Store data or reserve memory for data storage

• Control the alignment of parts of the program in memory

• Specify the methods of accessing the sections of memory in which the
program will be stored

• Specify the entry point of the program or a part of the program

• Specify the way in which symbols are referenced

• Specify that a part of the program is to be assembled only under certain
conditions

• Control the format and content of the listing file

• Display informational messages

• Control the assembler options that are used to interpret the source
program

• Define new opcodes

VAX MACRO directives define macros and repeat blocks. With these
directives, you can repeat identical or similar sequences of source statements
and use string operators to manipulate and test the contents of source
statements.

VAX PASCAL takes full advantage of the VAX floating point hardware,
character instructions sets, and virtual memory capability of the VMS
operating system. VAX PASCAL can utilize all features of the VMS operating
system, including the following:

• Support for the VMS Symbolic Debugger

• Compilation of separate modules

• Access to other object modules written in other languages

• Access to all callable system routines

• Access to Common Data Dictionary data declarations

Along with the standard ANSI Pascal features, VAX PASCAL incorporates
the following features:

• Exponentiation and concatenation operator

• Hexadecimal, octal, and DOUBLE constants

1-9

Overview
1 .2 VAX Compilers, Interpreters, and the Assembler

1.2.13 VAX PL/I

1.2.14 VAX RPG II

1-10

• Uppercase and lowercase letters treated identically, except in character
and string constants

• Dollar sign ($) and underscore (-) characters in identifiers

• DOUBLE, SINGLE, QUADRUPLE, VARYING character strings and
UNSIGNED data types

• I/O, arithmetic, ordinal, boolean, transfer, dynamic allocation, character
string manipulation, unsigned, and allocation size defined routines

• READ (or READLN) of user-defined ordinal type and string

• WRITE (or WRITELN) of user-defined scalar type or any data using
binary, hexadecimal, or octal format

• Conformant array parameters for processing arrays with potentially
different bounds

• Optional attribute specification on types, variables, routines, and
compilation units in order to change many of the properties of a program

VAX PL/I incorporates the following features:

• A compile-time preprocessor that allows language extension and
conditional compilation

• Several program control constructs (DO, IF-THEN-ELSE, BEGIN-END,
LEVEL, SELECT-WHEN-OTHERWISE, and CALL)

• AUTOMATIC initializations, AREA (user allocation), OFFSET, scalar
assignment to arrays, the REFER structure, the ENTRY statement, and the
LIKE attribute

• Access to the Common Data Dictionary

• Symbolic Debugger support

• Access to callable system routines

VAX RPG II has full access to VMS resources, including the following:

• Use of VMS RMS and other callable system routines

• Full integration with the Symbolic Debugger

• Call object modules written in other languages

• Support of industry-standard RPG II specifications

• CALL extension on the calculation specification

• Automatic record matching and merging operations for multifile
processing

• Multilevel control break handling

• Record identification codes

1 .2.15 VAX SCAN

1.3 Linker

Overview
1 .2 VAX Compilers, Interpreters, and the Assembler

• Table and array processing

• Field editing features

VAX SCAN is a block-structured, high-level programming language that is
designed to manipulate text strings and text files. The primary applications
for VAX SCAN are filters, translators, extractors/analyzers, and preprocessors.
Some of the features of VAX SCAN include the following:

• String operators for searching, comparing, extracting, and assigning
character strings

• Matching of one or more complex patterns of text in the input data using
SET,TOKEN, GROUP, and MACRO declarations

• Preprocessor that allows you to extend the language

• Symbolic Debugger support

After a program is compiled or assembled, it must be iinked. The linker
completes the following major steps:

• Resolves references.

• Combines multiple object files.

• Creates executable images (it assigns virtual address and produces an
image map listing the addresses).

1.3.1 Using Options Files

1.3.2

The linker provides the mechanism for tying together object modules written
in other VAX languages. The linker also can read a separate file (the options
file) that lists long or complicated linker instructions so that you do not have
to enter them on the command line.

Using Image Maps
You can also use the linker for debugging programs. Use the image map
to locate an instruction that caused a run-time error, translate a number
displayed by the debugger to its related symbol or address, and locate
definitions of symbols.

1-11

1.3.3

1.3.4

Overview
1.3 Linker

Using LIBRARIAN with the Linker
Use LIBRARIAN to collect input-object modules, shareable images, and
macros-for the linker. You can assign system-defined logical names to the
libraries. Then, the linker automatically searches these libraries to resolve
references. The library logical names are LNK$LIBRARY, LNK$LIBRARY_l
through LNK$LIBRARY_999. When you associate libraries with these logical
names, do not skip any logical names in the sequence.

For complete information about using the VMS Linker, refer to the VMS
Linker Utility Manual.

Linker Input and Output

1-12

Depending on the needs of your program, the linker can accept input from
the following sources:

• Object file-Any object module created after compiling or assembling a
source program.

• Shareable image file-A separate image that was already linked but
which cannot be run as a separate file.

• Symbol table file-A separate symbol table produced by a previous
linking operation. The symbol table contains global symbols and values
of an image.

• Library file-A file containing one or more object modules and a symbol
table of global symbols of each module, or one or more shareable images
and a universal symbol table for each shareable image.

• Options file-Input file specifications and link options that cannot be
defined at the DCL command level can be specified in this file.

Primarily, the linker produces an executable image of the program. In
addition, the linker has the capability to produce the following:

• A shareable image-An image that can be used by other programs but
cannot be executed independently.

• A system image-An image that does not execute under the control of
the operating system; rather as a stand-alone operation on VAX hardware.

• An image map-A file containing additional program information
including object module synopsis, module relocatable reference synopsis,
image section synopsis, program section synopsis, symbols by name and
value, image synopsis, and link run statistics.

• A symbol table file-A file containing symbols and their values to be
used by other programs being linked.

1.3.5

1.3.6

Linker Command Summary

Overview
1.3 Linker

There are several linker command and positional qualifiers available. With
these qualifiers, you can control linker operations in the following ways:

• To produce an abbreviated image map

• To generate a debug symbol table to give the debugger control when the
image is run

• To place the entire executable image in PO address space

• To produce and protect shareable images

• To create a system image

• To include traceback information in the image

• To seach system default, shareable image default, and user-default
libraries to resolve references

Additional Features
The linker also incorporates the following features:

• An options file

• Image map

• Object language

Use an options file when you frequently use the same set of file specifications
and file qualifiers, when you use a shareable image, and when you use more
file and positional qualifiers than a DCL command can accommodate. There
are also several link options available that can be specified only in the options
files. These options include specifying a starting virtual address, controlling
the order of object modules, specifying usage of a shareable image, renaming
the image, specifying the number of pages for I/O, protecting access to a
shareable image, allocating pages to the stack, assigning a value to a symbol,
and converting a global symbol into a universal symbol.

The image map contains information on the contents of the image and on the
link process. You can use the map to locate link-time errors, view the image
layout in virtual memory, keep track of global symbols, and so forth.

Use VAX object language when you are writing compilers or assemblers that
must generate object modules acceptable to the linker. The object language
describes formats to which object files, library files, and symbol table files
must conform. The object language defines an object module as an ordered
set of variable-length records.

1-13

Overview
1 .4 Debuggers

1 .4 Debuggers
The two debugger utilities available with the VMS operating system are
the VMS Symbolic Debugger (debugger) and the VMS Delta/XDelta Utility
(DELTA/XDELTA). Use the debugger to debug user-mode code. Use Delta
/XDelta to debug code in other modes. You can also use Delta to debug
user-mode code, if you prefer.

For most programs, use the debugger. The debugger allows you to reference
program locations using the symbols you defined in the program. You do
not need to keep track of program addresses. Entering commands is easier
with the debugger than with DEL TA/XDEL TA; you can use the keypad,
the command line, or an input file to enter a lengthy series of commands.
The debugger has a screen mode that allows you to view several lines of
source code at one time, the commands you enter, and the output from the
commands you enter. Error messages are more descriptive than the error
message in DEL TA/XDEL TA, and help information is available.

1.4.1 Symbolic Debugger

1-14

You can use the debugger with the following programming languages: VAX
Ada, VAX BASIC, VAX BLISS-32, VAX C, VAX COBOL, VAX DIBOL, VAX
FORTRAN, VAX MACRO, VAX PASCAL, VAX PL/I, VAX RPG, and VAX
SCAN. Detailed information and examples about how the debugger works
and how to use the commands are provided in the VMS Debugger Manual.

The debugger provides the following features:

•

•

•

•

•

•
•

•

•

•

•

Program locations can be referenced by the symbols you used in the
source file. You do not need to use virtual addresses.

All language data types are understood by the debugger. It displays
program variables according to the declared data type.

Data can be entered and displayed in several formats-ASCII,
hexadecimal, octal, or decimal.

You can set breakpoints at several points within a program: at a location,
on certain types of events, on certain classes of instructions, or after each
instruction.

You can start or resume program execution in two ways: instruction­
by-instruction or until either the next breakpoint or the end of the
program.

Program execution can be traced according to specified locations .

Program execution can be suspended whenever a particular variable or
other memory area has been modified.

Program variables or locations can be examined and modified without
having to leave the debugger, recompile, and relink the program.

An expression (or address expression) can be evaluated during program
execution.

Debugger commands can be executed conditionally or executed repeatedly
using FOR, IF, REPEAT, and WHILE control structures.

Shareable images can be debugged .

1.4.2

Overview
1 .4 Debuggers

• Initialization files can be set up to set default debugging modes, screen
display definitions, keypad definitions, and symbol definitions specific to
your debugging needs.

• Log files can be used to record each command during a debugging
session. You can then use the log file as a command procedure for the
next debugging session.

• You can define symbols to represent your own commands, address
expressions, or values.

The debugger has over 100 commands available to control a debugging
session. The commands are used for the following major debugging tasks:

• Control program execution on a line-by-line basis or at a breakpoint that
you specify

• Display breakpoints, tracepoints, watchpoints, active routine calls, stack
contents, variables, symbols, source code, and source directory search list

• Expand the debugger's memory pool

• Set screen mode and change which items are displayed on the screen and
where items are displayed

• Define symbols

• Create key definitions

• Create and execute debugger command procedures

• Change values in variables

• Evaluate a language or address expression

• Change and show data types and the radix for data display

Delta/XDelta Utility
DELTA and XDELTA are debugging tools you can use to monitor the
execution of user-mode programs, privileged-mode programs, and the VMS
operating system. DEL TA and XDEL TA have the same commands and use
the same expressions. However, they are different in two ways: you use
them to debug different kinds of code, and you invoke and exit from them in
different ways. For more information on using this utility for debugging, refer
to the VMS Delta/XDelta Utility Manual.

You can use DEL TA to debug user-mode programs or programs that execute
at interrupt priority level (IPL} 0 in any processor mode. To run DELTA in a
processor mode other than user mode, your process must have the privilege
that allows DEL TA to change to that mode-change-mode-to-executive
(CMEXEC) or change-mode-to-kernel (CMKRNL) privilege. You cannot use
DEL TA to debug code that executes at an elevated IPL.

You can use XDELTA to debug programs that execute in any processor mode
and at any IPL. To use XDELTA, you must be able to boot the system.

There are 19 DEL TA/XDEL TA commands that you can use to complete the
following debugging tasks:

• Open, display, and change the value of a particular location

• Set, clear, and display breakpoints

1-15

Overview
1 .4 Debuggers

• Set display modes in byte, word, longword, or ASCII

• Display instructions

• Execute the program in a single-step with the option to step over a
subroutine

• Set base registers

• List the names and locations of all loaded modules of the executive

1 . 5 Programming Utilities

1.5.1

There are several programming utilities you can use in conjunction with
program development. These utilities are described in this section. The most
commonly used utilities are the Command Definition Utility, the Librarian
Utility, and the Message Utility.

Command Definition Utility

1.5.1.1

1.5.1.2

1-16

The Command Definition Utility (CDU) creates DCL-level commands with
syntax similar to DCL. You can modify your process command table, the
system command table in SYS$LIBRARY, or create a new command table to
be used with user-written applications.

Defining a New Command
With an editor, you create a command definition (CLD) file where you define
the new command by specifying the following elements:

• Command verb

• Alternate syntax for the command

• Parameters, qualifiers, and keywords

• Type of data allowed as input to a parameter, qualifier, or keyword

• Allowable combinations of parameters, qualifiers, and keywords

• Allowable values for parameters, qualifiers, and keywords

• Object module information if you want the command definition to create
an object module

Modifying the Process and System Command Tables
After you define a new command, you must add it to either your process
command table or the system command table in SYS$LIBRARY using the
DCL command SET COMMAND. Please note that you must have SYSPRV
privilege to modify the DCL command table in SYS$LIBRARY. Modifications
to the system command table affect all users.

1.5.1.3

1.5.1.4

1.5.2 Librarian Utility

Creating a New Command Table

Overview
\ 1 .5 Programming Utilities

When you set up a series of commands that can be used only within a
user-written application, each command must be described in the command
definition file. For each command, you must specify the name of a routine
in a program that executes the command. Then, use the DCL command
SET COMMAND /OBJECT to create an object module from the command
definition file.

Link the command object module with your program.

Parsing the Command String
The program you write must be able to interpret any parameters, qualifers,
or errors that are entered. In order to parse the commands, the program
must use CDU's callable interface by including calls to command language
interpreter (CU) utility routines.

For more information about creating your own commands with CDU, refer to
the VMS Command Definition Utility Manual.

Example 1-1 illustrates a command definition file that sets up a DCL-level
command INCOME to invoke a program INCOME.EXE. You can select
whether to enter the name of the database file, to specify an input file
specification, or to generate a report.

Example 1-1 Defining a New Command

! Run INCOME.EXE when user types INCOME
DEFINE VERB INCOME
! Location of image
IMAGE DISK1: [INCOME] INCOME.EXE
! User can enter file name of database
PARAMTER Pi
LABEL = STATS_FILE
VALUE (TYPE=$FILE, DEFAULT="STATS.SAV")
! User can type /ENTER
QUALIFIER ENTER
! User can type /FIX[=(value, ...)]
QUALIFIER FIX
VALUE (LIST)
! User can type /REPORT[=file-name]
QUALIFIER REPORT
VALUE (TYPE=$FILE, DEFAULT="INCOME.RPT")
! Can only do one thing
DISALLOW ANY2 (ENTER, FIX, REPORT)

Libraries are files you create to store frequently used modules of code or
text. With the Librarian Utility (LIBRARIAN), you can create a library,
maintain the modules in a library, or display information about a library and
its modules. You use LIBRARIAN commands to manage modules within a
library. You can use DCL commands to manage the entire library as one
unit. For example, if you want to rename the library, use the DCL command
RENAME.

1-17

Overview
1 . 5 Programming Utilities

1.5.2.1

1.5.2.2

1.5.2.3

1.5.2.4

1-18

Types of Libraries
There are several types of libraries. Table 1-1 lists the types of library that
are available.

Table 1-1 Types of Libraries

File Type

Library Library Module Contents

Help HLB HLP Help text modules that
provide users with
information about a program

Macro MLB MAR VAX MACRO definitions used
as input to the assembler

Object OLB OBJ Object modules of frequently
called routines

Shareable image OLB EXE Symbol tables of shareable
images used as input to the
linker

Text TLB TXT Sequential record files used
as input data to a program

Linking Your Program with Libraries
If you use LIBRARIAN to maintain large sets of object modules or macros,
you can link a program with entire libraries using the DCL command LINK.
For example, you could store 100 macros in the library INCOME.MLB. To
link it with the program INCOME.OBJ, enter the following command:

$ LINK INCOME+INCOME.MLB/LIBRARY

Assigning Logical Names to Libraries
You can assign system-defined logical names to a library-LNK$LIBRARY_l
through LNK$LIBRARY_999. There are also 999 default logical names you
can assign to a library-LNK$LIBRARY_l through LNK$LIBRARY_999.
When the linker attempts to resolve symbols, these libraries are searched
automatically. If you assigned INCOME.MLB to LNK$LIBRARY_l, you
would enter the following command to link the object module INCOME.OBJ.

$ LINK INCOME

Sharing Code Using Text Libraries
Sharing code can be easily accomplished by creating object or macro libraries
that all users can access. You can also share data by creating text libraries of
data files that all users can access.

For complete information on creating, managing, and using libraries, refer to
the VMS Librarian Utility Manual.

1.5.2.5

1.5.3 Message Utility

Overview
1 . 5 Programming Utilities

Manipulating Libraries Using the LI BRA RY Command
The DCL command LIBRARY invokes LIBRARIAN and accepts 28 command
qualifiers. LIBRARIAN manages library modules in the following ways:

• Create a new library and specify the type

• Add, delete, or replace a module within the library

• Copy a module from the library

• List the modules in the library, with a history, with global symbols, or
before or after a specified time

• Enables a log of each library action

You can create command procedures that manipulate libraries using the DCL
command LIBRARY.

The Message Utility (MESSAGE) allows you to supplement the VMS system
messages with your own messages. The message can signal any condition­
error or success. Use an editor to create a message source file and compile
it with MESSAGE. Then, link the message object module with the program
object module. By using message pointers, you can use different text for the
same message. This option is particularly useful for multilingual applications.
To use pointers, you create a nonexecutable message file that contains the
message text and a pointer file that contains the symbols and pointer to the
nonexecutable file.

For complete information on creating your own messages, refer to the VMS
Message Utility Manual. Refer to the VMS System Messages and Recovery
Procedures Reference Volume for a list of the system messages and suggested
recovery procedures.

The message source file consists of message definition statements and
directives that define the message text, the message code values, and the
message symbol. With these directives, you assign severity levels, specify
message text, and define the facility to which the message relates.

Example 1-2 shows a message source file:

Example 1-2 Message Source File

. TITLE

. IDENT

.FACILITY

.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

SAMPLE Error and Warning Messages
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_
ERROR

< Unrecognized keyword !AS>/FAO_COUNT=1
< Ambiguous keyword>

WARNING
10
< Invalid syntax in keyword>

1-19

1.5.4

1.5.5

Overview
1.5 Programming Utilities

Patch Utility

SUMSLP Utility

1-20

The Patch Utility (PATCH) allows you to make changes to an image file
in the form of patches. You can then run the new version of the image
without having to recompile (or reassemble) and relink the program. You can
enter PATCH commands interactively or use them in a command procedure
to execute interactively or in batch mode. You can use PATCH with any
language supported by the VMS operating system as long as the image was
generated by the linker.

For detailed information on how PATCH works and its commands, refer to
the VMS Patch Utility Manual.

The input image can be a shareable image, a device driver image, or any
other executable image. Consider the following restrictiors when you use
PATCH:

• You can specify only universal symbols when patching a shareable image.

• You can use the default patch area to patch position-independent
shareable images.

• You must use a user-defined patch area to patch position-dependent
images.

PATCH does not alter the input image. It creates a copy of the image, makes
changes to the copy, and leaves the original image unaltered.

With the PATCH commands, you can modify the image as follows:

• Add instructions or data

• Delete instructions or data

• Replace instructions or data

• Allocate space for the patch area

• Create a command procedure of PATCH commands

• Assign an ECO-level to the changes

• View the contents of a particular location

• Display the modules in the image

• Apply the patch to the image

The SUMSLP Utility (SUMSLP) is a batch-oriented editor that is useful when
you need to make several updates to a single file. To use it, you create a
series of editing commands to add, delete, or update lines in the file. The
editing commands are specific to SUMSLP and can be used only by SUMSLP.
It can be useful if you are maintaining several copies of a single file, because
it allows you to update the file by creating one update program and applying
the update program to each copy of the file.

SUMSLP requires at least two input files as follows:

• The source file to be updated. Because you use line-oriented editing
commands, you should generate a sequence-oriented listing.

1.5.6

Overview
1.5 Programming Utilities

• The update file. This file contains SUMSLP command lines and the
updated lines used to alter the input file.

SUMSLP applies the edits specified in the SUMSLP update file to the input
source file. The SUMSLP output file generated is the updated source file.

The VMS SUMSLP Utility Manual describes each of the SUMSLP commands
and how SUMSLP processes files.

System Dump Analyzer
The System Dump Analyzer Utility (SDA) helps you determine the cause of
system failures. You invoke this utility specifying a system crash dump file,
which is a copy of memory at the time of a system crash. SDA reads the
dump file; then, it formats and displays the contents of the file. In addition
to information contained in the dump file, SDA reads the system's symbol
table file. You can specify that SDA read the symbols that define many of the
system's data structures, including those in the IjO database.

You can also use SDA to analyze a running system. To do this, you need
change-mode-to-kernel (CMKRNL) privilege. This option is useful for
examining the stack and memory of a process stalled in a scheduler state.

If you are examining a dump file, SDA displays the immediate cause of
the crash. You can then use SDA to diagnose how the error occurred. For
example, you can use SDA commands to locate the line of code that signaled
the bugcheck and to find the line of code (usually on the stack) that caused
the error. Then, you can examine device drivers, linker maps, and system
maps to locate the module where the line of code came from. Once the
module has been identified, you can examine the module code to pinpoint
the problem.

You can locate the error using SDA commands that allow you to view the
following pieces of information:

• The location and contents of the four process stacks and the systemwide
interrupt stack

• The active processes and the values of the parameters used in swapping
and scheduling these processes

• The software and hardware context of any process

• The value of a symbol and the contents of the location the symbol points
to

• A formatted list of a block of memory

• The list of system page table entries

• The look-aside pools, the nonpaged dynamic storage pool, and the paged
dynamic storage pool

• All locks in the system

• The names of the VMS RMS data structures

• All data structures associated with a device

• The VAX cluster or the system communications services cluster

1-21

1.5.7

Overview
1 . 5 Programming Utilities

• The active connections between systems communication services
processes

• The dump file header

• The response identifications

The SDA commands also allow you to switch processes, direct output to
a log file or terminal, scan memory locations, assign a value to a symbol,
read global symbols to add them to the SDA symbol table, and repeat the
execution of the last command.

National Character Set Utility
The National Character Set Utility (NCS) allows you to define and use
collating sequences and conversion functions. With collating sequences,
you can alter the standard sorting sequence for a particular use (usually for
a national character set). Using conversion functions, you can define case
conversions or character representations that you subsequently use in the
collating sequence.

The collating sequences and conversions are stored in an NCS library that
you manage using NCS. The command qualifiers allow you to create the
library; insert, replace, and delete modules; list module information; and view
specified modules.

Eight NCS callable routines allow you to access the collating sequences and
conversions stored in an NCS library from your program.

Refer to the VMS National Character Set Utility Manual for more information
about using NCS and its callable routines.

1 . 6 Callable System Routines

1-22

There are four sets of callable system routines as follows:

• Run-time library (RTL) routines

• System services

• Utility routines

• VMS RMS

You can use the system routines in your program to complete a number of
programming tasks, including the following:

• 1/0 operations

• Security procedures

• File manipulation

• Memory management

• Screen management

• Mathematics operations

• Event synchronization

• Utility usage

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1/0 Operations

Overview
1.6 Callable System Routines

The sections that follow suggest sets of routines to use for each of these
general programming tasks. For the specific routines to use, refer to Sections
1.6.9, 1.6.10, 1.6.11, and 1.6.12.

For 1/0 operations, you can use VMS RMS, RTL routines, or system services.
Use VMS RMS for device-independent 1/0, when you want more control
over file access. Use RTL routines to get more functionality than language
If O statements. Use system services for device-dependent 1/0 when you
want more control over the device. System services allow you to access
devices not supported by VMS RMS, to perform 1/0 operations not supported
by a particular language, and to increase 1/0 performance.

Security Procedures

File Management

For security procedures, use system services to maintain rights database, to
use access control lists and process rights lists, to check access protection, and
to provide security erase patterns. To assign protection to a particular file, use
VMS RMS.

For complex file manipulation, you would generally use the VMS Record
Management Services. VMS RMS can create complex file organizations;
reorganize files; extend disk space for files; and get, locate, insert, update,
and delete records. There are VMS RMS and RTL routines for simple file
manipulation such as opening, reading, deleting, renaming, and closing files.

Memory Management
For memory management tasks, both RTL routines and system services can
acquire and free virtual memory. RTL memory management routines call
system services. RTL routines maintain a processwide pool of free pages that
are automatically reused. If you call system services directly, the program
must keep track of free pages. Direct calls to system services should be
used when the size requirements exceed 1000 pages for one request. RTL
routines working with such large requests may result in fragmenting the
virtual address space. System services give you more control because you can
specify a specific virtual address and unlock pages in memory.

Screen Management
For screen management, use RTL routines. The screen management routines
allow you to build terminal-independent screen management functions.
They do not rely on particular hardware devices; input is read from a virtual
keyboard and output is sent to a virtual display. With SMG$ routines,
complex screens can be built with several regions defined. The program can
then work within a region without regard to its position on the screen.

1-23

1.6.6

1.6.7

1.6.8

1.6.9

Overview
1.6 Callable System Routines

Math Operations
For math routines, RTL routines can complete simple arithmetic as well as the
following functions:

• Exponentiation

• Complex exponentiation

• Complex function evaluation

• Floating-point trigonometric function evaluation

• Absolute value

• Numeric data conversions

Event Synchronization
For event synchronization, use RTL routines or system services. Use RTL
routines to synchronize events with event flags. Use system services to
synchronize events with event flags, with a resource lock, and with an
asynchronous system trap (AST).

Calling Utility Routines
To access VMS utilities in a program, you use the utility routines. These
routines allow your program to call several VMS utilities and to use the utility
either interactively or noninteractively.

Run-Time Library (RTL) Routines

1-24

The RTL routines are grouped into six categories according to programming
task as follows:

• DECtalk (DTK$) routines

Use DTK$ routines for manipulating DIGITAL's DECtalk devices.

• General purpose Run-Time Library (LIB$) routines

Use LIB$ routines for general programming tasks such as memory
management, file management, VAX MACRO instruction calls, 1/0
operations, condition handling, cross-referencing, DCL command
interpreter operations, and synchronization. These routines are listed
in Table 1-2.

• Mathematics (MTH$) routines

Use MTH$ routines for completing common arithmetic, algebraic, and
trigonometric functions.

• General purpose (OTS$) routines

Use OTS$ routines for extensive data-type conversion and some
computation.

• Parallel processing (PPL$) routines

Use PPL$ routines for parallel processing of program units.

Overview
1 . 6 Callable System Routines

• Screen management (SMG$) routines

Use SMG$ routines to perform terminal-independent screen management.
These routines are summarized in Table 1-3.

• String manipuation (SIR$) routines

Use SIR$ routines for string manipulation of fixed-length, variable-length,
and dynamic strings.

For a complete description of using the RTL for these tasks, as well as a
routine-by-routine description, refer to the VMS Run-Time Library Routines
Volume.

Table 1-2 RTL General Programming Tasks (LIB$) Routines

General Systems Tasks

LIB$ADAWI

LIB$DAY

LIB$DIGIT_SEP

LIB$FID_ TO_NAME

LIB$GET_COMMAND

LIB$1NT_OVER

LIB$PAUSE

1/0 Operations

LIB$ASN_WTH_MBX

LIB$PUT _QUTPUT

LIB$SYS_GETMSG

Queue

LIB$GETOUI

LIB$REMOHI

Synchronization and Event Flags

LIB$AST_IN_PROG

LIB$RESERVE_EF

LIB$CURRENCY

LIB$DA Y _QF _WEEK

LIB$DO_CQMMAND

LIB$FIXUP _FLT

LIB$GET _FQREIGN

LIB$LOOKUP _KEY

LIB$RUN _PROGRAM

LIB$GETDVI

LIB$SYS_FAO

LIB$1NSOHI

LIB$REMOTI

LIB$FREE_EF

LIB$WAIT

LIB$DA TE_ TIME

LIB$DEC_QVER

LIB$ENABLE _CTRL

LIB$FL T _UNDER

LIB$GET_SYI

LIB$LP _LINES

LIB$SUBX

LIB$GET _INPUT

LIB$SYS_FAOL

LIB$1NSOTI

LIB$GET_EF

1-25

Overview
1.6 Callable System Routines

Table 1-2 (Cont.) RTL General Programming Tasks (LIB$) Routines

Time Functions

LIB$ADD_ TIMES

LIB$CVTF _FROM_INTERNAL_
TIME

LIB$CVT _ VECTIM

LIB$FREE_ TIMER

LIB$GET _TIMER

LIB$MUL T_DEL TA_ TIME

LIB$ST AT_ TIMER

Process Control

LIB$ATTACH

File Management

LIB$CREA TE_DIR

LIB$FILE_SCAN_END

LIB$RENAME_FILE

Logical Names and Symbols

LIB$DELETE_LOGICAL

LIB$FREE_LUN

LIB$RADIX_PQINT

LIB$SYS_TRNLOG

VAX MACRO Instructions

LIB$BBCCI

LIB$CRC

LIB$EMODx

LIB$EXTZV

LIB$1NSV

LIB$MOVTC

LIB$SPANC

Data Type Conversion

LIB$CHAR

1-26

LIB$CONVERT_DATE_STRING LIB$CVT_FRQM_INTERNAL_ TIME

LIB$CVT_ TQ_INTERNAL_ LIB$CVTF _ TO_INTERNAL_ TIME
TIME

LIB$FORMAT_DATE_ TIME

LIB$GET_DATE_FQRMAT

LIB$GET _USERS_LANGUAGE

LIB$MUL TF _DELTA_ TIME

LIB$SUB_ TIMES

LIB$GET JPI

LIB$DELETE_FILE

LIB$FIND_FILE

LIB$TRIM_FILESPEC

LIB$DELETE_SYMBOL

LIB$GET _LUN

LIB$SET_LQGICAL

LIB$BBSSI

LIB$CRC_ TABLE

LIB$EMUL

LIB$FFC

LIB$MOVC3

LIB$MOVTUC

LIB$CVT_ox_ox

LIB$FREE_DATE_ TIME_CQNTEXT

LIB$GET_MAXIMUM_DATE_
LENGTH

LIB$1NIT_DATE_ TIME_CONTEXT

LIB$SHOW _TIMER

LIB$SYS_ASCTIM

LIB$SPAWN

LIB$FILE_SCAN

LIB$FIND_FILE_END

LIB$FIND_IMAGE_SYMBOL

LIB$GET_SYMBOL

LIB$SET _SYMBOL

LIB$CALLG

LIB$EDIV

LIB$EXTV

LIB$FFS

LIB$MOVC5

LIB$POLYz

LIB$CVT_xTB

Overview
1.6 Callable System Routines

Table 1-2 (Cont.) RTL General Programming Tasks (LIB$) Routines

String Management

LIB$GET _COMMON

LIB$LOCC

LIB$SCANC

LIB$SFREE 1 _DD

LIB$TRA_ASC_EBC

Memory Management

LIB$CREATE_USER_ VM_ZQNE

LIB$FIND_VM_ZONE

LIB$GET_VM_PAGE

LIB$SHOW _ VM_ZONE

Cross-referencing

LIB$CRF _INS_KEY

Condition Handling

LIB$DECODE_FAUL T

LIB$MATCH_COND

LIB$SIG_ TO_STOP

Binary Trees

LIB$1NSERT_ TREE

LIB$1NDEX

LIB$MATCHC

LIB$SCOPY_DXOX

LIB$SFREEN_DD

LIB$TRA_EBC_ASC

LIB$CREATE_ VM_ZONE

LIB$FREE_VM

LIB$RESET _ VM _ZONE

LIB$STAT_VM

LIB$CRF _INS_REF

LIB$DISABLE_CTRL

LIB$REVERT

LIB$SIM_ TRAP

LIB$LOOKUP_ TREE

LIB$LEN

LIB$PUT _COMMON

LIB$SCOPY_R_DX

LIB$SGET 1 _00

LIB$TPARSE

LIB$DELETE_ VM_ZONE

LIB$GET_VMJ

LIB$SHOW _ VM

LIB$CRF _OUTPUT

LIB$EST ABLISH

LIB$SIGNAL

LIB$STOP

LIB$TRA VERSE_ TREE

Table 1-3 RTL Screen Management (SMG$) Routines

General Routines

SMG$CREATE_SUBPROCESS

SMG$DEL_ TERM_ TABLE

SMG$GELNUMERIC_OA TA

SMG$1NIT_ TERM_ TABLE

SMG$DELETE _SUBPROCESS

SMG$EXECUTE_COMMAND

SMG$GET _ TERM_DA TA

SMG$1NIT_ TERM_ TABLE_BY_ TYPE

1-27

Overview
1 .6 Callable System Routines

Table 1-3 (Cont.) RTL Screen Management (SMG$) Routines

Input Routines

SMG$ADD_KEY _DEF

SMG$CHANGE_ VIEWPORT

SMG$CREATE_MENU

SMG$CREA TE_ VIEWPORT

SMG$DELETE_KEY _DEF

SMG$DELETE_ VIEWPORT

SMG$GET _KEY _DEF

SMG$GET_ VIEWPORT_CHAR

SMG$LIST _PASTING_ORDER

SMG$READ_COMPOSED_LINE

SMG$READ_STRING

SMG$REPLACE_INPUT _LINE

SMG$SET_DEFAUL T_ST ATE

SMG$SCROLL _ VIEWPORT

SMG$SET _TERM _CHARACTERISTICS

Output Routines

SMG$BEGIN_DISPLA Y _UPDATE

SMG$CHANGE _PBD_CHARACTERISTICS

SMG$CHANGE_ VIRTUAL_DISPLA Y

SMG$CONTROL_MQDE

SMG$CREATE_PASTEBOARD

SMG$CURSOR_COLUMN

SMG$DELETE _CHARS

SMG$DELETE_PASTEBOARD

SMG$DISABLE_BROADCAST_ TRAPPING

SMG$DRA W _CHAR

SMG$DRA W _RECTANGLE

SMG$END_DISPLA Y _UPDATE

SMG$ERASE_CHARS

SMG$ERASE_DISPLA Y

SMG$ERASE_PASTEBOARD

SMG$FLUSH _BUFFER

SMG$GET _CHAR_A T _PHYSICAL_
CURSOR

SMG$GET_PASTEBOARD_ATTRIBUTES

SMG$GET _PHYSICAL _CURSOR

1-28

SMG$CANCEL _INPUT

SMG$CREATE_KEY_ TABLE

SMG$CREA TE_ VIRTUAL _KEYBOARD

SMG$DEFINE_KEY

SMG$DELETE _MENU

SMG$DELETE_ VIRTUAL_KEYBOARD

SMG$GET _KEYBOARD_A TTRIBUTES

SMG$LIST_KEY _DEFS

SMG$LOAD_KEY _DEFS

SMG$READ_KEYSTROKE

SMG$READ_ VERIFY

SMG$RETURN _INPUT _LINE

SMG$SET _KEYBOARD_MODE

SMG$SELECT _FROM_MENU

SMG$BEGIN_P ASTEBOARD_UPDA TE

SMG$CHANGE_RENDITION

SMG$CHECK_FQR_OCCLUSION

SMG$COPY _VIRTUAL _DISPLAY

SMG$CREA TE_ VIRTUAL _DISPLAY

SMG$CURSOR_RQW

SMG$DELETE_LINE

SMG$DELETE_VIRTUAL_DISPLAY

SMG$DISABLE_UNSOLICITED_INPUT

SMG$DRA W _LINE

SMG$ENABLE _UNSOLICITED_INPUT

SMG$END_PASTEBOARD_UPDATE

SMG$ERASE_CQLUMN

SMG$ERASE _LINE

SMG$FIND_CURSOR_DISPLA Y

SMG$GET_BROADCAST_MESSAGE

SMG$GET _DISPLAY _A TTR

SMG$GET _PASTING_INFO

SMG$HOME_CURSOR

Overview
1 . 6 Callable System Routines

Table 1-3 (Cont.) RTL Screen Management (SMG$) Routines

Output Routines

SMG$1NSERT _CHARS

SMG$1NV ALIDA TE_DISPLA Y

SMG$MOVE_ TEXT

SMG$PASTE_VIRTUAL_DISPLAY

SMG$PRINT_PASTEBOARD

SMG$PUT_CHARS_HIGHWIDE

SMG$PUT _CHARS_MUL Tl

SMG$PUT_LINE

SMG$PUT_LINE_MUL Tl

SMG$PUT_PASTEBOARD

SMG$PUT_VIRTUAL_DISPLAY_
ENCODED

SMG$REPAINT_LINE

SMG$REPASTE_VIRTUAL_DISPLAY

SMG$RETURN_CURSOR_PQS

SMG$SA VE _PHYSICAL _SCREEN

SMG$SET _BROADCAST_ TRAPPING

SMG$SET_CURSOR_MODE

SMG$SET _DISPLAY _SCROLL _REGION

SMG$SET _PHYSICAL _CURSOR

SMG$UNPASTE _VIRTUAL _DISPLAY

1.6.10 System Services

SMG$1NSERT_LINE

SMG$LABEL _BORDER

SMG$MOVE_ VIRTUAL_DISPLA Y

SMG$POP _VIRTUAL _DISPLAY

SMG$PULCHARS

SMG$PULCHARS_ WIDE

SMG$PULHELP _TEXT

SMG$PULLINE_HIGHWIDE

SMG$PUT _LINE_ WIDE

SMG$PUT_ST ATUS_LINE

SMG$READ_FROM_DISPLA Y

SMG$REPAINT _SCREEN

SMG$RESTORE_PHYSICAL _SCREEN

SMG$RING_BELL

SMG$SCROLL _DISPLAY _AREA

SMG$SET_CURSOR_ABS

SMG$SET _CURSOR_REL

SMG$SET_OUT_QF_BAND_ASTS

SMG$SNAPSHOT

System services are routines used by the operating system to complete several
tasks. Programs can use the following system services to complete similar
actions for an individual program:

• Security services work with rights databases, access control lists, and
security erase patterns. They can also be called to check access to files
and magnetic tape.

• Event flag services clear, set, and read event flags.

• Event synchronization services enable, call, and disable asynchronous
event traps (AST) to synchronize events.

• Logical name services associate and disassociate logical names with
physical devices and maintain logical name tables.

• Input/output services control 1/0 devices directly to maximize 1/0
efficiency.

• Process control services create, delete, and control processes.

• Timer services can schedule program events and obtain and format binary
time values.

1-29

Overview
1 . 6 Callable System Routines

1-30

• Condition handling services specify particular routines to assume control
after a hardware or software exception condition occurs.

• Memory management services manipulate virtual address space for a
program, control paging and swapping, and create and access files in
memory containing shareable code or data.

• Change mode services change the mode of a process

• Lock management services synchronize access to shared resources.

The system services are summarized according to their functions in
Table 1-4.

Table 1-4 Summary of System Services

Service

System Security Services

$ADD_HQLDER

$ADD_IDENT

$ASCTOID

$CHANGE_ACL

$CHECK_ACCESS

$CHKPRO

$CM EXEC

$CMKRNL

$CREATE_RDB

$ERAPAT

$FIND_HELD

$FIND_HQLDER

$FINISH_RDB

$FORMAT_ACL

$GETUAI

$GRANTID

$1DTOASC

$MOD_HQLDER

$MQD_IDENT

$MT ACCESS

$PARSE_ACL

$REM _HOLDER

$REM_IDENT

Function

Adds holder record to rights database

Adds identifier to rights database

Translates identifier name to binary value

Creates or modifies an ACL

Invokes system access protection check on behalf
of another user

Invokes system access protection check

Change to executive mode

Change to kernal mode

Initializes a rights database

Generates a security erase pattern

Returns identifiers held by a holder in rights
database

Returns holders of an identifier in rights database

Deallocates record stream and clears context value
when searching the rights database

Formats ACE into a text string

Get user authorization information

Adds identifier to process or system rights list

Translates identifier value to its identifier name

Modifies holder record in rights database

Modifies identifier record in rights database

Controls magnetic tape access

Converts text ACE into binary format

Deletes holder record from identifier's list of
holders in rights database

Deletes identifier and all holders of that identifier
from rights database

Overview
1.6 Callable System Routines

Table 1-4 (Cont.) Summary of System Services

Service

System Security Services

$REVOKID

$SETDFPROT

$SETSSF

$SETUAI

Event Flag Services

$ASCEFC

$DACEFC

$DLCEFC

$SETEF

$CLREF

$READEF

$WAITFR

$WFLOR

$WFLAND

$ENO and $ENOW

Synchronization services

$SET AST

$DCLAST

$SETPRA

$SYNCH

Logical Name Services

$CRELNM

$CRELNT

$DELLNM

$TRNLNM

Function

Removes identifier from process or system rights
list

set default file protection

set system services filter

set user authorization information

Associate common event flag

Disassociate common event flag

Delete common event flag

Set common event flag

Clear event flag

Read event flag

Wait for single event flag

Wait for logical OR of event flags

Wait for logical AND of event flags

Enqueue ~ck request

Set AST enable

Declare AST

Set power recovery AST

Synchronize

Create logical name

Create logical name table

Delete logical name

Translate logical name table

1-31

Overview
1.6 Callable System Routines

Table 1-4 {Cont.) Summary of System Services

1-32

Service

1/0 Services

$ASSIGN

$DASSIGN

$QIO

$QIOW

$FAQ

$FAOL

$ALLOC

$DALLOC

$MOUNT

$DISMOU

$GETDVI

$GETDVIW

$GETQUI

$GET QI OW

$CANCEL

$CREMBX

$DELMBX

$BRKTH

$BRKTHW

$SNDJBC

$SNDJBCW

$SNDOPR

$SNDERR

$GETMSG

$PUTMSG

Function

Assign 1/0 channel

Deassign 1/0 channel

Queue 1/0 request

Queue 1/0 request and wait

Formatted ASCII output

Formatted ASCII output with list parameter

Allocate device

Deallocate device

Mount volume

Dismount volume

Get device and channel information

Get device and channel information and wait

Get queue information

Get queue information and wait

Cancel 1/0 on channel

Create mailbox and assign channel

Delete mailbox

Breakthrough

Breakthrough and wait

Send message to job controller

Send message to job controller and wait

Send message to operator

Send message to error logger

Get message

Put message

Overview
1 . 6 Callable System Routines

Table 1-4 (Cont.) Summary of System Services

Service

Control Processes Services

$CREPRC

$DELPRC

$SUSPND

$RESUME

$HIBER

$WAKE

$SCHDWK

$CANWAK

$EXIT

$FORCEX

$DCLEXH

$CANEXH

$SETPRN

$SETPRI

$SETPRV

$SETRWM

$GETJPI

Timer Services

$GETTIM

$NUMTIM

$ASCTIM

$BINTIM

$SETI MR

$CANTIM

$SETTIME

Condition Handler Services

$SETEXV

$SETSFM

$UNWIND

$DCLCMH

Function

Create process

Delete process

Suspend process

Resume process

Hibernate

Wake

Schedule wakeup

Cancel wakeup

Exit

Force exit

Declare exit handler

Cancel exit handler

Set process name

Set priority

Set privileges

Set resource wait mode

Get job/process

Get time

Convert binary time to numeric time

Convert binary time to ASCII string

Convert ASCII string to binary time

Set timer

Cancel timer request

Set system time

Set exception vector

Set system service failure exception mode

Unwind from condition handler frame

Declare change mode or compatibility mode
handler

1-33

Overview
1 . 6 Callable System Routines

1 . 6 .11 Utility Routines

1-34

Table 1-4 (Cont.) Summary of System Services

Service Function

Memory Management Services

$EXPREG

$CNTREG

$CRETVA

$DEL TVA

$CRMPSC

$MGBLSC

$DGBLSC

$UPDSEC

$LKWSET

$ULWSET

$ADJWSL

$PURGWS

$LCKPAG

$UNLPAG

$SETPRT

$SETSWM

$SETSTK

Lock Request Services

$ENO

$DEO

$GETLKI

File Management Services

$FILESCAN

$RMSRUNDWN

$SETDDIR

Expand program/control region

Contract program/control region

Create virtual address space

Delete virtual address space

Create and map section

Map global section

Delete global section

Update section file on disk

Lock pages in working set

Unlock pages from working set

Adjust working set limit

Purge working set

Lock page in memory

Unlock page in memory

Set protection on pages

Set process swap mode

Set stack limits

Enqueue lock request

Dequeue lock request

Get lock information

Scan string for file specification

RMS rundown

Set default directory

Certain VMS utilities provide a callable interface that can be accessed from
programs. Utility routines provide access from within a program to several
VMS utilities. The utility routines allow the program to invoke the utility,
execute utility-specific functions, and exit the utility. Some VMS utilities
can be invoked at the DCL-command level or through a callable interface.
Other utilities have only a callable interface. Table 1-5 summarizes the utility
routine groups.

Overview
1.6 Callable System Routines

For complete information on the utility routines, and a routine-by-routine
listing, refer to the VMS Utility Routines Manual.

Table 1-5 Utility Routine Summary

Routine
Prefix

ACL$

CU$

CONV$

DCX$

EDT$

FDL$

LBR$

MAIL$

PSM$

SMB$

SOR$

TPU$

Utility/Facility

Access Control List (ACL)
Editor

Command Definition Utility
(CDU)

Convert and Convert
/Reclaim (CONV) Utility

Data Compression
/Expansion (DCX) Facility

EDT (EDT) Editor

File Definition Language
Utility (FDL)

Librarian Utility (LBR)

Mail Utility (MAIL)

Print Symbiont Modification
(PSM) Facility

Symbiont/ Job-Controller
Interface (SMB) Facility

Sort/Merge (SOR) Utility

VAX Text Processing Utility
(VAXTPU)

Description

Creates and maintains access control lists. ACLs controls
access to files, devices, global sections, logical name tables,
or mailboxes.

Processes command strings using information from a
command table; use in conjunction with new commands
created by CDU.

Convert utility copies records from one or more files to
an output file while changing format and file organization.
Convert/reclaim utility reclaims empty buckets so that new
records can be written.

Analyzes and compresses data records; expands data
records that have been compressed.

Invokes EDT and either edits a file from the program, or
allows interactive editing.

Specifies VMS RMS options for a file, creates a file, opens a
file, closes a file, connects a file, allocates VMS RMS control
blocks, fills in control blocks, and deallocates control blocks.

Maintains any type of library.

Sends mail messages to users on the system or any
connected system from an application program.

Modifies the VMS print symbiont (or, if necessary, can be
used to create user-written symbiont).

Provides the symbiont-job controller interface for user­
written symbionts.

Integrates a sort or merge opertion into a program
application.

Invokes and uses V AXTPU functions within a program
written in any VAX programming language.

1.6.12 VMS Record Management Services
VMS RMS assists user programs in processing and managing files and their
contents. VMS RMS allows you to create a new file, access an existing file,
extend disk space for a file, close a file, obtain file characteristics as well as to
get, locate, insert, update, and delete records.

VMS RMS provides the following items:

• Disk file organizations-Sequential, relative, and indexed

• Record formats-Fixed length and variable length for each file
organization

1-35

Overview
1.6 Callable System Routines

1.6.12.1

1.6.12.2

1.6.12.3

1-36

• Record access modes-Sequential, by key value, by relative record
number, by record file address

For complete information about using VMS RMS, refer to the VMS Record
Management Services Manual.

Device Support
VMS RMS supports unit-record devices such as terminals and printers, but
it is designed primarily to provide a comprehensive software interface to
mass-storage devices such as disk and magnetic tape drives.

VMS RMS File Control Blocks
Control blocks are used to provide input to services and to accept output from
services.

The following control blocks support services that manipulate files:

• File access block (F AB)

The FAB control block includes file specification information, file
characteristics (file organization, record type, allocation information,
and so forth), and run-time access options (file processing information
and address(es) of other control blocks with additional information.)

• Optional name block (NAM)

The NAM control block includes supplemental information to the FAB.

• Optional extended attribute block (XAB)

The XAB control block includes file characteristics that supersede or
supplement the FAB control block.

VMS RMS Record Control Blocks
To support services that manipulate with records, there are two record control
blocks, as follows:

• Record access block (RAB)

The RAB control block includes the address of the related FAB control
block, the address of input and output record buffers, general I/O
buffer type and size, how the records will be accessed, and other record
information.

• Extended attribute block (XAB)

The XAB control block includes record characteristics that can supersede
or supplement information in the RAB control block.

1.6.12.4 VMS RMS Macros

Overview
1.6 Callable System Routines

VMS RMS uses macros provided in the system macro library to perform the
following tasks:

• Initialize control blocks at assembly time (allocates space within the
program image for the control block, defines the symbolic names for a
control block, initializes certain control block fields with internally used
values, initializes specified control block fields with user-specified values,
and initializes certain fields with system-supplied default values).

• Define control block symbolic names at assembly time (does not allocate
or initialize the control block).

• Set specified fields with user-specified values at run time.

• Invoke services at run time.

Table 1-6 lists each control block and its associated macros.

Table 1-6 User Control Blocks

Control
Block

FAB

NAM

RAB

Macro
Name

$FAB

$FABDEF

$FAB_STORE

$NAM

$NAMDEF

$NAM_STORE

$RAB

$RABDEF

$RAB_STORE

Function

Describes a file and contains file-related
information.

Allocates storage for a FAB and initializes
certain FAB fields; also defines symbolic offsets
for a FAB.

Defines symbolic offsets for a FAB.

Moves specified values into a previously
allocated and initialized FAB.

Contains file specification information beyond
that in the file access block.

Allocates storage for a NAM and initializes
certain NAM fields; also defines symbolic
offsets for a NAM.

Defines symbolic offsets for a NAM.

Moves specified values into a previously
specified and allocated NAM.

Describes a record stream and contains record­
related information.

Allocates storage for a RAB and initializes
certain RAB fields; also defines symbolic offsets
for a RAB.

Defines symbolic offsets for a RAB.

Moves specified values into a previously
specified and allocated RAB.

1-37

Overview
1.6 Callable System Routines

Table 1-6 (Cont.) User Control Blocks

Control

Block

XABxxx1

Macro
Name

$XABxxx

$XABxxxDEF

$XABxxx_STORE

1 The xxx is a 3-character mnemonic.

Function

Contains file attribute information beyond that
in the file access block. For XABTRM, contains
information beyond that in the record access
block.

Allocates and initializes an XAB.

Defines symbolic offsets for an XABxxx.

Moves specified values into a previously
specified and allocated XABxxx.

1.6.13 VMS Record Management Services Utilities

1.6.13.1

1-38

The following are the three VMS RMS utilities:

• Analyze/RMS_File Utility (ANALYZE/RMS_FILE)

• Convert and Convert/Reclaim Utilities (CONVERT and CONVERT
/RECLAIM)

• Create/FDL Utility (CREATE/FDL)

• Edit/FDL Utility (EDIT /FDL)

You can use these independently of VMS RMS, or in conjunction with VMS
RMS, to build data files and to maintain files.

ANALYZE/RMS_FILE
With ANALYZE/RMS_FILE, you can analyze the internal structure of an
VMS RMS file in the following manner:

• Examine the structure of a file, and interactively check the structure to
assess if it is properly designed for the application

• Generate a statistical report on the file's structure and use

• Generate an FDL file from a data file

• Generate a summary report on the file's structure and use

The interactive feature of this utility includes several commands to traverse
the structure of an VMS RMS file and examine specific data buckets and bytes
of a record. This utility can also check the file and generate a report listing
any errors found in the file. Refer to the VMS Analyze/RMSJile Utility
Manual.

ANALYZE/RMS_FILE commands help you move around the VMS RMS file
easily. You can move the structure pointer to the beginning and end of the
file structure, up and down levels, to the first and last nodes, and to a specific
bucket (or record) of an indexed or relative file.

1.6.13.2

1.6.13.3

Overview
1.6 Callable System Routines

CONVERT and CONVERT/RECLAIM
CONVERT copies one or more records from a file to another file, while
changing the record format and file organization. CONVERT /RECLAIM
reclaims empty bucket space in the file to allow new records to be written to
it.

CONVERT/RECLAIM works only with Prolog 3 indexed files. You should
use CONVERT /RECLAIM when new records no longer need a primary key
associated with the deleted record.

In conjunction with changing record format and file organization, you can use
CONVERT to complete the following functions:

• Reformat indexed files where many records have been inserted and
deleted. New record file addresses are established for the records.

• Create a new output file with the same or different file characteristics.

• Add new records to the end of an existing sequential file.

• Merge new records into an existing indexed file.

• Convert carriage control to one of four formats (CARRIAGE_RETURN,
FORTRAN, PRINT, and NONE).

CONVERT /RECLAIM does not change file format or organization when it
reclaims empty bucket space. It deletes the old pointers to a bucket and puts
it on a list of free buckets. When new records that need a new bucket are
added, VMS RMS goes to the free bucket list and sets up pointers to a bucket
from the list. CONVERT /RECLAIM preserves record's file addresses.

For a complete description of using CONVERT and CONVERT/RECLAIM,
refer to the VMS Convert and Convert /Reclaim Utility Manual.

Command qualifiers allow you to modify CONVERT in the following ways:

• Append records to an existing file

• Create a new file with or without using an FDL file

• Access or insert records in an indexed file

• Pad short records or truncate long records

• Sort a file according to the primary key

• Check all read and write operations

CREATE/FOL and EDIT /FOL
The File Definition Language (FDL) helps you define specifications for data
files. FDL is used within the context of the File Definition Language Facility
and consists of the utilities CREATE/FDL and EDIT /FDL. An FDL file
consists of a collection of file attributes grouped into related sections. EDIT
/FDL invokes the FDL editor to create a new FDL file. The types of attributes
you specify are the following:

• File processing operations specified using the following keywords:
BLOCK-10 enabling VMS RMS read and write operations, DELETE,
GET, PUT, RECORD_IO enabling mixed record IJO and block I/O
TRUNCATE, UPDATE)

• Allocation of area and key analysis sections (for indexed files only)

1-39

Overview
1 .6 Callable System Routines

• Creation or manipulation of VMS RMS-specific areas in an indexed file

• Application-dependent run-time attributes

• Date and time for certain file characteristics

• File processing and file-related characteristics

• Key attributes

• Secondary attributes that define records specified using the following
keywords: BLOCK_SP AN, CARRIAGE_CONTROL, CONTROL _FIELD,
FORMAT, and SIZE

• Sharing of the data file

• System identification information

CREATE/FDL uses the specifications in an existing FDL file to create a new
empty data file. The VMS File Definition Language Facility Manual describes
how to use the FDL utility and lists each of the commands.

With FDL commands, you can add, modify, or delete lines to a file; enable
assistance with the design and optimization of a data file; specify the number
of keys in an indexed file; specify the output file; divide an indexed file into a
specified number of areas; and choose between smaller buffer and flatter files.

1 . 7 System Programming

1-40

System programming includes the following types of tasks:

• Writing your own system services

• Writing your own print symbiont or modifying existing ones

• Writing your own device driver

• Writing code that requires privileged access mode

• Writing code that operates at an elevated interrupt priority level (IPL)

To write code that operates at a system level, special practices must be
followed to ensure that your work does not corrupt the operating system
or other system-level code. For example, device driver routines do not run
sequentially from beginning to end; therefore, device driver code must follow
standard VMS conventions to ensure proper synchronization.

Information for system programmers is contained in the following documents:

• VMS System Services Volume

• VMS I/O User's Reference Volume

• VMS Device Support Manual

• VAX MACRO and Instruction Set Reference Manual

• VMS Delta/XDelta Utility Manual

2 Using Processes

A process is the environment where an image executes. You can create and
manage processes to complete the following programming tasks:

• Modularize application programs to have a single process executing a
single function

• Dedicate a process to execute DCL commands

• Perform parallel processing where one process executes one part of a
program while another process executes another part

• Implement application program management where one process manages
and coordinates the activities of several other processes

• Schedule program execution

• Isolate code for one or more of the following reasons:

Debug logic errors

Execute privileged code

Execute sensitive code

2.1 Creating Processes

2.1.1

2.1.2

A created process can be either a spawned subprocess or a detached process.

Types of Processes
A spawned subprocess is dependent on the process that created it (its
parent) and is deleted when the parent process exits. A detached process
is independent of the process that created it. If you want a created process
to continue after the parent exits, use a detached process. You can also use
detached processes to write to another process's terminal (use the system
sevice SYS$BREAKTHRU).

Modes of Execution
A process executes in one of the following modes:

• Interactive-Receives input from a record-oriented device such as a
terminal or mailbox

• Batch-Created by the job controller and not interactive

• Network-Created by the network ACP

• Other-A process not running in any of the other modes (for example, a
spawned subprocess where input is received from a command procedure)

2-1

2.1.3

Using Processes
2.1 Creating Processes

Table 2-1 summarizes the characteristics of detached processes versus
subprocesses.

Table 2-1 Detached Processes and Spawned Subprocesses

Characteristic

Privileges

Quotas and limits

User Authorization File

User Identification Code

Restrictions

How created

When deleted

Command Language
Interpreter present

Spawned

From creating
process

Shared with creating
process

Used for information

Detached

Specified by creating process

Specified by creating process, but not shared with
creating process

Used for most information not given by creating
not given by creating process
process

UIC of creating
process

Exists as long as
creating process
exists

SYS$CREPRC or
Ll8$SP AWN from
another process

At image exit,
or when creating
process exits

Usually not

Specified by creating process

None

SYS$CREPRC from another process

At image exit

Usually not

Creating Spawned Subprocesses

2.1.3.1

2-2

You can create a spawned subprocess using LIB$SPAWN, SYS$CREPRC, or
PPL$CREATE_PROCESS.

Creating a Spawned Subprocess Using LIB$SPAWN
Because LIB$SP AWN is designed specifically for spawned processes,
by default, it provides more context values for the subprocess than
SYS$CREPRC. For example, LIB$SP AWN creates a subprocess with the
same priority as the parent process (generally 4).

LIB$SP AWN allows you to create a subprocess and set some context options
for the new subprocess. The format for LIB$SPAWN is:

LIB$SPA WN ([command_string],[inpuLfile]
,[output_ file],[flags],[process-name],[process_id],[completion_status]
,[completion _efn],[completion _astadr],[completion_astarg],[prompt],[cli])

For complete information on using each argument, refer to the LIB$SP AWN
routine in VMS Run-Time Library Routines Volume.

Specifying a Command String

Specify a single DCL command to execute once the subprocess is initiated
using the commanLstring argument. You can also use this argument
to execute a command procedure to execute several DCL commands
(@commancLprocedure_name).

2.1.3.2

Using Processes
2. 1 Creating Processes

Redefining SYS$ERROR, SYS$1NPUT, and SYS$0UTPUT

Specify alternate input, output, and error devices for SYS$INPUT,
SYS$0UTPUT, and SYS$ERROR using the error, input, and output
arguments. Using alternate values for SYS$INPUT, SYS$0UTPUT and
SYS$ERROR can be particularly useful when you are synchronizing processes
that are executing concurrently.

Passing Parent Process Context Information to the Subprocess

Specify which characteristics of the parent process are to be passed onto the
subprocess using the flags argument. With this argument, you can reduce the
time required to create a subprocess by passing only a part of the parent's
context. You can also specify whether the parent process should continue
to execute (execute concurrently) or wait until the subprocess has completed
execution (execute in line).

After the Subprocess Completes Execution

Specify the action to be taken when the subprocess completes execution (send
a completion status, set a local event flag, or invoke an AST procedure) using
the completion_status, completion_efn, and completion_astadr arguments.
For more information on event flags and ASTs, refer to Chapter 4.

Specifying an Alternate Prompt String

Specify a different prompt string for the subprocess using the prompt
argument.

Specifying an Alternate Command Language Interpreter

Specify a different command language interpreter for the subprocess using the
cli argument.

Creating a Spawned Subprocess Using SYS$CREPRC
With SYS$CREPRC, you must usually specify the priority because the default
priority is zero. Though SYS$CREPRC does not set many context values for
the subprocess by default, it does allow you to set many more context values
than LIB$SP AWN. For example, you cannot specify separate privileges for a
subprocess with LIB$SPAWN directly, but you can with SYS$CREPRC.

By default, SYS$CREPRC creates a subprocess rather than a detached process.
The format for SYS$CREPRC is as follows:

SYS$CREPRC ([pidadr],[image],[input],[output],[error],[prvadr],[quota] ,[prcnam],
[baspri], [uic] ,[mbxunt],[stsflg])

For a complete description of how to use each argument, refer to the VMS
System Services Reference Manual.

The default values passed onto the subprocess might not be complete enough
for your use. Use the SYS$CREPRC to modify these default values as
described below.

Redefining SYS$ERROR, SYS$1NPUT, and SYS$0UTPUT

Specify alternate input, output, and error devices for SYS$INPUT,
SYS$0UTPUT, and SYS$ERROR using the error, input, and output
arguments. Using alternate values for SYS$INPUT, SYS$0UTPUT, and
SYS$ERROR can be particularly useful when you are synchronizing processes
that are executing concurrently.

2-3

Using Processes
2.1 Creating Processes

2.1.3.3

2-4

Setting Privileges

Set different privileges for the subprocess using the prvadr argument. This
is particularly useful when you want to dedicate a subprocess to execute
privileged or sensitive code.

Setting Process Quotas

Set different process quotas of system resources for the subprocess using the
quota argument. This option can be useful when managing a subprocess
to limit use of system resources (such as AST usage, 1/0, CPU time, lock
requests, and working set size and expansion).

Setting the Subprocess Priority Level

Set the subprocess priority using the baspri argument. If you do not set it,
the default value is 0.

Specifying Additional Processing Options

Enable and disable parent and subprocess wait mode, control process
swapping, control process accounting; control process dump information;
control authorization checks; and control working set adjustments using the
stsflg argument.

Creating a Spawned Subprocess Using PPL$CREATE_PROCESS
PPL$CREATE_PROCESS works similarly to LIB$SPAWN in that it creates
subprocesses with the same context as the parent process. In addition, you
can create more than one subprocess at a time, and you can specify the name
of an image to be executed in the subprocess. However, you should limit use
of PPL$CREATE_PROCESS to creating subprocesses specifically for parallel
processing.

Before using PPL$CREATE_PROCESS, you must set up special PPL$ data
structures with the PPL$INITIALIZE routine; otherwise, unpredictable results
may occur. Also, after you create a process with PPLS$CREATE_PROCESS,
you should delete it with PPL$DELETE_PROCESS.

PPL$CREATE_PROCESS creates one or more subprocesses on the same
node (or system) as the parent process. The format for this routine is:

PPL$CREA TE_PROCESS ([number-of-processes],[image-name],
[process-vector]. [flags])

For complete information on using each argument, refer to the VMS RTL
Parallel Processing (PPL$) Manual.

Specifying the Number of Subprocesses

Specify the number of subprocesses to be created using the number-of­
processes argument. If no value is specified, one subprocess is created.

Specifying the Name of the Image

Specify the name of the image to be run in the new subprocess using the
image-name argument. If no name is provided, the image being run in the
parent process is invoked.

2.1.3.4

Using Processes
2.1 Creating Processes

Specifying Processing Options

Specify one of two options for the new subprocesses: (1) the new process
is not part of a parallel application or (2) the new subprocess executes the
program without the VMS Symbolic Debugger.

Table 2-2 lists the context values provided by LIB$SPAWN and
SYS$CREPRC for a subprocess when using the default values in the routine
calls.

Table 2-2 Comparison of LIB$SPAWN, SYS$CREPRC, and
PPL$CREATE_PROCESS

PPL$CREATE_
Context LIB$SPAWN SYS$CREPRC PROCESS

DCL Yes No 1 Yes

Default device and Parent's Parent's Parent's
directory

Symbols Parent's No Parent's

Logical Names Parent's2 No2 Parent's2

Privileges Parent's Parent's Parent's

Priority Parent's 0 Parent's

1 The created subprocess can include DCL by executing the system image
SYS$SYSTEM:LOGINOUT.EXE (example in Section 2.1.4.).

2 Plus group and job logical name tables.

Review the features of each routine in the following manuals to determine
which routine is the best for your needs:

• LIB$SPAWN-VMS RTL Library (LIB$) Manual

• SYS$CREPRC-VMS System Services Reference Manual

• PPL$CREATE_PROCESS- VMS RTL Parallel Processing (PPL$) Manual

Debugging Within a Subprocess
Another option you might consider is to allow a program to be debugged
within a subprocess. To allow debug operations, equate the subprocess
logical names DBG$INPUT and DBG$0UTPUT to the terminal. When the
subprocess executes the program, which has been compiled and linked with
the debugger, the debugger reads input from DBG$INPUT and writes output
to DBG$0UTPUT.

If you are executing the subprocess concurrently, you should restrict
debugging to the program in the subprocess. The debugger prompt DBG>
should enable you to differentiate between input required by the parent
process and input required by the subprocess. However, each time the
debugger displays information, you must press the RETURN key to display
the DBG> prompt. (By pressing the RETURN key, you actually write to
the parent process, which has regained control of the terminal following the
subprocess's writing to the terminal. Writing to the parent process allows the
subprocess to regain control of the terminal.)

2-5

Using Processes
2. 1 Creating Processes

2-6

Examples of Creating Subprocesses

The following example creates a subprocess that executes the commands
in COMMANDS.COM, which must be a command procedure on the current
default device in the current default directory. The created subprocess inherits
symbols, logical names (including SYS$INPUT and SYS$0UTPUT), keypad
definitions, and other context information from the parent. The subprocess
executes while the parent process hibernates.

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS = LIB$SPAWN ('©COMMANDS')

The following program segment creates a subprocess that does not inherit the
parent's symbols, logical names, or keypad definitions. The subprocess reads
and executes the commands in the command procedure COMMANDS.COM.
(The CLI$ symbols are defined in the $CLIDEF module of the system object
or shareable image library; see Section 5.3.3.)

! Mask for LIB$SPAWN
INTEGER MASK
EXTERNAL CLI$M_NOCLISYM,
2 CLI$M_NOLOGNAM,
2 CLI$M_NOKEYPAD
! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

! Set mask and call LIB$SPAWN
MASK = %LOC(CLI$M_NOCLISYM) .OR.
2 %LOC(CLI$M_NOLOGNAM) .OR.
2 %LOC(CLI$M_NOKEYPAD)

STATUS = LIB$SPAWN ('©COMMANDS.COM',
2
2 MASK)

The following program segment creates a subprocess to execute the image
$DISK1:[USER.MATH]CALC.EXE. CALC reads data from DATA84.IN and
writes the results to DATA84.RPT. The subprocess executes concurrently.
(CLI$M_NOWAIT is defined in the $CLIDEF module of the system object or
shareable image library; see Section 5.3.3.)

! Mask for LIB$SPAWN
EXTERNAL CLI$M_NOWAIT
! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS = LIB$SPAWN ('RUN $DISK1: [USER.MATH]CALC',
2 'DATA84. IN',
2 'DATA84.RPT',
2 %LOC(CLI$M_NOWAIT))

Image
Input
Output
Concurrent

2.1.4

Using Processes
2.1 Creating Processes

Creating Detached Processes
In general, create a detached process only when a program must continue
executing after the parent process exits. DETACH privilege is required for
most detached process operations. Use the system service SYS$CREPRC.

Examples of Creating a Detached Process

The following program segment creates a process that executes the image
SYS$USER:[ACCOUNT]INCTAXES.EXE. INCTAXES reads input from the
file TAXES.DAT and writes output to the file TAXES.RPT. (TAXES.DAT
and TAXES.RPT are in the default directory on the default disk.) The last
argument specifies that the created process is a detached process (the UIC
defaults to that of the parent process). (The symbol PRC$M_DETACH is
defined in the $PRCDEF module of the system macro library.)

EXTERNAL PRC$M_DETACH

! Declare status and system routines
INTEGER STATUS,SYS$CREPRC

STATUS = SYS$CREPRC
2
2
2
2
2
2
2

(.
'SYS$USER: [ACCOUNT]INCTAXES',
'TAXES.DAT',
'TAXES.RPT',

%VAL(4), ..
%VAL(%LOC(PRC$M_DETACH))

Image
SYS$INPUT
SYS$0UTPUT

Priority

Detached

The following program segment creates a detached process to execute the
DCL commands in the file SYS$USER:[TEST]COMMANDS.COM. The system
image SYS$SYSTEM:LOGINOUT.EXE is executed to include DCL in the
created process. The DCL commands to be executed are specified in a
command procedure that is passed to SYS$CREPRC as the input file. Output
is written to the file SYS$USER:(TEST]OUTPUT.DAT.

STATUS = SYS$CREPRC
2
2
2
2
2
2
2

(.
'SYS$SYSTEM:LOGINOUT', Image
'SYS$USER: [TEST] COMMANDS.COM',! SYS$INPUT
'SYS$USER: [TEST]OUTPUT.DAT', SYS$0UTPUT

%VAL(4), Priority
..
%VAL(%LOC(PRC$M_DETACH)) Detached

2-7

Using Processes
2.2 Managing Processes

2.2 Managing Processes

2-8

Managing a process includes the following programming tasks:

• Obtaining process information

• Setting process privileges

• Setting process priority

• Controlling process swapping

• Hibernating or suspending a process

• Setting process name

• Deleting a process

• Synchronizing process execution

You can use system routines and DCL commands to accomplish these tasks.
Table 2-3 summarizes which routines and commands to use. You can use the
DCL commands in a command procedure file that is executed as soon as the
subprocess (or detached process) is created.

For process synchronization techniques, refer to Chapter 4.

Table 2-3 Routines and Commands for Managing Processes

Routine

LIB$GET JPI
SYS$GETJPI
SYS$GET JPIW

SYS$SETPRV

SYS$SETPRI

SYS$SETSWM

SYS$HIBER
SYS$SUSPND
SYS$RESUME

SYS$SETPRN

SYS$EXIT
SYS$FORCEX
SYS$DELPRC

DCL Command

SHOW PROCESS

SET PROCESS

SET PROCESS

SET PROCESS

SET PROCESS

SET PROCESS

EXIT and STOP

Task

Return process information

Set process privileges

Set process priority

Control swapping of process

Hibernate and suspend process

Set process name

Delete process

By default, the routines and commands reference the current process. To
reference another process, you must specify either the process identification
number (PID) or the process name when you call the routine or with a
command qualifier when you enter commands. You must have GROUP
privilege to reference a process with the same group number and a different
member number in its UIC and WORLD privilege to reference a process with
a different group number in its UIC.

The information presented in this section covers using the routines. If you
want to use the DCL commands in a command procedure, refer to the VMS
DCL Dictionary.

2.2.1

Using Processes
2.2 Managing Processes

Obtaining Process Information
You can use any of the three GETJPI routines to obtain information about
processes. The differences among these routines are as follows:

• SYS$GETJPI operates asynchronously.

• SYS$GETJPIW and LIB$GETJPI operate synchronously.

• SYS$GETJPI and SYS$GETJPIW can obtain one or more pieces of
information about processes in a single call.

• LIB$GETJPI can obtain only one piece of information about processes in
a single call.

• SYS$GETJPI and SYS$GETJPIW can specify an AST to execute at the
completion of the routine.

• SYS$GETJPI and SYS$GETJPIW can use an If O Status Block (IOSB) to
test for completion of the routine.

• LIB$GETJPI can return some items as strings or as numbers.

The VMS Run-Time Library Routines Volume and VMS System Services
Reference Manual contain complete descriptions of these routines including
a complete listing of all the items of information that you can request.
LIB$GETJPI, SYS$GETJPI, and SYS$GETJPIW share the same item list with
the following exception: LIB$K_ items can be accessed only by LIB$GETJPI.

In the following example, the string argument rather than the numeric
argument is specified, causing LIB$GETJPI to return the UIC of the current
process as a string:

! Define request codes
INCLUDE '($JPIDEF) I

! Variables for LIB$GETJPI
CHARACTER*9 UIC
INTEGER LEN

STATUS = LIB$GETJPI (JPI$_UIC,
2
2 UIC,
2 LEN)

If you want to get the same information about each process on the
system, specify the process identification argument as -1 when you invoke
LIB$GETJPI or SYS$GETJPI(W). Call the GETJPI routine (whichever you
choose) repetitively until it returns a status of SS$_NOMOREPROC,
indicating that all processes on the system have been examined.

Example 2-1 creates a file, PROCNAME.RPT, that lists, using LIB$GETJPI,
the process name of each process on the system. If the process running this
program does not have the privilege necessary to access a particular process,
the program writes the words NO PRIVILEGE in place of the process name.
If a process is suspended, LIB$GETJPI cannot access it and the program writes
the word SUSPENDED in place of the process name. Note that, in either of
these cases, the program changes the error value in STATUS to a success
value so that the loop calling LIB$GETJPI continues to execute.

2-9

Using Processes
2.2 Managing Processes

2-10

Example 2-1 Obtaining the Process Name

Status variable and error codes
INTEGER STATUS,
2 STATUS_OK,
2 LIB$GET_LUN,
2 LIB$GETJPI
INCLUDE '($SSDEF)'
PARAMETER (STATUS_OK = 1)

! Logical unit number and file name
INTEGER*4 LUN
CHARACTER*(*) FILE_NAME
PARAMETER (FILE_NAME = 'PROCNAME.RPT')
! Define item codes for LIB$GETJPI
INCLUDE I ($JPIDEF)'

! Process name
CHARACTER*15 NAME
INTEGER LEN
! Process identification
INTEGER PID /-1/

Get logical unit number and open the file
STATUS = LIB$GET_LUN (LUN)
OPEN (UNIT= LUN,
2 FILE = 'PROCNAME.RPT',
2 STATUS= 'NEW')
! Get information and write it to file
DO WHILE (STATUS)

STATUS = LIB$GETJPI(JPI$_PRCNAM,
2 PID,
2
2 NAME,
2 LEN)

Extra space in WRITE commands is for
FORTRAN carriage control

IF (STATUS) THEN
WRITE (UNIT = LUN,

2 FMT = '(2A)') I I NAME(1:LEN)
STATUS = STATUS_OK

ELSE IF (STATUS .EQ. SS$_NOPRIV) THEN
WRITE (UNIT = LUN,

2 FMT = '(2A)') I I. 'NO PRIVILEGE'
STATUS = STATUS_OK

ELSE IF (STATUS .EQ. SS$_SUSPENDED) THEN
WRITE (UNIT= LUN,

2 FMT = '(2A)') I I. 'SUSPENDED'
STATUS = STATUS_OK

END IF

END DO

Example 2-1 Cont'd. on next page

Using Processes
2.2 Managing Processes

Example 2-1 (Cont.) Obtaining the Process Name

! Close file
IF (STATUS .EQ. SS$_NOMOREPROC)
2 CLOSE (UNIT = LUN)

To specify a list of items for SYS$GETJPI or SYSGETJPIW (even if that
list contains only one item), use a record structure. Example 2-2 uses
SYS$GETJPIW to request the process name and user name associated with
the process whose process identification number is in SUBPROCESS_PID.

Example 2-2 Obtaining Different Types of Process Information

PID of subprocess
INTEGER SUBPROCESS_PID

! Include the request codes
INCLUDE 1 ($JPIDEF) 1

! Define itmlst structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE
! Declare GETJPI itmlst
RECORD /ITMLST/ JPI_LIST(3)
! Declare buffers for information
CHARACTER*15 PROCESS_NAME
CHARACTER*12 USER_NAME
INTEGER*4 PNAME_LEN,
2 UN AME_ LEN
! Declare I/0 status structure
STRUCTURE /IOSB/

INTEGER*2 STATUS,
2 COUNT

INTEGER*4 %FILL
END STRUCTURE
! Declare I/0 status variable
RECORD /IOSB/ JPISTAT

Example 2-2 Cont'd. on next page

2-11

2.2.2

2.2.3

Using Processes
2.2 Managing Processes

Setting Privileges

Example 2-2 (Cont.) Obtaining Different Types of Process
Information

! Declare status and routine
INTEGER*4 STATUS,
2 SYS$GETJPIW

Define SUBPROCESS_PID

! Set up itmlst
JPI_LIST(1).BUFLEN = 15
JPI_LIST(1).CODE = JPI$_PRCNAM
JPI_LIST(1) .BUFADR = %LOC(PROCESS_NAME)
JPI_LIST(1) .RETLENADR = %LOC(PNAME_LEN)
JPI_LIST(2).BUFLEN = 12
JPI_LIST(2).CODE = JPI$_USERNAME
JPI_LIST(2).BUFADR = %LOC(USER_NAME)
JPI_LIST(2) .RETLENADR = %LOC(UNAME_LEN)
JPI_LIST(3) .END_LIST = 0
! Request information and wait for it
STATUS = SYS$GETJPIW (,
2 SUBPROCESS_PID,
2
2 JPI_LIST,
2 JPISTAT,
2 ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Check final return status
IF (.NOT. JPISTAT.STATUS) THEN

CALL LIB$SIGNAL (%VAL(JPISTAT.STATUS))
END IF

Use the SYS$SETPRV system service to set process privileges. Setting process
privileges allows you to limit executing privileged code to a specific process,
to limit functions within a process, and to limit access from other processes.
You can either enable or disable a set of privileges and assign privileges on a
temporary or permanent basis. To use this service, the creating process must
have the appropriate privileges.

Scheduling Processes

2-12

To alter the system's process scheduling, you can change the base priority of
a process and lock a process into physical memory so that it is not swapped
out. Processes with higher priority levels, or those that have been locked, are
executed first.

If you create a subprocess with the LIB$SP AWN routine, you can set the
priority of the subprocess by executing the DCL command SET PROCESS
/PRIORITY as the first command in a command procedure. You can also
use the SYS$SETPRI system service to change the priority of any process,
regardless of how you created it. You must have AL TPRI privilege to increase
a process's base priority above the base priority of the creating process.

2.2.4

Using Processes
2.2 Managing Processes

If you create a subprocess with the LIB$SP AWN routine, you can inhibit
swapping by executing the DCL command SET PROCESS/NOSWAP as the
first command in a command procedure. Inhibit swapping for any process
with the SYS$SETSWM system service. A process must have PSWAPM
privilege to inhibit swapping.

Altering process scheduling must be done with care. Review the following
considerations before you attempt to alter the standard process scheduling
with either SYS$SETPRI or SYS$SETSWM:

• Priority-Increasing a process's base priority gives that process more
processor time at the expense of processes executing at lower priorities.
This is not recommended unless you have a program that must respond
immediately to events (for example, a real-time program). If you must
increase your base priority, return it to normal as soon as possible. If the
entire image must execute at an increased priority, reset the base priority
before exiting; image termination does not reset the base priority.

• Swapping-Inhibiting swapping keeps your process in physical memory.
This is not recommended unless the effective execution of your image
depends on it (for example, if the image executing in the process is
collecting statistics on processor performance).

Changing Process Names
Use the system service SYS$SETPRN to change a process name. Changing
process names might be useful when a lengthy image is being executed.
You can change names at significant points in the program; then monitor
program execution through the change in process names. You can obtain a
process name with a GETJPI routine from within a controlling process; with a
CONTROL+ T keystroke if the image is currently executing in your process; or
a DCL command SHOW SYSTEM if the program is executing in a detached
process.

The following program segment calculates the tax status for a number of
households, sorts the households according to tax status, and writes the
results to a report file. Since this is a time-consuming process, the program
changes the process name at major points so that progress can be monitored.

Calculate approximate tax rates
STATUS= SYS$SETPRN ('INCTAXES')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = TAX_RATES (TOTAL_HOUSES,
2 PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE,
2 TAX_PER_HOUSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Sort
STATUS= SYS$SETPRN ('INCSORT')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = TAX_SORT (TOTAL_HOUSES,
2 TAX_PER_HOUSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

2-13

2.2.5

Using Processes
2.2 Managing Processes

! Write report
STATUS = SYS$SETPRN ('INCREPORT')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

Controlling Process Execution

2-14

You can control process execution in the following ways:

• Suspending a process

• Hibernating a process

• Stopping a process

• Resuming a process

Suspending or hibernating a process puts it into a dormant state; the process
is not deleted, but the image within it is not being executed. A process
in hibernation can control itself; a process in suspension requires another
process to control it. Refer to Table 2-4 for a comparison of processes in
hibernation versus suspension.

Table 2-4 Comparison of Hibernation and Suspension

Hibernation

Can only hibernate self

AST s can be delivered

Can wake itself

Can schedule a wakeup

Hibernate/wake is fast

Requires little system
overhead

Suspension

Can suspend self or others

AST s can only be queued

Cannot resume itself

Cannot schedule resume

Suspend/resume is slower

Requires system dynamic memory

The following table summarizes the routines available to suspended and
hibernating processes.

Routine

Hibernating Processes

SYS$HIBER

SYS$WAKE

SYS$SCHDWK

LIB$WAIT

SYS$CANWAK

Function

Places a process in hibernation

Resumes execution of a process in hibernation

Resumes execution of a process in hibernation at a
specified time

Places a process in hibernation for a specified number of
seconds

Cancels a scheduled wake-up issued by SYS$SCHDWK

2.2.6

Routine

Suspended Processes

SYS$SUSPEND

SYS$RESUME

Deleting Processes

Function

Using Processes
2.2 Managing Processes

Places a process in a suspended state

Resumes execution of a process in a suspended state

You can use one of the following system services to delete a subprocess or
a detached process. Some services terminate execution of the image in the
process; others terminate the process itself.

• SYS$EXIT-Initiates normal exit in the current image. Control returns to
the command interpreter. If there is no command interpreter, the process
is terminated. This routine cannot be used to terminate an image in a
detached process.

• SYS$FORCEX-Initiates a normal exit on the image in the specified
process. GROUP and WORLD privilege may be required, depending on
the process specified. An AST is sent to the specified process. The AST
calls on the SYS$EXIT routine to complete the image exit. Because an
AST is used, you cannot use this routine on a suspended process. You
can use this routine on a subprocess or detached process.

• SYS$DELPRC-Deletes the specified process. GROUP or WORLD
privilege may be required depending on the process specified. A
termination message is sent to the calling process's mailbox. You can
use this routine on a subprocess, a detached process, or the current
process.

2-15

3 Communication

The VMS operating system allows your process to communicate with itself,
with other processes, with the system, and with other systems. This chapter
describes how these levels of communication can be used to perform the
following functions:

• To synchronize events

• To share data

• To obtain information about events important to the program you are
executing

3.1 Communicating Within a Process
Communicating within a process, from one program component to another,
can be performed using the following methods:

• Local event flags

• Logical names (in supervisor mode)

• Global symbols

• Common blocks

Local event flags, logical names, symbols, and common blocks are equally
acceptable for passing information among "chained" images since the image
reading the information executes immediately after the image that deposited
it. Only common blocks allow you to reliably pass data from one image to
another with a separate image executing in between. However, event flags,
logical names, and symbols can be extremely useful for communicating within
a single image. Further, event flags are useful for synchronizing events within
a single image.

Since permanent mailboxes and permanent global sections are not deleted
when the creating image exits, they also could be used to pass information
from the current image to a later executing image. However, use of the
common block is recommended since it uses fewer system resources than the
permanent structures and does not require privilege. (You need PRMMBX
privilege to create a permanent mailbox and PRMGBL privilege to create a
permanent global section.)

3-1

3.1.1

3.1.2

Communication
3.1 Communicating Within a Process

Local Event Flags

Logical Names

3.1.2.1

3.1.2.2

3.1.2.3

3-2

Event flags are status posting bits maintained by the VMS operating system
for general programming use. Programs can set, clear, and read event flags.
By setting and clearing event flags at specific points, one program component
can signal when an event has occurred. Other program components can then
check the event flag to determine when the event has been completed. For
more information on using local and common event flags for synchronizing
events, refer to Chapter 4.

Logical names can store up to 255 bytes of data. When you need to pass
information from one program to another within a process, you can assign
data to a logical name when you create the logical name; then, other
programs can access the contents of the logical name.

Using Logical Name Tables
If both processes are part of the same job, you can place the logical name in
the process logical name table (LNM$PROCESS) or in the job logical name
table (LNM$JOB). If a subprocess is prevented from inheriting the process
logical name table, you must communicate using the job logical name table.
If the processes are in the same group, place the logical name in the group
logical name table LNM$GROUP (requires GRPNAM or SYSPRV privilege).
If the processes are not in the same group, place the logical name in the
system logical name table LNM$SYSTEM (requires SYSNAM or SYSPRV
privilege). Symbols can also be used, but only between a parent and a
spawned subprocess that has inherited the parent's symbols.

Access Modes
A logical name can be created under any three access modes-user,
supervisor, or executive. If you create a logical name in user mode, it is
deleted after the image exits. If you create a logical name in supervisor or
executive mode, it is retained after the image exits. Therefore, to share data
within the process from one image to the next, use supervisor-mode logical
names.

Creating and Accessing Logical Names
Perform the following steps to create and access a logical name:

1 Create the logical name and store data in it. Use LIB$SET_LOGICAL to
create a supervisor logical name. No special privileges are required. You
can also use the system service SYS$CRELNM, but you need SYSNAM
privilege to create a supervisor logical name. SYS$CRELNM also allows
you to create a logical name for the system or group table and create
a logical name in any other mode, assuming you have appropriate
privileges.

2 Access the logical name. Use the routine LIB$SYS_TRNLOG or
SYS$TRNLNM. LIB$SYS_TRNLOG calls SYS$TRNLNM to search for the
logical name and return information about it.

3 Once you have finished using the logical name, delete it. Using the
routine LIB$DELETE_LOGICAL or SYS$DELLNM. LIB$DELETE_
LOGICAL deletes the supervisor logical name without requiring any
special privileges. SYS$DELLNM requires special privileges to delete
logical names for privileged modes. However, you can also use this

Communication
3.1 Communicating Within a Process

routine to delete logical name tables or a logical name within a system or
group table.

Example 3-1 creates a spawned subprocess to perform an iterative calculation.
The logical name REP_NUMBER specifies the number of times that REPEAT,
the program executing in the subprocess, should perform the calculation.
Since both the parent process and the subprocess are part of the same job,
REP_NUMBER is placed in the job logical name table LNM$JOB. (Note that
logical names are case sensitive; specifically, LNM$JOB is a system-defined
logical name that refers to the job logical name table, whereas lnm$job is not.)
To satisfy the references to LNM$_STRING, include the file $LNMDEF.

Example 3-1 Creating a Spawned Subprocess

PROGRAM CALC

! Status variable and system routines
INTEGER*4 STATUS,
2 SYS$CRELNM,
2 LIB$GET_EF,
2 LIB$SPAWN
! Define itmlst structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ LNMLIST(2)
! Number to pass to REPEAT.FOR
CHARACTER*3 REPETITIONS_STR
INTEGER REPETITIONS
! Symbols for LIB$SPAWN and SYS$CRELNM
EXTERNAL CLI$M_NOLOGNAM,
2 CLI$M_NOCLISYM,
2 CLI$M_NOKEYPAD,
2 CLI$M_NOWAIT,
2 LNM$_STRING

! Set REPETITIONS_STR

Example 3-1 Cont'd. on next page

3-3

Communication
3.1 Communicating Within a Process

3-4

Example 3-1 (Cont.) Creating a Spawned Subprocess

! Set up and create logical name REP_NUMBER in job table
LNMLIST(1).BUFLEN = 3
LNMLIST(1).CODE = LNM$_STRING
LNMLIST(1) .BUFADR = %LOC(REPETITIONS_STR)
LNMLIST(1) .RETLENADR = 0
LNMLIST(2) .END_LIST = 0
STATUS = SYS$CRELNM (,
2 'LNM$JOB',
2 I REP _NUMBER' ' '
2 LNMLIST)

Logical name table
Logical name
List specifying
equivalence string

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Execute REPEAT.FOR in a subprocess
MASK= %LDC (CLI$M_NOLOGNAM) .OR.
2 %LDC (CLI$M_NOCLISYM) .OR.
2 %LDC (CLI$M_NOKEYPAD) .OR.
2 %LOC (CLI$M_NOWAIT)
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= LIB$SPAWN ('RUN REPEAT',, ,MASK,, ,,FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

REPEAT.FOR

PROGRAM REPEAT
Repeats a calculation REP_NUMBER of times,

! where REP_NUMBER is a logical name

! Status variables and system routines
INTEGER STATUS,
2 SYS$TRNLNM,
2 SYS$DELLNM

! Number of times to repeat
INTEGER*4 REITERATE,
2 REPEAT_STR_LEN
CHARACTER*3 REPEAT_STR
! Item list for SYS$TRNLNM
! Define itmlst structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

Example 3-1 Cont'd. on next page

3.1.3

Communication
3 .1 Communicating Within a Process

Example 3-1 (Cont.) Creating a Spawned Subprocess

! Declare itmlst
RECORD /ITMLST/ LNMLIST (2)
! Define item code
EXTERNAL LNM$_STRING
! Set up and translate the logical name REP_NUMBER
LNMLIST(1) .BUFLEN = 3
LNMLIST(1) .CODE = LNM$_STRING
LNMLIST(1) .BUFADR = %LOC(REPEAT_STR)
LNMLIST(1) .RETLENADR = %LOC(REPEAT_STR_LEN)
LNMLIST(2) .END_LIST = 0
STATUS = SYS$TRNLNM (,
2 'LNM$JOB',
2 'REP_NUMBER',,

Logical name table
Logical name

2 LNMLIST)

IF (.NOT. STATUS) CALL LIB$SIGNAL

List requesting
equivalence string

(%VAL(STATUS))
! Convert equivalence string to integer
! BN causes spaces to be ignored
READ (UNIT= REPEAT_STR (1:REPEAT_STR_LEN),
2 FMT = '(BN,I3)') REITERATE
! Calculations
DO I = 1, REITERATE

END DO
! Delete logical name
STATUS = SYS$DELLNM ('LNM$JOB', ! Logical name table
2 'REP_NUMBER' ,) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

Command Language Interpreter Symbols

3.1.3.1

The symbols you create and access for process communication are command
language interpreter (CLI) symbols. These symbols are stored in symbol
tables maintained for use within the context of DCL, the default command
language interpreter. They can store up to 255 bytes of information. The use
of these symbols is limited to processes using DCL. If the process is not using
DCL, an error status is returned by the symbol routines.

For information on using symbols within your program to share data, refer to
Chapter 5.

When to Use Global Symbols
When you need to pass information from one program to another within
a process, you can assign data to a global symbol when you create the
symbol. Then, other programs can access the contents of the global symbol.
You should use global symbols so that the value within the symbol can be
accessed by programs.

3-5

3.1.4

3.1.5

Communication
3.1 Communicating Within a Process

3.1.3.2 When to Use Local Symbols
If you use a local symbol, only DCL-level commands can access the symbol.

Creating and Using Global Symbols

Common Blocks

3.1.5.1

3.1.5.2

3.1.5.3

3-6

To use DCL global symbols, follow this procedure:

1 Create the symbol and assign data to it using the routine LIB$SET_
SYMBOL. Make sure you specify that the symbol will be placed in the
global symbol table in the tbl-ind argument. If you do not specify the
global symbol table, the symbol will be a local symbol.

2 Access the symbol with the LIB$GET_SYMBOL routine. This routine
uses DCL to return the value of the symbol as a string.

3 Once you have finished using the symbol, delete it with the
LIB$DELETE_SYMBOL routine. If you created a global symbol, make
sure you specify the global symbol table in the tbl-ind argument. By
default, the local symbol table is searched.

Use common blocks to store data from one image to the next. They are
unlikely to be corrupted between the time one image deposits information
and another image reads it. Each common block can store 255 bytes of data.
The LIB$PUT_COMMON routine writes information to this common block;
the LIB$GET_COMMON routine reads information from this common block.

How the Process Common Block Is Created
The common block for your process is automatically created for you; no
special declaration is necessary. To pass more than 255 bytes of data, put the
data in a file and use the common block to pass the name of the file.

Modifying or Deleting Data in the Common Block
Data in the process common block cannot be deleted or modified unless
LIB$PUT_COMMON is invoked. Therefore, any number of images may
be executed between one image and another, provided that LIB$PUT_
COMMON has not been invoked. Each subsequent image reads the correct
data. Invoking LIB$GET_COMMON to read the common block does not
modify the data.

Specifying Other Types of Data
Although the descriptions of LIB$PUT_COMMON and LIB$GET_COMMON
in the VMS Run-Time Library Routines Volume specify a character string for
the argument containing the data written to or read from the common block,
you can specify other types of data. However, you must pass noncharacter
data (as well as character data) by descriptor.

The following program segment reads statistics from the terminal and enters
them into a binary file. After all of the statistics are entered into the file, the
program places the name of the file into the per-process common block and
exits.

Enter statistics

Communication
3.1 Communicating Within a Process

Put the name of the stats file into common
STATUS = LIB$PUT_COMMON (FILE_NAME (1:LEN))

The following program segment reads the file name from the per-process
common block and compiles a report using the statistics from that file.

Read the name of the stats file from common
STATUS = LIB$GET_COMMON (FILE_NAME,
2 LEN)

Compile the report

3.2 Interprocess Communication

3.2.1 Mailboxes

Use the following techniques for communicating from one process to another:

• Common event flags

• Global sections

• Mailboxes

• Resource locks

• Shared files

While common event flags and resource locks establish communication, they
are most useful for synchronizing events. Therefore, they are covered in
Chapter 4. Global sections and shared files are best used for sharing data;
therefore, they are covered in Chapter 5. This section describes the use of
mailboxes.

A mailbox is a virtual device used for communication among processes. You
must call VMS RMS services or 1/0 system services to peform actual data
transfer.

3-7

Communication
3.2 Interprocess Communication

3-8

3.2.1.1

3.2.1.2

Creating a Mailbox
To create a mailbox, use the SYS$CREMBX system service. SYS$CREMBX
creates the mailbox and returns the number of the 1/0 channel assigned to
the mailbox.

The format for the SYS$CREMBX system service is as follows:

SYS$CREMBX ([prmflg], chan, [maxmsg], [bufquo], [promsk], [acmode],
[lognam])

When you invoke SYS$CREMBX, you usually specify the following two
arguments:

Specifying the 1/0 Channel

Specify a variable to receive the 1/0 channel number using the chan
argument. This argument is required.

Defining a Logical Name for the Mailbox

Specify the logical name to be associated with the mailbox using the lognam
argument. The logical name identifies the mailbox for other processes and for
input/ output statements.

The SYS$CREMBX system service also allows you to specify the message
size, buffer size, mailbox protection code, and access mode of the mailbox;
however, the default values for these arguments are usually sufficient.
For more information on SYS$CREMBX, refer to the VMS System Services
Reference Manual.

Temporary and Permanent Mailboxes
By default, a mailbox is deleted when no 1/0 channel is assigned to it. Such
a mailbox is called a temporary mailbox. If you have PRMMBX privilege, you
can create a permanent mailbox (specify the prmflg argument as 1 when you
invoke SYS$CREMBX). A permanent mailbox is not deleted until it is marked
for deletion with the SYS$DELMBX system service (requires PRMMBX). Once
a permanent mailbox is marked for deletion, it is like a temporary mailbox;
when the last 1/0 channel to the mailbox is deassigned, the mailbox is
deleted.

The following statement creates a mailbox named MAIL_BOX. The 1/0
channel assigned to the mailbox is returned in MBX _CHAN.

! I/0 channel
INTEGER*2 MBX_CHAN

! Mailbox name
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')

STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2
2 MBX_NAME)

I/O channel

Mailbox name

Note: Do not use MAIL as the logical name for a mailbox or the system will not
execute the proper image in response to the DCL command MAIL.

3.2.1.3

Communication
3.2 Interprocess Communication

The following program segment creates a permanent mailbox, then creates a
subprocess that marks that mailbox for deletion:

INTEGER STATUS,
2 SYS$CREMBX
INTEGER*2 MBX_CHAN

! Create permanent mailbox
STATUS= SYS$CREMBX (%VAL(1), Permanence flag
2 MBX_CHAN, Channel
2
2 'MAIL_BOX') Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Create subprocess to delete it
STATUS = LIB$SPAWN ('RUN DELETE_MBX')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

The following program segment executes in the subprocess. Notice that the
subprocess must assign a channel to the mailbox and then use that channel
to delete the mailbox. Any process that deletes a permanent mailbox, unless
it is the creating process, must use this technique. (Use SYS$ASSIGN to
assign the channel to the mailbox to ensure that the mailbox already exists.
SYS$CREMBX system service assigns a channel to a mailbox; however,
SYS$CREMBX also creates the mailbox if it does not already exist.)

INTEGER STATUS,
2 SYS$DELMBX,
2 SYS$ASSIGN
INTEGER*2 MBX_CHAN

! Assign channel to mailbox
STATUS = SYS$ASSIGN ('MAIL_BOX',
2 MBX_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Delete the mailbox
STATUS = SYS$DELMBX (%VAL(MBX_CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

Reading and Writing Data to a Mailbox
The following list describes the three ways you can read and write to a
mailbox:

• Synchronous-Read or write to a mailbox and then wait for the
cooperating image to perform the opposite operation. Use 1/0 statements
for your programming language. This is the recommended method of
addressing a mailbox.

• Immediate-Queue read or write to a mailbox and continue program
execution after the operation completes. Use the SYS$QIOW system
service.

• Asynchronous-Queue a read or write request to a mailbox and continue
program execution while the request executes. Use the SYS$QIO system
service. When the read or write operation completes, the 1/0 status
block (if specified) is filled, the event flag (if specified) is set, and the AST
routine (if specified) is executed.

3-9

Communication
3.2 Interprocess Communication

3.2.1.4

3-10

Chapter 7 describes the SYS$QIO and SYS$QIOW system services. See VMS
System Services Reference Manual for more information. DIGITAL recommends
that you supply the optional I/O status block parameter when you use these
two system services. The contents of the status block varies depending on
the QIO function code; refer to the function code descriptions in the VMS I /0
User's Reference Volume for a description of the appropriate status block.

Synchronous Mailbox 1/0
Use synchronous I/O when you read or write information to another image
and cannot continue until that image responds.

The program segment shown in Example 3-2 opens a mailbox for the first
time. To open a mailbox for VAX FORTRAN IfO, use the OPEN statement
with the following specifiers: UNIT, FILE, CARRIAGECONTROL, and
STATUS. The value for the keyword FILE should be the logical name of
a mailbox (SYS$CREMBX allows you to associate a logical name with
a mailbox when the mailbox is created). The value for the keyword
CARRIAGECONTROL should be 'LIST'. The value for the keyword STATUS
should be 'NEW' for the first OPEN statement and 'OLD' for subsequent
OPEN statements.

Example 3-2 Opening a Mailbox

! Status variable and values
INTEGER STATUS

! Logical unit and name for mailbox
INTEGER MBX_LUN
CHARACTER(*) MBX_NAME
PARAMETER (MBX_NAME = MAIL_BOX)
! Create mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! Channel
2
2 MBX_NAME) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT= MBX_LUN,
2 FILE = MBX_NAME,
2 CARRIAGECONTROL = 'LIST',
2 STATUS= 'NEW')

In Example 3-3, one image passes device names to a second image. The
second image returns the process name and the terminal associated with the
process that allocated each device. A WRITE statement in the first image does
not complete until the cooperating process issues a READ statement. (The
variable declarations are not shown in the second program because they are
very similar to those in the first program.)

Communication
3.2 Interprocess Communication

Example 3-3 Synchronous 1/0 Using a Mailbox

! DEVICE.FOR

PROGRAM PROCESS_DEVICE

! Status variable
INTEGER STATUS

! Name and I/O channel for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
! Logical unit number for FORTRAN I/O
INTEGER MBX_LUN
! Character string format
CHARACTER*(*) CHAR_FMT
PARAMETER (CHAR_FMT = '(A50)')
! Mailbox message
CHARACTER*50 MBX_MESSAGE

Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2

Channel

2 MBX_NAME) Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT= MBX_LUN,
2 FILE = MBX_NAME,
2 CARRIAGECONTROL = 'LIST',
2 STATUS= 'NEW')
! Create subprocess to execute GETDEVINF.EXE
STATUS = SYS$CREPRC (,
2 'GETDEVINF', Image
2
2 'GET_DEVICE', Process name
2 %VAL(4),, ,) Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Pass device names to GETDEFINF
WRITE (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) 1 SYS$DRIVE0 1

! Read device information from GETDEFINF
READ (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) MBX_MESSAGE

END

Example 3-3 Cont'd. on next page

3-11

Communication
3.2 Interprocess Communication

3.2.1.5

3-12

Example 3-3 (Cont.) Synchronous 1/0 Using a Mailbox

GETDEVINF.FOR

Create mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! I/O channel
2
2 MBX_NAME) ! Mailbox name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT=MBX_LUN,
2 FILE=MBX_NAME,
2 CARRIAGECONTROL='LIST',
2 STATUS = 'OLD')
! Read device names from mailbox
READ (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) MBX_MESSAGE

Use SYS$GETJPI to find process and terminal
Process name: PROC_NAME (1:P_LEN)
Terminal name: TERM (1:T_LEN)

MBX_MESSAGE = MBX_MESSAGE//' '//
2 PROC_NAME(1:P_LEN)//' '//
2 TERM(1:T_LEN)
! Write device information to DEVICE
WRITE (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) MBX_MESSAGE

END

Immediate Mailbox 1/0
Use immediate 1/0 to read or write to another image without waiting for
a response from that image. To ensure that the other process receives the
information that you write, either (1) do not exit until the other process has a
channel to the mailbox or (2) use a permanent mailbox.

Queueing an lmmmediate 1/0 Request

To queue an immediate 1/0 request, invoke the SYS$QIOW system service.
See VMS System Services Ref ere nee Manual for more information.

Reading Data from the Mailbox

Since immediate 1/0 is asynchronous, it is possible that a mailbox may
contain more than one message or no message when it is read. If the mailbox
contains more than one message, the read operation retrieves the messages
one at a time in the order in which they were written. If the mailbox contains
no message, the read operation generates an end-of-file error.

Communication
3.2 Interprocess Communication

To allow a cooperating program to differentiate between an empty mailbox
and the end of the data being transferred, the process writing the messages
should use the IO$_WRITEOF function code to write an end-of-file message
to the mailbox as the last piece of data. When the cooperating program
reads an empty mailbox, the end-of-file message is returned and the second
longword of the 1/0 status block is 0. When the cooperating program
reads an end-of-file message explicitly written to the mailbox, the end-of-file
message is returned and the second longword of the 1/0 status block contains
the process identification number of the process that wrote the message to the
mailbox.

In Example 3-4, the first program creates a mailbox named MAIL _BOX,
writes data to it, and then indicates the end of the data by writing an end­
of-file message. The second program creates a mailbox with the same logical
name, reads the messages from the mailbox into an array, and stops the read
operations when a read operation generates an end-of-file message and the
second longword of the IfO status block is nonzero, confirming that the
writing process sent the end-of-file message. The processes use common
event flag 64 to ensure that SEND.FOR does not exit until RECEIVE.FOR
has established a channel to the mailbox. (If RECEIVE.FOR executes first, an
error occurs because SYS$ASSIGN cannot find the mailbox.)

Example 3-4 Immediate 1/0 Using a Mailbox

!SEND.FOR

INTEGER*4 STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER LEN
CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE_LEN (255)
INTEGER MAX_MESSAGE
PARAMETER (MAX_MESSAGE = 255)
! I/O function codes and status block
INCLUDE 1 ($IODEF)'
INTEGER*4 WRITE_CODE
STRUCTURE /STATUS_BLOCK/

INTEGER*2 IOSTAT,
2 MSG_LEN

INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! System routines
INTEGER SYS$CREMBX,
2 SYS$ASCEFC,
2 SYS$WAITFR,
2 SYS$QIOW

Example 3-4 Cont'd. on next page

3-13

Communication
3.2 Interprocess Communication

3-14

Example 3-4 (Cont.) Immediate 1/0 Using a Mailbox

! Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Fill MESSAGES array

Write the messages
DO I = 1, MAX_MESSAGE

WRITE_CODE = IO$_WRITEVBLK .OR. IO$M_NOW
MBX_MESSAGE = MESSAGES(!)
LEN = MESSAGE_LEN(I)
STATUS = SYS$QIOW (,

2 %VAL(MBX_CHAN),
2 %VAL(WRITE_CODE) ,
2 IOSTATUS, . ,

Channel
I/0 code
Status block

2
2
2

%REF(MBX_MESSAGE), Pi
%VAL(LEN),, ,,) P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)

2 CALL LIB$SIGNAL (%VAL(IOSTATUS.STATUS))
END DO
! Write end-of-file
WRITE_CODE = IO$_WRITEOF .OR. IO$M_NOW
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN) , Channel
2 %VAL(WRITE_CODE), End-of-file code
2 IOSTATUS, Status block
2 • , , , , , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

Make sure cooperating process can read the information
by waiting for it to assign a channel to the mailbox

STATUS= SYS$ASCEFC (%VAL(64),
2 'CLUSTER' , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

Example 3-4 Cont'd. on next page

Communication
3.2 Interprocess Communication

Example 3-4 (Cont.) Immediate 1/0 Using a Mailbox

RECEIVE.FOR

INTEGER STATUS

INCLUDE '($IODEF)'
INCLUDE '($SSDEF)'

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
! QIO function code
INTEGER READ_CODE
! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER*4 LEN
! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE_LEN (255)
! I/0 status block
STRUCTURE /STATUS_BLOCK/

INTEGER*2 IOSTAT,
2 MSG_LEN

INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! System routines
INTEGER SYS$ASSIGN,
2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$QIOW
! Create the mailbox and let the other process know
STATUS = SYS$ASSIGN (MBX_NAME,
2 MBX_CHAN,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$ASCEFC (%VAL(64),
2 ' CLUSTER' , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Example 3-4 Cont'd. on next page

3-15

Communication
3.2 Interprocess Communication

3.2.1.6

3-16

Example 3-4 (Cont.) Immediate 1/0 Using a Mailbox

! Read first message
READ_CODE = IO$_READVBLK .OR. IO$M_NOW
LEN = 80
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), Channel
2 %VAL(READ_CODE), Function code
2 IOSTATUS, Status block
2 ''
2 %REF(MBX_MESSAGE), Pi
2 %VAL(LEN), ,, ,) P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTATUS.IOSTAT) .AND.
2 (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE)) THEN

CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))
ELSE IF (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE) THEN

I = i
MESSAGES(!) = MBX_MESSAGE
MESSAGE_LEN(I) = IOSTATUS.MSG_LEN

END IF
! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTATUS.IOSTAT .EQ. SS$_ENDOFFILE) .AND.
2 (IOSTATUS.READER_PID .NE. 0)))

STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), Channel
2 %VAL(READ_CODE), Function code

Status block 2 IOSTATUS,
2
2
2

2

%REF(MBX_MESSAGE), Pi
%VAL(LEN),,, ,) P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTATUS.IOSTAT) .AND.

(IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

ELSE IF (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE) THEN
I = I + i
MESSAGES(!) = MBX_MESSAGE
MESSAGE_LEN(I) = IOSTATUS.MSG_LEN

END IF

END DO

Asynchronous Mailbox 1/0
Use asynchronous I/O to queue a read or write request to a mailbox. To
ensure that the other process receives the information you write, either
(1) exit after the other process has a channel to the mailbox or (2) use a
permanent mailbox.

To queue an asynchronous I/O request, invoke the SYS$QIO system service
as shown in Section 3.2.1.5; however, when specifying the function codes, do
not specify the IO$M_NOW modifier. The SYS$QIO system service allows
you to specify an AST to be executed or an event flag to be set when the I/O
operation completes.

Communication
3.2 Interprocess Communication

Example 3-5 calculates gross income and taxes and then uses the results
to calculate net income. INCOME.FOR uses SYS$CREPRC, specifying a
termination mailbox, to create a subprocess to calculate taxes (CALC_ TAXES)
while INCOME calculates gross income. INCOME issues an asynchronous
read to the termination mailbox specifying an event flag to be set when
the read completes. (The read completes when CALC_ TAXES completes
terminating the created process and causing the system to write to the
termination mailbox.) After finishing its own gross income calculations,
INCOME.FOR waits for the flag that indicates CALC_TAXES has completed
and then figures net income.

CALC_TAXES.FOR passes the tax information to INCOME.FOR using the
installed common block created from INSTALLED.FOR (Section 5.3.4.1
describes installed common blocks).

Example 3-5 Asynchronous 1/0 Using a Mailbox

!INSTALLED.FOR

Installed common block to be linked with INCOME.FOR and
CALC TAXES.FOR.
Unless the shareable image created from this file is
in SYS$SHARE, you must define a group logical name
INSTALLED and equivalence it to the full file specification
of the shareable image.

INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

END

!INCOME.FOR
Status and system routines

INCLUDE I ($SSDEF) I

INCLUDE I ($IODEF) I

INTEGER STATUS,
2 LIB$GET_LUN,
2 LIB$GET_EF,
2 SYS$CLREF,
2 SYS$CREMBX,
2 SYS$CREPRC,
2 SYS$GETDVIW,
2 SYS$QIO,
2 SYS$WAITFR

Example 3-5 Cont'd. on next page

3-17

Communication
3.2 Interprocess Communication

3-18

Example 3-5 (Cont.) Asynchronous 1/0 Using a Mailbox

! Set up for SYS$GETDVI
! Define itmlst structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ DVILIST (2)
INTEGER*4 UNIT_BUF,
2 UNIT_LEN
EXTERNAL DVI$_UNIT ·v

! Name and I/O channel for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
INTEGER*4 MBX_LUN Logical unit number for I/0
CHARACTER*84 MBX_MESSAGE ! Mailbox message
INTEGER*4 READ_CODE,
2 LENGTH
! I/O status block
STRUCTURE /STATUS_BLOCK/

INTEGER*2 IOSTAT,
2 MSG_LEN

INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! Declare calculation variables in installed common
INTEGER*4 INCOME (200) ,
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET
! Flag to indicate taxes calculated
INTEGER*4 TAX_DONE
! Get and clear an event flag
STATUS = LIB$GET_EF (TAX_DONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

Example 3-5 Cont'd. on next page

Communication
3.2 Interprocess Communication

Example 3-5 (Cont.) Asynchronous 1/0 Using a Mailbox

! Get unit number of the mailbox
DVILIST(1) .BUFLEN = 4
DVILIST(1) .CODE = %LOC(DVI$_UNIT)
DVILIST(1) .BUFADR = %LOC(UNIT_BUF)
DVILIST(1) .RETLENADR = %LOC(UNIT_LEN)
DVILIST(2).END_LIST = 0
STATUS = SYS$GETDVIW (,
2 %VAL(MBX_CHAN), Channel
2 MBX_NAME, Device
2 DVILIST, Item list
2 .. ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create subprocess to calculate taxes
STATUS = SYS$CREPRC (,
2 'CALC_TAXES', Image
2
2
2
2

I CALC_TAXES I.
%VAL(4),

Process name
Priority

2 %VAL(UNIT_BUF),)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Asynchronous read to termination mailbox
! sets flag when tax calculations complete
READ_CODE = IO$_READVBLK
LENGTH = 84
STATUS = SYS$QIO
2
2
2
2
2
IF (.NOT. STATUS)

(%VAL(TAX_DONE) , Indicates read complete
%VAL(MBX_CHAN), Channel
%VAL(READ_CODE), Function code
IOSTATUS,, , Status block
%REF(MBX_MESSAGE), ! Pl
%VAL(LENGTH),,, ,) ! P2
CALL LIB$SIGNAL (%VAL(STATUS))

Calculate incomes

Wait until taxes are calculated
STATUS = SYS$WAITFR (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Check mailbox I/O
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

Calculate net income after taxes

END

Example 3-5 Cont'd. on next page

3-19

Communication
3.2 Interprocess Communication

Example 3-5 (Cont.) Asynchronous 1/0 Using a Mailbox

CALC_ TAXES. FOR

! Declare calculation variables in installed common
INTEGER*4 INCOME (200) ,
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

Calculate taxes

END

3.3 System Information

3.3.1 Timer Statistics

3-20

The VMS operating system provides services for communicating with the
system to collect information.

You can collect the following timer statistics from the system:

• Elapsed time-Actual time that has passed since setting a timer

• CPU time-CPU time that has passed since setting a timer

• Buffered IjO-Number of buffered 1/0 operations that have occurred
since setting a timer

• Direct IjO-Number of direct 1/0 operations that have occurred since
setting a timer

• Page faults-Number of page faults that have occurred since setting a
timer

You obtain these statistics by invoking the following routines:

• LIB$1NIT_TIMER-Allocates and initializes space for collecting the
statistics. You should specify the handle-adr argument as a variable with
a value of 0 to ensure the modularity of your program. When you specify
the argument, the system collects the information in a specially allocated
area in dynamic storage. Then, if a program unit calling your program
unit also sets a timer, your program timer statistic remains intact.

• LIB$SHOW_TIMER-Obtains one or all of five statistics (elaspsed time,
CPU time, buffered 1/0, direct 1/0, and page faults); the statistics are
formatted for output. The handle-adr argument must be the same value
as specified for LIB$1NIT_TIMER (do not modify this variable). Specify
the code argument to obtain one particular statistic rather than all the
statistics.

Communication
3. 3 System Information

You can let the system write the statistics to SYS$0UTPUT (the default)
or you can process the statistics with a subprogram of your own. To
process the statistics yourself, specify the name of your subprogram in the
action-rtn argument. You can pass one argument to your subprogram by
naming it in the user-arg argument. If you use your own subprogram, it
must be written as an integer function and return an error code (return a
value of 1 for success). This error code becomes the error code returned
by LIB$SHOW_ TIMER. Two arguments are passed to your function: the
first is a passed-length character string containing the formatted statistics,
and the second is the value of the fourth argument (if any) specified to
LIB$SHOW_ TIMER.

• LIB$STAT_TIMER-Obtains one of five unformatted statistics. Specify
the statistic you want in the code argument. Specify a storage area for
the statistic in value. The handle-adr argument must be the same value
as you specified for LIB$INIT_ TIMER.

• LIB$FREE_TIMER-You should invoke this procedure when you are
done with the timer to ensure the modularity of your program. The value
in the handle-adr argument must be the same as specified for LIB$INIT_
TIMER.

You must invoke LIB$INIT_TIMER to allocate storage for the timer. You
should invoke LIB$FREE_TIMER before you exit from your program unit. In
between, you can invoke LIB$SHOW_TIMER or LIB$STAT_TIMER, or both,
as often as you want. Example 3-6 invokes LIB$SHOW_ TIMER and uses
a user-written subprogram to either display the statistics or write them to a
file.

Example 3-6 Displaying and Writing Timer Statistics

Timer arguments
INTEGER*4 TIMER_ADDR,
2 TIMER_DATA,
2 TIMER_ROUTINE
EXTERNAL TIMER_ROUTINE
! Declare library procedures as functions
INTEGER*4 LIB$INIT_TIMER,
2 LIB$SHOW_TIMER
EXTERNAL LIB$INIT_TIMER,
2 LIB$SHOW_TIMER
! Work variables
CHARACTER*5 REQUEST
INTEGER*4 STATUS
! User request - either WRITE or FILE
INTEGER*4 WRITE,
2 FILE
PARAMETER (WRITE= 1,
2 FILE = 2)
! Get user request
WRITE (UNIT=*. FMT=' ($,A)') ' Request: '
ACCEPT *· REQUEST
IF (REQUEST .EQ. 'WRITE') TIMER_DATA = WRITE
IF (REQUEST .EQ. 'FILE') TIMER_DATA = FILE

Example 3-6 Cont'd. on next page

3-21

Communication
3. 3 System Information

3-22

Example 3-6 (Cont.) Displaying and Writing Timer Statistics

! Set timer
STATUS = LIB$INIT_TIMER (TIMER_ADDR)
IF (.NOT. STATUS) CALL LIB$SIGNA~ (%VAL (STATUS))

Get statistics
STATUS = LIB$SHOW_TIMER (TIMER_ADDR,,
2 TIMER_ROUTINE,
2 TIMER_DATA)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Free timer
STATUS = LIB$FREE_TIMER (TIMER_ADDR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

INTEGER FUNCTION TIMER_ROUTINE (STATS,
2 TIMER_DATA)
! Dummy arguments
CHARACTER*(*) STATS
INTEGER TIMER_DATA
! Logical unit number for file
INTEGER STATS_FILE
! User request
INTEGER WRITE,
2 FILE
PARAMETER (WRITE= 1,
2 FILE = 2)
! Return code
INTEGER SUCCESS,
2 FAILURE
PARAMETER (SUCCESS = 1,
2 FAILURE = 0)
! Set return status to success
TIMER_ROUTINE = SUCCESS
! Write statistics or file them in STATS.DAT
IF (TIMER_DATA .EQ. WRITE) THEN

TYPE *, STATS
ELSE IF (TIMER_DATA .EQ. FILE) THEN

CALL LIB$GET_LUN (STATS_FILE)
OPEN (UNIT=STATS_FILE,

2 FILE='STATS.DAT')
WRITE (UNIT=STATS_FILE,

2 FMT='(A)') STATS
ELSE

TIMER_ROUTINE = FAILURE
END IF
END

You can use the system service SYS$GETSYI to obtain more detailed system
information on boot time, the cluster, processor type, emulated instructions,
nodes, paging files, swapping files, and hardware and software versions. With
SYS$GETQUI and LIB$GETQUI, you can obtain queue information.

3.3.2 System Time

3.3.2.1

3.3.2.2

3.3.2.3

Communication
3.3 System Information

The VMS operating system recognizes two types of time, as follows:

• Absolute time-A specified date or time of day, or both

• Delta time-A number of days or units of time within a day, or both

Absolute Time Format
The VMS operating system uses the following format for absolute time. The
full date and time require a character string of 23 characters. The punctuation
is required.

dd-mmm-yyyy hh:mm:ss.ss

dd

mmm

yyyy

hh

mm

SS.SS

Day of the month (two characters)

First three letters of the month in uppercase (three characters)

Year (four characters)

Hour of the day in 24-hour format (two characters)

Minute (two characters)

Second and hundredths of a second (five characters)

Delta Time Format
The VMS operating system uses the following format for delta time. The full
date and time require a character string of 16 characters. The punctuation is
required.

dddd hh:mm:ss.ss

dddd Days (four characters)

hh Hours (two characters)

mm Minutes (two characters)

ss.ss Seconds and hundredths of seconds (five characters)

Internally, the system maintains absolute time as an integer value
representing the number of 100-nanosecond units since midnight on
17-NOV-1858 (the base date for the system). A delta time is maintained as
an integer value representing an amount of time in 100-nanosecond units.
The absolute time is maintained as a positive number and the delta time as a
negative number, in quadwords.

Current Time
The LIB$DATE_TIME routine returns a character string containing the current
date and time in absolute time format. The full string requires a declaration
of 23 characters. If you specify a shorter string, the value is truncated. A
declaration of 16 characters obtains only the date. The following example
displays the current date and time:

! Formatted date and time
CHARACTER*23 DATETIME
! Status and library procedures
INTEGER*4 STATUS,
2 LIB$DATE_TIME
EXTERNAL LIB$DATE_TIME
STATUS = LIB$DATE_TIME (DATETIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE*· DATETIME

3-23

Communication
3.3 System Information

3.3.2.4

3-24

You can obtain the current date and time in internal format with the
SYS$GETTIM system service. You can convert from internal to character
format with the SYS$ASCTIM system service or a directive to the SYS$FAO
system service and convert back to internal format with the SYS$BINTIM
system service.

Time Manipulation
Use the following general procedures for manipulating times (for example,
finding the delta difference between two absolute times, adding a delta time
to an absolute time, or subtracting a delta time from an absolute time):

• Convert to internal format-Obtain the time in, or convert the time to,
internal format. Use SYS$GETTIM to get the current time in internal
format or SYS$BINTIM to convert a formatted time to an internal time.
You can also use LIB$DATE_TIME to obtain the time, LIB$CVT_FROM_
INTERNAL_ TIME to convert an internal time to an external time, and
LIB$CVT_ TQ_INTERNAL to convert from an external time to an internal
time.

• Manipulate the times-Add, subtract, or otherwise manipulate the times.
Use the LIB$ADDX and LIB$SUBX routines to add and subtract times,
since the times are defined in integer arrays. Use LIB$ADD_ TIMES
and LIB$SUB_ TIMES to add and subtract two quadword times. When
manipulating delta times, remember that they are stored as negative
numbers. For example, to add a delta time to an absolute time, you must
subtract the delta time from the absolute time. Use LIB$MULT_DELTA_
TIME and LIB$MUL TF_DELTA_TIME to multiply delta times by scalar
and floating scalar.

• Format the times-Format the result, as desired, with SYS$BINTIM or
SYS$FAO. You can also use LIB$FORMAT_DATE_TIME.

Example 3-7 calculates the difference between the current time and a time
input in absolute format and then displays the result as a delta time. If the
input time is later than the current time, the difference is a negative value
(delta time) and can be displayed directly. If the input time is an earlier time,
the difference is a positive value (absolute time) and must be converted to
a delta time before being displayed. To change an absolute time to a delta
time, negate the time array by subtracting it from 0 (specified as an integer
array) using the LIB$SUBX routine. For the absolute or delta time format, see
Section 3.3.2.

Communication
3.3 System Information

Example 3-7 Calculating and Displaying the Time

Internal times
Input time in absolute format, dd-mmm-yyyy hh:mm:ss.ss

INTEGER*4 CURRENT_TIME (2),
2 PAST_TIME (2),
2 TIME_DIFFERENCE (2),
2 ZERO (2)
DATA ZERO /0,0/
! Formatted times
CHARACTER*23 PAST_TIME_F
CHARACTER*16 TIME_DIFFERENCE_F
! Status
INTEGER*4 STATUS
! Integer functions
INTEGER*4 SYS$GETTIM,
2 LIB$GET_INPUT,
2 SYS$BINTIM,
2 LIB$SUBX,
2 SYS$ASCTIM
! Get current time
STATUS = SYS$GETTIM (CURRENT_TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get past time and convert to internal format
STATUS= LIB$GET_INPUT (PAST_TIME_F,
2 'Past time (in absolute format): ')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS= SYS$BINTIM (PAST_TIME_F,
2 PAST_TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Subtract past time from current time
STATUS = LIB$SUBX (CURRENT_TIME,
2 PAST_TIME,
2 TIME_DIFFERENCE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! If resultant time is in absolute format (positive value means
! most significant bit is not set), convert it to delta time
IF (.NOT. (BTEST (TIME_DIFFERENCE(2),31))) THEN

STATUS = LIB$SUBX (ZERO,
2 TIME_DIFFERENCE,
2 TIME_DIFFERENCE)
END IF
! Format time difference and display
STATUS= SYS$ASCTIM (, TIME_DIFFERENCE_F,
2 TIME_DIFFERENCE,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE*· 'Time difference = ' TIME_DIFFERENCE_F
END

If you are ignoring the time portion of date/time (that is, working just at the
date level), the LIB$DAY routine might simplify your calculations. LIB$DAY
returns to you the number of days from the base system date to a given date.

3-25

Communication
3.4 lntersystem Communication

3.4 lntersystem Communication

3.4.1

To communicate between images on different systems, perform the following
operations:

• Request the network connection (initiating process)

• Complete the network connection (remote process)

• Exchange messages (both processes)

• Terminate the network connection (process that receives the final
message)

Requesting a Network Connection

3-26

To request a network connection, open a file that uses a network task
specification of the following format:

node" access-control-string":: "T ASK=command-procedure"

• Node-Specifies the node name of the remote system.

• "Access-control-string"-Specifies the user name and associated password
of an account on the remote system. The remote system uses the access
control string to ensure that you have valid access rights to the system.
(This string may be omitted if the calling process has a proxy account
on the remote node. For more information, see the description of the
Authorize Utility in the VMS Authorize Utility Manual.)

• "TASK=command-procedure"-Specifies the task to be executed on the
remote node. The command procedure, which must invoke the program
that completes the network connection, is a user-written command
procedure that must be in the default directory (on the default disk) of
the account named in the access control string. (The login command
procedure of the remote account is executed before the system searches
for the command procedure; therefore, if the login command procedure
changes the default device or directory, the command procedure must
be in that device and directory rather than the SYS$LOGIN device and
directory.)

The following program segment requests a network connection to the remote
system PHILLY. To prevent a security problem, the program constructs the
access control string by prompting the user for a user name and password.
(To prevent the password from being echoed as the user types it, use the
SYS$QIO system service and the 10$M_NOECHO modifier, as described in
Section 7.5.4.)

! Status variable
INTEGER STATUS

! Logical unit for network connection
INTEGER NET_LUN

! User name and password
CHARACTER*15 USERNAME,
2 PASSWORD
INTEGER USERNAME_LEN,
2 PASSWORD_LEN
! Task specification string
CHARACTER*80 TASK

3.4.2

Communication
3.4 lntersystem Communication

! Declare system routines
INTEGER LIB$GET_LUN,
2 LIB$GET_INPUT
! Get logical unit for network connection
STATUS = LIB$GET_LUN (NET_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get user name and password
STATUS = LIB$GET_INPUT (USERNAME,
2 'USERNAME: I'

2 USERNAME_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_INPUT (PASSWORD,
2 'PASSWORD: I,

2 PASSWORD_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Create a network access string of the form:
! PHILLY"username password": : 11 TASK=BUDGET 11

TASK= 'PHILLY"'//
2 USERNAME(1:USERNAME_LEN)//' '//
2 PASSWORD(1:PASSWORD_LEN)//
2 I II: : 11 TASK=BUDGET 11 I

OPEN (UNIT=NET_LUN,
2 FILE = TASK,
2 STATUS= 'OLD')

Completing a Network Connection
To complete a network connection, the program that is invoked by the
command procedure named in the connection request opens a file with
the value SYS$NET. In the following example, the command procedure
BUDGET.COM invokes the image NET_IMAGE, which completes the
network connection requested in the previous example.

BUDGET.COM

$ RUN NET_IMAGE
$ PURGE/KEEP=2 NETSERVER.LOG

NET_IMAGE. FOR

! Status variable
INTEGER STATUS

! Logical unit number for network connection
INTEGER NET_LUN

! Declare system routines
INTEGER LIB$GET_LUN

! Get a logical unit number and
! complete the network connection
STATUS = LIB$GET_LUN (NET_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

OPEN (UNIT= NET_LUN,
2 FILE= 'SYS$NET',
2 STATUS= 'OLD')

3-27

3.4.3

Communication
3.4 lntersystem Communication

The NETSERVER.LOG file, which is purged in the command procedure, is
created in the default directory of the remote account if the remote system can
be accessed and the account is valid. The NETSERVER.LOG file describes
the network transaction regardless of whether the connection completes
successfully.

Exchanging Messages

3-28

To exchange messages, cooperating programs can use programming language
read and write statements. In Example 3-8, GET_STATS.FOR requests a
network connection. If SEND_STATS.FOR completes the connection, SEND_
STATS.FOR writes the statistics and GET_STATS.FOR reads them. The
command procedure SEND_STATS.COM must be in the default directory of
the remote account specified by the user executing GET_STATS.FOR.

Example 3-8 Exchanging Messages

!GET_STATS.FOR

Communicates with SEND_STATS on remote node PHILLY.
User must supply username/password from an account
on remote system.

Status variables and values
INTEGER STATUS,
2 IOSTAT,
2 IO_OK
PARAMETER (IO_OK = 0)
INCLUDE I ($FORDEF) I

! Logical unit for network connection
INTEGER LUN
! Statistics
INTEGER STATS (2500)
INTEGER MAX_STATS /2500/
! User name and password
CHARACTER*15 USERNAME,
2 PASSWORD
INTEGER USERNAME_LEN,
2 PASSWORD_LEN
! Network task string
CHARACTER*80 TASK
! Declare system routines
INTEGER LIB$GET_LUN,
2 LIB$GET_INPUT
! Get logical unit for network connection
STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Example 3-8 Cont'd. on next page

Communication
3.4 lntersystem Communication

Example 3-8 (Cont.) Exchanging Messages

! Get user name on remote system
STATUS = LIB$GET_INPUT (USERNAME,
2 'USERNAME: I'

2 USERNAME_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get matching password
STATUS = LIB$GET_INPUT (PASSWORD,
2 'PASSWORD: I'

2 PASSWORD_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Concatenate node, user name, password, and
! command procedure name to create task name of the
! format: PHILLY"username password": :"TASK= SEND_STATS"
TASK= 'PHILLY"'//
2 USERNAME(1:USERNAME_LEN)//' '//
2 PASSWORD(1:PASSWORD_LEN)//
2 111

: :
11 TASK=SEND_STATS 111

! Request network connection
OPEN (UNIT=LUN,
2 FILE = TASK,
2 STATUS= 'OLD')
! Read statistics
I = 1

READ (UNIT= LUN,
2 FMT = '(I4)',
2 IOSTAT = IOSTAT) STATS (I)
DO WHILE ((IOSTAT .EQ. IO_OK) .AND. (I .LT. MAX_STATS))

I = I + 1
READ (UNIT = LUN,

2 FMT = I (I4)''
2 IOSTAT = IOSTAT) STATS(I)
END DO
! Check that IOSTAT is okay or end of file
IF (IOSTAT .NE. IO_OK) THEN

CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA)

2 CALL LIB$SIGNAL(%VAL(STATUS))
END IF

! Terminate network connection
CLOSE (LUN)

END

SEND_STATS.COM

$ RUN SEND_STATS
$ PURGE/KEEP=2 NETSERVER.LOG

Example 3-8 Cont'd. on next page

3-29

3.4.4

Communication
3.4 lntersystem Communication

Example 3-8 (Cont.) Exchanging Messages

SEND_STATS.FOR

! Passes statistics to a remote node.

! Status variable
INTEGER STATUS

! Statistics
INTEGER STATS (2500)
INTEGER MAX_STATS /2500/

! Logical unit number for network connection
INTEGER LUN

! Library routines
INTEGER LIB$GET_LUN

! Get logical unit number
STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Complete network connection
OPEN (UNIT= LUN,
2 FILE = 'SYS$NET',
2 STATUS = 'OLD')

! Pass statistics to remote node
DO I=1,MAX_STATS

WRITE (UNIT= LUN,
2 FMT = I (I4)') STATS(I)
END DO

END

Terminating a Network Connection

3-30

To terminate a network connection, the program must close the file that has
been opened for the network connection. To prevent losing data, the program
that receives the last message should terminate the network connection.
When a program terminates a network connection, the cooperating program
receives an end-of-file message on the subsequent read operation.

4 Synchronization

Synchronization techniques vary depending on whether the program units
in question are in the same program, in different programs executing in the
same process, or in different programs executing in different processes. If
your application requires the execution of two or more programs, you can
execute the programs sequentially, using one process; sequentially, using
multiple processes; or concurrently, using multiple processes. For more
information on using processes, refer to Chapter 2.

Program synchronization can be done using the following VMS operating
system resources:

• Local and common event flags

• Asynchronous system traps (AST)

• Timers

• Synchronous routines

• Resource locks

• Parallel processing facility (PPL$) routines

• Passing control from one program to another

This chapter describes how and when to use each of these resources for
program synchronization.

4.1 Synchronizing Operations with Event Flags

4.1.1

To synchronize events with event flags, a procedure sets an event flag bit
when it has completed a section of code. Another procedure examines the
value of the event flag bit. If the event flag bit is set, the second procedure
can resume execution.

Types of Event Flags
Event flags are divided into four clusters-two for local event flags and two
for common event flags. Local event flags are process specific and are used to
synchronize events within a program or to pass information from the current
image to an image executed later by the same process. Common event flags
are group specific; use them to synchronize events among images executing
in different processes (provided that the processes are in the same group).

Refer to Table 4-1 for a summary of event flag numbers and usage.

4-1

4.1.2

Synchronization
4.1 Synchronizing Operations with Event Flags

Table 4-1 Event Flags

Cluster
Number Flag Number Type Usage

0 0 Local Default flag used by system
routines.

0 1 to 23 Local May be used in system
routines. When an event
flag is requested, not returned
unless it has been specifically
freed previously.

0 24 to 31 Local Reserved for DIGIT AL use only.

1 32 to 63 Local Available for general use.

2 64 to 95 Common Available for general use.

3 96to127 Common Available for general use.

General Guidelines for Using Event Flags

4-2

To use event flags, follow these general steps:

1 Allocate local event flags or associate common event flags for your use.

2 Set or clear the event flag.

3 Read the event flag.

4 Suspend program execution until an event flag is set.

5 Deallocate the local event flags or dissociate common event flags when
no longer needed.

Use system services and run-time library routines to accomplish these event
flag tasks. Refer to Table 4-2 for a summary of the event flag routines.

4.1.3

Synchronization
4.1 Synchronizing Operations with Event Flags

Table 4-2 Event Flag Routines

Routine Event Flag Task

Allocate any local event flag

Allocate a specific local event flag

Associate a common event flag cluster

Clear a local or common event flag

Set a local or common event flag

Read a local or common event flag

LIB$GET_EF

LIB$RSERVE_EF

SYS$ASCEFC

SYS$CLREF

SYS$SETEF

SYS$READEF

SYS$WAITFR

SYS$WFLOR

Wait for a specific local or common event flag to be set

Wait for one of several local or common event flags to be
set

SYS$WFLAND

SYS$SYNCH

Wait for several local or common event flags to be set

Wait for a local or common event flag to be set and for
non-zero 1/0 status block

LIB$FREE_EF

SYS$DACEFC

Using Local Event Flags

Deallocate a local event flag

Dissociate a common event flag cluster

Local event flags are automatically available to each program. They are not
automatically initialized. However, if an event flag is passed to a system
service such as SYS$GETJPI, the service initializes the flag before using it.

Other system services use event flags to synchronize their work. The
following table lists other system services that use event flags to synchronize
their work:

Service

Input/output

Process control

Lock management

Timer and time conversion

Routine

SYS$010 and SYS$010W

SYS$GET JPI, SYS$GET JPIW,
SYS$GETSYI, SYS$GETSYIW I
SYS$GETDVI, and SYS$GETDVIW

SYS$ENO and SYS$ENOW

SYS$SETIMR

When using local event flags, use the event flag routines as follows:

1 To ensure that the event flag you are using is not accessed and
changed by other uses, reserve the event flag by using LIB$GET_EF
or LIB$RESERVE_EF. If free, these routines return an event flag number.

2 Before using the event flag, free it using SYS$CLREF, unless you pass the
event flag to a routine that clears it for you.

3 When an event that is relevant to other program components is
completed, set the event flag with SYS$SETEF.

4 A program component can read the event flag to determine what has
happened and act accordingly. Use SYS$READEF.

4-3

4.1.4

Synchronization
4.1 Synchronizing Operations with Event Flags

5 The program components that evaluate event flag status can be placed in
a wait state. Then, when the event flag is set, execution is resumed. Use
SYS$WAITFR, SYS$WFLOR, SYS$WFLAND, or SYS$SYNCH routines.

6 When the event flag is no longer required, clear it. Use LIB$FREE_EF.

The following example uses LIB$GET_EF to choose a local event flag and
then uses SYS$CLREF to set the event flag to zero (clear the event flag).
(Note that run-time library routines require an event flag number to be
passed by reference and system services require an event flag number to be
passed by value.)

INTEGER FLAG,
2 STATUS,
2 LIB$GET_EF,
2 SYS$CLREF

STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Using Common Event Flags

4.1.4.1

4.1.4.2

4-4

Common event flags are manipulated like local event flags. However,
common event flag clusters are not automatically allocated to a program.
Before referencing a common event flag, a program must create a common
event flag cluster by associating it with a name. Once the name is associated
with the cluster, the program can reference any flag in the cluster.

Associating a Name with a Common Event Flag Cluster
To associate a name with a common event flag cluster, use the SYS$ASCEFC
system service. The first program to name a common event flag cluster
creates it; all flags in a newly created cluster are clear. Other processes that
have the same UIC group number as the creator of the cluster can reference
the cluster by invoking SYS$ASCEFC and specifying the cluster name.

Different processes may associate the same name with different common
event flag clusters; as long as the name is the same, the processes reference
the same cluster. It is the bit offset within the cluster, rather than the number
of the bit, that is used to reference the bit.

Temporary Common Event Flag Clusters
By default, a cluster name and common event flag cluster are dissociated
when the image that associated them exits. When the last image associated
with a cluster is dissociated, the common event flag cluster is deleted.
Clusters that are deleted after all images are dissociated are called temporary
clusters. You can also use the system service SYS$DACEFC to dissociate a
common cluster.

4.1.4.3

Synchronization
4.1 Synchronizing Operations with Event Flags

Permanent Common Event Flag Clusters
If you have PRMCEB privilege, you can create a permanent common event
flag cluster (set the perm argument to 1 when you invoke SYS$ASCEFC). A
permanent event flag cluster is not deleted until after it is marked for deletion
with the SYS$DLCEFC system service (requires PRMCEB). Once a permanent
cluster is marked for deletion, it is like a temporary cluster; when the last
image associated with the cluster is dissociated, the cluster is deleted.

In the following examples, the first program segment associates common
event flag cluster 3 with the name CLUSTER and then clears the second
event flag in the cluster. The second program segment associates common
event flag cluster 2 with the name CLUSTER, then sets the second event flag
in the cluster (the flag cleared by the first program segment).

Example 1

STATUS = SYS$ASCEFC (%VAL(96),
2 'CLUSTER',,)
STATUS = SYS$CLREF (%VAL(98))

Example 2

STATUS= SYS$ASCEFC (%VAL(64),
2 I CLUSTER I ••)

STATUS = SYS$SETEF (%VAL(66))

For clearer code, rather than using a specific event flag number, use one
variable to contain the bit offset you need and one variable to contain the
number of the first bit in the common event flag cluster that you are using.
To reference the common event flag, add the offset to the number of the
first bit. The following examples accomplish exactly the same result as the
previous examples:

Example 1

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 96)

OFFSET=2
STATUS= SYS$ASCEFC (%VAL(BASE),
2 'CLUSTER',,)
STATUS = SYS$CLREF (%VAL(BASE+OFFSET))

Example 2

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64)

OFFSET=2
STATUS= SYS$ASCEFC (%VAL(BASE),
2 'CLUSTER',,)
STATUS = SYS$SETEF (%VAL(BASE+OFFSET))

Common event flags are often used for communicating between a parent
process and a created subprocess. The following parent process associates the
name CLUSTER with a common event flag cluster, creates a subprocess, and
then waits for the subprocess to set event flag 64:

4-5

Synchronization
4.1 Synchronizing Operations with Event Flags

4-6

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64,
2 OFFSET = 0)

Associate common event flag cluster with name
STATUS = SYS$ASCEFC (%VAL(BASE),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Create subprocess to execute concurrently
MASK = IBSET (MASK,O)
STATUS = LIB$SPAWN ('RUN REPORTSUB',
2 'INPUT.DAT',
2 'OUTPUT.DAT',
2 MASK)

Image
SYS$INPUT
SYS$0UTPUT

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Wait for response from subprocess
STATUS = SYS$WAITFR (%VAL(BASE+OFFSET))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

REPORTSUB, the program executing in the subprocess, associates the name
CLUSTER with a common event flag cluster, performs some set of operations,
sets event flag 64 (allowing the parent to continue execution), and continues
executing.

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64,
2 OFFSET = 0)

Do operations necessary for
continuation of parent process

Associate common event flag cluster with name
STATUS = SYS$ASCEFC (%VAL(BASE),
2 'CLUSTER',,)
IF (.NOT. STATUS)
2 CALL LIB$SIGNAL (%VAL(STATUS))

! Set flag for parent process to resume
STATUS = SYS$SETEF (%VAL(BASE+OFFSET))

Synchronization
4.2 Using Asynchronous System Traps

4.2 Using Asynchronous System Traps
Asynchronous system traps (AST) are interrupts that occur asynchronously
to a program's execution. You can use them to signal a program to execute a
routine whenever a certain condition occurs.

The routine executed upon delivery of an AST is called an AST routine. It
is coded and referenced like any other subroutine. The differences are that
it is executed only after an AST is received by the program and is called
asynchronously by the operating system, not by the current image.

When the AST routine is finished, the program that was interrupted resumes
execution from the point of interruption.

To deliver an AST, you use system services that specify the address of the
AST routine. Then, the system delivers the AST (that is, transfers control to
your subprogram) at a particular time or in response to a particular event.

The AST routine must observe the following restrictions:

• Arguments-The queuing mechanism for an AST does not provide for
returning a function value or passing arguments. Therefore, you should
write an AST routine as a subroutine and use common blocks to pass
arguments between an AST routine and the program that queues it.

In some cases, a system service that queues an AST allows you to specify
an argument for the AST routine (for example, SYS$GETJPI). If you
choose to pass the argument, the AST routine must be written to accept
the argument.

• Terminal I/0-If you try to access the terminal with language I/O
statements using SYS$INPUT or SYS$0UTPUT, you may receive a
redundant I/O error. You must establish another channel to the terminal
by explicitly opening the terminal (or by using the SMG$ routines).

• Shared routines-An AST routine might invoke a subprogram that is also
invoked by another program unit in the program. To prevent conflicts,
a program unit should use the SYS$SETAST system service to disable
AST interrupts before calling a routine that might be invoked by an AST.
Once the shared routine has executed, the program unit can use the same
service to reenable AST interrupts.

• Invocation-You should never directly call an AST routine as a
subroutine or a function.

• Iteration-You should never allow an AST routine to be delivered
iteratively.

The system service used to queue the AST routine determines whether the
AST is delivered after a specified event or time.

• Event-The following system routines allow you to specify an AST
routine to be delivered when the system routine completes:

LIB$SP AWN-Signals when the subprocess has been created.

SYS$ENQ and SYS$ENQW-Signal when the resource lock is
blocking a request from another process.

SYS$GETDVI and SYS$GETDVIW-Indicate that device information
has been received.

4-7

Synchronization
4.2 Using Asynchronous System Traps

SYS$GETJPI and SYS$GETJPIW-Indicate that process information
has been received.

SYS$GETSYI and SYS$GETSYIW-Indicate that system information
has been received.

SYS$QIO and SYS$QIOW-Signal when the requested 1/0 is
completed.

SYS$UPDSEC-Signals when the section file has been updated.

• Event-The SYS$SETPRA system service allows you to specify an AST to
be delivered when the system detects a power recovery.

• Time-The SYS$SETIMR system service allows you to specify a time for
the AST to be delivered.

• Time-The SYS$DCLAST system service delivers a specified AST
immediately. This makes it an ideal tool for debugging AST routines.

If a program queues an AST and then exits before the AST is delivered, the
AST is deleted from the queue. If a process is hibernating when an AST
is delivered, the AST executes and the process continues hibernating. If a
process is suspended when an AST is delivered, the AST executes as soon as
the process is resumed. If more than one AST is delivered, they are executed
in the order in which they were delivered.

Generally AST routines are used with the SYS$QIO or SYS$QIOW system
service for handling CTRL/C, CTRL/Y, and unsolicited input. See Section 7.5
for more information and examples.

4.3 Specifying a Time for Program Execution

4.3.1

You can synchronize timed program execution in the following ways:

• Using one process to invoke an image in a subprocess or detached process
at specified times.

• Placing entries in the system timer queue.

Using Processes for Timing

4-8

Create a subprocess or detached process to execute the image at a specified
time. Then, wake the subprocess or detached process when it is time for
the image to be executed. If you expect the parent process to exit before the
program in the subprocess or detached process finishes executing, create a
detached process rather than a subprocess.

You can use either system services or RTL routines for obtaining and reading
time. They are summarized in Table 4-3. With these routines, you can
determine the system time, convert it to an external time, and pass a time
back to the system. The system services use the VMS default date format.
With the RTL routines, you can use the default format or specify your own
date format. However, if you are just using the time and date for program
synchronization, using the VMS default format is probably sufficient.

When using the RTL routines to change date/time formats, initialization
routines are required. Refer to the VMS Run-Time Library Routines Volume for
more information.

Synchronization
4.3 Specifying a Time for Program Execution

Once the time is specified, use the wake-up routine SYS$SCHDWK to invoke
the subprocess or detached process for execution.

Table 4-3 Time Statistics System Services

Routine Description

SYS$GETTIM Obtains the current date and time in 64-bit binary format

SYS$NUMTIM Converts system date and time to numeric integer values
LIB$SYS_ASCTIM

SYS$BINTIM Converts a date and time from ASCII to system format

LIB$ADD_ TIMES Adds two quadword times

LIB$CONVERT_DATE_STRING Converts an input date/time string to a VMS internal time

LIB$CVT_FROM_INTERNAL_ TIME Converts internal time to external time

LIB$CVTF _FROM_INTERNAL_ TIME Converts internal time to external time (F-floating value)

LIB$CVT_ TO_INTERNAL_ TIME Converts external time to internal time

LIB$CVTF _ TO_INTERNAL_ TIME Converts external time to internal time (F-floating value)

LIB$CVT_VECTIM Converts 7-word vector to internal time

LIB$DA Y Obtains offset to current day from base time, in number of days

LIB$DATE_ TIME Obtains the date and time in user-specified format

LIB$FORMAT_DATE_ TIME Formats a date and/or time for output

LIB$FREE_DA TE_ TIME_CONTEXT Frees date/time context

LIB$GET_DATE_FORMAT Returns the user's specified date/time input format

LIB$GET_MAXIMUM_DATE_ Returns the maximum possible length of an output date/time string
LENGTH

LIB$GET_USERS_LANGUAGE Returns the user's selected langauge

LIB$1NIT_DATE_ TIME_CONTEXT Initializes the date/time context with a user-specified format

LIB$SUB_ TIMES Subtracts two quadword times

4.3.1.1 Specified Time
To execute a program at a specified time, use LIB$SPAWN to create a process
that executes a command procedure containing two commands-the DCL
command WAIT and the command that invokes the desired program. Since
you do not want the parent process to remain in hibernation until the process
executes, execute the process concurrently.

You can also use SYS$CREPRC to execute a program at a specified time.
However, since a process created by SYS$CREPRC hibernates rather than
terminates after executing the desired program, LIB$SP AWN is preferred
unless you need a detached process.

Example 4-1 executes a program at a specified delta time. The parent
program prompts the user for a delta time, equates the delta time to the
symbol EXECUTE_TIME, and then creates a subprocess to execute the
command procedure LATER.COM. LATER.COM uses the symbol EXECUTE_
TIME as the parameter for the WAIT command. (You might also allow t.he
user to enter an absolute time and have your program change it to a delta
time by subtracting the current time from the specified time. Section 3.3
discusses time manipulation.)

4-9

Synchronization
4.3 Specifying a Time for Program Execution

4.3.1.2

4-10

Example 4-1 Executing a Program Using Delta Time

! Delta time
CHARACTER*17 TIME
INTEGER LEN
! Mask for LIB$SPAWN
INTEGER*4 MASK

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

! Get delta time
STATUS = LIB$GET_INPUT (TIME,
2 'Time (delta): '.
2 LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Equate symbol to TIME
STATUS= LIB$SET_SYMBOL ('EXECUTE_TIME',
2 TIME(1:LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Set the mask and call LIB$SPAWN
MASK = IBSET (MASK,O) ! Execute subprocess concurrently
STATUS = LIB$SPAWN('©LATER',
2 'DATA84.IN',
2 'DA TA84 . RPT' ,
2 MASK)

END

LATER.COM

$ WAIT 'EXECUTE_TIME'
$ RUN SYS$DRIVEO: [USER.MATH]CALC
$ DELETE/SYMBOL EXECUTE_TIME

Timed Intervals
To execute a program at timed intervals, you can use either LIB$SP AWN or
SYS$CREPRC.

Using LIB$SPAWN

Using LIB$SP AWN, you can create a subprocess that executes a command
procedure containing three commands: the DCL command WAIT, the
command that invokes the desired program, and a GOTO command that
directs control back to the WAIT command. Since you do not want the parent
process to remain in hibernation until the subprocess executes, execute the
subprocess concurrently. See Section 4.3.1.1 for an example of LIB$SPAWN.

Using SYS$CREPRC

Using SYS$CREPRC, create a detached process to execute a program at timed
intervals as follows:

1 Create and hibernate a process-Use SYS$CREPRC to create a process
that executes the desired program. Set the PRC$V_HIBER bit of the stsflg
argument of the SYS$CREPRC system service to indicate that the created
process should hibernate before executing the program.

4.3.2

Synchronization
4.3 Specifying a Time for Program Execution

2 Schedule a wakeup call for the created subprocess-Use the
SYS$SCHDWK system service to specify the time at which the system
should wake up the subprocess and a time interval at which the system
should repeat the wakeup call.

Example 4-2 executes a program at timed intervals. The program creates a
subprocess that immediately hibernates. (The identification number of the
created subprocess is returned to the parent process so that it can be passed
to SYS$SCHDWK.) The system wakes up the subprocess at 6:00 a.m. the
morning of the 23rd (month and year default to system month and year) and
every 10 minutes thereafter.

Example 4-2 Executing a Program at Timed Intervals

! SYS$CREPRC options and values
INTEGER OPTIONS
EXTERNAL PRC$V_HIBER
! ID of created subprocess
INTEGER CR_ID
! Binary times
INTEGER TIME(2),
2 INTERVAL(2)

Set the PRC$V_HIBER bit in the OPTIONS mask and
create the process

OPTIONS = IBSET (OPTIONS, %LOC(PRC$V_HIBER))
STATUS = SYS$CREPRC (CR_ID, PID of created process
2 'CHECK', Image
2
2
2
2

'SLEEP',
%VAL(4),

Process name
Priority

2 %VAL(OPTIONS)) Hibernate
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Translate 6:00 a.m. (absolute time) to binary
STATUS = SYS$BINTIM ('23-- 06:00:00.00', ! 6:00 a.m.
2 TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Translate 10 minutes (delta time) to binary
STATUS= SYS$BINTIM ('0 :10:00.00', ! 10 minutes
2 INTERVAL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Schedule wakeup calls
STATUS = SYS$SCHDWK (CR_ID,
2

ID of created process

2
2
IF

TIME, Initial wakeup time
INTERVAL) Repeat wakeup time

(.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Placing Entries in the System Timer Queue
When you use the system timer queue, you use the timer expiration to signal
when an image is to be executed. You can use an event flag or AST for the
actual signal. With this technique, you do not need a separate process to

4-11

Synchronization
4.3 Specifying a Time for Program Execution

control program execution. However, you do use up your process's quotas for
ASTs. and timer queue requests.

Use the system service SYS$SETIMR to place a request in the system timer
queue. The format of this service is as follows:

SYS$SETIMR ([efn],daytim,[astadr],[reqidt])

Specifying the Starting Time

Specify the absolute or delta time at which you want the program to begin
execution using the daytim argument. Use SYS$BINTIM to convert an ASCII
time to the binary system format required for this argument.

Signaling Timer Expiration

Once the system has reached this time, the timer expires. To signal timer
expiration, set an event flag in the efn argument or specify an AST routine to
be executed in the astadr argument. Refer to Sections 4.1 and 4.2 for more
information on using event flags and ASTs.

How Timer Requests Are Identified

The reqidt argument identifies each system time request uniquely. Then, if
you need to cancel a request, you can refer to each request separately.

To cancel a timer request, use SYS$CANTIM.

4.4 Synchronous and Asynchronous System Services

4-12

A number of system services can be executed either synchronously or
asynchronously (for example, SYS$GETJPI and SYS$GETJPIW). The "W"
at the end of the system service name indicates the synchronous version of
the system service.

The asynchronous version of a system service queues a request and returns
control to your program. You can perform operations while the system
service executes; however, do not attempt to access information returned by
the service until the system service has completed.

Typically, you pass an event flag and an 1/0 status block to an asynchronous
system service. When the system service completes, it sets the event flag
and places the final status of the request in the 1/0 status block. Use the
SYS$SYNCH system service to ensure that the system service has completed.
You pass SYS$SYNCH the event flag and 1/0 status block that you passed to
the asynchronous system service; SYS$SYNCH waits for the event flag to be
set and then checks that the system service rather than some other program
set the event flag by examining the 1/0 status block. If the 1/0 status block
is still 0, SYS$SYNCH waits until the 1/0 status block is filled.

Synchronization
4.4 Synchronous and Asynchronous System Services

Data structure for SYS$GETJPI

INTEGER*4 STATUS,
2 FLAG,
2 PID_VALUE
! I/O status block
STRUCTURE /STATUS_BLOCK/

INTEGER*2 JPISTATUS,
2 LEN

INTEGER*4 ZERO /0/
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS

Call SYS$GETJPI and wait for information
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$GETJPI (%VAL(FLAG) I

2 PID_VALUE,
2
2 NAME_BUF_LEN,
2 IOSTATUS,
2 ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

STATUS = SYS$SYNCH (%VAL(FLAG) I

2 IOSTATUS)
IF (.NOT. IOSTATUS.JPISTATUS) THEN

CALL LIB$SIGNAL (%VAL(IOSTATUS.JPISTATUS))
END IF

END

The synchronous version of a system service acts exactly as if you had used
the asynchronous version followed immediately by a call to SYS$SYNCH.
Regardless of whether you use the synchronous or asynchronous version of a
system service, if you omit the efn argument, the service uses event flag 0.

4.5 Using the Lock Manager
The lock manager can be used by cooperating processes to synchronize
access to a shared resource (for example, a file, program, or device). The
lock manager itself does not ensure proper access to the resource; rather, the
programs must respect the rules for using the lock manager.

The rules required for proper resource synchronization are as follows:

• The resource must always be referred to by an agreed-upon name.

• Access to the resource is always done by queueing a lock request with
SYS$ENQ or SYS$ENQW.

• All lock requests that are placed in a wait queue must wait for access to
the resource.

4-13

4.5.1

Synchronization
4.5 Using the Lock Manager

When the lock manager is used by a process and its subprocess, the program
that created the subprocess should not exit until the subprocess has exited.
To ensure that the parent does not exit before the subprocess, specify an
event flag to be set when the subprocess exits (the completion-efn argument
of LIB$SPAWN). Before exiting from the parent program, use SYS$WAITFR
to ensure that the event flag is set. (You can suppress the logout message
from the subprocess by using the SYS$DELPRC system service to delete the
subprocess instead of allowing the subprocess to exit.)

The lock manager services are summarized in Table 4-4.

Table 4-4 Lock Manager Routines

Routines Description

SYS$ENQ Queue a new lock or lock conversion on a resource.
SYS$ENQW

SYS$DEQ Release locks and cancel lock requests.

SYS$GETLKI Get information about the lock database.
SYS$GETLKIW

Requesting a Lock

4-14

To request access to a resource, use the SYS$ENQ or SYS$ENQW system
services to queue a lock request. (SYS$ENQ queues a lock request and
returns; SYS$ENQW queues a lock request, waits until the lock is granted,
and then returns.) The following lock modes allow a process to indicate the
extent to which it is willing to share the resource:

• Null-No lock is requested; rather, it serves as a placeholder and
indicator of future interest in the resource.

• Concurrent read-Read access to the requestor while maintaining write
access to others.

• Concurrent write-Write access to the requestor while maintaining write
access to others.

• Protected read-Read access to the requestor while allowing only read
access to others.

• Protected write-Write access to the requestor while allowing only read
access to others.

• Exclusive-Write access to the requestor and no access to others.

The format for SYS$ENQ is as follows:

SYS$ENQ ([efn], lkmode, lksb, [flags], [resnam], [parid], [astadr],
[astprm], [blkast], [acmode], nullarg)

For more complete information on the use of SYS$ENQ, refer to the VMS
System Services Reference Manual.

4.5.2 Requesting a Null Lock

Synchronization
4.5 Using the Lock Manager

The program segment in Example 4-3 requests a null lock for the resource
named TERMINAL. After the lock is granted, the program requests that the
lock be converted to an exclusive lock. Note that, after SYS$ENQW returns,
the program checks the status of the system service and the status returned in
the lock status block to ensure that the request completed successfully. (The
lock mode symbols are defined in the $LCKDEF module of the system macro
library.)

Example 4-3 Requesting a Null Lock

! Define lock modes
INCLUDE 1 ($LCKDEF)'
! Define lock status block
STRUCTURE /STATUS_BLOCK/

INTEGER*2 LOCK_STATUS,
2 NULL

INTEGER*4 LOCK_ID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS

Request a null lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_NLMODE),
2 IOSTATUS,
2
2 I TERMINAL I'
2 ''' '')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.LOCK_STATUS)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.LOCK_STATUS))
! Convert the lock to an exclusive lock
STATUS= SYS$ENQW (,
2 %VAL(LCK$K_EXMODE),
2 IOSTATUS,
2 %VAL(LCK$M_CONVERT),
2 I TERMINAL I '

2 '''' ')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.LOCK_STATUS)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.LOCK_STATUS))

4. 6 Using the Parallel Processing Run-time Library Routines
The parallel processing (PPL$) facility consists of routines for synchronizing
program processing in a master/slave hardware configuration. The routines
provide for the following capabilities:

• Creating subprocesses

• Synchronizing program execution using spin locks

• Synchronizing program execution using semaphores

4-15

4.6.1

4.6.2

Synchronization
4.6 Using the Parallel Processing Run-time Library Routines

• Synchronizing program execution using barriers

• Setting up global sections of memory for shared use

To use the PPL$ routines, you must call the PPL$ initialization routine
(PPL$INITIALIZE) that sets up data structures and memory areas required for
PPL. Then, when use of the PPL$ routines is no longer required, you must
free those data structures and memory areas with PPL$TERMINATE before
exiting from the program.

Refer to the VMS RTL Parallel Processing (PPL$) Manual for more information.

Using Subprocesses

Using Spin Locks

4-16

Once you have initialized the PPL environment, you can create one or more
subprocesses to execute images. You may execute the same or different
images within each subprocess. Even though you can create a subprocess
with PPL$CREATE_PROCESS that will run outside of a PPL environment,
you should limit its use to subprocesses within a PPL environment.

To delete one or more subprocesses created with PPL$CREATE_PROCESS,
use PPL$DELETE_PROCESS.

To ensure that only one process at a time can access a critical region or
physical resource of a parallel task, you can use spin locks. A spin lock is a
lock on a critical region where the lock constantly tests to determine whether
access to the critical region is available. Because of the constant testing, this
technique is CPU intensive. An alternative technique to ensure single access
is to use semaphores. Refer to Section 4.6.3 for more information on using
semaphores.

There are three spin lock routines, which are used as follows:

• PPL$CREATE_SPIN_LOCK-Creates and initializes a simple lock. An
identifier is returned for subsequent reference to this spin lock.

• PPL$SEIZE_SPIN _LOCK-Acquires a spin lock that has been created
with PPL$CREATE_SPIN_LOCK. Use the identifier returned by
PPL$CREATE_SPIN_LOCK to refer to the lock you want to acquire.

• PPL$RELEASE_SPIN_LOCK-Releases a spin lock. Use the identifier
returned by PPL$CREATE_SPIN_LOCK to refer to the lock you want to
release. Once this routine has freed the lock, another process can acquire
the lock.

4.6.3

4.6.4

Synchronization
4.6 Using the Parallel Processing Run-time Library Routines

Using Semaphores
Semaphores also synchronize access to a critical region or physical device by
controlling the number of processes that have access. Unlike spinlocks, using
semaphores is not CPU intensive.

There are two type of semaphores: a binary semaphore and a counting
semaphore. A binary semaphore has a value of 0 and 1 and allows only one
process to access a resource. A process can access the resource when the
semaphore value is 1. A process waits for the resource when the semaphore
is zero. A counting semaphore can have any positive value, thereby allowing
you to control access to multiple resources.

The semaphore routines are as follows:

• PPL$CREATE_SEMAPHORE-Creates and initializes a semaphore and
creates a waiting queue that keeps track of processes waiting for the
semaphore.

• PPL$DECREMENT_SEMAPHORE-Decrements the value of a
semaphore. If the value of the semaphore is zero, the process requesting
the semaphore can be placed in a wait state until the semaphore value
increases.

• PPL$1NCREMENT_SEMAPHORE-Increments the value of a semaphore
to indicate that the resource can be accessed. If there is a process waiting
for the semaphore, PPL$INCREMENT_SEMAPHORE wakes up the
process and removes it from the queue.

• PPL$RETURN _SEMAPHORE_ VALUES-Returns the value of the
requested semaphore.

Using Barrier Synchronization
Barrier synchronization specifies a point in a program that all parallel paths
must reach before any are allowed to continue. Only one barrier can be set
up within a program.

The barrier routines include the following:

• PPL$CREATE_BARRIER-Specifies the point that all paths must reach
before continuation.

• PPL$WAIT-AL.BARRIER-Suspends execution of the program path until
all program paths have reached the specified barrier.

Once you specify a barrier point, all program paths must call PPL$WAIT_
AT_BARRIER in order to be included in the barrier synchronization.

4-17

Synchronization
4. 7 Writing Applications for a VMS Multiprocessing Environment

4. 7 Writing Applications for a VMS Multiprocessing Environment

4.7.1

Most application programs that run on a VMS uniprocessing system run
without modification on a VMS multiprocessing system. However, those
applications that access writable global sections or rely on process priority as
a means of synchronizing tasks should be reexamined and modified according
to the information contained in this section.

In addition, some applications may execute more efficiently on a
multiprocessor if they are specifically adapted to a multiprocessing
environment. Programmers may want to decompose an application into
several processes and coordinate their activities by means of event flags or a
shared region in memory. See the VMS RTL Parallel Processing (PPL$) Manual
and the Guide to Parallel Programming on VMS for more information about
performing these tasks.

System programmers, including those writing device drivers and user-written
system services, should refer to other sections of this chapter for critical
information about system synchronization techniques.

Writable Global Sections

4-18

A writable global section is an area of memory that can be accessed (read
and modified) by more than one process. In a uniprocessor system, access to
a global section by more than one process is automatically synchronized as
follows:

• Only the currently executing process can access the global section.

• Only one process can be the currently executing process.

However, in the multiprocessing system, two or more processes can
execute concurrently, one on each processor. As a result, it is possible that
concurrently executing processes can simultaneously access the same locations
in a writable global section. If such access occurs, information may be lost.

When writing an application program for a VMS multiprocessing system, you
must use one of the following methods to ensure synchronized access to the
global sections by multiple processes:

• Use interlocked instructions instead of ordinary instructions to control
access to the writable global section. The seven interlocked VAX MACRO
instructions are as follows:

BBCCI-Branch on Bit Clear and Clear, Interlocked

BBSSI-Branch on Bit Set and Set, Interlocked

ADAWI-Add Aligned Word, Interlocked

INSQTI-Insert into Queue Tail, Interlocked

INSQHI-Insert into Queue Head, Interlocked

REMQTI-Remove from Queue Tail, Interlocked

REMQHI-Remove from Queue Head, Interlocked

• Use VMS system services to control access to the writable global section.

4.7.2

Synchronization
4. 7 Writing Applications for a VMS Multiprocessing Environment

Check existing programs that use writable global sections to ensure that
proper synchronization techniques are in place. Review the program code
itself; do not rely on testing alone because an instance of simultaneous access
by more than one process to a location in a writable global section is rare.

If an application must use queue instructions to control access to writable
global sections, ensure that it uses interlocked queue instructions.

Synchronization Using Process Priority
In some applications (usually real-time applications), a number of processes
are used to perform a series of tasks. In such applications, the sequence in
which a process executes can be controlled or synchronized by means of
process priority. The basic method of synchronization by priority involves
executing the process with the highest priority while preventing all other
processes from executing.

Because each processor in a VMS multiprocessing system, when idle,
schedules its own workload, it is impossible to prevent all other processes
in the system from executing. Moreover, because the scheduler guarantees
only that the highest priority process be scheduled at any given time, it is not
a certainty that another processor in the system is executing the next highest
priority process.

Thus, application programs that use the method of synchronization by process
priority must be modified to use a different serialization method before they
will run correctly in a VMS multiprocessing system.

4.8 Passing Control to Another Image

4.8.1

The RTL routines LIB$DO_COMMAND and LIB$RUN _PROGRAM allow
you to invoke the next image from the current image. That is, they allow
you to perform image run-down for the current image and pass control to the
next image without returning to DCL command level. Which routine you use
depends on whether the next image is a command image or a noncommand
image.

Invoking a Command Image
A command image is invoked at DCL command level with the appropriate
DCL command. The following command executes the command image
associated with the DCL command COPY:

$COPY DATA.TMP APRIL.DAT

To pass control from the current image to a command image, use the RTL
routine LIB$DO_COMMAND. If LIB$DO_COMMAND executes successfully,
control is not returned to the invoking image and statements following the
LIB$DO_COMMAND statement are not executed. The following statement
causes the current image to exit and executes the DCL command just shown:

4-19

4.8.2

Synchronization
4.8 Passing Control to Another Image

STATUS= LIB$DO_COMMAND ('COPY DATA.TMP APRIL.DAT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

To execute a number of DCL commands, specify a DCL command procedure.
The following statement causes the current image to exit and executes the
DCL command procedure [STATS.TEMP]CLEANUP.COM:

STATUS= LIB$DO_COMMAND ('©[STATS.TEMP]CLEANUP')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

Invoking a Noncommand Image

4-20

A noncommand image is invoked at DCL command level with the DCL
command RUN. The following command executes the noncommand image
[STATISTICS.TEMP]TEST.EXE:

$ RUN [STATISTICS.TEMP]TEST

To pass control from the current image to a noncommand image, use the
run-time library routine LIB$RUN _PROGRAM. If LIB$RUN _PROGRAM
executes successfully, control is not returned to the invoking image and
statements following the LIB$RUN _PROGRAM statement are not executed.
The following program segment causes the current image to exit and passes
control to the noncommand image [STATISTICS.TEMP]TEST.EXE on the
default disk:

STATUS= LIB$RUN_PROGRAM (' [STATISTICS.TEMP]TEST.EXE')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

5 Shareable Resources

The VMS operating system provides the following techniques for sharing data
and program code among programs:

• DCL symbols and logical names

• Libraries

• Shareable images

• Global sections

• Common blocks installed in a shareable image

• VMS RMS shared files

Symbols and logical names are also used for intraprocess and interprocess
communication; therefore, they are discussed in Chapter 3.

Libraries and shareable images are used for sharing program code.

Global sections, common blocks stored in shareable images, and VMS RMS
shared files are used for sharing data. Using common blocks for inter-process
communication is also possible. Refer to Chapter 3.

5.1 Sharing Program Code

5.1.1 Object Libraries

To share code among programs, you can use the following VMS resources:

• Text, macro, or object libraries which store sections of code. Text and
macro libraries store source code; object libraries store object code. You
can create and manage libraries using LIBRARIAN. Refer to the VMS
Librarian Utility Manual for complete information on using LIBRARIAN.

• Shareable images, which are images that have been compiled and linked,
but cannot be run independently. These images can also be stored in
libraries.

Object libraries can be used to store frequently used routines, thereby
avoiding repeated recompiling, minimizing the number of files you must
maintain, and simplifying the linking process. The source code for the object
modules can be in any VAX-supported language and the object modules can
be linked with any other modules written in any VAX-supported language.

Use the OLB file extension for any object library. All modules stored in an
object library must have the file extension OBJ.

5-1

Shareable Resources
5.1 Sharing Program Code

5.1.1.1

5.1.1.2

5.1.1.3

5.1.1.4

5-2

System- and User-Defined Default Object Libraries
The VMS operating system provides a default system object library,
STARLET.OLB. You can also define one or more default object libraries to be
automatically searched before the system object library. The logical names for
the default object libraries are LNK$LIBRARY and LNK$LIBRARY_l through
LNK$LIBRARY_999. To use one of these default libraries, define the logical
name first. They are searched sequentially starting at LNK$LIBRARY. Do not
skip any numbers. If you store object modules in the default libraries, you do
not have to specify them at link time. However, you do have to maintain and
manage them as you would any library.

The following example defines the library in the file PROCEDURES.OLB (the
file type defaults to OLB) in $DISK1:[DEV] as a default user library:

$ DEFINE LNK$LIBRARY $DISK1: [DEV] PROCEDURES

How the Linker Searches Libraries
When the linker is resolving global symbol references, it searches user default
libraries at the process level first, then libraries at the group and system level.
Within levels, the library defined as LNK$LIBRARY is searched first, then
LNK$LIBRARY_l, LNK$LIBRARY_2, and so on.

Creating an Object Library
To create an object library, invoke the Librarian Utility by entering the
LIBRARY command with the /CREATE qualifier and the name you are
assigning the library. The following example creates a library in a file named
INCOME.OLB (OLB, the default file type, means object library):

$ LIBRARY/CREATE INCOME

Managing an Object Library
To add or replace modules in a library, enter the LIBRARY command with the
/REPLACE qualifier followed by the name of the library (first parameter) and
the names of the files containing the module or modules (second parameter).
After you put an object module or modules in a library, you can delete the
object file. The following example adds or replaces the modules from the
object file named GETSTATS.OBJ to the object library named INCOME.OLB
and then deletes the object file:

$ LIBRARY/REPLACE INCOME GETSTATS
$ DELETE GETSTATS.OBJ;*

You can examine the contents of an object library with the /LIST qualifier.
Use the /ONLY qualifier to limit the display. The following command
displays all the modules in INCOME.OLB that start with GET:

$ LIBRARY/LIST/ONLY=GET* INCOME

Use the /DELETE qualifier to delete a library module and the /EXTRACT
qualifier to re-create an object file. If you delete many modules, you should
also compress (/COMPRESS) and purge (PURGE command) the library.
Note that the /ONLY, /DELETE, and /EXTRACT qualifiers require the
names of modules-not file names-and that the names are specified as
qualifier values, not parameter values.

5.1.2 Text and Macro Libraries

Shareable Resources
5.1 Sharing Program Code

Any frequently used routine can be stored in libraries as source code. Then,
when you need the routine, it can be called in from your source program.

Source code modules are stored in text libraries. The file extension for a text
library is TLB.

When using VAX MACRO assembly language, any source code module
can be stored in a macro library. The file extension for a macro library is
MLB. Any source code module stored in a macro library must have the file
extension MAR.

You also use LIBRARIAN to create and manage text and macro libraries.
Refer to Sections 5.1.1.3 and 5.1.1.4 for a summary of LIBRARIAN
commands.

5.2 Shareable Images

5.2.1 Transfer Vectors

A shareable image is a nonexecutable image that can be linked with
executable images. If you have a program unit that is invoked by more
than one program, linking it as a shareable image provides the following
benefits:

• Saves disk space-The executable images to which the shareable image is
linked do not physically include the shareable image. Only one copy of
the shareable image exists.

• Simplifies maintenance-If you use transfer vectors and the GSMATCH
option (see Section 5.2.4), you can modify, recompile, and relink a
shareable image without having to relink any executable image that is
linked with it.

Shareable images can also save memory provided that they are installed as
shared images (see Section 5.2.7).

A transfer vector is placed at the beginning of a shareable image to point
to a program unit in that shareable image. Typically, a shareable image
contains one program unit and one transfer vector. If you have more than
one program unit in a shareable image, include a transfer vector for each
program unit. The following example shows a macro program unit that
contains two transfer vectors, one for GET_l_STAT and one for GET_STATS:

XGETSTATS.MAR

.TITLE X_GET_STATS

.TRANSFER GET_1_STAT

.MASK GET_1_STAT
JMP LAGET_1_STAT+2

.TRANSFER GET_STATS

.MASK GET_STATS
JMP LAGET_STATS+2

.END

5-3

Shareable Resources
5.2 Shareable Images

5.2.1.1

.5.2.1.2

5-4

Why Use Transfer Vectors?
You should always use transfer vectors; they allow you to modify a shareable
image without relinking any executable image that references the shareable
image. When you link a shareable image to produce an executable image,
the linker resolves a reference to a program unit in that shareable image by
using the address of the transfer vector for that program unit as shown in
Figure 5-1. If you modify a program unit in a shareable image, the starting
address of one or more program units may change; relinking the shareable
image updates each transfer vector to point to the correct starting address of
its associated program unit. Since the addresses of the transfer vectors have
not been modified, executable images linked with the shareable image do not
have to be relinked.

Figure 5-1 How the Linker Uses Transfer Vector Address

Shareable Image

Vector A

Vector B

Routine A

Routine B

Deleting Transfer Vectors

Executable Image

Invoke A

Invoke B

ZK-2078-84

You should not delete a transfer vector from a shareable image that contains
more than one transfer vector. Deleting one transfer vector may change the
addresses of other transfer vectors in the shareable image. If you change the
address of a transfer vector, you have to relink each executable image that
references that shareable image. If you must delete a program unit from a
shareable image containing more than one program unit, create a dummy
program unit with the same name, such as the one for GET_l_STAT in the
following example:

GET1 STAT.FOR

FUNCTION GET_1_STAT (ROW,
2 COLUMN,
2 STAT)
! Dummy routine

END

Compile the dummy program unit and relink the shareable image. In the
new version of the shareable image, the transfer vector for the "deleted"
program unit points to the dummy program unit.

5.2.2

5.2.3

Shareable Resources
5.2 Shareable Images

GSMATCH Option
The GSMATCH option allows you to specify whether an executable image
linked with a shareable image can access a modified shareable image. The
GSMATCH option must be specified in an options file (use the /OPTIONS
qualifier of the LINK command; for details, see the description of the linker in
the VMS Linker Utility Manual.

When an executable image attempts to access a shareable image at run time,
the system examines the GSMATCH option specified by the shareable image
that was originally linked with the executable image. The following keywords
may be specified with the GSMATCH option:

• LEQUAL-lf the minor ID of the original shareable image is less than or
equal to the minor ID of the shareable image that the executable image is
attempting to access, the system allows the executable image to access the
shareable image.

• EQUAL-If the minor ID of the original shareable image is equal to the
minor ID of the shareable image that the executable image is attempting
to access, the system allows the executable image to access the shareable
image. (Default if no GSMATCH option is specified.)

• ALWAYS-The system allows the executable image to access the
shareable image regardless of the major ID or minor ID.

To examine the major and minor ID values of a shareable image, use the
command LINK/MAP /FULL to produce a listing of the image that includes
the GSMATCH option.

UNIVERSAL Option
A universal symbol is a global symbol in a shareable image that can be
referenced outside the shareable image. A transfer vector, in addition to
creating a pointer to a program unit, makes the name of that program unit
a universal symbol. To make a symbol other than a program unit name a
universal symbol, use the UNIVERSAL option in an options file (use the
/OPTIONS qualifier of the LINK command; for details, see the description of
the linker in the VMS Linker Utility Manual.)

A reference to a universal symbol is resolved at link time as an offset from
the beginning of the defining routine. This implies that, if you modify the
routine that defines a universal symbol, you must relink that routine to
correct the offset to the universal symbol. Since universal symbols created
by transfer vectors are always at the beginning of the defining module (see
Section 5.2.1), relinking is necessary only if the universal symbol is created
using the UNIVERSAL option.

5-5

5.2.4

Shareable Resources
5.2 Shareable Images

Creating Shareable Images

5-6

To create a shareable image, follow these steps:

1 Compile the object modules-Write and compile the program unit to
be shared by your different programs. In general, you want to produce
a shareable image that executes one program unit. If that program
unit invokes any other subprograms, they also must be included in the
shareable image.

2 Write the transfer vector-Write a transfer vector for each program unit
in the shareable image (Section 5.2.1 discusses transfer vectors); transfer
vectors must be written in VAX MACRO. The following template contains
one transfer vector; repeat the three middle statements for each additional
transfer vector:

. TITLE vector-name

. TRANSFER routine-name

.MASK routine-name
JMP L~routine-name+2

.END

Naming the transfer vector file with a name similar to that of the program
unit's source file makes the transfer vector file easier to find. The transfer
vector file and the associated language program units should not have
identical names because, after compiling the source files, you'll have
two or more object modules with the same name. The following VAX
MACRO transfer vector file is for the program unit GET_l_STAT:

XGET1 STAT.MAR

.TITLE X_GET 1 STAT

.TRANSFER GET 1 STAT

.MASK GET_1_STAT
JMP L-GET 1 STAT+2
.END

Compiling the transfer vector with the MACRO command produces an
object module named X_GET_l_STAT in the file XGETlSTAT.OBJ as
follows:

$ MACRO XGET1STAT

3 Write an options file for the linker-Use the CLUSTER option to place
the transfer vector at the beginning of the shareable image. Use the
GSMATCH option to specify whether an executable image linked with
the shareable image can access a modified version of that shareable image
without relinking.

The CLUSTER option takes the following form:

CLUSTER=cluster-name 111 filename

The cluster name is up to you. The file name is that of the object file
containing the transfer vector.

The GSMATCH option takes the following form:

GSMATCH=keywordlmajor _idlminor _id

Shareable Resources
5.2 Shareable Images

Typically, when you create a shareable image, you use the LEQUAL
keyword, specifying any integer values for the major and minor IDs;
when you update that shareable image, you use the LEQUAL keyword,
specifying the same major ID and incrementing the minor ID by 1. This
use of LEQUAL allows an executable image to access a newer version of
the shareable image without relinking, but prevents the executable image
from accessing an older version of the shareable image (see Section 5.2.2
for more information).

When you create the shareable image GETlSTAT, you could specify the
following options files:

GET1 STAT.OPT

CLUSTER=X_GET_1_STAT,, ,XGET1STAT
GSMATCH=LEQUAL,1,100

When you update that shareable image, you would change the
GSMATCH option as follows:

GET1 STAT.OPT

CLUSTER=X_GET_1_STAT, ,,XGET1STAT
GSMATCH=LEQUAL,1,101

4 Link to produce the shareable image-Use the /SHAREABLE qualifier of
the LINK command to create a shareable image specifying the object
modules and the options file as input to the linker. The following
command produces a shareable image named GETlSTAT.EXE from
the object module GETlSTAT.OBJ and the options file GETlSTAT.OPT:

$LINK/SHAREABLE GET1STAT,GET1STAT/OPTION

GET1 STAT.OPT

CLUSTER=X_GET_1_STAT, ,,XGET1STAT
GSMATCH=LEQUAL,1,100

Once you have created the shareable image, you can delete the object
modules GETlSTAT.OBJ and XGETlSTAT.OBJ.

When you link a shareable image, references to global symbols must be
resolved by including the module that defines the symbol in the link
operation. For example, to create a shareable image from the program
unit GET_STATS, which references the program unit GET_l_STAT, you
must specify both GETSTATS.OBJ (the file containing GET_STATS) and
GETlSTAT.OBJ (the file containing GET_l_STAT) as input to the linker.
The following command creates the shareable image GETSTATS.EXE.
(XGETSTATS contains transfer vectors for both GET_STATS and
GET_l_STAT.)

$LINK/SHAREABLE GETSTATS,GET1STAT,GETSTATS/OPTION

GETSTATS.OPT

CLUSTER=X_GET_STATS,, ,XGETSTATS
GSMATCH=LEQUAL,1,100

5-7

5.2.5

5.2.6

Shareable Resources
5.2 Shareable Images

Shareable Image Libraries

5.2.5.1

5.2.5.2

In any large development effort, you should keep the program units in
libraries (either object module or shareable image) to simplify maintenance
and the linking process. Shareable image libraries, also called shareable image
symbol table libraries, are different from object libraries in that the symbol
table of the shareable image, not the shareable image itself, is placed into
the shareable image library; therefore, do not delete a shareable image after
placing it in a shareable image library.

The following commands create the shareable images GETlSTAT.EXE and
GETSTATS.EXE, placing them into the shareable image library INCOMESHR.
OLB is the default file type for both shareable image and object module
libraries. INCOMESHR is named in the second link command to resolve the
reference to GET_l_STAT in GET_STATS.

$LINK/SHAREABLE GET1STAT,GET1STAT/OPTION
$ LIBRARY/SHAREABLE/REPLACE INCOMESHR GET1STAT
$LINK/SHAREABLE GETSTATS,GETSTATS/OPTION,INCOMESHR/LIBRARY
$ LIBRARY/SHAREABLE/REPLACE INCOMESHR GETSTATS

If you attempt to create GETSTATS.EXE before GETlSTAT.EXE, the linker
cannot resolve the reference to GET_l_STAT and displays the following
warning message:

%LINK-W-USEUNDEF, 1 undefined symbol:
%LINK-I-UDFSYM, GET_1_STAT

Adding or Replacing Shareable Images
To add or replace a shareable image in a shareable image library, enter
the LIBRARY command with the /SHAREABLE and /REPLACE qualifiers
followed by the name of the library (first parameter) and the file name
of the shareable image (second parameter). The file type of the shareable
image defaults to EXE. The following command enters the symbol
table of the shareable image GETlSTAT.EXE into the shareable library
INCOMESHR.OLB:

$ LIBRARY/SHAREABLE/REPLACE INCOMESHR GET1STAT

Listing or Deleting Shareable Images
You can examine shareable image libraries with the /LIST qualifier of the
LIBRARY command. You can delete shareable images from a shareable image
library with the /DELETE qualifier of the LIBRARY command.

Linking Shareable Images

5-8

To specify a shareable image as input to the linker, you must specify either
of the following: (1) the name of the shareable image library containing
the symbol table of the shareable image (use the /LIBRARY qualifier to
identify a library file) or (2) an options file that contains the name of the
shareable image file (use the /SHAREABLE qualifier in the options file to
identify a shareable image file). A shareable image file must be specified in
an options file because a /SHAREABLE qualifier on the LINK command line
is interpreted as a command qualifier that creates a shareable image.

5.2.6.1

5.2.6.2

Shareable Resources
5.2 Shareable Images

The following command links the object module INCOME.OBJ with the
library INCOME.OLB, and the shareable images GETSTATS.EXE and
GETlSTAT.EXE:

$LINK INCOME,INCOME/OPTION,INCOME/LIBRARY

INCOME.OPT

GETSTATS/SHAREABLE
GET1STAT/SHAREABLE

The following command links the object module INCOME.OBJ, the
object module library INCOME.OLB, and the shareable image library
INCOMESHR.OLB to produce an executable image in the file INCOME.EXE:

$LINK INCOME,INCOME/LIBRARY,INCOMESHR/LIBRARY

Default File Type and Location of Shareable Images
At link time, a shareable image is assumed to be in SYS$SHARE and to have
a file type of EXE. Therefore, if you have not copied the shareable image over
to SYS$SHARE, you must define a logical name that equates the name of the
shareable image file to its full file specification.

The executable image INCOME.EXE created in the previous example
references the shareable image files GETSTATS.EXE and GETlSTAT.EXE.
If these shareable images are in SYS$SHARE, you can execute INCOME as
shown below:

$ RUN INCOME

Alternate Location of Shareable Images
However, if these shareable image files are in another directory, you
must create logical names that associate the file names with the full file
specifications. For example, if GETSTATS.EXE and GETlSTAT.EXE are in the
directory [INCOME.DEVELOP] on the disk $DISK1, define logical names for
the files before executing INCOME.

$DEFINE GETSTATS $DISK1: [INCOME.DEVELOP]GETSTATS
$DEFINE GET1STAT $DISK1: [INCOME.DEVELOP]GET1STAT
$ RUN INCOME

If you attempt to execute INCOME without defining the logical names, the
following messages are displayed (by default, SYS$SHARE translates to
SYS$SYSROOT:[SYSLIB]):

%DCL-W-ACTIMAGE, error activating image GETSTATS
-CLI-E-IMAGEFNF, image file not found

SYS$SYSROOT: [SYSLIB]GETSTATS.EXE

In general, while you are developing a program that uses shareable images,
you should leave the shareable images in your development directory and
define the logical names each time you begin work on the program. If you
are working on the program over a number of sessions, you may want to
put the necessary logical name definitions in your LOGIN.COM file. Once
the shareable images are working, you can move them into SYS$SHARE and
delete the logical name definitions from LOGIN.COM.

5-9

5.2.7

Shareable Resources
5.2 Shareable Images

Shared Images

5.2.7.1

5.2.7.2

5.2.7.3

To allow executable images to share a single copy of the shareable image in
memory, install the shareable image as a shared image.

Creating a Shared Image
To install a shareable image as shared, follow the steps described in
Chapter 6 for installing an image as privileged, but, instead of specifying
the /PRIVILEGED qualifier, specify the /SHARED qualifier.

Perform the following steps to install a program as a shared image:

1 Enter the DCL command SET PROCESS /PRIVILEGE=CMKRNL to give
yourself CMKRNL privilege.

Note: You must have CMKRNL privilege in order to use the Install Utility
(INSTALL).

2 Enter the INSTALL command at the $ prompt to invoke the interactive
Install Utility.

3 When the INSTALL> prompt appears, enter the following command:

CREA TE file-specification /SHARED

Specify the complete file specification of the file containing the executable
program (file type defaults to EXE).

4 Press the RETURN key. The Install Utility installs your program as a
shared image and reissues the INSTALL> prompt.

5 Enter the EXIT command to exit from the Install Utility.

6 Enter the DCL command SET PROCESS /PRIVILEGE=NOCMKRNL to
remove the CMKRNL privilege.

If the Shared Image Is in Memory
When an executable image linked with a shared image accesses the shared
image, the executable image uses that copy.

If the Shared Image Is Not in Memory
If a copy of the shared image is not in memory, the executable image copies
the shared image into memory. Unless the shareable image is likely to be
accessed by more than one executable image at a time, do not bother to
install the shareable image as a shared image.

5.3 Symbols

5-10

Symbols are names that represent locations (addresses) in virtual memory.
More precisely, a symbol's value is the address of the first, or low-order, byte
of a defined area of virtual memory, while the characteristics of the defined
area provide the number of bytes referred to. For example, if you define
TOTAL _HOUSES as an integer, the symbol TOTAL _HOUSES is assigned
the address of the low-order byte of a 4-byte area in virtual memory. Some
system components (for example, the debugger) permit you to refer to areas
of virtual memory by their actual addresses, but symbolic references are
always recommended.

5.3.1

5.3.2

5.3.3

Defining Symbols

Shareable Resources
5.3 Symbols

A symbolic name can consist of up to 31 letters, digits, underscores, and
dollar signs. Uppercase and lowercase letters are equivalent. By convention,
dollar signs are restricted to symbols used in system components. (If you do
not use the dollar sign in your symbolic names, you will never accidentally
duplicate a system-defined symbol.)

Local and Global Symbols
Symbols are either local or global in scope. A local symbol can only be
referenced within the program unit in which it is defined. Local symbol
names must be unique among all other local symbols within the program
unit, but not within other program units in the program. References to local
symbols are resolved at compile time.

A global symbol can be referenced outside the program unit in which it
is defined. Global symbol names must be unique among all other global
symbols within the program. References to global symbols are not resolved
until link time.

References to global symbols in the executable portion of a program unit are
usually invocations of subprograms. If you reference a global symbol in any
other capacity (as an argument or data value-see the following paragraph),
you must define the symbol as external or intrinsic in the definition portion of
the program unit.

System facilities, such as the Message Utility and the VAX MACRO assembler,
use global symbols to define data values.

The following program segment shows how to define and reference a global
symbol, RMS$_EOF (a condition code that may be returned by
LIB$GET_INPUT):

CHARACTER*255 NEW_TEXT
INTEGER STATUS
INTEGER*2 NT_SIZ
INTEGER LIB$GET_INPUT
EXTERNAL RMS$_EOF
STATUS = LIB$GET_INPUT (NEW_TEXT,
2 'New text: '
2 NT_SIZ)
IF ((.NOT. STATUS) .AND.
2 (STATUS .NE. %LDC (RMS$_EOF))) THEN

CALL LIB$SIGNAL (RETURN_STATUS BY VALUE)
END IF

Resolving Global Symbols
References to global symbols are resolved by including the module that
defines the symbol in the link operation. When the linker encounters a global
symbol, it uses the following search alogorithm to find the defining module:

1 Explicitly named modules and libraries-Generally used to resolve user-
defined global symbols, such as subprogram names and condition codes.
These modules and libraries are searched in the order in which they are
specified.

5-11

Shareable Resources
5.3 Symbols

5.3.3.1

5.3.3.2

5.3.3.3

5.3.3.4

5-12

2 System default libraries-Generally used to resolve system-defined global
symbols, such as procedure names and condition codes.

3 User default libraries-Generally used to avoid explicitly naming libraries,
thereby simplifying linking.

If the linker cannot find the symbol, the symbol is said to be unresolved, and
a warning results. You can run an image containing unresolved symbols. The
image runs successfully as long as it does not access any unresolved symbol.
For example, if your code calls a subroutine but the subroutine call is not
executed, the image runs successfully.

If an image accesses an unresolved global symbol, results are unpredictable.
Usually the image fails with an access violation (attempting to access a
physical memory location outside those assigned to the program's virtual
memory addresses).

Explicitly Named Modules and Libraries
You can resolve a global symbol reference by naming the defining object
module in the link command. For example, if the program unit INCOME
references the subprogram GET_STATS, you can resolve the global symbol
reference when you link INCOME by including the file containing the object
module for GET_STATS, as follows:

$ LINK INCOME, GETSTATS

If the modules that define the symbols are in an object library, name the
library in the link operation. In the following example, the GET_STATS
module resides in the object module library INCOME.OLB:

$LINK INCOME.INCOME/LIBRARY

System Default Libraries
Link operations automatically check the system object and shareable image
libraries for any references to global symbols not resolved by your explicitly
named object modules and libraries. The system object and shareable image
libraries include the entry points for the RTL routines and system services,
condition codes, and other system-defined values. Invocations of these
modules do not require any explicit action by you at link time.

User Default Libraries
If you write general-purpose procedures or define general-purpose symbols,
you can place them in a user default library. (You can also make your
development library a user default library.) In this way, you can link to the
modules containing these procedures and symbols without explicitly naming
the library in the DCL LINK command. To name a single user library,
equate the file name of the library to the logical name LNK$LIBRARY. For
subsequent default libraries, use the logical names LNK$LIBRARY_l through
LNK$LIBRARY_999, as described in Section 5.1.1.

Making a Library Available for System-wide Use
To make a library available to everyone using the system, define it at the
system level. To restrict use of a library or to override a system library, define
the library at the process or group level. The following command line defines
the default user library at the system level:

$DEFINE/SYSTEM LNK$LIBRARY $DISK1: [DEV]PROCEDURES

5.3.3.5

5.3.4 Sharing Data

5.3.4.1

Shareable Resources
5.3 Symbols

Macro Libraries
Some system symbols are not defined in the system object and shareable
image libraries. In such cases, the VMS System Services Volume and VMS
Run-Time Library Routines Volume note that the symbols are defined in the
system macro library and tell you the name of the macro containing the
symbols. To access these symbols, you must first assemble a macro routine
with the following source code. The keyword GLOBAL must be in uppercase.
The . TITLE directive is optional, but recommended .

. TITLE macro-name
macro-name GLOBAL

.END

The following example is a macro program that includes two system macros:

LBRDEF.MAR

.TITLE $LBRDEF
$LBRDEF GLOBAL
$LHIDEF GLOBAL
.END

Assemble the routine containing the macros with the MACRO command.
You can place the resultant object modules in a default library or in a library
that you specify in the LINK command, or you can specify the object modules
in the LINK command. The following example places the $LBRDEF and
$LHIDEF modules in a library before performing a link operation:

$ MACRO LBRDEF
$LIBRARY/REPLACE INCOME LBRDEF
$DELETE LBRDEF.OBJ;*
$LINK INCOME, INCOME/LIBRARY

The following LINK command uses the object file directly:

$LINK INCOME,LBRDEF,INCOME/LIBRARY

Typically, you use an installed common block for interprocess communication
or for allowing two or more processes to access the same data simultaneously.
However, you must have CMKRNL privilege to install the common block. If
you do not have CMKRNL privilege, global sections allow you to perform the
same operations.

Installed Common Blocks
To share data among processes using a common block, you must install
the common block as a shared shareable image and link each program that
references the common block against that shareable image.

To install a common block as a shared image:

1 Define a common block-Write a program that declares the variables in
the common block and defines the common block. This program should
not contain executable code. The following VAX FORTRAN program
defines a common block:

5-13

Shareable Resources
5.3 Symbols

5-14

INC_CQMMON.FOR

INTEGER TOTAL_HOUSES
REAL PERSONS_HOUSE (2048),
2 ADULTS_HOUSE (2048),
2 INCOME_HOUSE (2048)
COMMON /INCOME_DATA/ TOTAL_HOUSES,
2 PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE

END

2 Create the shareable image-Compile the program containing the
common block. Use the LINK/SHAREABLE command to create a
shareable image containing the common block.

$ FORTRAN INC_COMMON
$ LINK/SHAREABLE INC_COMMON

3 Install the shareable image-Use the DCL command SET PROCESS
/PRIVILEGE to give yourself CMKRNL privilege (required for use of
the Install Utility). Use the DCL command INSTALL to invoke the
interactive Install Utility. When the INSTALL> prompt appears, type
CREATE, followed by the complete file specification of the shareable
image that contains the common block (file type defaults to EXE) and the
qualifiers /WRITEABLE and /SHARED. The Install Utility installs your
shareable image and reissues the INSTALL> prompt. Type EXIT to exit.
Remember to remove CMKRNL privilege. (For complete documentation
of the Install Utility, see the VMS Install Utility Manual.)

The following example shows how to install a shareable image:

$ SET PROCESS/PRIVILEGE=CMKRNL
$ INSTALL
INSTALL> CREATE DISK$USER: [INCOME.DEV]INC_COMMON­
_INSTALL> /WRITEABLE/SHARED
INSTALL> EXIT
$ SET PROCESS/PRIVILEGE=NOCMKRNL

Note: A disk containing an installed image cannot be dismounted. To
remove an installed image, invoke the Install Utility and type
DELETE followed by the complete file specification of the image.
The DELETE subcommand does not delete the file from the disk; it
removes the file from the list of known installed images.

Perform the following steps to write or read the data in an installed common
block from within any program:

1 Include the same variable and common block definitions in the program.

2 Compile the program.

3 Link the program against the shareable image that contains the common
block. (Linking against a shareable image requires an options file.)

$ LINK INCOME, DATA/OPTION
$ LINK REPORT, DATA/OPTION

5.3.4.2

Shareable Resources
5.3 Symbols

DATA.OPT

INC_COMMON/SHAREABLE

4 Execute the program.

In the previous series of examples, the two programs INCOME and REPORT
access the same area of memory through the installed common block
INCOME_DATA (defined in INC_COMMON.FOR).

Typically, programs accessing shared data use common event flag clusters to
synchronize read and write access to the data. Refer to Chapter 4 for more
information on using event flags for program synchronization.

Global Sections
To share data using global sections, each process that plans to access the data
includes a common block of the same name, which contains the variables for
the data. The first process to reference the data declares the common block
as a global section and, optionally, maps data to the section. (Data in global
sections, as in private sections, must be page aligned; see Section 8.3 for
instructions.)

To create a global section, invoke SYS$CRMPSC as described in Section 8.3,
and add the following:

• Additional argument-Specify the name of the global section
(argument 5). A program uses this name to access a global section.

• Additional flag-Set the SEC$V_GBL bit of the flags argument to indicate
that the section is a global section.

As other programs need to reference the data, each can use either
SYS$CRMPSC or SYS$MGBLSC to map data into the global section. If you
know that the global section exists, best practice is to use the SYS$MGBLSC
system service.

The format for SYS$MGBLSC is as follows:

SYS$MGBLSC (inadr,[retadr],[acmode],[flags],gsdnam,[ident],[relpag])

Refer to the VMS System Services Reference Manual for complete information
on this system service.

In Example 5-1, one image, DEVICE.FOR, passes device names to another
image, GETDEVINF.FOR. GETDEVINF.FOR returns the process name and
the terminal associated with the process that allocated each device. The two
processes use the global section GLOBAL_SEC to communicate. GLOBAL_
SEC is mapped to the common block named DATA, which is page aligned by
the options file DATA.OPT. Event flags are used to synchronize the exchange
of information. UFO_CREATE.FOR, DATA.OPT, and DEVICE.FOR are
included here for easy reference. Refer to Section 8.3 if you have questions
about either of these programs.

5-15

Shareable Resources
5.3 Symbols

5-16

Example 5-1 Interprocess Communication Using Global Sections

!UFO_CREATE.FOR

INTEGER FUNCTION UFO_CREATE (FAB,
2 RAB,
2 LUN)

Include RMS definitions
INCLUDE '($FABDEF)'
INCLUDE '($RABDEF)'

! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN

! Declare channel
INTEGER*4 CHAN
COMMON /CHANNEL/ CHAN

! Declare status variable
INTEGER STATUS

! Declare system procedures
INTEGER SYS$CREATE

! Set useropen bit in the FAB options longword
FAB.FAB$L_FOP = FAB.FAB$L_FOP .OR. FAB$M_UFO
! Open file
STATUS = SYS$CREATE (FAB)

! Read channel from FAB status word
CHAN = FAB.FAB$L_STV

! Return status of open operation
UFO_CREATE = STATUS

END

DATA.OPT

PSECT_ATTR = DATA, PAGE

DEVICE.FOR

! Define global section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC_MASK

Example 5-1 Cont'd. on next page

Shareable Resources
5.3 Symbols

Example 5-1 (Cont.) Interprocess Communication Using Global
Sections

! Logical unit number for section file
INTEGER INFO_LUN
! Channel number for section file
INTEGER SEC_CHAN
COMMON /CHANNEL/ SEC_CHAN
! Length for the section file
INTEGER SEC_LEN
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL

Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)
! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/
! User-open routines
INTEGER UFO_CREATE
EXTERNAL UFO_CREATE

Open the section file
STATUS = LIB$GET_LUN (INFO_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC_MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL
! (last address -- first address + length of last element + 511)/512
SEC_LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512
OPEN (UNIT=INFO_LUN,
2 FILE='INFO.TMP',
2 STATUS='NEW',
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
! Free logical unit number and map section
CLOSE (INFO_LUN)
! Get location of data
PASS_ADDR (1) = %LDC (DEVICE)
PASS_ADDR (2) = %LDC (TERMINAL)
STATUS = SYS$CRMPSC (PASS_ADDR,
2 RET_ADDR,
2
2
2
2

%VAL(SEC_MASK),
I GLOBAL_SEC I •

Address of section
Addresses mapped

Section mask
Section name

2 %VAL(SEC_CHAN), I/O channel
2 • ")
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

Example 5-1 Cont'd. on next page

5-17

Shareable Resources
5.3 Symbols

5-18

Example 5-1 (Cont.) Interprocess Communication Using Global
Sections

! Create the subprocess
STATUS= SYS$CREPRC (.
2 'GETDEVINF' . Image
2
2 'GET_DEVICE'. Process name
2 %VAL(4),, ,) Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Write data to section
DEVICE= '$FLOPPY1'
! Get common event flag cluster and set flag
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! When GETDEVINF has the information, INFO_FLAG is set
STATUS = SYS$WAITFR (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

GETDEVINF.FOR

! Define section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC_MASK
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)
! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

Get common event flag cluster and wait
for GBL1.FOR to set REQUEST_FLAG

STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get location of data
PASS_ADDR (1) = %LDC (DEVICE)
PASS_ADDR (2) = %LDC (TERMINAL)

Example 5-1 Cont'd. on next page

5.3.4.3

Shareable Resources
5.3 Symbols

Example 5-1 (Cont.) Interprocess Communication Using Global
Sections

! Set write flag
SEC_MASK = SEC$M_WRT
! Map the section
STATUS = SYS$MGBLSC (PASS_ADDR,
2 RET_ADDR,
2

Address of section
Address mapped

2 %VAL(SEC_MASK), Section mask
2 'GLOBAL_SEC', ,) Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Call GETDVI to get the process ID of the
process that allocated the device, then
call GETJPI to get the process name and terminal
name associated with that process ID.
Set PROCESS equal to the process name and
set TERMINAL equal to the terminal name.

After information is in GLOBAL_SEC
STATUS = SYS$SETEF (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

By default, a global section is deleted when no image is mapped to it. Such
global sections are called temporary global sections. If you have PRMGBL
privilege, you can create a permanent global section (set the SEC$V_PERM
bit of the flags argument when you invoke SYS$CRMPSC). A permanent
global section is not deleted until after it is marked for deletion with the
SYS$DGBLSC system service (requires PRMGBL). Once a permanent section
is marked for deletion, it is like a temporary section; when no image is
mapped to it, the section is deleted.

VMS RMS Shared Files
VMS RMS allows concurrent access to a file. Shared files can be one of the
following formats:

• Indexed files

• Relative files

• Sequential files with 512-byte fixed-length records

To coordinate access to a file, VMS RMS uses the lock manager. You can
override the VMS RMS lock manager by controlling access yourself. Refer to
Chapter 4 for more information on synchronization.

5-19

6 Security Features

6.1 Rights Database

With the VMS operating sytem, you can implement several security features
to protect access to files and devices. The basis of the VMS security scheme is
the identifier, a 32-bit binary value that represents a process to the system. An
identifier can represent an individual user, a group of users, or some aspect of
the environment in which a user is operating. A process is the holder of an
identifier when that identifier can represent that process to the system.

The system rights database is an indexed file consisting of identifier and
holder records. Those records define the identifiers and the holders of those
identifiers on a system. When a process logs into the system, LOGINOUT
creates a rights list for the process from the applicable entries in the rights
database. Thus, a process rights list contains all the identifiers that the process
holds. A process can be the holder of a number of identifiers. Each of those
identifiers determines the identity and the access rights of the list holder.
The process rights list becomes part of the process and is propagated to any
created processes.

The entries in the rights list do not specifically grant access; instead, the VMS
operating system uses the rights list to perform a protection check when the
process attempts to access an object. VMS compares the identifiers in the
rights list to the protection attributes of the object and grants or denies access
to the object based on the comparison.

Access Control Lists

The VMS operating system also uses access control lists (ACL) in conjunction
with the identifiers to control access to an object such as a file, device, or
mailbox. An ACL consists of access control list entries (ACEs) that specify
the type of access an identifier has to an object. When a process attempts to
access an object with an associated ACL, the VMS operating system grants or
denies access based on whether an exact match for the identifier in the ACL
exists in the rights database.

6.2 System Services and Security
You use VMS system services to perform the following security tasks:

• Create and maintain a rights database

• Create and translate access control list entries

• Modify a process rights list

• Check access protection

• Provide a security erase pattern for disks

• Control magnetic tape access

6-1

Security Features
6.2 System Services and Security

6.3 Privileged Images

6-2

Table 6-1 lists the system services related to system security.

Table 6-1 Security System Services

Service Function

SYS$ADD_HQLDER

SYS$ADD_IDENT

SYS$ASCTOID

SYS$CHANGE_ACL

SYS$CHECK_
ACCESS

SYS$CHKPRO

SYS$CREATE_RDB

SYS$ERAPAT

SYS$FIND_HELD

SYS$FIND_HOLDER

SYS$FINISH_RDB

SYS$FORMAT_ACL

SYS$GRANTID

SYS$1DTOASC

SYS$MOD_HQLDER

SYS$MOD_IDENT

SYS$MT ACCESS

SYS$PARSE_ACL

SYS$REM_HQLDER

SYS$REM_IDENT

SYS$REVOKID

Adds holder record to rights database

Adds identifier to rights database

Translates identifier name to binary value

Creates or modifies an ACL

Invokes system access protection check on behalf of
another user

Invokes system access protection check

Initializes a rights database

Generates a security erase pattern

Returns identifiers held by a holder in rights database

Returns holders of an identifier in rights database

Deallocates record stream and clears context value when
searching the rights database

Formats ACE into a text string

Adds identifier to process or system rights list

Translates identifier value to its identifier name

Modifies holder record in rights database

Modifies identifier record in rights database

Controls magnetic tape access

Converts text ACE into binary format

Deletes holder record from identifier's list of holders in
rights database

Deletes identifier and all holders of that identifier from
rights database

Removes identifier from process or system rights list

The VMS System Services Reference Manual describes each major component of
system security and how to use these system services to accomplish security
tasks.

In addition to using the system services, file security can also be provided by
installing a program as a privileged image. When a program is installed as a
privileged image, the program itself has specified privileges, thus eliminating
the need for the user to have those privileges. To avoid security problems,
you must prevent the privileged image from displaying traceback information;
therefore, before installing the image, link it using the /NOTRACEBACK
qualifier of the LINK command.

Security Features
6.3 Privileged Images

Perform the following steps to install a program as a privileged image:

1 Enter the DCL command SET PROCESS /PRIVILEGE=CMKRNL to give
yourself CMKRNL privilege (required for use of the Install Utility).

2 Enter the INSTALL command at the $ prompt to invoke the interactive
Install Utility.

3 When the INSTALL> prompt appears, enter the following command:

INSTALL> CREATE file-specification /PRIVILEGED [=(priv, ...)]

The priv argument is a list of the privileges that the program requires. If
only one privilege is specified, parentheses are not required.

4 Press the RETURN key. The Install Utility installs your program as a
privileged image and reissues the INSTALL> prompt.

5 Enter the EXIT command to exit from the Install Utility.

6 Enter the DCL command SET PROCESS /PRIVILEGE=NOCMKRNL to
remove the CMKRNL privilege.

The following statements install $DISK1 :[INCOME]GET_STATS as a
privileged image with the BYPASS privilege:

$ SET PROCESS/PRIVILEGE=CMKRNL
$ INSTALL
INSTALL> CREATE $DISK1: [INCOME]GET_STATS /PRIVILEGED=(BYPASS)
INSTALL> EXIT
$ SET PROCESS/PRIVILEGE=NOCMKRNL

A disk containing an installed image cannot be dismounted until the installed
image is deleted. To delete an installed image, invoke the Install Utility and
enter DELETE followed by the complete file specification of the image. Enter
the EXIT subcommand to exit.

For more information about the Install Utility, see the VMS Install Utility
Manual.

6-3

7 Input/Output Operations

The following techniques are available for completing IjO operations within
a program:

• Program language 1/0 statements

• VMS Record Management Services (RMS) or RTL routines

• SYS$QIO and SYS$QIOW system services

• Non-DIGITAL-supplied device drivers to control the 1/0 to the device
itself

The technique you select depends on the ease of use, speed, and level of
control you want. The program language I/O statements have the least speed
and level of control, but are the easiest to use. VMS RMS and RTL routines
can perform most I/O operations for a high-level or assembly language
program. System services can complete any IjO operation and can access
devices not supported within VMS RMS. Writing a device driver provides the
most control over I/O operations, but can be relatively difficult to implement.

This chapter describes the different levels of 1/0 programming and provides
detailed examples of accomplishing common IjO tasks.

7 .1 Choosing 1/0 Techniques

7.1.1 Simple User 1/0

There are several types of I/O operations that can be performed within a
program, including the following:

• Reading simple input from users and sending simple output to users

• Reading complex input from users and sending complex output to users

• Completing special 1/0 actions such as interrupts, controlling echo,
handling unsolicited input, using the type-ahead buffer, using case
conversion, and sending system broadcast messages

• Sending data to and from files

• Sending data to and from devices

To read simple input from a user or to send simple output to a user, use RTL
routines. One RTL routine allows you to specify a prompt string to prompt
for input from the current input device, defined by SYS$INPUT. Another RTL
routine allows you to write a string to the current output device, defined by
SYS$0UTPUT.

7-1

7.1.2

7.1.3

7.1.4

7.1.5

Input/Output Operations
7 .1 Choosing 1/0 Techniques

Complex User 1/0
RTL routines provide an extensive number of screen management (SMG$)
routines for reading multiple lines of input from users or for sending
complex output to users. The SMG$ routines allow you to create and modify
complicated displays that accept input and produce output.

Reading and Writing Data to Files
Programming language I/O statements can be the most effective for sending
data to and from files. Program language I/O statements call VMS RMS
routines to complete most file I/O. You can also use VMS RMS directly in
your programs for accomplishing file I/O. File input/output operations are
covered in Chapter 8.

Reading and Writing Data to Devices
To send data to and from devices, system services provide the most flexibility
and control. You can use system services to access devices not supported by
the programming language or by VMS RMS.

Broadcast Messages and Special 1/0 Actions
To complete special I/O actions, you can use SMG$ routines or the
SYS$QIO or SYS$QIOW system services. For broadcast messages, use the
SYS$BRKTHRU service.

7.2 Using SYS$1NPUT and SYS$0UTPUT

7.2.1

Typically, you set up your program so that the user is the invoker. The user
starts the program by entering a DCL command associated with the program
or by using the RUN command.

Default Input and Output Devices

7-2

The user's input and output devices are defined by the logical names
SYS$INPUT and SYS$0UTPUT, which are initially set to the values listed in
Table 7-1.

Table 7-1 SYS$1NPUT and SYS$0UTPUT Values

Logical Name User Mode

SYS$1NPUT Interactive

Batch job

Command procedure

Equivalence Device or File

Terminal on which user is logged in

Data lines following the invocation of
the program

Data lines following the invocation of
the program

7.2.2

Input/Output Operations
7.2 Using SYS$1NPUT and SYS$0UTPUT

Table 7-1 (Cont.) SYS$1NPUT and SYS$0UTPUT Values

Logical Name User Mode

SYS$0UTPUT Interactive

Batch job

Command procedure

Equivalence Device or File

Terminal on which the user is logged
in

Batch log file

Terminal on which the user is logged
in

Generally, use of SYS$INPUT and SYS$0UTPUT as the primary input
and output devices is recommended. A user of the program can redefine
SYS$INPUT and SYS$0UTPUT to redirect input and output as desired. For
example, the interactive user might redefine SYS$0UTPUT as a file name to
save output in a file rather than display it on the terminal.

Reading and Writing to Alternate Devices and External Files
Alternatively, you can design your program to read input from and write
output to a file or a device other than the user's terminal. Files may be useful
for writing lengthy amounts of data, for writing data that the user might want
to save, and for writing data that can be reused as input. If you use files
or devices other than SYS$INPUT and SYS$0UTPUT, you should provide
the names of the files or devices (best form is to use logical names) and any
conventions for their use. You can specify such information by having the
program write it to the terminal, by creating a help file, or by providing user
documentation.

7 .3 Working with Simple User 1/0

7.3.1

Usually, you can request information from, or write information to, the
user with little regard for formatting. For such simple 1/0, use LIB$GET_
INPUT and LIB$PUT_OUTPUT or the 1/0 statements for your programming
language.

To provide complex screen displays for input or output, use the screen
management facility described in Section 7.4.

Default Devices for Simple 1/0
LIB$GET_INPUT and LIB$PUT_OUTPUT read from SYS$1NPUT and write
to SYS$0UTPUT. The logical names SYS$INPUT and SYS$0UTPUT are
implicit to the routines; you need only call the routine to access the 1/0 unit
(device or file) associated with SYS$INPUT and SYS$0UTPUT. You cannot
use these routines to access an 1/0 unit other than the one associated with
SYS$INPUT or SYS$0UTPUT.

If more than one person is working on a program, you should generate logical
unit numbers with LIB$GET_LUN, rather than choose your own values, to
ensure that the number is unique among all logical unit numbers used in the
program.

7-3

7.3.2

Input/Output Operations
7 .3 Working with Simple User 1/0

Getting a Line of Input

7-4

A read operation transfers one record from the input unit to a variable or
variables of your choice. On a terminal, the user ends a record by pressing
a terminator. The terminators are the ASCII characters NUL through US (0
through 31) except for LF, VT, FF, TAB, and BS. The usual terminator is CR,
generated by pressing the RETURN key.

If you are reading character data, LIB$GET_INPUT is a simple way of
prompting for and reading the data. If you are reading noncharacter data,
programming language 1/0 statements are preferable since they allow you to
translate the data to a format of your choice.

For example, VAX FORTRAN 1/0 offers the ACCEPT statement, which reads
data from SYS$INPUT, and the READ statement, which reads data from an
1/0 unit of your choice.

Make sure the variables that you specify can hold the largest number of
characters the user of your program might enter, unless you deliberately want
to truncate the input. Overflowing the input variable using LIB$GET_INPUT
causes the fatal error LIB$_INPSTRTRU (defined in $LIBDEF); overflowing
the input variable using language 1/0 statements may not necessarily cause
an error but does truncate your data.

LIB$GET_INPUT places the characters read in a variable of your choice. You
must define the variable type as character. Optionally, LIB$GET_INPUT
places the number of characters read in another variable of your choice.
On terminal input, LIB$GET_INPUT optionally writes a prompt before
reading the input. The prompt is suppressed automatically for a nonterminal
operation.

Example 7-1 reads a line of input using LIB$GET_INPUT:

Example 7-1 Reading a Line of Data

INTEGER*4 STATUS,
2 LIB$GET_INPUT
INTEGER*2 INPUT_SIZE
CHARACTER*512 INPUT
STATUS= LIB$GET_INPUT (INPUT, ! Input value
2 'Input value: ' ! Prompt (optional)
2 INPUT_SIZE) ! Input size (optional)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

In further references to input character data, you should specify the
appropriate substring or sequence of array elements rather than the entire
character variable. Using the preceding example, if you read characters
into a character string variable named INPUT and store the number of
characters read in a variable named INPUT_SIZE, you should refer to INPUT
(l:INPUT_SIZE) rather than INPUT.

7.3.3

Input/Output Operations
7 .3 Working with Simple User 1/0

Getting Several Lines of Input
The usual technique for getting a variable number of input records-either
values for which you are prompting or data records from a file-is to read
and process records until end-of-file. End-of-file means one of the following:

• Terminal-The user has pressed CTRL/Z. To ensure that the convention
is followed, you might first write a message telling the user to press
CTRL/Z to terminate the input sequence.

• Command procedure-The end of a sequence of data lines has been
reached.

• File-The end of an actual file has been reached.

Process the records in a loop (one record per iteration) and terminate the loop
on end-of-file. LIB$GET_INPUT returns the error RMS$_EOF (defined in
$RMSDEF) when end-of-file occurs.

Example 7-2 uses a VAX FORTRAN READ statement in a loop to read a
sequence of integers from SYS$INPUT:

Example 7-2 Reading a Varying Number of Input Records

! Return status and error codes
INTEGER STATUS,
2 IOSTAT,
3 STATUS_OK,
4 IOSTAT_OK
PARAMETER (STATUS_OK = 1,
2 IO_OK = 0)
INCLUDE '($FORDEF)'
! Data record read on each iteration
INTEGER INPUT_NUMBER
! Accumulated data records
INTEGER STORAGE_COUNT,
2 STORAGE_MAX
PARAMETER (STORAGE_MAX = 255)
INTEGER STORAGE_NUMBER (STORAGE_MAX)
! Write instructions to interactive user
TYPE *·
2 'Enter values below. Press CTRL/Z when done.'
! Get first input value
WRITE (UNIT=*,
2 FMT='(A,$) ') ' Input value: '
READ (UNIT=*,
2 IOSTAT=IOSTAT,
2 FMT='(BN,I)') INPUT_NUMBER
IF (IOSTAT .EQ. IO_OK) THEN

STATUS = STATUS_OK
ELSE

CALL ERRSNS (,,,,STATUS)
END IF

Example 7-2 Cont'd. on next page

7-5

7.3.4

Input/Output Operations
7 .3 Working with Simple User 1/0

Example 7-2 (Cont.) Reading a Varying Number of Input Records

! Process each input value until end-of-file
DO WHILE ((STATUS .NE. FOR$_ENDDURREA) .AND.

(STORAGE_COUNT .LT. STORAGE_MAX))
! Keep repeating on conversion error
DO WHILE (STATUS .EQ. FOR$_INPCONERR)

WRITE (UNIT=*,
2 FMT='(A,$)') ' Try again: '

READ (UNIT=*,
2 IOSTAT=IOSTAT,
2 FMT=' (BN,I)') INPUT_NUMBER

IF (IOSTAT .EQ. IO_OK) THEN
STATUS = STATUS_OK

ELSE
CALL ERRSNS (,,,,STATUS)

END IF
END DO
! Continue if end-of-file not entered
IF (STATUS .NE. FOR$_ENDDURREA) THEN

! Status check on last read
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Store input numbers in input array
STORAGE_COUNT = STORAGE_COUNT + 1
STORAGE_NUMBER (STORAGE_COUNT) INPUT NUMBER
! Get next input value
WRITE (UNIT=* ,

2 FMT='(A,$)') ' Input value: '
READ (UNIT=*,

2 IOSTAT=IOSTAT,
2 FMT='(BN,I)') INPUT_NUMBER

IF (IOSTAT .EQ. IO_OK) THEN
STATUS = STATUS_OK

ELSE
CALL ERRSNS (,,,,STATUS)

END IF
END IF

END DO

Writing Simple Output

7-6

You can use LIB$PUT_QUTPUT to write character data. If you are writing
noncharacter data, programming language 1/0 statements are preferable,
since they allow you to translate the data to a format of your choice.

LIB$PUT_QUTPUT writes one record of output to SYS$0UTPUT. Typically,
you should avoid writing records that exceed the device width. The width of
a terminal is 80 or 132 characters, depending on the setting of the physical
characteristics of the device. The width of a line printer is 132 characters. If
your output record exceeds the width of the device, the excess characters are
either truncated or wrapped to the next line, depending on the setting of the
physical characteristics.

You must define a value (a variable, constant, or expression) to be written.
The value must be expressed in characters. You should specify the exact
number of characters being written and not include the trailing portion of a
variable.

Input/Output Operations
7 .3 Working with Simple User 1/0

The following example writes a character expression to SYS$0UTPUT:

INTEGER*4 STATUS,
2 LIB$PUT_OUTPUT
CHARACTER*40 ANSWER
INTEGER*4 ANSWER_SIZE

STATUS= LIB$PUT_OUTPUT ('Answer: ' //ANSWER (1:ANSWER_SIZE))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7 .4 Working with Complex User 1/0
The SMG$ run-time library routines provide a simple, device-independent
interface for managing the appearance of the terminal screen. The SMG$
routines are primarily for use with video terminals; however, they can be
used with files or hardcopy terminals.

To use the Screen Management Facility for output, do the following:

1 Create a pasteboard-A pasteboard is a logical, two-dimensional area on
which you place virtual displays. Use the SMG$CREATE_PASTEBOARD
routine to create a pasteboard, and associate it with a physical device.
When you refer to the pasteboard, SMG performs the necessary 1/0
operation to the device.

2 Create a virtual display-A virtual display is a logical, two-dimensional
area in which you place the information to be displayed. Use the
SMG$CREATE_ VIRTUAL_DISPLAY routine to create a virtual display.

3 Paste virtual displays to the pasteboard-To make a virtual display
visible, map (or paste) it to the pasteboard using the SMG$PASTE_
VIRTUAL_DISPLAY routine. You can reference a virtual display
regardless of whether that display is currently pasted to a pasteboard.

4 Create a viewport for a virtual display-A viewport is a rectangular
viewing area that can be moved around on a buffer to view different
pieces of the buffer. The viewport is associated with a virtual display.

Example 7-3 associates a pasteboard with the terminal, creates a virtual
display the size of the terminal screen, and pastes the display to the
pasteboard. When text is written to the virtual display, it appears on the
terminal screen.

7-7

7.4.1

Input/Output Operations
7 .4 Working with Complex User 1/0

Pasteboards

7-8

Example 7-3 Associating a Pasteboard with a Terminal

! Screen management control structures
INTEGER*4 PBID, ! Pasteboard ID
2 VDID, ! Virtual display ID
2 ROWS, ! Rows on screen
2 COLS ! Columns on screen
! Status variable and routines called as functions
INTEGER*4 STATUS,
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$PASTE_VIRTUAL_DISPLAY
! Set up SYS$0UTPUT for screen management
! and get the number of rows and columns on the screen
STATUS = SMG$CREATE_PASTEBOARD (PBID, ! Return value
2 'SYS$0UTPUT',
2 ROWS, ! Return value
2 COLUMNS) ! Return value
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Create virtual display that pastes to the full screen size
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (ROWS,
2 COLUMNS,
2 VDID) ! Return value
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Paste virtual display to pasteboard
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VOID,
2 PBID,
2 1, ! Starting at row 1 and
2 1) ! column 1 of the screen
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

To use the SMG$ routines for input, you associate a virtual keyboard with
a physical device or file using the SMG$CREATE_ VIRTUAL_KEYBOARD
routine. The SMG$ input routines can be used alone or with the output
routines. This section assumes that you are using the input routines with the
output routines. Section 7.5 describes how to use the input routines without
the output routines.

The Screen Management Facility keeps an internal representation of the
screen contents; therefore, it is important that you do not mix SMG$
routines with other forms of terminal IjO. The following subsections contain
guidelines for using most of the SMG$ routines; for more details, see the VMS
Run-Time Library Routines Volume.

Use the SMG$CREATE_PASTEBOARD routine to create a pasteboard and
associate it with a physical device. SMG$CREATE_PASTEBOARD returns
a unique pasteboard identification number; use that number to refer to
the pasteboard in subsequent calls to SMG$ routines. After associating a
pasteboard with a device, your program references only the pasteboard. The
Screen Management Facility performs all necessary operations between the
pasteboard and the physical device.

7.4.1.1

7.4.1.2

7.4.1.3

Input/Output Operations
7 .4 Working with Complex User 1/0

Creating a Pasteboard
When you create a pasteboard, the Screen Management Facility clears the
screen by default. To clear the screen yourself, invoke the SMG$ERASE_
PASTEBOARD routine. Any virtual displays associated with the pasteboard
are removed from the screen, but their contents in memory are not affected.
The following example erases the screen:

STATUS = SMG$ERASE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Deleting a Pasteboard
Invoking SMG$DELETE_PASTEBOARD deletes a pasteboard, making the
screen unavailable for further pasting. The optional second argument of the
SMG$DELETE_P ASTEBOARD routine allows you to indicate whether the
routine clears the screen (the default) or leaves it as is. The following example
deletes a pasteboard and clears the screen:

STATUS = SMG$DELETE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

By default, the screen is erased when you create a pasteboard. Generally, you
should erase the screen at the end of a session.

Setting Screen Dimensions and Background Color
The routine SMG$CHANGE_PBD_CHARACTERISTICS sets the dimensions
of the screen and its background color. You can also use this routine to
retrieve dimensions and background color. To get more detailed information
about the physical device, use the SMG$GET_PASTEBOARD_ATTRIBUTES
routine. The following example changes the screen width to 132 and the
background to white, then restores the original width and background before
exiting:

Example 7-4 Modifying the Screen Dimensions and Background
Color

INTEGER*4 WIDTH,
2 COLOR
INCLUDE '($SMGDEF)'

Example 7-4 Cont'd. on next page

7-9

7.4.2

Input/Output Operations
7 .4 Working with Complex User 1/0

Virtual Displays

7.4.2.1

7-10

Example 7-4 (Cont.) Modifying the Screen Dimensions and
Background Color

! Get current width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS (PBID,,
2 WIDTH,,,,
2 COLOR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Change width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS (PBID,
2 132,' ''
2 SMG$C_COLOR_WHITE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Restore width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS (PBID,
2 WIDTH,,,,
2 COLOR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You write to virtual displays, which are logically configured as rectangles,
using the SMG$ routines. The dimensions of a virtual display are designated
vertically as so many rows and horizontally as so many columns. A position
in a virtual display is designated by naming a row and a column. Row and
column numbers begin at 1.

Creating a Virtual Display
Use the SMG$CREATE_ VIRTUAL _DISPLAY routine to create a virtual
display. SMG$CREATE_ VIRTUAL_DISPLAY returns a unique virtual
display identification number; use that number to refer to the virtual display.

Optionally, you can use the fifth argument of SMG$CREATE_VIRTUAL_
DISPLAY to specify one or more of the following video attributes: blinking,
holding, reversing background, and underlining. All characters written to that
display will have the specified attribute unless you indicate otherwise when
writing text to the display. The following example makes everything written
to the display HEADER_ VDID appear bolded by default:

INCLUDE 1 ($SMGDEF) 1

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (1, ! Rows
2 80, ! Columns
2 HEADER_VDID,,
2 SMG$M_BOLD)

You can border a virtual display by specifying the fourth argument when
you invoke SMG$CREATE_VIRTUAL_DISPLAY. You can label the border
with the routine SMG$LABEL_BQRDER. If you use a border, you must leave
room for it: a border requires two rows and two columns more than the size
of the display. The following example places a labeled border around the
STATS_ VOID display. As pasted, the border occupies rows 2 and 13 and
columns 1 and 57.

7.4.2.2

Input/Output Operations
7 .4 Working with Complex User 1/0

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10, ! Rows
2 55, ! Columns
2 STATS_VDID,
2 SMG$M_BORDER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$LABEL_BORDER (STATS_VDID,
2 'statistics')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID,
2 3, ! Row
2 2) ! Column

Pasting Virtual Displays
To make a virtual display visible, paste it to a pasteboard using the
SMG$PASTE_VIRTUAL_DISPLAY routine. You position the virtual display
by specifying which row and column of the pasteboard should contain
the upper lefthand corner of the display. Example 7-5 defines two virtual
displays and pastes them to one pasteboard.

Example 7-5 Defining and Pasting Virtual Displays

INCLUDE 1 ($SMGDEF)'
INTEGER*4 PBID,
2 HEADER_VDID,
2 STATS_VDID
INTEGER*4 STATUS,
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$PASTE_VIRTUAL_DISPLAY
! Create pasteboard for SYS$0UTPUT
STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Header pastes to first rows of screen
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (3,
2 80,
2 HEADER_VDID,
2 SMG$M_BORDER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (HEADER_VDID,
2 PBID,
2 1,
2 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 7-5 Cont'd. on next page

Rows
Columns
Name
Border

Row
Column

7-11

Input/Output Operations
7 .4 Working with Complex User 1/0

7-12

Example 7-5 (Cont.) Defining and Pasting Virtual Displays

! Statistics area pastes to rows 5 through 15,
! columns 2 through 56
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10,
2 55,
2 STATS_VDID,
2 SMG$M_BORDER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID,
2 5,
2 2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Figure 7-1 shows the resultant screen.

Figure 7-1 Defining and Pasting Virtual Displays

ZK-2044-84

Rows
Columns
Name
Border

Row
Column

You can paste a single display to any number of pasteboards. Any time you
change the display, all pasteboards containing the display are automatically
updated.

A pasteboard can hold any number of virtual displays. You can paste virtual
displays over one another to any depth, occluding the displays underneath.
The displays underneath are only occluded to the extent that they are
covered; that is, the parts not occluded remain visible on the screen. (In
the first figure of Section 7.4.2.3, displays 1 and 2 are partially occluded.)
When you unpaste a virtual display that occludes another virtual display, the
occluded part of the underneath display becomes visible again.

You can find out if a display is occluded with the routine SMG$CHECK_
FOR_OCCLUSION. The following example pastes a 2-row summary display
over the last two rows of the statistics display, if the statistics display is not
already occluded. If the statistics display is occluded, the example assumes
that it is occluded by the summary display and unpastes the summary
display, making the last two rows of the statistics display visible again.

7.4.2.3

Input/Output Operations
7 .4 Working with Complex User 1/0

STATUS = SMG$CHECK_FOR_OCCLUSION (STATS_VDID,
2 PBID,
2 OCCLUDE_STATE)
! OCCLUDE_STATE must be defined as INTEGER*4

IF (OCCLUDE_STATE) THEN
STATUS = SMG$UNPASTE_VIRTUAL_DISPLAY (SUM_VDID,

2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

ELSE
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (SUM_VDID,

2 PBID,
2 11,
2 2)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END IF

Rearranging Virtual Displays
Pasted displays can be rearranged by moving or repasting.

• Moving-To move a display, use the SMG$MOVE_VIRTUAL_DISPLAY
routine. The following example moves display 2. Figure 7-2 shows the
screen before and after the statement executes.

STATUS = SMG$MOVE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 5,
2 10)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Figure 7-2 Moving a Virtual Display

Before Moving Display 2

aaaaaaaaa
aaaaaaaaa
aa 2
aa bbbbbbbbb
aa bbbbbbbbb

bbbbbb 3
bbbbbb ccccccccc
bbbbbb ccccccccc

ccccccccc
ccccccccc
ccccccccc

After Moving Display 2

aaaaaaaaa
aaaaaaaaa
aaaaaa 2
aaaaaa bbbbbbbbb
aaaaaa bbbbbbbbb

bb 3
bb ccccccccc
bb ccccccccc

ccccccccc
ccccccccc
ccccccccc

ZK-2045-84

7-13

Input/Output Operations
7 .4 Working with Complex User 1/0

7.4.2.4

7-14

• Repasting-To repaste a display, use the SMG$REPASTE_VIRTUAL_
DISPLAY routine. The following example repastes display 2. Figure 7-3
shows the screen before and after the statement executes.

STATUS = SMG$REPASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 4,
2 4)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Figure 7-3 Repasting a Virtual Display

Before Repasting Display 2 After Repasting Display 2

aaaaaaaaa
aaaaaaaaa
aa 2
aa bbbbbbbbb
aa bbbbbbbbb

bbbbbb 3
bbbbbb ccccccccc
bbbbbb ccccccccc

ccccccccc
ccccccccc
ccccccccc

aaaaaaaaa
aaaaaaaaa
aaaaaa 2
aaaaaa bbbbbbbbb
aaaaaa bbbbbbbbb

bbbbbbbbb
bbbbbbbbb cc
bbbbbbbbb cc

cc
ccccccccc
ccccccccc

ZK-2046-84

You can obtain the pasting order of the virtual displays using SMG$LIST_
PASTING_ORDER. This routine returns the identifiers of all the virtual
displays pasted to a specified pasteboard.

Removing Virtual Displays
You can remove a virtual display from a pasteboard in a number of different
ways:

• Erase a virtual display-Invoking SMG$UNPASTE_VIRTUAL_DISPLAY
erases a virtual display from the screen but retains its contents in memory.
The following example erases the statistics display:

STATUS = SMG$UNPASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Delete a virtual display-Invoking SMG$DELETE_ VIRTUAL_DISPLAY
removes a virtual display from the screen and removes its contents from
memory. The following example deletes the statistics display:

STATUS = SMG$DELETE_VIRTUAL_DISPLAY (STATS_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.4.2.5

Input/Output Operations
7 .4 Working with Complex User 1/0

• Delete a number of virtual displays-Invoking SMG$POP_VIRTUAL_
DISPLAY removes a specified virtual display and any virtual displays
pasted after that display from the screen and removes the contents of
those displays from memory. The following example "pops" display 2.
Figure 7-4 shows the screen before and after popping. (Note that display
3 is not deleted because it is occluding display 2, but because it was
pasted after display 2.)

STATUS = SMG$POP_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Figure 7-4 Popping a Virtual Display

Before Popping Display 2

aaaaaaaaa
aaaaaaaaa
aa 2
aa bbbbbbbbb
aa bbbbbbbbb

bbbbbb 3
bbbbbb ccccccccc
bbbbbb ccccccccc

ccccccccc
ccccccccc
ccccccccc

Modifying a Virtual Display

After Popping Display 2

.---1-
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

ZK-2047-84

The screen management facility provides several routines for modifying the
characteristics of an existing virtual display:

• SMG$CHANGE_VIRTUAL_DISPLAY-Changes the size, video
attributes, or border of a display

• SMG$CHANGE_RENDITION-Changes the video attributes of a
. portion of a display

• SMG$MOVE_TEXT-Moves text from one virtual display to another

The following example uses SMG$CHANGE_VIRTUAL_DISPLAY to change
the size of the WHOOPS display to five rows and seven columns and to turn
off all of the display's video attributes. If you decrease the size of a display
that is on the screen, any characters in the excess area are removed from the
screen.

STATUS = SMG$CHANGE_VIRTUAL_DISPLAY (WHOOPS_VDID,
2 5, Rows
2 7,, Columns
2 0) ! Video attributes off

7-15

Input/Output Operations
7 .4 Working with Complex User 1/0

7.4.2.6

7-16

The following example uses SMG$CHANGE_RENDITION to direct attention
to the first 20 columns of the statistics display by setting the reverse video
attribute to the complement of the display' s default setting for that attribute:

STATUS = SMG$CHANGE_RENDITION (STATS_VDID,
2 1, Row
2 1, Column
2 10,
2 20,
2
2 SMG$M_REVERSE)

Number of rows
Number of columns
Video-set argument
Video-comp argument

2

SMG$CHANGE_RENDITION uses three sets of video attributes to determine
the attributes to apply to the specified portion of the display: (1) the display' s
default video attributes, (2) the attributes specified by the rendition-set
argument of SMG$CHANGE_RENDITION, and the (3) attributes specified
by the rendition-complement argument of SMG$CHANGE_RENDITION.
Table 7-2 shows the result of each possible combination:

Table 7-2 Setting Video Attributes

rendition-set rendition-complement Result

off

on

off

on

off

off

on

on

Uses display default

Sets attribute

Uses the complement of display
default

Clears attribute

In the previous example, the reverse video attribute is set in the rendition­
complement argument but not in the rendition-set argument, thus specifying
that SMG$CHANGE_RENDITION use the complement of the display's
default setting to ensure that the selected portion of the display is easily seen.

Note that the resulting attributes are based on the display's default attributes,
not its current attributes. If you use SMG$ routines that explicitly set video
attributes, the current attributes of the display may not match its default
attributes.

Using Spawned Subprocesses
You can create a spawned subprocess directly with an SMG$ routine to
allow execution of a DCL command from an application. Only one spawned
subprocess is allowed per virtual display. Use the following routines to work
with subprocesses:

• SMG$CREATE_SUBPROCESS-Creates a DCL spawned subprocess and
associates it with a virtual display.

• SMG$EXECUTE_COMMAND-Allows execution of a specified
command in the created spawned subprocess. There are some restrictions
in specifying the command as follows:

SPAWN, GOTO, or LOGOUT cannot be used and would result in
unpredictable results.

Single-character commands such as CTRL/C have no effect. You can
signal an end-of-file (that is, CTRL/Z) command by setting the flags.

7.4.3

7.4.4

Viewports

Input/Output Operations
7 .4 Working with Complex User 1/0

- A dollar sign must be specified as the first character of any DCL
command.

• SMG$DELETE_SUBPROCESS-Deletes the subprocess created by
SMG$CREATE_SUBPROCESS.

Viewports allow you to view different pieces of a virtual display by moving a
rectangular area around on the virtual display. Only one viewport is allowed
for each virtual display. Once you have associated a viewport with a virtual
display, the only part of the virtual display that is viewable is contained in
the viewport.

The SMG$ routines for working with viewports include the following:

• SMG$CREATE_ VIEWPORT-Creates a viewport and associates it with
a virtual display. You must create the virtual display first. To view the
viewport, you must paste the virtual display first with SMG$P ASTE_
VIRTUAL_DISPLAY.

• SMG$SCROLL _ VIEWPORT-Scrolls the viewport within the virtual
display. If you try to move the viewport outside of the virtual display, it
is truncated to stay within the virtual display. This routine allows you to
specify the direction and extent of the scroll.

• SMG$CHANGE_ VIEWPORT-Moves the viewport to a new starting
location and changes the size of the viewport.

• SMG$DELETE_VIEWPORT-Deletes the viewport and dissociates
it from the virtual display. The viewport is automatically unpasted.
The virtual display associated with the viewport remains intact. You
can unpaste a viewport without deleting it, using SMG$UNPASTE_
VIRTUAL_DISPLAY.

Writing Text to Virtual Display

7.4.4.1

The SMG$ output routines allow you to write text to displays and to delete
or modify the existing text of a display. Remember that changes to a virtual
display are visible only if the virtual display is pasted to a pasteboard.

Positioning the Cursor
Each virtual display has its own logical cursor position. You can control the
position of the cursor in a virtual display with the following routines:

• SMG$HOME_CURSOR-Moves the cursor to a corner of the virtual
display. The default corner is the upper left corner, that is, row 1 column
1 of the display.

• SMG$SET_CURSOR_ABS-Moves the cursor to a specified row and
column.

• SMG$SET_CURSOR_REL-Moves the cursor to offsets from the current
cursor position. A negative value means up (rows) or left (columns). Zero
means no movement.

In addition, many routines permit you to specify a starting location other than
the current cursor position for the operation.

7-17

Input/Output Operations
7 .4 Working with Complex User 1/0

7.4.4.2

7-18

The routine SMG$RETURN _CURSOR_POS returns the row and column of
the current cursor position within a virtual display. You do not have to write
special code to track the cursor position.

Typically, the physical cursor is at the logical cursor position of the most
recently written-to display. If necessary, you can use the SMG$SET_
PHYSICAL _CURSOR routine to set the physical cursor location.

Writing Data Character by Character
If you are writing character by character (see Section 7.4.4.3 for line-oriented
output), there are three routines to use:

• SMG$DRAW_CHAR-Puts one character on the screen at a specified
position. It does not change the cursor position.

• SMG$PUT_CHARS-Puts several characters on the screen at a specified
position with the option of one video attribute.

• SMG$PUT_CHARS_MULTl-Puts several characters on the screen at a
specified position, with multiple video attributes.

These routines are simple and precise. They place exactly the specified
characters on the screen, starting at a specified position in a virtual display.
Anything currently in the positions written-to is overwritten; no other
positions on the· screen are affected. Convert numeric data to character
data with language 1/0 statements before invoking SMG$PUT_CHARS.

The following example converts an integer to a character string and places it
at a designated position in a virtual display:

CHARACTER*4 HOUSE_NO_STRING
INTEGER*4 HOUSE_NO,
2 LINE_NO,
2 STATS_VDID

WRITE (UNIT=HOUSE_NO_STRING,
2 FMT='(I4)') HOUSE_NO
STATUS = SMG$PUT_CHARS (STATS_VDID,
2 HOUSE_NO_STRING,
2 LINE_NO, ! Row
2 1) ! Column

Note that the converted integer is right-justified from column 4 because the
format specification is 14 and the full character string is written. To left-justify
a converted number, you must locate the first nonblank character and write a
substring starting with that character and ending with the last character.

Inserting and Overwriting Text

To insert characters rather than overwrite the current contents of the screen,
use the routine SMG$INSERT_CHARS. Existing characters at the location
written to are shifted to the right. Characters pushed out of the display are
truncated; no wrapping occurs and the cursor remains at the end of the last
character inserted.

7.4.4.3

Input/Output Operations
7 .4 Working with Complex User 1/0

Specifying Double-Width Characters

In addition to the aforementioned routines, you can use SMG$PUT_CHARS_
WIDE to write characters to the screen in double width or SMG$PUT_
CHARS_HIGHWIDE to write characters to the screen in double height and
double width. When you use these routines, you must allot two spaces for
each double-width character on the line and two lines for each line of double­
height characters. You cannot mix single and double-size characters on a line.

All the character routines provide rendition-set and rendition-complement
arguments, which allow you to specify special video attributes for the
characters being written. SMG$PUT_CHARS_MUL TI allows you to
specify more than one video attribute at a time. The explanation of the
SMG$CHANGE_RENDITION routine in Section 7.4.2.5 discusses how to
use rendition-set and rendition-complement arguments.

Writing Data Line by Line
The routines SMG$PUT LINE, SMG$PUT_LINE_MUL TI, SMG$PUT_
WITH_SCROLL write lines to virtual displays one line after another. If
the display area is full, it is scrolled. You do not have to keep track of
which line you are on. All routines permit you to scroll forward (up);
SMG$PUT_WITH_SCROLL and SMG$PUT_LINE_MULTI permit you
to scroll backward (down) as well. SMG$PUT_LINE permits other than
single spacing.

Example 7-6 writes lines from a buffer to a display area. The output is
scrolled forward if the buffer contains more lines than the display area.

Example 7-6 Scrolling Forward Through a Display

INTEGER*4 BUFF_COUNT,
2 BUFF_SIZE (4096)
CHARACTER*512 BUFF (4096)

DO I = 1, BUFF_COUNT
STATUS = SMG$PUT_WITH_SCROLL (VOID,

2 BUFF (I) (1:BUFF_SIZE (I)))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

Example 7-7 scrolls the output backward.

7-19

Input/Output Operations
7 .4 Working with Complex User 1/0

7.4.4.4

7-20

Example 7-7 Scrolling Backward Through the Display

DO I = BUFF_COUNT, 1, -1
STATUS = SMG$PUT_WITH_SCROLL (VDID,

2 BUFF (I) (1:BUFF_SIZE (I)),
2 SMG$M_DOWN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END DO

Cursor Movement and Scrolling

To maintain precise control over cursor movement and scrolling, you can
write with SMG$PUT_CHARS and scroll explicitly with SMG$SCROLL _
DISPLAY_AREA. SMG$PUT_CHARS leaves the cursor after the last
character written and does not force scrolling; SMG$SCROLL_DISPLAY_
AREA scrolls the current contents of the display forward, backward, or
sideways without writing to the display. To restrict the scrolling region to a
portion of the display area, use the SMG$SET_DISPLAY_SCROLL_REGION
routine.

Inserting and Overwriting Text

To insert text rather than overwrite the current contents of the screen, use the
routine SMG$INSERT_LINE. Existing lines are shifted up or down to open
space for the new text. If the text is longer than a single line, you can specify
whether or not you want the excess characters to be truncated or wrapped.

Using Double-Width Characters

In addition, you can use SMG$PUT_LINE_WIDE to write a line of text to
the screen using double-width characters. You must allot two spaces for each
double-width character on the line. You cannot mix single- and double-width
characters on a line.

Specifying Special Video Attributes

All line routines provide rendition-set and rendition-complement
arguments, which allow you to specify special video attributes for the text
being written. SMG$PUT_LINE_MUL TI allows you to specify more than
one video attribute for the text. The explanation of the SMG$CHANGE_
RENDITION routine in Section 7.4.2.5 discusses how to use the rendition-set
and rendition-complement arguments.

Drawing Lines
The routine SMG$DRAW_LINE draws solid lines on the screen. Appropriate
corner and crossing marks are drawn when lines join or intersect. You can
also use the routine SMG$DRAW_RECTANGLE to draw a solid rectangle.
Suppose that you want to draw an object such as that shown in Figure 7-5 in
the statistics display area (an area of 10 rows by 55 columns).

7.4.4.5

Input/Output Operations
7 .4 Working with Complex User 1/0

Figure 7-5 Statistics Display

ZK-2048-84

Example 7-8 shows how you can create a statistics display using
SMG$DRAW_LINE and SMG$DRAW_RECTANGLE.

Example 7-8 Creating a Statistics Display

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10,
2 55,
2 STATS_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Draw rectangle with upper left corner at row 1 column 1
! and lower right corner at row 10 column 55
STATUS =SMG$DRAW_RECTANGLE (STATS_VDID,
2 1, 1,
2 10, 55)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Draw vertical lines at columns 11, 21, and 31
DO I = 11, 31, 10

STATUS = SMG$DRAW_LINE (STATS_VDID,
2 1, I,
2 10, I)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END DO
! Draw horizontal line at row 3
STATUS = SMG$DRAW_LINE (STATS_VDID,
2 3, 1,
2 3, 55)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID,
2 3,
2 2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Deleting Text
The following routines erase specified characters leaving the rest of the screen
intact:

• SMG$ERASE_CHARS-Erases specified characters on one line.

• SMG$ERASE_LINE-Erases the characters on one line starting from a
specified position.

• SMG$ERASE_DISPLAY-Erases specified characters on one or more
lines.

7-21

7.4.5

Input/Output Operations
7 .4 Working with Complex User 1/0

Using Menus

7-22

• SMG$ERASE_CQLUMN-Erases a column from the specified row to the
end of the column from the virtual display.

The following routines perform delete operations. In a delete operation,
characters following the deleted characters are shifted into the empty space.

• SMG$DELETE_CHARS-Deletes specified characters on one line. Any
characters to the right of the deleted characters are shifted left.

• SMG$DELETE_LINE-Deletes one or more full lines. Any remaining
lines in the display are scrolled up to fill the empty space.

The following example erases the remaining characters on the line whose
line number is specified by LINE_NO, starting at the column specified by
COLUMN_NO:

STATUS = SMG$ERASE_LINE (STATS_VDID,
2 LINE_NO,
2 COLUMN_NO)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can use SMG$ routines to set up menus to read user input. The type of
menus you can create include the following:

• Block menu-Selections are in matrix format. This is the type of menu
often used.

• Vertical menu-Each selection is on its own line.

• Horizontal menu-All selections are on one line.

Menus are associated 'with a virtual display and only one menu can be used
for each virtual display.

The menu routines include the following:

• SMG$CREATE_MENU-Creates a menu associated with a virtual
display. This routine allows you to specify the type of menu, the position
the menu is displayed, the format of the menu (single or double spaced),
and video attributes.

• SMG$SELECT_FROM_MENU-Sets up menu selection capability. You
can specify a default menu selection (which is shown in reverse video),
whether on-line HELP is available, a maximum time limit for making a
menu selection, a key indicating read termination, whether to send the
text of the menu item selected to a string, and a video attribute.

• SMG$DELETE_MENU-Discontinues access to the menu and erases it.

When you are using menus, no other output should be sent to the menu area;
otherwise unpredictable results may occur.

The default SMG$SELECT_FROM_MENU allows specific operations such
as use of the arrow keys to move up and down the menu selections, keys
to make a menu selection, ability to select more than one item at a time,
ability to reselect an item already selected, and the key sequence to invoke
on-line HELP. By using the flags argument to modify this operation, you
have the eption of disallowing reselection of a menu item and allowing any
key pressed to select an item.

7.4.6 Reading Data

7.4.6.1

Input/Output Operations
7 .4 Working with Complex User 1/0

You can read text from a virtual display (SMG$READ_FROM_DISPLAY)
or from a virtual keyboard (SMG$READ_STRING or SMG$READ_
COMPOSED_LINE). The two routines for virtual keyboard input are known
as the SMG$ input routines. SMG$READ_FROM_DISPLAY is not a true
input routine because it reads text from the virtual display rather than from a
user.

The SMG$ input routines can be used alone or with the SMG$ output
routines. This section assumes that you are using the input routines with the
output routines. Section 7.5 describes how to use the input routines without
the output routines.

When using the SMG$ input routines with the SMG$ output routines, always
specify the optional vdid argument of the input routine, which specifies the
virtual display in which the input is to occur. The specified virtual display
must be pasted to the device associated with the virtual keyboard that is
specified as the first argument of the input routine. The display must be
pasted in column 1, cannot be occluded, and cannot have any other display
to its right; input begins at the current cursor position, but the cursor must be
in column 1.

Reading from a Display
You can read the contents of the screen using the routine SMG$READ_
FROM_DISPLAY. By default, the read operation reads all of the characters
from the current cursor position to the end of that line. The row argument
of SMG$READ_FRQM_DISPLAY allows you to choose the starting point of
the read operation, that is, the contents of the specified row to the rightmost
column in that row.

If the terminator-string argument is specified, SMG$READ_FROM_
DISPLAY searches backward from the current cursor position and reads
the line beginning at the first terminator encountered (or at the beginning of
the line). A terminator is a character string. You must calculate the length of
the character string read operation yourself.

The following example reads the current contents of the first line in the
STATS_ VDID display. To ensure that the display is up to date, SMG$READ_
FROM_DISPLAY automatically invokes SMG$FLUSH_BUFFER before
reading from the display.

CHARACTER*4 STRING
INTEGER*4 SIZE

STATUS = SMG$HOME_CURSOR (STATS_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SMG$READ_FROM_DISPLAY (STATS_VDID,
2 STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
SIZE = 55
DO WHILE ((STRING (SIZE:SIZE) .EQ. I ') .AND.
2 (SIZE .GT. 1))

SIZE = SIZE - 1
END DO

7-23

Input/Output Operations
7 .4 Working with Complex User 1/0

7.4.6.2

7-24

Reading from a Virtual Keyboard
The routine SMG$CREATE_VIRTUAL_KEYBOARD establishes a device
for input operations; the default device is the user's terminal. The routine
SMG$READ_STRING reads characters typed on the screen until the
user types a terminator or until the maximum size (which defaults to 512
characters) is exceeded. (The terminator is usually a carriage return; see the
routine description in the VMS RTL Screen Management (SMG$) Manual for
a complete list of terminators.) The current cursor location for the display
determines where the read operation begins.

The VMS terminal driver processes carriage returns differently than the SMG$
routines. Therefore, in order to scroll input accurately, you must keep track
of your vertical position in the display area. Explicitly set the cursor position
and scroll the display. If a read operation takes place on other than the last
row of the display, advance the cursor to the beginning of the next row
before the next operation. If a read operation takes place on the last row of
the display, scroll the display with SMG$SCROLL_DISPLAY-AREA and
then set the cursor to the beginning of the row. Modify the read operation
with TRM$M_TM_NOTRMECHO to ensure that no extraneous scrolling
occurs.

Example 7-9 reads input until CTRL/Z is pressed:

Example 7-9 Reading Data from a Virtual Keyboard

Read first record
STATUS = SMG$HOME_CURSOR (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (KBID,
2 TEXT,
2 'Prompt: ',
2 4,
2 TRM$M_TM_TRMNOECHO, ,,
2 TEXT_SIZE,,
2 VDID)

Example 7-9 Cont'd. on next page

Input/Output Operations
7 .4 Working with Complex User 1/0

Example 7-9 (Cont.) Reading Data from a Virtual Keyboard

! Read remaining records until CTRL/Z
DO WHILE (STATUS . NE. ,SMG$_EOF)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Process record

! Set up screen for next read
! Display area contains four rows
STATUS = SMG$RETURN_CURSOR_POS (VDID, ROW, COL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (ROW .EQ. 4) THEN

STATUS = SMG$SCROLL_DISPLAY_AREA (VOID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET_CURSOR_ABS (VDID, 4, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

ELSE
STATUS= SMG$SET_CURSOR_ABS (VDID,, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET_CURSOR_REL (VDID, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Read next record
STATUS = SMG$READ_STRING

2
(KBID,
TEXT,
'Prompt: '
4,

2
2
2
2
2
END DO

TRM$M_TM_TRMNOECHO,,,
TEXT_SIZE, ,
VOID)

Note: Since you are controlling the scrolling, SMG$PUT_LINE and SMG$PUT_
WITH_SCROLL might not scroll as expected. When scrolling a mix

7.4.6.3

of input and output, you can prevent possible problems by using
SMG$PUT_CHARS.

Reading from the Keypad
To read from the keypad in keypad mode (that is, pressing a keypad character
to perform some special action rather than to enter data), modify the read
operation with TRM$M_TM_ESCAPE and TRM$M_TM_NOECHO.
Examine the terminator to determine which key was pressed.

Example 7-10 moves the cursor about on the screen in response to the user's
pressing the keys surrounding the 5 key on the keypad. The 8 key moves
the cursor north (up); the 9 key moves the cursor northeast; the 6 key moves
the cursor east (right); and so on. The routine SMG$SET_CURSOR_REL is
called, instead of invoked as a function, because you do not want to abort
the program on an error. (The error attempts to move the cursor out of the
display area and, if this error occurs, you do not want the cursor to move.)
The read operation is also modified with TRM$M_ TM_pURGE to prevent
the user from getting ahead of the cursor.

7-25

Input/Output Operations
7 .4 Working with Complex User 1/0

7-26

Example 7-10 Reading Data from the Keypad

INTEGER STATUS,
2 PBID,
2 ROWS,
2 COLUMNS,
2 VDID, ! Virtual display ID
2 KID, ! Keyboard ID
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$PASTE_VIRTUAL_DISPLAY,
2 SMG$HOME_CURSOR,
2 SMG$SET_CURSOR_REL,
2 SMG$READ_STRING,
2 SMG$ERASE_PASTEBOARD,
2 SMG$PUT_CHARS,
2 SMG$READ_FROM_DISPLAY
CHARACTER*31 INPUT_STRING,
2 MENU_STRING
INTEGER*2 TERMINATOR
INTEGER*4 MODIFIERS
INCLUDE 1 ($SMGDEF) 1

INCLUDE '($TRMDEF)'
! Set up screen and keyboard
STATUS = SMG$CREATE_PASTEBOARD (PBID,
2 'SYS$0UTPUT',
2 ROWS,
2 COLUMNS)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (ROWS,
2 COLUMNS,
2 VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PUT_CHARS (VDID,
2 '--MENU CHOICE ONE',
2 10,30)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PUT_CHARS (VDID,
2 '--MENU CHOICE TWO',
2 15,30)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (KID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 1,
2 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Put cursor in NW corner
STATUS = SMG$HOME_CURSOR (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 7-10 Cont'd. on next page

Input/Output Operations
7 .4 Working with Complex User 1/0

Example 7-10 (Cont.) Reading Data from the Keypad

! Read character from keyboard
MODIFIERS = TRM$M_TM_ESCAPE .OR.
2 TRM$M_TM_NOECHO .OR.
2 TRM$M_TM_PURGE
STATUS = SMG$READ_STRING (KID,
2 INPUT_STRING,
2
2 6,
2 MODIFIERS,
2
2
2
2 TERMINATOR)
DO WHILE ((STATUS) .AND.
2 (TERMINATOR .NE. SMG$K_TRM_CR))

! Check status of last read
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! North
IF (TERMINATOR .EQ. SMG$K_TRM_KP8) THEN

CALL SMG$SET_CURSOR_REL (VDID, -1, 0)
! Northeast
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP9) THEN

CALL SMG$SET_CURSOR_REL (VDID, -1, 1)
! Northwest
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP7) THEN

CALL SMG$SET_CURSOR_REL (VDID, -1, -1)
! South
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP2) THEN

CALL SMG$SET_CURSOR_REL (VDID, 1, 0)
! Southeast
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP3) THEN

CALL SMG$SET_CURSOR_REL (VDID, 1, 1)
! Southwest
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP1) THEN

CALL SMG$SET_CURSOR_REL (VDID, 1, -1)
! East
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP6) THEN

CALL SMG$SET_CURSOR_REL (VDID, 0, 1)
! West
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP4) THEN

CALL SMG$SET_CURSOR_REL (VDID, 0, -1)
END IF
! Read another character
STATUS = SMG$READ_STRING

2
(KID,
INPUT_STRING,

2
2
2
2
2
2
2
END DO

6,
MODIFIERS,

.
TERMINATOR)

Example 7-10 Cont'd. on next page

7-27

Input/Output Operations
7 .4 Working with Complex User 1/0

7.4.6.4

7-28

Example 7-10 (Cont.) Reading Data from the Keypad

! Read menu entry and process
! Guidelines for reading from the display

are in Section 7.4.6.1.
STATUS = SMG$READ_FROM_DISPLAY (VDID,
2 MENU_STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Clear screen
STATUS = SMG$ERASE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

Reading Composed Input
The routine SMG$CREATE_KEY_TABLE creates a table that equates keys
to character strings. When you read input using the routine SMG$READ_
COMPOSED_LINE and the user presses a defined key, the corresponding
character string in the table is substituted for the key. The routine
SMG$ADD_KEY_DEF can be used to load the table. Composed input
also permits the following:

• If states-You can define the same key to mean different things in
different states. You can define a key to cause a change in state. The
change in state can be temporary (until after the next defined key is
pressed) or permanent (until a key that changes states is pressed).

• Input termination-You can define the key to cause termination of the
input transmission (as if the RETURN key were pressed after the character
string). If the key is not defined to cause termination of the input, the
user must press a terminator or another key that does cause termination.

Example 7-11 defines the keys 1 through 9 on the keypad and permits the
user to temporarily change state by pressing the PFl key. Pressing the 1 key
on the keypad is equivalent to typing 1000 and pressing the RETURN key.
Pressing PFl key and then 1 key on the keypad is equivalent to typing 10000
and pressing the RETURN key.

Input/Output Operations
7 .4 Working with Complex User 1/0

Example 7-11 Redefining Keys

INTEGER*4 TABLEID

Create table for key definitions
STATUS = SMG$CREATE_KEY_TABLE (TABLEID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Load table
! If user presses PF1, the state changes to BYTEN
! The BYTEN state is in effect only for the very next key
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 'PF1',
2 , , , 'BYTEN')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Pressing KP1 through Kp9 in the null state is like typing
! 1000 through 9000 and pressing return
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 'KP1 I'
2
2 SMG$M_KEY_TERMINATE,
2 '1000')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 'KP2',
2
2 SMG$M_KEY_TERMINATE,
2 '2000')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 'KP9',
2
2 SMG$M_KEY_TERMINATE,
2 '9000')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 7-11 Cont'd. on next page

7-29

Input/Output Operations
7 .4 Working with Complex User 1/0

7-30

Example 7-11 (Cont.) Redefining Keys

! Pressing KP1 through KP9 in the BYTEN state is like
! typing 10000 through 90000 and pressing return
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 'KP1',
2 'BYTEN',
2 SMG$M_KEY_TERMINATE,
2 '10000')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 'KP2',
2 'BYTEN'.
2 SMG$M_KEY_TERMINATE,
2 '20000')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 'KP9',
2 'BYTEN',
2 SMG$M_KEY_TERMINATE,
2 '90000')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

End loading key definition table

Read input which substitutes key definitions where appropriate
STATUS = SMG$READ_COMPOSED_LINE (KBID,
2 TABLEID,
2 STRING,
2 SIZE,
2 VOID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Use the routine SMG$DELETE_KEY_DEF to delete a key definition and
the routine SMG$GET_KEY_DEF to examine a key definition. You can
also load key definition tables with the routines SMG$DEFINE_KEY and
SMG$LOAD_KEY_DEFS; the input to these routines is in the form of DCL
DEFINE/KEY commands.

To use keypad keys 0 through 9, the keypad must be in application mode.
(Use the /APPLICATION qualifier with the DCL command SET TERMINAL;
see the VMS DCL Dictionary for details.)

7.4.7

7.4.8

Input/Output Operations
7 .4 Working with Complex User 1/0

Controlling Screen Updates

Modularity

If your program needs to make a number of changes to a virtual display,
you might want to have the SMG$ routines make all of the changes before
updating the display. The routine SMG$BEGIN _DISPLAY_UPDATE causes
output operations to a pasted display to be reflected only in the display's
buffers. The routine SMG$END_DISPLAY_UPDATE writes the display's
buffer to the pasteboard.

The SMG$BEGIN_DISPLAY_UPDATE and SMG$END_DISPLAY_UPDATE
routines increment and decrement a counter. When this counter's value is
0, output to the virtual display is immediately sent to the pasteboard. The
counter mechanism allows a subroutine to request and turn off batching
without disturbing the batching state of the calling program.

A second set of routines, SMG$BEGIN _P ASTEBOARD_UPDATE and
SMG$END_P ASTEBOARD_UPDATE, allow you to buffer output to a
pasteboard in a similar manner.

You must take care when using the SMG$ routines not to corrupt the
mapping between the screen appearance and the internal representation
of the screen. Therefore, observe the following guidelines:

• Mixing SMG 1/0 and Other Forms of 1/0 -In general, you should
not use any other form of terminal 1/0 while the terminal is active as
a pasteboard. If you do use 1/0 other than SMG IjO (for example, if
you invoke a subprogram that may perform non-SMG terminal 1/0),
first invoke the routine SMG$SAVE_PHYSICAL_SCREEN and when
the non-SMG 1/0 completes, invoke the routine SMG$RESTORE_
PHYSICAL-SCREEN, as demonstrated in the following example:

STATUS = SMG$SAVE_PHYSICAL_SCREEN (PBID,
2 SAVE_ VD ID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
CALL GET_EXTRA_INFO (INFO_ARRAY)
STATUS = SMG$RESTORE_PHYSICAL_SCREEN (PBID,
2 SAVE_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Sharing the pasteboard-A routine using the terminal screen without
consideration for its current contents must use the existing pasteboard
ID associated with the terminal (therefore, a program unit invoking a
subprogram that also performs screen 1/0 must pass the pasteboard ID)
and delete any virtual displays it creates before returning control to the
higher level code. The safest way to clean up your virtual displays is
to call the routine SMG$POP_VIRTUAL_DISPLAY and name the first
virtual display you created. The following example invokes a subprogram
that uses the terminal screen:

7-31

Input/Output Operations
7 .4 Working with Complex User 1/0

7-32

Invoking Program Unit

CALL GET_EXTRA_INFO (PBID,
2 INFO_ARRAY)

CALL STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Subprogram

SUBROUTINE GET_EXTRA_INFO (PBID,
2 INFO_ARRAY)

Start executable code
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (4,
2 40,
2 INSTR_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (INSTR_VDID,
2 PBID, 1, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

STATUS= SMG$POP_VIRTUAL_DISPLAY (INSTR_VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

• Sharing virtual displays-To share a virtual display created by higher
level code, the lower level code must use the virtual display ID created
by the higher level code; an invoking program unit must pass the virtual
display ID to the subprogram. To share a virtual display created by lower
level code, the higher level code must use the virtual display ID created
by the lower level code; a subprogram must return the virtual display ID
to the invoking program. The following example permits a subprogram
to use a virtual display created by the invoking program unit:

Invoking Program Unit

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (4,
2 40,
2 INSTR_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (INSTR_VDID,
2 PBID, 1, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
CALL GET_EXTRA_INFO (PBID,
2 INSTR_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Subprogram

SUBROUTINE GET_EXTRA_INFO (PBID,
2 INSTR_VDID)

Input/Output Operations
7 .5 Special lnput/Ouput Actions

7.5 Special lnput/Ouput Actions

7.5.1

Screen management input routines and the SYS$QIO and SYS$QIOW system
services allow you to perform 1/0 operations otherwise unavailable to high­
level languages. For example, you can allow a user to interrupt normal
program execution by typing a character and by having a mechanism for
reading that character. You can also control such things as echoing, time
allowed for input, and whether data is read from the type-ahead buffer.

Some of the operations described in the following sections require the use of
the SYS$QIO or SYS$QIOW system services. For more information on the
QIO system services, see the VMS System Services Reference Manual.

Other operations described in the following sections can be performed by
calling the SMG$ input routines. The SMG$ input routines can be used alone
or with the SMG$ output routines. Section 7.4 describes how to use the input
routines with the output routines. This section assumes that you are using
the input routines alone. To use the SMG$ input routines, do the following:

1 Call SMG$CREATE_VIRTUAL_KEYBOARD to associate a logical
keyboard with a device or file specification (SYS$INPUT by default).
SMG$CREATE_VIRTUAL_KEYBOARD returns a keyboard identification
number; use that number to identify the device or file to the SMG input
routines.

2 Call an SMG$ input routine (SMG$READ_STRING or SMG$READ_
COMPOSED_LINE) to read data typed at the device associated with the
virtual keyboard.

When using the SMG$ input routines without the SMG$ output routines, do
not specify the optional argument of the input routine.

CTRL/C and CTRL/Y Interrupts
The QIO system services enable you to detect a CTRL/C or CTRL/Y interrupt
at a user terminal, even if you have not issued a read to the terminal. To do
so, you must take the following steps:

1 Queue an asynchronous system trap (AST)-Issue the SYS$QIO or
SYS$QIOW system service with a function code of IQ$_SETMODE
modified by either 10$M_CTRLCAST (for CTRL/C interrupts) or
10$M_CTRLYAST (for CTRL/Y interrupts). For the Pl argument,
provide the name of a subroutine to be executed when the interrupt
occurs. For the P2 argument, you can optionally identify one longword
argument to pass to the AST subroutine.

2 Write an AST subroutine-Write the subroutine identified in the Pl
argument of the QIO system service and link the subroutine into your
program. Your subroutine can take one longword dummy argument to
be associated with the P2 argument in the QIO system service. You must
define common areas to access any other data in your program from the
AST routine.

7-33

Input/Output Operations
7.5 Special lnput/Ouput Actions

7-34

If you enter CTRL/C or CTRL/Y after your program queues the appropriate
AST, the system interrupts your program and transfers control to your
AST subroutine (this action is called delivering the AST). After your AST
subroutine executes, the system returns control to your program at the point
of interruption (unless your AST subroutine causes the program to exit or
another AST has been queued). Note the following guidelines in using
CTRL/C and CTRL/Y ASTs:

• ASTs are asynchronous-Since your AST subroutine does not know
exactly where you are in your program when the interrupt occurs, you
should avoid manipulating data or performing other mainline activities.
In general, the AST subroutine should notify the mainline code (for
example, by setting a flag) that the interrupt occurred or clean up and exit
from the program (if that is what you want to do).

• ASTs need new channels to the terminal-If you try to access
the terminal with language 1/0 statements using SYS$INPUT or
SYS$0UTPUT, you may receive a redundant 1/0 error. You must
establish another channel to the terminal by explicitly opening the
terminal.

• CTRL/C and CTRL/Y ASTs are one-time ASTs-After a CTRL/C or
CTRL/Y AST is delivered, it is dequeued. You must reissue the QIO
system service if you wish to trap another interrupt.

• Many ASTs can be queued-You can queue multiple ASTs (for the
same or different AST subroutines, on the same or different channels)
by issuing the appropriate number of QIO system services. The system
delivers the ASTs on a last-in first-out basis.

• Unhandled CTRL/Cs turn into CTRL/Ys-If the user enters CTRL/C and
you do not have an AST queued to handle the interrupt, the system turns
the CTRL/C interrupt into a CTRL/Y interrupt.

• DCL handles CTRL/Y interrupts-DCL handles CTRL/Y interrupts by
returning the user to DCL command level, where the user has the option
of continuing or exiting from your program. DCL takes precedence
over your AST subroutine for CTRL/Y interrupts. Your CTRL/Y AST
subroutine is executed only under the following circumstances: (1) if
CTRL/Y interrupts are disabled at DCL level (SET NOCONTROL _ Y)
before your program is executed, (2) if your program disables DCL
CTRL/Y interrupts with LIB$DISABLE_CTRL, or (3) if the user elects to
continue your program after DCL interrupts it.

• You can dequeue CTRL/C and CTRL/Y ASTs-You can dequeue all
CTRL/C or CTRL/Y ASTs on a channel by issuing the appropriate QIO
system service with a value of 0 for Pl (passed by immediate value). You
can dequeue all CTRL/C ASTs on a channel by issuing the SYS$CANCEL
system service for the appropriate channel. You can dequeue all CTRL/Y
ASTs on a channel by issuing the SYS$DASSGN system service for the
appropriate channel.

• You can use SMG$ routines-You can connect to the terminal using the
SMG$ routines from either AST level or mainline code. Do not attempt
to connect to the terminal from AST level if you do so in your mainline
code.

Input/Output Operations
7. 5 Special I nput/Ouput Actions

Example 7-12 permits the terminal user to interrupt a display to see how
many lines have been typed up to that point.

Example 7-12 Using Interrupts to Perform 1/0

!Main Program

INTEGER STATUS
! Accumulated data records
CHARACTER*132 STORAGE (255)
INTEGER*4 STORAGE_SIZE (255),
2 STORAGE_ COUNT
! QIOW and QIO structures
INTEGER*2 INPUT_CHAN
INTEGER*4 CODE
STRUCTURE /IOSTAT_BLOCK/

INTEGER*2 IOSTAT
BYTE TRANSMIT,

2 RECEIVE,
2 CRFILL,
2 LFFILL,
2 PARITY,
2 ZERO
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Flag to notify program of CTRL/C interrupt
LOGICAL*4 CTRLC_CALLED
! AST subroutine to handle CTRL/C interrupt
EXTERNAL CTRLC_AST
! Subroutines
INTEGER SYS$ASSIGN,
2 SYS$QIOW
! Symbols used for I/O operations
INCLUDE 1 ($IODEF) 1

! Put values into array
CALL LOAD_STORAGE (STORAGE,
2 STORAGE_SIZE,
2 STORAGE_ COUNT)
! Assign channel and set up QIOW structures
STATUS= SYS$ASSIGN ('SYS$INPUT',
2 INPUT_CHAN, ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
CODE = IO$_SETMODE .OR. IO$M_CTRLCAST
! Queue an AST to handle CTRL/C interrupt
STATUS= SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2
2 CTRLC_AST, Name of AST routine
2 CTRLC_CALLED, Argument for AST routine
2 • '')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT)
2 CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))

Example 7-12 Cont'd. on next page

7-35

7.5.2

Input/Output Operations
7 .5 Special lnput/Ouput Actions

Unsolicited Input

7-36

Example 7-12 (Cont.) Using Interrupts to Perform 1/0

! Display STORAGE array, one element per line
DO I = 1, STORAGE_COUNT

2
2
2
2
2
2
2

TYPE *· STORAGE (I) (1:STORAGE_SIZE (I))

! Additional actions if user types CTRL/C
IF (CTRLC_CALLED) THEN

CTRLC_CALLED = .FALSE.
! Show user number of lines displayed so far
TYPE *· 'Number of lines: ', I
! Requeue AST
STATUS = SYS$QIOW (,

%VAL (INPUT_CHAN),
%VAL (CODE),
IOSB, ..
CTRLC_AST,
CTRLC_CALLED,
• ' J)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT)

2 CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
END IF

END DO

END

AST Routine

! AST routine
! Notifies program that user typed CTRL/C
SUBROUTINE CTRLC_AST (CTRLC_CALLED)
LOGICAL*4 CTRLC_CALLED
CTRLC_CALLED = .TRUE.

END

You can detect input from the terminal even if you have not called
SMG$READ_COMPOSED_LINE or SMG$READ_STRING by using
SMG$ENABLE_UNSOLICITED_INPUT. This routine uses the AST
mechanism to transfer control to a subprogram of your choice each time
the user types at the terminal; the AST subprogram is responsible for reading
any input. When the subprogram completes, control returns to your mainline
code where it was interrupted.

The SMG$ENABLE_UNSOLICITED_INPUT is not an SMG$ input routine.
Before invoking SMG$ENABLE_UNSOLICITED_INPUT, you must invoke
SMG$CREATE_PASTEBOARD to associate a pasteboard with the terminal
and SMG$CREATE_VIRTUAL_KEYBOARD to associate a virtual keyboard
with the same terminal.

SMG$ENABLE_UNSOLICITED_INPUT accepts the following arguments:

• The pasteboard identification number (use the value returned by
SMG$CREATE_P ASTEBOARD)

Input/Output Operations
7 .5 Special lnput/Ouput Actions

• The name of an AST subprogram

• An argument to be passed to the AST subprogram

When SMG$ENABLE_UNSOLICITED_INPUT invokes the AST subprogram,
it passes two arguments to the subprogram: the pasteboard identification
number and the argument that you specified. Typically, you write the AST
subprogram to read the unsolicited input with SMG$READ_STRING. Since
SMG$READ_STRING requires that you specify the virtual keyboard at which
the input was typed, specify the virtual keyboard identification number as the
second argument to pass to the AST subprogram.

Example 7-13 permits the terminal user to interrupt the display of a series
of arrays and either go on to the next array (by typing input beginning with
an uppercase N) or exit from the program (by typing input beginning with
anything else).

Example 7-13 Receiving Unsolicited Input from a Virtual Keyboard

Main Program
The main program calls DISPLAY_ARRAY once for each array.
DISPLAY_ARRAY displays the array in a DO loop.
If the user enters input from the terminal, the loop is
interrupted and the AST routine takes over.
If the user types anything beginning with an N, the AST
sets DO_NEXT and resumes execution -- DISPLAY_ARRAY drops
out of the loop processing the array (because DO_NEXT is
set -- and the main program calls DISPLAY_ARRAY for the
next array.
If the user types anything not beginning with an N,
the program exits.

INTEGER*4 STATUS,
2 VKID, Virtual keyboard ID
2 PBID Pasteboard ID
! Storage arrays
INTEGER*4 ARRAY! (256),
2 ARRAY2 (256),
2 ARRAY3 (256)
! System routines
INTEGER*4 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$ENABLE_UNSOLICITED_INPUT
! AST routine
EXTERNAL AST_ROUTINE

Example 7-13 Cont'd. on next page

7-37

Input/Output Operations
7.5 Special lnput/Ouput Actions

7-38

Example 7-13 (Cont.) Receiving Unsolicited Input from a Virtual
Keyboard

! Create a pasteboard
STATUS = SMG$CREATE_PASTEBOARD (PBID, ! Pasteboard ID
2 'SYS$INPUT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Create a keyboard for the same device
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 'SYS$INPUT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Enable unsolicited input
STATUS = SMG$ENABLE_UNSOLICITED_INPUT
2

(PBID, ! Pasteboard ID
AST_ROUTINE,

2

IF (.NOT. STATUS) CALL LIB$SIGNAL

VKID) ! Pass keyboard
! ID to AST

(%VAL (STATUS))

Call display subroutine once for each array
CALL DISPLAY_ARRAY (ARRAY!)
CALL DISPLAY_ARRAY (ARRAY2)
CALL DISPLAY_ARRAY (ARRAY3)

END

Array Display Routine

! Subroutine to display one array
SUBROUTINE DISPLAY_ARRAY (ARRAY)
! Dummy argument
INTEGER*4 ARRAY (256)
! Status
INTEGER*4 STATUS
! Flag for doing next array
LOGICAL*4 DO_NEXT
COMMON /DO_NEXT/ DO_NEXT
! If AST has been delivered, reset
IF (DO_NEXT) DO_NEXT = .FALSE.
! Initialize control variable
I = 1
! Display entire array unless interrupted by user
! If interrupted by user (DO_NEXT is set), drop out of loop
DO WHILE ((I .LE. 256) .AND. (.NOT. DO_NEXT))

TYPE *, ARRAY (I)
I = I + 1

END DO

END

Example 7-13 Cont'd. on next page

7.5.3

Input/Output Operations
7 .5 Special lnput/Ouput Actions

Example 7-13 (Cont.) Receiving Unsolicited Input from a Virtual
Keyboard

AST Routine

! Subroutine to read unsolicited input
SUBROUTINE AST_ROUTINE (PBID,
2 VKID)
! dummy arguments
INTEGER*4 PBID,
2 VKID
! Status
INTEGER*4 STATUS
! Flag for doing next array
LOGICAL*4 DO_NEXT
COMMON /DO_NEXT/ DO_NEXT
! Input string
CHARACTER*4 INPUT
! Routines
INTEGER*4 SMG$READ_STRING
! Read input

Pasteboard ID
Keyboard ID

STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! If user types anything beginning with N, set DO_NEXT
! otherwise, exit from program
IF (INPUT (1:1) .EQ. 'N') THEN

DO_NEXT = .TRUE.
ELSE

CALL EXIT
END IF

END

Type-Ahead Buffer
Normally, if the user types on the terminal before your application is able to
read from that device, the input is saved in a special data structure maintained
by the system called the type-ahead buffer. When your application is ready to
read from the terminal, the input is transferred from the type-ahead buffer to
your input buffer. The type-ahead buffer is preset at a size of 78 bytes. If the
HOSTSYNC characteristic is on (the usual condition), input to the type-ahead
buffer is stopped (the keyboard locks) when the buffer is within eight bytes
of becoming full. If the HOSTSYNC characteristic is off, the bell rings when
the type-ahead buffer is within eight bytes of becoming full; if you overflow
the buffer, the excess data is lost. The system parameter TTY_AL TALARM
determines the point at which input is stopped or the bell rings.

You can clear the type-ahead buffer by reading from the terminal with
SMG$READ_STRING and by specifying TRM$M_ TM_PURGE in the
modifiers argument. Clearing the type-ahead buffer has the effect of reading
only what the user types on the terminal after the read operation is invoked.
Any characters in the type-ahead buffer are lost. The following example
illustrates how to purge the type-ahead buffer:

7-39

7.5.4

Input/Output Operations
7.5 Special lnput/Ouput Actions

Echo

7-40

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE '($TRMDEF)'
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID,
2 1 SYS$INPUT 1

) I/O device
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, Keyboard ID
2 INPUT, ! Data read
2 'Prompt> ' ,
2 512,
2 TRM$M_TM_PURGE,
2
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also clear the type-ahead buffer with a QIO read operation modified
by 10$M_PURGE (defined in $IODEF). You can turn off the type-ahead
buffer for further read operations with a QIO set mode operation that specifies
TT$M_NOTYPEAHD as a basic terminal characteristic.

You can examine the type-ahead buffer by issuing a QIO sense mode
operation modified by 10$M_TYPEAHDCNT. The number of characters
in the type-ahead buffer and the value of the first character are returned to
the Pl argument.

The size of the type-ahead buffer is determined by the system parameter
TTY_TYPAHDSZ. You can specify an alternate type-ahead buffer by turning
on the AL TYPEAHD terminal characteristic; the size of the alternate type­
ahead buffer is determined by the system parameter TTY_AL TYP AHD.

Normally, the system writes back to the terminal any printable characters that
the user types on that terminal. The system also writes highlighted words in
response to certain control characters; for example, the system writes EXIT if
the user enters CTRL/Z. If the user types ahead of your read, the characters
are not echoed until you read them from the type-ahead buffer.

You can turn off echoing when you invoke a read operation by reading
from the terminal with SMG$READ_STRING and by specifying TRM$M_
TM_NOECHO in the modifiers argument. You can turn off echoing for
control characters only by modifying the read operation with TRM$M_ TM_
TRMNOECHO. The following example turns off all echoing for the read
operation:

7.5.5 Timeout

Input/Output Operations
7. 5 Special I nput/Ouput Actions

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE 1 ($TRMDEF) 1

STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 1 SYS$INPUT 1

) ! I/0 device
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 'Prompt> ' ,
2 512,
2 TRM$M_TM_NOECHO,
2 ••
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also turn off echoing with a QIO read operation modified by 10$M_
NOECHO (defined in $IODEF). You can turn off echoing for further read
operations with a QIO set mode operation that specifies TT$M_NOECHO as
a basic terminal characteristic.

Using SMG$READ_STRING, you can restrict the user to a certain amount of
time in which to respond to a read command. If your application reads data
from the terminal using SMG$READ_STRING, you can modify the timeout
characteristic by specifying, in the timeout argument, the number of seconds
the user has to respond. If the user fails to type a character in the allotted
time, the error condition SS$_TIMEOUT (defined in $SSDEF) is returned.
The following example restricts the user to 8 seconds in which to respond to
a read command:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE I ($SSDEF)'
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID,
2 'SYS$INPUT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, Keyboard ID
2 INPUT, Data read
2 'Prompt> '
2 512,
2
2 8,
2
2 INPUT_SIZE)
IF (.NOT. STATUS) THEN

IF (STATUS .EQ. SS$_TIMEOUT) CALL NO_RESPONSE ()
ELSE

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

7-41

7.5.6

7.5.7

Input/Output Operations
7. 5 Special I nput/Ouput Actions

You can cause a QIO read operation to time out after a certain number of
seconds by modifying the operation with 10$M_TIMED and by specifying
the number of seconds as the P3 argument. A message broadcast to a
terminal resets a timer set for a timed read operation (regardless of whether
the operation was initiated with QIO or SMG).

Note that the timed read operations mentioned above work on a character­
by-character basis. To set a time limit on an input record rather than an input
character, you must use the SYS$SETIMR system service. The SYS$SETIMR
executes an AST routine at a specified time. The specified time is the input
time limit. When the specified time is reached, the AST routine cancels any
outstanding 1/0 on the channel assigned to the user's terminal.

Lowercase to Uppercase Conversion
You can automatically convert user input to uppercase (that is, any lowercase
characters typed by the user are transformed to uppercase) by reading from
the terminal with the SMG$READ_STRING routine by specifying TRM$M_
TM_CVTLOWn in the modifiers argument,

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE '($TRMDEF)'
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 'SYS$INPUT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 'Prompt> ' ,
2 512,
2 TRM$M_TM_CVTLOW,
2
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also convert lowercase characters with a QIO read operation modified
by 10$M_CVTLOW (defined in $IODEF).

Line Editing and Control Actions

7-42

Normally, the user can edit input as explained in the VAX EDT Reference
Manual. You can inhibit line editing on the read operation by reading from
the terminal with SMG$READ_STRING and by specifying TRM$M_TM_
NO FIL TR in the modifiers argument. The following example shows how you
can inhibit line editing:

7.5.8 Broadcasts

7.5.8.1

Input/Output Operations
7 .5 Special lnput/Ouput Actions

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE '($TRMDEF)'
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 'SYS$INPUT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 'Prompt> ' ,
2 512,
2 TRM$M_TM_NOFILTR,
2 ..
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also inhibit line editing with a QIO read operation modified by
10$M_NOFILTR (defined in $IODEF).

You can write (that is, broadcast) to any interactive terminal using the
SYS$BRKTHRU system service. The following example broadcasts a
message to all terminals on which users are currently logged in. Use of
SYS$BRKTHRU to write to a terminal allocated to a process other than your
own requires OPER privilege.

INTEGER*4 STATUS,
2 SYS$BRKTHRUW
INTEGER*2 B_STATUS (4)
INCLUDE '($BRKDEF)'
STATUS = SYS$BRKTHRUW (,
2 'Accounting system started',,
2 %VAL (BRK$C_ALLUSERS),
2 B_STATUS,,,,, ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Default Handling of Broadcasts
If the terminal user has taken no action to handle broadcasts, a broadcast
is written to the terminal screen at the current position (after a carriage
return and line feed). If a write operation is in progress, the broadcast occurs
after the write ends. If a read operation is in progress, the broadcast occurs
immediately; after the broadcast, any echoed user input to the aborted read
operation is written to the screen (same effect as pressing CTRL/R).

7-43

Input/Output Operations
7 .5 Special lnput/Ouput Actions

7.5.8.2

7-44

How to Create Alternate Broadcast Handlers
You can handle broadcasts to the terminal on which your program is running
with SMG$SET_BROADCAST_ TRAPPING. This routine uses the AST
mechanism to transfer control to a subprogram of your choice each time a
broadcast message is sent to the terminal; when the subprogram completes,
control returns to your main line code where it was interrupted.

SMG$SET_BROADCAST_TRAPPING is not an SMG$ input routine.
Before invoking SMG$SET_BROADCAST_ TRAPPING, you must invoke
SMG$CREATE_P AS TEBO ARD to associate a pasteboard with the terminal.
SMG$CREATE_P AS TEBO ARD returns a pasteboard identification number;
pass that number to SMG$SET_BROADCAST_ TRAPPING to identify the
terminal in question. Read the contents of the broadcast with SMG$GET_
BROADCAST_MESSAGE.

Example 7-14 demonstrates how you might trap a broadcast and write it
at the bottom of the screen. For more information about the use of SMG$
pasteboards and virtual displays, see Section 7.4.

Example 7-14 Trapping Broadcast Messages

INTEGER*4 STATUS,
2 PBID, Pasteboard ID
2 VDID, Virtual display ID
2 SMG$CREATE_PASTEBOARD,
2 SMG$SET_BROADCAST_TRAPPING
2 SMG$PASTE_VIRTUAL_DISPLAY
COMMON /ID/ PBID,
2 VDID
INTEGER*2 B_STATUS (4)
INCLUDE '($SMGDEF)'
INCLUDE '($BRKDEF)'
EXTERNAL BRKTHRU_ROUTINE
STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (3, Height
2 80, Width
2 VDID,, Display ID
2 SMG$M_REVERSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET_BROADCAST_TRAPPING (PBID, ! Pasteboard ID
2 BRKTHRU_ROUTINE) ! AST
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 7-14 Cont'd. on next page

Input/Output Operations
7.5 Special lnput/Ouput Actions

Example 7-14 (Cont.) Trapping Broadcast Messages

SUBROUTINE BRKTHRU_ROUTINE ()
INTEGER*4 STATUS,
2 PBID, Pasteboard ID
2 VDID, Virtual display ID
2 SMG$GET_BROADCAST_MESSAGE,
2 SMG$PUT_CHARS,
2 SMG$PASTE_VIRTUAL_DISPLAY
COMMON /ID/ PBID,
2 VDID
CHARACTER*240 MESSAGE
INTEGER*2 MESSAGE_SIZE
! Read the message
STATUS = SMG$GET_BROADCAST_MESSAGE (PBID,
2 MESSAGE,
2 MESSAGE_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Write the message to the virtual display
STATUS = SMG$PUT_CHARS (VOID,
2 MESSAGE (1:MESSAGE_SIZE),
2 1, Line
2 1) Column
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Make the display visble by pasting it to the pasteboard
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 ~. ~w

2 1) Column

END

7 .6 SYS$QIO and SYS$QIOW System Services
The QIO system services permit direct interaction with the system's terminal
driver. QIOs permit some operations that cannot be performed with language
1/0 statements and RTL routines, reduce overhead, and permit asynchronous
1/0 operations. However, QIOs are device dependent.

The format for SYS$QIO is as follows:

SYS$010([efn],chan, func[,iosb][,astadr][,astprm] [,p 1][,p2][,p3][,p4][,p5][,p6])

To read from or write to a terminal with the SYS$QIO or SYS$QIOW system
service, you must first associate the terminal name with an 1/0 channel
in the SYS$ASSIGN system service, then use the assigned channel in the
SYS$QIO or SYS$QIOW system service. To read from SYS$INPUT or
write to SYS$0UTPUT, specify the appropriate logical name as the terminal
name in the SYS$ASSIGN system service. In general, use SYS$QIO for
asynchronous operations and use SYS$QIOW for all other operations.

7-45

7.6.1

Input/Output Operations
7.6 SYS$QIO and SYS$QIOW System Services

Read Operations

7-46

The SYS$QIO or SYS$QIOW system service moves one record of data from a
terminal to a variable. Do not use this system service, as described here, for
input from a file or nonterminal device.

For synchronous 1/0 (your program pauses until the 1/0 operation completes
execution), use SYS$QIOW. For complete information about the SYS$QIO
and SYS$QIOW system services, refer to the VMS System Services Reference
Manual.

The SYS$QIOW system service places the data read in the variable passed
as Pl. The second word of the status block contains the offset from the
beginning of the buffer to the terminator-hence, it equals the size of the
data read. Always reference the data as a substring, using the offset to
the terminator as the position of the last character (that is, the size of the
substring). If you reference the entire buffer, your data will include the
terminator for the operation (for example, the CR character) and any excess
characters from a previous operation using the buffer. (The only exception to
the substring guideline is if you deliberately overflow the buffer to terminate
the 1/0 operation.)

Example 7-15 reads a line of data from the terminal and waits for the 1/0 to
complete.

Example 7-15 Reading Data from the Terminal Synchronously

INTEGER STATUS
! QIOW structures
INTEGER*2 INPUT_CHAN
INTEGER CODE,
2 INPUT_BUFF_SIZE,
2 PROMPT_SIZE,
2 INPUT_SIZE
PARAMETER (PROMPT_SIZE = 13,
2 INPUT_BUFF_SIZE = 132)
CHARACTER*132 INPUT
CHARACTER*(*) PROMPT

I/O channel
Type of I/0 operation
Size of input buff er
Size of prompt
Size of input line as read

PARAMETER (PROMPT= 'Input value: ')
! Define symbols used in I/O operations
INCLUDE '($IODEF)'
! Status block for QIOW
STRUCTURE /IOSTAT_BLOCK/

INTEGER*2 IOSTAT, Return status
2 TERM_OFFSET, Location of line terminator
2 TERMINATOR, Value of terminator
2 TERM_SIZE Size of terminator
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB

Example 7-15 Cont'd. on next page

Input/Output Operations
7.6 SVS$QIO and SYS$QIOW System Services

Example 7-15 (Cont.) Reading Data from the Terminal
Synchronously

! Subprograms
INTEGER*4 SYS$ASSIGN,
2 SYS$QIOW

Assign an I/0 channel to SYS$INPUT
STATUS= SYS$ASSIGN (1 SYS$INPUT 1

I

2 INPUT_CHAN, ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Read with prompt
CODE = IO$_READPROMPT
STATUS= SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2
2
2
2
2
2

! Check QIOW status

I I

%REF (INPUT),
%VAL (INPUT_BUFF_SIZE),
I I

%REF (PROMPT),
%VAL (PROMPT_SIZE))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Check status of I/O operation
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Set size of input string
INPUT_SIZE = IOSB.TERM_OFFSET

To perform an asynchronous read operation, use the SYS$QIO system service
and specify an event flag (the first argument, which must be passed by value).
Your program continues while the 1/0 is taking place. When you need the
input from the 1/0 operation, invoke the SYS$SYNCH system service to wait
for the event flag and status block specified in the SYS$QIO system service. If
the If O is not complete, your program pauses until it is. In this manner, you
can overlap processing within your program. Naturally, you must take care
not to use data returned by the 1/0 operation before issuing SYS$SYNCH.
Example 7-16 demonstrates an asynchronous read operation.

7-47

Input/Output Operations
7 .6 SYS$QIO and SYS$QIOW System Services

7-48

Example 7-16 Reading Data from the Terminal Asynchronously

INTEGER STATUS
! QIO structures
INTEGER*2 INPUT_CHAN I/O channel
INTEGER CODE, Type of I/O operation
2 INPUT_BUFF_SIZE, Size of input buffer
2 PROMPT_SIZE, Size of prompt
2 INPUT_SIZE Size of input line as read
PARAMETER (INPUT_BUFF_SIZE = 132,
2 PROMPT = 13)
CHARACTER*132 INPUT
CHARACTER*(*) PROMPT
PARAMETER (PROMPT= 'Input value: ')
INCLUDE 1 ($IODEF) 1 ! Symbols used in I/0 operations
! Status block for QIO
STRUCTURE /IOSTAT_BLOCK/

INTEGER*2 IOSTAT, Return status
2 TERM_OFFSET, Location of line terminator
2 TERMINATOR, Value of terminator
2 TERM_SIZE Size of terminator
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Event flag for I/O
INTEGER INPUT_EF
! Subprograms
INTEGER*4 SYS$ASSIGN,
2 SYS$QIO,
2 SYS$SYNCH,
2 LIB$GET_EF

Assign an I/O channel to SYS$INPUT
STATUS= SYS$ASSIGN ('SYS$INPUT',
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get an event flag
STATUS = LIB$GET_EF (INPUT_EF)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Read with prompt
CODE = IO$_READPROMPT
STATUS= SYS$QIO (%VAL (INPUT_EF),
2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2
2
2
2
2
2

..
%REF (INPUT),
%VAL (INPUT_BUFF_SIZE), ..
%REF (PROMPT),
%VAL (PROMPT_SIZE))

Example 7-16 Cont'd. on next page

7.6.2 Write Operations

Input/Output Operations
7.6 SYS$QIO and SYS$QIOW System Services

Example 7-16 (Cont.) Reading Data from the Terminal
Asynchronously

! Check status of QIO
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

STATUS= SYS$SYNCH (%VAL (INPUT_EF),
2 IOSB)
! Check status of SYNCH
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Check status of I/O operation
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Set size of input string
INPUT_SIZE = IOSB.TERM_OFFSET

Be sure to check the status of the 1/0 operation as returned in the 1/0 status
block. In an asynchronous operation, you can only check this status after the
1/0 operation is complete (that is, after the call to SYS$SYNCH).

The SYS$QIO or SYS$QIOW system service moves one record of data from a
character value to the terminal. Do not use this system service, as described
here, for output to a file or nonterminal device.

For synchronous 1/0 (your program pauses until the 1/0 completes), use
SYS$QIOW and omit the first argument (the event flag number). For
complete information about SYS$QIO and SYS$QIOW, please refer to the
VMS System Services Reference Manual.

Example 7-17 writes a line of character data to the terminal.

Example 7-17 Writing Character Data to a Terminal

INTEGER STATUS,
2 ANSWER_SIZE
CHARACTER*31 ANSWER
INTEGER*2 OUT_CHAN
! Status block for QIO
STRUCTURE /IOSTAT_BLOCK/

INTEGER*2 IOSTAT,
2 BYTE_COUNT,
2 LINES_OUTPUT

BYTE COLUMN,
2 LINE
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Routines
INTEGER SYS$ASSIGN,
2 SYS$QIOW

Example 7-17 Cont'd. on next page

7-49

7.6.3

Input/Output Operations
7.6 SYS$QIO and SYS$QIOW System Services

Example 7-17 (Cont.) Writing Character Data to a Terminal

! IO$ symbol definitions
INCLUDE '($IODEF) I

STATUS = SYS$ASSIGN ('SYS$0UTPUT',
2 OUT_CHAN, ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SYS$QIOW (,
2 %VAL (OUT_CHAN),
2 %VAL (IO$_WRITEVBLK),
2 IOSB,
2
2
2
2
2

%REF ('Answer: '//ANSWER(1:ANSWER_SIZE)),
%VAL (8+ANSWER_SIZE),

2 %VAL (32), ,) ! Single spacing
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
END

Checking the Device Type

7-50

You are restricted to a terminal device in a QIO operation. If the user of
your program redirects SYS$INPUT or SYS$0UTPUT to a file or nonterminal
device, an error occurs. You can use the SYS$GETDVIW system service
to make sure the logical name is associated with a terminal, as shown in
Example 7-18. SYS$GETDVIW returns a status of SS$_IVDEVNAM if the
logical name is defined as a file or otherwise does not equate to a device
name. The type of device is the response associated with the
DVl$_DEVCLASS request code and should be DC$_TERM for a terminal.

Example 7-18 Using SYS$GETDVIW to Verify the Device Name

RECORD /ITMLST/ DVI_LIST
LOGICAL*4 STATUS
! GETDVI buffers
INTEGER CLASS,
2 CLASS_LEN
! GETDVI symbols
INCLUDE '($DCDEF)'
INCLUDE '($SSDEF)'
INCLUDE 1 ($DVIDEF) 1

! Define subprograms
INTEGER SYS$GETDVIW

Response buff er
Response length

Example 7-18 Cont'd. on next page

7.6.4

Input/Output Operations
7.6 SYS$QIO and SYS$QIOW System Services

Example 7-18 (Cont.) Using SVS$GETDVIW to Verify the Device
Name

! Find out the device class of SYS$INPUT
DVI_LIST.BUFLEN = 4
DVI_LIST.CODE = DVI$_DEVCLASS
DVI_LIST.BUFADR = %LOC (CLASS)
DVI_LIST.RETLENADR = %LDC (CLASS_LEN)
STATUS= SYS$GETDVIW (, ,'SYS$INPUT',
2 DVI_LIST,,,, ,)
IF ((.NOT. STATUS) .AND. (STATUS .NE. SS$_IVDEVNAM)) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Make sure device is a terminal
IF ((STATUS .NE. SS$_IVDEVNAM) .AND. (CLASS .EQ. DC$_TERM)) THEN

ELSE
TYPE*· 'Input device not a terminal'

END IF

Terminal Characteristics
The VMS I/O User's Reference Volume describes device-specific characteristics
associated with terminals. To examine a characteristic, issue a QIO system
service with the IO$_SENSEMODE function and examine the appropriate bit
in the structure returned to the Pl argument. To change a characteristic:

1 Issue a QIO system service with the IO$_SENSEMODE function.

2 Set or clear the appropriate bit in the structure returned to the Pl
argument.

3 Issue a QIO system service with the IO$_SETMODE function passing,
as the Pl argument, the structure you obtained from the sense mode
operation and modified.

Example 7-19 turns off the HOSTSYNC terminal characteristic. To check that
NOHOSTSYNCH has been set, enter the SHOW TERMINAL command.

7-51

Input/Output Operations
7.6 SYS$QIO and SYS$QIOW System Services

7-52

Example 7-19 Disabling the HOSTSYNCH Terminal Characteristic

INTEGER*4 STATUS
! I/0 channel
INTEGER*2 INPUT_CHAN
! I/0 status block
STRUCTURE /IOSTAT_BLOCK/

INTEGER*2 IOSTAT
BYTE TRANSMIT,

2 RECEIVE,
2 CRFILL,
2 LFFILL,
2 PARITY,
2 ZERO
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Characteristics buff er
! Note: basic characteristics are first three

bytes of second longword -- length is
last byte

STRUCTURE /CHARACTERISTICS/
BYTE CLASS,

2 TYPE
INTEGER*2 WIDTH
UNION

MAP
INTEGER*4 BASIC

END MAP
MAP

BYTE LENGTH(4)
END MAP

END UNION
INTEGER*4 EXTENDED

END STRUCTURE
RECORD /CHARACTERISTICS/ CHARBUF
! Define symbols used for I/O and terminal operations
INCLUDE I ($IODEF)'
INCLUDE 1 ($TTDEF) 1

! Subroutines
INTEGER*4 SYS$ASSIGN,
2 SYS$QIOW

Example 7-1-9 Cont'd. on next page

7.6.5

Input/Output Operations
7.6 SYS$QIO and SYS$QIOW System Services

Example 7-19 (Cont.) Disabling the HOSTSYNCH Terminal
Characteristic

Assign channel to terminal
STATUS = SYS$ASSIGN ('SYS$INPUT'.
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get current characteristics
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (IO$_SENSEMODE),
2 IOSB.,,
2 CHARBUF, ! Buffer
2 %VAL (12),,, ,) ! Buffer size
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Turn off hostsync
CHARBUF.BASIC = IBCLR (CHARBUF.BASIC, TT$V_HOSTSYNC)
! Set new characteristics
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (IO$_SETMODE),
2 IOSB,,,
2 CHARBUF,
2 %VAL (12), ,, ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))

END

If you modify terminal characteristics with set mode QIO operations, you
should save the characteristics buffer that you obtain on the first sense
mode operation and restore those characteristics with a set mode operation
before exiting. (No reset is necessary if you just use modifiers on each read
operation.) To ensure that the restoration is performed if the program aborts
(for example, if the user presses CTRL/Y), you should restore the user's
environment in an exit handler. See Chapter 9 for a description of exit
handlers.

Record Terminators
A QIO read operation ends when the user enters a terminator or when the
input buffer fills, whichever occurs first. The standard set of terminators
applies unless you specify the P4 argument in the read QIO operation. You
can examine the terminator that ended the read operation by examining the
input buffer starting at the terminator offset (second word of the 1/0 status
block). The length, in bytes, of the terminator is specified by the high-order
word of the 1/0 status block. The third word of the 1/0 status block contains
the value of the first character of the terminator.

Examining the terminator enables you to read escape sequences from the
terminal, provided that you modify the QIO read operation with the
10$M_ESCAPE modifier (or the ESCAPE terminal characteristic is set). The
first character of the terminator will be the ESC character (an ASCII value of
27). The remaining characters will contain the value of the escape sequence.

7-53

7.6.6

Input/Output Operations
7.6 SYS$QIO and SYS$QIOW System Services

File Terminators

7-54

You must examine the terminator to detect end-of-file (CTRL/Z) on the
terminal. No error condition is generated at the QIO level. If the user presses
CTRL/Z, the terminator will be the SUB character (an ASCII value of 26).

8 File 1/0

8 .1 File Attributes

1/0 statements transfer data between records in files and variables in your
program. The 1/0 statement determines the operation to be performed; the
1/0 control list specifies the file, record, and format attributes; and the 1/0
list contains the variables to be acted upon.

Some confusion might arise between records in a file and record variables.
Where this chapter refers to a record variable, the term record variable will be
used; otherwise, record refers to a record in a file.

Before writing a program that accesses a data file, you must know the
attributes of the file and the order of the data. To determine this information,
see your language-specific programming manual.

File attributes (organization, record structure, and so on) determine how data
is stored and accessed. Typically, the attributes are specified by keywords
when you open the data file.

Ordering of the data within a file is not important mechanically. However, if
you attempt to read data without knowing how it is ordered within the file,
you are likely to read the wrong data; if you attempt to write data without
knowing how it is ordered within the file, you are likely to corrupt existing
data.

8.2 File Access Strategies

8.2.1

8.2.2

Complete Access

When determining the file attributes and order of your data file, consider how
you plan to access that data. File access strategies fall into several categories.

If your program processes all or most of the data in the file and especially
if many references are made to the data, you should read the entire file into
memory. Put each record in its own variable or set of variables.

If your program is larger than the amount of memory available (including the
additional memory you get by using memory allocation routines), you must
declare fewer variables and process your file in pieces. To determine the size
of your program, add the number of bytes in each program section, or PSECT.
The DCL command LINK/MAP produces a listing that includes the length of
each PSECT.

Record-by-Record Access
If your program accesses records one after another or if you cannot fit the
entire file into memory, you should read one record into memory at a time.

8-1

8.2.3

8.2.4

8.2.5

File 1/0
8.2 File Access Strategies

Discrete Records
If your program processes only a few records at a time, you should read only
the necessary records into memory.

Sequential and Indexed Files
Use an unformatted sequential file for speed and to conserve disk space. Use
indexed files to process selected sets of records or to directly access records.
Use a sequential file with fixed-length records, a relative file, or an indexed
file to directly access records.

Protection and Access

8.2.5.1

8.2.5.2

8-2

Files are owned by the process that creates them and receive the default
protection of the creating process. To create a file with ownership and
protection other than the default, use the FOL attributes OWNER and
PROTECTION in the file.

Read Only Access
By default, the user of your program must have write access to a file in order
for your program to open that file. However, if you specify the READONL Y
specifier when opening the file, the user only needs read access to the file in
order to open it. The READONLY specifier does not set the protection on a
file. The user cannot write to a file opened with the READONLY specifier.

Shared Access
The READO NL Y specifier and the SHARED specifier allow multiple processes
to open the same file simultaneously, provided that each process uses
one of these specifiers when opening the file. The READONLY specifier
allows the process read access to the file; the SHARED specifier allows other
processes read and write access to the file. If a process opens the file without
specifying READONLY or SHARED, no other process can open that file even
by specifying READONLY or SHARED.

In the following VAX FORTRAN segment, if the read operation indicates that
the record is locked, the read operation is repeated. You should not attempt
to read a locked record without providing a delay (in this example, the call
to ERRSNS) to allow the other process time to complete its operation and
unlock the record.

8.2.6

File 1/0
8.2 File Access Strategies

! Status variables and values
INTEGER STATUS,
2 IOSTAT,
2 IO_OK
PARAMETER (IO_OK = 0)
INCLUDE '($FORDEF)'
! Logical unit number
INTEGER LUN /1/
! Record variables
INTEGER LEN
CHARACTER*80 RECORD

READ (UNIT= LUN,
2 FMT = '(Q,A)'
2 IOSTAT = IOSTAT) LEN, RECORD (1:LEN)
IF (IOSTAT .NE. IO_OK) THEN

CALL ERRSNS (,,,,STATUS)
IF (STATUS .EQ. FOR$_SPERECLOC) THEN

DO WHILE (STATUS .EQ. FOR$_SPERECLOC)
READ (UNIT= LUN,

2 FMT = '(Q,A)'
2 IOSTAT = IOSTAT) LEN, RECORD(1:LEN)

IF (IOSTAT .NE. IO_OK) THEN

END IF
END DO

ELSE

CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_SPERECLOC) THEN

CALL LIB$SIGNAL(%VAL(STATUS))
END IF

CALL LIB$SIGNAL (%VAL(STATUS1)
END IF

END IF

Each time you access a record in a shared file, that record is automatically
locked until you perform another 1/0 operation on the same logical unit, or
until you explicitly unlock the record using the UNLOCK statement. If you
plan to modify a record, you should do so before unlocking it; otherwise, you
should unlock the record as soon as possible.

Specifying File Attributes
Large sets of attributes can be specified using the File Definition Language
Utility (FDL). All of the file attributes can be specified using RMS in a user­
open routine (see Section 8.8). Typically, you only need programming
language file specifiers. Use FDL only when language specifiers are
unavailable.

Refer to the appropriate VAX programming language reference manual on the
use of language specifiers.

For complete information on how to use FDL, see the VMS File Definition
Language Facility Manual.

8-3

File 1/0
8.3 Loading and Unloading a Database

8.3 Loading and Unloading a Database

8.3.1

To copy an entire data file from the disk to program variables and back again,
either use language 1/0 statements to read and write the data or use the
SYS$CRMPSC system service to map the data. Mapping the file is faster than
reading it. However, a mapped file usually uses more storage than one read
using language 1/0 statements. Using IjO statements, you have to store only
the data that you have entered. Using SYS$CRMPSC, you have to initialize
the database and store the entire structure including the parts that do not yet
contain data.

Using SYS$CRMPSC

8-4

Mapping a file means associating each byte of the file with a byte of program
storage. You access data in a mapped file by referencing the program storage;
your program does not use 1/0 statements.

Note: Files created using VMS RMS typically contain control information.
Unless you are very familiar with the structure of these files, do not
attempt to map one. The best practice is to map only those files that have
been created as the result of mapping.

To map a file, perform the following operations:

1 Place the program variables for the data in a common block. Page align
the common block at link time by specifying an options file containing
the following link option as follows:

PSECT_ATTR = name, PAGE

The variable name is the name of the common block.

Within the common block, you should specify the data in order from
most complex to least complex (high to low rank) with character data last.
This naturally aligns the data, thus preventing troublesome page breaks
in virtual memory.

2 Open the data file using a user-open routine. The user-open routine
must open the file for user 1/0 (as opposed to RMS 1/0) and return the
channel number on which the file is opened.

3 Map the data file to the common block.

4 Process the records, using the program variables in the common block.

5 Free the memory used by the common block, forcing modified data to be
written back to the disk file.

Do not initialize variables in a common block that you plan to map; the initial
values will be lost when SYS$CRMPSC maps the common block.

8.3.1.1

File 1/0
8.3 Loading and Unloading a Database

Mapping a File
The format for SYS$CRMPSC is as follows:

SYS$CRMPSC ([inadr],[retadr],[acmode],[flags],[gsdnam],[ident],[relpag],
[chan], [pagcnt],[vbn],[prot],[pfc])

For a complete description of the SYS$CRMPSC system service, see the VMS
System Services Reference Manual.

Starting and Ending Addresses of the Map Section

Specify the location of the first variable in the common block as the value
of the first array element of the array passed by the inadr argument and the
location of the last variable in the common block as the value of the second
array element. If the first variable in the common block is an array or string,
the first variable in the common block is the first element of that array or
string. If the last variable in the common block is an array or string, the last
variable in the common block is the last element in that array or string.

Returning the Location of the Mapped Section

SYS$CRMPSC returns the location of the first and last elements mapped
. in the retadr argument. The value returned as the starting virtual address

should be the same as the starting address passed to the inadr argument. The
value returned as the ending virtual address should be equal to or slightly
more than (within 512 bytes, one block) the value of the ending virtual
address passed to the inadr argument.

If the first element is in error, you probably forgot to page align the common
block containing the mapped data.

If the second element is in error, you were probably creating a new data file
and forgot to specify the size of the file in your program (see Section 8.3.1.3).

Using Private Sections

Specify SEC$M_WRT for the flags to indicate that the section is writable. If
the file is new, also specify SEC$M_DZRO to indicate that the section should
be initialized to zero.

Obtaining the Channel Number

You must use a user-open routine to get the channel number (see
Section 8.3.1.2). Pass the channel number to the chan argument.

Example 8-1 maps a data file consisting of one longword and three real
arrays to the INC_DATA common block. The options file INCOME.OPT
page aligns the INC_DATA common block.

If SYS$CRMPSC returns a status of SS$_IVSECFLG and you have correctly
specified the flags in the mask argument, check to see if you are passing a
channel number of 0.

8-5

File 1/0
8.3 Loading and Unloading a Database

8-6

Example 8-1 Mapping a Data File to the Common Block

!INCOME.OPT

PSECT_ATTR = INC_DATA, PAGE

INCOME.FOR

! Declare variables to hold statistics
REAL PERSONS_HOUSE (2048),
2 ADULTS_HOUSE (2048),
2 INCOME_HOUSE (2048)
INTEGER TOTAL_HOUSES
! Declare section information
! Data area
COMMON /INC_DATA/ PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE,
2 TOTAL_HOUSES
! Addresses
INTEGER ADDR(2),
2 RET_ADDR(2)
! Section length
INTEGER SEC_LEN
! Channel
INTEGER*2 CHAN,
2 GARBAGE
COMMON /CHANNEL/ CHAN,
2 GARBAGE
! Mask values
INTEGER MASK
INCLUDE '($SECDEF)'
! User-open routines
INTEGER UFO_OPEN,
2 UFO_CREATE
EXTERNAL UFO_OPEN,
2 UFO_ CREATE
! Declare logical unit number
INTEGER STATS_LUN
! Declare status variables and values
INTEGER STATUS,
2 IOSTAT,
2 IO_OK
PARAMETER (IO_OK = 0)
INCLUDE' ($FORDEF)'
EXTERNAL INCOME_BADMAP
! Declare logical for INQUIRE statement
LOGICAL EXIST
! Declare subprograms invoked as functions
INTEGER LIB$GET_LUN,
2 SYS$CRMPSC,
2 SYS$DELTVA,
2 SYS$DASSGN
! Get logical unit number for STATS.SAV
STATUS = LIB$GET_LUN (STATS_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
INQUIRE (FILE = 'STATS.SAV',
2 EXIST = EXIST)

Example 8-1 Cont'd. on next page

File 1/0
8.3 Loading and Unloading a Database

Example 8-1 (Cont.) Mapping a Data File to the Common Block

IF (EXIST) THEN
! Open STATS.SAY file
OPEN (UNIT=STATS_LUN,

2 FILE='STATS.SAV',
2 STATUS=' OLD',
2 USEROPEN = UFO_OPEN)

MASK = SEC$M_WRT
ELSE

! If STATS.SAY does not exist, create new database
MASK = SEC$M_WRT .OR. SEC$M_DZRO
SEC_LEN =

(address of last - address of first + size of last + 511)/512
2 ((%LOC(TOTAL_HOUSES) - %LOC(PERSONS_HOUSE(1)) + 4 + 511)/512)

OPEN (UNIT=STATS_LUN,
2 FILE='STATS.SAV',
2 STATUS='NEW',
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
END IF
! Free logical unit number and map section
CLOSE (STATS_LUN)

MAP DATA

Specify first and last address of section

ADDR(1) = %LOC(PERSONS_HOUSE(1))
ADDR(2) = %LOC(TOTAL_HOUSES)
! Map the section
STATUS = SYS$CRMPSC (ADDR,
2 RET_ADDR,
2
2 %VAL(MASK),
2
2 %VAL(CHAN),
2 .. ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Check for correct mapping
IF ((ADDR(1) .NE. RET_ADDR(1)) .OR.
2 (ADDR(2) .GT. RET_ADDR(2)))
2 CALL LIB$SIGNAL (%VAL (%LOC(INCOME_BADMAP)))

Reference data using the
data structures listed
in the common block

Close and update STATS.SAY
STATUS= SYS$DELTVA (RET_ADDR,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$DASSGN (%VAL(CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

END

8-7

File 1/0
8.3 Loading and Unloading a Database

8.3.1.2

8-8

User-Open Routine
When you open a file for mapping, you must specify a user-open routine
(Section 8.8 discusses user-open routines) to perform the following operations:

1 Set the user-file open bit (FAB$V_UFO) in the FAB options mask.

2 Open the file using SYS$0PEN for an existing file or SYS$CREATE for
a new file. (Do not invoke SYS$CONNECT if you have set the user-file
open bit.)

3 Return the channel number to the program unit that started the OPEN
operation. The channel number is in the additional status longword of
the FAB (FAB$L_STV) and must be returned in a common block.

4 Return the status of the open operation (SYS$0PEN or SYS$CREATE) as
the value of the user-open routine.

After setting the user-file open bit in the FAB options mask, you cannot use
language 1/0 statements to access data in that file. Therefore, you should
free the logical unit number associated with the file. The file is still open.
You access the file with the channel number.

Example 8-2 shows a user-open routine invoked by the example program in
Section 8.3.1.1 if the file STATS.SAV exists. (If STATS.SAV does not exist, the
user-open routine must invoke SYS$CREATE rather than SYS$0PEN.)

Example 8-2 Using a User-Open Routine

!UFO_OPEN.FOR

INTEGER FUNCTION UFO_OPEN (FAB,
2 RAB,
2 LUN)

! Include RMS definitions
INCLUDE 1 ($FABDEF) 1

INCLUDE '($RABDEF)'
! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN
! Declare channel
INTEGER*4 CHAN
COMMON /CHANNEL/ CHAN
! Declare status variable
INTEGER STATUS
! Declare system procedures
INTEGER SYS$0PEN
! Set useropen bit in the FAB options longword
FAB.FAB$L_FOP = FAB.FAB$L_FOP .OR. FAB$M_UFO

Example 8-2 Cont'd. on next page

8.3.1.3

8.3.1.4

File 1/0
8.3 Loading and Unloading a Database

Example 8-2 (Cont.) Using a User-Open Routine

! Open file
STATUS = SYS$0PEN (FAB)
! Read channel from FAB status word
CHAN = FAB.FAB$L_STV

! Return status of open operation
UFO_OPEN = STATUS

END

Initializing a Mapped Database
The first time you map a file you must perform the following operations in
addition to those listed at the beginning of Section 8.3.1:

• Specify the size of the file-SYS$CRMPSC maps data based on the size
of the file. Therefore, when creating a file that is to be mapped, you must
specify in your program a file large enough to contain all of the expected
data. Figure the size of your database as follows:

1 Find the size of the common block (in bytes)-Subtract the location
of the first variable in the common block from the location of the
last variable in the common block and then add the size of the last
element.

2 Find the number of blocks in the common block-Add 511 to the size
and divide the result by 512 (512 bytes= 1 block).

• Initialize the file when you map it-The blocks allocated to a file might
not be initialized and therefore contain random data. When you first map
the file, you should initialize the mapped area to zeros by setting the
SEC$V_DZRO bit in the mask argument of SYS$CRMPSC.

The user-open routine for creating a file is the same as the user-open routine
for opening a file except that SYS$0PEN is replaced by SYS$CREATE.

Saving a Mapped File
To close a data file opened for user 1/0, you must deassign the 1/0 channel
assigned to that file. Before you can deassign a channel assigned to a mapped
file, you must delete the virtual memory associated with the file (the memory
used by the common block). When you delete the virtual memory used by a
mapped file, any changes made while the file was mapped are written back
to the disk file. Use the SYS$DELTVA system service to delete the virtual
memory used by a mapped file. Use the SYS$DASSGN system service to
deassign the 1/0 channel assigned to a file.

The program segment shown in Example 8-3 closes a mapped file,
automatically writing any modifications back to the disk. To ensure that
the proper locations are deleted, pass SYS$DEL TVA the addresses returned
to your program by SYS$CRMPSC rather than the addresses you passed to
SYS$CRMPSC. If you want to save modifications made to the mapped section
without closing the file, use the SYS$UPDSEC system service. To ensure that
the proper locations are updated, pass SYS$UPDSEC the addresses returned
to your program by SYS$CRMPSC rather than the addresses you passed
to SYS$CRMPSC. Typically, you want to wait until the update operation
completes before continuing program execution. Therefore, use the efn
argument of SYS$UPDSEC to specify an event flag to be set when the
update is complete, and wait for the system service to complete before
continuing. For a complete description of the SYS$DELTVA, SYS$DASSGN,

8-9

File 1/0
8.3 Loading and Unloading a Database

8.3.1.5

8-10

and SYS$UPDSEC system services, see the VMS System Services Reference
Manual.

Example 8-3 Closing a Mapped File

! Section address
INTEGER*4 ADDR(2),
2 RET_ADDR(2)
! Event flag
INTEGER*4 FLAG
! Status block
STRUCTURE /IO_BLOCK/

INTEGER*2 IOSTAT,
2 HARDWARE

INTEGER*4 BAD_PAGE
END STRUCTURE
RECORD /IO_BLOCK/ IOSTATUS

Get an event flag
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Update the section
STATUS = SYS$UPDSEC (RET_ADDR,
2
2 %VAL(FLAG)
2 '
2 IOSTATUS,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Wait for section to be updated
STATUS= SYS$SYNCH (%VAL(FLAG),
2 IOSTATUS)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Example of Per- Record Processing of Entire Database
This section provides an example, written in VAX FORTRAN, of how to open
and update a sequential file. A sequential file consists of records arranged one
after the other in the order in which they are written to the file. Records can
only be added to the end of the file. Typically, sequential files are accessed
sequentially.

Creating a Sequential File

To create a sequential file, use the OPEN statement and specify the following
keywords and keyword values:

• STATUS ='NEW',

• ACCESS = 'SEQUENTIAL'

• ORGANIZATION = 'SEQUENTIAL'.

The file structure keyword ORGANIZATION also accepts the values
'INDEXED' or 'RELATIVE'.

File 1/0
8.3 Loading and Unloading a Database

Example 8-4 creates a sequential file of fixed-length records.

Example 8-4 Creating a Sequential File of Fixed-Length Records

INTEGER STATUS,
2 LUN,
2 LIB$GET_INPUT,
2 LIB$GET_LUN,
2 STR$UPCASE
INTEGER*2 FN_SIZE,
2 REC_SIZE
CHARACTER*256 FILENAME
CHARACTER*80 RECORD
! Get file name
STATUS = LIB$GET_INPUT (FILENAME,
2 'File name: '
2 FN_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get free unit number
STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the file
OPEN (UNIT= LUN,
2 FILE= FILENAME (1:FN_SIZE),
2 ORGANIZATION = 'SEQUENTIAL',
2 ACCESS = 'SEQUENTIAL',
2 RECORDTYPE = 'FIXED',
2 FORM = 'UNFORMATTED',
2 RECL = 20,
2 STATUS= 'NEW')
! Get the record input
STATUS = LIB$GET_INPUT (RECORD,
2 'Input: '
2 REC_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
DO WHILE (REC_SIZE .NE. 0)

! Convert to uppercase
STATUS = STR$UPCASE (RECORD.RECORD)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

WRITE (UNIT=LUN) RECORD(1:REC_SIZE)
! Get more record input
STATUS = LIB$GET_INPUT (RECORD,

2 'Input: ',
2 REC_SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

END

Updating a Sequential File

To update a sequential file, read each record from the file, update it, and
write it to a new sequential file. Updated records cannot be written back as
replacement records for the same sequential file from which they were read.

8-11

File 1/0
8.3 Loading and Unloading a Database

8-12

Example 8-5 updates a sequential file, giving the user the option of modifying
a record before writing it to the new file. The same file name is used for both
files; since the new update file was opened after the old file, it has a higher
version number.

Example 8-5 Updating a Sequential File

INTEGER STATUS,
2 LUN1,
2 LUN2,
2 IOSTAT
INTEGER*2 FN_SIZE
CHARACTER*256 FILENAME
CHARACTER*80 RECORD
CHARACTER*80 NEW_RECORD
INCLUDE 1 ($FORDEF)'
INTEGER*4 LIB$GET_INPUT,
2 LIB$GET_LUN,
2 STR$UPCASE
! Get file name
STATUS = LIB$GET_INPUT (FILENAME,
2 'File name: '
2 FN_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get free unit number
STATUS = LIB$GET_LUN (LUN1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the old file
OPEN (UNIT=LUN1,
2 FILE=FILENAME (1:FN_SIZE),
2 ORGANIZATION=' SEQUENTIAL',
2 ACCESS='SEQUENTIAL',
2 RECORDTYPE='FIXED',
2 FORM='UNFORMATTED',
2 RECL=20,
2 STATUS='OLD')
! Get free unit number
STATUS = LIB$GET_LUN (LUN2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the new file
OPEN (UNIT=LUN2,
2 FILE=FILENAME (l:FN_SIZE),
2 ORGANIZATION='SEQUENTIAL',
2 ACCESS='SEQUENTIAL',
2 RECORDTYPE='FIXED',
2 FORM='UNFORMATTED',
2 RECL=20,
2 STATUS='NEW')

Example 8-5 Cont'd. on next page

File 1/0
8.3 Loading and Unloading a Database

Example 8-5 (Cont.) Updating a Sequential File

! Read a record from the old file
READ (UNIT=LUN1,
2 IOSTAT=IOSTAT) RECORD
IF (IOSTAT .NE. IOSTAT_OK) THEN

CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
END IF

END IF

DO WHILE (STATUS .NE. FOR$_ENDDURREA)

TYPE *· RECORD

! Get record update
STATUS = LIB$GET_INPUT (NEW_RECORD,

2 'Update: ')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Convert to uppercase
STATUS = STR$UPCASE (NEW_RECORD,

2 NEW_RECORD)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Write unchanged record or updated record
IF (NEW_RECORD .EQ. I I) THEN

WRITE (UNIT=LUN2) RECORD
ELSE

WRITE (UNIT=LUN2) NEW_RECORD
END IF

! Read the next record
READ (UNIT=LUN1,

2 IOSTAT=IOSTAT) RECORD
IF (IOSTAT .NE. IOSTAT_OK) THEN

CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
END IF

END IF
END DO

END

8.4 Sorting and Merging Sequential Files
The Sort/Merge Utility (SORT) permits you to sort and merge records in
sequential files based on one or more key fields that you specify. You can
sort from one to ten input files, generating a single reordered output file. You
can also merge up to ten sorted input files into a single output file.

Invoking SORT from the DCL Command Level

Use the SORT and MERGE commands to sort and merge files at the DCL
command level; for details, see the description of the Sort Utility in the VMS
Sort/Merge Utility Manual.

8-13

8.4.1

8.4.2

8.4.3

File 1/0
8.4 Sorting and Merging Sequential Files

Invoking SORT from a Program

Use the SORT /MERGE utility (SOR) routines to sort and merge files within
a program. The VMS Utility Routines Manual contains complete specifications
for the procedures and their arguments.

Using the File and Record Interface
Sequential files can be sorted and merged using either a file interface or a
record interface. Using the file interface, your program passes entire files
to SORT and receives an entire reordered file upon completion. Using the
record interface, your program passes a file to SORT one record at a time,
and receives the reordered file one record at a time. Typically, the record
interface is used to process individual records before or after a sort operation.
These interfaces can be combined, allowing your program to pass entire files
to SORT and receive individual records or vice versa.

Multiple Sort Operations
A program can perform multiple sort operations concurrently by specifying
the context argument when calling the various SORT /MERGE utility routines.
The context argument is a longword that you pass and SORT updates to keep
track of concurrent sort operations. A call to SOR$END_SORT reinitializes
the context argument.

Passing Key Information

8-14

To perform sort or merge operations, you must pass key information
(key_buffer argument) to either the SOR$BEGIN_SORT or SOR$BEGIN_
MERGE routine. The key_buffer argument is passed as an array of words.
The first word of the array contains the number of keys to be used in the sort
or merge. Each block of four words that follows describes one key (multiple
keys are listed in order of their priority).

• The first word of each block describes the key datatype.

• The second word determines the sort or merge order (0 for ascending, 1
for descending).

• The third word describes the relative offset of the key (beginning at
position 0).

• The fourth word describes the length of the key in bytes.

To sort or merge sequential files, you must call a specific sequence of
SORT /MERGE utility routines. The routines and calling sequence depend on
whether you are sorting or merging and on which interface you use.

8.4.4

File 1/0
8.4 Sorting and Merging Sequential Files

Sorting with the File Interface
Perform the following steps to sort sequential files using the file interface:

1 Call SOR$P ASS_FILES to pass the file specifications of the input and
output files to SORT. Up to ten input files are permitted. For multiple
input files, you must call SOR$P ASS_FILES once for each input file.
The output file must be specified in the first call. A number of optional
arguments control the characteristics of the output file (see the VMS
Utility Routines Manual).

2 Call SOR$BEGIN _SORT to pass key information. You can also specify a
number of sort options, including a user-written key comparison routine
(see the VMS Utility Routines Manual). When you are using the file
interface, SOR$BEGIN _SORT opens the input and output files.

3 Call SOR$SORT_MERGE to execute the sort and direct the sorted records
to the output file.

4 Call SOR$END_SORT to end the sort and close the input and output
files.

Example 8-6 sorts a sequential file using the file interface.

Example 8-6 Sorting a Sequential File Using the File Interface

INTEGER STATUS,
2 FN_SIZE_IN,
2 FN_SIZE_OUT,
2 LUN_IN,
2 LUN_OUT
CHARACTER*256 FILENAME_IN,
2 FILENAME_ OUT
INTEGER LIB$GET_INPUT,
2 LIB$GET_LUN,
2 SOR$PASS_FILES,
2 SOR$BEGIN_SORT,
2 SOR$SORT_MERGE,
2 SOR$END_SORT
EXTERNAL DSC$K_DTYPE_T ! Character data type definition
! Define a record
STRUCTURE /EMPLOYEE/

CHARACTER*20 NAME 1:20
CHARACTER*20 ADDRESS 21:40
CHARACTER*19 CITY 41:59
CHARACTER*2 STATE 60:61
CHARACTER*9 ZIP_CODE 62:70

END STRUCTURE
RECORD /EMPLOYEE/ TEMP
! Sort key information --- 1 key
INTEGER*2 KEY_BUFFER (5)
KEY_BUFFER (1) = 1
KEY_BUFFER (2) = %LOC(DSC$K_DTYPE_T)
KEY_BUFFER (3) = 0
KEY_BUFFER (4) = 0
KEY_BUFFER (5) = 20

Example 8-6 Cont'd. on next page

! Number of keys
! Character data
! Ascending sort
Start at offset 0 (pos. 1)
Length of the key

8-15

8.4.5

File 1/0
8.4 Sorting and Merging Sequential Files

Example 8-6 (Cont.) Sorting a Sequential File Using the File
Interface

! Get input file name
STATUS= LIB$GET_INPUT (FILENAME_IN,
2 'Input file name: '
2 FN_SIZE_IN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get output file name
STATUS= LIB$GET_INPUT (FILENAME_OUT,
2 'Output file name: ',
2 FN_SIZE_OUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Pass files to SORT
STATUS= SOR$PASS_FILES (FILENAME_IN (1:FN_SIZE_IN),
2 FILENAME_OUT (1:FN_SIZE_OUT))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Pass key information to SORT
STATUS = SOR$BEGIN_SORT (KEY_BUFFER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Perform sort
STATUS = SOR$SORT_MERGE ()
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! End sort
STATUS = SOR$END_SORT ()
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

Sorting with the Record Interface

8-16

Perform the following steps to sort files using the record interface:

1 Call SOR$BEGIN_SORT to pass key information, the longest record
length, and sort options. (Record length, the lrl argument, must be
specified for the record interface.)

2 Call SOR$RELEASE_REC once for each record that you want to release
to SORT. (Record buffer, the desc argument, must be specified.)

3 Call SOR$SORT_MERGE to execute the sort.

4 Call SOR$RETURN _REC once for each record that is to be retµrned from
SORT. (Record buffer, the desc argument, must be specified.)

5 Call SOR$END_SORT to end the sort and close the input and output
files.

Example 8-7 sorts a sequential file using the record interface. Since the
SOR$RELEASE_REC and SOR$RETURN _REC routines require that you
pass the record as a character string, the structure block that defines the
record variable uses a union block to indicate that the record variable can be
interpreted as various fields or as a single character string field.

File 1/0
8.4 Sorting and Merging Sequential Files

Example 8-7 Sorting a Sequential File Using the Record Interface

INTEGER STATUS,
2 FN_SIZE_IN,
2 FN_SIZE_OUT,
2 LUN_IN,
2 LUN_OUT,
2 IOSTAT
INTEGER*2 LRL/72/
CHARACTER*256 FILENAME_IN,
2 FILENAME_OUT
INTEGER LIB$GET_INPUT,
2 LIB$GET_LUN,
2 SOR$BEGIN_SORT,
2 SOR$RELEASE_REC,
2 SDR$SORT_MERGE,
2 SOR$RETURN_REC,
2 SOR$END_SORT
INCLUDE '($FORDEF)'
INCLUDE '($SSDEF)'
EXTERNAL DSC$K_DTYPE_T
PARAMETER STATUS_OK = 1
! Define a record
STRUCTURE /EMPLOYEE/

UNION
MAP

CHARACTER*22 NAME
CHARACTER*20 ADDRESS
CHARACTER*19 CITY
CHARACTER*2 STATE
CHARACTER*9 ZIP_CODE

END MAP
MAP

CHARACTER*72 STRING
END MAP

END UNION
END STRUCTURE
RECORD /EMPLOYEE/ TEMP
! Sort key information --- 1 key
INTEGER*2 KEY_BUFFER (5)
KEY_BUFFER (1) = 1
KEY_BUFFER (2) = %LOC(DSC$K_DTYPE_T)
KEY_BUFFER (3) = 0
KEY_BUFFER (4) = 0
KEY_BUFFER (5) = 22
! Get input file name
STATUS = LIB$GET_INPUT (FILENAME_IN,

1:20
21:40
41:59
60:61
62:70

Number of keys
Character data
Ascending sort
Start at offset 0 (pos. 1)
Length of the key

2 'Input file name: '
2 FN_SIZE_IN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get output file name
STATUS = LIB$GET_INPUT (FILENAME_OUT,
2 'Output file name: '
2 FN_SIZE_OUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 8-7 Cont'd. on next page

8-17

File 1/0
8.4 Sorting and Merging Sequential Files

8-18

Example 8-7 (Cont.) Sorting a Sequential File Using the Record
Interface

! Get free logical unit number
STATUS = LIB$GET_LUN (LUN_IN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the input file
OPEN (UNIT=LUN_IN,
2 FILE=FILENAME_IN (1:FN_SIZE_IN),
2 ORGANIZATION=' SEQUENTIAL',
2 ACCESS='SEQUENTIAL',
2 RECORDTYPE='FIXED',
2 FORM='UNFORMATTED',
2 RECL=18,
2 STATUS='OLD')
! Get free logical unit number
STATUS = LIB$GET_LUN (LUN_OUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the output file
OPEN (UNIT=LUN_OUT,
2 FILE=FILENAME_OUT (1:FN_SIZE_OUT),
2 ORGANIZATION='SEQUENTIAL',
2 ACCESS='SEQUENTIAL',
2 RECORDTYPE='FIXED',
2 FORM='UNFORMATTED',
2 RECL=18,
2 STATUS='NEW')
! Give SORT key information
STATUS = SOR$BEGIN_SORT (KEY_BUFFER,
2 LRL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Read first record from input file
READ (UNIT=LUN_IN,
2 IOSTAT=IOSTAT) TEMP
IF (IOSTAT .NE. IOSTAT_OK) THEN

CALL ERRSNS(,,, ,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

END IF
! Pass each record to SORT

DO WHILE (STATUS .NE. FOR$_ENDDURREA)

! Pass the record
STATUS = SOR$RELEASE_REC (TEMP.STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Read next record
READ (UNIT=LUN_IN,

2 IOSTAT=IOSTAT) TEMP
IF (IOSTAT .NE. IOSTAT_OK) THEN

CALL ERRSNS(,,, ,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

END IF
END DO
! Start sorting
STATUS = SOR$SORT_MERGE ()
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 8-7 Cont'd. on next page

8.4.6

File 1/0
8.4 Sorting and Merging Sequential Files

Example 8-7 (Cont.) Sorting a Sequential File Using the Record
Interface

! Release records from SORT
STATUS = SOR$RETURN_REC (TEMP.STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Write records to output

DO WHILE (STATUS .NE. SS$_ENDOFFILE)

! Write the record to output file
WRITE (UNIT=LUN_OUT,

2 IOSTAT=IOSTAT) TEMP
IF (IOSTAT .NE. IOSTAT_OK) THEN

CALL ERRSNS(,,, ,STATUS)
CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Release the next record
STATUS = SOR$RETURN_REC (TEMP.STRING)
IF ((STATUS .NE. STATUS_OK) .AND.

2 (STATUS .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL (STATUS))

END IF
END DO

! End SORT
STATUS = SOR$END_SORT ()
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

Merging with the File Interface
Perform the following steps to merge records using the file interface:

1 Call SOR$P ASS_FJLES to pass the file specifications of the input and
output files to SORT. Up to ten input files are permitted. For multiple
input files, you must call SOR$P ASS_FILES once for each input file.
The output file must be specified in the first call. A number of optional
arguments control the characteristics of the output file (see the VMS
Utility Routines Manual).

2 Call SOR$BEGIN _MERGE to pass key information and merge options.
You can also specify a number of merge options, including a user-written
key comparison routine (see the VMS Utility Routines Manual). When
using the file interface, SOR$BEGIN _MERGE opens the input and output
files and initializes the merge operation.

3 Call SOR$END_SQRT to end the merge and close the input and output
files.

Example 8-8 merges two sequential files using the file interface.

8-19

File 1/0
8.4 Sorting and Merging Sequential Files

8-20

Example 8-8 Merging Sequential Files Using the File Interface

INTEGER STATUS,
2 FN_SIZE_IN1,
2 FN_SIZE_IN2,
2 FN_SIZE_OUT,
2 LUN_OUT
CHARACTER*256 FILENAME_IN1,
2 FILENAME_IN2,
2 FILENAME_ OUT
INTEGER LIB$GET_INPUT,
2 LIB$GET_LUN,
2 SOR$PASS_FILES,
2 SOR$BEGIN_MERGE,
2 SOR$END_SORT
EXTERNAL DSC$K_DTYPE_T
! Define a record
STRUCTURE /EMPLOYEE/

CHARACTER*22 NAME
CHARACTER*20 ADDRESS
CHARACTER*19 CITY
CHARACTER*2 STATE
CHARACTER*9 ZIP_CODE

END STRUCTURE
RECORD /EMPLOYEE/ TEMP
! SORT key information --- 1 key
INTEGER*2 KEY_BUFFER (5)
KEY_BUFFER (1) = 1
KEY_BUFFER (2) = %LOC(DSC$K_DTYPE_T)
KEY_BUFFER (3) = 0
KEY_BUFFER (4) = 0
KEY_BUFFER (5) = 22
! Get first input file name
STATUS = LIB$GET_INPUT (FILENAME_IN1,

1:20
21:40
41:59
60:61
62:70

Number of keys
Character data
Ascending sort
Start at offset 0 (pos. 1)
Length of the key

2 'Input file name: '
2 FN_SIZE_IN1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get second input file name
STATUS = LIB$GET_INPUT (FILENAME_IN2,
2 'Input file name: ',
2 FN_SIZE_IN2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get output file name
STATUS= LIB$GET_INPUT (FILENAME_OUT,
2 'Output file name: '
2 FN_SIZE_OUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Pass files to SORT - output file in first call
STATUS = SOR$PASS_FILES (FILENAME_IN1 (1:FN_SIZE_IN1),
2 FILENAME_OUT (1:FN_SIZE_OUT))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Pass second input file to SORT
STATUS = SOR$PASS_FILES (FILENAME_IN2 (1:FN_SIZE_IN2))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 8-8 Cont'd. on next page

8.4.7

File 1/0
8.4 Sorting and Merging Sequential Files

Example 8-8 (Cont.) Merging Sequential Files Using the File
Interface

Give SORT key information
STATUS = SOR$BEGIN_MERGE (KEY_BUFFER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! End merge
STATUS = SOR$END_SORT ()
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

Merging with the Record Interface
Perform the following steps to merge sequential files using the record
interface:

1 Call SOR$BEGIN _MERGE to pass the key information, the longest
record length, the merge order (number of input files to be merged),
and a user-written input routine. The last three arguments mentioned
(lrl, merge_order, and user_input) are required when using the record
interface; the first argument (key_buffer) can be omitted if you specify
a key comparison routine. The user input routine must determine which
input file to read, read a record, and determine the record's length.

2 Call SOR$RETURN_REC once for each record to be returned from SORT.
(Record buffer, the desc argument, must be specified.) SOR$RETURN _
REC calls the user input routine until all records are passed. When using
the record interface, releasing, merging, and reading of records all occur
during a call to SOR$RETURN _REC.

3 Call SOR$END_SORT to end the merge and close the input and output
files.

The user input routine must accept four arguments: (1) a record buffer, (2)
a file order argument (an integer passed by SORT determining which input
file should be read), (3) a record length buffer (an integer), and (4) a context
argument (a longword used to keep track of concurrent operations). The
routine must return a status value: either SS$_NORMAL for a successful
read or SS$_ENDOFFILE for an end-of-file error. SOR$BEGIN_MERGE
passes any other error back to the program unit performing the merge.

Example 8-9 merges two sequential files using the record interface. Note
that the common block UNIT_NUMBERS is used to pass the logical unit
numbers of the input files to the input routine GET_RECORD. Since the
SOR$RETURN _REC routines require that you pass the record as a character
string, the structure block that defines the record variable uses a union block
to indicate that the record variable can be interpreted as various fields or as a
single character string field.

8-21

File 1/0
8.4 Sorting and Merging Sequential Files

8-22

Example 8-9 Merging Sequential Files Using the Record Interface

INTEGER STATUS,
2 GET_RECORD,
2 FN_SIZE_IN1,
2 FN_SIZE_IN2,
2 FN_SIZE_OUT,
2 STATUS_OK,
2 IOSTAT_OK,
2 LUN_IN1,
2 LUN_IN2,
2 LUN_OUT,
2 RECORD_LEN,
2 IOSTAT
PARAMETER (STATUS_OK = 1)
PARAMETER (IOSTAT_OK = 0)
INTEGER*2 LRL /72/
EXTERNAL DSC$K_DTYPE_T
LOGICAL*1 ORDER ! Order of merge
DATA ORDER/2/
! Common block to pass luns to subroutine
COMMON /UNIT_NUMBERS/ LUN_IN1,
2 LUN_IN2
CHARACTER*256 FILENAME_IN1,
2 FILENAME_IN2,
2 FILENAME_ OUT
EXTERNAL GET_RECORD
INTEGER LIB$GET_INPUT,
2 LIB$GET_LUN,
2 SOR$BEGIN_MERGE,
2 SOR$RETURN_REC,
2 SOR$PASS_FILES,
2 SOR$END_SORT
INCLUDE '($FORDEF)'
INCLUDE '($SSDEF)'
! Define a record
STRUCTURE /EMPLOYEE/

UNION
MAP

CHARACTER*22 NAME
CHARACTER*20 ADDRESS
CHARACTER*19 CITY
CHARACTER*2 STATE
CHARACTER*9 ZIP_CODE

END MAP
MAP

CHARACTER*72 STRING
END MAP

END UNION
END STRUCTURE

Example 8-9 Cont'd. on next page

1:20
21:40
41:59
60:61
62:70

Whole record

File 1/0
8.4 Sorting and Merging Sequential Files

Example 8-9 (Cont.) Merging Sequential Files Using the Record
Interface

RECORD /EMPLOYEE/ TEMP
! Sort key information --- 1 key
INTEGER*2 KEY_BUFFER (5)
KEY_BUFFER (1) = 1
KEY_BUFFER (2) = %LOC(DSC$K_DTYPE_T)
KEY_BUFFER (3) = 0
KEY_BUFFER (4) = 0
KEY_BUFFER (5) = 22
! Get first input file name
STATUS = LIB$GET_INPUT (FILENAME_IN1,

Number of keys
Character data
Ascending sort
Start at offset 0 (pos. 1)
Length of the key

2 'Input file name: '
2 FN_SIZE_IN1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get second input file name
STATUS = LIB$GET_INPUT (FILENAME_IN2,
2 'Input file name: ',
2 FN_SIZE_IN2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get output file name
STATUS = LIB$GET_INPUT (FILENAME_OUT,
2 'Output file name: ',
2 FN_SIZE_OUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get free logical unit number
STATUS = LIB$GET_LUN (LUN_IN1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the input file
OPEN (UNIT=LUN_IN1,
2 FILE=FILENAME_IN1 (1:FN_SIZE_IN1),
2 ORGANIZATION='SEQUENTIAL',
2 ACCESS='SEQUENTIAL',
2 RECORDTYPE='FIXED',
2 FORM='UNFORMATTED',
2 RECL=18,
2 STATUS='OLD')
! Get free logical unit number
STATUS = LIB$GET_LUN (LUN_IN2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the second input file
OPEN (UNIT=LUN_IN2,
2 FILE=FILENAME_IN2 (1:FN_SIZE_IN2),
2 ORGANIZATION='SEQUENTIAL',
2 ACCESS='SEQUENTIAL',
2 RECORDTYPE='FIXED',
2 FORM='UNFORMATTED',
2 RECL=18,
2 STATUS='OLD')
! Get free logical unit number
STATUS = LIB$GET_LUN (LUN_OUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 8-9 Cont'd. on next page

8-23

File 1/0
8.4 Sorting and Merging Sequential Files

8-24

Example 8-9 (Cont.) Merging Sequential Files Using the Record
Interface

! Open the output file
OPEN (UNIT=LUN_OUT,
2 FILE=FILENAME_OUT (1:FN_SIZE_OUT),
2 ORGANIZATION=' SEQUENTIAL',
2 ACCESS='SEQUENTIAL',
2 RECORDTYPE='FIXED',
2 FORM='UNFORMATTED',
2 RECL=18,
2 STATUS='NEW')

. ! Begin the MERGE
STATUS = SOR$BEGIN_MERGE (KEY_BUFFER,
2 LRL,,
2 ORDER,,,
2 GET_RECORD)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get, merge and release records
! RETURN_REC calls GET_RECORD for input
DO WHILE (STATUS .NE. SS$_ENDOFFILE)

STATUS = SOR$RETURN_REC (TEMP.STRING,
2 RECORD_LEN)

IF (.NOT. STATUS) THEN
IF (STATUS .NE. SS$_ENDOFFILE)

2 CALL LIB$SIGNAL (%VAL (STATUS))
ELSE

! Write the record to output file
WRITE (UNIT=LUN_OUT,

2 IOSTAT=IOSTAT) TEMP
IF (IOSTAT .NE. IOSTAT_OK) THEN

CALL ERRSNS(,,,,STATUS)
CALL LIB$SIGNAL (%VAL (STATUS))

END IF
END IF

END DO

! End the merge
STATUS = SOR$END_SORT ()
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

GET_RECORD. FOR

INTEGER FUNCTION GET_RECORD (RECORDX,
2 FILE_ORDER,
2 SIZE)
INTEGER STATUS,
2 IOSTAT,
2 STATUS_OK,
2 IOSTAT_OK,
2 MAX_NUM_FILES,
2 LUNX,
2 FILE_ORDER,
2 SIZE
PARAMETER (STATUS_OK = 1)
PARAMETER (IOSTAT_OK = 0)
PARAMETER (MAX_NUM_FILES = 2) ! Max number of input files

Example 8-9 Cont'd. on next page

File 1/0
8.4 Sorting and Merging Sequential Files

Example 8-9 (Cont.) Merging Sequential Files Using the Record
Interface

INCLUDE '($SSDEF)'
INCLUDE '($FORDEF)'
COMMON /UNIT_NUMBERS/ LUN_IN1,
2 LUN_IN2
CHARACTER*72 RECORDX ! Record buff er
GET_RECORD = SS$_NORMAL
! Determine which input file is being read
IF (FILE_ORDER .EQ. 1) THEN

LUNX = LUN_IN1
ELSE IF (FILE_ORDER .EQ. 2) THEN

LUNX = LUN_IN2
ELSE IF ((FILE_ORDER .LT. 1) .OR.
2 (FILE_ORDER .GT. MAX_NUM_FILES)) THEN

GET_RECORD = SS$_ENDOFFILE
END IF
IF (GET_RECORD .NE. SS$_ENDOFFILE) THEN

! Read record from input file
READ (UNIT=LUNX,

2 IOSTAT=IOSTAT) RECORDX
! Error during read
IF (IOSTAT .NE. IOSTAT_OK) THEN

CALL ERRSNS(, ,, ,STATUS)
IF (STATUS .EQ. FOR$_ENDDURREA) THEN

GET_RECORD = SS$_ENDOFFILE
ELSE

CALL LIB$SIGNAL (%VAL(STATUS))
END IF

END IF

! Successful read
SIZE = LEN (RECORDX)

END IF
END

8.5 Data Compression and Expansion
To compress data in a library, use the /DATA=REDUCE qualifier of the
LIBRARY command (for details, see the description of the Librarian Utility
in the VMS Librarian Utility Manual). Once a library is reduced, the librarian
automatically compresses each record entered into the library and expands
each record extracted from the library. To expand the entire library, use the
/DATA=EXPAND qualifier of the LIBRARY command.

You cannot compress files (except for libraries) from DCL command level.
However, the DCX routines allow you to compress and expand files from
within a program. (For a complete description of the DCX routines, see
the VMS Utility Routines Manual.) To access a compressed file, you must
first expand that file. Therefore, large infrequently accessed files are good
candidates for compression. You can compress small files; however, it is
inefficient since you must store a data compression/ expansion function with
the compressed records.

8-25

8.5.1

File 1/0
8.5 Data Compression and Expansion

Compression Routines

8-26

Compressing a file with the DCX routines involves the following steps (an
example follows):

1 Initialize an analysis work area-Use the DCX$ANALYZE_INIT routine
to initialize a work area for analyzing the records. The first (and,
typically, the only) argument passed to DCX$ANALYZE_INIT is an
integer variable for storing the context value. The data compression
facility assigns a value to the context variable and associates the value
with the created work area. Each time you want to analyze a record in
that area, specify the associated context variable. You can analyze two or
more files at once by creating a different work area for each file, giving
each area a different context variable, and analyzing the records of each
file in the appropriate work area.

2 Analyze the records in the file-Use the DCX$ANALYZE_DATA routine
to pass each record in the file to an analysis work area. During analysis,
the data compression facility gathers information that DCX$MAKE_
MAP uses to create the compression/expansion function for the file.
To ensure that the first byte of each record is passed to the data
compression facility rather than being interpreted as a carriage control,
specify CARRIAGECONTROL = 'NONE' when you open the file to be
compressed.

3 Create the compression/expansion function-Use the DCX$MAKE_
MAP routine to create the compression/expansion function. You pass
DCX$MAKE_MAP a context variable, and DCX$MAKE_MAP uses the
information stored in the associated work area to compute a compression
/expansion function for the records being compressed. If DCX$MAKE_
MAP returns a status value of DCX$_AGAIN, repeat steps 2 and 3 until
DCX$MAKE_MAP returns a status of DCX$_NORMAL indicating that a
compression/expansion function has been created.

In Example 8-10, the integer function GET_MAP analyzes each record in
the file to be compressed and invokes DCX$MAKE_MAP to create the
compression/ expansion function. The function value of GET_MAP is the
return status of DCX$MAKE_MAP, and the address and length of the
compression/ expansion function are returned in GET_MAP' s argument
list. The main program, COMPRESS, invokes the GET_MAP function,
examines its function value, and, if necessary, invokes GET_MAP again
(see the ANALYZE DATA section of COMPRESS.FOR).

4 Clean up the analysis work area-Use the DCX$ANALYZE_DONE
routine to delete a work area. Identify the work area to be deleted by
passing DCX$ANALYZE_DONE a context variable.

5 Save the compression/ expansion function-You cannot expand
compressed records without the compression/expansion function.
Therefore, before compressing the records, write the compression
/expansion function to the file that will contain the compressed records.

If your programming language cannot use an address directly, pass
the address of the compression/expansion function to a subprogram
(WRITE_MAP in the following example). Pass the subprogram the
length of the compression/expansion function as well.

File 1/0
8.5 Data Compression and Expansion

In the subprogram, declare the dummy argument corresponding to the
function address as a one-dimensional, adjustable, byte array. Declare
the dummy argument corresponding to the function length as an integer
and use it to dimension the adjustable array. Write the function length
and the array containing the function to the file that is to contain the
compressed records. (The length must be stored so that you can read the
function from the file using unformatted I/O; see Section 8.5.2.)

6 Compress each record-Use the DCX$COMPRESS-1NIT routine to
initialize a compression work area. Specify a context variable for the
compression area just as for the analysis area.

Use the DCX$COMPRESS_DATA routine to compress each record. As
you compress each record, use unformatted IjO to write the compressed
record to the file containing the compression/expansion function. For
each record, write the length of the record and the substring containing
the record. See the COMPRESS DATA section in the following example.
(The length is stored with the substring so that you can read the
compressed record from the file using unformatted I/O; see Section 8.5.2.)

Use DCX$COMPRESS_DONE to delete the work area created by
DCX$COMPRESS_INIT. Identify the work area to be deleted by passing
DCX$COMPRESS_DATA a context variable. Use LIB$FREE_VM to free
the virtual memory that DCX$MAKE_MAP used for the compression
/expansion function.

Example 8-10 Compressing Data

!COMPRESS.FOR

Status variable
INTEGER STATUS,
2 IOSTAT,
2 IO_OK,
2 STATUS_OK
PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE '($FORDEF)'
EXTERNAL DCX$_AGAIN
! Context variable
INTEGER CONTEXT
! Compression/expansion function
INTEGER MAP,
2 MAP_LEN
! Normal file name, length, and logical unit number
CHARACTER*256 NORM_NAME
INTEGER*2 NORM_LEN
INTEGER NORM_LUN
! Compressed file name, length, and logical unit number
CHARACTER*256 COMP_NAME
INTEGER*2 COMP_LEN
INTEGER COMP_LUN

Example 8-10 Cont'd. on next page

8-27

File 1/0
8.5 Data Compression and Expansion

8-28

Example 8-10 (Cont.) Compressing Data

! Logical end-of-file
LOGICAL EDF
! Record buffers; 32767 is maximum record size
CHARACTER*32767 RECORD,
2 RECORD2
INTEGER RECORD_LEN,
2 RECORD2_LEN
! User routine
INTEGER GET_MAP,
2 WRITE_MAP
! Library procedures
INTEGER DCX$ANALYZE_INIT,
2 DCX$ANALYZE_DONE,
2 DCX$COMPRESS_INIT,
2 DCX$COMPRESS_DATA,
2 DCX$COMPRESS_DONE,
2 LIB$GET_INPUT,
2 LIB$GET_LUN,
2 LIB$FREE_VM
! Get name of file to be compressed and open it
STATUS = LIB$GET_INPUT (NORM_NAME,
2 'File to compress: ',
2 NORM_ LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_LUN (NORM_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT= NORM_LUN,
2 FILE= NORM_NAME(1:NORM_LEN),
2 CARRIAGECONTROL = 'NONE',
2 STATUS= 'OLD')

ANALYZE DATA

Initialize work area

STATUS = DCX$ANALYZE_INIT (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get compression/expansion function (map)
STATUS = GET_MAP (NORM_LUN,
2 CONTEXT,
2 MAP,
2 MAP_LEN)
DO WHILE (STATUS .EQ. %LOC(DCX$_AGAIN))

! Go back to beginning of file
REWIND (UNIT = NORM_LUN)
! Try map again
STATUS = GET_MAP

2
2
2
END DO

(NORM_LUN,
CONTEXT,
MAP,
MAP_LEN)

Example 8-10 Cont'd. on next page

File 1/0
8.5 Data Compression and Expansion

Example 8-10 (Cont.) Compressing Data

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Clean up work area
STATUS = DCX$ANALYZE_DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

COMPRESS DATA

Go back to beginning of file to be compressed

REWIND (UNIT = NORM_LUN)
! Open file to hold compressed records
STATUS = LIB$GET_LUN (COMP_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= LIB$GET_INPUT (COMP_NAME,
2 'File for compressed records: '
2 COMP_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = COMP_LUN,
2 FILE= COMP_NAME(l:COMP_LEN),
2 STATUS = 'NEW',
2 FORM = 'UNFORMATTED')

Initialize work area
STATUS = DCX$COMPRESS_INIT (CONTEXT,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Write compression/expansion function to new file
CALL WRITE_MAP (COMP_LUN,
2 %VAL(MAP),
2 MAP_LEN)
! Read record from file to be compressed
EDF = .FALSE.
READ (UNIT= NORM_LUN,
2 FMT = '(Q,A)',
2 IOSTAT = IOSTAT) RECORD_LEN,
2 RECORD(l:RECORD_LEN)
IF (IOSTAT .NE. IO_OK) THEN

CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE

EDF= .TRUE.
STATUS = STATUS_OK

END IF
END IF
DO WHILE (.NOT. EDF)

! Compress the record
STATUS = DCX$COMPRESS_DATA

2
2
2

(CONTEXT,
RECORD(l:RECORD_LEN),
RECORD2,
RECORD2_LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Write compressed record to new file
WRITE (UNIT= COMP_LUN) RECORD2_LEN
WRITE (UNIT= COMP_LUN) RECORD2 (1:RECORD2_LEN)

Example 8-10 Cont'd. on next page

8-29

File 1/0
8.5 Data Compression and Expansion

8-30

Example 8-10 (Cont.) Compressing Data

! Read from file to be compressed
READ (UNIT = NORM_LUN,

2 FMT = '(Q,A)',
2 IOSTAT = IOSTAT) RECORD_LEN,
2 RECORD (1:RECORD_LEN)

IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE

EDF= .TRUE.
STATUS = STATUS_OK

END IF
END IF

END DO
! Close files and clean up work area
CLOSE (NORM_LUN)
CLOSE (COMP_LUN)
STATUS= LIB$FREE_VM (MAP_LEN,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = DCX$COMPRESS_DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

GET_MAP.FOR

INTEGER FUNCTION GET_MAP (LUN, Passed
2 CONTEXT, Passed
2 MAP, Returned
2 MAP_LEN) Returned

Analyzes records in file opened on logical
unit LUN and then attempts to create a
compression/expansion function using
DCX$MAKE_MAP.
Dummy arguments
Context variable

NTEGER CONTEXT
! Logical unit number
INTEGER LUN
! Compression/expansion function
INTEGER MAP,
2 MAP_LEN
! Status variable
INTEGER STATUS,
2 IOSTAT,
2 IO_OK,
2 STATUS_OK
PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE '($FORDEF)'
! Logical end-of-file
LOGICAL EDF
! Record buffer; 32767 is the maximum record size
CHARACTER*32767 RECORD
INTEGER RECORD_LEN

Example 8-1 0 Cont'd. on next page

File 1/0
8.5 Data Compression and Expansion

Example 8-10 (Cont.) Compressing Data

! Library procedures
INTEGER DCX$ANALYZE_DATA,
2 DCX$MAKE_MAP
! Analyze records
EDF = .FALSE.
READ (UNIT= LUN,
2 FMT = '(Q,A) I.
2 IOSTAT = IOSTAT) RECORD_LEN,RECORD
IF (IOSTAT .NE. IO_OK) THEN

CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE

EDF= .TRUE.
STATUS = STATUS_OK

END IF
END IF
DO WHILE (.NOT. EDF)

STATUS = DCX$ANALYZE_DATA (CONTEXT,
2 RECORD(1:RECORD_LEN))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
READ (UNIT= LUN,

2 FMT = '(Q,A)',
2 IOSTAT = IOSTAT) RECORD_LEN,RECORD

IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE

EDF= .TRUE.
STATUS = STATUS_OK

END IF
END IF

END DO

STATUS= DCX$MAKE_MAP (CONTEXT,
2 MAP,
2 MAP_LEN)
GET_MAP = STATUS

END

WRITE_MAP.FOR

SUBROUTINE WRITE_MAP (LUN, Passed
2 MAP, ! Passed
2 MAP_LEN) ! Passed
! Write compression/expansion function
! to file of compressed data
! Dummy arguments
INTEGER LUN,
2 MAP_LEN
BYTE MAP (MAP_LEN)

Logical unit of file
Length of function
Compression/expansion function

Example 8-10 Cont'd. on next page

8-31

8.5.2

File 1/0
8.5 Data Compression and Expansion

Example 8-10 (Cont.) Compressing Data

! Write map length
WRITE (UNIT= LUN) MAP_LEN
! Write map
WRITE (UNIT = LUN) MAP

END

Expansion Routines

8-32

Perform the following steps to expand a compressed file:

1 Read the compression/expansion function-When reading the
compression/ expansion function from the compressed file, do not make
any assumptions about the function's size. The best practice is to read
the length of the function from the compressed file and then invoke the
LIB$GET_ VM routine to get the necessary amount of storage for the
function. LIB$GET_ VM returns the address of the first byte of the storage
area.

If your programming language cannot use an address directly, pass
the address of the storage area to a subprogram (READ_MAP in the
following example). Pass the subprogram the length of the compression
/expansion function as well.

In the subprogram, declare the dummy argument corresponding to the
storage address as a one-dimensional, adjustable, BYTE array. Declare
the dummy argument corresponding to the function length as an integer
and use it to dimension the adjustable array. Read the compression
/expansion function from the compressed file into the dummy array.
Since the compression/ expansion function is stored in the subprogram,
do not return to the main program until you have expanded all of the
compressed records.

2 Initialize an expansion work area-Use the DCX$EXPAND_INIT routine
to initialize a work area for expanding the records. The first argument
passed to DCX$EXP AND_INIT is an integer variable to contain a context
value (see step 1 in Section 8.5.1). The second argument is the address of
the compression/ expansion function.

3 Expand the records-Use the DCX$EXPAND_DATA routine to expand
each record.

4 Clean up the work area-Use the DCX$EXPAND_DONE routine to
delete an expansion work area. Identify the work area to be deleted by
passing DCX$EXPAND_DONE a context variable.

Example 8-11 expands a compressed file. The first record of the compressed
file is an integer containing the number of bytes in the compression
/expansion function. The second record is the compression/ expansion
function. The remainder of the file contains the compressed records. Each
compressed record is stored as two records, an integer containing the length
of the record and a substring containing the record.

File 1/0
8.5 Data Compression and Expansion

Example 8-11 Expanding Data

!EXPAND.FOR

INTEGER STATUS

! File names, lengths, and logical unit numbers
CHARACTER*256 OLD_FILE,
2 NEW_FILE
INTEGER*2 OLD_LEN,
2 NEW_LEN
INTEGER OLD_LUN,
2 NEW_LUN
! Length of compression/expansion function
INTEGER MAP,
2 MAP_LEN
! User routine
EXTERNAL EXPAND_DATA
! Library procedures
INTEGER LIB$GET_LUN,
2 LIB$GET_INPUT,
2 LIB$GET_VM,
2 LIB$FREE_VM
! Open file to expand
STATUS = LIB$GET_LUN (OLD_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_INPUT (OLD_FILE,
2 'File to expand: ',
2 OLD_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT= OLD_LUN,
2 STATUS = 'OLD',
2 FILE= OLD_FILE(1:0LD_LEN),
2 FORM= 'UNFORMATTED')
! Open file to hold expanded data
STATUS = LIB$GET_LUN (NEW_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$GET_INPUT (NEW_FILE,
2 'File to hold expanded data: '
2 NEW_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT= NEW_LUN,
2 STATUS = 'NEW',
2 CARRIAGECONTROL = 'NONE',
2 FILE= NEW_FILE(1:NEW_LEN))

Example 8-11 Cont'd. on next page

8-33

File 1/0
8.5 Data Compression and Expansion

8-34

Example 8-11 (Cont.) Expanding Data

! Expand file
! Get length of compression/expansion function
READ (UNIT= OLD_LUN) MAP_LEN
STATUS = LIB$GET_VM (MAP_LEN,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Expand records
CALL EXPAND_DATA (%VAL(MAP),
2 MAP_LEN, ! Length of function
2 OLD_LUN, ! Compressed data file
2 NEW_LUN) ! Expanded data file
! Delete virtual memory used for function
STATUS = LIB$FREE_VM (MAP_LEN,
2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
END

EXPAND_DATA.FOR

SUBROUTINE EXPAND_DATA (MAP, Passed
2 MAP_LEN, Passed
2 OLD_LUN, Passed
2 NEW_LUN) Passed
! Expand data program
! Dummy arguments
INTEGER MAP_LEN,
2 OLD_LUN,
2 NEW_LUN
BYTE MAP(MAP_LEN)
! Status variables
INTEGER STATUS,
2 IOSTAT,
2 IO_OK,
2 STATUS_OK

Length of expansion function
Logical unit of compressed file
logical unit of expanded file
Array containing the function

PARAMETER (IO_OK = 0)
PARAMETER (STATUS_OK = 1)
INCLUDE 1 ($FORDEF) 1

! Context variable
INTEGER CONTEXT
! Logical end-of-file
LOGICAL EDF
! Record buffers
CHARACTER*32767 RECORD,
2 RECORD2
INTEGER RECORD_LEN,
2 RECORD2_LEN
! Library procedures
INTEGER DCX$EXPAND_INIT,
2 DCX$EXPAND_DATA,
2 DCX$EXPAND_DONE

Example 8-11 Cont'd. on next page

File 1/0
8.5 Data Compression and Expansion

Example 8-11 (Cont.) Expanding Data

! Read data compression/expansion function
READ (UNIT = OLD_LUN) MAP
! Initialize work area
STATUS = DCX$EXPAND_INIT (CONTEXT,
2 %LOC(MAP(1)))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Expand records
EDF = .FALSE.
! Read length of compressed record
READ (UNIT= OLD_LUN,
2 IOSTAT = IOSTAT) RECORD_LEN
IF (IOSTAT .NE. IO_OK) THEN

CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE

EDF = .TRUE.
STATUS = STATUS_OK

END IF
END IF
DO WHILE (.NOT. EDF)

! Read compressed record
READ (UNIT = OLD_LUN) RECORD (1:RECORD_LEN)
! Expand record
STATUS = DCX$EXPAND_DATA

2
(CONTEXT,
RECORD(i:RECORD_LEN),
RECORD2, 2

2 RECORD2_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Write expanded record to new file
WRITE (UNIT= NEW_LUN,

2 FMT = '(A)') RECORD2(1:RECORD2_LEN)
! Read length of compressed record
READ (UNIT = OLD_LUN,

2 IOSTAT = IOSTAT) RECORD_LEN
IF (IOSTAT .NE. IO_OK) THEN

CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))
ELSE

EDF= .TRUE.
STATUS = STATUS_OK

END IF
END IF

END DO
! Clean up work area
STATUS = DCX$EXPAND_DONE (CONTEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

8. 6 Librarian Utility Routines
You can use LIBRARIAN to manage libraries at the programming level by
using Librarian Utility routines (LBR). The VMS Utility Routines Manual
contains complete specifications for the routines and their arguments.

For more information on using LIBRARIAN from DCL, refer to Chapter 5 and
the VMS Librarian Utility Manual.

8-35

8.6.1

File 1/0
8.6 Library Utility Routines

Creating, Opening, and Closing Libraries

8-36

Using a library requires the following sequence of events:

1 Initialize the library-Call LBR$INl_CONTROL to initialize the library.
LBR$INl_CONTROL returns a value to the first argument that you
must use in the remaining calls to the LBR routines; do not alter this
value. Pass one of the following values as the second argument: LBR$C_
CREATE to create and update a new library; LBR$C_UPDATE to update
an existing library; LBR$C_READ to read (no updates allowed) from an
existing library.

2 Open the library-Call LBR$0PEN to open the library. Pass the value
returned by LBR$INLCONTROL as the first argument. Pass the
file specification or partial file specification of the library file as the
second argument and any defaults for the file specification as the fourth
argument. (The current default device and directory are used if these
parts of the file specification remain unspecified.) If you are creating a
new library, pass the create options array as the third argument. The
CRE$ symbols (see the specifications in the VMS Utility Routines Manual)
identify the significant longwords of the array by their byte offsets into
the array. Convert these values to subscripts for an array of integers
(longwords) by dividing by 4 and adding 1. If you do not load the
significant longwords before calling LBR$INLCONTROL, the library
may be corrupted upon creation.

3 Work with the library-Call the various LBR routines and perform other
operations according to your program design.

4 Close the library-Call LBR$CLOSE to close the library. Supply the
value returned by LBR$INl_CONTROL as the first and only argument.
You must close a library explicitly for updates to be posted.

Note: Do not use LBR$1Nl_CQNTROL, LBR$0PEN, and LBR$CLOSE
for writing help text with LBR$0UTPUT_HELP. Simply invoke
LBR$0UTPUT_HELP.

Certain symbols used by the LBR routines are not defined in the default
object and shareable image libraries. You must include them explicitly by
calling $LBRDEF, $CREDEF, $MHDDEF, $LHIDEF, and $HLPDEF (as noted
in the specifications in the VMS Utility Routines Manual) in macro programs
specifying GLOBAL as an argument and by linking these programs with your
application program.

To open a library if it exists, or to create and open it if it does not exist, try
to open the library in UPDATE or READ mode, checking for an error status
value of RMS$_FNF. If this error occurs, open the library in CREATE mode.
Otherwise, open the library in UPDATE or READ mode. Example 8-12
opens, or creates and opens, a text library.

File 1/0
8.6 Library Utility Routines

Example 8-12 Creating, Opening, and Closing a Text Library

!DOLIB.CLD

Defines the command to call DOLIB.EXE
DEFINE VERB DOLIB
IMAGE WORK: [TEXTLIB]DOLIB
! Specify the library name (not the full spec)
! Defaults to current directory and a file type of TLB
PARAMETER P1,LABEL=LIBSPEC,PROMPT="Library",VALUE(REQUIRED)
! Specify the action to be performed
QUALIFIER ENTER
QUALIFIER EXTRACT, VALUE (LIST)
QUALIFIER DELETE, VALUE (LIST)
QUALIER TYPEINFO
QUALIFIER MODHEAD, VALUE (LIST)
QUALIFIER LIST, VALUE (DEFAULT="*")
QUALIFIER ALIAS, VALUE (LIST)
QUALIFIER SHOWALIAS, VALUE (REQUIRED)

DOLIBMSG.MSG

.TITLE DOLIB messages

.FACILITY DOLIB, 1 /PREFIX=DOLIB_

.SEVERITY WARNING

/ENTER
! /EXTRACT=(module, ...)
! /DELETE=(module, ...)
/TYPE INFO

/MODHEAD=(module, ...)
/LIST[=matchname]
/ALIAS=(module,alias, ...)
/SHOWALIAS=module

MODEX "Module already exists --- '!AS'" /FA0=1
NOMOD "No such module --- '!AS'" /FA0=1

.SEVERITY SEVERE
NOACTION "No action specified on command line"

.END

LBRDEF.MAR

$LBRDEF
$CREDEF
$MHDDEF
$LHIDEF
$HLPDEF
.END

GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

DOUB.FOR

PROGRAM DOLIB

Implements user requests on text libraries
Command line: DOLIB [qualifier] library-name

Qualifiers: /ENTER
/EXTRACT=(module-name, ...)
/DELETE=(module-name, ...)
/TYPE INFO
/MODHEAD=(module-name, ...)
/LIST[=match-name]
/ALIAS=(module,alias, ...)
/SHOWALIAS=module

Example 8-12 Cont'd. on next page

8-37

File 1/0
8.6 Library Utility Routines

8-38

Example 8-12 (Cont.) Creating, Opening, and Closing a Text Library

CHARACTER*31
2
2
2
2
2
2
2
2
2
2

LIBSPEC,
STATUS,
INDEX,
FUNC,
OPTIONS (20),
TYPE,
KEYLEN,
ALLOC,
IDXMAX,
UHDMAX,
ENTALL

! VMS library procedures
INTEGER LBR$INI_CONTROL,
2 LBR$0PEN,
2 LBR$CLOSE,
2 CLI$PRESENT

Library file
Return status
Library index
Library function
Create options
Subscripts for create options

! Off sets for create options array --- defined in $CREDEF
EXTERNAL CRE$L_TYPE, ! Library type
2 CRE$L_KEYLEN, ! Maximum key length
2 CRE$L_ALLOC, Initial allocation
2 CRE$L_IDXMAX, Number of indexes
2 CRE$L_UHDMAX, Module header extra bytes
2 CRE$L_ENTALL ! Preallocated index entries
! Type and function values --- defined in $LBRDEF
EXTERNAL LBR$C_TYP_UNK, Unknown
2 LBR$C_TYP_OBJ, Object or shareable image
2 LBR$C_TYP_MLB, Macro
2 LBR$C_TYP_HLP, Help
2 LBR$C_TYP_TXT, Text
2 LBR$C_CREATE, Create new library
2 LBR$C_READ, Open for read only
2 LBR$C_UPDATE Update
! Return codes
EXTERNAL RMS$_FNF, File not found
2 DOLIB_NOACTION No action specified
! Get library name
CALL CLI$GET_VALUE ('LIBSPEC',
2 LIBSPEC)
! Determine function --- update or read only
! Read only on /EXTRACT, /TYPEINFO, /LIST, /SHOWALIAS
IF (CLI$PRESENT ('EXTRACT') .OR.
2 CLI$PRESENT ('TYPEINFO') .OR.
2 CLI$PRESENT ('LIST') .OR.
2 CLI$PRESENT ('SHOWALIAS')) THEN

FUNC = %LDC (LBR$C_READ)
ELSE

FUNC = %LDC (LBR$C_UPDATE)
END IF

! Initialize and open library
STATUS = LBR$INI_CONTROL (INDEX,
2 FUNC)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LBR$0PEN (INDEX,
2 LIBSPEC,,
2 '.TLB')

Example 8-12 Cont'd. on next page

File 1/0
8.6 Library Utility Routines

Example 8-12 (Cont.) Creating, Opening, and Closing a Text Library

! If library does not exist, create it
IF (STATUS .EQ. %LDC (RMS$_FNF)) THEN

! Initialize with function = create
STATUS = LBR$INI_CONTROL (INDEX,

2 %LDC (LBR$C_CREATE))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Calculate subscripts for create options array
TYPE = %LDC (CRE$L_TYPE) / 4 + 1
KEYLEN = %LDC (CRE$L_KEYLEN) I 4 + 1
ALLOC = %LDC (CRE$L_ALLOC) / 4 + 1
IDXMAX = %LDC (CRE$L_IDXMAX) I 4 + 1
UHDMAX = %LDC (CRE$L_UHDMAX) / 4 + 1
ENTALL = %LDC (CRE$L_ENTALL) / 4 + 1
! Load create options array
OPTIONS (TYPE) =%LDC (LBR$C_TYP_TXT)
OPTIONS (KEYLEN) = 31
OPTIONS (ALLOC) = 8
OPTIONS (IDXMAX) = 2
OPTIONS (UHDMAX) = 64
OPTIONS (ENTALL) = 96
! Open library
STATUS = LBR$0PEN (INDEX,

2 LIBSPEC,
2 OPTIONS,
2 '.TLB')

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
ELSE IF ((.NOT. STATUS) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Dispatch per user request
IF (CLI$PRESENT ('ENTER')) THEN

CALL ENTER (INDEX)
ELSE IF (CLI$PRESENT ('EXTRACT')) THEN

CALL EXTRACT (INDEX)
ELSE IF (CLI$PRESENT ('DELETE')) THEN

CALL DELETE (INDEX)
ELSE IF (CLI$PRESENT ('TYPEINFO')) THEN

CALL TYPEINFO (INDEX)
ELSE IF (CLI$PRESENT ('MODHEAD')) THEN

CALL MODHEAD (INDEX)
ELSE IF (CLI$PRESENT ('LIST')) THEN

CALL LIST (INDEX)
ELSE IF (CLI$PRESENT ('ALIAS')) THEN

CALL ALIAS (INDEX)
ELSE IF (CLI$PRESENT ('SHOWALIAS')) THEN

CALL SHOWAL (INDEX)
ELSE

CALL LIB$SIGNAL (%LDC (DOLIB_NOACTION))
END IF
! Close library
STATUS = LBR$CLOSE (INDEX)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Exit
END

8-39

8.6.2

File 1/0
8.6 Library Utility Routines

Adding Modules

8-40

Use the following routines to insert new modules into an open library:

1 LBR$LOOKUP_KEY (optional)-Ensure that the module does not already
exist by calling LBR$LOOKUP_KEY. The expected return status is
LBR$_KEYNOTFND.

2 LBR$PUT_RECORD-Construct the module by calling LBR$PUT_
RECORD once for each record going into the module. Pass the contents
of the record as the second argument. LBR$PUT_RECORD returns the
record file address (RFA) in the library file as the third argument on the
first call. On subsequent calls, you pass the RFA as the third argument,
so do not alter its value between calls.

3 LBR$PUT_END-Call LBR$PUT_END after the last call to
LBR$PUT_RECORD.

4 LBR$INSERT_KEY-Call LBR$INSERT_KEY to catalog the records you
have just put in the library. The second argument is the name of the
module.

To replace an existing module, save the old RFA returned by LBR$LOOKUP_
KEY-step 1 above-(you should not receive an error message) in one
variable and the new RFA returned by the first call to LBR$PUT_RECORD
(step 2) in another variable. On step 4, invoke LBR$REPLACE_KEY instead
of LBR$INSERT_KEY, pass the old RFA as the third argument, and the new
RFA as the fourth argument.

The subroutine in Example 8-13 solicits module names and text from
SYS$INPUT and adds modules to a text library.

Example 8-13 Adding Modules to a Text Library

SUBROUTINE ENTER (INDEX)
! Enters text modules into library from SYS$INPUT

INTEGER STATUS, Return status
2 INDEX, Library index
2 TXTRFA (2) RFA of module
CHARACTER*31 MODNAME Name of module
CHARACTER*255 TEXTLINE One record of text
INTEGER*2 MODNAME_LEN, ! Length of module name
2 TEXTLINE_LEN ! Length of text record
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
2 LBR$PUT_RECORD,
2 LBR$PUT_END,
2 LBR$INSERT_KEY,
2 LBR$GET_INPUT,
2 LIB$PUT_OUTPUT
! Return codes
EXTERNAL RMS$_EOF,
2 LBR$_KEYNOTFND,
2 DOLIB_MODEX

End-of-file
Key not found
Module already exists

Example 8-13 Cont'd. on next page

File 1/0
8.6 Library Utility Routines

Example 8-13 (Cont.) Adding Modules to a Text Library

! Get first module name
STATUS = LIB$GET_INPUT (MODNAME,
2 'Module name or CTRL/Z: '
2 MODNAME_LEN)
IF ((.NOT. STATUS) .AND.
2 (STATUS .NE. %LDC (RMS$_EOF))) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Insert modules until end-of-file
DO WHILE (STATUS .NE. %LDC (RMS$_EOF))

! Verify that module does not already exist
STATUS= LBR$LOOKUP_KEY (INDEX,

2 MODNAME (1:MODNAME_LEN),
2 TXTRFA)

! Insert module in library
IF (STATUS .EQ. %LDC (LBR$_KEYNOTFND)) THEN

! Get first line of text
STATUS = LIB$PUT_OUTPUT

2 ('Enter lines of text. Terminate with CTRL/Z: ')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS= LIB$GET_INPUT (TEXTLINE,,

2 TEXTLINE_LEN)
IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. %LDC (RMS$_EOF))) THEN
CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Insert text lines until end-of-file

DO WHILE (STATUS .NE. %LDC (RMS$_EOF))
! Insert line
STATUS = LBR$PUT_RECORD (INDEX,

2 TEXTLINE (1:TEXTLINE_LEN),
2 TXTRFA)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get another line
STATUS = LIB$GET_INPUT (TEXTLINE,, TEXTLINE_LEN)
IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. %LDC (RMS$_EOF))) THEN
CALL LIB$SIGNAL (%VAL (STATUS))

END IF
END DO
! Terminate text and catalog module
STATUS = LBR$PUT_END (INDEX)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LBR$INSERT_KEY (INDEX,

2 MODNAME (1:MODNAME_LEN),
2 TXTRFA)

2
2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

If module already exists
ELSE IF (STATUS) THEN

CALL LIB$SIGNAL (DOLIB_MODEX,
%VAL (1),
MODNAME (1:MODNAME_LEN))

ELSE
CALL LIB$SIGNAL (%VAL (STATUS))

END IF

Example 8-1 3 Cont'd. on next page

8-41

8.6.3

File 1/0
8.6 Library Utility Routines

Deleting Modules

8-42

Example 8-13 (Cont.) Adding Modules to a Text Library

! Get another module name
STATUS = LIB$GET_INPUT (MODNAME,

2 'Module name: '
2 MODNAME_LEN)

IF ((.NOT. STATUS) .AND.
2 (STATUS .NE. %LDC (RMS$_EOF))) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

END DO

! Exit
END

Use the following routines to delete modules from a library:

1 LBR$LOOKUP_KEY-Call LBR$LOOKUP_KEY to locate the module.
Specify the name of the module as the second argument. LBR$LOOKUP_
KEY returns the RFA of the module as the third argument; do not alter
this value.

2 LBR$DELETE_KEY-Call LBR$DELETE_KEY to delete the key for the
module. Specify the name of the module as the second argument.

3 LBR$DELETE_DATA-Call LBR$DELETE_DATA to delete the module
itself. Specify the RFA of the module as the second argument.

The subroutine in Example 8-14 gets module names from the command line
and deletes the specified modules from a text library:

Example 8-14 Deleting Modules from a Text Library

SUBROUTINE DELETE (INDEX)
! Deletes text modules named by the
! qualifier /DELETE=(module-name, ...)
INTEGER STATUS, ! Return status
2 INDEX, Library index
2 TXTRFA (2) ! RFA of module
CHARACTER*31 MODNAME ! Name of module
INTEGER MODNAME_LEN ! Length of module name
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
2 LBR$DELETE_KEY,
2 LBR$DELETE_DATA,
2 CLI$GET_VALUE
2 LIB$LOCC
! Return codes
EXTERNAL LBR$_KEYNOTFND, ! Key not found
2 DOLIB_NOMOD ! No such module
! Get module name from /DELETE on command line
STATUS = CLI$GET_VALUE ('DELETE', MODNAME)

Example 8-14 Cont'd. on next page

8.6.4

File 1/0
8.6 Library Utility Routines

Example 8-14 (Cont.) Deleting Modules from a Text Library

! Delete modules until bad return status,
! which indicates end of qualifier values
DO WHILE (STATUS)

! Calculate length of module name
MODNAME_LEN = LIB$LOCC (' ', MODNAME) - 1
! Look up module name in library index
STATUS= LBR$LOOKUP_KEY (INDEX,

2 MODNAME (1:MODNAME_LEN),
2 TXTRFA)

! Delete module if it exists
IF (STATUS) THEN

STATUS = LBR$DELETE_KEY (INDEX,
2 MODNAME (1:MODNAME_LEN))

2
2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LBR$DELETE_DATA (INDEX, TXTRFA)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Issue warning if it does not exist
ELSE IF (STATUS .EQ. %LDC (LBR$_KEYNOTFND)) THEN
CALL LIB$SIGNAL (DOLIB_NOMOD,

%VAL (1) ,
MODNAME (1:MODNAME_LEN))

ELSE
CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Get another module name
STATUS = CLI$GET_VALUE ('DELETE', MODNAME)

END DO

! Exit
END

Extracting Modules
Use the following routines to extract modules from a library:

1 LBR$LOOKUP_KEY-Call LBR$LOOKUP_KEY to locate the module.
Specify the name of the module as the second argument. LBR$LOOKUP_
KEY returns the RFA of the module as the third argument; do not alter
this value.

2 LBR$GET_RECORD-Call LBR$GET_RECORD once for each record in
the module. Specify a character string to receive the extracted record
as the second argument. LBR$GET_RECORD returns a status value of
RMS$_EQF after the last record in the module is extracted.

The subroutine in Example 8-15 gets module names from the command
line, extracts the contents of the modules, and writes the contents to
SYS$0UTPUT.

8-43

File 1/0
8.6 Library Utility Routines

8-44

Example 8-15 Extracting Modules from a Text Library

SUBROUTINE EXTRACT (INDEX)
! Extracts text modules named by the
! qualifier /EXTRACT=(module-name, ...)
! and types their contents to SYS$0UTPUT
INTEGER STATUS, Return status
2 INDEX, Library index
2 TXTRFA (2) RFA of module
CHARACTER*31 MODNAME Name of module
CHARACTER*255 TEXTLINE Line of text
INTEGER MODNAME_LEN Length of module name
INTEGER TEXTLINE_LEN Length of line of text
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
2 LBR$GET_RECORD,
2 LIB$PUT_OUTPUT,
2 CLI$GET_VALUE,
2 LIB$LOCC
! Return codes
EXTERNAL LBR$_KEYNOTFND, ! Key not found
2 RMS$_EOF, ! End of text in module
2 DOLIB_NOMOD ! No such module
! Get module name from /EXTRACT on command line
STATUS = CLI$GET_VALUE ('EXTRACT', MODNAME)
! Extract modules until bad return status,
! which indicates end of qualifier values
DO WHILE (STATUS)

! Calculate length of module name
MODNAME_LEN = LIB$LOCC (' ', MODNAME) - 1
! Look up module name in library index
STATUS= LBR$LOOKUP_KEY (INDEX,

2 MODNAME (1:MODNAME_LEN),
2 TXTRFA)

Extract module if it exists
IF (STATUS) THEN

! Get line of text
STATUS = LBR$GET_RECORD (INDEX, TEXTLINE)
IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. %LDC (RMS$_EOF))) THEN
CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Write and extract records until end-of-file

DO WHILE (STATUS .NE. %LDC (RMS$_EOF))
! Calculate length of text
TEXTLINE_LEN = 255
DO WHILE ((TEXTLINE (TEXTLINE_LEN:TEXTLINE_LEN) .EQ. I ')

2 .AND. (TEXTLINE_LEN .GT. 0))
TEXTLINE_LEN = TEXTLINE_LEN - 1

END DO
! Type text
IF (TEXTLINE_LEN .GT. 0) THEN

STATUS = LIB$PUT_OUTPUT (TEXTLINE (1:TEXTLINE_LEN))
ELSE

STATUS= LIB$PUT_OUTPUT (' ')
END IF
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 8-15 Cont'd. on next page

8.6.5

File 1/0
8.6 Library Utility Routines

Example 8-15 (Cont.) Extracting Modules from a Text Library

! Get another record
TEXTLINE (1:255) = I I

STATUS = LBR$GET_RECORD (INDEX, TEXTLINE)
IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. %LDC (RMS$_EOF))) THEN

2
2

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

END DO
STATUS= LIB$PUT_OUTPUT ('***END OF MODULE***')

! Issue warning if module does not exist
ELSE IF (STATUS .EQ. %LDC (LBR$_KEYNOTFND)) THEN

CALL LIB$SIGNAL (DOLIB_NOMOD,
%VAL (1),
MODNAME (1:MODNAME_LEN))

ELSE
CALL LIB$SIGNAL (%VAL (STATUS))

END IF

STATUS= CLI$GET_VALUE ('EXTRACT', MODNAME)
END DO

! Exit
END

Using Multiple Keys and Multiple Indexes
You can point at the same module with more than one key. The keys can
be in the primary index (index 1) or alternate indexes (indexes 2 through
10). The best method is to reserve the primary index for module names.
In system-defined object libraries, index 2 contains the global symbols
defined by the various modules. The subroutine in Example 8-16 associates
additional keys (which the routine calls aliases) with modules and stores these
keys in index 2.

Example 8-1 6 Associating Keys with Modules

SUBROUTINE ALIAS (INDEX)
! Catalogs modules by alias

INTEGER STATUS, Return status
2 INDEX, Library index
2 TXTRFA (2) RFA of module
CHARACTER*31 MODNAME, Name of module
2 ALIASNAME Name of alias
INTEGER MODNAME_LEN Length of module name
INTEGER ALIASNAME_LEN Length of alias name
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
2 LBR$SET_INDEX,
2 LBR$INSERT_KEY,
2 LIB$GET_INPUT,
2 LIB$GET_VALUE
2 LIB$LOCC

Example 8-16 Cont'd. on next page

8-45

File 1/0
8.6 Library Utility Routines

8-46

Example 8-16 (Cont.) Associating Keys with Modules

! Return codes
EXTERNAL LBR$_KEYNOTFND, Key not found
2 LBR$_DUPKEY, Duplicate key
2 RMS$_EOF, End of text in module
2 DOLIB_NOMOD ! No such module
! Get module name from /ALIAS on command line
CALL CLI$GET_VALUE ('ALIAS', MODNAME)
! Calculate length of module name
MODNAME_LEN = LIB$LOCC (' ', MODNAME) - 1
! Look up module name in library index
STATUS= LBR$LOOKUP_KEY (INDEX,
2 MODNAME (1:MODNAME_LEN),
3 TXTRFA)
END IF
! Insert aliases if module exists
IF (STATUS) THEN

! Set to index 2
STATUS = LBR$SET_INDEX (INDEX, 2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get alias name from /ALIAS on command line
STATUS= CLI$GET_VALUE ('ALIAS', ALIASNAME)
! Insert aliases in index 2 until bad return status
! which indicates end of qualifier values
DO WHILE (STATUS)

! Calculate length of alias name
ALIASNAME_LEN = LIB$LOCC (' ', ALIASNAME) - 1
! Put alias name in index
STATUS = LBR$INSERT_KEY (INDEX,

2 ALIASNAME (1:ALIASNAME_LEN),
2 TXTRFA)

IF ((.NOT. STATUS) .AND.
2 (STATUS .NE. %LDC (LBR$_DUPKEY)) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Get another alias
STATUS = CLI$GET_VALUE ('ALIAS', ALIASNAME)

END DO

! Issue warning if module does not exist
ELSE IF (STATUS .EQ. %LDC (LBR$_KEYNOTFND)) THEN

CALL LIB$SIGNAL (DOLIB_NOMOD,
2 %VAL (1),
2 MODNAME (1:MODNAME_LEN))
ELSE

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

! Exit
END

File 1/0
8.6 Library Utility Routines

You can look up a module using any of the keys associated with it. The
following code fragment checks index 2 for a key if the lookup in the primary
index fails.

STATUS = LBR$SET_INDEX (INDEX, 1)
IF (.NOT. STATUS) CACL LIB$SIGNAL (%VAL (STATUS))
STATUS= LBR$LOOKUP_KEY (INDEX,
2 MODNAME (1:MODNAME_LEN),
2 TXTRFA)
IF (STATUS .EQ. %LDC (LBR$_KEYNOTFND)) THEN

STATUS = LBR$SET_INDEX (INDEX, 2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS= LBR$LOOKUP_KEY (INDEX,

2 MODNAME (1:MODNAME_LEN),
2 TXTRFA)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END IF

You can identify the keys associated with a module in two ways: (1) by
looking up the module (LBR$LOOKUP_KEY) using one of the keys and (2)
by searching (LBR$SEARCH) applicable indexes for the keys. LBR$SEARCH
calls a user-written routine each time it retrieves a key. The routine must be
an integer function defined as external that returns a success (odd number)
or failure (even number) status. LBR$SEARCH stops processing on a return
status of failure. The subroutine in Example 8-17 lists the names of keys in
index 2 (the aliases) that point to a module identified on the command line
by its name in the primary index.

Example 8-1 7 Listing Keys Associated with a Module

SUBROUTINE SHOWAL (INDEX)
! Lists aliases for a module

INTEGER STATUS, Return status
2 INDEX, Library index
2 TXTRFA (2) RFA for module text
CHARACTER*31 MODNAME Name of module
INTEGER MODNAME_LEN Length of module name
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
2 LBR$SEARCH,
2 LIB$LOCC
! Return codes
EXTERNAL LBR$_KEYNOTFND, Key not found
2 DOLIB_NOMOD No such module
! Search routine
EXTERNAL SEARCH
INTEGER SEARCH
! Get module name and calculate length
CALL CLI$GET_VALUE ('SHOWALIAS', MODNAME)
MODNAME_LEN = LIB$LOCC (' ', MODNAME) - 1
! Look up module in index 1
2 STATUS = LBR$LOOKUP_KEY (INDEX,
2 MODNAME (1:MODNAME_LEN),
2 TXTRFA)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Example 8-1 7 Cont'd. on next page

8-47

8.6.6

File 1/0
8.6 Library Utility Routines

Example 8-17 (Cont.) Listing Keys Associated with a Module

! Search for alias names in index 2
2 STATUS = LBR$SEARCH (INDEX,
2 2,
2 TXTRFA,
2 SEARCH)

END
INTEGER FUNCTION SEARCH (ALIASNAME, RFA)
! Function called for each alias name pointing to MODNAME
! Displays the alias name
INTEGER STATUS_OK, Good return status
2 RFA (2) RFA of module
PARAMETER (STATUS_OK = 1) Odd number
CHARACTER*(*) ALIASNAME Name of module
! Display module name
TYPE *· MODNAME

! Exit
SEARCH = STATUS_OK
END

Accessing Module Headers

8-48

You can store user information in the header of each module up to the
amount specified at library creation time in the CRE$L_UHDMAX option.
The total size of each header in bytes is the value of MHD$B_USRDAT
(defined by the macro $MHDDEF-currently this value is 16) plus the value
assigned to the CRE$L_UHDMAX option.

To put user data into a module header, first locate the module with
LBR$LOOKUP_KEY; then move the data to the module header by
invoking LBR$SET_MODULE, specifying the first argument (index value
returned by LBR$INI_CONTROL), the second argument (RFA returned by
LBR$LOOKUP_KEY), and the fifth argument (character string containing the
user data).

To read user data from a module header, first locate the module with
LBR$LOOKUP_KEY; then, retrieve the entire module header by invoking
LBR$SET_MODULE, specifying the first, second, third (character string
to receive the contents of the module header), and fourth (length of the
module header) arguments. The user data starts at the byte offset defined
by MHD$B_USRDAT. Convert this value to a character string subscript by
adding 1.

Example 8-18 displays the user data portion of module headers on
SYS$0UTPUT and applies updates from SYS$INPUT.

File 1/0
8.6 Library Utility Routines

Example 8-18 Displaying the Module Header

SUBROUTINE MODHEAD (INDEX)
! Modifies module headers

INTEGER STATUS,
2 INDEX,
2 TXTRFA (2)
CHARACTER*31 MODNAME
INTEGER MODNAME_LEN
CHARACTER*80 HEADER
INTEGER HEADER_LEN
INTEGER USER_START
CHARACTER*64 USERDATA
INTEGER*2 USERDATA_LEN
! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
2 LBR$SET_MODULE,
2 LIB$GET_INPUT,
2 LIB$PUT_OUTPUT,
2 CLI$GET_VALUE,
2 LIB$LOCC

Off set to user data
EXTERNAL MHD$B_USRDAT
! Return codes

Return status
Library index
RFA of module
Name of module
Length of module name
Module header
Length of module header
Start of user data in header
User data part of header
Length of user data

defined in $MHDDEF

EXTERNAL LBR$_KEYNOTFND, ! Key not found
2 DOLIB_NOMOD ! No such module
! Calculate start of user data in header
USER_START = %LDC (MHD$B_USRDAT) + 1
! Get module name from /MODHEAD on command line
STATUS= CLI$GET_VALUE ('MODHEAD', MODNAME)
! Get module headers until bad return status
! which indicates end of qualifier values

DO WHILE (STATUS)

! Calculate length of module name
MODNAME_LEN = LIB$LOCC (' ', MODNAME) - 1
! Look up module name in library index
STATUS = LBR$LOOKUP_KEY (INDEX,

2 MODNAME (1:MODNAME_LEN),
2 TXTRFA)

Example 8-18 Cont'd. on next page

8-49

8.6.7

File 1/0
8.6 Library Utility Routines

Example 8-18 (Cont.) Displaying the Module Header

! Get header if module exists
IF (STATUS) THEN

STATUS = LBR$SET_MODULE (INDEX,
2 TXTRFA,
2 HEADER,
2 HEADER_ LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Display header and solicit replacement
STATUS = LIB$PUT_OUTPUT

2 ('User data for module '//MODNAME (1:MODNAME_LEN)//': ')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$PUT_OUTPUT

2 (HEADER (USER_START:HEADER_LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$PUT_OUTPUT

2 ('Enter replacement text below or just hit return:')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$GET_INPUT (USERDATA,, USERDATA_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Replace user data
IF (USERDATA_LEN .GT. 0) THEN

STATUS = LBR$SET_MODULE (INDEX,
2 TXTRFA,,,
2 USERDATA (1:USERDATA_LEN))

END IF

! Issue warning if module does not exist
ELSE IF (STATUS .EQ. %LDC (LBR$_KEYNOTFND)) THEN

CALL LIB$SIGNAL (DOLIB_NOMOD,
2 %VAL (1),
2 MODNAME (1:MODNAME_LEN))

ELSE
CALL LIB$SIGNAL (%VAL (STATUS))

END IF

! Get another module name
STATUS = CLI$GET_VALUE ('MODHEAD', MODNAME)

END DO

! Exit
END

Reading Library Headers

8-50

Call LBR$GET_HEADER to obtain general information concerning the library.
Pass the value returned by LBR$INI_CONTROL as the first argument.
LBR$GET_HEADER returns the information to the second argument, which
must be an array of 128 longwords. The LHI$ symbols (see the specifications
in the VMS Utility Routines Manual) identify the significant longwords of the
array by their byte offsets into the array. Convert these values to subscripts
by dividing by 4 and adding 1.

Example 8-19 reads the library header and displays some information from
it.

File 1/0
8.6 Library Utility Routines

Example 8-19 Reading Library Headers

SUBROUTINE TYPEINFO (INDEX)
! Types the type, major ID, and minor ID
! of a library to SYS$0UTPUT

INTEGER STATUS
2 INDEX,
2 HEADER (128),
2 TYPE,
2 MAJOR_ID,
2 MINOR_ ID
CHARACTER*8 MAJOR_ID_TEXT,
2 MINOR_ID_TEXT
! VMS library procedures
INTEGER LBR$GET_HEADER,
2 LIB$PUT_OUTPUT

Return status
Library index
Structure for header information
Subscripts for header structure

Display info in character format

! Off sets for header --- defined in $LHIDEF
EXTERNAL LHI$L_TYPE,
2 LHI$L_MAJDRID,
2 LHI$L_MINORID
! Library type values --- defined in $LBRDEF
EXTERNAL LBR$C_TYP_OBJ,
2 LBR$C_TYP_MLB,
2 LBR$C_TYP_HLP,
2 LBR$C_TYP_TXT

Get header information
STATUS = LBR$GET_HEADER (INDEX, HEADER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Calculate subscripts for header structure
TYPE = %LDC (LHI$L_TYPE) / 4 + 1
MAJOR_ID = %LDC (LHI$L_MAJORID) / 4 + 1
MINOR_ID = %LDC (LHI$L_MINORID) / 4 + 1
! Display library type
IF (HEADER (TYPE) .EQ. %LDC (LBR$C_TYP_OBJ)) THEN

STATUS = LIB$PUT_OUTPUT ('Library type: object')
ELSE IF (HEADER (TYPE) .EQ. %LDC (LBR$C_TYP_MLB)) THEN

STATUS= LIB$PUT_OUTPUT ('Library type: macro')
ELSE IF (HEADER (TYPE) .EQ. %LDC (LBR$C_TYP_HLP)) THEN

STATUS = LIB$PUT_OUTPUT ('Library type: help')
ELSE IF (HEADER (TYPE) .EQ. %LDC (LBR$C_TYP_TXT)) THEN

STATUS= LIB$PUT_OUTPUT ('Library type: text')
ELSE

STATUS= LIB$PUT_OUTPUT ('Library type: unknown')
END IF
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Convert and display major ID
WRITE (UNIT=MAJDR_ID_TEXT,
2 FMT=' (I)') HEADER (MAJOR_ID)
STATUS= LIB$PUT_OUTPUT ('Major ID: '//MAJOR_ID_TEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Convert and display minor ID
WRITE (UNIT=MINOR_ID_TEXT,
2 FMT=' (I)') HEADER (MINOR_ID)
STATUS= LIB$PUT_OUTPUT ('Minor ID: '//MINOR_ID_TEXT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Exit
END

8-51

8.6.8

File 1/0
8.6 Library Utility Routines

Displaying Help Text

8-52

You can display text from a help library by invoking LBR$0UTPUT_HELP,
specifying the first (the output routine), third (the keywords), and fourth (the
name of the library) arguments. You must also specify the last argument
if the fifth argument indicates prompting mode or is omitted. Remember,
subprograms specified in an argument list must be declared as external.
LIB$PUT_OUTPUT and LIB$GET_INPUT can be used for the first and last
arguments. (If you use your own routines, make sure the argument lists
are the same as for LIB$PUT_OUTPUT and LIB$GET_INPUT.) Do not
call LBR$INl_CONTROL and LBR$0PEN before calling LBR$0UTPUT_
HELP. Example 8-20 solicits keywords from SYS$INPUT and displays the
text associated with those keywords on SYS$0UTPUT, thus inhibiting the
prompting facility.

Example 8-20 Displaying Text from a Help Library

PROGRAM GET_HELP

! Prints help text from a help library
CHARACTER*31 LIBSPEC
CHARACTER*15 KEYWORD
INTEGER*2 LIBSPEC_LEN,
2 KEYWORD_LEN
INTEGER FLAGS,
2 STATUS
! VMS library procedures
INTEGER LBR$0UTPUT_HELP,
2 LIB$GET_INPUT,
2 LIB$PUT_OUTPUT
EXTERNAL LIB$GET_INPUT,
2 LIB$PUT_OUTPUT
! Error codes

Library name
Keyword in help library
Length of name
Length of keyword
Help flags
Return status

EXTERNAL RMS$_EOF, ! End-of-file
2 LIB$_INPSTRTRU ! Input string truncated
! Flag values --- defined in $HLPDEF
EXTERNAL HLP$M_PROMPT,
2 HLP$M_PROCESS,
2 HLP$M_GROUP,
2 HLP$M_SYSTEM,
2 HLP$M_LIBLIST,
2 HLP$M_HELP
! Get library name
STATUS = LIB$GET_INPUT (LIBSPEC,
2 'Library: ',
2 LIBSPEC_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (LIBSPEC_LEN .EQ. O) THEN

LIBSPEC = 'HELPLIB'
LIBSPEC_LEN = 7

END IF

Example 8-20 Cont'd. on next page

8.6.9

File 1/0
8.6 Library Utility Routines

Example 8-20 (Cont.) Displaying Text from a Help Library

! Set flags for no prompting
FLAGS = %LDC (HLP$_PROCESS) +

2 %LDC (HLP$_GROUP) +
2 %LDC (HLP$_SYSTEM)

! Get first keyword
STATUS = LIB$GET_INPUT (KEYWORD,
2 'Keyword or CTRL/Z: '
2 KEYWORD_LEN)
IF ((.NOT. STATUS) .AND.
2 (STATUS .NE. %LDC (LIB$_INPSTRTRU)) .AND.
2 (STATUS .NE. %LDC (RMS$_EOF))) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Display text until end-of-file

DO WHILE (STATUS .NE. %LDC (RMS$_EOF))
STATUS = LBR$0UTPUT_HELP (LIB$PUT_OUTPUT,,

2 KEYWORD (1:KEYWORD_LEN),
2 LIBSPEC (1:LIBSPEC_LEN),
2 FLAGS,
2 LIB$GET_INPUT)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get another keyword
STATUS = LIB$GET_INPUT (KEYWORD,

2 'Keyword or CTRL/Z: ',
2 KEYWORD_LEN)

IF ((.NOT. STATUS) .AND.
2 (STATUS .NE. %LDC (LIB$_INPSTRTRU)) .AND.
2 (STATUS .NE. %LDC (RMS$_EOF))) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF

END DO

! Exit
END

Listing and Processing Index Entries
You can process index entries an entry at a time by invoking LBR$GET_
INDEX. The fourth argument specifies a match name for the entry or entries
in the index to be processed: you can include the asterisk and percent
characters in the match name for generic processing-for example, MOD*
means all entries whose names begin with MOD; MOD% means all entries
whose names are four characters and begin with MOD; and the asterisk (*)
means all entries.

The third argument names a user-written routine that is executed once for
each index entry specified by the fourth argument. The routine must be a
function declared as external that returns a success (odd number) or failure
(even number) status. LBR$GET_INDEX processing stops on a return status
of failure. Declare the first argument passed to the function as a passed­
length character argument-this argument contains the name of the index
entry. Declare the second argument as an integer array of two elements.

8-53

File 1/0
8.6 Library Utility Routines

Example 8-21 obtains a match name from the command line and displays the
names of the matching entries from index 1 (the index containing the names
of the modules).

Example 8-21 Displaying Index Entries

SUBROUTINE LIST (INDEX)
! Lists modules in the library

INTEGER STATUS,
2 INDEX,
CHARACTER*31 MATCHNAME
INTEGER MATCHNAME_LEN

Return status
Library index
Name of module to list
Length of match name

! VMS library procedures
INTEGER address LBR$GET_INDEX,
3 LIB$LOCC
! Match routine
INTEGER MATCH
EXTERNAL MATCH
! Get module name and calculate length
CALL CLI$GET_VALUE ('LIST', MATCHNAME)
MATCHNAME_LEN = LIB$LOCC (' ', MATCHNAME) - 1
! Call routine to display module names
STATUS = LBR$GET_INDEX (INDEX,
2 1, ! Primary index
3 MATCH,
4 MATCHNAME (1:MATCHNAME_LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Exit
END
INTEGER FUNCTION MATCH (MODNAME, RFA)
! Function called for each module matched by MATCHNAME
! Displays the module name
INTEGER STATUS_OK, ! Good return status
2 RFA (2) RFA of module name in index
PARAMETER (STATUS_OK = 1) Odd value
CHARACTER*(*) MODNAME Name of module
! Display the name
TYPE *· MODNAME ! Display module name

! Exit
MATCH = STATUS_OK
END

8. 7 File Definition Language

8-54

The File Definition Language (FDL) commands and routines provide a
means of defining file characteristics. Typically, you use FDL to perform
the following operations:

• Specify file characteristics otherwise unavailable from your language.

• Examine or modify the file characteristics of an existing data file in order
to improve program or system interaction with that file.

8.7.1

File 1/0
8. 7 File Definition Language

You cannot specify FDL attributes when you open a file using language
statements. Instead, use FDL to create your data file, set the desired file
characteristics, and close the file; then, use a language statement to reopen
the file. Since the data file is closed between the time the FDL attributes
are set and the time your program accesses the file, you cannot use FDL to
specify run-time attributes (attributes that are ignored or deleted when the
associated data file is closed).

Creating an FOL File

8.7.1.1

8.7.1.2

An FDL file is a specially formatted text file containing a series of FDL
attributes. You can create an FDL file with any text editor; however, to
ensure that the file is correctly formatted, the best practice is to use the FDL
editor or create the FDL file from an existing data file.

Using the FOL Editor
To invoke the FDL editor, use the EDIT /FDL command. Use the editor
interactively to create new FDL files or to modify existing FDL files. Use the
editor either interactively or noninteractively to optimize an FDL file in order
to improve program or system interaction with the associated data file.

Throughout an interactive editing session (Section 8.7.2.2 describes
noninteractive use of the editor), the FDL editor displays available
subcommands or appropriate attributes, each followed by a brief description,
and prompts you for a response. In general, a prompt consists of a short
question, the type of value required or the range of acceptable values, and the
default answer in brackets. If the question has no default answer, a hyphen
appears within the brackets ([-]); in this case, you must supply an answer (or
use CTRL/Z to abort the current command) before EDIT /FDL will continue
the editing session.

If you are using FDL to specify a particular file characteristic that is
unavailable from your programming langauge, use the editor subcommands
ADD, DELETE, and MODIFY to edit the appropriate attribute. If you are
using FDL to improve program or system interaction with an existing data
file, have the editor optimize the associated FDL file (see Section 8.7.2.2). If
you are using FDL to optimize program or system interaction with a data
file that you have not yet created, use the editor subcommand INVOKE to
choose an appropriate script. A script is a series of questions pertaining to the
planned data file. By analyzing your responses to the questions, the editor
determines which characteristics are best suited to the file and creates an FDL
file describing those characteristics.

Using the Characteristics of an Existing Data File
To create an FDL file that describes the characteristics of an existing data
file, use the DCL command ANALYZE/RMS_FILE/FDL or the FDL utility
routine FDL$GENERATE. ANALYZE/RMS_FILE/FDL examines the specified
data file and creates an FDL file that describes the characteristics of that file.
FDL$GENERATE examines the RMS structures (the FAB and the RAB) of the
specified data file and creates an FDL file that describes those structures.

Typically, an FDL file created by ANALYZE/RMS_FILE/FDL differs slightly
from an FDL file created by FDL$GENERATE. (For example, if a file was
created with no initial storage allocation and has since been allocated 30
blocks, the file section's ALLOCATE attribute in an FDL file created by
FDL$GENERATE is O; the same attribute in an FDL file created by ANALYZE
/RMS_FILE/FDL is 30.) The FDL editor can optimize an FDL file created by

8-55

File 1/0
8. 7 File Definition Language

8-56

ANALYZE/RMS_FILE/FDL; however, it cannot optimize an FDL file created
by FDL$GENERATE.

The following command creates an FDL file INCOME.FDL, which describes
the characteristics of the data file INCOME83.DAT:

$ ANALYZE/RMS_FILE/FDL=INCOME INCOME83.DAT

For complete specifications for the ANALYZE/RMS_FILE command, see the
VMS DCL Dictionary.

The program segment described in Example 8-22 creates an FDL file,
INCOME.FDL, which describes the RMS structures of the data file
INCOME83.DAT. Since the addresses of the FAB and RAB are only
available within a user-open routine, FDL$GENERATE can be invoked
only from within a user-open routine. Section 8.8 describes user-open
routines. The VMS Utility Routines Manual contains complete specifications
for FDL$GENERATE.

Example 8-22 Creating an FOL File

!MAIN.FOR
INTEGER LUN

! User-open routine
INTEGER FDL
EXTERNAL FDL

STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT= LUN,
2 FILE= 'INCOME83.DAT',
2 STATUS = 'OLD',
2 USEROPEN = FDL)

USER_QPEN.FOR

INTEGER FUNCTION FDL (FAB,
2 RAB,
2 LUN)
! Generates an FDL file
! Dummy arguments
BYTE FAB(*),
2 RAB(*)
INTEGER LUN
! Mask for FDL$GENERATE
INTEGER MASK
EXTERNAL FDL$V_FULL_OUTPUT
! Status and library routine
INTEGER STATUS,
2 FDL$GENERATE

Example 8-22 Cont'd. on next page

8.7.2

File 1/0
8. 7 File Definition Language

Example 8-22 (Cont.) Creating an FOL File

MASK = IBSET (MASK, %LOC(FDL$V_FULL_OUTPUT))
STATUS = FDL$GENERATE (MASK,
2 %LOC(FAB),
2 %LOC(RAB),
2 'TEST.FDL',
2 ,, ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Return user-open status
FDL = STATUS

END

Applying an FOL File to a Data File

8.7.2.1

Use an FDL file to specify the file characteristics of a new data file or
modify the file characteristics of an existing data file. When modifying file
characteristics, the system creates a new data file and then reads the records
from the existing data file to the new data file.

Creating a New Data File
To create a data file using the characteristics specified by an FDL file, use
the DCL command CREATE/FDL or the library routine FDL$CREATE. The
following command creates an empty data file INCOME83.DAT using the file
characteristics specified by the FDL file INCOME.FDL:

$ CREATE/FDL=INCOME.FDL INCOME83.DAT

For complete specifications for the CREATE/FDL command, see the
description of the Create/FDL Utility in the VMS File Definition Language
Facility Manual.

The following program segment creates an empty data file named
INCOME83.DAT using the file characteristics specified by the FDL file
INCOME.FDL. The STATEMENT variable contains the number of the last
FDL statement processed by FDL$CREATE; this argument is useful for
debugging an FDL file. The VMS Utility Routines Manual contains complete
specifications for FDL$CREATE.

INTEGER STATEMENT
INTEGER STATUS,
2 FDL$CREATE

STATUS = FDL$CREATE ('INCOME.FDL',
2 'INCOME83.DAT',
2
2 STATEMENT,
2 ,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

8-57

File 1/0
8. 7 File Definition Language

8.7.2.2 Modifying an Existing Data File
To change the characteristics of an existing data file to those specified by an
FOL file, use the OCL command CONVERT /FOL. (For complete specifications
for the CONVERT command, see the description of the Convert Utility in the
VAX/VMS Convert Reference Manual.) The following command changes
the characteristics of the data file INCOME83.0AT to agree with those
specified by the FOL file INCOME.FOL. The modified file is written to
NEWINCOME83.0AT. (To write the modified data to a file with the same
name as the original file, specify the second parameter as an asterisk.)

$ CONVERT/FDL=INCOME INCOME83.DAT NEWINCOME83.DAT

Typically, you change the characteristics of an existing data file to improve
program or system interaction with that file. Unless you are familiar with
VMS RMS and the internal structure of the file, the best practice is to allow
the system to optimize the data file for you, as described in the following
steps:

1 Create an FOL file-Use the OCL command ANALYZE/RMS_FILE/FOL
to create an FOL file that describes the existing data file. The following
command creates the FOL file INCOME.FOL, which describes the file
characteristics of the data file INCOME83.0AT:

$ ANALYZE/RMS_FILE/FDL=INCOME INCOME83.DAT

2 Optimize the FOL file-Use the FOL editor noninteractively to optimize
the FOL file. The following command writes an optimized version of
INCOME.FOL to NEWINCOME.FOL. (Since an FOL file created by
FOL$GENERATE describes the RMS structures rather than the file itself,
EDIT /FOL cannot optimize an FOL file created by FOL$GENERATE and,
therefore, does not accept such a file as input to a rioninteractive session.)

$ EDIT/FDL/NOINTERACTIVE/ANALYZE=INCOME NEWINCOME

3 Change the data file-Use the OCL command CONVERT /FOL to
change the characteristics of the existing data file to those specified
by the optimized FOL file. The following command changes the file
characteristics of the data file INCOME83.0AT to agree with those
specified by the FOL file NEWINCOME.FOL. The modified file is written
to NEWINCOME83.0AT.

$ CONVERT/FDL=NEWINCOME INCOME83.DAT NEWINCOME83.DAT

8.8 User-Open Routines

8-58

A user-open routine gives you direct access to the FAB and RAB (the VMS
RMS structures that define file characteristics). Use a user-open routine to
specify file characteristics otherwise unavailable from your programming
language.

When you specify a user-open routine, you open the file rather than allow
the program to open the file for you. Before passing the FAB and RAB to
your user-open routine, any default file characteristics and characteristics that
can be specified by keywords in the programming language are set. Your
user-open routine should not set or modify such file characteristics because
the language might not be aware that you have set the characteristics and
might not perform as expected.

8.8.1 Opening a File

8.8.1.1

8.8.1.2

File 1/0
8.8 User-Open Routines

Section 8.3.1.2 provides guidelines on opening a file with a user-open routine.
This section provides an example of a VAX FORTRAN user-open routine.

Specifying USEROPEN
To open a file with a user-open routine, include the USEROPEN specifier
in the VAX FORTRAN OPEN statement. The value of the USEROPEN
specifier is the name of the routine (not a character string containing the
name). Declare the user-open routine as an INTEGER*4 function. Since the
user-open routine name is specified as an argument, it must be declared in an
EXTERNAL statement. The following statement instructs VAX FORTRAN to
open SECTION.DAT using the routine UFO_OPEN:

! Logical unit number
INTEGER LUN

! Declare user-open routine
INTEGER UFO_OPEN
EXTERNAL UFO_OPEN

OPEN (UNIT= LUN,
2 FILE = 'SECTION.DAT',
2 STATUS = 'OLD',
2 USEROPEN = UFO_OPEN)

Writing the User-Open Routine
Write a user-open routine as an INTEGER function that accepts three dummy
arguments:

• FAB address-Declare this argument as a RECORD variable. Use
the record structure FABDEF defined in the $FABDEF module of
SYS$LIBRARY:FORSYSDEF.TLB.

• RAB address-Declare this argument as a RECORD variable. Use
the record structure RABDEF defined in the $RABDEF module of
SYS$LIBRARY:FORSYSDEF.TLB.

• Logical unit number-Declare this argument as an INTEGER.

A user-open routine must perform at least the following operations. In
addition, before opening the file, a user-open routine usually adjusts one or
more fields in the F AB or the RAB or in both.

• Opens the file-To open the file, invoke the SYS$0PEN system service
if the file already exists, or the SYS$CREATE system service if the file is
being created.

• Connects the file-Invoke the SYS$CONNECT system service to establish
a record stream for I/0.

• Returns the status-To return the status, equate the return status of the
SYS$0PEN or SYS$CREATE system service to the function value of the
user-open routine.

8-59

File 1/0
8.8 User-Open Routines

8.8.1.3

8-60

The following user-open routine opens an existing file. The file to be opened
is specified in the OPEN statement of the invoking program unit.

UFQ_QPEN.FOR

INTEGER FUNCTION UFO_OPEN (FAB,
2 RAB,
2 LUN)

! Include RMS definitions
INCLUDE I ($FABDEF)'
INCLUDE 1 ($RABDEF) 1

! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN
! Declare status variable
INTEGER STATUS
! Declare system routines
INTEGER SYS$CREATE,
2 SYS$0PEN,
2 SYS$CONNECT

Optional FAB and/or RAB modifications

Open file
STATUS = SYS$0PEN (FAB)
IF (STATUS)
2 STATUS = SYS$CONNECT (RAB)

! Return status of $OPEN or $CONNECT
UFO_OPEN = STATUS

END

Setting FAB and RAB Fields
Each field in the FAB and RAB is identified by a symbolic name, such as
FAB$L_FOP. Where separate bits in a field represent different attributes,
each bit offset is identified by a similar symbolic name, such as FAB$V_CTG.
The first three letters identify the structure containing the field. The letter
following the dollar sign indicates either the length of the field (B for byte,
W for word, or L for longword) or that the name is a bit offset (V for bit)
rather than a field. The letters following the underscore identify the attribute
associated with the field or bit. The symbol FAB$L_FOP identifies the
FAB options field, which is a longword in length; the symbol FAB$V_CTG
identifies the contiguity bit within the options field.

The STRUCTURE definitions for the FAB and RAB are in the $FABDEF and
$RABDEF modules of the library SYS$LIBRARY:FORSYSDEF.TLB. To use
these definitions, do the following:

1 Include the modules in your program unit.

2 Declare RECORD variables for the FAB and the RAB.

3 Reference the various fields of the F AB and RAB using the symbolic name
of the field.

The following user-open routine specifies that the blocks allocated for
the file must be contiguous. To specify contiguity, you clear the best-try­
contiguous bit (FAB$V_CBT) of the FAB$L_FOP field and set the contiguous
bit (FAB$V_CTG) of the same field.

File 1/0
8.8 User-Open Routines

UFO_CONTIG.FOR

INTEGER FUNCTION UFO_CONTIG (FAB,
2 RAB,
2 LUN)

Include RMS definitions
INCLUDE '($FABDEF) I

INCLUDE '($RABDEF) I

! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN
! Declare status variable
INTEGER STATUS
! Declare system procedures
INTEGER SYS$CREATE,
2 SYS$CONNECT
! Clear contiguous-best-try bit and
! set contiguous bit in FAB options
FAB.FAB$L_FOP = IBCLR (FAB.FAB$L_FOP, FAB$V_CBT)
FAB.FAB$L_FOP = IBSET (FAB.FAB$L_FOP, FAB$V_CTG)
! Open file
STATUS = SYS$CREATE (FAB)
IF (STATUS) STATUS = SYS$CONNECT (RAB)

! Return status of open or connect
UFO_CONTIG = STATUS

END

8-61

9 Condition Handling

Run-time errors are hardware- or software-detected events, usually errors,
that alter normal program execution. Examples of run-time errors are as
follows:

• System errors-For example, specifying an invalid argument to a system­
defined procedure

• Language-specific errors-For example, in VAX FORTRAN, a data type
conversion error during an 1/0 operation

• Application specific errors-For example, attempting to use invalid data

When an error occurs, VMS either returns a condition code identifying the
error to your program or signals the condition code (Section 9 .1.3 describes
signaling). If VMS signals the condition code, an error message is typically
displayed and program execution continues or terminates depending on the
severity of the error.

Both an error message and its associated condition code identify an error by
the name of the facility that generated it and an abbreviation of the message
text. Therefore, if your program displays an error message, you can identify
the condition code that was signaled. For example, if your program displays
the following error message, you know that the condition code SS$_NOPRIV
was signaled:

%SYSTEM-F-NOPRIV, no privilege for attempted operation

The descriptions of the system routines in the VMS System Services Volume
and the VMS Run-Time Library Routines Volume include lists of the condition
codes that may be returned by the routine.

9. 1 General Error Handling

9.1.1

When unexpected errors occur, your program should display a message
identifying the error, then either continue or stop, depending on the severity
of the error. If you know that certain run-time errors might occur, you should
provide special actions in your program to handle those errors.

Condition Code and Message
Error conditions are identified by integer values called condition codes. VMS
defines condition codes to identify errors that might occur during execution
of system-defined procedures. You can define condition codes for errors that
might occur in your programs (see Section 9.2 for more information).

From a condition code you can determine whether any error has occurred,
which particular error has occurred, and the severity of the error. Figure 9-1
illustrates the fields contained in a condition code.

9-1

9.1.2

Condition Handling
9.1 General Error Handling

Figure 9-1 Structure of a Condition Code

31 2827 16 15 32 0

control facility number message number severity

ZK-2049-84

• Severity-The severity of the error condition. Bit < 0 > indicates success
when set and failure when clear. Bits <1> and <2> distinguish
degrees of success or failure. The three bits, when taken as an unsigned
integer, are interpreted as shown in the following table. (The symbolic
names are defined in module $STSDEF.)

• Message number-The number identifying the message associated with
the error condition. The message may or may not be displayed when the
associated error occurs.

• Facility number-The number identifying the facility (program) in which
the error occurred. Bit <27> is set for user facilities and clear for
DIGITAL facilities.

• Control-Control bits. Bit <28> inhibits the display of the error
message; bits <31:29> are reserved for DIGITAL.

Code Symbol Severity Response

0 STS$K_ WARNING Warning Execution continues,
unpredictable results

STS$K_SUCCESS Success Execution continues, expected
results

2 STS$K_ERROR Error Execution continues,
erroneous results

3 STS$K_INFO Information Execution continues,
informational message
displayed

4 STS$K_SEVERE Severe error Execution terminates, no
output

5 Reserved for DIGIT AL use
only

6 Reserved for DIGIT AL use
only

7 Reserved for DIGIT AL use
only

Return Status Convention

9-2

Most system-defined procedures are functions of longwords, where the
function value is equated to a condition code. In this capacity, the condition
code is referred to as a return status. You can write your own routines to
follow this convention. Each routine description in the VMS System Services

9.1.2.1

9.1.2.2

Condition Handling
9.1 Generai Error Handling

Volume and VMS Run-Time Library Routines Volume lists the condition codes
that may be returned by that procedure.

Testing Returned Condition Codes
When a function returns a condition code to your program unit, you should
always examine the returned condition code. To check for a failure condition
(warning, error, or severe error), test the returned condition code for a logical
value of false. The following program segment invokes the run-time library
procedure LIB$DATE_TIME, checks the returned condition code (returned
in the variable STATUS), and, if an error has occurred, signals the condition
code by calling the run-time library procedure LIB$SIGNAL (Section 9.1.3
describes signaling):

INTEGER*4 STATUS,
2 LIB$DATE_TIME
CHARACTER*23 DATE

STATUS = LIB$DATE_TIME (DATE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

To check for a specific error, test the return status for a particular condition
code. For example, LIB$DATE_TIME returns a success code (LIB$_STRTRU)
when it truncates the string. If you want to take special action when
truncation occurs, specify the condition as shown in the following example
(the special action would follow the IF statement):

INTEGER*4 STATUS,
2 LIB$DATE_TIME
CHARACTER*23 DATE

INCLUDE '($LIBDEF)'

STATUS = LIB$DATE_TIME (DATE)
IF (STATUS .EQ. LIB$_STRTRU) THEN

Testing SS$_NOPRIV and SS$_EXQUOTA
The SS$_NOPRIV and SS$_EXQUOTA condition codes returned by a
number of system service procedures require special checking. Any system
service that is listed as returning SS$_NOPRIV or SS$_EXQUOTA can,
instead, return a more specific condition code that indicates the privilege or
quota in question. Table 9-1 list the specific privilege errors and Table 9-2
lists the quota errors.

Table 9-1 Privilege Errors

SS$_NQACNT SS$_NOALLSPOOL SS$_NOAL TPRI

SS$_NOBUGCHK SS$_NOBYPASS SS$_NOCMEXEC

SS$_NOCMKRNL SS$_NODET ACH SS$_NODIAGNOSE

SS$_NODOVVNGRADE SS$_NQEXOUOT A SS$_NOGROUP

SS$_NQGRPNAM SS$_NQGRPPRV SS$_NOLOGIO

SS$_NOMOUNT SS$_NONETMBX SS$_NOOPER

9-3

Condition Handling
9 .1 General Error Handling

9-4

Table 9-1 {Cont.) Privilege Errors

SS$_NOPFNMAP SS$_NOPHYIO

SS$_NOPRMGBL SS$_NOPRMMBX

SS$_NOREADALL SS$_NOSECURITY

SS$_NOSHARE SS$_NOSHMEM

SS$_NOSYSLCK SS$_NOSYSNAM

SS$_NOTMPMBX SS$_NOUPGRADE

SS$_NOWORLD

Table 9-2 Quota Errors

SS$_EXASTLM

SS$_EXDIOLM

SS$_EXPGFLOUOT A

SS$_EXBIOLM

SS$_EXENOLM

SS$_EXPRCLM

SS$_NOPRMCEB

SS$_NOPSW APM

SS$_NOSETPRV

SS$_NOSYSGBL

SS$_NOSYSPRV

SS$_NQVOLPRO

SS$_EXBYTLM

SS$_EXFILLM

SS$_EXTOELM

Since either a general or a specific code can be returned, your program must
test for both. The following four symbols provide a starting and ending point
with which you can compare the returned condition code:

• SS$_NOPRIVSTRT-First specific code for SS$_NQPRIV

• SS$_NOPRIVEND-Last specific code for SS$_NOPRIV

• SS$_NOQUOTASTRT-First specific code for SS$_EXQUOTA

• SS$_NOQUOTAEND-Last specific code for SS$_EXQUOTA

The following VAX FORTRAN example tests for a privilege error by
comparing STATUS (the returned condition code) with the specific condition
code SS$_NOPRIV and the range provided by SS$_NOPRIVSTRT and
SS$_NOPRIVEND. You would test for SS$_NOEXQUOTA in a similar
fashion.

Declare status and status values
INTEGER STATUS
INCLUDE I ($SSDEF)'

IF (.NOT. STATUS) THEN
IF ((STATUS .EQ. SS$_NOPRIV) .OR.

2 ((STATUS .GE. SS$_NOPRIVSTRT) .AND.
2 (STATUS .LE. SS$_NOPRIVEND))) THEN

ELSE
CALL LIB$SIGNAL (%VAL(STATUS))

END IF
END IF

9.1.3

Condition Handling
9 .1 General Error Handling

Signaling Mechanism

9.1.3.1

Signaling a condition code causes the VMS operating system to pass control
to a special subprogram called a condition handler. The VMS operating
system invokes a default condition handler unless you have established your
own. The default condition handler displays the associated error message and
continues or, if the error is a severe error, terminates program execution (see
Section 9.1.3.1).

You can signal a condition code by invoking the run-time library procedure
LIB$SIGNAL and passing the condition code as the first argument. (The VMS
Run-Time Library Routines Volume contains the complete specifications for
LIB$SIGNAL.) The following statement signals the condition code contained
in the variable STATUS.

CALL LIB$SIGNAL (%VAL(STATUS))

When an error occurs in a subprogram, the subprogram can signal the
appropriate condition code rather than return the condition code to the
invoking program unit. In addition, some statements also signal condition
codes; for example, an assignment statement that attempts to divide by zero
signals the condition code SS$_INTDIV.

Default Condition Handling
VMS has two default condition handlers: the traceback and catchall handlers.
The traceback handler is in effect if you link your program with the
/TRACEBACK qualifier of the LINK command (the default). Once you
have completed program development, you generally link your program with
the /NOTRACEBACK qualifier and use the catchall handler.

• Traceback handler-Displays the message associated with the signaled
condition code, the traceback message, the program unit name and
line number of the statement that signaled the condition code, and the
relative and absolute program counter values. (On a warning or error, the
number of the next statement to be executed is displayed.) In addition,
the traceback handler displays the names of the program units in the
calling hierarchy and the line numbers of the invocation statements.
After displaying the error information, the traceback handler continues
program execution or, if the error is severe, terminates program execution.

• Catchall handler-Displays the message associated with the condition
code and then continues program execution or, if the error is severe,
terminates execution. The catchall handler is not invoked if the traceback
handler is enabled.

For example, if the condition code INCOME_LINELOST is signaled at line
496 of GET_STATS, regardless of which default handler is in effect, the
following message is displayed:

%INCOME-W-LINELOST, Statistics on last line lost due to CTRL/Z

If the traceback handler is in effect, the following text is also displayed:

9-5

Condition Handling
9 .1 General Error Handling

9.1.3.2

9-6

%TRACE-W-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

GET_STATS
INCOME

GET_STATS
INCOME

497
148

00000306 00008DA2
0000015A 0000875A
OOOOA5BC OOOOA5BC
00009BDB 00009BDB
OOOOA599 OOOOA599

Because INCOME_LINELOST is a warning, the line number of the next
statement to be executed (497), rather than the line number of the statement
that signaled the condition code, is displayed. Line 148 of the program unit
INCOME invoked GET_STATS.

Changing a Signal to a Return Status
If you expect a particular condition code to be signaled, you can prevent
the VMS operating system from invoking the default condition handler by
establishing a different condition handler. The following paragraphs describe
how to establish and use the system-defined condition handler LIB$SIG_
TO_RET, which changes a signal to a return status that your program can
examine. For more information on condition handlers, see Section 9.3.

To change a signal to a return status, you must put any code that might signal
a condition code into a function where the function value is a return status.
The function containing the code must perform the following operations:

• Declare LIB$SIG_TQ_RET-Declare the condition handler
LIB$SIG_TQ_RET.

• Establish LIB$SIG_TQ_RET-Invoke the run-time library procedure
LIB$ESTABLISH to establish a condition handler for the current program
unit. Specify the name of the condition handler LIB$SIG_TQ_RET as
the only argument.

• Initialize the function value-Initialize the function value to
SS$_NORMAL so that, if no condition code is signaled, the function
returns a success status to the invoking program unit.

• Declare necessary dummy arguments-If any statement that might signal
a condition code is a subprogram that requires dummy arguments, pass
the necessary arguments to the function. In the function, declare each
dummy argument exactly as it is declared in the subprogram that requires
it and specify the dummy arguments in the subprogram invocation.

If the program unit GET_l_STAT in the following function signals a
condition code, LIB$SIG_TO_RET changes the signal to the return status
of the INTERCEPT_SIGNAL function and returns control to the program unit
that invoked INTERCEPT_SIGNAL. (If GET_l_STAT has a condition handler
established, VMS invokes that handler before invoking LIB$SIG_TQ_RET.)

FUNCTION INTERCEPT_SIGNAL (STAT,
2 ROW,
2 COLUMN)

! Dummy arguments for GET_l_STAT
INTEGER STAT,
2 ROW,
2 COLUMN
! Declare SS$_NORMAL
INCLUDE '($SSDEF)'
! Declare condition handler
EXTERNAL LIB$SIG_TO_RET

! Declare user routine
INTEGER GET_1_STAT
! Establish LIB$SIG_TO_RET
CALL LIB$ESTABLISH (LIB$SIG_TO_RET)
! Set return status to success
INTERCEPT_SIGNAL = SS$_NORMAL
! Statements and/or subprograms that

Condition Handling
9.1 General Error Handling

! signal expected error condition codes
STAT = GET_1_STAT (ROW,
2 COLUMN)

END

When the program unit that invoked INTERCEPT_SIGNAL regains control,
it should check the return status (as shown in Section 9.1.2) to determine
which condition code, if any, was signaled during execution of INTERCEPT_
SIGNAL.

9.2 Defining Condition Codes and Messages

9.2.1

You can supplement system condition codes and messages by defining your
own. To define your own condition codes and messages, follow these steps:

1 Create a message source file

2 Compile the message source file with the MESSAGE command

3 Link the resultant object module with your program

Creating the Message Source File
A message source file contains definition statements and directives. The
following source message file defines the error messages generated by the
example INCOME program:

INCMSG.MSG

.FACILITY INCOME, 1 /PREFIX=INCOME __

.SEVERITY WARNING
LINELOST "Statistics on last line lost due to CTRL/Z"

.SEVERITY SEVERE

.END

BADFIXVAL "Bad value on /FIX"
CTRLZ "CTRL/Z entered on terminal"
FORIOERR "FORTRAN I/O error"
INSFIXVAL "Insufficient values on /FIX"
MAXSTATS "Maximum number of statistics already entered"
NOACTION "No action qualifier specified"
NOHOUSE "No such house number"
NOSTATS "No statistics to report"

The default file type of a message source file is MSG. For a complete
description of the MESSAGE Utility, see the VMS Message Utility Manual.

9-7

Condition Handling
9.2 Defining Condition Codes and Messages

9.2.1.1

9.2.1.2

9-8

Specifying the Facility
To specify the name and number of the facility for which you are defining
the error messages, use the .FACILITY directive. For instance, the following
.FACILITY directive specifies the facility (program) INCOME and a facility
number of 1:

.FACILITY INCOME, 1

In addition to identifying the program associated with the error messages, the
.FACILITY directive specifies the facility prefix that is added to each condition
name to create the symbolic name used to reference the message. By default,
the prefix is the facility name followed by an underscore. For example,
a condition name BADFIXVAL defined following the previous .FACILITY
directive is referenced as INCOME_BADFIXVAL. You can specify a prefix
other than the specified program name by specifying the /PREFIX qualifier of
the .FACILITY directive.

By convention, system-defined condition codes are identified by the facility
name, followed by a dollar sign, an underscore, and the condition name.
User-defined condition codes are identified by the facility name, followed by
two underscores, and the condition name. To include two underscores in the
symbolic name, use the /PREFIX qualifier to specify the prefix .

. FACILITY INCOME, 1 /PREFIX=INCOME __

A condition name BADFIXVAL defined following this .FACILITY directive is
referenced as INCOME __ BADFIXVAL.

The facility number, which must be between 1 and 2047, is part of the
condition code that identifies the error message. To prevent different
programs from generating the same condition codes, the facility number
must be unique. A good way to ensure uniqueness is to have the system
manager keep a list of programs and their facility numbers in a file.

All messages defined after a .FACILITY directive are associated with the
specified program. Specify either an .END directive or another .FACILITY
directive to end the list of messages for that program. It is recommended that
you have one .FACILITY directive per message file.

Specifying the Severity
Use the .SEVERITY directive and one of the following keywords to specify
the severity of one or more condition codes:

SUCCESS
INFORMATIONAL
WARNING
ERROR
SEVERE or FATAL

All condition codes defined after a .SEVERITY directive have the specified
severity (unless you use the /SEVERITY qualifier of the message definition
statement to change the severity of one particular condition code). Specify
an .END directive or another .SEVERITY directive to end the group of errors
with the specified severity. Note that when the .END directive is used to
end the list of messages for a .SEVERITY directive, it also ends the list
of messages for the previous .FACILITY directive. The following example
defines one condition code with a severity of WARNING and two condition
codes with a severity of SEVERE. The optional spacing between the lines and
at the beginning of the lines is used for clarity.

9.2.2

9.2.1.3

9.2.1.4

Condition Handling
9.2 Defining Condition Codes and Messages

.SEVERITY WARNING
LINELOST "Statistics on last line lost due to CTRL/Z"

.SEVERITY SEVERE
BADFIXVAL "Bad value on /FIX"
INSFIXVAL "Insufficient values on /FIX"

.END

Specifying Condition Names and Messages
To define a condition code and message, specify the condition name and the
message text. The condition name, when combined with the facility prefix,
can contain up to 31 characters. The message text can be up to 255 characters
but only 1 line long. Use quotation marks (" 11

) or angle brackets (< >)
to enclose the text of the message. For example, the following line from
INCMSG.MSG defines the condition code INCQME __ BADFIXVAL:

BADFIXVAL "Bad value on /FIX"

Specifying Variables in the Message Text
To include variables in the message text, specify formatted ASCII output
(FAO) directives (for details, see the description of the Message utility in
the VMS Message Utility Manual). Specify the /FAQ_CQUNT qualifier after
either the condition name or the message text to indicate the number of FAQ
directives that you used. The following example includes an integer variable
in the message text:

NONUMBER <No such house number: !UL. Try again.>/FAO_COUNT=1

The FAQ directive !UL converts a longword to decimal notation. To include a
character string variable in the message, you could use the FAQ directive !AS,
as shown in the following example:

NOFILE <No such file: !AS. Try again.>/FAO_COUNT=1

If the message text contains FAQ directives, you must specify the appropriate
variables when you signal the condition code (see Section 9.2.3).

Compiling and Linking the Messages

9.2.2.1

Use the DCL command MESSAGE to compile a message source file into
an object module. The following command compiles the message source
file INCMSG.MSG into an object module named INCMSG in the file
INCMSG.QBJ:

$ MESSAGE INCMSG

To specify an object file name different from the source file name, use the
/OBJECT qualifier of the MESSAGE command. To specify an object module
name different from the source file name, use the . TITLE directive in the
message source file.

Linking the Message Object Module
The message object module must be linked with your program so that the
system can reference the messages. To simplify linking a program with the
message object module, include the message object module in the program's
object library. For example, to include the message module in INCQME's
object library, enter the following:

$ LIBRARY INCOME.OLE INCMSG.OBJ

9-9

9.2.3

Condition Handling
9.2 Defining Condition Codes and Messages

9.2.2.2

9.2.2.3

9.2.2.4

Accessing the Message Object Module from Multiple Programs
Including the message module in the program's object library does not allow
other programs access to the module's condition codes and messages. To
allow several programs access to a message module, create a default message
library as follows:

1 Create the message library-Create an object module library and enter all
of the message object modules into it.

2 Make the message library a default library-Equate the complete
file specification of the object module library with the logical name
LNK$LIBRARY. (If LNK$LIBRARY is already assigned a library name,
you can create LNK$LIBRARY_l, LNK$LIBRARY_2, and so on.) By
default, the linker searches any libraries equated with the LNK$LIBRARY
logical names.

The following example creates the message library MESSAGLIB.OLB, enters
the message object module INCMSG.OBJ into it, and makes MESSAGLIB.OLB
a default library:

$ LIBRARY/CREATE MESSAGLIB
$ LIBRARY/INSERT MESSAGLIB INCMSG
$ DEFINE LNK$LIBRARY SYS$DISK:MESSAGLIB

Modifying a Message Source Module
To modify a message in the message library, modify and recompile the
message source file, and then replace the module in the object module
library. To access the modified messages, a program must relink against
the object module library (or the message object module). The following
command enters the module INCMSG into the message library MESSAGLIB;
if MESSAGLIB already contains an INCMSG module, it is replaced:

$ LIBRARY/REPLACE MESSAGLIB INCMSG

Accessing Modified Messages Without Relinking
To allow a program to access modified messages without relinking, create a
message pointer file. Message pointer files are useful if you need to provide
messages in more than one language or frequently change the text of existing
messages. See the description of the Message Utility in the VMS Message
Utility Manual.

Signaling User-Defined Codes and Messages

9-10

To signal a user-defined condition code, you use the symbol
formed by the facility prefix and the condition name (for example,
INCOME __ BADFIXVAL). Typically, you reference a condition code as a
global symbol; however, you can create an include file (similar to the modules
in the system library SYS$LIBRARY:FORSTSDEF.TLB) to define the condition
codes as local symbols. If the message text contains FAO arguments, you
must specify parameters for those arguments when you signal the condition
code.

9.2.3.1

9.2.3.2

Condition Handling
9.2 Defining Condition Codes and Messages

Signaling with Global Symbols
To signal a user-defined condition code using a global symbol, declare the
appropriate condition code in the appropriate section of the program unit,
then invoke the RTL routine LIB$SIGNAL to signal the condition code. The
following statements signal the condition code INCOME __ NOHOUSE when
the value of FIX_HOUSE_NO is less than 1 or greater than the value of
TOTAL _HOUSES:

EXTERNAL INCOME __ NOHOUSE

IF ((FIX_HOUSE_NO .GT. TOTAL_HOUSES) .OR.
2 FIX_HOUSE_NO .LT. 1)) THEN

CALL LIB$SIGNAL (%VAL (%LDC (INCOME __ NOHOUSE)))
END IF

Signaling with Local Symbols
To signal a user-defined condition code using a local symbol, you must first
create a file containing PARAMETER statements that equate each condition
code with its value. To create such a file, do the following:

1 Create a listing file-Compile the message source file with the /LIST
qualifier of the MESSAGE command. The /LIST qualifier produces ~
listing file with the same name as the source file and a file type of LIS.
The following line might appear in a listing file:

08018020 11 NOHOUSE "No such house number"

The hexadecimal value in the left-hand column is the value of the
condition code; the decimal number in the second column is the line
number; the text in the third column is the condition name; and the text
in quotation marks is the message text.

2 Edit the listing file-For each condition name, define the matching
condition code as a longword variable and use a language statement to
equate the condition code to its hexadecimal condition value.

Assuming a prefix of INCOME __ , editing the previous statement would
result in the following statements:

INTEGER INCOME __ NOHOUSE
PARAMETER (INCOME __ NOHOUSE = '08018020'X)

3 Rename the listing file-Name the edited listing file using the same name
as the source file and a file type for your programming language (for
example, FOR for VAX FORTRAN).

In the definition section of your program unit, declare the local symbol
definitions by naming your edited listing file in an INCLUDE statement. (You
must still link the message object file with your program.) Invoke the RTL
routine LIB$SIGNAL to signal the condition code. The following statements
signal the condition code INCOME __ NOHOUSE when the value of FIX_
HOUSE_NO is less than 1 or greater than the value of TOTAL_HOUSES:

9-11

Condition Handling
9.2 Defining Condition Codes and Messages

9.2.3.3

! Specify the full file specification
INCLUDE '$DISK1: [DEV.INCOME]INCMSG.FOR'

IF ((FIX_HOUSE_NO .GT. TOTAL_HOUSES) .OR.
2 FIX_HOUSE_NO .LT. 1)) THEN

CALL LIB$SIGNAL (%VAL (INCOME __ NOHOUSE))
END IF

Specifying FAQ Parameters
If the message contains FAO arguments, you must specify the number of FAO
arguments as the second argument of LIB$SIGNAL, the first FAO argument
as the third argument, the second FAO argument as the fourth argument, and
so on. Pass string FAO arguments by descriptor (the default). For example,
to signal the condition code INCOME __ NONUMBER, where FIX_HOUSE_
NO contains the erroneous house number, specify the following:

EXTERNAL INCOME __ NONUMBER

IF ((FIX_HOUSE_NO
2 FIX_HOUSE_NO

CALL LIB$SIGNAL
2
2

END IF

.GT. TOTAL_HOUSES) .OR.

. LT . 1)) THEN
(%VAL (%LDC (INCOME __ NONUMBER)),

%VAL (1),
%VAL (FIX_HOUSE_NO))

To signal the condition code NOFILE, where FILE_NAME contains the
invalid file specification, specify the following:

EXTERNAL INCOME __ NOFILE

IF (IOSTAT .EQ. FOR$IOS_FILNOTFOU)
2 CALL LIB$SIGNAL (%VAL (%LDC (INCOME __ NOFILE)),
2 %VAL (1) ,
2 FILE_NAME)

Both of the previous examples use global symbols for the condition codes.
You could use local symbols, as described in Section 9.2.3.2.

9.3 Condition Handlers

9-12

When a program signals a condition code, the VMS operating system searches
for a condition handler, invokes the first handler it finds, and passes the
information to the handler about the condition code and the state of the
program when the condition code was signaled. If the handler resignals, the
VMS operating system searches for another handler; otherwise, the search for
a condition handler ends.

The VMS operating system searches for condition handlers in the following
sequence:

1 Primary exception vectors-Four vectors (lists) of one or more condition
handlers; each vector is associated with an access mode. By default,
all of the primary exception vectors are empty. Exception vectors are
primarily used for system programming, not application programming.

Condition Handling
9.3 Condition Handlers

The debugger uses the primary exception vector associated with user
mode.

When an exception occurs, the VMS operating system searches the
primary exception associated with the access mode at which the exception
occurred. To enter or cancel a condition handler in an exception vector,
use the SYS$SETEXV system service. Condition handlers entered into the
exception vectors associated with kernel, executive, and supervisor modes
remain in effect until they are cancelled or until you log out. Condition
handlers entered into the exception vector associated with user mode
remain in effect until they are canceled or the image that entered them
exits.

2 Secondary exception vectors-A set of exception vectors with the same
structure as the primary exception vectors. Exception vectors are primarily
used for system programming, not application programming. By default,
all of the secondary exception vectors are empty.

3 Call frame condition handlers-Each program unit can establish one
condition handler (the address of the handler is placed in the call
frame of the program unit). The VMS operating system searches for
condition handlers established by your program, beginning with the
current program unit. If the current program unit has not established
a condition handler, the VMS operating system searches for a handler
established by the program unit that invoked the current program unit
and so on back to the main program.

4 Traceback handler-If you do not establish any condition handlers and
link your program with the /TRACEBACK qualifier of the LINK command
(the default), the VMS operating system finds and invokes the traceback
handler (see Section 9.1.3.1).

5 Catchall handler-If you do not establish any condition handlers and link
your program with the /NOTRACEBACK qualifier of the LINK command,
VMS finds and invokes the catchall handler (see Section 9.1.3.1).

6 Last-chance exception vectors-A set of exception vectors with the same
structure as the primary and secondary exception vectors. Exception
vectors are primarily used for system programming, not application
programming. By default, the user- and supervisor-mode last-chance
exception vectors are empty. The executive- and kernel-mode last-chance
exception vectors contain procedures that cause a bugcheck (a nonfatal
bugcheck results in an error log entry; a fatal bugcheck results in a system
shutdown). The debugger uses the user-mode last-chance exception
vector and DCL uses the supervisor-mode last-chance exception vector.

In cases where the default condition handling is insufficient, you can use
the RTL routine LIB$ESTABLISH to establish your own handler. Typically,
you need condition handlers only if your program must perform one of the
following operations:

• Respond to condition codes that are signaled rather than returned, such
as an integer overflow error. (Section 9.1.3.2 describes the system-defined
handler LIB$SIG_TQ_RET that allows you to treat signals as return
values; Section 9.3.5 describes other useful system-defined handlers for
arithmetic errors.)

9-13

9.3.1

9.3.2

Condition Handling
9.3 Condition Handlers

• Modify part of a condition code, such as the severity (see Section 9.3.4 for
more information). If you want to change the severity of any condition
code to a severe error, you can use the run-time library procedure
LIB$STOP instead of writing your own condition handler.

• Add additional messages to the one associated with the originally signaled
condition code or log the messages associated with the originally signaled
condition code (see Section 9.3.4 for more information).

Establishing a Condition Handler
To establish a condition handler for the current program unit, use the run­
time library procedure LIB$ESTABLISH. The following program segment
establishes the condition handler ERRLOG. Since the condition handler is
used as an actual argument, it must be declared in an EXTERNAL statement.

INTEGER*4 OLD_HANDLER
EXTERNAL ERRLOG

OLD_HANDLER = LIB$ESTABLISH (ERRLOG)

As its function value, LIB$ESTABLISH returns the address of the previous
handler. If only part of a program unit requires a special condition handler,
you can reestablish the original handler by invoking LIB$ESTABLISH and
specifying the saved handler address as follows:

CALL LIB$ESTABLISH (OLD_HANDLER)

Writing a Condition Handler

9.3.2.1

9-14

The VMS operating system passes two arrays to a condition handler. Any
condition handler that you write should declare two dummy arguments as
variable-length arrays, as in the following:

INTEGER*4 FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

The Signal Array
The first dummy argument, the signal array, describes the signaled condition
codes that indicate which error occurred and the state of the process when
the condition code was signaled. Figure 9-2 illustrates the the structure of a
signal array.

9.3.2.2

Condition Handling
9.3 Condition Handlers

Figure 9-2 Structure of a Signal Array

Element 1 argument count

Element 2 condition code

Element 3
- message description

Element n-2

Element n-1 program counter

Element n processor status longword

t----i

t--

-
I-----'

repeat
for each
message

ZK-2050-84

• Argument count-The number of elements in the array, not counting this
first element.

• Condition code-The value of the condition code. If more than one
message is associated with the error, this is the condition code of the first
message.

• Message description-The format of the message description varies
depending on the type of message being signaled. For more information,
see the SYS$PUTMSG description in the VMS System Services Reference
Manual.

• Program counter (PC)-If the error that caused the signal was a fault
(occurring during the instruction's execution), the PC contains the address
of the instruction that signaled the condition code. If the error that
caused the signal was a trap (occurring at the end of the instruction), the
PC contains the address of the instruction following the one that signaled
the condition code. The error generated by LIB$SIGNAL is a trap.

• Processor status longword (PSL)-The PSL describes the state of the
program at the time of the signal.

Typically, a condition handler does not use the PC or PSL.

The Mechanism Array
The second dummy argument, the mechanism array, describes the state of the
process when the condition code was signaled. Typically, a condition handler
references only the call depth and the saved function value. Currently, the
mechanism array contains exactly five elements; however, since its length is
subject to change, you should declare the dummy argument as a variable­
length array. Figure 9-3 illustrates the structure of a mechanism array.

9-15

Condition Handling
9.3 Condition Handlers

9.3.2.3

9-16

Figure 9-3 Structure of a Mechanism Array

Element 1 argument count

Element 2 establisher

Element 3 call depth

Element 4 function value

Element 5 R1

ZK-2051-84

• Argument count-The number of elements in the array not counting this
first element (that is, four).

• Establisher-Pointer to information that allows the VMS operating system
to resume execution of the program unit that established the condition
handler.

• Call depth-The number of program units called between the program
unit that established the handler and the program unit that signaled the
condition code. For example, if a program unit establishes a handler
and then signals a condition code, the call depth is 0. If a program unit
establishes a handler and then calls a subprogram that signals a condition
code, the call depth is 1, and so on.

• RO and Rl-The contents of the RO and Rl registers.

A condition handler is usually written in anticipation of a particular set of
condition codes. Since a handler is invoked in response to any signaled
condition code, you should begin your handler by comparing the condition
code passed to the handler (element 2 of the signal array) against the
condition codes expected by the handler. If the signaled condition code is
not one of the expected codes, you should resignal the condition code by
equating the function value of the handler to the global symbol
SS$_RESIGNAL.

Comparing the Signaled Condition with an Expected Condition
To compare the signaled condition code to a list of expected condition codes,
use the RTL routine LIB$MATCH_COND. The first argument passed to
LIB$MATCH_COND is the signaled condition code, the second element of
the signal array. The rest of the arguments passed to LIB$MATCH_COND
are the expected condition codes. LIB$MATCH_COND compares the first
argument with each of the remaining arguments and returns the number of
the argument that matches the first one. For example, if the second argument
matches the first argument, LIB$MATCH_COND returns a value of 1. If the
first argument does not match any of the other arguments, LIB$MATCH_
COND returns 0.

The following condition handler determines whether the signaled condition
code is one of four VAX FORTRAN 1/0 errors. If it is not, the condition
handler resignals the condition code. Note that, when a VAX FORTRAN 1/0
error is signaled, the signal array describes VMS condition code, not the VAX
FORTRAN error code.

9.3.2.4

Condition Handling
9.3 Condition Handlers

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
INCLUDE I ($FORDEF)'
INCLUDE '($SSDEF)'
INTEGER INDEX
! Declare procedures
INTEGER LIB$MATCH_COND
INDEX = LIB$MATCH_COND
2
2
2
2
IF (INDEX .EQ. 0) THEN

Declare the FOR$_ symbols
Declare the SS$_ symbols

(SIGARGS(2),
FOR$_FILNOTFOU,
FOR$_0PEFAI,
FOR$_NO_SUCDEV,
FOR$_FILNAMSPE)

! Not an expected condition code, resignal
HANDLER = SS$_RESIGNAL

ELSE IF (INDEX .GT. 0) THEN
! Expected condition code, handle it

END IF

END

Exiting From the Condition Handler
You can exit from a condition handler in one of three ways:

• Continue execution of the program-If you equate the function value of
the condition handler to SS$_CONTINUE, the condition handler returns
control to the program at the statement that signaled the condition (fault)
or the statement following the one that signaled the condition (trap). The
RTL routine LIB$SIGNAL generates a trap so that control is returned to
the statement following the call to LIB$SIGNAL.

In the following example, if the condition code is one of the expected
codes, the condition handler displays a message (Section 9 .3.4.2 describes
how to display a message) and then returns the value SS$_CQNTINUE
to resume program execution:

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
INCLUDE '($FORDEF)'
INCLUDE 1 ($SSDEF) 1

INTEGER*4 INDEX,
2 LIB$MATCH_COND
INDEX= LIB$MATCH_COND (SIGARGS(2),
2 FOR$_FILNOTFOU,
2 FOR$_0PEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)

9-17

Condition Handling
9.3 Condition Handlers

9.3.2.5

9-18

IF (INDEX .GT. 0) THEN

Display the message

HANDLER = SS$_CONTINUE
END IF

• Resignal the condition code-If you equate the function value of the
condition handler to SS$_RESIGNAL or do not specify a function value
(function value of 0), the handler allows the VMS operating system to
execute the next condition handler. If you modify the signal array or
mechanism array before resignaling, the modified arrays are passed to the
next condition handler.

In the following example, if the condition code is not one of the expected
codes, the handler resignals:

INDEX = LIB$MATCH_COND
2
2
2
2

(SIGARGS(2),
FOR$_FILNOTFOU,
FOR$_0PEFAI,
FOR$_NO_SUCDEV,
FOR$_FILNAMSPE)

IF (INDEX .EQ. 0) THEN
HANDLER = SS$_RESIGNAL

END IF

• Continue execution of the program at a previous location-If you call the
SYS$UNWIND system service, the condition handler can return control
to any point in the program unit that incurred the exception, the program
unit that invoked the program unit that incurred the exception, and so on
back to the program unit that established the condition handler.

Returning Control to the Program
Since correctly invoking the SYS$UNWIND system service requires a
knowledge of VMS internals beyond the scope of this manual, your handlers
should return control either to the program unit that established the handler
or the program unit that invoked the program unit that established the
handler.

To return control to the program unit that established the handler, invoke
SYS$UNWIND and pass the call depth (third element of the mechanism
array) as the first argument with no second argument.

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

CALL SYS$UNWIND (MECHARGS(3) ,)

To return control to the caller of the program unit that established the
handler, invoke SYS$UNWIND without passing any arguments.

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

CALL SYS$UNWIND (,)

Condition Handling
9.3 Condition Handlers

The first argument of the SYS$ UNWIND system service specifies the
number of program units to unwind (remove from the stack). If you
specify this argument at all, you should do so as shown in the previous
example. (MECHARGS(3) contains the number of program units that must
be unwound to reach the program unit that established the handler that
invoked SYS$UNWIND.) The second argument of the SYS$UNWIND system
service contains the location of the next statement to be executed. Typically,
you omit the second argument to indicate that the program should resume
execution at the statement following the last statement executed in the
program unit that is regaining control.

Each time SYS$UNWIND removes a program unit from the stack it invokes
the condition handler (if any) established by that program unit, passing
the condition handler the SS$_UNWIND condition code. To prevent the
condition handler from resignaling the SS$_UNWIND condition code (and
so complicating the unwind operation), you should include SS$_UNWIND
as an expected condition code when you invoke LIB$MATCH_COND. When
the condition code is SS$_UNWIND, your condition handler may perform
necessary cleanup operations or do nothing.

In the following example, if the condition code is SS$_UNWIND, no action is
performed. If the condition code is another of the expected codes, the handler
displays the message and then returns control to the program unit that called
the program unit that established the condition handler.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
INCLUDE I ($FORDEF)'
INCLUDE '($SSDEF)'
INTEGER*4 INDEX,
2 LIB$MATCH_COND
INDEX= LIB$MATCH_COND (SIGARGS(2),
2 SS$_UNWIND,
2 FOR$_FILNOTFOU,
2 FOR$_0PEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)
IF (INDEX .EQ. 0) THEN

! Unexpected condition, resignal
HANDLER = SS$_RESIGNAL

ELSE IF (INDEX .EQ. 1) THEN
! Unwinding, do nothing

9-19

9.3.3

9.3.4

Condition Handling
9.3 Condition Handlers

Debugging

ELSE IF (INDEX .GT. 1) THEN

Display the message

CALL SYS$UNWIND (,)
END IF

You can debug a condition handler as you would any subprogram, except
that you cannot use the DEBUG command STEP /INTO to enter a condition
handler. You must set a breakpoint in the handler and wait for the debugger
to invoke the handler.

Typically, to trace execution of a condition handler, you set breakpoints at
the statement in your program that should signal the condition code, at the
statement following the one that should signal, and at the first executable
statement in your condition handler.

Condition Handler Functions

9.3.4.1

9-20

The following sections describe some of the common functions performed
by condition handlers. Since a condition handler cannot know exactly where
you are in your program, you should avoid manipulating data or performing
other mainline activities.

Modifying Condition Codes
As described in Figure 9-1, a condition code contains the following
information:

31 2827 1615 32

control facility number message number severity

0

ZK-2052-84

To modify a condition code, copy a series of bits from one longword to
another longword. For example, the following statement copies the first three
bits (bits < 2:0 >) of STS$K_INFO to the first three bits of the signaled
condition code, which is in the second element of the signal array named
SIGARGS. As shown in the table in Section 9.1.1, STS$K_INFO contains the
symbolic severity code for an informational message.

Condition Handling
9.3 Condition Handlers

! Declare STS$K_ symbols
INCLUDE '($STSDEF)'

Change the severity of the condition code
in SIGARGS(2) to informational

CALL MVBITS (STS$K_INFO,
2 o.
2 3,
2 SIGARGS(2),
2 0)

Once you modify the condition code, you can resignal the condition code
and let the default condition handler display the associated message or use
the SYS$PUTMSG system service to display the message. If your condition
handler displays the message, do not resignal the condition code or the
default condition handler will display the message a second time.

In the following example, the condition handler verifies that the signaled
condition code is LIB$_NOSUCHSYM. If it is, the handler changes its
severity from error to informational and then resignals the modified
condition code. As a result of the handler's actions, the program displays
an informational message indicating that the specified symbol does not exist
and then continues executing.

INTEGER FUNCTION SYMBOL (SIGARGS,
2 MECHARGS)
! Changes LIB$_NOSUCHSYM to an informational message

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
! Declare index variable for LIB$MATCH_COND
INTEGER INDEX
! Declare condition codes
INCLUDE '($LIBDEF)'
INCLUDE '($STSDEF) I

INCLUDE '($SSDEF)'
! Declare library procedures
INTEGER LIB$MATCH_COND
INDEX= LIB$MATCH_COND (SIGARGS(2),
2 LIB$NO_SUCHSYM)
! If the signaled condition code is LIB$NO_SUCHSYM,
! change its severity to informational.
IF (INDEX .GT. 0)
2 CALL MVBITS (STS$K_INFO,
2 0,
2 3,
2 SIGARGS(2),
2 0)

SYMBOL = SS$_RESIGNAL

END

9-21

Condition Handling
9.3 Condition Handlers

9.3.4.2

9-22

Displaying Messages
The VMS operating system uses the SYS$PUTMSG system service to display
messages. For consistency with the default handling mechanisms, you should
use the same system service.

You can use the signal array that the VMS operating system passes to the
condition handler as the first argument of the SYS$PUTMSG system service.
The signal array contains the condition code, the number of required FAQ
arguments for each condition code, and the FAQ arguments. The VMS System
Services Reference Manual contains complete specifications for SYS$PUTMSG.

The last two array elements, the PC and PSL, are not FAQ arguments and
should be deleted before the array is passed to SYS$PUTMSG. Because
the first element of the signal array contains the number of longwords in
the array, you can effectively delete the last two elements of the array by
subtracting 2 from the value in the first element. Before exiting from the
condition handler, restore the last two elements of the array by adding 2 to
the first element in case other handlers reference the array.

The following example performs the same function as the previous example.
However, in this case, the condition handler uses the SYS$PUTMSG system
service and then returns a value of SS$_CQNTINUE so that the default
handler is not executed.

INTEGER*4 FUNCTION SYMBOL (SIGARGS,
2 MECHARGS)

INDEX= LIB$MATCH_COND (SIGARGS(2),
2 LIB$_NOSUCHSYM)
IF (INDEX .GT. 0) THEN

! If condition code is LIB$_NOSUCHSYM,
! change the severity to informational
CALL MVBITS (STS$K_INFO,

2 0,
2 3,
2 SIGARGS(2),
2 0)

Display the message
SIGARGS(1) = SIGARGS(1) - 2
CALL SYS$PUTMSG (SIGARGS,, ,)
SIGARGS(1) = SIGARGS(1) + 2

! Continue program execution;
SYMBOL = SS$_CONTINUE

ELSE

Subtract last two elements

Restore last two elements

! Otherwise, resignal the condition
SYMBOL = SS$_RESIGNAL

END IF

END

9.3.4.3

Condition Handling
9.3 Condition Handlers

Chaining Messages
A condition handler can be used to add condition codes to an originally
signaled condition code. For example, if your program calculates the standard
deviation of a series of numbers and the user only enters one value, the VMS
operating system signals the condition code SS$_INTDIV when the program
attempts to divide by zero. (In calculating the standard deviation, the divisor
is the number of values entered minus 1.) You could use a condition handler
to add a user-defined message to the original message to indicate that only
one value was entered.

To display multiple messages, pass the condition codes associated with the
messages to the RTL routine LIB$SIGNAL. To display the message associated
with an additional condition code, the handler must pass LIB$SIGNAL the
condition code, the number of FAO arguments used, and the FAO arguments.
To display the message associated with the originally signaled condition
codes, the handler must pass LIB$SIGNAL each element of the signal array
as a separate argument. Since the signal array is a variable-length array and
LIB$SIGNAL cannot accept a variable number of arguments, when you write
your handler, you must pass LIB$SIGNAL more arguments than you think
will be required. Then, during execution of the handler, zero the arguments
that you do not need (LIB$SIGNAL ignores zero values), as described in the
following steps:

1 Declare an array with one element for each argument that you plan to
pass LIB$SIGNAL. Fifteen elements are usually sufficient.

INTEGER*4 NEWSIGARGS(15)

2 Transfer the condition codes and FAO information from the signal
array to your new array. The first element and the last two elements
of the signal array do not contain FAO information and should not be
transferred.

3 Fill any remaining elements of your new array with zeros.

The following example demonstrates steps 2 and 3:

DO I = 1, 15

IF (I .LE. SIGARGS(1) - 2) THEN
NEWSIGARGS(I) = SIGARGS(I+1) Start with SIGARGS(2)
ELSE
NEWSIGARGS(I) = 0 Pad with zeros

END IF

END DO

Since the new array is a known-length array, you can specify each element as
an argument to LIB$SIGNAL.

The following condition handler ensures that the signaled condition code is
SS$_INTDIV. If it is, the user-defined message ONE_ VALUE is added to
SS$_INTDIV and both messages are displayed.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER SIGARGS(*),
2 MECHARGS(*)
! Declare new array for SIGARGS
INTEGER NEWSIGARGS (15)

9-23

Condition Handling
9.3 Condition Handlers

9.3.4.4

9-24

! Declare index variable for LIB$MATCH_COND
INTEGER INDEX
! Declare procedures
INTEGER LIB$MATCH_COND
! Declare condition codes
EXTERNAL ONE_VALUE
INCLUDE '($SSDEF)'
INDEX= LIB$MATCH_COND (SIGARGS(2),
2 SS$_INTDIV)
IF (INDEX .GT. 0) THEN

DO I=1,15
IF (I .LE. SIGARGS(1) - 2) THEN

NEWSIGARGS(I) = SIGARGS(I+1) Start with SIGARGS(2)
ELSE

NEWSIGARGS(I) = 0 Pad with zeros
END IF

END DO

! Signal messages
CALL LIB$SIGNAL (%VAL(NEWSIGARGS(1)),

2 %VAL(NEWSIGARGS(2)),
2 %VAL(NEWSIGARGS(3)),
2 %VAL(NEWSIGARGS(4)),
2 %VAL(NEWSIGARGS(5)),
2 %VAL(NEWSIGARGS(6)),
2 %VAL(NEWSIGARGS(7)),
2 %VAL(NEWSIGARGS(8)),
2 %VAL(NEWSIGARGS(9)),
2 %VAL(NEWSIGARGS(10)),
2 %VAL(NEWSIGARGS(11)),
2 %VAL(NEWSIGARGS(12)),
2 %VAL(NEWSIGARGS(13)),
2 %VAL(NEWSIGARGS(14)),
2 %VAL(NEWSIGARGS(15)),
2 %VAL(%LOC(ONE_VALUE)),
2 %VAL(O))

HANDLER = SS$_CONTINUE
ELSE

HANDLER = SS$_RESIGNAL

END IF

END

Logging Messages
When a program executes interactively or from within a command procedure,
the logical names SYS$0UTPUT and SYS$ERROR are both equated to the
user's terminal by default.

SYS$ERROR and SYS$0UTPUT

To write the error messages displayed by your program to a file as well as
to the terminal, equate SYS$ERROR to a file specification. (When a program
executes as a batch job, the logical names SYS$0UTPUT and SYS$ERROR
are both equated to the batch log by default. To write error messages to the
log file and a second file, equate SYS$ERROR to the second file.) Success
messages are not written to SYS$ERROR.

Condition Handling
9. 3 Condition Handlers

Creating a Running Log of Messages Using SYS$PUTMSG

To keep a running log (that is, a log that is resumed each time your program
is is invoked) of the messages displayed by your program, use SYS$PUTMSG.
Create a condition handler that invokes SYS$PUTMSG regardless of the
signaled condition code. When you invoke SYS$PUTMSG, specify a function
that writes the formatted message to your log file and then returns with a
function value of 0. Have the condition handler resignal the condition code.
One of the arguments of the SYS$PUTMSG system service allows you to
specify a user-defined function that SYS$PUTMSG invokes after formatting
the message and before displaying the message. SYS$PUTMSG passes the
specified function the formatted message. If the function returns with a
function value of 0, SYS$PUTMSG does not display the message; if the
function returns with a value of l, SYS$PUTMSG displays the message. The
VMS System Services Reference Manual contains complete specifications for
SYS$PUTMSG.

Suppressing the Display of Messages in the Running Log

To keep a running log of messages, you might have your main program
open a file for the error log, write the date, and then establish a condition
handler to write all signaled messages to the error log. Each time a condition
is signaled, a condition handler, like the one in the following example,
would invoke SYS$PUTMSG and specify a function that writes the message
to the log file and returns with a function value of 0. SYS$PUTMSG
writes the message to the log file, but does not display the message. After
SYS$PUTMSG writes the message to the log file, the condition handler
resignals to continue program execution. (The condition handler uses
LIB$GET_COMMON to read the unit number of the file from the per-process
common block.)

ERR.FOR

INTEGER FUNCTION ERRLOG (SIGARGS,
2 MECHARGS)
! Writes the message to file opened on the
! logical unit named in the per-process common block
! Define the dummy arguments
INTEGER SIGARGS(*),
2 MECHARGS(*)
INCLUDE '($SSDEF)'

EXTERNAL PUT_LINE
INTEGER PUT_LINE
! Pass signal array and PUT_LINE routine to SYS$PUTMSG
SIGARGS(1) = SIGARGS(1) - 2 ! Subtract PC/PSL from signal array
CALL SYS$PUTMSG (SIGARGS,
2 PUT_LINE,)
SIGARGS(1) = SIGARGS(1) + 2 Replace PC/PSL

ERRLOG = SS$_RESIGNAL

END

9-25

9.3.5

Condition Handling
9.3 Condition Handlers

PUT_LINE.FOR

INTEGER FUNCTION PUT_LINE (LINE)
Writes the formatted message in LINE to

! the file opened on the logical unit named
! in the per-process common block
! Dummy argument
CHARACTER*(*) LINE
! Logical unit number
CHARACTER*4 LOGICAL_UNIT
INTEGER UNIT_NUM
! Indicates that SYS$PUTMSG is not to display the message
PUT_LINE = 0
! Get logical unit number and change to integer
STATUS = LIB$GET_COMMON (LOGICAL_UNIT)
READ (UNIT= LOGICAL_UNIT,
2 FMT = '(I4)') UNIT_NUMBER
! The main program opens the error log
WRITE (UNIT = UNIT_NUMBER,
2 FMT = '(A)') LINE

END

System-Defined Arithmetic Condition Handlers
The VMS operating system provides the following arithmetic condition
handlers:

• LIB$DEC_OVER-Enables or disables the signaling of a decimal
overflow. By default, signaling is disabled.

• LIB$FLT_UNDER-Enables or disables the signaling of a floating-point
underflow. By default, signaling is disabled.

• LIB$INT_OVER-Enables or disables the signaling of an integer overflow.
By default, signaling is enabled.

You can establish these handlers in one of two ways:

• Invoke the appropriate handler as a function specifying the first argument
as 1 to enable signaling.

• Invoke the handler with command qualifiers when you compile your
program. Refer to your program language manuals.

9 .4 Exit Handlers

9-26

When an image exits, the VMS operating system performs the following
operations:

• Invokes any user-defined exit handlers.

• Invokes the system-defined default exit handler, which closes any files
that were left open by the program or user-defined exit handlers.

• Executes a number of cleanup operations collectively known as image
run-down. The following list contains some of these cleanup operations:

- Cancels outstanding ASTs and timer requests.

9.4.1

Condition Handling
9 .4 Exit Handlers

Deassigns any channel assigned by your program and not already
deassigned by your program or the system.

Deallocates devices allocated by the program.

Disassociates common event flag clusters associated with the program.

Deletes user-mode logical names created by the program (unless
you specify otherwise, logical names created by SYS$CRELNM are
user-mode logical names).

Restores internal storage (for example, stacks or mapped sections) to
its original state.

If any exit handler exits using the SYS$EXIT system service, none of the
remaining handlers is executed. In addition, if an image is aborted by the
DCL command STOP (the user presses CTRL/Y and then types STOP), the
system performs image run-down and does not invoke any exit handlers.
(The DCL command EXIT invokes the exit handlers before running down the
image.)

Use exit handlers to perform any cleanup that your program requires in
addition to the normal run-down operations performed by the VMS operating
system. In particular, if your program must perform some final action
regardless of whether it exits normally or is aborted, you should write and
establish an exit handler to perform that action.

Establishing an Exit Handler
To establish an exit handler, use the SYS$DCLEXH system service. The
SYS$DCLEXH system service requires one argument-a variable-length data
structure that describes the exit handler. Figure 9-4 illustrates the structure of
an exit handler.

9-27

Condition Handling
9 .4 Exit Handlers

9-28

Figure 9-4 Structure of an Exit Handler

31 87

returned; address of next exit handler

address of exit handler

0

exit status of the image

other arguments being passed

n = The number of arguments being passed to
the exit handler; the exit status counts
as the first argument.

I

0

n

ZK-2053-84

The first longword of the structure contains the address of the next handler.
The VMS operating system uses this argument to keep track of the established
exit handlers; do not modify this value. The second longword of the structure
contains the address of the exit handler being established. The low-order
byte of the third longword contains the number of arguments to be passed to
the exit handler. Each of the remaining longwords contains the address of an
argument.

The first argument passed to an exit handler is an integer value containing
the final status of the exiting program. The status argument is mandatory.
However, you should not supply the final status value; when the VMS
operating system invokes an exit handler, it passes the handler the final status
of the exiting program.

To pass an argument with a numeric data type, use programming language
statements to assign the address of a numeric variable to one of the longwords
in the exit handler data structure. To pass an argument with a character data
type, create a descriptor of the following form:

31 0

number of characters

address

ZK-2054-84

Use the language statements to assign the address of the descriptor to one of
the longwords in the exit handler data structure.

9.4.2

Condition Handling
9.4 Exit Handlers

The following program segment establishes an exit handler with two
arguments, the mandatory status argument and a character argument:

Arguments for exit handler
INTEGER EXIT_STATUS ! Status
CHARACTER*12 STRING ! String
STRUCTURE /DESCRIPTOR/

INTEGER SIZE,
2 ADDRESS
END STRUCTURE
RECORD /DESCRIPTOR/ EXIT_STRING
! Setup for exit handler
STRUCTURE /EXIT_DESCRIPTOR/

INTEGER LINK,
2 ADDR,
2 ARGS /2/,
2 STATUS_ADDR,
2 STRING_ADDR
END STRUCTURE
RECORD /EXIT_DESCRIPTOR/ HANDLER
! Exit handler
EXTERNAL EXIT_HANDLER

Set up descriptor
EXIT_STRING.SIZE = 12 ! Pass entire string
EXIT_STRING.ADDRESS = %LDC (STRING)
! Enter the handler and argument addresses
! into the exit handler description
HANDLER.ADDR = %LOC(EXIT_HANDLER)
HANDLER.STATUS_ADDR = %LOC(EXIT_STATUS)
HANDLER.STRING_ADDR = %LOC(EXIT_STRING)
! Establish the exit handler
CALL SYS$DCLEXH (HANDLER)

An exit handler can be established at any time during your program and
remains in effect until it is canceled (with SYS$CANEXH) or executed. If you
establish more than one handler, the handlers are executed in reverse order:
the handler established last is executed first; the handler established first is
executed last.

Writing an Exit Handler
An exit handler should be written as a subroutine since no function value can
be returned. The dummy arguments of the exit subroutine should agree in
number, order, and data type with the arguments you specified in the call to
SYS$DCLEXH.

Assume that two or more programs are cooperating with each other. To keep
track of which programs are executing, each has been assigned a common
event flag (the common event flag cluster is named ALIVE). When a program
begins, it sets its flag; when the program terminates, it clears its flag. Since
it is important that each program clear its flag before exiting, you create an
exit handler (such as the one in the following example) to perform the action.

9-29

9.4.3

Condition Handling
9.4 Exit Handlers

The exit handler accepts two arguments, the final status of the program
and the number of the event flag to be cleared. Since, in this example, the
cleanup operation is to be performed regardless of whether the program
completes successfully, the final status is not examined in the exit routine.
(This subroutine would not be used with the exit handler declaration in the
previous example.)

CLEAR_FLAG.FOR

SUBROUTINE CLEAR_FLAG (EXIT_STATUS,
2 FLAG)
! Exit handler clears the event flag

! Declare dummy argument
INTEGER EXIT_STATUS,
2 FLAG
! Declare status variable and system routine
INTEGER STATUS,
2 SYS$ASCEFC,
2 SYS$CLREF
! Associate with the common event flag
! cluster and clear the flag
STATUS= SYS$ASCEFC (%VAL(FLAG),
2 ' ALIVE' , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

If for any reason you must perform terminal I/O from an exit handler, use
appropriate RTL routines. Trying to access the terminal from an exit handler
using language I/O statements may cause a redundant I/O error.

Debugging an Exit Handler

9-30

To debug an exit handler, you must set a breakpoint in the handler and wait
for the VMS operating system to invoke that handler; you cannot use the
DEBUG command STEP /INTO to enter an exit handler. In addition, when
the debugger is invoked, it establishes an exit handler that exits using the
SYS$EXIT system service. If you invoke the debugger when you invoke your
image, the debugger's exit handler does not affect your program's handlers
because the debugger's handler is established first and so executes last.
However, if you invoke the debugger after your program begins executing
(the user presses CTRL/Y and then types DEBUG), the debugger's handler
may affect the execution of your program's exit handlers, since one or more
of your handlers may have been established before the debugger's handler
and so will not be executed.

1 0 Memory Management

10.1

Managing memory directly can improve program efficiency. The memory
management routines allow you to allocate specific amounts of memory.
Therefore, you need not be using more memory than required for your
program.

You can use either RTL routines or system services to allocate and deallocate
memory space. The RTL routines include routines for creating, deleting, and
accessing information on virtual address space. You can either allocate a
specified number of contiguous 512-byte pages or create a zone of virtual
address space. A zone is a logical unit of memory that you can control as an
independent area. It can be any size required by your program.

The system services also allocate and deallocate virtual address space. With
system services, you can also control the process's working set size and map
files into the process's virtual address space. System services provide more
control over allocation procedures. However, you must also manage the
allocation more precisely.

Using RTL Routines
The LIB$GET_ VM_P AGE routine allows you to allocate a specified number
of 512-byte pages for your program. The pages are allocated in user mode
with read/write access, and they are contiguous. Because allocated pages
are contiguous, you should not use LIB$GET_ VM_P AGE to allocate a large
number of pages (over 1000 pages) within a single request. For large requests,
you should use system services.

For detailed information and examples using the memory management RTL
routines, refer to the VMS RTL Library (LIB$) Manual.

The format for LIB$GET_ VM_P AGE is as follows:

LIB$GET_VM_PAGE (num-pages, base-adr, [zone-id])

With this routine, you need to specify only the number of pages you need
in the num-pages argument. The routine returns the base address of the
contiguous block of pages that have been allocated in the base-adr argument.

Once you allocate pages with this routine, you must use LIB$FREE_ VM_
PAGE to deallocate the pages.

You can also use RTL routines to create zones of address space. A zone is
a subdivision of address space that you can control as one unit. You might
use a zone for storing short-lived data structures that you can subsequently
delete all at once, for storing a program that does not reference a wide
range of addresses, to specify a memory allocation algorithm specific to your
program, or to specify attributes, like block size and alignment, specific to
your program.

10-1

10.2

Memory Management
10.1 Using RTL Routines

Use the LIB$CREATE_ VM_ZONE routine to create a virtual address zone.
The format for this routine is as follows:

LIB$CREATE_ VM_ZONE (zone_id,[algorithm],[algorithm_arg] [,flags]
[,extend_size],[initial_size],[block_size],[alignment],[page_limit],[p 1])

For more information about LIB$CREATE_VM_ZONE, refer to the VMS
Run-Time Library Routines Volume.

Allocating Address Space

Use the algorithm argument to specify how much space should be
allocated-as a linked list of free blocks, as a set of lookaside lists indexes by
request sizes, as a set of lookaside lists for some block sizes, or as a single
queue of free blocks.

Allocating Pages Within the Zone

Use the initial_size argument to allocate a specified number of pages from
the zone when it is created. Subsequent to zone creation, you can use
LIB$GET_ VM to allocate space.

Specifying the Block Size

Use the block_size argument to specify, in bytes, the block size.

Specifying Block Alignment

Use the alignment argument to specify, in bytes, the alignment for each
block allocated.

Once a zone has been created and used, use LIB$DELETE_VM_ZONE to
delete the zone and return the pages allocated to the process-wide page
pool. LIB$RESET_ VM_ZONE frees pages for subsequent allocation but does
not delete the zone or return the pages to the process-wide page pool. Use
LIB$SHQW_ VM_ZQNE to get information about a specific zone.

Using System Sevices

10-2

The system services provide extensive control over address space allocation
by allowing you to do the following types of tasks:

• Add or delete virtual address space to the process's program (PO) or
control (Pl) regions.

• Add or delete virtual address space at a specific range of addresses.

• Increase or decrease the number of pages in a program's working set.

• Lock or delete pages of a program's working set in memory.

• Lock the entire program's working set in memory (by disabling process
swapping).

• Map files to a particular section of memory.

For more information on mapping files, refer to Chapter 5. For detailed
information and examples using the memory management system services,
refer to the VMS System Services Volume.

Memory Management
10.2 Using System Sevices

10.2.1 Working with Address Space
The system services allow you to add address space anywhere within the
process's program (PO) or control (Pl) regions. To add address space at the
end of the PO or Pl region, use the SYS$EXPREG service. To add address
space in other portions of the PO or Pl regions, use SYS$CRETVA.

The format for SYS$EXPREG is as follows:

SYS$EXPREG (pagcnt,[retadr],(acmode],(region])

Specifying the Number of Pages

Use the pagcnt argument to specify the number of pages to add to the end
of the region. The range of addresses where the new pages were added is
returned in retadr.

Specifying the Access Mode

Use the acmode argument to specify the access to be assigned to the newly
created pages.

Specifying the Region

Use the region argument to specify whether to add the pages to the end of
the PO or Pl region.

To deallocate pages allocated with SYS$EXPREG, use SYS$DELTVA.

To allocate address space at a specific area, you could use SYS$CRETV A.
However, using SYS$CRETVA presents some risk because it can delete pages
that already exist if those pages are not owned by a more privileged access
mode. Further, if those pages are deleted, no notification is sent. Therefore, it
is recommended that unless you have complete control over an entire system,
you should use SYS$EXPREG or the RTL routines to allocate address space.

10.2.2 Adjusting Working Sets
The size of a working set for a program is set by default. To improve program
efficiency, you may need to adjust the default value. If there is excess paging,
you probably need to increase the working set size. If the program is small,
you may not need the entire working set size allocated to your program.

SYS$ADJWSL allows you to either increase or decrease the working set size.
The format for this routine is as follows:

SYS$ADJWSL ([pagcnt],[wsetlm])

Use the pagcnt argument to specify the number of pages to add or subtract
from the current working set size. The new working set size is returned in
wsetlm.

You can also lock a range of pages into the working set. Once locked into the
working set, those pages remain until they are unlocked or program execution
ends.

Use the SYS$LKWSET to lock specific pages in the working set. The format
is as follows:

SYS$LKWSET (inadr ,[retadr],[acmode])

10-3

Memory Management
10.2 Using System Sevices

10-4

Specifying a Range of Addresses

Use the inadr argument to specify the range of addresses to be locked. The
range of addresses of the pages actually locked are returned in the retadr
argument.

Specifying the Access Mode

Use the acmode argument to specify the access mode to be associated with
the pages you want locked.

If you want to lock an entire process's pages into memory, use
SYS$SETSWM. Also, you can use SYS$LCKP AG to lock specific pages in
memory. These pages are not part of the process's working set, but they are
forced into the process's working set. However, even if the process working
set is swapped out, these pages remain in memory until they are unlocked
with SYS$ULKPAG. To use either of these services, you need PSWAPM
privilege.

To unlock pages in the working set, use SYS$ULWSET.

Index

A
Absolute time• 3-23
Access control list

See ACL
ACL (access control list)• 6-1
Ada

See VAX Ada
Address

virtual memory• 5-10
Address space• 10-1

allocating by page• 10-1, 10-3
allocating in zones• 10-1
deallocating by page• 10-1, 10-3
zones• 10-1

Aligning data• 8-4
ALWAYS keyword

GSMA TCH option• 5-5
ANAL YZE/RMS_FILE

See Analyze/RMS_File Utility
ANAL YZE/RMS_FILE command• 8-55
ANAL YZE/RMS_File Utility (ANALYZE/RMS_

FILE)• 1-38
APL

See VAX APL
Arithmetic

See also Condition handler
using system routines• 1-24

Assembler• 1-9
AST (asynchronous system trap) • 4-7

See also Synchronization
delivery• 4-8
execution • 4-7
writing• 4-7

Asynchronous input/ output • 7-4 7
Asynchronous system trap

See AST

B
Barrier synchronization

See Parallel processing
BASIC

See VAX BASIC

Binary semaphore• 4-17
BLISS-32

See VAX BLISS-32
Border

virtual display• 7-10
Broadcast message• 7-43

alternate handler• 7-44
default handler• 7-43

Buffered input/output operation• 3-20

c
c

See VAX C
Call frame condition handler• 9-13
Catchall handler• 9-5, 9-13
CDU (Command Definition Utility)

command• 1-16
creating command table• 1-17
defining commands• 1-16
modifying command table• 1-16
parsing command• 1-1 7

Channel
input/output• 7-45

CLUSTER option • 5-6

See also linker
COBOL

See VAX COBOL
Command Definition Utility

See CDU
Common block• 3-6

aligning• 8-4
installing as a shared image• 5-13
interprocess• 5-13
modifying• 3-6
per-process• 3-6

Common Data Dictionary• 1-8, 1-9, 1-10
Common event flag cluster

permanent• 4-5
temporary• 4-4

Communication
intersystem • 3-26

Compilers• 1-5 to 1-11
VAX Ada• 1-5

lndex-1

Index

Compilers (cont'd.)

VAX BASIC• 1-6
VAX BLISS-32 • 1-6
VAX C• 1-7
VAX COBOL• 1-7
VAX DIBOL• 1-8
VAX FORTRAN• 1-8
VAX LISP• 1-8
VAX PASCAL• 1-9
VAX PL/I • 1-10
VAX RPG II• 1-10
VAX SCAN• 1-11

Composed input

See also Key table
terminating • 7-28

Condition code• 9-1
chaining• 9-23
defining• 9-7
modifying• 9-20
signaling• 9-5
SS$_EXQUOT A• 9-3
SS$_NOPRIV • 9-3

Condition code and message• 9-1
Condition handler

arithmetic• 9-26
call frame• 9-13
catchall• 9-13
condition code• 9-16
debugging• 9-20
establishing• 9-14
exiting • 9-1 7
last-chance exception vector• 9-13
mechanism array• 9-1 5
primary exception vector• 9-13
searching for• 9-12
secondary exception vector• 9-13
signal array• 9-14
traceback• 9-13
use of•9-13, 9-20
writing• 9-14

Condition handling
default• 9-5
resignaling • 9-18
return status• 9-3
signal •9-5
unwinding• 9-18

Control action
inhibit• 7-42

Control block
See also VMS RMS
See data structure

lndex-2

CONVERT
See Convert Utility

CONVERT /FOL command• 8-58
CONVERT /RECLAIM

See Convert/Reclaim Utility
Convert/Reclaim Utility (CONVERT /RECLAIM)•

1-39
Convert Utility (CONVERT)• 1-39
Counting semaphore• 4-1 7
CREATE/FOL

See Create/FOL Utility• 1-39
CREA TE/FOL command• 8-5 7
Create/FOL Utility (CREATE/FOL)• 1-39

creating a data file• 8-5 7
CTRL/C • 7-33
CTRL/Y • 7-33
CTRL/Z • 7-5, 7-54
Current time• 3-23
Cursor movement• 7-20

D
Data

aligning• 8-4
interprocess• 5-13
sharing• 5-13

Database
compressing• 8-26
expanding• 8-32
record • 8-10

Data compression facility• 8-25
Data structure

FAB (file access block) • 1-36
NAM (name block)• 1-36
RAB (record access block)• 1-36
XAB (extended attribute block) • 1-36

DCL commands
ANAL YZE/RMS_FILE command• 8-55
CONVERT /FOL• 8-58
CREA TE/FOL command• 8-5 7
EDIT /FOL command• 8-55

DCX (Data/Expansion) routine• 8-25
Debuggers• 1-14 to 1-16

See Delta/Xdelta utility

See Symbolic Debugger
Debugging

condition handler• 9-20
exit handler• 9-30

/DELETE qualifier

LIBRARY command• 5-2
Delta time• 3-23
DEL T A/XDEL TA

See Delta/Xdelta Utility
Delta/Xdelta Utility (DEL T A/XDEL TA)• 1-15
Detached process

creating• 2-7
Device type • 7-50
DIBOL

See VAX DIBQL
Direct input/output operation• 3-20
Directive

See also Message Utility
.END•9-8
.FACILITY• 9-7
.SEVERITY• 9-8
.TITLE•9-9

Double-width characters
See also Screen management

See also Virtual display
specifying• 7-20

Dump file

See also SDA
analyzing• 1-2 1

E
Echo

terminal• 7-40
terminator• 7-24

EDIT /FOL
See Edit/FOL Utility• 1-39

EDIT /FOL command• 8-55
Edit/FOL Utility (EDIT /FOL)• 1-39

editor• 8-55
modifying a data file• 8-58

Editor
See Text processing
EDT editor• 1-3
EVE•1-5
VAX Text Processing Utility• 1-4

EDT editor
mode

keypad• 1-3
line• 1-3
nokeypad • 1-4

EDT text editor
See EDT editor

. END directive• 9-8
End of file• 7-5
EQUAL keyword

GSMA TCH option • 5-5
Error handling• 9-1

See Condition Handling
Escape sequence

read• 7-53
EVE editor

keypad emulation
EDT• 1-5
Numeric• 1-5
VT100• 1-5
WPS• 1-5

Event flag• 4-1

See also synchronization
cluster• 4-1
common•4-1
local• 3-2, 4-1

Event synchronization

see Synchronization
Exit

See also exit handler
image•9-26

Exit handler• 7-53, 9-26
debugging• 9-30
establishing• 9-27
writing• 9-29

Extensible Vax Editor
See EVE editor

/EXTRACT qualifier
LIBRARY command• 5-2

F
F AB (file access block) • 1-36, 8-58
.FACILITY directive• 9-7
FAQ argument

signaling• 9-12
FAQ parameter

specifying • 9-12
/F AQ_CQUNT qualifier

Message Utility• 9-9
FDL$CREA TE• 8-5 7
FDL$GENERATE•8-55

Index

FOL (File Definition Language)• 1-39, 8-54
applying source• 8-5 7
editor• 8-55
generating source• 8-55

lndex-3

Index

FDL editor
See Edit/FOL Utility (EDIT /FOL)• 8-55

FDL file• 1-39, 8-55
creating• 8-55
using existing• 8-55

File
access strategies• 8-1
attributes• 8-1 , 8-3
compressing• 8-26
expanding• 8-32
mapping • 8-4
merging • 8-19
modifying• 8-58
sequential• 8-10
sorting• 8-15

File management• 1-23
File terminator• 7-54
Flag

See event flag
FORTRAN

See VAX FORTRAN

G
Global section• 5-1 5

multiprocessing• 4-18
permanent• 5-19
temporary• 5-19
writable• 4-18

Global symbol • 5-11
resolving • 5-11
signaling with• 9-11

GSMA TCH option• 5-6

See also linker

H
Header

library• 8-50
library module• 8-48

Help library• 1-18
displaying text• 8-52

lndex-4

I
1/0

see Input/output
Identifier

description• 6-1
If state

composed input• 7-28
Image

exiting• 9-26
privileged• 6-2
shareable• 5-3

IMAGELIB.OLB • 5-12
Image map

See linker
Image run-down• 9-26
Input/output

asynchronous• 7-4 7
channel• 7-45
checking device type• 7-50
complex• 7-2
device• 1-23
echo• 7-40
exit handler• 7-53
file• 1-23
lowercase • 7-42
reading a single line• 7-4
reading several lines• 7-5
screen updates• 7-3 1
simple• 7-1
status of• 7-49
synchronous• 7-46
terminator• 7-4

end of file• 7-54
record• 7-53

timeout• 7-41
unsolicited input• 7-36
uppercase• 7-42
using SYS$QIO • 7-45, 7-49
using SYS$QIOW • 7-45, 7-49
writing simple character data• 7-6

Install
privileged image• 6-2

Instruction
interlocked • 4-18
queue•4-19

Interlocked instruction• 4-18
Interpreters

Interpreters (cont'd.)

VAX APL• 1-6
VAX BASIC• 1-6
VAX LISP• 1-8

Interprocess communication• 3-7
using mailboxes• 3-7

lntersystem communication• 3-26
Intraprocess communication• 3-1

common blocks• 3-6
global symbols• 3-6

K
Key

See Sort/Merge Utility
Keypad

reading from• 7-25
Key table

reading from • 7-28

L
Last-chance exception vector• 9-13
LBR$CLOSE • 8-36
LBR$DELETE_DAT A• 8-42
LBR$DELETE_KEY • 8-42
LBR$GET_HEADER•8-50
LBR$GET_INDEX • 8-53
LBR$GET_RECORD•8-43
LBR$1Nl_CONTROL • 8-36
LBR$1NSERT _KEY• 8-40
LBR$LOOKUP_KEY•8-40,8-42,8-43,8-48
LBR$0PEN • 8-36
LBR$0UTPUT_HELP•8-52
LBR$PUT _END• 8-40
LBR$PUT_RECORD•8-40
LBR$REPLACE_KEY•8-40
LBR$SET_MODULE • 8-48
LBR$_KEYNOTFND•8-40
LEOUAL keyword

GSMA TCH option • 5-5
LIB$ADDX • 3-24
LIB$ADD_ TIME• 3-24
LIB$CREATE_ VM_ZONE • 10-1
LIB$DATE_ TIME• 3-23
LIB$DA Y • 3-25
LIB$DEC_OVER • 9-26
LIB$FL T _UNDER• 9-26

LIB$FREE_ TIMER• 3-21
LIB$GETOUI • 3-22
LIB$GET _INPUT• 7-3

example• 7-4

Index

obtaining several lines of input with• 7-5
obtaining single line of input with• 7-4
prompt•7-4

LIB$GET_LUN • 7-3
LIB$GET_VM_PAGE• 10-1
LIB$1NIT_ TIMER• 3-20
LIB$1NSERT_KEY • 8-45
LIB$1NT_OVER • 9-26
LIB$MA TCH _COND • 9-1 6
LIB$MUL T_DEL TA_ TIME• 3-24
LIB$PUT _OUTPUT• 7-3

example• 7-7
writing simple output with• 7-6

LIB$SET_INDEX • 8-45
LIB$SHOW_ TIMER• 3-20
LIB$SIGNAL

invoking • 9-5
LIB$SIG_ TQ_RET

establishing• 9-6
LIB$ST AT_ TIMER• 3-21
LIB$SUBX • 3-24
LIB$SUB_ TIME• 3-24
LIBRARIAN

See Librarian Utility
Library

adding module with LBR routine• 8-40
closing

LBR$ routine• 8-36
closing with LBR$ routine• 8-36
compressing• 8-25
creating with LBR routine• 8-36
default object• 5-1
deleting module with LBR routine• 8-42
expanding• 8-25
initializing with LBR routine• 8-36
inserting module with LBR routine• 8-40
listing index entries • 8-53
macro• 5-3, 5-13
message object module• 9-9
module header• 8-48
multiple indexes• 8-45
multiple keys• 8-45
object• 5-1, 5-12

adding modules• 5-2
creating• 5-2
deleting a module• 5-2
extracting a module• 5-2

lndex-5

Index

Library
object (cont'd.)

listing modules• 5-2
replacing modules• 5-2
system default• 5-2
user default• 5-2

opening with LBR routine• 8-36
processing index entries• 8-53
processing index entry with LBR routine• 8-53
replacing module• 8-40
shareable image• 5-8

adding• 5-8
deleting• 5-8
listing• 5-8
replacing• 5-8

system default• 5-12
text• 5-3
user default• 5-12

LIBRARY command• 1-19
/CREA TE qualifier• 5-2
/DELETE qualifier• 5-2
/EXTRACT qualifier• 5-2
/LIST qualifier• 5-2
/REPLACE qualifier• 5-2

Library module
extracting with LBR routine• 8-43

Librarian Utility (LIBRARIAN)
creating libraries• 1-17
default logical names• 1-18
library

types of• 1-18
LIBRARY command• 1-19

Line editing
inhibit• 7-42

Linker• 1-11 to 1-13
CLUSTER option• 5-6
command qualifier summary• 1-13
GSMA TCH option• 5-5. 5-6
image map• 1-13
input• 1-12
object language• 1-13
options file• 1-13
output • 1-12
searching object libraries• 5-2
UNIVERSAL option• 5-5

LINK/SHAREABLE command• 5-14
LISP

See VAX LISP
/LIST qualifier

LIBRARY command• 5-2
LNK$LIBRARY • 5-1

lndex-6

LNK$LIBRARY (cont'd.)

See also Library

See also Linker
Local symbol• 5-11

signaling with• 9-11
Lock manager• 4-13

See also synchronization
queueing a lock request• 4-14

M
MACRO

See VAX MACRO
Macro library• 1-18, 5-13
Mailbox• 3-7

creating • 3-8
input/ output

asynchronous• 3-9
immediate• 3-9
synchronous• 3-9
using SYS$010 • 3-9
using SYS$010W • 3-9

permanent• 3-8
reading data from• 3-9
temporary• 3-8
writing data to• 3-9

mapped file• 8-4
Mapped file

closing• 8-9
saving• 8-9

Mathematical functions
using system routines• 1-24

Mechanism array• 9-15
Memory management• 10-1

using system routines• 1-23
virtual memory• 1-23

Menu
reading• 7-23

Menus
creating with SMG$ routines• 7-22

MERGE command• 8-13
file interface• 8-19
record interface• 8-21

Message
chaining• 9-23
displaying• 9-22
logging• 9-24

MESSAGE
See Message Utility

Message text
specifyling variables in• 9-9

Message Utility
compiling message file• 9-9

Message Utility (MESSAGE)• 1-19, 9-7
accessing message object module• 9-10
creating a message object library• 9-10
definition statements• 1-19
directives• 1-19
.END•9-8
.FACILITY• 9-8
facility name• 9-8
facility number• 9-8
FAQ parameters• 9-12
/FAO_COUNT • 9-9
logging messages• 9-24
message object module• 9-9
messages

creating• 1-19
message text• 9-9
message text variables• 9-9
modifying a message source file• 9-10
.SEVERITY• 9-8
source file• 1-19
source module• 9-7
.TITLE•9-9

Modularity
virtual displays• 7-31

Multiprocessing environment• 4-18
scheduling• 4-19
See also Synchronization• 4-18

Multistreamed workload• 4-1 8

N
NAM (name block)• 1-36
National Character Set Utility (NCS) • 1-22
NCS

See National Character Set Utility
Network

completing connection• 3-27
connection request• 3-26
exchanging messages• 3-28
terminating connection • 3-30

0
Object language

See linker
Object library• 1-18, 5-1, 5-12

adding a module• 5-2
creating• 5-2
deleting a module• 5-2
extracting a module• 5-2
including message object module• 9-9
listing modules• 5-2
replacing a module• 5-2

Options
creating with LBR$0PEN • 8-36

Options file• 5-8

See also linker
creating• 5-6

p
Page fault• 3-20
Parallel processing• 4-15

initializing• 4-1 6
subprocess

creating • 4-16
deleting • 4-16

terminating• 4-16
using semaphores• 4-17
using spin locks• 4-16

Parallel programming• 4-18 to 4-19
PASCAL

See VAX PASCAL
Pasteboard• 7-8

creating • 7-9
deleting• 7-9
10•7-31
sharing• 7-31

PATCH
See Patch Utility

Patch Utility (PATCH)• 1-20
input• 1-20

Per-process common blocks• 3-6
PL/I

See VAX PL/I
PPL$CREATE_PROCESS•4-16
PPL$ routines• 4-1 5

Index

lndex-7

Index

Primary exception vector• 9-13
Printer device width• 7-6
Privilege

SS$_NOPRIV • 9-3
Privileged image

installing• 6-2
Process

communicating between• 3-7
communicating within• 3-1

using logical names• 3-2
using symbols• 3-5

creating• 2-1
deleting• 2-15
detached• 2-7
execution• 2-14
modes of execution• 2-1
modifying name• 2-13
obtaining information• 2-9

using LIB$GET JPI • 2-9
using SYS$GET JPI • 2-9
using SYS$GET JPIW • 2-9

priority
modifying• 2-12

privileges
setting• 2-12

scheduling• 2-12
Process management• 2-8
Processor

synchronization• 4-18
Process rights list• 6-1
Program decomposition• 4-18
Program execution

See also Synchronization
specifying a time• 4-8, 4-9
timed intervals• 4-10

Prompt for input
with LIB$GET_INPUT • 7-4

Q
Queue information, obtaining• 3-22
Quotas

SS$_EXQUOT A• 9-3

R
RAB (record access block) • 1-36, 8-58

lndex-8

Record
compressing• 8-26
expanding• 8-32
l/0•8-10
merging• 8-21
sorting• 8-16

Record management• 1-23
/REPLACE qualifier

LIBRARY command• 5-2
Return status• 9-3

from signal • 9-6
Rights database• 6-1
RMS

See VMS RMS
$RMSDEF macro

See also VMS RMS
RMS structures• 8-58
RMS utilities

See VMS RMS
RPG II

See VAX RPG II
Run-time library routine

return status• 9-3
Run-Time Library routines• 1-24 to 1-29

s
SCAN

See VAX SCAN
Screen management• 7-7

See also Key table

See also Pasteboard
See also Video attribute
See also Viewport

See also Virtual keyboard
deleting text• 7-21
double-width characters• 7-19, 7-20
drawing lines• 7-20
inserting characters• 7-18
menus

creating• 7-22
reading• 7-23
types of• 7-22

reading data • 7-23
scrolling • 7-20
See also Virtual display• 7-10
setting background color• 7-9
setting screen dimensions• 7-9
using system routines• 1-23

Screen management (cont'd.)

video attributes• 7-20
viewport • 7-1 7

Scroll
backward• 7-19
down• 7-19
forward• 7-19
output • 7 -1 9
up•7-19

SDA (System Dump Analyzer)• 1-21 to 1-22
analyzing dump file• 1-21

Secondary exception vector• 9-13
Section

deleting• 8-9
global• 5-15
mapping• 8-4
private • 8-4
updating • 8-9

Security• 1-23
Semaphore• 4-1 7

See also Synchronization
binary• 4-17
counting • 4-1 7

Sequential file
creating • 8-10
merging• 8-13, 8-14
sorting• 8-13, 8-14
updating• 8-11

SETSWM • 10-4
.SEVERITY directive• 9-8
Shareable image• 5-3

adding•5-8
contents of• 5-3
creating• 5-6
default file type• 5-9
default location • 5-9
deleting• 5-8
ID

major• 5-5
minor•5-5
specifying major• 5-7
specifying minor• 5-7

library• 5-8
linking• 5-7, 5-8
listing• 5-8
replacing• 5-8
shared image• 5-10
specifying alternate locations• 5-9
transfer vector• 5-3, 5-6
universal symbol• 5-5

Shareable image library• 1-18

Shareable image library (cont'd.)

See also Shareable image
/SHAREABLE qualifier

LIBRARY command• 5-8
Shared files• 5-19
Shared image

creating • 5-10
Sharing Data

VMS RMS shared files• 5-19
Signal array• 9-14
Signaling• 9-5

Index

changing to return status• 9-6
SMG$ADD_KEY_DEF•7-28
SMG$CHANGE_VIRTUAL_DISPLA Y • 7-15
SMG$CHECK_FQR_QCCLUSION • 7-12
SMG$CREATE_KEY_ TABLE• 7-28
SMG$CREATE_PASTEBOARD•7-8
SMG$CREATE_SUBPROCESS•7-16
SMG$CREATE_VIRTUAL_DISPLA Y • 7-8
SMG$CREATE_VIRTUAL_KEYBOARD • 7-24
SMG$DELETE_CHARS • 7-22
SMG$DELETE_LINE • 7-22
SMG$DELETE_PASTEBOARD • 7-9
SMG$DELETE_SUBPROCESS • 7-16
SMG$DELETE_VIRTUAL_DISPLAY • 7-14
SMG$DRAW_LINE • 7-20
SMG$DRAW_RECT ANGLE• 7-20
SMG$ERASE_CHARS•7-21
SMG$ERASE_CQLUMN • 7-22
SMG$ERASE_DISPLAY • 7-21
SMG$ERASE_LINE • 7-21
SMG$ERASE_PASTEBOARD•7-9
SMG$EXECUTE_CQMMAND • 7-16
SMG$HOME_CURSOR•7-17
SMG$1NSERT_CHARS • 7-18
SMG$1NSERT_LINE • 7-20
SMG$LABEL_BQRDER•7-10
SMG$LIST_PASTING_ORDER• 7-14
SMG$PASTE_VIRTUAL_DISPLAY • 7-8
SMG$POP _VIRTUAL _DISPLAY• 7-32
SMG$PUT_CHARS_HIGHWIDE • 7-19
SMG$PUT _LINE• 7-19
SMG$PUT_LINE_WIDE • 7-20
SMG$PUT_WITH_SCROLL • 7-19
SMG$READ_COMPOSED_LINE • 7-28
SMG$READ_FROM_DISPLA Y • 7-23
SMG$READ_STRING • 7-24
SMG$RESTORE_PHYSICAL_SCREEN • 7-31
SMG$RETURN_CURSOR_POS•7-18
SMG$SAVE_PHYSICAL_SCREEN • 7-31
SMG$SCROLL_DISPLAY_AREA • 7-20

lndex-9

Index

SMG$SET_CURSOR_ABS•7-17
SMG$SET_CURSOR_REL•7-17
SMG$SET_DISPLAY_SCROLL_REGION • 7-20
SMG$SET _PHYSICAL _CURSOR• 7-18
SMG$UNP ASTE_ VIRTUAL _DISPLAY• 7-14
SOR$BEGIN_MERGE • 8-19
SOR$BEGIN_SORT • 8-15
SOR$END_SORT•8-15
SOR$P ASS_FILES • 8-15, 8-19
SOR$RELEASE_REC • 8-16
SOR$RETURN_REC•8-16
SOR$SORT_MERGE•8-15
SORT

See Sort/Merge Utility
SORT command• 8-13

file interface• 8-15
record interface• 8-16

Sort/Merge routine

See SOR routine
Sort/Merge Utility (SORT)• 8-13

file interface• 8-14, 8-15, 8-19
keys• 8-14
multiple sort operations• 8-14
record interface• 8-14, 8-16, 8-21

Spawned subprocess

See Subprocess
Spin locks• 4-16

See also Synchronization
STARLET. OLB • 5-1 , 5-12
Subprocess

creating
with LIB$SPA WN • 2-2
with PPL$ routines• 4-16
with SMG$ routines• 7-16
with SYS$CREPRC • 2-3

creatingz
with PPL$CREA TE_PROCESS • 2-4

deleting with PPL$ routines• 4-16
priority

setting• 2-12
program debugging• 2-5

SUMS LP
See SUMSLP Utility• 1-20

SUMSLP Utility (SUMSLP) • 1-20 to 1-21
Swap mode

changing• 10-4
Symbol

defining • 5-11
global• 5-11
local• 5-11
referring to• 5-10

lndex-10

Symbol (cont'd.)

storage• 5-10
universal• 5-5
unresolved • 5-12

Symbolic Debugger• 1-14 to 1-15
Synchronization• 1-24

barrier• 4-1 7
passing control to another image• 4-19
using asynchronous system traps• 4-7
using detached processes• 4-8
using events flags• 4-1
using process priority• 4-19
using semaphores with PPL$ routines• 4-17
using spin locks with PPL$ routines• 4-16
using subprocesses• 4-8

Synchronization with parallel processing routines

See Parallel processing
Synchronous input/output• 7-46
SYS$ASCTIM • 3-24
SYS$ASSIGN • 7-45
SYS$BINTIM • 3-24
SYS$CREATE•8-8
SYS$CREMBX • 3-8
SYS$CRETV A• 10-3
SYS$CRMPSC•8-4,8-5
SYS$DASSGN•8-9
SYS$DCLEXH • 9-27
SYS$DEL TV A• 8-9
SYS$ERROR•9-24
SYS$EXPREG • 10-3
SYS$FAO • 3-24
SYS$GETDVI • 7-50
SYS$GETOUI • 3-22
SYS$GETSYI • 3-22
SYS$GETTIM • 3-24
SYS$1NPUT • 9-24

default value of• 7-2
redefining value of• 7-3
using with LIB$GET_INPUT • 7-3
using with LIB$PUT_OUTPUT • 7-3

SYS$LCKPAG • 10-4
SYS$LKWSET • 10-3
SYS$MGBLSC • 5-15
SYS$0PEN • 8-8
SYS$0UTPUT

default value of• 7-2
redefining value of• 7-3
using with LIB$GET_INPUT • 7-3
using with LIB$PUT_OUTPUT • 7-3

SYS$0UTPUT_HELP•8-36
SYS$PUTMSG•9-15,9-22

SYS$QIO • 7-45
SYS$QIOW • 7-45
SYS$SETEXV • 9-13
SYS$SHARE•5-9
SYS$ULKPAG • 10-4
SYS$ULWSET• 10-4
SYS$UNWIND • 9-18
SYS$UPDSEC•8-9
System Dump Analyzer

See SDA
System information

See also timer statistics
System routines• 1-22 to 1-24

system services
asynchronous• 4-12
synchronous• 4-12

Systems
communication between• 3-26

System service• 1-29
return status• 9-3

System time• 3-23
System timer

cancelling• 4-12
setting• 4-11

T
Terminal characteristics• 7-51
Terminal device width • 7-6
Terminal echo• 7-40

disabling• 7-41
Terminal timeout• 7-41
Terminator

See Input/output
echo• 7-24
file• 7-54
record• 7-53

Text library• 1-18
Text processing• 1-3
Text Processing

EVE editor• 1-5
Time•3-23

See also absolute time
See also current
See also delta time
internal format• 3-23
obtaining

using SYS$ASCTIM • 3-24
using SYS$BINTIM • 3-24

Time
obtaining (cont'd.)

using SYS$FAO • 3-24
using SYS$GETTIM • 3-24

Time manipulation• 3-24
converting• 3-24
formatting• 3-24
using LIB$ADDX • 3-24
using LIB$ADD_ TIME• 3-24
using LIB$DA Y • 3-25
using LIB$MUL T_DEL TA_ TIME• 3-24
using LIB$SUBX • 3-24
using LIB$SUB_ TIME• 3-24

Timer
deallocating• 3-2 1
initializing• 3-20
obtaining statistics• 3-20, 3-21
statistics

buffer input/output• 3-20
CPU time• 3-20
direct input/output• 3-20
elapsed time• 3-20
page fault• 3-20

TITLE directive• 9-9
TPU

See VAXTPU
Traceback handler• 9-5, 9-13
Transfer vector• 5-3

See also Shareable image
compiling• 5-6
creating • 5-6
deleting• 5-4
placement of• 5-3
reasons for using• 5-4

TRM$M_ TM_ESCAPE • 7-25
TRM$M_ TM_NQECHO • 7-25
TRM$M _TM_ TRMNOECHO • 7-24
Type-ahead buffer• 7-39

u
UFO

see User-file open
UNIVERSAL option

See Linker
Universal symbol• 5-5

resolving• 5-5
Unwind condition handler• 9-18

Index

lndex-11

Index

User-defined condition code

signaling• 9-10
User-file open• 8-8
User-open routine• 8-58
Utilities

see entries for each utility
invoking from a program• 1-24

Utility Routines• 1-34

v
VAX Ada• 1-5
VAX APL• 1-6
VAX BASIC• 1-6
VAX BLISS-32 • 1-6
VAX C• 1-7
VAX COBOL• 1-7
VAX common language environment• 1-5
VAX compilers

See compilers
VAX DIBOL• 1-8
VAX FORTRAN• 1-8
VAX LISP• 1-8
VAX MACR0• 1-9
VAX PASCAL• 1-9
VAX PL/I• 1-10
VAX RPG II • 1-10
VAX SCAN• 1-11
VAX Text Processing Utility

See VAXTPU
V AXTPU (VAX Text Processing Utility)• 1-4

EVE editor• 1-5
Video attribute• 7-10, 7-16

current• 7-16
default• 7-16

Video attributes• 7-20
Viewport • 7-1 7
Virtual display• 7-10

See also Viewport
checking occlusion of• 7-12
creating • 7-10
creating a subprocess from• 7-16
cursor movement• 7-20
deleting• 7-14
deleting text• 7-2 1
drawing lines• 7-20
erasing• 7-14
10•7-10, 7-32
inserting text• 7-18, 7-20

lndex-12

Virtual display (cont'd.)

list pasting order of• 7-14
logical cursor position• 7-17
modifying• 7-1 5
obtaining the pasting order• 7-14
overwriting text• 7-18, 7-20
pasting• 7-11
physical cursor position• 7-18
popping• 7-15
reading data from• 7-23
rearranging• 7-13
scrolling• 7-20
sharing• 7-32
specifying double-width characters• 7-20
specifying video attributes• 7-10
viewport • 7-1 7
writing double-width characters• 7-19
writing text to• 7-17

Virtual keyboard
reading data from• 7-23, 7-24

VMS RMS (Record Management Services)•
1-35 to 1-38

Analyze/RMS_File Utility• 1-38
control block

FAB• 1-36
NAM• 1-36
XAB• 1-36

Convert/Reclaim Utility• 1-39
Convert Utility• 1-39
Create/FOL Utility• 1-39
device support• 1-36
Edit/FOL Utility• 1-39
macro• 1-37
macros• 1-37

w
Working set

adjusting size• 10-3
locking pages• 10-3

x
XAB (extended attribute block) • 1-36

Reader's Comments Guide to VMS
Programming Resources

AA-LA5 7 A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-- Do Not Tear - Fold Here and Tape -------------------~lllr--------------­
No Postage

~amaoma™ ~:::i~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 •• 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

in the
Uni.ted States

I
I
I
I
I
I

-- Do Not Tear - Fold Here --!
I
I

I

