VMS DCL Dictionary

Order Number: AA-LA12A-TE

April 1988

This manual provides detailed reference information and examples on all
VMS DCL commands and iexical functions.

Revision/Update Information: = This manual supersedes the VAX/VMS
DCL Dictionary Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem—10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS
DECwriter RSX Eumﬂﬂau ™
ZK9996
HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS
USA & PUERTO RICO" CANADA INTERNATIONAL
Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
P.O. Box CS2008 of Canada Ltd. PSG Business Manager
Nashua, New Hampshire 100 Herzberg Road c/o Digital’'s local subsidiary
‘03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
Ln Canada call 800-267-6215.
Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN0O3 laser printer and POStSCI‘lpt
printers (PrintServer 40 or LNO3R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE

xiii

NEW AND CHANGED FEATURES

= (ASSIGNMENT STATEMENT)
:= (STRING ASSIGNMENT)
@ (EXECUTE PROCEDURE)
ACCOUNTING

ALLOCATE
ANALYZE/CRASH_DUMP
ANALYZE/DISK_STRUCTURE
ANALYZE/ERROR_LOG
ANALYZE/IMAGE
ANALYZE/MEDIA
ANALYZE/OBJECT
ANALYZE/PROCESS_DUMP
ANALYZE/RMS_FILE
ANALYZE/SYSTEM
APPEND

ASSIGN

ASSIGN/MERGE
ASSIGN/QUEUE

ATTACH

BACKUP

CALL

CANCEL

CLOSE

CONNECT

CONTINUE

CONVERT
CONVERT/RECLAIM
COPY

CREATE
CREATE/DIRECTORY
CREATE/FDL
CREATE/NAME_TABLE
DEALLOCATE

DEASSIGN
DEASSIGN/QUEUE
DEBUG

DCL-1

DCL-5

DCL-9
DCL-14
DCL-15
DCL-18
DCL-19
DCL-20
DCL-21
DCL-24
DCL-25
DCL-29
DCL-31
DCL-32
DCL-33
DCL-38
DCL—-44
DCL-45
DCL-47
DCL—49
DCL-50
DCL-54
DCL-56
DCL-58
DCL-60
DCL-61
DCL-62
DCL-63
DCL-72
DCL-76
DCL-79
DCL-80
DCL-84
DCL-85
DCL-89
DCL-90

xvii

Contents

vi

DECK

DEFINE

DEFINE/CHARACTERISTIC

DEFINE/FORM

DEFINE/KEY

DELETE

DELETE/CHARACTERISTIC

DELETE/ENTRY

DELETE/FORM

DELETE/INTRUSION _RECORD

DELETE/KEY

DELETE/QUEUE

DELETE/SYMBOL

DEPOSIT

DIFFERENCES

DIRECTORY

DISCONNECT

DISMOUNT

DUMP

EDIT/ACL

EDIT/EDT

EDIT/FDL

EDIT/SUM

EDIT/TECO

EDIT/TPU

ENDSUBROUTINE

EOD

EOJ

EXAMINE

EXCHANGE

EXIT

GOSUB

GOTO

HELP

IF

INITIALIZE

INITIALIZE/QUEUE

INQUIRE

INSTALL

JoB

LEXICAL FUNCTIONS
F$CVSI

DCL-91

DCL-94
DCL-100
DCL-102
DCL-106
DCL-110
DCL-114
DCL-115
DCL-117
DCL-118
DCL-119
DCL-121
DCL-122
DCL-124
DCL-128
DCL-136
DCL-145
DCL-147
DCL-150
DCL-1556
DCL-156
DCL-160
DCL-161
DCL-162
DCL-165
DCL-172
DCL-173
DCL-175
DCL-176
DCL-179
DCL-180
DCL-184
DCL-186
DCL-188
DCL-194
DCL-197
DCL-205
DCL-217
DCL-220
DCL-221
DCL-227
DCL-230

FSCVTIME
F$CVUI
F$DIRECTORY
FSEDIT
FSELEMENT
FSENVIRONMENT
FSEXTRACT
FSFAO
FSFILE_ATTRIBUTES
F$GETDVI
FSGETJPI
F$GETQUI
F$GETSYI
FSIDENTIFIER
FSINTEGER
FSLENGTH
FSLOCATE
FSLOGICAL
FSMESSAGE
FSMODE
FSPARSE
FSPID
FSPRIVILEGE
F$PROCESS
FSSEARCH
FSSETPRV
FS$STRING
FSTIME
FSTRNLNM
FSTYPE
FSUSER
FSVERIFY

LIBRARY

LINK

LOGIN PROCEDURE

LOGOUT

MACRO

MAIL

MERGE

MESSAGE

MONITOR

MOUNT

Contents

DCL-232
DCL-234
DCL-235
DCL-236
DCL-238
DCL-240
DCL-243
DCL-245
DCL-250
DCL-253
DCL-262
DCL-266
DCL-280
DCL-284
DCL-286
DCL-287
DCL-288
DCL-290
DCL-291
DCL-292
DCL-294
DCL-297
DCL-299
DCL-300
DCL-301
DCL-303
DCL-306
DCL-307
DCL-308
DCL-312
DCL-313
DCL-314
DCL-316
DCL-317
DCL-324

DCL-327

DCL-328
DCL-334
DCL-335
DCL-336
DCL-337
DCL-338

vii

Contents

viii

NCS

ON

OPEN

PASSWORD
PATCH

PHONE

PRINT

PURGE

READ

RECALL

RENAME

REPLY

REQUEST

RETURN

RUN (IMAGE)

RUN (PROCESS)
RUNOFF
RUNOFF/CONTENTS
RUNOFF/INDEX
SEARCH

SET

SET ACCOUNTING
SET ACL

SET AUDIT

SET BROADCAST
SET CARD_READER

SET CLUSTER/EXPECTED_VOTES

SET COMMAND
SET CONTROL

SET CLUSTER/QUORUM

SET DAY
SET DEFAULT

SET DEVICE

SET DEVICE/SERVED
SET DIRECTORY
SET ENTRY

SET FILE

SET HOST

SET HOST/DTE

SET HOST/DUP

SET HOST/HSC

SET KEY

DCL-339
DCL-340
DCL-343
DCL-347
DCL-349
DCL-350
DCL-351
DCL-360
DCL-364
DCL-368
DCL-370
DCL-374
DCL-383
DCL-385
DCL-387
DCL-389
DCL-399
DCL—-408
DCL-412
DCL-416
DCL-422
DCL-424
DCL-426
DCL-432
DCL-438
DCL-440
DCL-441
DCL-443
DCL-444
DCL-446
DCL-447
DCL—-448
DCL-450
DCL—-452
DCL-453
DCL-456
DCL-464
DCL-469
DCL-472
DCL-474
DCL-476
DCL-478

SET LOGINS

SET MAGTAPE
SET MESSAGE

SET ON

SET OUTPUT_RATE
SET PASSWORD
SET PRINTER

SET PROCESS

SET PROMPT

SET PROTECTION

SET PROTECTION/DEFAULT
SET PROTECTION/DEVICE

SET QUEUE

SET QUEUE/ENTRY
SET RESTART_VALUE
SET RIGHTS_LIST
SET RMS_DEFAULT
SET SYMBOL

SET TERMINAL

SET TIME

SET UIC

SET VERIFY

SET VOLUME

SET WORKING_SET
SHOW

SHOW ACCOUNTING
SHOW ACL

SHOW AUDIT

SHOW BROADCAST
SHOW CLUSTER ‘
SHOW CPU

SHOW DEFAULT
SHOW DEVICES
SHOW DEVICES/SERVED
SHOW ENTRY
SHOW ERROR
SHOW INTRUSION
SHOW KEY

SHOW LOGICAL
SHOW MAGTAPE
SHOW MEMORY
SHOW NETWORK

Contents

DCL-479
DCL-480
DCL-482
DCL-484
DCL-485
DCL-486
DCL-489
DCL-493
DCL-497
DCL-498
DCL-501
DCL-502
DCL-505
DCL-511
DCL-512
DCL-514
DCL-516
DCL-520
DCL-522
DCL-535
DCL-536
DCL-537
DCL-539
DCL-542
DCL-544
DCL-546
DCL-547
DCL-548
DCL-551
DCL-553
DCL-554
DCL-557
DCL-559
DCL-564
DCL-567
DCL-571
DCL-572
DCL-575
DCL-577
DCL-581
DCL-582
DCL-591

Contents

SHOW PRINTER
SHOW PROCESS
SHOW PROTECTION
SHOW QUEUE

SHOW QUEUE/CHARACTERISTIC

SHOW QUEUE/FORM
SHOW QUOTA

SHOW RMS_DEFAULT
SHOW STATUS

SHOW SYMBOL
SHOW SYSTEM
SHOW TERMINAL
SHOW TIME

SHOW TRANSLATION
SHOW USERS

SHOW WORKING_SET
SORT

SPAWN

START/CPU
START/QUEUE
START/QUEUE/MANAGER
STOP

STOP/CPU
STOP/QUEUE
STOP/QUEUE/ABORT
STOP/QUEUE/ENTRY
STOP/QUEUE/MANAGER
STOP/QUEUE/NEXT
STOP/QUEUE/REQUEUE
STOP/QUEUE/RESET
SUBMIT

SUBROUTINE
SYNCHRONIZE

TYPE

UNLOCK

WAIT

WRITE

DCL-593
DCL-595
DCL-600
DCL-601
DCL-605
DCL-607
DCL-609
DCL-610
DCL-611
DCL-612
DCL-614
DCL-617
DCL-619
DCL-620
DCL-622
DCL-624
DCL-625
DCL-626
DCL-631
DCL-633
DCL-642
DCL-644
DCL-646
DCL-648
DCL-650
DCL-651
DCL-652
DCL-653
DCL-654
DCL-656
DCL-657
DCL-665
DCL-666
DCL-668
DCL-674
DCL-675
DCL-677

Contents

INDEX

TABLES
DCL-1 CPU Time Limit SpecificationsandActions _________ DCL-209
DCL-2 Working Set Default, Extent, and Quota Decision = DCL-216
DCL-3 Summary of Lexical Functions DCL-227
DCL-4 Summary of FAO Directives DCL-246
DCL-5 FSFILE_ATTRIBUTES Items DCL-250
DCL-6 FSGETDVI Items DCL-253
DCL-7 Values Returned by the DEVCLASS Item DCL-259
DCL-8 Values Returned by the DEVTYPE Item DCL-259
DCL-9 FSGETJPI Items DCL-263
DCL-10 F$GETQUI items DCL-269
DCL-11 FSGETSYI Items for the Local Node Only DCL-281
DCL-12 FS$GETSYI Items for the Local Node or for Other Nodes in

the VAXCluster DCL-282

DCL-13 SET Command Options DCL-422
DCL-14 Default Characteristics for Terminals DCL-523

DCL-15 SHOW Command Options DCL-544

xi

Preface

Intended Audience

This manual is intended for all users of the VMS operating system. It includes
complete descriptions of all DCL commands and lexical functions. If a
command has any restrictions or requires special privileges, they are noted in
reference information for that command.

Document Structure

This manual contains detailed descriptions of each command and lexical
function. The commands are listed in alphabetical order, with the command
name appearing at the top of every page. The lexical functions are grouped
under “Lexical Functions” (after the JOB command description) and are listed
alphabetically within that grouping; the lexical function name appears at the
top of each page.

Readers of this manual should be familiar with the material covered in the
VMS DCL Concepts Manual. Furthermore, while the Guide to Using VMS
Command Procedures is not a requirement for using this manual, it does help
clarify some of the examples involving command procedures.

The commands that invoke language compilers and other VAX optional
software products are not included in this manual; they are included in the
documentation provided with those products.

Users familiar with previous releases of the VMS DCL Dictionary should note
that the general overview of DCL command language concepts (formerly,
Part 1) has been removed. For a general discussion of the DCL command
language, see the VMS DCL Concepts Manual.

Associated Documents

For an introduction to the VMS operating system and the use of the Digital
Command Language, see the Introduction to VMS. This manual is especially
recommended for novice users or users lacking experience with interactive
computer systems.

The VMS DCL Concepts Manual provides a general overview of DCL
command language concepts.

The Guide to Using VMS Command Procedures defines and illustrates good
practices in constructing command procedures with DCL commands and
lexical functions.

The various VMS Utilities reference manuals document major VMS Utilities.
These manuals describe the DCL commands that invoke the various utilities,
any commands that you can enter while running a utility, and other
information. For all utilities documented in these volumes, the VMS DCL
Dictionary provides only a brief description and format information.

xiii

Preface

The VMS System Messages and Recovery Procedures Reference Volume explains
any error and warning messages you may receive. In most cases, however,
you will not need to refer to this manual, because it will be obvious from the
message text and other information on your screen what action (if any) to

take.

The Overview of VMS Documentation describes the new organization of the
VMS document set. This manual shows how the individual manuals fit
together and relate to each other.

Conventions

Xiv

Convention

Meaning

RET

CTRL/C

$ SHOW TIME
05-JUN-1988 11:55:22

$ TYPE MYFILE.DAT

input-file, . . .

[logical-name]

In examples, a key name (usually abbreviated)
shown within a box indicates that you press

a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

Preface

Cecnvention

Meaning

quotation marks
apostrophes

The term quotation marks is used to refer
to double quotation marks (”). The term
apostrophe (') is used to refer to a single
quotation mark.

xXv

New and Changed Features

The DIGITAL Command Language has been enhanced for VMS Version
5.0. The following “General Notes” section lists general changes, as well as
changes in the behavior of existing commands. Subsequent sections list new
commands and new language constructs.

General Notes

Support for the VT300 terminal has been added to the SET TERMINAL
command. The VT300 terminal characteristics are the same as those for a
VT200 terminal, except that bit CRT-3 is set.

The IF command has been enhanced to accept multiple statements for
execution upon a true condition. The IF command has also been enhanced to
accept an optional ELSE statement for execution when the condition specified
to IF is false.

New DCL Commands and Lexical Functions

The following new DCL commands, lexical functions, and utilities have been
added since the Version 4.4 edition of the VMS DCL Dictionary:

F$GETQUI

INSTALL

NCS (National Character Set) Utility
SET HOST/DUP

SHOW ENTRY

SUBROUTINE

ENDSUBROUTINE

Changed and Superseded DCL Command and Qualifier Names

The SET CLUSTER/QUORUM command has been superseded by the SET
CLUSTER/EXPECTED_VOTES command. Like SET CLUSTER/QUORUM,
SET CLUSTER/EXPECTED_VOTES allows users to adjust the cluster quorum
dynamically.

The following DCL commands have been superseded by the SET
ACL/OBJECT_TYPE=type command qualifier:

SET DEVICE/ACL
SET DIRECTORY/ACL
SET FILE/ACL

See the description of the SET ACL/OBJECT_TYPE=type command qualifier

for more information.

The SET QUEUE/ENTRY command has been superseded by the SET
ENTRY command. See the description of the SET ENTRY command for
more information.

Xvii

New and Changed Features

New Qualifiers and Keywords for Existing DCL Commands

The following command qualifiers and keywords have been added since the
Version 4.4 edition of the VMS DCL Dictionary:
EDIT/TPU /INITIALIZATION=file-spec
/START_POSITION=n,m
INITIALIZE/QUEUE ~ /CLOSE
/DESCRIPTION
/DEVICE
/OPEN
RECALL /ERASE
SEARCH /BACKUP
/BEFORE=time
/BY_OWNER-=uic
/CONFIRM
/CREATED
JEXPIRED
/FORMAT=NOFF
/MODIFIED
/SINCE=time
SET AUDIT /FAILURE_MODE=option
SET FILE /STATISTICS
SET CLUSTER /QUORUM
SET HOST /BUFFER_SIZE=n
/INOJRESTORE
SET PROCESS /SUSPEND=SUPERVISOR
/SUSPEND=KERNEL
SET QUEUE /CLOSE
/DESCRIPTION
/OPEN
SHOW AUDIT /FAILURE_MODE
JALL
SHOW QUEUE /BY_JOB_STATUS
/SUMMARY
START/QUEUE /CLOSE
/DESCRIPTION
JOPEN

Deleted DCL Command Qualifiers

The SET PROCESS/CPU=[NOJATTACHED qualifier has been deleted for
VMS Version 5.0.

Xviii

= (Assignment Statement)

= (Assignment Statement)

Defines a symbolic name for a character string or integer value.

FORMAT

PARAMETERS

symbol-name =[=] expression

symbol-name[bit-position, size] =[=]
replacement-expression

symbol-name

Specifies a 1 to 255 character alphanumeric string name for the symbol. The
name can contain any alphanumeric characters from the DEC Multinational
Character Set, the underscore (—), and the dollar sign ($). However, the
name must begin only with an alphabetic character (uppercase and lowercase
characters are equivalent), an underscore, or a dollar sign. Using one equal
sign (=) places the symbol name in the local symbol table for the current
command level. Using two equal signs (==) places the symbol name in the
global symbol table.

expression

Names the value on the right-hand side of an assignment statement. Can
consist of a character string, an integer, a symbol name, a lexical function,
or a combination of these entities. The components of the expression are
evaluated, and the result is assigned to the symbol. All literal character
strings must be enclosed in quotation marks. If the expression contains a
symbol, the expression is evaluated using the symbol’s value.

The result of expression evaluation is either a character string or a signed
integer value. If the expression is evaluated as a string, the symbol is
assigned a string value. If the expression is evaluated as an integer, the
symbol is assigned an integer value. If the integer value exceeds the capacity
of the four byte buffer that holds it, no error message is issued.

For a summary of operators used in expressions, details on how to specify
expressions, and details on how expressions are evaluated, see Chapter 5 of
the VMS DCL Concepts Manual.

DCL uses a buffer that is 1024 bytes long to hold an assignment statement,
and to evaluate the expression. The length of the symbol name, the
expression, and the expression’s calculations cannot exceed 1024 bytes.

[bit-position, size]

States that a binary overlay is to be inserted in the current 32-bit value of
a symbol-name. The current value of the symbol-name is evaluated. Then,
the specified number of bits is replaced by the result of the replacement-
expression. The bit-position is the location relative to bit 0 at which the
overlay is to occur. If the symbol you are overlaying is an integer, then the
bit position must be less than 32. The sum of the bit position and the size
must be less than or equal to 32.

DCL-1

= (Assignment Statement)

If the symbol you are overlaying is a string, then the bit position must be less
than 6152. Because each character is represented using 8 bits, you can begin

an overlay at any character through the 768th. (The 768th character starts in

bit position 6144.) The sum of the bit position and the size must be less than
or equal to 6152.

The size is the number of bits to be overlaid. If you specify a size that is
greater than 32, then DCL reduces the size to 32.

The square brackets are required notation; no spaces are allowed between the
symbol name and the left bracket. Specify values for bit-position and size as
integers.

replacement-expression
Specifies the value that is used to overlay the symbol you are modifying.
Specify the replacement-expression as an integer.

If the symbol you are modifying is an integer, the replacement-expression
defines a bit pattern that is overlaid on the value assigned to the symbol.

If the symbol you are modifying is a character string, the result of the
replacement-expression defines a bit pattern that is overlaid on the specified
bits of the character string. If the symbol you are modifying is undefined, the
result of the replacement-expression is overlaid on a null string.

DESCRIPTION

Symbols defined using assignment statements allow you to extend the
command language. At the interactive command level, you can use
symbols to define synonyms for commands or command lines. In command
procedure files, you can use symbols to provide for conditional execution and
substitution of variables.

The maximum number of symbols that can be defined at any time depends
on the following;:

* The amount of space available to the command interpreter to contain
symbol tables and labels for the current process. The amount of space is
determined for each process by the SYSGEN parameter CLISYMTBL.

® The size of the symbol names and their values. The command interpreter
allocates space for a symbol name and its value. In addition, a few bytes
of overhead are allocated for each symbol.

EXAMPLES

fl $ LIST == "DIRECTORY"

DCL-2

The assignment statement in this example assigns the user-defined synonym
LIST as a global symbol definition for the DCL command DIRECTORY.

$ COUNT = 0
$ LOOP:

P P P B PP

EXIT

COUNT =
IF P'COUNT'
APPEND/NEW &P'COUNT' SAVE.ALL
DELETE &P'COUNT';*

IF COUNT .LT. 8 THEN GOTO LOOP

= (Assignment Statement)

COUNT + 1

HOW SYMBOL CODE

CODE = -15

HEX =

.EQS. "" THEN EXIT

This command procedure, COPYDEL.COM, appends files (specified as
parameters) to a file called SAVE.ALL. After a file has been appended, the
command procedure deletes the file. Up to eight file names can be passed to
the command procedure. The file names are assigned to the symbols P1, P2,
and so on.

The command procedure uses a counter to refer to parameters that are passed
to it. Each time through the loop, the procedure uses an IF command to
check whether the value of the current parameter is a null string. When

the IF command is scanned, the current value of the symbol COUNT is
concatenated with the letter P. The first time through the loop, the IF
command tests P1; the second time through the loop it tests P2, and so

on. After the expression P’COUNT is evaluated, the substitution of the file
names that correspond to P1, P2, and so on, is automatic within the context
of the IF command.

The APPEND and DELETE commands do not automatically perform any
substitution, because they expect and require file specifications as input
parameters. The ampersand (&) precedes the P’"COUNT’ expression for
these commands to force the appropriate symbol substitution. When these
commands are initially scanned each time through the loop, COUNT is
substituted with its current value. Then, when the commands execute, the
ampersand causes another substitution: the first file specification is substituted
for P1, the second file specification is substituted for P2, and so on.

To invoke this procedure, use the following command:
$GCOPYDEL ALPHA.TXT BETA.DOC

The files ALPHA.TXT and BETA.DOC are each appended to the file
SAVE.ALL and then deleted.

$ A
$ CDDE = 4 + F$INTEGER("6") - A
$s

FFFFFFF1 Octal = 1777761

This example contains two assignment statements. The first statement assigns
the value 25 to the symbol A. The second assignment statement evaluates an
expression containing an integer (4), a lexical function (FSINTEGER(“6")), and
the symbol A. The result of the expression, -15, is assigned to the symbol
CODE.

DCL-3

= (Assignment Statement)

El ¢ FILENAME
$ FILETYPE
$ FILESPEC
$ TYPE 'FILESPEC'

".0BJ"

B ¢ BELL[0,32] = %X07

$ SHOW SYMBOL BELL
BELL = ""

DCL-4

"JOBSEARCH" - "JOB"

FILENAME + FILETYPE

The first command in this example assigns the symbol FILENAME the value
“SEARCH”. Notice that the string “SEARCH" is the result of the string
reduction operation performed by the expression. The second command
assigns the symbol FILETYPE the character string “.OBJ]”. The symbols
FILENAME and FILETYPE are then added together in an expression assigned
to the symbol FILESPEC. Because the values of the symbols FILENAME and
FILETYPE are concatenated, the resultant value assigned to FILESPEC is the
character string “SEARCH.OB]". The symbol FILESPEC is then used as a
parameter for the TYPE command. The apostrophes request the command
interpreter to replace the symbol FILESPEC with its value SEARCH.OB].
Thus, the TYPE command types the file named SEARCH.OB].

In this example, the symbol BELL is created with an arithmetic overlay
assignment statement. Because the symbol BELL is previously undefined, the
hexadecimal value 7 is inserted over a null character string and is interpreted
as the ASCII code for the bell character on a terminal. When you issue the
command SHOW SYMBOL BELL, the terminal beeps.

If the symbol BELL had been previously defined with an integer value, the
result of displaying BELL would have been to show its new integer value.

:= (String Assignment)

:= (String Assignment)

Defines a symbolic name for a character string value.

FORMAT symbol-name :=[=] string
symbol-name[offset, size] :=[=] replacement-string
PARAMETERS symbol-name

Specifies a 1 to 255-character string name for the symbol. The name can
contain any alphanumeric characters from the DEC Multinational Character
Set, the underscore, and the dollar sign. However, the name must begin only
with an alphabetic character, an underscore (—), or a dollar sign ($). Using
one equal sign (=) places the symbol name in the local symbol table for the
current command level. Using two equal signs (:==) places the symbol name
in the global symbol table.

string

Names the character string value to be equated to the symbol. The string
can contain any alphanumeric or special characters. DCL uses a buffer that is
1024 bytes long to hold a string assignment statement. Therefore, the length
of the symbol name, the string, and any symbol substitution within the string
cannot exceed 1024 characters.

With the = string assignment statement, you do not need to enclose a string
literal in quotation marks. String values are automatically converted to
uppercase. Also, any leading and trailing spaces and tabs are removed, and
multiple spaces and tabs between characters are compressed to a single space.

It is easier to use the assignment statement (=) to create symbols with string
values because the assignment statement does not automatically convert
letters to uppercase and remove extra spaces. Also, the assignment statement
allows you to perform string operations in expressions.

To prohibit uppercase conversion and retain required space and tab characters
in a string, place quotation marks around the string. To use quotation marks
in a string, enclose the entire string in quotation marks and use a double set
of quotation marks within the string. For example:

$ TEST := "this is a ""test"" string"
$ SHOW SYMBOL TEST
TEST = "this is a "test" string"

In this example, the spaces, lowercase letters, and quotation marks are
preserved in the symbol definition.

To continue a symbol assignment on more than one line, use the hyphen as a
continuation character. For example:

$ LONG_STRING := THIS_IS_A_VERY_LONG-
_$ _SYMBOL_STRING

DCL-5

:= (String Assignment)

DCL-6

To assign a null string to a symbol using the string assignment statement, do
not specify a string. For example:

$ NULL :=

Specify the string as a string literal, or as a symbol or lexical function that
evaluates to a string literal. If you use symbols or lexical functions, place
apostrophes around them to request symbol substitution. See Chapter 7 of
the VMS DCL Concepts Manual for more information on symbol substitution.

You can also use the string assignment statement to define a foreign
command. See Section 5.4 of the VMS DCL Concepts Manual for more
information about foreign commands.

[offset,size]

Specifies that a portion of a symbol value is to be overlaid with a replacement
string. This form of the string assignment statement evaluates the value
assigned to a symbol and then replaces the portion of the value (defined

by the offset and size) with the replacement string. The square brackets are
required notation, and no spaces are allowed between the symbol name and
the left bracket.

The offset specifies the character position relative to the beginning of the
symbol name’s string value at which replacement is to begin. Offset values
start at 0.

If the offset is greater than the offset of the last character in the string you are
modifying, spaces are inserted between the end of the string and the offset
where the replacement string is added. The maximum offset value you can
specify is 768.

The size specifies the number of characters to replace. Size values start at 1.

Specify the offset and size as integer expressions. See Section 6.2 of the VMS
DCL Concepts Manual for more information on integer expressions. The value
of the size plus the offset must not exceed 769.

replacement-string

Specifies the string that is used to overwrite the string you are modifying.
If the replacement-string is shorter than the size argument, the replacement
string is blank-filled on the right until it equals the specified size. Then the
replacement string overwrites the string assigned to the symbol name. If the
replacement string is longer than the size argument, then the replacement
string is truncated on the right to the specified size.

You can specify the replacement-string as a string literal, or as a symbol or
lexical function that evaluates to a string literal. If you use symbols or lexical
functions, place apostrophes around them to request symbol substitution. See
Chapter 7 of the VMS DCL Concepts Manual for more information on symbol
substitution.

:= (String Assignment)

EXAMPLES
b $ TIME := SHOW TIME
$ TIME

15-APR-1988 11:55:44

In this example, the symbol TIME is equated to the command string SHOW
TIME. Because the symbol name appears as the first word in a command
string, the command interpreter automatically substitutes it with its string
value and executes the command SHOW TIME.

Pl $ STAT := $DBA1: [CRAMER]STAT
$ STAT

This example shows how to define STAT as a foreign command. The symbol
STAT is equated to a string that begins with a dollar sign followed by a file
specification. The command interpreter assumes that the file specification is
that of an executable image, that is, a file with a file type of EXE. The symbol
STAT in this example becomes a synonym for the following command:

$ RUN DBA1:[CRAMER]STAT.EXE

When you subsequently type STAT, the command interpreter executes the

image.
Bl $ A = "this is a big space."
$ SHOW SYMBOL A
A = "this is a big space."
$ B := 'A
$ SHOW SYMBOL B
B = "THIS IS A BIG SPACE."

This example compares the assignment and the string assignment statements.
The symbol A is defined using the assignment statement, so lowercase letters
and multiple spaces are retained. The symbol B is defined using the string
assignment statement. Note that the apostrophes are required; otherwise, the
symbol name B would have been equated to the literal string A. However,
when symbol A’s value is assigned to symbol B, the letters are converted to
uppercase and multiple spaces are compressed.

FILE_NAME := MYFILE
FILE_NAME[0,2]:= OL
SHOW SYMBOL FILE_NAME
FILE_NAME = "OLFILE"

& H Ph

In this example, the substring expression in the assignment statement overlays
the first two characters of the string assigned to the symbol FILE_NAME with
the letters OL. The offset of 0 requests that the overlay begin with the first
character in the string, and the size specification of 2 indicates the number of
characters to overlay.

DCL-7

:= (String Assignment)

B ¢ FILE_NAME := MYFILE
$ FILE_TYPE := .TST
$ FILE_NAME[F$LENGCTH(FILE_NAME) ,4] := 'FILE_TYPE'

$ SHOW SYMBOL FILE_NAME
FILE_NAME = "MYFILE.TST"

DCL-8

In this example, the symbol name FILE_NAME is equated to the string
MYFILE and the symbol name FILE_TYPE is equated to the string .TST. The
third assignment statement uses the lexical function FELENGTH to define the
offset value where the overlay is to begin. The symbol name FILE_TYPE

is used to refer to the replacement string (.TST). Note that you must use
apostrophes to request symbol substitution.

The FSLENGTH lexical function returns the length of the string equated to
the symbol FILE_NAME; this length is used as the offset. The expression
requests that four characters of the string currently equated to the symbol

FILE_TYPE be placed at the end of the string currently equated to FILE__

NAME. The resultant value of the symbol FILE_NAME is MYFILE.TST.

@ (Execute Procedure)

@ (Execute Procedure)

Executes a command procedure or requests the command interpreter to
read subsequent command input from a specific file or device.

FORMAT

@ file-spec [p1[p2]... p8]J]]

PARAMETERS

I R
file-spec
Specifies either the input device or file for the preceding command, or the
command procedure to be executed. The default file type is COM. Wildcard
characters are not allowed in the file specification.

p1[p2[... p8]]

Specifies from one to eight optional parameters to pass to the command
procedure. The symbols (P1, P2, . .. P8) are assigned character string values
in the order of entry. The symbols are local to the specified command
procedure. Separate each parameter with one or more blanks. Use two
consecutive quotation marks ("*) to specify a null parameter. You can specify
a parameter with a character string value containing alphanumeric or special
characters, with the following restrictions:

* The command interpreter converts alphabetic characters to uppercase
and uses blanks to delimit each parameter. To pass a parameter that
contains embedded blanks or literal lowercase letters, place the parameter
in quotation marks.

e If the first parameter begins with a slash character (/), you must enclose
the parameter in quotation marks.

* To pass a parameter that contains literal quotation marks and spaces,
enclose the entire string in quotation marks and use two quotation marks
within the string. For example, the command procedure TEST.COM
contains the following line:

$ WRITE SYS$OUTPUT P1
Enter the following at the DCL prompt ($):
$ @TEST "Never say ""quit"""

When the procedure TEST.COM executes, the parameter P1 is equated to
the following string:

Never say "quit”

If a string contains quotation marks and does not contain spaces, the
quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example, enter the following at
the DCL prompt:

$ @TEST abc"def"ghi

DCL-9

@ (Execute Procedure)

DESCRIPTION

DCL-10

When the procedure TEST.COM executes, the parameter P1 is equated to
the following string:

ABC"def"GHI
To use a symbol as a parameter, enclose the symbol in apostrophes to force
symbol substitution. For example:

$ NAME = "JOHNSON"
$ QINFO 'NAME'

The apostrophes cause the value “JOHNSON” to be substituted for the
symbol NAME. Therefore, the parameter “JOHNSON" is passed as P1 to
INFO.COM.

S
Use the @ command to execute a command procedure containing

¢ DCL command lines and/or data

* Qualifiers and/or parameters for a specific command line

To execute a command procedure containing commands or data, or both,
place the @ command at the beginning of a command line and then specify
the name of the command procedure file. The command procedure can
contain DCL commands and input data for a command or program that

is currently executing. All DCL commands in a command procedure must
begin with a dollar sign ($) character. If a command is continued with the
continuation character (-), the subsequent lines must not begin with a dollar
sign.

Any line in a command procedure that does not contain a dollar sign in the
first character position (and is not a continuation line) is treated as input
data for the command or program that is currently executing. The DECK
command allows you to specify that data contains dollar signs in record
position one.

A command procedure can also contain the @ command to execute another
command procedure. The maximum command level you can achieve by
nesting command procedures is sixteen, including the top-level command
procedure. Command procedures can also be queued for processing as batch
jobs, either by using the SUBMIT command or by placing a deck of cards
containing the command procedure in the system card reader.

To execute a command procedure that contains qualifiers or parameters, or
both, for a specific command line, place the @ command where the qualifiers
or parameters normally would be in the command line. Then specify the
name of the command procedure file containing the qualifiers or parameters.

If the command procedure file begins with parameters for the command, the
@ command must be preceded by a space. For example,

$ CREATE TEST.COM

TIME

$ SHOW Q@TEST
09-DEC-1988 17:20:26

QUALIFIER

@ (Execute Procedure)

If the file begins with qualifiers for the command, do not precede the @
command with a space. For example,

$ CREATE TEST_2.COM

/SIZE
$ DIR@TEST_2

Directory WORK$: [SCHEDULE]

JANUARY .TXT;8 14-AUG-1988 15:47:45.57
FEBRUARY.TXT;7 14-AUG-1988 15:43:16.20
MARCH.TXT; 6 12-AUG-1988 11:11:45.74

Total of 3 files.

If the file contains parameters, or qualifiers, or both, do not begin the lines
in the file with dollar signs ($). Any additional data on the command line
following @file-spec is treated as parameters for the procedure.

/OUTPUT=file-spec

The name of the file to which the command procedure output is written.

By default, the output is written to the current SYSSOUTPUT device. The
default output file type is LIS. Wildcard characters are not allowed in the
output file specification. System responses and error messages are written
to SYSSCOMMAND as well as to the specified file. The /OUTPUT qualifier
must immediately follow the file specification of the command procedure;
otherwise, the qualifier is interpreted as a parameter to pass to the command
procedure.

You can also redefine SYSSOUTPUT to redirect the output from a command
procedure. If you place the following command as the first line in a command
procedure, output will be directed to the file you specify:

$ DEFINE SYS$OUTPUT file-spec

When the procedure exits, SYSSOUTPUT will be restored to its original
equivalence string. This produces the same result as using the /OUTPUT
qualifier when you execute the command procedure.

EXAMPLES

$ CREATE DOFOR.COM

$ ON WARNING THEN EXIT
$ IF P1.EQS."" THEN INQUIRE P1 FILE

$ FORTRAN/LIST 'P1'

$ LINK 'P1’
$ RUN 'P1'
$ PRINT 'P1°

$ ODOFOR AVERAGE

This example shows a command procedure, named DOFOR.COM, that
executes the FORTRAN, LINK, and RUN commands to compile, link, and
execute a program. The ON command requests that the procedure not
continue if any of the commands result in warnings or errors.

DCL-11

@ (Execute Procedure)

When you execute DOFOR.COM, you can pass the file specification of the
FORTRAN program as the parameter P1. If you do not specify a value for P1
when you execute the procedure, the INQUIRE command issues a prompting
message to the terminal and equates what you enter with the symbol P1. In
this example, the file name AVERAGE is assigned to P1. The file type is not
included because the commands FORTRAN, LINK, RUN, and PRINT provide
default file types.

Bl $ QMASTER/OUTPUT=MASTER.LOG

This command executes a procedure named MASTER.COM; all output is
written to the file MASTER.LOG.

E $ CREATE FILES.COM
% FOR, *.0BJ

$ DIRECTORY @FILES

This example shows a command procedure, FILES.COM, that contains
parameters for a DCL command line. You can execute this procedure after
the DIRECTORY command to get a listing of all FORTRAN source and object
files in your current default directory.

El $ CREATE QUALIFIERS.COM
/DEBUG/SYMBOL_TABLE/MAP/FULL/CROSS_REFERENCE
CTRL/Z

$ LINK SYNAPSE@QUALIFIERS

This example shows a command procedure, QUALIFIERS.COM, that contains
qualifiers for the LINK command. When you enter the LINK command,
specify the command procedure immediately after the file specification of the
file you are linking. Do not type a space between the file specification and
the @ command.

B $ CREATE SUBPROCES.COM
$ RUN 'P1' -
/BUFFER_LIMIT=1024 -
JFILE_LIMIT=4 -
/PAGE_FILES=256 -
/QUEVE_LINIT=2 -
/SUBPROCESS_LIMIT=2 -
|P2’ 1P3| |p4l IP5' |P6| IP7| IP8I

$ @SUBPROCES LIBRA /PROCESS_NAME=LIBRA

This example shows a command procedure named SUBPROCES.COM. This
procedure issues the RUN command to create a subprocess to execute an
image and also contains qualifiers defining quotas for subprocess creation.
The name of the image to be run is passed as the parameter P1. P2 through
P8 can be used to specify additional qualifiers.

In this example, the file name LIBRA is equated to P1; it is the name of an
image to execute in the subprocess. The qualifier /PROCESS_NAME=LIBRA
is equated to P2; it is an additional qualifier for the RUN command.

DCL-12

@ (Execute Procedure)

$ CREATE EDOC.COM
$ ASSIGN SYS$COMMAND: SYS$INPUT

$ NEXT:

$ INQUIRE NAME "File name"
$ IF NAME.EQS."" THEN EXIT
$ EDIT/EDT 'NAME'.DOC

$ GOTO NEXT

CTRL/Z

$ QEDOC

This procedure, named EDOC.COM, invokes the EDT editor. When an edit
session is terminated, the procedure loops to the label NEXT. Each time
through the loop, the procedure requests another file name for the editor
and supplies the default file type of DOC. When a null line is entered in
response to the INQUIRE command, the procedure terminates with the EXIT
command.

The ASSIGN command changes the equivalence name of SYS$INPUT for the
duration of the procedure. This change allows the EDT editor to read input
data from the terminal, rather than from the command procedure file (the

default input data stream if SYS$INPUT had not been changed). When the
command procedure exits, SYS$INPUT is reassigned to its original value.

DCL-13

ACCOUNTING

ACCOUNTING

Invokes the Accounting Utility to collect, record, and report accounting
data. For a complete description of the Accounting Utility, including
information about the ACCOUNTING command, refer to the VMS
Accounting Utility Manual.

FORMAT ACCOUNTING file-spec],...]

DCL-14

ALLOCATE

ALLOCATE

Provides your process with exclusive access to a device until you
deallocate the device or terminate your process. Optionally associates
a logical name with the device.

FORMAT

ALLOCATE device-name[:]],...] [logical-name]:]]

PARAMETERS

QUALIFIERS

device-name(:][,...]

Specifies the name of a physical device or a logical name that translates to the
name of a physical device. The device name can be generic: if no controller
or unit number is specified, any device that satisfies the specified part of the
name is allocated. If more than one device is specified, the first available
device is allocated.

logical-name

Specifies a character string of 1 through 255 characters. Enclose the string
in quotation marks (") if it contains blanks. Trailing colons are not used.
The name becomes a process logical name with the device name as the
equivalence name. The logical name remains defined until it is explicitly
deleted or your process terminates.

/GENERIC
/NOGENERIC (default)

Indicates that the first parameter is a device type rather than a device name.
Example device types are RX50, RD52, TK50, RC25, RCF25, RL02. The first
free, nonallocated device of the specified name and type is allocated.

The /[NO]GENERIC qualifier is placed before the device-name parameter
in the ALLOCATE command line. For example, you can allocate an RK07
device by entering the following command at the DCL prompt ($):

$ ALLOCATE/GENERIC RKO7

The following table shows some device types that you can specify with the
/GENERIC qualifier:

DCL-15

ALLOCATE

“D” DEVICES “T" DEVICES
RA60/70/80/81 TA78/79/81

/90

RC25/RCF25 TK50/70

RK06/7 TS11

RLO1/2 TU16

RM03/05/80 TUS8

RP04/5/6/7 TU77/78/79/80/81
RX01/2/4/33

/LOG (default)

/NOLOG

Displays a message indicating the name of the device allocated. If the
operation specifies a logical name that is currently assigned to another device,
displays the superseded value.

EXAMPLES

$ ALLOCATE DMB2:
%DCL-I-ALLOC, DMB2: allocated

The ALLOCATE command in this example requests the allocation of a specific
RK06/RK07 disk drive, that is, unit 2 on controller B. The system response
indicates that the device was successfully allocated.

$ ALLOCATE MT,MF: TAPE:
%DCL-I-ALLOC, MTB2: allocated

$ SHOW LOGICAL TAPE:

TAPE: = _MTB2: (process)
$ DEALLOCATE TAPE:

$ DEASSIGN TAPE:

The ALLOCATE command in this example requests the allocation of any tape
device whose name begins with MT or MF, to be assigned the logical name
TAPE. The ALLOCATE command iocates an available tape device whose
name begins with MT, and responds with the name of the device allocated.
(If no tape device beginning with MT had been found, the ALLOCATE
command would have searched for a device beginning with MF.) Subsequent
references to the device TAPE in user programs or command strings are
translated to the device name MTB2.

When the tape device is no longer needed, the DEALLOCATE command
deallocates it and the DEASSIGN command deletes the logical name. Note
that the logical name TAPE was specified with a colon on the ALLOCATE
command, but that the logical name table entry does not have a colon.

DCL-16

ALLOCATE

$ ALLOCATE/GENERIC RLO2 WORK
%DCL-I-ALLOC, _DLA1: allocated
%DCL-I-SUPERSEDE, previous value of WORK has been superseded

The ALLOCATE command in this example requests the allocation of any
RLO2 disk device and assigns the logical name WORK to the device. The
completion message identifies the allocated device and indicates that the
assignment of the logical name WORK supersedes a previous assignment of
that name.

$ ALLOCATE $TAPE1
%DCL-I-ALLOC, _MUAO: allocated

The ALLOCATE command in this example allocates the tape device _MUAO,
which is associated with the logical name $TAPEL1.

$ ALLOCATE /GENERIC RX50 ACCOUNTS

The ALLOCATE command in this example allocates the first free floppy disk
drive and makes its name equivalent to the process logical name ACCOUNTS.

DCL-17

ANALYZE/CRASH_DUMP

ANALYZE/CRASH_DUMP

Invokes the System Dump Analyzer Utility (SDA) for analysis of a
system dump file. The /CRASH_DUMP qualifier is required. For a
complete description of the System Dump Analyzer Utility, including
more information about the ANALYZE/CRASH_DUMP command and its
qualifier, see the VMS System Dump Analyzer Utility Manual.

FORMAT ANALYZE/CRASH_DUMP file-spec

DCL-18

ANALYZE/DISK_STRUCTURE

ANALYZE/DISK_STRUCTURE

Invokes the Analyze/Disk__Structure Utility to do the following:

¢ Check the readability and validity of Files—11 Structure Level 1 and
Files—11 Structure Level 2 disk volumes

¢ Report errors and inconsistencies

The /DISK_STRUCTURE qualifier is required. For a complete description
of the Analyze/Disk _Structure Utility, including information about the DCL
command ANALYZE/DISK_STRUCTURE and its qualifiers, see the VMS
Analyze/Disk_Structure Utility Manual.

FORMAT ANALYZE/DISK_STRUCTURE device-name:

DCL-19

ANALYZE/ERROR_LOG

ANALYZE/ERROR_LOG

Invokes the Errorlog Report Formatter (ERF) to report selectively the
contents of an error log file. The /ERROR_LOG qualifier is required. For
a complete description of the Error Log Utility, including more information
about the ANALYZE/ERROR_LOG command and its qualifiers, see the
VMS Error Log Utility Manual.

FORMAT

DCL-20

ANALYZE/ERROR_LOG [/qualifier(s)] [file-spec],...]]

ANALYZE/IMAGE

ANALYZE/IMAGE

Analyzes the contents of an executable image file or a shareable image
file and checks for obvious errors in the image file. See the description of
the linker in the VMS Linker Utility Manual for general information about
image files. The /IMAGE qualifier is required. (Use the ANALYZE/OBJECT
command to analyze the contents of an object file.)

ANALYZE/IMAGE file-spec ,...]

Specifies the image files you want analyzed (default file type is EXE.) Use
commas or plus signs to separate file specifications. Wildcard characters are

FORMAT

PARAMETER file-spec],...]
allowed.

DESCRIPTION

The ANALYZE/IMAGE command provides a description of the components
of an executable image file or shareable image file. It also verifies that

the structure of the major parts of the image file is correct. However, the
ANALYZE/IMAGE command cannot ensure that program execution is
error-free.

If an error is found, the first error of the worst severity that is discovered is
returned. For example, if a warning (A) and two errors (B and C) are signaled,
then the first error (B) is returned as the image exit status, which is placed in
the DCL symbol $STATUS at image exit.

The ANALYZE/IMAGE command provides the following information:
¢ Image type—Identifies whether the image is executable or shareable.

* Image transfer addresses—Identify the addresses to which control is
passed at image execution time.

* Image version—Identifies the revision level of the image.

* Patch information—Indicates whether the image has been patched
(changed without having been recompiled or reassembled and relinked).
If a patch is present, the actual patch code can be displayed.

* Location of the Debug Symbol Table (DST)—Identifies the location of
the DST in the image file. DST information is present only in executable
images that have been linked with the /DEBUG or /TRACEBACK
command qualifiers.

* Location of the global symbol table (GST)—Identifies the location of
the GST in the image file. GST information is present only in shareable
image files.

* Image section descriptors (ISD)—Identifies portions of the image binary
contents that are grouped in clusters according to their attributes. An ISD
contains information that the image activator needs when it initializes
the address space for an image. For example, it tells whether or not the
ISD is shareable, if it is readable or writable, if it is based or position-
independent, and how much memory should be allocated.

DCL-21

ANALYZE/IMAGE

¢ Fixup vectors—Contain information that the image activator needs to
ensure the position-independence of shareable image references.

The ANALYZE/IMAGE command has command qualifiers and positional
qualifiers. By default, if you do not specify any positional qualifiers (for
example, /GST or /HEADER), the entire image is analyzed. If you do specify
a positional qualifier, the analysis excludes all other positional qualifiers
except for the /HEADER qualifier (which is always enabled) and those you
explicitly request.

QUALIFIERS

DCL-22

/FIXUP_SECTION

Positional Qualifier.

Specifies that the analysis should include all information in the fixup section
of the image.

If you want the analysis to include the fixup section of all image files in
the parameter list, insert the /FIX_UP qualifier immediately following the
/IMAGE qualifier.

If you want the analysis to include fixup sections selectively, insert the
/FIX__UP qualifier immediately following the selected file specification(s).

/GST

Positional Qualifier.

Specifies that the analysis should include all global symbol table records. This
qualifier is valid only for shareable images.

If you want the analysis to include the global symbol table records of all
image files in the parameter list, insert the /GST qualifier immediately
following the /IMAGE qualifier.

If you want the analysis to include global symbol table records selectively,
insert the /GST qualifier immediately following the selected file
specification(s).

/HEADER

Positional Qualifier.

Specifies that the analysis should include only header items and image section
descriptions, unless the command explicitly specifies other information. The
image header items are always analyzed.

/INTERACTIVE
/NOINTERACTIVE (default)

Specifies whether or not the analysis is interactive. In interactive mode, as
each item is analyzed, the results are displayed on the screen and you are
asked whether you want to continue.

/OUTPUTfile-spec

Directs the output of the image analysis (default is SYSBOUTPUT.) No
wildcard characters are allowed. If you specify a file type and omit the file
name, the default file name ANALYZE is used. The default file type is ANL.

ANALYZE/IMAGE

/PATCH_TEXT

Positional Qualifier.

Specifies that the analysis include all patch text records. If you want the
analysis to include the patch text records for each image file in the parameter
list, insert the /PATCH_TEXT qualifier immediately following the /IMAGE
qualifier.

If you want the analysis to include patch text records selectively, insert
the /PATCH_TEXT qualifier immediately following the selected file
specification(s).

EXAMPLES
£ $ ANALYZE/IMAGE LINEDT

The ANALYZE/IMAGE command in this example produces a description and
an error analysis of the image LINEDT.EXE. Output is directed to the current
SYS$OUTPUT device. By default, the entire image is analyzed.

E $ ANALYZE/IMAGE/OUTPUT=LIALPHEX/FIXUP_SECTION/PATCH_TEXT LINEDT, ALPHA

The ANALYZE/IMAGE command in this example stores a description and
an error analysis of the fixup sections and patch text records of LINEDT.EXE
and ALPHA EXE in file LIALPHEX.ANL. The output is directed to the file
LIALPHEX.ANL.

DCL-23

ANALYZE/MEDIA

ANALYZE/MEDIA

Invokes the Bad Block Locator Utility (BAD), which analyzes block-
addressable devices and records the location of blocks that cannot reliably
store data. For a complete description of the Bad Block Locator Utility,
including information about the ANALYZE/MEDIA command and its
qualifiers, see the VMS Bad Block Locator Utility Manual.

FORMAT

DCL-24

ANALYZE/MEDIA device

ANALYZE/OBJECT

ANALYZE/OBJECT

Analyzes the contents of an object file and checks for any obvious errors.
The /OBJECT qualifier is required. (The ANALYZE/IMAGE command
analyzes the contents of an image file.)

FORMAT ANALYZE/OBJECT file-spec],...]

PARAMETER file-spec],...]
Specifies the object files or object module libraries you want analyzed (default
file type is OB]J). Use commas or plus signs to separate file specifications.
Wildcard characters are allowed.

DESCRIPTION The ANALYZE/OBJECT command describes the contents of one or more

object modules contained in one or more files. It also performs a partial error
analysis. This analysis determines whether the records in an object module
conform in content, format, and sequence to the specifications of the VMS
Object Language.

ANALYZE/OBJECT is intended primarily for programmers of compilers,
debuggers, or other software involving VMS object modules. It checks that
the object language records generated by the object modules are acceptable to
the VMS Linker, and it identifies certain errors in the file. It also provides a
description of the records in the object file or object module library. For more
information on the VMS linker and on the VMS Object Language, refer to the
VMS Linker Utility Manual.

The ANALYZE/OBJECT command analyzes the object modules in order,
record by record, from the first to the last record in the object module. Fields
in each record are analyzed in order from the first to the last field in the
record. After the object module is analyzed, you should compare the content
and format of each type of record to the required content and format of
that record as described by the VMS Object Language. This comparison is
particularly important if the analysis output contains a diagnostic message.

The linking of an object module differs from the analysis of an object module.
Object language commands are not executed in an analysis, but they are
executed in a linking operation. As a result, even if the analysis is error-free,
the linking operation may not be. In particular, the analysis does not detect
the following:

¢ That data arguments in TIR commands are in the correct format

* That “Store Data” TIR commands are storing within legal address limits

Therefore, as a final check, you should still link an object module whose
analysis is error-free before you assume it is correct.

If an error is found, however, the first error of the worst severity that is
discovered is returned. For example, if a warning (A) and two errors (B and
C) are signaled, then the first error (B) is returned as the image exit status,
which is placed in the DCL symbol $STATUS at image exit.

DCL-25

ANALYZE/OBJECT

QUALIFIERS

DCL-26

Note:

Note:

ANALYZE /OBJECT uses positional qualifiers; that is, qualifiers whose
function depends on their position in the command line. When a positional
qualifier precedes all of the input files in a command line, it affects all input
files. For example, the following command line requests that the analysis
include the global symbol directory records in files A, B, and C:

$ ANALYZE/OBJECT/GSD A,B,C

Conversely, when a positional qualifier is associated with only one file in the
parameter list, only that file is affected. For example, the following command
line requests that the analysis include the global symbol directory records in
file B only:

$ ANALYZE/OBJECT A,B/GSD,C

Typically, all records in an object module are analyzed. However, when any
of the qualifiers /DBG, /EOM, /GSD, /LNK, /MHD, /TBT, or /TIR are
specified, only the record types indicated by the qualifiers are analyzed. All
other record types are ignored.

By default, the analysis includes all record types unless you explicitly request
a limited analysis using appropriate qualifiers.

End-of-module (EOM) records and module header (MHD) records are
always analyzed, no matter which qualifiers you specify.

/DBG

Positional qualifier.

Specifies that the analysis should include all debugger information records.
If you want the analysis to include debugger information for all files in

the parameter list, insert the /DBG qualifier immediately following the
/OBJECT qualifier. If you want the analysis to include debugger information
selectively, insert the /DBG qualifier immediately following the selected file
specification(s).

JEOM
Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM records,
and records explicitly specified by the command. If you want this to apply to
all files in the parameter list, insert the /EOM qualifier immediately following
the /OBJECT qualifier.

To make this applicable selectively, insert the /EOM qualifier immediately
following the selected file specification(s).

End-of-module records may be EOM or EOMW records. See the VMS
Linker Utility Manual for more information.

/GSD
Positional qualifier.
Specifies that the analysis should include all global symbol directory records.

If you want the analysis to include global symbol directory records for each
file in the parameter list, specify /GSD immediately following the /OBJECT
qualifier.

ANALYZE/OBJECT

If you want the analysis to include global symbol directory records
selectively, insert the /GSD qualifier immediately following the selected
file specification(s).

/INCLUDE[=(module],...])]

When the specified file is an object module library, use this qualifier to list
selected object modules within the library for analysis. If you omit the list or
specify an asterisk, all modules are analyzed. If you specify only one module,
you may omit the parentheses.

/INTERACTIVE
/NOINTERACTIVE (default)

Controls whether the analysis occurs interactively. In interactive mode, as
each record is analyzed, the results are displayed on the screen, and you are
asked whether you want to continue.

/LNK
Positional qualifier.
Specifies that the analysis should include all link option specification records.

If you want the analysis to include link option specification records for each
file in the parameter list, specify /LNK immediately following the /OBJECT
qualifier.

If you want the analysis to include link option specification records
selectively, insert the /LNK qualifier immediately following the selected
file specification(s).

/MHD
Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM records,
and records explicitly specified by the command. If you want this to apply to
all files in the parameter list, insert the /MHD qualifier immediately following
the /OBJECT qualifier.

To make this applicable selectively, insert the /MHD qualifier immediately
following the selected file specification(s).

/OUTPUT/[=file-spec]

Directs the output of the object analysis (default is SYSSOUTPUT). If you
specify a file type and omit the file name, the default file name ANALYZE is
used. The default file type is ANL.

No wildcard characters are allowed in the file specification.

/TBT

Positional qualifier.
Specifies that the analysis should include all module traceback records.

If you want the analysis to include traceback records for each file in the
parameter list, specify /TBT immediately following the /OBJECT qualifier.

If you want the analysis to include traceback records selectively, insert the
/TBT qualifier immediately following the selected file specification(s).

DCL-27

ANALYZE/OBJECT

/TIR

Positional qualifier.

Specifies that the analysis should include all text information and relocation
records.

If you want the analysis to include text information and relocation records
for each file in the parameter list, specify /TIR immediately following the
/OBJECT qualifier.

If you want the analysis to include text information and relocation records
selectively, insert the /TIR qualifier immediately following the selected file
specification(s).

EXAMPLES
£ $ ANALYZE/OBJECT/INTERACTIVE LINEDT

In this example, the ANALYZE/OBJECT command produces a description
and a partial error analysis of the object file LINEDT.OB]. By default, all
types of records are analyzed. Output is to the terminal, because the
/INTERACTIVE qualifier has been used. As each item is analyzed, the
utility displays the results on the screen and asks if you want to continue.

E $ ANALYZE/OBJECT/OUTPUT=LIOBJ/DBG LINEDT
In this example, the ANALYZE/OBJECT command analyzes only the

debugger information records of the file LINEDT.OB]J. Output is to the
file LIOB].ANL.

DCL-28

ANALYZE/PROCESS_DUMP

ANALYZE/PROCESS_DUMP

Invokes the VMS Debugger for analysis of a process dump file that was
created when an image failed during execution (use the /DUMP qualifier
with the RUN or SET PROCESS commands to generate a dump file). For
a complete description of the debugger, including information about the
DEBUG command, refer to the VMS Debugger Manual.

Requires read (R) access to the dump file.

FORMAT

ANALYZE/PROCESS_DUMP dump-file

PARAMETER

dump-file
Specifies the dump file to be analyzed with the debugger.

DESCRIPTION

The ANALYZE/PROCESS_DUMP command examines the dump file of

an image that failed during execution. The VMS debugger is invoked
automatically. To cause a dump file to be created for a process, you must
use the /DUMP qualifier with the RUN command when invoking the image,
or you must use the SET PROCESS/DUMP command before invoking the
image.

QUALIFIERS

JFULL

Displays all known information about the failing process.

/IMAGE=image-name
/NOIMAGE

Specifies the image whose symbols are to be used in analyzing the dump. If
you use the /NOIMAGE qualifier, no symbols are taken from any image. By
default, symbols are taken from the image with the same name as the image
that was running at the time of the dump.

/INTERACTIVE
/NOINTERACTIVE (default)

Causes the display of information to pause when your terminal screen is
filled. Press RETURN to display additional information. By default, the
display is continuous.

/MISCELLANEOUS

Displays all the miscellaneous information in the dump.

/OUTPUT=file-spec

Writes the information to the specified file. By default, the information is
written to the current SYSSOUTPUT device. No wildcard characters are
permitted in the file specification.

DCL-29

ANALYZE/PROCESS_DUMP

/RELOCATION

Displays the addresses to which data structures saved in the dump are
mapped in PO space. (Examples of such data structures are the stacks.) The
data structures in the dump must be mapped into P0 so that the debugger
can use those data structures in P1 space.

I
EXAMPLE
$ ANALYZE/PROCESS/FULL ZIPLIST
RO = 00018292 R1 = 8013DE20 R2 = 7FFE6A40 R3 = 7FFE6A98
R4 = 8013DE20 R5 = 00000000 R6 = 7FFE7B9A R7 = OOOOF000
R8 = 00000000 R9 = 00000000 R10 = 00000000 R11 = 00000000
SP = 7FFAEF44 AP = 7FFAEF48 FP = TFFAEF84

FREE_PO_VA 00001600 FREE_P1_VA 7FFAC600
Active ASTs 00 Enabled ASTs OF
Current Privileges FFFFFF80 1010C100

Event Flags 00000000 EO0O00000

Buffered I/0 count/limit 6/6

Direct I/0 count/limit 6/6

File count/limit 27/30

Process count/limit 0/0

Timer queue count/limit 10/10

AST count/limit 6/6

Enqueue count/limit 30/30

Buffered I/0 total 7 Direct I/0 total 18

Link Date 27-DEC-1988 15:02:00.48 Patch Date 17-NOV-1988 00:01:53.71
ECO Level 0030008C 00540040 00000000 34303230

Kernel stack 00000000 pages at 00000000 moved to 00000000

Exec stack 00000000 pages at 00000000 moved to 00000000

Vector page 00000001 page at 7FFEFEOO moved to 00001600

PI0O (RMS) area 00000005 pages at 7FFE1200 moved to 00001800

Image activator context 00000001 page at 7FFE3400 moved to 00002200
User writeable context 0OO0000A pages at 7FFE1C00 moved to 00002400
Creating a subprocess

VAX DEBUG Version X5.0-2

DBG>

This example shows the output of the ANALYZE /PROCESS command when
used with the /FULL qualifier. The file specified, ZIPLIST, contains the dump
of a process that encountered a fatal error. The DBG> prompt indicates that
the debugger is ready to accept commands.

DCL-30

ANALYZE/RMS_FILE

ANALYZE/RMS_FILE

Invokes the Analyze/RMS_File Utility (ANALYZE/RMS_FILE) to inspect
and analyze the internal structure of a VMS RMS file. The /RMS_FILE
qualifier is required. For a complete description of the Analyze/RMS_

File Utility, including more information about the ANALYZE/RMS_FILE
command and its qualifiers, see the VMS Analyze/RMS_File Utility Manual.

FORMAT ANALYZE/RMS_FILE file-spec],...]

DCL-31

ANALYZE/SYSTEM

ANALYZE/SYSTEM

Invokes the System Dump Analyzer (SDA) for analysis of the running
system. The /SYSTEM qualifier is required. For a complete description
of the System Dump Analyzer, including more information about the
ANALYZE/SYSTEM command and its qualifiers, see the VMS System
Dump Analyzer Utility Manual.

FORMAT ANALYZE/SYSTEM

DCL-32

APPEND

APPEND

FORMAT

Adds the contents of one or more specified input files to the end of the
specified output file.

APPEND input-file-spec],...] output-file-spec

PARAMETERS

input-file-spec/,...]

Specifies the names of one or more input files to be appended. Multiple input
files are appended to the output file in the order specified. If you specify more
than one input file, separate multiple file specifications with either commas or
plus signs.

You can use wildcard characters in the input file specifications.

output-file-spec
Specifies the name of the file to which the input files will be appended.

You must specify at least one field in the output file specification. If you
do not specify a device or directory, the APPEND command uses the
current default device and directory. Other unspecified fields default to
the corresponding fields of the first input file specification.

If you use the asterisk wildcard character in any fields of the output file
specification, the APPEND command uses the corresponding field of the
input file specification. If you are appending more than one input file,
APPEND uses the corresponding fields from the first input file.

DESCRIPTION

QUALIFIERS

The APPEND command is similar in syntax and function to the COPY
command. Normally, the APPEND command adds the contents of one or
more files to the end of an existing file without incrementing the version
number. The /NEW_VERSION qualifier causes the APPEND command to
create a new output file if no file with that name exists.

/ALLOCATION=number-of-blocks
Output-file-spec qualifier.

Forces the initial allocation of the output file to the specified number of
512-byte blocks.

If you do not specify the /ALLOCATION qualifier, the initial allocation of
the output file is determined by the size of the input file. The allocation
size is applied only if a new file is actually created. Relevant only with the
/NEW_VERSION qualifier.

/BACKUP

Modifies the time value specified with the /BEFORE or /SINCE qualifier.

/BACKUP selects files according to the dates of their most recent backups.
This qualifier is incompatible with the other qualifiers that also allow you

to select files according to time attributes: /CREATED, /EXPIRED, and

DCL-33

APPEND

DCL-34

/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,

or as one of the following keywords: TODAY (default)) TOMORROW,

or YESTERDAY. Specify one of the following qualifiers with /BEFORE to
indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

See Section 1.4 of the VMS DCL Concepts Manual for complete information on
specifying time values.

/BY_OWNER/[=uic]

Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC using standard UIC format as described in Section 8.1 of the
VMS DCL Concepts Manual.

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each APPEND operation to
confirm that the operation should be performed on that file. The following
responses are valid:

YES NO Quit

TRUE FALSE CTRL/Z

1 0 ALL
RET

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, T, TR, or TRU for TRUE), but these abbreviations must be unique.
Affirmative answers are YES, TRUE, and 1. Negative answers are NO,
FALSE, 0, and the RETURN key. QUIT or CTRL/Z indicates that you want
to stop processing the command at that point. When you respond with ALL,
the command continues to process, but no further prompts are given. If
you type a response other than one of those in the list, DCL issues an error
message and redisplays the prompt.

/CONTIGUOUS

/NOCONTIGUOUS
Output-file-spec qualifier.

Specifies that the output file must occupy physically contiguous disk blocks.
By default, the APPEND command creates an output file in the same format
as the corresponding input file and does not report an error if not enough
space exists for a contiguous allocation. Relevant only with the
/NEW_VERSION qualifier.

If an input file is contiguous, the APPEND command attempts to create a
contiguous output file, but does not report an error if there is not enough
space. If you append multiple input files of different formats, the output file
may or may not be contiguous. Use the /CONTIGUOUS qualifier to ensure
that the output file is contiguous.

APPEND

/CREATED (default)

Modifies the time value specified with the /BEFORE or /SINCE qualifiers.
/CREATED selects files based on their-dates of creation. This qualifier is
incompatible with the other qualifiers that also allow you to select files
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If you
specify none of these four time qualifiers, the default is /CREATED.

/EXCLUDE=(file-spec],...])

Excludes the specified files from the append operation. You can include

a directory but not a device in the file specification. Wildcard characters
are allowed in the file specification. However, you cannot use relative
version numbers to exclude a specific version. If you provide only one file
specification, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/EXPIRED selects files according to their expiration dates. (The expiration
date is set with the SET FILE/EXPIRATION_DATE command.) The
/EXPIRED qualifier is incompatible with the other qualifiers that also allow
you to select files according to time attributes: /BACKUP, /CREATED, and

/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/EXTENSION=number-of-blocks
Output-file-spec qualifier.

Specifies the number of blocks to be added to the output file each time the file
is extended. When you specify /EXTENSION, the /NEW_VERSION qualifier
is assumed and need not be typed on the command line. Relevant only with
the /NEW_VERSION qualifier.

The extension value is applied only if a new file is actually created.

/LOG

/NOLOG (default)

Controls whether the APPEND command displays the file specifications of
each file appended. If /LOG is specified, displays the file specifications of the
input and output files as well as the number of blocks or records appended
after each append operation.

/MODIFIED

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/MODIFIED selects files according to the dates on which they were last
modified. This qualifier is incompatible with the other qualifiers that also
allow you to select files according to time attributes: /BACKUP, /CREATED,
and /EXPIRED. If you specify none of these four time modifiers, the default
is /CREATED.

/NEW_VERSION

/NONEW_VERSION (default)
Output-file-spec qualifier.

Controls whether the APPEND command creates a new output file if the
specified output file does not exist. (By default, the specified output file
already exists.) If the specified output file does not already exist, use the
/NEW_VERSION qualifier to create a new output file. If the output file does

DCL-35

APPEND

EXAMPLES

exist, the /NEW_VERSION qualifier is ignored and the input file is appended
to the output file.

/PROTECTION=(code)
Output-file-spec qualifier.

Specifies protection for the output file. Specify ownership as SYSTEM,
OWNER, GROUP, or WORLD and access as R (read), W (write), E (execute),
or D (delete). The default protection, including any protection attributes not
specified, is that of the existing output file. If no output file exists, the current
default protection applies. Relevant only with the /NEW_VERSION qualifier.

See Section 8.1 of the VMS DCL Concepts Manual for more information on
specifying protection code.

/READ_CHECK

/NOREAD_CHECK (default)
Input-file-spec qualifier.

Reads each record in the input files twice to verify that it has been read
correctly.

/SINCE[=time]
Selects for the append operation only those files dated after the specified time.
You can specify time as an absolute time, a combination of absolute and delta
times, or as one of the following keywords: TODAY (default) TOMORROW,
or YESTERDAY. Specify one of the following qualifiers with /BEFORE to
indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

See Section 1.4 of the VMS DCL Concepts Manual for complete information on
specifying time values.
/WRITE_CHECK

/NOWRITE_CHECK (default)
Output-file-spec qualifier.

Reads each record in the output file after the record is written to verify that it
was appended successfully and that the output file can subsequently be read
without error.

n $ APPEND TEST3.DAT TESTALL.DAT

DCL-36

The APPEND command appends the contents of the file TEST3.DAT from
the default disk and directory to the file TESTALL.DAT, also located on the
default disk and directory.

APPEND

$ APPEND/NEW_VERSION/LOG *.TXT MEM.SUM

%APPEND-I-CREATED, USE$: [MAL]MEM.SUM;1 created

%APPEND-S-COPIED, USE$: [MAL]A.TXT;2 copied to USE$:[MALIMEM.SUM;1 (1 block)
%APPEND-S-APPENDED, USE$: [MAL]B.TXT;3 appended to USE$:[MALIMEM.SUM;1 (3 records)
%APPEND-S-APPENDED, USE$: [MAL1G.TXT;7 appended to USE$:[MALIMEM.SUM;1 (51 records)

The APPEND command appends all files with file types of TXT to a file
named MEM.SUM. The /LOG qualifier requests a display of the specifications
of each input file appended. If the file MEM.SUM does not exist, the
APPEND command creates it, as the output shows. The number of blocks or
records shown in the output refers to the source file and not to the target file
total.

$ APPEND/LOG A.DAT, B.MEM C.*
%APPEND-S-APPENDED, USE$: [MAL]A.DAT;4 appended to USE$:[MAL]C.DAT;4 (2 records)
%APPEND-S-APPENDED, USE$:[MAL]B.MEM;5 appended to USE$: [MAL]C.DAT;4 (29 records)

The APPEND command appends the files A.DAT and B.MEM to the file
C.DAT, which must already exist.

$ APPEND/LOG A.x B.*
%APPEND-S-APPENDED, USE$: [MAL]A.DAT;5 appended to USE$: [MAL]B.DAT;1 (5 records)
%APPEND-S-APPENDED, USE$: [MAL]A.DOC;2 appended to USE$: [MAL]IB.DAT;1 (1 record)

Both the input and output file specifications contain wildcard characters in the
file type field. The APPEND command appends each file with a file name of
A to an existing file with B as its file name. The file type of the first input file
located determines the output file type.

$ APPEND BOSTON"JOHN_SMITH YANKEE"::DEMOO1.DAT, DEMO2.DAT
$ _To: DALLAS: :DISK1: [MODEL.TEST] TEST.DAT

This APPEND command adds the contents of the files DEMO1.DAT and
DEMO2.DAT at remote node BOSTON to the end of the file TEST.DAT at
remote node DALLAS.

DCL-37

ASSIGN

ASSIGN

Creates a logical name and assigns an equivalence string, or a list of
strings, to the specified logical name. If you specify an existing logical
name, the new equivalence name replaces the existing equivalence name.

FORMAT

PARAMETERS

DCL-38

ASSIGN equivalence-name,...] logical-namel:]

equivalence-name[,...]

Specifies a character string of 1 to 255 characters. Defines the equivalence
name, usually a file specification, device name, or other logical name, to be
associated with the logical name in the specified logical name table. If the
string contains other than uppercase alphanumeric, dollar sign, or underscore
characters, enclose it in quotation marks (“). Use two consecutive quotation
marks ("") to denote an actual quotation mark. Specifying more than one
equivalence name for a logical name creates a search list.

When you specify an equivalence name that will be used as a file
specification, you must include the punctuation marks (colons, brackets,
periods) that would be required if the equivalence name were used directly as
a file specification. Therefore, if you specify a device name as an equivalence
name, terminate the device name with a colon.

The ASSIGN command allows you to assign the same logical name to more
than one equivalence name. When you specify more than one equivalence
name for a logical name, you create a search list. See Section 4.7 of the VMS
DCL Concepts Manual for more information on search lists.

logical-name

Specifies the logical name string, which is a character string containing up to
255 characters. You choose a logical name to represent the equivalence name
in the specified logical name table.

If the string contains other than uppercase alphanumeric, dollar sign, or
underscore characters, enclose it in quotation marks (”). Use two consecutive
quotation marks (") to denote an actual quotation mark. If you terminate the
logical-name parameter with a colon, the system removes the colon before
placing the name in a logical name table. (This differs from the DEFINE
command, which saves the colon.) If the logical name is to be entered into
the process directory (LNM$PROCESS_DIRECTORY) or system directory
(LNM$SYSTEM_DIRECTORY) logical name tables, then the name may only
have from 1 to 31 alphanumeric characters (including the dollar sign and
underscore). By default, the logical name is placed in the process logical
name table.

If the logical name contains any characters other than alphanumeric
characters, the dollar sign, or the underscore, enclose the name in quotation
marks. If the logical name contains quotation marks, enclose the name in
quotation marks and use two sets of quotation marks in the places where you
want one set of quotation marks to occur. Note that if you enclose a name in
quotation marks, the case of alphabetic characters is preserved.

ASSIGN

DESCRIPTION

QUALIFIERS

Note:

The ASSIGN command creates an entry in a logical name table by defining

a logical name to stand for one or more equivalence names. An equivalence
name can be a device name, another logical name, a file specification, or any
other string.

To specify the logical name table where you want to enter a logical name,
use the /PROCESS, /JOB, /GROUP, /SYSTEM, or /TABLE qualifier. If you
enter more than one of these qualifiers, only the last one entered is accepted.
If you do not specify a table, the default is /TABLEFELNM$PROCESS (or
/PROCESS).

To specify the access mode of the logical name you are creating, use the
/USER_MODE, /SUPERVISOR_MODE, or /EXECUTIVE_MODE qualifiers.
If you enter more than one of these qualifiers, only the last one entered is
accepted. If you do not specify an access mode, then a supervisor mode name
is created. You can create a logical name in the same mode as the table in
which you are placing the name or in an outer mode. (User mode is the
outermost mode; executive mode is the innermost mode.)

You can enter more than one logical name with the same name in the
same logical name table, as long as each name has a different access mode.
(However, if an existing logical name within a table has the NO_ALIAS
attribute, you cannot use the same name to create a logical name in an outer
mode in this table.)

If you create a logical name with the same name, in the same table, and
in the same mode as an existing name, the new logical name assignment
replaces the existing assignment.

You can also use the DEFINE command to create logical names. To delete a
logical name from a table, use the DEASSIGN command.

Avoid assigning a logical name that matches the file name of an
executable image in SYS$SYSTEM:. Such an assignment will prohibit
you from invoking that image.

For additional information on how to create and use logical names, see
Chapter 4 of the VMS DCL Concepts Manual.

/EXECUTIVE_MODE
Requires SYSNAM privilege.

Specifies the mode of the logical name. If you specify executive mode, but do
not have SYSNAM privilege, the qualifier is ignored and a supervisor mode
logical name is created. The mode of the logical name must be the same as
or external to (less privileged than) the mode of the table in which you are
placing the name.

/GROUP
Requires SYSPRV or GRPNAM privilege.

Places the logical name in the group logical name table. Other users who
have the same group number in their user identification codes (UICs)
can access the logical name. The /GROUP qualifier is synonymous with
/TABLE=LNM$GROUP.

DCL-39

ASSIGN

DCL-40

/JOB
Requires SYSPRV or GRPNAM privilege.

Places the logical name in the jobwide logical name table. All processes
within the same job tree as the process creating the logical name can access
the logical name. The /JOB qualifier is synonymous with /TABLE=LNM$JOB.

/LOG (default)
/NOLOG

Displays a message when a new logical name supersedes an existing name.

/NAME_ATTRIBUTES|[=(keyword],...])]

Specifies the attributes for a logical name. By default, no attributes are set.
You can specify the following keywords for attributes:

CONFINE Does not copy the logical name into a spawned subprocess;
relevant only for logical names in a private table.

NO_ALIAS Prohibits creation of logical names with the same name in an outer
(less privileged) access mode within the specified table. If another
logical name with the same name and an outer access mode
already exists in this table, the name is deleted.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

/PROCESS (default)

Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with /TABLEELNM$PROCESS.

/SUPERVISOR_MODE (default)

Creates a supervisor mode logical name in the specified table.

/SYSTEM
Requires SYSNAM or SYSPRYV privilege.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with

/TABLE=LNM$SYSTEM.

/TABLE=name
Requires WRITE (W) access to the table if the table is shareable.

Specifies the logical name table in which the logical name is to be entered.
You can use the /TABLE qualifier to specify a user-defined logical name table
(created with the CREATE/NAME_TABLE command); to specify the process,
job, group, or system logical name tables; or to specify the process or system
logical name directory tables.

If you specify the table name using a logical name that has more than one
translation, the logical name is placed in the first table found. For example,
if you specify ASSIGN/TABLE=LNMS$FILE_DEV and LNMS$FILE_DEV is
equated to LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM,
then the logical name is placed in LNM$PROCESS.

If you do not explicitly specify the /TABLE qualifier, the default is
/TABLE=LNM$PROCESS (or /PROCESS).

ASSIGN

/TRANSLATION_ATTRIBUTES|=(keyword],...])]

Equivalence-name qualifier.

Specifies attributes of the equivalence-name parameter. Possible keywords
are as follows:

CONCEALED Indicates that the equivalence string is the name of a concealed
device.

When a concealed device name is defined, the system displays
the logical name, rather than the equivalence string, in messages
that refer to the device. If you specified the CONCEALED
attribute, then the equivalence string must be a physical device
name.

TERMINAL Indicates that the equivalence string should not be translated
iteratively; logical name translation should terminate with the
current equivalence string.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of the same logical name can have
different translation attributes specified.

J/USER_MODE

Creates a user mode logical name in the specified table.

If you specify a user mode logical name in the process logical name table,
that logical name is used for the execution of a single image only; user mode
entries are deleted from the logical name table when any image executing

in the process exits; that is, after any DCL command or user program that
executes an image completes execution.

EXAMPLES

n $ ASSIGN $DISK1:[ACCOUNTS.MEMOS] MEMOSD

The ASSIGN command in this example equates the partial file specification
$DISK1:]ACCOUNTS.MEMOS] to the logical name MEMOSD.

E $ ASSIGN/USER_MODE $DISK1: [ACCOUNTS.MEMOSIWATER.TXT TM1

The ASSIGN command in this example equates the logical name TM1 to a
file specification. After the next image runs, the logical name is automatically
deassigned.

K] $ ASSIGN XXX1:[CHARLES] CHARLIE
$ PRINT CHARLIE:TEST.DAT
Job 274 entered on queue SYS$PRINT

The ASSIGN command in this example associates the logical name CHARLIE
with the directory name [CHARLES] on the disk XXX1. Subsequent references
to the logical name CHARLIE result in the correspondence between the
logical name CHARLIE and the disk and directory specified. The PRINT
command queues a copy of the file XXX1:{CHARLES]TEST.DAT to the system
printer.

DCL-41

ASSIGN

B $ ASSIGN YYY2:

TEMP:

$ SHOW LOGICAL TEMP
"TEMP" = "YYY2:" (LNM$PROCESS_TABLE)

$ DEASSIGN TEMP

The ASSIGN command in this example equates the logical name TEMP

to the device YYY2. TEMP is created in supervisor mode and placed in

the process logical name table. The SHOW LOGICAL command verifies
that the logical name assignment was made. Note that the logical name
TEMP was terminated with a colon in the ASSIGN command, but that the
command interpreter deleted the colon before placing the name in the logical
name table. Thus, you can specify TEMP without a colon in the subsequent
DEASSIGN command. You should omit the colon in the SHOW LOGICAL
command (for example, SHOW LOGICAL TEMP).

B ¢ MOUNT TTT1: MASTER TAPE
$ ASSIGN TAPE:NAMES.DAT PAYROLL

$ RUN PAYROLL

The MOUNT command in this example establishes the logical name TAPE
for the device TTT1, which has the volume labelled MASTER mounted on

it. The ASSIGN command equates the logical name PAYROLL with the file
named NAMES.DAT on the logical device TAPE. Thus, an OPEN request in a
program referring to the logical name PAYROLL results in the correspondence
between the logical name PAYROLL and the file NAMES.DAT on the tape
whose volume label is MASTER.

B $ CREATE/NAME_TABLE TABLE1
$ ASSIGN/TABLE=LNM$PROCESS_DIRECTORY TABLE1,-
_$ LNM$PROCESS, LNM$ JOB, LNM$GROUP , LNM$SYSTEM LNM$FILE_DEV
$ ASSIGN/TABLE=TABLE1 -
_$ /TRANSLATION_ATTRIBUTES=CONCEALED DBA1: WORK_DISK

The CREATE/NAME_TABLE command in this example creates the process
private logical name table TABLE1.

The first ASSIGN command ensures that TABLE1 is searched first in any
logical name translation of a file specification or device name (because
TABLEL is the first item in the equivalence string for the logical name
LNMSFILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated).

The second ASSIGN command assigns the logical name WORK_DISK to the
physical device DBA1, and places the name in TABLE1. The logical name
has the concealed attribute. Therefore, the logical name WORK_DISK will be
displayed in system messages.

$ ASSIGN/TABLE=LNM$PROCESS/TABLE=LNM$GROUP DBAO: SYSFILES
$ SHOW LOGICAL SYSFILES
"SYSFILES" = "DBAO:" (LNM$GROUP_000240)

DCL—42

The ASSIGN command in this example contains conflicting qualifiers. When
you specify conflicting qualifiers, the ASSIGN command uses the last qualifier
specified. The response from the SHOW LOGICAL command indicates that
the name was placed in the group logical name table.

ASSIGN

E $ ASSIGN/TABLE=LNM$GROUP 'F$TRNLNM("SYS$COMMAND")' TERMINAL
%DCL-I-SUPERSEDE, previous value of TERMINAL has been superseded

The ASSIGN command in this example uses the lexical function FFTRNLNM
to translate the logical name SYS$COMMAND and use the result as the
equivalence name for the logical name TERMINAL. The message from the
ASSIGN command indicates that an entry for the logical name TERMINAL
already existed in the group logical name table, and that the new entry has
replaced the previous one.

If this command is used in a LOGIN.COM file, the entry for TERMINAL will
be redefined at the beginning of each terminal session. The current process
and any subprocesses it creates can execute images that use the logical name
TERMINAL to write messages to the current terminal device.

g $ ASSIGN DALLAS::DMA1: DATA

The ASSIGN command in this example associates the logical name DATA
with the device specification DMA1 on remote node DALLAS. Subsequent
references to the logical name DATA result in references to the disk on the
remote node.

Y $ CREATE AVERAGE.COM
$ ASSIGN/USER_MODE SYS$COMMAND: SYS$INPUT
$ EDIT/EDT AVERAGE.FOR
$ FORTRAN AVERAGE
$ LINK AVERAGE
$ RUN AVERAGE
87
80
90
9999
$ EXIT

$ Q@AVERAGE.COM

The CREATE command in this example creates the command procedure
AVERAGE.COM. Then the command procedure is executed.

The command procedure uses the ASSIGN command with the
/USER_MODE qualifier to change temporarily the value of SYS$INPUT.
When the EDT editor is invoked, it accepts input from the terminal. This
allows you to create or modify AVERAGE.FOR interactively.

When you exit from EDT, SYS$INPUT is reassigned to its original value

(the input stream provided by the command procedure). Thus, when the
program AVERAGE.FOR is ready to accept input, it looks for that input in the
command procedure.

DCL—-43

ASSIGN/MERGE

ASSIGN/MERGE

Removes all jobs from one queue and merges them into another existing
queue. Does not affect jobs that are executing.

Requires OPER privilege or EXECUTE access to both queues.

FORMAT

ASSIGN/MERGE target-queue(:] source-queue|:]

PARAMETERS

target-queuel:]

Specifies the name of the queue into which the jobs are being merged.

source-queue(:]
Specifies the name of the queue from which the jobs are being removed.

DESCRIPTION

The ASSIGN/MERGE command removes the pending jobs in one queue and
places them in another queue. This command does not affect any executing
jobs in either the target queue or the source queue. Jobs currently running in
the source queue complete in that queue. This command is generally used
with printer queues, although it can be used with batch queues.

The ASSIGN/MERGE command is particularly useful when a line printer
malfunctions. By entering the ASSIGN/MERGE command, you can reroute
existing jobs to a different print device. To perform the merge operation
without losing or disrupting any jobs, stop the source queue with the STOP
/QUEUE/NEXT command. Then enter the STOP/QUEUE/REQUEUE
command to ensure that the current job on the source queue is requeued for
processing on the target queue. (If the STOP/QUEUE/REQUEUE command
fails to requeue the job, use the STOP/QUEUE/RESET command to regain
control of the queue.) Once you enter the STOP commands, enter the
ASSIGN/MERGE command.

EXAMPLE

$ STOP/QUEUE/NEXT LPBO

$ STOP/QUEUE/REQUEUE=LPAO LPBO

$ ASSIGN/MERGE LPAO LPBO

DCL-44

In this example, the STOP/QUEUE/NEXT command prevents another job
from executing on queue LPB0. The STOP/QUEUE/REQUEUE command
requeues the current job running on LPB0 to the target queue LPAQ. The
ASSIGN/MERGE command removes the remaining jobs from the LPB0
printer queue and places them in the LPAQ printer queue.

ASSIGN/QUEUE

ASSIGN/QUEUE

Assigns, or redirects, a logical queue to a single execution queue. ASSIGN
/QUEUE can be used only with printer or terminal queues.

Requires OPER privilege or EXECUTE access to both queues.

FORMAT

ASSIGN/QUEUE queue-name(:] logical-queue-name]:]

PARAMETERS

queue-name(:]
Name of the execution queue. The queue cannot be a logical queue, a generic
queue, or a batch queue.

logical-queue-name]:]
Name of the logical queue.

DESCRIPTION

A
The ASSIGN/QUEUE command sets up a one-to-one correspondence
between a logical queue and an execution queue. Jobs submitted to the
logical queue are always queued to the specified execution queue for eventual
printing.

When you enter the ASSIGN/QUEUE command, the logical queue cannot be
running,

Once you initialize a logical queue, use the ASSIGN/QUEUE command to
associate the logical queue with an existing execution queue. You must follow
these steps to set up a logical queue:

1 Initialize the logical queue with the INITIALIZE/QUEUE command. (Do
not use the /START qualifier.)

2 Assign the logical queue name to an existing execution queue.

3 Start the logical queue with the START/QUEUE command.

After you enter the START/QUEUE command for the logical queue, jobs can
be sent to the logical queue for processing.

EXAMPLES

n $ INITIALIZE/QUEUE/DEFAULT=FLAG=0ONE/START LPAO
$ INITIALIZE/QUEUE TEST_QUEUE
$ ASSIGN/QUEUE LPAO TEST_QUEUE
$ START/QUEUE TEST_QUEUE

This example first initializes and starts the printer queue LPAO. The LPAQ
queue is set to have a flag page precede each job. The second INITIALIZE
/QUEUE command creates the logical queue TEST_QUEUE. The ASSIGN
/QUEUE command assigns the logical queue TEST_QUEUE to the printer
queue LPAQ. The START/QUEUE command starts the logical queue.

DCL—-45

ASSIGN/QUEUE

E $ INITIALIZE/QUEUE/START LPBO

The ASSIGN/QUEUE command is not needed in this example because a
logical queue is not being initialized. A printer queue is being initialized;
LPBO is the name of a line printer. After you enter the INITIALIZE /QUEUE
/START command, jobs can be queued to LPBO for printing.

DCL-46

ATTACH

ATTACH

Transfers control from your current process (which then hibernates) to the
specified process.

The ATTACH and SPAWN commands cannot be used if your terminal
has an associated mailbox.

FORMAT

ATTACH [process-name]

PARAMETER

DESCRIPTION

QUALIFIER

process-name

Specifies the name of a parent process or spawned subprocess to which
control passes. The process must already exist, be part of your current job,
and share the same input stream as your current process. However, the

process cannot be your current process or a subprocess created with the
/NOWAIT qualifier.

Process names can contain from 1 to 15 alphanumeric characters. If a
connection to the specified process cannot be made, an error message is
displayed.

The process-name parameter is incompatible with the /IDENTIFICATION
qualifier.

N NS A
The ATTACH command allows you to connect your input stream to another
process. You can use the ATTACH command to change control from one
subprocess to another subprocess or to the parent process.

When you enter the ATTACH command, the parent or “source” process is
put into hibernation, and your input stream is connected to the specified
destination process. You can use the ATTACH command to connect to a
subprocess that is part of a current job left hibernating as a result of the
SPAWN /WAIT command or another ATTACH command as long as the
connection is valid. (No connection can be made to the current process, to a
process that is not part of the current job, or to a process that does not exist.
If any of these connections are attempted, an error message is displayed.)

You can also use the ATTACH command in conjunction with the SPAWN
/WAIT command to return to a parent process without terminating the
created subprocess. See the description of the SPAWN command for more
details.

/IDENTIFICATION=pid

Specifies the process identification (PID) of the process to which
terminal control will be transferred. Leading zeros can be omitted. The
/IDENTIFICATION qualifier is incompatible with the process-name
parameter.

If you omit the /IDENTIFICATION qualifier, you must specify a process
name.

DCL—47

ATTACH

EXAMPLES

B $ ATTACH JONES_2

Transfers the terminal’s control to the subprocess JONES_2.

Pl $ ATTACH/IDENTIFICATION=30019

The ATTACH command switches control from the current process to a process
having the PID 30019. Notice that because the /IDENTIFICATION qualifier
is specified, the process-name parameter is omitted.

DCL-48

BACKUP

BACKUP

Invokes the Backup Utility (BACKUP) to perform one of the following
BACKUP operations:

* Make copies of disk files.

e Save disk files as data in a file created by BACKUP on disk or magnetic
tape. (Files created by BACKUP are called save sets.)

* Restore disk files from a BACKUP save set.
e Compare disk files or files in a BACKUP save set with other disk files.

e List information about files in a BACKUP save set to an output device
or file.

Note that standalone BACKUP cannot be invoked this way, but must
be bootstrapped in order to run. For a complete description of the
Backup Utility (including information about the BACKUP command and
its qualifiers) as well as using standalone BACKUP, see the VMS Backup
Utility Manual.

FORMAT BACKUP input-specifier output-specifier

DCL—-49

CALL

CALL

FORMAT

PARAMETERS

DCL-50

Tranfers control to a labeled subroutine within a command procedure.
The CALL command creates a new procedure level as does the @
(execute procedure) command. The SUBROUTINE and ENDSUBROUTINE
commands define the beginning and ending of the subroutine. The
SUBROUTINE command must be the first executable statement in a
subroutine.

CALL Jabel [p1[p2]... p8]]]

label

Specifies a 1- to 255-alphanumeric character label appearing as the first item
on a command line. A label may not contain embedded blanks. When the
CALL command is executed, control passes to the command following the
specified label.

The label can precede or follow the CALL statement in the current command
procedure. A label in a command procedure must be terminated with a colon.

All labels are procedure level dependent except for those labels that define
subroutine entry points. The subroutine entry point labels are local to the
current command procedure file level and must be unique.

p1[p2[... p8]]

Specifies from one to eight optional parameters to pass to the command
procedure. Use two consecutive quotation marks (") to specify a null
parameter. The parameters assign character string values to the symbols
named P1, P2, and so on in the order of entry, to a maximum of eight.
The symbols are local to the specified command procedure. Separate each
parameter with one or more blanks.

You can specify a parameter with a character string value containing
alphanumeric or special characters, with the following restrictions:

* The command interpreter converts alphabetic characters to uppercase and
uses blanks to delimit each parameter. To pass a parameter that contains
embedded blanks or lowercase letters, place the parameter in quotation
marks.

* If the first parameter begins with a slash character (/), you must enclose
the parameter in quotation marks.

* To pass a parameter that contains quotation marks and spaces, enclose
the entire string in quotation marks and use two consecutive quotation
marks within the string. For example:

$ CALL SUB1 "Never say "'"quit"""

When control transfers to SUBI1, the parameter P1 is equated to the
string:

Never say "quit”

CALL

If a string contains quotation marks and does not contain spaces, the
quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example:

$ CALL SUB2 abc"def"ghi

When control transfers to SUB2, the parameter P1 is equated to the
string:

ABC"def"GHI
To use a symbol as a parameter, enclose the symbol in apostrophes to force
symbol substitution. For example:

$ NAME = "JOHNSON"
$ CALL INFO 'NAME'

The apostrophes cause the value JOHNSON” to be substituted for the
symbol “NAME”. Therefore, the parameter JOHNSON” is passed as P1 to
the subroutine INFO.

DESCRIPTION

A
The CALL command is similar to the @ (Execute Procedure) command in that
it creates a new procedure level. The advantage of the CALL command is
that it does not require files to be opened and closed to process the procedure.
Using the CALL command also makes managing a set of procedures easier
because they can all exist in one file rather than in several files.

When you use the CALL command to transfer control to a subroutine, a
new procedure level is created and the symbols P1 through P8 are assigned
the values of the supplied arguments. Execution then proceeds until an EXIT
command is encountered. At this point, control is transferred to the command
line following the CALL command.

Procedures can be nested to a maximum of 32 levels. This includes any
combination of command procedure and subroutine calls. Local symbols and
labels defined within a nested subroutine structure are treated the same way
as if the routines had been invoked with the @ command: that is, labels are
only valid for the subroutine level in which they are defined. Local symbols
defined in an outer subroutine level are available to any subroutine levels at
an inner nesting level.

The SUBROUTINE and ENDSUBROUTINE commands define the beginning
and end of a subroutine. The label defining the entry point to the subroutine
must appear either immediately before the SUBROUTINE command or on
the same command line.

A subroutine can have only one entry point. The subroutine must begin with
the SUBROUTINE command as the first executable statement. If an EXIT
command is not specified in the procedure, the ENDSUBROUTINE command
functions as an EXIT command.

The SUBROUTINE command performs two different functions depending

on the context in which it is executed. If executed as the result of a CALL
command, it initiates a new procedure level, defines the P1-P8 parameters as
specified in the CALL statement, and begins execution of the subroutine. If
the SUBROUTINE verb is encountered in the execution flow of the procedure
without having been invoked by a CALL command, all the commands
following the SUBROUTINE command are skipped until the corresponding
ENDSUBROUTINE command is encountered. Although commands are

DCL-51

CALL

Note:

skipped, all subroutine entry point labels will be defined in the symbol table.

The SUBROUTINE and ENDSUBROUTINE commands cannot be
abbreviated to fewer than four characters.

QUALIFIER

/OUTPUT=file-spec

Writes all output to the file or device specified. By default, the output is
written to the current SYSSOUTPUT device and the output file type is LIS.
System responses and error messages are written to SYSSCOMMAND as
well as to the specified file. If you specify /OUTPUT, the qualifier must
immediately follow the CALL command. No wildcard characters are allowed
in the output file specification.

You can also redefine SYSSOUTPUT to redirect the output from a command
procedure. If you place the following command as the first line in a command
procedure, output will be directed to the file you specify:

$ DEFINE SYS$OUTPUT file-spec

When the procedure exits, SYSSOUTPUT is restored to its original
equivalence string. This produces the same result as using the /OUTPUT
qualifier when you execute the command procedure.

EXAMPLE

$
$! CALL.COM
$

$! Define subroutine SUB1

$!

$ SUBL1: SUBROUTINE

$ CALL SUB2 !Invoke SUB2 from within SUB1

$ @FILE !Invoke another procedure command file

$ EXIT

$ ENDSUBROUTINE !'End of SUB1 definition

$!

$! Define subroutine SUB2

$!

$ SUB2: SUBROUTINE

$ EXIT

$ ENDSUBROUTINE !End of SUB2 definition

$!

$! Start of main routine. At this point, both SUB1 and SUB2
$! have been defined but none of the previous commands have
$! been executed.

DCL-52

CALL

$!
$ START:
$ CALL/OUTPUT=NAMES.LOG SUB1 "THIS IS P1"

$ CALL SUB2 "THIS IS P1" "THIS IS P2"

$ EXIT !Exit this command procedure file

The command procedure in this example shows how to use CALL to
transfer control to labeled subroutines. The example also shows that you
can call a subroutine or another command file from within a subroutine.
The CALL command invokes the subroutine SUB1, directing output to the
file NAMES.LOG and allowing other users write access to the file. The
subroutine SUB2 is called from within SUB1. The procedure executes SUB2
and then uses the @ (Execute Procedure) command to invoke the command
procedure FILE.COM. When all the commands in SUB1 have executed,

the CALL command in the main procedure calls SUB2 a second time. The
procedure continues until SUB2 has executed.

DCL-53

CANCEL

CANCEL

Cancels wakeup requests for a specified process, including wakeups
scheduled with either the RUN command or the $SCHDWK system
service.

Requires one of the following:
¢ Ownership of the process.

e GROUP privilege to cancel scheduled wakeups for processes in
the same group but not owned by you.

* WORLD privilege to cancel scheduled wakeups for any process in
the system.

FORMAT

CANCEL [process-name]

PARAMETER

DESCRIPTION

QUALIFIER

DCL-54

process-name

Specifies a string of 1 to 15 alphanumeric characters. Specifies the name
of the process for which wakeup requests are to be canceled. The specified
process must have the same group number in its user identification code
(UIC) as the current process. If both the /IDENTIFICATION qualifier and
the process name are specified, the process name is ignored. If neither the
process-name parameter nor the /IDENTIFICATION qualifier are specified,
the CANCEL command cancels scheduled wakeup requests for the current
(that is, the issuing) process.

— BN
The CANCEL command cancels scheduled wakeup requests for the specified
process.

The CANCEL command does not delete the specified process. If the process
is executing an image when the CANCEL command is issued for it, the
process hibernates instead of exiting after the image completes execution.

To delete a hibernating process for which wakeup requests have been
canceled, use the STOP command. You can determine whether a subprocess
has been deleted by entering the SHOW PROCESS command with the
/SUBPROCESSES qualifier.

/IDENTIFICATION=pid

Identifies the process by its process identification (PID). You can omit leading
zeros when you specify the PID.

CANCEL

EXAMPLES
B $ CANCEL CALENDAR

The CANCEL command in this example cancels a wakeup request for a
process named CALENDAR (which continues to hibernate until deleted with
the STOP command).

E $ RUN/SCHEDULE=14:00 STATUS
%RUN-S-PROC_ID, identification of created process is 0013012A

$ CANCEL/IDENTIFICATION=130124

The RUN command in this example creates a process to execute the image
STATUS. The process hibernates and is scheduled to be awakened at 14:00.
Before the process is awakened, the CANCEL command cancels the wake-up
request.

E $ RUN/PROCESS_NAME=LIBRA/INTERVAL=1:00 LIBRA
%RUN-S-PROC_ID, identification of created process is 00130027

$ CANCEL LIBRA
$ STOP LIBRA

The RUN command in this example creates a subprocess named LIBRA to
execute the image LIBRA.EXE at hourly intervals.

Subsequently, the CANCEL command cancels the wakeup request. The
process continues to exist, but in a state of hibernation, until the STOP
command deletes it.

DCL-55

CLOSE

CLOSE

Closes a file opened with the OPEN command and deassigns the
associated logical name.

_— - - R I

FORMAT CLOSE logical-name]:]

PARAMETER logical-namel:]

Specifies the logical name assigned to the file when it was opened with the
OPEN command.

— _

DESCRIPTION Files that are opened for reading or writing at the command level remain
open until closed with the CLOSE command, or until the process terminates.
If a command procedure that opens a file terminates without closing the open
file, the file remains open; the command interpreter does not automatically
close it.

QUALIFIERS /ERROR=label
Specifies a label in the command procedure to receive control if the CLOSE
operation results in an error. Overrides any ON condition action specified. If
an error occurs and the target label is successfully given control, the global
symbol $STATUS retains the code for the error that caused the error path to
be taken.

/LOG (default)
/NOLOG

Generates a warning message when you attempt to close a file that was not
opened by DCL. If you specify the /ERROR qualifier, the /LOG qualifier has
no effect. If the file has not been opened by DCL, the error branch is taken
and no message is displayed.

EXAMPLES

il ¢ OPEN/READ INPUT_FILE TEST.DAT
$ READ_LOOP:
$ READ/END_OF_FILE=NO_MORE INPUT_FILE DATA_LINE

$ GOTO READ_LOOP
$ NO_MORE:
$ CLOSE INPUT_FILE

The OPEN command in this example opens the file TEST.DAT and assigns
it the logical name of INPUT_FILE. The /END_OE_FILE qualifier on the
READ command requests that, when the end-of-file is reached, the command
interpreter should transfer control to the line at the label NO_MORE. The
CLOSE command closes the input file.

DCL-56

CLOSE

$ QREADFILE
$ STOP
$ SHOW LOGICAL/PROCESS

"INFILE" = "_DB1"
"OUTFILE" = "_DB1"
$ CLOSE INFILE
$ CLOSE OUTFILE

In this example, CTRL/Y interrupts the execution of the command procedure
READFILE.COM. Then, the STOP command stops the procedure. The
SHOW LOGICAL/PROCESS command displays the names that currently
exist in the process logical name table. Among the names listed are the
logical names INFILE and OUTFILE, assigned by OPEN commands in the
procedure READFILE.COM.

The CLOSE commands close these files and deassign the logical names.

DCL-57

CONNECT

CONNECT

Connects your physical terminal to a virtual terminal that is connected to
another process.

You must connect to a virtual terminal that is connected to a process
with your user identification code (UIC). No other physical terminals
may be connected to the virtual terminal.

FORMAT

CONNECT virtual-terminal-name

PARAMETER

DESCRIPTION

virtual-terminal-name

Specifies the name of the virtual terminal to which you are connecting. A

virtual terminal name always begins with VTA. To determine the name of

the virtual terminal that is connected to a process, enter the SHOW USERS
command.

The CONNECT command connects you to a separate process, as opposed to
the SPAWN and ATTACH commands, which create and attach subprocesses.

The CONNECT command is useful when you are logged in to the system
using telecommunications lines. If there is noise over the line and you lose
the carrier signal, your process does not terminate. After you log in again,
you can reconnect to the original process and log out of your second process.

To use the CONNECT command, the virtual terminal feature must be
enabled for your system with the System Generation Utility (SYSGEN). If
virtual terminals are allowed on your system, then the SET TERMINAL
/PERMANENT command is used to enable the virtual terminal characteristic
for a particular physical terminal. When this characteristic is enabled, a
virtual terminal will be created when a user logs in on the physical terminal.
The physical terminal is connected to the virtual terminal which is, in turn,
connected to the process.

When the connection between the physical terminal and the virtual terminal
is broken, the process remains connected to the virtual terminal. If the
process is executing an image, it continues until it needs terminal input or
attempts to write to the terminal. At that point, it waits.

You can connect to a virtual terminal even if you are not currently using a
virtual terminal. However, you must use the CONNECT command with the
/LOGOUT qualifier to log out of your current process. If you connect to

a virtual terminal from another virtual terminal, you can save your current
process by using the /NOLOGOUT qualifier.

QUALIFIERS

DCL-58

/CONTINUE
/NOCONTINUE (default)

Controls whether the CONTINUE command is executed in the current
process just before connecting to another process.- This allows an interrupted
image to continue processing after you connect to another process.

CONNECT

The /CONTINUE qualifier is incompatible with the /LOGOUT qualifier.

/LOGOUT (default)
/NOLOGOUT

Logs out your current process when you connect to another process using a
virtual terminal.

When you enter the CONNECT command from a process that is not
connected to a virtual terminal, you must specify the /LOGOUT qualifier.
Otherwise, DCL will issue an error message.

The /LOGOUT qualifier is incompatible with the /CONTINUE qualifier.

EXAMPLES

$ RUN AVERAGE

$ CONNECT/CONTINUE

$ SHOW USERS

VTA72

In this example, the RUN command is used to execute the image
AVERAGE.EXE. This command is entered from a terminal that is connected to
a virtual terminal. Next, CTRL/Y is entered to interrupt the image. After you
interrupt the image, enter the CONNECT command with the /CONTINUE
qualifier. This issues the CONTINUE command, so the image continues to
run and connects you to another virtual terminal. You can reconnect to the
process later.

VMS Interactive Users
23-JUN-1988 15:25:30.75
Total number of interactive users = 5

Username
REICH
GLASS
ADAMS
JANZEN
JANZEN

Process Name PID Terminal

REICH 2040055C VTA267: TXC13:

Phil 20400560 VTA270: LTA102:
ADAMS 20400551 VTA261: TTC7:

JANZEN 2040056D VTA272: Disconnected
_VTA273: 2040056E VTA273: TTB5:

$ CONNECT VTA273

JANZEN
$

log

ged out at 23-JUN-1988 15:26:56.53

This example shows how to reconnect to your original process after you have
lost the carrier signal. First, you must log in again and create a new process.
After you log in, enter the SHOW USERS command to determine the virtual
terminal name for your initial process. Then enter the CONNECT command
to connect to the virtual terminal associated with your original process. The
process from which you enter the CONNECT command is logged out because
no qualifiers are specified.

When reconnecting to the original process, the user continues running the
image you were running when you lost the carrier signal. In this example,
the user JANZEN was at DCL level when the connection was broken.

DCL-59

CONTINUE

CONTINUE

Resumes execution of a DCL command, a program, or a command
procedure that was interrupted by CTRL/Y or CTRL/C. You cannot resume
execution of the image if you have entered a command that executes
another image or if you have invoked a command procedure. You can
abbreviate the CONTINUE command to a single letter, C.

The CONTINUE command serves as the target command of an IF or ON
command in a command procedure. The CONTINUE command is also

a target command when it follows a label that is the target of a GOTO
command. In addition, you can use the CONTINUE command to resume
processing of a program that has executed either a VAX FORTRAN PAUSE
statement or a VAX COBOL-74 STOP literal statement.

FORMAT CONTINUE

PARAMETERS None.

DESCRIPTION The CONTINUE command enables you to resume processing an image
that was interrupted by CTRL/Y or CTRL/C. If the interruption involved
execution of another image, you cannot use the CONTINUE command on
the original image. Similarly, if you have invoked a command procedure
after interrupting the original image, that image cannot resume processing.
However, you can use CONTINUE after commands that do not execute
separate images; see Table 1-1 in the VMS DCL Concepts Manual for a list of
these commands.

- -

EXAMPLES

Kl $ RUN MYPROGRAM_A

$ SHOW TIME

15-APR-1988 13:40:12

$ CONTINUE

™

DCL-60

In this example, the RUN command executes the program MYPROGRAM__A.
While the program is running, pressing CTRL/Y interrupts the image. The
SHOW TIME command requests a display of the current date and time. The
CONTINUE command resumes the image.

$ ON SEVERE_ERROR THEN CONTINUE

In this example, the command procedure statement requests the command
interpreter to continue executing the procedure if any warning, error, or
severe error status value is returned from the execution of a command or
program. This ON statement overrides the default action, which is to exit
from a procedure following errors or severe errors.

CONVERT

CONVERT

Invokes the Convert Utility (CONVERT) to copy records from one file to

another, changing the organization and format of the input file to those of
the output file. For a complete description of the Convert Utility, including
more information about the CONVERT command and its qualifiers, see the

VMS Convert and Convert/Reclaim Utility Manual.

FORMAT CONVERT input-file-spec],...] output-file-spec

DCL-61

CONVERT/RECLAIM

CONVERT/RECLAIM

Invokes the Convert/Reclaim Utility (CONVERT/RECLAIM) to make empty
buckets in Prolog 3 indexed files available so that new records can be
written in them. If all the records in a bucket have been deleted, that
bucket is locked until CONVERT/RECLAIM makes it available. Unlike
CONVERT, CONVERT/RECLAIM maintains record file addresses (RFAs).
The /RECLAIM qualifier is required. For a complete description of the
Convert/Reclaim Utility, including more information about the CONVERT
/RECLAIM command and its qualifier, see the Convert Utility in the VMS
Convert and Convert/Reclaim Utility Manual.

FORMAT

DCL-62

CONVERT/RECLAIM file-spec

COPY

COPY

Creates a new file from one or more existing files. If device or directory
is not specified, your current default device and directory are used. The
COPY command can do the following:

e Copy an input file to an output file
e Concatenate two or more input files into a single output file

e Copy a group of input files to a group of output files

FORMAT COPY input-file-spec],...] output-file-spec

PARAMETERS input-file-spec],...]
Specifies the name of an existing file to be copied. Wildcard characters
are allowed. Use a plus sign (+) or a comma (,) to indicate multiple file
specifications.

output-file-spec
Specifies the name of the output file into which the input is copied.

You must specify at least one field in the output file specification. If the
device or directory is not specified, your current default device and directory
are used. The COPY command replaces any other missing fields (file name,
file type, version number) with the corresponding field of the input file
specification. If you specify more than one input file, the COPY command
generally uses the fields from the first input file to determine any missing
fields in the output file.

The asterisk wildcard character can be used in place of any two of the
following: the file name, file type, or version number. The COPY command
uses the corresponding field in the related input file to name the output file.
The wildcard character can also be used in the output file specification to
have COPY create more than one output file. For example:

$ COPY A.A;1, B.B;1 *.C

This COPY command creates the files A.C;1 and B.C;1 in the current default
directory.

DESCRIPTION The COPY command, by default, creates a single output file. When more
than one input file is specified, the first input file is copied to the output file,
and each subsequent input file is appended to the end of the output file. If a
field of the output file specification is missing or contains an asterisk wildcard
character, the COPY command uses the corresponding field from the first, or
only, input file to name the output file.

If multiple input files with maximum record lengths are specified, the output
file is given the maximum record length of the first input file. If the COPY
command encounters a record in a subsequent input file that is longer than
the maximum record length of the output file, it issues a message noting the
incompatible file attributes and begins copying the next file.

DCL-63

COPY

DCL-64

To create multiple output files, specify multiple input files and use at least
one of the following:

* An asterisk wildcard character in the output directory specification, file
name, file type, or version number field

* Only a node name, a device name, or a directory specification as the
output file specification

* The /NOCONCATENATE qualifier

When multiple output files are created, the corresponding field from each
input file is used in the output file name.

You can use the /LOG qualifier when you specify multiple input and output
files to verify that the files were copied as you intended.

Version Numbers

If no version numbers are specified for input and output files, the COPY
command (by default) assigns a version number to the output files that is
either of the following:

* The version number of the input file

¢ A version number one greater than the highest version number of an
existing file with the same file name and file type

When the output file version number is specified by an asterisk wildcard
character, the COPY command uses the version numbers of the associated
input files as the version numbers of the output files.

If the output file specification has an explicit version number, the COPY
command uses that number for the output file specification. If a higher
version of the output file already exists, a warning message is issued, but
the file is still copied. If an equal version of the output file already exists, a
message is issued and the input file is not copied.

File Protection and Creation/Revision Dates

The COPY command considers an output file to be new when any portion of
the output file name is explicitly specified. The creation date for a new file is
set to the current time and date.

If the output file specification has one or more wildcard characters, the
creation date of the input file is used.

The revision date of the output file is always set to the current time and date;
the backup date is set to zero. The output file is assigned a new expiration
date. (Expiration dates are set by the file system if retention is enabled;
otherwise they are set to zero.)

The protection and access control list (ACL) of the output file is determined
by the following parameters, in the following order:

* Protection of previously existing versions of the output file
¢ Default Protection and ACL of the output directory

* Process default file protection.

(Note that the BACKUP command takes the creation and revision dates as
well as the file protection from the input file.)

COPY

Use the /PROTECTION qualifier to change the output file protection.

Normally, the owner of the output file will be the same as the creator of the
output file. However, if a user with extended privileges creates the output
file, the owner will be the owner of the parent directory or a previous version
of the output file if it exists.

Extended privileges include any of the following:
* SYSPRV or BYPASS
* System UIC

* GRPPRYV if the owner of the parent directory (or previous version of the
output file) is in the same group as the creator of the new output file

* An identifier (with the resource attribute) representing the owner of the
parent directory (or previous version of the output file)

Copying Directory Files

If you copy a file that is a directory, a new empty directory is created as a
subdirectory of the named directory. Note that even if the input directory
contained files, none of those files are copied to the new subdirectory. For
example:

$ COPY [SMITHICATS.DIR [JONES]

This COPY command creates the new subdirectory [JONES]JCATS.DIR, which
is empty. The files contained in the directory [SMITH]CATS.DIR can be
copied once the new subdirectory [JONES]CATS.DIR is created.

QUALIFIERS

/ALLOCATION=n
Output-file-spec qualifier.

Forces the initial allocation of the output file to the number of 512-byte
blocks specified by n. If not specified, the initial allocation of the output file
is determined by the size of the input file being copied.

/BACKUP

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/BACKUP selects files according to the dates of their most recent backups.
This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /CREATED, /EXPIRED, and

/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,

or as one of the following keywords: TODAY (default), TOMORROW,

or YESTERDAY. Specify one of the following qualifiers with /BEFORE to
indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

See Section 1.4 of the VMS DCL Concepts Manual for complete information on
specifying time values.

DCL-65

COPY

DCL-66

/BY_OWNER/[=uic]

Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC using standard UIC format as described in Section 8.1 of the
VMS DCL Concepts Manual.

/CONCATENATE (default)
/NOCONCATENATE

Creates one output file from multiple input files when wildcard
characters are not used in the output file specification. A specification of
/NOCONCATENATE generates multiple output files. A wildcard character
in an input file specification results in a single output file consisting of the
concatenation of all input files matching the file specification.

Files from Files-11 Structure Level 2 disks are concatenated in alphanumeric
order; if you specify a wildcard in the file version field, files are copied in
descending order by version number. Files from Files-11 Structure Level 1
disks are concatenated in random order.

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each COPY operation to confirm
that the operation should be performed on that file. The following responses
are valid:

YES NO QuIT
TRUE FALSE CTRL/Z
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, T, TR, or TRU for TRUE), but these abbreviations must be unique.
Affirmative answers are YES, TRUE, and 1. Negative answers are NO,
FALSE, 0, and the RETURN key. QUIT or CTRL/Z indicates that you want
to stop processing the command at that point. When you respond with
ALL, the command continues to process but no further prompts are given. If
you type a response other than one of those in the list, DCL issues an error
message and redisplays the prompt.

/CONTIGUOUS

/NOCONTIGUOUS
Output-file-spec qualifier.

Specifies that the output file must occupy contiguous physical disk blocks.
By default, the COPY command creates an output file in the same format

as the corresponding input file and does not report an error if not enough
space exists for a contiguous allocation. If you copy multiple input files of
different formats, the output file may or may not be contiguous. You can use
the /CONTIGUOUS qualifier to ensure that files are copied contiguously.

The /CONTIGUOUS qualifier has no effect when you copy files to or from
tapes because the size of the file on tape cannot be determined until after it
is copied to the disk. If you copy a file from a tape and want the file to be

COPY

contiguous, use the COPY command twice: once to copy the file from the
tape, and a second time to create a contiguous file.

/CREATED (default)

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
The /CREATED qualifier selects files based on their dates of creation. This
qualifier is incompatible with the other qualifiers that also allow you to select
files according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If
you specify none of these four time qualifiers, the default is /CREATED.

/EXCLUDE=(file-spec/,...])

Excludes the specified files from the COPY operation. You can include

a directory but not a device in the file specification. Wildcard characters
are allowed in the file specification. However, you cannot use relative
version numbers to exclude a specific version. If you provide only one file
specification, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or /SINCE qualifiers.
/EXPIRED selects files according to their expiration dates. (The expiration
date is set with the SET FILE/EXPIRATION_DATE command.) The
/EXPIRED qualifier is incompatible with the other qualifiers that also allow
you to select files according to time attributes: /BACKUP, /CREATED, and

/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/EXTENSION=n
Output-file-spec qualifier.

Specifies the number of blocks to be added to the output file each time the
file is extended. If you do not specify /EXTENSION, the default extension
attribute of the output file is determined by the extension attribute of the
corresponding input file.

/LOG
/NOLOG (default)

Controls whether the COPY command displays the file specifications of each
file copied.

When you use the /LOG qualifier, the COPY command displays the
following for each copy operation: (1) the file specifications of the input
and output files, (2) the number of blocks or the number of records copied
(depending on whether the file is copied on a block-by-block or record-by-
record basis), and (3) the total number of new files created.

/MODIFIED

Modifies the time value specified with the /BEFORE or /SINCE qualifier. The
/MODIFIED qualifier selects files according to the dates on which they were

last modified. This qualifier is incompatible with the other qualifiers that also
allow you to select files according to time attributes: /BACKUP, /CREATED,

and /EXPIRED. If you specify none of these four time modifiers, the default
is /CREATED.

DCL—-67

COPY

DCL-68

/OVERLAY

/NOOVERLAY (default)
Output-file-spec qualifier.

Requests that data in the input file be copied into the existing specified file,
overlaying the existing data, rather than allocating new space for the file. The
physical location of the file on disk does not change.

The /OVERLAY qualifier is ignored if the output file is written to a non-file-
structured device.

/PROTECTION=(code)
Output-file-spec qualifier.

Specifies protection for the output file. Specify ownership as SYSTEM,
OWNER, GROUP, or WORLD and access as R (read), W (write), E (execute),
or D (delete). The default protection is that of the existing output file. If no
output file exists, the current default protection applies.

See Section 8.1 of the VMS DCL Concepts Manual for more information on
specifying protection code.

/READ_CHECK

/NOREAD_CHECK (default)
Input-file-spec qualifier.

Reads each record in the input files twice to verify that it has been read
correctly.

/REPLACE

/NOREPLACE (default)
Output-file-spec qualifier.

Requests that, if a file already exists with the same file specification as that
entered for the output file, the existing file is to be deleted. The COPY
command allocates new space for the output file. In general, when you use
the /REPLACE qualifier, you will want to include version numbers with the
file specifications. By default, the COPY command creates a new version of
a file if a file with that specification already exists, incrementing the version
number. With /NOREPLACE, an error is signaled when a conflict in version
numbers occurs.

/SINCE[=time]

Selects only those files dated after the specified time. You can specify time
as an absolute time, a combination of absolute and delta times, or as one of
the following keywords: TODAY (default), TOMORROW, or YESTERDAY.
Specify one of the following qualifiers with /BEFORE to indicate the time
attribute to be used as the basis for selection: /BACKUP, /CREATED
(default), /EXPIRED, or /MODIFIED.

See Section 1.4 of the VMS DCL Concepts Manual for complete information on
specifying time values.

COPY

/TRUNCATE

/NOTRUNCATE (default)
Output-file-spec qualifier.

Controls whether or not the COPY command truncates an output file at
the end-of-file when copying it. By default, the size of the output file is
determined by the allocation of the input file.

/VOLUME=n
Output-file-spec qualifier.

Places the output file on the specified relative volume number of a
multivolume set. By default, the output file is placed arbitrarily in a
multivolume set.

/WRITE_CHECK
/NOWRITE_CHECK (default)
Output-file-spec qualifier.

Reads each record in the output file after it was written to verify that the
record was successfully copied and that the file can subsequently be read
without error.

EXAMPLES

2

$ COPY TEST.DAT NEWTEST.DAT

In this example, the COPY command copies the contents of the

file TEST.DAT from the default disk and directory to a file named
NEWTEST.DAT on the same disk and directory. If a file named
NEWTEST.DAT already exists, the COPY command creates a new version
of it.

$ COPY ALPHA.TXT TMP
$ COPY ALPHA.TXT .TMP

In this example, the first COPY command copies the file ALPHA.TXT into
a file named TMP.TXT. The COPY command uses the file type of the input
file to complete the file specification for the output file. The second COPY
command creates a file named ALPHA.TMP. The COPY command uses the
file name of the input file to name the output file.

$ COPY/LOG TEST.DAT NEW.DAT;1/REPLACE
%COPY-I-REPLACED, DBAO: [MAL]NEW.DAT;1 being replaced
%COPY-S-COPIED, DBAO: [MAL]TEST.DAT;1 copied to DBAO: [MALINEW.DAT;1 (1 block)

In this example, the /REPLACE qualifier requests that the COPY command
replace an existing version of the output file with the new file. The first
message from the COPY command indicates that it is replacing an existing
file. The version number in the output file must be explicit; otherwise, the
COPY command creates a new version of the file NEW.DAT.

DCL-69

COPY

5

8

$ COPY *.COM [MALCOLM.TESTFILES]

In this example, the COPY command copies the highest versions of files
in the current default directory with the file type COM to the subdirectory
MALCOLM.TESTFILES.

$ COPY/LOG *.TXT *.0LD

%COPY-S-COPIED, DBAO: [MAL]A.TXT;2 copied to DBAO:[MAL]A.OLD;2 (1 block)
%COPY-S-COPIED, DBAO:[MAL]IB.TXT;2 copied to DBAO: [MAL]B.OLD;2 (1 block)
%COPY-S-COPIED, DBAO:[MAL]G.TXT;2 copied to DBAO:[MALIG.OLD;2 (4 blocks)
%COPY-S-NEWFILES, 3 files created

In this example, the COPY command copies the highest versions of files
with file types of TXT into new files. Each new file has the same file name
as an existing file, but a file type of OLD. The last message from the COPY
command indicates the number of new files that have been created.

$ COPY/LOG A.DAT,B.MEM C.*

%COPY-S-COPIED, DBAO:[MAL]A.DAT;5 copied to DBAO: [MAL]C.DAT;11 (1 block)
%COPY-S-COPIED, DBAO: [MAL]B.MEM;2 copied to DBAO: [MAL]C.MEM;24 (58 records)
%COPY-S-NEWFILES, 2 files created

In this example, the two input file specifications are separated with a comma.
The asterisk wildcard character in the output file specification indicates

that two output files are to be created. For each copy operation, the COPY
command uses the file type of the input file to name the output file.

$ COPY/LOG *.TXT TXT.SAV

%COPY-S-COPIED, DBAO: [MAL]JA.TXT;2 copied to DBAO: [MAL]TXT.SAV;1 (1 block)
%COPY-S-APPENDED, DBAO: [MAL]B.TXT;2 appended to DBAO: [MAL]TXT.SAV;1 (3 records)
%COPY-S-APPENDED, DBAO: [MAL]G.TXT;2 appended to DBAO:[MAL]TXT.SAV;1 (51 records)
%COPY-S-NEWFILES, 1 file created

In this example, the COPY command copies the highest versions of all files
with the file type TXT to a single output file named TXT.SAV. After the first
input file is copied, the messages from the COPY command indicate that
subsequent files are being appended to the output file.

Note that, if you use the /NOCONCATENATE qualifier in this example, the
COPY command creates as many TXT.SAV files as there are input files. Each
TXT.SAV file has a different version number.

$ COPY MASTER.DOC DBA1: [BACKUP]

In this example, the COPY command copies the highest version of the file
MASTER.DOC to the device DBA1. If no file named MASTER.DOC already
exists in the directory [BACKUP], the COPY command assigns the version
number of the input file to the output file. You must have W (write) access to
the directory [BACKUP] on device DBA1 for the command to work.

DCL-70

COPY

$ COPY SAMPLE.EXE DALLAS::DISK2:[000,000] SAMPLE.EXE/CONTIGUOUS

$ COPY *.* PRTLND::

In this example, the COPY command copies the file SAMPLE.EXE on
the local node to a file with the same name at remote node DALLAS.
The /CONTIGUOUS qualifier indicates that the output file is to occupy
consecutive physical disk blocks. You must have W (write) access to the
device DISK2 on remote node DALLAS for the command to work.

* |k

In this example, the COPY command copies all files within the user directory
at the local node to the remote node PRTLND. The new files have the same
names as the input file. You must have W (write) access to the default
directory on remote node PRTLND for the command to work.

$ COPY BOSTON: :DISK2:TEST.DAT;5
_To: DALLAS"SAM SECRET"::DISKO: [MODEL.TEST]TEST.DAT/ALLOCATION=50

$ MOUNT TAPED1:
$ COPY TAPE:x* . *

$ ALLOCATE CR:
_CR1: ALLOCATED

In this example, the COPY command copies the file TEST.DAT;5 on the
device DISK2 at node BOSTON to a new file named TEST.DAT at remote
node DALLAS. The /ALLOCATE qualifier initially allocates 50 blocks for the
new file TEST.DAT at node DALLAS. The access control string SAM SECRET
is used to access the remote directory.

VOLO25 TAPE:
*

In this example, the MOUNT command requests that the volume labeled
VOLO025 be mounted on the magnetic tape device TAPED1 and assigns the
logical name TAPE to the device.

The COPY command uses the logical name TAPE as the input file
specification, requesting that all files on the magnetic tape be copied to
the current default disk and directory. All the files copied retain their file
names and file types.

$ COPY CR1: CARDS.DAT

$ DEALLOCATE CR1:

In this example, the ALLOCATE command allocates a card reader for
exclusive use by the process. The response from the ALLOCATE command
indicates the device name of the card reader, CR1.

After the card reader is allocated, you can place a deck of cards in the reader
and enter the COPY command specifying the card reader as the input file.
The COPY command reads the cards into the file CARDS.DAT. The end-of-
file in the card deck must be indicated with an EOF card (12-11-0-1-6-7-8-9
overpunch).

The DEALLOCATE command relinquishes use of the card reader.

DCL-71

CREATE

CREATE

FORMAT

Creates a sequential text file (or files). Specify the content of the file on
the lines following the command, one record per line. In interactive mode,
terminate the file input with CTRL/Z. In a command procedure, terminate
the file input with a line beginning with a dollar sign in column 1 (or with
the end of the command procedure).

CREATE file-spec],...]

PARAMETER

file-spec],...]

Specifies the name of one or more input files to be created. Wildcard
characters are not allowed. If you omit either the file name or the file type,
the CREATE command does not supply any defaults. The file name or file
type is null. If the specified file already exists, a new version is created.

DESCRIPTION

DCL-72

The CREATE command creates a new sequential disk file. The contents of the
file are determined by what you enter after the command line. Each separate
line that you enter becomes a record in the newly created file. When you
have finished entering the records, press CTRL/Z to signal the end of the
input.

When you enter the CREATE command from a command procedure file, the
system reads all subsequent records in the command procedure file into the
new file until it encounters a dollar sign in the first position in a record.

If you use an existing file specification with the CREATE command, the newly
created file has a higher version number than any existing files with the same
specification.

If you use the CREATE command to create a file in a logical name search list,
the file will only be created in the first directory produced by the logical name
translation.

Normally, the owner of the output file will be the same as the creator of the
output file. However, if a user with extended privileges creates the output
file, the owner will be the owner of the parent directory or any previous
versions of the output file.

Extended privileges include any of the following;:
* SYSPRV or BYPASS
e System UIC

e GRPPRV if the owner of the parent directory (or previous version of the
output file) is in the same group as the creator of the new output file

® An identifier (with the resource attribute) representing the owner of the
parent directory (or previous version of the output file)

QUALIFIERS

CREATE

/LOG
/NOLOG (default)

Displays the file specification of each new file created as the command
executes.

/OWNER_UIC=uic
Requires SYSPRYV privilege to specify a UIC other than your own.

Specifies the user identification code (UIC) to be associated with the file being
created. Specify the UIC using standard UIC format as described in Section
8.1 of the VMS DCL Concepts Manual.

/PROTECTION=(code)

Specifies protection for the file. Specify ownership as SYSTEM, OWNER,
GROUP, or WORLD and protection as R (read), W (write), E (execute), or
D (delete). If you do not specify a value for each access category, or if you
omit the /PROTECTION qualifier, the command applies the current default
protection for each unspecified category.

See Section 8.1 of the VMS DCL Concepts Manual for more information on
specifying protection code.

The command applies the protection of the existing file to the new file under
the following conditions:

e If you specify an existing file specification, and do not specify a value for
each access category

e If you omit the /PROTECTION qualifier

/VOLUME=n

Places the file on the specified relative volume of a multivolume set. By
default, the file is placed arbitrarily in a multivolume set.

EXAMPLES

B0 $ CREATE MEET.TXT

John, Residents in the apartment complex will hold their annual meeting

this evening.

We hope to see you there, Regards, Elwood

The CREATE command in this example creates a text file named MEET.TXT
in your default directory. The text file MEET.TXT contains the lines that
follow until the CTRL/Z.

DCL-73

CREATE

P § CREATE A.
Input line
Input line

Input line
Input line

$

DAT, B.DAT
one for A.DAT. ..
two for A.DAT...

one for B.DAT...
two for B.DAT. ..

After you enter the CREATE command from the terminal, the system reads
input lines into the sequential file A.DAT until CTRL/Z terminates the first
input. The next set of input data is placed in the second file, B.DAT. Again,
CTRL/Z terminates the input.

$ FILE = F$SEARCH("MEET.TXT")
$ IF FILE .EQS. ""

$ THEN CREATE MEET.TXT
John, Residents in the apartment complex will hold their annual meeting

this evening.

We hope to see you there, Regards, Elwood

$ ELSE TYPE MEET.TXT

$ ENDIF
$ EXIT

DCL-74

In this example, the command procedure searches the default disk and
directory for the file MEET.TXT. If the command procedure determines that
the file does not exist it creates a file named MEET.TXT using the CREATE
command.

$ RUN WEATHER
/8 LINK WEATHER
/s FORTRAN WEATHER

...input data... —_————|_,!

S CREATE WEATHER.FOR
/$ PASSWORD HENRY
/'$ JOB HIGGINS

ZK-781-82

In this batch job example, the CREATE command creates a FORTRAN
source file WEATHER.FOR. Records are read into that file until the system

CREATE

encounters a dollar sign in the first position of the record $ FORTRAN
WEATHER. The next commands compile, link, and run the file just created.
Input data follows the RUN command.

end of input stream

/ $EOs

/ $ @ WEATHER

input stream for
CREATE command $ EOD

$ RUN WEATHER
/8 LINK WEATHER
$ FORTRAN WEATHER
input stream with
dollar signs follows (SDEcK
/S CREATE WEATHER.COM FJ_

/S PASSWORD HENRY
7”5 J0B HIGGINS]

ZK-782-82

This batch job example uses the CREATE command to create a command
procedure from data in the input stream. The DECK command is required
so that subsequent lines that begin with a dollar sign are not executed as
commands, but are accepted as input records. The EOD command signals the
end-of-file for the data records. Then the WEATHER procedure is executed
with the @ (Execute Procedure) command.

DCL-75

CREATE/DIRECTORY

CREATE/DIRECTORY

Creates one or more new directories or subdirectories. The /DIRECTORY
qualifier is required.

Requires WRITE (W) access to the master file directory (MFD)} to
create a first-level directory. On a system volume, generally only
users with a system UIC or the SYSPRV or BYPASS user privileges
have WRITE access to the MFD to create a first-level directory.

Requires WRITE access to the lowest level directory that currently
exists to create a subdirectory.

FORMAT

CREATE/DIRECTORY directory-spec],...]

PARAMETER

DESCRIPTION

directory-spec/,...]

Specifies the name of one or more directories or subdirectories to be created.
The directory specification optionally can be preceded by a device name
(and colon). The default is the current default directory. Wildcard characters
are not allowed. When creating a subdirectory, separate the names of the
directory levels with periods.

Note that it is possible to create a series of nested subdirectories with a single
CREATE/DIRECTORY command. For example, [a.b.c] can be created, even
though neither [a.b] nor [a] exists at the time the command is entered. Each
subdirectory will be created, starting with the highest level and proceeding
downwards.

The CREATE/DIRECTORY command creates new directories as well

as subdirectories. Special privileges are needed to create new first-level
directories. (See the restrictions noted above.) Generally, users have sufficient
privileges to create subdirectories in their own directories. Use the SET
DEFAULT command to move from one directory to another.

QUALIFIERS

DCL-76

/LOG

/NOLOG (default)
Controls whether the CREATE /DIRECTORY command displays the directory
specification of each directory after creating it.

CREATE/DIRECTORY

/OWNER_UIC[=option]

Requires SYSPRYV privilege for a UIC (user identification code) other than
your own.

Specifies an owner UIC for the directory. The default is your UIC. You
can specify the keyword PARENT in place of a UIC to mean the UIC of
the parent (next-higher-level) directory. If a user with privileges creates a
subdirectory, by default, the owner of the subdirectory will be the owner of
the parent directory (or the owner of the Master File Directory, if creating
a main level directory). If you do not specifiy the /OWNER_UIC qualifier
when creating a directory, the command assigns ownership as follows: (1)
if you specify the directory name in either alphanumeric or subdirectory
format, the default is your UIC (unless you are privileged in which case the
UIC defaults to the parent directory); (2) if you specify the directory in UIC
format, the default is the specified UIC. Specify the UIC using standard UIC
format as described in Section 8.1 of the VMS DCL Concepts Manual.

/PROTECTION=(code)

Specifies protection for the directory. Specify ownership as SYSTEM,
OWNER, GROUP, or WORLD and protection as R (read), W (write), E
(execute), or D (delete). The default protection is the protection of the parent
directory (the next-higher level directory, or the master directory for top-level
directories) minus any delete access.

If you are creating a first-level directory, then the next-higher-level directory
is the MFD. (The protection of the MFD is established by the INITIALIZE
command.)

See Section 8.1 of the VMS DCL Concepts Manual for more information on
specifying protection code.

/VERSION_LIMIT=n

Specifies the number of versions of any one file that can exist in the directory.
If you exceed the limit, the system deletes the lowest numbered version. A
specification of 0 means no limit. The maximum number of versions allowed
is 32,767. The default is the limit for the parent (next-higher-level) directory.

When you change the version limit setting, the new limit applies only to files
created after the setting was changed. New versions of files created before
the change are subject to the previous version limit.

/VOLUME=n
Requests that the directory file be placed on the specified relative volume

of a multivolume set. By default, the file is placed arbitrarily within the
multivolume set.

EXAMPLES

ﬂ $ CREATE/DIRECTORY/VERSION_LIMIT=2 $DISK1: [ACCOUNTS.MEMOS]

In this example, the CREATE/DIRECTORY command creates a subdirectory
named MEMOS in the ACCOUNTS directory on $DISK1. No more than two
versions of each file can exist in the directory.

DCL-77

CREATE/DIRECTORY

E $ CREATE/DIRECTORY/PROTECTION=(SYSTEM:RWED,OWNER:RWED,GROUP,WORLD) -

_$[MALCOLM. SUB . HLP]

In this example, the CREATE/DIRECTORY command creates a subdirectory
named [MALCOLM.SUB.HLP]. The protection on the subdirectory allows
read, write, execute, and delete access for the system and owner categories,
but prohibits all access for the group or world categories.

E $ CREATE/DIRECTORY DISK2: [MALCOLM]

Bl $ CREATE/DIRECTORY

In this example, the CREATE/DIRECTORY command creates a directory
named [MALCOLM] on the device DISK2. Special privileges are required to
create a first-level directory.

[MALCOLM. SUB]

$ SET DEFAULT [MALCOLM.SUB]

B $ CREATE/DIRECTORY

DCL-78

In this example, the CREATE/DIRECTORY command creates a subdirectory
named [MALCOLM.SUBJ. This directory file is placed in the directory named
[MALCOLM]. The command SET DEFAULT [MALCOLM.SUB] changes the
current default directory to this subdirectory. All files subsequently created
are cataloged in [MALCOLM.SUB].

[FRED .SUB1 .SUB2.SUB3]

In this example, the CREATE/DIRECTORY command creates a top-level
directory ([FRED]) and three subdirectories ((FRED.SUB1], [FRED.SUB1.SUB2],
and [FRED.SUB1.SUB2.SUB3)).

CREATE/FDL

CREATE/FDL

Invokes the Create/FDL Utility (CREATE/FDL) to use the specifications in
an FDL file to create a new, empty data file. Use this utility to create a data
file from a particular FDL specification. The /FDL qualifier is required. For a
complete description of the Create/FDL Utility, including more information
about the CREATE/FDL command and its qualifier, see the FDL Utility
document in the VMS File Definition Language Facility Manual.

FORMAT

CREATE/FDL =fdl-file-spec [file-spec]

DCL-79

CREATE/NAME_TABLE

CREATE/NAME_TABLE

Creates a new logical name table. The full command,
CREATE/NAME _TABLE, is required.

FORMAT

CREATE/NAME_TABLE table-name

PARAMETER

table-name

Specifies a string of 1 to 31 characters that identifies the logical name table
you are creating. The string can include alphanumeric characters, the dollar
sign, and the underscore. This name is entered as a logical name in either the
process directory logical name table (LNM$PROCESS_DIRECTORY) or the
system directory logical name table (LNM$SYSTEM_DIRECTORY).

DESCRIPTION

QUALIFIERS

DCL-80

—— — —

The CREATE/NAME_TABLE command creates a new logical name table.
The name of the table is contained within the LNM$PROCESS_DIRECTORY

directory table if the table is process-private, and within the
LNM$SYSTEM_DIRECTORY directory table if the table is shareable.

Every new table has a parent table, which determines whether the new table
is process-private or shareable. To create a process-private table, use the
/PARENT_TABLE qualifier to specify the name of a process-private table (the
process directory table). To create a shareable table, specify the parent as a
shareable table.

If you do not explicitly provide a parent table, the CREATE/NAME_TABLE

command creates a process-private table whose parent is LNM$PROCESS__
DIRECTORY; that is, the name of the table is entered in the process directory.

Every table has a size quota. The quota may either constrain the potential
growth of the table or indicate that the table’s size can be virtually unlimited.
The description of the /QUOTA qualifier explains how to specify a quota.

To specify an access mode for the table you are creating, use the /JUSER__
MODE, /SUPERVISOR_MODE, or /EXECUTIVE_MODE qualifiers. If

you specify more than one of these qualifiers, only the last one entered is
accepted. If you do not specify an access mode, then a supervisor mode table
is created.

To delete a logical name table, use the DEASSIGN command, specify the
name of the table you want to delete, and use the /TABLE qualifier to specify
the directory table where the name of the table was entered.

/ATTRIBUTES|[=(keyword],...])]

Specifies attributes for the logical name table. If you specify only one
keyword, you can omit the parentheses. If you do not specify the
/ATTRIBUTES qualifier, no attributes are set.

CREATE/NAME_TABLE

You can specify the following keywords for attributes:

CONFINE Does not copy the table name or the logical names contained in
the table into a spawned subprocess; used only when creating a
private logical name table. If a table is created with the CONFINE
attribute, all names subsequently entered into the table are also
confined.

NO_ALIAS No identical names (either logical hames or names of logical
name tables) may be created in an outer (less privileged) mode
in the current directory. If you do not specify NO_ALIAS, then
the table may be “aliased” by an identical name created in an
outer access mode. Deletes any previously created identical
table names in an outer access mode in the same logical name
table directory.

SUPERSEDE Creates a new table that supersedes any previous (existing) table
that contains the name, access mode, and directory table that
you specify. The new table is created regardless of whether
the previous table exists. {If you do not specify the SUPERSEDE
attribute, the new table is not created if the previous table
exists.)

If you specify or accept the default for the qualifier /LOG, you
receive a message indicating the result.

/EXECUTIVE_MODE
Requires SYSNAM privilege.

Creates an executive mode logical name table. If you specify executive mode
without having SYSNAM privilege, a supervisor mode logical name table is
created.

/LOG (default)
/NOLOG

Controls whether or not an informational message is generated when the
SUPERSEDE attribute is specified, or when the table already exists but the
SUPERSEDE attribute is not specified. The default is /LOG; that is, the
informational message is displayed.

/PARENT_TABLE=table

Requires EXECUTE (E) access to the parent table and SYSPRYV privilege
to create a shareable logical name table.

Specifies the name of the parent table. The parent table determines whether
a table is private or shareable; it also determines the size quota of the table.
If you do not specify a parent table, the default table is LNM$PROCESS_
DIRECTORY. A shareable table has LNM$SYSTEM_DIRECTORY as its
parent table. The parent table must have the same access mode or a higher-
level access mode than the one you are creating.

/PROTECTION

Applies the specified protection to shareable name tables. The ownership
categories are SYSTEM, OWNER, GROUP, WORLD; the access categories are
R (READ), W (WRITE), E (EXECUTE) and D (DELETE). The default protection
is (SYSTEM:RWED,OWNER:RWED,GROUP:,WORLD:) See Section 8.1 of the
VMS DCL Concepts Manual for more information on specifying protection
code.

DCL-81

CREATE/NAME_TABLE

EXAMPLES

Protection applies only to shareable logical name tables; it does not apply to
process-private logical name tables.

/QUOTA=number-of-bytes

Specifies the size limit of the logical name table. The size of each logical
name entered in the new table is deducted from this size limit. The new
table’s quota is statically subtracted from the parent table’s quota holder.
The parent table’s quota holder is the first logical name table encountered
when working upward in the table hierarchy that has an explicit quota and is
therefore its own quota holder. If /QUOTA is not specified or the size limit is
0, the parent table’s quota holder becomes the new table’s quota holder and
space is dynamically withdrawn from it whenever a logical name is entered in
this new table. If you do not specify the /QUOTA qualifier, or if you specify
/QUOTA=0, the table has unlimited quota.

/SUPERVISOR_MODE (default)

Creates a supervisor mode logical name table. If you do not specify a mode,
a supervisor mode logical name table is created.

/USER_MODE

Creates a user mode logical name table. If you do not explicitly specify a
mode, a supervisor mode logical name table is created.

n $ CREATE/NAME_TABLE TEST_TAB
$ SHOW LOGICAL TEST_TAB
%SHOW-S-NOTRAN, no translation for logical name TEST_TAB
$ SHOW LOGICAL/TABLE=LNM$PROCESS_DIRECTORY TEST_TAB

In this example, the CREATE/NAME_TABLE command creates a new table
called TEST_TAB. By default, the name of the table is entered in the process
directory. The first SHOW LOGICAL command does not find the name
TEST_TAB because it does not, by default, search the process directory table.
You must use the /TABLE qualifier to request that the process directory be
searched.

E $ CREATE/NAME_TABLE/ATTRIBUTES=CONFINE EXTRA
$ DEFINE/TABLE=EXTRA MYDISK DISK4:
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -
_$ EXTRA, LNM$PROCESS, LNM$JOB, LNM$GROUP, LNM$SYSTEM
$ TYPE MYDISK: [COHEN]EXAMPLE1.LIS

DCL-82

This example creates a new logical name table called EXTRA that is created
with the CONFINE attribute. Therefore, the EXTRA table and the names it
contains will not be copied to subprocesses.

CREATE/NAME_TABLE

Next, the logical name MYDISK is placed into the table EXTRA. To use

the name MYDISK in file specifications, you must make sure that the table
EXTRA is searched when RMS parses file specifications. To do this, you

can define a process-private version of the logical name LNM$FILE_DEV

to include the name EXTRA as one of its equivalence strings. (The system
uses LNMS$FILE_DEV to determine the tables to search during logical name
translation for device or file specifications, and will use the process-private
version of the logical name before using the default system version.) After
you define LNM$FILE_DEYV, the system searches the following tables during
logical name translation: EXTRA, your process table, your job table, your
group table, and the system table. Now, you can use the name MYDISK in a
file specification and the equivalence string DISK4 will be substituted.

DCL-83

DEALLOCATE

DEALLOCATE

Makes an allocated device available to other processes (but does not
deassign any logical name associated with the device).

FORMAT DEALLOCATE device-name]:]
——

PARAMETER device-name(:]

Name of the device to be deallocated. The device name can be a physical

device name or a logical name. On a physical device name, the controller

defaults to A and the unit to 0. Incompatible with the /ALL qualifier.
QUALIFIER JALL

Deallocates all devices currently allocated by your process. Incompatible with

the device-name parameter.

MRS

EXAMPLES

£ s DEALLOCATE DMB1:

B $ ALLOCATE MT:

In this example, the DEALLOCATE command deallocates unit 1 of the
RKO06/RK07 devices on controller B.

TAPE

%DCL-I-ALLOC, _MTB1: allocated

$ DEALLOCATE TAPE:

K $ DEALLOCATE/ALL

DCL-84

In this example, the ALLOCATE command requests that any magnetic tape
drive be allocated and assigns the logical name TAPE to the device. The
response to the ALLOCATE command indicates the successful allocation of
the device MTB1. The DEALLOCATE command specifies the logical name
TAPE to release the tape drive.

In this example, the DEALLOCATE command deallocates all devices that are
currently allocated.

DEASSIGN

DEASSIGN

Cancels logical name assignments made with the ALLOCATE, ASSIGN,
DEFINE, or MOUNT command. The DEASSIGN command also deletes
logical name tables created with the CREATE/NAME_TABLE command.
Logical names in private tables are deleted automatically when your
process terminates. All logical names in the job table and the job table
itself are deleted when your process terminates. User mode logical
names in the process table are deleted automatically when the next image
exits. All other logical names in shareable tables remain unless explicitly
deassigned. All names in descendant tables are deleted when the parent
table logical name is deassigned.

FORMAT

PARAMETER

DEASSIGN [logical-name]:]]

logical-name(:]

Specifies the logical name to be deassigned. Logical names can have from
1 to 255 characters. If the logical name contains any characters other than
alphanumerics, dollar signs, or underscores, enclose it in quotation marks.
The logical-name parameter is required unless you use the /ALL qualifier.

If the logical-name parameter ends with a colon, the command interpreter
ignores the colon. (Note that the ASSIGN and ALLOCATE commands
remove a trailing colon, if present, from a logical name before placing the
name in a logical name table.) If a colon is present in the logical name,
you must type two colons in the logical-name parameter of the DEASSIGN
command (for example, DEASSIGN FILE::).

To delete a logical name table, specify the table name as the logical name
parameter. You must also use the /TABLE qualifier to indicate the logical
name directory table where the table name is entered.

DESCRIPTION

The DEASSIGN command cancels a logical name assignment that was
made with one of the following commands: ALLOCATE, ASSIGN, CREATE
/NAME_TABLE, DEFINE, or MOUNT. You can use the /ALL qualifier with
DEASSIGN to cancel all logical names in a specified table. If you use the
/ALL qualifier and do not specify a table, then all names in the process table
(except names created by the command interpreter) are deassigned; that is,
all names entered at the indicated access mode or an outer access mode are
deassigned.

To specify the logical name table from which you want to deassign a logical
name, use the /PROCESS, /JOB, /GROUP, /SYSTEM, or /TABLE qualifiers.
If you enter more than one of these qualifiers, only the last one entered is
accepted. If entries exist for the specified logical name in more than one
logical name table, the name is deleted from only the last logical name table
specified on the command line. If you do not specify a logical name table, the
default is /TABLE=LNM$PROCESS (or /PROCESS).

DCL-85

DEASSIGN

To specify the access mode of the logical name you want to deassign, use the
/USER_MODE, /SUPERVISOR_MODE, or /EXECUTIVE_MODE qualifiers.
If you enter more than one of these qualifiers, only the last one is accepted.
If you do not specify a mode, the DEASSIGN command deletes a supervisor
mode name. When you deassign a logical name, any identical names created
with outer access modes in the same logical name table are also deleted.

You must have SYSNAM privilege to deassign an executive mode logical
name. If you specify /EXECUTIVE_MODE and you do not have SYSNAM
privilege, then the DEASSIGN command ignores the qualifier and attempts to
deassign a supervisor mode logical name.

All process-private logical names and logical name tables are deleted when
you log off the system. User mode entries within the process logical name
table are deassigned when any image exits. The logical names in the job
table, and the job table itself, are deleted when you log off the system.

Names in all other shareable logical name tables remain there until they
are explicitly deassigned, regardless of whether they are user, supervisor, or
executive mode names. You must have WRITE (W) access to a shareable
logical name table to delete any name in that table.

If you delete a logical name table, all the logical names in the table are also
deleted. Also, any descendant tables are deleted. To delete a shareable
logical name table, you must have the user privilege SYSPRV or you must
have DELETE (D) access to the table.

QUALIFIERS

DCL-86

/ALL

Deletes all logical names in the same or an outer (less privileged) access
mode. If no logical name table is specified, the default is the process table,
LNM$PROCESS. If you specify /ALL, you cannot enter a logical-name
parameter.

/EXECUTIVE_MODE

Requires SYSNAM privilege to deassign executive mode logical names.

Deletes only entries that were created in the specified mode or an outer (less
privileged) mode. If you do not have SYSPRV privilege for executive mode, a
supervisor mode operation is assumed.

/GROUP

Requires GRPNAM or SYSPRYV privilege to delete entries from the group
logical name table.

Indicates that the specified logical name is in the group logical name table.
The /GROUP qualifier is synonymous with /TABLEELNM$GROUP.

/JOB

Indicates that the specified logical name is in the jobwide logical name table.
The /JOB qualifier is synonymous with /TABLE=LNMS$JOB. If you do not
explicitly specify a logical name table, the default is /PROCESS.

You should not deassign jobwide logical name entries that were made by the
system at login time, for example, SYS$LOGIN, SYS$LOGIN_DEVICE, and
SYS$SCRATCH. However, if you assign new equivalence names for these
logical names (that is, create new logical names in outer access modes), you
can deassign the names you explicitly created.

DEASSIGN

/PROCESS (default)

Indicates that the specified logical name is in the process logical name table.
The /PROCESS qualifier is synonymous with /TABLEELNM$PROCESS.

You cannot deassign logical name table entries that were made by the
command interpreter, for example, SYS$INPUT, SYS$OUTPUT, and
SYS$ERROR. However, if you assign new equivalence names for these
logical names (that is, you create new logical names in outer access modes),
you can deassign the names you explicitly created.

/SUPERVISOR_MODE (default)

Deletes entries in the specified logical name table that were created in
supervisor mode. If you specify the /SUPERVISOR_MODE qualifier, the
DEASSIGN command also deassigns user mode entries with the same name.

/SYSTEM

Requires SYSNAM or SYSPRYV privilege to delete entries from the system
logical name table.

Indicates that the specified logical name is in the system logical name table.
The /SYSTEM qualifier is synonymous with /TABLE=LNM$SYSTEM.

/TABLE=name

Requires WRITE (W) access to the table to delete a shareable logical
name. Requires SYSPRV or DELETE (D) access to delete a shareable
logical name table.

Specifies the table from which the logical name is to be deleted. Defaults to
LNM$PROCESS. The table can be the process, group, job, or system table,
one of the directory tables, or the name of a user-created table. (The process,
job, group, and system logical name tables should be referred to by the logical
names LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM,
respectively.)

The /TABLE qualifier also can be used to delete a logical name table. To
delete a process-private table, enter the following command:

$ DEASSIGN/TABLE=LNM$PROCESS_DIRECTORY table-name
To delete a shareable table, enter the following command:
$ DEASSIGN/TABLE=LNM$SYSTEM_DIRECTORY table-name

To delete a shareable logical name table, you must have DELETE (D) access
to the table or WRITE (W) access to the directory table in which the name of
the shareable table is cataloged.

If you do not explicitly specify the /TABLE qualifier, the default is
/TABLE=LNM$PROCESS (or /PROCESS).

/USER_MODE

Deletes entries in the process logical name table that were created in user
mode. If you specify the /USER_MODE qualifier, the DEASSIGN command
can deassign only user mode entries.

DCL-87

DEASSIGN

EXAMPLES

$

@ P

DEASSIGN MEMO

The DEASSIGN command in this example deassigns the process logical name
MEMO.

DEASSIGN/ALL

The DEASSIGN command in this example deassigns all process logical names
that were created in user and supervisor mode. This command does not,
however, delete the names that were placed in the process logical name table
in executive mode by the command interpreter (for example, SYS$INPUT,
SYS$OUTPUT, SYS$ERROR, SYS$DISK, and SYSSCOMMAND).

DEASSIGN/TABLE=LNM$PROCESS_DIRECTORY TAX

The DEASSIGN command in this example deletes the logical name table
TAX, and any descendant tables. When you delete a logical name table,
you must specify either /TABLESLNM$PROCESS_DIRECTORY or
/TABLE=ELNM$SYSTEM _DIRECTORY, because the names of all tables
are contained in these directories.

ASSIGN USER_DISK: COPY
DEASSIGN COPY

The ASSIGN command in this example equates the logical name COPY with
the device USER_DISK and places the names in the process logical name
table. The DEASSIGN command deletes the logical name.

DEFINE SWITCH: TEMP
DEASSIGN SWITCH::

The DEFINE command in this example places the logical name SWITCH: in
the process logical name table. The trailing colon is retained as part of the
logical name. Two colons are required on the DEASSIGN command to delete
this logical name because the DEASSIGN command removes one trailing
colon, and the other colon is needed to match the characters in the logical
name.

ASSIGN/TABLE=LNM$GROUP DBA1: GROUP_DISK
DEASSIGN/PROCESS/GROUP GROUP_DISK

The ASSIGN command in this example places the logical name GROUP_
DISK in the group logical name table. The DEASSIGN command specifies
conflicting qualifiers; because the /GROUP qualifier is last, the name is
successfully deassigned.

ASSIGN DALLAS: :USER_DISK: DATA

DEASSIGN DATA

The ASSIGN command in this example associates the logical name DATA
with the device specification USER_DISK on remote node DALLAS.
Subsequent references to the logical name DATA result in references to
the disk on the remote node. The DEASSIGN command cancels the logical
name assignment.

DCL-88

DEASSIGN/QUEUE

DEASSIGN/QUEUE

Deassigns a logical queue from a printer or terminal queue and stops the
logical queue. The DEASSIGN/QUEUE command is the complement of the
ASSIGN/QUEUE command.

Requires OPER privilege or EXECUTE access to the queue. Cannot
be used with batch queues.

FORMAT DEASSIGN/QUEUE Jogical-queue-namef:]

N

PARAMETER logical-queue-name:]

Specifies the name of the logical queue that you want to deassign from a
specific printer or terminal queue.

DESCRIPTION Once you enter the DEASSIGN/QUEUE command, the jobs in the logical
queue remain pending until the queue is reassigned to another printer queue
or device with the ASSIGN/QUEUE command.

A

EXAMPLE

$ ASSIGN/QUEUE LPAO ASTER

$ DEASSIGN/QUEUE ASTER

$ ASSIGN/MERGE LPBO ASTER

The ASSIGN/QUEUE command in this example associates the logical queue
ASTER with the print queue LPAOQ. Later, you deassign the logical queue
with the DEASSIGN/QUEUE command. The ASSIGN/MERGE command
reassigns the jobs from ASTER to the print queue LPBO.

DCL-89

DEBUG

DEBUG

FORMAT

DCL-90

Invokes the VMS Debugger after program execution is interrupted by
CTRL/Y, but only if the /NOTRACEBACK qualifier was not specified
with the LINK command when the program was linked. For a complete
description of the VMS Debugger, including more information about the
DEBUG command, see the VMS Debugger Manual.

DEBUG

DECK

DECK

e

Marks the beginning of an input stream for a command or program.
The DECK command is required in command procedures when the first
nonblank character in any data record in the stream is a doliar sign.

Can be used only after a request to execute a command or program
that requires input data.

FORMAT

DECK

DESCRIPTION

QUALIFIER

—
The DECK command marks the data that follows it as input for a command
or program. This command is required in command procedures when the first
nonblank character in any data record in the input stream is a dollar sign.

The DECK command must be preceded by a dollar sign; the dollar sign must
be in the first character position (column 1) of the input record.

The DECK command defines an end-of-file indicator only for a single data
stream. Using the DECK command enables you to place data records
beginning with dollar signs in the input stream. You can place one or
more sets of data in the input stream following a DECK command, if each is
terminated by an end-of-file indicator.

After an end-of-file indicator specified with the /DOLLARS qualifier is
encountered, the end-of-file indicator is reset to the default, that is, to any
record beginning with a dollar sign. The default is also reset if an actual
end-of-file occurs for the current command level.

/DOLLARS[=string]

Sets the end-of-file indicator to the specified string of 1 through 15 characters.
Specify a string if the input data contains one or more records beginning with
the string $EOD. Enclose the string in quotation marks if it contains literal
lowercase letters, multiple blanks, or tabs. If you do not specify /DOLLARS,
or if you specify /DOLLARS without specifying a string, you must use the
EOD command to signal the end-of-file.

DCL-91

DECK

R— ————
EXAMPLES
ﬂ (s £0J
INPUT STREAM \\ / $ PRINT SUMMARY.DAT
PROZ%RAM A 1;/3 EOD
=
/Ls 99.50
N / $ 86.42
N\|
/ spEck
/ SRUNA J—-
1 $ LINK A |
l! $ FORTRAN A JF
[Lf R . JLU‘PF
/ = — |}
-Jr——‘

ZK-783-R2

In this example, the FORTRAN and LINK commands compile and link
program A. When the program is run, any data the program reads from the
logical device SYS$INPUT is read from the command stream. The DECK
command indicates that the input stream can contain dollar signs in column 1
of the record. The EOD command signals end-of-file for the data.

DCL-92

DECK

(sE0)

/
N
N
of S@TEST

/%

N
\\/$ PRINT RUNTEST.QUT

@ / sEoD
e -
p: . |
N o 3
o $99.50 _ fli
($ DECK \ I
/ $ RUN READFILE __J—
AN /S ASSIGN RUNTEST.OUT OUTFILE
AN /S ASSIGN SYSSINPUT INFILE _J—
AN
\/ $ DECK/DOLLARS = “% M*
/ SCREATE TEST.COM
= - i
. |
/" $ JOB HIGGINS r_—

(3) INPUT STREAM FOR CREATE COMMAND

@ INPUT STREAM FOR PROGRAM READFILE -
The CREATE command in this example creates the command procedure file
TEST.COM from lines entered into the input stream. The DECK/DOLLARS
command indicates that the percent sign character is the end-of-file indicator
for the CREATE command. This allows the string $EOD to be read as an
input record, signaling the end of the input for the RUN command.

DCL-93

DEFINE

DEFINE

Associates equivalence names with a logical name. If you specify an
existing logical name, the new equivalence names replace the existing
equivalence name.

FORMAT DEFINE /ogical-name equivalence-name|,...]
PARAMETERS Jogical-name

DCL-94

Specifies the logical name string, which is a character string containing from
1 to 255 characters. If the logical name is to be entered into the process

or system directory logical name tables (LNM$PROCESS_DIRECTORY,
LNM$SYSTEM_DIRECTORY), then the name may only have from 1 to 31
alphanumeric characters (including the dollar sign and underscore).

If you specify a colon at the end of a logical name, the DEFINE command
saves the colon as part of the logical name. (This is in contrast to the ASSIGN
command, which removes the colon before placing the name in a logical
name table.) By default, the logical name is placed in the process logical
name table.

If the string contains any characters other than uppercase alphanumerics,

the dollar sign, or the underscore character, enclose the string in quotation
marks (). Use two consecutive quotation marks (”") to denote an actual
quotation mark. Note that if you enclose a name in quotation marks, the case
of alphabetic characters is preserved.

equivalence-namel,...]

Specifies a character string containing from 1 to 255 characters. If the string
contains any characters other than uppercase alphanumerics, the dollar sign,
or the underscore character, enclose the string in quotation marks. Use
two consecutive quotation marks (“") to denote an actual quotation mark.
Specifying more than one equivalence name for a logical name creates a
search list.

When you specify an equivalence name that will be used as a file
specification, you must include the punctuation marks (colons, brackets,
periods) that would be required if the equivalence name were used directly as
a file specification. Therefore, if you specify a device name as an equivalence
name, you must terminate the equivalence name with a colon.

The DEFINE command allows you to assign the same logical name to more
than one equivalence name. For example, you can use the same logical name
to access different directories on different disks, or to access different files

in different directories. When you specify more than one equivalence name
for a logical name, you create a search list. See Section 4.7 of the VMS DCL
Concepts Manual for more information on search lists.

DEFINE

DESCRIPTION

Note:

QUALIFIERS

The DEFINE command creates an entry in a logical name table by defining
a logical name to stand for one or more equivalence names. An equivalence
name can be a device name, another logical name, a file specification, or any
other string.

To specify the logical name table where you want to enter a logical name,
use the /PROCESS, /GROUP, /SYSTEM, /JOB, or /TABLE qualifier. If you
enter more than one of these qualifiers, only the last one entered is accepted.
If you do not specify a table, the default is /TABLEELNM$PROCESS (or
/PROCESS).

To specify the access mode of the logical name you are creating, use the
/USER_MODE, /SUPERVISOR_MODE, or /EXECUTIVE_MODE qualifiers.
If you enter more than one of these qualifiers, only the last one entered is
accepted. If you do not specify an access mode, a supervisor mode name

is created. You can create a logical name in the same mode as the table in
which you are placing the name, or in an outer mode. (User mode is the
outermost mode; executive mode is the innermost mode.)

You can enter more than one logical name with the same name in the same
table, as long as each name has a different access mode. (However, if an
existing logical name within a table has the NO_ALIAS attribute, you cannot
use the same name to create a logical name in an outer mode in this table.)

If you create a logical name with the same name, in the same table, and
in the same mode as an existing name, the new logical name assignment
replaces the existing assignment.

You can also use the ASSIGN command to create logical names. To delete a
logical name from a table, use the DEASSIGN command.

Avoid assigning a logical name that matches the file name of an
executable image in SYS$SYSTEM:. Such an assignment prohibits you
from invoking that image.

For additional information on how to create and use logical names, see
Chapter 4 of the VMS DCL Concepts Manual.

/EXECUTIVE_MODE

Requires SYSNAM privilege to create an executive mode logical name.
Creates an executive mode logical name in the specified table.

If you specify the /EXECUTIVE_MODE qualifier and you do not have
SYSNAM, the DEFINE command ignores the qualifier and creates a
supervisor mode logical name. The mode of the logical name must be the
same or less privileged than the mode of the table in which you are placing
the name.

/GROUP

Requires GRPNAM or SYSPRYV privilege to place a name in the group
logical name table.

Places the logical name in the group logical name table. Other users who
have the same group number in their UICs (user identification codes)
can access the logical name. The /GROUP qualifier is synonymous with
/TABLE=LNM$GROUP.

DCL—-95

DEFINE

DCL-96

/JOB

Places the logical name in the jobwide logical name table. All processes in
the same job tree as the process that created the logical name can access the
logical name. The /JOB qualifier is synonymous with /TABLE=LNM$JOB.

/LOG (default)
/NOLOG

Displays a message when a new logical name supersedes an existing name.

/NAME_ATTRIBUTES[=(keyword|,...])]

Specifies attributes for a logical name. By default, no attributes are set.
Possible keywords are as follows:

CONFINE The logical name is not copied into a spawned subprocess. This
qualifier is relevant only for logical names in a private table.

The logical name inherits the CONFINE attribute from the logical
name table where it is entered; if the logical name table is
“confined”, then all names in the table are “confined”.

NO_ALIAS A logical name cannot be duplicated in the specified table in a
less privileged access mode; any previously created identical
names in an outer {less privileged) access mode within the
specified table are deleted.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

/PROCESS (default)

Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with /TABLEFELNM$PROCESS.

/SUPERVISOR_MODE (default)

Creates a supervisor mode logical name in the specified table. The mode of
the logical name must be the same as or less privileged than the mode of the
table in which you are placing the name.

/SYSTEM

Requires SYSNAM or SYSPRYV privilege to place a name in the system
logical name table.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with
/TABLE=LNM$SYSTEM.

/TABLE=name

Requires WRITE (W) access to the table to specify the name of a shareable
logical name table.

Specifies the name of the logical name table in which the logical name is
to be entered. You can use the /TABLE qualifier to specify a user-defined
logical name table (created with the CREATE/NAME_TABLE command); to
specify the process, job, group, or system logical name tables; or to specify
the process or system logical name directory tables.

DEFINE

If you specify the table name using a logical name that has more than one
translation, the logical name is placed in the first table found. For example,
if you specify DEFINE/TABLE=LNMS$FILE_DEV and LNM$FILE_DEV is
equated to LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM,
then the logical name is placed in LNM$PROCESS.

The default is /TABLE=LNM$PROCESS (or /PROCESS).
/TRANSLATION_ATTRIBUTES[=(keyword|,...])]

Equivalence-name qualifier.

Specifies one or more attributes that modify an equivalence string of the
logical name. Possible keywords are as follows:

CONCEALED indicates that the equivalence string is the name of a concealed
device. When a concealed device name is defined, the system
dispiays the iogicai name, rather than the equivalence string, in
messages that refer to the device.

TERMINAL Logical name translation should terminate with the current
equivalence string; indicates that the equivalence string should
not be translated iteratively.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of a logical name can have different
translation attributes.

/USER_MODE

Creates a user mode logical name in the specified table.

User mode logical names created within the process logical name tables are
used for the execution of a single image; for example, you can create a user
mode logical name to allow an image executing in a command procedure to
redefine SYS$INPUT. User mode entries are deleted from the process logical
name table when any image executing in the process exits (that is, after a
DCL command or user program that executes an image completes execution).

EXAMPLES
] $ DEFINE MEMO $DISK1:[ACCOUNTS.MEMO]

In this example, the DEFINE command defines the logical name MEMO as
equivalent to the partial file specification $DISK1:]ACCOUNTS.MEMO].

E $ DEFINE/USER_MODE TM1 $DISK1:[ACCOUNTS.MEMOSIWATER.TXT
In this example, the DEFINE command defines TM1 as equivalent to a

file specification. After the next image runs, the logical name TM1 is
automatically deassigned.

DCL-97

DEFINE

K $ DEFINE PROCESS_NAME LIBRA
$

RUN WAKE

In this example, the DEFINE command places the logical name PROCESS_.
NAME in the process logical name table with an equivalence name of
LIBRA. The logical name is created in supervisor mode. The program WAKE
translates the logical name PROCESS_NAME to perform some special action
on the process named LIBRA.

Bl $ DEFINE TEMP: XXX1:

$ DEASSIGN TEMP::

In this example, the DEFINE command creates an equivalence name for the
logical name TEMP: and places the name in the process logical name table.
The colon is retained as part of the logical name. The DEASSIGN command
deletes the logical name. Note that two colons are required on the logical
name in the DEASSIGN command. One colon is deleted by the DEASSIGN
command. The other colon is kept as part of the logical name.

E $ DEFINE PORTLAND PRTLND::YYYO: [DECNET.DEMO.COM]

In this example, the DEFINE command places the logical name
PORTLAND in the process logical name table with an equivalence name
of PRTLND::YYYO0:[DECNET.DEMO.COM]. Subsequent references to the
logical name PORTLAND result in the correspondence between the logical
name PORTLAND and the node, disk, and subdirectory specified.

E $ DEFINE LOCAL "BOSTON""JOHN_SMITH JKS""::"

In this example, the DEFINE command places the logical name LOCAL

in the process logical name table with a remote node equivalence name

of BOSTON"JOHN_SMITH JKS"::. To satisfy conventions for local DCL
command string processing, you must use three sets of quotation marks. The
quotation marks ensure that access control information is enclosed in one set
of quotation marks in the equivalence name.

$ DEFINE MYDISK XXXO:[MYDIR], YYYO:[TESTDIR]

In this example, the DEFINE command places the logical name MYDISK in
the process logical name table with two equivalence names: XXX0:[MYDIR]
and YYYO:[TESTDIR].

E $ CREATE/NAME_TABLE TABLE1
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -
_$ TABLE1,LNM$PROCESS,LNM$JOB, LNM$GROUP, LNM$SYSTEM
$ DEFINE/TABLE=TABLE1l -
_$ /TRANSLATION_ATTRIBUTES=CONCEALED WORK_DISK DBA1:

DCL-98

In this example, the CREATE/NAME_TABLE command creates the process
private logical name table TABLE1.

The first DEFINE commard ensures that TABLE1 is searched first in any
logical name translation of a device or file specification (because TABLE1 is
the first item in the equivalence string for the logical name
LNMS$FILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated).

9

DEFINE

The second DEFINE command assigns the logical name WORK_DISK to the
physical device DBA1 and places the name in TABLE1. The logical name
has the concealed attribute. Therefore, the logical name WORK_DISK is
displayed in system messages.

$ CREATE/NAME_TABLE SPECIAL
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -
_$ SPECIAL,LNM$PROCESS, LNM$JOB, LNM$GROUP, LNM$SYSTEM
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY TAB SPECIAL
$ DEFINE/TABLE=TAB REPORT [CHELSEA]STORES
$ SHOW LOGICAL/TABLE=SPECIAL REPORT

"REPORT" = "[CHELSEA]STORES" (SPECIAL)

In this example, the CREATE/NAME_TABLE command is used to create a
new logical name table called SPECIAL. This table is defined in the process
directory, LNM$PROCESS_DIRECTORY.

The first DEFINE command ensures that SPECIAL is searched first in any
logical name translation of a device or file specification (because SPECIAL
is the first item in the equivalence string for the logical name LNMS$FILE _
DEV, which determines the default search sequence of logical name tables
whenever a device or file specification is translated). The logical name
LNMSFILE_DEV is placed in the process directory,
LNM$PROCESS_DIRECTORY.

With the next DEFINE command, a new logical name, TAB, is defined. TAB
translates to the string SPECIAL, which identifies a logical name table. You
must define TAB in the process directory because it translates iteratively to a
logical name table.

Next, the logical name REPORT is placed into the logical name table TAB.
Because TAB translates to the table SPECIAL, the name REPORT is entered
into SPECIAL table. The SHOW LOGICAL command verifies that the name
REPORT has been entered into the table SPECIAL.

Note that you can redefine TAB so it translates to a different table. Therefore,
if you run different programs that use the name TAB as a table name, you can
change the actual tables where the names are entered or referenced.

DCL-99

DEFINE/CHARACTERISTIC

DEFINE/CHARACTERISTIC

Assigns a numeric value to a queue characteristic. The characteristic
is created if it does not exist. If a value is already assigned to the
characteristic, DEFINE/CHARACTERISTIC alters the assignment of that
existing characteristic. The /CHARACTERISTIC qualifier is required.
Used in conjunction with the /CHARACTERISTIC qualifier of the PRINT
command.

Requires OPER privilege.

FORMAT

DEFINE/CHARACTERISTIC characteristic-name
characteristic-number

PARAMETERS

DESCRIPTION

DCL-100

characteristic-name

Assigns a name to the characteristic being defined, which can be the name of
an existing characteristic or a string of 1 to 31 characters that defines a new
characteristic. The character string can include any uppercase and lowercase
letters, digits, the dollar sign ($), and the underscore (_), and must include
at least one alphabetic character.

characteristic-number
Assigns a number in the range 0 through 127 to the characteristic being
defined.

The system manager or operator uses the DEFINE/CHARACTERISTIC
command to assign a name and number to a particular characteristic for
queues in the system. Characteristics can refer to any attribute of a print
or batch job that is meaningful for your environment. The name and
number of a characteristic are arbitrary, but they must be unique for that
characteristic. You can use the DEFINE/CHARACTERISTIC command to
add a new characteristic or change the number of a previously defined
characteristic. Use the SHOW QUEUE/CHARACTERISTICS command
to find out what characteristics are currently defined for the system.
The DELETE /CHARACTERISTIC command deletes a previously defined
characteristic.

When queues are initialized or started, you can use either characteristic
names or numbers with the /CHARACTERISTICS qualifier to specify
characteristics to be associated with the queue. Similarly, when users enter
the PRINT or SUBMIT command with the /CHARACTERISTICS qualifier,
they can use either the characteristic name or number to specify which queue
characteristics must match before the job is executed.

The SET QUEUE command changes the characteristics of a queue. To change
the physical setup of the queue, use the STOP/QUEUE/NEXT command

to stop the queue. Then change the setup and enter the START/QUEUE
command with the new characteristics specified.

DEFINE/CHARACTERISTIC

When users include the /CHARACTERISTICS qualifier with a PRINT or
SUBMIT command, all the characteristics they specify must also be specified
for the queue executing the job. If not, the job remains pending in the queue
until the queue characteristics are changed or the users delete the entry with
the DELETE/ENTRY command. Users need not specify every characteristic of
a queue with a PRINT or SUBMIT command as long as the ones they specify
are a subset of the characteristics set for that queue. The job will also run if
no characteristics are specified.

The SHOW QUEUE/CHARACTERISTICS command displays the
characteristics available on the system. Use the SHOW QUEUE/FULL
command to find out which characteristics have been specified for a particular
queue.

EXAMPLE
$ DEFINE/CHARACTERISTIC REDINK 3

The DEFINE command in this example defines the characteristic
REDINK with the number 3. When a user enters the command PRINT
/CHARACTERISTICS=REDINK (or PRINT /CHARACTERISTICS=3), the job

is printed only if the printer queue has been established with the REDINK or
3 characteristic.

DCL-101

DEFINE/FORM

DEFINE/FORM

Assigns a numeric value to a print form name and defines the type of
physical paper stock. If a value is already assigned to the form name,
DEFINE/FORM alters the definition of the existing form. The /FORM
qualifier is required. Used in conjunction with the /FORM qualifier of the
PRINT command.

Requires OPER privilege.

FORMAT

PARAMETERS

DEFINE/FORM form-name form-number

form-name

Assigns a name to the form being defined. The form name can be the name
of an existing form type or a string of 1 to 31 characters that defines a new
form type. The character string can include any uppercase and lowercase
letters, digits, the dollar sign ($), and the underscore (), and must include
at least one alphabetic character.

form-number

Assigns a number in the range 0 through 999 to the form being defined.
The DEFAULT form, which is automatically defined when the system is
bootstrapped, is assigned number 0.

DESCRIPTION

DCL-102

The system manager or operator uses the DEFINE/FORM command to assign
a name and number to a type of paper stock or printing area for use with
printer or terminal queues. When a new queue file is created, the system
defines a form named DEFAULT with a form number of zero and all the
default attributes.

The DEFINE/FORM qualifiers specify the area for printing. The /LEFT,
/RIGHT, and /WIDTH qualifiers determine the number of characters per
line. Using the /RIGHT and /WIDTH qualifiers, you can affect the point at
which lines of text in the file will wrap. (These qualifiers cannot be used for
filling or formatting the text, however.)

You can also use the DEFINE /FORM command to specify different types of
paper stock. The /DESCRIPTION qualifier enables you to describe more fully
the form name.

When a printer or terminal queue is initialized, you can use either the form
name or number to specify the form for the queue. Similarly, when users
enter a PRINT command with the /FORM qualifier, they can use either the
form name or number to specify which form they want. The default form is
number 0.

To change the form type of a queue, stop the queue using the STOP/QUEUE
/NEXT command, change the physical form, and then restart the queue
specifying the appropriate form with the START/QUEUE command.

DEFINE/FORM

When you include the /FORM qualifier with a PRINT command, the form
you specify must match the one specified for the queue executing the job. If
not, the job remains pending in the queue until the queue characteristics are
changed or you delete the entry with the DELETE/ENTRY command. If you
omit the /FORM qualifier from your PRINT command, your job is printed
using the default form definition.

The SHOW QUEUE/FORM command displays the forms available on the
system. Use the SHOW QUEUE/FULL command to find out what form has
been specified for a particular queue.

QUALIFIERS

/DESCRIPTION=string

A string of up to 255 characters used to describe the form more specifically.
The default string is the specified form name.

The string can be used to define the form type more specifically. For example,
if you have form names such as LETTER1, LETTER2, and LETTERS3, the
/DESCRIPTION qualifier could be used to let the users and operators know
that LETTER1 refers to the standard corporate letterhead paper

(8.5 x 11), LETTER2 refers to the smaller corporate letterhead paper (6 x 9),
and LETTERS refers to the president’s personalized letterhead paper.

If the string contains alphanumeric, underscore, or dollar sign characters, it
must be enclosed in quotation marks (”).

JLENGTH=n

Specifies the physical length of a form page in lines. The default page length
is 66 lines, which assumes a standard page length of 11 inches with 6 lines of
print per inch. The n parameter must be a positive integer greater than 0 and
not more than 255.

The print symbiont sets the page length of the device equal to the form
length. This enables the driver to compute the number of line feeds for
devices lacking mechanical form feed.

/MARGIN=(option],...])
Specifies one or more of the four margin options: BOTTOM, LEFT, RIGHT,
and TOP.

BOTTOM=n Specifies the number of blank lines between the end of the print
image area and the end of the physical page; the value of n must be
between O and the value of the /LENGTH parameter. The default
value is 6, which generally means a one-inch bottom margin.

LEFT=n Specifies the number of blank columns between the leftmost
printing position and the print image area; the value of n must be
between O and the value of the /WIDTH parameter. The default is
0, which means that the print image area starts as far to the left of
the paper as the printer can go.

DCL-103

DEFINE/FORM

DCL-104

RIGHT=n Specifies the number of blank columns between the /WIDTH
parameter and the image area; the value of n must be between O
and the value of the /WIDTH parameter. When determining the
/RIGHT parameter, start at the /WIDTH value and count to the left.
The default value is O, which means that the print image extends as
far to the right as the /WIDTH value.

TOP=n Specifies the number of blank lines between the top of the physical
page and the top of the print image; the value of n must be between
0 and the value of the /LENGTH parameter. The default value is O,
which generally means that there is no top margin.

/PAGE_SETUP=(module[,...])
/NOPAGE_SETUP (default)

Specifies one or more modules that set up the device before every page.
The modules are located in the device control library. When a new page is
detected, the system extracts the appropriate modules from the device control
library and copies them to the printer before the page is printed.

/SETUP=(modulel,...])

Specifies one or more modules in the device control library that set up the
device appropriately for the specified form. When the form is mounted, the
system extracts the specified module from the device control library and
copies it to the printer before the file is printed.

/SHEET_FEED
/NOSHEET_FEED (default)

Specifies that print jobs pause at the end of every physical page so that a new
sheet of paper can be inserted.

/STOCK=string

Specifies the type of paper stock to be associated with the form. The string
parameter can be a string of 1 to 31 characters, including the dollar sign,
underscore, and all alphanumeric characters. The default is the form name. If
you specify the /STOCK qualifier you must specify the name of the stock to
be associated with the form. If you do not specify the /STOCK qualifier, the
name of the stock will be the same as the name of the form.

You can create any string that you want. However, when you are creating
forms with the same stock, be sure that the /STOCK string is identical in all
the DEFINE/FORM commands that refer to the same type of paper.

This qualifier is useful when you have several forms that use the same paper
stock, but differ in other ways, such as margin specifications, wrapping, or
page dimension. The system changes from one form to another automatically
if those forms have an identical /STOCK qualifier. If the /STOCK qualifiers
are different, stop the queue, change the form, and restart the queue to print
on another stock.

/TRUNCATE (default)
/NOTRUNCATE

Discards any characters that exceed the current line length (specified by
/WIDTH and /MARGIN=RIGHT). /TRUNCATE is incompatible with the
/WRAP qualifier; the /TRUNCATE qualifier forces /NOWRAP. If you specify
both /NOTRUNCATE and /NOWRAP, the printer prints as many characters
on a line as possible. This combination of qualifiers is useful for some types
of graphics output.

DEFINE/FORM

/WIDTH=n

Specifies the physical width of the paper in terms of columns or character
positions. The n parameter must be an integer from 0 through 65,535; the
default value is 132.

Any lines exceeding this value wrap if /WRAP is in effect or truncated if
/TRUNCATE is in effect. (If both /NOTRUNCATE and /NOWRAP are in
effect, lines print as far as possible.)

The /MARGIN=RIGHT qualifier overrides the /WIDTH qualifier when
determining when to wrap lines of text.

/WRAP

/NOWRAP (default)

Causes lines that exceed the current line length (specified by /WIDTH and
/MARGIN=RIGHT) to wrap onto the next line. /WRAP is incompatible with
the /TRUNCATE qualifier; the /WRAP qualifier forces /NOTRUNCATE .

If you specify both /NOWRAP and /NOTRUNCATE, the printer prints as
many characters on a line as possible. This combination of qualifiers is useful
for some types of graphics output.

EXAMPLE

$ DEFINE/FORM /MARGIN=(TOP=6,LEFT=10) CENTER 3

The DEFINE/FORM command in this example defines the form CENTER to
have a top margin of 6 and a left margin of 10. The defaults remain in effect
for both bottom margin (6) and right margin (0). The form is assigned the
number 3.

DCL-105

DEFINE/KEY

DEFINE/KEY

Associates an equivalence string and a set of attributes with a key on the
terminal keyboard. The /KEY qualifier is required.

FORMAT DEFINE/KEY key-name equivalence-string
PARAMETERS key-name

DCL-106

Specifies the name of the key that you are defining. The following table lists
the key names in column one. The remaining three columns indicate the key
designations on the keyboards of the three different types of terminals that
allow key definitions. All definable keys on VT52 terminals are located on
the numeric keypad. On VT100-series terminals, you can define the LEFT
and RIGHT arrow keys as well as all the keys on the numeric keypad. On
terminals with LK201 keyboards, three types of keys can be defined : (1) keys
on the numeric keypad, (2) keys on the editing keypad (except the UP and
DOWN arrow keys), and (3) keys on the function key row across the top of
the keyboard. (Note that you cannot define function keys F1 through F5.)

Key-name LK201 VT100-series VT52
PF1 PF1 PF1 [blue]
PF2 PF2 PF2 [red]
PF3 PF3 PF3 [gray]
PF4 PF4 PF4 - -
KPO, KP1, ..., KP9 0,1 ..9 01 ..9 0,1 ..9
PERIOD . . .
COMMA , , n/a
MINUS - - n/a
ENTER Enter ENTER ENTER
LEFT — — —
RIGHT — — —
Find (E1) Find - - - -
Insert Here (E2) Insert Here -- - -
Remove (E3) Remove -- - -
Select (E4) Select -- - -

Prev Screen (Eb)
Next Screen (E6)

Prev Screen

Next Screen

HELP Help -- --
DO Do . .-
F6, F7, ..., F20 F6, F7, ..., F20 .- -

Some definable keys are enabled for definition all the time. Others,
including KP0 through KP9, PERIOD, COMMA, and MINUS, must be

DEFINE/KEY

enabled for definition purposes. You must enter either the SET TERMINAL
/APPLICATION or SET TERMINAL/NONUMERIC command before using
these keys.

On LK201 keyboards, you cannot define the UP and DOWN arrow keys or
function keys F1 through F5. The LEFT and RIGHT arrow keys and the F6
through F14 keys are reserved for command line editing. You must enter
the SET TERMINAL/NOLINE_EDITING command before defining these
keys. You can also press CTRL/V to enable keys F7 through F14. Note that
CTRL/V will not enable the F6 key.

equivalence-string
Specifies the character string to be processed when you press the key. Enclose
the string in quotation marks to preserve spaces and lowercase characters.

DESCRIPTION

The DEFINE/KEY command enables you to assign definitions to the
peripheral keys on certain terminals. The terminals include VT52s, the
VT100 series, and terminals with LK201 keyboards.

To define keys on the numeric keypads of these terminals, you must

first enter the SET TERMINAL/APPLICATION or SET TERMINAL
/NONUMERIC command. When your terminal has this setting, the system
interprets the keystrokes from keypad keys differently. For example, with
SET TERMINAL/NONUMERIC in effect, pressing the 1 key on the keypad
does not send the character “1” to the system.

The equivalence string definition can contain different types of information.
Definitions often consist of DCL commands. For example, you can assign
SHOW TIME to the zero key. When you press 0, the system displays the
current date and time. Other definitions can consist of text strings to be
appended to command lines. When you define a key to insert a text string,
use the /NOTERMINATE qualifier so that you can continue typing more data
after the string has been inserted.

In most instances you will want to use the echo feature. The default setting is
/ECHO. With /ECHO set, the key definition is displayed on the screen each
time you press the key.

You can use the /STATE qualifier to increase the number of key definitions
available on your terminal. The same key can be assigned any number of
definitions, as long as each definition is associated with a different state.
State names can contain any alphanumeric characters, dollar signs, and
underscores. Be sure to create a state name that is easy to remember and type
and, if possible, one that might remind you of the types of definitions you
created for that state. For example, you can create a state called SETSHOW.
The key definitions for this state might all refer to various DCL SET and
SHOW commands. If you are used to the EDT Editor, you might define a
state as GOLD. Then, using the /IE_STATE qualifier, you can assign different
definitions to keys used in combination with a key defined as GOLD.

The SET KEY command changes the keypad state. Use the SHOW KEY
command to display key definitions and states.

DCL-107

DEFINE/KEY

QUALIFIERS

DCL-108

/ECHO (default)
/NOECHO

Displays the equivalence string on your screen after the key has been pressed.
You cannot use /NOECHO with the /NOTERMINATE qualifier.

/ERASE
/NOERASE (default)

Determines whether the current line is erased before the key translation is
inserted.

/IF_STATE=(state-name,...)
/NOIF_STATE

Specifies a list of one or more states, one of which must be in effect for the
key definition to work. The /NOIF_STATE has the same meaning as
/IE_STATE=current_state. The state name is an alphanumeric string. States
are established with the /SET_STATE qualifier or the SET KEY command. If
you specify only one state name, you can omit the parentheses. By including
several state names, you can define a key to have the same function in all the
specified states.

/LOCK_STATE

/NOLOCK_STATE (default)

Specifies that the state set by the /SET_STATE qualifier remain in effect until
explicitly changed. (By default, the /SET_STATE qualifier is in effect only for
the next definable key you press or the next read-terminating character that
you type.) Can only be specified with the /SET_STATE qualifier.

/LOG (default)
/NOLOG

Displays a message indicating that the key definition has been successfully
created.

/SET_STATE=state-name
/NOSET_STATE (default)

Causes the specified state-name to be set when the key is pressed. (By
default, the current locked state is reset when the key is pressed.) If you
have not included this qualifier with a key definition, you can use the
SET KEY command to change the current state. The state name can be
any alphanumeric string; specify the state as a character string enclosed in
quotation marks ().

/TERMINATE
/NOTERMINATE (default)

Specifies whether the current equivalence string is to be processed
immediately when the key is pressed (equivalent to entering the string and
pressing RETURN). By default, you can press other keys before the definition
is processed. This allows you to create key definitions that insert text into
command lines, after prompts, or into other text that you are entering.

DEFINE/KEY

EXAMPLES

¢ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE

%DCL-I-DEFKEY, DEFAULT key PF3 has been defined
$ SHOW TIME

15-APR-1988 14:43:59

In this example, the DEFINE/KEY command defines the PF3 key on the
keypad to perform the SHOW TIME command. DEFAULT refers to the
default state.

$ DEFINE/KEY PF1 "SHOW " /SET_STATE=GOLD/NOTERMINATE/ECHO
%DCL-I-DEFKEY, DEFAULT key PF1 has been defined

$ DEFINE/KEY PF1 " DEFAULT" /TERMINATE/IF_STATE=GOLD/ECHO
#%DCL-I-DEFKEY, GOLD key PF1 has been defined

$ SHOW DEFAULT

DISK1: [JOHN.TEST]

In this example, the first DEFINE/KEY command defines the PF1 key to

be the string SHOW. The state is set to GOLD for the subsequent key. The
/NOTERMINATE qualifier instructs the system not to process the string when
the key is pressed. The second DEFINE/KEY command defines the use of the
PF1 key when the keypad is in the GOLD state. When the keypad is in the
GOLD state, pressing PF1 causes the current read to be terminated.

If you press the PF1 key twice, the system displays and processes the SHOW
DEFAULT command.

The word DEFAULT in the second line of the example indicates that the PF1
key has been defined in the default state. Note the space before the word
DEFAULT in the second DEFINE /KEY command. If the space is omitted, the
system fails to recognize DEFAULT as the keyword for the SHOW command.

$ SET KEY/STATE=ONE

%DCL-I-SETKEY, keypad state has been set to ONE
$ DEFINE/KEY PF1 "ONE"

%DCL-I-DEFKEY, ONE key PF1 has been defined

$ DEFINE/KEY/IF_STATE=0NE PF1 "ONE"
%DCL-I1-DEFKEY, ONE key PF1 has been defined

The previous two examples define the PF1 key to be “ONE” for state ONE.

The second example shows the prefered method for defining keys. This
method eliminates the possibility of error by specifying the state in the same
command as the key definition.

DCL-109

DELETE

DELETE

FORMAT

PARAMETER

Deletes one or more files from a mass storage disk volume.

DELETE file-spec|,...]

file-spec/,...]

Specifies the names of one or more files to be deleted from a mass storage
disk volume. The first file specification must contain an explicit or default
directory specification plus an explicit file name, file type, and version
number. Subsequent file specifications need contain only a version number;
the defaults will come from the preceding specification. Wildcard characters
can be used in any of the file specification fields.

If you omit the directory specification or device name, the current default
device and directory are assumed.

If the file specification contains a null version number (a semicolon followed
by no file version number), a version number of 0, or one or more spaces in
the version number, the latest version of the file is deleted.

To delete more than one file, separate the file specifications with commas or
plus signs.

QUALIFIERS

DCL-110

/BACKUP

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/BACKUP selects files according to the dates of their most recent backups.
This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /CREATED, /EXPIRED, and
/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW,

or YESTERDAY. Specify one of the following qualifiers with /BEFORE to
indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

See Section 1.4 of the VMS DCL Concepts Manual for complete information on
specifying time values.

/BY_OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC using standard UIC format as described in Section 8.1 of the
VMS DCL Concepts Manual.

DELETE

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each DELETE operation to
confirm that the operation should be performed on that file. The following
responses are valid:

YES NO QUIT
TRUE FALSE CTRL/Z
1 0 ALL

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, T, TR, or TRU for TRUE), but these abbreviations must be unique.
Affirmative answers are YES, TRUE, and 1. Negative answers are NO,
FALSE, 0, and the RETURN key. QUIT or CTRL/Z indicates that you want
to stop processing the command at that point. When you respond with ALL,
the command continues to process, but no further prompts are given. If
you type a response other than one of those in the list, DCL issues an error
message and redisplays the prompt.

/CREATED (default)

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/CREATED selects files based on their dates of creation. This qualifier is
incompatible with the other qualifiers that also allow you to select files
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If you
specify none of these four time qualifiers, the default is /CREATED.

/ERASE
/NOERASE (default)

When you delete a file, the area in which the file was stored is returned to the
system for future use. The data that was stored in that location still exists in
the system until new data is written over it. When you specify the /ERASE
qualifier, the storage location is overwritten with a system specified pattern so
that the data no longer exists.

/EXCLUDE=(file-spec],...])

Excludes the specified files from the DELETE operation. You can include
a directory but not a device in the file specification. Wildcard characters
are allowed in the file specification. However, you cannot use relative
version numbers to exclude a specific version. If you provide only one file
specification, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/EXPIRED selects files according to their expiration dates. (The expiration
date is set with the SET FILE/EXPIRATION _DATE command.) The
/EXPIRED qualifier is incompatible with the other qualifiers that also allow
you to select files according to time attributes: /BACKUP, /CREATED, and
/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

DCL-111

DELETE

/LOG
/NOLOG (default)

Controls whether the DELETE command displays the file specification of each
file after its deletion.

/MODIFIED

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/MODIFIED selects files according to the dates on which they were last
modified. This qualifier is incompatible with the other qualifiers that also
allow you to select files according to time attributes: /BACKUP, /CREATED,
and /EXPIRED. If you specify none of these four time modifiers, the default
is /CREATED.

/SINCE[=time]

Selects only those files dated after the specified time. You can specify time
as an absolute time, a combination of absolute and delta times, or as one of
the following keywords: TODAY (default) TOMORROW, or YESTERDAY.
Specify one of the following qualifiers with /BEFORE to indicate the time
attribute to be used as the basis for selection: /BACKUP, /CREATED
(default), /EXPIRED, or /MODIFIED.

See Section 1.4 of the VMS DCL Concepts Manual for complete information on
specifying time values.

The DELETE command deletes the file COMMON.SUM;2 from the current
default disk and directory.

The DELETE command deletes all versions of files with file type OLD from
the default disk directory.

¢ DELETE ALPHA.TXT;*, BETA;*, GAMMA;:x

The DELETE command deletes all versions of the files ALPHA.TXT,
BETA.TXT, and GAMMA.TXT. The command uses the file type of the
first input file as a temporary default. Note, however, that some form of
version number (here specified as wildcards) must be included in each file
specification.

EXAMPLES

f] ¢ DELETE COMMON.SUM;2
B ¢ DELETE *.0LD;*

3

4

¢ DELETE /BEFORE=15-APR/LOG *.DAT;*

%DELETE-I-FILDEL,
%DELETE-I-FILDEL,
%DELETE-I-FILDEL,
%DELETE-I-FILDEL,
%DELETE-I-FILDEL,
%DELETE-I-FILDEL,
%DELETE-I-FILDEL,

DISK2: [MALCOLM] ASSIGN.DAT;1 deleted (5 block)
DISK2: [MALCOLM] BATCHAVE.DAT;3 deleted (4 blocks)
DISK2: [MALCOLM] BATCHAVE.DAT;2 deleted (4 blocks)
DISK2: [MALCOLM] BATCHAVE.DAT;1 deleted (4 blocks)
DISK2: [MALCOLM] CANCEL .DAT;1 deleted (2 blocks)
DISK2: [MALCOLM]DEFINE.DAT;1 deleted (3 blocks)
DISK2: [MALCOLM]EXIT.DAT;1 deleted (1 block)

YDELETE~I-TOTAL, 7 files deleted (23 blocks)

DCL-112

The DELETE command deletes all versions of all files with file type DAT
that were either created or updated before April 15 of this year. The /LOG

DELETE

qualifier not only displays the name of each file deleted, but also the total
number of files deleted.

$ DELETE A.B;
The DELETE command deletes the file A.B with the highest version number.

$ DELETE/CONFIRM/SINCE=TODAY [MALCOLM.TESTFILES]*.0BJ;*
DISKO: [MALCOLM.TESTFILES]AVERAG.0BJ;1, delete? [N]:Y
DISKO: [MALCOLM. TESTFILES] SCANLINE.OBJ;4, delete? [N]:N
DISKO: [MALCOLM. TESTFILES]SCANLINE.OBJ;3, delete? [N]:N
DISKO: [MALCOLM. TESTFILES]SCANLINE.OBJ;2, delete? [N]:N
DISKO: [MALCOLM. TESTFILES]WEATHER.0BJ;3, delete? [N]:Y

The DELETE command examines all versions of files with file type OBJ in the
subdirectory [MALCOLM.TESTFILES], and locates those that were created or
modified today. Before deleting each file, it requests confirmation that the file
should be deleted. The default response—N—is given in square brackets.

$ DIRECTORY [.SUBTEST]

%DIRECT-W-NOFILES, no files found

$ SET PROTECTION SUBTEST.DIR/PROTECTION=0WNER:D
$ DELETE SUBTEST.DIR;1

Before the directory file SUBTEST.DIR is deleted, the DIRECTORY command
is used to verify that there are no files cataloged in the directory. The SET
PROTECTION command redefines the protection for the directory file so that
it can be deleted; then the DELETE command deletes it.

$ DELETE DALLAS"THOMAS SECRET"::DISKO: [000,000]DECODE.LIS;1

This DELETE command deletes the file DECODE.LIS;1 from the directory
[000,000] on device DISKO at remote node DALLAS. The user name and
password follow the remote node name.

$ DELETE QUEBEC: :"DISK1:DEAL.BIG"
$ DELETE QUEBEC: :DISK1:DEAL.BIG;

Either of these DELETE commands can be used to delete the file DEAL.BIG
on device ZZZ1 at remote node QUEBEC. Note that the DELETE command
requires an explicit version number in a file specification, but the file to be
deleted is on a remote node whose file syntax does not recognize version
numbers. (QUEBEC is an RT-11 node.) Therefore, the file specification must
either be enclosed in quotation marks or entered with a null version number
(that is, a trailing semicolon).

DCL-112

DELETE/CHARACTERISTIC

DELETE/CHARACTERISTIC

Deletes the definition of a queue characteristic previously established with
the DEFINE/CHARACTERISTIC command. The fuli command, DELETE
/CHARACTERISTIC, is required when deleting definitions.

Requires OPER privilege.

FORMAT DELETE/CHARACTERISTIC characteristic-name

PARAMETER characteristic-name
Specifies the name of the characteristic.

DESCRIPTION The DELETE/CHARACTERISTIC command deletes a characteristic from the
system characteristic table.
To change the number of an existing characteristic, you can use the DEFINE
/CHARACTERISTIC command. It is not necessary to delete the characteristic
before changing it.

EXAMPLE

$ DEFINE/CHARACTERISTIC BLUE 7

$ DELETE/CHARACTERISTIC BLUE
$ DEFINE/CHARACTERISTIC BLUE_INK 7

DCL-114

The DEFINE/CHARACTERISTIC command in this example establishes the
characteristic BLUE, with number 7, to mean blue ink ribbons for printers. To
change the name of the characteristic, enter the DELETE/CHARACTERISTIC
command. Then enter another DEFINE/CHARACTERISTIC command to
rename the characteristic to BLUE_INK, using the characteristic number 7.

DELETE/ENTRY

DELETE/ENTRY

Deletes one or more print or batch jobs from a queue. The jobs can be in
progress or waiting in the queue. The full command, DELETE/ENTRY, is
required to delete jobs from a queue.

Requires OPER privilege, EXECUTE access to the queue, or DELETE
access to the job.

FORMAT

DELETE/ENTRY=(job-number],...]) [queue-name:]

PARAMETERS

job-numberl,...]

Specifies the job number of a job to be deleted from the queue. The DELETE
/ENTRY command requires at least one job-number parameter, specifying
one or more jobs to be deleted from a single printer or batch queue. If you
specify only one job number, you can omit the parentheses.

queue-namel:]

Specifies the name of the queue where the jobs are located. The queue name
can refer either to the queue to which the job was submitted or to the queue
where the job is executing. The queue-name parameter is optional syntax.
However, when it is specified, VMS uses queue-name to verify an entry in
the specific queue before deleting the entry.

DESCRIPTION

R SRR
The DELETE/ENTRY command deletes one or more jobs from a queue. If
you specify more than one entry number with a DELETE/ENTRY command,
all the jobs must be located in the same queue.

You can delete jobs that are currently executing, as well as jobs that are in
other states. For example, DELETE/ENTRY can stop a job that is currently
printing.

EXAMPLES

ﬂ $ PRINT/HOLD ALPHA.TXT
Job ALPHA (queue SYS$PRINT, entry 110) holding

$ DELETE/ENTRY=110 SYS$PRINT

The PRINT command in this example queues a copy of the file ALPHA.TXT
in a HOLD status, to defer its printing until a SET QUEUE/ENTRY/RELEASE
command is entered. The system displays the job name, entry number,
name of the queue in which the job was entered, and the status. Later, the
DELETE/ENTRY command requests that the entry be deleted from the queue
SYS$PRINT.

DCL-115

DELETE/ENTRY

$ SUBMIT/HOLD/PARAMETERS=SCANLINE DOFOR

Job DOFOR (queue SYS$BATCH, entry 203) holding
$ SUBMIT/AFTER=18:00 WEATHER
Job WEATHER (queue SYS$BATCH, entry 210) holding until 15_APR-1988 18:00

$ DELETE/ENTRY=(203,210) SYS$BATCH

The SUBMIT commands in this example queue the command procedures
DOFOR.COM and WEATHER.COM for processing as batch jobs.
DOFOR.COM is queued in a HOLD status and cannot execute until you
enter a SET QUEUE/ENTRY/RELEASE command. WEATHER.COM is
queued for execution after 6:00 P.M. Later, the DELETE/ENTRY command
requests that both these entries be deleted from the queue SYS$BATCH.

$ PRINT CHAPTERS.MEM

Job CHAPTER8 (queue SYS$PRINT, entry 25) pending on queue LPAO

$ SHOW QUEUE SYS$PRINT
Printer queue SYS$PRINT, on LPAO:

Jobname
CHAPTER7
CHAPTERS

Username Entry Blocks Status
SMITH 24 274 Pending
SMITH 25 976 Pending

$ DELETE/ENTRY=25 SYS$PRINT

DCL-116

The PRINT command in this example submits the fle CHAPTER8.MEM to
the generic printer queue SYS$PRINT. Later, user Smith needs to edit the file
again before printing it. Using the SHOW QUEUE command, Smith verifies
that the job is still pending and that the entry number for the job is 25. Smith
then enters the DELETE/ENTRY command to delete the job from the queue.

DELETE/FORM

DELETE/FORM

Deletes a form type for a printer or a terminal queue previously established
with the DEFINE/FORM command. When you delete a form definition, you
must ensure that no outstanding references to the form exist in queues
that have been mounted with the form or by jobs requesting that form.
The /FORM qualifier is required.

Requires OPER privilege.

FORMAT

DELETE/FORM form-name

PARAMETER

form-name
Specifies the name that was assigned to the form by a DEFINE/FORM
command.

DESCRIPTION

The DELETE/FORM command deletes a form definition from the system
forms table. When you delete a form, there can be no outstanding references
to the form either in queues that have been mounted with the form or by
jobs requesting that form. Use the SHOW QUEUE/FULL qualifier to locate
all references to the form.

To change the number or attributes of an existing form, use the DEFINE
/FORM command. It is not necessary to delete the form before changing it.

EXAMPLES

Il $ DELETE/FORM CENTER

The DELETE/FORM command in this example deletes the form named
CENTER.

Ea $ DEFINE/FORM /DESCRIPTION="letter size continuous form paper" CFLET 7

$ DELETE/FORM CFLET
$ DEFINE/FORM /DESCRIPTION="letter size continuous form paper" LETTER_CONT 7

The DEFINE/FORM command in this example establishes the form CFLET
with number 7, to mean 8.5 by 11 inch continuous form feed paper. To
change the name of the form, delete the form named CFLET and define a
new one named LETTER_CONT.

DCL-117

DELETE/INTRUSION_RECORD

DELETE/INTRUSION_RECORD

Removes an entry from the break-in database.
Requires CMKRNL and SECURITY privileges.

FORMAT

DELETE/INTRUSION_RECORD source

PARAMETER

source
Source field of the entry to be removed from the break-in database.

DESCRIPTION

Use the DELETE/INTRUSION_RECORD command to remove an entry
from the break-in database. For example, if the user Hammer repeatedly
attempted to log in on terminal TTA24 with an expired password, the SHOW
INTRUSION command would display the following entry:

Intrusion Type Count Expiration Source

TERM_USER INTRUDER 9 10:29:39.16 TTA24:HAMMER

The terminal is locked out of the system because the login failure limit

has been reached. When Hammer approaches you and you identify the
problem as an expired password, you can then use the DELETE/INTRUSION
command to remove the record from the break-in database.

EXAMPLES

n $ DELETE/INTRUSION_RECORD TTC2:

In this example, the DELETE/INTRUSION_RECORD command removes all
intrusion records generated by break-in attempts on TTC2. No username is
specified because none of the login failures occurred for valid users.

E $ DELETE/INTRUSION_RECORD GALAXY::HAMMER

DCL-118

This command removes all intrusion entries generated from node GALAXY
for user HAMMER.

DELETE/KEY

DELETE/KEY

Deletes key definitions that have been established by the DEFINE/KEY
command. The /KEY qualifier is required.

FORMAT DELETE/KEY [key-name]
R
PARAMETER key-name
Specifies the name of the key to be deleted. Incompatible with the /ALL
qualifier.
N
QUALIFIERS JALL
Deletes all key definitions in the specified state; the default is the current
state. If you use the /ALL qualifier, do not specify a key name. Use the
/STATE qualifier to specify one or more states.
/LOG (default)
/NOLOG
Controls whether messages are displayed indicating that the specified key
definitions have been deleted.
/STATE=(state-name],...])
/NOSTATE (default)
Specifies the name of the state for which the specified key definition is to be
deleted. The default state is the current state. If you specify only one state
name, you can omit the parentheses. State names can be any appropriate
alphanumeric string.
EXAMPLES

i] $ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE
%DCL-I-DEFKEY, DEFAULT key PF3 has been defined

$ [PF3]

$ SHOW TIME

15-APR-1988 14:43:59

$ DELETE/KEY PF3

%/DCL-I-DELKEY, DEFAULT key PF3 has been deleted

$ [PF3]
$

In this example, the DEFINE/KEY command defines the PF3 key on the
keypad as SHOW TIME. To undefine the PF3 key, use the DELETE/KEY
command. When the user presses PF3, only the system prompt is displayed.

DCL-119

DELETE/KEY

Pl $ DELETE/KEY/ALL
%DCL-I-DELKEY, DEFAULT key PF1 has been deleted
%DCL-I-DELKEY, DEFAULT key PF2 has been deleted
%DCL-I-DELKEY, DEFAULT key PF3 has been deleted
%DCL-I-DELKEY, DEFAULT key PF4 has been deleted
$

In this example, the user defined keys PF1 through PF4 in the default state.
The DELETE/KEY command deletes all key definitions in the current state,
which is the default state.

DCL-120

DELETE/QUEUE

DELETE/QUEUE

Deletes a print or batch queue and all the jobs in the queue. The specified
queue must be stopped first.

Requires OPER privilege.

FORMAT

DELETE/QUEUE queue-namel:]

PARAMETER

queue-namel:]
Specifies the name of the queue to be deleted.

DESCRIPTION

The DELETE/QUEUE command takes effect only if the specified queue has
been stopped. To delete a queue, do the following:

1 Be sure that there are no outstanding references to the queue. Queue
references are made with the /PRINTER=queue-name and /GENER
IC=queue-name qualifiers of the INITIALIZE/QUEUE, SET QUEUE, and
START/QUEUE commands. The ASSIGN/QUEUE command also makes
queue references.

2 After you have determined that there are no outstanding references to the
queue, stop the queue with the STOP/QUEUE/NEXT command.

3 Wait for any current jobs to complete.

4 Enter the DELETE/QUEUE command. Note that any pending jobs in the
queue are deleted when the queue is deleted.

EXAMPLE

$ INITIALIZE/QUEUE/DEFAULT=FLAG/START LPAO

$ STOP/QUEUE/NEXT LPAO

$ DELETE/QUEUE LPAO

In this example, the first command initializes and starts the printer queue
LPAO. The STOP/QUEUE/NEXT command stops the queue. The DELETE
/QUEUE command deletes the queue.

DCL-121

DELETE/SYMBOL

DELETE/SYMBOL

Deletes one or all symbol definitions from a local or global symbol table.
The /SYMBOL qualifier is required.

FORMAT

DELETE/SYMBOL [symbol-name]

PARAMETER

DESCRIPTION

symbol-name

Specifies the name of the symbol to be deleted. A name is required unless

the /ALL qualifier is specified. The symbol-name parameter is incompatible
with the /ALL qualifier. Symbol names can have from 1 to 255 characters.

By default, the DELETE/SYMBOL command assumes that the symbol is in
the local symbol table for the current command procedure.

R
The DELETE/SYMBOL command deletes a symbol definition from a symbol
table. If you do not specify either the global or local symbol table, the symbol
is deleted from the local table. If you specify both /GLOBAL and /LOCAL,
only the last specified qualifier is accepted. The /SYMBOL qualifier must
always immedjiately follow the DELETE command name.

QUALIFIERS

JALL

Deletes all symbols from the specified table. If you do not specify either
/LOCAL or /GLOBAL, all symbols defined at the current command level are
deleted. The /ALL qualifier is incompatible with the symbol-name parameter.

/GLOBAL

Deletes the symbol from the global symbol table of the current process.

/LOCAL (default)

Deletes the symbol from the local symbol table of the current process.

/LOG
/NOLOG (default)

Controls whether an informational message listing each symbol being deleted
is displayed.

EXAMPLES

fl $ DELETE/SYMBOL/ALL

DCL-122

In this example, the DELETE/SYMBOL command deletes all symbol
definitions at the current command level.

DELETE/SYMBOL

E $ DELETE/SYMBOL/LOG FOO
%DCL-I-DELSYM, LOCAL symbol FOO has been deleted

In this example, the DELETE /SYMBOL command deletes the symbol FOO
from the local symbol table for the current process. In addition, the /LOG
qualifier causes an informational message, listing the symbol being deleted, to
be displayed.

Bl $ DELETE/SYMBOL/GLOBAL PDEL

In this example, the DELETE /SYMBOL command deletes the symbol named
PDEL from the global symbol table for the current process.

DCL-123

DEPOSIT

DEPOSIT

Replaces the contents of the specified locations in virtual memory and
displays the new contents. If the specified address can be read but not
written by the current access mode, the original contents are displayed;
if the specified address can be neither read nor written, asterisks are
displayed in the data field. The DEPOSIT command maintains a pointer at
that location (at the byte following the last byte modified).

The DEPOSIT command, together with the EXAMINE command, aids in
debugging programs interactively. The DCL DEPOSIT command is similar
to the DEPOSIT command of the VMS Symbolic Debugger.

Requires user mode read (R) and write (W) access to the virtual
memory location whose contents you wish to change.

FORMAT

DEPOSIT Jocation=data,...]

PARAMETERS

DCL-124

location

Specifies the starting virtual address or range of virtual addresses (where the
second address is larger than the first) whose contents are to be changed. A
location can be any valid integer expression containing an integer value, a
symbol name, a lexical function, or a combination of these entities. Radix
qualifiers determine the radix in which the address is interpreted; hexadecimal
is the initial default radix. Symbol names are always interpreted in the radix
in which they were defined. The radix operators %X, %D, or %O can precede
the location. A hexadecimal value must begin with a number (or be preceded
by %X).

The specified location must be within the virtual address space of the image
currently running in the process.

The DEPOSIT and EXAMINE commands maintain a pointer to a current
memory location. The DEPOSIT command sets this pointer to the byte
following the last byte modified; you can refer to this pointer by using

a period (.) in subsequent EXAMINE and DEPOSIT commands. If the
DEPOSIT command cannot deposit the specified data, the pointer does not
change. The EXAMINE command does not change the value of the pointer.

datal,...]

Specifies the data to be deposited into the specified locations. By default, the
data is assumed to be in hexadecimal format; it is then converted to binary
format and is written into the specified location.

If you specify a list, separate the items with commas; the DEPOSIT command
writes the data in consecutive locations, beginning with the address specified.

When non-ASCII data is deposited, you can specify each item of data using
any valid integer expression.

When ASCII data is deposited, only one item of data is allowed. All
characters to the right of the equal sign are considered to be part of a
single string. The characters are converted to uppercase, and all spaces
are compressed.

DESCRIPTION

DEPOSIT

When the DEPOSIT command completes, it displays both the virtual memory
address into which data is deposited and the new contents of the location, as
follows:

address: contents

If the specified address can be read but not written by the current access
mode, the DEPOSIT command displays the original contents of the location.
If the specified address can be neither read nor written, the DEPOSIT
command displays asterisks in the data field.

If you specify a list of numeric values, some but not all of the values may be
successfully deposited before an access violation occurs. If an access violation
occurs while ASCII data is being deposited, nothing is deposited.

Radix Qualifiers: The radix default for a DEPOSIT or EXAMINE command
determines how the command interpreter interprets numeric literals. The
initial default radix is hexadecimal; all numeric literals in the command
line are assumed to be hexadecimal values. If a radix qualifier modifies the
command, that radix becomes the default for subsequent EXAMINE and
DEPOSIT commands, until another qualifier overrides it. For example:

$ DEPOSIT/DECIMAL 900=256
00000384: 256

The DEPOSIT command interprets both the location 900 and the value 256
as decimal. All subsequent DEPOSIT and EXAMINE commands assume
that numbers you enter for addresses and data are decimal. Note that the
DEPOSIT command always displays the address location in hexadecimal.

Symbol values defined by = (Assignment Statement) commands are always
interpreted in the radix in which they were defined.

Note that hexadecimal values entered as deposit locations or as data to be
deposited must begin with a numeric character (0 through 9). Otherwise,
the command interpreter assumes that you have entered a symbol name and
attempts symbol substitution.

You can use the radix operators %X, %D, or %O to override the current
default when you enter the DEPOSIT command. For example:

$ DEPOSIT/DECIMAL %X900=10

This command deposits the decimal value 10 in the location specified as
hexadecimal 900.

Length Qualifiers: The initial default length unit for the DEPOSIT command
is a longword. If a list of data values is specified, the data is deposited into
consecutive longwords beginning at the specified location. If a length qualifier
modifies the command, that length becomes the default for subsequent
EXAMINE and DEPOSIT commands, until another qualifier overrides it. If
you specify data values that are longer than the specified length, an error
occurs.

Length qualifiers are ignored when ASCII values are deposited.

Restriction on Placement of Qualifiers: The DEPOSIT command analyzes
expressions arithmetically. Therefore, qualifiers, which must be preceded by a
slash (/), must appear immediately after the command name to be interpreted
correctly.

DCL-125

DEPOSIT

QUALIFIERS

EXAMPLES

g s rux myProG

$ EXAMINE 2780

00002780
$ DEPOSIT
00002780

$ CONTINUE

DCL-126

/ASCII
Indicates that the specified data is ASCII.

Only one data item is allowed; all characters to the right of the equal sign
are considered to be part of a single string. Unless they are enclosed within
quotation marks, characters are converted to uppercase and multiple spaces
are compressed to a single space before the data is written in memory.

The DEPOSIT command converts the data to its binary equivalent before
placing it in virtual memory. When you specify /ASCII, or when ASCII
mode is the default, the location you specify is assumed to be hexadecimal.

/BYTE

Requests that data be deposited one byte at a time.

/DECIMAL
Indicates that the data is decimal. The DEPOSIT command converts the data
to its binary equivalent before placing it in virtual memory.

/HEXADECIMAL

Indicates that the data is hexadecimal. The DEPOSIT command converts the
data to its binary equivalent before placing it in virtual memory.

/LONGWORD

Requests that data be deposited a longword at a time.

/OCTAL
Indicates that the data is octal. The DEPOSIT command converts the data to
its binary equivalent before placing it in virtual memory.

/WORD

Requests that the data be deposited one word at a time.

1C50B344

.=0
00000000

The RUN command executes the image MYPROG.EXE; subsequently,
CTRL/Y interrupts the program. Assuming that the initial defaults of
/HEXADECIMAL and /LONGWORD are in effect, the DEPOSIT command
places a longword of zeros in virtual memory location 2780.

Because the EXAMINE command sets up a pointer to the current memory
location, which in this case is virtual address 2780, you can refer to this
location with “.” in the DEPOSIT command.

The CONTINUE command resumes execution of the image.

2

DEPOSIT

$ DEPOSIT/ASCII 2CO0=FILE: NAME: TYPE:
00002C00: FILE: NAME: TYPE:...

In this example, the DEPOSIT command deposits character data at
hexadecimal location 2C00 and displays the contents of the location after
modifying it. Because the current default length is a longword, the response
from the DEPOSIT command displays full longwords. Trailing dots (ellipses)
indicate that the remainder of the last longword of data contains information
that was not modified by the DEPOSIT command.

$ EXAMINE 9CO ! Look at Hex location 9CO
000009C0O: 8C037DB3

$ DEPOSIT .=0 ! Deposit longword of O
000009C0O: 00000000

$ DEPOSIT/BYTE .=1 ! Put 1 byte at next location
000009C4: 01

$ DEPOSIT .+2=55 ! Deposit 55 next

000009C7: 55
$ DEPOSIT/LONG .=0C,0D,OE ! Deposit longwords
000009C8: 0000000C 0000000D OCO0O0OE

The sequence of DEPOSIT commands in the above example illustrates how
the DEPOSIT command changes the current position pointer. Note that after
you specify /BYTE, all data is deposited and displayed in bytes, until the
/LONGWORD qualifier restores the system default.

$ BASE=%X200 ! Define a base address

$ LIST=BASE+%X40 ! Define offset from base

$ DEPOSIT/DECIMAL LIST=1,22,333,4444

00000240: 00000001 00000022 00000333 00004444

$ EXAMINE/HEX LIST:LIST+OC ! Display results in hex
00000240: 00000001 00000016 0000014D 0000115C

The assignment statements define a base address in hexadecimal and a label
at a hexadecimal offset from the base address. The DEPOSIT command reads
the list of values and deposits each value into a longword, beginning at the
specified location. The EXAMINE command requests a hexadecimal display
of these values.

DCL-127

DIFFERENCES

DIFFERENCES

Compares the contents of two disk files and displays a listing of the
records that do not match.

FORMAT

DIFFERENCES input1-file-spec [input2-file-spec]

PARAMETERS

input1-file-spec
Specifies the first file to be compared. The file specification must include a file
name and a file type. Wildcard characters are not allowed.

input2-file-spec
Specifies the second file to be compared. Unspecified fields default to the
corresponding fields in inputl-file-spec. Wildcard characters are not allowed.

If you do not specify a secondary input file, the DIFFERENCES command
uses the next lower version of the primary input file.

DESCRIPTION

DCL-128

Use the DIFFERENCES command to find out whether two files are identical
and, if not, how they differ. The DIFFERENCES command compares the two
specified files on a record-by-record basis and produces an output file that
lists the differences, if any.

The qualifiers for the DIFFERENCES command can be categorized according
to their functions, as follows:

* Qualifiers that request DIFFERENCES to ignore data in each record:

/COMMENT_DELIMITERS
/IGNORE

These qualifiers allow you to define characters that denote comments or
to designate characters or classes of characters to ignore when comparing
files. For example, you can have DIFFERENCES ignore extra blank lines
or extra spaces within lines.

By default, DIFFERENCES compares every character in each record.

¢ Qualifiers that control the format of the information contained in the list
of differences:

/CHANGE_BAR
/IGNORE
/MERGED
/MODE
/PARALLEL
/SEPARATED
/SLP

/WIDTH

By default, DIFFERENCES merges the differences it finds in the files
being compared. It lists each record in the file that has no match in the
other input file and then lists the next record that it finds that does have
a match.

DIFFERENCES

By default, DIFFERENCES also supplies a line number with each listed
record, and it lists the records with all designated ignore characters
deleted.

You can specify combinations of qualifiers to request an output listing
that includes the comparison in more than one format. Note that SLP
output is incompatible with all other types of output; PARALLEL output
can be generated only in ASCII mode.

* Qualifiers that control the extent of the comparison:

/MATCH
/MAXIMUM _DIFFERENCES
/WINDOW

By default, DIFFERENCES reads every record in the master input file
and looks for a matching record in the revision input file. A search for
a match between the two input files continues until either a match is
found or the ends of the two files are reached. Sections of the two files
are considered a match only if three sequential records are found to be
identical in each file.

By default, DIFFERENCES output is written to the current SYSSOUTPUT
device. Use the /JOUTPUT qualifier to request DIFFERENCES to write the
output to an alternate file or device.

DIFFERENCES terminates with an exit status. The following severity levels
indicate the result of the comparison:

SUCCESS Files are identical.

INFORMATIONAL Files are different.

WARNING User-specified maximum number of differences has been
exceeded.

ERROR Insufficient virtual memory to complete comparison.

All severity levels other than SUCCESS indicate that the two input files are
different.

QUALIFIERS

/CHANGE_BAR/=([change-char][,[NOINUMBER])]

Marks with the specified character in the left margin each line in the inputl
file that differs from the corresponding line in the input2 file. If you do
not specify a change bar character, the default is an exclamation point

(") for ASCII output. If you specify hexadecimal or octal output (see
/MODE qualifier), the change bar character is ignored and differences are
marked by a “***CHANGE#***” string in the record header. The keyword
NONUMBER suppresses line numbers in the listing. If neither the NUMBER
nor NONUMBER keyword is specified, the default is controlled by the
/INO]NUMBER command qualifier. If only one option is specified, the
parentheses can be omitted. To specify both a change bar character and
either NUMBER or NONUMBER, separate the options with a comma and
enclose the list in parentheses, for example, /CHANGE _BAR=($, NUMBER).

/COMMENT_DELIMITER[=(character],...])]

Ignores lines starting with a specified comment character. If the comment
character is an exclamation point or semicolon, it can appear anywhere in the
line and characters to the right of the character are ignored. If you specify
just one character, you can omit the parentheses. Lowercase characters are

DCL-129

DIFFERENCES

DCL-130

automatically converted to uppercase unless they are enclosed in quotation
marks. Non-alphanumeric characters (such as ! and ,) must be enclosed in
quotation marks. You can specify up to 32 comment characters by typing
the character itself or one of the following keywords. (Keywords can be
abbreviated provided that the resultant keyword is not ambiguous and has at
least two characters; single letters are treated as delimiters.)

Keyword Character
COLON Colon ()
COMMA Comma (,)
EXCLAMATION Exclamation point (!}
FORM_FEED Form feed
LEFT Left bracket ([)
RIGHT Right bracket (])
SEMI_COLON Semicolon (;)
SLASH Slash (/)
SPACE Space

TAB Tab

The /COMMAND_DELIMITER qualifier is used with or without the
/IGNORE=COMMENTS qualifier to indicate which comments are to be
ignored.

If both the uppercase and lowercase forms of a letter are to be used as
comment characters, the letter must be specified twice, once in uppercase
and once in lowercase. If you do not include either a comment character
or a keyword with the /COMMAND_DELIMITER qualifier, DIFFERENCES
assumes a default comment character based on the file type. For some file
types (COB and FOR), the default comment characters are considered valid
delimeters only if they appear in the first column of a line. Multicharacter
comment characters are not allowed.

The following characters are the default comment delimiters for files with the
specified file types.

File type Default Comment Character

B2S, B32, BAS, BLI !

CBL, CMD I and ;

COB * or / in the first column

COM, COR I

FOR I anywhere and C, D, c, d in the first column
HLP !

MAC, MAR ;

R32, REQ !

/IGNORE=(keyword],...])

Inhibits the comparison of the specified characters, strings, or records; also
controls whether the comparison records are output to the listing file as edited
records or exactly as they appeared in the input file. If you specify only one

DIFFERENCES

keyword, you can omit the parentheses. The keyword parameter refers either
to a character or a keyword. The first set of keywords determines what,

if anything, is ignored during file comparison; the second set of keywords
determines whether or not ignored characters are included in the output. The
following keywords are valid options for the /IGNORE qualifier:

BLANK_LINES Blank lines between data lines.

COMMENTS Data following a comment character. (Use the
/COMMENT_DELIMITER qualifier to designate one or
more non-default comment delimiters.)

FORM_FEEDS Form feed character.

HEADER[=n] First n records of the file, beginning with a record whose
first character is a form feed. The first record is not
ignored if the only character it contains is a form feed.
(N indicates the number of records and defaults to 2.

A record with a single form feed is not counted.)

TRAILING_SPACES Space and tab characters at the end of a data line.

SPACING Extra blank spaces or tabs within data lines.
EDITED Omits ignored characters from the output records.
EXACT Includes ignored characters in the output records.
PRETTY Formats output records.

Each data line is checked for COMMENTS, FORM_FEEDS, HEADER, and
SPACING before it is tested for TRAILING _SPACES and then BLANK_
LINES. Therefore, if you direct DIFFERENCES to ignore COMMENTS,
TRAILING _SPACES, and BLANK_LINES, it ignores a record that contains
several spaces or blank lines followed by a comment.

By default, the DIFFERENCES command compares every character in each
file and reports all differences. Also, by default, DIFFERENCES lists records
in the output file with all ignored characters deleted.

If you specify /PARALLEL, output records are always formatted. To format
output records, specify the following characters:

Character Formatted Output
Tab (CTRL/Y) 1-8 spaces
RETURN (CTRL/M) <CR>

Line feed (CTRL/J) <LF>

Vertical tab (CTRL/K) <VT>

Form feed (CTRL/L) <FF>

Other nonprinting characters (period)

/MATCH-=size

Specifies the number of records that should indicate matching data after a
difference is found. By default, after DIFFERENCES finds unmatched records,
it assumes that the files once again match after it finds three sequential
records that match. Use the /MATCH qualifier to override the default match
size of 3.

DCL-131

DIFFERENCES

DCL-132

You can increase the /MATCH value if you feel that DIFFERENCES is
incorrectly matching sections of the master and revision input files after it has
detected a difference.

/MAXIMUM_DIFFERENCES=n

Terminates DIFFERENCES after a specified number of unmatched records
(specified with the n parameter) is found.

The number of unmatched records is determined by finding the maximum
number of difference records for each difference section and adding them
together.

If DIFFERENCES reaches the maximum number of differences that you
specify, it will output only those records that were detected before the
maximum was reached. Also, it will output, at most, one listing format and
return a warning message.

By default, there is no maximum number of differences. All records in the
specified input files are compared.

/MERGEDI[=n]

Specifies that the output file contain a merged list of differences with the
specified number of matched records listed after each group of unmatched
records. The specified number (the value n) must be less than or equal to
the number specified in the /MATCH qualifier. By default, DIFFERENCES
produces a merged listing with one matched record listed after each set

of unmatched records (that is, /MERGED=1). If neither /MERGED nor
/SEPARATED nor /PARALLEL is specified, the resulting output is merged,
with one matched record following each unmatched record.

Use the /MERGED qualifier to override the default value of n, or to include a
merged listing with other types of output.

/MODE=(radix[,...])

Specifies the format of the output. You can request that the output be
formatted in one or more radix modes by specifying the following keywords,
which may be abbreviated: ASCII (defauit), HEXADECIMAL, or OCTAL. If
you specify only one radix, you can omit the parentheses.

By default, DIFFERENCES writes the output file in ASCIL. If you specify
more than one radix, the output listing contains the file comparison in each
specified radix. When you specify two or more radix modes, separate them
with commas.

If you specify /PARALLEL or /SLP, /MODE is ignored for that listing form.

/NUMBER (default)
/NONUMBER

Includes line numbers in the listing of differences.

/OUTPUT/[=file-spec]

Specifies an output file to receive the list of differences. By default, the output
is written to the current SYS$OUTPUT device. If the file-spec parameter is
not specified, the output is directed to the first input file with a file type of
DIF. No wildcard characters are allowed.

When you specify /OUTPUT, you can control the defaults applied to the
output file specification as described in Section 1.3 of the VMS DCL Concepts
Manual. The default output file type is DIF.

DIFFERENCES

/PARALLEL[=n]

Lists the records with differences side by side. The value n specifies the
number of matched records to merge after each unmatched record; the value
n must be a non-negative decimal number less than or equal to the number
specified in /MATCH.

By default, DIFFERENCES does not list records after each list of unmatched
records. Also by default, DIFFERENCES creates only a list of merged
differences.

/SEPARATED[=(input1-file-spec[,input2-file-spec])]
Lists sequentially only the records from the specified file that contain
differences. If no files are specified, a separate listing is generated for each
file. If only one file is specified, you can omit the parentheses. To specify
the inputl-file-spec parameter, use either the first input file specified as
the DIFFERENCES parameter or the keyword MASTER. To specify the
input2-file-spec parameter, use either the second input file specified as the
DIFFERENCES parameter or the keyword REVISION.

By default, DIFFERENCES creates only a merged list of differences.

/SLP

Requests that DIFFERENCES produce an output file suitable for input to
the SLP editor. If you use the /SLP qualifier, you cannot specify any of the
following output file qualifiers: /MERGED, /PARALLEL, /SEPARATED, or
/CHANGE_BAR.

Use the output file produced by the SLP qualifier as input to SLP to update
the master input file, that is, to make the master input file match the revision
input file.

When you specify /SLP and you do not specify /OUTPUT, DIFFERENCES
writes the output file to a file with the same file name as the master input file
with the file type DIF.

/WIDTH=n

Specifies the width of the lines in the output file. The default is 132
characters. If output is written to the terminal, /WIDTH is ignored and
the terminal line width is used.

Use the SET TERMINAL command to change the terminal line width.
/WINDOW=size
Searches the number of records specified (the value n) before a record is

declared as unmatched. By default, DIFFERENCES searches to the ends of
both input files before listing a record as unmatched.

The window size is the minimum size of a differences section that will cause
DIFFERENCES to lose synchronization between the two input files.

DCL-133

DIFFERENCES

EXAMPLES

$ DIFFERENCES EXAMPLE.TXT
sk ok ok ok ok ok ok %k sk ke sk ok
File DISK1: [GEORGE.TEXT]EXAMPLE.TXT;2
1 DEMONSTRATION
2 OF V3.0 DIFFERENCES
3 UTILITY
S ok ok ok kok
File DISK1: [GEORGE.TEXT]EXAMPLE.TXT;1
1 DEMONSTRATION
2 QOF VMS DIFFERENCES
3 UTILITY
sk ok sk ok kb ok o ok koK
Number of difference sections found: 1
Number of difference records found: 2
DIFFERENCES/MERGED=1-
DISK1: [GEORGE.TEXT]EXAMPLE. TXT; 2
DISK1: [GEORGE .TEXT]EXAMPLE. TXT; 1

In this example, the DIFFERENCES command compares the contents of the
two most recent versions of the file EXAMPLE.TXT in the current default
directory. DIFFERENCES compares every character in every record and
displays the results at the terminal.

$ DIFFERENCES/PARALLEL/WIDTH=80/COMMENT_DELIMITER="V" EXAMPLE.TXT

Number of difference sections found: 1
Number of difference records found: 1
DIFFERENCES/IGNORE=(COMMENTS) /COMMENT _DELIMITER=("V")/WIDTH=80/PARALLEL-
DISK1: [GEORGE.TEXT]EXAMPLE. TXT; 2-
DISK1: [GEORGE.TEXT]EXAMPLE. TXT; 1

The DIFFERENCES command compares the same files as in Example 1, but
ignores all comments following the first “V” encountered by DIFFERENCES.
The command also specifies that an 80-column parallel list of differences be
displayed.

DCL-134

DIFFERENCES

K] $ DIFFERENCES/WIDTH=80/MODE=(HEX,ASCII) EXAMPLE.TXT/CHANGE_BAR
sk skook ko ok ok ok ok ok
File DISK1: [GEORGE.TEXT]EXAMPLE.TXT;2
1 | DEMONSTRATION
2 | OF V3.0 DIFFERENCES
3 UTILITY
sk sk ok sk ok ok sk ok ok
sk 3k ok sk ok %k ok %k ok kok sk
File DISK1:[GEORGE.TEXT]EXAMPLE.TXT;2
RECORD NUMBER 1 (00000001) LENGTH 14 (OO00000E) #**CHANGE#+*
204E 4FA95441 5254534E 4F4D4544 DEMONSTRATION .. 000000
RECORD NUMBER 2 (00000002) LENGTH 19 (00000013) ##*CHANGE#**
4E455245 46464944 20302E33 5620464F OF V3.0 DIFFEREN 000000

534643 CES............. 000010
RECORD NUMBER 3 (00000003) LENGTH 7 (00000007)
595449 4C495455 UTILITY......... 000000

ok 3k ok sk ok 5k ok %K ok %ok ok

Number of difference sections found: 1

Number of difference records found: 2

DIFFERENCES /WIDTH=80/MODE=(HEX,ASCII)
DISK1: [GEORGE.TEXT]EXAMPLE.TXT; 2/CHANGE _BAR-
DISK1: [GEORGE.TEXT]EXAMPLE.TXT; 1

The DIFFERENCES command compares the same files as in Example 1, but
lists the differences in both hexadecimal and ASCII formats. The command
also specifies that default change bars be used in the output. The default
change bar notation for the hexadecimal output is ***CHANGE=***. For the
ASCII output, the default change bar character is the exclamation point.

ﬂ $ DIFFERENCES/OUTPUT BOSTON::DISK2:TEST.DAT OMAHA::DISK1: [PGM]TEST.DAT

The DIFFERENCES command compares two remote files and displays any
differences found. The first file is TEST.DAT on remote node BOSTON.
The second file is also named TEST.DAT on remote node OMAHA. The
DIFFERENCES output is located in the file DISK1:[PGM]TEST.DIF.

DCL-135

DIRECTORY

DIRECTORY

Provides a list of files or information about a file or group of files.

Requires READ (R) access to the directories or sufficient privilege to
override the protection to obtain information. Requires READ access
to the files or sufficient privilege to override the protection to obtain
information other than the file name.

FORMAT DIRECTORY [file-spec],...]]

PARAMETER file-specl,...]

Specifies one or more files to be listed. The syntax of a file specification
determines which files will be listed, as follows:

* If you do not enter a file specification, the DIRECTORY command lists all
versions of the files in the current default directory.

e If you specify only a device name, the DIRECTORY command uses your
default directory specification.

* Whenever the file specification does not include a file name, file type and
a version number, all versions of all files in the specified directory are
listed.

* If a file specification contains a file name or a file type, or both, and no
version number, the DIRECTORY command lists all versions.

* If a file specification contains only a file name, the DIRECTORY command
lists all files in the current default directory with that file type, regardless
of file type and version number.

* If a file specification contains only a file type, the DIRECTORY command
lists all files in the current default directory with that file type, regardless
of file name and version number.

Wildcard characters can be used in the directory specification, file name, file

type, or version number fields of a file specification to list all files that satisfy
the components you specify. Separate multiple file specifications with either
commas or plus signs.

DESCRIPTION The DIRECTORY command lists the files contained in a directory. When you
use certain qualifiers with the command, additional information is displayed,
along with the names of the files.

The output of the DIRECTORY command depends on certain formatting
qualifiers and their defaults. These qualifiers are as follows: /COLUMNS,
/DATE, /FULL, /OWNER, /PROTECTION, and /SIZE. However, the files
that are listed always appear in alphabetical order, with the highest-numbered
versions first.

DCL-136

DIRECTORY

In studying the qualifiers and the capabilities they offer, watch for qualifiers
that work together and for qualifiers that override other qualifiers. For
example, if you specify the /FULL format, the system cannot display all the
information in more than one column. Thus, if you specify both /COLUMNS
and /FULL, the number of columns you request is ignored.

QUALIFIERS

/ACL

Controls whether the access control list (ACL) is displayed for each file. By
default, DIRECTORY does not display the ACL for each file. The /ACL
qualifier overrides the /COLUMNS qualifier.

/BACKUP

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/BACKUP selects files according to the dates of their most recent backups.
This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /CREATED, /EXPIRED, and

/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default)) TOMORROW,

or YESTERDAY. Specify one of the following qualifiers with /BEFORE to
indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (default), /EXPIRED, or /MODIFIED.

Time must be specified using the VMS format of DD-MMM-YYY
HH:MM:SS.CC; international date/time formats will not be accepted by
the system. See Section 1.4 of the VMS DCL Concepts Manual for complete
information on specifying time values.

/BRIEF (default)

Displays only a file’s name, type, and version number. The brief format
lists the files in alphabetical order from left to right on each line, in
descending version number order. You can use the /ACL, /DATE, /FILE_
ID, /NOHEADING, /OWNER, /PROTECTION, /SECURITY, and /SIZE
qualifiers to expand a brief display.

/BY_OWNER|[=uic]

Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC using standard UIC format as described in Section 8.1 of the
VMS DCL Concepts Manual.

/COLUMNS=n

Specifies the number of columns in a brief display. The default is four.
However, you can request as many columns as you like, restricted by the
value of the /WIDTH qualifier. The /COLUMNS qualifier is incompatible
with /ACL, /FULL, and /SECURITY.

The number of columns actually displayed depends on the amount of
information requested for each column and the DISPLAY value of the
/WIDTH qualifier. The system displays only as many columns as can

DCL-137

DIRECTORY

DCL-138

fit within the default or specified display width, regardless of how many
columns you specify with /COLUMNS.

The DIRECTORY command truncates long file names only when you have
asked for additional information to be included in each column. The default
file name size is 19. Use the /WIDTH qualifier to change the default. When
a file name is truncated, the system displays one less character than the file
name field size and inserts a vertical bar in the last position. For example, if
the file name is SHOW_QUEUE_CHARACTERISTICS, and if you requested
DIRECTORY to display both file name and size in each column, the display
for that file would be SHOW_QUEUE_CHARACT]I 120.

/CREATED (default)

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/CREATED selects files based on their dates of creation. This qualifier is
incompatible with the other qualifiers that also allow you to select files
according to time attributes: /BACKUP, /EXPIRED, and /MODIFIED. If you
specify none of these four time qualifiers, the default is /CREATED.

/DATE[=option]
/NODATE (default)

Includes the backup, creation, expiration, or modification date for each
specified file; the default is /NODATE. If you use the /DATE qualifier
without an option, the creation date is provided. Possible options are as
follows:

ALL Creation, expiration, backup, and last modification dates
BACKUP Last backup date

CREATED Creation date

EXPIRED Expiration date

MODIFIED Last modification date

/EXCLUDE=(file-spec[,...])

Excludes the specified files from the DIRECTORY operation. When using
/EXCLUDE in a DIRECTORY operation of a different device, use only the
file name in the file specification. Wildcard characters are allowed in the file
specification. However, you cannot use relative version numbers to exclude a
specific version. If you provide only one file specification, you can omit the
parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/EXPIRED selects files according to their expiration dates. (The expiration
date is set with the SET FILE/EXPIRATION_DATE command.) The
/EXPIRED qualifier is incompatible with the other qualifiers that also allow
you to select files according to time attributes: /BACKUP, /CREATED, and
/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/FILE_ID

Controls whether the file’s identification number (FID) is displayed. By
default, a file’s identification is not displayed unless the /FULL qualifier is
specified.

DIRECTORY

/FULL

Displays the following information for each file:

File name

File type

Version number

Number of blocks used
Number of blocks allocated
Date of creation

Date last modified and revision number
Date of expiration

Date of last backup

File owner’s UIC

File protection

File identification number (FID)
File organization

Journaling information

Other file attributes

Record attributes

Record format

Access control list (ACL)

/GRAND_TOTAL
Displays only the totals for all files and directories that have been specified.

Suppresses both the per-directory total and individual file information. (See
the /TRAILING qualifier for information on displaying directory totals.)

/HEADING
/NOHEADING

Controls whether heading lines consisting of a device description and
directory specification are printed. The default output format provides this
heading. When /NOHEADING is specified, the display is in single-column
format and the device and directory information appears with each file name.
The /NOHEADING qualifier overrides /COLUMNS.

The combination of the /NOHEADING and /NOTRAILING qualifiers is
useful in command procedures where you want to create a list of complete
file specifications for later operations.

/MODIFIED

Modifies the time value specified with the /BEFORE or /SINCE qualifier.
/MODIFIED selects files according to the dates on which they were last
modified. This qualifier is incompatible with the other qualifiers that also
allow you to select files according to time attributes: /BACKUP, /CREATED,

and /EXPIRED. If you specify none of these four time modifiers, the default
is /CREATED.

/OUTPUT/[=file-spec]
/NOOUTPUT

Controls where the output of the command is sent. By default, the display
is written to the current SYS$OUTPUT device. No wildcard characters are
allowed.

If you enter /OUTPUT with a partial file specification (for example,
/OUTPUT=[JONES]), DIRECTORY is the default file name and LIS the
default file type. If you enter /NOOUTPUT, output is suppressed.

DCL-139

DIRECTORY

DCL-140

If the output will be written to a file in the same directory, the output file
name will appear in the directory listing.

/OWNER
/NOOWNER (default)

Controls whether the file owner’s UIC is listed.

The default size of the owner field is 20 characters. If the file owner’s UIC
exceeds the length of the owner field, the information will be truncated. The
size of this field can be altered by specifying /WIDTH=OWNER, along with a
value for the OWNER field. For more information, see the description of the
/WIDTH qualifier.

/PRINTER

Puts the display in a file and queues the file to SYS$PRINT for printing
under the name given by the /OUTPUT qualifier. If you do not specify
the /OUTPUT qualifier, output is directed to a temporary file named
DIRECTORY.LIS, which is queued for printing and then deleted.

/PROTECTION
/NOPROTECTION (default)

Controls whether the file protection for each file is listed.

/SECURITY

Controls whether information about file security is displayed; using
/SECURITY is equivalent to using the /ACL, / OWNER, and /PROTECTION
qualifiers together.

/SELECT=(keyword|,...])

Allows you to select files for display according to size. Choose one of the
following keywords:

SIZE=EMAXIMUM=n Displays files that have fewer blocks
than the value of n, which defaults to
1,073,741,823. Use with MINIMUM=n to
specify a size range for files to be displayed.

SIZE=MINIMUM=n Displays files that have blocks equal to or
greater than the value of n, which defaults
to 0. Use with MAXIMUM=n to specify a
size range for files to be displayed.

SIZE=(MAXIMUM=n,MINIMUM=m)}) Displays files whose blocksize falls within
the specified MAXIMUM and MINIMUM
range.

By default, file selection is based on other criteria.

/SINCE[=time]

Selects only those files dated after the specified time. You can specify time
as an absolute time, a combination of absolute and delta times, or as one of
the following keywords: TODAY (default) TOMORROW, or YESTERDAY.
Specify one of the following qualifiers with /BEFORE to indicate the time
attribute to be used as the basis for selection: /BACKUP, /CREATED
(default), /JEXPIRED, or /MODIFIED.

DIRECTORY

Time must be specified using the VMS format of DD-MMM-YYY
HH:MM:SS.CC; international date/time formats will not be accepted by
the system. See Section 1.4 of the VMS DCL Concepts Manual for complete
information on specifying time values.

/SIZE[=option]
/NOSIZE (default)

Displays the size in blocks of each file. If you omit the option parameter, the
default lists the file size in blocks used (USED). Specify one of the following
options:

ALL Lists the file size both in blocks allocated and blocks used
ALLOCATION Lists the file size in blocks allocated
USED Lists the file size in blocks used

The size of this field can be altered by supplying the SIZE value of the
/WIDTH qualifier.

/TOTAL

Displays only the directory name and total number of files.

By default, the output format is /BRIEF, which gives this total, but also lists
all the file names, file types, and their version numbers.

/TRAILING
/NOTRAILING

Controls whether trailing lines that provide the following summary
information are displayed:

* Number of files listed
* Total number of blocks used per directory
¢ Total number of blocks allocated

* Total number of directories and total blocks used or allocated in ail
directories (only if more than one directory is listed)

By default, the output format includes most of this summary information.
The /SIZE and /FULL qualifiers determine more precisely what summary
information is included.

Used by itself, /TRAILING lists the number of files in the directory. Used
with /SIZE, /TRAILING lists the number of files and the number of

blocks (displayed according to the option of the /SIZE qualifier, FULL or
ALLOCATION). Used with /FULL, /TRAILING lists the number of files as
well as the number of blocks used and allocated. If more than one directory is
listed, the summary includes the total number of directories, the total number
of blocks used, and the total number of blocks allocated.

/VERSIONS=n

Specifies the number of versions of a file to be listed. The default is all
versions of each file. A value less than 1 is not allowed.

DCL-141

DIRECTORY

/WIDTH=(keyword],...])

Formats the width of the display. If you specify only one keyword, you can
omit the parentheses. Possible keywords are as follows:

DISPLAY=n Specifies the total width of the display as an integer in the range
1 through 256 and defaults to O (setting the display width to
the terminal width). If the total width of the display exceeds the
terminal width, the information will be truncated.

FILENAME=n Specifies the width of the file name field; defaults to 19. If you
have requested another piece of information to be displayed
along with the file name in each column, file names that exceed
the n parameter cause the line to wrap, after the file name field.
(See the /COLUMNS qualifier.)

OWNER=n Specifies the width of the owner field; defaults to 20. If
the owner’'s UIC exceeds the length of the owner field, the
information will be truncated.

SIZE=n Specifies the width of the size field; defaults to 6. If the file
size exceeds the length of the size field, the information will be
truncated.

EXAMPLES
1

$ DIRECTORY AVERAGE.*

Directory DISK$DOCUMENT: [MALCOLM]

AVERAGE .EXE; 6 AVERAGE .FOR; 6 AVERAGE.LIS;4 AVERAGE . 0BJ; 12
Total of 4 files.

In this example, the DIRECTORY command lists all files with the file name
AVERAGE and any file type.

$ DIRECTORY/SIZE=USED/DATE=CREATED/VERSIONS=1/PROTECTION AVERAGE
Directory DISK$DOCUMENT: [MALCOLM]

AVERAGE .EXE;6 6 10-APR-1988 15:43 (RWED,RWED,RWED,RE)
AVERAGE .FOR ;6 2 2-APR-1988 10:29 (RWED,RWED,RWED,RE)
AVERAGE .LIS;4 5 9-APR-1988 16:27 (RWED,RWED,RWED,RE)
AVERAGE.OBJ;6 2 9-APR-1988 16:27 (RWED,RWED,RWED,RE)

Total of 4 files, 15 blocks.

In this example, the DIRECTORY command lists the number of blocks used,
the creation date, and the file protection code for the highest version number
of all files named AVERAGE in the current default directory.

DCL-142

DIRECTORY

$ DIRECTORY/FULL [JONES.ITALIA]JPROJECTIONS.LIS
Directory WORK: [JONES.ITALIA]

PROJECTIONS.LIS;1 File ID: (7449,36222,2)
Size: 21/21 Owner: [DOC, JONES]
Created: 5-MAY-1988 15:49:03.11

Revised: 5-MAY-1988 15:49:49.39 (2)

Expires: <None specified>

Backup: <No backup recorded>

File organization: Sequential

File attributes: Allocation: 21, Extend: O, Global buffer count: O,
No version limit

Record format: Variable length, maximum 80 bytes

Record attributes: Carriage return carriage control
Journaling enabled: None

File protection: System:RWED, Owner:RWED, Group:RE, World:
Access Cntrl List: None

Total of 1 file, 21/21 blocks.

The DIRECTORY command in this example shows the date/time format
using the default language, English, and the default VMS format. Users
also may select other languages and formats that have been defined on their
systems with Run-Time Library international date/time formatting routines.
See the VMS RTL Library (LIB$) Manual.

$ DIRECTORY/VERSIONS=1/COLUMNS=1 AVERAGE.*

The DIRECTORY command in this example lists only the highest version of
each file named AVERAGE in the current default directory. The format is
brief and restricted to one column. Heading and trailing lines are provided.

$ DIRECTORY BLOCK%%%

The DIRECTORY command in this example locates all versions and types of
files in the default device and directory whose names begin with the letters
BLOCK and end with any three additional characters. The default output
format is brief, four columns, with heading and trailing lines.

$ DIRECTORY/EXCLUDE=(AVER.DAT;* ,AVER.EXE;*) [*...]AVER

The DIRECTORY command in this example lists and totals all versions and
types of files named AVER in all directories and subdirectories on the default
disk, except any files named AVER.DAT and AVER.EXE.

$ DIRECTORY/SIZE=ALL FRESNO::DISK1:[TAYLOR]*.COM

This DIRECTORY command in this example lists all versions of all files with
the file type COM in the directory TAYLOR on node FRESNO and device
DISK1. The listing includes the file size both in blocks used and in blocks
allocated for each file.

DCL-143

DIRECTORY

B ¢ DIRECTORY-

_$/MODIFIED/SINCE=31-DEC-1988:01:30/SIZE=ALL/OWNER-
_$/PROTECTION/OUTPUT=UPDATE/PRINTER [A%*]

DCL-144

The DIRECTORY command in this example locates all files that have been
modified since 1:30 A.M. on December 31, 1988 and that reside on the
default disk in all directories whose names begin with the letter A. It formats
the output to include all versions, the size used and size allocated, the date
last modified, the owner, and the protection codes. The output is directed to
a file named UPDATE.LIS that is queued automatically to the default printer
queue and then deleted when done.

DISCONNECT

DISCONNECT

Breaks the connection between a physical terminal and a virtual terminal.
After the physical terminal is disconnected, both the virtual terminal and
the process using it remain on the system.

Requires that your physical terminal is connected to a virtual

terminal.
FORMAT DISCONNECT
PARAMETERS None.

DESCRIPTION Use the DISCONNECT command to disconnect a physical terminal from
a virtual terminal and its associated process. The virtual terminal and the
process remain on the system, so you can use the CONNECT command
to reconnect to the process later. (See the description of the CONNECT
command for more information about virtual terminals and how to connect
to them.) To terminate a process connected to a virtual terminal, use the
LOGOUT command.

After you are disconnected from a virtual terminal, you can use the physical
terminal to log in again.

You can use the DISCONNECT command only if your physical terminal is
connected to a virtual terminal.

QUALIFIER /CONTINUE
/NOCONTINUE (default)

Controls whether the CONTINUE command is executed in the current
process just before connecting to another process. This permits an interrupted
image to continue processing after the disconnect takes place.

EXAMPLES
b s pisconnecT

This command disconnects a physical terminal from a virtual terminal, but
does not log the process out. The physical terminal can now be used to log
in again.

DCL-145

DISCONNECT

I $ RUN PAYROLL
-y

$ DISCONNECT/CONTINUE

DCL-146

In this example, the RUN command is issued from a physical terminal
that is connected to a virtual terminal. After the image PAYROLL.EXE is
interrupted, the DISCONNECT command disconnects the physical and
the virtual terminals without logging out the process. The /CONTINUE
qualifier allows the image PAYROLL.EXE to continue to execute. However,
the terminal can be used to log in again and perform other work.

DISMOUNT

DISMOUNT

Closes a mounted disk or magnetic tape volume for further processing
and deassigns the logical name associated with the device. If the volume
is mounted with the /SHARE qualifier, its logical name is deassigned but
the volume remains mounted until all processes using it dismount it or
terminate. Note that all open files on the volume must be closed before
the actual dismount can be done. Note, also, that the file system cannot
dismount a volume while any known file lists associated with it contain
entries.

Requires the GRPNAM and SYSNAM user privileges to dismount
group and system volumes.

I
FORMAT DISMOUNT device-namel:]
S
PARAMETER device-name|:]
Name of the device containing the volume — either a logical name or a
physical name. If a physical name is specified, the controller defaults to A
and the unit defaults to 0.
If the volume currently mounted on the device is a member of a disk or tape
volume set, all volumes in the set are dismounted, unless the /JUNIT qualifier
is specified.
DESCRIPTION The DISMOUNT command (which invokes the $DISMOU system service)

performs the following operations:

e Removes the volume from the user’s list of mounted volumes, deletes
the logical name (if any) associated with the volume, and decrements the
mount count.

¢ If the mount count equals 0 after being decremented, DISMOUNT marks
the volume for dismounting, and then waits until the volume is idle
before dismounting it. (A native volume is idle when no user has an
open file to the volume; a foreign volume is idle when no channels are
assigned to the volume.)

¢ If the mount count does not equal 0 after being decremented,
DISMOUNT does not mark the volume for dismount (because the volume
must have been mounted shared). In this case, the total effect for the
issuing process is that the process is denied access to the volume and a
logical name entry is deleted.

¢ After a volume is actually dismounted, nonpaged pool is returned to the
system. Paged pool is also returned if the volume had been mounted
using the /GROUP or /SYSTEM qualifiers.

¢ If a volume is part of a Files—11 volume set and the flag bit
DMT$V_UNIT is not set, the entire volume set will be dismounted.

DCL-147

DISMOUNT

QUALIFIERS

DCL-148

Note:

If the volume was mounted with the /SHARE qualifier, it is not actually
dismounted until all users who mounted it dismount it or log off. However,
the DISMOUNT command deassigns the logical name associated with the
device.

If the device was allocated with an ALLOCATE command, it remains
allocated after the volume is dismounted with the DISMOUNT command.
If the device was implicitly allocated by the MOUNT command, the
DISMOUNT command deallocates it.

If the volume was mounted with the /GROUP or the /SYSTEM qualifier, it
is dismounted even if other users are currently accessing it. The GRPNAM
and SYSNAM user privileges are required to dismount group and system
volumes, respectively.

Note that the file system performs volume dismounting, and all open files
on the volume must be closed for the dismount to finish. Note also, that the
file system cannot dismount a volume while any known file lists associated
with it contain entries. Thus, a substantial amount of time can pass between
the time you enter the DISMOUNT command and the completion of the
dismount. Always wait for the drive to unload before you remove the
volume. (To verify that the dismount has completed, enter the SHOW
DEVICES command.)

/ABORT

Requires volume ownership or the user privilege VOLPRO to use this
qualifier with a volume that is mounted neither group nor system.

Specifies that the volume is to be dismounted, regardless of who actually
mounted it. The primary purpose of the /ABORT qualifier is to terminate
mount verification. DISMOUNT/ABORT also cancels any outstanding
I/O requests. If the volume was mounted with the /SHARE qualifier, the
/ABORT qualifier causes the volume to be dismounted for all of the users
who mounted it.

/CLUSTER

Dismounts a volume clusterwide. After the DISMOUNT command
successfully dismounts the volume on the local node, the volume is
dismounted on every other node in the existing VAXcluster. If the system
is not a member of a VAXcluster, the /CLUSTER qualifier has no effect.

JUNIT

Dismounts only the volume of a volume set on the specified device. By
default, all volumes in a set are dismounted.

Avoid dismounting the root volume of a volume set, because it contains
the master file directory (MFD). It may be impossible to access files on a
volume set if the MFD is not accessible.

JUNLOAD (default)
/NOUNLOAD

Unloads the device on which the volume is mounted. If you specify
/NOUNLOAD, the device remains in a ready state.

DISMOUNT

EXAMPLES

$ MOUNT MT: PAYVOL

$ DISMOUNT TAPE:

$ MOUNT/SHARE DBA3:

$ DISMOUNT DBA3:

TAPE

The MOUNT command in this example mounts the tape whose volume
identification is PAYVOL on the device MTAO: and assigns the logical
name TAPE to the device. By default, the volume is not shareable. The
DISMOUNT command releases access to the volume, deallocates the device,
and deletes the logical name TAPE.

DOC_FILES

The MOUNT command in this example mounts the volume labeled DOC_
FILES on the device DBA3. Other users can enter MOUNT commands

to access the device. The DISMOUNT command shown in this example
deaccesses the device for the process issuing the command. If other users still
have access to the volume, the volume remains mounted for their process or
processes.

$ DISMOUNT/NOUNLOAD DMA2:

The DISMOUNT command in this example dismounts the volume; the
/NOUNLOAD qualifier requests that the volume remain in a ready state.

$ MOUNT/BIND=PAYROLL DMA1:,DMA2: PAYROLLO1,PAYROLLO2

$ DiSMOUNT/UNIT DMA2:

The MOUNT command in this example mounts PAYROLL, a two-volume
set. The DISMOUNT command dismounts only PAYROLL02, leaving
PAYROLLO1 accessible. Note that because the master file directory (MFD)
for the volume set is on the root volume, you should not dismount the root
volume (in this case, PAYROLLO01) of the volume set.

DCL-149

DUMP

DUMP

Displays the contents of a file, disk volume, or magnetic tape volume in
decimal, hexadecimal, or octal format, as well as the ASCIil conversion.

FORMAT DUMP file-spec/,...]

PARAMETER file-spec

Specifies the file or name of the device being dumped.

If the specified device is not a disk, tape, or network device, or if the device
is mounted with the /FOREIGN qualifier, the file specification must contain
only the device name.

If the specified device is a network device, a disk device, or tape device that
is mounted without the /FOREIGN qualifier, the file specification can contain
wildcards.

DESCRIPTION By default, the DUMP command formats the output both in ASCII characters
and in hexadecimal longwords. You can specify another format for the dump
by using a radix qualifier (/OCTAL, /DECIMAL, or /fHEXADECIMAL) or a
length qualifier (/BYTE, /WORD, or /LONGWORD).

Dumping Files

If the input medium is a network device, a disk device, or tape device that is
mounted without the /FOREIGN qualifier, the DUMP command operates on
files. You can dump files by either records or blocks. Wildcard specifications
can be used to select a group of files for processing.

Dumping Volumes

If the input medium is not a disk or tape device, or if it is mounted with the
/FOREIGN qualifier, the DUMP command operates on the input device as
a non-file-structured medium. Disk devices are dumped by 512-byte logical
blocks. Other devices are dumped by physical blocks. No repositioning of
the input medium occurs; therefore, consecutive blocks on a tape can be
dumped by a single DUMP command.

If you have LOG_IO (logical I/0) privilege, you can dump random blocks
on a Files-11 volume. For example, using the /BLOCKS qualifier you could
dump block 100 on the system disk.

Reading Dumps

The ASCII representation is read left to right. The hexadecimal, decimal, and
octal representations are read right to left.

DCL-150

DUMP

Specifying Numeric Qualifier Values

The numeric values for the /BLOCKS, /RECORDS, and /NUMBER qualifiers
can be specified either as decimal numbers or with a leading %X, %O, or %D
to signify hexadecimal, octal, or decimal numbers respectively. For example,
the following are all valid ways to specify decimal value 24:

24

%X18
%030
%D24

QUALIFIERS

/ALLOCATED

Includes in the dump all blocks allocated to the file. (By default, the dump
does not include blocks following the end-of-file.)

You can specify /ALLOCATED if the input is a disk that is mounted without
the /FOREIGN qualifier. /ALLOCATED and /RECORDS are mutually
exclusive.

/BLOCKS[=(option[,...])]

Dumps the specified blocks one block at a time, which is the default method
for all devices except network devices.

Block numbers are specified as integers relative to the beginning of the file.
Typically, blocks are numbered beginning with 1. If a disk device is mounted
/FOREIGN, blocks are numbered beginning with 0. Select a range of blocks
to be dumped by specifying one of the following options:

START:n Specifies the number of the first block to be dumped; the default
is the first block.
END:n Specifies the number of the last block to be dumped; the default

is the last block or the end-of-file block, depending on the
/ALLOCATED qualifier.

COUNT:n Specifies the number of files to be dumped. COUNT provides an
alternative to END; you may not specify both.

If you specify only one option, you can omit the parentheses.
/BLOCKS and /RECORDS are mutually exclusive.

Use the /BLOCKS qualifier to dump random blocks from Files-11 volumes.
This requires LOG-1O (logical I/0) privilege.

/BYTE

Formats the dump in bytes. /BYTE, /LONGWORD, and /WORD are
mutually exclusive. The default format is composed of longwords.

/DECIMAL
Dumps the file in decimal radix. /DECIMAL, /HEXADECIMAL (default),
and /OCTAL are mutually exclusive.

/FILE_HEADER

Dumps each data block that is a valid Files—11 header in Files-11 header
format rather than the selected radix and length.

DCL-151

DUMP

DCL-152

/FORMATTED (default)

/NOFORMATTED

Dumps the file header in Files-11 format; /NOFORMATTED dumps the
file header in octal format. This qualifier is useful only when /HEADER is
specified.

/HEADER

Dumps the file header and access control list. To dump only the file header,
and not the file contents, also specify /BLOCK=(COUNT:0). /HEADER is
invalid for devices mounted /FOREIGN.

Use the /FORMATTED qualifier to control the format of the display.

You can use the /FILE_HEADER qualifier with /HEADER to have Files-11
file headers printed in an interpreted representation.

By default, the file header is not displayed.

/HEXADECIMAL (default)
Dumps the file in hexadecimal radix. /DECIMAL, /HEXADECIMAL
(default), and /OCTAL are mutually exclusive.

/LONGWORD (default)

Formats the dump in longwords. /BYTE, /LONGWORD, and /WORD are
mutually exclusive.

/NUMBER/[=n]

Specifies how byte offsets are assigned to the lines of output. If you specify
/NUMBER, the byte offsets increase continuously through the dump,
beginning with n; if you omit /NUMBER, the first byte offset is 0. By default,
the byte offset is reset to 0 at the beginning of each block or record.

/OCTAL
Dumps the file in octal radix. /DECIMAL, /HEXADECIMAL (default), and
/OCTAL are mutually exclusive.

/OUTPUT[=file-spec]

Specifies the output file for the dump. If you do not specify a file
specification, the default is the file name of the file being dumped and the file
type DMP. If /OUTPUT is not specified, the dump goes to SYSSOUTPUT.
No wildcard characters are allowed. /OUTPUT and /PRINTER are mutually
exclusive.

/PRINTER

Queues the dump to SYS$PRINT in a file named with the file name of the
file being dumped and the file type DMP. If /PRINTER is not specified, the
dump goes to SYSSOUTPUT. No wildcard characters are allowed. /OUTPUT
and /PRINTER are mutually exclusive.

/RECORDS|=(option],...]}]

Dumps the file a record at a time rather than a block at a time. (By default,
input is dumped one block at a time for all devices except network devices.)

Blocks are numbered beginning with 1.

DUMP

Select a range of blocks to be dumped by specifying one of the following

options:

START:n Specifies the number of the first record to be dumped; the
default is the first record.

END:n Specifies the number of the last record to be dumped; the default
is the last record of the file.

COUNT:n Specifies the number of records to be dumped. COUNT provides

an alternative to END; you may not specify both.

If you specify only one option, you can omit the parentheses.
If you specify /RECORDS, you cannot specify /ALLOCATED or /BLOCKS.

/WORD

Formats the dump in words. /BYTE, /LONGWORD, and /WORD are
mutually exclusive.

EXAMPLES

il $ DUMP TEST.DAT
Dump of file DISKO:[NORMAN]TEST.DAT;! on 15-APR-1988 15:43:26.08
File ID (3134,818,2) End of file block 1 / Allocated 3
Virtual block number 1 (00000001), 512 (0200) bytes
706D6173 20612073 69207369 68540033 3.This is a samp 000000
73752065 62206F74 20656C69 6620656C le file to be us 000010
61786520 504D5544 2061206E 69206465 ed in a DUMP exa 000020

00000000 00000000 O000002E 656C706D mple............ 000030
00000000 00000000 00000000 00000000 000040
00000000 00000000 00000000 00000000 000050
00000000 00000000 00000000 00000000 000060
00000000 00000000 00000000 00000000 0001EO
00000000 00000000 00000000 00000000 0001F0

The DUMP command displays the contents of TEST.DAT both in hexadecimal
longword format and in ASCII beginning with the first block in the file.

DCL-153

DUMP

$ DUMP TEST.DAT/OCTAL/BYTE

Dump of file DISKO: [NORMAN]TEST.DAT;1 on 15-APR-1988 15:45:33.58
File ID (74931,2,1)
Virtual block number

151 040
160 155
040 145
163 165
040 141
141 170
377 377
000 000
000 000
000 000

000 000
000 000

163
141
154
040
040
145
000
000
000
000

000
000

151
163
151
145
156
040
056
000
000
000

000
000

150
040
146
142
151
120
145
000
000
000

000
000

End of file block 1 / Allocated 3
1 (00000001), 512 (0200) bytes

124 000 063 3.This i 000000

141 040 163 s a samp 000010

040 145 154 1le file 000020

040 157 164 to be us 000030

040 144 145 ed in a 000040

115 125 104 DUMP exa 000050

154 160 155 mple.... 000060

000 000 000 000070
000 000 000 000100
000 000 000 000110
000 000 000 000760
000 000 000 000770

The DUMP command displays the image of the file TEST.DAT, formatted
both in octal bytes and in ASCII characters beginning with the first block.

E $ DUMP NODE3::DISK2: [STATISTICS]RUN1.DAT

DCL-154

This command line dumps the file RUN1.DAT that is located at remote node
NODE3. The default DUMP format will be used.

EDIT/ACL

EDIT/ACL

Invokes the Access Control List (ACL) Editor to create or modify an access
control list for a specified object. For a complete description of the VMS
Access Control List (ACL) Editor, including information about the EDIT
/ACL command and its qualifiers, see the VMS Access Control List Editor
Manual. The /ACL qualifier is required.

FORMAT

EDIT/ACL object-spec

DCL-155

EDIT/EDT

EDIT/EDT

Invokes the VAX EDT interactive text editor. The /EDT qualifier is not
required, because EDT is the VMS default editor.

EDIT file-spec

Specifies the file to be created or edited using the EDT editor. If the file does
not exist, it is created by EDT.

The EDT editor does not provide a default file type when creating files; if you
do not include a file type, it is null. The file must be a disk file on a Files-11
formatted volume.

No wildcard characters are allowed in the file specification.

PR

The EDT editor creates or edits text files. You can use EDT to enter or edit
text in three modes: keypad, line, or nokeypad. Keypad editing, which

is screen-oriented, is available on VT300-series, VT200-series, VT100, and
VT52 terminals. A screen-oriented editor allows you to see several lines of
text at once and move the cursor throughout the text in any direction. Line
editing operates on all terminals. In fact, if you have a terminal other than a
VT300-series, VT200-series, VIT100, or VT52, line editing is the only way you
can use EDT. You might prefer line editing if you are accustomed to editing
by numbered lines. Nokeypad mode is a command oriented screen editor
available on VT300-series, VT200-series, VT100, and VT52 terminals. You
can use line mode and nokeypad mode to redefine keys for use in keypad

When you invoke EDT, you are in line mode by default. If you are editing
an existing file, EDT displays the line number and text for the first line of the
file. If you are creating a new file, EDT displays the following message:

Input file does not exist

In either case, EDT then displays the line mode prompt, which is the asterisk

For complete details on the EDT editor, see the VAX EDT Reference Manual.

FORMAT
PARAMETER file-spec
DESCRIPTION

mode.

(EOB]

(*).
QUALIFIERS

DCL-156

/COMMANDI/[=file-spec]
/NOCOMMAND

Determines whether or not EDT uses a startup command file. The
/COMMAND file qualifier should be followed by an equal sign and the
specification of the command file. The <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>