dlilgliltlall

VAX/VMS
Command Language
User’s Guide
Order No. AA-D023B-TE

March 1980

The manual describes the VAX/VMS command language, DCL. It provides
detailed reference information and examples of all nonprivileged commands
available to general users.

VAX/VMS
Command Language
User’s Guide
Order No. AA-D023B-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes the
VAX/VMS Command Language User's Guide
(Order No. AA-D0O23A-TE) and Update
Notice No. 1 (AD-D023A-T1)

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Updated, February 1979
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation, Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1978, 1979, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the wuser's <critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX

9/80~14

PREFACE
PART 1I.

CHAPTER

CHAPTER

CONTENTS

USING THE COMMAND LANGUAGE

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
1.7.1
1.7.2
1.8

1.9
1.9.1
1.9.1.1
1.9.1.2
1.9.1.3
1.9.2
1.10
1.11

2

2.1
2.1.1
2.1.2
2.1.3
2.1.3.1
2.1.3.2
2.1.4
2.1.5
2.1.5.1
2.1.5.2
2.1.6
2.1.6.1
2.1.6.2
2.1.6.3
2.1.6.4
2.2
2.2.1
2.2.2
2.2.2.1
2.2.3
2.2.3.1

OVERVIEW

ACCESSING THE SYSTEM
YOUR COMMAND ENVIRONMENT
ENTERING COMMANDS
COMMAND PROMPTING
SYSTEM MESSAGES
THE HELP COMMAND
TAILORING THE COMMAND LANGUAGE
Synonyms for DCL Commands
Command Procedures
THE FILE SYSTEM
TERMINAL CHARACTERISTICS
Special Terminal Function Keys
Deleting Characters
Deleting Lines
Canceling Commands
Setting Terminal Characteristics
SUMMARY OF VAX/VMS DCL COMMANDS

SUMMARY OF VAX/VMS USER PRIVILEGES AND

RESOURCE QUOTAS

FILE SPECIFICATIONS AND LOGICAL NAMES

FILE SPECIFICATIONS
Network Nodes
Devices
Directories
Directory Names
Directory Hierarchies

File Names, File Types, and Version Numbers

Defaults for File Specifications
Temporary Defaults

Null File Names and File Types
Wild Card Characters

The Match~All Wild Card Character

The Match-Any-Character Wild Card Character

The Directory Searching Wild Card
Characters

Temporary Defaults in Output Files

LOGICAL NAMES
Logical Name Tables
How to Specify Logical Names

Displaying Logical Name Table Entries

Logical Name Translation
Recursive Translation

iii

Page

ix

—
|
[

O e e e e T ol el ol el
| L L I |
HFOOONINNADIVTNUE O NN -

[
| 1
N
—

[}
—

1
O D DWN -

m:*rrw:mroﬁawtom:wtv N
[ay—
N O

I
[
N

CONTENTS

Page
2,2.3.2 Applying Defaults 2-19
2.2.3.3 Logical Names in Input File Lists 2=-20
2.2.3.4 Bypassing Logical Name Translation 2-20
2.2.4 Default Logical Names 2-20
2.2.4.1 Default Process Logical Names 2-20
2.2.4.2 Using Default Logical Names 2-21
2.2.4.3 Default System Logical Names 2-22
-2.2.5 Logical Names for Program Input/Output 2-22
CHAPTER 3 DISK AND TAPE VOLUMES 3-1
3.1 PROTECTION 3-1
3.1.1 Volume and File Protection 3-2
3.1.1.1 Disk File Protection 3-3
3.1.1.2 Tape File Protection 3-4
3.1.2 Device Allocation 3-4
3.2 VOLUME INITIALIZATION 3-5
3.3 MOUNTING VOLUMES ON DEVICES 3-5
3.3.1 Requesting Operator Assistance 3-6
3.3.2 Dismounting Volumes 3-7
3.4 USING DISK AND TAPE VOLUMES 3-7
3.4.1 Using Disks 3-8
3.4.1.1 Copying Files from Files-11 Structure Level
1 Disks 3-8
3.4.1.2 Sharing Volumes 3-9
3.4.1.3 Disk Quotas 3-9
3.4.2 Disk Volume Sets 3-10
3.4.2.1 Creating a Volume Set 3-11
3.4.2.2 Creating a Disk Volume Set from New Volumes 3-11
3.4.2.3 Creating a Disk Volume Set from an Existing
Volume 3-12
3.4.2.4 Mounting a Disk Volume Set 3-12
3.4.2.5 Adding Volumes to a Disk Volume Set 3-14
3.4.2.6 Dismounting Disk Volume Sets 3-14
3.4.3 Using Tapes 3-14
3.4.3.1 Reading and Writing Tape Files 3-15
3.4.3.2 Version Numbers for Tape Files 3-16
3.4.3.3 Writing Tapes with Compatibility Mode
Programs 3-16
3.4.4 Multivolume Tape Sets 3-16
3.4.4.1 Creating a Multivolume Tape Set 3-17
3.4.4.2 Using Multiple Tape Drives 3-18
3.5 ACCESSING DEVICES IN BATCH JOBS 3-18
CHAPTER 4 PROGRAMMING WITH VAX/VMS 4-1
4.1 COMMANDS FOR PROGRAM DEVELOPMENT 4-1
4.1.1 Program Libraries 4-3
4.1.1.1 Object Module Libraries 4-4
4.1.1.2 Macro Libraries 4-4
4.1,1.3 Help Libraries 4-4
4.1.1.4 Text Libraries 4-4
4.1.2 Controlling Program Updates
and Modifications 4-5
4.1.2.1 Updating Source Programs 4-5
4.,1.2.2 Comparing Versions of Files 4-5

iv

CONTENTS

Page
4,2 DEBUGGING 4-5
4.2,1 Symbolic Debugging 4-6
4.2.2 Debugging with Virtual Addresses 4-6
4.2.3 Interrupting Program Execution 4-7
4.3 EXIT HANDLERS AND CONDITION HANDLERS 4-8
4.3.1 Exit Handlers 4-9
4.3.2 Exception Conditions 4-9
4.4 PROCESS CONCEPTS 4-9
4.4.1 Priorities, Privileges, and Quotas 4-10
4.4.,2 Input, Output, and Error Streams 4-11
4.4.3 Processes and Subprocesses 4-11
CHAPTER 5 GRAMMAR RULES 5-1
5.1 RULES FOR ENTERING COMMANDS 5-1
5.1.1 Rules for Continuing Commands on More
than One Line 5-2
5.1.2 Rules for Entering Comments 5-2
5.1.3 Rules for Truncating Keywords 5-3
5.1.3.1 Truncating Command Names 5-3
5.1.3.2 Truncating Command Parameters, Command
Qualifiers, and Command Qualifier Values 5-3
5.1.3.3 Abbreviations in Command Procedure Files 5-4
5.2 RULES FOR ENTERING FILE SPECIFICATIONS 5-4
5.2.1 Rules for Entering File
Specification Lists 5-4
5.3 RULES FOR ENTERING QUALIFIERS 5-5
5.3.1 Rules for Determining Qualifier Defaults 5-5
5.3.2 Rules for Entering Qualifier Values 5-7
5.3.3 Rules for Entering Output File Qualifiers 5-8
5.4 RULES FOR ENTERING CHARACTER STRING DATA 5-9
5.5 RULES FOR ENTERING NUMERIC VALUES 5-12
5.6 RULES FOR FORMING EXPRESSIONS 5-12
5.6.1 Rules for Entering Operators 5-12
5.6.2 Rules for Specifying Operators 5-12
5.7 RULES FOR SPECIFYING LEXICAL FUNCTIONS 5-14
5.8 RULES FOR ENTERING DATES AND TIMES 5-15
5.8.1 Absolute Times 5-15
5.8.1.1 Syntax 5-15
5.8.1,2 Defaults 5-16
5.8.1.3 Examples 5-16
5.8.2 Delta Times 5-16
5.8.2.1 Syntax 5-17
5.8.2.2 Defaults 5-17
5.8.2.3 Examples 5-17
5.9 RULES FOR SYMBOL SUBSTITUTION 5-17
5.9.1 Phases of Symbol Substitution 5-17
5.9.2 Order of Symbol Substitution 5-18
5.10 RULES FOR PROTECTION CODES 5-18
5.11 RULES FOR DEFINING AND ABBREVIATING
COMMAND SYMBOLS 5-19

PART II.

CONTENTS

COMMAND DESCRIPTIONS

= (Assignment Statement)
@ (Execute Procedure)

ALLOCATE
ANALYZE
APPEND
ASSIGN

BASIC
BASIC/RSX11
BLISS

CANCEL

CLOSE
COBOL/C74
COBOL/RSX11
CONTINUE
COPY

CORAL

CREATE
CREATE/DIRECTORY
DEALLOCATE
DEASSIGN
DEBUG

DECK

DEFINE
DELETE
DELETE/ENTRY
DELETE/SYMBOL
DEPOSIT
DIFFERENCES
DIRECTORY
DISMOUNT
DUMP
EDIT/EDT
EDIT/SLP
EDIT/S0S
EDIT/SUM

EOD

EOJ

EXAMINE

EXIT

FORTRAN

GOTO

HELP

IF
INITIALIZE
INQUIRE

JOB

Lexical Functions
LIBRARY
LIBRARY/RSX11
LINK
LINK/RSX11
Login Procedure
LOGOUT

MACRO
MACRO/RSX11
MAIL

MCR

vi

Page

149
152
160
163
167
169
181
191
198
204
206
208
213
217
219

CONTENTS

MESSAGE

MOUNT

ON

OPEN

PASCAL
PASSWORD

PATCH

PRINT

PURGE

READ

RENAME

REQUEST

RUN (Image)
RUN (Process)
SET

SET CARD READER
SET CONTROL Y
SET DEFAULT™
SET HOST

SET MAGTAPE
SET MESSAGE
SET ON

SET PASSWORD
SET PROCESS
SET PROCESS/PRIORITY
SET PROTECTION

SET PROTECTION/DEFAULT

SET QUEUE/ENTRY
SET RMS DEFAULT
SET TERMINAL
SET VERIFY

SET WORKING SET
SHOW -
SHOW DAYTIME
SHOW DEFAULT
SHOW DEVICES
SHOW LOGICAL
SHOW MAGTAPE
SHOW NETWORK
SHOW PRINTER
SHOW PROCESS
SHOW PROTECTION
SHOW QUEUE

SHOW QUOTA

SHOW RMS DEFAULT
SHOW STATUS
SHOW SYMBOL
SHOW SYSTEM
SHOW TERMINAL
SHOW TRANSLATION
SHOW WORKING_SET
SORT

SORT/RSX11

STOP

STOP/ABORT
STOP/ENTRY
STOP/REQUEUE
SUBMIT
SYNCHRONIZE

vii

Page

221
224
235
237
240
243
245
249
255
257
260
263
266
268
280
283
285
286
288
290
292
295
297
299
302
304
307
308
312
315
325
327
329
331

332

332
337
340
341
343
344
347
348
350
352
353
354
356
358
359
360
361
368
373
376
377
378
379
384

CONTENTS

Page
TYPE 386
UNLOCK 388
WAIT 390
WRITE 392
APPENDIX A FOREIGN COMMAND FEATURE OF DCL A-1
A.l DEFINING A FOREIGN COMMAND A-1
A.2 ABBREVIATING THE FOREIGN COMMAND A-2
A.3 OBTAINING A PARAMETER STRING FROM THE COMMAND
INTERPRETER A-2
INDEX
Index-1
FIGURES
PART I
FIGURE 2-1 A Directory Hierarchy 2-6
3-1 Illustrating User Categories with a UIC of
[100,100] 3-3
4-1 Steps in Program Development 4-2
4-2 An Interactive Process 4-10
PART 1II
FIGURE 1 Sample Output of DIFFERENCES Command 103
2 Sample Output of DIRECTORY Command 113
TABLES
PART I
TABLE 1-1 Terminal Function Keys 1-9
1-2 Summary of VAX/VMS DCL Commands 1-10
1-3 User Privileges 1-21
1-4 Resource Quotas 1-23
2-1 Device Names 2-3
2-2 Default File Types _ 2=-7
2-3 File Specification Defaults 2-10
2-4 Default Process Logical Names 2-21
2-5 Default System Logical Names 2-22
4-1 Default Input File Types for Language
Processors 4-3
4-2 Commands Performed Within the Command
Interpreter 4-8
5-1 Nonalphanumeric Characters 5-10
5-2 Summary of Operators in Expressions 5-13
PART II
TABLE 1 Summary of Lexical Functions 167
2 LIBRARY Command Qualifiers 172
3 LIBRARY/RSX11l Command Qualifiers 183
4 SET Command Options 281
5 Default Characteristics for Terminals 324
6 SHOW Command Options 330

viii

PREFACE

MANUAL OBJECTIVES

This manual describes the VAX/VMS command language, DCL (DIGITAL
Command Language), and provides usage and reference information on the
command language.

INTENDED AUDIENCE

This manual is intended for all users of the VAX/VMS operating system,
including applications programmers, system programmers, operators, and
managers.

The VAX/VMS Primer is a tutorial manual that introduces the VAX/VMS
operating system and the use of the command language. General users
who are not familiar with interactive computer systems should read the
Primer before using this command language user's guide.

The VAX/VMS Summary Description introduces operating system concepts
of general interest. It is recommended that system programmers and
managers be familiar with the material 1in the summary description
before using this command language user's guide.

The VAX/VMS Guide to Using Command Procedures 1is a tutorial manual
that defines and 1illustrates good practices in constructing command
procedures with DCL commands. DCL users should read that guide to
learn how to <create effective command procedures using commands and
lexical functions described in this user's gquide.

STRUCTURE OF THIS DOCUMENT
The manual has three parts:
PART I. USING THE COMMAND LANGUAGE

This part is tutorial; it provides an overview of the command
language and operating system concepts., Part I contains five
chapters:

e Chapter 1, "Overview," describes how to access the system
and enter commands. At the end of Chapter 1, on colored
pages, is a table that summarizes all the DCL commands
(including those for operators) in alphabetical order.

e Chapter 2, "File Specifications and Logical Names,"
explains the device and file naming conventions of the
operating system and describes how to assign and use
logical names to refer to devices and files in commands
and programs.

ix

e Chapter 3, "Disk and Tape Volumes," discusses concepts
related to accessing files on disk and tape volumes, and
provides examples of initializing and wusing disks and
tapes.

e Chapter 4, "Programming with VAX/VMS," gives an overview
of the program development tools provided by DCL commands
and describes the environment in which programs execute.

e Chapter 5, "Grammar Rules," describes the syntax of the
command language and defines the rules for entering
commands, command parameters and qualifiers, numeric
values and expressions, and character data.

PART II. COMMAND DESCRIPTIONS

This part contains detailed descriptions of each command. The
commands are listed in alphabetical order, with the command name
appearing at the top of the first and every page of the
individual command description.

Readers of Part II should be familiar with the material covered
in Part I. Furthermore, while the VAX/VMS Guide to Using Command
Procedures is not a strict requirement for reading and using Part
II, it is recommended. You may find it helps clarify some of the
examples in Part II that involve command procedures.

Many of the DCL commands in Part II invoke language compilers
that are available as separate products. The primary reference
source for each of these commands is the user's guide published
for the product.

APPENDIX

The appendix describes the foreign command feature of DCL.

ASSOCIATED DOCUMENTS

See the VAX~1l Information Directory and Index for a description of
related documents and to obtain the order numbers of manuals referred
to in this book.

CONVENTIONS USED IN THIS DOCUMENT
Convention Meaning

(RET) A symbol with a one- to three-character
abbreviation indicates that you press a key
on the terminal, for example, @) or €O .

CTRL/x The phrase CTRL/x indicates that you must
press the key labeled CTRL while vyou
simultaneously press another key, for example
CTRL/C, CTRL/Y, CTRL/O. In examples, this
control key sequence is shown as “x, for
example °C, °Y, "0, because that is how the
system echoes control key sequences.

Convention

¢ SHOW TIME
05-JUN-1980 11:55:22

$ FORTRAN MYFILE
$ LINK MYFILE
$ RUN MYFILE

$ TYPE MYFILE,.DAT

file-spec,...

[logical-name]

quotation marks
apostrophes

Meaning

Command examples show all output 1lines or
prompting characters that the system prints
or displays in black letters. All
user—entered commands are shown in red
letters.,

Examples showing the contents of files are
enclosed in boxes.

Vertical series of periods, or ellipsis, mean
that not all the data that the system would
display 1in response to the particular com-
mand 1is shown; or, that not all the data a
user would enter is shown.

Horizontal ellipsis indicates that additional
parameters, values, or information can be
entered.

Square brackets indicate that the enclosed
item 1is optional. (Square brackets are not,
however, optional 1in the syntax of a
directory name in a file specification or in
the syntax of a substring specification in an
assignment statement.)

The term quotation marks is used to refer to
double quotation marks "). The term
apostrophe (') 1is used to refer to a single
quotation mark.

- xi

SUMMARY OF TECHNICAL CHANGES

This manual introduces many new commands as well as new qualifiers for
existing commands. Other software changes documented in this manual
are listed below as "new features”.

NEW COMMANDS

The alphabetized list below identifies the new commands introduced in
this manual. MNote that the DIRECTORY command is included in this list
to emphasize that it has been redesigned and is effectively new.

New Commands

ANALYZE MAIL SET PASSWORD
BASIC MESSAGE SHOW QUOTA
CORAL PASCAL STOP/ABORT
DIRECTORY PATCH STOP/ENTRY
EDIT/EDT SET HOST STOP/REQUEUE
EDIT/SUM SET MESSAGE

NEW QUALIFIERS

The new qualifiers identify software enhancements you may want to
begin using at once. They are:

Command New Qualifier

COPY /VOLUME

CREATE / [NO]LOG
/VOLUME

CREATE/DIRECTORY / [NO]LOG
/VERSION_LIMIT
/VOLUME

DUMP /FILE_HEADER
/ [NO] FORMATTED

xii

Command

EDIT/SLP

EDIT/SOS

FORTRAN

INQUIRE

JOB

HELP

LIBRARY

LINK

MACRO

MOUNT

PRINT

RENAME

SET PROCESS

SET PROTECTION

SET QUEUE/ENTRY

SET TERMINAL

xiii

New Qualifier

/ [NO]CHECKSUM
/ [NO]REPORT

/ [NO]BAK
/ INOINUMBERS

/ [NO1F77
/ [NO1G_FLOATING

/ [NO] PUNCTUATION

/CPUTIME
/WSDEFAULT
/WSQUOTA

/LIBRARY

/CROSS REFERENCE
JHELP —

/ [NO]LOG

/MODULE

/TEXT

/WIDTH

/HEADER

/PO IMAGE
/PROTECT

/ [NO]JUSERLIBRARY

/UPDATE

/ [NO]CACHE
/ [NOJHDR3
/ [NO]QUOTA

/CHARACTERISTICS

/ [NO]CONFIRM
/ [NO]LOG

/PRIVILEGES

/ [NO] CONFIRM
/ [NO]LOG

/CHARACTERISTICS
/CPUTIME
/WSDEFAULT
/WSQUOTA

/ [NO] FORM
/FT1

/FT2

/FT3

/FT4

/FT5

/FT6

/FT7

/FT8

/ [NO] FULLDUP
/ [NOJHALFDUP
/LA120
/VT100

Command New Qualifier

SHOW SYSTEM /BATCH
/NETWORK
/PROCESS
/SUBPROCESS

SUBMIT /CPUTIME
/WSDEFAULT
/WSQUOTA

UNLOCK / [NO]CONFIRM
/ [NO]LOG

QUALIFIERS REMOVED
Three qualifiers have been removed. The /LOCAL and /REMOTE qualifiers

have been removed from the SET TERMINAL command, and the /WORK_FILES
qualifier has been removed from the FORTRAN command.

NEW FEATURES

Other major modifications to this manual reflect the following
software changes:

e Addition of the user privileges BYPASS, PFNMAP, SHMEM, and
SYSPRV (see Table 1-3)

e Addition of wild card characters (see Section 2.1.6)

e Addition of device codes to accommodate new hardware (see
Table 2-1)

e Additions of new default file types (see Table 2-2)

® Modifications to the displays in the examples for the
DIRECTORY, SHOW NETWORK, SHOW QUEUE, and SHOW SYSTEM commands
(see Part II)

e Introduction of pooled quotas (see changes in the RUN Process
command, Part II)

e Introduction of disk quotas and improvements in multivolume
disk handling (see Chapter 3)

xiv

ORGANIZATIONAL CHANGES TO THE MANUAL

Some of the command descriptions in Part II are now presented in two
distinct parts. For example, the MACRO command now appears as MACRO
and MACRO/RSX1l. The commands in this group are CREATE, EDIT,
LIBRARY, MACRO, SET PROCESS, and SET PROTECTION,

The former Chapter 5, "Command Procedures and Batch Jobs," has been
removed. A new manual, the VAX/VMS Guide to Using Command Procedures,
expands this subject.

A new appendix entitled "Foreign Command Feature of DCL" is introduced
as Appendix A.

Numerous other small changes have been made to incorporate

corrections, additions, clarifications, and minor formatting or syntax
improvements.

XV

PART I

USING
THE COMMAND LANGUAGE

xvi

CHAPTER 1

OVERVIEW

The DCL command language provides VAX/VMS users with an extensive set
of commands for:

e Interactive program development
e Device and data file manipulation
e Interactive and batch program execution and control

The following sections show how to access the system and describe how
the system processes commands interactively. These sections are
followed by tables, on colored pages, that describe all the commands
available to general users. The commands are listed in functional
categories to provide a quick overview of VAX/VMS capabilities.

Additional DCL commands exist for users who have the operator user
privilege (OPER). Minimal references to those commands are made in
this manual; instead, you can find full descriptions of them in the
VAX/VMS Operator's Guide.

1.1 ACCESSING THE SYSTEM

When a terminal is physically connected to the system, you can get its
attention and signal that you want to begin a terminal session by
pressing the RETURN or CTRL/Y key. The system responds by prompting
you for your user name. After you enter your user name, the system
prompts you to enter your password. For example:

®ED
Username: PATTI @D
Password:

When you enter the password, the system does not echo it, that is, the
system accepts the input line but does not display it on the terminal.

During this sequence, known as login, the system validates that vyou
are authorized to use the system. As part of the login sequence, one
or more command files may be executed. For example, the command files
may display messages telling you about the system. Finally, the
system indicates that it is ready to accept commands by displaying the
prompting character, a dollar sign ($), as shown below:

Welcome to VAX/VMS Version 2.00

OVERVIEW

1.2 YOUR COMMAND ENVIRONMENT

When you have logged into the system and the system is ready to accept
commands, the system defines the environment within which it responds
to your requests., This environment is called a process. Associated
with your process are various default characteristics, among which are
the following:

e An account number, which your installation uses to keep track
of the computer resources used.

e A user identification code (UIC), which provides you with a
group number and a member number within the group. Other
users can have the same group number. Within groups, users
are allowed to share files or system resources more freely.

e A default disk device and directory name, which the system
uses to locate and catalog files that you create or use.

e Default devices for the input, output, and error streams of
the process, from which the system reads command and program
input and to which the system writes messages.

e A set of privileges and resource quotas that define what
system resources or system functions vyou, or programs you
execute, will be allowed to use. Tables 1-3 and 1-4 at the
end of this chapter summarize the specific privileges and
quotas the system defines.

e A command interpreter -- the operating system component
responsible for reading and translating your typed-in
requests. This manual describes only the DCL command
interpreter.

The system obtains the characteristics unique to your process from the
user authorization file. The user authorization file is a list of all

users who can access the system; the system manager or operator
maintains this file.

1.3 ENTERING COMMANDS

Commands consist of English-language words (generally verbs) that
describe what you want the system to do. Commands can optionally
contain qualifiers and parameters. Command qualifiers modify a
command. They provide the system with additional information on how
to execute the command. Command parameters describe the object of the
command. In some cases, a parameter is a keyword; 1in other cases, it
is a file or a device to manipulate or a program to execute.

The following example shows a PRINT command and the system's response,
as they would appear on a terminal:

$ PRINT/COPIES=2 MYFILE.DAT ! Print the file D
Job 210 entered on queue LPBO:
$

OVERVIEW

The elements of the example above are analyzed below:

$ The system prompt for command input; a dollar sign
means that the command interpreter is ready for you to
type a command.

PRINT The command name, requesting the system to queue a file
for printing on the system printer.

/COPIES=2 A qualifier to the PRINT command, requesting that two
copies of the specified file be printed. A qualifier
is always preceded with a slash character (/), and, if
it requires a value (as in this example), the qualifier
name is separated from the value with either an equal
sign (=) or a colon (:).

MYFILE.DAT The command parameter, naming the file to be printed.
In this command, as in many DCL commands, the parameter
is a file specification. At least one blank space must
always immediately precede a parameter.

1 Print the file

A comment. You can use comments, as needed, to
document terminal sessions or command procedures.

RET The carriage return. Pressing this key after entering
a full command line terminates the command input; the
system begins processing the command. Note that
examples in this manual do not explicitly show the
®ED following commands; you can assume that all
lines shown 1in examples must be terminated with RET
unless stated otherwise.

Job 210 entered on queue LPBO:
A message from the PRINT command, indicating that the
command completed successfully; the command
interpreter gave the print job an identification number
and queued it to the queue named LPBO.

$ The next $ prompt, indicating that the PRINT command
has completed successfully; that is, two copies of the
file MYFILE.DAT were queued for printing and the system
is ready to accept another command.

Chapter 5, "Grammar Rules," contains complete details on the syntax
rules for entering commands, parameters, and qualifiers, including:

e Continuing commands on more than one line

e Shortening command and other keyword names to four or fewer
characters

e Specifying values for qualifiers

OVERVIEW

1.4 COMMAND PROMPTING

When you enter a command at the terminal, you need not enter the
entire command all at once. If you enter a command that requires
parameters and do not specify any parameters, the command interpreter
prompts you for all remaining parameters, including optional
parameters. For example:

$ PRINT/COPIES=2
$ File: MYFILE.DAT

“Job 211 entered on queue LPAl

In this example, no parameter is entered, so the system prompts for a
file specification. A line beginning with $_ indicates that the
system is in prompt mode.

When you are prompted for an optional parameter, you can press <RET>
to complete the command sequence without specifying the parameter, as
the following example illustrates:

$ ALLOCATE

$_Device: DM:

$ Log_Name : %D
_DMBl: ALLOCATED

In the above example, the ALLOCATE command 1is entered with no
parameters; the command interpreter begins prompting for all
parameters. The second prompt, §$ Log Name:, is for an optional
logical name parameter. A null entry, signaled by @) , terminates
the command entry.

1.5 SYSTEM MESSAGES

When you enter a command incorrectly, the command interpreter issues a
descriptive error message telling you what was wrong. For example, if
you specify more than one parameter for a command that accepts a
single parameter, you receive the message:

$DCL-W-MAXPARM, maximum parameter count exceeded
You must then retype the command correctly.

Other error messages may occur during execution of a command. These
messages can indicate errors such as a nonexistent file or a conflict
in qualifiers.

Not all messages from the system indicate errors; some messages
merely warn you of a particular condition.

Messages begin with a percent sign (%) or hyphen (-) and have the
general format:

$FACILITY-L-IDENT, text

where FACILITY is a mnemonic for the operating system facility or the
program issuing the message, L is a severity level indicator (S for
success, I for informational, W for warning, E for error, and F for
fatal), and IDENT 1is a shorthand code for the message text. When a
series of messages 1is issued, messages after the first one are
prefixed by a hyphen rather than a percent sign. Note that it is
possible to change the error message format display with the SET
MESSAGE command.

OVERVIEW
Because the messages are descriptive, you can usually tell what you
need to do when you issue the command again.

The VAX/VMS System Messages and Recovery Procedures Manual 1lists the
system messages and describes what you can do to correct an error.

1.6 THE HELP COMMAND

You may not always have this user's guide available at your terminal
when you need a summary of the format of a particular command or a
list of its valid qualifiers. The HELP command provides you with this
information. For example, you might type the command:

$ HELP PRINT

The system responds by displaying an abstract of the PRINT command and
keywords you <can enter as parameters to the HELP command to obtain
more information about PRINT. If you enter the following:

$ HELP PRINT QUALIFIERS

The HELP command displays a description of each PRINT command
qualifier.

1.7 TAILORING THE COMMAND LANGUAGE

Beyond the normal syntax and predefined command names and parameters,
VAX/VMS lets you define synonyms for command names and lets you
"create" commands by writing command procedures.

1.7.1 Synonyms for DCL Commands

You can create synonyms by using symbolic names. You define symbolic
names with assignment statements that equate a symbol name to a
numeric value or a character string. For example, you could define a
symbol name to be equated to a real DCL command name as follows:

$ LIST := DIRECTORY

For the remainder of the terminal session, when you enter the symbol
LIST as the first word on a command line, the command interpreter
substitutes the symbol with the string DIRECTORY and executes the
DIRECTORY command.

A symbol can also contain a portion of a command, for example:

$ PDEL := DELETE SYS$PRINT/ENTRY=

This assignment statement equates the symbol name PDEL with the
command necessary to delete an entry from the printer queue, except
that the required value for the /ENTRY qualifier is omitted. When you
use this symbol as a command synonym, you must also type the job
identification number assigned to the entry, as shown below:

$ PDEL 210

OVERVIEW

When the command interpreter processes this line, it substitutes the
symbol PDEL with its current value and then executes the command:

DELETE SYSS$SPRINT/ENTRY=210

For additional information on defining symbols for DCL command
synonyms, see Section 5.11, the description of the = (Assignment
Statement) command in Part II, and Appendix A.

l.7.2 Command Procedures

A command procedure is a file that contains a sequence of DCL
commands, some of which can conditionally control the execution of the
procedure., By placing sets of frequently used commands and/or
qualifiers in command procedures, you can construct command language
"programs" from DCL commands. After you create a command procedure,
you can execute all the commands in it with a single command. For
example, suppose a procedure named TESTALL.COM contains the command
lines:

$ RUN WEEKCALC
$ RUN TIMECARDS
$ PRINT WEEKCALC.OUT,TIMECARDS.OUT

You can execute the three commands in this file by entering:

$ @TESTALL

Another way to execute these commands is to enter the SUBMIT command,
which requests the system to process a command procedure as a batch
job. This way your terminal remains free for interactive work.

The VAX/VMS Guide to Using Command Procedures provides details on
using the command interpreter's symbolic capabilities and on
developing and using command procedures. Reference information on
each of these commands can be found in Part II.

1.8 THE FILE SYSTEM

Using DCL commands, you can create, access, and update data files and
programs. The VAX-11 Record Management Services (RMS) provide the
access and control capabilities that are called by the DCL commands
you request.

You can also define and access files from within your programs by
using RMS or by using the input/output services of the VAX/VMS
operating system directly.

Chapter 2, "File Specifications and Logical Names," describes how to
identify and refer to files, It also describes the directory
structure of the files on disk volumes and explains how to «create a
hierarchy of directories to catalog and maintain files.

Each of the commands for file manipulation is described in detail in
Part II of this manual. For a list of ‘additional manuals that. contain
information on file services and utilities, see the VAX-11 Information
Directory and Index.

OVERVIEW

1.9 TERMINAL CHARACTERISTICS

Your terminal keyboard is the means by which you communicate with the
command interpreter or enter data solicited by a command or program.
Although a terminal keyboard is similar to that of a typewriter, there
are several differences between the way a typewriter and your terminal
accept and display data that you type. These differences include:

e The interpretation of uppercase and lowercase alphabetic
characters

e The typé—ahead buffer
e Special function keys

When you type input lines to the command interpreter from a terminal
that displays lowercase letters, the command interpreter translates
all lowercase characters to uppercase before it executes a command,
unless you enter character strings enclosed in quotation marks.

After you enter a command and while the command interpreter is
responding to it or executing it, your keyboard is not locked; that
is, you can continue typing. The system saves what you type during
this time 1in a special buffer called the type-ahead buffer. It does
not, however, echo what you type. When the command currently being
executed completes, the command interpreter displays what you have
typed.

If you typed a full command 1line, including a @ , the command
interpreter executes the command after displaying it. Otherwise, it
displays what you have typed and waits for you to enter the rest of
the 1line. If you have entered more than one complete line, it
displays each line just before executing it.

Some of the special terminal function keys provide 1line-editing
functions so you can correct or cancel what you type before passing it
to the command interpreter. Other keys can interrupt system
processing. Some of the line~editing keys are described in the next
section. Table 1-1 lists all the terminal function keys and describes
their use.

1.9.1 Special Terminal Function Keys

As you type commands or program data at the terminal, you can take
advantage of several keys that let you make changes to lines as you
type them. Thus, if you make a mistake, you <can correct it before
pressing the return key.

1.9.1.1 Deleting Characters - The OED (DELETE) key backspaces over
the most recently entered character and deletes it. For example:

$ PRO @D INT

After incorrectly typing the letter "0O", you can delete it by pressing
OEL and then continue your input by typing "INT". On a hardcopy
terminal, the letters deleted are displayed between backslash
characters so you can see what is being deleted. For example:

$ PRO\O\ INT

OVERVIEW

On a video display terminal, pressing a0 actually erases the
character from the screen and moves the cursor backwards. Note that
the key that performs the delete function is marked RUBOUT on some
terminals.

1.9.1.2 Deleting Lines - To cancel an entire line, you can use the
CTRL/U key sequence. To use the CTRL key, you must press it at the
same time you press the other letter (in this case, U). For example,
if you make several mistakes on a particular line and want to cancel
the line and reenter it, use CTRL/U as shown below:

$ PRNT/CIPY=2"U
$ PRINT/COPIES=2 MYFILE,DAT

When you cancel a line with CTRL/U, the system ignores the 1line and
prompts you for the next line.

1.9.1.3 Canceling Commands ~ If you are entering commands in response .
to prompts and want to discard the entire command you have entered so
far (not just the most recently entered line), use CTRL/C or CTRL/Y,
as shown below:

$ PRINT/COPIES=3
$_File: MYFILE.DAT'Y

In this example, the PRINT command was entered correctly, and the
system prompted for the name of a file to print. However, while
entering the file name, the user decided not to enter the command at
all, and used CTRL/Y to discard the entire command.

1.9.2 Setting Terminal Characteristics

There are many types of terminals, and each has its own operating
characteristics. You can change some of these characteristics, based
on your requirements, with the SET TERMINAL command. To determine the
current characteristics of your terminal, issue the SHOW TERMINAL
command, as shown below:

$ SHOW TERMINAL
TTF3: /VT52, WIDTH=80, PAGE=24, OWNER=SELF
SPEED=(2400,2400), CRFILL=0, LFFILL=0, NO PARITY
INTERACTIVE, ECHO, TYPEAHEAD, NOESCAPE, NOHOSTSYNC,
TTSYNC, UPPERCASE, TAB, WRAP, SCOPE, LOCAL, NOHOLDSCREEN,
NOEIGHTBIT, BROADCAST, NOREADSYNC, NOFORM, HALFDUP,

Most of the parameters displayed by the SHOW TERMINAL command can be
changed by corresponding qualifiers for the SET TERMINAL command. For
example, you can change the case of the 1letters from uppercase to
lowercase with this command:

$ SET TERMINAL/LOWERCASE
After you issue this command, all lowercase alphabetic characters are

displayed 1in lowercase (if your terminal is capable of displaying
lowercase letters).

1-8

OVERVIEW

Table 1-1
Terminal Function Keys
Key Function
RETURN Carriage return; transmits the current

line to the system for processing. (On
some terminals, the RETURN key 1is labeled
CR.)

Before a terminal session, initiates 1login
sequence.

Control keys Define functions to be performed when the
CTRL key and another key are pressed
simultaneously. All CTRL/Xx key sequences
are echoed on the terminal as “x.

CTRL/C and During command entry, cancels command
CTRL/Y 1 processing.

Before a terminal session, initiates 1login
sequence.

Interrupts command or program execution and
returns control to the command interpreter.

CTRL/I Duplicates the function of the TAB key.

CTRL/K Advances the current 1line to the next
vertical tab stop.

CTRL/L Form feed.

CTRL/O Alternately suppresses and continues

display of output to the terminal.

CTRL/Q Restarts terminal output that was suspended
by CTRL/S.

CTRL/R Retypes the current input line and leaves
the cursor positioned at the end of the
line.

CTRL/S Suspends terminal output until CTRL/Q is
pressed.

CTRL/U Discards the current input line.

CTRL/X Discards the current line and deletes data in

the type-ahead buffer.

CTRL/Y (See CTRL/C.)
CTRL/Z Signals end-of-file for data entered from the
terminal.

1, Certain system and user programs provide special routines to
respond to CTRL/C interrupts. If CTRL/C is pressed to interrupt a
program that does not handle CTRL/C, CTRL/C has the same effect as
CTRL/Y and echoes as “Y.

(continued on next page)

1-9

OVERVIEW

Table 1-1 (Cont.)
Terminal Function Keys

Key Function

DELETE Deletes the last character entered at the
terminal and backspaces over it. (On some
terminals, the DELETE key is labeled

RUBOUT.)

ESCAPE Has special uses to particular commands or
programs, but generally performs the same
function as RETURN. ({On some terminals,
the ESCAPE key 1is labeled ALTMODE or ESC
(SEL).)

TAB Moves the printing element or cursor on the

terminal to the next tab stop on the
terminal. The system provides tab stops at
every 8 character positions on a line.

1.10 SUMMARY OF VAX/VMS DCL COMMANDS

Table 1-2 summarizes the VAX/VMS DCL commands in alphabetical order.
A brief description of the function performed by each command is
included.

To provide more of a system overview, the table includes all the DCL
commands, including those described in the VAX/VMS Operator's Guide.
The operator commands are identified by a superscript 1.

Table 1-2
Summary of VAX/VMS DCL Commands

Command ' Function

Assignment statements Assign strings as synonyms for all or
a portion of a DCL command

= Arithmetic assignment - equates a
local symbol name to an arithmetic
expression or constant

Arithmetic assignment - equates a
global symbol name to an arithmetic
expression or constant

:= String assignment - defines a 1local
symbol name as a synonym for all or a
portion of a DCL command

String assignment - defines a global
symbol name as a synonym for all or a
portion of a DCL command

(continued on next page)

1-10

OVERVIEW

Table 1-2 (Cont.)
Summary of VAX/VMS DCL Commands

Command. Function

@ (execute procedure) Executes a command procedure or places
data from a command file into the
input stream

ALLOCATE Reserves a device for use by a single
user and, optionally, assigns a
logical name to the device

ANALYZE Describes the contents of an object
file or the symbol -information
appended to a shareable image file

APPEND Adds the contents of one or more files
to the end of another file

ASSIGN Defines a file specification or a
device name to be associated with a
logical name for subsequent wuse in
commands or programs

ASSIGN/MERGEl Removes the jobs from one queue and
places them in another queue

ASSIGN/QUEUE 1 Assigns a logical queue to a device

BASIC Invokes the VAX-11 BASIC compiler to

enter and compile BASIC 1language
source statements

BASIC/RSX11 Invokes the PDP-11 BASIC-PLUS-2
compiler to begin a BASIC session

BLISS Invokes the VAX-11 BLISS-32 compiler
to compile one or more BLISS-32 or
common BLISS source programs

CANCEL Halts periodic execution of an image
scheduled for execution in a process

CLOSE ; Cancels an input or output path to a
sequential file or device

COBOL/C74 Invokes the VAX-11 COBOL-74 compiler
to compile COBOL language source
statements

COBOL/RSX11 Invokes the PDP-11 COBOL-74/VAX

compiler to <compile COBOL language
source statements

CONTINUE Resumes execution of an interrupted
command, program, or command procedure

1. This DCL command is described in the VAX/VMS Operator's Guide.

(continued on next page)

OVERVIEW

Table 1-2 (Cont.)
Summary of VAX/VMS DCL Commands

Command Function

COPY Copies one or more files to one or
more additional files

CORAL Invokes the VAX-11 CORAL 66 compiler
to compile one or more CORAL 66 source
language programs

CREATE Creates a file from data entered at
the terminal or in the input stream

CREATE/DIRECTORY Defines a new directory or
subdirectory for cataloging files

DEALLOCATE Relinquishes wuse of a previously
allocated device, thus making the
device available to other users

DEASSIGN Cancels a logical name assignment made
with the ALLOCATE, ASSIGN, or DEFINE
command

DEASSIGN/QUEUE 1 Deassigns a queue from a device

DEBUG Invokes the VAX-11 Symbolic Debugger
to begin or continue interactive
debugging

DECK Marks the beginning of records to be

read as the input data stream for a
command (required only when data
contains a dollar sign ($) 1in the
first position of any record)

DEFINE Equates character strings with file
specifications or logical names

DELETE Removes a directory entry for a file
or files and makes any data in the
file(s) inaccessible

DELETE/ENTRY Deletes an entry from a printer or
batch job queue or stops processing of
the current job

DELETE/QUEUE1 Deletes batch queues and printer
queues
DELETE/SYMBOL Deletes one or more symbol names from

the 1local or global symbol tables for
the process

1. This DCL command is described in the VAX/VMS Operator's Guide.

(continued on next page)

1-12

OVERVIEW

Table 1-2 (Cont.)
Summary of VAX/VMS DCL Commands

Command Function
DEPOSIT Replaces the contents of a location in
virtual memory with new data or
instructions
DIFFERENCES Compares the contents of files and

reports the differences between them

DIRECTORY Displays information about a file or a
group of files

DISMOUNT Releases the connection between a user
and a disk or tape volume that is
currently mounted on a device

DUMP Displays or prints the contents of a
file or volume in ASCII, hexadecimal,
octal or decimal format

EDIT/EDT Begins .an interactive editing session
with the EDT editor to create or
modify a file

EDIT/SLP Provides input to the batch editor,
SLP
EDIT/SOS Begins an interactive editing session

with the S80S editor to <create or
modify a file

EDIT/SUM Invokes the SUMSLP batch-oriented
editor to update a single input file
with multiple files of edit commands

EOD Marks the end of an input data stream
begun with the DECK command

EQJ Signals the end of a batch job
submitted through a card reader

EXAMINE Displays the contents of a location in
virtual memory :

EXIT Terminates an image or command

. procedure processing at the current

level

FORTRAN Invokes the VAX-11 FORTRAN compiler to
compile FORTRAN language source
statements

GOTO Transfers control to another statement

in a command procedure

(continued on next page)

OVERVIEW

Table 1-2 (Cont.)

Summary of VAX/VMS DCL Commands

Command

Function

HELP

IF ... THEN

INITIALIZE

INITIALIZE/QUEUE1

INQUIRE
JOB

Lexical Functions

LIBRARY
LIBRARY/RSX11

LINK

LINK/RSX11

Login Procedure
LOGOUT

MACRO

Displays information on the current
output stream device from the system
HELP files or any help library vyou
specify

Compares expressions consisting of
symbolic or literal values, or command
or program status values, and performs
a stated action based on the result of
the test

Deletes all existing data, if any, on
a mass storage volume, writes a label
on the volume, and readies the volume
for new data

Creates batch queues and output queues

Requests interactive assignment of a
variable value for a symbol name

Marks the beginning of a batch job
submitted through a card reader

Alternate representations for symbols
or expressions that return information
about character strings and attributes
of the current process

Creates or modifies libraries of
various kinds

Creates or modifies RSX-11M macro
libraries or object module libraries

Binds one or more object modules into
an executable or shareable program
image

Invokes the RSX-11M Task Builder to
link one or more object modules into
an RSX-11M task

Initiates communication between a user
and the system :

Terminates communication between a
user and the system

Invokes the VAX-11 MACRO assembler to
assemble a VAX-11 assembly language
program

1. This DCL command is described in the VAX/VMS Operator's Guide.

(continued on next page)

OVERVIEW

Table 1-2 (Cont.)
Summary of VAX/VMS DCL Commands

Command Function

MACRO/RSX11 Invokes the MACRO-11 assembler to
assemble a PDP~11 assembly language
program

MAIL Invokes the Personal Mail Utility to
send messages to other users of the
system

MCR Passes a command line to the RSX-11M

Application Migration Executive, or
places the terminal in MCR command

mode

MCR BAD 1 See RUN SYS$SYSTEM:BAD

MCR DSCl1 See RUN SYS$SYSTEM:DSC1

MCR Dsc2 1 See RUN SYSSSYSTEM:DSC2

MCR VFy1l . See RUN SYSSSYSTEM:VFYl

MCR VFy2 1 See RUN SYSSSYSTEM:VFY2

MESSAGE Invokes the Message Utility to compile
one or more files of message
definitions

MOUNT Makes a disk or tape volume available

for the reading and writing of files
and, optionally, assigns a logical
name to the device on which the volume
is mounted

ON ... THEN Defines the action to be taken when a
command or program incurs errors of
particular severity 1levels, or when
the CTRL/Y function key is used

OPEN Establishes a path to a file or a
device for input or output operations

PASCAL Invokes the VAX-11 PASCAL compiler to
compile one or more PASCAL source
programs

PASSWORD Provides a password associated with a

job entered through a card reader

PATCH Invokes the VAX-11 PATCH Utility to
patch an executable image, shareable
image, or device driver image

1., This DCL command is described in the VAX-11 Utilities Reference
Manual.

(continued on next page)

OVERVIEW

Table 1-2 (Cont.)
Summary of VAX/VMS DCL Commands

Command Function

PRINT ’ Queues a file for printing or on a
specified device

PURGE Deletes old versions of a specified
file or files

READ Reads the next record from a
sequential file or device and assigns
the contents of the record to a symbol

name

RENAME Changes the name of a file or a group
of files

REPLY 1 Allows the operator to communicate
with system users, selectively enable
and disable operator status, and

examine the log file

REQUEST Displays a message at an operator's
terminal
RUN (Image) Places an executable image in

execution in the current process

RUN (Process) Creates a separate process to execute
a specified image

RUN SYS$SYSTEM:BAD 2 Locates and counts the bad blocks
contained on Files-11 disks

RUN SYS$SYSTEM:DSC1 2 Transfers files contained on Files-11
Structure Level 1 disks to tapes or
disks for back-up and storage

RUN SYS$SYSTEM:DSC2 2 Transfers files contained on Files-11
Structure Level 2 disks to tapes or
disks for back-up and storage

RUN SYSSSYSTEM:INSTALL3 Installs or deletes known images

RUN SYS$SYSTEM:SYE 3 Creates an error 1log report from a
binary formatted file

1. This DCL command is described in the VAX/VMS Operator's Guide.

2. This DCL command is described in the VAX-11 Utilities Reference
Manual.

3. This DCL command is described in the VAX/VMS System Manager's
Guide.

(continued on next page)

OVERVIEW

Table 1-2 (Cont.)
Summary of VAX/VMS DCL Commands

Command Function

RUN SYSS$SYSTEM:VFYl1l Checks the readability and validity of
Files-11 Structure Level 1 disks

RUN SYS$SYSTEM:VFY2 ! Checks +the readability and validity of
Files-11 Structure Level 2 disks

SET ACCOUNTING 2 Selectively enables or disables the
recording of particular kinds of
accounting information

SET CARD_READER Defines the translation mode for a
card reader

SET CONTROL_Y Enables the use of the CTRL/Y function
key to interrupt command execution

SET DEFAULT Changes the directory and/or disk
device wused by default to locate and
catalog files

SET DEVICEL Establishes the spooling and error
logging status on a specified device

SET HOST Establishes a wvirtual communication
link between a terminal and a network
node to which the terminal 1is not
directly connected

SET LOGINS! Establishes the maximum number of
users able to log into the system

SET MAGTAPE Defines the density of a magnetic tape
device or rewinds a tape

SET MESSAGE Overrides or supplements the system
messages

SET NOCONTROL_Y Disables the use of the CTRL/Y

function key to interrupt control
execution

SET NOON Disables previously declared ON
conditions, thus preventing the
command interpreter from taking any
action on errors issued by command
processing '

1. This DCL command is described in the VAX-11] Utilities Reference
Manual.

2, This DCL command is described in the VAX/VMS Operator's Guide.

(continued on next page)

OVERVIEW

Table 1-2 (Cont.)

Summary of VAX/VMS DCL Commands

Command Function

SET NOVERIFY Suppresses display of command lines in
subsequently executed command
procedures

SET ON Restores command interpreter error
actions in a command procedures

SET PASSWORD Allows wusers to change their own
passwords

SET PRINTER1 Establishes the characteristics of a
specified line printer

SET PROCESS Changes execution characteristics of a
process

SET PROCESS/PRIORITY Changes the base priority for a
process

SET PROTECTION Changes the protection applied to a
file or a group of files, restricting
or allowing access to the file by
different categories of user

SET PROTECTION/DEFAULT Establishes the default protection for
all files subsequently created during
the terminal session or batch job

SET PROTECTION/DEVICE1 Establishes the protection for a
nonfile-structured device

SET QUEUE/ENTRY Changes the current status or
attributes of a file that is queued
for printing or for batch job
execution, but not vyet processed by
the system

SET RMS_DEFAULT Defines default multiblock and

multibuffer counts for VAX-11 RMS file
operations

SET TERMINAL Defines the characteristics of the
terminal
SET TIME1 Resets the system clock to the
specified value
ST urcl Establishes a new user identification
code as the process UIC
1. This DCL command is described in the VAX/VMS Operator's Guide.

(continued on next page)

OVERVIEW

Table 1-2 (Cont.)
Summary of VAX/VMS DCL Commands

Command

Function

SET VERIFY

SET WORKING_SET

SHOW DAYTIME

SHOW DEFAULT

SHOW DEVICES

SHOW LOGICAL

SHOW MAGTAPE

SHOW NETWORK

SHOW PRINTER

SHOW PROCESS

SHOW PROTECTION

SHOW QUEUE

SHOW QUOTA

SHOW RMS_DEFAULT

Causes all command lines in command
procedures subsequently executed to be
displayed at the terminal or printed
in the batch job log file)

Establishes a default working set size
for 1images executed 1in the current
process

Displays the current date and time of
day on the current output device

Displays the current default directory
and disk device

Displays the status of devices in the
system

Displays the current assignments of
logical names and equivalence names
made by the ASSIGN, ALLOCATE, DEFINE,
or MOUNT commands

Displays characteristics of a magnetic
tape device

Displays the availability of the 1local
node as a member of the network and
the names of all nodes currently
accessible by the local node

Displays the characteristics of a line
printer

Displays information about the current
process, including subprocesses,
privileges, quotas, and accounting
information

Displays the default protection
applied to new files created

Displays the names, job numbers, and
status of current and pending jobs in
the printer and batch job queues

Displays the current disk quota that
is authorized and used by a specific
user on a specific disk

Displays the current multiblock and
multibuffer counts for VAX-11l RMS
operations

(continued on next page)

OVERVIEW

Table 1-2 (Cont.)
Summary of VAX/VMS DCL Commands

Command Function

SHOW STATUS Displays information about the image
currently executing in the process

SHOW SYMBOL Displays current local or global
symbols and the strings or values
assigned to them

SHOW SYSTEM Displays the current status of
processes in the system

SHOW TERMINAL Displays the current characteristics
of the terminal

SHOW TIME Displays the current date and time on
the current output device

SHOW TRANSLATION Searches all three logical name tables
for a logical name and displays the
equivalence name of the first match
found

SHOW WORKING_SET Displays the current working set
default and limits

SORT Invokes the VAX-11] SORT Utility to
sort the records 1in a file based on
one or more key fields within each
record

SORT/RSX11 Invokes the PDP-11 SORT Utility to
sort the records in a file based on
one or more key fields within each

record
START/QUEUE1 Starts batch queues and printer queues
STOP Halts execution of a command

procedure, program, or a subprocess or
detached process

STOP/ABORT Stops the printing of a job that is
currently being printed

STOP/ENTRY Stops the execution of a batch Jjob
that is currently running

STOP/QUEUEl Suspends batch queues and printer
queues

STOP/REQUEUE Stops the printing of a 3job that |is

currently being printed and requeues
that job at the end of the queue

1. This DCL command is described in the VAX/VMS Operator's Guide.

(continued on next page)

OVERVIEW

Table 1-2 (Cont.)
Summary of VAX/VMS DCL Commands

Command Function

SUBMIT Enters one or more command procedures
in a batch job queue

SYNCHRONIZE Places the process issuing this
. ' command in a wait state until a
specified batch job completes

TYPE Displays the contents of a file or
files on the current output device

UNLOCK Allows access to a file that was not
properly closed

WAIT Places the current process in a wait
state for a specified period of time

WRITE Writes a single record consisting of
one or more character strings or
evaluated symbols to a sequential file
or device

1.11 SUMMARY OF VAX/VMS USER PRIVILEGES AND RESOURCE QUOTAS

Tables 1-3 and 1-4 summarize the full set of wuser privileges and
resource quotas. The system manager establishes default values for
these that normally are established at login time for your terminal
session. Section 4.4.1 discusses quotas and privileges in general
terms. Where special quotas or privileges affect the wuse of DCL
commands, the command descriptions in Part II note them.

Table 1-3
User Privileges
Name Privilege
ACNT Create a process for which no accounting records
are made
ALLSPOOL Allocate spooled devices
ALTPRI Increase the base execution priority for any
process
BUGCHK Make bug check error log entries
BYPASS Bypass UIC protection
CMEXEC Change mode to executive '
CMKRNL Change mode to kernel

(continued on next page)

OVERVIEW

Table 1-3 (Cont.)
User Privileges

Name Privilege

DETACH Create detached processes

DIAGNOSE Issue diagnostic I/0 requests

EXQUOTA Exceed resource quotas

GROUP Control execution of other processes in the same
group

GRPNAM Enter names in the group logical name table

LOG_1I0 Perform logical I/0 functions

MOUNT Execute a mount volume I/O function

NETMBX Create a network device

OPER Perform operator functions

PFNMAP Create or delete sections mapped by page frame
number

PHY IO Perform physical I/0 functions

PRMCEB Create permanent common event flag clusters

PRMGBL Create permanent global clusters

PRMMBX Create permanent mailboxes

PSWAPM Change process swap mode

SETPRV Grant a created process any privileges

SHMEM Create or delete data structures in shared
memory

SYSGBL Create system global sections

SYSNAM Enter names in the system logical name table

SYSPRV Access files and other resources as if the user
has a system UIC

TMPMBX Create temporary mailboxes

VOLPRO Override protection on a volume

WORLD Control the execution of any process in the

system

OVERVIEW

Table 1-4
Resource Quotas

Name Quota
ASTLM AST (Asynchronous System Trap) limit
BIOLM Buffered I/0 limit
BYTLM Buffered I/0 byte count (buffer space) quota
CPUTIME CPU time limit
DIOLM Direct I/0 limit
FILLM Open file quota
PGFLQUOTA Paging file quota
PRCLM Subprocess quota
TQELM Timer queue entry quota
WSDEFAULT Default working set size
WSQUOTA Working set size quota

CHAPTER 2

FILE SPECIFICATIONS AND LOGICAL NAMES

A file 1is a logically related collection of records. All the
information that the operating system reads and writes on behalf of
users' requests is defined in terms of files and records.

Files are identified by the hardware device that performs the actual
data transfer (reading or writing). Devices are classified as:

e Mass storage devices

e Record-oriented devices
Mass storage devices provide a way to save the contents of files on a
magnetic medium, called a volume. Files that are thus saved can be
accessed at any time and updated, modified, or reused. Disks and
tapes are mass storage devices,
Record-oriented devices read and write only single physical wunits of
data at a time, and do not provide online storage of the data.
Terminals, printers, and card readers are record-oriented devices.
Printers and card readers are also called unit record devices.
This chapter discusses:

e How to specify devices and files when you enter DCL commands

® How to construct and use logical names to refer to files and
devices

You can find additional specific information about how to use DCL
commands to manipulate files in the command descriptions in Part II.

Chapter 3, "Disk and Tape Volumes," provides more information on how
to handle files on mass storage devices.

2.1 FILE SPECIFICATIONS

File specifications provide the system with all the information it
needs to identify a unique file or device.

File specifications have the format:

node::device: (directory]lfilename.type;version

FILE SPECIFICATIONS AND LOGICAL NAMES

The punctuation marks and brackets are required to separate the fields
of the file specification. The fields are:

Field Contents

node Network node name
device Device name

directory Directory name or list
filename File name

type File type

version File version number

The maximum size of a file specification, including all delimiters, is
128 characters.

Directory names, file names, file types, and version numbers apply
only to files on mass storage devices. For record-oriented devices,
only the device name field in the file specification is required.

Additional notes and syntax requirements for each field in a file
specification are discussed below. Note that you do not have to enter
a complete file specification each time you specify a file; the
system supplies defaults for unspecified fields. Section 2.1.5,
"Defaults for File Specifications," describes defaults in more detail.

2.1.1 Network Nodes

If your system is part of a network, a node name may be included in a
file specification to identify the computer on which the file is
located.

A node name is a 1- through 6-alphanumeric character name that
identifies the location on the network. Node names must contain at
least one alphabetic character. If you specify a node name, you can
optionally include a 3- through 42-character access control string
enclosed in quotation marks (") in the format:

node"access~control~-string":: ["]file-spec["]

Whether or not you specify an access control string, the node name
must terminate with a double colon (::).

An access control string specifies that a particular account on the
remote node should perform the file operation rather than the default
network account., For VMS, the access control string consists of a
user name, followed by one or more blanks or tabs and a password. For
example:

STAR "HIGGINS HENRY"::

The remainder of the file specification is passed to the remote node
and 1is interpreted there. If the remote system requires a file
specification that does not conform to the VAX/VMS syntax, you must
enclose the file specification in quotation marks (").

You may also want to enclose the file specification in quotation marks
to specify a task specification string that identifies a program to

FILE SPECIFICATIONS AND LOGICAL NAMES

access on the remote node rather than a file. Thus, the three forms
of network file specification, as follows:

node::device: [directory]lfilename.type;version
node::"foreign-file-spec-string"
node:: "task-spec-string"

Optionally, a logical node name may be used in place of the node name,
provided that its equivalence string represents another node
specification.

For details on the syntax of file specifications and information on

using DCL commands for network operations, see the DECnet-VAX User's
Guide.

2.1.2 Devices

Each physical device known to the system is uniquely identified by a
device name specification in the format:

devcu

where dev is a code for the device type, ¢ is a controller designation
and u is a unit number.

Table 2-1 lists the valid device types and their codes.

The controller designation and unit number identify the location of
the actual device within the hardware configuration of the system.
Controllers are designated with alphabetic letters A through 2Z. Unit
numbers are decimal numbers from 0 through 65535,

The maximum length of the device name field, including the controller
and the wunit number, 1is 15 characters. When you specify a device
name, terminate it with a colon (:).

Table 2-1
Device Names

Code Device Type

CR Card Reader

Cs Console Storage Device

DB RP04, RP0O5, RP06 Disk

DD TU58, Cassette Tape

DL RL0O2 Cartridge Disk

DM RK0O6, RKO7 Cartridge Disk

DR RM03, RMO5 Disk

DY RX02 Floppy Diskette

LA LPAl1l-K Laboratory Peripheral Accelerator
LP Line Printer

MB Mailbox

MS TS-11 Magtape

MT TE16, TU45, TU77 Magnhetic Tape

NET Network Communications Logical Device
OoP Operator's Console

RT Remote Terminal

TT Interactive Terminal

XF DR32 Interface Adapter

XJ DUP11l Synchronous Communications Line
XM DMC11 Synchronous Communications Line

FILE SPECIFICATIONS AND LOGICAL NAMES

A complete device name specification is called a physical device name.
You can specify physical device names to indicate an input or output
device for a command or program; or you can equate a physical device
name to a logical name and use a logical name to refer to a device.
Logical names are described in detail in Section 2.2,

When you refer to a file on a disk volume set, you must specify either
the name of the device on which the first volume in the set is mounted
or the logical name assigned to the volume set when it was mounted.

Some commands allow you to specify a generic device name. A generic
device name is one in which the controller and/or the unit number are
not specified. When you use a generic device name, the system locates
an available device-unit whose physical name satisfies the portions of
the generic device name that are specified. For example, if you issue
an ALLOCATE command and specify only a device type, the ALLOCATE
command locates an available unit of that type.

For all commands, except the ALLOCATE command, if you omit the
controller designation, it is assumed to be A; if you omit the unit
number, it becomes 0. When you omit the controller or unit number in
an ALLOCATE command, the device is treated as a generic device name as
just described.

2.1.3 Directories

A directory is a file that identifies (by names and locations) a set
of files on a disk volume set. Directory names apply only to files on
disk devices. Directory names have three possible formats:

¢ A 1- through 9-alphanumeric character string

e A two-part octal number in the format of a user identification
code (UIC)

e A sequence of directory names (namel.name2.name3) where each
name represents a directory level. Each directory name may
consist of up to 9 alphanumeric characters, and you may
concatenate a maximum of 8 directory names in total,.

All these formats require the directory name to be enclosed in either
square brackets ([and }) or angle brackets (< and >).

2,1.3.1 Directory Names - An alphanumeric directory name can be any
character string that you request or that the system manager gives
you. For example:

[MALCOLM]

To specify a directory name in UIC format, separate the group number
from the member number with a comma. For example:

(122,1]

Directories in UIC format generally, but not necessarily, correspond
to the UIC of the owner of the directory.

FILE SPECIFICATIONS AND LOGICAL NAMES

UIC directories can also be expressed 'in alphanumeric directory
format. In this case, the group and member numbers are each
zero-filled on the left (if necessary). For example:

[122001]

This directory specification 1is equivalent to the specification
[122,1] in the preceding example.

To specify a subdirectory, separate directory level identifiers with
periods. For example:

[MALCOLM.TESTFILES]
(122001 ,TESTFILES.DATA}

A directory name may not mix UIC format and subdirectory format. For
example, [122,1.SUB] 1is invalid. If you have a UIC directory, you
must specify it in alphanumeric format when vyou are specifying its
subdirectories. For example, [122001.SUB} would be valid.

2,1,3.2 Directory Hierarchies - You must have at least one directory,
provided by the system manager, before you can create and catalog
files on disks. Optionally, you can create, in vyour own directory,
one or more directory level hierarchies.

The CREATE/DIRECTORY command can create a subdirectory. For example,
the following command creates a second-level directory 1in the
directory named MALCOLM:

$ CREATE/DIRECTORY [MALCOLM.SUB]

This command places an entry for the directory file SUB.DIR in the
first-level directory MALCOLM. Subsequently, you can use the
subdirectory name [MALCOLM.SUB}] in a file specification.

A subdirectory can contain an entry for another directory; that
directory «can contain an entry for another directory, and so on. The
maximum number of levels, including the first-level directory, is
eight. This structure constitutes a directory hierarchy. Figure 2-1
illustrates directory hierarchies.

There is no maximum number of hierarchies of directories you can
create and access beginning with your own directories. However, you
are confined to the amount of disk space available to vyou, and you
must not create more than eight 1levels of directories in any one
hierarchy.

FILE SPECIFICATIONS AND LOGICAL NAMES

A volume’s Master File Directory (MFD)

contains entries for the user file
$ DIRECTORY {000000] directories (UFDs) on the volume.

MALCOLM.DIR
301300.DIR
/HIGGINS.DIR
f 301301.DiR
. MFD
LEVEL
$ DIRECTORY [HIGGINS] Each UFD lists the files belonging o
to that directory, and can contain
PAYROLL.DIR > entries for additional directories,
USER.DOC R lled subdirectories.
MEMO.LIS
LOGIN.COM $ DIRECTORY [HIGGINS.PAYROLL]A g - (2]
. subdirectory can catalog files
. INFO.COM and/or additional subdirectories.
SOURCE.DIR] ")
. LISTINGS.DIR ~J The subdirectory file named
DATADIR [HIGGINSIPAYROLL.DIR

DIRECT.DOC lists additional subdirectory files.

The subdirectory file named [HIGGINS.PAYROLL]DATA.DIR
tists additional subdirectory files.

$ DIRECTORY [HIGGINS.PAYROLL.DATA] mett—

L-JANUARY.DIR $ DIRECTORY [HIGGINS.PAYROLL.LISTINGS]

L-FEBRUARY.DIR
|- MARCH.DIR

$ DIRECTORY [HIGGINS.PAYROLL.SOURCE]

FICA.LIS
TAXES.LIS

FICA.FOR
TAXES.MAR
PAYROLL.FOR

$ DIRECTORY [HIGGINS.PAYROLL.DATA.MARCH] 0
FICA.DAT
STATETAX.DAT
FICA.DAT FEDTAX.DAT []
EMPTTL.DAT
TSR .
STATETAX.DAT EMPTTL.DAT . L J
FEDTAX.DAT . .
EMPTTL.DAT nextlevel.DIR
. °)

Figure 2-1 A Directory Hierarchy

2.1.4 File Names, File Types, and Version Numbers

File names, file types, and version numbers uniquely identify files

within directories.

A file name is a 1- through 9-character string name for a file, When
you create a file, you can assign it a file name that is meaningful to
you.

FILE SPECIFICATIONS AND LOGICAL NAMES

A file type is a 1- through 3-character string that usually identifies

the file in terms of its contents.

The valid characters in file names and file types
through z, and 0 through 9.

File types must be preceded with a period (.).

By convention, VAX/VMS uses a set of standard file types

various
many commands.

are A through 2, a

to identify

classifications of files and to provide default file types in
Table 2-2 lists default file types.

Version numbers are decimal numbers from 1 to 32767 that differentiate

between versions of a file. When you update or.
not specify a version number for the output file,
original version for back-up and increments the
Note, however, that on Files-11 Structure Level

system deletes the lowest numbered versions of a
approximately 60 versions of the file exist.

qualifier on the CREATE/DIRECTORY command allows

modify a file and do
the system saves the
version number by 1.
2 disks, the file
file after more than
The /VERSION_LIMIT
you to further limit

this number, if desired.

Version numbers must be preceded with a semicolon (;) or a period
(o)o

Table 2-2
Default File Types
File Type Contents
ANL Output file for the ANALYZE command
BAS Input source file for the VAX-11 BASIC compiler ~
B2S Input source file for the PDP-11 BASIC-PLUS-2/VAX
compiler
B32 or BLI | Input source file for the VAX-11 BLISS-32 compiler
CBL Input file containing source statements for the
PDP-11 COBOL-74/VAX compiler
CMD MCR command language and RSX-11M wutility indirect
command file
COB Input file <containing source statements for the
VAX-11 COBOL-74 compiler
COM Command procedure file to be executed with the @
(Execute Procedure) command, or to be submitted for
batch execution with the SUBMIT command’
COR Input source file for the VAX-1l CORAL 66 compiler
DAT Input or output data file
(continued on next page)
1. When the system displays file specifications, it generally

displays a semicolon in front of the file version number.

FILE SPECIFICATIONS AND LOGICAL NAMES

Table 2-2 (Cont.)
Default File Types

File Type Contents

DIF Output listing created by the DIFFERENCES command

DIR Directory file

DIS Distribution list file for the MAIL command

DMP Output listing created by the DUMP command

EDT Initialization command input file for the EDT editor

EXE Image file created by the linker

FOR Input file containing source statements for the
VAX-11 FORTRAN compiler

HLB Help text library file

HLP Input source file for help libraries

JNL Journal file output for the VAX-11 PATCH utility

Jou Journal file/audit trail for the EDT editor

L32 VAX-11 BLISS-32 precompiled library

LIB Input file containing VAX-11 COBOL-74 source
statements to be copied into another file during
compilation

LIS Listing file created by a language compiler or
assembler; default input file type for PRINT and
TYPE commands

LOG Batch job output file

LST Compatibility mode utility listing file

MAC MACRO-11 source file

MAI Mail message file

MAP Memory allocation map <created by the 1linker or
RSX-11M Task Builder

MAR VAX-11 MACRO source file

MLB Macro library

MSG Source file that specifies the text of messages

OBJ Object file created by a 1language compiler or
assembler

ODL Overlay description file (RSX-11M Task Builder, only)

(continued on next page)

FILE SPECIFICATIONS AND LOGICAL NAMES

Table 2-2 (Cont.)
Default File Types

File Type Contents
OLB Object module library
OPT Options file for input to the LINK command
PAR SYSGEN parameter file
PAS Input source file for the VAX-11 PASCAL compiler

R32 or REQ | VAX-~1l BLISS-32 source files required for compilation

STB Symbol table file created by the linker

SYS System image

TLB Text library

TMP Temporary file

TXT Input file for text libraries or MAIL command output
UPD Update file of changes for a VAX-11] MACRO source

program; also input to the SUMSLP editor

2,1.5 Defaults for File Specifications

When you enter a file specification, vyou <can omit fields 1in the
specification and let the system supply values for these fields. The
values supplied by the system are called defaults,

The device and directory names, if omitted, default to your current
default disk and directory name. These are initially established when
you log in, based on an entry under vyour user name in the system
authorization file. ,

You can determine your default disk and directory name by issuing the
SHOW DEFAULT command. For example:

$ SHOW DEFAULT
DBAl: [RABBIT]

This response indicates that the current default disk is DBAl and the
directory name is RABBIT. You <can change the disk and directory
defaults during a terminal session or in a batch job by using the SET
DEFAULT command. For example, if the default disk and directory are
as shown in the response to the SHOW DEFAULT command above, the
following SET DEFAULT command would change the default directory to a
subdirectory:

$ SET DEFAULT [RABBIT.SUB]
The device and directory are not the only fields for which the system

supplies default values. Table 2-3 summarizes the defaults, if any,
applied to each field in a file specification.

2-9

FILE SPECIFICATIONS AND LOGICAL NAMES

Table 2-3
File Specification Defaults

Field Defaults
node Local system.
device Device (usually a disk) established at login, or by

the SET DEFAULT command.

If a controller designation is omitted, it defaults
to A. If a unit number is omitted, it defaults to
0. (The ALLOCATE and SHOW DEVICE commands,
however, treat a device name that does not contain
controller and/or unit numbers as a generic device’
name. For more details, see the discussions of
these commands in Part II.) ‘

directory Directory name established at login or by the SET
DEFAULT command.

A directory name that begins with a period (.) 1is
appended to the current default. For example, if
you specify the directory as [.SUB] when vyour
default is [RABBIT], the effect is to reference the
directory [RABBIT.SUB].

file name No defaults are applied to the first file name in
an input file specification. Most commands apply
default output file names based on the file name of
an input file.

file type Various commands apply defaults for file types,
based on the standard file type conventions
summarized in Table 2-2,

file version For input files, the system assumes the highest
version number.

For output files, if no file wexists (in this
directory) with the specified file name and file
type, the file is created with a version number of
1. However, if one or more versions do exist, the
next highest version number is used.

2.1.5.1 Temporary Defaults - All DCL commands that accept 1lists of
input files apply temporary defaults when you enter a command line
that contains more than one input file specification. Temporary
defaulting 1lets you name a device, directory, file name, or file type
that all the files you specify have in common. The system uses
temporary file specification defaults only to interpret file
specifications for a single execution of a command. Temporary
defaults are applied to:

e Node name
e Device name
e Directory name

e File name and file type

FILE SPECIFICATIONS AND LOGICAL NAMES

If a file specification explicitly includes a device and/or directory
name, these specifications become the temporary defaults for the
interpretation of subsequent file specifications within the list.

File names and file types can also be defaulted, depending on the
specific command.

For example, assume that the current default disk device and directory
name are DBB2:[MONROE]. The following PRINT command shows how
temporary defaults are applied to a list of file specifications in a
parameter:

$ PRINT DBAl:[ADAMS]TEST1.DAT, -
$_ TEST2, -

S [JACKSON]SUMMARY,TST, -

$_ DBB2:FINAL

This example illustrates the use of the hyphen (-) as a continuation
character and the automatic response of the continuation prompt ($_)
that it evokes.

This PRINT command prints the files:

DBAl: [ADAMS]TEST1.DAT
DBAl: [ADAMS]TEST2.DAT
DBAl: [JACKSON] SUMMARY .TST
DBB2: [JACKSON] FINAL,.TST

To override a temporary default to specify your current default
directory, specify the directory as brackets with no directory name as
shown below:

$ PRINT [ALPHA]TEST.DAT, []FINAL

In the second file specification above, the empty brackets that
precede FINAL indicate the system 1is to use your current default
directory to locate FINAL.DAT for printing.

2.1.5.2 Null File Names and File Types - The file name and file type
fields of a file specification can be null, For example, the
following are valid file specifications:

.TMP -=— (file name is null)
TEMP, —=— (file type is null)

When you specify a file in a DCL command, you must be careful to omit
the period following a file name if the command uses a default file
type. For example, the FORTRAN command uses a default file type of
FOR. The following commands produce different results:

$ FORTRAN TEMP
$ FORTRAN TEMP.

In the first example, the FORTRAN compiler 1looks for a file named
TEMP.FOR because the file type was omitted. 1In the second example,
the compiler looks for a file named "TEMP." because a period following
the file name explicitly specifies the null file type.

FILE SPECIFICATIONS AND LOGICAL NAMES

2,1.6 Wild Card Characters

Many DCL commands accept special "wild card" characters in their input
file specifications. There are two general characters that are
referred to as wild card characters: the asterisk (*) and percent
sign (%). The purpose of wild card characters is to refer to a group
of files by a general name, rather than by each specific name. You
can combine the two wild card characters in many ways. Both wild card
characters can be used in the directory specification, file name, and
file type. However, only the asterisk can be specified in file
version number fields.

In addition to the two general purpose wild card characters, there are
two special wild card characters that can be used only in alphanumeric
directory specification fields. These are the sequence of three dots
known as an ellipsis (...) and the minus sign (-).

When a command allows wild card characters in all parts of the file
specification, it is said to allow full wild cards, or full wild
carding..

Particular uses of wild card characters in DCL commands vary with the
individual commands. The command descriptions in Part II of this
manual indicate (in each place where a file specification is
described) whether wild card characters are allowed.

The next three subsections describe the four wild card characters and
how they apply to file specifications for input files only. The
fourth subsection describes a special use of the asterisk (*) in
output file specifications.

NOTE

Special rules and limitations exist for
wild card characters in file
specifications for network operations.
See the DECnet-VAX User's Guide.

2.1.6.1 The Match-All Wild Card Character - The asterisk (*) wild
card character indicates that you want to process all file
specifications that match any possible value in this field or portion
of the field.

The number of characters allowed for this field ranges from zero to
the maximum size field. That is, if the field containing the asterisk
permits three characters, as the file type does, matches occur on
fields that are zero, one, two, or three characters long.

Consider some examples of the asterisk used in place of an entire
field. The file specification that will select all versions of all
files in a directory is shown in this COPY command:

COPY [MALCOLM]*,%*;* DMAl:[BACKUP,JULY]* *;%*

The COPY command generally copies the contents of a specified input
file into a new output file. With this wild card character
capability, you can copy large numbers of files without naming them
individually. In this <case, all the files in the directory named
MALCOLM are copied to a directory named BACKUP.JULY on an RK07 device.
The file specification with wild card characters is useful in many
operations, and a copy operation is but one of them.

FILE SPECIFICATIONS AND LOGICAL NAMES

A file specification such as the following limits the files selected
to a more specific group:

* DAT; *

Note that the file specification above selects only those files with
file types of DAT out of all the files in the current default disk and
directory.

Consider another example where wild card characters appear 1in the
directory specification:

[*.*.*]AVERAGE . *; *

With this file specification you get all versions of all files named
AVERAGE, with any file type, that exist on any directory on the
current default disk down to two sublevels of each of those
directories.

It is also possible to wuse the asterisk wild card character in
directory specifications given 1in the UIC format (Section 2.1.3.1).
For example, [*,6] locates all directories with any group number and a
member number of 6. Since the search is limited to directories in UIC
format, a directory specification of [*,*] does not include any of the
alphanumerically named directories. However, [*] locates all
alphanumerically named directories and all directories in the UIC
format, too.

The asterisk wild card character can also be used to match all
characters in any portion of a file specification field (except the
version number), whether at the beginning, middle, or end. In fact,
you can have several asterisks in one field if you need to. Assume
you had named all your subroutines for a tax program beginning with
the letters STAX, followed by 0 to 5 additional alphanumeric
characters. You could select this group of files with a file name
specification of:

STAX*

The more complex file specification *INS*9*,D*;1 (which uses multiple
asterisks) illustrates how to select such diverse files as:
AINST95.DAT;1, INS9.D;1, and COBINSQ20A.DIR;1.

2.1.6.2 The Match-Any-Character Wild Card Character - The percent
sign (%) allows you to select files with any single character in the
position that the percent sign occupies in the file specification.
For example:

[MALCOLM]CHAP%.DOC; *

This file specification selects all versions of all files with a file
type of DOC in the directory named MALCOLM that have file names
beginning with CHAP followed by a single character, Some
possibilities that might be selected include CHAPA.DOC, CHAP3.DOC, and
so forth, Note, however, that CHAP.DOC is not selected since it
contains nothing in the percent sign position. Likewise, CHAPIX.DOC
is ignored because it has too many characters after CHAP in its file
name; only one position is reserved by the percent sign here.

You can specify the percent sign in any part of a file specification,
as many times as necessary, and in combination with other wild card
characters, too. Thus, if you want to select all versions of files

FILE SPECIFICATIONS AND LOGICAL NAMES

having file types beginning with J and file names starting with INS
followed by any three characters before an A, in directories whose
names begin with MA, you might issue the following file specification:

[MA*] INSESSA* J*; *

Some of the files that would be selected by the file specification
above include:

[MAINE]INS123A.JNL;1
[MASSACHUS]INS854A89.JTK; 43
[MALCOLM]INS743A9,J3;13
[MANDELL]INS912A75.JC; 24

2.1.6.3 The Directory Searching Wild Card Characters - The ellipsis
(e..) and minus sign (-) serve special purposes in alphanumeric
directory specifications. These wild card characters are aids to
searching, or traversing, directory hierarchies. Directory
hierarchies are described in Section 2.1.3.2. Both the ellipsis and
minus sign, 1in addition to the period, allow vyou to refer to
directories in a relative positional sense, rather than by an absolute
name for the first directory or group of directories.

Searching Down

The ellipsis indicates that you want to select files from all
directory levels from a specified level downward to lower levels of
the hierarchy. This means that a file specification such as

[JONES...ANALYSIS]PQUEST.*;*

would search for all files named PQUEST in any of the subdirectories
named ANALYSIS under the directory JONES.

You must understand the concept of the default directory hierarchy to
learn additional features of directory searching. The default
directory is defined as the result of the last SET DEFAULT command.

If you want to start a directory search from your default position,
you can begin the directory specification with a period, an ellipsis,
or a minus sign.

For example, the specification:
[...BCOMP]

matches all directories named BCOMP below the default directory
position.

If you want to search all the way to the bottom of the directory
hierarchy, you can use a directory specification that ends with an
ellipsis. For example:

[...INVENTORY...]ZSTOCK.DAT

This specification 1locates all files named ZSTOCK.DAT in all
directories from the directory named INVENTORY below the default level
down to the bottom of the INVENTORY hierarchy. Note that in this case
INVENTORY must occur on a path down from the current position, and it
must be at least one level below the current position. This example
also illustrates the wuse of mnultiple ellipses 1in one directory
specification.

[...INVENTORY...*] ZSTOCK.DAT

2-14

FILE SPECIFICATIONS AND LOGICAL NAMES

In this case, however, the asterisk requires that ZSTOCK.DAT occurs in

at least one level of subdirectory below INVENTORY. In the previous
example, a match would have occurred if 2ZSTOCK.DAT had been found in
the JINVENTORY directory itself. You will find that you can combine
all four wild card characters in directory specifications in numerous
ways.

You can specify a search of all directories and subdirectories on the
volume with

[*noo]

This specification searches down as many as eight levels of directory
names, if they exist.

If you want to traverse all subdirectories below your default
directory, [...] will suffice.

Searching Up

Sometimes you need to search up the hierarchy rather than down. A
single minus sign will send the search back up one level from the
default directory 1level. Thus, if the default position 1in the
directory hierarchy is

[JONES.TEST.BACKUP.SRC]

you could print the file [JONES.TEST.BACKUP.COM]JHUMIDITY.LIS with the
command

PRINT [-.COM]HUMIDITY.LIS

Also note that more than one minus sign can be used. For example, |if
instead you specify

[--.COMPUTE]

you traverse back up the same default hierarchy to directory TEST and
then down to its subdirectory COMPUTE or, in other words, to
[JONES.TEST.COMPUTE] .

Be careful not to issue so many minus signs that you point above the
top directory level; remember that VMS permits up to eight levels of
directory names,

2.1.6.4 Temporary Defaults in Output Files - Only one of the wild
card characters, the asterisk, is allowed in output file
specifications., When used in an output specification, the asterisk
indicates a temporary default 1is desired. That is, you want the
selection of the output files to follow the corresponding field in the
input specification. Some commands apply their own defaults to the
output file type when it is absent. Section 5.3.3 describes all the
rules that govern the resolution of defaults in output file
specifications.

FILE SPECIFICATIONS AND LOGICAL NAMES

The following examples illustrate how DCL interprets asterisks in the
- output file specifications of COPY commands.

Example Explanation

COPY TEST.DAT * OLD Copies the highest version of the file
TEST.DAT from the current default disk
and directory into a file named TEST.OLD

COPY [CHEVY]*,.FOR * Copies the highest version of each file
with a file type of FOR in the directory
CHEVY on the current default disk to new
files in the current default directory

2.2 LOGICAL NAMES

Logical names allow you to keep ©programs and command procedures
independent of ©physical file specifications. They also provide a
convenient shorthand way to specify files that you refer to
frequently.

The ASSIGN command equates a physical file specification to a 1logical

name, that 1is, to a character string name that you supply. For
example:

$ ASSIGN DBA2s: [SIMMONS]MARIGOLD.DAT TEST

This ASSIGN command equates the 1logical name TEST to the file
specification DBA2:[SIMMONS]MARIGOLD.DAT. This file specification is
called the equivalence name for the logical name. Subsequently, vyou
can refer to this file by 1its 1logical name when you issue a DCL
command. For example:

$ TYPE TEST

When the system processes this TYPE command, it replaces the logical
name TEST with its equivalence name and displays the contents of the
file MARIGOLD.DAT on the terminal.

You can also assign logical names to devices when you issue ALLOCATE,
DEFINE, or MOUNT commands.

2.2.1 Logical Name Tables

The system maintains logical name and equivalence name pairs in three
logical name tables:

e Process logical name table -- contains logical name entries
that are local to a particular process. By default, the
ASSIGN command places a logical name in the process logical
name table.

e Group logical name table -- contains logical name entries that
are qualified by a group number. These entries can be
accessed only by processes that execute with the same group
number in their user identification codes as the process that
assigned the logical name. You must use the /GROUP qualifier
to make an entry in the group logical name table.

FILE SPECIFICATIONS AND LOGICAL NAMES

e System logical name table -- contains entries that can be
accessed by any process 1in the system. You must use the
/SYSTEM qualifier to make an entry in the system logical name
table,

The user privileges GRPNAM and SYSNAM are required to place entries in
the group or system logical name tables, respectively.

2.2,2 How to Specify Logical Names

Logical names and their equivalence name strings can each have a
maximum of 63 characters, and can be used to form all or part of a
file specification. 1If only part of a file specification is a logical
name, it must be the left-most component of the file specification.
You can then specify the logical name in place of the device name in
subsequent file specifications, terminated by a colon (:).

For example, a logical name can be assigned to a device name, as
follows:

$ ASSIGN DMAl: BACKUP

After this ASSIGN command, you can use the 1logical name BACKUP in
place of the device name £field when referring to the device. For
example, the following COPY command transfers files from the current
default disk and directory to a directory with the same name on the
volume on the device DMAl by using the logical name BACKUP.

$ COPY *.,* BACKUP:

A logical name can also contain both a device name and a directory
name. For example:

$ ASSIGN DMAl: [MAGGIE] SCRATCH

This ASSIGN command assigns the logical name SCRATCH to the directory
named MAGGIE on the device DMAl. You can now use the logical name
SCRATCH in a file specification, as in the example below.

¢ PRINT SCRATCH:PAYROLL,DAT

The PRINT command prints the file PAYROLL.DAT from the directory
[MAGGIE] on DMALl.

When you specify an equivalence name for the ASSIGN command, you must
specify it wusing the proper punctuation marks (colons, brackets,
periods). If you specify only a device name, terminate the
equivalence name parameter with a colon (:); 1if you specify a device
and directory name, or a full file specification, do not terminate the
equivalence name with a colon.

You can optionally terminate the logical name parameter with a colon;
however, the ASSIGN command removes the colon before placing the name
in the logical name table.l

1. The DEFINE command, which also creates logical name table entries,
does not remove colons, if specified, from logical names. It is
recommended that you do not use the DEFINE command £for device name
assignments.

FILE SPECIFICATIONS AND LOGICAL NAMES

2,2.2.1 Displaying Logical Name Table Entries - The SHOW LOGICAL
command displays current entries in the logical name tables. For

example, to display the logical name SCRATCH, you would enter the
command:

$ SHOW LOGICAL SCRATCH
SCRATCH = DMAl:[MAGGIE] (process)

The SHOW LOGICAL command displays the logical name, 1its equivalence
name, and identifies the 1logical name table in which it found the
logical name. In this example, the logical name SCRATCH occurs in the
process logical name table with the equivalence name of DMAl:[MAGGIE].

You can also request the system to display all the entries in a
specified logical name table. For example:

$ SHOW LOGICAL/GROUP

This SHOW LOGICAL command results in a display of all current entries
in the group logical name table.

2.2.3 Logical Name Translation

When the system reads a device name or a file specification, it
examines the file specification to see if the left-most component is a
logical name. If it is, the system substitutes the equivalence name
in the file specification. This is called logical name translation.

For example:

$ TYPE ALPHA
$ TYPE DISK:ALPHA

When the system reads the file specification ALPHA in the first
example, it checks to see if ALPHA is a logical name because ALPHA is
the left-most (and in this example, the only) component of the file
specification. In the second example, the system checks to see if
DISK is a logical name because it is the left-most component. It does
not check ALPHA, .

When the system translates logical names, it searches the process,
group, and system tables, in that order, and uses the first match it
finds.

If you are ever in doubt about the current equivalence name assigned
to a logical name, use the SHOW LOGICAL command.

2.2.3.1 Recursive Translation - When the system translates logical
names in file specifications, the logical name translation can be
recursive. This means that after the system translates a logical name
in a file specification, it repeats the process of translating the
file specification. For example, consider logical name table entries
made with ASSIGN commands as follows:

$ ASSIGN DBAl: DISK
$ ASSIGN DISK:WEATHER.SUM REPORT

The first ASSIGN command equates the logical name DISK to the device
DBA1l. The second ASSIGN command equates the logical name REPORT to
the file specification DISK:WEATHER.SUM. In subsequent commands, or

FILE SPECIFICATIONS AND LOGICAL NAMES

in programs you execute, vyou can refer to the logical name REPORT,
For example:

$ TYPE REPORT

When the system translates the logical name REPORT, it finds the
equivalence name DISK:WEATHER.SUM, It then checks to see if the
portion to the left of the colon in this file specification 1is a
logical name; if it is (as DISK is in this example), it translates
that 1logical name also. When the 1logical name translation is
complete, the translated file specification is:

DBA1l:WEATHER.SUM

Note that when you assign one logical name to another 1logical name,
you must terminate the equ1va1ence name with a colon (:) if you are
going to use the logical name in a file spec1flcatlon in place of a
device name. For example:

$ ASSIGN DBAl: TEST
$ ASSIGN TEST: GO
$ TYPE GO:NEW.DAT

The TYPE command types the file NEW.DAT from the disk DBAl, If vyou
omit the colons from either of these ASSIGN commands, the system will
not be able to form a proper file specification.

The system limits logical name translation to ten levels. If you
define more than ten levels or create a circular definition, an error
occurs when the logical name is used.

2.2.3.2 Applying Defaults - When the system completes the translation
of a 1logical name, it uses defaults to fill in any still unspecified
fields in the file specification. 1In the above examples, the system
completes the file specifications by supplying the current default
directory and a version number according to whether it is an input or
an output file,

Many system commands create output files automatically and provide
default file types for the output files. When you use a logical name
to specify the input file for a command, the command uses the logical
name to assign a file specification to the output file as well. Thus
if the equivalence name contains a file name and file type, the output
file is given the same file name and file type as the input file but a
higher version number.

For example, the LINK command creates, by default, an executable image
file that has the same file name as the input file and a default file
type of EXE. If you make a logical name assignment as shown below and
invoke the LINK command, the results may not be what you expect:

$ ASSIGN RANDOM.OBJ TESTIT
$ LINK TESTIT

In this example, the translation of the logical name TESTIT provides
the file RANDOM.OBJ as input to the linker. When the linker creates
the output file, it also uses the same logical name for the output
file. Because the equivalence name has a file type, the default file
type of EXE is ignored. Instead, the executable image 1is named
RANDOM.OBJ and it has a version number one higher than the version
number of the input file.

FILE SPECIFICATIONS AND LOGICAL NAMES

2.2.3.3 Logical Names in Input File Lists -~ When you issue a command
that accepts multiple input files and you use logical names in the
specifications of one or more files in the list, the equivalence name
of each logical name provides a temporary default. For example:

$ SET DEFAULT DBA2:[CASEY]
$ ASSIGN DBAl:[MALCOLM] MAL
$ ASSIGN [HIGGINS] HIG

$ PRINT ALPHA,-

$_ MAL:BETA,-

$_ HIG:GAMMA

The PRINT command looks for the files:

DBA2: [CASEY]ALPHA,LIS
DBAl:[MALCOLM]BETA.LIS
DBAl: [HIGGINS]GAMMA.LIS

The device name in the equivalence string for the 1logical name MAL
defines DBAl as the temporary default device for this PRINT command.
Temporary defaults are described in Section 2.1.5.1. For complete
details on file specification defaults, see the VAX-1ll Record

Management Services Reference Manual.

2.2.3.4 Bypassing Logical Name Translation - Most DCL commands check
file specifications you enter as command parameters or as values for
qualifiers to see if the file specification contains a 1logical name.
When vyou enter a device name in a command, you can request the system
not to translate the name by preceding the device name or file
specification with an underscore character (_). For example:

$ ALLOCATE _DMA2:

When you specify an ALLOCATE command as shown, the system does not
attempt translation of DMA2.

2.2.4 Default Logical Names

The operating system and many of its facilities use logical names to
establish default devices for input and output operations. By
convention, logical names defined for VAX/VMS functions have the
format: ‘

xxx$name

where xxx is a three-character prefix identifying the system component
that uses the logical name.

2.2.4.1 Default Process Logical Names - When you 1log 1in to the
system, the system creates 1logical name table entries for your
process. These logical names, which all have a prefix of SYS, are
listed in Table 2-4,

FILE SPECIFICATIONS AND LOGICAL NAMES

Table 2-4
Default Process Logical Names

Logical Name Equivalence Name
SYS$COMMAND Original (that is, first level) SYS$INPUT stream.
SYS$SDISK Default device established at login, or changed by

the SET DEFAULT command. SYSSINPUT Default input
stream for the process, For an interactive user,
SYSSINPUT 1is equated to the terminal. In a
command procedure or batch job, SYSSINPUT is
equated to the current input stream.

SYSSERROR Default device to which the system writes
messages. For an interactive user, SYSS$SERROR is
equated to the terminal. In a batch job,
SYSSERROR is equated to the batch job log file.

SYS$LOGIN Device and directory established at login time as
the residence of LOGIN,.,COM for each process, This
"home" directory is specified in the authorization
record.

SYSSNET The source process that invoked the target process
in DECnet task-~to-task communication. When opened
by the target process, SYSSNET represents the
logical 1link over which the target process can
exchange data with its partner. SYSSNET is only
defined during the task-to-task communication.
For additional 1information, see the DECnet-VAX
User's Guide,

SYSSOUTPUT Default output stream for the process. For an
interactive wuser, SYSSOUTPUT 1is equated to the
terminal. 1In a batch job, SYSSOUTPUT is equated
to the batch job log file,

The equivalence names for SYS$INPUT, SYS$OUTPUT, SYSSERROR and
SYS$COMMAND define files that remain open for the life of the process.
These files, called process permanent files, can be read or written
from programs.

2.2.4.2 Using Default Logical Names - The default logical name
assignments are provided for vyour convenience, and do not normally
need to be reassigned. The system always uses SYSSINPUT, SYSSOUTPUT,
and SYSSERROR to read and write commands, data, and messages.

You can take advantage of the default assignments when you specify
files in commands. For example, to place input data in the command
stream for a command or program, you can specify an input file as
SYSSINPUT, The following example shows a FORTRAN command that could
be executed in a batch job:

‘¢ FORTRAN SYSSINPUT:WEATHER

When this command executes, the compiler reads the input file from the
command stream; if this Jjob 1is submitted through the system card
reader, the cards containing the source program must follow in the

FILE SPECIFICATIONS AND LOGICAL NAMES

card deck. The file name WEATHER in the file specification provides
the compiler with a default file name for the output files: it
creates WEATHER.OBJ and WEATHER.LIS,

To request that the listing file be written directly into the batch
job output log file, you could specify:

$ FORTRAN/LIST=SYS$OUTPUT SYSSINPUT:WEATHER

The compiler creates the file WEATHER.OBJ, but prints the 1listing in
the batch job output log.

2.2.4.3 Default System Logical Names - The system logical name table
contains entries for system-wide logical names. Among these logical
names are the default system logical names shown in Table 2-5,

Table 2-5
Default System Logical Names

Logical Name Equivalence Name

SYSSHELP Device and directory name of system help files

SYSSLIBRARY Device and directory name of system libraries

SYS$SMESSAGE Device and directory name of system message
files

SYSSNODE Name of the current network node for the 1local
system if DECnet is active on the system

SYS$SYSDISK VMS system disk where SYS$SYSTEM resides

SYSS$SHARE Device and directory name of system shareable
images

SYS$SYSTEM Device and directory of operating system

programs and procedures

The system manager at your installation can place names in the system
logical name table that correspond to default devices on your
particular system.

2,2.5 Logical Names for Program Input/Output

Logical names are also used to establish the correspondence between a
file name or logical unit number in a program and a physical device or
file specification. Each programming language provides conventions
for identifying files within programs; the operating system provides
the logical name mechanism for equating these files with physical
device or file specifications.

FILE SPECIFICATIONS AND LOGICAL NAMES

For example, a FORTRAN program refers to a file using a logical wunit
number. FORTRAN run-time procedures associate the 1logical unit
numbers with logical names: 1logical unit 1 1is associated with the
logical name FOR001, logical wunit 2 is associated with the logical
name FOR002, and so on. Before running a program that reads from or
writes to logical unit 1, you can make an assignment of that logical

unit to a device with the ASSIGN command, as shown in the following
example:

$ ASSIGN PAYROLL.DAT FOROO1l
$ RUN FICA

Before you execute programs to read and write files, you must take
steps to ensure that the data volumes or devices that your program
requires are online and available. The next chapter discusses how to
prepare and use disk and tape volumes.

CHAPTER 3

DISK AND TAPE VOLUMES

You can use your default disk directory to catalog the files that vyou
use on a regular basis. The physical disk volume that contains your
default directory contains the files belonging to other users as well;
such volumes are Kknown as system volumes. Under normal operating
circumstances, you do not need to perform any special action to access
your own files.

Occasionally, you may also need to access files belonging to other
users, or to transfer files to or from volumes other than the system
volume containing your default directory. In these cases, special
action may be required.
This chapter describes:

e How the operating system protects and restricts access to
files and devices

e How to initialize a volume
e How to mount volumes on devices
e How to transfer files to and from disk and tape volumes
e How to access files from batch jobs
This chapter does not describe the physical operation of disk and tape

devices. Readers who are unfamiliar with the devices are referred to
the appropriate hardware manuals.

3.1 PROTECTION

The operating system protects data on disk and tape volumes to ensure
against accidental or unauthorized access. Protection is provided at
two levels:

e At the volume and file level to ensure that data on a volume
is protected

e At the device level to ensure that no other users can access a
device in use by one user

DISK AND TAPE VOLUMES

3.1.1 Volume and File Protection

Disk and tape volumes and individual files on disk volumes, including
directories, are protected by means of a protection code. The
protection code indicates who is allowed access for what purposes.

Four categories of user are defined according to UIC. These are:

® SYSTEM -- all users who have low group numbers, usually from 0
through 10 (octal). However, the exact range of group numbers
is determined by the system manager when the system is
generated and may range as high as 377. These group numbers
are generally for system managers, system programmers, and
operators.

e OWNER -- the user with the same UIC as the person who created
and therefore owns the volume or file

e GROUP -- all users who have the same group number in their
UICs as the owner of the file, including the owner

® WORLD -- all users

Figure 3-1 illustrates the relationships of these categories to each
other.

Each of these categories of user can be allowed or denied any of the
following types of access:

e READ -- the right to examine, print, or copy a file or files
on a volume

e WRITE -- the right to modify the file or to write files on a
volume

e EXECUTE -- the right to execute files that contain executable

program images (when applying protection to an entire volume,
this field is interpreted as the right to create files on the
volume)

e DELETE -- the right to delete the file or files on the volume
The system provides a default protection code for files you create.

When you create a file or prepare a disk or tape volume for private
use, vyou can define the protection you want to be applied. Some
examples of specifying protection codes for individual files are shown
in the following section; examples of volume protection are shown in
Section 3.4, "Using Disk and Tape Volumes." For details on how to
specify protection codes, see Section 5.10.

Each directory has a protection associated with it. The directory
protection can override the protection of individual files in the
directory. For example, if a directory denies WORLD access, world
users cannot access even those files in the directory that permit
WORLL access. '

You can bypass all UIC-based protection checks if you have the BYPASS
user privilege.

DISK AND TAPE VOLUMES

WORLD
(Al UICs)

GROUP
[100,m]

SYSTEM
[0<g<105,m]
or
Users with
SYSPRV
privilege

OWNER
[100,100]

g = Group Number
m = Member Number

NOTE: THE SYSTEM MANAGER CAN EXTEND THE SYSTEM GROUP NUMBER LIMIT TO 377g

Figure 3-1 TIllustrating User Categories with a UIC of [100,100]

3.1.1.1 Disk File Protection - Each file on a disk has 1its own
protection <code; you can specify a protection code when you create a
file., For example, you can use the /PROTECTION qualifier to define
the protection for a file you create with the COPY command, as shown
below:

S COPY DBAl: [PAYDATA]PAYROLL.DAT PAYSORT.DAT -
$~/PROTECTION-(SYSTEM:RW,OWNER:RWED,GROUP:RW,WORLD)

This COPY command copies a file from the device DBAl: to your default
disk directory. The protection code defines the protection for the
newly created file PAYSORT.DAT as follows: users with system UICs can
read and write the file; vyou (the owner) have all types of access;
other users in your group may read and write the file; and all other
users (the world) are permitted no access.

You can also change the protection for an existing file with the SET
PROTECTION command. For example:

$ SET PROTECTION=(SYSTEM:RWE,OWNER:RWED,GROUP:RE,WORLD) -
$"PAYSORT.EXE

If you do not define a protection code for a file when you create the
file, the system applies a default protection. You can determine the
current protection by issuing the SHOW PROTECTION command:

$ SHOW PROTECTION
SYSTEM=RWED, OWNER=RWED, GROUP=RWED, WORLD=RE

This response 1is, in fact, the system default protection, It
indicates that the system, owner, and group have all types of access,
and that all other users (the world) are permitted read and execute
access only.

DISK AND TAPE VOLUMES

To determine the current protection associated with a specific file or
files, wuse the /PROTECTION qualifier on the DIRECTORY command. For
example:

$ DIRECTORY/PROTECTION PERSONNEL.REC

Directory DBAl:[CRAMER]
PERSONNEL.REC;5 (RWED ,RWED ,RW,R)
Total of 1 file, 8 blocks.

You can change the default protection applied to files that you create
during a terminal session with the SET PROTECTION /DEFAULT command.
The SET PROTECTION/DEFAULT command indicates that the protection code
you specify is to be applied to all files that you subsequently create
during the terminal session or batch job.

3.1.1.2 Tape File Protection - The protection applied to a tape
volume applies equally to all files on the volume. The system only
applies read and write access restrictions with respect to tapes;
execute and delete access are meaningless. Moreover, the system and
the owner are always given both read and write access, regardless of
what you specify 1in a protection code. 1If you give write access to
the group or world, read access is also allowed. Protection on a
given tape cannot be changed. :

3.1.2 Device Allocation

In most installations, many users must share a limited number of
private disk drives and tape drives. The operating system controls
access to these devices so that while vou are using a device, no other
user can access it. This control mechanism is called device
allocation.

The ALLOCATE command allocates a device and gives you exclusive use of
it. For example, to use the tape drive labeled MTBl, you would issue
the following ALLOCATE command:

$ ALLOCATE MTB1:
_MTB1l: ALLOCATED

The response from the ALLOCATE command indicates successful allocation
of the device you requested. You can also use the SHOW DEVICES
command to find out what devices are available. For example:

$ SHOW DEVICES DM:

This command requests a display of all RKO6 and RKO7 devices attached
to the system. The response from the command shows the devices that
are currently allocated to other users, and devices that are online
and available.

If you want to allocate any device of a particular type, use a generic
device name in the ALLOCATE command. A generic device name is one
that does not specify a controller and/or a unit number. For example,
if you want to use a magnetic tape device and do not know which drives
are available, you would issue the ALLOCATE command as follows:

$ ALLOCATE MT:
_MTA2: ALLOCATED

DISK AND TAPE VOLUMES

The ALLOCATE command locates an available magnetic tape device; the
response indicates that the device MTA2 is allocated.

Note that tape devices can never be shared; thus, when you use a
tape, the system automatically allocates it for you when you mount it.
You can, however, allocate a tape device when you want to mount more
than one volume on the same device and retain control of the device
between mount operations.,

3.2 VOLUME INITIALIZATION

Before a volume can be used to contain files, it must be initialized.
The INITIALIZE command:

e Invalidates all existing data on the volume, if any, and
creates a new file structure

e Writes an internal label on the volume to identify it
e Defines the owner UIC and protection for the volume

If a disk or tape volume has never been used before, no special steps
are needed to initialize it. However, if the volume has previously
contained data, the protection code on it may prevent vyou from
accessing the volume and initializing it. Or, in the case of a tape,
files on the volume may not have reached their expiration dates.

If either of these conditions exists and you do not have the VOLPRO
user privilege to override volume protection, the previous owner of
the volume or another wuser (the system manager or operator, for
example) who does have read/write access must initialize it for you.
When you give the volume to another wuser for initialization, you
should specify:

e The data format you require
e The label you want to have written on the volume
e The protection code and owner UIC you want assigned to it

When you obtain a tape or disk volume, you should also remember to
place identification on the outside of the volume so that it can be
easily identified.

3.3 MOUNTING VOLUMES ON DEVICES

Mounting is the mechanism that provides a link between a volume, a
device, and your process so you can perform input/output operations.
Mounting and using a physical volume (a disk pack or tape reel)
involves two distinct operations:

o Place the volume on the device and ready the device by

pressing the 1load button or performing equivalent startup
procedures,

e Issue the MOUNT command to gain access to the data on the
device. The MOUNT command verifies the label on the volume
against the label you specify.

DISK AND TAPE VOLUMES

The order in which these operations are performed varies according to
the way in which the device 1is being used. If you have already
allocated a device using an explicit ALLOCATE command, you can
physically 1load the device before 1issuing the MOUNT command. For
example:

$ MOUNT DMA2: TEST_FILES INFILE
$MOUNT-I-MOUNTED, TEST_FILES mounted on _DMA2:

In this example, the MOUNT command specifies the name of an allocated
device (DMA2), the wvolume label on the volume (TEST FILES), and a
logical name for the device (INFILE). The logical name ~parameter is
optional. Note that you can assign logical names to disk and tape
devices when you mount them, and then use the logical name rather than
the device name in subsequent commands. If you do not specify a
logical name, the MOUNT command assigns the default logical name
DISKSTEST_FILES to the device DMA2.

3.3.1 Requesting Operator Assistance

At some installations, operators perform the physical mounting and
dismounting of both system and private disk and tape volumes. When
this is the case, you can:

® Allocate a device of the required type.

e Send a message to the operator specifying the name of the
device you allocated and the volume you want mounted. Give
the physical identification on the outside of the volume and
tell the operator where the volume is,

e Wait until the operator responds with a message indicating
that the volume is mounted.

The REQUEST command sends a message to an operator. If your
installation has more than one operator, they may be designated for

specific functions -- one operator to handle requests for disks,
another for tapes, and so on., Options for the REQUEST command
qualifier /TO -- for example, DISKS and TAPES -- route your request to

the proper operator.

Assume, for this example, that there is an operator designated to
mount and dismount disks. To request this operator to mount the
volume TEST_FILES on the device DMA2, you could issue the command:

$ REQUEST/TO=DISKS/REPLY -
$_“Please mount TEST_FILES (shelf slot 6B) on DMA2"

The /REPLY qualifier indicates that you want to wait wuntil the
operator completes the request.

You receive the message:

%¥OPCOM-S—-OPRNOTIF, operator notified, waiting...13:14:26
The operator locates the physical volume, places it on the device, and
types a message indicating that the request is satisfied. Then, you

receive the messages:

$OPCOM-S-RQSTCMPLTE, request complete
3$OPCOM-S-OPREPLY, "Go..."

The text of the second message is optional text typed by the operator.
Now, you can issue a MOUNT command and begin using the volume.

3-6

DISK AND TAPE VOLUMES

3.3.2 Dismounting Volumes

When you no longer need access to the files on a volume, you can
release the volume with the DISMOUNT command. For example:

$ DISMOUNT DMA2:

The DISMOUNT command ensures that all files on the volumre are closed
before the dismounting is complete.

By default, the DISMOUNT command also unloads the volume on the device
and makes the device not ready.

If you allocated the device before using it and no 1longer need the
device, deallocate it so that other users can obtain access to it.
The DEALLOCATE command deallocates the device. For example:

$ DEALLOCATE DMA2:

If you had operator assistance in mounting the volume, remember to
request the operator to physically dismount the volume and return it
to its place.

Either logging out or terminating a batch Jjob will automatically
dismount and deallocate all private volumes.

3.4 USING DISK AND TAPE VOLUMES

When a volume has been mounted, you can execute programs that perform
input/output operations to the volume, or you can use DCL commands to
read and write files, Note the following restrictions on the use of
DCL commands for files on disk and tape volumes:

e The PRINT and SUBMIT commands cannot access files on allocated
devices. You can print or submit files on private disk
volumes if you mount the volume as a shareable volume. To
print or submit a file on a tape volume, you must copy the
file to a shared disk volume.

e The following commands require file-structured. devices:

DELETE PURGE

DIFFERENCES RENAME

LIBRARY RUN

LINK SET PROTECTION
UNLOCK

® You can execute a command procedure that exists on a magnetic
tape volume, as long as the procedure does not invoke other
procedures and does not issue any GOTO commands referring to
labels that precede the command.

Note, also, that you cannot use DCL commands to read or write files
that are not in the standard formats supported by VAX/VMS (these
formats are described in greater detail, below). To execute programs
to read and write files not in the standard format, you must mount the
volume with the /FOREIGN qualifier.

The following sections provide complete examples of the steps to
prepare and use disk and tape volumes for file storage and to access
existing files. The examples show how to prepare and use RKO06/RK0O7
disk packs and magnetic tapes; however, the procedures outlined are
applicable to other devices as well,

3-7

DISK AND TAPE VOLUMES

3.4.1 Using Disks

Disks are random-access devices, and files must be cataloged in
directories. Therefore, after you initialize a disk, you must create
a directory before you can write any files on the disk volume.

The following example shows how to allocate an RKO6/RK07 device,

initialize and mount a volume on it, create a directory, and write
files on the volume.

¢ SHOW DEVICES DM:

List of Devices ohn 5-FEB-1980 14:56:40.18

Device Device Device Err. Volume Free Trans Mount
Name Status Characteristics Count Label Blocks Count Count
DMAO: on line mnt
DMAL: on line mnt all
DMA3: on line

$ ALLOCATE _DMA3:
_DMA3: ALLOCATED

This example illustrates the SHOW DEVICES command requesting a display
of the <current status of RKO6/RK07 devices. The response from the
command indicates that the device named DMA3 1is available. The
ALLOCATE command allocates DMA3 for your exclusive use,

$ INITIALIZE DMA3: PUBS BACKUP -

$ /PROTECTION=(SYSTEM:RWED,OWNER:RWED,GROUP:RWED ,WORLD:R)
$TMOUNT DMA3: PUBS BACKUP

CREATE/DIRECTORY DBMA3: [PUBS]

ASSIGN DMA3:[PUBS] b:

COPY *,* p:

CoPY [PRIMER]*.* p:

COPY [COMMANDS]*.* P:

wr N

The INITIALIZE command initializes the volume and writes the 1label
PUBS BACKUP on it. The protection code allows group members and users
with " system UICs all access and restricts access by all other users to
reading. The MOUNT command mounts the volume. The CREATE/DIRECTORY
command creates a directory file named PUBS on the device DMA3, The
COPY commands copy the highest versions of all files in the current
default directory and in the directories PRIMER and COMMANDS to the
directory just created.

Note the use of the ASSIGN command to assign a logical name, P, to the'
device and directory name on the RK06/RKO07 volume.

3.4.1.1 Copying Files from Files-11 Structure Level 1 Disks - The
default format for files on disks is called Files-11 Structure Level
2. You can also initialize disks in the Files-11 Structure Level 1
format. Structure VLevel 1 1is the format used by other DIGITAL
operating systems, including RSX-11M, RSX-11M-PLUS, RSX-11D, and IAS.
Both Files~11 formats are described in detail in the Introduction to
VAX-11l Record Management Services.

To initialize a Structure Level 1 disk, use the /STRUCTURE=]l qualifier
on the INITIALIZE command. When you use the MOUNT command to mount
the volume, the MOUNT command will internally identify the volume as a
Structure Level 1 volume. Subsequently, all commands you use to
access files (COPY, DELETE, and so on) will default the file format to
Structure Level 1 automatically. Note that directories on Structure
Level 1 disks must have names in UIC format to be readable by RSX-11
or IAS.

DISK AND TAPE VOLUMES

3.4.1.2 S8Sharing Volumes - System disk volumes containing users'
default directories and other volumes containing files belonging to
more than one user are designated, at the time that they are mounted,
as shareable, The devices on which these volumes are mounted are not
allocated, thus allowing access by other system users. These volumes
are physically 1loaded and mounted by system operators and managers
with the /SYSTEM qualifier of the MOUNT command; you need not issue
an explicit MOUNT command to access files on these volumes (you must,
however, have access privileges as defined in the volume's protection
code).

Other volumes can be designated as shareable among many users; use
the /SHARE qualifier on the MOUNT command when you want to mount a
device for other users to access. For example:

$ MOUNT/SHARE DMA3: PUBS_BACK

This MOUNT command indicates that other users can access the volume
PUBS BACK. Each user who wants to access the volume must also issue a
MOUNT command with the /SHARE qualifier. Note that if the device was
allocated before the MOUNT command was issued, the /SHARE qualifier
deallocates the device.

Access to the volume is restricted according to the protection code on
the volume. The system identifies the volume by its volume label,
rather than by the device on which it is mounted. Other wusers who
want to access the volume do not need to know the physical name of the
device, but only the generic .device type and volume label,

For example, another user who wants to use the volume mounted 1in the
example above would issue the MOUNT command as follows:

$ MOUNT/SHARE DM: PUBS_BACK PUBS

Thereafter, the device can be referred to by the logical name PUBS;
the sharer does not need to know the name of the physical device.

Because the system uses volume labels to identify shared volumes, two
volumes that have the same label cannot be mounted with the /SHARE (or
/SYSTEM or /GROUP) qualifier at the same time.

3.4.1.3 Disk Quotas - Frequently it is important to limit the amount
of disk space certain users consume. The DISKQUOTA utility provides
the system manager this capability. Users who have read access (R) to
the quota file can use the SHOW QUOTA command to determine how much
disk space any user has been allocated. Other wusers who lack this
authorization can at least determine what their own allotments are.
If the need arises to disable this 1limitation, the MOUNT command
offers the /QUOTA and /NOQUOTA qualifiers to manage the checking on a
per volume basis.

A user can have a quota for any volume on the system. In some cases,
the wuser 1is permitted a certain authorized limit plus an overdraft
limit. Generally, only the authorized 1limit applies. However,
certain system programs, such as editors, can employ the overdraft
feature when the authorized limit is exceeded.

$ SHOW QUOTA

User [360,010] has 3020 blocks used, 6980 available,
of 10000 authorized and permitted overdraft of 500 blocks on DSK1

3-9

DISK AND TAPE VOLUMES

This SHOW QUOTA command identifies the disk quota authorized to the
current user on the current default disk DSK1 is 10000 blocks, of
which 3020 blocks are used. Thus, user ([360,010] has 6980 blocks
available, and under some circumstances may even be allowed an
additional 500 blocks from the overdraft quota.

If you should run out of disk space during the creation of a file, you
receive an error message. If you find you cannot obtain sufficient
space by purging or deleting unnecessary files, you may need to
contact the system manager to increase your disk quota. The VAX/VMS
System Manager's Guide describes disk quotas and how to use the
DISKQUOTA utility.

3.4.2 Disk Volume Sets

Using VAX/VMS, you can bind two or more disk volumes 1into a volume
set. A volume set has a single directory structure; the MFD (master
file directory) for the entire volume set exists on the first volume
in the set, called the root wvolume. Each volume in the set is
identified by a relative volume number in the set, where the root
volume is always relative volume 1.

When a volume set is online and mounted, all files and directories 1in
the set can be accessed by specifying the device name of the device on
which the root volume is mounted, or the logical name assigned to the
volume set when it was mounted.

The binding of volumes into volume sets allows the system manager to
extend the space available for wuser's files adding volumes to the
volume set, rather than defining new volumes with additional
directories.

To create a volume set, you use the MOUNT command with the /BIND
qualifier. The /BIND qualifier identifies a set by giving it a volume
set name, which applies to all volumes in the set, and it identifies
the root volume and creates the directory structure for the volume.

Once a volume set has been created:

e All users who have directories and files on the set can access
their files either by referring to the physical device name of
the device on which the root volume is mounted or by referring
to a logical name established for the volume set.

e When users create files on a volume set, the file system
allocates space for the files anywhere on the set, wherever
there is the most room.

e When existing files on any volume are extended, extension

occurs on the same volume, unless the volume is physically
full.

e New volumes can be added to a volume set whenever additional
space-is required.

For example, all disk volumes that are mounted on a daily basis can be
bound into a volume set,. Since this set contains all user file
directories, users do not need to specify device names in file
specifications to access files that would be on other volumes. In
fact, the physical location of a file is transparent to all users of
the system.

3-10

DISK AND TAPE VOLUMES

The next sections describe the procedures for «creating and mounting
volume sets, and contain additional notes on volume sets.

3.4.2.1 Creating a Volume Set - You can create a volume set from new,
freshly initialized volumes or you can create a volume set by
extending an existing volume that already contains a directory
structure and files.

No special privileges are required to <create or use volume sets;
however, you must have write access to the index file on all volumes
that you are attempting to bind into a volume set. 1In general, this
means that you must have a system UIC, have the user privilege SYSPRV,
or be the owner of the volumes.

3.4.2.2 Creating a Disk Volume Set from New Volumes - This procedure
assumes that none of the wvolumes to be bound into a volume set
contains files or data.

1. Allocate the necessary devices and physically mount the
volumes.,

2. Initialize each volume in the set. For example:

¢ INITIALIZE DBl: PAYVOL1
$ INITIALIZE DB2: PAYVOL2
¢ INITIALIZE DB3: PAYVOL3

When you initialize volumes for a volume set, you can also
use other qualifiers on the INITIALIZE command to define the
volume ownership and protection. Although not required, it
is recommended that all volumes in a set have the same
protection and the same owner.

3. Use the MOUNT/BIND command to create the volume set. For
example:

$ MOUNT/BIND=MASTER_SET -
¢ DOBl:, DB2:, DB3: PAYVOL1, PAYVOL2, PAYVOL3

This MOUNT/BIND command defines the volume set name, MASTER_SET, and
defines the relative volume numbers of the volumes PAYVOL1l, PAYVOL2,
and PAYVOL3.

A volume set name can have from 1 through 12 alphanumeric characters;
the volume set name must be different from all volume labels within
the set and all labels in the set must be unique.

The order of the device names corresponds to the volume 1labels
specified: PAYVOL1l must be physically mounted on DBl, PAYVOL2 on DB2,
and PAYVOL3 on DB3. : '

PAYVOL1, because it is listed first in the list of labels, becomes the
root wvolume of the set., 1Its master file directory (MFD) contains the
directory structure for the entire set.

Note that the MOUNT/BIND command creates the volume set and mounts the
volumes, When this command completes successfully, all volumes in the
set are ready for use: wuser file directories can now be created.

DISK AND TAPE VOLUMES

3.4.2.3 Creating a Disk Volume Set from an Existing Volume - The
following example assumes that the volume USERFILES already contains a
directory structure and files and that the volume is currently mounted
on the device DBl.

$ MOUNT/SYSTEM/BIND=USERS -
$_DBl:, DB2: USERFILES, USERFILES2

The initial volume USERFILES must be specified first: it becomes the
root volume of the set. When you create a volume set from an existing
volume, you must specify that volume first because the file system
must build on the existing directory structure. :

Note that if you attempt to create a volume set from two or more
volumes that already contain files and data, the file system does not
issue an error message when you issue the MOUNT/BIND command.
However, the wvolumes are unusable as a volume set because the
directory structures are not properly bound.

3.4.2.4 Mounting a Disk Volume Set - When you mount an existing
volume set, you must specify the names of the devices on which the
volumes are mounted and the volume labels in a corresponding order.
The MOUNT command verifies the 1label on each device/volume pair
specified in the list. For example:

$ MOUNT/SHARE DBl:, DB2:, DB3:, -
$_PAYVOL1l, PAYVOL2, PAYVOL3

You can also issue separate MOUNT commands for each device and volume
in the set. For example:

$ MOUNT/SHARE DBl: PAYVOL1
$ MOUNT/SHARE DB2: PAYVOL2
$ MOUNT/SHARE DB3: PAYVOL3

The effect of these commands is the same as that of the previous MOUNT
command example: the three volumes in the set are mounted.

Note that the file system does not require that all volumes in a
volume set be mounted. If a user attempts to access a file in a
volume set and the volume is not currently mounted or the root volume
is not mounted, the error status DEVNOTMOUNT is returned. Mount the
remainder of the volume set and try again.

Volume Status - When you mount a volume set by mounting volumes
individually, you must ensure that the MOUNT commands define the
volume in the same way. For example, if one or more volumes are
mounted for sharing with the /SHARE qualifier 1initially, all
subsequent volumes must also be mounted with the /SHARE qualifier.

DISK AND TAPE VOLUMES

For each user the file system maintains the names of volume sets in
two 1lists corresponding to the possible statuses. In each list,
volume set names must be unique. There is one list consisting of the
names of all volume sets that are mounted privately and another list
consisting of the names of all volume sets that are mounted as
shareable. A volume's desired status is defined on the MOUNT command.
The possible statuses and the corresponding qualifiers that define
them are:

Status Qualifier
Private /NOSHARE
Shared /SHARE
Group shared /GROUP
System /SYSTEM

Thus, if a volume set 1is mounted with the /SYSTEM qualifier and
subsequently a request is made to bind another volume to the set and
the /SYSTEM qualifier is omitted, the volume set name is placed in the
list corresponding to volume sets mounted privately. Assuming that no
volume set of the specified name 1is mounted with the /NOSHARE
qualifier, the mnew volume will become relative volume 1 of a new
volume set, because the volume set was not found. To correctly bind
it into the existing volume set, you must dismount the volume,
reinitialize it, and then remount it.

Logical Names - When you mount a volume set, you can specify a logical
name for the set or you can allow the MOUNT command to make default
logical name assignments. A logical name for a volume set can be used
to refer to all volumes in the set. For example:

$ MOUNT/SHARE DBl:, DB2:, DB3: -
$_PAYVOL1l, PAYVOL2, PAYVOL3 PAY

This MOUNT command mounts three volumes in a volume set and assigns
the 1logical name PAY to the set. Users who are sharing this volume
set can use the logical name PAY in place of the device name in file
specifications to refer to the set, as follows:

$ PRINT PAY: [WEEKLY.JAN0878)EMPLOY,.LIS

If you do not specify a logical name, the MOUNT command assigns the
default logical name DISKSvolume-set-name to the root volume, that is,
to the device on which the root volume is mounted. If the root volume
is not mounted, no logical name assignment is made. Each volume in
the set is also assigned a default logical name of the format
DISKS$volume-label. However, since there is normally no need to refer
to individual volumes in a volume -set, except for maintenance
purposes, these names are rarely used.

The MOUNT command places the logical name for the volume set and for
individual volumes 1in different 1logical name tables based on the
status of the set:

Status Logical Name Table
Group Group

Private Process

Shared Process

System System

The user privileges GRPNAM and SYSNAM are required to place names in
the group and system logical name tables, respectively. Hence, these
privileges are required to mount a volume set in either group or
system status.

DISK AND TAPE VOLUMES

3.4.2.5 Adding Volumes to a Disk Volume Set - You can add volumes to
an existing volume set at any time. The maximum number of volumes in
a set is 255,

The following procedure assumes that the volume set named MASTER_PAY
is online and mounted and has volumes named PAYVOLl, PAYVOL2, and
PAYVOL3:

$ INITIALIZE DB4: PAYVOL4
$ MOUNT/BIND=MASTER_PAY DB4: PAYVOL4

This MOUNT command binds the volume PAYVOL4 with the existing volume
set and makes the volume ready and available for use. Note that if
the volume set MASTER PAY was mounted in a system, group, or shared
status, the MOUNT/BIND command that adds a volume to the set must also
specify the appropriate qualifier.

When you add a volume to an existing set, the only volume in the set
that must be mounted is the root volume, relative volume 1. None of
the other volumes need be mounted.

You can also add a volume to a set at the same time that you are
mounting the set., The following procedure assumes an existing volume
set named MASTER_SET with volumes named PAYVOLl, PAYVOL2, and PAYVOL3:

$ INITIALIZE DB4: PAYVOL4
$ MOUNT/BIND=MASTER SET DBl:, DB2:, DB3:, DB4: -~
$_PAYVOL1, PAYVOL2, PAYVOL3, PAYVOL4/SYSTEM

Note, in the above example of the MOUNT command, that the first
device/volume pair listed in the command is the root volume of the
set. When you add a volume to a set while mounting the set, you must
list the root volume first.

3.4.2.6 Dismounting Disk Volume Sets - To dismount an entire volume
set, wuse the DISMOUNT command specifying the name of any device on
which a volume of the set is mounted. For example:

$ DISMOUNT DB1:

By default, the DISMOUNT command dismounts all volumes in the set that
are currently mounted.

You can use the /UNIT qualifier on the DISMOUNT command to request
that only the volume on the specified device be dismounted, if
necessary.

3.4.3 Using Tapes

The default format for reading and writing tapes is based on the ANSI
X3.27-1978 Magnetic Tape Labels and File Structure for Information
Interchange standard.

The following examples show how to allocate, 1initialize, and use a
tape to back up your disk files. The procedures are similar to those
outlined above for using disk volumes. However, tapes are sequential
access devices and do not have directories.

$ ALLOCATE MT:
_MTA2: ALLOCATED

3-14

DISK AND TAPE VOLUMES

This ALLOCATE command requests the allocation of a tape device whose
name begins with MT; the response indicates that unit 2 on controller
A was available and is now allocated to you. You can now physically
load the tape on the drive. Next, initialize the tape:

$ INITIALIZE MTA2: GMBO001l -
$_/PROTECTION=(GROUP:R,WORLD)

The INITIALIZE command specifies the device name (MTA2) and the volume
label for the tape volume (GMB00l). The /PROTECTION qualifier defines
a protection code restricting group access to read and allowing no
access to the world. You can now use the MOUNT command to mount the
volume and write files to it:

$ MOUNT MTA2: GMBO0Ol
$MOUNT-I-MOUNTED, GMB0OOl mounted on _MTA2:
$ COPY *.,* MTA2:

The MOUNT command specifies the device name and volume 1label of the
volume on the device. The COPY command copies the highest versions of
all files in your default directory onto the tape. The file names and
file types of the output files default to the same file names and file
types as the input files.

To verify that the files were successfully copied, you can use the
DIRECTORY command:

$ DIRECTORY MTA2:

The DIRECTORY command lists the file names and file types of all files
on the tape.

When you have finished using the tape, dismount it and deallocate Iit,
as shown below:

$ DISMOUNT MTA2:
$ DEALLOCATE MTA2:

If you do not dismount and deallocate the tape, the system does so
automatically when you log out.’

3.4.3.1 Reading and Writing Tape Files - A magnetic tape 1is a
sequential device. With DCL commands, you can write new files only at
the end of existing data on the tape; you cannot delete files from a
tape. You can, however, append data at the end of an existing file on
a tape; all files that follow the appended file are overwritten. The
APPEND command will not, however, overwrite a file that has not
expired. If you want to overwrite a tape completely, you must
re-initialize it.

When you want to copy files from an existing tape, you can selectively
copy files from the tape by specifying the file name and file type of
the file you want to copy, as shown below.

$ MOUNT MTB2: GMBO0Ol
$ COPY MTB2:ASTRO.SRC ASTRO.OLD

$ COPY MTB2:ASTRO.FOR ASTRO2.FOR
$ DISMOUNT MTB2: ‘

DISK AND TAPE VOLUMES

The COPY commands above copy specific files from the tape. After each
copy request, the COPY command leaves the tape positioned at the end
of the file it has just copied. When it looks for the next file, it
continues searching until the end of the tape; if it does not find
the file, it rewinds the tape and searches until it either locates the
file or returns to the point on the tape at which it started.

3.4.3.2 Version Numbers for Tape Files - Files that you write onto
tape with DCL commands are written in sequential order and have
version numbers of 0, by default. The only exception to this is the
COPY command, which gives the copy the same version number as the
original, by default. If you want to read a file from a tape and you
do not specify a file version number, the command locates the next
file with that file name and file type that is physically on the tape.

3.4.3.3 Writing Tapes with Compatibility Mode Programs - You can
write to tapes using programs and utilities that execute in RSX-11M
compatibility mode (for example, some editors and compilers).
However, you should be aware of the following:

e All compatibility mode programs (except PIP) limit I/O buffer
space to 512-byte blocks. However, the default block size for
tapes on VAX/VMS is 2048 bytes. For magnetic tapes that will
be written by compatibility mode programs you should specify
/BLOCK=512 when you mount the tape.

e If a compatibility mode program or utility encounters an error
creating a file on a magnetic tape, the tape will likely be
left improperly written. It will have a header label set for
the file being created, but no file or volume trailer label
set. Attempting to create more files on this tape or 1listing
files on the tape will cause the tape drive to read past the
header label set into uninitialized tape. This causes 1I/0
errors, runaway tape, and other random behavior. The only
recovery from this situation is to copy the good files from
the tape and then reinitialize it. (Because you name each
file you copy, you do not read past the header 1label into
uninitialized tape.)

3.4.4 Multivolume Tape Sets

The VAX/VMS operating system allows you to create and access files
that span more than one physical tape volume. Each volume in a
multivolume set has a unique volume label and a relative volume number
within the set.

Processing of multivolume files requires the attendance of an operator
or user to respond to requests to switch volumes; when a command or
program attempts to read or write beyond the end of a tape, the system
automatically sends a message to the system operator's console (or to
a terminal designated as an operator's terminal). The message
indicates:

e The device name

e The relative volume number of the next volume in the volume
set

e The label, if known

DISK AND TAPE VOLUMES

Before processing can continue, the operator must physically mount the
volume, place the device online, and type a reply to the message. 1If
no operator is available, you can load the volume yourself. You can
login on the operator's console or another operator's terminal and
reply to the message yourself. You do not need the operator user
privilege (OPER) to do this.

When you issue the MOUNT command to begin processing a multivolume
file, you can specify the labels on each of the volumes in the MOUNT
command. For example, after physically loading the first wvolume on
the device MTAO, you can issue the MOUNT command as follows:

$ MOUNT MT: GMB0Ol, GMB002, GMBOO3

The MOUNT command verifies the label on the first volume and returns a
message indicating successful completion if the volume 1label is
correct.

Subsequently, when the tape reaches end-of-tape, the system
automatically rewinds the tape and sends a request to the system
operator to mount the volume labeled GMBO0O0O2. The messages the
operator receives typically look like the following:

Opcom, 02:18:48.01, GEOFF Accnt=TEXTPROC Reply-ID=131084
Opcom, MOUNT relative volume 2 (GMB002) on MTAOQ:

After loading the volume and readying the device, the operator types
the command:

$ REPLY/T0=131084

The REPLY command requires the operator user privilege (OPER) and Iis
described in the VAX/VMS Operator's Guide.

The system verifies the reply-ID and then verifies the volume. If the
correct volume is mounted, processing continues.

At the end of that tape, the system sends a message to mount the tape
labeled GMB003. No more explicit MOUNT commands are required.

3.4.4.,1 Creating a Multivolume Tape Set — When you initially create a
file that spans tape volumes, you may not know that multiple volumes
are required. If, while you are writing to the tape, the tape reaches
end-of-tape, the system suspends processing to notify the operator
that a new volume is required. 1In this case, the system does not know
the wvolume 1label. The operator must mount a volume and enter the
volume label on the REPLY command as shown below.

$ REPLY/T0=196620 "GMB004"

If the tape is a new tape, the operator can request that it be
initialized by specifying /INITIALIZE following the 1label, For
example:

$ REPLY/T0=196620 "GMB004/INITIALIZE"

The system performs normal protection and expiration checks before
initializing the wvolume. To override the checking for protection
information on tapes that have been processed by a verifying machine,
the operator can specify /BLANK. For example:

$ REPLY/T0=196620 "GMB004/BLANK"

DISK AND TAPE VOLUMES

3.4.4.2 Using Multiple Tape Drives - You can overlap the mounting of
volumes in a multivolume set by specifying more than one drive in the
MOUNT command. For example:

$ MOUNT MTAO:,MTAl: GMBOOl, GMB002, GMBOO3

The MOUNT command verifies the volume on MTAO. If the wvolume GMBO002
is located on the device MTAl when the end-of-volume.is reached on
GMB001, processing continues. However, when the end-of-volume occurs
on GMB002, the first volume is rewound on MTAO0 and the system sends a
message to the operator to MOUNT the third volume on MTAO,.

3.5 ACCESSING DEVICES IN BATCH JOBS

You can write command procedures to mount a volume from a batch Jjob.
By using logical names to refer to devices and files, you can use the
same command procedures without modification each time you want to
access a volume.

For example, if you use the same RKO7 disk pack to back up your files
on a weekly basis, you can submit as a batch job a command procedure
like the following:

TRY :

ALLOCATE DM: RK

IF S$STATUS THEN GOTO OKAY

WAIT 00:05

GOTO TRY

OKAY:

REQUEST/REPLY/TO=DISKS -
"PLEASE MOUNT RKO7 BACK UP _GMB ON ''"PSLOGICAL ("RK")" "
MOUNT RK BACK UP GMB™

COPY/REPLACE #*,* "RK:*, %
DIRECTORY/FULL/OUTPUT=BACKUP.LOG RK:
DISMOUNT RK

PRINT BACKUP.LOG

DEALLOCATE RK

REQUEST/TO=DISKS "All done, thanks..."

“nunwvrnnrnn snHnNnnnanen

In this job, the procedure places itself in a wait state for five
minutes (if no RKO07 is available) and loops to repeat the request.
When the ALLOCATE command completes successfully, a message is sent to
the operator.

The logical name, RK, assigned on the ALLOCATE command is used in all
subsequent commands. The 1lexical function FSLOGICAL is used in the
REQUEST command; this function translates the 1logical name RK and
substitutes the equivalence name 1in the message displayed at the
operator's console.

When the REQUEST command notifies the operator to mount the correct
volume, the job waits until the operator responds before continuing.

For more information on how to create and execute command procedures,
see the VAX/VMS Guide to Using Command Procedures.

CHAPTER 4

PROGRAMMING WITH VAX/VMS

The VAX/VMS operating system provides concurrent time-shared
multiprogramming and batch job processing: many users can be logged
in at terminals to create and test new programs and applications
interactively at the same time that production applications and
real-time process control applications are running.

This chapter describes:
e Commands for program development
e Debugging programs
e Exit handlers and condition handlers
e Process concepts

Table 1-5 in Section 1.10, "Summary of VAX/VMS DCL Commands" lists the
commands described in this chapter. For details on the parameters and

qualifiers for any of these commands, see the command descriptions in
Part II.

4.1 COMMANDS FOR PROGRAM DEVELOPMENT

Figure 4-1 illustrates the steps required to create and execute
programs in VAX/VMS,

The following example illustrates the DCL commands you could use to
create, compile, link, and execute a FORTRAN program named AVERAGE:

$ EDIT/SOS AVERAGE,FOR

Input:DBAl: [MALCOLM]AVERAGE,.FOR;1
00100

.

(input source statements)

€0

*e

$ FORTRAN AVERAGE
$ LINK AVERAGE

$ RUN AVERAGE

PROGRAMMING WITH VAX/VMS

Use the editor to create

a disk file containing your
source program statements.
Specify the name of this file
when you invoke the compiler
or assembler.

Source
program

Commands invoke language

processors that check syntax, Compiler

create object modules, and or -
if requested, generate Assembler
program listings.

If a processor signals any
errors, use the editor to
correct the source program.

yes Correct the
source program

The linker searches the system
libraries to resolve references

in the object module and create
an executable image. Optionally, Link the
you can specify private libraries object module ===
to search, and request the linker
to create a storage map of

your program.

messages if an object module

refers to subroutines or symbols

that are not available or

undefined. If the linker cannot yes
locate a subroutine, youmust < FErrors? D - - - - s e e - -
reissue the LINK command

specifying the modules or

libraries to include. if a no
symbol is undefined, you may

need to correct the source program.

|
1
|
|
i
|
The linker issues diagnostic |
|
[
1
|
|
1

The RUN command executes a

program image. While your
program is running, the system Run the
may detect errors and issue executable
messages. To determine if your image
program is error-free, check
its output.
If there is a bug l.n your Debug
program, determine the cause yes the
of the error and correct the image
source program.
no
SUCCESS

Figure 4-1 Steps in Program Development

PROGRAMMING WITH VAX/VMS

Note that the EDIT command invokes the S0S editor. S80S prompts for
input 1lines until you use €0 to terminate input. Then, the E
(Exit) command requests S0S to write the input data onto disk.

The FORTRAN command invokes the VAX-11 FORTRAN Compiler to compile the
source statements,

The commands EDIT, FORTRAN, LINK, and RUN, are shown in their simplest
forms, without qualifiers. By giving the source file a file type of
FOR in the file creation, you can allow the file types of the input
and output files to assume the defaults for the FORTRAN, LINK, and RUN
commands.

There is a command to 1invoke each language processor, and each
language processor assumes a default file type for the input file.
The language processors, the commands to invoke them, and the default
input file types used by each are summarized in Table 4-1,

Table 4-1
Default Input File Types for Language Processors
Command Language Processor File Type
BASIC vax-11 Basicl BAS
BASIC/RSX11 PDP-11 BASIC—PLUS-Z/VAX1 B2S
BLISS VAX-11 BLISS-321 B32 or BLI
COBOL/C74 VAX-11 COBOL-74l COB
COBOL/RSX11 PDP-11 COBOL-74/VAxl CBL
CORAL VAX-11 CORAL 661 COR
FORTRAN VAX-11 FORTRANl FOR
MACRO VAX-11 MACRO MAR
MACRO/RSX11 PDP-11 MACRO MAC
PASCAL VAX-11 pascaLl PAS

1. Available under separate license.

You can find a description of each of these commands and lists of the
valid qualifiers in Part II of this manual. :

The next few sections discuss DCL commands and system programs that
can help you develop, test, and maintain your programs.

4.1.1 Program Libraries
The LIBRARY command creates and maintains object macro, text, or help

libraries. A library is a file that contains its own index of the
entries it contains,

4-3

PROGRAMMING WITH VAX/VMS

4.1.1.1 Object Module Libraries - Object module libraries are
convenient for storing routines that are called frequently by many
programs., For example, if you have compiled the object modules named
TIMER, CALC, and SWITCH, you could create a library named COMMON.OLB
using the LIBRARY command as follows:

$ LIBRARY/CREATE COMMON TIMER,CALC,SWITCH

When you issue a LINK command to link an object module that calls any
of these routines, you can specify the library as a linker input file
using the /LIBRARY qualifier:

$ LINK TESTPROG,COMMON/LIBRARY

When the linker links the module TESTPROG, it then searches the
library COMMON.OLB if it encounters any undefined external references.
Alternatively, you can make COMMON.OLB a user-defined default library,
as described in the VAX-11l Linker Reference Manual.

The system object module 1library, STARLET.OLB, contains system
routines that are «called frequently. The 1linker automatically
searches this library after searching any private 1libraries vyou
specify for undefined external references.

4,1,1.2 Macro Libraries - If you are a MACRO programmer, you cah also
use the LIBRARY command to catalog macros that you use frequently.
For example, to create a macro library named LOCALMAC.MLB from the
macros contained in the files DESCRIPTOR.MAR, TRANSLATE.MAR, and
RANDOM.MAR, issue the command:

$ LIBRARY/CREATE/MACRO LOCALMAC DESCRIPTOR,TRANSLATE,RANDOM

To assemble a program that invokes any of these macros, specify the
name of the library on the MACRO command with the /LIBRARY qualifier,
as shown below:

$ MACRO RUNTEST+LOCALMAC/LIBRARY

This MACRO command indicates that there are two input files:
RUNTEST.MAR, the source file, and LOCALMAC.MLB, a library.

The system library STARLET.MLB contains system macros. The assembler
automatically searches this library to locate macro definitions after
searching any private libraries you specify, as in the above example,

4.1.1.3 Help Libraries - Help messages can provide specific
information about a program to an interactive user. Once your help
messages are stored as modules in help libraries, your programs can
access the help modules by calling the appropriate Librarian routine
as described in the VAX-11] Utilities Reference Manual. Use the DCL
LIBRARY command to maintain the help libraries.

4.1.1.4 Text Libraries - Text libraries contain any sequential record
files that you want to retrieve as data for your program. For
example, program comments can be stored in text 1libraries. The
LIBRARY command maintains text libraries. Your programs can retrieve
text from text libraries by calling the appropriate Librarian routine
as described in the VAX-11 Utilities Reference Manual.

PROGRAMMING WITH VAX/VMS

4.1.2 Controlling Program Updates and Modifications

VAX/VMS provides sSeveral commands and programs you can use to track
and control updates that you make to your programs.

4.1.2.1 Updating Source Programs - To update or modify a source
program, you can use the interactive editors, SOS or EDT. Because
S0S, by default, creates a new file (with a higher version number)
each time vyou edit a file, you can keep previous versions of a file
for back-up. S0S does not, however, provide you with a record of the
changes that vyou have made. EDT offers this capability through its
/JOURNAL and /RECOVER qualifiers. VAX/VMS also provides two
batch-oriented editors, SLP and SUMSLP. With SLP, you can insert,
delete, or replace lines in a file and create a new file incorporating
your changes. SLP also creates a record of all the modifications that
you made. With SUMSLP you can apply edit commands in multiple files
against a single input file.

S0s, EDT, SLP, and SUMSLP are invoked with the EDIT command. The SO0S
editor is described 1in detail in the VAX/VMS Text Editing Reference
Manual. The SLP and SUMSLP editors are described 1in the VAX-1l
Utilities Reference Manual. The EDT editor is described in the VAX-11
EDT Editor Reference Manual.

4,1,2.2 Comparing Versions of Files - The DIFFERENCES command invokes
a file comparison program that compares the contents of two files to
determine what differences, if any, exist between them. DIFFERENCES
creates an output file that summarizes the differences.

The DIFFERENCES command is described in Part II.

4.2 DEBUGGING

The VAX-1ll Symbolic Debugger is an interactive debugging program. It
has an extensive set of commands that allow you to examine and modify
a program in memory while it is executing.

The debugger uses three sets of informatioh:
e Local symbol table information
e Global symbol information
e Traceback information

When you use DCL commands to compile or assemble and link a program,
you can control what information, if any, you want to include in the
image.

If you request local symbol table information, you can refer to actual
variable names and statement labels when you issue DEBUG commands. If
you request traceback information, the debugger <can trace the call
stack when an error occurs during image execution.

By default, many of the language compilers such as VAX-11] FORTRAN and
the VAX-11 MACRO assembler generate traceback information, but not
local or global symbol information, in the object module. The linker,
also by default, includes the traceback information in the image file
so that you receive a symbolic traceback when an error occurs,

4-5

PROGRAMMING WITH VAX/VMS

4.2.1 Symbolic Debugging

If you want to use the complete symbolic capabilities of the debugger,
you must request the debugger when you compile and when you link a
program. The following example shows the commands to compile a
FORTRAN program that includes all symbols in the 1image and
automatically invokes the debugger when run:

$ FORTRAN/DEBUG/NOOPTIMIZE PRECIP
$ LINK/DEBUG PRECIP
$ RUN PRECIP

VAX-11 DEBUG V2.0

$DEBUG-I-INITIAL, language is FORTRAN, module set to 'PRECIP'
DBG>

The FORTRAN command above requests that the debugger symbol table and
traceback information be included in the object module (the
/NOOPTIMIZE qualifier ensures a one-to-one correspondence between the
source program statements and the machine code in the object module).

The LINK command above requests the automatic inclusion of the
debugger and local and global symbol definitions in the image.

When you issue the RUN command to execute an image 1linked with the
debugger, the debugger receives control, identifies itself, and
prompts for you to begin entering DEBUG commands. If you do not want
the debugger to prompt when you execute an image, issue the RUN
command as follows:

$ RUN/NODEBUG PRECIP

In this case, the debugger does not prompt; however, you can
interrupt the program and issue the DEBUG command after a CTRL/Y.

For complete descriptions of the DEBUG commands and considerations for
using the debugger, see the VAX-11 Symbolic Debugger Reference Manual.
You should also consult the user's qguide for your programming language
for information specific to debugging programs in that language.

Note that symbol table information and, to a lesser extent, traceback
information increase the size of an object module and the executable
image. When you have debugged a program, you can recompile or
reassemble without the symbol table information, retaining traceback
information in the event of unexpected errors in the future.

You can also exclude traceback information from modules that vyou
catalog in object module 1libraries. Otherwise, the traceback
information is included in all modules that 1link with the 1library
module.

4,2.2 Debugging with Virtual Addresses
You can debug an image that was not compiled and 1linked with the
debugger symbol table. The /DEBUG qualifier on the RUN command
requests the debugger at run time. For example:

$ RUN/DEBUG ORION

To specify memory locations for the debugger, you must have both a
machine code 1listing of the object module and a full map from the

PROGRAMMING WITH VAX/VMS

linker. The map gives the virtual address (in hexadecimal) of each
module, global symbol, and program section (PSECT) in the image.

If you do not link or run an image with the debugger, you can debug a
program using virtual addresses with the DCL commands EXAMINE and
DEPOSIT. The EXAMINE command displays the current contents of a
location or range of locations; the DEPOSIT command modifies a
location. These commands provide a useful, but 1limited, debugging
capability when vyou need to debug a program that cannot be run with
the debugger. The DEPOSIT and EXAMINE commands are described in
detail in Part II.

4,2,3 Interrupting Program Execution

When you use the RUN command to execute an image interactively, you
cannot execute any other images or DCL commands until the image exits.
If you enter a command line, the system saves the line in the terminal
type—-ahead buffer, but does not process it until the image exits.

If you need to interrupt an image while it is executing, press CTRL/C
or CTRL/Y. Generally, the effect of both of these CTRL key sequences
is the same: the image is interrupted (but unchanged), the type-ahead
buffer is purged, and the command interpreter receives control.

Note: Some system or application programs may contain special
routines coded to intercept a CTRL/C. If you use CTRL/C to interrupt
these programs, the CTRL/C handling routine receives control, rather
than the command interpreter. Use CTRL/Y to bypass a CTRL/C handling
routine., If a command or program does not have a CTRL/C handling
routine, then CTRL/C has the same effect as CTRL/Y and echoes as "Y.
For information on coding CTRL/C handling routines, see the VAX/VMS
I/0 User's Guide.

The following example shows CTRL/C or CTRL/Y being pressed to
interrupt a program that is looping:

$ RUN NAMETST
ENTER YOUR NAME:
ENTER YOUR NAME:
ENTER YOUR NAME:
4

$

The dollar sign ($) prompt indicates that you can enter a DCL command.
After you have interrupted an image (or a DCL command) with CTRL/Y,
you can:

e Enter the EXIT command. This causes orderly termination of
the interrupted image

e Immediately abort the image, by entering the STOP command

e Issue the CONTINUE command to resume execution of the image
from the point of interruption.

e Issue the DEBUG command, if the 1image was 1linked without
specifying either /NOTRACEBACK or /NODEBUG or run with the
/DEBUG qualifier. The DEBUG command gives control to the
debugger.

PROGRAMMING WITH VAX/VMS

NOTE

If the image you interrupt is
privileged, that is 1installed with
privilege, it terminates immediately,
just as if you had entered an EXIT
command. You can neither continue nor
debug the image. The creation of
privileged images with the INSTALL
Utility 1is described 1in the VAX/VMS
System Manager's Guide. -

You can also issue any other DCL command. Most DCL commands you enter
at the CTRL/Y level have the same effect as the RUN command; that is,
the current image 1is forced to exit before the command can be
executed. However, the commands in Table 4-2 are performed within the
command interpreter and thus do not cause the current image to exit.

Table 4-2

Commands Performed Within the Command Interpreter
= EXAMINE SHOW DAYTIME
ALLOCATE GOTO SHOW DEFAULT
ASSIGN IF SHOW QUOTA :
CLOSE INQUIRE SHOW PROTECTION
CONTINUE OPEN SHOW STATUS
DEALLOCATE READ SHOW SYMBOL
DEASSIGN SET DEFAULT SHOW TIME
DEFINE SET PROTECTION/DEFAULT SHOW TRANSLATION
DELETE/SYMBOL SET VERIFY WAIT
DEPOSIT SET uIcl WRITE

1. This command is described in the VAX/VMS Operator's Guide.

For example, you could interrupt any command or program (except a
privileged 1image), 1issue the SHOW TIME command, and then continue
execution of the image, as follows: :

§YRUN GRADES

$ SHOW TIME
07-JUN=-1978 10:54

$ CONTINUE

Note that you can also use CTRL/0, CTRL/S, and CTRL/Q to suppress,
interrupt, or continue terminal output from a program image, just as
you can for the output of a DCL command. These control key functions
do not affect the program image.

4.3 EXIT HANDLERS AND CONDITION HANDLERS

Programs that execute in native mode can take advantage of operating
system services that allow an image to respond to special situations.

PROGRAMMING WITH VAX/VMS

4.3.1 Exit Handlers

An exit handler is a special routine that receives control when the
image exits. The exit handler can determine whether the image is
exiting normally or as the result of an error condition,

If you have used the RUN command to execute an image that has an exit
handler, and you interrupt the image with CTRL/Y, you can control
whether the exit handler is actually given control. 1If you issue the
STOP command, the exit handler 1is not executed. If, on the other
hand, you issue the EXIT command or another DCL command to execute
another image, the exit handler in the interrupted image is allowed to
execute before the specified command is performed.

For more information on exit handlers, see the VAX/VMS System Services
Reference Manual.

4.3.2 Exception Conditions

The system interrupts 1image execution when the image causes or
encounters particular situations, called exceptions. Some examples of
exceptions are:

e Arithmetic overflow or underflow

e A memory access violation

e An invalid operation code

e An invalid argument list to the math library

When an exception occurs, the system searches for a routine that can
respond to the condition; these routines, called condition handlers,
can be declared from user programs. If no wuser-declared condition
handlers are located, or if a user-declared condition handler cannot
respond to a particular situation, the system gives control to a
default handler. This handler terminates the image; obtains as much
information as it can about the exception condition, including any
available traceback information; and summarizes the information for
you.

Further discussion of condition handling appears in the VAX/VMS System
Services Reference Manual, the VAXll Architecture Handbook, the
VAX11/780 Hardware Handbook, and the VAX-11] Run-Time Library Reference
Manual.

4.4 PROCESS CONCEPTS

The executable program image created by the linker executes within the
context of the process created for you at login. This process can
execute, serially, many different images during your terminal session.
When you issue the LOGOUT command to end your terminal session, the
system deletes the process.

The VAX/VMS operating system manages all users' requests to execute
images in terms of the processes issuing the requests. The system
provides each process with (among other things), a unique process
identification number (PID), a character-string process name, and a
distinct environment., Figure 4-2 illustrates the relationship of a
terminal user to the process and the images executed in the process.

PROGRAMMING WITH VAX/VMS

Username:

Password:

e

sRUNPROGRAMA//////////4
$RUNPROGRAM5////////////
$ TYPE OUTPUT.B

When you log in, the system creates
a process, and assigns it a unique
process identification number,

r———=—=7
| IMAGES |

PROCESS

Each image executes in
the context of the process.

$ LOGOUT
When you log out, the
system deletes the process.

Figure 4-2

User
Authorization File

The system obtains the
default

® priority

® resource quotas

® privileges

for your process from
the user authorization
fite.

The process’s virtual address space
includes space occupied by the
system and the command interpreter.

An Interactive Process

4.4,1 Priorities, Privileges, and Quotas
The characteristics of an individual process -- that is, the process's
context -- determine what the user may do or be granted access to, and

how much of the various resources may be

consumed. Most of these

characteristics are obtained from the user authorization file at login

time.

Some examples include:

The base execution priority given to the images that the
process executes, In general, communications and process
control applications are given higher priorities than batch

jobs and interactive users.

PROGRAMMING WITH VAX/VMS

e Resource quotas that limit or restrict the frequency or amount
of a particular system resource - any image can use. For
example, an open file quota 1limits the number of files a
process can have open at any one time.

e User privileges to perform certain functions or to call
specific system services. For example, the ability to place
names in the group or system logical name tables is controlled
by a privilege.

The base priority, resource quotas, and privileges granted to general
users are adequate for time-sharing program development requirements.
In fact, many of the DCL commands you execute perform privileged
functions on your behalf, so you do not require the privilege., Note,
however, that for some commands you must have a user privilege to use
a particular qualifier. These restrictions are noted in the command
descriptions, as appropriate.

You can determine the current privileges and quotas available to vyour
process by issuing the following command:

¢ SHOW PROCESS/PRIVILEGES/QUOTAS

Tables 1-7 and 1-8 list the privileges and quotas defined by the
VAX/VMS operating system.

4,4.2 1Input, Output, and Error Streams

At login the system also establishes equivalences for default prodess
logical names, including SYSSINPUT, SYSSOUTPUT, and SYSSERROR. These
logical names provide permanent associations for the process's input,
output, and error streams. For an interactive process, these logical
names are initially equated to the terminal and are used by the
command interpreter to read command lines and to display output and
error messages.

These logical names are also available to all images that the process
executes, For example, a program that performs explicit input/output
requests through RMS (Record Management Services) macros or system
services can write records to SYSSOUTPUT. 1If you execute this image
interactively, the output is directed to your current terminalj; if
you execute the image in a batch job, the output is directed to the
batch job output log.

4.4.3 Processes and Subprocesses

A process can execute only one program image at a time. Some
applications may require concurrent execution of cooperating programs.
Because the system uniquely identifies every process an image
executing in one process can communicate with or control another
process by referring to that process's identification number,

Processes executing with the same group number in their UICs can also
refer to one another by process name, that is, a character string name
assigned to the process. When you first 1log into the system, the
system gives your process the same name as your user name. If you log
in at more than one terminal, processes after the first are given
names based on the name of the terminal at which you logged in.

PROGRAMMING WITH VAX/VMS

Most processes in the system are detached processes; that 1is, they
execute independently of one another. The process that the system
creates for you at login is a detached process. An image executing in
a process can create another type of process, called a subprocess.
The process that creates a subprocess is called the owner process.

The owner of a subprocess can:

e Define the base priority, privileges, and resource quotas that
the subprocess will have.

e Specify the name of an executable image to be executed in the
subprocess, and control the execution of the image.

e Obtain information about the status of the subprocess and the
system resources it has used.

Generally, a subprocess executes a single image, and when the image
exits, the system deletes the subprocess. If the owner process is
deleted (for example, if you log out) and a subprocess still exists,
the system also deletes the subprocess.

If you plan to develop an application to use cooperating processes,
you should be familiar with the VAX/VMS system services that provide
process communication and control functions. These services are
described in detail in the VAX/VMS System Services Reference Manual.

In conjunction with the system services that control processes and
subprocesses, you can use the RUN command to create a subprocess to
execute a particular image. For details, see the description of the
RUN (Process) command in Part II.

4-12

CHAPTER 5

GRAMMAR RULES

This chapter describes the syntax rules for the VAX/VMS command
language, including rules for:

e Entering commands

e Entering file specifications

e Entering qualifiers

e Entering character string data
e Entering numeric values

e Forming expressions

e Specifying lexical functions

e Entering date and time values

5.1 RULES FOR ENTERING COMMANDS

A command string is the complete specification of a command, including

the command name, command qualifiers, parameters, and file qualifiers
if any.

The general format of a command is:
[$] [label:] command name([/qualifiers...] paramete;[/qualifiers...][...]

Because you can continue a command on more than one 1line, the term
command string is used to define the entire command that is passed to
the system. You can precede any command string with a dollar sign ($)
character. In interactive mode the command interpreter ignores the
dollar sign. However, it is required in batch mode and in command
procedures (even those executed interactively).

Each item in a command must be properly delimited, as follows:

e At least one blank character must separate the command name
from the first parameter, and at least one blank must separate
each additional parameter from the previous parameter.
Multiple blanks and tabs are permitted in all cases where a
single blank is required.

e Each qualifier must be preceded with a slash (/). The slash
can be preceded by or followed by any number of blanks or
tabs.

GRAMMAR RULES

e If a label precedes the command, the label must be terminated
with a colon (:). The colon can be preceded by or followed by
any number of blanks or tabs.

In addition, any special characters you enter on a command can be
treated as delimiters, depending on the context of the command. These
characters are listed in Table 5-1.

5.1.1 Rules for Continuing Commands on Mofe than One Line

The maximum number of characters accepted as a command string from one
line is 132. However, you can enter a command string on more than one
line by using the continuation character, a hyphen (-), as the last
element on a command line.

Command line continuation is especially useful when you enter a
command and want to specify many qualifiers, or when you place a
command in a command procedure file and want to make the procedure
more readable. For example:

$ PRINT MYFILE -
/AFTER=17:00 -
/COPIES=20 -
/NAME="COMGUIDE"

Note that when you continue a command, you must still provide the
required space before each parameter.

There is no restriction on the number of continued lines you can use
to enter a command. However, the maximum number of characters that
you can enter in a command string depends on the expansion of all
lexical functions and symbols in the command line. The string that
results must not exceed 255 characters. Furthermore, there is a limit
on the complexity of commands that include a large number of lexical
functions and symbols. You can avoid problems with the complexity
limitation if you construct complex commands from a series of
concatenated symbols. ’

NOTE

Some DCL commands invoke RSX-11M utility
programs., These commands are actually
"back translated" to form command
strings for the RSX-11M utility. The
maximum length of these 1lines, after
they have been back translated, is 80
characters.

5.1.2 Rules for Entering Comments

Indicate a comment by preceding it with an exclamation mark (!).
Comments are valid in the following positions:

e As the first item on a command line; in this case, the entire
line 1is considered a comment and is not processed except for
symbol substitutions and lexical functions.

e Following the last character in a command string, or after a
hyphen in a command line

GRAMMAR RULES

Some examples of valid placement of comments follow:

$ ITHIS ENTIRE LINE IS A COMMENT
$ PRINT MYFILE - | PRINT COMMAND COMMENT
$_/COPIES=3 ! 3 COPIES, PLEASE

When you enter a command interactively and continue the command on
more than one 1line, the command interpreter uses the $_ prompt to
indicate that it is still accepting the command.

5.1.3 Rules for Truncating Keywords

All keywords that you enter as command input can be abbreviated by
truncating characters on the right., You can truncate:

e Command names

e Command keyword parameters
e Qualifiers

e Qualifier keyword values

When the command interpreter reads a command line, it only examines
the first four characters of each keyword you type.

5.1.3.1 Truncating Command Names - All command name keywords are
unique when ‘truncated to their first four characters. You may
truncate command names to fewer characters as long as you ensure the
truncation is unique. For example, the TYPE command is currently the
only command that begins with the character "T", Therefore, the TYPE
command could be truncated to just one character. The DEALLOCATE and
DEASSIGN commands, however, have the same first three characters, so
these commands cannot be truncated to fewer than four characters.

Exceptions: The following commands are exceptions to the minimum
truncation rule because they <can be truncated to just their first
character, even though other commands begin with the same character:

CONTINUE
DEPOSIT
EXAMINE
RUN

5.1.3.2 Truncating Command Parameters, Command Qualifiers, and
Command Qualifier Values - All keywords recognized by individual
commands (that is, command parameters and qualifiers and qualifier
values) are unique with respect to the other keywords recognized by
the same command. This means that vyou <can also . abbreviate these
elements to four or fewer characters. For example, the option
TRACEBACK on the /DEBUG qualifier in some commands can be abbreviated
to TRAC (or even T) with no conflict.

Note that some qualifiers permit a negative form. For example,
/NOLIST 1is the negative form of the /LIST qualifier. 1In applying the
minimum four-character truncation rule, do not count the NO prefix as
the first two of the four characters. 1In this case, the minimum
truncation that guarantees uniqueness is /NOLIST. The slash character

GRAMMAR RULES

(/) is also disregarded 1in counting characters. However, the
underscore character (_) is counted, as in /[NO]JD LINES, where the
minimum truncation for guaranteed uniqueness is /D LI and /NOD_LI.

5.1.3.3 Abbreviations in Command Procedure Files - Special
considerations apply when you type commands in command procedure
files. It is recommended that you use the full names of all the above
components to ensure readability. If you do abbreviate any of these
items, you should never abbreviate to fewer than the four-character
truncation described above, or vyou risk the possibility that your
command procedure may not be compatible with future releases of the
system. ‘

5.2 RULES FOR ENTERING FILE SPECIFICATIONS

The format of VAX/VMS file specifications is described in detail in
Chapter 2, ™"File Specifications and Logical Names." Use this format
for all files you specify as parameters to DCL commands. Remember
that all file specifications that you enter as parameters to system
commands or as qualifier values can be subject to 1logical name
translation and the application of defaults,

Some commands perform only a single level of logical name translation;
that is, translation 1is not recursive. When this is the case, the
parameter description indicates that fact.

In many cases, a command applies a unique default file type to input
or output file specifications. The parameter descriptions indicate
the default file type, if any.

The parameter descriptions also indicate whether you can specify wild
card characters in a field in the file specification.

5.2.1 Rules for Entering File Specification Lists
An input file parameter for many commands has the format:
file-spec[,e..]

This format indicates that you can enter more than one file
specification. You can separate the file specifications with commas
(,) or plus signs (+). However, commas and plus signs sometimes have
different meanings as separators. The parameter description always
states how the command interprets the list: 1in most cases, commas and
plus signs ‘are equivalent.

Any number of blanks or tab characters can precede or follow the
commas or plus signs. The list of file specifications is treated as a
single parameter; the system applies temporary defaults to the files
specified in the list.

>

GRAMMAR RULES

5.3 RULES FOR ENTERING QUALIFIERS

Commands can ﬁake-one or both of the following types of qualifier:
e Command qualifiers
® File qualifiers

Command qualifiers have the same meaning regardless of whether they

appear following the command name or following a command parameter.
For example:

$ PRINT/HOLD SPRING.SUM,FALL.SUM
$ PRINT SPRING.SUM,FALL.SUM/HOLD

The /HOLD qualifier is a command qualifier; therefore, the two PRINT
commands shown above are equivalent. Both files are placed in a hold
status. :

File qualifiers, however, sometimes have different meanings depending
on where you place them in the command. If specified immediately
after a file specification parameter, they affect only the file they
follow. If specified after the command name, they affect all files
specified as parameters.

For example:

$ PRINT/COPIES=2 SPRING.SUM,FALL.SUM
$ PRINT SPRING,SUM/COPIES=2,FALL.SUM

The first PRINT command shown above requests two copies of each of the
files SPRING.SUM and FALL.SUM. The second PRINT command requests two
copies of the file SPRING.SUM, but only one copy of FALL.SUM.

Some file qualifiers can be applied only to the specification of a
parameter and cannot be specified following the command name. When
this is the <case, the qualifier description indicates that the
qualifier is associated with a file parameter. In all other cases, if
you specify a file qualifier following the command name, the qualifier
is applied to all files specified (if you specify more than one).

5.3.1 Rules for Determining Qualifier Defaults

Qualifiers fall into the general categories described below. The
values shown on the right are defaults.

® Qualifiers with simple positive and negative forms. For
example:

/DELETE
/NODELETE

These qualifiers are listed in the command format boxes in
Part II, with their default value, as follows:

/ [NO]DELETE /NODELETE

GRAMMAR RULES

Qualifiers that require a numeric or character string variable
or keyword value. For example:

/COPIES=n

The default values for these qualifiers are shown in Part 1II
as:

/COPIES=n /COPIES=1

Qualifiers that accept a file specification wvalue and that
also have a negative form. For example:

/DEBUG
/NODEBUG
/DEBUG [=file~-spec]

These qualifiers are listed in the command format boxes in
Part II as follows:

/ [NO]DEBUG [=file~-spec] /NODEBUG

Defaults are noted, where they exist and can be readily
described. In this case, default always means the action
taken when you omit the entire qualifier, not Jjust the
optional part of it. Look in the corresponding text for a
description of what happens if you specify a qualifier without
an optional portion. If the default action is too complicated
to express in simple terms in the format section, you must see
the qualifier text for a full description.

NOTE

Certain qualifiers that request output
files accept file specification values
and apply defaults for these
specifications in a special way, as
described in Section 5.3.3.

Qualifiers that are overridden by other qualifiers. For
example:

/PROCESS
/GROUP
/SYSTEM

The default action is shown in Part II with each qualifier in
the list, as follows:

Qualifier Default
/GROUP /PROCESS
/PROCESS /PROCESS
/SYSTEM /PROCESS

Qualifiers that affect command execution only if explicitly
present and have no corresponding default. For example:

/RSX11

No defaults are given for this type of qualifier. It is a
required qualifier.

GRAMMAR RULES

If you specify the same qualifier more than once when you enter a
command, or specify both a positive and negative form of the same
cqualifier or qualifiers that override one another, the command
interpreter accepts only the last specification. For example:

$ PRINT MYFILE /COPIES=3/BURST/COPIES=2/NOBURST

For this PRINT command, the command accepts only the /COPIES=2 and the
/NOBURST qualifiers.

I1f you enter conflicting qualifiers for a command, the command
interpreter denerally issues an error message. If a qualifier
conflicts with another qualifier, the descriptions of these qualifiers
indicate the conflict.

5.3.2 Rules for Entering Qualifier Values

Many qualifiers accept keywords, file specifications, character
strings, or numeric values. For keywords, follow the rules for
truncating keywords (Section 5.1.3); for other types of value, follow
the rules for entering file specifications (Section 5.2), character
data (Section 5.4), or numeric values (Section 5.5).

You must separate a qualifier and value with either an equal sign (=)

or colon (:). For example, the following specifications are
equivalent:
/OUTPUT=DBA1l :NEW.DAT /OUTPUT:DBALl :NEW.DAT

Many qualifiers accept one or more keyword or variable values. The
syntax is represented in the format as:

/qualifier=value
For example:

/COPIES=3
/OVERRIDE=EXPIRATION

When more than one value is accepted, the syntax is:
/qualifier=value(,...]

If you want to specify more than one value for a qualifier, you must
separate the values with commas and enclose them in parentheses. For
example:

/PARAMETERS=(3,"CYGNUS,LYRA",PRINT)

The second parameter is enclosed in quotation marks because it
contains an embedded comma.

Some qualifier keyword values require additional data. Separate the
keyword from its data with a colon or an equal sign. For example:

/PROTECTION=GROUP :RW
/PROTECTION:GROUP:RW
/PROTECTION=GROUP=RW
/PROTECTION :GROUP=RW

GRAMMAR RULES

These expressions are all equivalent. To specify multiple keywords
that require values, enclose the list in parentheses. For example:

/BLOCKS=(START:0,END:10)
/PROTECTION=(GROUP:RW,OWNER:RWD)

5.3.3 Rules for Entering Output File Qualifiers

Some qualifiers request output from a command and optionally accept a
file specification value. For example, the /LIST and /OBJECT
qualifiers for the compilers, as well as the /EXECUTABLE qualifier for
the linker, are output file qualifiers that fit into this category.

The default file specification for output files requested by these
qualifiers depends on the placement of the qualifier in the command.
The rules are:

1. If the qualifier is present by default, the output file
specification defaults to the current default device and
directory, and the name of the first input file, The
qualifier provides a default file type. Some examples are:

Command Output File
LINK A A.EXE
LINK A,B A.EXE
LINK [TEST]A,[]B A.EXE
LINK A.OBJ A.EXE

2, If the qualifier is present following the command name, and
the qualifier does not specify an output file specification,
the output file specification defaults to the current default
device and directory, and the name of the first input file.
The qualifier provides a default file type. Some examples

are:

Command Output File
LINK/EXE A A.EXE
LINK/EXE A,B A.EXE
LINK/EXE A.OBJ A.EXE

3. If the qualifier is present following the specification of an
input file, and the qualifier does not specify an output file
specification, the output file specification defaults to the
device, directory, and file name of the immediately preceding
input file. The qualifier provides a default file type. Some
examples are:

Command Output File
FORTRAN A,B/LIST B.LIS

FORTRAN A+C/LIST,B/LIST+D C.LIS and B.LIS
FORTRAN [MAL]A/LIST+[]B [MAL]JA.LIS

LINK A+([TEST]D/EXE [TEST]D.EXE

GRAMMAR RULES

4, If the qualifier specifies a file specification for the output
file, then any fields entered in the file specification are
used to name the output file, and no default file name |is
supplied. Some examples are:

Command Output File

LINK A+B/EXE=C C.EXE
FORTRAN/LIST=A B+C A.LIS
FORTRAN/LIST=A B,C A.LIS (2 versions)
LINK/EXE=[TEST] A [TEST]) .EXE

In all cases, the version number of the output file 1is always one
greater than any existing file with the same file name and file type.

Note that when a 1logical name 1is wused for any input file
specifications, the entire equivalence name of the logical name is
used to determine the output file specification. If a logical name is
used for an input file and its equivalence name contains a file type,
then the same file type is used for the output file.

5.4 RULES FOR ENTERING CHARACTER STRING DATA

When you enter commands, you can use any combination of uppercase and
lowercase letters. The command interpreter translates lowercase
letters to uppercase letters and compresses multiple blank spaces or
tabs to a single blank, except when a character string is enclosed in
quotation marks (for example, "This is a string.").

Enclose character string data in quotation marks when the string

contains any of the following and you do not want the command
interpreter to translate them:

e Literal lowercase letters
e Required multiple blanks or tab characters

e Any nonalphanumeric character that has special significance to
the command interpreter

The alphanumeric characters are:
A through 2
a throﬁgh z
0 through 9
$ (dollar sign)

_ (underscore)
Table 5-1 lists the nonalphanumeric characters the command interpreter
recognizes and describes their meanings. The characters described as
"reserved special characters" can be used in character strings without
being enclosed in quotation marks. Other characters may require
quotation marks depending on the context of the command. When in
doubt, use quotation marks.

GRAMMAR RULES

Table 5-1

Nonalphanumeric Characters

Symbol

Name

Meaning

At sign

Places the contents of a command
procedure file in the command input
stream

Colon

Device name delimiter in a file
specification; a double colon (::)
is a node name delimiter

Qualifier value delimiter;
separates a qualifier name from its
value

Symbol name delimiter in a character
string assignment

Label delimiter

Delimiter between shared memory name
and object name

Slash

Qualifier delimiter

Division operator in an arithmetic
expression

Plus sign

Parameter concatenation operator

A unary plus sign or addition
operator in an arithmetic expression

Comma

List element separator for
parameters or for qualifier value
lists

Hyphen

Continuation character

A unary minus sign or subtraction
operator in an arithmetic expression

A directory searching wild character

()

Parentheses

List delimiters for qualifier value
list

Operation precedence indicators in
an arithmetic expression

Lexical function argument delimiters

[]

Square brackets

Directory name delimiters in a file
specification

Substring specification delimiter in
an assignment statement

(continued on next page)

Tab
Nonalph

GRAMMAR RULES

le 5-1 (Cont.)
anumeric Characters

Symbol

Name

Meaning

Angle brackets

Directory name delimiters in a file
specification

-

Question mark

Reserved special character

Ampersand

Execution-time substitution
operator; otherwise, a reserved
special character

Back slash

Reserved special character

Equal sign

Qualifier value delimiter;
separates a qualifier name
value

from its

Arithmetic or string assignment
operator

Circumflex

Reserved special character

Number sign

Reserved special character

Asterisk

Wild card character in a file
specification

Multiplication operator in an
arithmetic expression

Abbreviation delimiter in a symbol
definition

Apostrophe

Substitution operator

Period

File type and version number
delimiter in file specifications

Logical or comparison operator
delimiter in an expression

A subdirectory delimiter

~

Semicolon

Version number delimiter in a file
specification

Percent sign

Radix operator

Wild card character in a file
specification

Exclamation point

Comment delimiter

Quotation mark

~Literal string delimiter

5-11

GRAMMAR RULES

5.5 RULES FOR ENTERING NUMERIC VALUES

The command interpreter treats all literal numeric values as decimal
integers. To specify numeric values in commands, you can use one of
the following radix operators preceding a numeric value to indicate
the radix (number base):

Operator Meaning
%D Decimal
X Hexadecimal
%0 Octal

For example:

¥D19 = %X13 = %023
$X1F = %D31 = %037
%020 = 8X10 = %D16

There cannot be any blanks between a radix operator and a value,

5.6 RULES FOR FORMING EXPRESSIONS

When the command interpreter evaluates an expression, it assigns a
value based on the result of the operations specified 1in the
expression. If the expression contains logical operators or
arithmetic or string comparison operators, the expression is
considered true if it results in an odd numeric value; the expression
is considered false if it results in an even numeric value.

The following sections show how to use -expressions 1in assignment
statements., Symbols defined by assignment statements can be tested in
IF commands. The rules defined below also apply to the use of
expressions in the IF command.

5.6.1 Rules for Entering Operators

Logical and comparison operators must be preceded by a period (.) with
no intervening blanks. The operator must be terminated with a period,
You can type any number of blanks or tabs between operators and
operands. For example, the following expressions are equivalent:

A.EQS.B
A .,EQS. B

Each operator (with the exception of .NOT.) must have operands on each
side.

5.6.2 Rules for Specifying Operands

The command interpreter performs symbol substitution on all operands
in expressions that are not enclosed in quotation marks.

Table 5-2 summarizes the valid operators you can use in expressions
and gives the precedence of each operator. Operators of precedence 6
are performed first, while operators of precedence 1 are performed
last. When you form expressions, you can use parentheses to define
the order of precedence in evaluation.

5-12

GRAMMAR RULES

The valid data types you can specify for operands for each category of
operator are summarized below:
Operands for logical operations can be:

e Literal numeric values

e Symbol names

e Expressions
Operands for arithmetic comparisons can be:

e Literal numeric values

e Symbol names

e Literal character strings that begin with any of the letters

Y, N, T, or F, or symbol names equated to character strings
beginning with any of those letters

Operands for string comparisons can be:

e Literal character strings

e Symbol names equated to literal character strings

® Literal numeric values
Operands for arithmetic operations can be:

e Literal numeric values .

e Symbol names equated to numeric values

e Expressions that result in numeric values
Expressions are particularly wuseful 1in the context of command
procedures developed for specific applications. For details on how to
create and use command procedures and for examples of using

expressions and symbolic values, see the VAX/VMS Guide to Using
Command Procedures.

Table 5-2
Summary of Operators in Expressions

Operator Precedence Operation
. .OR. 1 Logical OR
g°2igf‘__irs .AND. 2 Logical AND
p .NOT. 3 Logical complement
.EQ. 4 Arithmetic equal to
Arithmetic .GE. 4 Arithmetic greater than or equal to
Comparison .GT. 4 Arithmetic greater than
Operators .LE. 4 Arithmetic less than or equal to
.LT. 4 Arithmetic less than
.NE. 4 Arithmetic not equal to

(continued on next page)

5-13

GRAMMAR RULES

Table 5-2 (Cont.)
Summary of Operators in\Expressions

Operator Precedence Operation
.EQS. 4 String equal to
String .GES. 4 String greater than or equal to
Comparison .GTS. 4 String greater than
Operators .LES. 4 String less than or equal to
.LTS. 4 String less than
.NES. 4 String not equal to
+ 5 Arithmetic sum
Arithmetic - 5 Arithmetic difference
Operators * 6 Arithmetic product
: / 6 Arithmetic quotient

5.7 RULES FOR SPECIFYING LEXICAL FUNCTIONS

You can use lexical functions in any context in which you normally use
symbols or expressions. The general format of a lexical function is:

'F$function-name ([args,...])

'F$
indicates that what follows is a lexical function. All three
characters, including the substitution operator ('), are
required.

function-name
specifies the function to be evaluated. All function names are
keywords. You can truncate function names to any unique

truncation, remembering that keeping four characters will
guarantee uniqueness in all future releases of VMS,

()
enclose function arguments, if any. The parentheses are required
for all functions, 1including functions that do not accept any
arguments. '

[args,...]
specify arguments for the function. You can specify arguments
using symbol names, numeric literals, or string literals enclosed
in quotation marks. The command interpreter assumes that all
strings beginning with alphabetic letters that are not enclosed
in quotation marks are symbol names. If a symbol is wundefined,
the command interpreter substitutes a null string.

Function arguments cannot specify string substitution or other
lexical functions.

For a complete list of the lexical functions, their formats, and the
arguments required by each, see the entry in PART II entitled "Lexical
Functions.” For additional details on how to use the lexical
functions, see the VAX/VMS Guide to Using Command Procedures.

GRAMMAR RULES

5.8 RULES FOR ENTERING DATES AND TIMES

When a command accepts a qualifier that specifies a time wvalue, the
time value is either an absolute time or a delta time:

® An absolute time is a specific date and time of day, for
example 10-JUN-1978 10:53:22.10.

e A delta time is a future offset from the current date and time
of day, for example 2 days and 3 hours from now.

The syntax rules for specifying time values are described below.

5.8.1 Absolute Times
Absolute times generally have the format:
[dd=mmm-yyyy[:]] [hh:mm:ss, c]

You can specify either the date or the time, or both. The variable
fields are as follows:

Field Meaning
dd Day of month (1 through 31)
mmm Month; the month must be specified as one of the

following three-character abbreviations:

JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,

DEC
YYYy Year
hh Hour éf the day (0 through 23)
mm Minute of the hour (0 through 59)
ss Seconds (0 through 59)
c Hundredths of seconds (0 through 99)

You may also specify one of the following keywords wherever an
absolute time is appropriate:

Keyword Meaning

TODAY The current day, month, and year at
00:00:00.0 o'clock

TOMORROW 24 hours after 00:00:00.0 o'clock today

YESTERDAY 24 hours before 00:00:00.0 o'clock today

5.8.1.1 8Syntax - The punctuation marks in an absolute time indicate
how the system interprets the time value you enter, as follows:

l. If you specify both the date (dd-mmm-yyyy) and the time

(hh:mm:ss.c), you must type the colon between the date and
the time.

5-15

GRAMMAR RULES

2. You can truncate either the date or the time on the right;
however, 1if vyou are specifying both a date and a time, the
date part must contain at least one hyphen.

3. You can omit any of the fields within the date or time, as
long as you type the punctuation marks; the system supplies
default values.,

4., The period between seconds and hundredths of seconds is a
delimiter; it is not a decimal point.

5.8.1.2 Defaults - When the date or any of its fields is omitted from
an absolute time value, the system supplies the current day, month, or
year by default. '

When any field is omitted from the time, the system supplies a value
of 0 for the field.

5.8.1.3 Examples - Some examples of specifying absolute times are:

Time Specification Result

28-JUN-1978:12 12:00 noon on June 28, 1978

28-JUN Midnight (00:00 o'clock) at the beginning of
the 28th of June, this year

15 3:00 p.m., today

15- The 15th day of the current month and vyear,
at midnight

18:30 6:30 p.m., today

15--::30 00:30 o'clock, on the 15th day of the current
month

00:00:00.2 Two-hundredths of a second after midnight,
today

Note that whenever you issue a command and specify an absolute time

that has already passed, the system executes the specified action
immediately.

5.8.2 Delta Times

Delta times have the format:

[dddd-] (hh:mm:ss.c]

5-16

GRAMMAR RULES

The variable fields are as follows:

Field Meaning

dddd Number of days, 24-hour units (0 through 9999)
hh Number of hours (0 through 23)

mm Number of minutes (0 through 59)

ss Number of seconds (0 through 59)

c Number of hundredths of seconds (0 through 99)

5.8.2.1 Syntax - When vyou specify a delta time value, you can
truncate the time field on the right. You can also omit any of the
variable fields, as long as you supply the punctuation marks.

5.8.2.2 Defaults - When any field is omitted from a delta time value,
the system supplies a value of 0 for the field.

5.8.2.3 Examples ~ Some examples of specifying delta times are:

Time Specification Result

3- 3 days from now (72 hours)

3 3 hours from now

:30 30 minutes from now

3-:30 3 days and 30 minutes from nhow
15:30 15 hours and 30 minutes from now

5.9 RULES FOR SYMBOL SUBSTITUTION

This section explains the symbol substitution process, including what
happens when certain types of symbols have no value.

This topic is expanded with numerous examples in the VAX/VMS Guide to
Using Command Procedures.

5.9.1 Phases of Symbol Substitution

The command interpreter substitutes symbols during three distinct

phases of command processing. The three phases occur in the following
sequence:

1. Lexical Processing. The command interpreter scans the
command and locates the symbol at the beginning of a command
string, except where the next nonblank character is an equal
sign (=) or a colon (:). It also locates symbol names that
are delimited with apostrophes ('), including those occurring

5-17

GRAMMAR RULES

within comments. All substitutions are performed according
to the sequence in Section 5.9.2. Note that any of these
symbols that remain undefined after this step are treated as
null strings.

2. Parsing. Symbol names preceded with ampersands (&) are
substituted during command parsing. If one of these symbols
is undefined, it is treated as a null string within the
context of the command that will be executed.

3. Execution, Symbol names may occur in contexts where
substitution is automatic at execution time. Examples
include: symbols used with IF, DEPOSIT, EXAMINE, or WRITE
commands, symbols appearing on the right-hand side of
arithmetic assignment statements, or symbols in lexical
functions. If any of these symbols cannot be defined, an
error occurs.

5.9.2 Order of Symbol Substitution

Each time a substitution occurs, the substitutions are made from left
to right on each line in the command.

In performing symbol substitution, the command interpreter searches
the 1local symbol table for the current command level for a match and
replaces the symbol name with the numeric value or character string
assigned to it. If the symbol is not found, the command interpreter
searches the local symbol tables of preceding command 1levels, in
reverse order. Last, it searches the global symbol table.

5.10 RULES FOR PROTECTION CODES

Section 3.1.1 defines the user categories and access types employed in
protection codes. This section provides the rules for specifying
protection codes.

Any combination of the access types, READ, WRITE, EXECUTE, and DELETE,
can be specified for any of the four categories of user, SYSTEM,
OWNER, GROUP, or WORLD. The following syntax rules apply:

e When you specify a protection code, you must abbreviate access
types to one character. User categories can be entered in
full or truncated to any number of characters.

e You can specify the user categories and access types in any
order.

e If you omit an access type for a user category, that category
of user is denied that type of access.

e When you specify a protection code, separate each user
category from access type with a colon.

e If you specify more than one user category, separate the
categories with commas and enclose the entire code in
parentheses.

e When you omit a user category from a protection code applied
to an entire volume, that category of user is denied all types
of access.

GRAMMAR RULES

e When you omit a user category from a protection code applied
to one or more files or from a code specified for the default
protection, the current access allowed that category of user
remains unchanged.

e When you specify a user category with a protection code of O
or with a null protection code, you deny that user category
any access. (Be certain to omit the <colon after the user
category, if you want to specify a null protection code.)

For example:
$ SET PROTECTION=(SYSTEM:RWED,GROUP:R,WORLD)/DEFAULT

This protection code allows the system all types of access, group
members read access only, prohibits all access by users in the
world category, and does not change the current access for the
owner.

5.11 RULES FOR DEFINING AND ABBREVIATING COMMAND SYMBOLS

You can use abbreviated forms of symbols for commands if you define
them wusing the abbreviation punctuation character, the asterisk (%*).
For example, to abbreviate a local symbolic name, DISPLAY, define it
as:

$ DISP*LAY := S$DISPLAY

Then, the DISPLAY utility will be executed whenever the following
versions of the symbolic name are used:

DISP
DISPL
DISPLA
DISPLAY

Generally, you can use abbreviated symbol definitions in any situation

that allows any symbol to be used. However, there are some
restrictions:

e You cannot abbreviate symbols unless you are defining local or
global character strings.

e You cannot abbreviate symbols that involve substring
replacement

e When you define abbreviated symbols, existing symbols may be
deleted, or become ambiguous. If an existing symbol exactly
matches the new symbol at or past the abbreviation punctuation
(the asterisk), the existing symbol is deleted from the symbol
table. If an existing symbol matches the new symbol up to the
asterisk, the new symbol is not entered in the symbol table.

PART 11

COMMAND
DESCRIPTIONS

= (Assignment Statement)

Defines a symbolic name for a character string or for an arithmetic
value or expression.

Formats

symbol-name =[=] expression
symbol-name :=[=] string
symbol-name [bit-position,size] =[=] expression1

symbol-name [offset,size] :=[=] stringl

Command Qualifiers Defaults
None. None.
Prompts
None.

Command Parameters

symbol-name

Defines a 1- through 255-alphanumeric character-string name for
the symbol. The symbol name must begin with an alphabetic
character (uppercase and lowercase characters are equivalent).

If you specify a single equal sign (=) in the assignment
statement, the symbol name is placed in the local symbol table
for the current command level.

If you specify double equal signs (== in the assignment
statement, the symbol name is placed in the global symbol table.
Global symbols are recognized in any command procedure as well as
at the interactive command 1level. There cannot be any blanks
between the equals signs or between an equals sign and a colon.

expression

Specifies a numeric value or an arithmetic or logical expression
to be equated to the symbol name. If you specify an expression,
the command interpreter analyzes the expression, substituting
symbol values if necessary, before making the assignment.

l. In this syntax, the bold brackets in the expressions
[bit-position,size] and [offset,size] are required. The brackets in
the expressions =[=] and :=[=] indicate that the second equal sign |is
optional.

For
and

= (Assignment Statement)

a summary of operators and details on the syntax requirements
how to specify expressions, see Section 5.6, "Rules for .

Forming Expressions,”

string

Spec
in

char
stri
encl
or

or q

ifies a character-string value (or any expression resulting
a character string value) to be equated to the symbol. A
acter string can have from 0 through 255 characters. The
ng can contain any alphanumeric or special characters;
ose it in quotation marks if it contains any multiple blanks
tab characters, lowercase letters, an exclamation point (!),
uotation marks ("). To specify a string that contains

literal quotation marks, enclose the entire string in quotation

mark
For

You
quot
no s

8, and use a double set of quotation marks within the string.
example:

S HELLO := “PATTI SAYS ""HI"""
can specify a null string either by using a double set of
ation marks with no intervening characters or by specifying
tring. For example:

$ NULLSTRING := ""

You can omit a trailing quotation mark on the end of a line.

If a
quot
is t

string beginning with a dollar sign 1s not enclosed in
ation marks, the command interpreter assumes that the string
he file specification of an executable 1image. When the

symbol-name thus defined appears as the first item in a command

stri
spec

[bit-posi

Defi
to
You
star
32'

[offset,s

ng, the command interpreter executes the image. The file

ification must include a device name.
tion,size)
nes a range within the current value of symbol-name that is

be stored with the binary value of the indicated expression.
can specify any position within a numeric wvalue as the
ting bit position. If you specify a size value that exceeds
the value 32 is used.

ize]

Defines the substring location at which the current value of
symbol-name is to be overlaid with characters from the indicated
string expression.

offset

size

Specifies the position relative to the beginning of the
symbol~name's string value at which replacement is to begin.
If the offset is greater than the length of the string, the
resulting string 1s filled with blanks to the requested
offset before replacement occurs. The maximum value you can
specify is 255.

Specifies the number of characters, beginning with the first
character, in the string expression to extract. If the size
is greater than the length of the string, the string Iis
blank-filled on the right to the requested size before it is
used to overlay the symbol-name string. The value of the
size plus the offset must not exceed 255.

= (Assignment Statement)

You can specify the offset and size using literal numeric values
or arithmetic expressions, including expressions consisting of
lexical functions.

When you specify a substring expression 1in an assignment
statement, there cannot be any blanks preceding or following the
.substring expression,

Description

Symbols defined via assignment statements allow you to extend the
command language. At the interactive command level, you can
define synonyms for commands or command lines, In command
procedure files, you can define symbols and test their values to
provide for conditional execution and substitution of variables.

Creating a Symbol that Executes an Image: When a symbol |is
equated to a string that begins with a dollar sign ($) followed
by a file specification, the command interpreter assumes that the
file specification 1is that of an executable image. It further
assumes the file has a device and directory of SYSSSYSTEM and a
default file type of EXE. Example 5 that follows illustrates
this technique for creating command synonyms. Appendix A
elaborates further on this topic and its application. Section
5.11 includes a description of how to designate acceptable
abbreviations for your command synonyms.

Reserved Symbols: The following symbol names are reserved. They
are global symbols under the control of the operating system and
cannot be explicitly redefined:

$STATUS Return status from the most recently executed command
or program, or status value .specified by a command
procedure when it exited.

SSEVERITY Severity 1level of the status code from the most

recently executed command or program. The possible
values are:

Value Severity Level

Warning

Success

Error

Informational

Severe, or fatal error

S WO

You can use these symbolic names to test the completion status of
command or program execution to determine the success or failure
of a request, and optionally to ©provide for conditional
processing based on the value returned.

Symbol Substitution: Rules for symbol substitution appear in
Section 5.9. For further discussion of symbol substitution and
examples of how to use symbols in command procedures, see the
VAX/VMS Guide to Using Command Procedures.

Examples

1.

= (Assignment Statement)

$ TIME := SHOW TIME
$ TIME
28-JUL-1978 11:55:44

The symbol TIME is equated to the command string SHOW TIME.
Because the symbol name appears as the first word in a
command string, the command interpreter automatically

substitutes it with its string value and executes the command
SHOW TIME.

$ LIST :== DIRECTORY
$ TIME :== SHOW TIME
$ QP :== SHOW QUEUE/DEVICE
$ SS :== SHOW SYMBOL

The file, SYNONYM.COM, contains the assignment statements
shown; these are user-defined synonyms for commands.
Execute this command procedure as follows:

@SYNONYM

The global symbol definitions are made, and you can now use
these synonyms at the interactive command level. Note that
the assignments are global; otherwise, the symbol names

would be deleted after the file SYNONYM.COM completed
execution.

$ COUNT = 0
$ LOOP: COUNT = COUNT + 1

$ IF COUNT.LT.5 THEN GOTO LOOP

The symbol COUNT is initially assigned a numeric value of 0;
a loop 1is established to increment the value of COUNT by 1
each time the loop is entered. Note that when the symbol
name COUNT appears on the right-hand side of an arithmetic
assignment statement, the command interpreter automatically
substitutes its current value,

The IF command tests the value of COUNT; if less than 5, the
procedure branches to the 1label LOOP and the statements
between the label LOOP through the IF command are executed
again. When the value of the symbol count reaches 5, the

loop is not executed again and the command following the IF
command is executed.

= (Assignment Statement)

$ NAME := MYFILE
$ TYPE := .DAT
$ PRINT 'NAME''TYPE'

In this example the symbol NAME is equated to a file name and
the symbol TYPE is equated to a file type. The PRINT command
refers to both of these symbol names to form a file
specification. The apostrophes surrounding each symbol name
indicate that these are symbols to be substituted.

The PRINT command prints the file MYFILE.DAT,

$ STAT := $DBAl:[CRAMER]STAT
$ STAT

The symbol STAT is equated to a string that begins with a
dollar sign followed by a file specification. The command
interpreter assumes that the file specification is that of an
executable image, that is, the file has a file type of EXE.
Thus, the symbol STAT in this example becomes a synonym for
the command:

$ RUN DBAl:[CRAMER]STAT.EXE

When you subsequently type STAT, the command interpreter
executes the image.

$ WRITE SYSSOUTPUT "Beginning Test No. ''COUNT'"

The WRITE command writes a line of data to the current output
stream. The string to be written is enclosed in quotation
marks so that the lowercase letters will not be translated to
uppercase. However, the string contains the name of a
symbol, COUNT, which must be substituted with its current
value before the line is written.

The symbol COUNT is preceded with two apostrophes and
terminated with a single apostrophe to request that symbol
substitution be performed.

COUNT = 0

LOOP:

COUNT = COUNT + 1

IF P'COUNT' .EQS. "" THEN EXIT
APPEND/NEW &P'COUNT' SAVE,ALL
DELETE &P'COUNT';*

IF COUNT .NE. 8 THEN GOTO LOOP
EXIT

RORORORORGEHEOGRS

This command procedure uses a counter to refer to parameters
that are passed to it. Up to eight parameters, named Pl, P2,
and so on, can be passed. Each time through the 1loop, the
procedure uses an IF command to check whether the value of
the current parameter is a null string. When the IF command
is scanned, the symbol COUNT is substituted with its current
value and concatenated with the letter P. The first time
through the 1loop, the IF command tests Pl; the second time
through the loop it tests P2, and so on. The substitution of
Pl, P2, and so on, is automatic within the context of the IF
command, because the IF command tests symbolic and 1literal
expressions,

= (Assignment Statement)

The APPEND and DELETE commands, however, do not automatically
perform any substitution, because they expect and require
file specifications as input parameters. The ampersand (&)
precedes the P'COUNT' expression for these commands. When
these commands are initially scanned each time through the
loop, COUNT 1is substituted with its current value. Then,
when the commands execute, the & causes another substitution:
Pl, P2, and so on. You can invoke this procedure with the
line:

$ PCOPYDEL ALPHA.TXT BETA.DOC

The files ALPHA.TXT and BETA.DOC are each appended to the
file SAVE.ALL and then deleted.

$ FILE_SPEC := 'pPl'

$ LOC = 'FSLOCATE(".",FILE SPEC)
$ FILE_NAME := 'FSEXTRACT (0,LOC,FILE_SPEC)

These lines show how to extract the file name portion of a
string containing a file name, file type, and optionally a
file version number.

The first statement equates the . symbol FILE_SPEC to the
parameter Pl, which must be passed to the command procedure.
Note that the apostrophes are required; otherwise, the
symbol name FILE SPEC is equated to the literal string Pl.

The second statement uses the lexical function F$SLOCATE to
locate the period within the file specification string. The
function returns, in the symbol LOC, a numeric value
representing the offset of the period within the string value
of FILE_SPEC.

The third statement uses the symbol name LOC to specify how
many characters of the file specification are to be
extracted. The lexical function FSEXTRACT requests that LOC
characters, beginning at the beginning of the string, be
extracted from the current value of the string named
FILE SPEC. The result is equated to the symbol FILE_NAME.

If this procedure is passed the parameter MYFILE.DAT, the
resulting value of the symbol LOC is 6 and the resulting
value of the symbol FILE NAME is the string MYFILE.

$ FILE_NAME[0,2]:= OL

The substring expression in the assignment statement overlays
the first two characters of a file name string with the
letters OL. The offset of 0 requests that the overlay begin
with the first character in the string, and the size
specification of 2 indicates the number of characters to
overlay. .

If the current value of the symbol FILE _NAME is MYFILE when
this assignment statement is executed, the resulting value of
the symbol name is OLFILE.

10.

= (Assignment Statement)

$ FILE_TYPE := ,TST
$ FILE_NAME ['FSLENGTH (FILE_NAME),4)):= 'FILE_TYPE'

In this example, the symbol name FILE_TYPE is equated to the
string .TST. The second assignment statement uses the
lexical function FSLENGTH to define the offset value in the
substring expression.

The FSLENGTH lexical function returns the length of the
string equated to the symbol FILE_NAME; thus the substring
expression requests that 4 characters of the string currently
equated to the symbol FILE_TYPE be placed at the end of the
string currently equated to FILE NAME, If the current value
of FILE NAME is MYFILE, the FSLENGTH lexical function returns
a value of 6 and the substring expression is:

$ FILE_NAME[6,4):= 'FILE_TYPE'

Thus, the resultant value of the string FILE_NAME is
MYFILE.TST.

@ (Execute Procedure)

Executes a command procedure or requests the command interpreter to
read subsequent command input from a specific file or device.
Format
@file-spec [pl (p2 [... p8]1]]
Command Qualifiers Defaults
/OUTPUTéfile-spec None.
Prompts
None.
Command Parameters
file-spec
Specifies the command procedure to be executed, or the device or

file from which input for the preceding command is to be read.

3

If you do not specify a file type, the system uses the default

file type of COM.

No wild card characters are allowed in the file specification.

pl [p2 ... p8]

Specify from one to eight optional parameters to pass to

the

command procedure. The parameters assign numeric or character
string values to the symbols named Pl, P2, and so on in the order
of entry, to a maximum of 8. The symbols are local to the

specified command procedure. The command interpreter sets
unspecified parameters to null strings.

all

Separate each parameter with one or more blanks. You can specify
a numeric or character string value using any alphanumeric or

special characters, with the following restrictions:

1. If the first parameter begins with a slash character
(/), you must enclose the parameter in quotation marks

").

2, To pass a parameter that contains embedded blanks
" literal lowercase letters, place the parameter
quotation marks.

or
in

@ (Execute Procedure)

3. To pass a parameter that contains 1literal quotation
marks, enclose the entire string in quotation marks and
use a double set of quotation marks within the string,
For example:

$ @QTEST "Never say ""quit"""

When the procedure TEST,.COM executes, the parameter Pl
is equated to the string:

Never say "quit"

Description

Use command procedures to catalog frequently used sequences of
commands. A command procedure can contain:

e Any valid DCL command. All commands must begin with a dollar
sign ($) character. If a command is continued with the
continuation character (-), the subsequent 1lines must not
begin with a $.

e Data. Any line in a command procedure that does not contain a
dollar sign in the first character position (or is not a
continuation line) is treated as input data for the command or
program that is currently executing. The DECK command allows
you to specify that data contains dollar signs 'in record
position one.

e Qualifiers and/or parameters for a specific command. If the
file contains only parameters for the command, the @ command
must be preceded by a space. If the file contains qualifiers
for the command, the @ command must not be preceded with a
space. If the file contains only parameters and/or
qualifiers, the 1lines must not begin with dollar signs (§).
Any additional data on the command line following the
@file-spec is treated as parameters for the procedure.

A command procedure can also contain a request to execute another
command procedure. The maximum level to which command procedures
can be nested is eight.

Command procedures can also be queued for processing as batch
jobs, either with the SUBMIT command or by placing a deck of
cards containing the command procedure in the system card reader.
Batch jobs submitted through the card reader must be preceded
with JOB and PASSWORD commands.

For more information and examples of <c¢reating and submitting
command procedures for execution, see the VAX/VMS Guide to Using
Command Procedures.

Command Qualifiers

/OUTPUT=file-spec

Requests that all output directed to the logical device
SYSSOUTPUT be written to the file or device specified. System
responses and error messages are written to SYSSCOMMAND as well
as to the specified file.

@ (Execute Procedure)

If you specify /OUTPUT, the qualifier must immediately follow the
file specification of the command procedure. Otherwise, it is
interpreted as a parameter to pass to the command procedure.

The default output file type is LIS.

No wild card characters are allowed in the file specification.

Examples
1, $ ON WARNING THEN EXIT
$ IF P1.EQS."™" THEN INQUIRE Pl FILE
$ FORTRAN/LIST 'P1l'
$ LINK 'P1'
$ RUN 'P1°
$ PRINT 'P1’'

This command procedure, named DOFOR.COM, executes the
FORTRAN, LINK, and RUN commands to compile, link, and execute
a program whose file specificatlion is passed as a parameter.
The ON command requests that the procédure not continue if
any of the commands results in warnings or errors. The IF
command checks to see if a parameter was passed; if not, the
INQUIRE command issues a prompting message to the terminal
and equates what you enter with the parameter Pl. You can
execute this procedure as follows to compile, 1link, run, and
obtain a listing of the program AVERAGE.FOR:

$ @DOFOR AVERAGE
2. $ @MASTER/OUTPUT=MASTER.LOG

This command executes a procedure named MASTER.COM; all
output is written to the file MASTER.LOG.

3. |$ RUN 'P1' -

/BUFFER_LIMIT=1024 -

/FILE_LIMIT=4 -

/PAGE_FILES=256 -

/QUEUE_LIMIT=2 -

/SUBPROCESS_LIMIT=2 -

!le IP3I _lp4l IPSI 'P6l lp?l lpa'

This procedure, named SUBPROCES.COM, issues the RUN command
to create a subprocess. It contains qualifiers defining
quotas for subprocess creation. For example, the procedure
can be invoked as follows:

$ @SUBPROCES LIBRA /PROCESS_NAME=LIBRA
In this example, LIBRA is equated to Pl; it is the name of

an image to execute in the subprocess. /PROCESS_NAME=LIBRA
is equated to P2; it is a qualifier for the RUN command.

10

@ (Execute Procedure)

$ ASSIGN SYSSCOMMAND: SYSS$SINPUT:
$ NEXT:

$ INQUIRE NAME "File name"

$ IF NAME.EQS."" THEN EXIT

$ EDIT/SOS 'NAME' .DOC

$ GOTO NEXT

This procedure, named EDOC.COM, invokes the S0S editor. When
an edit session 1is terminated, the procedure loops to the
label NEXT. Each time through the 1loop, the procedure
requests another file name for the editor and supplies the
default file type of DOC. When a null 1line 1is entered in
response to the INQUIRE command, the procedure terminates
with the EXIT command.

The ASSIGN command changes the equivalence of SYSSINPUT for
the procedure. This allows the editor to read input from the
current command device (the terminal) rather than from the
input stream (the command procedure file).

11

ALLOCATE

Provides exclusive access to a device and optionally establishes a
logical name for the device. Once a device has been allocated, other

users cannot access the device until you specifically deallocate it or
log out.

Format

ALLOCATE device-name[:] [logical-name(:]]

Command Qualifiers Defaults
None. None.
Prompts

Device: device-name

Log_name: logical-name

Command Parameters

device-name

Specifies the name of the device to be allocated. The device
name can be a generic device name, such that if no controller or
unit number is specified, the system allocates any available

device that satisfies those components of the device name that
are specified.

logical-name

Specifies a 1- through 63-character logical name to be associated
with the device. The 1logical name 1is placed in the process
logical name table, with the name of the physical device
allocated as its equivalence name. Subsequent references to the

logical name result in automatic translation to the specified
device name.

If you specify a trailing colon (:) on the 1logical name, the
colon is removed from the name before the name is placed in the
logical name table.

12

Examples

1.

ALLOCATE

$ ALLOCATE DMB2:
_DMB2: ALLOCATED

The ALLOCATE command requests the allocation of a specific
RKO6/RK07 disk drive, that is, unit 2 on controller B. The
response from the ALLOCATE command indicates that the device
was successfully allocated.

$ ALLOCATE MT: TAPE:
_MTB2: ALLOCATED

$ SHOW LOGICAL TAPE

TAPE = MTB2: (process)
$ DEALLOCATE TAPE
$ DEASSIGN TAPE

The ALLOCATE command requests the allocation of any tape
device whose name begins with MT, to be assigned the logical
name, TAPE. The ALLOCATE command locates an available tape
device and responds with the name of the device allocated.
Subsequent references to the device TAPE in user programs or
command strings are translated to the device name MTB2,

When the tape device is no 1longer needed, the DEALLOCATE
command deallocates it and the DEASSIGN command deletes the
logical name. Note that the 'logical name, TAPE, was
specified with a colon on the ALLOCATE command, but that the
logical name table entry does not have a colon.

13

ANALYZE

Provides a description of the contents of an object file or the symbol
information appended to a shareable image file. 1In describing the
records, ANALYZE also identifies certain errors.

Format

ANALYZE file-spec

Command Qualifiers Defaults
/IMAGE /OBJECT
/[NO]JINTERACTIVE /NOINTERACTIVE
/OBJECT /OBJECT
/OUTPUT [=file-spec]
File Qualifiers Defaults
/DBG ‘ None.
/EOM
/GSD
/MHD
/TBT
/TIR

Prompts

File: file-spec

Command Parameters
file-spec

Specifies the name of the object or shareable image file you want
analyzed. By default, the file type is assumed to be OBJ, unless
you specify the /IMAGE qualifier. The /IMAGE qualifier imposes a
default file type of EXE.

No wild card characters are allowed in the file specification.

Description

ANALYZE provides a description of the records comprising an
object or shareable image file. It also performs a partial error
analysis on the file. This command is intended primarily for use
by programmers of compilers, debuggers, or other software that
involves VAX/VMS object modules. For a full description of the
use of the ANALYZE Utility in conjunction with the Linker, see
the VAX-1l1l Linker Reference Manual.

14

ANALYZE

By default, if you specify none of the file qualifiers (/DBG,
/EOM, /GSD, and so forth), you obtain the same results as if you
had specified all of them. However, as soon as you specify one
of them, you disable the others and then must explicitly request
all those file qualifiers you want in effect.

Command Qualifiers

/IMAGE

Specifies that the analysis should occur on the symbol
information ‘appended to a shareable image file. This qualifier
and the /OBJECT qualifier are mutually exclusive. If you omit
this qualifier, the default is /OBJECT.

/INTERACTIVE
/NOINTERACTIVE

Controls whether the analysis occurs interactively with the user
at a terminal. The interactive mode provides a display of the
analysis of eac¢h record 1in sequence and gives the user the
opportunity to respond Y (Yes) or N (No) to the question of
whether to continue the interactive analysis after each record is
displayed.

The default is /NOINTERACTIVE.

/OBJECT

Specifies that the analysis should occur on an object file. This
is the default. Furthermore, the /OBJECT and /IMAGE qualifiers
are mutually exclusive.
/OUTPUT [=file-spec]

Identifies the output .file for storing the results of the
analysis. By default, this file receives a file type of ANL. If
you omit the file name, the output is directed to a file with the
same name as the input file and a file type of ANL,

No wild card characters are allowed in the file specification.

File Qualifiers

/DBG

Specifies that the analysis should include all debugger
information records.

/EOM

Specifies that the anélysis should include all end-of - module
records.

/GSD

Specifies that the analysis should include all global symbol
directory records.

15

/MHD

ANALYZE

Specifies that the analysis should 1include all module header
records.

/TBT

Specifies that the analysis should include all traceback records.

/TIR

Specifies that the analysis should include all text information

and

Examples

1.

relocation records.

$§ ANALYZE/IMAGE/OUTPUT=SYSSOUTPUT TAXES.EXE ’

Analyzes all the records in the shareable image file
TAXES.EXE (including, by default, the debugger information,
end-of-module, global symbol, module header, traceback, and
text information and relocation records). Notice that this
logical name for the output file causes the output to appear
on the wuser's terminal. However, the display occurs in
total, so there is no halting after each record display to
request permission to continue, as there 1is in the
interactive mode.

$ ANALYZE/OBJECT/INTERACTIVE TAXES/TBT

This command interactively analyzes all traceback records in
the object file TAXES.OBJ.

16

APPEND

Adds the contents of one or more specified input files to the end of a
specified output file.

Format

APPEND input-file-spec[,...] output—-file-spec

Command Qualifiers Defaults
/ [NO]LOG /NOLOG
File Qualifiers Defaults

/ALLOCATION=n

/ [NO]CONTIGUOUS /NOCONTIGUOUS
/EXTENSION=n

/FILE _MAXIMUM=n

/[NOINEW /NONEW
/PROTECTION=code
/[NO]READ_CHECK /NOREAD_CHECK
/[NO]WRITE_CHECK /NOWRITE_CHECK
Prompts
From: input-file-spec[,...]
To: output-file-spec

Command Parameters

input-file-spec[,...]

Specifies the names of one or more input files to be appended.

If you specify more than one input file, separate the
specifications with either commas (,) or plus signs (+). Commas
and plus signs are equivalent; all files specified are appended,
in the order specified, to the end of the output file.

You can use full wild carding in the file specification as
described in Section 2.1.6.

output-file-spec

Specifies the name of the file to which the input files are to be
appended.

17

APPEND

You must specify at 1least one field in the output file
specification. If you do not specify a device and/or directory,
the APPEND command uses your current default device and
directory. For other fields that you do not specify, the APPEND
command uses the corresponding field of the input file
specification.

If you specify the asterisk (*) wild card character in any
field(s) of the output file specification, the APPEND command
uses the corresponding field of the related input file
specification.

Description

The APPEND command is similar in syntax and function to the COPY
command. Normally, the APPEND command adds the contents of one
or more files to the end of an existing file without incrementing
the version number. You can use the /NEW qualifier to request
that if the output file does not exist, the APPEND command should
create it.

Command Qualifiers

/LOG
/NOLOG

Controls whether the APPEND command displays the file
specifications of each file appended.

If you specify /LOG, the APPEND command displays, after each
append operation, the file specifications of the input and output
files, and the number of blocks or the number of records
appended. At the end of command processing, the APPEND command
displays the number of new files created.

File Qualifiers

/ALLOCATION=n

Forces the initial allocation of the output file to the number of
512-byte blocks specified as n.

This qualifier is valid only if /NEW 1is specified, and the
allocation size 1is applied only if a new file is actually
created. If a new file 1is created and you do not specify
/ALLOCATION, the initial allocation of the output file is
determined by the size of the input file.

/CONTIGUOUS
/NOCONTIGUOUS

Indicates whether the output file is contiguous, that is, whether
the file must occupy consecutive physical disk blocks.

By default, the APPEND command creates anh output file in the same
format as the corresponding input file. If an input file is
contiguous, the APPEND command attempts to create a contiguous
output file, but does not report an error if there is not enough
space. If you append multiple input files of different formats,
the output file may or may not be contiguous. Use the
/CONTIGUOUS qualifier to ensure that files are contiguous.

18

APPEND

/EXTENSION=n

Specifies the number*of blocks to be added to the output file
each time the file is extended.

The extension value is applied only'if a new file 1is actually

created. If you specify /EXTENSION, the /NEW qualifier is
assumed.

/FILE_MAXIMUM=n

Specifies the maximum number of logical records that the output
file can contain.

This qualifier is valid only for new relative files. If you
specify /FILE_MAXIMUM, the /NEW qualifier is assumed.

/NEW
/NONEW

Controls whether the APPEND command creates a new file. By
default, the output file specified must already exist. Use /NEW
to request that if the specified output file does not already
exist, the APPEND command should create it.

/PROTECTION=code

Defines the protection to be applied to the output file.

Specify the protection code using the standard rules given in
Section 5.10. Any protection attributes not specified are taken
from the current protection of the output file; or, if a new
file is created, from the current default protection.

/READ_CHECK
/NOREAD_CHECK

Requests the APPEND command to read each record in the input
file(s) twice to verify that all records were correctly read.

/WRITE_CHECK
/NOWRITE CHECK

Requests the APPEND command to read each record in the output
file after it is written to verify that the record was

successfully appended and that the file can subsequently be read
without error.

19

Examples

l.

APPEND

$ APPEND TEST.DAT NEWTEST.DAT

The APPEND command appends the contents of the file TEST.DAT
from the default disk and directory to the file NEWTEST.DAT.

$ APPEND/NEW/LOG *,TXT MEM.SUM

$APPEND~I-CREATED, DBA2:[MAL]JMEM.SUM;1 created

SAPPEND~-S-COPIED, DBA2:[MAL]A.TXT;2 copied to DBA2:;[MALIMEM.SUM;1 (1 block)
$APPEND-S-APPENDED, DBA2: [MAL]B.TXT;3 appended to DBA2:[MALIMEM,SUM;1 (3 records)
SAPPEND-S-APPENDED, DBA2:[MAL]G.TXT;7 appended to DBA2: [MALIMEM.SUM;1 (51 records)
$APPEND-S~-NEWFILES, 1 file created

The APPEND command appends all files with file types of TXT
to a file named MEM.SUM. The /LOG qualifier requests a
display of the specifications of each input file appended.
If the file MEM.SUM does not exist, the APPEND command
creates it, as the output shows. The number of blocks or
records shown in the output refers to the source file and not
to the target file total.

$ APPEND/LOG A,.DAT,B.MEM C.*
$APPEND~-S-APPENDED, DBA2:[MAL])A.DAT;4 appended to DBA2:[MAL]C.DAT;4.(2 records)
SAPPEND-S—-APPENDED, DBA2: [MAL]B.MEM;5 appended to DBA2:[MAL]JC.DAT;4 (29 records)

The input file specifications in this example request APPEND
to append separate files. The APPEND command appends the
files A.DAT and B.MEM to the file C.DAT.

$ APPEND/LOG A.* B.*
%APPEND-S—-APPENDED, DBA2: [ANK]A.DAT;5 appended to DBA2:[ANK]B.DAT;1 (5 records)
$APPEND~S-APPENDED, DBA2: [ANK]A.DOC;2 appended to DBA2: [ANK]B.DAT;1 (1 record)

Both the input and output file specifications -contain wild
card characters in the file type field. The APPEND command
appends each file with a file name of A to a file with a file
name of B; the file type of the first input file located
determines the output file type.

20

ASSIGN

Equates a logical name to a physical device name; to a complete file
specification, or to another logical name; and places the equivalence
name string in the process, group, or system logical name table.

Format
ASSIGN equivalence-name([:] logical-namel[:]
Command Qualifiers Defaults
/GROUP /PROCESS
/PROCESS /PROCESS
/SUPERVISOR_MODE /SUPERVISORHMODE
/SYSTEM /PROCESS
/USER_MODE /SUPERVISOR_MODE
Prompts

Device: equivalence-name

Log_name: logical-name

Command Parameters
equivalence-name

Specifies the name of the device or file specification to be
assigned a logical name.

If you specify a physical device name, terminate the device name
with a colon (:).

You can specify a logical name - for any portion of a file
specification. If the logical name translates to a device name,
and will be wused in place of a device name in a file
specification, terminate it with a colon (:).

logical-name

Specifies a 1- through 63-character logical name to be associated
with the device. If you terminate the logical name with a colon,
the system removes the colon before placing the name in a logical
name table. By default, the logical name 1is placed in the
process logical name table.

If the 1logical name contains any characters other than
alphanumeric characters or delimiters not recognized within
device names, enclose it in quotation marks.

If the logical name already exists in the specified logical name

table, the new definition supersedes the old definition, and the
system displays an informational message indicating that fact.

21

ASSIGN

Description

If you enter more than one of the qualifiers /PROCESS, /GROUP, or
/SYSTEM, or both of the qualifiers /SUPERVISOR_MODE and
/USER_MODE, only the last one entered is accepted.

For additional information on how to <create and use logical
names, see Section 2.2, "Logical Names."

Command Qualifiers
/GROUP

Places the logical name and its associated device name in the
group logical name table. Other users with the same group number
in their UICs (user identification codes) can access the logical
name, .

The user privilege GRPNAM is required to place a name in the
group logical name table.

/PROCESS

Places the logical name and its associated device name in the
process logical name table., This is the default.

/SUPERVISOR_MODE

Specifies, for an entry in the process logical name table, that
the logical name be entered in supervisor mode.

This is the default for the process logical name table entries.
The /SUPERVISOR MODE qualifier is ignored when entries are made
in the group or system logical name tables.

/SYSTEM

Places the logical name and its associated device name in the
system logical name table. Any user can access the logical name.

The user privilege SYSNAM is required to place a name in the
system logical name table.

/USER_MODE

Specifies, for an entry in the process logical name table, that
the logical name be entered in the user mode.

A user mode logical name is typically used for the execution of a
single image. For example, it allows an image executing in a
command procedure to read a different SYSSINPUT than that in use
by the command procedure. User mode entries are deleted when any
image executing in the process exits (that 1is, after any DCL
command or user program that executes an image completes
execution), or when a STOP command is issued.

By default, process 1logical name table entries are made in

supervisor mode. The /USER_MODE qualifier 1is ignored when
entries are made in the group or system logical name tables.

22

Examples

1.

ASSIGN

$ ASSIGN DBA2: [CHARLES] CHARLIE
$ PRINT CHARLIE:TEST.,DAT

The ASSIGN command assocliates the logical name CHARLIE .with
the directory name CHARLES on the disk DBA2. Subsequent
references to the 1logical name CHARLIE result in the
correspondence between the logical name CHARLIE and the disk
and directory specified. Thus, the PRINT command dqueues a
copy of the file DBA2:[CHARLES]TEST.DAT to the system
printer.

$ ASSIGN DBAl: TEMP:
$ SHOW LOGICAL TEMP

TEMP = DBAl: (process)
$ DEASSIGN TEMP

The ASSIGN command equates the logical name TEMP to the
device DBAl. The SHOW LOGICAL command verifies that the
logical name assignment was made. Note that the logical name
TEMP was terminated with a colon in the ASSIGN command, but
that command interpreter deleted the colon before placing the
name in the logical name table. Thus, you can specify TEMP
without a colon in the subsequent DEASSIGN command.

$ MOUNT MTB3: MASTER TAPE
$ ASSIGN TAPE:NAMES.DAT PAYROLL
$ RUN PAY

The MOUNT command establishes the logical name TAPE for the
device MTB3, which has the volume labelled MASTER mounted on
it. The ASSIGN command equates the logical name PAYROLL with
the file named NAMES.DAT on the logical device TAPE. Thus, a
subsequent OPEN request in a program that refers to the
logical name PAYROLL results in the correspondence between
the logical name PAYROLL and the file NAMES.DAT on the tape
whose volume label is MASTER.

$ ASSIGN/GROUP _DBBl: GROUP_DISK:

The ASSIGN command assigns the logical name GROUP_DISK to the
physical device DBBl, Subsequently, another user in the same
group can issue the command:

$ ASSIGN GROUP_DISK: [HIGGINS]WEEKLY.OUT OUTFILE

This ASSIGN command equates the logical name OUTFILE to a
file on the device specified by the logical name GROUP DISK.
When the ASSIGN command executes, it locates the logicaTl name
GROUP_DISK in the group logical name table and translates it
to the device name DBBl.

23

ASSIGN

$ ASSIGN/PROCESS/GROUP DBAl: SYSFILES:
$ SHOW LOGICAL SYSFILES
SYSFILES = DBAl: (group)

The ASSIGN command contains conflicting qualifiers. The
response from the SHOW LOGICAL command indicates that the
name was placed in the group logical name table.

$ ASSIGN/GROUP 'FSLOGICAL ("SYSSCOMMAND") TERMINAL
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED

The ASSIGN command uses the 1lexical function FSLOGICAL to
translate the logical name SYSSCOMMAND and use the result as
the equivalence name for the 1logical name TERMINAL. The
message from the ASSIGN command indicates an entry for the
logical name TERMINAL already existed in the group logical
name table, and that the new entry replaced the previous one.

If this command is used in a LOGIN.COM file, the entry for
TERMINAL will be redefined at the beginning of each terminal
session; the current process and any subprocesses it creates
can execute images that wuse the logical name TERMINAL to
write messages to the current terminal device.

$ ASSIGN/USER_MODE SYS$COMMAND: SYSSINPUT:
$ EDIT AVERAGE.FOR

$ FORTRAN AVERAGE

$ LINK AVERAGE

$ RUN AVERAGE

In the command procedure illustrated above, the ASSIGN
command equates the logical name SYSSINPUT with SYS$SCOMMAND
for the execution of the next command. When the S0S editor
is invoked, it will read all input from the current terminal,
regardless of the number of active command levels. When the
edit session is terminated, the deassignment is automatically
made, and the procedure goes on to compile, link, and run the
program AVERAGE.

The program AVERAGE reads input from the current default
input device: in this example, test data records follow the
RUN command in the input stream. Note that, if the
assignment of SYSSINPUT were not made in user mode, it would
not be as convenient to re-establish the default relationship
between the current input stream and the logical device named
SYSSINPUT.

24

BASIC

Invokes the VAX-11 BASICl compiler to compile a BASIC program.

Format
BASIC [file-spec[,...]]
Command Qualifiers Defaults
None. None.
File Qualifiers Defaults
/ [NO]CHECK [=(option[,...])] /CHECK= (BOUNDS, OVERFLOW)
/[NO]JCROSS REFERENCE ’ /NOCROSS_REFERENCE
/[NO]DEBUGT=(option[,.-.])] /DEBUG=TRACEBACK
/DOUBLE /SINGLE
/[NO]LINE /LINE
/[NO]JLIST[=file-spec]
/LONG /LONG
/[NO]MACHINE_CODE /NOMACHINE_CODE
/[NO]JOBJECT[=file~spec]
/SCALE=n /SCALE=0
/SINGLE /SINGLE
/WORD /LONG

Prompts

None.

Command Parameters
file-spec[,...]

Specifies one or more VAX-11] BASIC source programs to be
compiled. If the file specification does not contain a file
type, the compiler uses the default file type of BAS.

You can specify more than one input file. If you separate the
file specifications with commas (,), each file 1is compiled
separately. If you separate the file specifications with plus
signs (+), the files are appended (see the description of APPEND
in the VAX-1l BASIC User's Guide) and compiled as a single input
file, producing single object and listing files. If you specify
SYSSINPUT as the file-spec parameter, the source program must
follow the command in the input stream., In this case, both the
object module file (given by the /OBJECT qualifier) and the
listing file (given by the /LIST qualifier) must be explicitly
named.

1. Available under separate license.

25

BASIC

No wild card characters are allowed in the file specification.

If you do not provide a source file specification, VAX-11 BASIC
responds with the prompt Ready and expects you to enter a VAX-1l
BASIC source program interactively. See the VAX-1l1 BASIC User's
Guide for more details. Note, however, that without a file
specification, none of the file qualifiers is permitted.

File Qualifiers

/CHECK [=(option([,...])]
/NOCHECK

Controls whether the compiler produces extra code to check on
program correctness at run time. You can request the following

options:

ALL Provides both BOUNDS and OVERFLOW checks.

[NO]BOUNDS Produces code to check that all array references
are to addresses within the array boundaries.,

NONE Provides no checking.

[NO]OVERFLOW Enables integer overflow traps to detect
arithmetic overflow on fixed point calculations
involving integer data types.

By default, if you omit either the /CHECK qualifier or specify
/CHECK without options, both integer overflow and bounds checking
will occur (equivalent to /CHECK=ALL). Note that /NOCHECK is
equivalent to /CHECK=NONE.

If you specify more than one option, separate them with commas
and enclose the list in parentheses.

/CROSS_REFERENCE
/NOCROSS_REFERENCE

Controls whether a cross reference listing is included in the
listing file. The /CROSS_REFERENCE qualifier includes a cross
reference listing and therefore requires that a 1listing file
exist. The default is /NOCROSS_REFERENCE, which excludes it.

/DEBUG [=option[,...])]
/NODEBUG

Controls whether the compiler makes 1local symbol table and
traceback information available to the debugger and the run time
error reporting mechanism.

You can request the following options:

ALL Provides both local symbol table and traceback
information.

NONE Does not provide either 1local symbol table or
traceback information.

[NO}SYMBOLS Provides the debugger with local symbol
definitions for user-defined variables.

26

BASIC

[NO] TRACEBACK Provides the debugger with compiler-generated
line numbers so that the debugger and error
reporting mechanisms can translate virtual
addresses into source program subroutine names
and line numbers.

By default, if you completely omit the /DEBUG qualifier, the
compiler produces only traceback information (equivalent to
/DEBUG=(NOSYMBOLS,TRACEBACK). However, if vyou specify /DEBUG
without any options, the default is both SYMBOLS AND TRACEBACK
(equivalent to /DEBUG=ALL).

Note that /NODEBUG is equivalent to /DEBUG=NONE.

If you specify more than one option, separate them with commas
and enclose the list in parentheses.

For details on how to debug a VAX-11 BASIC program with the
VAX-11 Symbolic Debugger, see the VAX-1l BASIC User's Guide.

/DOUBLE

Causes all floating point numbers to be 64 bits wide. The
qualifiers /DOUBLE and /SINGLE are mutually exclusive. If you
omit /DOUBLE, all floating point numbers will be 32 bits wide, by
default.

/LINE
/NOLINE

Enables the error protessor to determine the 1line numbers of
statements with errors and to output these line numbers for the
user, By default, line numbers will be provided with error
notifications. For more details on this feature, see the VAX-11
BASIC User's Guide.

/LIST[=file~spec]
/NOLIST

Controls whether the compiler creates a listing file.

If you 1issue the BASIC command from interactive mode, the
compiler, by default, does not create a listing file., 1If the
BASIC command is executed from batch mode, /LIST is the default.
If you omit the file specification, the VAX-11l BASIC compiler
gives the listing file the same file name as the input source
file and a file type of LIS.

When you specify /LIST, you can control the defaults applied to
the output file specification by the placement of the qualifier
in the command, as described 1in Section 5.3.3, "Rules for
Entering Output File Qualifiers."

No wild card characters are allowed in the file specification.
/LONG
Causes all untyped integers to be 32 bits long. Note that the

/LONG and /WORD qualifiers are mutually exclusive. The default
is /LONG.

27

BASIC

/MACHINE_CODE
/NOMACHINE_CODE

Controls whether the listing produced by the compiler includes
the machine language code generated by the compiler.

By default, the compiler does not include machine 1language code
in the listing. The /MACHINE_CODE qualifier is ignored if /LIST
is not specified, either explicitly or by default.

/OBJECT [=file-spec]
/NOOBJECT

Controls whether the compiler creates an output object module.

By default, the compiler produces an object module with the same
file name as the source file and a file type of OBJ. When you
specify /OBJECT, you can control the defaults applied to the
output file specification by the placement of the qualifier in
the command, as described in Section 5.3.3, "Rules for Entering
Output File Qualifiers."

No wild card characters are allowed in the file specification.

/SCALE=n

Specifies a scale factor for double precision numbers to afford
compatibility with BASIC PLUS. The scale factor n can be in the
range of 0 through 6, By default, the scale factor 1is 0, that
is, there is no scaling.

/SINGLE

Causes all floating point numbers to be 32 bits wide, which Iis
also the default. The /SINGLE and /DOUBLE qualifiers are
mutually exclusive.

/WORD

Causes all untyped integers to be 16 bits long. The /LONG and
/WORD qualifiers are mutually exclusive, By default, untyped
integers will be 32 bits long, so you must specify /WORD if you
want untyped integers to be 16 bits long.

28

Examples

l'

BASIC

$ BASIC/LIST/OBJECT/MACHINE_CODE CALCAGE

Compiles the VAX-1l BASIC program CALCAGE.BAS, producing a
listing and an output object module. The listing file is
named CALCAGE.LIS and includes the machine code output. The
object module 1is named CALCAGE.OBJ. By default, integer
overflow and bounds checking will occur, 1line numbers will
appear with error messages, traceback will be enabled, and
floating point numbers and untyped integers will both be 32
bits long.

$ BASIC

VAX-11 BASIC Vv1-001

Ready

The BASIC command without a file specification indicates a

terminal session is desired. VAX-11 BASIC responds with a
Ready message.

29

BASIC/RSX11

Invokes the PDP-11 BASIC-PLUS-2/VAX1l compiler to begin a BASIC
session, All subsequent command input is read by BASIC-PLUS-2. The
/RSX11l qualifier is required.

Format
BASIC/RSX11
Additional
Command Qualifiers Defaults
None. None,
Prompts
Basic2

Command Parameters

None.

Description

After invoking PDP-11 BASIC-PLUS-2/VAX, use BASIC subcommands to
create, edit, and compile BASIC programs.

To link and run a BASIC program, you must issue the BUILD
subcommand to request BASIC to create a command procedure
suitable for input to the RSX-11M Task Builder. After exiting
from BASIC with the EXIT subcommand, create the executable image
file by specifying the command procedure as input to the task
builder.

For details on how to use BASIC-PLUS-2, see the BASIC-PLUS-2
RSX-11M/IAS User's Guide.

1, Available under separate license.

30

Examples

l.

BASIC/RSX11

$ BASIC/RSX11

Basic Plus 2 V01-60

Basic2

OLD AVERAG

Basic2

COMPILE

Basic2

BUILD/SEQUENTIAL

Basic2

EXIT

$ MCR TKB @AVERAG

$ RUN AVERAG

The BASIC/RSX1l1 command invokes BASIC-PLUS-2,. The OLD,
COMPILE, and BUILD subcommands define the input file,
AVERAG.B2S, and request BASIC to compile the file and to
create a command procedure for input to the task builder.
The BUILD command creates the file AVERAG.CMD.

The MCR TKB command invokes the task builder to create an
executable image file, wusing the commands in the file

AVERAG.CMD. The RUN command executes the 1image AVERAG.EXE
created by the task builder.

$ CREATE CPYFIL.B2S

$ BASIC/RSX1l1

OLD CPYFIL

COMPILE

BUILD/SEQUENTIAL

EXIT

MCR TKB @CPYFIL

ASSIGN TEST.DAT INFILE
ASSIGN TEST.OUT OUTFILE
RUN CPYFIL

TYPE TEST.OUT

L

This command procedure uses the CREATE command to create the
BASIC source file, assigning it the name of CPYFIL.B2S. When
the BASIC/RSX11 command executes, it reads subsequent input
from the command input stream. After BASIC executes the OLD,
COMPILE, and BUILD subcommands, the EXIT command terminates

the BASIC session; the next commands are read by the DCL
command interpreter.

31

BASIC/RSX11

After the MCR TKB command creates the image file, the ASSIGN
commands assign equivalence names to the logical file names
INFILE and OUTFILE. (These files must be referred to in
BASIC OPEN statements in the file CPYFIL.EXE.) The RUN
command executes the image CPYFIL.EXE and the TYPE command
verifies the program output in the file TEST.OUT.

The command procedure can be created interactively and
submitted for execution as a batch job with the SUBMIT
command, or punched on cards and submitted to a system card

reader preceded with cards containing JOB and PASSWORD
commands.

32

BLISS

Invokes the VAX-11 BLISS-321 compiler to compile one or more BLISS-32
or common BLISS source programs. This command is described in detail
in the VAX-11 BLISS-32 User's Guide.

Format

BLISS file-spec(,...]

Command Qualifiers Defaults
None. None.

File Qualifiers Defaults

/ [NO]CODE /CODE

/ [NO]DEBUG /NODEBUG
/[NO]LIBRARY [=file-spec] /NOLIBRARY
/[NOJLIST([=file-spec] (see text)

BINARY ,COMMENTARY , -

OBJECT,SYMBOLIC, -
NOUNIQUE_NAMES)

/[NOJOBJECT [=file-spec] /OBJECT

/OPTIMIZE [=(option(,...])] /OPTIMIZE=(LEVEL:2,NOQUICK, -

: SAFE,SPACE)

/ [NOJQUICK /NOQUICK

/SOURCE_LIST [=(option([,...])] /SOURCE_LIST=(NOEXPAND_MACROS, -
HEADER,NOLIBRARY,-
PAGE_SIZE:52,-
NOREQUIRE,SOURCE, -
NOTRACE_MACROS)

/TERMINAL [=(option[,...1)] /TERMINAL={ERRORS,NOSTATISTICS)

/ [NO] TRACEBACK /TRACEBACK

/VARIANT [=n] /VARIANT=0

/MACHINE_CODE_LIST[=(option(,...])] /MACHINE CODE_LIST=(NOASSEMBLER,-

Prompts

File: file~spec[,...]

Command Parameters
file-spec[,+..]

Specifies one or more VAX-1l1 BLISS-32 or common BLISS source
program files to be compiled. If you do not specify a file type
for an input file, BLISS-32 uses the default file type of B32 as
a first choice and if that fails, uses BLI as the second choice.

1. Available under separate license.

33

BLISS

You can specify more than one input file. If vyou separate the
file specifications with commas (,), each file 1is compiled
separately. If you separate the file specifications with plus
signs (+), the files are concatenated and compiled as a single
input file, producing single object and listing files, If vyou
specify SYSSINPUT as the file-spec parameter, the source program
must follow the command in the input stream. 1In this case, both
the object module file (given by the /OBJECT qualifier) and the
listing file (given by the /LIST qualifier) must be explicitly
named.

No wild card characters are allowed in the file specification.

File Qualifiers

/CODE
/NOCODE

Specifies whether or not the compiler should produce executable
code.

Use /NOCODE to perform syntax checking of a source program;
because the compiler does not produce code, the compilation speed
is increased.

By default, executable code is produced.

/DEBUG
/NODEBUG

Indicates whether or not the compiler should produce a symbol
table that may be used with the debugger.

By default, no debug symbol table is produced.

/LIBRARY [=file-spec]
/NOLIBRARY

Produces a library file rather than an object file.

By default, no library is produced. The default file type for
the library file is L32,

No wild card characters are allowed in the file specification.

/LIST[=file-spec]
/NOLIST

Controls whether an output 1listing 1is created and optionally
provides an output file specification for the listing file.

When in batch mode, the output listing is created by default.
However, in interactive mode the default is to produce no output
listing.

The default file type for listing files is LIS,

No wild card characters are allowed in the file specification.

/MACHINE CODE_LIST[=(option[,...])]

Directs the compiler how to format the object part of the output
listing.

34

BLISS

You can request the following options:

[NO]ASSEMBLER: Indicates whether or not the assembler
instructions produced as a result of the
compilation will be listed. ASSEMBLER

directs that the assembler instructions be
given and that all other information be
included within comments.

NOASSEMBLER 1is the default value; it
suppresses the assembler instructions.

[NO]BINARY Indicates whether or not to include a listing
of the binary for each instruction in the
object code listing.

The default is BINARY, which includes the
binary code in the 1listing.

[NO] COMMENTARY Indicates whether or not to include a
commentary field in the object code listing.

The default 1is COMMENTARY, which produces
machine-generated commentary (limited to a
cross-reference).

[NO]JOBJECT Indicates whether or not the object part of
the listing should be produced.

OBJECT produces the object portion of the
listing, and is the default value.

NOOBJECT suppresses this portion of the
listing.

[NO]SYMBOLIC Directs whether or not to include a machine
code 1listing that uses names from the BLISS
source program.,

NOSYMBOLIC omits the names, while SYMBOLIC,
the default, includes thenm.

[NO]JUNIQUE_NAMES Directs whether or not the compiler should
produce unique names for OWN variables and
nonglobal ROUTINE names when it creates a
listing that is to be assembled.

NOUNIQUE NAMES is the default, and it
suppresses the production of unigque names.

/OBJECT [=file~spec]
/NOOBJECT

Controls whether an object module 1is created by the BLISS

compiler, and optionally provides an output file specification
for the file.

By default, the compiler creates an object module with the 'same
file name as the first input file and a file type of OBJ. When
you specify /OBJECT, you can control the defaults applied to the
output file specification by the placement of the qualifier in
the command, as described in Section 5.3.3, "Rules for Entering
Output File Qualifiers."

No wild card characters are allowed in the file specification.

35

BLISS

/OPTIMIZE [(=option([,...})]

Defines the degree and type of optimization so that the compiler
can select the appropriate optimization strategies.

You can request the following options:

LEVEL:n Controls the optimization 1level. The four
possible values for n are: 0, 1, 2, or 3.
To request minimum optimization, specify a
level of 0. Maximum optimization occurs for
the option LEVEL:3. By default, the
optimization level is 2.

[NO]JQUICK Increases the compilation speed by omitting
some standard optimizations. The default is
NOQUICK, which does not affect compilation

speed.

[NO] SAFE Indicates whether or not named variables in
the source code will be addressed only by
name.

SAFE, the default, dictates that variables
will be addressed only by name.

Use NOSAFE to indicate that variables are
addressed by pointers, and not only by name.

SPEED SPEED optimizes for program execution speed
SPACE by using more storage.

The default is SPACE, which is the opposite
of SPEED. With the SPACE option, storage
space is conserved, which may entail
sacrifices in execution speed.

If you specify more than one option, separate them by commas and
enclose the list in parentheses.

/QUICK
/NOQUICK

Controls whether the compilation speed is increased by omitting

some standard optimizations. The default is /NOQUICK, which does

not affect compilation speed. The /QUICK qualifier has the same

effect as the QUICK option of the /OPTIMIZE qualifier.

/SOURCE_LIST[=(option[,...])]

Defines one or more source value options for the compilation.

You can request the following options:

[NO]EXPAND_ MACROS Specifies whether or not to include the
expansion of each macro call in the listing
file.

EXPAND MACROS includes the expansions in the
listing file.

NOEXPAND_MACROS is the default; it omits the
macro expansions from the listing file.

[NO]HEADER

[NO] LIBRARY

PAGE_SIZE:n

[NO]JREQUIRE

[NO] SOURCE

{NO]TRACE_MACROS

BLISS

Specifies whether or not the source 1listing
will be paged and include headings.

HEADER pages the source program. 1listing and
provides a heading on each page. HEADER is
the default choice.

NOHEADER omits the headings, does not page
the 1listing, and omits the statistics in the
compilation summary.

Specifies whether or not to produce a trace
identifying the libraries and their
contributions, '

LIBRARY produces a trace in the source
listing file that identifies the 1library
after a LIBRARY declaration and the first use
of each name whose definition is obtained
from a library file.

NOLIBRARY is the default value; it does not
produce a trace of the libraries and their
contributions.

Specifies the number of 1lines allowed for
each page in the listing file.

You must choose a number greater than 19,
The default value of PAGE_SIZE is 52 lines.

Determines whether or not to include the
contents of all require files in the listing.

REQUIRE requests that the contents of the
require files be included.

NOREQUIRE is the default choice; it omits
the contents of the require files from the
listing.

Determines whether to increment or decrement
the listing control counter. Output 1is
listed when the listing control counter is
positive and not listed when the counter is
zero or negative,

SOURCE, the default wvalue, increments the
counter,

NOSOURCE decrements the counter.

Determines whether the listing should include
a trace of macro expansions.

TRACE_MACROS includes the trace of the
expansion of each macro call in the listing
file. It includes the parameter binding and
any intermediate forms of expansion, as well
as the result of the expansion.

NOTRACE_MACROS omits the trace of the macro
expansions and is the default value.

37

BLISS

If you specify more than one option, separate them by commas and
enclose the list in parentheses.

/TERMINAL [=(option[,...])]

Controls the output sent to the terminal device during a
compilation. Error messages and certain statistics are optional
information that can be directed to the terminal.

You can request the following options:

[NO]ERRORS Determines whether or not to list each error
message on the terminal as encountered in the
compilation.

ERRORS is the default; it lists the errors
on the terminal.

NOERRORS omits the error messages.

[NO]ISTATISTICS Determines whether or not statistics should
appear on the terminal during compilation.

STATISTICS lists the name and size of each
routine on the terminal after each routine is
compiled.

NOSTATISTICS is the default; it omits the
routine names and sizes.

If you specify more than one option, separate them by commas and
enclose the list in parentheses.

/TRACEBACK
/NOTRACEBACK

Controls whether the compiler generates information in the object
module that can be wused by the debugger to locate module,
routine, and PSECT names.

The default is NOTRACEBACK, which produces the minimum size
object module. No information 1is provided for debugging or
tracing.

/VARIANT [=n]
Specifies the value of the predeclared literal %VARIANT.

If no value is specified for n, the default value of 1 1is used;
otherwise, %VARIANT assumes the specified value.

If /VARIANT is not specified, %VARIANT has the value of 0.

For additional details on these functions, see the VAX-11 BLISS-32
User's Guide.

38

Examples

l.

BLISS

$ BLISS/LIST=WEATHER2 WEATHER

Compiles the source program WEATHER.B32, producing an object
module named WEATHER.OBJ and a listing file named
WEATHER2,.LIS. Note that all the default options are
selected, so that the compiler performs normal optimization,
balances the time and space trade-off in favor of space, and

addresses all variables by name. $VARIANT assumes a value of
00

39

CANCEL

Cancels scheduled wakeup requests for a specified process. This
includes wakeups scheduled with the RUN command and with the Schedule
Wakeup ($SSCHDWK) system service.

Format

CANCEL [process-name]

Command Qualifiers Defaults
/IDENTIFICATION=process~-id None.
Prompts
None.

Command Parameters
process-name

Specifies the 1- to 15~alphanumeric character string name of the
process for which wakeup requests are to be canceled. Process
names are assigned to processes when they are created. The
specified process must have the same group number in its user
identification code (UIC) as the current process.

If you also specify the /IDENTIFICATION qualifier, the process
name 1is 1ignored. If you specify neither the process-name
parameter nor the. /IDENTIFICATION qualifier, the CANCEL command
cancels scheduled wakeup requests for the current (that is, the
issuing) process.

Description

The user privilege GROUP is required to cancel scheduled wakeups
for non-owned processes in the same group; the user privilege
WORLD is required to cancel scheduled wakeups for any process in
the systenm.

The CANCEL command does not delete the specified process. 1If the
process 1is executing an image when the CANCEL command is issued
for it, the process hibernates instead of exiting after the image
completes execution.

To delete a process that is hibernating and for which wakeup
requests have been canceled, use the STOP command. You can
determine whether a subprocess has been deleted by issuing the
SHOW PROCESS command with the /SUBPROCESSES qualifier.

40

CANCEL

Command Qualifiers

/IDENTIFICATION=process~id

Specifies the process identification number the system assigned

to
the

Examples

l'

the process when the process was created. When you specify
process identification, you can omit leading zeroes.

$ RUN/SCHEDULE=14:00 STATUS
$RUN-S-PROC_ID, identification of created process is 0013012A

$ CANCEL/IDENTIFICATION=13012A

The RUN command creates a process to execute the image
STATUS. The process hibernates, and is scheduled to be
awakened at 14:00. Before the process is awakened, the
CANCEL command cancels the wakeup request.

$ RUN/PROCESS_NAME=LIBRA/INTERVAL=1:00 LIBRA
$RUN-S-PROC_ID, identification of created process is 00130027

$ CANCEL LIBRA
$ STOP LIBRA

The RUN command creates a subprocess named LIBRA to execute
the image LIBRA.EXE at hourly intervals.

Subsequently, the CANCEL command cancels the wakeup requests.

The process continues to exist, but in a state of
hibernation. The STOP command deletes the subprocess.

41

CLOSE

Closes a file that was opened for input or output with the OPEN
command and deassigns the 1logical name specified when the file was
opened.

Format

CLOSE 1logical-namel[:]

Command Qualifiers Defaults
/ERROR=1label None.
Prompts

Log_Name: logical-name[:]

Command Parameters
logical-name[:}

Specifies the logical name to be assigned to the file when it was
opened with the OPEN command.

Description

Files that are opened for reading or writing at the command level
remain open until explicitly closed with the CLOSE command, or
until the process is deleted at logout. If a command procedure
that opens a file terminates without closing an open file, the
file remains open; the command interpreter does not
automatically close it.

For a description of VAX/VMS file handling commands, see the
VAX/VMS Guide to Using Command Procedures.

Command Qualifiers

/ERROR=1abel

Specifies a label on a line in the command procedure to receive
control if the close request results in an error. If no error
label is specified and an error occurs during the closing of the
file, the command procedure continues execution at the next line
in the file, as it does if no error occurs.

The error routine specified for this qualifier takes precedence
over any action statement indicated in an ON command. If /ERROR
is not specified, the current ON condition action is taken.

If an.error occurs and the target label 1is successfully given

control, the global symbol S$STATUS contains a successful
completion value.

42

Examples

ll

CLOSE

OPEN/READ INPUT_FILE TEST.DAT
READ_LOOP:
READ/END_OF_FILE=NO_MORE INPUT_FILE DATA_LINE

Ly

GOTO READ_LOOP
NO_MORE:
CLOSE INPUT_ FILE

W Uy

The OPEN command opens the file TEST.DAT and assigns it the
logical name of INPUT_FILE. The /END OF FILE qualifier on
the READ command requests that when the “end of file is
reached, the command interpreter should transfer control to
the line at the label NO MORE. The CLOSE command closes the
input file. - ’

$ @READFILE

'

$ STOP

$ SHOW LOGICAL/PROCESS

INFILE = DBl
OUTFILE = DBl

$ CLOSE INFILE

$ CLOSE OUTFILE

CTRL/Y interrupts the execution of the command procedure
READFILE.COM and the STOP command stops it. The SHOW
LOGICAL/PROCESS command displays the names that currently
exist in the process 1logical name table. Among the names
listed are the logical names INFILE and OUTFILE, assigned by
OPEN commands in the procedure READFILE.COM,

The CLOSE commands close these files.

43

COBOL/C74

Invokes the VAX-1ll1l

coBoL-741 compiler to

compile a COBOL

source

program. The /C74 qualifier is required.
Format
COBOL/C74 file-spec[,«..]

File Qualifiers

/[NOJANSI FORMAT
/[NO]COPY LIST
/[NO]1CROSS REFERENCE
/[NO]DEBUG [=option]
/[NOJLIST[=file-spec]

/ [NO]IMAP

/[NO]JOBJECT [=file-spec]
/[NOJVERB LOCATION

/ [NO]WARNINGS

Defaults

/NOANSI FORMAT
/COPY LIST
/NOCROSS_REFERENCE
/DEBUG=TRACEBACK
(see text)

/NOMAP

(see text)

/NOVERB LOCATION
/WARNINGS

Prompts

File: file-spec[,...]

Command Parameters

file-spec[,...]

Specifies one or more COBOL source programs to be compiled.
file specification does

uses the default file type of COB.

You can specify more than one input file;
separately. When vyou
separate the file specifications with commas
plus signs (+) as separators.

each file is

(r). Do

If a

not contain a file type, the compiler

compiled
specify more than one input file, always
not use

No wild card characters are allowed in the file specification.

1. Available under separate license.

44

COBOL/C74

File Qualifiers

/ANSI_FORMAT
/NOANSI_FORMAT

Indicates that the source program is in conventional ANSI format,
The compiler then expects 80-character card image records with
optional sequence numbers in character positions 1 through &6,
indicators in position 7, Area A beginning in position 8, Area B
beginning in position 12, and the 1identification area in
positions 73 through 80.

The default is /NOANSI_FORMAT; that 1is, the compiler assumes
that the source program is in DIGITAL's Terminal format, where
Area A begins in column 1 and the source program records do not
have 1line numbers. (Note that line numbers generated by editors
are not part of the source program records.,)

/COPY_LIST
/NOCOPY_LIST

Controls whether text copied from library files is printed in the
listing file. If /NOCOPY_LIST 1is specified, only the COPY
statement appears in the listing.

By default, the compiler includes all 1lines from files copied
through the use of the COPY statement.

/CROSS_REFERENCE
/NOCROSS_REFERENCE

Controls whether the compiler creates a cross-referenced 1listing
as part of the listing file. Data-names and procedure-names are
listed in ascending order with the source program line numbers on
which they appear. On the listing, the symbol # indicates the
source line on which the name is defined.

By default, the compiler does not <create a cross-referenced
listing. Note that the /CROSS_REFERENCE qualifier significantly
increases the compilation time for large source programs.

/DEBUG [=option]
/NODEBUG

Controls whether the compiler makes local symbol table and
traceback information available to the debugger and the run time
error reporting mechanism.

You can request one of the following options:

TRACEBACK Provides the debugger with compiler—-generated 1line
numbers so that the debugger and error reporting
mechanisms can translate virtual addresses into
source program subroutine names and line numbers.

ALL Provides traceback and local symbol table
information. Note that /DEBUG=ALL is equivalent to
/DEBUG.

NONE Omits traceback and local symbol table information.

Note that /DEBUG=NONE is equivalent to /NODEBUG.

45

COBOL/C74

By default, the compiler produces traceback information.

For details on how to debug a VAX-1ll COBOL-74 program with the
VAX-11 Symbolic Debugger, see the VAX-11 COBOL-74 User's Guide.

/LIST[=file-spec]
/NOLIST

Controls whether the compiler creates a listing file.

If you issue the COBOL/C74 command from interactive mode, the
compiler, by default, does not create a listing file, If the
COBOL/C74 command is executed from batch mode, /LIST 1is the
default; the compiler gives a listing file the same file name as
the input source file and a file type of LIS.

When you specify /LIST, you can control the defaults applied to
the output file specification by the placement of the qualifier
in the command, as described in Section 5.3.3, "Rules for
Entering Output File Qualifiers." The compiler uses the default
file type of LIS.

No wild card characters are allowed in the file specification.

/MAP
/NOMAP

Controls whether the compiler produces the following maps in the
listing file:

Data Division

Procedure Map

External Subprograms Referenced
Data and Control PSECTs

OTS Routines Referenced

By default, the compiler does not include these maps in the
listing.

/OBJECT[=file-spec]
/NOOBJECT

Controls whether the compiler creates an output object module.

By default, the compiler produces an object module with the same
file name as the source file and a file type of OBJ. When you
specify /OBJECT, you can control the defaults applied to the
output file specification by the placement of the qualifier in
the command, as described in Section 5.3.3, "Rules for Entering
Output File Qualifiers."

No wild card characters are allowed in the file specification.

/VERB_LOCATION
/NOVERB_LOCATION

Controls whether the compiler lists the object location for each
verb in the source program. If you specify /VERB LOCATION, the
location appears on the line before the source line in which the
verb is used.

By default, the compiler does not list the object location of
verbs.

46

COBOL/C74

/WARNINGS
/NOWARNINGS

Controls whether the compiler prints informational diagnostic
messages as well as warning and fatal diagnostic messages. By
default, the compiler prints informational diagnostics; specify
/NOWARNINGS to suppress them.

Examples

1. $ COBOL/C74 TRANSLATE/LIST
$ LINK TRANSLATE,SYSSLIBRARY:C74LIB/LIBRARY

The COBOL compiler compiles the source program TRANSLATE.COB
and creates an object file named TRANSLATE.OBJ and a listing
file named TRANSLATE.LIS.

The LINK command specifies the object £file, TRANSLATE.OBJ,
and the COBOL-74 run-time library, C74LIB, that is located on
the default system library device. This library is required
to link all VAX-11 COBOL-74 images.

2, $ COBOL/C74 READFILE/NOOBJECT/LIST-
$_/CROSS_REFERENCE/NOCOPY_LIST

This command requests the compiler to create a 1listing file
named READFILE.LIS, but no object file. The listing will
contain a cross-reference listing, but will not contain any
of the text copied from library files specified by COPY
statements in the source program.

3. S ASSIGN "1,5" COBS$SWITCHES
$ RUN COBTEST

The ASSIGN command sets the program switch numbers 1 and 5
and resets all other switches., The RUN command executes the
COBOL program COBTEST.EXE, which refers to these switches.

47

COBOL/RSX-11

Invokes the PDP-11 COBOL-74/VAX! compiler to compile a

COBOL source
program. The /RSX1l qualifier is required.
Format
COBOL/RSX11 file-spec[,...]
File Qualifiers Defaults
/[NO]ANSI_FORMAT /NOANSI_FORMAT
/[NO]COPY_LIST /COPY_LIST
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NOJLIST[=file-spec] (see text)
/ [NO]MAP /NOMAP
/NAMES=aa /NAMES=8C
/NEST=n /NEST=10
/ [NOJOBJECT[=file-spec] (see text)
/ [NO]JOVERLAY /NOOVERLAY
/SEGMENT_SIZE=n
/[NO]VERB_LOCATION /NOVERB_LOCATION
/ [NOIWARNINGS /NOWARNINGS
Prompts
File: file-spec([,...]
Command Parameters
file-spec[,s..]
Specifies one or more COBOL source programs to be compiled. The

file specification(s)

contain a file name;

specify a file type, the compiler uses the default file

CBL.

You can specify more than one input file;
separately. When you
separate the file specifications with commas(,).
signs (+) as separators.

each file is

if you do not
type of

compiled
specify more than one input file, always
Do not use plus

No wild card characters are allowed in the file specification(s).

1. Available under separate license.

48

COBOL/RSX11

File Qualifiers

/ANSI_FORMAT
/NOANSI_FORMAT

Indicates whether the source program is in ANSI COBOL format or
in DIGITAL's Terminal format.

An ANSI COBOL source file has 80-character records with Area A
beginning in record position 8,

By default, the COBOL/RSX1ll command assumes that the input
records are in Terminal format, that is, Area A begins in record
position 1 and the records do not have line numbers.

/COPY_LIST
/NOCOPY_LIST

Controls whether statements produced by COPY statements in the
source prodgram are printed in the listing file.

/COPY_LIST is the default: all source statements are included in
the output listing.

/CROSS_REFERENCE
/NOCROSS_REFERENCE

Controls whether the compiler listing includes a cross reference
listing. By default, the compiler does not <create a cross
reference listing.

/LIST[=file-spec]
/NOLIST

Controls whether the compiler produces an output 1listing and
defines characteristics of the file.

If you issue the COBOL/RSX1ll command from interactive mode, the
compiler, by default, does not create a listing file. If you
specify /LIST without a file specification, the compiler creates
a listing with the same file name as the input file, but uses the
file type of LST. If vyou 1include a file specification, the
listing is written to that file or device.

If the COBOL/RSX1l command is executed from a batch job, /LIST is
the default.

/MAP
/NOMAP
Requests the compiler to produce a Data Division map showing the
memory addresses for Data Division entries.
The default is /NOMAP; the compiler does not produce a map.
/NAMES=aa

Requests the compiler to generate PSECT names starting with the
2-character prefix aa.

If the /NAMES qualifier is not specified, the default prefix of
$C is used.

49

COBOL/RSX11

/NEST=n

Specifies the number of nested PERFORM statements allowed in the

source program. By default, the compiler allows a maximum of 10
nested PERFORM statements.

/OBJECT[=file-spec]
/NOOBJECT

Controls whether the compiler produces an object file.

By default, the compiler produces an object file with the same
file name as the input file and a file type of 0OBJ. The compiler
also uses the default file type of OBJ when you include a file
specification with the /OBJECT qualifier that does not have a
file type.

No wild card characters are allowed in the file specification.

/OVERLAY
/NOOVERLAY

Controls whether the compiler makes procedural PSECTs
overlayable.

By default, procedural PSECTS are not overlayable.
/SEGMENT_SIZE=n

Specifies the maximum size, in bytes, of proceduré PSECTs created
by the compiler. The minimum value allowed for n is 108 bytes.

Users must ensure that the absolute maximum task size of 65K
bytes (including all PSECTs when linked) is not exceeded.

/VERB_LOCATION
/NOVERB_LOCATION

Indicates whether the output listing produced by the compiler
shows the object location of each verb in the source program.

/WARNINGS
/NOWARNINGS

Controls whether the compiler prints informational diagnostic
messages as well as warhing and fatal diagnostic messages. By
default, the compiler prints informational diagnostics; specify
/NOWARNINGS to suppress them.

50

Examples

1.

COBOL/RSX11

$ COBOL/RSX11 MYFILE

The COBOL command compiles the source statements in the file
MYFILE.CBL and produces an object file named MYFILE,OBJ.

$ COBOL/RSX1l TEST/OBJECT=TEST2/LIST

The COBOL command compiles the source statements in the file
TEST.CBL and produces an object file named TEST2,.0BJ and a
listing file named TEST.LST.

$ COBOL/RSX11 SCANLINE

$ RUN SYS$SYSTEM:MRG

PLEASE ENTER FILE SPECIFICATION FOR OUTPUT FILE

SCAN,.ODL

DO YOU WANT AN ABBREVIATED OR MERGED ODL FILE?

PLEASE ANSWER A (BBREVIATED) OR M(ERGED) A

DO YOU WANT TO OVERLAY I/0 SUPPORT ROUTINES?

PLEASE ANSWER Y(ES) OR N(0) N

PLEASE ENTER FILE SPECIFICATION FOR INPUT ODL FILE

SCANLINE

OBJECT PROGRAM REFERENCED IN ODL FILE IS:
SCANLINE.OBJ

PLEASE ENTER OBJECT FILE DEVICE AND UIC IN THE FORMAT: DEV: (GROUP,MEMBER]

(@ED
ANY MORE INPUT ODL FILES?
PLEASE ANSWER Y(ES) OR N(O) N
ODL FILE MERGE COMPLETE
MERGED ODL FILE IS:
SCAN.ODL

CBL -- 15: STOP RUN

$ LINK/RSX1l SCAN/OVERLAY
$ RUN SCAN

The COBOL/RSX1l command compiles the source program
SCANLINE,.CBL, The RUN command invokes the COBOL MERGE
utility to create an overlay description file. The output
from the MERGE utility, SCAN.ODL, is then specified as input
to the LINK/RSX1ll command. This command creates the
executable image file, SCAN.EXE. The RUN command executes
the image.

51

CONTINUE

Resumes execution of a DCL command, a program, or a command procedure
that was .interrupted by pressing CTRL/Y or CTRL/C. The CONTINUE
command also serves as the target command of an IF or ON command in a
command procedure, or following a label that is the target of a GOTO
command. Additionally, the CONTINUE command can also resume a program
that executed a VAX-11l FORTRAN PAUSE statement or a VAX-11] COBOL-74
STOP literal statement.

You can truncate the CONTINUE command to a single letter, C.

Format
CONTINUE
Command Qualifiers Defaults
None. None,
Prompts
None.

Command Parameters

None.

Description

After you interrupt an image, you cannot continue its execution
if you have entered any command that executes another image. For
a list of the commands that do not execute separate images, see
Section 4.2.3, "Interrupting Program Execution."

You cannot continue execution of interrupted images that are
privileged, that is, 1installed with privileges. See the
description of the INSTALL Utility in the VAX/VMS System
Manager's Guide for more information on creating privileged
images.

For more information on how to use commands 1like CONTINUE in
command procedures, consult the VAX/VMS Guide to Using Command
Procedures.

52

Examples

l.

CONTINUE

$ RUN MYPROGA

“y

$ SHOW TIME
18-JAN-1978 13:40:12

$ CONTINUE

The RUN command executes the program MYPROG, While the

program is running, pressing CTRL/Y interrupts the image.
The SHOW TIME command requests a display of the current date
and time. The CONTINUE command resumes the image.

$ ON SEVERE_ERROR THEN CONTINUE

This statement in a command procedure requests the command
interpreter to continue executing the procedure if any
warning, error, or severe error status value is returned from
the execution of a command or program. This ON statement
overrides the default action, which 1is to exit from a
procedure following errors or severe errors.

53

COPY

Creates a new file from one or more existing files.

can:

o Copy one file to another file

The COPY

e Concatenate more than one file into a single output file

e Copy a group of files to another group of files

Format

command

corY

Command Qualifiers

input-file-spec{,...]

/ [NO]CONCATENATE
/ [NO] LOG

File Qualifiers

/ALLOCATION=n
/ [NO]CONTIGUOUS
/EXTENSION=n
/FILE MAXIMUM=n
/ [NOJOVERLAY
/PROTECTION=code
/ [NO)READ CHECK
/ [NO]REPLACE
/[NO] TRUNCATE
/VOLUME=n
/[NOJWRITE_CHECK

Defaults

/CONCATENATE
/NOLOG

Defaulﬁg

/NOCONTIGUOUS

/NOOVERLAY
/NOREAD_CHECK
/NOREPLACE
/NOTRUNCATE

/NOWRITE_ CHECK

output-£file~-spec

Prompts

From:

To:

input-file-spec[,...]

output—-file-spec

Command Parameters

input-file-spec[,...]

Specifies the names of one or more input files to be copied.
you specify more than one input file, you can separate them with
either commas (,) or plus signs (+).

You can use full wild carding in the

file

described in Section 2.1.6.

54

specification(s),

If

as

CoPY

output-file-spec

Specifies the-name of the output file into which the input files
are to be copied.

You must specify at least one field in the output file
specification. If you do not specify a device and/or directory,
the COPY command uses your current default device and directory.
For other fields that you do not specify, the COPY command uses
the corresponding field of the input file specification.

If you specify an asterisk (*) wild card character 1in place of
the file name, file type, and/or version number field of the
output file specification, the COPY command creates one or more
output files, based on the input file specification. It uses the
corresponding field of the first or related input file
specification to name the output file.

Wild card characters are not allowed in the directory
specifitation of an output file.

Description

When you specify more than one input file, the COPY command
creates, by default, a single output file. You can specify
multiple input files in any of the following ways:

® Separate input file specifications with commas (,) or plus
signs (+).

e Specify wild card characters (Section 2.1.6) in place of the
directory specification, file name, file type, and/or version
number field of an input file specification.

The COPY command creates multiple output files when vyou specify
multiple input files and one of the following:

e An asterisk (*) wild card character in the output directory

specification, file name, file type, and/or version number
field.

e Only a node name, a device name, or a directory specification
in the output file specification.

e The /NOCONCATENATE qualifier.

When the COPY command creates multiple output files, it uses the
corresponding field of each input file to name an output file.

When the COPY command creates a single output file for which any
field of the output file specification contains an asterisk wild
card character, the COPY command uses the corresponding field of
the first, or only, input file to name the output file,

Use the /LOG qualifier when you specify multiple input and output
files to verify the files actually were copied.

Version Numbers: If no version numbers are specified for input
and output files, the COPY command, by default, gives the output
file a version number of 1, or increments by 1 the version number
of an existing file with the same file name and file type.

55

COPY

If the input or output file version number is explicit or a wild
card character, the COPY command by default gives the output
files the same version numbers as the associated input files. 1If
an equal or higher version of the output file already exists, the
COPY command issues a warning message and does not copy the file.

Copying Directory Files: If you copy a file that is a directory,
a new empty directory is created as a subdirectory of the named
directory. Note that even if the input directory had files, none
of those files are copied to the new subdirectory. For example:

$ COPY [SMITHICATS.DIR [JONES]

This COPY command creates the new subdirectory ([JONES]CATS.DIR,
which is empty. :

Command Qualifiers

/CONCATENATE
/NOCONCATENATE

Controls, when a wild card character is used in any component of
the output file specification, whether a single output file is to
be created from all files that satisfy the input file
specification.

By default, a wild card character in an input file specification
results in a single output file consisting of the concatenation
of all input files matching the file specification.

When you concatenate files from Files-1l1 Structure Level 2 disks,
the COPY command concatenates the files in alphanumeric order;
if you specify a wild card character in the file version f£field,
files are copied in descending order by version number. When you
concatenate files from Files-11 Structure Level 1 disks, the COPY
command concatenates the files in random order.

/LOG
/NOLOG

Controls whether the CoPY command displays the file
specifications of each file copied.

If you specify /LOG, the COPY command displays, for each copy
operation, the file specifications of the input and output files,
the number of blocks or the number of records copied (depending
on whether the file is copied on a block-by-block or
record-by-record basis), and the total number of new files
created.

File Qualifiers
/ALLOCATION=n

Forces the initial allocation of the output file to the number of
512-byte blocks specified as n.

If not specified, the initial allocation of the output file |is
determined by the size of the input file being copied.

56

CorPY

/CONTIGUOUS
/NOCONTIGUOUS

Indicates whether the output file is to be contiguous, that |is,
whether the file must occupy consecutive physical disk blocks.

By default, the COPY command creates an output file in the same
format as the corresponding input file. If an input file is
contiguous, the COPY command attempts to create a contiguous
output file, but it does not report an error if there is not
enough space., If you copy multiple input files of different
formats, the output file may or may not be contiguous. Use the
/CONTIGUOUS qualifier to ensure that files are copied
contiguously.

The /CONTIGUOUS qualifier has no effect when you copy files to or
from tapes because the size of the file on tape cannot be
determined until after it is copied to the disk. If you copy a
file from a tape and want the file to be contiguous, use two COPY
commands: once, to copy the file from the tape, and a second
time to create a contiguous file.

/EXTENSION=n

Specifies the number of blocks to be added to the output file
each time the file is extended.

If you do not specify /EXTENSION, the default extension attribute
of the output file is determined by the extension attribute of
the corresponding input file.

The owner UIC of the output file 1is the UIC of the current
process.

/FILE_MAXIMUM=n

Specifies the maximum number of logical records that the output
file can contain.

This qualifier is valid only for relative files. For information
on creating and wusing relative files, see the VAX-1l1l Record
Management Services Reference Manual.

/OVERLAY
/NOOVERLAY

Requests that data in the input file be copied into an existing
output file, overlaying the existing data. The physical location
of the file on disk does not change.

The /OVERLAY qualifier is ignored if the output file is written
to a non-file~-structured device.

/PROTECTION=code
Defines the protection to be applied to the output file.
Specify the protection code using the rules given 1in Section
5.10. Any protection attributes not specified are taken from the

current protection of the corresponding input file.

The owner UIC of the output file is the UIC of the current
process.

57

COPY

/READ_CHECK
/NOREAD_CHECK

Requests the COPY command to read each record in the specified

input file(s) twice to verify that all records were correctly
read.

By default, records are not read twice.

/REPLACE
/NOREPLACE

Requests that if a file already exists with the same file
specification as that entered for the output file, the existing
file is to be deleted. The COPY command allocates new space for
the output file.

By default, the COPY command creates a new version of a file |if
the file already exists, incrementing the version number.

/TRUNCATE
/NOTRUNCATE

Controls whether the COPY command truncates an output file at the
end-of-file when copying it. By default, the COPY command uses
the allocation of the input file to determine the size of the
output file.

/VOLUME=n

Requests that the COPY command place the entire output file on
the specified relative volume number of a multivolume set.

If the /VOLUME qualifier is not specified, the file is placed in
an arbitrary position within the multivolume set.

/WRITE_CHECK
/NOWRITE_CHECK

Requests the COPY command to read each record in the output file
after it was written to verify that the record was successfully
copied and that the file can subsequently be read without error.

By default, the output records are not read after writing.

Examples
1. §$ COPY TEST.DAT NEWTEST.DAT

The COPY command copies the contents of the file TEST.DAT
from the default disk and directory into a file named
NEWTEST.DAT. If a file named NEWTEST.DAT already exists, the
COPY command creates a new version of it.

2. $ COPY ALPHA,.TXT TMP
$ COPY ALPHA.TXT .TMP

The first COPY command copies the file ALPHA.TXT into a file
named TMP.TXT. The COPY command uses the file type of the
input file to complete the file specification for the output
file. The second COPY command creates a file named
ALPHA.TMP. The COPY command uses the file name of the input
file to name the output file.

58

CoPY

¢ COPY/LOG/REPLACE TEST.DAT NEW.DAT;1

$COPY-I-REPLACED, DBA2:[MAL]NEW.DAT;1 being replaced

%COPY-S-COPIED, DBA2: [MAL]TEST.DAT;l1 copied to DBA2:[MALINEW.DAT;1 (1 block)
3COPY-S-NEWFILES, 1 file created

The /REPLACE qualifier requests the COPY command to replace
an existing version of the output file with the new file.
The first message from the COPY command indicates that it is
replacing an existing file. The version number in the output
file must be explicit; otherwise, the COPY command creates a
new version of the file NEW.DAT.

$ COPY *.COM (MALCOLM.TESTFILES]

The COPY command copies the highest versions of files in the
current default directory with a file type of COM to the
subdirectory MALCOLM.TESTFILES.

¢ COPY/LOG *,TXT *,0LD

%COPY-S~COPIED, DBA2:[MAL]A.TXT;2 copied to DBA2:[MAL]A.OLD;2 (1 block)
$COPY-S5~-COPIED, DBA2:([MAL]B.TXT;2 copied to DBA2:{MAL]B.OLD;2 (1 block)
$COPY-S-COPIED, DBA2: [MAL]G.TXT;2 copied to DBA2:[MAL]G.OLD;2 (4 blocks)
$COPY~-S~-NEWFILES, 3 files created

The COPY command copies the highest versions of files with
file types of TXT into new files. Each new file has the same
file name as an existing file, but a file type of OLD. The
last message from the COPY command indicates the number of
new files that it created.

$ COPY/LOG A.DAT,B.MEM C,*

$COPY~-5-COPIED, DBA2:[MAL)A.DAT;5 copied to DBA2:{MAL]C.DAT;11l (1 block)
$COPY-S-COPIED, DBA2:[MAL}B.MEM;2 copied to DBA2:[MAL]C.MEM;24 (58 records)
$COPY-S-NEWFILES, 2 files created

The input file specifications are separated with a comma to
request that two files be copied. The asterisk wild card
character in the output file specification indicates that two
output files are to be created. For each copy operation, the
COPY command uses the file type of the input file to name the
output file.

$ COPY/LOG *,TXT TXT.SAV

$COPY~S-COPIED, DBA2:[MAL]A.TXT;2 copied to DBA2: [MAL]TXT.SAV;1 (1 block)
$COPY-S-APPENDED, DBA2:[MAL]B.TXT;2 appended to DBA2:[MAL]TXT.SAV;1 (3 records)
$COPY-S~APPENDED, DBA2:[MAL]G.TXT;2 appended to DBA2: [MAL])TXT.SAV;1 (51 records)
%COPY-S-NEWFILES, 1 file created

The COPY command copies the highest versions of all files
with file types of TXT to a single output file named TXT.SAV,.
After the first input file is copied, the messages from the
(6{0)0'4 command indicate that subsequent files are being
appended to the output file.

Note that if you specify /NOCONCATENATE in this example, the
COPY command creates multiple versions of the file TXT.SAV,

59

8.

10.

COPY

$ COPY MASTER.DOC DMAL: [BACKUP]

The COPY command copies the highest version of the file
MASTER.DOC to the device DMAl. 1If no file named MASTER.DOC
already exists in the directory BACKUP, the COPY command uses
the version number of the input file.

$ MOUNT MTAl: VOL025 TAPE:
$ COPY TAPE:* ,* %

The MOUNT command requests that the volume labeled VOL025 be
mounted on the magnetic tape device MTAl and assigns the
logical name TAPE to the device.

The COPY command uses the logical name TAPE for the input
file specification, requesting that all files on the magnetic
tape be copied to the current default disk and directory.
All the files copied retain their file names and file types.

$ ALLOCATE CR:

_CRAO: ALLOCATED
$ COPY CRAO: CARDS.DAT
$ DEALLOCATE CRAO:

The ALLOCATE command allocates a card reader for exclusive
use by the process. The response from the ALLOCATE command
indicates the device name of the card reader, CRAO.

After the card reader is allocated, you can place a deck of
cards in the reader and issue the COPY command specifying the
card reader as the input file. The COPY command reads the
cards into the file CARDS.DAT. The end-of-file in the card
deck must be indicated with an EOF card (12-11-0-1-6-7-8-9
overpunch).

The DEALLOCATE command relinquishes use of the card reader.

60

CORAL

Invokes the VAX-11 CORAL 661 compiler to compile one or more CORAL 66
source programs. For more information on the VAX-1l CORAL 66

compiler, see the IAS/RSX/VMS CORAL 66 User's Guide.

Format
CORAL file-spec[,...!}
Command Qualifiers Defaults
None. None.
File Qualifiers Defaults
/ [NO]JCHECK /NOCHECK
/[NO]IECCA /NOIECCA
/INOJLIST[=file-spec] (see text)
/INO]JOBJECT[=file-spec] (see text)
/ [NO]SHOW [=(option[,...])] /SHOW= (SOURCE,SYMBOLS, -
STATISTICS)
/TEST=n /TEST=0 '
/WIDTH=n /WIDTH=132
Prompts

File: file-spec([,...]

Command Parameters
file-spec[,...]

Specifies one or more CORAL 66 language source programs to

compiled. If you do not specify a file type for an input file,

the compiler uses the default file type of COR,

You can specify more than one input file., If you separate

file specifications with commas (,), each file 1is compiled
separately. If you separate the file specifications with plus
signs (+), the files are concatenated and compiled as a single

input file, producing single object and listing files.

No wild card characters are allowed in the file specification(s).

l. Available under separate license.

61

CORAL

File Qualifiers

/CHECK
/NOCHECK

Indicates whether the compiler should generate additional code at
each reference to an array or table element. Such code permits
each reference to be checked at run time to ensure it lies within
the declared bounds.

By default, no checking is done.

/IECCA
/NOIECCA

Defines whether the compiler highlights non-IECCA keywords in the
listing file with warning messages.

By default, no highlighting occurs.

/LIST[=file-spec]
/NOLIST

Indicates whether an output listing is created, and optionally
provides an output file specification for the listing file.

If you issue the CORAL command interactively, the compiler, by
default, does not create a 1listing file. When /NOLIST is
present, either explicitly or by default, errors are reported on
the current output device.

If you execute the CORAL command in a batch job, the /LIST
qualifier 1is the default. When you specify /LIST, you can
control the defaults applied to the output file specification by
the placement of the qualifier in the command, as described in
Section 5.3.3, "Rules for Entering Output File Qualifiers." The
default file type provided for listing files is LIS,

No wild card characters are allowed in the file specification.

/OBJECT=file-spec
/NOOBJECT

Controls whether an object module is created by the assembler.
It also defines the file specification for the file. '

By default, the compiler creates an object module with the same
file name as the first input file and file type of OBJ. When you
specify /OBJECT, you can control the defaults applied to the
output file specification by the placement of the qualifier in
the command, as described in Section 5.3.3, "Rules for Entering
Output File Qualifiers." The default file type provided for
object files is OBJ.

No wild card characters are allowed in the file specification.

62

CORAL

/SHOW [= (option[,...])]
/NOSHOW [= (option[,...])]

Controls the contents of the source 1listing file. You may
specify any of the following options:

MACROS Outputs the macro expansions and the source
listing

OVERRIDE Overrides any NOLIST statements in the source code

SOURCE Outputs the source listing

STATISTICS Outputs compilation statistics

SYMBOLS Outputs the symbol table list

If you specify more than one option, separate them by commas and
enclose the list in parentheses.

By default, source listings with symbol tables and compilation
statistics are produced.

/TEST=n

Retains or omits certain declarations and statements from the
compilation without requiring special editing of the source text.
Only those VAX-11 CORAL 66 statements or declarations that carry
the TEST keyword with wvalues 1less than or equal to the value
given as n are compiled.

By default, all statements and declarations are not compiled 1if
you omit the /TEST qualifier.

/WIDTH=n

Controls the width of the listing file. You may specify any
decimal number between 8 and 132 for the width n.

By default, the width of the listing is 132 columns if you omit
the /WIDTH qualifier.
Examples

1. $ CORAL FRED/TEST=8
Compiles all CORAL 66 statements in FRED.COR that are
preceded by 'TEST'x, where X must be less than or equal to
eight.

2. §$ CORAL JIM + JOE /LIST=JIM/NOSHOW=(STATISTICS,MACROS)
The input source files JIM.COR and JOE.COR are concatenated
before compilation to produce the object module JIM.OBJ and

the listing file JIM.LIS. The printing of the compilation
statistics and macro expansions is suppressed in JIM,LIS.

63

CREATE

Creates one or more sequential disk files from records that follow the
command in the input stream.

Format

CREATE file-spec(,...]

Command Qualifiers Defaults

/ [NO]LOG /NOLOG
/OWNER_UIC=uic

/PROTECTION=code

/VOLUME=n

Prompts

File:

file-spec[,...]

Command Parameters

file-

specl,e..]
Specifies the name of one or more input files to be created.

If you omit either the file name or the file type, the CREATE
command does not supply any defaults; the file name or file type
is null., If you do not specify a file version number, and a file
already exists with the same file name and file type as the file
specification, the CREATE command creates a new version of the
file.

No wild card characters are allowed in the file specifications.

Command Qualifiers

/LOG

/NOLOG

Controls whether the CREATE command displays the file
specification of each file that it has created.

By default, the CREATE command does not display the names of
files after it creates them.

64

CREATE

/OWNER_UIC=uic

Specifies the user identification code to be associated with the
file being created. Specify the UIC in the format:

(g,m]

g is an octal number in the range 0 through 377 representing
the group number.

m is an octal number in the range 0 through 377 representing
the member number.

The bold brackets ([]) are required in the UIC specification.

If you do not specify an owner UIC when you create a file, the
command assigns your UIC to the file.

Note, you must have the SYSPRV user privilege to specify a UIC
other than your own UIC.

/PROTECTION=code

Defines the protection to be applied to the file. Specify the
protection code according to the rules given in Section 5.,10.
Any categories not specified are denied all types of access.

If you do not specify a protection code when you create a file,
the command applies your current default protection to the file.

/VOLUME=n

Requests that each file be placed on the specified relative
volume number of a multivolume set. :

If you omit the /VOLUME qualifier, files are placea in arbitrary
positions within the multivolume set.

Examples

1. $ CREATE A.DAT,B.DAT
Input line one for A.DAT...
Input line two for A,DAT...

-

Input line one for B.DAT...
Input line two for B,DAT...

A
$
After you issue the CREATE command from the terminal, the
system reads input lines into the sequential file A.DAT until

CTRL/Z terminates the first input. The next set of input
data is placed in the second file, B.DAT.

65

CREATE

...input data...
$ RUN WEATHER
//$ LINCWEATHER
/ $ FORTRAN WEATHER

...source statements... %"
$ CREATE WEATHER.FOR

// $ PASSWORD HENRY
/s JOB HIGGINS

r—

When you issue the CREATE command from a command procedure
file, the system reads all subsequent records in the command
procedure file into the new file, until it encounters a
dollar sign ($) in the first position in a record. In this
batch job example, the CREATE command creates a FORTRAN
source file. The next commands compile, link, and run the
file just created. Input data follows the RUN command.

end of input stream

(s€e0

input stream for
$EOD

CREATE command
§ RUN WEATHER
// SLINK WEATHER
$ FORTRAN WEATHER
Gotar signs tolows 7/ $DECK
'/ s CREATE WEATHER.COM

/S PASSWORD HENRY I
$ JOB HIGGINS

This batch job example illustrates using the CREATE command
to create a command procedure from data in the input stream.
The DECK command is required so that subsequent 1lines that
begin with a dollar sign are not executed as commands, but
are accepted as input records. The EOD command signals the
end-of-file for the data records. Then, the procedure is
executed with the @ (Execute Procedure) command.

66

4.

CREATE

$ CREATE AAA.DAT/LOG
input data
~Z
$CREATE~I-CREATED, DMAO: [MALCOLM]AAA.DAT;1 created
$

This CREATE command illustrates the effect of the /LOG
qualifier. Once the file is successfully created, a message
appears identifying the file by device and directory, f£file
name, file type, and version number,

67

CREATE/DIRECTORY

Defines a new directory or subdirectory for cataloging files.
The /DIRECTORY qualifier is required.

Format

CREATE/DIRECTORY directory-spec[,...]

Additional
Command Qualifiers Defaults
/ [NO]LOG /NOLOG

/OWNER UIC=uic
/PROTECTION=code
/VERSION_LIMIT=n
/VOLUME=n

Prompts

File: directory-spec[,...]

Command Parameters
directory-spec[,...]

Specifies the name of one or more directories or subdirectories
to be created.

The directory specifications must contain a directory name, and
optionally can contain a device name. When you create a
subdirectory, separate the names of the directory levels with
periods (.).

No wild card characters are allowed in the directory
specification.

Description

To create a first-level directory you must be allowed write
access to the master file directory on the volume on which you
are creating the directory. On a system volume, normally only
users with a system UIC or the SYSPRV or BYPASS user privileges
are allowed write access to the MFD to create a first level
directory. To create a subdirectory, you must be allowed write
access to the lowest level directory that currently exists.

68

CREATE/DIRECTORY

Additional Command Qualifiers

/LOG

/NOLOG
Controls whether the CREATE/DIRECTORY command displays the
directory specification of each directory after creating it.
By default, the CREATE/DIRECTORY command does not display the
name of each directory after it creates it,

/OWNER_UIC=uic
Specifies the user identification code to be associated with the
directory being created. Specify the UIC in the format:
{g,m]
g is an octal number in the range 0 through 377 representing

the group number.

m is an octal number in the range 0 through 377 representing

the member number.

The bold brackets ([1) are required in the UIC specification.

If you do not specify the /OWNER_UIC qualifier when you create

directory, the command assigns ownerships as follows:

a

e If you specify the directory name in either alphanumeric

or subdirectory format, ownership defaults to your UIC

e If you specify the directory name in UIC format (Section
2.1.3.1), ownership defaults to the UIC in the directory

name

/PROTECTION=code

Defines the protection to be applied to the directory. Specify

the protection code according to the rules given in Section 5.

Any categories not specified are denied all types of access.

10.

If you do not specify the /PROTECTION qualifier when you create a

directory, the command uses the protection in effect for

the

next-highest level directory, less any delete access. If you are
creating a first-level directory, then the protection of the MFD

is used. (The protection of the MFD 1is established by
INITIALIZE command.)

/VERSION LIMIT=n

Specifies that no more than n versions of each file created

the

in

this directory are to be kept. Whenever n versions exist and a
new version is created, the 1lowest version 1is automatically
deleted. If you omit the /VERSION LIMIT qualifier, the default

is the number of versions permitted ~for the directory at
next-higher level.

the

You may specify /VERSION_LIMIT=0. This creates a directory with

no version limit.

69

CREATE /DIRECTORY

Regardless of what version limit you assign to the directory with
this qualifier, the system limits the number of existing versions
of any file to approximately 60. The upper limit prevails even
when the version limit has been set to a value greater than 60,
or when the wversion limit is set to zero.

/VOLUME=n

Requests that the directory file be placed on the specified
relative volume number of a multivolume set.

If you omit the /VOLUME qualifier, the file 1is placed in an
arbitrary position within the multivolume set.

Examples
1. $ CREATE/DIRECTORY DMA2: [MALCOLM]

The CREATE/DIRECTORY command creates a directory named
MALCOLM on the device DMA2.

2. S CREATE/DIRECTORY [MALCOLM.SUB]
$ SET DEFAULT [MALCOLM.SUB]

The CREATE/DIRECTORY command creates a subdirectory named
MALCOLM.SUB. This directory file is placed in the directory
named MALCOLM. The SET DEFAULT command changes the current
default directory to this subdirectory. All files
subsequently created are cataloged in MALCOLM,SUB.

¢

3. $ CREATE/DIRECTORY/PROTECTION=(SYSTEM:RWED,OWNER:RWED,GROUP,WORLD) -
$_[MALCOLM.SUB.HLP]

The CREATE/DIRECTORY command creates a subdirectory named
MALCOLM.SUB.HLP. The protection on the subdirectory allows
read, write, execute and delete access for the system and
owner categories, but prohibits all access for the group or
world categories.

70

DEALLOCATE

Returns a device that was reserved for private use to the pool of
available devices in the system.

Format

DEALLOCATE [device-~name([:]]

Command Qualifiers Defaults
/ALL None.
Prompts

Device: device-name[:]

Command Parameters
device-name[:]

Specifies the name of the device to be deallocated. The device
name can be a physical device name or a logical name.

If you omit the controller designator and/or unit number, they
default to controller A and unit 0, respectively.

Command Qualifiers

/BALL
Requests that all devices you have currently allocated be

deallocated.

If you specify /ALL, you cannot specify a device name.

Examples
1. $ DEALLOCATE _DMB1:

The DEALLOCATE command deallocates wunit 1 of the RKO06
device(s) on controller B. The underscore character in the
device name indicates that it is a physical device name; the
DEALLOCATE command does not check to see if it is a logical
name.

71

2.

DEALLOCATE

$ ALLOCATE MT: TAPE:
_MTBl: ALLOCATED

$ DEALLOCATE TAPE

The ALLOCATE command requests that any magnetic tape drive be
allocated and assigns the logical name TAPE to the device.
The response to the ALLOCATE command indicates the successful
allocation of the device MTBI. The DEALLOCATE command
specifies the logical name. TAPE to release the tape.

Note that a colon was specified on the logical name TAPE in
the ALLOCATE command, but that the colon can be omitted on
the DEALLOCATE command.

$ DEALLOCATE/ALL

The DEALLOCATE command deallocates all devices that are
currently allocated.

72

DEASSIGN

Cancels logical name assignments made with the ASSIGN, DEFINE, or
ALLOCATE commands.

Format
DEASSIGN [logical-name([:]]
Command Qualifiers Defaults
/ALL
/GROUP /PROCESS
/PROCESS /PROCESS
/SUPERVISOR_MODE /SUPERVISOR_MODE
/SYSTEM /PROCESS
/USER_MODE /SUPERVISOR_MODE
Prompts

Log_Name: 1logical-name[:]

Command Parameters
logical-name[:]

Specifies a 1- through 63-character 1logical name to be
deassigned. If the 1logical name contains any characters other
than alphanumeric, dollar sign ($), or underscore (_) characters,
enclose it in quotation marks (").

If you terminate the logical-name parameter with a colon (:), the
command interpreter ignores it. (Note that the ASSIGN and
ALLOCATE commands remove a trailing colon, 1if present, from a
logical name before placina the name in a logical name
table.) If a colon is present in the actual logical name, you
must specify two <colons on the logical-name parameter for the
DEASSIGN command.

The logical-name parameter is required unless you specify /ALL.

Description

If you enter more than one of the qualifiers /PROCESS, /GROUP or
/SYSTEM, only the last one entered is accepted. If entries exist
for the specified logical name in more than one logical name
table, the name is deleted only from the specified logical name
table.

73

DEASSIGN

The command interpreter deassigns all supervisor mode entries in
the process logical name table when you log off the system. User
mode entries are deassigned when any image exits. Names in the

group or system logical name tables must be explicitly
deassigned.

Command Qualifiers

/ALL
Specifies that all logical names in the specified 1logical name
table are to be deleted. If no logical name table is specified,
all process logical name table entries are deleted.
If you specify /ALL, you cannot enter a logical-name parameter.
/GROUP
Indicates that the specified logical name is in the group logical
name table.
The user privilege GRPNAM is required to delete entries from the
group logical name table,
/PROCESS

Indicates that the specified 1logical name 1is in the process
logical name table. This is the default.

You cannot deassign logical name table entries that were made by
the command interpreter, for example SYSSINPUT, SYSSOUTPUT, and
SYSSERROR. However, if you assign new equivalence names for
these 1logical names, you can deassign the names you explicitly
created.

/SUPERVISOR_MODE

Indicates, for entries in the process logical name table, that an
entry exists in supervisor mode. This is the default;
/SUPERVISOR_MODE deletes both user and supervisor mode entries.

/SYSTEM

Indicates that the specified 1logical name is in the system
logical name table.

The user privilege SYSNAM is required to delete entries from the
system logical name table.

/USER_MODE

Indicates, for entries in the process logical name table, that
the entry exists in user mode. /USER_MODE deletes only user mode
entries.

74

Examples

lo

DEASSIGN

$ SHOW LOGICAL TEST_CASES

TEST CASES = DBAl:[HARVEY]FILES.DAT (process)
$ DEASSIGN TEST CASES
$ SHOW LOGICAL TEST_CASES

No translation for logical name TEST_CASES

The SHOW LOGICAL command displays the current equivalence
name for the logical name TEST_CASES. The DEASSIGN command
deassigns the equivalence name; the next SHOW LOGICAL
command indicates that the name is deassigned.

$ ASSIGN DBAl: COoPY:
$ DEASSIGN COPY

The ASSIGN command equates the logical name COPY with the
device DBAl and places the names in the process logical name
table. The DEASSIGN command deletes the logical name. Note
that a colon was specified on the logical name COPY in the
ASSIGN command, but that the colon can be omitted on the
DEASSIGN command.

$ DEFINE SWITCH: TEMP
$ DEASSIGN SWITCH::

The DEFINE command places the logical name SWITCH: in the
process logical name table. Two colons are required on the
DEASSIGN command to delete this 1logical name because the
DEFINE command does hot remove trailing colons from logical
names.

$ ASSIGN/GROUP _DBB2: GROUP_DISK
$ DEASSIGN/PROCESS/GROUP GROUP_DISK

The ASSIGN command places the logical name GROUP_DISK in the
group logical name table. A subsequent DEASSIGN command
specifies conflicting qualifiers; because the /GROUP
qualifier is last, the name is successfully deassigned.

$ DEASSIGN/ALL

The DEASSIGN command deletes all names from the process
logical name table. This command does not, however, delete
the names that were placed in the process logical name table
in executive mode by the command interpreter (SYSSINPUT,
SYSSOUTPUT, SYSSERROR, SYS$DISK, and SYSSCOMMAND).

75

DEBUG

Invokes the VAX-1l1l Symbolic Debugger after program execution is
interrupted by CTRL/C or CTRL/Y.
Format
DEBUG
Command Qualifiers Defaults
None. None.
Prompts
DBG>
Command Parameters
None.
Description
When a program image is executing, it can be interrupted by

CTRL/C or CTRL/Y. Following the interruption, the DEBUG command

can be issued to pass control to the debugger; this function

is

useful when a program is in an infinite loop and you want to gain

control and use the debugger to determine the cause of
problem.

the

If no image is currently executing, the DEBUG command performs no

operation.

You need not specify the /DEBUG qualifier in the LINK command

to

invoke the debugger. However, images 1linked with /NODEBUG,

contain 1limited symbolic information. If you specify

the

/NOTRACEBACK qualifier in a LINK command, any subsequent DEBUG

command causes a software exception condition. If the image

has

not declared a condition handler, this exception condition may

cause the termination of the image.

For complete details on the commands available to debug programs,

see the VAX-11 Symbolic Debugger Reference Manual.

76

Examples

1.

DEBUG

$ FORTRAN/DEBUG/NOOPTIMIZE WIDGET
$ LINK/DEBUG WIDGET
$ RUN WIDGET

VAX-11 DEBUG V2.0

$DEBUG-I-INITIAL, language is FORTRAN, module set to 'WIDGET'
DBG>GO

ENTER NAME:

ENTER NAME:

ENTER NAME:

Y

$ DEBUG

DBG>

The FORTRAN and LINK commands both specify the /DEBUG
qualifier, to compile the program WIDGET.FOR with debugger
symbol table information and to include the debugger in the
image file. The RUN command begins execution of the image
WIDGET.EXE, which loops uncontrollably. CTRL/Y interrupts
the program, and the DEBUG command gives control to the
debugger.

77

DECK

Marks the beginning of an input stream for a command or program. The
DECK command is required in command procedures when the first nonblank
character in any data record in the input stream is a dollar sign ($).

The DECK command must be preceded by a dollar sign; the dollar sign

must be 1in the first character position (column 1) of the input
record.

Format
$ DECK
Command Qualifiers Defaults
/DOLLARS [=string] /DOLLARS=$EOD
Prompts
None.

Command Parameters

None.

Description

The DECK command defines an end-of-file indicator only for a
single data stream; it allows you to place data records
beginning with dollar signs in the input stream. You can place
one or more sets of data in the input stream following a DECK
command, each terminated by an end-of-file indicator.

After an end-of-file 1indicator specified with the /DOLLARS
qualifier 1is encountered, the end-of-file indicator is reset to
the default, that is, any record beginning with a dollar sign
($). The default is also reset if an actual end-of-file occurs
for the current command level.

The DECK command is invalid if it is not preceded by a request to
execute a command or program that requires input data.

For more information on how to use commands 1like this one in

command procedures, consult the VAX/VMS Guide to Using Command
Procedures.

78

DECK

Command Qualifiers
/DOLLARS [=string]

Sets the end-of-file indicator to the specified string.

If you do not specify /DOLLARS, or if you specify /DOLLARS
without specifying a string, you must use the EOD command to

signal the end-of-file.

Specify a string if the input data contains one or more records
beginning with the string $EOD. The string can have from 1
through 15 characters. Enclose it in quotation marks (") if you
want to specify an end-of-file indicator that contains literal
lowercase letters or multiple blanks or tabs. The command
interpreter does not scan the string; thus, no symbol

substitution can be performed.

Examples
1.
(seos
N
\NPUT STREAM /" "N,/ $PRINTSUMMARY.DAT
FOR $ EOD
PROGRAM A IL/
= o
= .
!/'wam
4 (
N 88642
/ $DECK]
/ SRUNA ||
/ $ LINK A [|
/ $FORTRAN A M
- : |k
= * i

/AéE% . = _J—A:

)

The FORTRAN and LINK commands compile and 1link program A.
When the program is run, any data the program reads from the
logical device SYSSINPUT is read from the command stream,
The DECK command indicates that the input stream may contain

dollar signs. The EOD command signals end-of-file for
data.

79

DECK

P . b

y
-
M

v $9950 h JL
// $DECK _J_‘..‘
/S RUN READFILE _j
N / § ASSIGN RUNTEST OUT OUTFILE
N // S ASSIGN SYSSINPUT INFILE

N — -

\J $ DECK/DOLLARS = “%
/' CREATE TEST.COM

H
P o
P .
P
P

$ JOB HIGGINS J

(D INPUT STREAM FOR CREATE COMMAND

(2) INPUT STREAM FOR PROGRAM READFILE

The CREATE command creates the command procedure file
TEST.COM from 1lines entered into the input stream. The
DECK/DOLLARS command indicates that the percent-sign (%)
character is the end-of-file indicator for the CREATE
command. This allows the string $ EOD to be read as an input
record, signaling the end of the input for the RUN command.

80

DEFINE

Creates a logical name table entry and assigns an equivalence name
string to the specified logical name. The DEFINE command is similar
in function to the ASSIGN command; however, its primary purpose is to
assign logicalname/equivalencename pairs for application-specific uses
other than for logical file specification assignments.

Format
DEFINE logical-name[:] equivalence-name(:]
Command Qualifiers Defaults
/GROUP /PROCESS
/PROCESS /PROCESS
/SUPERVISOR_MODE /SUPERVISOR_MODE
/SYSTEM /PROCESS
/USER*MODE /SUPERVISOR_MODE
Prompts

Log_Name: logical-name[:]

Equ_Name: equivalence-name[:]

Command Parameters
logical-name([:]

Specifies a 1- through 63-character logical name string. If the
string contains any characters besides alphanumeric or underscore
characters, enclose it in quotation marks (").

equivalence-name[:]

Defines the 1- through 63-character equivalence name to be
associated with the 1logical name in the specified logical name
table. If the string contains other than alphanumeric or

underscore characters, it must be enclosed in double quotation
marks (").

Description
If you enter more than one of the qualifiers /PROCESS, /GROUP, or
/SYSTEM, or both of the qualifiers /SUPERVISOR_MODE and
/USER_MODE, only the last qualifier entered is accepted.

For additional information on using logical names, see Section
2.2, "Logical Names."

81l

DEFINE

Command Qualifiers

/GROUP

Places the 1logical name/equivalence name pair in the group
logical name table. Other users who have the same group number
in their UICs (user identification codes) can access the logical
name.

The user privilege GRPNAM is required to place a name in the
group logical name table.

/PROCESS

Places the logical name/equivalence name pair in the process
logical name table. This is the default.

/SUPERVISOR_MODE

Specifies, for an entry in the process logical name table, that
the logical name be entered in supervisor mode.

This is the default for process logical name table entries. The
/SUPERVISOR_MODE qualifier is 1ignored when entries are made in
the group or system logical name tables.

/SYSTEM

Places the logical name/equivalence name pair in the system
logical name table. All system users can access the logical
name.

The user privilege SYSNAM is required to place a name in the
system logical name table.

/USER_MODE

Specifies, for an entry in the process logical name table, that
the logical name be entered in user mode.

A user mode logical name is practical for the execution of a
single image; it allows an 1image executing in a command
procedure to redefine SYSSINPUT. User mode entries are deleted
when any image executing in the process exits (that is, after any
DCL command or user program that executes an 1image completes
execution), or when a STOP command is issued.

By default, process logical name table entries are made in

supervisor mode. The /USER_MODE qualifier 1is ignored when
entries are made in the group or system logical name tables.

82

Examples

l.

DEFINE

$ DEFINE PROCESS_NAME LIBRA
$ RUN WAKE

The DEFINE command places the logical name PROCESS_NAME in
the process logical name table with an equivalence name of
LIBRA. The program WAKE can translate the 1logical name
PROCESS_NAME to perform some special action on the process
named LIBRA,

$ DEFINE TEMP: DBAl:
$ DEASSIGN TEMP::

The DEFINE command creates an equivalence name for the
logical name TEMP: and places the name 1in the process
logical name table. The DEASSIGN command deletes the logical
name., Note that two colons are required on the logical name
in the DEASSIGN command because the DEFINE command does not
remove trailing colons from logical names, as the DEASSIGN
command does.

83

DELETE

Deletes one or more files from a mass storage disk volume.

Format

DELETE file-spec[,...]

Command Qualifiers Defaults

/BEFORE [=time]

/ [NO] CONFIRM /NOCONFIRM
/CREATED

/EXPIRED

/ [NO]LOG /NOLOG
/MODIFIED

/SINCE [=time]

Prompts

File: file-spec{,...]

Command Parameters
file-spec([,...]

Specifies the names of one or more files to be deleted.

The

first file specification must contain an explicit or default

directory specification plus a file name, a file type, and a
version number; subsequent file specifications must contain a
version number. You can specify wild card characters in any of

the file specification fields (see Section 2.1.6).

A semicolon followed by no file version number, a version number
of 0, or one or more blanks in the version number of a file

specification results in the deletion of the latest version
the file.

of

To delete more than one file, separate the file specifications

with commas (,) or plus signs (+).

If you omit the directory specification or device name,
current default device and directory are used.

84

the

DELETE

Command Qualifiers
/BEFORE [=time]

Specifies that only the files dated earlier than a particular
time be deleted. VYou can specify an absolute date and time. Use
the syntax rules for date and time values specified in Section
5.8,

If you specify /BEFORE and do not specify a value, the DELETE
command assumes /BEFORE=TODAY.

Use the /CREATED, /EXPIRED, or /MODIFIED qualifiers to request
that only files created, expired, or modified before the
specified time be deleted. If none of these qualifiers is
specified, the DELETE command deletes all files created and
modified within the specified time.

/CONFIRM
/NOCONFIRM

Controls whether the DELETE command displays the file
specification of each file before deleting and requests you to
confirm whether or not the file should actually be deleted. If
.you specify /CONFIRM, vyou must respond to a prompt with a Y,
followed by a carriage return, before the DELETE command will
delete the file, If vyou enter anything else, the file is not
deleted.

By default, the DELETE command does not request confirmation of
files it is deleting.

/CREATED

Specifies, when /BEFORE and/or /SINCE 1is specified, that only
files created within the defined time period be deleted.

The default is /MODIFIED if none of the qualifiers /CREATED,
/MODIFIED, or /EXPIRED is specified.

/EXPIRED

Specifies, when /BEFORE and/or /SINCE is specified, that only
files that reached their expiration dates within the specified
time be deleted.

If any file does not have an expiration date associated with it,
it is assumed to have expired at the time the DELETE command is
issued. (Files can be assigned expiration dates when they are
created or revised with RMS.,) ’

/LOG
/NOLOG

Controls whether the DELETE command displays the file
specification of each file after its deletion.

By default, the DELETE command does not display the names of
files after it deletes them,

85

DELETE

/MODIFIED

Specifies, when /BEFORE and/or /SINCE are specified, that only
files that were modified within the defined time period be
deleted. A file's revision date is updated whenever the file is
accessed and updated.

/SINCE [=time]

Specifies that only the files dated later than a particular time
be deleted. You can specify an absolute date and time. Use the
syntax rules for date and time values specified in Section 5.8.

If you specify /SINCE and do not specify a value, the DELETE
command assumes /SINCE=TODAY.

Use the /CREATED, /EXPIRED, or /MODIFIED qualifiers to request
that only files created, expired, or modified after the specified
time be deleted. 1If none of these qualifiers is specified, the
DELETE command deletes all files created and modified within the
specified time.

Examples
1. S$DELETE COMMON .SUM; 2

The DELETE command deletes the file COMMON,SUM;2 from the
current default disk and directory.

2. S$DELETE *.OLD;*

The DELETE command deletes all versions of files with file
types of OLD from the default disk directory.

3. SDELETE ALPHA.TXT;*,BETA;*,GAMMA;*

The DELETE command deletes all versions of the files
ALPHA.TXT, BETA.TXT, and GAMMA.,TXT. The command uses the
file type of the first input file as a temporary default.
Note, however, that version numbers (here specified as wild
cards) must be included in each file specification.

4. SDELETE *.DAT;*/BEFORE=01-JUN/LOG
$DELETE-I-DELETED, DBA2: [MALCOLM]ASSIGN.DAT;1 deleted
$DELETE-I-DELETED, DBA2: [MALCOLM]BATCHAVE,.DAT;1 deleted
$DELETE-I-DELETED, DBA2: [MALCOLM]CANCEL.DAT;1 deleted
$DELETE-I-DELETED, DBA2: [MALCOLM]DEFINE.DAT;1 deleted
$DELETE-I-DELETED, DBA2:[MALCOLM]EXIT,.DAT;1 deleted

The DELETE command deletes all versions of all files with
file types of DAT that were either created or updated before
June 1, this year.

5. S$DELETE A.B; G

The DELETE command deletes the file A.B with the highest
version number.

86

DELETE

$ DELETE [MALCOLM.TESTFILES]*.0BJ;*/CONFIRM/SINCE=TODAY

DBA2: [MALCOLM.TESTFILES]AVERAG.OBJ;1, delete? (Y or N):Y
DBA2: [MALCOLM.TESTFILES]SCANLINE.OBJ;2, delete? (Y or N):N
DBA2: [MALCOLM,TESTFILES]WEATHER.OBJ; 3, delete? (Y or N):Y

The DELETE command examines all versions of files with file
types of OBJ in the subdirectory [MALCOLM.TESTFILES], and
locates those that were created or modified today. Before

deleting each file, it requests confirmation that the file
should be deleted.

$ DIRECTORY [.SUBTEST]

No files found.
$ SET PROTECTION SUBTEST.DIR/PROTECTION=0OWNER:D
$ DELETE SUBTEST.DIR;1

Before deleting the directory file SUBTEST.DIR, the DIRECTORY
command is wused to verify that there are no files cataloged
in the directory. The SET PROTECTION command redefines the
protection for the directory file so that it can be deleted;
then, the DELETE command deletes it.

87

DELETE/ENTRY

Deletes one or more entries from a printer or batch job queue. The
/ENTRY qualifier is required.)

Format

DELETE/ENTRY=(job-number(,...l) queue-name[:]

Additional
Command Qualifiers Defaults
None. None,

Prompts

Queue: queue-namel([:]

Command Parameters

job-number[,...]

Specifies the job number of the job to be deleted from the queue.
The /ENTRY qualifier requires at least one job-number parameter
to specify the job number(s) of one or more jobs to be deleted
from a printer of batch job queue. If you specify more than one
job number, separate them by commas and enclose the 1list in
parentheses.

queue—-name [:]

Specifies the name of the queue in which the job(s) exist.

Description

Unless you possess certain user privileges, the Jjob(s) to be
deleted must have been queued by your process. You can also
delete any process in the same group as the current process,
provided vyou have the GROUP user privilege. Otherwise, you need
the WORLD or OPER user privileges to delete a process that is not
your own or in your group.

You can delete jobs that have not yet begun processing or files
that are currently being processed.

88

Examples

l.

DELETE/ENTRY

$ PRINT/HOLD ALPHA,TXT
Job 110 entered on queue SYSSPRINT

$ DELETE/ENTRY=110 SYSS$PRINT

The PRINT command queues a copy of the file ALPHA.TXT in a
HOLD status, to defer its printing until a later time. The
system displays the job number, 110, and the name of the
queue in which the file was entered. Later, the DELETE/ENTRY
command requests that the entry be deleted from the queue
SYSSPRINT.

$ SUBMIT/HOLD/PARAMETERS=SCANLINE DOFOR
Job 203 entered on queue SYS$BATCH

$ SUBMIT/AFTER=18:00 WEATHER
Job 210 entered on queue SYS$BATCH

$ DELETE/ENTRY=(203,210) SYSSBATCH

The SUBMIT commands spool the command procedures DOFOR.COM
and WEATHER.COM for processing as batch jobs. DOFOR.COM is
queued in a HOLD status and cannot execute until you issue a
SET QUEUE/ENTRY/RELEASE command. WEATHER.COM is queued for
execution after 6:00 P.M, Later, the DELETE/ENTRY command
requests that both these entries be deleted from the queue
SYSSBATCH.

89

DELETE/SYMBOL

Deletes a symbol definition from a local symbol table or from the
global symbol table, or deletes all symbol definitions in a symbol
table. The /SYMBOL qualifier is required.

Format

DELETE/SYMBOL symbol-name

Additional
Command Qualifiers Defaults

/ALL
/GLOBAL /LOCAL
/LOCAL /LOCAL

Prompts

Symbol: symbol-name

Command Parameters
symbol-name

Specifies the 1- through 255-character name of the symbol to be
deleted. By default, the DELETE/SYMBOL command assumes the
symbol is in the local symbol table for the current command
procedure.

The symbol-name parameter is required unless /ALL is specified.

Description

If you specify both of the qualifiers /GLOBAL and /LOCAL, only
the 1last one entered 1is accepted. The /SYMBOL qualifier must
follow the DELETE command name.

For more information on how to use commands 1like this one in
command procedures, consult the VAX/VMS Guide to Using Command
Procedures.

Additional Command Qualifiers
/ALL
Specifies that all symbol names in the specified symbol table be

deleted. If you do not specify either /LOCAL or /GLOBAL, all
symbols defined at the current command level are deleted.

90

DELETE/SYMBOL

/GLOBAL

Indicates that the specified symbol name is in the global symbol
table for the current process.

/LOCAL
Indicates that the symbol name is in the local symbol table for
the current command level.

Examples
l. $ DELETE/SYMBOL/ALL

The DELETE/SYMBOL command deletes all symbol definitions at
the current command level.

2. $ DELETE/SYMBOL/GLOBAL PDEL

The DELETE/SYMBOL command deletes the symbol named PDEL from
the global symbol table for the process.

91

DEPOSIT

Replaces the contents of a specified location or locations in wvirtual
memory.

The DE?OSIT command, together with the EXAMINE command, aids 1in
debugging programs interactively. The DEPOSIT command is similar to
the DEPOSIT command of the VAX-11] Symbolic Debugger.

You can truncate the DEPOSIT command to a single letter, D.

Format

DEPOSIT location=datal,...]

Command Qualifiers Defaults

/ASCII None.
/BYTE

/DECIMAL

/HEXADECIMAL

/LONGWORD

/OCTAL

/WORD

Prompts

None.

Command Parameters
location

Specifies the starting virtual address of a location or series of
locations whose contents are to be changed.

The specified location must be within the virtual address space
of the 1image currently running in the process, and it must be
accessible for both reading and writing for user access mode.

You can specify the location using any valiad arithmetic
expression. The expression can contain arithmetic or logical
operators or symbol names which have been previously given values
with DCL assignment statements. The DEPOSIT command
automatically substitutes symbols with their current values when
it evaluates the specified location.

The DEPOSIT and EXAMINE commands maintain a pointer to a current
memory location. The DEPOSIT command sets this pointer to the
byte following the last byte modified; vyou can refer to this
pointer using the symbol "." in subsequent EXAMINE and DEPOSIT
commands. If the DEPOSIT command cannot deposit the specified
data, the pointer does not change. The EXAMINE command does not
change the value of the pointer.

92

DEPOSIT

datal,...]
Defines the data to be deposited into the specified 1location(s).
If you specify a 1list, separate the items with commas; the
DEPOSIT command writes the data in consecutive locations,
beginning with the address specified.

By default, the data is assumed to be in hexadecimal format; the
DEPOSIT command converts the data to binary format before writing
it into the specified 1location. When non-ASCII data is
deposited, the DEPOSIT command automatically performs symbol
substitution when it evaluates data.

Description

When the DEPOSIT command completes, it displays the virtual
memory address into which data is deposited and displays the new
contents of the location, as follows:

address: contents

If the address specified can be read, but not written, by the
current access mode, the DEPOSIT command displays the original
contents of the 1location. If the address specified can be
neither read nor written, the DEPOSIT command displays asterisks
(****) in the data field.

If you specify a list of numeric values, some, but not all, of
the wvalues may be successfully deposited before an access
violation occurs. If an access violation occurs while ASCII data
is being deposited, nothing is deposited.

Radix Qualifiers: The radix default for a DEPOSIT or EXAMINE
command determines how the command interpreter interprets numeric
literals, for example, 256, The initial default radix is
hexadecimal; all numeric 1literals in the command 1line are
assumed to be hexadecimal values. If a radix qualifier modifies
the command, that radix becomes the default for subsequent
EXAMINE and DEPOSIT commands, until another qualifier overrides
it. For example:

$ DEPOSIT/DECIMAL 900=256
00000384: 256

The DEPOSIT command interprets both the 1location 900 and the
value 256 as decimal. All subsequent DEPOSIT and EXAMINE
commands assume that numbers you enter for addresses and data are
decimal. Note that the DEPOSIT command always displays the
address location in hexadecimal.

Symbol values defined by = (Assignment Statement) commands are
always interpreted in the radix in which they were defined.

Note that hexadecimal values entered as deposit locations or as
data to be deposited must begin with a numeric character (0
through 9). Otherwise, the command interpreter assumes that you
have entered a symbol name and attempts symbol substitution.

You can use the radix operators %X, %D, or %0 to override the
current default when you enter the DEPOSIT command. For example:

$ DEPOSIT/DECIMAL %X900=10

93

DEPOSIT

This command deposits the decimal wvalue 10 in the location
specified as hexadecimal 900.

Length Qualifiers: The 1initial default 1length wunit for the
DEPOSIT command is a longword. If a list of data values is
specified, the data 1is deposited 1into consecutive longwords
beginning at the specified 1location. If a length qualifier
modifies the command, that 1length becomes the default for
subsequent EXAMINE and DEPOSIT commands, until another qualifier
overrides it.

Restriction on Placement of Qualifiers: The DEPOSIT command
analyzes expressions arithmetically. - Therefore, qualifiers
(which must be preceded by /) are interpreted correctly only when
they appear immediately after the command name.

Command Qualifiers
/ASCII

Indicates that the specified data is ASCII. The DEPOSIT command
converts the data to its binary equivalent before placing it in
virtual memory.

When you specify ASCII data, the command interpreter compresses
multiple blanks to a single blank before writing the data in
memory; to deposit an ASCII string containing consecutive
multiple blanks, enclose the string in quotation marks (").

When you specify /ASCII, or when ASCII mode is the default, any
literal numeric values you enter are assumed to be hexadecimal.

/BYTE
Requests that data be deposited one byte at a time.

If you specify data values that are longer than a byte, an error
occurs.

/DECIMAL
Indicates that the specified data 1is decimal; the DEPOSIT
command converts the data to its binary equivalent before placing
it in virtual memory.

/HEXADECIMAL
Indicates that the specified data is hexadecimal. The DEPOSIT
command converts the data to its binary equivalent before placing
it in virtual memory.

/LONGWORD
Requests that data be deposited a longword at a time.

/OCTAL
Indicates that the specified data is octal; the DEPOSIT command
converts the data to its binary equivalent before placing it in
virtual memory.

/WORD

Requests that the data be deposited a word at a time.

94

Examples

1.

DEPOSIT

$ RUN MYPROG

~y

$ EXAMINE 2780
00002780: 1C50B344
$ DEPOSIT .=0
00002780: 00000000
$ CONTINUE

The RUN command executes the image MYPROG.EXE; subsequently,
CTRL/Y interrupts the program. Assuming that the initial
defaults of /HEXADECIMAL and /LONGWORD are in effect, the
DEPOSIT command places a longword of zeros in virtual memory
location 2780.

The'CONTINUE command resumes execution of the image.

$ DEPOSIT/ASCII 2C00=FILE: NAME: TYPE:
00002C00: FILE: NAME: TYPE:...

The DEPOSIT command deposits character data at hexadecimal
location 2C00 and displays the contents of the location after
modifying 1it. Since the current default 1length is a
longword, the response from the DEPOSIT command displays full
longwords. Trailing dots indicate that the remainder of .the
last 1longword of data contains information that was not
modified by the DEPOSIT command.

$ EXAMINE 9CO ! Look at Hex location 9CO
000009C0: 8CO37DB3

$ DEPOSIT .=0 ! Deposit longword of 0
000009C0O: 00000000

$ DEPOSIT/BYTE .=1 ! Put 1 byte at next location
000009C4: 01

$ DEPOSIT .+2=55 ! Deposit 55 next

000009C7: 55
$ DEPOSIT/LONG .=0C,0D,0E ! Deposit longwords
000009C8: 0000000C 0000000D OOOOOOOE

The sequence of DEPOSIT commands in the above example
illustrates how the DEPOSIT command changes the current
position pointer. Note that after you specify /BYTE, all
data is deposited and displayed in bytes, until the /LONGWORD
qualifier restores the system default.

$ BASE=%X200 | Define a base address

$ LIST=BASE+%X40 ! Define offset from base

$ DEPOSIT/DECIMAL LIST=1,22,333,4444

00000240: 00000001 00000022 00000333 00004444

$ EXAMINE/HEX LIST:LIST+0C | Display results in hex
00000240: 00000001 00000016 0000014D 0000115C

The assignment statements define a base address in
hexadecimal and a label at a hexadecimal offset from the base
address., The DEPOSIT command reads the list of values and
deposits each value into a 1longword, beginning at the
specified 1location. The EXAMINE command requests a
hexadecimal display of these values.

95

DIFFERENCES

Compares the contents of two disk files and creates a listing of
records that do not match.

Format

the

DIFFERENCES input-file-spec ({compare-file-spec]

Command Qualifiers Defaults

/COMMENT DELIMITERS[=(characters([,...])]
/IGNORE=(characters(,...1)
/LINE WIDTH=n

/MATCH=size /MATCH=3
/MAXIMUM DIFFERENCES=n

/MERGED [=n] /MERGED=1
/MODE=(radix[,...]) /MODE=ASCII
/OUTPUT [=file-spec] (see text)
/SEPARATED

/SLP

/WINDOW=size /WINDOW=15
File Qualifiers Defaults
/CHANGE_BAR[=[C][,[NO]NUMBER]] /CHANGE BAR=-~-

(1 ,NONUMBER)

Prompts
File 1: input-file-spec

File 2: compare-file-spec

Command Parameters
input-file-spec

Specifies the name of the primary input file to be compared.

The file specification must include a file name and file type.
No wild card characters are allowed in the file specification.

compare~file-spec

Specifies the name of the secondary input file to be compared.
Any nonspecified fields default to the corresponding field of the
primary input file specification.

If you do not specify a secondary input file, the DIFFERENCES
command uses the next lowest version.of the primary input file.

No wild card characters are allowed in the file specification.

96

DIFFERENCES

Description

Use the DIFFERENCES command to find out whether two files are
identical and, if not, how they differ. DIFFERENCES compares the
two files specified, on a record-by-record basis, and produces an
output file that 1lists the differences, if any. Logical names

are not fully supported by the DIFFERENCES command and should be
avoided.

The qualifiers for the DIFFERENCES command can be categorized
according to their functions, as follows.

® Qualifiers that request DIFFERENCES to ignore data in each
record are:

/COMMENT DELIMITERS
/IGNORE

These qualifiers allow you to define characters that denote
comments and characters to ignore while comparing files -- for
example, extra blank lines, or tabs within lines.

By default, DIFFERENCES compares every character 1in each
record.

e Qualifiers that control the format of the information produced
in the list of differences are:

/CHANGE_BAR
/LINE_WIDTH
/MERGE
/MODE
/SEPARATED
/SLP

By default, DIFFERENCES merges differences it finds 1in the
files being compared, and lists each record in the input file
that has no match in the output file, followed by the first
record that it finds that does have a match.

You can specify combinations of qualifiers to request an
output listing from DIFFERENCES that includes the c¢omparison
in more than one format. However, SLP output is incompatible
with all other types of output.

® Qualifiers that control the extent of the comparison are:

/MATCH
/MAXIMUM DIFFERENCES
/WINDOW

By default, DIFFERENCES reads every record in the primary
input file, and looks for a matching record in the secondary
input file. It terminates each search if it does not find a
match within 15 records. Records are considered matched only
if three sequential records are found in each file that are
identical. Thus, a file containing less than three records
always appears as not matched.

DIFFERENCES output is written by default to the current. output
device, that 1is, to SYS$SOUTPUT. Use the /OUTPUT qualifier to
request DIFFERENCES to write the output to an alternate file or
device.

97

DIFFERENCES

Command Qualifiers
/COMMENT_DELIMITERS [=(characters[,...])]

Requests that lines that are comments not be included in the
comparison. If a specified comment character or characters
appears as the first character in an input record, DIFFERENCES
ignores the record in the comparison.

You can specify up to four comment characters. If you specify
more than one, separate the characters with commas and enclose
the list in parentheses.

You can specify characters either by using the character itself
or by using one of the following keywords for special characters:

Keyword Character

COLON Colon (:)

COMMA Comma (,)
EXCLAMATION Exclamation point (!)
FORM Form feed

LEFT Left bracket ([)
RIGHT Right bracket (])
SEMI Semi~-colon (;)
SLASH Slash (/)

SPACE Space

TAB Horizontal tab

If you do not include a comment character, DIFFERENCES assumes
the following default comment characters for the associated file

types:
File Type Default Comment Character
CBL * and ;
CMD ! and ;
CcoM !
FOR !{ and C and D
All others H

If the comment character (either explicitly or by default) Iis
either an exclamation point (!) or semicolon (;), DIFFERENCES
also ignores any comments on the right-hand side of a statement.
If vyou also specify /IGNORE=TRAILING_BLANKS, DIFFERENCES ignores
multiple blank spaces or tabs immediately preceding the comment
character as well.

/IGNORE=(characters[,...])

Specifies one or more special characters to be ignored during the

comparision. You can request DIFFERENCES to ignore the
following:

BLANK_LINES Blank lines between data lines

COMMENTS Lines beginning with a comment character (use the

/COMMENT DELIMITERS qualifier to designate one or
more non-default comment characters)

FORM_FEEDS Form feed characters (DIFFERENCES removes form
feed characters before comparing records)

928

DIFFERENCES

TRAILING_BLANKS
Extra blank characters at the end of a 1line of
text (DIFFERENCES strips trailing blanks and tabs
before comparing records)

SPACING Extra blank spaces or tabs within 1lines of text

(DIFFERENCES compresses multiple blanks or tabs to
a single blank before comparing records)

If you specify multiple types of characters to ignore, you must
separate them by commas and enclose the list in parentheses.

By default, the DIFFERENCES command compares every character in
each file and reports all differences.

/LINE_WIDTH=n
Specifies the width of lines in the output listing.
The minimum value for the line width, n, is 30.

By default, output is 132 characters wide, unless output Iis
directed to the terminal. 1In this case, the output line width is
controlled by the terminal line width.

/MATCH=size

Controls the number of records to be included in a match, The
size value can be specified as a decimal number between 2 and 20.

By default, after DIFFERENCES finds unmatched records, it assumes

that the files match after it finds 3 sequential records that
match.

Specify a match size to override the default value of 3.
/MAXIMUM_DIFFERENCES=n

Specifies that the command is to terminate after n unmatching
records have been found.

If you specify /MAXIMUM DIFFERENCES, DIFFERENCES terminates after
locating n unmatched records. The output file lists differences
only on records compared until the maximum has been reached,

By default, DIFFERENCES compares every record in the specified
input file.

/MERGED [=n]
Requests that the output file contain a merged list of
differences. The value n 1is a decimal number from 1 to 10
indicating the number of matched records to list after each 1list
of unmatched records.

By default, DIFFERENCES produces a merged 1listing, with one
matched line listed after each set of unmatched records.

Use /MERGED to override the default value of n, or to 1include a
merged listing with other types of output.

929

DIFFERENCES

/MODE=(radix[,...])

Specifies the format of the output listing. You can request that
the output be formatted in one or more radix modes by specifying
the following keywords:

ASCII

HEXADECIMAL
OCTAL

You can truncate any of these keywords to 1 or more characters.
By default, DIFFERENCES writes the output file in ASCII. If vyou
specify more than one code, the output listing contains the file

comparison in each output mode.

When you specify more than one radix mode, separate them by
commas and enclose the list in parentheses.

If you specify /SLP, the /MODE qualifier is ignored.

/OUTPUT[=file-spec]

Defines an output file to receive the output difference list. If
you omit the /OUTPUT qualifier, the output is written to the
current default output device (SYS$SOUTPUT). If you specify
/OUTPUT without a file specification, the output is directed to a
file with the same file name as the input file and a file type of
DIF. When you specify /OUTPUT, you can control the defaults
applied to the output file specification, as described in Section
5.3.3, "Rules for Entering Output File Qualifiers." The output
file type defaults to DIF.

No wild card characters are allowed in the file specification.

/SEPARATED

/SLP

Creates a listing that contains a sequential 1list of unmatched
records, Unmatched records in the primary input file are listed
first, followed by unmatched records in the compare file.

By default, DIFFERENCES creates only a merged list of
differences,

Requests DIFFERENCES to produce an output file suitable for input
to the SLP editor. If you specify /SLP you cannot specify any of
the following output file qualifiers: /MERGED, /SEPARATED,
/CHANGE_BAR.

Use the output file produced by the /SLP qualifier as input to
SLP to update the primary input file specified, that is, to make
the first input file match the second input file.

When you specify /SLP and you do not specify /OUTPUT, DIFFERENCES

writes the output file to a file with the same file name as the
primary input file and a filetype of DIF,

100

DIFFERENCES

/WINDOW=size

Controls the number of records to search before listing a record
as unmatched.

The window size is a decimal number with a minimum value of 5 and
no maximum,

By default, the window size is 15, that is, DIFFERENCES searches
15 records in the compare £file before 1listing a record as
unmatched.

Specify a window size to control the number of records to search
before 1listing the record as unmatched and continuing with the
next record in the input file.

File Qualifiers

/CHANGE _BAR[=[c] [, [NO]NUMBER]]

Requests that the output contain a 1listing of the associated
file(s) with a change bar character next to the lines in the file
that do not match.

The change bar character, c, specifies a one-character code that
will appear in the left margin next to records that do not have a
match.

By default, an exclamation point (!) is used as the change bar
character.

You ‘can also control whether the listing includes 1line numbers.
You can specify:

NUMBER Print line numbers
NONUMBER Do not print line numbers

If not specified, NONUMBER is the default; that is, line numbers
are not printed in the listing.

To specify both a change bar character and to request numbers,

separate the options with a comma and enclose them in
parentheses, for example, /CHANGE_BAR=(*,NUMBER).

101

Examples

DIFFERENCES

Figure 1 shows the output from the DIFFERENCES command examples
described below. Unless otherwise noted, the output is displayed
on the current SYSSOUTPUT device.

1.

$ DIFFERENCES COPYDOC,.COM

The DIFFERENCES command compares the contents of the two most
recent versions of the file COPYDOC.COM 1in the current
default directory. DIFFERENCES compares every character in
every record and displays the results on the terminal.

$ DIFFERENCES/IGNORE= (COMMENTS,SPACING) COPYDOC,COM

The DIFFERENCES command compares the same files as above, but
ignores all comment lines (that is, all lines beginning with
exclamation points), and ignores multiple blanks or tabs in
input lines. ‘

$ DIFFERENCES /OUTPUT -
$_ COPYDOC.COM/SEPARATED/CHANGE BAR=NUMBER
DIF OUTPUT IN FILE SY:COPYDOC.DIF;1

The DIFFERENCES command compares the same files as above, but
requests two 1listings: one that lists the differences in
each file separately, rather than merging them; and one that
lists the first input file with change bar characters next to
the lines that do not have a match in the second input file.
The /CHANGE BAR qualifier 1is a file qualifier; thus, only
the file COPYDOC.COM;2 (the primary input file, by default)
is 1listed with change bars indicating the lines that do not
have an exact match in the file COPYDOC.COM;1l.

Both types of output are written to the default file,
COPYDOC.DIF.

$ DIFFERENCES COPYDOC.COM [MALCOLM.TESTFILES]
The DIFFERENCES command compares the highest existing

versions of the file COPYDOC.COM in the current default
directory with the copy in the directory MALCOLM.TESTFILES.

102

DIFFERENCES

[outrut for Exsmele 1]

KOR AR KKK KKK K KKK K KKK KK A AR K KKK KK HOIOK KK KK KKK KKK KKK K AR KKK KKK KKKk kKoK kok K
KRR KKK RRKKRRKOKKORKIOKK FILE COMPARE UTILITY kKkOKKKKKOKKAOK KKK KKK KKK KK
KAOKRKRARKKKRKRAKKKKKKKKKRRK DIF = VERSION 1,12 skokkkkkksokkksokkskkkokkkkkkk
SRR K KKK 3K KKK 3K K K KKK 3K 3K KKK KKK KK HOKHOK KK KKK KKK KKK K KK K KK KKK KK KKk Kok Kk ok Kok K

AOK KK KKK 3ok 5K KK oK 3 K 0K K K o K K oK K oK 3K 5K KKK KK oK ok K oK oK K oK ok 30K 3K 0K K ok 3K ok K ok ok Ok KK ok ok 5k ok ok XK
KRKRKKKIOOKRKRKAORKAORKRK KKK MERGED LIST OF DIFFERENCES Xokkkskokkkkokkkkkkkkkkkkk
KSR K 3K 3 KOK SOK SOK KK HOK K OK KKK 3K 3K oK 3 KoK 3K 3K K K oK K 30K 5 3 KKK KK K 30K 30K K 30K KK KKk ok K ok ok ok ok ok ok % ok

FILE SY:1CORYDOC.COMSSR
L% P Command erocedure to cory 2ll files with file ture of TXT
2 % 1 dimto @ master file named MASTER.DOC arnd to erint 20 cories

I 0% 1 of MASTER.DOC
KKK KKK KK KKK KKK KK KKK K KKK
FILE SY$COPYDOC.COMS2
L% 1 Command Procedure to cory all files with file ture of TXT
2 4% 1 dirto a8 master file named MASTER.DOC and to »rint 10 cories
3 4% | of MASTER.DROC
KKK HORKK KKK K KKK MK KK KKK KK KKK AR KKK KK KKK KKK KKK KKK KRR K KK
KK 3K KK 3OK 5K K 3K K 3K KK 3K K KK 3K K KKK K 3 KK 5K KKK KK 3K 3K KoK 3K 3K KKK oK 3K K K K KKK KK K
FILE SY!COFYROC.COM3
& % NELETE MASTER.DOCF X
7 % PURGE %,TXT
8 % COPY X.TXT MASTER . DOC
9 ¢ PRINT/COPIES=20/L.0WER MASTER,DOC
AKOK K KKK KK KKK K KK KKK KKK KKK KKK KKK
FILE SYICORYDOC.COMS2
& % PURGE X.TXT
7 % COPY X, TXT MASTER.DOC
8 ¢ PRINT/COPIES=10/LOWER MASTER.DOC

IOutwut for Examele 2]

KKK KRR K KKK KK K K KK K 3K K KKK KKK 3K KKK oK K KKK 3K oK KK oK K 30K 3K oK 3ok XK 0K 3 3K oK ok K Kk koK ok ok ok ok K
KokakkoKoR¥ORKIOKRKRKKKIORKRKK FILE COMPARE UTILITY dokdkokokakkokkokkkokkkokkokokkkokokkok
KKK KKK RKOKRAKKAORAOKKOORKOKK KKK DIF - VERSTION 1412 K0KKKKKAOKKORKKK KK KKK KO KKK KOk
RAOKAOK K RAROK KKK AR AK KK KKK KK AOK KR KR IOKK A KK A A KKK KA KKK K AR KK KA K KKK KK KK KKK

HOROROK KK 33K 3K 3K Kok K ok K kK KKK oK 3K K 30K KK 3K 30K 3K K 3K ok 30k 30k 3k 3k 3ok 0ok 30K 30K 3K K K 3K K KK KK 3K XK KK Kok kK
kiR Kk MERGED LIST OF DIFFERENCES Xokkkkkokkokokkkkkkkkkkkkk
HOKOK KKK 3K KK 3K KK KK KKK oK oK K KKK 3K KRR ok KoK Sk KK KK k3K oK oK 3 Kok KKK K KKK koK Kk ok ok sk kokok ok ok

FILE SYICORYDOC.COMS3

6 ¢ DELETE MASTER.DOCS X

7 % PURGE X.TXT

8 4 COPY % TXT MASTER .. DOC

@ 4 FRINT/COPIES=20/LOWER MASTER,DOC
KAOK K HOK KK KOK oK K0k Kok Kok ok oK 0k %k
FILE 8Y:!COFYDOC.COM2

6 % PURGE X.TXT

7 % COPY ¥.TXT MASTER.DOC

8 ¢ PRINT/COPIES=10/L.OWER MASTER.DOC

Figure 1 Sample Output of DIFFERENCES Command

103

DIFFERENCES

[Qytwut for Exemmle 3]

AR HOK KKK AOKK KK KKK K KK Ak 3K KoK K 3 K 3K K S KK K oK ok K K KKK K KKK Kk KoK ok Sk Ok Sk Kok ok ok ok Kok oK X k
KRKAHOKOKRKOKROKIHORKOKKIOKK KKK FILE COMPFARE UTILITY %0KKRKKORKKKK KKK RHKKAOK KK KKK
KKAKKAOKFORKKKKAAKORRKKK KK KkK DIF -~ VERSTION. 1,52 KKKERKERRKKRKKEKRKKKKKKKK
K KKOK A KKK HOKRNKR KKK KKK KK KK KKK AR HOK KK AOKOK 3K KK K K K K KK KKK 3K KK K 3OK KK KKK KK KK XK

KK KKK K KK K 3K KR K K K KKK KK KK 3 KK KK KK K KKK KKK KK KKK K 3K 3K SR KKK K KK KoK X KoK K K K 3K KK KoK K
KKKKKKKAOKKFORKKORRKKKRKK CHANGE-EBAR OUTFUT FOR FILE 30k¥kXRKKKKK¥OK KKK K KKKk Kk
KRKAORR KKK KOORKOKKK KR KORRKKKK SYLCOPYDOC . COMSZ RRRKRAOKKAOKK KKK KKK KKK RKK KKK K
ARORHOK KK KKK kK ook KKK KK Kk ok K KK KOK KK KK KK oK 3K KK 3 oK 3K oK Kk 5K K K oK 3K oK K 3 ok K oK ok 3K oK ok ok 3 oK ok ok ok

P Command srocedure to cory 3ll files with file ture of TXT

into 8 master file rnamed MASTER.DOC ard to rrint 20 cories
I of MASTER.,DOC
1
1

DELETE MASTER.DOCS X

FURGE %+ TXT

COPY X, TXT MASTER.DOC
PRINT/COPIES=20/LOWER MASTER.DOC

AOKKROKKOK 3K KOK K KKK K KK KK OK 3 3K K 0K KKK KKK 3 KKK 3K K KKK 3Kk KK oK 30K K KoK K 3K ok 3K R Kok KoK koK ok Kk ok ok 3k 5k

kRoksooRkoRKR KRk kkokkkkkkk LISTED DIFFERENCES Xkkokkksdokok ok koksokkokdkokkokk kokk Kk
AR OKOKOK 3KOK K KKK K KKK KK KK K 3K 0K 3K 5K K KK K 3 0K 3K K 3 oK Kk 3ok 30K oK 3K oK K o oK KK oK K ok 3K 3K K K oK K 3K 0K oK 0K K ok ok

RECORDS FROM FILE SY!COFYDOC.COM?3
WITHOUT A MATCH IN FILE SYICOFYDOC.COM:2

1 % ! Command srocedure to corw a3ll files with file ture of TXT
2 4 ! dinto 2 master file named MASTER.DOC armd to srint 20 cories
6 % DELETE MASTER.DOCH X
7 % FURGE X TXT
8 % COFY X.TXT MASTER .DOC
9 4 FRINT/COFIES=20/L.0WER MASTER.DOC
RECORDS FROM FILE SY!COFYDOC.COM:2

WITHOUT A MATCH IN FILE SY:{COPYIOC.COM$3
1 % ! Commarnd Frocedure to coruy 211 files with file ture of TXT
2 % ! into 8 master file named MASTER.DOC arnd to srint 10 cories
6 % FURGE X.TXT
7 % COFY X,.TXT MASTER.DOC
8 4 FRINT/COFIES=10/L0OWER MASTER.DOC

[Output for Exemele 4]

SRR KKK KK AR KK K KKK KK oK oK oK 3K KKK K KKK KK KKK K K K 3K KK 3 KK KK KK oK KK ok KK oK K oK oK ok K ok o ok ok
kkokkRoksKokkkKRRKKRkkkk KKK FILE COMFARE UTILITY kskkskokkokkkokkkikskkkkkkkkkkkk
XK KKk RORKKR KKKk KKKk DIF -~ VERSION 1,12 xkkkobokksdolksokskokkkonkkokkskkk
KK KKK KKK AR KK KKK KRR KR KKK AR KKK KK KK KK AR KK K KKK K OKOK K KOK KoK SOk oK K kK ok Kk kKoK K

El

KR K SRR 3K 3K K 3 KK K 2K K oK 35K 3K K KK 3K KK 380K ok K0k 3 KK K 3K S ok KK Kk oK 0k 3k Kok K sk Kok KOk K KoKk ok sk sk ok
RRRIKKRRAORRIOK KK KORK Kk MERGED LIST OF DIFFERENCES kookkdokdokkkokokkkdokkkkokkk
FOK KKK K KKK R KOROK KR AOK SR K 3K 3 KK KR KK AR KKK BK KK KK K ok KKKk sk kok Kok ok ok ok sk ok ok ok ok

NONE

Figure 1 (Cont.) Sample Output of DIFFERENCES Command

104

DIRECTORY

Provides a list of files or information about a file or group of

files.

Format
DIRECTORY [file-spec[,...]]
Command Qualifiers Defaults
/BEFORE [=time]
/BRIEF /BRIEF
/COLUMNS=n /COLUMNS=4
/CREATED /CREATED
/ [NO]IDATE [=option] /NODATE
/EXCLUDE=(file~-spec[,...])
/EXPIRED /CREATED
/FULL /BRIEF
/ [NOJHEADING /HEADING
/MODIFIED /CREATED
/OUTPUT [=file~-spec]
/ [NO]OWNER /NOOWNER
/PRINTER
/ [NO] PROTECTION /NOPROTECTION
" /SINCE [=time]
/[NO]SIZE [=option] /NOSIZE
/TOTAL /BRIEF
/[NO]TRAILING /TRAILING
/VERSIONS=n

Prompts

None.

Command Parameters

file-spec([,...]

Specifies one or more files to be listed., The syntax of a file
specification determines what file(s) will be listed, as follows:

If you do not enter a file specification, the DIRECTORY
command lists all versions of the files 1in your current
default directory.

If you specify only a device name, the DIRECTORY command uses
your default directory specification.

Whenever the file specification does not include a file name

and file type, all versions of all files in the specified
directory are listed.

105

DIRECTORY

e If a file specification contains a file name and/or file type
and no version number, the DIRECTORY command 1lists all
versions.

e If a file specification contains only a file name, the
DIRECTORY command assumes all file types and versions.

If you specify more than one file, separate the file
specifications with either commas (,) or plus signs (+). You can
use wild card characters in the directory specification, file
name, file type, or version number fields of a file specification
to list all files that satisfy the components you specify. See
Section 2.1.6 for a full description of wild card characters.

Description

The output of the DIRECTORY command depends on certain formatting
qualifiers and their defaults. These qualifiers are: /COLUMNS,
/DATE, /FULL, /OWNER, /PROTECTION, and /SIZE. However, the files
that are 1listed always appear in alphabetical order, with the
highest-numbered versions first. The page width 1is adjusted
automatically to the number of columns requested.

In studying the qualifiers and the capabilities they offer, watch
for qualifiers that work together as well as qualifiers that
override other qualifiers. For example, if you want the full
format, you cannot expect that much information in more than one
column, so if you specify both /COLUMNS and /FULL, the number of
columns you request is ignored.

Command Qualifiers
/BEFORE [=time]

Specifies that only those files dated earlier than a particular
time be printed. You can specify an absolute date and time.
Observe the syntax rules for date and time values specified 1in
Section 5.8.

This qualifier is normally used in conjunction with one of the
following qualifiers: /CREATED, /EXPIRED, or /MODIFIED. If you
omit the /BEFORE qualifier, you obtain all the files created,
regardless of date. However, if you specify /BEFORE without a
date or time, the default provides the files created prior to
today.

/BRIEF

Includes only the file name, type, and version number of each
file to be listed, as shown in Figure 2. The default output
format is /BRIEF. However, the /BRIEF qualifier 1is overridden,
whether specified explicitly or by default, whenever any of the
following formatting qualifiers is specified in the command:
/SIZE, /DATE, /OWNER, /PROTECTION, /NOHEADING, or /FULL.

The brief format lists the files in alphabetical order from left
to right on each line, in descending version number order.

106

DIRECTORY

/COLUMNS=n

Lists the files using the specified number of columns on each
line of the display. This qualifier is used in conjunction with
the /BRIEF qualifier (either -explicitly or by default). By
default, the number of columns 1in the brief format is four;
however, you may request the brief format with as many columns as
you desire. When other formatting qualifiers are specified in
the command, they override the /COLUMNS qualifier.

/CREATED

Selects the files according to their date of creation. This
qualifier 1is relevant only when used with the /BEFORE or /SINCE
qualifiers, and should not be used with the /EXPIRED or /MODIFIED
qualifiers., By default, the selection of files according to some
date and time always uses the creation date.

/DATE [=option]
/NODATE

Includes the creation, expiration, or date last written for each
file listed. If you omit this qualifier, the default is /NODATE.
However, if you specify /DATE without an option, the «creation
date is provided.

You may specify one of the following options with the /DATE
qualifier:

ALL Lists all three file dates in the order, left to
right, CREATED, MODIFIED, EXPIRED.

CREATED Lists the creation date with each file.,

EXPIRED Lists the expiration date with each file.

MODIFIED Lists the last date the file was written.

/EXCLUDE=(file-spec(,...])

Excludes the listed file specification(s) from the directory
search. You may use wild card characters, as described in
Section 2.1.6, for the file specification(s). At least one file
specification 1is required for this qualifier, but the file
specification must not include a device or directory
specification. Separate multiple file specifications by commas,
and enclose the list in parentheses.

/EXPIRED

Selects files according to the planned expiration date for each
file. This qualifier is relevant only with the /BEFORE or /SINCE
qualifiers, and should not be used with the /CREATED or /MODIFIED
qualifiers.

107

DIRECTORY

/FULL
Lists the following items for each file:

file name

file type

version number

number of blocks used
number of blocks allocated
date of creation

date last modified

date of expiration

file owner's UIC

‘file protection

file identification number (FID)
file organization

other file attributes
record attributes

record format

You can find descriptions of these items in the 1Introduction

to

VAX-11 Record Management Services.

The /FULL qualifier overrides the default brief listing format.

/HEADING
/NOHEADING

Controls whether heading lines consisting of a device description
and directory specification are printed. The default output

format provides this heading.

When you specify /NOHEADING, the output appears in single column

format. In addition, the output contains the full

file

specification on every file, If vyou specify the /NOHEADING
qualifier and also specify a value other than 1 with /COLUMNS,

the number of columns you specify is disregarded.

You may find the combination of the /NOHEADING and /NOTRAILING
qualifiers wuseful in command procedures where you want to create

a list of complete file specifications for later operations.

/MODIFIED

Selects files according to the last date the file was modified.
This qualifier 1is relevant only with the /BEFORE or /SINCE
qualifiers, and should not be used with the /CREATED or /EXPIRED

qualifiers.

/OUTPUT[=file-spec]

Requests that the DIRECTORY command output be written to the file
specified rather than to the current SYS$SOUTPUT device. If you

specify the /OUTPUT qualifier without a file specification,

the

output is directed to SYSSOUTPUT. 1If you omit the file type in

the file specification, the default file type is LIS.

No wild card characters are allowed in the file specification.

108

DIRECTORY

/OWNER
/NOOWNER

Controls whether the file's owner UIC is listed. By default, the
owner UIC is not listed.

/PRINTER

Queues the command output for printing under the name given by
the /OUTPUT qualifier. If you specify /PRINTER without the
/OUTPUT qualifier, the output is directed to a file named
DIRECTORY.LIS, which 1is spooled for printing automatically and
then deleted.

/PROTECTION
/NOPROTECTION

Controls whether the file protection for each file 1is 1listed.
The default 1is /NOPROTECTION, which does not 1list the file
protection.

/SINCE [=time]

Specifies that only those files dated after a specified time be
printed. You can specify an absolute date and time. Observe the
syntax rules for date and time values specified in Section 5.8.

This qualifier is normally used in conjunction with one of the
following qualifiers: /CREATED, /EXPIRED, or /MODIFIED. If you
omit the /SINCE qualifier, you will obtain all the files created,
regardless of date. However, 1if you specify /SINCE without a

time or date, you will obtain all files created since today
began.

/SIZE [=option]
/NOSIZE

Provides the file size in blocks used and/or allocated for each
file 1listed, according to the option you specify. If you omit
this qualifier, the default is /NOSIZE. However if you specify
only /SIZE without an option, the listing provides the file size
in blocks used, by default. The options you can specify are:

ALL Lists both the file size 1in blocks wused and
allocated,
ALLOCATION Lists the file size in blocks allocated.
USED Lists the file size in blocks used.
/TOTAL

Inhibits the listing of all individual file information and

prints only the trailing lines as described under the /TRAILING
qualifier.

By default, the output format is /BRIEF, which gives this total,

but also lists all the file names, file types, and their version
numbers.

109

DIRECTORY

/TRAILING
/NOTRAILING

Controls whether trailing 1lines that summarize the following
information are output:

e number of files listed
e total number of blocks used per directory
e total number of blocks allocated

e total number of directories and total blocks used and/or
allocated in all directories (only 1if more than one
directory is listed)

By default, the output format includes most of this summary
information. The /SIZE and /FULL qualifiers determine more
precisely what summary information 1is included. If you omit
/SIZE or /FULL, only the number of files is printed and possibly
the total number of directories, if applicable. If you specify
/SIZE, the number of blocks is also printed, according to the
size option selected (used and/or allocated). If you specify
/FULL, the number of files and the number of blocks used and
allocated are all given.

/VERSIONS=n

Causes the latest n versions of each of the files selected to be
listed. If you omit the /VERSIONS qualifier, by default the
listing includes all versions of each file.

Examples

1. $ DIRECTORY

The DIRECTORY command lists all versions of all files in the
current default disk and directory in the brief format. The
heading identifies the disk and directory, and the trailing
line gives the total number of files.

2., $ DIRECTORY/VERSIONS=1/COLUMNS=1 AVERAGE.*

The DIRECTORY command lists only the highest versions of all
files named AVERAGE in the current default directory. The
format is brief, but restricted to just one column. Heading
and trailing lines are provided.

3. $ DIRECTORY BLOCK#%#%%

The DIRECTORY command locates all versions and types of files
in the default device and directory whose names begin with
the 1letters BLOCK and end with any three additional
characters. The output format is brief, in four columns,
with heading and trailing lines.

110

4.

DIRECTORY

$ DIRECTORY/TOTAL/SIZE=ALL

The DIRECTORY command outputs only a header and a trailing
line that identifies the total number of files and the blocks
used and allocated for all versions of all files in the
default disk and directory.

$ DIRECTORY/EXCLUDE=(AVER,DAT; * ,AVER.EXE;*) [*,,.]AVER

The DIRECTORY command locates all versions and types of files
named AVER in all directories and subdirectories on the
default disk. From this list all versions of all files named
AVER.DAT and AVER.EXE are excluded prior to listing and
totalling.

$ DIRECTORY-
$ /MODIFIED/SINCE=09-JUL-1979:01:30/SIZE=ALL/OWNER~
$_/PROTECTION/OUTPUT=UPDATE/PRINTER [A*]

The DIRECTORY command 1locates all files that have been
modified since 1:30 AM on July 9, 1979 and that reside on the
default disk in directories whose names begin with the letter
A. It formats the output to include all versions, the size
used and allocated, the date last modified, the owner, and
the protection codes. The output is directed to a file named
UPDATE.LIS that is spooled automatically and deleted when
done.

111

DIRECTORY

The following notes are keyed to the sample DIRECTORY command listings
in Figure 2.

o
2]

© © @ ©

©

Disk and directory name

File name, file type, and version number of each file

File identification number (FID) in the format:
(file~number,file-sequence-number,relative-volume-number)

Number of blocks occupied by the file

Number of blocks allocated for the file

Date and time the file was created or'last modified

User identification code of the file's owner in the format:
[group,member]

Protection code associated with the file, in the format:
[system,owner,group,world]

Summary of file information, in the format:
Total of x files, in-use/allocated blocks.

Date and time that this version of the file was last revised,
and the revision number

Grand total of directory information in the format:

Grand total of x directories, y files.

112

DIRECTORY

$ DIRECTORY AVERAGE, *

Directory DBAl:[mMALCcOLM] @

AVERAGE.EXE;9 @ AVERAGE.FOR;®6 AVERAGE.LIS; 4 AVERAGE.OBJ; 12
Total of 4 files. ©

$ DIRECTORY/SIZE=USED/DATE=CREATED/VERSIONS=1/PROTECTION AVERAGE

Directory DBAl:[MALCOLM] @

AVERAGE.EXE;9 © 6 O ® 10-JUL-1979 15:43 (RWED,RWED,RWED,RE) O
AVERAGE.FOR; 6 2 2-JUL-1979 10:29 (RWED,RWED,RWED,RE)
AVERAGE.LIS; 4 5 9-JUL-1979 16:27 (RWED,RWED,RWED,RE)
AVERAGE.OBJ; 12 2 9-JUL-1979 16:27 (RWED,RWED,RWED,RE)

Total of 4 files, 15 blocks. ©

$ DIRECTORY/FULL/VERSIONS=1 [MALCOLM. *] AVERAGE
Directory DBAl:[MALCOLM.AAA] ©

AVERAGE.EXE;9 @ Size: ®6/6 © Created: 10-JUL-1979 15:43 ©

Oowner: [360,007) @ Revised: 10-JUL-1979 15:43(9)®
File ID: (3680,40,0) ® Expires: <None specified>

File protection: System:RWED, Owner:RWED, Group:RWED, World:RE ©

File organization: Sequential

File attributes: Allocation=6, Extend=0, Contiguous-best-try

Record format: Fixed length 512 byte records

Record attributes: None

Total of 4 files, 23/30 blocks. © ‘ '

Grand total of 4 directories, 10 files. @

Figure 2 Sample Output of DIRECTORY Command

113

DISMOUNT

Releases a volume previously accessed with a MOUNT command.

Format

DISMOUNT device-name|[:]

Command Qualifiers Defaults

/UNIT
/ [NOJUNLOAD /UNLOAD
Prompts

Device: device-namel[:]

Command Parameters
device-name[:]

Specifies the name of the device to be dismounted. You can
specify a physical device name or a logical name assigned to a
physical device name. If you omit a controller designation
and/or a unit number, they default to controller A, and unit 0,
respectively.

If the volume that is currently mounted on the device is a member
. of a disk or tape volume set, all volumes 1in the set are
dismounted, unless /UNIT is specified.

Description

If the volume was mounted with the /SHARE qualifier, it 1is not
actually dismounted until all users who mounted it dismount it.
However, the DISMOUNT command deassigns the logical name
associated with the device.

If the device was allocated with an ALLOCATE command, it remains
allocated after the volume is dismounted with the DISMOUNT
command. If the device was implicitly allocated by the MOUNT
command, the DISMOUNT command deallocates it.

If the volume was mounted /GROUP or /SYSTEM, it 1is dismounted
even 1if other users are currently accessing it. The GRPNAM and
SYSNAM user privileges are required to dismount group and system
volumes, respectively.

Note that the dismounting of a volume is done by the file system
and is not completed until all open files on the volume have been
closed. Thus, a substantial amount of time can pass between the
time you issue the DISMOUNT command and the completion of the
dismount. Always wait for the drive to unload before you remove
the volume. (You can verify that the dismount has completed by
issuing the SHOW DEVICES command.)

114

DISMOUNT

Command Qualifiers

/UNIT

Specifies, for disk volume sets, that only the volume on the
specified device is dismounted. By default, the DISMOUNT command
dismounts all volumes in a volume set.

/UNLOAD
/NOUNLOAD

Controls whether the DISMOUNT command unloads the physical device
on which the volume is mounted and makes the device not ready.

By default, the DISMOUNT command unloads the device. Use the
/NOUNLOAD qualifier to keep the device and volume in a ready
state.

Examples

1. $ MOUNT MT: PAYVOL TAPE

$ DISMOUNT TAPE

The MOUNT command mounts the tape whose volume identification
is PAYVOL on the device MTAO: and assigns the logical name
TAPE to the device., By default, the volume is not shareable.
The DISMOUNT command releases access to the volume,
deallocates the device, and deletes the logical name TAPE,

2. S MOUNT/SHARE DBA3: DOC_FILES

$ DISMOUNT DBA3:

The MOUNT command mounts the volume labeled DOC_FILES on the
device DBA3. Other users can issue MOUNT commands to access
the device. The DISMOUNT command shown in this example
deaccesses the device for the process issuing the command.
If other users still have access to the volume, the volume
remains mounted.

3. $ DIRECTORY DMA2:[*]
No files found.
$ DISMOUNT/NOUNLOAD DMA2:
$ INITIALIZE DMA2: BACK_UP

The DIRECTORY command ensures that no files remain on the
RK0O6/RK07 volume mounted on the device DMA2, The DISMOUNT
dismounts the volume; the /NOUNLOAD qualifier requests that
the wvolume remain in a ready state. Then, the INITIALIZE
command reinitializes the volume.

115

DUMP

Displays or prints the contents of a file or volume in ASCII, decimal,
hexadecimal, or octal data format.

Format
DUMP file-spec
Command Qualifiers Defaults
/ASCII /HEXADECIMAL
/BLOCKS=(START:n,END:m)
/BYTE /WORD
/DECIMAL /HEXADECIMAL
/FILE HEADER
/ [NO]FORMATTED /FORMATTED
/HEADER
/AEXADECIMAL /HEXADECIMAL
/LONGWORD /WORD
/NUMBER[=n]
/OCTAL /HEXADECIMAL
/OUTPUT[=file-spec] /OUTPUT=SYSSOUTPUT
/PRINTER
/RECORDS
/WORD /WORD
Prompts

File: file-spec

Command Parameters
file-spec
Specifies the file or volume whose contents are to be displayed.

No wild card characters are allowed in the file specification.

Description

By default, the DUMP command formats its output in hexadecimal
words. You can specify the precise format of the dump by
including a radix qualifier (/ASCiI, /OCTAL, /DECIMAL, or
/HEXADECIMAL) and/or a length qualifier (/BYTE, /WORD, or
/LONGWORD). The valid combinations of these qualifiers are:

/BYTE/HEXADECIMAL
/BYTE/OCTAL
/WORD/DECIMAL
/WORD/HEXADECIMAL
/WORD/OCTAL
/LONGWORD/HEXADECIMAL

All other combinations are invalid.

116

Comma

/ASCI

/BLOC

/BYTE

/DECI

DUMP

Dumping Files: When you dump files, you can request that the
entire file be dumped, or you can specify the /BLOCKS qualifier
to indicate a range of virtually contiqguous blocks in the file to
be dumped.

The volume that contains the file must be mounted.

Dumping Volumes: When you dump volumes, the /BLOCKS qualifier is
required; use it to specify a range of logically contiguous
blocks to be dumped. (On a disk volume, blocks are 512 bytes
long. On a tape volume, each record is an individual block; the
maximum block length that DUMP can handle is 2048 bytes.)

The volume to be dumped must be allocated and mounted with the
/FOREIGN qualifier of the MOUNT command. You must have the user
privilege LOG_IO to dump the contents of a volume,

Reading Dumps: Hexadecimal dumps are read right to left, while
octal dumps are read left to right.

nd Qualifiers

I

Requests that the dump be interpreted as ASCII data. When you
specify /ASCII, the DUMP command prints control characters with a
circumflex or up-arrow (") preceding them, and it prints
lowercase letters with a percent sign (%) preceding their
uppercase equivalents.

If you specify /ASCII, any other radix and length qualifiers are
invalid.

KS=(START:n,END:m)

Specifies a range of blocks to be dumped, where n is the starting
logical block number and m is the ending block number.

By default, the DUMP command prints the entire contents of a

file. The /BLOCKS qualifier is required when you are dumping the
contents of a volume.

Requests that the output file be formatted in bytes.
If you specify /BYTE, you cannot specify /DECIMAL,
MAL |

Requests that the dump be printed in decimal format.

If you specify /DECIMAL, you cannot specify. /LONGWORD or /BYTE.

/FILE_HEADER

Dumps each data block that has a Files-11 header structure in
Files-11 header format. All other data blocks are output as
dictated by the other qualifiers.

117

DUMP

/FORMATTED
/NOFORMATTED

Controls whether headers are dumped in a formatted or unformatted
display. This qualifier is meaningful only in conjunction with
the /HEADER qualifier., If you specify /FORMATTED, the header is
dumped in Files-1l1 format. If vyou specify /NOFORMATTED, the
header is dumped in octal format.

/READER

Requests that the dump include the file header. To dump only the
file header, specify /BLOCKS=(END:0).

You may control the header format display through the /FORMATTED
qualifier.

If you omit the /HEADER qualifier, file headers are not dumped.
If you specify /HEADER without the /FORMATTED qualifier, by
default the file headers are formatted.
/HEXADECIMAL
Requests that the dump be printed in hexadecimal format.
/LONGWORD
Requests that the dump be formatted in longwords.

If you specify /LONGWORD, you cannot specify /OCTAL, /DECIMAL, or
/ASCII,

/NUMBER[=n]
Controls line numbers assigned to records as they are dumped. If
you specify /NUMBER, records in each block are numbered beginning
with 0. If you specify a value for n, that number is assigned to
the first line in the file,

By default, DUMP numbers all lines in the file consecutively, and
does not number lines according to the blocks they are in,

/OCTAL
Requests that the dump be printed in octal format.
Ifiyou specify /OCTAL, you cannot specify /ASCII or /LONGWORD.
/OUTPUT[=file-spec]
Requests that the output listing from the DUMP command be written
to the specified file or device. By default, the DUMP command
. displays the output on the current SYSSOUTPUT device. If vyou
specify /OUTPUT and do not include a file specification, DUMP
writes the output to a file with the same file name as the input
file and a file type of DMP.

No wild card characters are allowed in the file specification.

118

DUMP

/PRINTER

Requests that output be queued to the system printer. By
default, DUMP writes to the current SYSSOUTPUT device. If you
specify /PRINTER, the DUMP command names the print job
FILDMP.DMP. If you specify /PRINTER, you cannot specify /OUTPUT.

/RECORDS

Requests that the dump be printed a record at a time, rather than
a block at a time.

Requests that the dump be formatted in words.

If you specify /WORD, you cannot specify /ASCII.

Examples

1. $ DUMP ORION.EXE

Dump of DB1:[122001.SSTEST]ORION.EXE;17 - File ID 1637,5,0
Virtual block 0,000001 - size 512. bytes

3130 3230 0000 0000 0044 0038 0028 007C 0000
0000 0000 0000 0000 0000 0000 0000 0101 0010

The DUMP command displays the contents of the image ORION.EXE

in hexadecimal format, beginning with the first block in the
file.

2. $ DUMP/ASCII/RECORDS ALPHA.TXT

Dump of DB1:{122001.CLUG]ALPHA.TXT;l - File ID 5767.60,0
Record number 00, - size 5, bytes

000000 SA %A %A %A %A @ "@ "@ @ "@ "@ e "@ "@ "e “e
Record number 0l1. - size 5. bytes

000000 %B %B %B %B %B "@ °

e @ "e "@ @ @ "e "@ “e

e o e D

The DUMP command displays the contents of the file ALPHA,TXT,
a record at a time.

119

EDIT/EDT

EDIT/EDT

Invokes the EDT screen-oriented editor. The EDT editor 1is described
in detail in the VAX-11 EDT Editor Reference Manual.

The /EDT qualifier is required.

Format

EDIT/EDT file-spec

Additional .
Command Qualifiers Defaults
/ [NO]JCOMMAND [=file~spec] /COMMAND=EDTINI .EDT
/[NO]JOURNAL [=file-spec] (see text)
/[NOJOUTPUT[=£file-spec] (see text)
/ [NO]JREAD ONLY /NOREAD ONLY
/ [NO]RECOVER /NORECOVER

Prompts

File: file-spec

Command Parameters
file-spec

Specifies the file to be created or edited using the EDT editor,.
If the file does not exist, it is created.

The EDT editor does not provide a default file type when creating
files; if you do not include a file type, it is null. The file
must be a disk file on a Files-1l formatted volume.

No wild card characters are allowed in the file specification.

Description

The EDT editor creates or edits files. You can use EDT to enter
or edit text in screen mode or line mode (or both). EDT begins
in line mode. If you are editing an existing file, EDT prints
the 1line number and text for the first line of the file. If you
are creating a new file, EDT prints the following message:

Input file not found
[EOB]

In either case, EDT prints its prompt, which is the asterisk (*).

For complete details on the EDT editor, see the VAX-11 EDT Editor
Reference Manual.

120

EDIT/EDT

Additional Command Qualifiers

/COMMAND [=file-spec]
/NOCOMMAND

Controls whether EDT reads an initial command file before
prompting at the terminal. If you specify a command file, EDT
executes all commands in the file before beginning the editing
session at the terminal. If you specify the /NOCOMMAND
qualifier, EDT reads no command file before beginning the
terminal session.

By default, an attempt is made to read from the default command
file, EDITINI.EDT. If this default file does not exist, the
editing session begins, without an error message. However, |if
you specify a command file that does not exist, EDT issues an
error message and terminates the session,

No wild card characters are allowed in the file specification.

/JOURNAL [=file~spec]
/NOJOURNAL

Controls whether a journal file 1is created for the editing
session. If you specify a journal file, this file contains all
EDT commands you enter until an exit occurs. If your editing
session ends abnormally (perhaps when you type CTRL/Y), you can
invoke EDT again, and (using the /RECOVER qualifier) reinstate
all commands from the aborted session. If you specify the
/NOJOURNAL qualifier, no journal file is generated.

If you omit the /JOURNAL qualifier, or if vyou specify the
qualifier without a file specification, the editor creates a
journal file with the same file name as your input file and a
default file type of JOU.

No wild card characters are allowed in the file specification.

/0UTPUT=file~-spec
/NOOUTPUT

Defines the file specification of the file created during the
editing session. If you do not specify the /OUTPUT qualifier,
the output file has the same file name and type as the input
file, and a version number one higher than the highest existing
version of the file.

No wild card characters are allowed in the file specification.

You can suppress the creation of the output file by specifying
/NOOUTPUT.

/READ_ONLY
/NOREAD_ONLY

Controls whether journaling and the creation of an output file
are disabled. The /READ ONLY qualifier 1is equivalent to
specifying /NOOUTPUT and /NOJOURNAL. You might use the
/READ_ONLY qualifier to edit files where you are denied write
access.

The default is /NOREAD_ONLY, which has no effect on journaling or
output,

121

EDIT/EDT

/RECOVER
/NORECOVER

Determines whether or not EDT reads commands from a journal file

prior to starting the editing session. The default is
/NORECOVER, which omits the step.

The /RECOVER qualifier requests EDT to open the input file and
then read EDT commands from the file specified by
inputfilename.JOU (which was created by EDT's /JOURNAL feature).
This restores all commands that were lost in a previously aborted
editing session.

The /RECOVER qualifier does not accept a file-spec; therefore,
if the recovery file has a name different from inputfilename.JOU,
you must specify both the /JOURNAL qualifier and the /RECOVER
qualifier to obtain it for recovery.

Examples

-

1. $ EDIT/EDT OLDFILE.TXT/OUTPUT=NEWFILE.TXT

1 (first line of file text)
*

This EDIT/EDT command invokes the EDT editor for editing the
file OLDFILE.TXT. EDT reads commands from EDTINI.EDT, if
that file exists; then the terminal editing session begins,
When the session ends, the edited file has the name
NEWFILE.TXT.

2., $ EDIT/EDT OLDFILE.TXT/RECOVER

This EDIT/EDT command invokes the EDT editor for recovering
from an abnormal exit during a previous session. EDT opens
the file OLDFILE.TXT, and then reads all editing commands
from the previous session (from the file OLDTEXT.JOU). Once
the old commands have been processed, the editing session
continues at the terminal.

122

EDIT/SLP

Invokes the VAX/VMS SLP editor, which is described in detail in the
VAX-11 Utilities Reference Manual.

The /SLP qualifier is required.

Format
EDIT/SLP file-spec
Additional

Command Qualifiers Defaults

/[NO]AUDIT_TRAIL[=(option[,...])] /AUDIT_TRAIL=(POSITION:80 -
’ SIZE:8)

/ [NO]JCHECKSUM[=value] /NOCHECKSUM

/LIST[=file-spec])

/[NO]JOUTPUT[=file-spec] (see text)

/ [NO]REPORT /NOREPORT

/[NO] TAB © /NOTAB

/[NO] TRUNCATE [=position] /NOTRUNCATE

Prompts

File: file-spec

Command Parameters
file-spec

Specifies the file to be edited. If you do not include a file
type, it is null by default.

The file should be a disk file on a Files-11 formatted volume.

No wild card characters are allowed in the file specification.

Additional Command Qualifiers

These qualifiers can be overridden in the SLP input file. For
complete details on any of these qualifiers, see the VAX-11
Utilities Reference Manual.

123

EDIT/SLP

/AUDIT_ TRAIL[=(option[,...])]
/NOAUDIT_TRAIL

Controls whether records in the output file from SLP contain an
audit trail, and optionally defines the location of the audit
trail. You can specify one or both of the following options:

POSITION:n Define the starting character position of the audit
trail; by default, the audit trail is placed in
column 80. If you specify this option, SLP rounds
the value, n, to the next highest tab stop.

SIZE:n Define the number of characters in the audit trail;
by default, the audit trail is 8 characters.

If you specify more than one option, separate them by commas and
enclose the list in parentheses.

If you specify /NOAUDIT_ TRAIL, the output file does not contain a
record of changes.

/CHECKSUM[=value]
/NOCHECKSUM

Controls whether a checksum is calculated for the edit commands.
If you specify the /CHECKSUM qualifier without a value, SLP
calculates and reports the checksum on your terminal. If you
specify a wvalue that differs from the one SLP calculates, SLP
displays a warning message but completes the edit.

The default is /NOCHECKSUM, which does not calculate a checksum.
/LIST([=file-spec]

Creates a line-numbered 1listing of a file. By default, no
line-numbered 1listing 1is produced. Use /LIST when you want a
listing of lines in sequential order. If you do not specify a
file specification with /LIST, SLP uses the same file name as the
input file and a file type of LST. If you enter a file
specification that does not include a file type, SLP uses the
default file type of LST.

No wild card characters are allowed in the file specification.

/OUTPUT=file-spec
/NOOUTPUT

Defines the file specification of the output file created during
the editing session, if any. If you do not specify /OUTPUT, the
output file has the same file name and type as the input file,
and a version number one higher than the highest existing version
of the file.

No wild card characters are allowed in the file specification.

You can suppress the creation of the output file by specifying
/NOOUTPUT.

124

EDIT/SLP

/REPORT
/NOREPORT

Controls whether line truncations that result from audit trails
are reported. If you specify the /REPORT qualifier, not only
will warning messages appear on the terminal, but the 1listing
file will contain a question mark (?) in place of the period (.)
in the line number of all truncated lines. '

The default is /NOREPORT, which does not report line truncations.

/TAB
/NOTAB

Controls whether SLP places spaces or tabs at the end of each
record containing an audit trail. The default is /NOTAB which
causes SLP to insert spaces at the end of each record that
contains an audit trail.

If you specify the /TAB qualifier, SLP inserts tabs at the end of
each record that contains an audit trail.

/TRUNCATE [=position}
/NOTRUNCATE

Requests SLP to truncate each record in the input file at a
specified column when it creates the output file. This qualifier
allows you to delete an audit trail from a file previously
updated with SLP. The default is not to truncate the records.

If you do not specify a position with the /TRUNCATE qualifier,
SLP truncates input records at the beginning position of the
audit trail,

Examples

1. $ EDIT/SLP AVERAGE.FOR
/
$
The command procedure illustrated uses the EDIT/SLP
command; all input 1lines for the SLP editor follow the
command in the input stream, and are terminated by the
slash character (/).

2. $ EDIT/SLP/LIST=AVLST AVERAGE.FOR

This interactive editing session with the SLP editor
requests a line-numbered 1listing, AVLST.LST, as output.
The CTRL/Z terminates the session,

125

EDIT/SOS

Invokes the VAX/VMS S0S editor, which is described in detail in the
VAX-11 Text Editing Reference Manual.
The /S0S qualifier is not required; S80S is the VAX/VMS default
editor.
Format
EDIT/S0S file-spec
Additional
Command Qualifiers Defaults
/ [NO]BAK /BAK
/[NO]DECIDE /NODECIDE
/ [NO]EXACT /NOEXACT
/ [NO] EXPERT /NOEXPERT
/INCREMENT=n /INCREMENT=100
/ISAVE=n /ISAVE=0
/ [NOJLINE /LINE
/ [NO] LOWER /LOWER
/ [NO]NUMBERS /NUMBERS
/[NO]JOUTPUT[=file-spec] (see text)
/PLINES=n /PLINES=16
/[NO]REAQ~ONLY /NOREAD_ONLY
/SAVE=n /SAVE=0
/START=n /START=100
/STEP=n /STEP=100
Prompts
File: file-spec
Command Parameters
file-spec
Specifies the file to be created or edited. If you do not
include a file type, it is null by default.
The file, if it exists, must be a disk file on a Files-11

formatted volume. If the file you specify does not exist, it is

created.

No wild card characters are allowed in the file specification.

Additional Command Qualifiers

The settings defined by some of these qualifiers
overridden during the S0S session. For complete details
qualifiers, see the VAX-1l Text Editing Reference Manual.

126

can be
on these

EDIT/SOS

/BAK
/NOBAK

Controls whether S0S increments the version number of the output
file when you issue the first SO0S Save World command in the
session or you issue an SOS End command without a previous Save
World command.

By default, SOS increments the version number. If you want to
overwrite the current version, specify /NOBAK.

/DECIDE
/NODECIDE

Controls whether SOS automatically enters Decide mode following

each Substitute command. The default is not to enter Decide
Mode.

/EXACT
/NOEXACT

Controls whether S0S matches character strings in Find and
Substitute commands exactly or treats uppercase and lowercase
letters as equivalent., The default is to treat uppercase and
lowercase letters as equivalent.

/EXPERT
/NOEXPERT

Controls whether SOS displays the long form of error messages,
requests confirmation of deletions, or displays various
informational messages during the terminal session. The default
is /NOEXPERT, which provides all this assistance.

/INCREMENT=n

Specifies the line number increment you want SOS to use as the
default when you insert new lines in the file, If /INCREMENT is
not specified, the line number increment is 100 by default.

/ISAVE=n

Requests SOS to issue a Save World command automatically after
every n new lines of text that you insert with the Insert or
Replace commands. Unless /ISAVE is specified, no saving of new
input lines occurs,

/LINE
/NOLINE

Indicates whether SOS should use the existing line numbers when
you edit a file, or should renumber the lines when it opens the
file for editing. By default, SOS uses the current line numbers
in the file.

/LOWER
/NOLOWER

Indicates whether SO0S should accept all lowercase letters as they
are entered or should translate all lowercase letters to
uppercase. By default, S0S accepts lowercase letters, The
/LOWER qualifier has no effect on data that already exists in a
file.

127

EDIT/SOS

/NUMBERS
/NONUMBERS

Controls whether S0S prints out the 1line numbers that may be
present in. an input file. By default, SOS prints the line
numbers. Specify /NONUMBERS if you want to suppress the display
of the line numbers.

/OUTPUT=file-spec
/NOOUTPUT

Defines the file specification of the output file created during
the editing session, if any. If you do not specify /OUTPUT, the
output file has the same file name and type as the input file,
and a version number one higher than the highest existing version
of the file.

You can suppress the creation of the output file by specifying
/NOOQUTPUT.

/PLINES=n

Specifies the number of lines that S0S prints each time you issue
the SOS Print command. If /PLINES is not specified, 16 lines are
printed by default.

/READ_ONLY
/NOREAD_ONLY

Controls whether SOS opens the input file for reading and writing
or only for reading. By default, SOS opens files for reading and
writing.

/SAVE=n

Requests SOS to automatically issue a Save World command after
every n S0S commands that change text. If /SAVE is not
specified, no saving of changes occurs.

/START=n

Specifies the line number you want to assign to the first line in
the file and to each new page in the file. This value also
controls the line number increment SOS uses when you issue the
reNumber command. If /START 1is not specified, line numbering
starts with 100 by default.

/STEP=n

Specifies the line number increment for $S0S to use when it
assigns line numbers to existing files that do .not have line
numbers. If /STEP is not specified, the line number increment is
100 by default.

Examples

1. $ EDIT/SOS/OUTPUT=TEST.FOR ACCOUNT.FOR/PLINES=10

The EDIT/SOS command invokes the S0S editor, to edit the file
ACCOUNT.FOR. The /PLINES qualifier sets the default number
of lines to print with each S0S Print command during the
editing session. When the edit session is terminated, the
changes are written into the file TEST.FOR.

128

EDIT/SUM

Invokes the SUMSLP batch-oriented editor, to update a single input
file with multiple files of edit commands.

The SUMSLP editor is described in detail in the VAX-11 Utilities
Reference Manual.

The /SUM qualifier is required.

Format

EDIT/SUM file~-spec

Additional
Command Qualifiers Defaults

/LIST[=file-spec]

/[NO]JOUTPUT[=file~spec] ’ (see text)

File Qualifiers Defaults

/UPDATE [=(update-file-spec(,...])] None.
Prompts

File: file-spec

Command Parameters
file-spec

Specifies the file to be edited. If you do not specify a file
type, it is null by default.

The file should be a disk file on a Files-11 formatted volume.

No‘wild card characters are allowed in the file specification.

Description

The SUMSLP editor supplements the functions of SLP by allowing
multiple command files to be applied to a single input file.
However, certain fixed rules direct how the command files are
combined for the update. Read the VAX-11l Utilities Reference
Manual description of these rules.

129

EDIT/SUM

Additional Command Qualifiers
/LIST[=file~-spec]

Requests a line-numbered listing file. The 1listing file shows
the original 1lines, the inserted lines, and an audit trail. By
default there is no listing file. 1If you specify /LIST without a
file specification, by default the listing file has the same file
name as the input file. The default file type is LIS.

No wild card characters are allowed in the file specification.

/OUTPUT([=file-spec]
/NOOUTPUT

Controls whether an output file 1is created for the editing
session. If you do not specify /OUTPUT, by default an output
file is created with the same file name and file type as the
input file, and a version number one higher than the highest
existing file version number.

You can suppress the creation of the output file by specifying
/NOOUTPUT. This could be wuseful if all you need is a
line-numbered listing file.

No wild card characters are allowed in the file specification.

File Qualifiers
/UPDATE [=(file-spec{,...])1

Provides the file specification of one or more files containing
the editing commands and changes to be applied to the input
source file.

All update files must be disk files on a Files-11 formatted
volume.

If you omit the /UPDATE file specification, by default SUMSLP
updates from a file with the same name as the input file and a
file type of UPD. If you omit the /UPDATE qualifier entirely, no
updating occurs; however, if you specify only /LIST, you obtain
a numbered listing.

If you specify multiple update files, separate them by commas and
enclose the list in parentheses. Note that if you omit fields in
the file specifications in the list, the default value is taken
from the immediately preceding file specification. When you
specify multiple updates files, the files are combined according
to rules described in the VAX-11l Utilities Reference Manual.

No wild card characters are allowed in the file specification.

Examples

1. §$ EDIT/SUM/LIST=FILEl.LST FILEl.MAR/UPDATE

The input source file FILEl.MAR is updated from the command
file FILE1.UPD, creating a line-numbered 1listing file,
FILE1l.LST. A higher numbered file named FILE1.MAR contains
the results.

130

EOD

Signals the end of a data stream when a command or program is reading
data from an input device other than an interactive terminal. This
command is required only if the DECK command preceded input data in
the command stream, or if multiple input files are contained in the
command stream without intervening commands. The program or command
reading the data receives an end-of-file condition when the EOD
command is read.

The EOD command must be preceded by a dollar sign; the dollar sign

must be in the first character position (column 1) of the input
record.,

For more information on how to use commands like this one in command
procedures, consult the VAX/VMS Guide to Using Command Procedures,

Format
$ EOD
Command Qualifiers Defaults
None. None.
Prompts
None.

Command Parameters

None.

131

EOD

Examples

l . §
($E0)
($ PRINT TESTDATA.QUT

g ...second input data file... ————-—-—7"——"‘1

$ EOD

" s o s
]
... First input data file.., e

;EEEEEEﬂ

¢ $ RUN MYPROG
($ PASSWORD HENRY
($ JOB HIGGINS

The program MYPROG requires two input files; these are read
from the 1logical device SYSSINPUT. The EOD command signals
the end of the first data file and the beginning of the
second. The next line that begins with a dollar sign (a
PRINT command in this example) signals the end of the second
data file,

For additional examples, see the discussion of the DECK command.

- 132

EOJ

Marks the end of a batch job submitted through a card reader. An EOJ
card is not required; however, if present, the first nonblank
character in the command line must be a dollar sign ($).

For more information on how to use commands like this one in command
procedures, consult the VAX/VMS Guide to Using Command Procedures.

Format
$ EOJ
Command Qualifiers Defaults
None. None.
Prompts
None.

Command Parameters

None,

Examples

lo

———

g ...command input stream..,

($ PASSWORD HENRY

($ JOB HIGGINS

The JOB and PASSWORD commands mark the beginning of a batch

job submitted through the card reader; the EOJ command marks
the end of the job.

133

EXAMINE

Displays the contents of virtual memory.

You can truncate the EXAMINE command to a single letter, E.

Format

EXAMINE location[:location]

Command Qualifiers Defaults

/ASCI1I ' None.
/BYTE

/DECIMAL

/HEXADECIMAL

/LONGWORD

/OCTAL

/WORD

Prompts

None.

Command Parameters
location[:location]

Specifies a virtual address or a range of virtual addresses whose
contents you want to examine. If you specify a range of
addresses, separate them with a colon (:); the second address
must be larger than the first.

You can specify locations using any valid arithmetic expression
that contains arithmetic or 1logical operators or symbol names
that have been previously given values with DCL assignment
statements.

The DEPOSIT and EXAMINE commands maintain a pointer to the
current memory location. The EXAMINE command sets this pointer
to the 1last 1location examined when you specify an EXAMINE
command. You can refer to this location using the symbol "." in
a subsequent EXAMINE or DEPOSIT command.

Description
When the EXAMINE command is executed, it displays the wvirtual
memory address in hexadecimal format and the contents in the
radix requested as follows:

address: contents

134

EXAMINE

If the address specified 1is not accessible to wuser mode,
asterisks (****) are displayed in the contents field.

Radix Qualifiers: The radix default for a DEPOSIT or EXAMINE
command determines how the commands interpret numeric literals,
for example 256. The initial default radix is hexadecimal; all
numeric literals in the command 1line are assumed to be
hexadecimal values. If a radix qualifier modifies an EXAMINE
command, that radix becomes the default for subsequent EXAMINE
and DEPOSIT commands, until another qualifier overrides it. For
example:.

$ EXAMINE/DECIMAL 900
00000384: 0554389621

The EXAMINE command interprets the 1location 900 as a decimal
number and displays the contents of that location in decimal.
All subsequent DEPOSIT and EXAMINE commands assume that numbers
you enter for addresses and data are decimal. Note that the
EXAMINE command always displays the address location in
hexadecimal format,

Symbol names defined by = (Assignment Statement) commands are
always interpreted in the radix in which they were defined.

Note that hexadecimal values entered as examine locations or as
data to be deposited must begin with a numeric character (O
through 9). Otherwise, the command interpreter assumes that you
have entered a symbol name and attempts symbol substitution.

You can use the radix operators %X, %D, or %0 to override the
current default when you enter the EXAMINE command. For example:

$ EXAMINE/DECIMAL $%X900
00000900: 321446536

This command requests a decimal display of the data 1in the
location specified as hexadecimal 900.

Length Qualifiers: The initial default 1length unit for the
EXAMINE command is a longword. The EXAMINE command displays data
one longword at a time, with blanks between 1longwords. If a
length qualifier modifies the command, that length becomes the
default length of a memory location for subsequent EXAMINE and
DEPOSIT commands, until another qualifier overrides it.

Restriction on Placement of Qualifiers: The EXAMINE command
analyzes expressions arithmetically. Therefore, qualifiers
(which must be preceded by /) are interpreted correctly only when
they appear immediately after the command name.

Command Qualifiers

/ASCII

Requests that the data at the specified location be displayed 1in
ASCII. :

Binary values that do not have ASCII equivalents are displayed as
periods (.).

When vyou specify /ASCII, or ASCII mode is the default,

hexadecimal 1is used as the default radix for numeric literals
that are specified on the command line.

135

EXAMINE

/BYTE

Requests that data at the specified 1location be displayed one
byte at a time.

/DECIMAL

Requests that the contents of the specified location be displayed
in decimal format.

/HEXADECIMAL

Requests that the contents of the specified location be displayed
in hexadecimal format.

/LONGWORD

Requests that data at the specified 1location be displayed one
longword at a time.

/OCTAL

Requests that the contents of the specified location be displayed
in octal format.

/WORD

Requests that data at the specified 1location be displayed one
word at a time.

Examples

1. $ RUN MYPROG
s
$ EXAMINE 2678
0002678: 1F4C5026
$ CONTINUE

The RUN command begins execution of the image MYPROG.EXE.
While MYPROG is running, CTRL/Y interrupts its execution, and
the EXAMINE command requests a display of the contents of
virtual memory location hexadecimal 2678,

2. $ BASE = %X1C00
$ READBUF = BASE + %X50
$ ENDBUF = BASE + $%XA0
$ RUN TEST
Y
$ EXAMINE/ASCII READBUF:ENDBUF
00001C50: BEGINNING OF FILE MAPPED TO GLOBAL SECTION

Before executing the program TEST.EXE, symbolic names are
defined for the program's base address, and for labels
READBUF and ENDBUF; all are expressed in hexadecimal format
using the radix operator &X. READBUF and ENDBUF define
offsets from the program base.

While the program is executing, CTRL/Y interrupts it and the

EXAMINE command requests a display in ASCII of all data
between the specified memory locations.

136

EXIT

Terminates processing of the current command procedure. If the
command procedure was executed from within another command procedure,
control returns to the calling procedure.

If a command procedure 1is not being executed, the EXIT command
terminates the current image.

Format

EXIT [status-code]

Command Qualifiers Defaults
None. . None.
Prompts
None.

Command Parameters

status-code

Defines a numeric value for the reserved global symbol $STATUS.
The value can be tested by the next outer command level. The
low-order three bits of the longword integer value change the
value of the reserved global symbol S$SEVERITY.

If you do not specify a status code, the current value of $STATUS
is not changed and control returns to the outer level with the
status of the most recently executed command or program.

Description

When a command procedure returns control to the interactive
command level, the command interpreter uses the current value of
$STATUS to locate and display the system message associated with
the wvalue, 1if any. Note that even numeric values generally
produce warning, error, and fatal error messages and that odd
numeric values generally produce either no message or a success
or informational message. Example 4, below, shows how to use the
EXIT command to determine the message and symbolic error name
associated with a hexadecimal status code.

For more information on how to use commands- like this one in

command procedures, consult the VAX/VMS Guide to Using Command
Procedures.

137

EXIT

The EXIT command, when used in conjunction with CTRL/Y, causes a
normal termination of the image that is currently executing, If
the image declared any exit handling routines, they are given
control, This 1is 1in contrast to the STOP command, which does

not. For this reason, the EXIT command is generally preferable
to the STOP command.

Examples

1. |$ ON WARNING THEN EXIT
$ FORTRAN 'P1‘

$ LINK 'Pl!

$ RUN 'P1'

The EXIT command is used as the target of an ON command;
this statement ensures that the command procedure terminates
whenever any warnings or errors are issued by any command in
the procedure.

The procedure exits with the status value of the command or
program that caused the termination.

2. |$ @SUBTEST
$ IF $STATUS .EQ. 7 THEN GOTO PROCESS

$ EXIT
$ PROCESS:

This procedure executes a second procedure, named
SUBTEST.COM. When SUBTEST.COM completes, the outer procedure
tests the value of the symbol $STATUS which may be set by
SUBTEST as follows:

$ PATHI:

$ EXIT 7
$ PATH2:

$ EXIT 9

3. |/$ IF P1.EQS."" THEN -

INQUIRE Pl "Enter File-spec (null to exit)"
$ IF P1.EQS."" THEN EXIT
$ PRINT 'Pl'/AFTER=20:00/COPIES=50/FORMS=6

A command procedure tests whether a parameter was passed to
it; if not, it prompts for the required parameter. Then it
retests the parameter Pl. If a null string, indicated by a
carriage return for a 1line with no data, is entered, the
procedure exits., Otherwise, it executes the PRINT command
with the current value of Pl as the input parameter.

138

EXIT

$ IF P1.EQS."" THEN INQUIRE Pl "Code"
$ CODE = $X'P1'
$ EXIT 'CODE'

This short command procedure illustrates how to determine the
system message, if any, associated with a hexadecimal system
status code. The procedure requires a parameter and prompts
if none 1is entered. Then, it prefixes the value with the
radix operator %X and assigns this string to the symbol CODE.
Finally, it 1issues the EXIT command with the hexadecimal
value. For example, if the procedure is in the file E.COM:

$ @E 1C
$SYSTEM-F-EXQUOTA, exceeded quota

When the procedure exits, the value of $STATUS is "X1C, which
equates to the EXQUOTA message.

$ RUN MYPROG
'Y
$ EXIT

The RUN command initiates execution of the image MYPROG.EXE.
Then the CTRL/Y interrupts the execution. The EXIT command
that follows calls any exit handlers declared by the image
before terminating MYPROG.EXE.

139

FORTRAN

Invokes the VAX-11 FORTRAN1 compiler to compile
programs. This
User's Guide.

one or more source
command is described in detail in the VAX-11 FORTRAN

Format

Command Qualifiers Defaults

/[NOJCHECK [=(option[,...])]
/CONTINUATIONS=n
/ [NOIDEBUG [=(option[,...])]

/CHECK=(NOBOUNDS,OVERFLOW)
/CONTINUATIONS=19
/DEBUG=(NOSYMBOLS, TRACEBACK)

/[NO]D LINES /NOD LINES
/[NO1F77 /F77

/ [NO]G FLOATING /NOG FLOATING
/[NOJIZ /14 ~

/[NOJLIST[=file-spec]
/[NO]MACHINE_CODE
/[NOJOBJECT[=file-spec]

(see text)
/NOMACHINE_CODE
(see text)

/[NO]JOPTIMIZE /OPTIMIZE
/ [NO]JWARNINGS /WARNINGS
Prompts
File: file-spec[,...]
Command Parameters
file-spec[,...]
Specifies one or more VAX-11 FORTRAN source programs to be

compiled. If vyou do not specify a file type, the compiler uses
the default file type of FOR.

You can specify more than one input file. If you separate the
file specifications with commas (,), each file 1is compiled
separately and an object module is produced for each file. If

you separate the file specifications with plus signs (+), the
files are concatenated and compiled as a single input file,
producing one object module and, if /LIST is specified, one
listing.

No wild card characters are allowed in the file specifications.

1. Available under separate license.

140

FORTRAN

Command Qualifiers

/CHECK [=(option[,...])]
/NOCHECK

Controls whether the compiler produces extra code to check for
program correctness at run time. You can request the following

options:

ALL Provides both BOUNDS and OVERFLOW checks.

NONE Provides no checking.

[NO]1BOUNDS Controls the production of code to check that all

array references are to addresses within the
address boundaries specified in the array
declaration. The BOUNDS option produces this
code.

[NO]JOVERFLOW Enables or disables integer overflow traps.
Fixed-point calculations involving BYTE,
INTEGER*2, and INTEGER*4 data types are checked
for arithmetic overflow when you specify the
OVERFLOW option.

By default, if you omit the /CHECK qualifier entirely, the
compiler produces code to check only for integer overflow traps
(equivalent to /CHECK=NOBOUNDS,OVERFLOW).

However, if you specify /CHECK without options, you obtain- both
BOUNDS and OVERFLOW checking (equivalent to /CHECK=ALL).

Note that /NOCHECK is equivalent to /CHECK=NONE.

If you specify more than one option, separate them by commas and
enclose the list in parentheses.

/CONTINUATIONS=n

Specifies the maximum number of continuation 1lines to be
permitted.

The number of lines, n, is a decimal number from 0 through 99.
By default, the compiler accepts a maximum of 19 continuation
lines.

/DEBUG [=(option[,...])]
/NODEBUG .

Controls whether the compiler makes 1local symbol table and
traceback information available to the debugger and the run time
error reporting mechanism,

You can request the following options:

ALL Provides both local symbol table and traceback
information.

NONE Provide neither local symbol table nor traceback
information.

141

FORTRAN

[NO] SYMBOLS Controls whether the debugger receives local
symbol definitions for user-defined variables,
arrays, and labels on executable statements, The
SYMBOLS option provides this information.

[NO] TRACEBACK Controls the production of compiler-generated line
numbers so that the debugger and the run-time
error traceback routine can translate virtual
addresses into source program subroutine names and
line numbers. The TRACEBACK option produces the
line numbers.

By default, if you completely omit the /DEBUG qualifier, the
compiler produces only an address correlation table (equivalent
to /DEBUG=(NOSYMBOLS,TRACEBACK)). However, if you specify /DEBUG
without any options, the default is both SYMBOLS and TRACEBACK
(equivalent to /DEBUG=ALL).

Note that /NODEBUG is equivalent to /DEBUG=NONE.

For details on how to debug a VAX-11 FORTRAN program with the
VAX-11 Symbolic Debugger, see the VAX-1ll FORTRAN User's Guide.

/D_LINES
/NOD_LINES

Indicates whether the compiler reads and compiles lines that have
a D in column 1 of the source program. If you specify /D_LINES,
lines that have a D in column 1 are compiled.

The default is /NO_DLINES, which means the compiler assumes that
lines beginning with a D are comments and does not compile them.

/F77
/NOF77

Controls whether FORTRAN-77 interpretation rules are used for
those statements that have a meaning that is incompatible with
FORTRAN IV-PLUS.

The default is /F77. If you specify /NOF77, the compiler selects
FORTRAN IV-PLUS interpretations in cases of incompatibility.

/G_FLOATING
/NOG_FLOATING

Controls the interpretation of REAL*8, COMPLEX*16, DOUBLE
PRECISION and DOUBLE COMPLEX declarations.

The default is /NOG FLOATING, which causes the compiler to
interpret the above™ declarations as the VAX-11 D_floating data
type. If you specify /G FLOATING, the compiler interprets them
as the VAX-11 G floatTng data type. See the VAX-1l FORTRAN
User's Guide for more details.

/14
/NOI4

Controls how the compiler interprets INTEGER and LOGICAL
declarations that do not specify a length. If you specify /NOI4,
the compiler interprets these as INTEGER*2 and LOGICAL*2,
respectively.

The default is /I4, which means the compiler interprets these
declarations as INTEGER*4 and LOGICAL%*4,

142

FORTRAN

/LIST=[file-spec]
/NOLIST

Controls whether a listing file is produced.

If the FORTRAN command is executed from interactive mode, the
compiler, by default, does not create a listing file, If the
FORTRAN command is executed from batch mode, /LIST 1is the
default; the compiler gives a listing file the same file name as
the first input source file and a file type of LIS.

When you specify /LIST, you can control the defaults applied to
the output file specification by the placement of the qualifier
in the command, as described 1in Section 5.3.3, "Rules for
Entering Output File Qualifiers.," The output file type defaults
to LIS.

No wild card characters are allowed in the file specification.

/MACHINE_CODE
/NOMACHINE_CODE

Controls whether the listing produced by the compiler includes
the machine language code generated by the compiler.

The default is /NOMACHINE_CODE, which omits machine language code
in the listing. The /MACHINE_CODE qualifier is ignored if /LIST
is not specified, either explicitly or by default.

/OBJECT [=file-spec]
/NOOBJECT

Controls whether the compiler produces an output object module.

By default, the compiler produces an object module that has the
same file name as the first input source file and a default file
type of OBJ. When you specify /OBJECT, you can control the
defaults applied to the output file specification by the
placement of the qualifier in the command, as described in
Section 5.3.3, "Rules for Entering Output File Qualifiers.”

No wild card characters are allowed in the file specification.

/OPTIMIZE
/NOOPTIMIZE

Controls whether the compiler optimizes the compiled program to
generate more efficient code.

Use /NOOPTIMIZE in conjunction with the /DEBUG qualifier to 1link
a VAX-11] FORTRAN program with the debugger so that variables
always contain their updated values.

/WARNINGS
/NOWARNINGS

Controls whether the compiler produces diagnostic messages for
warning conditions.

Use /NOWARNINGS to override the compiler default, which 1is to
issue warning diagnostic messages.

143

Examples

1.

FORTRAN

$ FORTRAN SCANLINE

This FORTRAN command compiles the program SCANLINE.FOR and
produces an object module SCANLINE.OBJ. If this command is
executed in a batch job, the compiler also creates a listing
file named SCANLINE,LIS.

$ FORTRAN A+B/LIST, C+D/LIST=ALL/OBJECT=ALL

This FORTRAN command requests two separate compilations. For
the first compilation, the FORTRAN command concatenates the
files A.FOR and B.FOR to produce a single object module named
A.0OBJ and a listing file named B.LIS that contains the source
code from both A.FOR and B.FOR.

For the second compilation, the FORTRAN command concatenates
the files C.FOR and D.FOR and compiles them to produce an
object module named ALL.OBJ and a listing named ALL.LIS.

$ FORTRAN/NOOPTIMIZE/DEBUG SCAN/OBJECT=DBGSCAN
$ LINK/DEBUG DBGSCAN
$ RUN DBGSCAN

VAX-11 DEBUG V2.0

$DEBUG-I-INITIAL, language is FORTRAN, module set to 'SCAN'
DBG>

The FORTRAN command compiles the source program SCAN with the
debugger, including both the symbol table information and
traceback information; the /OBJECT qualifier requests that
the object module be named DBGSCAN, The LINK command links
the debugger with the object module and the RUN command
executes the image. When the debugger prompts, you can begin
entering DEBUG commands.

144

GOTO

Transfers control to a labeled statement in a command procedure.

Format

GOTO label

Command Qualifiers Defaults
None. None.
Prompts

Label: label

Command Parameters
label

Specifies a 1- through 255-alphanumeric character label appearing
as the first item on a command line. When the GOTO command is
executed, control passes to the command following the specified
label. :

The label can precede or follow the GOTO statement in the current
command procedure. It must be terminated with a colen (:) and
may not contain embedded blanks.

Description

Use the GOTO command in command procedures to transfer control to
a 1line that 1is not the next 1line in the procedure. 1If the
command stream is not being read from a random access device
(that is, a disk device), the GOTO command performs no operation.

The command interpreter does not check for duplicate labels. The
following rules apply:

e If duplicate labels precede and follow the GOTO command,
control is given to the label preceding the command.

e If duplicate labels all precede the GOTO command, control
is given to the most recent 1label, that is, the one
nearest the GOTO command.

e If duplicate labels all follow the GOTO command, control
is given to the one nearest the GOTO command.

145

GOTO

If a label does not exist in the current command procedure, the
procedure cannot continue and is forced to exit.

For a description of the GOTO command and examples of its use 1in
command procedures, see the VAX/VMS Guide to Using Command
Procedures.

Examples

1. $ IF P1.EQS."HELP" THEN GOTO TELL
$ IF P1.EQS."" THEN GOTO TELL

EXIT
TELL:
TYPE SYSSINPUT

vr 0

The IF command checks the first parameter passed to the
command procedure; if this parameter is the string HELP or
is not specified, the GOTO command is executed, and -<control
is passed to the line labeled TELL. Otherwise, the procedure
continues executing until the EXIT commmand is encountered.
At the label TELL, a TYPE command displays data in the input
stream that documents how to use the procedure.

2, $ ON ERROR THEN GOTO CHECK

$ GOTO END
$ CHECK:

$ END:
$ EXIT

The ON command establishes an error handling routine. If any
command or procedure subsequently executed in the command
procedure returns an error or severe error return, the GOTO
command transfers control to the label CHECK.

146

HELP

Displays on the current default output stream device (SYSSOUTPUT)
information available in the system help files or any help library you
specify. For more information on creating your own help libraries,
see the VAX-1l1l Utilities Reference Manual.

Format

HELP [keyword ...]

Command Qualifiers Defaults
/LIBRARY=file-spec None.
Prompts

Command Parameters

keyword ...

Specifies one or more keywords that indicate what information you
want. Information is located in a hierarchical manner, depending
on the level of information required. The levels are:

1. <NULL> -~ describes the HELP command, and lists keywords
you can specify to obtain information about commands and
programs that are documented., Each item in this list is
a keyword in the first level of the hierarchy. Most
keywords are names of bCL commands, but other
information is provided. For example, the keyword
SPECIFY 1is at the first 1level of a hierarchy of
information. ‘

2. Command-name or program-name - describes the command
function and format and 1lists additional information
available. This list of information provides keywords
for the next level.

3. Command-name or program-name followed by a specific item
- provides descriptions of command parameters, or
particular keywords or qualifiers.

If you specify an asterisk (*) in place of any keyword, the HELP
command displays all information available at that level.

If you specify an ellipsis (...) after any keyword, vyou obtain
everything in the help file at that level.

You may specify percent signs (%) and asterisks (*) in the
keywords as wild card characters (see Section 2.1.6).

147

HELP

Command Qualifiers
/LIBRARY=file-spec

Obtains help text from the named 1library. If specified, this
qualifier must precede any optional keywords.

If you omit the device and directory specification, the default
is SYS$HELP, the logical name for the location of the system help
libraries. The default file type is HLB.

No wild card characters are allowed in the file specification.

Examples
1. $ HELP ASSIGN

The HELP command displays an abstract of the ASSIGN command
function, its format, and lists the keyword options you can
type to obtain more information.

2. $ HELP ABBIGN PARAMETERS

The HELP command displays a description of the parameters for
the ASSIGN command.

3. $ HELP LEXICAL
The HELP command lists the lexical command functions.
4. $ HELP PRINT/AFTER

The HELP command lists the information available about the
/AFTER qualifier of the PRINT command.

5. $ HELP SUBMIT ¥

The HELP command displays information about the SUBMIT
command available at the second 1level, that 1is, the
information that would be displayed if you specified each of
the keywords listed when you issued HELP SUBMIT.

6. $ HELP SET TERMINAL

The HELP command lists information about the TERMINAL keyword
option of the SET command.

7. $ ASSIGN/USER_MODE FILE.HLP SYSSOUTPUT
$ HELP *,..

The ASSIGN command defines FILE.HLP as the default output
stream for the current process. The HELP command requests
that all help text in the default help library
SYSSHELP:HELPLIB.HLB be written to FILE.HLP.

8. $ HELP SPECIFY DELTA_TIME

The HELP command informs you how to specify time in the delta
time format.

9. $ HELP ERROR FOR *

The HELP command displays the names and descriptions of all
VAX-11 FORTRAN run-time error codes.

148

IF

Tests the value of an expression and executes a command if the test is
true. Any arithmetic or logical expression is considered true if the
result of the expression is an odd numeric value; an expression is
false if the result is an even value,

Format

IF expression THEN [$] command

Command Qualifiers Defaults
None. None.
Prompts

None.

Command Parameters

expression

Defines the test to be performed. The expression can consist of
one or more numeric constants, string literals, or symbolic names
separated by logical, arithmetic, or string operators.

For a summary of operators and details on the syntax requirements
and how to specify expressions, see Section 5.6, "Rules for
Forming Expressions."

command

Defines the action to take if the result of the expression is
true.

You can specify any valid DCL command following the keyword THEN.
Optionally, you can precede the command with a dollar sign.

Description
The IF command provides an effective tool in the development of
command procedures, For a description of the IF command and
additional examples, see the VAX/VMS Guide to Using Command
Procedures.

149

Examples

l'

IF

$ COUNT = 0
$ LOOP:
$ COUNT = COUNT + 1

$ IF COUNT.LE.10 THEN GOTO LOOP
$ EXIT

This example shows how to establish a 1loop in a command
procedure using a symbol named COUNT and an IF statement that
checks the value of COUNT and performs an EXIT command when
the value of COUNT is greater than 10.

$ IF P1.EQS."" THEN GOTO DEFAULT

$ IF P1.EQS."A" .OR. Pl.EQS."B" THEN GOTO 'Pl'

$ WRITE SYSSOUTPUT "Unrecognized parameter option ''P1' "
$ EXIT

$ A: ! Process option a

$ EXIT

$ B: { Process option b

$ EXIT

$ DEFAULT: ! Default processing

$ EXIT

This example shows a command procedure that tests whether a
parameter was passed. The GOTO command passes control to the
label specified as the parameter.

If the procedure is executed with a parameter, the procedure
uses that parameter to determine the label to branch to. For
example:

@TESTCOM A
When the procedure executes, it determines that Pl 1is not

null, and branches to the 1label A. Note that the EXIT
command causes an exit from the procedure before the label B.

$ SET NOON

$ LINK CYGNUS,DRACO,SERVICE/LIBRARY
$ IF .NOT.$SSTATUS THEN EXIT
$ RUN CYGNUS

150

IF

A command procedure uses the SET NOON command to disable
error checking by the command procedure. Then, the IF
command is used following the execution of a LINK command to
test the value of the reserved global symbol $STATUS. If the

LINK command returns an error status value, the command
procedure exits,

151

INITIALIZE

Formats and writes a label on a mass storage volume.

Format

INITIALIZE device-name[:] volume-label

Command Qualifiers1 Defaults

/OWNER_UIC=uic . None.
/PROTECTION=code

Qualifiers for Tapes Defaults

/DENSITY=n None.
/OVERRIDE=(option[,...])

Qualifiers for Disks Defaults

/ACCESSED=n /ACCESSED=3
/BADBLOCKS=(list[,...])
/CLUSTER SIZE=n

/DATA_CHECK [=(option[,...1)] (see text)

/DIRECTORIES=n /DIRECTORIES=16

/EXTENSION=n /EXTENSION=5

/FILE_PROTECTION=code

/GROUP

/HEADERS=n . /HEADERS=16

/INDEX=position /INDEX=MIDDLE

/MAXIMUM FILES=n

/ [NO]SHARE /SHARE

/STRUCTURE=1evel /STRUCTURE=2

/SYSTEM

/USER_NAME=string

/[NO]VERIFIED /VERIFIED

/WINDOWS=n /WINDOWS=7
Prompts

Device: device-namel([:]

Label: volume-label

l. For convenience, qualifiers that are applicable only to disks and
to tapes are listed separately. All qualifier descriptions appear in
alphabetical order, however.

152

INITIALIZE

Command Parameters
device-name[:]

Specifies the name of the device on which the volume to be
initialized is physically mounted.

The device does not have to be currently allocated; however,
this is the recommended practice.

volume-label

Specifies the identification to be encoded on the volume. For a
disk wvolume, you can specify a maximum of 12 alphanumeric
characters; for a tape volume, you can specify a maximum of 6
alphanumeric characters.

Description

The default format for disk wvolumes 1in the VAX/VMS operating
system is called the Files-1l1 Structure Level 2, The default for
tape volumes is based on ANSI standard labels, ANSI X3.27-1978,
level 3.

The INITIALIZE command can also initialize disk wvolumes in the
Files-11 Structure Level 1 format. ,

You do not need any special privileges to initialize:

e A blank disk or tape volume; that is, a volume that has never
been written

e A disk volume that is owned by your current UIC or by the UIC
(0,0]

e A tape volume that allows write access to your current UIC or
that was not protected when it was initialized

In all other cases, you must have the user privilege VOLPRO to
initialize a volume.

When the INITIALIZE command initializes a tape volume, it always
attempts to read the volume header label. 1In some cases, a blank
tape can cause unrecoverable errors in the command. The symptoms
of such an error are:

e The message:
$INIT-F-VOLINV, volume is invalid
e A runaway tape (this frequently occurs with tapes that have
been run through wverifying machines). You can only stop a
runaway tape by setting the tape drive offline and then
putting it back online.
If any such problem occurs, you can successfully initialize a
tape by repeating the INITIALIZE command from an account that has
the VOLPRO privilege and by specifying the following qualifier in
the command:

/OVERRIDE=(ACCESSIBILITY,EXPIRATION)

153

INITIALIZE

This qualifier ensures that the INITIALIZE command will not
attempt to verify any labels on the tape.

For examples of initializing and wusing disks and tapes, see
Chapter 3, "Disk and Tape Volumes."

Many of the INITIALIZE command qualifiers allow you to specify
parameters that can maximize input/output efficiency. For
information on these parameters and a description of the disk
structures, see the Introduction to VAX-11 Record Management
Services and the VAX-11 Record Management Services Reference
Manual.

Command Qualifiers

/ACCESSED=n

Specifies, for disk volumes, the number of directories to be
maintained in system space for ready access.

The wuser privilege OPER is required to wuse the /ACCESSED
qualifier. Legal values for n are 0 through 255. If /ACCESSED
is not specified, the INITIALIZE command uses the default value
of 3.

/BADBLOCKS=(1list{,...])

Specifies, for disk volumes, specific areas on the volume that
are faulty. The INITIALIZE command marks the areas as allocated
so that no data will be written in them.

You can specify one or more areas, using either or both of the
formats shown below. If you specify more than one area, separate
the specifications with commas and enclose the list in
parentheses,

l1bn[:count] Specify a logical block number on the disk volume,
and optionally a count of logical blocks beginning
with the logical block specified, to be marked
allocated

sector.track.cyl[:count]
Specify a specific sector, track, and cylinder on
the disk volume, and optionally a count of blocks,
beginning with the first block specified, to be
marked allocated

All media supplied by DIGITAL and supported on VAX/VMS, except
floppies, TU58 cartridges, and RP04/5/6 disk packs are factory
formatted and contain bad block data. The Bad Block Locator
(BAD) Utility or the diagnostic formatter ESRAC may be used to
refresh the bad block data or construct it for the media
exceptions above. The /BADBLOCKS qualifier is only necessary to
enter bad blocks that are not indentified in the wvolume's bad
block data.

For information on how to run the BAD Utility, see the VAX-11
Utilities Reference Manual.

154

INITIALIZE

/CLUSTER_SIZE=n

Defines, for disk wvolumes, the minimum allocation wunit, 1in
blocks. The maximum size you can specify for a volume is 1/100
the size of the volume; the minimum size you can specify |is
calculated with the formula:

disk size
255%4096

For Files-11 Structure Level 2 disks, the cluster size default
depends on the disk capacity; disks that are 50,000 blocks or
larger have a default cluster size of 3, while those smaller than
50,000 blocks have a default value of 1.

For Files-11 Structure Level 1 disks the cluster size must always
be 1.

/DATA_CHECK [=(option[,...1)]

Defines a default for data check operations following all reads
and/or writes to the volume. You can specify either or both of
the following options:

READ Perform checks following all read operations
WRITE Perform checks following all write operations

If you specify /DATA CHECK without specifying an option, the
system assumes /DATA CHECK=WRITE. If you do not specify
/DATA_CHECK, the system performs no checking as the default. You
can override the checking you specify at initialization for disks
when you issue a MOUNT command to mount the volume.

If you specify both options, separate them by commas and enclose
them in parentheses.

/DENSITY=n

Specifies, for tape volumes, the density in bits per inch (bpi)
at which the tape is to be written. You can specify a density of
800, 1600, or 6250, if supported by the tape drive.

If you do not specify a density for a blank tape, the system uses
a default density of 1600. If you do not specify a density for a
tape that was previously written, the system uses the density at
which the tape was last written.

/DIRECTORIES=n

Specifies, for disk volumes, the number of entries to preallocate
for user directories.

The legal values are in the range of 16 through 16000; 1if you do
not specify a wvalue, the INITIALIZE command uses the default
value of 16.

155

INITIALIZE

/EXTENSION=n

Specifies, for disk volumes, the number of blocks to use as a
default extension size for all files on the volume. The
extension default is used when a file increases to a size greater
than its initial default allocation during an update.

You can specify a value in the range of 0 through 65535; if vyou
do not specify a default extension size, the INITIALIZE command
uses a value of 5.

/FILE_PROTECTION=code

Defines, for disk volumes, the default protection to be applied
to all files on the volume.

Specify the code according to the standard syntax rules for
specifying protection., (These rules are given in Section 5.10.)
Any attributes not specified are taken from the current default
protection.

Note that this attribute is not used when the wvolume 1is being
used on a VAX/VMS system, but is provided to control the
process's use of the volume on RSX-11lM systems. VAX/VMS always
uses the default file protection; the protection can be changed
with the SET PROTECTION/DEFAULT command.

/GROUP

Defines a disk volume as a group volume. The owner UIC of the
volume defaults to the group number of the user issuing the
command and a member number of 0.

If this qualifier is specified in conjunction with the /NOSHARE
qualifier, the volume ©protection is RWED for the system, owner
and group. However, the /GROUP qualifier specified alone defines
the volume protection as RWED for all user categories.

/HEADERS=n
Specifies, for disk volumes, the number of file headers to be
allocated 1initially for the index file. The minimum value you
can specify is 16; the maximum value is the value set with the
/MAXIMUM_FILES qualifier.
By default, the INITIALIZE command allocates 16 file headers.
/INDEX=position
Requests, for disk volumes, that the index file for the wvolume's
directory structure be placed in a specific location on the
volume.

You can specify one of the following options:

BEGINNING Place the index file at the beginning of the volume

END Place the index file at the end of the volume
MIDDLE Place the index file in the middle of the volume
n Place the index file at the beginning of the logical

block specified by the logical block number n

By default, the INITIALIZE command places the index file 1in the
middle of the volume,

156

INITIALIZE

/MAXIMUM_FILES=n

Restricts, for disk volumes, the maximum number of files that the
volume can contain, overriding the default value. The default is
calculated from the volume size in blocks as follows:

volume size

(cluster factor + 1) *2

The maximum size you can specify for any volume is:

volume size

(cluster factor + 1)

The minimum value is 0. Note, however, that you should specify a
low file maximum only after careful consideration., Once set, the
maximum can only be increased by reinitializing the volume.

/OVERRIDE=(option([...])

Requests the INITIALIZE command to ignore data on a tape volume
that protects it from being overwritten. You can specify one or
both of the following options:

EXPIRATION Override the expiration date on the volume (the
date 1is indicated by the expiration date of the
first file on the volume)

ACCESSIBILITY Override a nonblank accessibility field in the
VOL1 or HDR1 1label (this field is never set by
VAX/VMS, but may be set by other operating
systems)

You must be the owner of the tape volume or have the user
privilege to override volume protection (VOLPRO) in order to
initialize a tape that has not reached its expiration date or has
a nonblank accessibility field.

If you specify more than one option, separate them with commas
and enclose the list in parentheses.

/OWNER_UIC=uic
Specifies the user identification code to be assigned ownership

of the volume and of system files on the volume. Specify the UIC
in the format:

[g,m]

g is an octal number in range 0 through 377 representing the
group number,

m is an octal number in the range 0 through 377 representing

the member number.
The square brackets ([]) are required in the UIC specification.

If you do not specify /OWNER_UIC, your current UIC is assigned
ownership of the volume.

157

INITIALIZE

/PROTECTION=code

Specifies the protection to be applied to the volume. The
protection controls who can read, write, create, and delete files
on the volume. If you do not specify a protectien code,
protection defaults to all access to all categories of user.
Note that the /GROUP, /SHARE, and /SYSTEM qualifiers can also be
used to define protection for disk volumes.

Specify the code according to the standard syntax rules for
specifying protection given in Section 5.10. Any attributes not
specified default to no access. :

When you specify a protection code for an entire disk volume,
access type E (execute) indicates create access.

The system only applies read and write access restrictions with
respect to tapes; create and delete access are meaningless.
Moreover, the system and the owner are always given both read and
write access to tapes, regardless of what vyou specify in a
protection code.

/SHARE
/NOSHARE

Controls whether a disk volume is shareable. The protection code
for the volume defaults to all types of access for all categories
of user., If you specify /NOSHARE, the protection code defaults
to no access for group and world.

/STRUCTURE=level

Speéifies, for disk wvolumes, whether the volume should be
formatted in Files-11 Structure Level 1 or Structure Level 2. By
default, disk volumes are formatted in Files-11 Structure Level
2.

If you specify /STRUCTURE=1, the /CLUSTER_SIZE and /DATA_CHECK
qualifiers are not allowed. The default protection for a
Structure Level 1 disk is all types of access to system, owner,
and group, and read access to all other users.

/SYSTEM

Defines a disk volume as a system volume. The owner UIC of the
volume defaults to [1,1] and default protection provides all
types of access to the volume to all users.

No user privilege is required to wuse the /SYSTEM qualifier;
however, only users with system UICs can create directories on
system volumes.

/USER_NAME=string
Specifies, for disk volumes, a user name of up to 12 characters
to be recorded on the volume. .If /USER_NAME is not specified,

the INITIALIZE command uses the user name under which you 1logged
in.

158

INITIALIZE

/VERIFIED
/NOVERIFIED

Indicates, for disk volumes, whether the disk has bad block data
on it. The default is /VERIFIED for disks with 4096 blocks or
more; the INITIALIZE command assumes that disks contain bad
block data and uses the data to mark the bad blocks as allocated.
Use /NOVERIFIED to request INITIALIZE to ignore bad block data on
the disk. (The default is /NOVERIFIED for disks with less than
4096 blocks.)

/WINDOWS=n

Specifies, for disk volumes, the number of mapping pointers to be
allocated for file windows. When a file is opened, the file
system uses the mapping pointers to access data in the file., You
can specify a value in the range of 7 through 80. The default
number of pointers is 7.

Examples

1. $ ALLOCATE DMA2: TEMP
_DMA2: ALLOCATED
$ INITIALIZE TEMP BACK UP FILE
$ MOUNT TEMP BACK UP FILE
$MOUNT-I-MOUNTED, BACK_UP_FILE mounted on _DMA2:
$ CREATE/DIRECTORY TEMP:TARCHIE]
$ COPY *.,* TEMP:[ARCHIE]

The above sequence of commands shows how to initialize an
RK0O6/RK07 volume for backup. First, the device is allocated,
to ensure that no one else can access it. Then, when the
volume is physically mounted on the device, the INITIALIZE
command initializes it. When the volume is initialized, the
MOUNT command makes the file structure available. Before you
can place any files on the volume, you must create a
directory, as shown in the CREATE command example. Finally,
the COPY command copies the highest existing versions of
files on the default disk to the backup disk.

2. $ ALLOCATE MT:
MTBl: ALLOCATED
$ TNITIALIZE MTBl: SOURCE
$ MOUNT MTBl: SOURCE
$MOUNT-I-MOUNTED, SOURCE mounted on MTBl:
$ COPY *_,FOR MTBIl: -
$ DIRECTORY MTBl:

$ DISMOUNT MTB1:

These commands show the procedure necessary to initialize a
tape. After allocating a drive, the tape is loaded on the
device and the INITIALIZE command writes the label SOURCE on
it. Then, the MOUNT command mounts the tape so that files
can be written on it.

159

INQUIRE

Requests interactive assignment of a value for a local or global

symbol during the execution of a command procedure.

Format

INQUIRE symbol-name [prompt-string]

Command Qualifiers Defaults
/GLOBAL /LOCAL
/LOCAL /LOCAL
/ [NO] PUNCTUATION /PUNCTUATION
Prompts
None.

Command Parameters
symbol-name

Specifies a 1- through 255-alphanumeric character symbol to
given a value.

prompt-string

Specifies the prompt to be displayed at the terminal when

be

the

INQUIRE command 1is executed. If the prompt string contains any

lowercase characters, multiple blanks or tabs, or an at
character (@), enclose it in quotation marks (").

When the system displays the prompt string at the terminal,

sign

it

generally places a colon (:) and a space at the end of the

string. (See the /PUNCTUATION qualifier.)

If you do not specify a prompt string, the command interpreter

uses the symbol name to prompt for a value.

160

INQUIRE

Description

The INQUIRE command displays the prompting message to and reads
the response from the device SYSSCOMMAND. This means that when
the INQUIRE command is executed in a command procedure executed
interactively, the prompting message is always displayed on the
terminal, regardless of the 1level of nesting of command
procedures. When an INQUIRE command is issued in a batch job,
the command reads the response from the next line in the command
procedure; if procedures are nested, it reads the response from
the first level command procedure. If the next line in the batch
job command procedure begins with a dollar sign ($), it is
another command and the INQUIRE command will not attempt to
assign it to the symbol. Rather, the null string is assigned to
the symbol and the command procedure execution resumes with the
command on the next line following the INQUIRE command.

For more information on how to use commands 1like this one in
command procedures, consult the VAX/VMS Guide to Using Command
Procedures,

Command Qualifiers
/GLOBAL |

Specifies that the symbol be placed in the global symbol table.
/LOCAL

Specifies that the symbol be placed in the local symbol table for
the current command procedure.

This is the default.

/PUNCTUATION
/NOPUNCTUATION

Controls whether or not a colon (:) and a space follow the prompt
when it is displayed on the terminal,. By default, this
punctuation is provided. If you wish to suppress the colon and
space, specify /NOPUNCTUATION.

Examples

1. | $ INQUIRE CHECK "Enter Y[ES] to continue"
$ IF .NOT.CHECK THEN EXIT

The INQUIRE command displays the following prompting message
at the terminal:

Enter Y[ES] to continue:

The IF command tests the value entered. If you enter an odd
numeric value or any nonquoted character string that begins
with either a T or a ¥, the symbol CHECK is considered true
and the procedure continues executing. If you enter an even
numeric value, any nonquoted character string that begins
with an N, an F, or a null string, the symbol is considered
false and the procedure exits.

161

INQUIRE

$ INQUIRE COUNT
$ IF COUNT.GT.10 THEN GOTO SKIP

$ SKIP:

The INQUIRE command prompts for a count with the message:
COUNT:
Then, the command procedure uses the value of the symbol

COUNT to determine whether to execute the next sequence of
commands or to transfer control to the line labeled SKIP.

$ IF P1.EQS."" THEN INQUIRE Pl FILE NAME
$ FORTRAN 'P1l'

The IF command checks whether a parameter was passed to the
command procedure by checking if the symbol Pl is null; if
it is, it means that no parameter was specified, and the
INQUIRE command is issued to prompt for the parameter. If Pl
was specified, the INQUIRE command is not executed, and the
FORTRAN command compiles the name of the file specified as a
parameter.

162

JOB

Identifies the beginning of a batch job submitted through a card
reader.

Format

$ JOB user-name

Command Qualifiers Defaults
/AFTER=absolute~time

/CPUTIME=n

/ [NO]DELETE /DELETE
/NAME=job-name /NAME=INPBATCH

/PARAMETERS=(parameter[,...]1)
/PRIORITY=n

/QUEUE=queue-name [:] /QUEUE=SYSSBATCH
/[NO]TRAILING_BLANKS /TRAILING_BLANKS
/WSDEFAULT=n
/WSQUOTA=n

Prompts

None.

Command Parameters

user—-name

Identifies the user name under which the job. is to be run.
Specify the user name just as you would enter it during the login
procedure. All qualifiers you choose to specify must follow the
user-name parameter; otherwise the job is not submitted.

Description

All batch jobs submitted to the system through the system card
reader must be preceded by a JOB card.

For more information on how to use commands 1like this one 1in
command procedures, consult the VAX/VMS Guide to Using Command
Procedures. The $ is required. The JOB card identifies the user
submitting the 3job, and must be followed by a PASSWORD card
giving the password,

The user name and password are validated using the system
authorization file in the same manner as they are validated in
the login procedure, The process that executes the batch job |is
assigned the disk and directory defaults and privileges
associated with the account. If a LOGIN.COM file exists, it |is
executed at the start of the job.

163

JOB

The end of a batch job is signaled by the EOJ command, by an EOF
card (12-11-0-1-6-7-8-9 overpunch), or by another JOB card.

For more information on how to use commands 1like this one in
command procedures, consult the VAX/VMS Guide to Using Command
Procedures.

Command Qualifiers
/AFTER=absolute-time
Requests that the job be held until after a specific time.

Specify the time value according to the rules for entering
absolute times (these rules are given in Section 5.8).

If the specified time has already passed, the job is queued for
immediate processing.

/CPUTIME=n

Defines a CPU time limit for the batch job. You may' specify a
delta time (Section 5.8.2), the value 0, or the words NONE or
INFINITE for n.

Use this qualifier to override the base queue value established
by the system manager or the value authorized in your user
authorization file, when you need less CPU time than authorized.
Specify 0 or INFINITE to request an infinite amount of time.
Specify NONE when you want the CPU time to default to your user
authorization file wvalue or the limit specified on the queue.
(However, you cannot request more time than permitted by the base
limits or your user authorization file.)

/DELETE
/NODELETE

Controls whether the batch input file is saved after the job is
processed. By default, the job is deleted after processing. 1If
you specify /NODELETE, the file 1is saved under the name
INPBATCH.COM, by default, If you specify the /NAME qualifier,
the file name of the file is the same as the name you specify
with /NAME.

/NAME=job-name

Specifies a 1- through 8-alphanumeric character file name string
to be used as the job name and as the file name for the batch job
log file. By default, the system gives the output 1log file a
file name of INPBATCH.

/PARAMETERS=(parameter{,...])

Specifies from 1 through 8 optional parameters to be passed to
the command procedure. The parameters define values to be
equated to the symbols named Pl, P2, P3, and so on, in the batch
job. The symbols are local to the initial input stream,

If you specify more than one parameter, separate them with commas
and enclose them in parentheses.

164

JOB

The commas delimit the parameters. To specify a parameter that
contains any special characters or delimiters, enclose the
parameter in quotation marks (").

The total number of characters enclosed in parentheses to specify
the parameters, including the comma (,) and quotation mark (")
delimiters, must be less than 95 characters.

/PRIORITY=n
Specifies the priority for the specified job.

The priority, n, must be in the range of 0 through 31, where 0 is
the lowest priority and 31 is the highest,

By default, jobs are assigned the same priority as the base
priority of vyour <current process; the user privilege OPER is
required to set a priority value that is higher than the base
priority of your. current process.

/QUEUE=queue~name [:]

Specifies the name of a particular batch job queue in which the
job is to be entered. If you do not specify /QUEUE, then the job
is placed in the default system batch job queue, SYS$BATCH.

/TRAILING_BLANKS
/NOTRAILING BLANKS

Controls whether input cards in the card deck are read 1in card
image form or if input records are truncated at the last
non-blank character. By default, the system does not strip
trailing blanks from the records read through the card reader,
Use the /NOTRAILING BLANKS qualifier to request that input
records be truncated.

/WSDEFAULT=n

Defines a working set default for the batch job. You may specify

a positive integer in the range 1 through 65535, 0, or the word
NONE for n.

Use this qualifier to override the base queue value established
by the system manager or the value authorized in your user
authorization file, provided you want to impose a 1lower value.
Specify 0 or NONE if you want the working set value defaulted to
either your user authorization file or the working set default
specified on the queue., However, you may not request a higher
value than your default.

/WSQUOTA=n

Defines the maximum working set size for the batch job. This |is
the working set quota. You may specify a positive integer in the
range 1 through 65535, 0, or the word NONE for n.

Use this qualifier to override the base queue value established
by the system manager or the value authorized in your user
authorization file, provided you want to impose a lower value.
Specify 0 or NONE if you want the working set quota defaulted to
either your user authorization file value or the working set
quota specified on the queue. However, you may hot request a
higher value than your default.

165

Examples

1.

JOB

($EO

$PRINT AVERAGE

* . .input data...

(/ $ RUN AVERAGE
$ LINK AVERAGE

=~ ...source statements...

$ FORTRAN SYSSINPUT: AVERAGE
(' ON WARNING THEN EXIT
($ PASSWORD HENRY
/" $ JOB HIGGINS

The JOB and PASSWORD cards identify and authorize the user
HIGGINS to enter batch jobs. The command stream consists of
a FORTRAN command and FORTRAN source statements to be
compiled. The file name AVERAGE following the device name
SYSSINPUT provides the compiler with a file name for the
object and listing files. The output files are cataloged in
the user HENRY's default directory.

If the compilation is successful, the LINK command creates an
executable image, and the RUN command executes it. Input for
the program follows the RUN command in the command stream.
The last command in the job prints the program listing.

(€0
Ez:z:—‘ ...command input... W_ﬂ

(/ $ PASSWORD HENRY
(/ PARAMETERS = (A, TEST)
7’ $ JOB HIGGINS/NAME = BATCH1 —

W

The /NAME qualifier on the JOB card specifies a name for the
batch job. When the job completes, the printed log file will
be identified as BATCH1.LOG. The JOB card is continued onto
a second 1line with the continuation character (-). The
/PARAMETERS qualifier defines Pl as A and P2 as TEST.

166

Lexical Functions

The command interpreter recognizes a set of functions, called lexical
functions, that return information about character strings and
attributes of the current process.

You can use lexical functions in any context in which you normally use
symbols or expressions. In command procedures, you can use lexical
functions to translate 1logical names, perform character string
manipulations, and determine the <current processing mode of the
procedure.

Table 1 summarizes the wvalid functions, their formats, and the
information returned by each, Some examples of wus