
ULTRIX

Guide to Languages and Programming

Part Number: AA-ML94C-TE

Guide to Languages and Programming

Order Number: AA-ML94C-TE

May 1991

Product Version:

digital equipment corporation
maynard, massachusetts

UL TRIX Version 4.2 or higher

ULTRIX

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1989, 1990, 1991
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, CDA, DDIF, DDIS, DEC, DECnet, DECstation, DECsystem, DECUS, DECwindows, DTIF, MASSBUS,
MicroVAX, Q-bus, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
V AXstation, VMS, VT, XVI, and the DIGITAL logo.

UNIX is a registered trademark of UNIX System Laboratories, Inc. X/Open is a trademark of X/Open Company Ltd.

Contents

About This Manual

Audience xv

Orgariization . xv

Related Documents . xvi

Conventions xvii

1 Introduction

1.1

1.2

1.3

1.4

1.5

Application Development Phases

Specification arid Design Considerations .. .

1.2.1 Staridards
1.2.2 Window Environments .. .
1.2.3 Internationalization

Major Software Development Tools

1.3.1
1.3.2
1.3.3

Lariguages That Run in the UL TRIX Environment
Linkers .. .
Debuggers

Source File Control

Program Installation Tools .. .

1.5.1
1.5.2

Utilities for Creating setld-Compatible Kits
Additional Installation Options

1-2

1-3

1-4
1-5
1-6

1-6

1-6
1-7
1-7

1-8

1-9

1-10
1-10

2 Compiling, Linking, and Building Programs

2.1 Compiling Using Driver Programs .. 2-1

2.1.1 Compiler Comma.rid Input and Output Files 2-3
2.1.2 Components of the Compiler System 2-3
2.1.3 Compiling Multilariguage Programs . 2-6
2.1.4 Compiling in the POSIX or X/Open Environment . 2-8

2.2

2.1.5 Using error with Compiler Driver Programs

Using the C Preprocessor

2.2.1
2.2.2

Including Common Definition Files .. .
Setting Up Shareable Include Files in RISC Programs

2-9

2-10

2-10
2-11

2.3 Creating Archive Libraries 2-11

2.4 Linking Files . 2-12

2.4.1 Linking Using the Compiler Commands ... 2-13
2.4.2 Linking Using the Id Command .. . 2-14
2.4.3 Specifying Libraries 2-14
2.4.4 Linker Options .. 2-15

2.5 Building Programs with the make Program .. 2-16

2.5.1
2.5.2
2.5.3

make Macros .. .
Performing Other Tasks with make
Updating Makefiles with make

3 Debugging Programs

3.1

3.2

3.3

3.4

3.5

The dbx Command

Sample dbx Session

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12
3.2.13
3.2.14
3.2.15
3.2.16
3.2.17
3.2.18

Displaying Source Lines (list) .. .
Creating Breakpoints (stop) .. .
Running Your Program (run and rerun)
Setting Environment Variables (setenv)
Displaying the Status of Debugger Events (status)
Removing Debugger Events (delete) .. .
Continuing Execution After a Breakpoint (cont)
Executing One Source Line at a Time (next and step)
Tracing Program Execution (trace) .. .

Assigning Values to Program Variables (assign)
Displaying the Value of Variables (print and printf)
Displaying the Names of Active Routines (where)
Changing the Debugger's Scope (func) .. .
Displaying Fully Qualified Variable Names (which and whereis)
Calling Routines (call)
Catching and Ignoring Signals (catch and ignore)
Repeating Commands (pressing Return, history, and !)
Ending a Debugging Session (quit)

Initializing dbx

Sample Program

Built-in dbx Command Aliases

iv Contents

2-18
2-18
2-19

3-1

3-3

3-3
3-4
3-5
3-6
3-7
3-7
3-8
3-8

3-10
3-11
3-12
3-12
3-13
3-14
3-14
3-15
3-16
3-17

3-17

3-18

3-20

4 Checking Programs and Improving Performance

4.1

4.2

4.3

4.4

4.5

4.6

Checking C Source Files with lint

Monitoring Program Execution with ctrace

4.2.1 Tracing Only Certain Functions .. .
4.2.2 Tracing Only Certain Sections of Code .. .

Profiling Code on RISC Systems

4.3.1
4.3.2

Basic Block and Invocation Counting .. .
PC Sampling .. .

Profiling Code on VAX Systems

4.4.1 Getting a Profile Output File .. .

Optimizing Programs on a RISC System

4.5.1 Overview of the uopt Optimizer .. .
4.5.2 Things to Consider Before You Optimize a Program
4.5.3 Improving C Program Optimization .. .
4.5.4 Improving Pascal Program Optimization .. .
4.5.5 Optimizing Your Program Fully
4.5.6 Optimizing Large Programs

Optimizing Programs on a VAX System

4.6.1
4.6.2

Things to Consider Before You Optimize a Program
Improving C Program Optimization .. .

4-1

4-2

4-2
4-3

4-5

4-6
4-8

4-9

4-10

4-10

4-10
4-13
4-14
4-18
4-19
4-21

4-22

4-22
4-22

4.7 Controlling the Size of Global Pointer Data on RISC Systems 4-25

4.7.1 Limiting the Size of Global Pointer Data .. 4-26
4.7.2 Obtaining Optimal Global Data Size .. 4-26
4.7.3 Allocating the Global Pointer Area ... 4-27

5 Library Routines and System Calls

5 .1 Compiling and Linking Considerations · . 5-1

5.2 The C Library 5-2

5.2.1 Character Processing Routines and Macros 5-2
5.2.2 Standard I/0 Routines 5-3
5.2.3 Memory Management, Environment, and General Functions 5-5
5.2.4 String Operations ... 5-6
5.2.5 Date and Time Routines ... 5-7
5.2.6 System Calls and Other C Library Routines 5-8

5.3 Other Commonly Used Library Routines 5-8

Contents v

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7

The Standard Conformant Function Library
The Curses Library
The Internationalization Library .. .
The Kerberos Library .. .
The Mathematical Library .. .
The Network Computing System Library
Optional Product Libraries

5-8
5-9
5-9

5-10
5-10
5-10
5-10

5.4 System I/0 and Standard I/O ... 5-10

5.4.1 File I/0 5-12
5.4.2 Device I/0 .. 5-14

5.4.2.1
5.4.2.2

Character Mode (Raw) Device I/0
Block Mode (Cooked) Device I/0

5-15
5-15

5.4.3 Controlling Devices with ioctl() ... 5-15

5.4.3.1 Multibuffered I/0 with Character Mode (Raw) Devices 5-16
5.4.3.2 Tape Control with ioctl() 5-17
5.4.3.3 Terminal Control with ioctl() 5-19

6 Interprocess Communication

6.1

6.2

6.3

Pipes

6.1.1
6.1.2

Redirecting stdin, stdout, and stderr to Pipes
Creating Pipes with popen() -.

Signals

6.2.1 Catching Signals
6.2.2 Handling Signals .. .
6.2.3 Sending Signals .. .
6.2.4 Blocking Signals .. .
6.2.5 Signals and Timers

6.2.5.1 Timed Intervals

Sockets

6.3.1
6.3.2
6.3.3
6.3.4

Using a Datagram Socket Between Processes on the Same Node
Using a Stream Socket between Processes on the Same Node
Using a Stream Socket between Processes on Different Nodes
Socket Flow Control

6-1

6-3
6-6

6-8

6-9
6-10
6-12
6-13
6-14

6-15

6-16

6-17
6-21
6-24
6-26

6.3.4.1 Using fcntl() to Prevent Blocking .. 6-27
6.3.4.2 Using select() to Determine Descriptor Status 6-27

6.3.5 Special Stream Socket Features ... 6-30

6.3.5.1
6.3.5.2

Peeking at a Message .. .
Sending and Receiving Out-of-Bounds Messages

6-30
6-30

6.3.6 Additional Socket Information 6-31

vi Contents

6.3.6.1
6.3.6.2
6.3.6.3

Special Socket Options
Using read() and write()
Closing Halves of a Socket .. .

7 Writing Secure Programs

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Using Open File Descriptors with Child Processes

Responding to Signals

Specifying a Secure Search Path .. .

Protecting Permanent and Temporary Files

Handling Errors .. .

Using Privileged Processes

7.6.1 Use Minimum Privileges
7 .6.2 Use Care When Allocating System Resources
7 .6.3 Know the Process's Real UID .. .
7.6.4 Audit Security-Relevant Events .. .
7 .6.5 Use Care When Creating Daemons as Privileged Programs

Writing SUID and SGID Programs

6-31
6-31
6-32

7-1

7-2

7-2

7-3

7-3

7-4

7-5
7-5
7-5
7-5
7-8

7-9

7.8 Authenticating Users .. 7-9

7.9 Protecting Shell Scripts and Compiled Programs .. 7-12

7.10 Security Concerns when Programming in a DECwindows Environment 7-12

7.10.1
7.10.2
7.10.3
7.10.4

Restrict Access Control .. .
Protect Keyboard Input .. .
Block Keyboard and Mouse Events
Protect Device-Related Events .. .

7-12
7-13
7-14
7-14

7.11 System Calls and Library Routines with Security Implications 7-15

7.11.1 System Calls ... 7-15
7 .11.2 Library Routines . 7-16

8 Calling Between C and Pascal

8.1 Differences Between C and Pascal

8.1.1 Passing String Data
8.1.2 Calling Routines with a Variable Number of Arguments
8.1.3 Type Checking
8.1.4 Passing Arrays
8.1.5 Passing Single-Precision Floating Point Values (VAX Specific)
8.1.6 Passing Floating Point Values (RISC Specific)
8.1.7 Using Procedure and Function Arguments (RISC Specific)

8-1

8-1
8-2
8-2
8-3
8-3
8-3
8-3

Contents vii

8.1.8 Passing File Variables (RISC Specific) 8-3

8.2 Calling Pascal from C ... 8-4

8.2.1 Calling Pascal from C on a RISC System 8-5
8.2.2 Calling Pascal from C on a VAX System 8-7

8.3 Calling C from Pascal . 8-7

A Portable C {pee) Implementation Notes

A.1

A.2

A.3

A.4

Specifying the varargs.h Macros

Deviations

Extensions

Translation Limits

B Storage Mapping for C Data

B.1

B.2

B.3

B.4

Alignment, Size, and Value Ranges of C Data Types

Storage Mapping of C Arrays, Structures, and Unions

C Storage Classes

volatile Type Qualifier (RISC Specific)

C Porting Applications from a VAX System to a RISC System

C.1

C.2

C.3

C.4

C.5

C.6

Differences in Files

C.1.1
C.1.2
C.1.3

Executable Image Size .. .
Object Format .. .
Contents of the a.out.h File

Differences in Functions

C.2.1 The brk and getrlimit System Calls
C.2.2 Functions that Return a Pointer .. .

Attach Point for Shared Memory Segments .. .

Differences in Data Representation and Manipulation

C.4.1 Floating Point and Double Precision Data
C.4.2 NULL Pointers .. .
C.4.3 Data Alignment

Page Size

Command Differences

viii Contents

A-1

A-2

A-2

A-3

B-1

B-2

B-5

B-6

C-1

C-1
C-1
C-1

C-1

C-1
C-2

C-2

C-3

C-3
C-3
C-3

C-4

C-4

C.7

C.6.1
C.6.2
C.6.3
C.6.4

The prof Command .. .
The ranlib Command .. .
The lint Command
Commands that Read or Write Object Files

C Compiler Differences

C-4
C-4
C-4
C-5

C-5

D Kernel Debugging

D.1 RISC Kernel Debugging ... D-1

D.1.1 Using nm to Determine Where a Crash Occurred D-3
D.1.2 Debugging a RISC Kernel with dbx D-3
D.1.3 Getting a Stack Trace on Any Process D-5
D.1.4 Examining the Exception Frame D-6
D.1.5 Debugging Hung Systems D-7

D.1.5.1 Using dbx to Perform a Stack Trace D-7
D.1.5.2 Finding the Real :kernel Stack D-8
D.1.5.3 Examining Stack Frames ... D-9

D.1.6 Forcing a Panic on a System That Is Not Hung D-10
D.1.7 Forcing a Memory Dump on a DS2100 or DS3100 D-10
D.1.8 Forcing a Memory Dump on a DS5000 ... D-10
D.1.9 Forcing a Memory Dump on a DS5400 or DS5800 D-11
D.1.10 Console Commands ... D-11

D.2 VAX Kernel Debugging D-12

D.2.1 Using nm to Determine Where a Crash Occurred D-13
D.2.2 Forcing a Crash Dump ;.. D-13
D.2.3 Getting a Stack Trace on Any Process ... D-14
D.2.4 adb Command Summary .. D-15
D.2.5 adb Scripts D-17
D.2.6 Examining Stack Frames with adb D-17

Index

Examples

2-1: Makefile .. .

2-2: Shorter Makefile .. ; ;

2-3: Makefile with Macros

2-4: Makefile with Command Targets

2-5: Automatic Makefile Updating

3-1: Sample dbx Initialization File

2-17

2-17

2-18

2-19

2-20

3-17

Contents ix

3-2: Sample Editor Program

4-1: Sample ctrace Output

4-2: Tracing Certain Sections with ctrace

4-3: Basic Block and Invocation Count Output from prof

4-4: PC Sampling Output from prof .. .

4-5: Source Code of a Program to be Optimized

4-6: Unoptimized Code Output

4-7: Optimized Code Output

5-1: Using Standard 1/0 Routines .. .

5-2: Using System 1/0 Routines .. .

5-3: Multibuffered Writing to a Tape

5-4: Writing, Rewinding, and Reading a Tape

5-5: Setting Terminal Characteristics

5-6: Changing a Terminal's Special Characters

5-7: Changing a Terminal's Local Mode Word

6-1: Creating a Child and a Pipe

6-2: Redirecting stdin and stdout to a Pipe

6-3: Creating Child Processes to Run Shell Commands .. .

6-4: Ignoring a Signal .. .

6-5: Handling a Signal

6-6: Using a Signal Handler's code Argument

6-7: Sending a Signal Between Processes

6-8: Using alarm() .. .

6-9: The itimerval Structure .. .

6-10: Using setitimer and getitimer

6-11: Creating and Reading a Datagram Socket

6-12: Writing to a Datagram Socket .. .

6-13: Creating and Writing to a Stream Socket

6-14: Reading from a Stream Socket

6-15: Reading a Stream Socket Across an Internet Network

6-16: Writing a Stream Socket Across an Internet Network

6-17: A Slow Socket Writer

6-18: Using select() to Wait on a Stream Socket

x Contents

3-18

4-2

4-4

4-7

4-9

4-13

4-14

4-14

5-12

5-13

5-17

5-18

5-20

5-21

5-22

6-2

6-6

6-7

6-10

6-11

6-12

6-13

6-14

6-15

6-16

6-20

6-21

6-22

6-23

6-25

6-26

6-28

6-29

7-1: Two Ways to Generate an Audit Record ... 7-6

7-2: Using the audcntl Call to Change the Audit Control Flag 7-7

7-3: Routine to Authenticate a User .. 7-11

8-1: Passing String Data on a RISC System 8-2

8-2: Passing String Data on a VAX System

8-3: Calling a Pascal Function

8-4: Calling a Pascal Procedure

8-5: Passing a String to a Pascal Procedure (RISC Specific)

8-6: Passing a String to a Pascal Procedure (VAX Specific)

Figures

2-1: Major Compiler Phases

2-2: Compiler Phases Used by Most VAX Driver Programs

2-3: The FORTRAN Preprocessors

2-4: Compiling Multilanguage Programs .. .

2-5: Example of pc and cc Driver Control Flow .. .

4-1: Optimization Phases of the Compiler

4-2: Output From the -j Compiler Option

8-2

8-5

8-6

8-6

8-7

2-4

2-5

2-6

2-7

2-14

4-12

4-20

4-3: ucode File Optimization ... 4-21

4-4: Global Pointer Area 4-25

5-1: System 1/0 Versus Standard 1/0: File Reading 5-11

6-1: A Pipe ... 6--1

6-2: A One-Way Pipe ... 6--2

6-3: File Descriptors of Two Processes with a Pipe .. 6-4

6-4: stdout Redirected in a Parent 6-4

6-5: stdout Redirected in a Parent, and stdin Redirected in a Child 6--5

6-6: Calling popen() with date for Reading . 6--7

6-7: who_pipe.c ... 6--8

6-8: Communicating Through a Datagram Socket .. 6--19

6-9: Socket Message Queue ... 6--30

6-10: Out-of-Bounds Message ... 6--31

D-1: Kernel Stack and User Structure in Memory . D-8

D-2: Stack Frame in Memory .. D-9

Contents xi

D-3: Stack Frame in Memory

Tables

1-1: Programming Phases and ULTRIX

2-1: Compilers Available for RISC and VAX Processors

2-2: Compiler Command Input and Output File Suffixes

2-3: Linker Options

3-1: dbx Command Options

3-2: Predefined dbx Command Aliases

5-1: Character Processing Routines and Macros .. .

5-2: Standard I/0 Routines Related to Files and File Access

5-3: Standard I/0 Routines for Formatted I/0 and Character I/0

5-4: Standard I/0 Routines for Direct I/0, File Positioning, and Error Handling

5-5: General Routines

5-6: String Processing Routines .. .

5-7: Date and Time Processing Routines .. .

5-8: Standard Conformant Library Functions That Differ from C Library Functions

5-9: System I/O and Standard I/0

5-10: Headers That Define Structures Used with i o ct 1 ()

5-11: Common Terminal I/0 Modes .. .

6-1: Socket Name Structures .. .

6-2: System Calls for Datagram Socket Communication

6-3: System Calls for Stream Socket Communication .. .

7-1: Xlib Library Function Calls That Maintain the Access Control List of A Local
Worksystem Display

7-2: Security-Relevant System Calls

D-18

1-3

2-2

2-3

2-16

3-2

3-20

5-2

5-3

5-3

5-4

5-5

5-6

5-8

5-9

5-12

5-15

5-20

6-17

6-18

6-22

7-13

7-15

7-3: Security-Relevant Library Routines .. 7-16

8-1: C Argument Types . 8-4

8-2: Guidelines for Declaring Return Value Types .. 8-5

8-3: Pascal Argument Types .. 8-8

A-1: C Compiler Limitations ... A-3

B-1: C Data Type Size, Alignment, and Value Ranges B-1

B-2: Size Ranges for the Float and Double Data Types ... B-2

xii Contents

B-3: C Storage Classes .. .

D-1: System Memory Map

D-2: Stacks on RISC Systems .. .

D-3: Address Space on RISC Systems

B-5

D-1

D-2

D-2

Contents xiii

About This Manual

This guide describes the tools and methods used to write application programs on the
UL TRIX system. It gives an overview of the commands in the UL TRIX compiler
system and describes the commands used to build, debug, and optimize programs.
This guide also describes using C library routines, writing secure programs, and
calling between the C and Pascal languages.

This guide does not list the syntax and definition of the elements of each language.
The guide neither attempts to teach programmers how to write an application, nor
does it attempt to teach the concepts of C, FORTRAN, Pascal or other languages.

Audience
The audience for this manual is the application programmer or system engineer who
is already familiar with a programming language. This manual gives information
about tools and concepts particular to programming on an UL TRIX system.

Organization
Chapter 1 describes the steps in application development and introduces the tools
programmers use to develop applications.

Chapter 2 describes using the compilers and linkers provided with the UL TRIX
system. This chapter also describes using the make utility to build programs.

Chapter 3 describes debugging your program using the dbx debugger.

Chapter 4 describes the profiling and optimization facilities that are available as part
of the UL TRIX compiler system. You can use these facilities to increase the
efficiency of your programs.

Chapter 5 gives an overview of the system calls and library routines and helps
programmers decide which routines to use for a particular task. This chapter also
describes using UL TRIX routines to read from and write to files and devices.

Chapter 6 describes controlling communication between processes running on an
UL TRIX system. This chapter gives examples of using pipes, handling signals, and
using sockets.

Chapter 7 provides security guidelines for designing and writing programs.

Chapter 8 describes the coding interfaces between C and Pascal and provides
information for calling and passing arguments between those languages for both the
RISC and VAX architecture.

Appendix A describes the extensions and modifications that are supported by the cc
compiler that runs on the RISC architecture. The extensions and modifications are
differences between cc on the RISC architecture and the C language defined by
Kernighan and Ritchie.

Appendix B describes how the compiler groups C structures in storage for the RISC
and VAX architectures.

Appendix C describes the issues involved in porting an application from the VAX
architecture to the RISC architecture.

Appendix D describes how to debug the ULTRIX kernel /vmunix on the RISC and
VAX architectures.

Related Documents
See the user's guides for the individual programming languages for descriptions of
each language.

See the Guide to Developing International Software if you are writing programs for
an internationai environment.

See the Guide to Network Programming if you are writing a network application.

See the DECrpc Programming Guide if you are developing an application based on
DECrpc.

The ULTRIX Reference Pages contain reference information for the commands and
tools that are described in this manual. The reference pages are available in printed
form and online.

To view reference pages online, use the man or what is commands.

The -f option to the man or what is commands allows you to view a one-line
summary of the specified topic name. Occasionally, the same topic name appears in
more than one section of the ULTRIX Reference Pages. This situation occurs, for
example, when a command and a system call have the same name. Section 1 of the
reference pages describes using the command, while Section 2 describes using the
system call. Using the - f option, you can determine where to look to read about
each occurrence of a topic. For example, the following man command lists all
occurrences of the chmod topic:

% man -f chmod
chmod (1)
chmod, fchmod (2)

- change file mode
- change mode of file

If you want to read only the information about the system call, specify Section 2 of
the reference pages on the man command line. For example, the following command
displays the chmod(2) reference page for the chmod system call and not its Section 1
(command) counterpart:

% man 2 chmod

To read general information about a group of commands or routines, display the
intro reference page for a particular section. For example, to read information
about the math library, display the intro(3m) reference page by entering the
following command:

% man 3m intro

xvi About This Manual

Conventions
%

user input

system output

UPPERCASE
lowercase

cat(l)

RISC Specific

VAX Specific

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to represent
this prompt.

A number sign is the default superuser prompt.

This bold typeface is used in interactive examples to indicate typed
user input.

This typeface is used in interactive examples to indicate system
output. It is also used in code examples and other screen displays. In
text, this typeface indicates the exact name of a command, option,
partition, pathname, directory, or file.

The UL TRIX system differentiates between lowercase and uppercase
characters. Literal strings that appear in text, examples, syntax
descriptions, and function definitions must be typed exactly as shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a reference
to cat(l) indicates that you can find the material on the cat
command in Section 1 of the reference pages.

Some information in this manual is specific to systems that run on the
RISC architecture. This information is labeled RISC specific
throughout the manual.

Some information in this manual is specific to systems that run on the
VAX architecture. This information is labeled VAX specific
throughout the manual.

About This Manual xvii

Introduction 1

This manual contains information about how to create and maintain programs and
applications on an ULTRIX system. Use this manual in conjunction with the
manuals in the documentation set for your programming language and with other
manuals in the UL TRIX documentation set that contain detailed information about
topics only summarized here.

The following topics are covered in this manual: ·

• Compiling, linking, running, and building programs

• Library routines and system calls

• Programming language interfaces

• Using object files and libraries

• Debugging tools

• Checking programs and improving performance

• Interprocess communication

• Messages and error handling

• Security guidelines

In some cases, all the relevant information you need is included in this manual. In
other cases, a section contains overview information and then refers to other manuals
that describe the topic in detail.

This manual applies to UL TRIX operating systems running on both the RISC and
VAX platforms. You can assume that the environments behave in the same way
unless differences are identified in the manual.

This chapter describes the phases you go through in developing an application and
tells you which UL TRIX tools to use during those phases. The chapter also discusses
the following topics:

• Specifications and design considerations

• Major software development tools

• Source file control

• Program installation tools

1.1 Application Development Phases
There are five major phases in developing a new application:

• Requirements and specifications

• Design

• Implementation

• Testing

• Installation and maintenance

The first phase involves outlining the requirements and specifications for the
application. You need to answer the following types of questions:

• What tasks will the application perform?

• In what kind of environment will the application run?

• Who will be using the application?

• Does the application need to be portable?

For example, you need to know whether users will have workstations or window
terminals or whether they will be working on character-cell terminals. If you are
writing an application that will run on different operating systems or different
hardware platforms, should your application or program be POSIX conformant? Is
your application going to be used in several countries and, if so, do you need to
follow internationalization guidelines? Are there security issues that you need to be
concerned about? All these questions and more need to be answered during the
requirements and specifications phase.

During this phase, you also need to consider how you plan to do your development
work. For example, what major tools will you use for linking, debugging,
implementing, and testing? Do you plan to call routines and use common files? Do
you need to use a source control utility? Which installation utilities will people use
to install your application?

The second phase involves de'>lgn. During this phase, you design the flow of the
program, sketching out the various functions and how they will fit together. You can
also determine whether you can use existing routines, system calls, or common files
to perform various functions in the application.

During the implementation phase you set up your programming environment and
choose the tools you will use to create and modify the source files. Other tasks you
will do include analyzing source code and building the application.

The testing phase involves testing the application, debugging the code, and analyzing
performance.

The final phase includes making the program available for installation.

The UL TRIX operating system contains a number of tools and system features to
help you with each phase. Table 1-1 shows which ULTRIX tools and features
address the programming needs in each phase.

1-2 Introduction

Table 1-1: Programming Phases and ULTRIX

Phase Tools/Features

Requirements and specifications Standards

Design

Implementation

Testing

Maintaining

Window Environments
Internationalization
Security

Routines
Libraries
Common Files

SCCS

vi, GNU emacs, ex, ed
lint, grep, cxref
trace, ctrace
sed, time
dbx,dxdb
make, compilers
threads

di ff
shell scripts
pixie, prof, gprof

setld
tar, pxtar

As you can see from the table, in many instances an UL TRIX system offers more
than one tool to do a job. Deciding which tool to use, as well as which programming
language, is your choice.

1.2 Specification and Design Considerations
When designing an application, you need to make certain decisions that depend on
the nature of the application. UL TRIX provides a number of features and tools to
help you create applications that are, for example, portable, internationalized, or
window-oriented.

One of the primary design considerations concerns adhering to UNIX-environment
standards and portability. If you plan to write an application to run on an UL TRIX
system well as on other UNIX-based operating systems, you probably want to
consider following X/Open Portability guidelines and POSIX standards. You might
also want to avoid using extensions to the ANSI standards that apply to the
programming language you are using.

Another consideration is the terminal environment in which your application will be
used. If end users have workstations or window terminals, you might want to design
your application to use window displays and menus for the interface rather than
command lines. The UL TRIX Worksystem Software contains a toolkit, a User
Interface Language, and a window manager to help you create window interfaces for
your application.

You might also need to design your application so that it can be used in a variety of
countries. The UL TRIX operating system contains an internationalization package
that provides tools and functions to help you write software to be used by people
working in different natural languages.

Introduction 1-3

1.2.1 Standards

Use of programming standards enhances the portability of programs and applications.
Standard-compliant code is independent of the hardware or even the operating system
on which the program runs. Writing programs according to portability standards
makes it easy for users to move between systems without major retraining. Some
standards include internationalization concepts as part of program portability.

The following are the primary standards in the UNIX programming environment:

• ANSI

• ISO

• POSIX

• X/Open

The various ANSI standards apply to specific programming tools such as
programming languages, networks and communications protocols, character coding,
and database systems. Information on conformance and extensions to a particular
ANSI standard appears in the documentation set for the particular language, network
system, or database system.

The UL TRIX operating system is conformant with the ISO, POSIX, and X/Open
standards. For the most part, these standards apply to programs coded in C.

The UL TRIX system provides tools that allow you to write programs that conform to
the POSIX and X/Open standards. Writing standard conformant programs involves
the following:

• Working in the System V shell

• Using standard-conformant header files and the standard-conformant function
library

• Compiling your program in the standard-conformant environment

The System V shell (sh5) contains features that are implemented to follow the
POSIX standard. You change your login shell to the System V shell by using the
chsh command. This command modifies your entry in the system password file.
The Big Gray Book: The Next Step with ULTRIX has an example of a shell script
that invokes the System V shell. (In a distributed environment, you might need to
have your system administrator change your entry in the distributed password
database.)

The ULTRIX header files contain POSIX- and X/Open-conformant information.
These definitions are conditional and depend on the definition of two preprocessor
symbols. When the symbols are defined correctly, POSIX- or X/Open-conformant
header information is included in your program. (Otherwise, the default UL TRIX
header information is included.)

ULTRIX provides the libcP function library, which conforms to the POSIX and
X/Open standards. To use the standard conformant library, you must link with it as
well as to the Berkeley Software Distribution (BSD) library, libc. Some functions
differ between the two libraries. (For information on the differences, see Table 5-8.)

For your program to include standard conformant header information and functions
from the standard conformant function library, you must compile your program in the
standard environment. For information on compiling in the standard environment,
see Section 2.1.4

1-4 Introduction

If your standard-conformant program fails to compile, you need to check your
programming environment to make sure that the POSIX function library is installed
on your system. Lack of the POSIX function library will cause your program not to
compile.

Later chapters contain more information on creating POSIX- and X/Open-conformant
programs. For details about POSIX on the UL TRIX operating system, see the PO SIX
Conformance Document. Information on the POSIX standard is contained in the
IEEE Standard Portable Operating System Interface for Computer Environments,
published by the Institute of Electrical and Electronics Engineers, Inc. For detailed
guidelines that meet the X/Open portability and connectivity objectives, see the
X/Open Portability Guide documentation set.

1.2.2 Window Environments
The ULTRIX Worksystem Software (UWS) environment includes DECwindows
applications, the X User Interface (XUI), X programming libraries, and guidelines for
creating applications with XUI-compliant interfaces. The XUI provides a rich
development environment for creating window-oriented applications.

The XUI allows you to develop applications that have simple, consistent, graphics­
oriented interfaces. The consistency feature is important because it enables users to
transfer knowledge gained from using one application to another, thus reducing the
amount of learning time required and increasing their productivity.

The two major components of the graphics environment are the Xlib and XUI
Toolkit programming libraries. Xlib supplies low-level routines for performing basic
graphic and window functions. The XUI Toolkit library contains high-level routines
for creating and managing user interface objects such as menus, scroll bars, and
buttons. Typically, applications call routines from both libraries.

Using XUI Toolkit routines simplifies the task of creating a window interface. For
example, creating a menu with XVI requires one call to a single XUI Toolkit routine.
Creating the same menu using Xlib would require many more calls and lines of code.
Using XUI Toolkit routines helps ensure that your application interface conforms to
the XUI style, which is designed to make applications easy to learn and use.

The XUI Toolkit also includes the XUI User Interface Language (UIL) compiler and
XUI Resource Manager (DRM) routines, which enable you to create an entire
interface with one library call. The UIL and DRM let you separate form from
function so that you can specify and modify the interface without having to
recompile the entire application.

Using XUI programming library routines, you can write applications that create and
manage windows to display output and accept input. Generally, the user interface for
such an application consists of a series of windows. XUI programming library
routines enable you to organize and manage a hierarchy of windows.

For an overview of UWS, see the Introduction to the ULTRIX Worksystem Software
Environment. The Guide to Writing Applications Using XU/ Toolkit Widgets and the
Guide to the XU/ Toolkit: C Language Binding focus on creating window
applications.

Introduction 1-5

1.2.3 Internationalization

An internationalized application allows users to interact with that application in their
own language. Such applications are also designed to reflect the culture of the users'
region.

Conventions for representing data can vary from one country to another and from
region to region within a single country. Data such as number representation,
currency symbols, and date representation are different, depending upon the local
culture. For example, if your application displays or accepts monetary data, you
want your users to be able to read or enter that data according to their local customs.
The sum of five thousand monetary units would appear differently in different
countries:

• $5,000 (United States dollars)

• L. 5.000 (Italian lire)

• 5,000 Dr (Greek drachmae)

To meet these internationalization requirements, you need to create applications that
make no assumptions about language, locals customs, or coded character sets. Data
specific to the local culture is held separate from the program logic. You use run­
time facilities to bind your application to the appropriate language message text.

The UL TRIX internationalization package consists of the following tools and files:

• Message catalogs and associated tools

• A special set of library routines

• Internationalized interlace definitions of standard C library routines

• An announcement mechanism

• Language support databases

• An international compiler for each database

Another consideration for multicultural applications is international keyboard support.
In the international environment, you often use characters that your local keyboard
might not support. You can create characters that do not exist as standard keys on
your keyboard by using compose sequences. (A compose sequence is a series of
keystrokes that maps to a single character.) Using these sequences, you can create
any character from the character set that your terminal or DECterm session (assuming
you are using ULTRIX Worksystem Software) currently has available.

For details about the UL TRIX internationalization package, see the Guide to
Developing International Software.

1.3 Major Software Development Tools
ULTRIX is compatible with a number of higher-level languages and includes tools
for linking and debugging programs.

1.3.1 Languages That Run in the UL TRIX Environment

The chief language that the UL TRIX operating system supports is C. Ii1 fact, a C
language compiler is bundled with the UL TRIX operating system. Languages that
the UL TRIX operating system supports include the following:

1-6 Introduction

• UL TRIX C (bundled with UL TRIX)

• DECC

• VAX C for ULTRIX

• DEC Fortran

• VAX FORTRAN for ULTRIX

• Pascal for RISC

Generally, programs written in languages that run on VAX hardware are compatible
between the UL TRIX and VMS systems, provided they contain no system-specific
dependencies.

Other languages available through Digital include Ada, COBOL, and Lisp.

Table 2-1 lists the compilers, their associated commands, and their respective
platforms.

1.3.2 Linkers

In most instances, you can use the compiler command to link separate program object
files into a single executable program.

As part of the compilation process, most compilers call the linker, ld, to combine
one or more object files into a single program object file. In addition, the linker
resolves external references, searches libraries, and performs all other processing
required to create object files that are ready for execution. The resulting object
module can either be executed or can serve as input for a separate l d run. (You can
invoke the linker separately from the compiler by issuing the ld command.)

UL TRIX allows you to create applications composed of source program modules
written in different languages. In these instances, you compile each program module
separately and then link the compiled modules together in a separate step.

See Chapter 2 as well as the documentation sets for the individual languages for
detailed information on compiling and linking programs. For information on the
ld(1) command, see the ULTRIX Reference Pages.

1.3.3 Debuggers

The primary debugging tool on the UL TRIX operating system is dbx. In the
window environment, you use the dxdb debugger, which is part of the ULTRIX
Worksystem Software product. In addition, ULTRIX provides ct race and lint.
The ctrace utility is a C program debugger; lint is a tool for checking syntax in
C programs.

Other debugging tools include error, which inserts error messages from a compiler
into the source files at each point where an error occurs; gcore, which creates a core
image file of a running process; and trace, which traces the system calls made by a
command.

The dbx debugger, the most comprehensive debugging tool in a nonwindow
environment, is discussed in detail in this manual. For information on dxdb, see the
Guide to the dxdb Debugger in the ULTRIX Worksystem Software documentation
set. The other tools are discussed in this manual and in the ULTRIX Ref ere nee
Pages.

Introduction 1-7

1.4 Source File Control
An integral part of creating a software application is managing the development and
maintenance processes. The UL TRIX operating system has the SCCS (Source Code
Control System) utility to help you store application modules in a directory, track
changes made to those module files, and monitor user access to the files.

SCCS on the UL TRIX operating system provides support similar to SCCS utilities
on other UNIX systems. In addition, ULTRIX has an secs preprocessor, which
provides an interface to the more traditional SCCS commands.

SCCS maintains a record of changes made to files stored using the utility. The
record can include information on why the changes were made, who made them, and
when they were made. You can use SCCS to recover previous versions of files as
well as maintain different versions simultaneously. SCCS is useful for application
project management because it does not allow two people to modify the same file
simultaneously.

The secs preprocessor provides a user-friendly interface for the SCCS user. Some
of the commands are intuitive; others allow you to combine two SCCS functions in a
single s cc s command.

To use SCCS, you first need to create SCCS directories and files. If you are
designing a large application with several developers, it might be advisable to assign
a project librarian to set up the directory and files, and then be responsible for
maintaining them. The project librarian "owns" all the files in the directory,
regardless of who created them, and therefore can manipulate the files at any time
without needing superuser privileges.

Once you have set up the SCCS directory and have created SCCS files, you can use
SCCS commands to manipulate those files in the following ways:

• Retrieve files for compilation

Using the secs get command, you can retrieve files from the SCCS directory
to compile your application. Although you can specify an option to get a
writable copy of the specified file, it is best to use the secs edit command for
making modifications.

• Retrieve files for editing

You use the secs edit command to retrieve files so you can modify them.
This action reserves the files so that no one else can modify them while you are
working on them. Once the files are in your own directory, you can use any
available editor to make your changes.

• Merge changes into the stored SCCS file

After you have made all the changes you want to the file, you use the secs
delta command to merge those changes into the SCCS-stored file. SCCS
prompts you for a comment to store with the changes. You use this comment to
describe the changes you made to the file.

• Get information about your SCCS files

1--8 Introduction

Several secs commands give you information about SCCS files. The secs
info command tells you which files are currently being edited and the names of
the users who have retrieved the files for editing. The secs check command
is almost identical to secs info, however, it does not print a message if
nothing is being edited. It returns a nonzero exit status if anything is being
edited. You can use this status in an install entry in a makefile to abort the

operation if any file is reserved for editing.

The secs delta 'secs tell' command is also similar to the secs
info command, except that it displays only the names of the files being edited.
The secs what command tells you which version of a program is being run on
your system.

SCCS is helpful in creating new releases, restoring old versions, reverting to older
versions, and selectively deleting older versions. You can also use the utility to audit
changes, recover a corrupted edit file, and maintain different versions of the same
application.

For more information on using SCCS and the s cc s command, see the Guide to the
Source Code Control System and the sccs(l) reference page.

1.5 Program Installation Tools
Once you have created your program or application, you might want to kit it so that
it can be distributed easily to other users. The ULTRIX operating system has several
utilities that you can use to install, remove, combine, validate, and configure
programs and applications.

Software for UL TRIX systems consists of a hierarchical group of files and
directories. If your application or program consists of more than one file, or even of
more than one directory, you need to determine how the files and directories are
grouped within the hierarchy. The set l d installation process preserves the integrity
of each product's hierarchy when it is transferred from the development system to a
production system (that is, when the product is installed). The kitting process
includes grouping the component files for the product into subsets, some of which
can be installed at the option of the system administrator.

Using the setld utility and its related tools to install and manage software products
on UL TRIX systems provides the following benefits:

• Installation security

The setld utility verifies each subset immediately after it is transferred from
one system to another to make sure that the transfer was successful. Each subset
is recoverable in case you need to reinstall one that has been damaged or deleted.

• Flexibility

With the setld utility, you can let users choose which optional subsets to
install. Also, users have tl~e option of deleting subsets and then reinstalling them
later, as needed. You might use this feature to provide multiple language support
for your application or to allow users to select among optional features of your
application.

• Uniformity

The setld utility is an integral part of the ULTRIX installation
implementations. Using this utility to prepare and install software kits for your
application enhances compatibility with future UL TRIX installation architecture.
In addition, kits produced with setld can be loaded on a server machine for
installation over the network using the Remote Installation Services (RIS) utility
or the Diskless Management Services (DMS) utility.

Introduction 1-9

Using setld, you can load your application on any of the following distribution
media for installation on other systems:

• Data disks, such as RA60 disk packs or CDROM optical discs

• TK50 tapes

• MT9 tapes

1.5.1 Utilities for Creating setld-Compatible Kits

In order for people to use the setld utility to install your application, you must
create your kit so that it is compatible with set l d. There are two UL TRIX utilities
that you use to create such kits:

• newinv

The newinv utility processes a master inventory input file. The output of the
newinv utility is a file that has the current master inventory of the software
product. This file contains a list of all the files that make up your application and
tells which subset each file belongs to.

• kits

The kits utility produces subset images, inventories, and control files from the
input files that have been transferred from your source directory. The utility also
generates data files that make up the media master in the output directory.

Information about using the newinv and the kits utilities is located in the Guide
to Preparing Software for Distribution on ULTRIX Systems.

1.5.2 Additional Installation Options

If you want to have your program or application installed remotely or into a diskless
environment, you need to plan the file configuration up front. The UL TRIX operating
system contains the Remote Installation Services (RIS) utility to enable users to
remotely install software and the Diskless Management Services (DMS) utility to
enable users on a client machine to use software installed in a special DMS area on a
server machine.

The RIS utility performs remote installation services. These services allow users to
install software on a client machine through the TCP/IP local network. Both the
server and the client can be either a RISC or a VAX machine running the UL TRIX
operating system.

The DMS utility allows users to install products into a diskless management services
area on a server machine and register diskless clients. Once a client machine is
registered, users on that client can access the software on the server machine without
having it installed on the client machine. Both the server and client can be either a
RISC or a VAX machine running the UL TRIX operating system.

If you want to prepare your program or application for use with either RIS or DMS,
refer to the documentation on each utility. For information on RIS, see the Guide to
Remote Installation Services; for information on DMS, see the Guide to Diskless
Management Services.

1-10 Introduction

Compiling, Linking, and Building Programs 2

This chapter describes the components of the compiler system, how to use them, and
how to build programs using an automated method. This chapter discusses the
following topics:

• Compiler commands, sometimes called driver programs, examine the command
line for options and files, and pass the appropriate options and files to the various
components (such as preprocessors and compilers). Thus, a driver program
controls which of the other components are run.

• Preprocessors may be run before the appropriate compiler. For example, the C
language preprocessor is the cpp preprocessor.

• Compilers (or the assembler) read one or more source files and create an object
module (usually a temporary file) for the linker.

• The Archiver stores either object (coff) files in an archive object library or ucode
files in an archive ucode library.

• The Linker (link editor) reads one or more object files and creates the executable
program.

• You can build an application in an automated way by creating makefiles that you
process using the make command.

You create and modify source programs using the text editor of your choice, such as
vi.

2.1 Compiling Using Driver Programs
Each language compiler has its associated compiler command (such as cc, c8 9, or
f7 7) , which in tum invokes the appropriate driver program. When you type the
appropriate command followed by the appropriate options and at least one file name,
the driver program examines the specified options and the suffix of each file name to
determine which preprocessor or compiler (or the assembler or linker) is to process
each file.

For instance, a file named main. c is assumed to be a C language program to be
processed by the C language preprocessor (cpp) and C compiler; a file named
test . p is similarly assumed to be a Pascal program.

In the UL TRIX programming environment, a single compiler command can compile
and link the source file to create an executable program. In addition, if multiple
source files have been specified, files may be passed to other compilers before
linking. When you type a compiler command, the driver program can perform
multiple actions:

• Based on the file name suffix of each file, the driver program decides whether to
call the appropriate preprocessor, compiler (or assembler), or linker. You can
specify command options to prevent linking or to prevent or request
preprocessing.

• The default behavior is that source files are automatically linked together if
compilation (or assembly) is successful. You can specify the -c option to prevent
linking (and thus prevent creation of the executable program) and retain the . o
object file for a subsequent link operation.

• The linker creates an executable program file with a default name of a. out.
You can use the -o name option to specify a name other than a. out.

• In most cases, to run an executable program in your current working directory,
you only need to type its file name. To run the program a. out located in your
current directory (if your current directory is in your path), type:

% a.out

If the executable program is not in a directory in your path, type the directory
path before the file name or type:

% ./a.out

The compiler commands invoke the driver programs that compile, optimize, generate
object code, and link your programs. Each driver program knows the appropriate
libraries associated with the main program (most include libc. a) and passes those
libraries to the linker.

The linker is usually accessed using one of the compiler commands instead of the ld
command, even if you need to link only object files.

Unlike the compiler commands, the assembler (as) can only assemble a single file,
which is assumed to contain assembler code (the suffix is ignored). The as
command does not automatically link the assembled object file. Thus, if you use the
assembler, you need to use a separate ld command.

Table 2-1 shows the compilers available for use on UL TRIX systems, whether they
are part of the UL TRIX operating system, and on which platforms they apply. (For a
more recent list of available products, contact a Digital sales representative.)

Table 2-1: Compilers Available for RISC and VAX Processors

Compiler
Command

as
cob
cc
c89
f77
fort
lisp b

pc

Table note:

Language

Assembly
COBOL
C (pee)
C (DEC C)
FORTRAN
FORTRAN
Lisp
Pascal

Included with
UL TRIX Kit for:

RISC, VAX

RISC, VAX
Risca

VAX

Layered
Product for:

RISC

RISC
VAX
RISC
RISC

a. DEC C (c8 9 command) currently (Version 4.2) must be separately ordered (for
media cost), but is included in the UL TRIX license. It provides ANSI C
compatibility.

2-2 Compiling, Linking, and Building Programs

b. Lisp uses the lisp command to start up the Lisp environment, allowing you to
use other Lisp commands to compile files and so forth. Lisp does not pass
information to cc and does not invoke the assembler.

2.1.1 Compiler Command Input and Output Files
Most driver programs recognize an input file by its filename suffix. Table 2-2 lists
the valid suffixes for languages available for the RISC and VAX platforms.

Table 2-2: Compiler Command Input and Output File Suffixes

Suffix

. a

. c

. e

.f, .for, .F, .FOR

. o

. p

. r

. s

.b

. cob, .cbl, .CBL

.i

.lsp, .lisp

. u

Description

Object archive library .

C source file .

e fl source file .

FORTRAN source file.

Object file .

Pascal source file .

rat for source file .

Assembly source file .

RISC Specific

ucode object library. Not all RISC compilers can generate ucode
files .

COBOL source file.

An intermediate file created by preprocessor execution (before
compilation) in the source language of the processing driver. For
example:

pc -c source.i

In this case, the pc command assumes that source. i contains
Pascal source code.

Lisp source file .

ucode object file. Not all RISC compilers can generate ucode files .

2.1.2 Components of the Compiler System

When you compile a program, you usually select one or more options that affect
debugging, optimization, and profiling facilities, as well as the names assigned to
output files.

Figure 2-1 illustrates the relationship between the major components of the compiler
system and their primary input and output files for RISC driver programs and the
fort command driver on the VAX platform. (Figure 4-1 provides additional detail
on the use of RISC platform ucode files and optimization.)

Compiling, Linking, and Building Programs 2-3

Figure 2-1: Major Compiler Phases

Source files

ITJW FORTRAN rri .ior T Preprocessors

1 ~
· r .FOR

c
Assembler Preprocessor

(cpp)

l
Front Ends

l -c

Code Generator ~
and Optimization

~Objectfile
_.J ... l .__/
Linker ~~~rchive

· library

~
~Linked

executable
file

ZK-0277U-R

Figure 2-2 illustrates the relationship between the major components of the compiler
system and their primary inputs and outputs for all VAX driver programs except the
fort command driv~r.

2-4 Compiling, Linking, and Building Programs

Figure 2-2: Compiler Phases Used by Most VAX Driver Programs

Assembler F?='I ~
file~

Archive r==:::==i 11
library~

c
Preprocessor

(cpp)

I
Front End

f-o
Peephole
Optimizer

(c2)

•l
Assembler

J
Linker

~Sourcefile

~_)

-S
~
~Assembler file

-S
~

F?='I Optimized
{__::__I assembler file

-c
~

i===:==i Assembled
~objectfile

~ Linked
~ executable
~file

ZK-0177U-R

Note that FORTRAN on both the RISC and VAX platforms use preprocessors that
the other languages do not use.

Figure 2-3 illustrates the relationship of the FORTRAN preprocessors.

Compiling, Linking, and Building Programs 2-5

Figure 2-3: The FORTRAN Preprocessors

c
Preprocessor

(cpp)

FORTRAN
Front End

ZK-0062U-R

Some options have defaults. For example, the default name for object files is
filename.o

The specified filename is the name of the source file without its filename suffix.
The default name for an executable program file is a. out.

The following example shows compilation of two C source files, main. c and
sub. c, that generates an executable program file. The following command invokes
the compiler:

% cc main.c sub.c

The C compiler compiles the source files (main. c and sub. c), creates one or
multiple object modules (depending on the compiler), which are deleted after linking,
and a single executable program, a. out.

2.1.3 Compiling Multilanguage Programs

For a very large application, it may be easiest to perform incremental compilation
and subsequent linking of the application. When the source language of the main
program differs from that of a subprogram and neither language is C, you may need

2-6 Compiling, Linking, and Building Programs

to compile each program module separately with its respective driver and then link
them in a separate step. In either case, you can create objects suitable for linking by
specifying the - c option, which stops the driver after it creates the object file. For
example:

% cc -c main.c more.c
% pc -c rest.p
% pc main.o more.o rest.o

Figure 2-4 illustrates the compilation control flow for these commands.

Figure 2-4: Compiling Multilanguage Programs

L:J
l

rest.p

l
Preprocessor Preprocessor

l l
C Front End Pascal Front End

T I
Code Generator Code Generator

I I
Assembler Assembler

i- l
L:J

main.o more.o rest.o

ZK-0063U-R

Most language driver programs pass information to cc, which, after processing,
passes information to 1 d. When one of the modules to be compiled is a C program,
you can usually use the driver command of the other language to compile and link
both modules. In most cases, if the driver command invokes cc, such as the
FORTRAN and Pascal compilers, use the command driver associated with that
language to make sure the correct compiler is invoked and that the correct libraries
are passed to the linker.

For instance, if you have a FORTRAN main program main. f that calls a C
function contained in syscall. c, you could use the f77 (RISC) command or the

Compiling, Linking, and Building Programs 2-7

fort (VAX) command to compile and link both modules. For example:

% £77 main.£ syscall.c

2.1.4 Compiling in the POSIX or X/Open Environment

As mentioned in Chapter 1, the UL TRIX system allows you to write programs that
conform to the POSIX or X/Open standards. When you write standards-conformant
programs, you must compile your program in the POSIX or X/Open programming
environment. You can compile your program in one of these environments using one
of two methods:

• Set an environment variable and preprocessor symbols before you issue the cc or
c89 command

• Set the environment variable and preprocessor symbols on the cc or c 8 9
command line.

Follow these steps to set the environment variable and preprocessor symbols before
you issue the cc or c8 9 command:

1. Define the PROG_ENV variable. For example:

% PROG_ENV=POSIX; export PROG_ENV

You must set the PROG_ENV variable to POSIX when you write POSIX- or
X/Open-conformant programs.

2. Create a local header file that defines the the _POSIX_SOURCE or
_XOPEN_SOURCE preprocessor symbol. (You can also define the preprocessor
symbols directly in your source file.)

Define only the _POSIX_SOURCE symbol if you are writing POSIX-conformant
programs. Define both _POSIX_SOURCE and _XOPEN_SOURCE if you are
writing X/Open-conformant programs.

The following example shows a local header file that defines the
_POSIX_SOURCE and _XOPEN_SOURCE preprocessor symbols:

#define POSIX SOURCE
#define -XOPEN-SOURCE

- -

3. Include the local header file in your source program. (If you define the
preprocessor symbols directly in your source file, skip this step.) Place the
include directive for the local header file before any include directive for an
UL TRIX header file.

For example, if you name the local header file standard head. h, use the
following directive in your source program: -

include "standard head.h"
include "stdio.h"

Be sure to include the local header file in each source file for your program.

4. Compile your program using the cc or c8 9 command.

For example, suppose you are writing an X/Open conformant program and your
program consists of three modules named main. c, more. c, and rest. c. To

2-8 Compiling, Linking, and Building Programs

compile your program, issue the following command:
% cc main.c more.c rest.c

When you compile a program in the POSIX environment and the
_POSIX_SOURCE and _XOPEN_SOURCE symbols are defined, the cpp or
cpp 8 9 preprocessor includes X/Open conformant header information in your
program. The ld linker includes standard conformant functions in your program
image.

You can define the _POSIX_SOURCE or _XOPEN_SOURCE symbol and the
PROG_ENV variable on the cc or c89 command line, using the -D and -Y
command options. These options allow you to avoid modifying source code to
define a preprocessor symbol and issuing commands to define the PROG_ENV
variable. The following example uses cc command options to define
_POSIX_SOURCE and PROG_ENV:

% cc -D_POSIX_SOURCE -YPOSIX main.c more.c rest.c

In this example, the -D option defines the _POSIX_SOURCE symbol to the value 1.
The -Y option sets the programming environment to POSIX. These definitions are in
effect only during the execution of the cc command. For more information on the
-D and -Y options, see the cc(l) and c8 9(1) reference pages.

2.1.5 Using error with Compiler Driver Programs

When the compiler issues a diagnostic message indicating that your source code
contains an error, you might want to see the error displayed beside the source line
that caused the error. You can use the error command to take errors from the cc
command and insert those messages into your source file at the point the error
occurred. In addition to the cc command, error supports as, ccom, cpp, f77,
ld, lint, make, pc, and pi.

You normally run the error command with the language processor connected
through a pipe to its standard input. Some language processors write error messages
to standard output; others write messages to standard error. To be sure error message
are passed to error, pipe both standard output and standard error into the error
command. If an error message refers to more than one line in a source file, error
duplicates the messages and inserts it before each appropriate line.

The error command has the following syntax:

[language_processor I& J error [options J

For complete information on the options to the error command, see error(l) in
the ULTRIX Reference Pages.

The following example attempts to use the cc command to compile a program
named sample. c. The output from cc is sent to the error command.

% cc samp1e.c I& error

2 non specific errors follow
[unknown] ese if ((tmp = getenv("TEXT")) != 0)
[unknown] ese if ((tmp = getenv("TEXT")) != 0)
1 file contains errors "sample.c" (1)

File "sample.c" has 2 error.
2 of these errors can be inserted into the file.

You touched file(s): "sample.c"

Compiling, Linking, and Building Programs 2-9

The error command inserts the error message as a comment in the source file. The
comment has the following format:

/*### [error message text] %%%*/

Editing sample. c and searching for"/*###" reveals the following error:

str[O]=' '
if(argc > 1)

strncpy(str,*++argv,MAX);
/*###43 [cc] Error: syntax error%%%*/
/*###43 [cc] Error: ese undefined%%%*/

ese if ((tmp = getenv ("TEXT")) ! = 0)
strncpy(str,tmp,MAX);

In this case, the source code line flagged by the error messages contains an ''else''
clause that is missing a letter.

2.2 Using the C Preprocessor
The C preprocessor (cpp) is invoked by default for . c and . p files by most driver
programs. With FORTRAN, each file with a . F suffix causes cpp to be
automatically invoked for that file. For . f, . for, and . FOR files, cpp is not
automatically invoked when used with the fort (VAX) or f77 (RISC) command.
Except for the assembler, most driver commands allow you to invoke cpp by using
the - cpp option on the driver command line.

If you use the c 8 9 command, the C preprocessor is cpp 8 9, which can be separately
invoked.

2.2.1 Including Common Definition Files

When you write programs, you often have common definition files that you share
among a program's modules. These files usually define known constants, declare
types (routines types or data types, including data structures), and declare function
prototypes (such as library functions or system services). Definition files, called
#include or header files in the C programming language, let you share common
information between files in a program. These header files typically have a . h suffix.

Most supported languages allow you to include these files in your program's source
code using the C preprocessor, but if a header file contains C code, include it only
from a C language program.

If you intend to debug your program using the dbx debugger, do not place
executable code in an include file. The debugger recognizes an include file as one
line of source code; none of the source lines in the file appears during the debugging
session.

To specify an include file in your program, begin the #include directive in column
1 of your source file. There are two forms of the #include directive, where the
file to be included is specified using double quotation marks or angle brackets, as
follows:

#include "file]"
#include <file2>

Each file name listed in this manner indicates the name of the include file. Because
the name of the first include file is in double quotation marks, the C preprocessor

2-10 Compiling, Linking, and Building Programs

searches for them first in the directory where the source file is located and then
searches the default directory, /usr/include. Because the names of the next
include file is enclosed in angle brackets, the C preprocessor searches for them only
in the default directory, I us r I include. You can specify the pathname before the
filename in the #include directive.

You can also use the -Idir option to specify additional pathnames (directories) to
be searched by the C preprocessor for #include files. The C preprocessor searches
first in the directory where the source file resides, followed by the specified pathname
dir, and then the standard directory /usr I include . For most compiler
commands, if di r is omitted, the standard directory I us r I include is not
searched. The c89 driver allows the -Idir form as well as the form -I dir (a
space between the -I and dir) for POSIX compatibility.

If you want to prevent the c8 9 driver from searching the /usr I include directory,
you must specify the - I option either directly before another option or at the end of
the command line. When the c 8 9 driver sees - I on the command line followed by
a space and then a hyphen (-) or the end of the line, the driver interprets the option as
-I (directory /usr I include is not searched). If the characters following are
neither a hyphen nor the end of the line, c 8 9 interprets those characters as the
additional pathname to search, di r.

2.2.2 Setting Up Shareable Include Files in RISC Programs

For the RISC architecture, C, Pascal, FORTRAN, and assembly source code can
reside in the same #include files and then can be conditionally included in
programs as required. To set up a shareable include file, create a . h file and
conditionalize the respective code as follows:

#ifdef LANGUAGE C

#endif
#if def LANGUAGE PASCAL

#endif
#ifdef LANGUAGE FORTRAN

#endif
#ifdef LANGUAGE ASSEMBLY

#endif

2.3 Creating Archive Libraries
An archive library is a file that contains one or more routines in object (. o) or ucode
(. u) file format. (Only RISC systems support the ucode file format and not all RISC
compilers produce ucode files.) When a program calls an object or ucode file not
explicitly included in the program, the linker looks for that object in an archive
library. The linker then loads only that object (not the whole library), and links it

Compiling, Linking, and Building Programs 2-11

with the calling program. For more information about linking with archive libraries,
see Section 2.4.3.

To create an archive library, you must first create object files or ucode files. Use a
compiler command to create object files from your source file. For example, the
following cc command creates an object file from the source file main. c:

% cc -c -o main.o main.c

To create a ucode file, use a compiler command similar to the following:

% cc -j main.c

This command creates a file named main. u.

Use the ar archiver to create and maintain archive libraries that contain your object
or ucode files. The ar archiver performs the following tasks:

• Copies new files into the archive library

• Replaces existing files in the library

• Moves files within the library

• Extracts individual files from the library into individual object or ucode files

• Displays information about files in the archive library

To execute the ar command, use the following syntax:

ar options [posname J archive file ...

You name the archive you want created or modified in the archive argument. The
f i 1 e argument names the object or ucode files you want the archiver to use. You
can name a number of object or ucode files.

When you are inserting or moving files in the archive, you can determine their
position using the posname argument. In the posname argument, you name an
existing file in the archive. You then use command options to specify adding a file
before or after the file you specify in posname.

The following shows an example of using the ar command:

% ar -r libfft.a main.o

This command specifies adding the main. o file to the end of the libfft. a
archive.

You should also run ranlib on a archive library to add a table of contents for
linking purposes, such as:

% ranlib libfft.a

For more information about the ar and ranlib commands, including descriptions
of the options you can use, see ar(l) and ranlib(l) in the ULTRIX Reference
Pages.

2.4 Linking Files
The linker (ld) combines one or more object files (in the order specified) into one
executable program file, performing relocation, external symbol resolutions, and all
other processing required to make object files ready for execution. Unless you
specify otherwise, the linker names the executable program file a. out. You can

2-12 Compiling, Linking, and Building Programs

execute the program file or use it as input for another linker operation.

The linker supports all the standard command line features of other UNIX system
linkers (except System V command language files, which contain a description of a
load module).

For further information about the linker, see ld(l) in the ULTRIX Reference Pages.

2.4.1 Linking Using the Compiler Commands

You can use a compiler command instead of the 1 d command to link separate
objects into one executable program. Because the compiler driver programs
automatically pass the libraries associated with that language to the linker, using the
compiler command is usually recommended. You can also specify additional
libraries to be searched for unresolved references using the -1 option.

Depending on the nature of the application, decide whether to compile and then
separately link or to perform both compilation and linking using one compiler
command. Factors to consider include whether all source files are in the same
language, whether all source files are readily available, the number of object files, and
so forth.

One reason to compile and link modules with a single command is when you want to
optimize your program. Most compilers support increasing levels of optimization
with the use of certain options. For example, the -00 option requests no
optimization (usually for debugging purposes), while the -01 option requests certain
local (module specific) optimizations. On RISC systems, you can request cross­
module optimizations by using the -03 or -04 option. (These options are valid only
when the multiple modules you are compiling are written in the same language.) In
this case, compiling and linking in one operation allows the compiler to perform the
maximum possible optimizations.

Certain compilers may provide a combination of options (such as -c and -o name)
that allow multiple source files to be compiled into a single object module, which
allows the interprocedural optimizations to occur, yet retains the object file (see your
language documentation).

Each compiler command (except the assembler) recognizes the . o suffix as the name
of a file that contains object code suitable for linking and imµiediately invokes the
linker. You could link object modules using the pc Pascal driver, as follows:

% pc -o all main.o more.o rest.o

This command produces the executable program object of the specified name, all.
You could achieve the same results using the cc compiler command, as follows:

% cc -o all main.o more.o rest.o -lp -lm

Figure 2-5 illustrates the control flow for the pc and cc commands used in these
examples.

Compiling, Linking, and Building Programs 2-13

Figure 2-5: Example of pc and cc Driver Control Flow

LJLJLJ
main.o more.o rest.o

Linker

LJ
all Archive Libraries

ZK-0064U-R

Note that to link the appropriate libraries with the cc driver, you must specify two
additional options that the pc driver uses by default: the -lp option, which specifies
the Pascal link library, and the - lm option, which specifies the math link library.
Both pc and cc use the C library libc. a by default.

For information about the default libraries used by each compiler command, see the
appropriate command in the ULTRIX Reference Pages, such as cc(l), and the
reference pages for layered products.

2.4.2 Linking Using the Id Command

The ld command is usually only used with object modules created by the assembler.
The l d command has the following syntax:

Id options object ...

Because the as assembler does not automatically invoke the linker, to link a program
written in assembly language, do either of the following:

• Assemble and link by using one of the other compiler commands (for example,
cc). The . s suffix of the assembly language source file automatically causes the
compiler command to invoke the assembler.

• Assemble by using as; then link the resulting object file by using ld.

For further information about the options and libraries that affect the linking process,
see ld(l) in the ULTRIX Reference Pages.

2.4.3 Specifying Libraries

When you compile your program on the UL TRIX system, it is automatically linked
with the C library, libc. a. If you use routines that are not in libc. a or one of
the other archive libraries associated with your compiler command, you must
explicitly link your program with the library. Otherwise, your program will not be
linked correctly. This section explains three situations in which you need to
explicitly specify libraries and the options you use to specify the libraries.

If you compile multilanguage programs, be sure to explicitly request any required
run-time libraries to handle unresolved references. You load the libraries by

2-14 Compiling, Linking, and Building Programs

specifying the -lstring, where string is an abbreviation of the library name.

For example, if you write your main program in C and some procedures in Pascal,
you must explicitly specify the 1 ibp . a Pascal library and the 1 ibrn . a math library
by specifying the -1 p and - lm options. When you use these options, the loader
replaces the -1 with 1 ib and adds the specified character (p or m) and the . a suffix.
Then, it searches the following directories for the resulting library name (in this case
libp. a and librn. a):

• /lib

• /usr I lib

• /usr I local/ lib

For a list of the libraries that each language uses, see the reference pages for the
appropriate command.

You may need to specify libraries when you use UNIX system packages that are not
part of a particular language. The reference pages for these packages list the required
libraries. For example, the plotting subroutines require the libraries listed in the
plot(lg) reference page.

If you store object or ucode files in an archive library, you must include the
pathname of the library on the compiler or loader command line. For example, the
following command specifies that the libfft. a archive library in the
/usr I jones directory is to be loaded along with the Pascal library libp. a:

% cc main.o more.o rest.o /usr/jones/libfft.a -lp

The linker searches libraries in the order you specify. Therefore, if any file in your
archive library uses data or procedures from the Pascal library, you must specify the
archive library line before you specify the Pascal library.

Using ucode object libraries is similar to using other object libraries. To load from a
ucode library, specify the - k 1 x compiler option or ucode loader option. The
following example loads a file from a ucode library:

% cc -klucode_lib -o output main.u more.u rest.u

Because the libraries are searched as they are encountered on the command line, the
order in which you specify them is important. If a library is made from both
assembly and high-level language routines, the ucode object library contains code
only for the high-level language routines. Unlike a coff object library, the ucode
library does not contain code for the routines. In this case, you must specify to the
ucode loader both the ucode object library and the coff object library, in that order, to
ensure that all modules are loaded from the proper library.

If the compiler driver is to perform both a ucode load step and a final load step, the
object file created after the ucode load step is placed in the position of the first ucode
file specified or created on the command line in the final load step.

2.4.4 Linker Options
Table 2-3 describes some of the more frequently used linker options that are available
with most driver programs.

Compiling, Linking, and Building Programs 2-15

Table 2-3: Linker Options

Linker Option

-Ldir

-lstring

-o name

-bestGnum

-G num

Description

Specifies the pathname dir as an additional search directory
for the linker, which is searched for unresolved global
references before the directories associated with the driver
command used. For those driver programs that use the ld
linker, the directories searched are I lib, /usr I lib, and
/usr/local/lib. The c89 command allows a space
between the-Land dir (in the form of -L dir) for POSIX
compatibility. Other compiler commands allow the use of -L
as an option to indicate not to search in the standard
directories.

Specifies additional libraries to be searched, in addition to the
libraries associated with the driver command used. The
characters specified as x are added to 1 ib and form a file
name of a library. For example, if you specified -lm, the linker
searches for libm. a. This option can be repeated in the
desired search order to specify multiple additional libraries.
The c 8 9 command allows a space between the -1 and
string (in the form -1 string) for POSIX compatibility.

Specifies a file name name be given to the executable program
rather than the default, a. out.

RISC Specific

Requests that ld calculate an efficient value for the data size
limit of the global pointer area. The calculated value can be
used as num for the -G num option in a subsequent link
operation.

Specifies n um, in bytes, as the limiting size of global data
items to be included in the global pointer area for this link
operation. The default value is 8 bytes. The more data items
placed in the global pointer area, the faster the program
executes. However, if too many data items are included
because of a high n um value, the total size of all data items
below the n um value could exceed the fixed size of the global
pointer area (65,536 bytes), resulting in a link error. If this
error occurs, reduce the specified n um value.

2.5 Building Programs with the make Program
The make program keeps track of the many files that compose a large program.
Information about file dependencies and how files are to be processed is stored in a
makefile. Thereafter, the make command processes only those files that have been
changed - or depend on files that have been changed - since the last make.
Using make ensures that whenever a program is rebuilt, only the required processing
is performed; files that do not need to be recompiled or relinked are not.

For more information about the make program, see make(l) in the ULTRIX
Reference Pages, and the article Make-A Program for Maintaining Computer
Programs in the ULTRIX Supplementary Documents, Volume 2: Programmer.

2-16 Compiling, Linking, and Building Programs

Makefiles are text files you create and edit. Makefiles contain two types of lines:

• Statements of dependencies, such as file A depends on files B and C

• Commands to be executed, such as c 8 9 - o A B . o c . o

Consider a program called big program that is made from three C modules: x. c,
y . c, and z . c. -

• Module x. c includes project. h

• Modules x. c and y. c include stdio. h

• Object file y. o uses the user-supplied library pro j lib. a

• Object files y. o and z. o use the object library I lib/ libcurses. a.

The makefile for big_program is shown in Example 2-1.

Example 2-1: Makefile

The executable file depends on object files
ill all x.o y.o z.o # Comments are ended by the end of the line
~ c89 -o big program x.o y.o z.o -lcurses -lprojlib

- # This command is executed if x.o, y.o, z.o,
or any of the libraries change

The object files depend on source files and headers
x.o x.c project.h # x.o depends on x.c and project.h

~ c89 -c x.c # This command is executed if x.c
or project.h change

y.o y.c stdio.h # y.o depends on y.c and stdio.h
c89 -c y.c # This command is executed if y.c or

z.o z.c # z.o depends on z.c

stdio.h

c89 -c z.c # This command is executed if z.c changes

Each line that issues a command must begin with a tab.

The numbers in the following list correspond to the numbers in Example 2-1:

change

l1J The name before the colon is called a target. It depends on everything after the
colon; in this case, three object files. A target can be a name created for
convenience (as all has been). Any target can be specified on the make
command line.

121 This line links, but does not compile (because the files end with . o). This
example command line includes both the curses and c libraries.

!al This line compiles, but does not link (because of the -c option) x. c, which
includes stdio. h with an #include preprocessor directive.

The makefile in Example 2-1 can be written a shorter way, as shown in Example 2-2.
The first character of every command line still must be a tab.

Example 2-2: Shorter Makefile

all x.o y.o z.o
c89 -o big_program x.o y.o z.o -lcurses -le

~ x.o y.o : stdio.h

Compiling, Linking, and Building Programs 2-17

The numbers in the following list correspond to the numbers in Example 2-2:

111 This line is identical to the one in the previous example.

121 This is the only dependency line needed because make assumes x. o, y. o, and
z . o depend on C source files of the same name but with a . c ending. The only
other information needed is that x. o and y. o depend on stdio. h.

Each time a component of big program changes, all that must be done to create a
new executable file is issue the make command. The make program compares the
times that dependent files were last changed, then compiles and links only the files
that must be. The make command searches the current directory, first for a file
named makefile, then for a file named Makefile. Makefiles with other names
can be specified with the -f option; for example:

% make -f Big_prog_makefile

Any name to the left of a colon in a makefile is a target. If no target is specified on
the make command line, the first target in the makefile is used. In Example 2-2, the
default target is a 11. In the following command, the target is y . o:

% make y.o

2.5.1 make Macros

The make command has its own macros that can be defined within makefiles. These
macros allow groups of objects to be handled by a single name, as shown in Example
2-3. A macro name is a string to the left of an equal sign; whatever is to the right of
the equal sign is the macro's expansion. Macros are invoked by preceding the macro
name with a dollar sign and left. parentheses, and following the name with a right
parentheses; for example: $ (MACRO) .

Example 2-3: Makefile with Macros

makefile for big_program rewritten using macros

C89 OPTIONS = -g -std # A macro for compiler options

OBJECTS = x.o y.o z.o # A macro for object files

LIBS = -lcurses -le # A macro for libraries

big_program : $(OBJECTS) # big_program depends on OBJECTS
c89 $(C89_0PTIONS) $(OBJECTS) $(LIBS)

x.o y.o : stdio.h

Macros can be redefined on the make command line; for example, the following
command changes the c 8 9 options:

% make "C89 OPTIONS = -g -std -check"

2.5.2 Performing Other Tasks with make

Targets need not be file names; they can be any word, as shown in Example 2-4.
Therefore, targets can lead to groups of commands that perform tasks other than
compiling and linking.

2-18 Compiling, Linking, and Building Programs

Example 2-4: Makefile with Command Targets

This makefile can run lint on source files, print source files
that have changed since the last printing

SOURCE = x.c y.c z.c

OBJECTS = x.o y.o z.o

LIBS = -lcurses -le

big_program: $(OBJECTS)
c89 -o big_program $(OBJECTS) $(LIBS)

x.o y.o : stdio.h

clean : rm *.o

lint $(SOURCE)
lint $(SOURCE)
touch lint

print $(SOURCE) makefile
lpr $?
touch print

The command "make clean" removes all
object files from the working directory

If any source file has changed,
run lint on all the source files.
Update the time of the most recent lint run

If makefile or any source file has changed,
print files changed since the last printing.
Update the time of the most recent printing

In Example 2-4, clean, lint, and print are targets that cause make to execute
shell commands. Any shell commands can be used. The make-defined macro$?
stands for dependency names that are younger than the target. Consider the line
below the print target: 1 pr $?; this line prints the makefile and every file in the
SOURCE macro (x. c y. c z. c) if they are younger than the print target. In
other words, a file is printed if it has been changed since make with the print
target was last run.

The preceding makefile could be used with the following command to run lint on
source files changed since the last running of make with the lint target:

% make lint

The following command specifies multiple targets:

% make big_program print clean

2.5.3 Updating Makefiles with make

A makefile can be used to update itself. Example 2-5 shows code from the end of a
makefile that uses the compiler to calculate dependencies and write a new makefile.
Having code like this at the end of your makefile frees you from keeping track of file
dependencies.

Compiling, Linking, and Building Programs 2-19

Example 2-5: Automatic Makefile Updating

depend:
rm -f eddep makedep
${CC} ${CIDIRS} ${DFLAGS} -Em *.c I \
awk ' { if ($$1 != prev) { print rec; rec = $$0; prev = $$1; } \

else { if (length (rec $$2) > 78) { print rec; rec = $$0; } \
else rec = rec 11 11 $$2 } } \

END { print rec } ' > makedep ; \
${ECHO} '/A# DO NOT DELETE THIS LINE/+1,$$d' >eddep
${ECHO} '$$r makedep' >>eddep
${ECHO} 'w Makefile' >>eddep
rm -f Makefile.bak
mv Makefile Makefile.bak
chmod 755 Makefile.bak
ex - Makefile.bak < eddep
${ECHO} '# DEPENDENCIES MUST END AT END OF FILE' >>Makefile
${ECHO} '# IF YOU PUT STUFF HERE IT WILL GO AWAY' >> Makefile
${ECHO} '# see make depend above' >>Makefile
rm -f eddep makedep
chmod 444 Makefile

DO NOT DELETE THIS LINE -- make depend uses it

Issuing the make command with depend as the target writes a new makefile
containing your program's current dependencies. The output is similar to the
following:

DO NOT DELETE THIS LINE -- make depend uses it

declarator.o: declarator.c ./ .. /cs common/master.h
declarator.o: /sybil/ANSI/release/lnclude/setjmp.h
declarator.o: /sybil/ANSI/release/include/sys/types.h
declare.o: declare.c /sybil/ANSI/release/include/string.h
declare.o: ./ .. /cs common/master.h /sybil/ANSI/release/include/setjmp.h
expression.o: expression.c ./ .. /cs common/root stub.h
initial.o: initial.c /sybil/ANSI/r~lease/include/string.h
initial.o: ./ .. /cs common/master.h /sybil/ANSI/release/include/setjmp.h
lex.o: /sybil/ANSI/release/include/ctype.h ./preproc.h ./ .. /cs/locator.h
lex.o: ./ .. /compiler message/message ids.h
macro.o: macro.c /sybil/ANSI/release/include/string.h
macro.o: /sybil/ANSI/release/include/time.h
parse.o: parse.c /sybil/ANSI/release/include/ctype.h
parse.o: /sybil/ANSI/release/include/stdlib.h ./ .. /cs_common/root stub.h
DEPENDENCIES MUST END AT END OF FILE
IF YOU PUT STUFF HERE IT WILL GO AWAY
see make depend above

2-20 Compiling, Linking, and Building Programs

Debugging Programs 3

The dbx debugger is an interactive, symbolic debugger that you can use to find
errors in your program code. You can use dbx to debug a running program or to
examine a core file. The dbx debugger can perform the following tasks:

• Display source code with line numbers

• Execute source code conditionally

• Execute source code one line at a time

• Execute source code one machine instruction at a time

• Set and remove breakpoints

• Trace a line, a variable, or a routine

• Trap signals sent to your program

• Call routines outside of normal program flow

• Display the contents of variables

• Assign a value to a variable

• Debug the ULTRIX kernel, /vmunix. (For information about debugging the
ULTRIX kernel, see Appendix D.)

UL TRIX also provides a DECwindows interface to dbx, which is called dxdb. For
information on dxdb, see the Guide to the dxdb Debugger in the UL TRIX
Worksystem Software documentation.

To demonstrate the dbx utility, this chapter gives an example of debugging a sample
program. Although this example works on both RISC and VAX systems, on VAX
systems, the output may differ from the example. In particular, line numbers and
event numbers might be different. For information about the sample program and a
listing of the entire program, see Section 3.4.

3.1 The dbx Command
To use dbx, you must first compile your program using the -g option on the
compiler command line. This option provides symbol table information needed by
dbx. (For information about the compiler commands and the -g option, see the
reference page that describes the compiler you use.)

To invoke dbx you issue the dbx command at the shell prompt. The dbx command
has the following syntax:

dbx [options J L object J [core J

Table 3-1 summarizes the options available on the dbx command line.

Table 3-1 : dbx Command Options

Option Purpose

-c Selects a command file other than . dbxini t. (For information on
creating a command file, see Section 3.3.)

-i Invokes dbx in interactive mode. This option causes the debugger to not
treat source lines beginning with number signs(#) as comments.

-I directory Adds the directory you name to the list of directories dbx uses when it
searches for a source file. By default, dbx searches the current directory
and the directory where object is located. You can specify multiple
directories by using multiple - I options.

- k Maps memory addresses. This option is useful for kernel debugging.

- r Executes the object file you name on the command line immediately. If

-pixie

program execution terminates with an error, dbx displays the message
that describes the error. You can then either invoke the debugger or let
the program continue exiting. The dbx debugger reads from I dev /tty
when you specify the - r option and standard input is not a terminal. On
RISC systems, if the program executes successfully, dbx prompts you for
input. On VAX systems, if the program executes successfully, dbx exits.

RISC Specific

Reads in output from the pixie utility. The pixie utility is a code
profiler.

For this option to work, you must have executable pixie output and the
nonpixie executable file in the same directory. The pixie output
must be named filename. pixie, where filename is the name of
the executable file.

On the command line, the object argument names the object file that dbx reads as
input. Name the object file of the program you want to debug using dbx. If you
omit the object argument, dbx prompts you for the name of an object file, as
shown:

enter object file name (default is 'a.out'):

You can either enter the name of an object file or press the Return key. If you press
the Return key, dbx attempts to read a file named a. out from the current directory.
If no a. out file exists, dbx exits.

The core argument on the dbx command line names a core dump file. When you
name a core dump file on the dbx command line, you can get information about the
state of your program when it failed. The core dump file contains an image of
memory at the time your program failed. Using dbx commands, you can display the
value of variables at the time of failure, the values in registers, and so on. The
debugger displays information from the core dump file, rather than from memory as
it usually does.

If your program takes arguments, do not enter them on the dbx command line; enter
them as arguments to the run command, as described in Section 3.2.3.

3-2 Debugging Programs

3.2 Sample dbx Session
The dbx debugger provides many commands for debugging your program. The
following sections take you through an example that demonstrates commonly used
commands. The sections also describe the commands and explain the output from the
commands.

For information on all the dbx commands, including their syntax, see dbx(l) in the
ULTRIX Reference Pages.

The sample program is provided on your UL TRIX systems in the file
/usr/examples/dbx/dbx sample. c. To follow the example, first copy the
sample program to your area byissuing the following command:

% cp /usr/examples/dbx/dbx_sample.c dbx_sample.c

Then, compile the sample program by issuing this command:

% cc -g dbx_sample.c

Finally, invoke dbx, as shown:

% dbx
enter object file name (default is 'a.out') :IReturnl
dbx version 2.10
Type 'help' for help.
reading symbolic information
main: 28 signal(SIGINT,handler);
(dbx)

To exit from dbx, issue the quit command described in Section 3.2.18.

Example 3-2 shows the dbx sample. c program, which is used throughout the
chapter to demonstrate the ctbx commands.

3.2.1 Displaying Source Lines (list)

Use the list command to display lines in your program. If you issue the list
command without arguments, dbx lists lines beginning at the current source line.
You can specify a range of line numbers to list or a beginning line number and the
number of lines you want dbx to list.

If you do not specify how many lines to list, dbx lists a default number of lines.
How many lines the debugger lists depends on the type of terminal you are using.
You can change the default by modifying the $listwindow debugger variable.
(For information on modifying debugger variables, see Section 3.3.)

At certain times during program execution, source code is not available to the
debugger. For example, suppose you call a C library function and program execution
stops while that function is executing. If you issue the list command without
arguments, dbx displays the following message:

Source not available.

The debugger attempts to list source lines beginning at the current line, but it cannot
list lines in libc. To list source code lines, you must specify lines in your program
to list or name a routine in your program.

Debugging Programs 3-3

The following example demonstrates using list:

(dbx) list l,Sill
1 /* This program is a small editor that can make very simple
2 * changes to lines of text.
3 */
4
5 #include <stdio.h>

(dbx) list stredi t ~
78 void stredit(source)
79 char source[];
80 {
81 register char *start;
82
83
84 if(*source == '\0')
85
86
87
88
89
90

return;
switch (choice) {
/* Convert to upper case */
case 1:

while(*source != '\0') {
if(!isspace(*source))

(dbx) list~
91 *source = toupper(*source);

source++; 92
93
94 break;
95 /* Convert to lower case */
96 case 2:
97 while(*source != '\0') {
98 if(!isspace(*source))
99 *source= tolower(*source);

100 source++;
101
102 break;

[1] The list command displays lines 1 through 5.

121 The list command displays lines in the stredit () function, which is one of
the functions in the sample program.

131 The list command displays lines beginning at the current line, which is the one
following the last line displayed by the previous list command.

3.2.2 Creating Breakpoints (stop)

Use the st op command to create a breakpoint in your program. The st op
command allows you to specify a line number to stop at or a routine to stop in. You
can also specify that the debugger stop execution when a variable changes value.

The debugger assigns an event number to each breakpoint. You use the event number
to remove the breakpoint. For information about removing breakpoints, see Section
3.2.6.

The following example demonstrates using stop:

(dbx) stop at 5811]
[2] stop at "sample.c":58
(dbx) stop in getline~
[3] stop in getline
(dbx) stop choice~
[4] stop ifchanged choice

3-4 Debugging Programs

[1] The stop command sets a breakpoint at line 58 in the module named
sample. c. The program will stop immediately before the debugger executes
source code line 58.

The debugger assigns event number 2 to this breakpoint. On RISC systems, the
dbx debugger uses event number 1 internally, so the first event you create is
always number 2.

121 The stop command sets a breakpoint in the get line () function. (The
get line() function is one of the functions in the sample program.) The
program will stop immediately before the debugger executes the first source in
get line().

The debugger assigns event number 3 to this breakpoint.

~ The stop command will cause program execution to stop when the choice
variable changes value.

The debugger assigns event number 4 to this breakpoint.

3.2.3 Running Your Program (run and rerun)

Use the run or rerun command to run your program under control of the
debugger. These commands begin program execution at the beginning of your
program. You can pass arguments to your program on the run or re run command
line. If you specify arguments with the run command, issuing rerun without
arguments passes the same arguments to the program. Otherwise, run and re run
are identical.

Because the run and rerun commands always begin execution at the beginning of
the program, you cannot use them to continue execution from a breakpoint. For
information on continuing execution from a breakpoint, see Section 6.4.

The breakpoints you set always remain active, no matter how many times you reissue
the run or rerun command. For information on deleting breakpoints see Section
6.5.

The following example demonstrates using run and rerun:

(dbx) run l1J

[3] [getline:69 ,Ox400318] for(i=O; i<MAX i++) 121
(dbx) run "test" 13]

Choose an editing change:

1 UPPERCASE
2 lowercase
3 Initial Capital On All Words
4 No blanks
5 Exit

[2] [main:58 ,Ox4002b8] printf("Enter your choice: ");
(dbx) rerun~

Choose an editing change:

1 UPPERCASE

Debugging Programs 3-5

2 lowercase
3 Initial Capital On All Words
4 No blanks
5 Exit

[2] [main:58 ,Ox4002b8] printf("Enter your choice: ");
(dbx)

(j] The run command executes the program from its beginning. The breakpoint in
the get line () function stops program execution.

On VAX systems, the breakpoint on the choice variable stops program execution.
The debugger executes that breakpoint when the choice variable is initialized.
Issue the cont command to continue program execution until the debugger
executes the breakpoint in get line().

12] When a breakpoint stops program execution, dbx displays a message. The
message indicates the event number of the breakpoint, the routine and line
number in which the stop occurred, the current address of program execution, and
the text of the next source line dbx will execute.

131 The run command executes the program from the beginning and passes a string
to the program. Because the run command argument supplies input to the
program, the program does not execute the get line () function. The breakpoint
in get line () , therefore, cannot stop program execution. The breakpoint at line
58 stops program execution.

~ The rerun command executes the program from the beginning. The command
passes the same argument as the run command passed and program execution is
identical to the execution caused by the run command with the test argument.
The breakpoint at line 58 stops the program.

3.2.4 Setting Environment Variables (setenv)

To set an environment variable, issue the setenv command. You can use this
command to set the value of an existing environment variable or create a new
environment variable. The environment variable is used by both dbx and the
program you are running under dbx control.

The following demonstrates using setenv:

(dbx) setenv TEXT "test" [j]
(dbx) run l2J

Choose an editing change:

1 UPPERCASE
2 lowercase
3 Initial Capital On All Words
4 No blanks
5 Exit

[2] [main:58 ,Ox4002b8] printf("Enter your choice: ");
(dbx) setenv TEXT "" ~
(dbx) run~
[3] [getline:69 ,Ox400318] for(i=O; i<MAX ; i++)

(j] The setenv command sets the environment variable TEXT to the value "test".

3-6 Debugging Programs

121 The run command executes the program from the beginning. The program reads
input from the environment variable TEXT if it is defined. In this case, the
environment variable is defined, so the program does not need to execute the
get 1 ine () function to get input. Program execution stops at the breakpoint at
line 58.

~ The setenv command sets the environment variable TEXT to null.

~ The run command executes the program. Because the TEXT environment
variable contains a null value, the program must get input. The program executes
the get line () function and stops at the breakpoint in that function.

3.2.5 Displaying the Status of Debugger Events (status)

Use the status command to display the list of active breakpoints and trace events.
The status command displays the event number and type of each breakpoint and
trace event.

On RISC systems, you can create a record event. The status command on RISC
systems also shows the status of any record events.

On VAX systems, you can redirect the output of the status command to a file. Use
the right angle bracket (>) as you do at the shell prompt to redirect output.

The following example demonstrates using status:

(dbx) status BJ
[2] stop at "sample. c": 58
[3] stop in getline
[4] stop ifchanged choice

l1J The status command displays the current debugger events.

3.2.6 Removing Debugger Events (delete)

Use the de 1 et e command to remove a debugger event, such as a breakpoint or trace
event. To remove all debugger events, issue either the delete all or delete *
command.

Specifying an event number that does not correspond to an existing event has no
effect.

When you delete an event, the debugger does not reuse the event number assigned to
that event. The debugger always increments the event number by one when it creates
a new event.

The following example demonstrates delete:

(dbx) status BJ
[2] stop at "sample.c":58
[3] stop in getline
[4] stop ifchanged choice
(dbx) de1ete 4 [2J
(dbx) status~
[2] stop at "sample.c":58
[3] stop in getline
(dbx) de1ete * [4]

111 The status command displays the current debugger events.

Debugging Programs 3-7

12] The delete command removes debugger event number 4. Event number 4
corresponds to the breakpoint that is set on the choice variable.

131· The status command displays the debugger events that are current after dbx
executes the delete command.

~ The delete command removes all the breakpoints.

3.2.7 Continuing Execution After a Breakpoint (cont)
Use the cont command to continue execution after a breakpoint. When you issue
the cont command without arguments, one of the following occurs:

• Your program runs until a breakpoint stops execution.

• Your program stops execution due to an error.

• Your program executes successfully to its end.

You can specify a signal name to cause your program to execute as if it received that
signal.

On RISC systems, you can specify that execution continue only until a particular line
is reached or until a particular routine is reached.

You cannot use the cont command to begin program execution. Only the !Un and
rerun commands can begin program execution. For information on those commands,
see Section 3.2.3.

The following example demonstrates using cont:
(dbx) stop at 48 [jJ
[5] stop at "sam,£le.c":48
(dbx) stop at 5112]
[6] stop at "sample.c":51
(dbx) run 13]

[5] stopped at [main:48 ,Ox400254]
(dbx) cont~
Enter a text line: test
[6] stopped at [main:51 ,Ox400268]

getline (str);

printf("\n");

[j] The stop command sets a breakpoint at line 48.

121 The st op command sets a breakpoint at line 51

@I The run command executes the program from the beginning. Program execution
stops when dbx executes the breakpoint at line 48.

~ The cont command continues execution from where it stopped.

IS] The program prompts for input. Enter ''test''. The program continues to execute
until dbx executes the breakpoint at line 51.

3.2.8 Executing One Source Line at a Time (next and step)
Use the next command to execute the next source line. If the source line contains a
call to a routine, dbx executes the entire routine. Program execution stops after the
called routine returns to the calling routine.

3-8 Debugging Programs

On RISC systems, you can specify an integer that determines the number of times the
debugger executes the next command.

Use the step command to execute the next source line. If the source line contains a
call to a routine, the dbx debugger stops at the first line of the routine.

On RISC systems, you can specify an integer that determines the number of times the
debugger executes the step command.

To execute your source program one line at a time from the beginning, set a
breakpoint at line 1 in the program. Then, issue the run command. After program
execution stops at the breakpoint, use next or step to continue program execution.

When you are using the next and step commands, breakpoints appear to be
inactive. These commands stop your program at the end of each source line. The
debugger does not issue a message for other breakpoints or trace events that have
been reached. The exception to this rule is when you are using the next command
and the debugger encounters a breakpoint in a routine. In this case, the breakpoint in
the routine operates normally.

The following example demonstrates using next and step:

(dbx) run[]

[6] stopped at [main:48 ,Ox400254] getline(str); l2J
(dbx) step raJ
[getline:69 ,Ox400318] for(i=O; i<MAX i++)
(dbx) step 141
[getline:71 ,Ox400330] st[i]=getchar();
(dbx) step[§]
Enter a text line: test[§]

[getline:72 ,Ox4003b0] if (st[i]=='\n')
(dbx) runlZJ

[6] stopped at
(dbx) next[ijl

[main:48 ,Ox400254] getline(str);

Enter a text line: test
[main: SO ,Ox40025c] i = strlen(str);
(dbx) next~
[7] [main:51 , Ox400268] printf ("\n");
(dbx) status [Q]
[5] stop at "sample.c":48
[6] stop at "sample.c":51
(dbx) delete s [i]

[1] The run command executes the program from the beginning. The breakpoint at
line 48 stops program execution.

12) The message displays the name of the routine in which execution stopped, the
line number where execution stopped, the current address of program execution,
and the source line that will be executed when the program continues.

~ The step command executes the source code at line 48 in the source program.
Line 48 in the source program contains the call to the get line () function.

~ The step command executes line 69 in the source program. Line 69 is the first
line in get line ().

151 The step command executes the source code at line 71 in the source program.
Line 71 in the source program is the second executable line in get line().
This line reads input; enter ''test''.

Debugging Programs 3-9

1§1 The run command executes the program from the beginning. The breakpoint at
line 48 stops program execution.

l.ZI The next command executes line 49 in the source program. That line contains a
call to get line (). The next command executes the entire get line ()
function. The get 1 ine () function prompts you for input. Enter ''test''.

~ The next command executes line 50 in the source program. Line 50 is the first
line after the return from get line() in the source program.

l9J The status command displays the currently active breakpoints.

[1]] The delete command removes the breakpoint at line 48.

3.2.9 Tracing Program Execution {trace)
Use the trace command to trace the execution of the program.

On RISC systems, you can use trace to trace the following:

• The execution of a particular source line.

• The call to and return from a routine.

• The value of a variable at a particular source line. You can specify a condition to
limit the trace to times when the condition is true.

• The value of a variable in a routine. You can specify a condition to limit the trace
to times when the condition is true.

On VAX systems, you can use trace to trace the following:

• The execution of a source line in the program. You can specify a condition to
limit the trace to times when the condition is true.

• The execution of each source line in a routine or in the entire program. You can
specify a condition to limit the trace to times when the condition is true.

• The value of an expression at the specified source line. You can specify a
condition to limit the trace to times when the condition is true.

• The value of a variable. You can limit the trace to a particular source line, a
routine, or times when a condition you specify is true.

The following example demonstrates using trace:
(dbx) stop in getlineffl
[8] stop in getline
(dbx) run l2J

[8] stopped at [getline:69 ,Ox400318] for(i=O; i<MAX i++)
(dbx) trace i in get line~
[8] trace sample.getline.i in getline
(dbx) cont~
Enter a text line:test
[8] sample.getline.i changed before [getline: line 71]: 1§1

new value = 1;
[8] sample.getline.i changed before [getline: line 71]:

old value = 1;
new value = 2;

[8] sample.getline.i changed before [getline: line 71]:
old value = 2;

3-10 Debugging Programs

new value = 3;
[8] sample.getline.i changed before [getline: line 71]:

old value = 3;
new value = 4;

[8] sample.getline.i changed before [getline: line 76]:
old value = 4;
new value = 5;

[6] stopped at [main:51 ,Ox400268] printf("\n"); 1§1

[j] The stop command sets a breakpoint in the get line() function.

[2J The run command executes the program from the beginning. The breakpoint in
get line () stops program execution.

[al The trace command traces the value of the i variable in the scope of
get line().

~ The cont command continues execution. When the program prompts you for
input, enter the string "test".

15] The trace command displays a message each time the value of the i variable
changes. The message displays the fully qualified name of the variable being
traced, the line at which the variable changed value, the old value of the variable
(if applicable), and the new value of the variable.

The i variable changes value five times during the execution of get line ().

[§] Program execution stops when the debugger executes the breakpoint at line 51.

3.2.10 Assigning Values to Program Variables (assign)

Use the assign command to assign a value to a program variable. The value you
specify must have the same data type as the program variable. For example, you
cannot assign a floating point number to an integer variable. You can assign the value
of one variable to another variable. Name the variable into vv hich you want to store a
value on the left-hand side of the equal sign(=). Name the other variable on the
right-hand side of the equal sign.

The following example demonstrates using assign:

(dbx) assign i = 100E3 i.1]

incompatible types
(dbx) assign i = 2212!
22

[j] The assign command attempts to store a floating point value in the integer
variable i. The debugger displays the message ''incompatible types,'' which
indicates that it cannot store the floating point value.

On VAX systems you receive the following message when you issue the
assign command:

i not active

Issue the run command. Program execution stops when the debugger executes
the breakpoint in the get 1 ine () function. At that point, the i variable is active,
and you can assign a value to it.

[j] The assign command stores the value 22 in the i variable. The debugger
displays the value to indicate that it has been stored successfully.

Debugging Programs 3-11

3.2.11 Displaying the Value of Variables (print and printf)

Use either the pr int or pr int f command to display the value of a particular
variable. The print command displays the value of a variable without formatting it.
The printf command allows you to specify a format for the variable value. You
can specify the same formats as you can using the pr int f () C library routine,
except that the dbx printf command does not support the %s format. (For more
information about the printf () C library routine, see printf(3) in the ULTRIX
Reference Pages.)

You can specify expressions, such as 1 + 2, on the print command line. The
debugger resolves the expression and displays the result. For more information about
specifying debugger expressions, see dbx(l) in the ULTRIX Reference Pages.

The debugger encloses strings in quotation marks when it displays them. If the string
contains a carriage return character, dbx displays the closing quotation mark as the
first character in the second line of the display.

The following example demonstrates using the print and printf commands:

(dbx) print i ff]
22
(dbx) printf"%x %d\n",i,i~
16 22
(dbx) print str 13]
"test

[j] The pr int command displays the value of the i variable.

121 The pr int f command displays the value of the i variable using hexadecimal
and decimal notation.

~ The print command displays the value of the str variable.

3.2.12 Displaying the Names of Active Routines (where)

Use the where command to display the names of active routines. On RISC systems,
you can specify an integer that determines how many stack levels the debugger
displays.

The following example demonstrates using where:

(dbx) runffl

[7] [getline:69 ,Ox400318] for(i=O; i<MAX; i++)
(dbx) where ~
> 0 getline(st = Ox7fffbe78 = "") ["sample.c":69, Ox400318]

1 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258]

[j] The run command executes the program from the beginning. The breakpoint in
the get line () function stops program execution.

121 The where command displays the following information about the active
routines:

- The right angle bracket (>), which indicates the debugger's current scope.

- The activation level of each routine.

3-12 Debugging Programs

The routine name.

The contents of any arguments passed to the routine.

The source module name and line number.

The program counter for the current point of execution. In this case, the first
program counter value (Ox400318) is the program counter at the point where
execution stopped. The second program counter value (Ox400258) is the
program counter at the call to the get line () function.

3.2.13 Changing the Debugger's Scope (func)
Use the func command to change the debugger's scope. By default, the debugger's
scope is the active routine. The debugger uses its scope to resolve references to
variable names and line numbers.

When you issue the func command, you change the debugger's scope to a routine
other than the current one.

Changing the debugger's scope to a new routine does not make that routine active.
In other words, you cannot use the func command to alter program flow.

On RISC systems, you can specify an integer on the func command line. The
integer specifies the activation level of an active routine. Once you issue the func
command with an integer, the routine that corresponds to that activation level
becomes the debugger's scope.

The following example demonstrates using func:

(dbx) where 11]
> 0 getline(st = Ox7fffbe78 = "") ["sample.c":69, Ox400318]

1 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258]
(dbx) func main 12]
main: 48 getline(str);
(dbx) where~

0 getline(st = Ox7fffbe78 = "") ["sample.c":69, Ox400318]
> 1 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258]
(dbx) func stredit ~
stredit: 84 if(*source == '\0')
(dbx) where~

0 getline(st = Ox7fffbe78 = "") ["sample.c":69, Ox400318]
1 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258]

111 The where command displays the list of active routines. The debugger's scope is
the get line() function.

121 The func command changes the debugger's scope to main(). The message
displays the routine name of the new scope, the current source line number in that
routine, and the text of the next source line dbx will execute.

131 The where command verifies the change in the debugger's scope.

~ The func command changes the debugger's scope to the stredit () function.

~ The where command displays the list of active routines. Because stredi t ()
is inactive, that routine is not on the list. Therefore, the debugger does not display
a pointer to the routine that contains the current scope.

Debugging Programs 3-13

3.2.14 Displaying Fully Qualified Variable Names (which and whereis)

Use either the which or where is command to display the fully qualified name of a
variable. The which command displays the fully qualified name of the variable you
name, as defined by the current debugger scope. The whereis command displays
the fully qualified name of each occurrence of the specified variable.

The following example demonstrates using which and whereis:

(dbx) which i l1J
sample.getline.i
(dbx) whereis i 121
sample.getline.i sample.main.i

ff] The which command displays the fully qualified name of the i variable,
including the program module name, the routine name, and the variable name.
Because the debugger's current scope is the get line() function, the fully
qualified name is sample.getline.i.

l2J The whereis command displays the fully qualified name of all i variables that
are declared in the program.

3.2.15 Calling Routines (call)

Use the call command to execute a routine in your program. The call command
executes the routine you name on the command line. You can pass parameters to the
routine by specifying them as arguments to the call command.

The call command does not alter the flow of your program. Once the routine
returns, program execution resumes at the point where you issued the call
command.

The following example demonstrates using call:

(dbx) stop in stredi t l1J
[9] stop in stredit
(dbx) call stredit (&str) 121
[9] [stredit:84 ,Ox400448] if(*source '\0')
(dbx) status~
[6] stop at "sample.c":51
[7] stop in getline
[8] trace sample.getline.i in getline
[9] stop in stredit
(dbx) delete 7; delete 8@

[1] The stop command sets a breakpoint in the stredi t () function.

121 The cal 1 command begins executing the object code associated with
stredi t (). The str argument passes a string by reference to stredi t.

On VAX systems, you must pass the str argument by value. Issue the following
call command to call the stredit () function:
(dbx) call stredit (str)

This command passes the type that stredit () expects on a VAX system.

ff] The status command displays the currently active breakpoints and trace events.

121 The delete commands delete the breakpoint at line 51 and the trace event.
When you specify more than one command on the dbx command line, you must
separate the commands with a semicolon(;).

3-14 Debugging Programs

3.2.16 Catching and Ignoring Signals (catch and ignore)

Use the catch and ignore commands to determine which signals dbx catches.

The debugger catches some signals by default. To see which signals dbx is currently
catching, issue the cat ch command without arguments.

To cause dbx to catch a signal, name that signal on the catch command line. When
dbx catches a signal, it intercepts that signal before it reaches your program.

To cause dbx to ignore a signal, issue the ignore command. The ignore
command causes the debugger to pass the named signal to your program, rather than
intercepting that signal.

The following example demonstrates using catch and ignore:

(dbx) catch[]
INT QUIT ILL TRAP IOT EMT FPE BUS SEGV SYS PIPE TERM URG STOP TTIN TTOU
IO XCPU XFSZ VTALRM PROF WINCH LOST USRl USR2
(dbx) ignore int [21
(dbx) runl3]

Enter a text line: lctrl/CI@
AC disabled - Re-enter input:
test~
[7] stopped at [main:51 ,Ox400268]
(dbx) catch int !§]

printf ("\n");

(dbx) run III

Enter a text line: ICtrl/C I~
Interrupt [read.read:18 +Ox8,0x403fa8]

Source not available

111 The catch command without arguments displays a list of the signals that dbx is
currently catching. In this case, the list displays the signals that dbx catches by
default.

121 The ignore command causes dbx to ignore the SIGINT signal. You can
generate the SIGINT signal by pressing Ctrl/C at the keyboard.

131 The run command begins program execution from the beginning.

~ When the program prompts for input, enter Ctrl/C. Because dbx ignores that
signal, the signal is passed through to the program, which contains a routine to
handle Ctrl/C. That routine executes and the program continues.

151 The cat ch command specifies that dbx catch the SIG INT signal.

1§1 The run command begins program execution

IZJ When the program prompts for input, enter Ctrl/C again.

~ The debugger interprets the Ctrl/C signal and stops program execution during the
call to the read () function. The debugger displays a message that lists the
following:

The signal that interrupted program execution

The routine in which execution stopped

The current program counter

- The text of the current .source line, if possible

Debugging Programs 3-15

In this case, the debugger cannot display the source line from read () because that
function is in the C library; the debugger cannot display source code from the C
library.

3.2.17 Repeating Comrn~nds (pressing Return, history, and !)

You can repeat commands in dbx by pressing the Return key and using the history
list. Pressing the Return key at the (dbx) prompt reexecutes the last command you
entered.

The dbx debugger maintains a list of the commands you issue in its history list.
You can repeat commands in the history list using the exclamation point (!).

By default, the debugger stores the previous 20 commands in its history list. You can
change the number of commands the debugger stores by assigning a different value to
the $lines variable on RISC systems or the $historywindow variable on VAX
systems. (For information on setting the value of debugger variables, see Section
3.3.)

The following example demonstrates repeating commands using the Return key and
the history list:

(dbx) history 111
197 print str
198 run
199 where
200 where
201 func main
202 where
203 func stredit
204 where
205 which i
206 whereis i
207 stop in stredit
208 call stredit (&str)
209 status
210 delete 7; delete 8
211 catch
212 ignore int
213 run
214 catch int
215 run
216 history
(dbx) !204~
(! 204 = where)
> 0 read.read(OxO, OxO, OxO, OxO, OxO) [" .. /read.s":18, Ox403fa8]

1 _filbuf(OxO, Ox46, Ox7fffbd0e, Ox32, Ox15) [" .. /filbuf.c":144,
Ox40119c]

2 getline(st = Ox7fffbe78 = "") ["sample.c":71, Ox400394]
3 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258]

(dbx) !r@I
(! r = run)

Enter a text line: test
[6] st~ at [main: 51 , Ox400268]
(dbx) l.BfilJmJJ ~
run

3-16 Debugging Programs

printf ("\n");

Enter a text line: test
[6] stopped at [main:51 ,Ox400268] printf ("\n");

111 The history command displays the history list, which contains the last 20
commands issued during the session.

121 The ! 2 0 4 command executes command number 204 in the history list. In this
case, command number 204 is the where command.

131 The ! r command executes the most recent command that begins with the letter
"r." In this case, ! r executes the run command. When the program prompts for
input, enter the string "test".

~ Pressing the Return key executes the last command issued; in this case, the run
command. When the program prompts for input, enter the string ''test''.

3.2.18 Ending a Debugging Session (quit)

To leave dbx when you complete a debugging session, issue the quit command.

The following example demonstrates using quit:

(dbx) quit
%

The quit command ends the dbx session and returns you to the shell prompt.

3.3 Initializing dbx
You can create an initialization file for dbx that contains commands you normally
issue at the beginning of each dbx session. You must name the initialization file
. dbxini t. The debugger searches for the . dbxini t file in your current
directory. If the debugger finds no . dbxini t file in your current directory, it
searches your home directory (the directory assigned to the $HOME environment
variable). Each time you invoke the debugger, it reads and executes the commands
in . dbxini t. Example 3-1 contains a sample dbx initialization file.

Example 3-1: Sample dbx Initialization File

alias stopget "stop in getline" m
set $listwindow = 5 121
set $lines = 25 ~
setenv EDITOR = ex ~

[j] The alias command defines an alias for the st op command. Issuing the
stopget alias sets a breakpoint at the get line () function.

121 The set command changes the value of the $listwindow variable to 5. Once
the debugger executes this set command, the list command will display 5
lines by default.

131 The set command changes the value of the $lines variable to 25. The
$1 ine s variable controls how many history lines the debugger stores. The
debugger will store 25 commands in the history list after it executes this
command.

~ The setenv command sets the environment variable EDITOR to ex. When this
environment variable is set to the ex editor, that editor is invoked when you issue
the edit command in dbx.

Debugging Programs 3-17

For more information on debugger variables and their default values, see dbx(l) in
the ULTRIX Reference Pages.

3.4 Sample Program
The sample program used in this chapter is a simple editor that reads a line from
standard input, performs some changes, and writes the modified line to standard
output. Example 3-2 shows the complete program.

Example 3-2: Sample Editor Program

/* This program is a simple editor that can make changes
* to lines of text.
*/

#include <stdio.h>
#include <signal.h>
#define MAX 80

void getline();
void stredit();
void handler();
extern char *getenv();

int choice = O;

main(argc,argv)
int argc;
char **argv;
{

char str[MAX];
char *tmp;
char newline;
int i;

/*
* Declare a signal handler for AC.
*/

signal(SIGINT,handler);
/*

* A text string argument may be entered:
* 1. as a command line argument
* 2. as the value of an environment variable
* 3. interactively

*
* Once a command line argument or environment string has
* been processed, the user is prompted for additional text.
* If both a command line argument and an environment string
* are given, only the command line argument is processed.
*/

str[O]=' ';
if(argc > 1)

strncpy(str,*++argv,MAX);
else if ((tmp = getenv("TEXT")) != 0)

strncpy(str,tmp,MAX);

if(str[O]==' '){
printf("\n\nEnter a text line: ");
getline(str);

i strlen (str);
printf ("\n");
printf("Choose an editing change:\n\n");
printf(" 1 UPPERCASE\n");

3-18 Debugging Programs

Example 3-2: (continued)
printf (" 2
printf(" 3
printf(" 4
printf(" 5

lowercase\n");
Initial Capital On All Words\n");
No blanks\n");
Exit\n\n");

printf ("Enter your choice: ") ;
scanf("%d%c", &choice,&newline);
stredit(str);
printf("\n%s\n", str);

void getline(st)
char *st;

int i;

for(i=O; i<MAX ; i++)
{

st[i)=getchar();
if (st [i) ==' \n')

break;

st [++i] =' ';

void stredit(source)
char source[];
{

register char *start;

if(*source ==' ')
return;

switch(choice) {

/* Convert to upper case */
case 1:

while(*source !=' ') {
if(!isspace(*source))

break;

*source= toupper(*source);
source++;

/* Convert to lower case */
case 2:

while(*source !=' ') {
if(!isspace(*source))

break;

*source= tolower(*source);
source++;

/* Capitalize first letter of each word */
case 3:

if(!isspace(*source))
*source= toupper(*source);

source++;
while (*source != ' ') {

if(isspace(*(source-1)) && !isspace(*source))
*source= toupper(*source);

source++;

break;

/* Remove all blanks */
case 4:

start=source;
while(*source !=' ') {

while(*source && isspace(*source))
source++;

while(*source && !isspace(*source))

Debugging Programs 3-19

Example 3-2: (continued)

}

/*

*start++ = *source++;

*start = *source;
break;

case 5:
exit(O);

default:
strcpy(source,"Invalid edit choice.\n");
break;

* Signal handler for AC
*/

void
handler(sig, code, scp) ~
int sig, code;
struct sigcontext *scp;
{

fprintf(stderr,"\n\nAC disabled - Re-enter input:\n");

[j] The main () function calls two other functions, get line () and stredit ().
The main () function also displays messages that help the application user give
the appropriate input to the program. The user can choose an editing change. The
choices are as follows:

- Display the string in all uppercase letters

Display the string in all lowercase letters

- Display the string with initial capital letters on all words

Display the string without blanks

Exit from the program

121 The get line () function gets input from the application uset.

~ The stredi t () function performs the editing change. The function is divided
into a case statement, one case for each possible editing change. The default case
is that the program fails with the message "Invalid edit choice."

~ The signal handler ensures that the program continues after the application user
enters Ctrl/C.

3.5 Built-in dbx Command Aliases
You can use the alias command to create aliases for dbx commands. In addition,
the debugger has a set of predefined aliases that you can use. Table 3-2 lists the
predefined aliases.

Table 3-2: Predefined dbx Command Aliases

Alias

c

d

3-20 Debugging Programs

Command Description

Continues program execution after a breakpoint

Deletes the specified item from the status list

Table 3-2: (continued)

Alias Command Description

e Edits the specified file

j Displays the events on the status list

n Executes the next line without stopping in routines

p Displays the value of the specified expression or variable

q Ends the debugging session

r Reruns the program

s Executes the next line, stopping after each line in any routine

t Performs a stack trace

a

b

bp

f

g

h

1

li

ni or
Si

pd

pi

po

pr

px

ri

ro

s

si

u

w

w
wi

RISC Specific

Assigns a value to a program variable

Sets a breakpoint at a specified line

Stops in a specified routine

Moves to the specified activation level on the stack

Goes to the specified line and begins executing the program there

Lists all items currently on the history list

Lists the next 10 lines of source code

Lists the next 10 machine instructions

Executes the specified number of assembly code instructions without
stopping in any routine (ni) or stopping after each line in any routine
(Si).

Displays the value of the specified expression or variable in decimal
notation

Replays dbx commands that were saved with the record input
command

Displays the value of the specified expression or variable in octal

Displays the value of each register

Displays the value for the specified variable or expression in
hexadecimal notation

Records each command you enter in the specified file

Records all debugger output in the specified file

Executes the specified number of lines stopping at each line in any
routine

Executes the specified number of assembly code instructions

Lists the previous 10 lines

Lists the 5 lines preceding and following the current line

Lists the 10 lines preceding and following the current line

Lists the 5 machine instructions preceding and following the current
machine instruction

Debugging Programs 3-21

Table 3-2: (continued)

Alias Command Description

h

1

3-22 Debugging Programs

VAX Specific

Lists the help text that describes dbx commands

Lists the number of lines specified by the $listwindow variable

Checking Programs and Improving 4
Performance

This chapter describes several UL TRIX programs that can help programmers check
their code for errors before compiling it, and improve program performance once the
program works.

4.1 Checking C Source Files with lint
The lint command checks C source files for code that is wasteful, nonportable, or
likely to cause bugs. Because lint is stricter and quicker than most compilers, run
source files through lint before compiling them. (However, lint is superfluous
when used with the c8 9 compiler, which performs the same kind of checking as
lint.) The lint command writes messages to stdout for every error or
questionable usage. For complete information on lint and its options, see lint(l)
in the ULTRIX Reference Pages.

The following example shows sample output from lint:

% lint program.c
program.c:
program.c(73): warning: c unused in function getline ~
printf returns value which is always ignored ~
scanf returns value which is always ignored ~

ill The first message, calls attention to line 73:
getline (st)

char *st;

char c;
int i;

/* This is line 73 */

for(i=O; i<=MAX ; i++)
{

st[i]=getchar();
if (st [i] ==' \ n')

break;
}
st[++i]='\0';

The variable c, declared in the function getline, is never used and should be
deleted.

121 The return value from printf is not checked. Checking the return value of
every function is a good programming practice.

131 The return value from scanf is not checked. Checking the return value of every
function is a good programming practice.

4.2 Monitoring Program Execution with ctrace
The ct race command allows you to watch a C program's flow and observe
changes to variables, looking for unexpected behavior. Running ctrace on a
source file places additional code into the file; this code causes executable statements
and referenced or modified variables and their values to be written to stdout during
the program's execution. Your C source file must compile without errors before you
use ct race on it. For more information, see ctrace(l) in the ULTRIX Reference
Pages.

To use ct race, follow these steps:

1. Run ct race on a C source file. The ctrace command sends its output (the
modified file) to stdout, so redirect stdout to a file; for example:

% ctrace program.c > ctrace.c

2. Compile and link the expanded code; for example:

% cc ctrace.c

3. Run the program; for example:

% a.out

As the program runs, its source lines are written to stdout, as shown in Example 4-1.

Example 4-1: Sample ctrace Output

25 ff] for (j = 0 ; j < 10 ; j++)
/* j -- 0 */

26 rec_l.buf [j] = i + 1;
/* j -- 0 */

l2J /* i -- 0 */
/* rec_l.buf [j] -- 1 */

25 for (j = 0 ; j < 10 ; j++)
/* j -- 1 */

26 rec 1. buf [j] = i + 1;
/* j -- 1 */
/* i -- 0 */
/* rec_l.buf [j] -- 1 */

~ I* repeating */
/* repeated 8 times */

25 for (j = 0 ; j < 10 j++)
/* j -- 10 or '\n' */

[j] The numbers on the left are line numbers relative to the original C source file.

l2J Lines that look like C comments display information about the preceding line.

[3] Loops are detected by ct race, which displays the looping code only once but
tells how many repetitions occur.

4.2.1 Tracing Only Certain Functions
Sifting through the trace of a large program is tedious. A bug can often be isolated
to certain functions, or certain functions can be dismissed as the source of a proplem.
To discrimi~ate among functions, use the -f and -v options to ct race:

-f functions Trace only these functions

4-2 Checking Programs and Improving Performance

-v functions Trace all functions except these

For example:

% ctrace -f getline main program.c > ctraced.c

The preceding command creates the file ct raced. c, which (when compiled,
linked, and run) shows a trace of the functions getline() and main(). The following
command produces the file ct raced. c, which (when compiled and run) shows a
trace of the entire program except the functions getline() and main():

% ctrace -v getline main crude editor.c > ctraced.c

4.2.2 Tracing Only Certain Sections of Code

To trace only certain sections of code, insert the ctroff() and ctron() functions around
code you do not want to trace. The ctroff() and ctron() functions tum ct race off
and on, respectively, as shown in Example 4-2.

Checking Programs and Improving Performance 4-3

Example 4-2: Tracing Certain Sections with ctrace

#include <stdio.h>

main()
{

FILE *fp;
struct rec

char type;
short buf[lO];
rec_l;

int i, j, status;

fp = fopen("data_file.txt", "w+");

ctroff(); /**** Turn off tracing ****/

for (i = 0
{

i < 3 i++)

for (j 0 j < 10 ; j++)
rec_l.buf[j] = i + 1;

rec_l.type = Ox31 + i;
fwrite(&rec_l, sizeof(rec_l), 1, fp);

ctron(); /**** Turn tracing back on ****/

fseek(fp, sizeof(rec_l), 0);

fread(&rec_l, sizeof(rec_l), 1, fp);

printf("The second structure:\n\tType:\t%c\n\tContents: ",
rec_l.type);

for(i = 0 ; i < 10 ; i++)
printf(i != 9 ? "%d"

fclose (fp);
exit(O);

"%d\n", rec_l .buf [i]);

When run through ctrace, compiled, linked, and run, the preceding program
produces the following output:

4-4 Checking Programs and Improving Performance

3 main()
12 fp = fopen("data file.txt", "w+");

/* fp == 32772 *f
14 ctroff();

/* trace off */
I* trace on */

27 fseek(fp, sizeof(rec_l), 0);
/* fp == 32772 */

29 fread(&rec 1, sizeof(rec 1), 1, fp);
/* fp == 32772 */ -

31 printf ("The second structure:\n\tType:\t%c\n\tContents: ",
rec 1 . type) ;

/* rec_l.type == 50 or '2' *I The second structure:
Type:2
Contents:

33 for(i = 0 ; i < 10 ; i++)
/* i == o */

34 printf(i != 9? "%d" "%d\n", rec_l.buf[i]);
/* i == o *I
I* rec_l.buf [i] == 2 */ 2

33 for(i = 0 ; i < 10 ; i++)
/* i == 1 */

34

33

36

37

printf (i != 9 ?
/* i == 1 */
/* rec_l.buf [i)

/* repeating */ 2 2 2 2
/* repeated 8 times */

for(i = 0 ; i < 10
/* i == 10 or '\n'
fclose(fp);
/* fp == 32772 */
exit(O);

"%d " "%d\n",

== 2 */ 2
2 2 2 2

; i++)
*I

rec_l.buf[i]);

Note that the code between the ctroff() and ctron() function calls still executes, but
the code itself does not appear.

4.3 Profiling Code on RISC Systems
Code profiling shows you where most of your code's execution time is spent.
Knowing which sections of code are used most allows you to improve efficiency
where it will do the most good. There are three types of code profiling:

• Basic block counting, which counts the number of times each basic block is
executed. (A basic block is an instruction sequence entered only at its beginning,
and left only at its end.) Basic block counting shows which lines of code are
used most.

• Invocation counting, which counts the number of times each routine is invoked.

• PC sampling, which reveals the amount of time spent in various parts of the
program by periodically examining the PC (program counter) during the
program's execution.

A source code compiler and two other programs, pixie and prof, are the tools that
provide this information. The following sections provide an overview and examples
of pixie and prof usage. For more information, see pixie(l) and prof(2) in
the ULTRIX Reference Pages.

Checking Programs and Improving Performance 4-5

4.3.1 Basic Block and Invocation Counting

To get basic block and invocation counts for a program, follow these steps:

1. Compile and link, without the -p option; for example:

% cc -o program program.c

2. Run the pixie program on the executable file; for example:

% pixie program

The output from pixie is two files. One is an equivalent program called
program. pixie by default (where program is the input file name),
containing additional code that counts block execution. The other is a file called
program.Addrs (where program is the input file name), which is used by
prof.

3. Run the pixie-modified program, which creates the file program. Counts
(where program is the input file name), which is used by prof; for example:

% program.pixie

4. Run prof with the -pixie option, which makes the information in
program. Counts and program.Addrs readable and writes it to stdout; for
example:

prof -pixie program

The basic block counting information appears as shown in Example 4-3.

4-6 Checking Programs and Improving Performance

Example 4-3: Basic Block and Invocation Count Output from prof

Profile listing generated Wed Oct 17 17:32:30 1990 with:
ill prof -pixie program

blkclr and bzero (.. /bzero.s) synonymous: using latter

* -p[rocedures] using basic-block counts;
* sorted in descending order by the number of cycles executed in
* each procedure; unexecuted procedures are excluded

121
10373 cycles

*
*
*

~
151

*
*
*

cycles %cycles cum % cycles bytes procedure (file)
/call /line

3481 33.56 33.56 56 14 flsbuf (.. /flsbuf .c) -
2653 25.58 59.13 242 18 doprnt (.. /doprnt. c) -

818 7.89 67.02 205 13 more core (.. /malloc. c)
652 6.29 73.31 652 21 main (program. c)
619 5.97 79.27 619 19 fwalk (.. /data. c)
304 2.93 82.20 76 10 malloc (.. /malloc.c)

-p[rocedures] using invocation counts;
sorted in descending order by number of calls per procedure;
unexecuted procedures are excluded

invocations total

calls %calls cum% bytes procedure (file)

63 41. 72 41. 72 608 flsbuf (.. /flsbuf. c) -
11 7.28 49.01 4872 doprnt (.. /doprnt.c)
11 7.28 56.29 96 printf (.. /printf.c)

6 3.97 60.26 48 sbrk (.. /sbrk.s)
4 2 :65 62.91 32 close (.. I close. s)
4 2.65 65.56 388 malloc (.. /malloc. c)

-h[eavy] using basic-block counts;
sorted in descending order by the number of cycles executed in
each line; unexecuted lines are excluded

*
*
*

--
~
procedure (file) line bytes cycles % cum

*
*
*

_doprnt (.. /doprnt. c) 305 84 561 5.41 5.41
flsbuf (.. /flsbuf. c) 135 52 511 4.93 10.33
flsbuf (.. /flsbuf. c) 166 32 441 4.25 14.59
flsbuf (.. /flsbuf. c) 131 28 434 4.18 18.77

main (program. c) 26 48 360 3.47 22.24
fwalk (.. /data. c) 88 20 320 3.08 25.33

*
*
*

%

Checking Programs and Improving Performance 4-7

ffl This is the command line that invoked prof. When no options that produce a
listing or another file are specified, -procedures and -heavy are used by
default.

121 This section shows where the cycles were spent. Each routine in the program is
listed on the right. The heading cum% stands for cumulative percent; this
column lists the total percentage of cycles consumed for the procedure to the right
and every procedure above. For example, 67.02% of all cycles were spent on the
morecore, _ doprnt, and_ f lsbuf procedures.

131 This section shows how often each procedure was invoked.

~ This section shows how many cycles each program line consumed. The number
in the line column refers to the line number of the file shown in the left
column; for example, the line that consumed the most (561) cycles, was line 305
in the file doprnt. c.

Separate runs of a program can produce different basic block information, especially
if different input is supplied. However, an average of the different runs can be
obtained using the following steps:

1. Run the pixie-created program (program. pixie, see Section 4.3.1) several
times with different input. Each run creates another program. Counts file.
Between runs, rename program. Counts so that it is not overwritten by the
next run of program. pixie; for example:

% program.pixie < input_l
% mv program.Counts programl.Counts
% program.pixie < input_2
% mv program.Counts program2.Counts
% program.pixie < input_3
% mv program.Counts program3.Counts

2. Create a report for the average of all runs, as follows:

% prof -pixie program program[123] .Counts

4.3.2 PC Sampling
To get PC (program counter) information for a program, follow these steps:

1. Compile and link the program with the -p option; for example:

% cc -p program.c -o program

2. Run the profiled program; for example:

% program

Profiling data is stored in the profile data file, which has the default name
mon. out.

3. Run prof, which converts the information in the profile data file to a readable
form; for example:

% prof -procedure program

The prof output for PC sampling appears as shown in Example 4-4.

4-8 Checking Programs and Improving Performance

Example 4-4: PC Sampling Output from prof

Profile listing generated Thu Oct 18 16:50:26 1990 with:
prof -procedure program

blkclr and bzero (.. /bzero.s) synonymous: using latter

*
*
*

-p[rocedures] using pc-sampling;
sorted in descending order by total time spent in each
procedure; unexecuted procedures excluded

Each sample covers 8.00 byte(s) for 25% of 0.0400 seconds

%time

75.0
25.0

seconds cum %

0.0300 75.0
0.0100 100.0

cum sec procedure (file)

0.03 open (.. /open.s)
0.04 write (.. /write.s)

You can run the profiled program several times with different inputs to create
different profile data files and average the results using prof. To create several
profile data files, set the PROFDIR environment variable as follows:

• In the C shell:

% setenv PROFDIR string

• In the Bourne shell:

% PROFDIR = string ; export PROFDIR

Setting PROFDIR causes each profile data file to be saved in a file named
string /pid. program, rather than man. out. The file name

*
*
*

string /pid. program is composed of program, which is the program's name
as it appears in argv [OJ, and pid, which is the process ID of the individual
program run and is different for every run. To get the PC sampling average for all
runs issue the prof command; for example:

% prof -procedure program /string/*.program

4.4 Profiling Code on VAX Systems
Code profiling shows you where most of your code's execution time is spent.
Knowing which sections of code are used most allows you to improve efficiency
where it will do the most good. There are two types of code profiling:

• The flat profile, which shows the following for each routine:

The time it used

The percentage of total program time it used

The number of times it was called

• The call graph profile, which shows everything the flat profile does, plus the
following:

- All parents (routines that called the routine)

Checking Programs and Improving Performance 4-9

- All children (routines called by the routine)

- The percentage of total program time used by the routine and its children

- Other pieces of information, explained in the output file.

A language compiler with a -pg option, and the gprof program are the tools that
provide this information.

4.4.1 Getting a Profile Output File

To obtain a profile output file for a program, follow these steps:

1. Compile and link the program with the -pg option; for example:

% cc -pg program.c -o program

2. Run the program, which creates the file gmon. out, in which profile information
is stored; for example:

% program

3. Run gprof. By default, gprof searches for a. out as the executable file, and
gmon. out as the profile data file. Output is written to stdout; for example:

% gprof program > program.gprof

In the preceding example, the profile output is written to the file program. gprof.

The profile output contains the flat profile followed by the call graph profile. Both
profiles are preceded by explanations of the headings and information.

For more information, see gprof(l) in the ULTRIX Reference Pages.

4.5 Optimizing Programs on a RISC System
When you optimize your code, your program runs faster and its object is smaller in
size. Optimizing your program can also speed up development time. For example,
your coding time can be reduced if you let an optimizing tool relate programming
details to execution time efficiency. This time savings lets you focus on the more
crucial global structure of your program. Moreover, programs often yield code
sequences that can be optimized regardless of how well you write your source
program.

On ULTRIX systems running on the RISC architecture, the optimizer is uopt. The
uopt optimizer is invoked when you use the -0, -02, or -03 option on the
compiler command line. (Note that the DEC Fortran product does not use the uopt
optimizier. See your DEC Fortran documentation for information on optimizing
DEC Fortran programs.) If you omit these options from the compiler command line,
limited optimizations are performed. The code generator and assembler phases of the
compiler perform the limited optimizations. (For information about using the -03
option, see Section 4.5.5.)

4.5.1 Overview of the uopt Optimizer

The uopt optimizer improves the performance of object programs by transforming
existing code into more efficient coding sequences. Although the same optimizer
processes all compiler optimizations, it does distinguish between the various

4-10 Checking Programs and Improving Performance

languages supported by the compiler programs to take advantage of the different
language semantics involved.

Most compilers perform certain code optimizations, although the extent to which they
perform these optimizations varies widely. The RISC compilers perform extensive
optimizations compared with the average compiler available. These advanced
optimizations are the results of the latest research into better and more powerful
compiler techniques.

The compilers perform both machine-independent and machine-dependent
optimizations. Machines with RISC architectures provide a better target for
machine-dependent optimizations, because the low-level instructions of RISC
machines provide more optimization opportunities than the high-level instructions in
other machines.

Even optimizations that are machine independent have been found to be effective on
machines with RISC architectures. Although most of the optimizations performed by
the uopt optimizer are machine independent, they have been specifically tailored to
this RISC environment.

The RISC architecture emphasizes the use of registers. Therefore, register use has
significant impact on program performance. For example, fetching a value from a
register is significantly faster than fetching a value from storage. The uopt optimizer
makes the best possible use of registers.

In allocating registers, the optimizer selects those data items most suited for registers,
taking into account their frequency of use and their location in the program structure.
In addition, the optimizer assigns values to registers so that their contents move
minimally within loops and during procedure invocations.

Figure 4-1 shows the optimization phases of the compiler.

Checking Programs and Improving Performance 4-11

Figure 4-1: Optimization Phases of the Compiler

Compilation

Assembler

[.b J Ucode library

I

Ucode file

r====1 Binary
~ assemblerfile

~
-c

--------~ F71 Asembled (TI
Arch iv~
library

Linker
~object file

~Linked
~ executable

file

ZK-0071U-R

As the figure shows, the uload and umerge phases of the compilation permit
global optimization among separate units in the same compilation. Often, programs
are divided into separate files, called modules or compilation units, which are
compiled separately. This saves compile time during program development because
a change requires recompilation of only one module rather than the entire program.

Traditionally, program modularity restricted the optimization of code to a single
module at a time rather than over the full breadth of the program. For example, calls
to procedures that reside in other modules could not be fully optimized together with
the code that called them.

4-12 Checking Programs and Improving Performance

The uld and umerge phases of the compiler overcome this deficiency. The uld
phase links many modules into a single compilation unit. Then, ume rge orders the
procedures for optimal processing by uopt.

4.5.2 Things to Consider Before You Optimize a Program

Before you optimize your program, be sure it is fully developed and is relatively
error free. Although the optimizer does not alter the flow of control within a
program, it may move operations so that the object code does not correspond to the
source code.

Once you optimize a program, using dbx to find errors is more difficult. The symbol
table that the compiler creates to support symbolic debugging cannot reflect the
optimizations that uopt performs. This situation can make it difficult for you to use
dbx because, for example, a variable value that dbx displays may not reflect the
actual value stored in the variable.

If you are writing Pascal programs, be aware that the -c option of the Pascal
compiler inhibits some optimizations. The -C option performs bounds checking.
Unless bounds checking is crucial, do not specify the -c option when you compile a
program you want to optimize.

Optimizations are most useful in program areas that contain loops. The optimizer
moves loop-invariant code sequences outside loops so that they are performed only
once instead of multiple times. Apart from loop-invariant code, loops often contain
loop-induction expressions that can be replaced with simple increments. In programs
composed of mostly loops, global optimization can often reduce the running time
significantly.

The following examples illustrate the results of loop optimization on source code that
is compiled both with and without the -0 compiler option. Example 4-5 shows the
source code that contains a loop.

Example 4-5: Source Code of a Program to be Optimized

void
left(a, distance)

char a[];
int distance;
{

int j, length;
length strlen(a) - distance;
for (j 0; j < length; j++)

a[j] = a[j +distance];

Example 4-6 shows the assembler code that would be output if this program were
compiled without the -0 option.

Checking Programs and Improving Performance 4-13

Example 4-6: Unoptimized Code Output

8 for (j=O; j<length; j++)
SW $0, 36($sp) # j = 0
ble $24, 0, $33 # length >= j

$32:
9 a [j] = a [j+distance];

lw $25, 36 ($sp) # j
lw $8, 44($sp) # distance
addu $ 9' $25, $8 # j+distance
lw $10, 40($sp) # address of a
ad du $11, $10, $9 # address of a[j+
lb $12, 0 ($11) # a [j+distance]
ad du $13, $10, $25 # address of a[j]
sb $12, 0($13) # a [j]
lw $14, 36($sp) # j
ad du $15, $14, 1 # j+l
SW $15, 36($sp) # j++
lw $3, 32($sp) # length
blt $15, $3, $32 # j < length

$33:

Example 4-7 shows the assembler code that would be output if this program were
compiled with the -0 option.

Example 4-7: Optimized Code Output

8 for (j=O; j<length; j++)
move $5, $0 # j = 0
ble $4, 0, $33 # length >= j
move $2, $16 # address of a[j]
ad du $6, $16, $17 # address of a[j+distance]

$32:
9 a [j] = a [j+distance];

lb $3, 0 ($6) # a [j+distance]
sb $3, 0($2) # a [j]
ad du $5, $5, 1 # j++
ad du $2, $2, 1 # address of next a [j]
ad du $6, $6, 1 # address of next a[j+distance]
blt $5, $4, $32 # j < length

$33:

The optimized version contains fewer total instructions and fewer instructions that
reference memory. Wherever possible, the optimizer replaces load and store
instructions (which reference memory) with the faster computational instructions that
perform operations only in registers.

4.5.3 Improving C Program Optimization

When you write a C program, you can follow certain guidelines that help you write
code that is easier to optimize. Some practices are helpful when you use the uopt
optimizer. Others are helpful when you use only the limited optimizations provided
by the code generator and assembler phases of the compiler. This section explains
practices that help uopt optimize well and practices that help the code generator and
assembler optimize well.

The following practices can help increase optimizing opportunities for uopt:

4-14 Checking Programs and Improving Performance

• A void using indirect calls.

Indirect calls (calls that use routines or pointers to functions as arguments) cause
unknown side effects (that is, change global variables) that can reduce the amount
of optimization. A void using indirect calls.

• Use function return values.

Use function return values instead of reference parameters.

• Use the do while statement when possible.

Use do while instead of while or for when possible. When you use do
while, the optimizer does not have to duplicate the loop condition to move code
from within the loop to outside the loop.

• A void using unions for integer and floating point types.

A void unions that cause overlap between integer and floating point data types.
Using this type of union keeps the optimizer from assigning the fields to registers.

• Use local variables.

A void using global variables. Minimizing the use of global variables increases
optimization opportunities for the compiler. Declare any variable outside of a
function as static, unless that variable is referenced by another source file.

• Use value parameters.

Use value parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as the use of pointers.

• A void using aliases.

A void using aliases by introducing local variables to store dereferenced values.
(A dereferenced value is the value obtained from a specified address.)
Dereferenced values are affected by indirect operations and calls, but 1ocal
variables are not. Therefore, local variables can be kept in registers. The
following three examples show how the proper placement of pointers and the
elimination of aliasing lets the compiler produce better code:

Source code:
int len = 10;
char a[lO];
void
zero()

{

char *p;
for (p =a; p != a +len;) *p++ = 0;
}

Generated assembly code:
8 for (p a; p != a + len; *p++

move $2, $4 # p = a
lw $3, len
ad du $24, $4, $3
beq $24, $4, $33 # a + len

$32:
sb $0, 0($2) # *p = 0
ad du $2, $2, 1 # p++
lw $25, len
ad du $8, $4, $25
bne $8, $2, $32 # len + a

$33:

0;

!= a

!= p

Checking Programs and Improving Performance 4-15

To increase the efficiency of the preceding example, you can use one of two
methods:

Use subscripts instead of pointers.

In the example that follows, the use of subscripting in the procedure a zero
eliminates aliasing. The compiler keeps the value of len in a register, which
saves two instructions. A pointer is used by the compiler to access the
variable a efficiently, even though a pointer is not specified in the source
code.

Source code:
void
azero ()

{

int i;
for (i = 0; i != len; i++) a[i] = O;
}

Generated assembly code:
14 for (i = O; i != len; i++) a[i] 0;

$34:

$35:

move $2, $0 # i = 0
beq $3, 0, $35 # len != 0
la $14, a
move $2, $14
addu $4, $3, $14 # a[len]

sb
ad du
bne

$0, 0 ($2)
$2, $2, 1
$2, $4, $34

*a = 0
a++
a != a[len]

Use local variables.

Specifying len as a local variable or formal argument ensures that aliasing
can not take place and permits the compiler to place l en in a register, as
shown:

Source code:
char a[lO];
void
lpzero (len)

int len;
{

char *p;
for (p = a; p != a + len;
}

Generated assembly code:
8 for (p = a; p !=

move $2, $6
addu $5, $6, $4
beq $5, $ 6, $33

$32:
sb $0, 0($2)
ad du $2, $2, 1
bne $5, $2, $32

$33:

*p++ = 0;

a + len; *p++ = 0;
p = a

a + len != a

*p = 0
p++
a + len != p

As the previous examples show, using local variables is a slightly more efficient
way to eliminate aliasing than using subscripts instead of pointers.

• Write straightforward code.

When you write code, make it straightforward and easy to understand. For
example, do not use autoincrement (++) and autodecrement (--) operators within

4-16 Checking Programs and Improving Performance

an expression. When you use these operators for their values, rather than for their
side effects, you often get bad code. For example:

Bad:
while (n--) {

Good:
while (n != 0) {

n--;

• Use register declarations.

The compiler automatically assigns variables to registers. However, specifically
declaring a register type lets the compiler make more aggressive assumptions
when assigning register variables. Therefore, when possible declare variables as
register.

• A void passing addresses.

Passing addresses can create aliases, force the optimizer to store variables from
registers in their home storage locations, and significantly reduce optimization
opportunities that would otherwise be performed by the compiler. Do not pass
addresses.

• Avoid using a variable number of arguments.

Avoid functions that take a variable number of arguments. Using a variable
number of arguments causes the optimizer to unnecessarily save all parameter
registers on entry.

The following practices can help increase optimizing opportunities for the code
generation and assembler phases of the compiler:

• Use tables rather than if-then-else or switch statements. The following
shows an example that demonstrates this practice:

Good:
if (i == 1) c = 'l';
else c = '0';

More efficient:
c = "Ol"[i];

• As an optimizing technique, the compiler puts the first four parameters of a
parameter list into registers, where they remain during execution of the called
routine. Therefore, always declare as the first four parameters those variables that
are most frequently manipulated in the called routine, with floating-point
parameters preceding nonfloating-point parameters.

• Use word-size variables instead of smaller ones if enough space is available.
This practice may take more space, but it is more efficient.

• Rely on libc functions (for example, strcpy, strlen, strcmp, bcopy,
bzero, memset, and memcpy). These functions are coded for efficiency.

• Use the unsigned data type for variables wherever possible. Because it knows the
unsigned variable will always be greater than or equal to zero (>=0), the compiler

Checking Programs and Improving Performance 4-17

can perform optimizations that would not otherwise be possible. Also, the
compiler generates fewer instructions for multiply and divide operations that use
a power of 2.

For example:

int i;
unsigned j;

return i/2 + j/2;

The compiler generates four instructions for the signed i/2 operations:

000000 bgez
000004 move
000008 addiu
OOOOOc sra

r14, OxC
rl, r14
rl, rl, 1
r15, rl, 1

By contrast, the compiler generates only one instruction for the unsigned j/2
operation:

000010 srl r24,r5,1 # j I 2

In the preceding examples, the i/2 expression is less efficient than the j/2
expression.

4.5.4 Improving Pascal Program Optimization

When you write a Pascal program, you can follow certain guidelines that help you
write code that is easier to optimize. Some practices are helpful when you use the
uopt optimizer. Others are helpful when you use only the limited optimizations
provided by the code generator and assembler phases of the compiler. This section
explains practices that help uopt optimize well and practices that help the code
generator and assembler optimize well.

The following practices can help increase optimizing opportunities for uopt:

• A void indirect calls.

Indirect calls (calls that use routines or pointers to functions as arguments) cause
unknown side effects (that is, change global variables) that can reduce the amount
of optimization. Therefore, avoid using indirect calls.

• Use function return values.

Use function return values instead of reference parameters.

• Use the repeat statement when possible.

Use repeat instead of while or for when possible. When you use repeat,
the optimizer does not have to duplicate the loop condition to move code from
within the loop to outside the loop.

• A void using certain variant records.

A void variant records that cause overlap between integer and floating point data
types. A voiding this type of variant record keeps the optimizer from assigning
the fields to registers.

4-18 Checking Programs and Improving Performance

• Use local variables.

A void using global variables. Minimizing the use of global variables increases
optimization opportunities for the compiler.

• Use value parameters.

Use value parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as the use of pointers.

• Use packed arrays only when space is limited.

Packed arrays prevent the moving of induction expressions from within a loop to
outside the loop. Use them only when you need to save space.

The following practices can help increase optimizing opportunities for the code
generator and assembler phases of the compiler:

• As an optimizing technique, the compiler puts the first four parameters of a
parameter list into registers, where they remain during execution of the called
routine. Therefore, always declare as the first four parameters those variables that
are most frequently manipulated in the called routine with floating-point
parameters preceding nonfloating-point parameters.

• Use word-size variables instead of smaller ones if enough space is available.
This may take more space, but it is more efficient.

• Use predefined functions as much as possible. For example, use max and min
rather than if-then-else statements and use shift and bitwise instead
of div and mod.

4.5.5 Optimizing Your Program Fully

When you optimize your program fully, the uld and umerge phases of the
compiler merge the separate modules in your program into a single module. The
uopt optimizer is then able to optimize across the modules in your program.

To fully optimize your program, invoke the uopt optimizer using the -03 option on
the cc command line. This section provides examples of compiling and optimizing
a multimodule program. One example demonstrates compiling and optimizing the
modules simultaneously, while the other example demonstrates compiling modules
separately and optimizing them later. The examples provided in this section assume
that the program myprogram consists of three files: a. c, b. c, and c. c.

To compile and fully optimize all three files, enter the following command:

% cc -03 -o myprogram a.c b.c c.c

This example causes the compiler to compile, load, merge, and optimize the three
modules as a single unit.

You may want to compile the modules of your program separately and then optimize
them using the -03 option. Follow these steps to optimize modules you compile
separately:

1. Use the - j option when you compile each source file, as shown in the following

Checking Programs and Improving Performance 4-19

example:

% cc -j a.c
% cc -j b.c
% cc -j c.c

The -j option causes the compiler driver to produce a . u file (the standard
compiler front-end output, which is made up of ucode, an internal language used
by the compiler). None of the remaining compiler phases are executed, as is
illustrated by Figure 4-2.

Figure 4-2: Output From the -j Compiler Option

r:::u:::1c::i
a.c (b.c "_c _____ _

~ CCompiler

ZK-0073U-R

2. Perform optimization and complete the compilation process, by entering the
following command:

% cc -03 -o myprogram a.u b.u c.u

Figure 4-3 illustrates the results of executing this command.

4-20 Checking Programs and Improving Performance

Figure 4-3: ucode File Optimization

?-03
Ucode Link

(uld)

l
Procedure Merge

(umerge)

_[

Global Optimizer
(uopt}

l
Code Generator

l
Assembler

J
Linker I\

a.out

ZK-0072U-R

4.5.6 Optimizing Large Programs
Because compilation time increases by the square of the program module size, the
compiler enforces an upper limit on the size of a module that can be optimized. By
default, the limit is 500 basic blocks.

To. ensure that all modules are optimized regardless of their size, specify the -0
1 imi t option when you compile your program. Replace 1 imi t with the maximum
size, in basic blocks, of any module that you want the compiler to optimize. If a
routine is larger in basic blocks than the default or current -0 1 imi t value, the
uopt optimizer warns you that the routine is too large. In addition, uopt displays a
message that contains the minimum -0 1 imi t value to specify for the routine to be
optimized.

Checking Programs and Improving Performance 4-21

The following example demonstrates how to specify the maximum size of modules to
be optimized:

% cc -0(750] a.c b.c c.c

This cc command specifies optimizing modules that contain 750 or less basic blocks.

4.6 Optimizing Programs on a VAX System
When you optimize your code, your program runs faster and its object is smaller in
size. Using the the optimizer can also speed up development time. For example,
your coding time can be reduced if you let the optimizer relate programming details
to execution time efficiency. This time savings lets you focus on the more crucial
global structure of your program. Moreover, programs often yield code sequences
that can be optimized regardless of how well you write your source program.

On UL TRIX systems running on the VAX architecture, the optimizer is c 2. The c 2
optimizer is invoked when you use the -0, option compiler command line. (Note that
the VAX FORTRAN/UL TRIX and VAX C/ULTRIX products do not use the c2
optimizer. See your documentation for those products for information on optimizing
VAX FORTRAN/ULTRIX and VAX C/UL TRIX programs.) If you omit the c2
option from the compiler command line, limited optimizations are performed. The
code generator phase of the compiler performs the limited optimizations.

The following sections provide an overview of issues to consider before you optimize
a program and ways in which you can write your C program so that c2 and the code
generator optimize well.

4.6.1 Things to Consider Before You Optimize a Program

Before you optimize your program, be sure it is fully developed and is relatively
error free. Although the optimizer does not alter the flow of control within a
program, it may move operations so that the object code does not correspond to the
source code. These changed sequences of code may create confusion when you use
the debugger.

If you are writing Pascal programs, be aware that the -C option of the Pascal
compiler inhibits some optimizations. The -C option performs bounds checking.
Unless bounds checking is crucial, do not specify the -c option when you optimize a
Pascal program.

4.6.2 Improving C Program Optimization

The following recommendations can help increase optimizing opportunities for the
optimizer (c 2).

• A void using indirect calls.

Indirect calls (calls that use routines or pointers to functions as arguments) cause
unknown side effects (that is, change global variables) that can reduce the amount
of optimization. A void using indirect calls.

• Use function return values.

Use function return values instead of reference parameters.

• A void using certain unions.

4-22 Checking Programs and Improving Performance

A void unions that cause overlap between integer and floating point data types.
Using this type of union keeps the optimizer from assigning the fields to registers.

• Use local variables.

A void using global variables. Minimizing the use of global variables increases
optimization opportunities for the compiler. Declare any variable outside of a
function as static, unless that variable is referenced by another source file.

• Use value parameters.

Use value parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as the use of pointers.

• A void using aliases.

Avoid using aliases by introducing local variables to store dereferenced values.
(A dereferenced value is the value obtained from a specified address.)
Dereferenced values are affected by indirect operations and calls, whereas local
variables are not. Therefore, local variables can be kept in registers. The
following three examples show how the proper placement of pointers and the
elimination of aliasing lets the compiler produce better code:

Source code:
int len = 10;
char a[lO];
void
zero()

{

register char *p;
for (p =a; p != a +len;
}

Generated assembly code:
for (p = a; p != a+len;

moval _a,rll
jbr L20

L2000001:
clrb (rll) +

L20: addl3 _len,$_a,r0
cmpl rll,rO
jneq L2000001

*p++ 0;

*p++ = 0;
P = a

*p++ = 0
a+len
p != a+len

To increase the efficiency of the preceding example, you can use one of two
methods:

Use subscripts instead of pointers.

In the following example, the use of subscripting in the procedure azero
eliminates aliasing. The compiler keeps the value of len in a register, which
saves two instructions. A pointer is used by the compiler to access a
efficiently, even though a pointer is not specified in the source code.

Source code:
void
azero ()

{

register int i;
for (i = O; i != len; i++) a[i] 0;
}

Generated assembly code:
for (i = O; i != len; i++) a[i] 0;

clrl rll # i = 0
jbr L20

L2000001:

Checking Programs and Improving Performance 4-23

clrb a[rll] # a[i] = 0 -
incl rll # i++

L20: cmpl rll, len # i != len
jneq L200000

Use local variables.

In the following example, specifying 1 en as a local variable or formal
argument ensures that aliasing cannot take place and permits the compiler to
place len in a register.

Source code:
char a[lO];
void
lpzero(len)

register int len;
{

register char *p;
for (p = a; p != a + len;) *p++ O;
}

Generated assembly code:
for (p = a; p != a+len;

movl 4(ap),rll
moval _a,rlO
jbr Ll9

L2000001:

Ll9:
clrb
addl3
cmpl
jneq

(rlO)+
rll,$_a,r0
rlO,rO
L2000001

*p++ = 0;
P = a
register p

*p++ = 0
a+len
p != a+len

As the previous examples show, using local variables is a slightly more efficient
way to eliminate aliasing than using subscripts instead of pointers.

• Write straightforward code.

When you write code, make it straightforward and easy to understand. For
example, do not use autoincrement (++) and autodecrement (--) operators within
an expression. When you use these operators for their values, rather than for their
side effects, you often get inefficient code. For example:

Bad:
while (n--) {

Good:
while (n != 0) {

n--;

• Use register declarations.

Because the compiler will not place a variable in a register unless directed to do
so, declare variables as register whenever possible.

The following practices can help increase the optimizing opportunities for the code
generator:

4-24 Checking Programs and Improving Performance

• Use tables rather than if-then-else or switch statements. The following
example shows how the use of tables makes code more efficient:

Good:
i f (i == 1) c = ' 1 ' ;
else c = '0';

More efficient:
c = "Ol"[i];

, • Rely on libc functions (for example, strcpy, strlen, strcmp, bcopy,
bzero, memset, and memcpy). These functions are coded for efficiency.

4.7 Controlling the Size of Global Pointer Data on RISC
Systems

Global pointer data is constants and variables that the compiler places in the . s data
and . sbss portions of the data and bss segments shown in Figure 4-4. This area
is referred to as the global pointer area.

Figure 4-4: Global Pointer Area

D Global pointer area

J text segment J data segment

J bss segment

ZK-0076U-R

(The . rdata, . data, and . sdata sections contain initialized data, and the
. sbss and .bss sections reserve space for uninitialized data that is created by the
kernel loader for the program before execution and filled with zeros.)

In general, the compiler creates two machine instructions to access a global value.
However, by using a register as a global pointer (called $gp), the compiler creates
the 65,536-byte global pointer area where a program can access any value with a
single machine instruction - half the number of instructions required without a global
pointer.

To maximize the number of individual variables and constants that a program can
access in the global pointer area, the compiler first places those variables and
constants that take the fewest bytes of memory. By default, the variables and
constants occupying eight or fewer bytes are placed in the global pointer area, and
those occupying more than eight bytes are placed in the . data and .bss sections.

Checking Programs and Improving Performance 4-25

4.7.1 Limiting the Size of Global Pointer Data

The more data that the compiler places in the global pointer area, the faster a
program executes. However, if the data to be placed in the global pointer area
exceeds 65,536 byte~, the linker displays an error message and does not create an
executable object fil~. In this case, you need to recompile your program and use the
-G option to reduce the use of global data.

For most programs, the 8-byte default produces optimal results. However, the
compiler provides the -G option to let you change the default size. For example:

% cc -G 12 a.c b.c c.c

This command causes the compiler to place only those variables and constants that
occupy 12 or fewer bytes in the global pointer area.

The compiler places some variables in the global pointer area regardless of the setting
specified by the -G option. For example, a program written in assembly language
might contain . sdata directives that cause variables and constants to be placed into
the global pointer area regardless of size. Moreover, the -G option does not affect
variables and constants in libraries and objects compiled beforehand.

To alter the allocation size for the global pointer area for data from these objects, you
must recompile them and specify the -G option and the desired value.

4.7.2 Obtaining Optimal Global Data Size

Two potential problems exist in specifying a maximum size in the -G option:

• Using a value that is too small can reduce the speed of the program.

• Using a value that is too large can cause more than the maximum of 65 ,536 bytes
to be placed in the data area, which creates an error condition and produces an
unexecutable object module.

The -best Gn um linker option helps you avoid these problems by predicting an
optimal value to specify for the -G option. This section provides examples of using
the -bestGnum option and the related -nocount and -count options.

In the following example, the compiler displays a message that provides the best
value for -G:

% pc -bestGnum myprogram.p
All data will fit into the global pointer area
Best -G num value to compile with is 80 (or greater)

Because all data fits into the global pointer area, no recompilation is necessary.

Consider the following example, which specifies 70,000 as the maximum size of a
data item to be placed in the global pointer area:

% pc ersatz.p -G 70000 -bestGnum
gp relocation out-of-range errors have occurred and bad object file
produced (corrective action must be taken)
Best -G num value to compile with is 1024

4-26 Checking Programs and Improving Performance

In this example, the linker does not produce an executable load module and
recommends a recompilation as follows:

% pc real.p -G 1024

When you use the -bestGnum option without using -nocount or -count, the
compiler assumes that you cannot recompile any libraries to which it would link
automatically. Because you cannot recompile these libraries, you cannot specify a
new value for them using the -G option. The linker ignores libraries you cannot
recompile when predicting the optimal value for the -G option.

If you link to system-supplied libraries other than those that are included
automatically, you must specify -nocount before the library, as shown in the
following example:

% cc -bestGnum myprogram.c -nocount -1m

Because the system does not automatically link with the lm library and because you
cannot recompile the library, the linker should not count that library when predicting
the best value for -G. The -nocount option ensures that the linker ignores the lm
library.

You can explicitly specify that the linker both include and exclude specific libraries
in predicting the -G value, as shown in the following example:

% cc -o plotter -bestGnum plotter.o -nocount libieee.a-count \
liblaser.a

In this example, the linker assumes that you cannot recompile the libieee. a
library and that it continues to occupy the same space in .the global pointer area. The
compiler assumes that you can recompile plotter. o and liblaser. a, and it
produces a recommended -G value to use on recompilation.

4.7.3 Allocating the Global Pointer Area

If your program contains several modules and the data for all modules is too large to
fit in the global pointer area, you can allocate the global pointer area to the module
that is most active. For example, suppose your program consists of modules a . c,
b. c, and c. c. You discover by using prof that most of the execution time is
spent in module a. c. To make your program efficient, allocate the global pointer
area to the a . c module, as shown:

% cc -c -G 1000 a.c
% cc -c -G 0 b.c c.c

These commands cause the compiler to allow only the data from the a . c module to
occupy the global pointer area.

Checking Programs and Improving Performance 4-27

Library Routines and System Calls 5

UL TRIX provides a number of routines you can call from your program. These
routines perform programming tasks, such as reading or writing a file, and they
perform tasks that control the system, such as mounting a file system. The routines
UL TRIX provides are grouped into two major types: library routines and system
calls.

The library routines are C functions grouped in various archive libraries. System
calls are the system primitive routines that are entry points to the UL TRIX kernel.
Like library routines, system calls are callable from C.

When possible, use a library routine or system call instead of writing a routine of
your own to perform a particular task. Using system calls and library routines saves
you coding and debugging time. Because most library routines and system calls are
standard across UNIX systems, using them makes your program more portable.

This chapter provides information about UL TRIX library routines and system calls,
compilation and linking considerations, and the contents of the various libraries.
This chapter also describes using UL TRIX input and output routines to manipulate
data.

For information about UL TRIX library routines beyond what is given in this chapter,
see Section 3 in the ULTRIX Reference Pages. For more information about the
system calls, see Section 2 in the ULTRIX Reference Pages.

5.1 Compiling and Linking Considerations
When you compile and link your program, the compilers for C, Pascal, FORTRAN,
and perhaps other languages automatically attempt to resolve references by searching
the standard C library, libc. a. This library contains all the system calls, the
general purpose library routines, and the following groups of special library routines:

• Routines that perform standard input and output

• Routines that control the internet network

• Routines that control the X/Open Transport Interface

• Routines that control the Yellow Pages Service (YP)

In addition to l ibc . a, the system contains other libraries with which you can.link
your program. For example, if your program uses the interface to Kerberos, you must
link it with the libkrb. a, libknet. a, and libdes. a libraries. For information
on linking with a library other than libc, see Section 2.4.3.

When you call a library routine or system call in your program, you must declare the
routine or system call, just as you would any other routine in your program. UL TRIX
provides header files that contain declarations of the library routines and system calls.
For example, if you call a standard 1/0 routine that is in libc, you must include the
header file <stdio . h> in your program. You might also need to include other
header files, depending on which routine you call. See the reference page for a

specific library routine or system call to determine what header files other than
<stdio. h> you need to include. For information on including header files in your
program, see Section 2.2.

5.2 The C Library
The standard C library, libc. a, contains the system calls, many commonly used
routines, and groups of special library routines.

The following list refers you to other sources for information about routines in
libc. a:

• See Section 5 .4 for information on performing input and output with l ib c
routines.

• See Guide to the X/Open Transport Interface for information on controlling the
X/Open Transport Interface using lib c routines.

• See Chapter 6 for information on controlling interprocess communication using
lib c routines.

5.2.1 Character Processing Routines and Macros

Table 5-1 describes C library routines associated with character processing. These
routines require the inclusion of header file <ct ype . h>.

Table 5-1: Character Processing Routines and Macros

Name

isalnum ()

isalpha ()

isascii ()

iscntrl ()

isdigit ()

isgraph ()

is lower ()

isprint ()

ispunct ()

is space()

isupper ()

isxdigit ()

toascii ()

tolower ()
_tolower ()

toupper ()
_toupper ()

Description

Tests for an alphanumeric ASCII character.

Tests for an alphabetic character.

Tests for an ASCII character.

Tests for a control character.

Tests for a digit.

Tests for a graphic ASCII character (any printing character other
than a space).

Tests for a lowercase letter.

Tests for a printing ASCII character (including a space).

Tests for a punctuation character (printing character that is
nonalphanumeric and greater than octal 40).

Tests for one of the following white space characters: space, form
feed, new line, carriage return, horizontal tab, or vertical tab.

Tests for an uppercase letter.

Tests for a hexadecimal digit.

Converts an integer to an ASCII character.

Converts an uppercase letter to lowercase.

Converts a lowercase letter to uppercase.

5-2 Library Routines and System Calls

Related to the toascii () conversion routine, the math library routines atoi () ,
atol (), atof () , strtol (), strtoul (),and strtod () convert string data
to various numeric forms.

5.2.2 Standard 1/0 Routines
Table 5-2 describes C library routines associated with standard 1/0 operations on files
and with file access. These routines require the inclusion of header file <stdio. h>.
Standard 1/0 routines are also described in int ro(3s).

Table 5-2: Standard 1/0 Routines Related to Files and File Access

Name

fclose ()

fflush ()

fdopen ()

fopen ()

freopen ()

setbuf ()
setvbuf ()

tmpfile ()

tmpnam()
tempnam()

Description

Flushes buffers of the specified stream and closes the specified
stream, including disassociating the stream from the file.

Flushes buffered data of the specified stream.

Associates a stream with an open file.

Opens the specified file, including associating a stream with the
file. You need to specify the file mode to indicate the types of
operations to be performed.

Opens the specified file after attempting to close the file associated
with the stream.

Associates a buffer with an input or output file.

Creates a temporary file.

Generates a valid file name for a temporary file.

Related routines include the C library routine remove () and the system calls
creat (), rename(), and unlink().

Table 5-3 describes standard 1/0 routines associated with formatted 1/0 and character
1/0. These routines require the inclusion of header file <stdio. h>.

Table 5-3: Standard 1/0 Routines for Formatted 110 and Character 1/0

Name Description

Formatted 1/0 Routines:

fprintf () Writes output to the specified stream using the specified format.

f scanf () Reads input from the specified stream using the specified format.

printf () Writes output to stdout.

scanf () Reads input from stdin.

Library Routines and System Calls 5-3

Table 5-3: (continued)

Name Description

sprint f () Writes output to the specified string, terminated by a null
character.

sscanf () Reads input from a specified string.

vfprintf () Similar to fprintf (),except a variable argument list is used
(requires an additional header file).

vprintf () Similar to printf (),except a variable argument list is used
(requires an additional header file).

vsprintf () Similar to sprintf (),except a variable argument list is used
(requires an additional header file).

Character I/0 Routines:

fgetc ()

fgets ()

fputc ()

fputs ()

getc ()

getchar ()

gets()

putc ()

putchar ()

puts()

ungetc ()

Reads the next character from the specified input stream (as an
integer). This is the function used by the macro getc ().

Reads up to the specified number of characters from the specified
stream.

Writes the next character to the specified output stream.

Writes the specified string to the specified output stream.

Similar to f get c () , except it is implemented as a macro.

Similar to fgetc (),but uses stdin.

Reads characters from stdin into an array.

Similar to fputc (), except it is implemented as a macro.

Similar to fputc (),except it is directed only to stdout.

Writes a string to the stdout stream.

Pushes the specified character back into the input stream and
leaves the stream at the position before the inserted character.

Table 5-4 describes the standard 1/0 routines associated with direct 1/0, file
positioning, and error handling. Like other standard 1/0 routines, these routines
require the inclusion of header file <stdio. h>.

Table 5-4: Standard 1/0 Routines for Direct 1/0, File Positioning, and
Error Handling

Name

Direct I/O Routines:

fread ()

fwrite ()

File Positioning Routines:

fgetpos ()

5-4 Library Routines and System Calls

Description

Reads the specified number of data elements into an array from the
specified stream.

Writes the specified number of data elements from an array onto
the specified stream.

Stores and returns the current value of the file position indicator
for the specified stream.

Table 5-4: (continued)

Name Description

f seek () Sets the file position indicator to the specified offset for the
specified stream.

f setpos () Sets the file position indicator for the specified stream. Usually
used with f getpos ().

ftell () Returns the current file position indicator for the specified stream.

rewind () Sets the current file position indicator for the specified stream to
the beginning of the file.

Error Handling Routines:

clearerr ()

feof ()

ferror ()

perror ()

Clears the end-of-file and error indicators for the specified stream.

Tests whether the end-of-file indicator is set for the specified
stream.

Tests the error indicator for the specified stream. If an error is
present, use errno or the strerror () routine to return the
value.

Maps the error number to a error message and prints it to
stderr.

Routines that might be used with error handling routines include the C library
functions set jmp () and longjmp () , which allow non-local transfer of control.

5.2.3 Memory Management, Environment, and General Functions

Table 5-6 describes C library routines associated with pseudo-number generation,
memory management, environment and process control, sorting and searching, and
integer arithmetic. Most of these routines require the inclusion of header file
<stdlib. h>.

Table 5-5: General Routines

Name

Pseudo-Random Number
Generation Routines:

rand()

srand ()

Memory Management Routines:

calloc ()

free()

malloc ()

realloc ()

Description

Returns a sequence of pseudo-random integers based on the
specified seed. Should be preceded by a call to srand ().

Sets the specified argument as a seed. This seed determines the
values returned by rand () .

Allocates a zero-filled area of memory using a specified number of
units of the same size.

Deallocates an area of memory previously allocated by
calloc(),malloc(),orrealloc().

Allocates a contiguous space in memory of the specified size.

Changes the size of allocated memory to the specified size.

Library Routines and System Calls 5-5

Table 5-5: (continued)

Name Description

Environment and Process
Control Routines:

abort()

exit()

getenv()

papen()

putenv () setenv ()

system ()

unsetenv ()

Searching and Sorting Routines:

bsearch ()

hsearch ()

tsearch ()

qsort ()

Integer Arithmetic Routines:

abs()

div()

labs()

ldiv ()

5.2.4 String Operations

Causes abnormal program termination by use of the SIGABRT
(SIGIOT) signal (which may be caught).

Causes normal program termination to occur.

Searches an environment variable list for a specified string.

Initiates pipe I/0 and executes a Bourne shell command.
Terminate using pc lose ().

Sets an environment variable.

Passes the specified string &s a command for shell ~xecution.

Unsets an environment variable.

Used for searching and sorting array elements in conjunction with
a user function. The bsearch () routine returns a pointer to the
matching element of the array. The user function examines two
arguments and returns a value indicating whether the first is
greater than the second, the second is greater than the first, or that
they are equal.

Performs a hashed table search. Used with hcreate () and
hdelete (). Requires <search. h>.

Initiates a binary tree search. Used with tfind () and related
routines. Requires <search. h>.

Sorts an array of the specified number of elements.

Returns an absolute value for the specified integer.

Performs division of two integer values, returning the quotient and
remainder.

Returns the absolute value of the specified long integer.

Performs division of two long integer values, returning the
quotient and remainder as long integers.

Table 5-6 describes C library routines associated with string operations. These
routines require the inclusion of header file <string. h>.

Table 5-6: String Processing Routines

Name

memcpy ()
memmove ()

Description

Copies the specified number of characters from one area of
memory to another. Using memmove () uses an intermediate
buffer if the two areas overlap.

5-6 Library Routines and System Calls

Table 5-6:

Name

memchr ()

memcmp ()

memset ()

strcpy ()

strncpy ()

strcat ()

strncat ()

strcmp ()

strcoll ()

strncmp ()

strxfrm ()

strchr ()

strcspn ()

strpbrk ()

strrchr ()

strspn ()

strstr ()

strtok ()

strerror ()

strlen ()

(continued)

Description

Returns a pointer to the first occurrence of the specified character,
examining the specified number of characters from an area of
memory.

Compares two arguments lexicographically in memory, looking at
the specified number of characters, and indicates whether one is
greater than, less than, or equal to the other.

Sets the first specified number of characters in memory to the
value of the specified character.

Copies one specified string to another string.

Copies one specified string to another string, up to the specified
number of characters.

Copies (appends) a specified string to the end of another string.

Copies (appends) a specified string to the end of another string, up
to the specified number of characters.

Compares two arguments and indicates whether one is greater
than, less than, or equal to the other.

Compares two strings lexicographically, using collating
information defined in the program's locale.

Compares two arguments up to the specified number of characters
and indicates whether one is greater than, less than, or equal to the
other.

Transforms one string into another string.

Locates the first occurrence of the specified character in a string.

Returns the length of a segment of a string that does not contain
any of the characters in a second string.

Locates the position of a string that contains any of the characters
of the second string.

Locates the last occurrence of a specified character in a string.

Returns the length of a string that consists of only characters from
the second string.

Locates the first occurrence of a specified series of characters in a
string.

Breaks a specified string into a sequence of tokens.

Returns a pointer to the message text for a given error number.

Returns the length of a string.

Certain string handling routines are also provided in the Internationalization library,
including routines related to multiple byte strings, which include rnb 1 en () ,
rnbtowc (), rnbstowcs (), set locale (), wctornb (),and wcstornbs ().

Library Routines and System Calls 5-7

5.2.5 Date and Time Routines

Table 5-7 describes the C library routines associated with date and time conversion,
and time processing. These routines require the inclusion of header file <time . h>.

Table 5-7: Date and Time Processing Routines

Name

Time Conversion Routines:

asctime ()

ctime ()

gmtime ()

localtime ()

strftime ()

tzset ()

Time Processing Routines:

clock ()

difftime ()

mktime ()

time()

Description

Converts a time structure to ASCII format.

Converts integer time to ASCII format.

Returns pointer to a time structure, using GMT.

Returns pointer to a time structure, using local time.

Converts time to ASCII format using a conversion specifier.

Sets the local time zone.

Returns the processor time used.

Returns the difference between two times.

Converts a time structure to calendar time.

Returns the current calendar time.

5.2.6 System Calls and Other C Library R·outines

The system calls allow you to access entry points to the kernel from your program to
perform system tasks. For example, the system calls allow you to control sockets,
control processes (such as fork()), handle signals (such as sigvec ()),return file
status (such as f stat()), perform basic I/0 (as described in Section 5.4), tum
accounting on and off (such as acct ()),mount and unmount file systems (such as
mount ()),get or set the system clock, and so on.

Other C library routines not listed previously in this section perform a variety of
tasks, including routines to execute a file (such as execl ()), perform floating-point
conversion (such as ftoi ()), change (usually reduce) process priority (such as
nice ()), suspend program execution for a specified interval (such as sleep ()),
and so on. Some of these library routines are typically used in combination with
system calls.

5.3 Other Commonly Used Library Routines
The following sections describe many of the library routines not described in Section
5.2.

5.3.1 The Standard Conformant Function Library

ULTRIX provides a function library, libcP. a, that conforms to the POSIX and
X/Open standards. To use this library, you must link with it, in addition to linking
with libc. a.

5-8 Library Routines and System Calls

It is important to be aware of differences between the standard-conformant functions
in libcP. a and the functions in libc. a. Table 5-8 lists the functions that differ
and explains how the 1 ib cP functions differ from 1 ib c functions.

Table 5-8: Standard Conformant Library Functions That Differ from C
Library Functions

libcP Function

abort()

ctermid ()

cuserid ()

fclose ()

fflush ()

fopen ()
fdopen ()
freopen ()

nice()

opendir ()

printf ()
fprintf ()

scanf ()

sleep()

sprintf ()

tzset ()

ungetc ()

5.3.2 The Curses Library

Differences from libc Function

Closes open files before aborting the process with a SIGABRT
signal.

Returns a null string if the program has no controlling terminal.

Uses the effective user ID, instead of the login user ID.

Seeks to the byte following the last one your program read or
wrote before closing the file.

Writes buffers even if the file is a read-only file.

Causes the ''a'' and ''a+'' mode strings to append with no
overwrite.

Returns the new priority value minus NZERO. NZERO is the
default process priority as defined in <limits. h>. On ULTRIX
systems, NZERO is 20.

Sets the FD_ CLOSEXEC flag on the type DIR •

On success, returns the number of characters printed.

Treats the E, G, and X conversion codes the same as thee, g, and
x conversion codes.

Can be interrupted by signals.

Returns the number of characters formatted. This return value
difference affects the syntax of the function call. (See the ULTRIX
Reference Pages for more information.)

Defines the timezone and daylight global variables, which you
must declare as long and int, respectively.

Clears the EOF indicator for the stream.

The X/Open curses library, libcursesX. a, contains routines that perform screen
management tasks. The library allows you to perform common terminal-dependent
frunctions without being aware of the detailed description of the current teminal. For
information on using the curses library, see Guide to X/Open curses Screen Handling.

5.3.3 The Internationalization Library
The internationalization library, libi. a, contains routines that provide a convenient
method of writing applications so that they operate in the application user's natural
languages. You can use the library to display output that is formatted correctly for the
application user, even if users in several countries use the same application. For

Library Routines and System Calls 5-9

information on using the internationalization library, see the Guide to Developing
International Software.

5.3A The Kerberos Library

The Kerberos libraries are libkrb. a, libknet. a, libdes. a, and libacl. a.
These libraries authenticate changes made to messages that applications send across a
TCP/IP network and protect against the unauthorized modification of such messages.
For information on using the Kerberos library, see the Guide to Kerberos.

5.3.5 The Mathematical Library
The mathematical library, 1 ibrn. a, provides functions that are useful for performing
mathematical equations. For example, the math library provides a function for
calculating the inverse hyperbolic function of a real value, performing bessel
operations, and so on.

For more information, refer to int ro(3m).

5.3.6 The Network Computing System Library

The Network Computing System (NCS) Library contains routines that allow you to
develop distributed applications. When you develop distributed applications, you
usually do not use many of the routines directly. Instead, you write interface
definitions in Network Interface Definition Language (NIDL) and use the NIDL
Compiler to generate most of the required calls to the library.

For more information about developing distributed applications, see DECrpc
Programming Guide.

5.3. 7 Optional Product Libraries

Other libraries may exist on your system and may be associated with optional
products, such as languages or windowing systems. For instance, FORTRAN
provides section 3f library routines that simplify calling section 3 routines (written in
C) from FORTRAN. Similarly, other optional Digital products may provide separate
libraries.

5.4 System 1/0 and Standard 1/0
ULTRIX has two groups of routines for performing I/0. These groups are called
system I/0 (system calls) and standard I/0 (library routines).

System I/0 routines:

• Are UL TRIX system calls to the kernel

• Use file descriptors for file access

• Are documented in Section 2 of the ULTRIX Reference Pages

Standard I/0 routines:

• Are contained in I us r I 1 ib I 1 ib c . a

• Use a pointer to a FI LE structure (defined in <stdio . h>) for file access

5-10 Library Routines and System Calls

• Call system 1/0 routines, but are faster than system I/0 for small sequential reads
(see Figure 5-1)

• Are documented in Section 3 of the ULTRIX Reference Pages

Figure 5-1 compares file access using system I/0 to file access using standard 1/0.
The read () system call places a specified file in buffer cache, but fread () places
it in buffer cache and process cache. Reading a file using system I/O's read ()
routine requires a trap to the kernel. Standard I/O's fread () routine reads from
process cache, requiring no kernel trap, and is therefore faster for small sequential
reads.

Figure 5-1: System 1/0 Versus Standard 1/0: File Reading

kernel

process

System 1/0

buffer
cache

read()

program

Standard 1/0

buffer
cache

process
cache

fread()

program

Table 5-9 lists standard I/0 and system I/0 routines.

Library Routines and System Calls 5-11

Table 5-9: System 1/0 and Standard 1/0

Action System 1/0 Standard 1/0

File descriptor int f d None
declaration

FI LE structure pointer None #include <stdio.h>
declaration FILE *fp

Open a file open() fopen ()

Close a file close () fclose ()

Read from a file read() fread(), fgets (), fscanf ()

Write to a file write() fwrite(), fputs (), fprintf ()

Position the file pointer lseek () fseek ()
within a file

5.4.1 File 1/0

The program in Example 5-1 performs file I/0 using standard I/0 routines.

Example 5-1: Using Standard 1/0 Routines

/* standard io.c This program uses standard I/O routines to create a
data file in the working directory, write 3 structures
to the data file, and read back the second structure.

*/
#include <stdio.h> /* Contains the definition of the FILE structure */

main()
{

FILE *fp;
struct rec

char type;
short buf [10];
rec_l;

int i, j,
status;

/* Pointer to a FILE structure */

/* Some meaningless character data */
/* Some meaningless integer data */

/* A record to be written and read */
/* Loop counters */

/* Status variable */

fp fopen("data_file.txt", /* Create or open data_file.txt */
"w+"); /*Open it for reading and writing*/

if fp ==NULL) /* fopen() returns NULL for failure */
perror("standard_io.c: fopen"), exit(l);

for (i = 0 i < 3 i++) /* Write 3 structures to data file.txt */

for (j 0 j < 10 ; j ++)
rec_l.buf [j] = i + 1;

rec_l.type = Ox31 + i;

status= fwrite(&rec_l,
sizeof(rec_l),
1,
fp);

if (status == 0)

/* Fill the buffer with integers */
/* ASCII character */

/* Write rec_l */
/* Size of items to be written */

/* Number of items */
/* File to write to */

/* Failure */
perror("standard_io.c: fwrite"), exit(l);

status = fseek(fp, /*Place fp's read-write pointer */

5-12 Library Routines and System Calls

Example 5-1: (continued)
sizeof(rec_l),
0);

if (status == -1)

/* this many bytes */
/* from the beginning of the file */

/* Failure */
perror("standard_io.c: fseek"), exit(l);

status = fread(&rec_l,
sizeof(rec_l),
1,
fp);

if (status == 0)

/* Store at this location */
/* an item of this size */

/* Just one item */
/* Read from this file */

/* Failure */
perror("standard_io.c: fread"), exit(l);

printf ("Second structtire:\n\tType:\t%c\n\tContents: ",
rec_l.type);

for(i = 0 ; i < 10 ; i++)
printf(i != 9 ? "%d"

fclose (fp);
exit(O);

"%d\n", rec_l.buf[i]);

/* Close the file */

The program in Example 5-2 performs file 1/0 using system 1/0 routines. The
program in Example 5-2 performs the same tasks as those in Example 5-1, but uses
system 1/0 routines instead of standard 1/0 routines.

Example 5-2: Using System 1/0 Routines

/* systemio.c This program uses system I/O routines to create a data
file in the working directory, write 3 structures to the
data file, and read back the second structure.

*/
#include <stdio.h>
#include <sys/file.h>

main()
{

int fd;
struct rec

char type;
short buf [10];
rec_l;

int i, j,
status;

fd open("data_file.txt",
O_CREAT I O_RDWR,
0644);

if (fd == -1)

/* File descriptor */

/* Some meaningless character data */
/* Some meaningless integer data */

/* A record to be written and read */
/* Loop counters */

/* Status variable */

/* Open data_file.txt */
/* Flags: create, read-write */

/* Create file with this mode */
/* Failure */

perror("systemio.c: open"), exit(l);

for (i = 0
{

i < 3 i++) I* Write 3 structures to data file.txt */

for (j 0 j < 10 ; j++)
rec_l.buf [j] = i + 1;

rec_l.type = Ox31 + i;
/* Fill the buffer with integers */

/* ASCII character */

status = write(fd,
&rec 1,
sizeof (rec_l));

if status == -1)

I* Write to file fd */
/* Copy data starting at this location */

/* Copy this much data */
/* Failure */

perror("systemio.c: write"), exit(l);

Library Routines and System Calls 5-13

Example 5-2: (continued)

status = lseek(fd,
sizeof (rec_l),
L_SET);

if (status == -1)

/*Place fd's read-write pointer */
/* this many bytes */
/* from the beginning of the file */

/* Failure */
perror("systemio.c: lseek"), exit(l);

status = read(fd,
&rec_l,
sizeof(rec_l));

if (status == -1)
perror("systemio.c: read"), exit(l);

/* Read from file fd */
/* Store at this location */

/* Read this much data */
/* Failure */

printf("The second structure:\n\tTyp~:\t%c\n\tContents: ",
rec_l.type, i);

for(i = 0 ; i < 10 ; i++)
printf(i != 9 ? "%d "

close(fd);
exit{O);

5.4.2 Device 1/0

"%d\n", rec_l.buf[i]);

/* Close the file */

Writing to or reading from a device in an ULTRIX system is accomplished using
system I/0 routines. Instead of data files, device files are used. Every device in an
UL TRIX system has a device file associated with it. Reading from or writing to a
device file is reading or writing the device; they are the same thing.

All device files for an UL TRIX system are kept in the I dev directory. Each device
file's name consists of a code that tells what the device is, followed by a number
assigned to that device; for example, /dev/ra13a is an MSCP disk controller
because the file name begins with ra. The Guide to System Environment Setup lists
device codes and their meanings.

There are two different types of device IiO:

• Character mode (also called raw)

• Block mode (also called cooked).

Devices are usually configured to accept only one mode. Printers and terminals use
character I/0, but disks can use either. Generally, an r preceding a disk device's file
name means the device is character mode. To be certain which mode to use, issue
the file command, supplying the device file as an argument; for example:

% file /dev/nrmtOh
/dev/nrmtOh: character special (36/12) HSC70 #1 TA78 tape #0 offline

In this example, the tape nrmt Oh is a character mode file (as indicated by the words
character special).

5-14 Library Routines and System Calls

To write to this device, open it using its file name; fot example:

fd =open ("/dev/nrmtOh", O WRONLY); /*Open the tape for writing*/
write (fd, buf, sizeof (buf)}; /*Write the contents of buf to the tape */

System I/0 routines and standard I/0 routines perform both character and block
device I/0. The type of 1/0 is determined by the device being accessed. Which
routine a program uses depends on the behavior the programmer wants.

5.4.2.1 Character Mode (Raw) Device 1/0

In character 1/0, device drivers are read and written to directly. Device drivers are
called by the reading and writing routines. The buffer cache is not used. If input
from a device is going to be processed or manipulated, using fread () to read the
input into the user's process space might make the most sense. If it is important to
the program that output he written to a device before the program continues, using
write () to make the program wait until the device driver has finished writing
might be best.

5.4.2.2 Block Mode (Cooked) Device 1/0

In block mode 1/0, the reading and writing routines read and write the buffer cache.
The kernel calls device drivers as needed to fill or empty the cache.

5.4.3 Controlling Devices with ioctl{)

The ioctl() system call can be used to control 1/0 on files, disks, sockets,
terminals, and tapes. The i o ct 1 () call has the following form:

ioctl(fd, /*An open device file descriptor*/
request, /* A device-specific request */
ptr); /*A pointer to either char or

a device-specific structure */

The second argument to ioctl () is a device-specific request that names the type of
action desired, such as TIOCGETC, which gets information about a terminal's
current characteristics. All device-specific requests are defined in < i o ct 1 . h>.

The third argument to ioct 1 () is a pointer to char or a device-specific structure,
which stores information about the device. These structures are written to if the
request is to obtain information, or read from if the request is to change device
characteristics. The structure used varies with the request made. These structures are
defined in various headers, depending on device type, as shown in Table 5-10.

Table 5-10: Headers That Define Structures Used with ioctl()

Device Header That Defines Needed ioctl () Structures

Data file None

Disk <sys/dkio.h>

Generic device <sys I devio. h>

Socket <sys/ socket. h>

Tape <sys/mtio. h>

Terminal <sys/ sgtty. h>

Library Routines and System Calls 5-15

5.4.3.1 Multibuffered 1/0 with Character Mode (Raw) Devices

If a program is reading or writing a raw device, the program waits (is blocked) until
the I/0 is complete. If there are several I/0 operations, the waits are serial because
there is a single buffer that must be emptied before it can be reused; for example:

f d = open ("/dev/nrmtOh", O_WRONLY);
write (fd, bufl, sizeof (bu fl)) ; /* Process waits until

bu fl is written to f d */
write (fd, buf2, sizeof (buf2)) ; /* Process waits until

buf2 is written to fd */
write (fd, buf3, sizeof(buf3)); /* Process waits until

buf3 is written to fd */

Having multiple buffers speeds I/0 to raw devices. The ioctl() system call with
the FIONBUF argument is used for multibuffered I/0; for example :

int buffers = 3; I* Number of buffers needed */
char data_l[lOO], data_2[100], data_3[100],

*ptr = data_3;

ioctl(fd, FIONBUF, &buffers); I* Create three buffers for I/O *I

write(fd, data 1, 100); /* No waiting */ -
write(fd, data 2, 100); /* No waiting *I -
write(fd, data 3, 100); /* No waiting */

-

/* Perform other work here while the writes complete */

status= ioctl(fd, FIONBDONE, &ptr); /* Wait for write to data 3 */

/* Perform work here that must be done after the writes are complete */

Using ioctl () with the FIONBDONE argument is not the only way to determine
when multiple I/0 operations are done; there are three other ways:

fcntl(fd, F_SETFL, FASYNC); /*Send SIGIO signal when fd's I/O is done*/

fcntl(fd, F_SETFL, FNDELAY); /*Alter the behavior of ioctl(fd, */
/* FIONBDONE, ...) so that the ioctl() */
/* call does not block, but merely */
/* returns EWOULDBLOCK */

select(); /* Wait a maximum specified time for the I/O to finish */

Example 5-3 shows a complete program that uses multiple buffers to write to a tape.

5-16 Library Routines and System Calls

Example 5-3: Multibuffered Writing to a Tape

/* tape_write.c Perform multi-buffered output to a raw tape. Write
four buffers of BUFSIZE bytes each to a tape. The
first buffer contains 'A's, the second 'B's,
and so forth.

*/
#include <stdio.h>
#include <sys/file.h>
#include <sys/ioctl.h>

#define BUFSIZE 100000

main()
{

char bufl[BUFSIZE],
*ptr = buf4;

long i;
int fd,

buffers = 4;

buf2[BUFSIZE], buf3[BUFSIZE], buf4[BUFSIZE],
/* Pointer to the last buffer */

/* Loop counter */
/* File descriptor */

/* Number of buffers needed */

fd open("/dev/nrmtOh", O_WRONLY); /*Open tape for write only*/
if fd == -1)

perror("tape_write.c: open"), exit(l); /* Failure */

i++) for (i = 0 ; i < BUFSIZE
{ /* Fill the arrays with data */

bufl [i] 'A';
buf2[i] 'B';
buf3 [i] 'C' ;
buf4[i] 'D';

if ioctl(fd, FIONBUF, &buffers) == -1) /* Create multiple*/
perror("tape_write.c: ioctl FIONBUF"), exit(l); /*buffers*/

if write(fd, bufl, sizeof(bufl)) == -1) /*Write the four*/
perror("tape_write.cl: write"), exit(l);/* buffers to tape*/

if write(fd, buf2, sizeof(buf2)) == -1)
perror("tape write.c2: write"), exit(l);

if write(fd, buf3, sizeof(buf3)) == -1)
perror("tape write.c3: write"), exit(l);

if write(fd, buf4, sizeof(buf4)) == -1)
perror("tape_write.c4: write"), exit(l);

if (ioctl(fd, FIONBDONE, &ptr) == -1) /*Wait for last write */
perror("tape_write.c: ioctl FIONBDONE"), exit(l);

close(fd);
exit(O);

For more information on using multiple buffers to speed 1/0 to raw devices, see
nbuf(4) and ioctl(2) in the ULTRIX Reference Pages.

5.4.3.2 Tape Control with ioctl()

The MTIOCTOP ioctl () request specifies tape 1/0 operations. The mtop

Library Routines and System Calls 5-17

structure, defined in <mt i o . h>, is used with this request:

struct mtop

} ;

short mt_op;
daddr t mt_count;

/* Operation to perform (defined in mtio.h) */
/* Perform it this many times */

Consider the following example:

struct mtop tape_l;

tape_l.mt_op = MTFSF;
tape_l.mt_count = 3;

/* Move forward one file, */
/*three times for each ioctl() call */

ioctl(fd, MTIOCTOP, &tape_l); /* Move the tape forward three files */

Example 5-4 gives an example of tape 1/0 using ioctl().

See mtio(4) in the ULTRIX Reference Pages for more information on tape 1/0.

Example 5-4: Writing, Rewinding, and Reading a Tape

/* tape_read_write.c Write ten 100-byte records to the /dev/nrmtOh tape.

*/

Rewind the tape and read the odd-numbered records.
Rewind the tape and read the even-numbered records.

#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mtio.h>
#include <sys/file.h>

#define BUFSIZE 100

main()
{

struct mtop tape;
int fd,

i, j'
status;

char buf[BUFSIZE];

/* Tape structure defined in <sys/mtio.h> */
/* File descriptor */

/* Loop counters */
/* Status variable */

/* Data buffer */

fd open ("/dev/nrmtOh",
O_RDWR);

/* Open the tape device file */
/* Open for reading and writing */

if fd <= 0)
perror("tape read_write.c: open"), exit(l);

tape.mt_op = MTREW;
tape.mt_count = 1;

/* MTREW means rewind the tape */
/* Do it once */

status= ioctl(fd, /*File to act on*/
MTIOCTOP, /* Perform a tape operation */
&tape);/* This structure holds the operation: MTREW */

if (status == -1) /* Failure */
perror("tape read_write.c: MTREW"), exit(l);

for (i = 0 i < 10 ; i++)
{

for (j 0; j < BUFSIZE; j++)/* Record 0 contains '0' s' record */
buf [j] = i + Ox30; /* 1 is 'l's, and so on to 9 */

if write(fd, buf, BUFSIZE) -1) /*Write buf to the tape*/
perror("tape_read_write.c: write"), exit(l); /*Failure*/

5-18 Library Routines and System Calls

Example 5-4: (continued)
tape.mt_op = MTWEOF; /*Overwrite MTREW with MTWEOF (write an EOF)*/

if (ioctl(fd, MTIOCTOP, &tape) -1) /*Write EOF on the tape*/
perror("tape_read_write.c: MTWEOF"), exit(l); /*Failure*/

tape.mt_op = MTREW; /* Overwrite MTWEOF with MTREW */

if (ioctl(fd, MTIOCTOP, &tape) == -1) /*Rewind the tape */
perror("tape_read_write.c: MTREW"), exit (1); /* Failure */

/* Read the odd-numbered
tape.mt_op = MTFSR;

while (read(fd, buf, BUFSIZE) != 0)
{

printf("%.100s\n", buf);
ioctl(fd, MTIOCTOP, &tape);

tape.mt_op = MTREW;
ioctl(fd, MTIOCTOP, &tape);

/* Read the even-numbered
tape.mt_op = MTFSR;
ioctl(fd, MTIOCTOP, &tape);

while (read(fd, buf, BUFSIZE) != 0)
{

printf("%.100s\n", buf);
ioctl(fd, MTIOCTOP, &tape);

}

close(fd);

records and write to terminal
I* Move forward one record

/* Read a record

/* Print a record
/* Skip one record

/* Rewind the tape

records and write to terminal
I* Move forward one record

/* Skip one record

/* Read a record

/* Print a record
/* Skip one record

5.4.3.3 Terminal Control with ioctl()

There are several ioct 1 () requests that control terminal I/0 operations; all are
defined in <sys/ ioctl. h> and explained in the tty(4) reference page. Several
different structures are used with these requests because of the patchwork evolution
of the UL TRIX terminal driver. Each structure contains a certain part of a terminal's
data.

The sgttyb structure, defined in <sgtty. h>, is used with most of the requests,
including TIOCGETP (get terminal characteristics) and TIOCSETP (set terminal
characteristics):

struct sgttyb
char sg_ispeed; /* Input speed */
char sg_ospeed; I* Output speed */
char sg_erase; /* Erase character */
char sg_kill; /* Kill character *I
int sg_flags; /* Mode flags */

} ;

The sg flags element in the sgttyb structure can be one of several flags defined
in <sys/ ioctl. h> and explained in the tty(4) reference page. Table 5-11 shows
a few of the most common flags.

Library Routines and System Calls 5-19

*I
*I

*/

*I
*/

*/

*/
*/
*/

*I

*/
*/

Table 5-11: Common Terminal 1/0 Modes

Flag Meaning

RAW Characters are passed uninterpreted to the program as soon as
they are typed. Characters are sent as 8 bits and are not
echoed to stdout

CBREAK Like raw, but characters are echoed, and interrupts, delays,
and parity still work

TANDEM A stop character (DC3) is sent when the input queue is full,
and a start character (DC 1) is sent when the queue is ready
for more input

LCASE Uppercase characters are converted to lowercase

Example 5-5 shows how to save, change, and restore a terminal's characteristics
using sgttyb.

Example 5-5: Setting Terminal Characteristics

/* sgttyb.c Set the terminal characteristics (in the sgttyb structure)
to CBREAK and NOECHO. Read characters and echo
incorrectly at the terminal until CTRL/A is typed.

*/
#include <stdio.h>
#include <sgtty.h> /*Includes <sys/ioctl>, which includes <sys/ttyio>*/
#include <sys/file.h>

main()
{

struct sgttyb orig settings,
new_settings;

int fd,
status;

char c;

/*Structure to hold current settings*/
/*Structure to hold new settings*/

/*File descriptor*/
/*Status variable*/

/*Character read from the terminal*/

/*Because stdin or stdout could be redirected, open*/
/*"/dev/tty", whic~ is guaranteed to be my terminal*/

if ((fd = open("/dev/tty", O_RDWR, /*Open for read-write*/
0)) == -1)

perror("sgttyb.c: open"), exit(l);

status= ioctl(fd,
TIOCGETP,
&orig_settings);

if (status == -1)

/*Failure*/

/*For this terminal */
/*get the current settings*/
/*and store them here */

perror("sgttyb.c: ioctl GET 1"), exit(l); /*Failure*/

status= ioctl(fd, TIOCGETP, &new_settings);/*Store them here too*/
if (status == -1)

perror("sgttyb.c: ioctl GET 2"), exit(l); /*Failure*/

new_settings.sg_flags &= -ECHO;
new_settings.sg_flags I= CBREAK;

if (ioctl(fd, TIOCSETP, &new_settings)
== -1)

/*Turn off echoing*/
/*Turn on CBREAK mode*/

/*Install new settings*/

perror("sgttyb.c: ioctl SET 1"), exit(l);

5-20 Library Routines and System Calls

Example 5-5: (continued)
write(fd, "Type some character\n", 21); /*Solicit input*/

/*Read a character*/
/*Increment c, and while not CTRL/A ... */

read(fd, &c, 1);
while (c++ != '\001')
{

write(fd, &c, 1);
read (fd, &c, 1);

/*Write the next*/
/*Read a character*/

if ioctl(fd, TIOCSETP, &orig_settings) /*Restore the original*/
== -1) /*terminal settings */
perror("sgttyb.c: ioctl SET 2"), exit(l);

exit (0);

The tchars structure, defined in <sys/ttyio. h>, is used with the TIOCGETC
(get special characters) and TIOCSETC (set special characters) requests:

struct tchars {
char t intrc; /* Interrupt Default CTRL/?
char t_quitc; /* Quit Default CTRL/\
char t startc; /* Start output Default CTRL/Q -
char t _stopc; /* Stop output Default CTRL/S
char t_eofc; /* End-of-file (EOF) Default CTRL/D
char t_brkc; /* Input delimiter (like nl) Default = -1

} ;

Example 5-6 shows how to store, change, and reset a terminal's special characters
using tchars.

Example 5-6: Changing a Terminal's Special Characters

/* tchars.c Change the EOF character to be CTRL/A
*/
#include <sgtty.h>
#include <stdio.h>

main()
{

struct tchars orig_char,
new char;

ioctl(O,
TIOCGETC,
&orig_char);

ioctl(O, TIOCGETC, &new_char);

new_char.t_eofc = '\001';
ioctl(O, TIOCSETC, &new_char);

puts("Executing cat> myfile
system("cat > myfile");

/*

CTRL/A is

/* The original settings
/* The altered settings

/* Descriptor 0 is st din
Get the special characters

/* Store them here

/* Store them here also

/* Change EOF to AA
/* Reset the special chars

EOF"); /* Prompt for input
I* Execute cat command

*/
*/
*/
*/
*/
*/

*I
*/

*/
*/
*/

*/

*/
*/

*/
*/

ioctl(O, TIOCSETC, &orig_char); /* Reset to the original chars */

exit(O);

The ltchars structure, defined in <sys/ttyio. h>, is used with the TIOCGLTC

Library Routines and System Calls 5-21

(get local special characters) and TIOCSLTC (set local special characters) requests:

struct ltchars {

char t_suspc; /* Stop process signal Default CTRL/Z
char t_dsuspc; /* Delayed stop process Default CTRL/Y
char t_rprhtc; /* Reprint line Default CTRL/R
char t f lushc; /* Flush output (toggles) Default CTRL/O
char t_werasc; /* Word erase Default CTRL/W
char t_lnextc; /* Literal next character Default CTRL/V

} ;

The remaining structure is just a word; defined in <ioctl. h> and explained in the
tty(4) reference page, that is used with the four local-mode word requests, such as
TIOCLGET (get.the current local word) and TIOCLBIC (clear these bits in the local
word). The local-mode word consists of several values (that can be combined using
a bitwise OR); for example:

• LTOSTOP~Send SIGTTOU for background output

• LTILDE-Convert,.., to ' on output (for Hazeltine terminals)

• LCTLECH-Echo input control characters as AX, and delete as A?

Example 5-7 shows how to change a terminal's local mode word.

Example 5-7: Changing a Terminal's Local Mode Word

/* local word.c Turn off echoing of control characters
in the A<character> form

*/
#include <stdio.h>
#include <sgtty.h>

main()
{

*I
*/
*I
*I
*/
*/

short word;
int status;

/*Holds the terminal's local word*/
/* Returned status */

status= ioctl(O,
TIOCLGET,
&word);

if (status == -1)

/* Descriptor 0 is stdin */
/* Get the current word */

/* Store it here */

perror("local_word.c: ioctl GET"), exit(l); /* Failure */

word &= -LCTLECH; /* Change the appropriate bits in word */

if (ioctl(O, TIOCLSET, &word) == -1)/* Set the local word to word*/
perror("local_word.c: ioctl SET"), exit(l); /*Failure*/

exit (0);

5-22 Library Routines and System Calls

Interprocess Communication 6

This chapter describes three different methods of interprocess communication that can
be used in programs:

• Pipes

• Signals

• Sockets

6.1 Pipes
A pipe is a memory buffer. Each pipe holds up to PIPE_MAX bytes of data
(PIPE_MAX, defined in <limits .h>, is usually 4096). Pipes are created by the
pipe() system call, and are accessed by file descriptors contained in an integer
array.

Pipes can only be used between related processes: between parent and child, or
between siblings (child processes from the same parent). Figure 6-1 depicts a parent
process and child process communicating through a pipe.

Figure 6-1: A Pipe

fd[O] ... I' '\ ... fd[O]

Parent Process
4096

Child Process Bytes

fd[1] ... ~ .L ... fd[1]

As Figure 6-1 shows, both processes can read to and write from the pipe, and each
process can read the data it has written. Therefore, it is prudent to use pipes for one­
w~y communication by closing (with the close() system call) either the write or
read end pf the pipe in each process, as shown in Figure 6-2.

Figure 6-2: A One-Way Pipe

1---===:j !!!__(fd [O]

Parent Process Child Process
4096
Bytes

fd[1] ___ _____ _

The program in Example 6-1 creates a pipe, creates a child process, and then
communicates with the child, as depicted in Figure 6-2. A child process has access
to pipes created by its parent before the child was created.

Example 6-1 : Creating a Child and a Pipe

I* pipe.c Creates a pipe and a child process. The parent reads a
line from stdin and writes it to the pipe. The child
reads a line from the pipe and writes it to stdout.

*I

#include <stdio.h>

main()
{

int

char

pid, /* Process ID returned by fork() */
Number of bytes read from the pipe by the child */ n, I*

fd[2]; /* Array that holds the pipe file descriptors */
par_line [81), /* Line buffer for parent */
chi line[81]; /* Line buffer for child */ -

if (pipe (fd) -- -1 /* Create a pipe */
perror("pipe.c: pipe failed"), exit(l);

if ((pid = fork()) -- -1) /* Create a child */
perror("pipe.c: fork failed"), exit(l);

if (pid == 0)
{

/*Child process; execute child's code*/

else
{

close(fd[l]);
n = read(fd[OJ, chi line, 80);
chi_line[n] = '\0';

/* Close write end of pipe */
/* Read from pipe */

printf("Child: your line was %s\n", chi_line);
exit(O); /*Successful exit from child*/

/*Parent process; execute parent's code*/

close(fd[O]);
printf("Enter line: ");
gets (par_ line);
write(fd(l], par line,
wait(O); -
exit(O);

/* Close read side of pipe */

/* Read a line from stdin */
strlen(par line));/* Write line to pipe*/

- /* Wait for child to exit */
/* Successful exit from parent */

6-2 Interprocess Communication

The following list contains information about pipes:

• Processes communicating through pipes must be related: parent and child, or
siblings.

• By convention, always read file descriptor [0 J , and write file descriptor [1 J , in
both parent and child.

• Messages in pipes have no record boundaries; for example, a parent could write
100 bytes, and a child could read 25 bytes 4 times, or the other way around.

• A process can read its own data from a pipe.

• Reading an empty pipe blocks the process; the process waits until there is
something in the pipe to read, unless specific measures are taken. (See Section
6.3.4.)

• Writing to a full pipe (4096 bytes on most systems) blocks the process; the
process waits' until the pipe empties enough to take the message, unless specific
measures are taken. (See Section 6.3.4.)

• If all write channels (f d [1 J) to a pipe are closed, the reader of that pipe will
read an EOF when that pipe is empty.

• Reads from a pipe destroy the data; the data in a pipe cannot be peeked at.

6.1.1 Redirecting stdin, stdout, and stderr to Pipes

ULTRIX provides up to 64 file descriptors per process (numbered 0-63), which the
system uses as handles on various objects: disk files, special files, sockets, pipes, and
others. The first three file descriptors in any process are:

• File descriptor 0, Standard input (stdin)

• File descriptor 1, Standard output (stdout)

• File descriptor 2, Standard error (stderr)

Subsequent file descriptors are allocated sequentially; a pipe () call, for example,
returns file descriptor 3 for reading and 4 for writing. (In Example 6-1, these values
are stored in f d [0 J and fd [1], respectively.)

The dup () system call allocates a new file descriptor that points to an object already
pointed to by a file descriptor. Therefore, dup () can be used to redirect a process's
stdin, stdout, or stderr to a pipe.

The idea is to create a pipe, then close (with the close () system call) an existing
file descriptor, stdout for example, and then immediately call dup (), supplying the
write channel to the pipe as the object to which the newly allocated descriptor points.
Because dup () always allocates the lowest available file descriptor, it will allocate
file descriptor 1, the descriptor given up when stdout was closed. Now, any writes to
stdout (which the system knows as file descriptor 1) are written to the pipe. The
writer, for example the ls shell command, writes to file descriptor 1 just as it always
does, but now file descriptor 1 points to a pipe rather than stdout. Figure 6-3, Figure
6-4, and Figure 6-5 depict what happens.

Figure 6-3 shows the file descriptors that are allocated for a process and its child after
a pipe has been created. The numbers in Figure 6-3 are the file descriptors for stdin,
stdout, and stderr. The values of fd [0 J and f d [1 J are 3 and 4, respectively.

Interprocess Communication 6-3

Figure 6-3: File Descriptors of Two Processes with a Pipe

std in std in

m m
0 fd[O] ~ ~

"""
... fd[O] 0

Parent Process
4096

Child Process Bytes

1 2 fd[1] ... ~ .L ~ fd[1] 1 2

t t t t ,__ ,__ ~

stdout stderr stdout stderr

Figure 6-4 depicts the processes in Figure 6-3 after the parent executes the following
system calls:

close(fd[O]); /* Clo~e the pipe read descriptor */
close(l); /*Close stdout */
dup(fd[l]); /*Allocate the lowest available descript~r, which */

/* is the just-closed 1, and make it point to what */
/* fd [1] points to (the pipe write descriptor) */

close(fd[l]); /*Close the original pipe write descriptor */

Figure 6-4: stdout Redirected in a Parent

std in

0

Parent Process

2
---......... --__. stdout

std err

6-4 Interprocess Communication

4096
Bytes

std in

~==::::j ... ~_J fd{O] 0

Child Process

2

stdout stderr

Figure 6-5 depicts the processes in Figure 6-4 after the child executes the following
system calls:

close(fd[l]);
close(O);
dup(fd[O]);

close (fd [OJ);

/* Close the pipe write descriptor */
*/

Allocate the lowest available descriptor, which */
/* Close stdin
/*
/*
/*
/*

is the just-closed O, and make it point to what */
fd[O] points to (the pipe read descriptor) */

Close the original pipe read descriptor */

Figure 6-5: stdout Redirected in a Parent, and stdin Redirected in a
Child

std in

m std in
0 f ' • 0

Parent Process
4096

Child Process Bytes

2 1 • \. ...I 1 2
stdout

t t t
i.....o .__ i.....o

std err stdout stderr

Now, all four of the original file descriptors into and out of the pipe are closed. The
parent's stdout writes to the pipe, and the child's stdin reads from the pipe.

The program in Example 6-2 establishes the communication channels shown in
Figure 6-5, then executes a shell command that writes to stdout (who) in the parent,
and executes a shell command that reads from stdin (we -1) in the child.

Interprocess Communication 6-5

Example 6-2: Redirecting stdin and stdout to a Pipe

/* redirect.c This program uses the dup() system call to implement
this shell command: who I wc -1, which tells how many
users are on a system.

*/

#include <stdio.h>

main()
{

int pid,
fd[2);

/* Process ID returned by fork() */
/* Array that holds the pipe file descriptors */

if (pipe(fd) == -1 /* Create a pipe */
perror("redirect.c: pipe failed"), exit(l);

if ((pid =fork()) == -1) /*Create a child*/
perror("redirect.c: fork failed"), exit(l);

if (pid == 0)
{

/*Child process; execute child's code */

else
{

/* Make
close(fd[l]);
close(O);
dup(fd[O]);
close(fd[OJ);

stdin the read channel of the pipe and exec 'we' */
/* Close write side of pipe */

/* Close stdin (file descriptor 2) */
/* Make file descriptor 2 (stdin) same as fd[O) */

/* Close old read end of pipe */

if (execlp ("we", "we", "-1", 0) == -1) /* Run we -1 */
perror("redirect.c child: execl failed"), exit(l);

/*Parent process: execute parent's code*/

/* Make stdout
close(fd[O]);
close(l);
dup(fd[l]);
close(fd[l]);

the write channel of the pipe and exec 'who' */
/* Close read side of pipe */

/* Close stdout (file descriptor 1) */
/* Make file descriptor 1 (stdout) same as fd[l] */

/* Close old write end of pipe */

if (execlp("who", "who", 0) == -1 /* Run who */
perror("redirect.c parent: execlp failed"), exit(l);

6.1.2 Creating Pipes with popen()

Use the popen () library routine to create a child process to execute a Bourne shell
(sh) command. A popen () call also creates a one-way pipe between the parent
and child processes. The popen () routine is like a combination of pipe (),
fork(), and exec(). Here is what the popen () library routine does:

1. Creates a pipe

2. Creates a child process

3. Creates a Bourne shell in the child process that executes the shell command
specified in the popen () call

4. Causes the shell command to read or write the pipe to communicate with the
parent process

6-6 Interprocess Communication

5. Returns a standard 1/0 file pointer as the channel to the pipe for the parent to read
or write

Figure 6-6 illustrates what happens when the following popen () call is made:

#include <stdio.h>
FILE *fp;
fp = popen ("date", "r"); /* The parent can read the output of date */

/* using the standard I/O file pointer fp */

exit status pclose(fp); /*Close the file pointer*/

Figure 6-6: Calling popen() with date for Reading

Parent Process

Parent Process
4096
Bytes

~ std out

Child Process

G
The program in Example 6-3, who pipe. c, does what the program in Example 6-2
does; it implements the shell command who I WC -1. But who pipe. c uses
popen () rather than dup () . Figure 6-7 depicts what happens when who _pipe is
run.

Example 6-3: Creating Child Processes to Run Shell Commands

/* who_pipe.c

*/

#include <stdio.h>
#include <ctype.h>

main()
{

char buf[133];
FILE * fp - read,

*fp_write;

if ((fp_read

Create two child processes to implement the shell
command: who I wc -1

/* A line buffer
/* A file pointer that reads from the first pipe
/* A file pointer that writes to the second pipe

popen("who", "r")) == NULL) /* Create a process

Interprocess Communication 6-7

*/
*/
*/

*/

Example 6-3: (continued)
perror("who_pipe: popen who"), exit(l);

if ((fp_write = popen("wc -1", "w"))
== NULL)

perror("who_pipe: popen we"), exit(l);

while (fgets(buf, 132, fp_read) !=
fputs(buf, fp_write);

NULL)

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

running 'who' that */
can be read from */
fp_read */

Create a process */
running 'we' that */
can be written to */
through fp_write *I

Read a line from */
'who' (fp_read) */
and write it to */
'we' (fp_write) */

pclose(fp_read);
pclose(fp_write);

/* Close the file pointer */
/* Close the file pointer */

exit(O); /* Successful exit */

Figure 6-7: who_pipe.c

--.. •~ fp_read fp _write _===.: •..!'"----17

Parent Process
4096
Bytes ~

4096
Bytes

\.

Child Process Child Process

6.2 Signals
UL TRIX defines a set of about 30 signals that can be delivered to a process. If a
signal is not caught by the receiving process, that process is subject to the default
behavior for processes receiving that signal, which can be termination, termination
with a core image produced, or no action at all.

Signals are caught by the sigvec () system call and the signal() library routine.
This section discusses only signal () because it is an easier-to-use version of
sigvec ().

A process that uses signal () can take one of three actions for each type of signal
it receives:

6-8 Interprocess Communication

• Ignore the signal. The signal is discarded as if it were never sent.

• Block the signal. The signal is queued but not delivered.

• Catch the signal. Control is passed to a routine written by the user to handle a
particular signal.

To see all the signals available on your system, see s i gve c(2) in the ULTRIX
Reference Pages. The following signals are some of the more common ones:

• SIGINT, Interrupt (can be generated from a keyboard by Ctrl/C)

• SIGQUIT, Quit

• SIGKILL, Kill (cannot be caught, blocked, or ignored)

• SIGSYS, Bad argument to system call

• SIG STOP, Stop (cannot be caught, blocked, or ignored)

• SIGPIPE, Write on a pipe with no reader

• SIGALRM, Alarm clock

• SIGFPE, Floating point exception

• SIGIO, I/O has become possible on a descriptor

• SIGUSRl, User-defined signal 1

• SIGUSR2, User-defined signal 2

Signals can only be sent between the following types of processes:

• From the kernel to a process

• Between parent and child processes

• Between unrelated processes that have the same UID

6.2.1 Catching Signals
The s i gna 1 () library routine can be used to catch signals. A process can catch
many different signals and, except in the System V environment, once signal () is
called for a particular signal type, that signal is caught each time it is received. (In
the System V environment, it is caught only once; signal() must be recalled to
catch the signal again.)

The s i gna 1 () routine takes two arguments. The first argument is the signal to
catch, such as SIGINT. The second argument is what to do with the signal. The
second argument can be the address of a signal handler function, or one of these
values defined in <signal. h>:

• SIG_IGN, ignore the signal

• SIG_DFL, accept the default action for the signal, useful for resetting signal
behavior

• SIG_ERR, terminate the process

The signal () routine returns the previous action for the signal. If the following
call to signal () is the first for SIGINT in a program, the value of xis SIG_DFL

Interprocess Communication 6-9

(default action), unless changed by the shell (see Section 6.2.2):

x = signal(SIGINT, SIG_IGN);

If a signal handler had been previously declared for SIGINT, the address of that
handler would have been returned.

The program in Example 6-4 ignores interrupts. If run, its infinite loop must be
terminated some other way.

Example 6-4: Ignoring a Signal

/* signal. c
*/

Catch the SIGINT (interrupt) signal and ignore it.

#include <signal.h>

main()
{

signal(SIGINT, SIG_IGN); /* Ctrl/C will not stop this program, but*/
/* Ctrl/Z or kill -9 will. */

for(;;)
printf("Looping forever. Ctrl/C is useless against me.\n");

6.2.2 Handling Signals
The second argument to signal() can be the address of a signal handler. A
routine that is declared to be a signal handler receives three arguments when the
signal it handles is received by the process; it need not use any of them. The three
parameters have the following syntax:

signal_handler(int signal_number; long code; struct sigcontext *scp)

• signal_ number is the value of the signal as defined in <signal. h>.

• code is an additional piece of information, usually supplied with SIGFPE
(floating point exception), that further specifies the cause of the signal; for
example:

FPE_INTOVF _TRAP, for integer overflow

FPE_FLTDIV _TRAP, for floating-point division by zero

ILL_RESAD_FAULT, for attempting to access a reserved address

All codes are listed in <signal. h>.

• scp points to a structure of type sigcontext, defined in <signal. h>. The
sigcontext structure stores the process context before a signal was sent, in the
event that it needs to be restored after receiving a signal.

The program in Example 6-5 does not ignore the SIGINT signal; it handles it.
SIGINT does stop write_ text. c, but not before the program cleans up after
itself.

6-10 Interprocess Communication

Example 6-5: Handling a Signal

/* write text.c

*/

#include <stdio.h>
#include <signal.h>

main()
{

Prompt for input, place input in file 'tmp'.
If interrupted by CTRL/C, remove 'tmp' and exit.

FILE *fp;
char c;
void sigint_handler();

/* File pointer to 'tmp' */
/* Character read from terminal */
/* The SIGINT signal handler */

if (signal(SIGINT, SIG IGN)
!= SIG_IGN)

signal(SIGINT,
sigint_handler);

/*
/*
/*
/*

/* If SIGINT is already being */
/* ignored, don't declare a */
/* handler for it (see text) */

Make sigint_handler handle all */
SIGINT signals. signal() blocks */
other SIGINTs while a SIGINT is */
being handled */

fp = fopen ("tmp", "w") ;
printf("Enter text.\n");
while ((c=getchar()) != EOF)

/* Open file 'tmp' for writing */
/* Prompt for text */

/* Get a char and write it to 'tmp' */
putc (c, fp);

puts("EOF typed before CTRL/C");
exit(O); /* Successful exit */

void sigint_handler()
{

/* Remove the file 'tmp', and kill this */
/* program. Do not return to main() */

if (unlink("tmp") != -1)
puts ("The tmp file has been removed .. ") ;

exit(l);

A signal sent from the keyboard, such as an interrupt (SIGINT), is sent to all
processes associated with that terminal. However, the shell turns off interrupts sent
to background processes (those started with an ampersand [&] at the end of their
command line). That is why the program in Example 6-5 called signal() for
SIGINT and tested its value (see Section 6.2.1) before declaring a handler for
SIGINT. If write text. c declares that all SIGINTs are to be handled by its
handler, then the shell does not tum off interrupts when the process is run in the
background. The write text. c program tests the current state of interrupt
handling, and continues to ignore interrupts if they are currently being ignored.

If you want your program to detect and handle signals, but your program cannot be
stopped just anywhere, have your signal handler merely set a flag and return.
Execution resumes at the exact point the signal occurred. The flag can be tested after
the crucial code path is complete. A similar strategy is signal blocking (see Section
6.2.4).

The program in Example 6-6 shows how to handle arithmetic exceptions and take an
action based on the type of exception, as revealed in the code argument passed to
the signal handler. The arith trap. c program also shows a difference between
faults and traps. With traps, the-PC is incremented before a signal is handled; when
execution returns from the signal handler, the next instruction is executed. With

Interprocess Communication 6-11

faults, the PC is not incremented; when execution returns from the signal handler, the
faulting instruction is executed again. Therefore, the signal handler in
ari th_ trap. c exits after a fault.

Example 6-6: Using a Signal Handler's code Argument

/* arith_trap.c Establish a signal handler for arithmetic traps.

*/

Create a division by zero trap and a floating-point
overflow fault to try the mechanism. (Note that this
program will not compile using c89 because the c89
compiler detects the attempt to divide by zero.)

#include <signal.h>
#include <stdio.h>

main()
{

void sigfpe_handler();
short i, j;
float r, s;

/* The signal handler */
/* Variables used in causing the faults, */
/* thereby generating SIGFPE signals */

signal(SIGFPE, sigfpe_handler); /*Make the SIGFPE signal handler*/

j 0;
i 32 I j; /* Cause a divide by zero arithmetic trap */

r 1.0e20;
s r * r; /* Cause a floating-point overflow fault */

exit(O); /* Successful exit */

void sigfpe_handler(signal_nurnber, code)
int signal_nurnber, code;

printf("Signal %d received\t", signal_number);

switch (code)
{

case FPE INTOVF TRAP

case FPE INTDIV TRAP

puts("Integer Overflow");
break;

puts("Integer Division by Zero");
break;

case FPE FLTOVF FAULT: puts("Floating Overflow Fault");

default:
printf ("Code
exit(l);

6.2.3 Sending Signals

e·xit (1); /* Because the PC points to */
/* the faulting instruction */

%d\n", code);

Signals can be sent from a keyboard. To see which signals are mapped to keys on
your keyboard, issue the command stty everything. Signals sent from a
keyboard are received by all processes in the process group associated with the
terminal.

6-12 Interprocess Communication

Signals can be sent between related processes: parent and child, and siblings. A
Process sends a signal to another process by using the k i 11 () system call, which
takes the process ID of the receiving process as its first argument, and the signal to
be sent (such as SIGPIPE) as its second argument.

A process sends a signal to a process group by using the killpg () system call,
which is the same as kill () except that the first argument is the process group ID.
(Process group IDs are returned by the getpgrp () system call.)

The program in Example 6-7, has a parent process send a signal to its child, which
handles the signal and exits.

Example 6-7: Sending a Signal Between Processes

/* signal_child.c Parent process sends SIGINT to a child process.
The child process handles the signal and exits.

*/

#include <signal.h>
#include <stdio.h>

main()
{

int pid; /*The child's process ID returned by fork() */
void SIGINT_handler(); /*The signal handler routine*/

if ((pid =fork()) == 0) /*Child process; execute child's code*/
{

else

signal(SIGINT, SIGINT_handler);
pause();

/* Make signal handler */
I* Wait for a signal */

sleep(l);
kill(pid, SIGINT);
wait(O);
exit(O);

/*Parent process; execute parent's code*/

/* Wait a second for child to be born */
/* Send signal to child */

/* Wait until child terminates */
/* Successful exit */

void SIGINT handler(signal number)
int signal_number; -

/* Identify the signal received */
/* (SIGINT = 2) and exit */

printf("Signal %d received from parent.\n", signal number);
exit(O); /*-Successful exit*/

6.2.4 Blocking Signals
A signal can be blocked to protect certain sections of code from receiving signals
when the work being done should not be interrupted. Unlike ignoring a signal,
blocking a signal merely postpones it until the process is ready to handle the signal,
after the crucial code section has been executed.

A blocked signal is put in a queue and handled as soon as the block is released. The
order in which the blocked signals are released is implementation dependent.
Multiple occurrences of the same signal are not saved.

The sigblock () system call blocks signals through the use of a signal mask; if the
nth bit in the mask is set, signal n is blocked. (See <signal. h> for the values of

Interprocess Communication 6-13

signals.) After the crucial code has been executed, the sigpause () system call is
used to release any blocked signals from the queue, and restore the old mask:

long oldmask;

oldmask = sigblock(O);
sigblock(SIGSYS I SIGTRAP);

/* Get the current mask */
/* Block SIGSYS and SIGTRAP */

/* Code protected from SIGSYS and SIGTRAP goes here */

sigpause(oldmask); /* Release blocked signals and restore old mask */

6.2.5 Signals and Timers
The alarm () library routine sends the SIGALRM signal to the calling process.
SIGALRM terminates the process if it is not caught or blocked. The program in
Example 6-8 shows how use a 1 a rm () .

Example 6-8: Using alarm()

/* alarm.c Use alarm() to send SIGALRM in the number
of seconds specified on the command line

*/

#include <signal.h>
#include <stdio.h>

main(argc,argv)
char **argv;
int argc;

void sigalrm_handler();
char *strcpy ();

if (argc != 2) {
fprintf(stderr, "Usage: %s seconds\n", argv[O]);
exit(l);

signal(SIGALRM, sigalrm_handler); /* Make SIGALRM handler */

alarm((unsigned) atoi(argv[l])); /*Make argv[l] an unsigned int, */
/* and send SIGALRM in argv[l] seconds */

pause();

printf ("Back in main() .\n");

void sigalrm_handler()
{

/* Block until the signal is delivered */

/* SIGALRM handler */

printf ("Awake after alarm. \n");

6-14 Interprocess Communication

6.2.5.1 Timed Intervals

For each process, the system provides three timers that take a starting value and
count down to zero:

• ITIMER_REAL, which counts down in real time. A SIGALRM signal is sent
when ITIMER_REAL expires.

• ITIMER_ VIRTUAL, which counts down in process virtual time (runs only while
the process has the CPU in nonsystem mode, also known as user mode). A
SIGVTALRM is sent when !TIMER_ VIRTUAL expires.

• ITIMER_PROF, which counts down in both process virtual time and when the
system is running on behalf of the process. This timer is meant to be used for
code profiling. A SIGPROF signal is sent when ITIMER_PROF expires.

These timers are set with the set it imer () system call, which takes two
arguments, and an optional third argument. The first argument is the name of the
timer to be set (such as ITIMER_REAL). The second argument is the address of an
it ime rv a 1 structure, defined in <time . h>, which contains the amount of time to
count down for the first iteration, and the amount of time to count down for
subsequent iterations. The itimerval structure is shown in Example 6-9.

Example 6-9: The itimerval Structure

struct itimerval {
struct timeval it_interval;

struct timeval it_value;

} ;

struct timeval
long tv sec;
long tv_usec;

} ;

/* Time to count down
after the first */

/* Time to count down
the first time */

/* Seconds */
/* Microseconds */

If itimerval. it interval is zero, the timer counts down once; if it is non­
zero, the timer repeats for the life of the process. A signal (SIGALRM,
SIGVTALRM, or SIGPROF, depending on the timer used) is sent after it value
time elapses, and a signal is sent thereafter each time it _interval time elapses.

The optional third argument is also the address of an it ime rv a 1 structure; this one
is used for receiving the previous values contained in i timerval.

The getitimer () system call gets the current values in the itimerval structure
for the specified timer. The program in Example 6-10 shows how setitimer and
getitimer can be used.

Interprocess Communication 6-15

Example 6-10: Using setitimer and getitimer

/* timer.c Illustrate the use of the setitimer() and getitimer()
system calls.

*/

#include <signal.h>
#include <time.h>
#include <stdio.h>

main()
{

short i, j;
void announce();

/* Loop counter and generic variable */
/* SIGALRM's signal handler */

struct itimerval val, current_val; /* Defined in <time.h> */

signal(SIGALRM, announce);

val.it interval.tv sec = 3;
val.it-interval.tv-usec = 0;
val.it value.tv sec = 10;
val.it-value.tv-usec = 0;

/* Handler for SIGALRM */

/* Count 3 sec. each time after first */
/* Microseconds */

/* Count 10 seconds the first time */
/* Microseconds */

setitimer(ITIMER_REAL, &val, 0); /* Start the timer */

for(i = 0 ; i < 100000; i++)
{

j = (i*34987 + 89320.5)/41; /* Waste time */

if ((i % 25000) == 0) /* Occasionally show how much time remains */
{

getitimer(ITIMER REAL, ¤t val);
printf("it value: %d\n", current val.it value.tv sec);
printf("i<)nterval: %d\n", current_val-:-it_inter-;al.tv_sec);
}

void announce()
{

puts("\nTimer expired\n");

6.3 Sockets
Sockets are another interprocess communication mechanism. Sockets are similar to
pipes, except the communicating processes need not be related, and there is only a
single channel for each process, but this channel is full duplex (two-way read and
write).

Sockets are created with a domain. The domains supported on your system can be
found in <socket. h>. Here are a few common domains:

• AF_ UNIX, for processes on the same node

• AF _!NET, (internet) for processes on different nodes using TCP/IP

• AF _DECnet, for processes on different nodes using DECnet

• AF _SNA, for processes on different nodes using SNA

6-16 Interprocess Communication

Each socket has a certain type, which defines its communication semantics. The
following list shows the most common types and their attributes (see <socket. h>
for all types on your system):

• Stream: SOCK_STREAM

- Available in all domains

- A connected socket

- Data is sequenced, reliable, and unduplicated

- Record boundaries are not preserved (for example, 10 bytes can be written
three times, then all 30 bytes can be read at once)

• Datagram: SOCK_DGRAM

- Available only in AF _UNIX and AF _!NET domains

- An unconnected socket

- Data is not guaranteed·to be sequenced, reliable, or unduplicated (user
protocols must be used)

- Record boundaries are preserved

• Sequenced Packet: SOCK_SEQPACKET

- Available only in AF _DECnet domain

- Same as stream, but record boundaries are preserved

• Raw: SOCK_RA W

- No specific semantics

- Used for unprocessed access to internal network layers

If a process reads a datagram socket immediately after writing to it, it can read back
its own message. This is not true of stream sockets.

For each socket in a program, there must be a structure that receives the socket name.
Each structure is defined in a header, as shown in Table 6-1.

Table 6-1: Socket Name Structures

Domain

AF_UNIX

AF_INET

AF DECnet

Structure

sockaddr un

sockaddr in

sockaddr dn

Header

<un.h>

<netinet/in.h>

<netdnet/dn.h>

6.3.1 Using a Datagram Socket Between Processes on the Same Node

The two example programs in this section communicate through a datagram socket in
the AF _UNIX domain (which means both processes must be on the same node). Both
programs must obtain a socket descriptor and close the socket when they are through,
but only one binds a name to the socket and removes the socket file after closing the
socket, as shown in Table 6-2.

Interprocess Communication 6-17

Table 6-2: System Calls for Datagram Socket Communication

Server Program

sd =socket();

bind() ;

Get a socket descriptor
(like a file descriptor).

Name the socket. The
name is used by both
processes to
communicate through
the same socket.

sendto () ; recvfrom () ; Send and receive
messages

c 1 o s e () ; Close the socket.

unlink () ; Remove the socket file
(AF_ UNIX domain
only). If the file is not
removed, future
attempts to bind to a
socket of the same
name will fail.

Client Program

sd =socket();

sendto(); recvfrom();

close();

The program in Example 6-11 creates a datagram socket and reads from it. The
program in Example 6-12 writes to that socket. Figure 6-8 illustrates how these two
independent processes communicate. Their only connection is that both use the same
socket name.

6-18 Interprocess Communication

Figure 6-8: Communicating Through a Datagram Socket

Process 1

/* Read_datagram.c */

strcpy(sock_name.sun_path,
"/tmp/socket");

sd =socket(...);
bind(...);

Process 1 blocks, waiting for
the socket to be written to.

Process 1

/* Read_datagram.c */

recvf rom (...) ;

sd

/tmp/socket

Process 2

"/tmp/socket");
sd =socket(...);
sendto (...);

Process 2 writes to the socket,
unblocking process 1.

Interprocess Communication 6-19

Example 6-11 : Creating and Reading a Datagram Socket

/* read_datagram.c Use a datagram socket to read 5 messages from
write_datagram.c. AF_UNIX domain: no networking.

*I

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

main ()
{

int sd,
i,
status;

char buf[80];
struct sockaddr_un sock_name;

/* Socket descriptor */
/* for loop counter */
/* Status */
/* Buffer to hold the messages */
/* Defined in <sys/un.h> */

strcpy(sock_name.sun_path, "/tmp/socket"); /*Declare the socket*/
/* file by copying the name into sock name */

sd socket(AF_UNIX,
SOCK_DGRAM,
0) ;

/* Get a socket descriptor, AF UNIX domain */
-/* Datagram */

/* Use default protocol */

if (sd == -1)
perror("read_datagram.c: socket"), exit(l);

status =bind(/* Bind the descriptor to the name */
sd, /* Socket descriptor */
&sock_name, /* Structure containing the name */
sizeof(sock_name)); /*Size of structure*/

if (status == -1)
perror("read_datagram.c: bind"), exit(l);

for (i = 0
{

i < 5 ; i++) /* Read 5 messages from the socket */

status recvfrom(

if (status == -1

sd,
buf,
sizeof (buf) ,
0, 0, 0);

/* Get a message */
/* Socket descriptor */

/* A message */
/* Size of the message */

/* No flags */

perror("read_datagram.c: recvfrom"), exit(l);

printf("%s\n", buf);

close(sd);

unlink("/tmp/socket");

/* Print a message */

/* Close the socket */

/* Remove the socket file (necessary */
/* only in AF UNIX domain) */

The compiled version of read datagram. c must be run first. Then
write_datagram. c must be run on the same node.

6-20 Interprocess Communication

Example 6-12: Writing to a Datagram Socket

/* write_datagram.c datagram sockets employed to write 5 messages to
read_datagram.c. AF UNIX domain; no networking.

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

main()
{

int sd, /* Socket descriptor */
i,
status;

/* for loop counter */
/* sendto()'s status */

static char msg[] = "socket message ";
char str[20];

/* The basic message sent */
/* The actual message sent */
/* Defined in <sys/un.h> */ struct sockaddr_un sock_name;

strcpy(sock name.sun path,
"/tmp/socket");

/* Declare the socket file by copying */
/* the name into sock name. */

sd socket(AF_UNIX,
SOCK_DGRAM,
0) ;

/* Get a socket descriptor, AF UNIX domain */
-/* Datagram */

/* Use default protocol */

if (sd == -1)
perror("write_datagram.c: socket"), exit(l);

for (i = 0 ; i < 5 ; i++)/* Write 5 messages to socket in sendto() */

sprintf (str, "%s%d", msg, i); /* Form message */

status = sendto(sd, /* Socket descriptor */
str, /* Message */
sizeof(str), /*Size of message*/
0, /* No flags */
&sock name, /* The sockaddr un structure */

- /* containing the socket file name */
sizeof(sock_name)); /*Size of structure*/

if (status == -1)
perror("write_datagram.c: sendto"), exit(l);

close(sd);

unlink("/tmp/socket");

/* Close the socket */

/* Remove the socket file (necessary */
/* only in AF_UNIX domain) */

6.3.2 Using a Stream Socket between Processes on the Same Node

The two example programs in this section communicate through a stream socket in
the AF _UNIX domain (which means both processes must be on the same node). Both
programs must obtain a socket descriptor and close the socket when they are through,
but only one binds a name to the socket and removes the socket file after closing the
socket, as shown in Table 6-3.

Interprocess Communication 6-21

Table 6-3: System Calls for Stream Socket Communication

Server Program

sd =socket();

bind();

listen();

accept();

send() ; recv () ;

close();

unlink ();

Get a socket descriptor (like a file
descriptor).

Name the socket. The name is
used by both processes to
communicate through the same
socket.

Specify how many connection
requests can be queued to this
socket.

Wait for a connection (or take the
next one in the queue) and create a
new socket descriptor for it. By
default, the process blocks if no
connections are pending, and
unblocks when a connect request is
made.

Request a socket connection.

Send and receive messages.
NOTE: not sendto () and
recvfrom (),as with datagrams.

Close the socket.

Remove the socket file (AF _UNIX
domain only). If the file is not
removed, future attempts to bind to
a socket of the same name will
fail.

Client Program

sd =socket();

connect();

send(); recv();

close();

The program in Example 6-13 creates an AF_ UNIX domain stream socket and writes
to it. The program in Example 6-14 reads everything from the socket in a single
read; record boundaries are not preserved.

Example 6-13: Creating and Writing to a Stream Socket

/* write stream.c Create an AF UNIX domain (same node) stream
socket and w~it for read stream.c to connect
to that socket. Send 5 messages to read_stream.c.

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

main()
{

int sd,
newsd,
i,
status;
static char msg[] = "socket message";
char str [20];
struct sockaddr un sock_name;

6-22 Interprocess Communication

/* Socket descriptor
/* New socket descriptor
/* for loop counter
/* Status

*/
*/
*/
*/

/*
/*
I*

The basic message sent */
The actual message sent */
Defined in <sys/un.h> */

Example 6-13: (continued)
strcpy(sock name.sun path, "/tmp/stream"); /*Declare the socket*/

- - /* file by copying the name into sock name */

sd socket(AF_UNIX, /*Get a socket descriptor, AF_UNIX domain*/
SOCK_STREAM, /* Stream socket */
0); /*Use default protocol*/

if (sd == -1)
perror("write_stream.c: socket"), exit(l);

status = bind(/* Bind the descriptor to the name */
sd, /* Socket descriptor */
&sock_name, /* Structure containing the name */
sizeof(sock_name)); /*Size of structure*/

if (status == -1)
perror("write_stream.c: socket"), exit(l);

if (listen(sd, 3) == -1) /* 3 connect requests can be queued to sd */
perror("write_stream.c: listen"), exit(l);

newsd = accept(sd,

0,
0) ;

if (newsd == -1)

/* Block, or accept the first pending */
/* connection, returning a new socket */
/* descriptor for the new connection. */

/* An unused result parameter */
/* An unused result parameter */

perror("write_stream.c: accept"), exit(l);

for (i = 0 ; i < 5 ; i++) /* Write 5 messages to the */
/* new socket descriptor */

sprintf(str, "%s%d", msg, i);

status = send(newsd,
str,
strlen (str) ,
0);

if (status == -1)

/* Form the message */

/* Socket descriptor to write to */
/* String to write */

/* Length of the string */
/* No flags */

perror("write_stream.c: send"), exit(l);

close(sd);
close(newsd);
unlink("/tmp/stream");

/* Close the socket descriptor */
/* Close the socket descriptor */

/* Remove the socket file */

The compiled version of write st ream. c must be run first. Then
read st ream. c must be run on the same node.

Example 6-14: Reading from a Stream Socket

/* read stream.c Read 5 messages in a single recv() call through
a stream socket.

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

Interprocess Communication 6-23

Example 6-14: (continued)
main()
{

int sd,
count,
status;
char buf[200];
struct sockaddr_un sock_name;

/* Socket descriptor */
/* Number of bytes read by recv() */
/* Status */
/* A buffer to hold the message */
/* Defined in <sys/un.h> */

strcpy(sock name.sun path, "/tmp/stream"); /*Declare the socket*/

sd

- - /* file by copying the name into sock name */

socket(AF_UNIX,
SOCK_STREAM,
0);

/* Get a socket descriptor, AF UNIX domain */
/* Stream socket */

/* Use default protocol */

if (sd == -1)
perror{"read_stream.c: socket"), exit(l);

status= connect{sd, /*Block, or get a connection to sd */
&sock_name, /* Structure containing the name */
sizeof(sock_name)); /*Size of structure*/

if (status == -1
perror("read_stream.c: connect"), exit(l);

sleep(3); /* Allow writer time to send all the messages */

count
/* Read all messages from
recv(/* Returns number

sd,
buf,
sizeof(buf),
0) ;

if (count == -1

server with one large recv{) call */
of bytes read (0 = closed socket) */
/* Socket descriptor to read from */

/* Buffer to hold what is read */
/* Size of the buffer */

/* No flags */

perror("read_stream.c: recv"), exit(l);

printf("%.*s\n\n", couht, buf); /*Write buffer contents to stdout */

close(sd); /*Close the socket descriptor*/

6.3.3 Using a Stream Socket between Processes on Different Nodes

Sockets created in the AF _!NET domain can communicate across a TCP/IP network.
AF _!NET sockets must have their names placed in a sockaddr in structure,
defined in <netinet/in.h>. Filling in the members of this structure is the chief
difference between using an AF _INET domain socket and an AF_ UNIX socket.

The program in Example 6-15 creates an AF _!NET stream socket on node rust,
then listens for connections. The program in Example 6-16 connects to that socket
and writes to the process running the program in Example 6-15.

6-24 Interprocess Communication

Example 6-15: Reading a Stream Socket Across an Internet Network

/* inet server.c Bind port Ox1234 on node "rust" and accept a
connection from inet client.c on another node.
Read a message from inet client.c and write it
to stdout.

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define PORT Ox1234 /*Pick a port number (like a descriptor), but*/
/* Ox0-0x1023 is reserved for root */

main()
{

int sd, /* Socket descriptor */
newsd, /* Socket descriptor */
count; /* Number of bytes read by recv() */
char buf[lOO]; /* Buffer to hold the message read */
struct sockaddr in sin; /* Defined in <netinet/in.h> */

/* Get a stream socket descriptor in the Internet domain */
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1)

perror("inet_server.c:

bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(PORT);

socket"), exit(l);

/* Fill in the sockaddr in structure */
/* Fill the structure with zeros */

/* Internet domain */
/* Convert host to network byte order */

if (bind(sd, &sin, sizeof(sin)) -1) /*Bind the port number*/
perror("inet server.c: bind"), exit(l);/* to the socket */

/* Specify number of connection requests */
if (listen(sd, 5) == -1) /* that can be queued to server process */

perror("inet server.c: listen"), exit(l);

if ((newsd = accept(sd, 0, 0)) == -1) /*Wait for connect request*/
perror("inet_server.c: accept"), exit(l);

/* Read the message from the client */
if ((count= recv(newsd, buf, sizeof(buf), 0)) == -1)

perror("inet server.c: recv"), exit(l);

printf("Message received:\n%.*s\n", count, buf); /*Print message*/

close(sd);
close(newsd);
exit(O);

/* Close the socket descriptor */
/* Close the socket descriptor */

The compiled version of inet server. c must be run on node rust before
inet client is run. inet client can be run on node rust or any node
connected to rust by TCP /IP.

Interprocess Communication 6-25

Example 6-16: Writing a Stream Socket Across an Internet Network

/*inet_client.c Form a connection with inet server.c at port Ox1234
on node "rust" and write a message to the server

*/

#include <sys/types.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define PORT Ox1234

main()
{

/*Pick a port number (like a descriptor), but*/
/* 0-1023 is reserved for root */

int sd; /* Socket descriptor */
static char msg[] = "Socket message through the Internet domain";
struct sockaddr_in sin; /* Defined in <netinet/in.h> */
struct hostent *hp; /* Defined in netdb.h; used by gethostbyname() */

/* Put data about the remote node in a hostent structure */
if ((hp = gethostbyname ("rust")) == 0)

perror("inet_client.c: gethostbyname"), exit(l);

/* Fill in the sockaddr_in structure */
bzero(&sin, sizeof(sin)); /*Fill the structure with zeros*/
bcopy(hp->h addr, &sin.sin_addr, hp->h length);/* Copy host address*/
sin.sin_famTly = hp->h addrtype; - /* Copy address type */
sin.sin_port = htons(PORT); /*Convert host to network byte order*/

/* Get a stream socket descriptor in the Internet domain */
if ({sd = socket(AF_INET, SOCK_STREAM, 0)) == -1)

perror("inet_client.c: socket"), exit(l);

/* Connect to the remote server (port Ox1234 at "rust") */
if (connect(sd, &sin, sizeof(sin)) == -1)

perror("inet_client.c: connect"), exit(l);

if (send(sd, msg, sizeof(msg), 0) == -1) /*Write a message to*/
perr~r("inet_client.c: write"), exit(l); /*the remote server */

close(sd);
exit (0);

6.3.4 Socket Flow Control

Processes communicating through sockets can be blocked (prevented from executing
further). A socket-writing process is blocked if more than 4K bytes remain unread in
the socket. A socket-reading process is blocked if the socket is empty. To avoid
being blocked under these conditions, programs can use the f cntl () system call.
To determine if a socket is ready for I/0, and to optionally be blocked if it is not,
programs can use the select () system call.

A process that writes to a socket with no readers receives a SIGPIPE signal. Without
a SIGPIPE signal handler, the process terminates.

6-26 Interprocess Communication

6.3.4.1 Using fcntl() to Prevent Blocking

During 1/0, the f cntl () system call can prevent a process from being blocked to a
single descriptor.

#include <fcntl.h>

result fcntl (sd, /* Socket to act on *I
F_SETFL, /* Set flags (the flag is FNDELAY) *I
FNDELAY); /* No delay. If read or write call would */

I* block, the read or write call returns */
/* -1 and sets errno to EWOULDBLOCK. The *I
/* program continues *I

After executing the previous code to prevent being blocked, the process can
continually try the 1/0 until it is possible. However, using the FASYNC flag causes
a SlGIO signal to be sent to the process when non-blocking 1/0 is possible:

#include <fcntl.h>

result fcntl (sd,
F_SETFL,
FASYNC);

/* Socket to act on */
/* Set flags (the flag is FASYNC) */
/* Send a SIGIO signal to the process */
/* when non-blocking I/O is possible */

A program that uses the preceding call to f cntl () must have a SlGlO signal
handler.

6.3.4.2 Using select() to Determine Descriptor Status

The select () system call determines whether any of a set of descriptors is ready
for 1/0; for example:

#include <sys/time.h>

struct timeval *timeout;
int nfound, num_fds, *readfds, *writefds, *execptfds;

nf ound = select (I* Returns the number of ready descriptors
num_fds, I* Check first num fds bits (descriptors)
readfds, I* Bit mask of descriptors to be read
writefds, I* Bit mask of descriptors to be written
execptfds, /* Bit mask of descriptors with exception

/* conditions pending
timeout); I* How much time to wait for select ()

Descriptor n is checked if bit n is 1 in any of the three bitmasks. Therefore,
descriptor sd can be added to a bit mask using the following statement:

mask I= 1 << sd;

The select () call clears bits from masks for the descriptors that are not ready; that
is, the bit mask parameters receive return arguments that are bit masks depicting
which descriptors are ready for I/0.

If timeout is 0, select () blocks the process until a descriptor specified in one
of the mask arguments is ready for 1/0. Otherwise, timeout must be a pointer to a

Interprocess Communication 6-27

*/
*/
*/
*/
*/
*/
*/

timeval structure (defined in <sys/time. h>):

struct timeval
long tv_sec; /* Seconds */
long tv_usec; /* Microseconds */

} ;

If the values in the timeval structure are 0, select() polls each descriptor only
once. Otherwise, the descriptors are polled continuously until the specified time has
elapsed.

The program in Example 6-17 makes an AF_ UNIX stream socket, accepts a
connection, waits awhile, then writes to the socket. The program in Example 6-18
connects to the socket and uses select () to block the process until something is
written to the socket.

Example 6-17: A Slow Socket Writer

/* slow writer.c Make an AF UNIX stream socket, accept a connection,
waste some time, then send a message.

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

main(}
{

int sd, newsd; /* Socket descriptors */
static char message[] = "Was this message worth waiting for?";
struct sockaddr_un sock_name; /* Defined in <sys/un.h> */

strcpy(sock_name.sun_path, "/tmp/socket"); /* Name the socket */

/* Get a socket descriptor */
if ((sd = socket(AF_UNIX, SOCK_STREAM, 0)) == -1)

perror("slow_writer.c: socket"), exit(l);

/* Bind the descriptor to the name */
if (bind(sd, &sock_name, sizeof(sock_name)) == -1)

perror("slow_writer.c: bind"), exit(l);

/*Make the descriptor's connection queue 5 connections long*/
if listen(sd, 5) == -1)

perror("slow_writer.c: listen"), exit(l);
/* Block until there is a connection request */

if ((newsd = accept(sd, O, 0)) == -1)
perror("slow_writer.c: accept"), exit(l);

sleep(5);

if (send(newsd, message, strlen(message), 0)
== -1)

perror("slow_writer.c: send"), exit(l);

/* Waste 5 seconds */

/* Send a message */

close(sd);
close(newsd);
unlink("/tmp/socket");

/* Close the descriptor */
/* Close the descriptor */

/* Remove the socket file */

6-28 Interprocess Communication

Example 6-18: Using select() to Wait on a Stream Socket

/* patient_reader.c Use select() to determine when a message can be
read from an AF UNIX domain stream socket

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

main()
{

int sd,
count,
nfound,
rmask = O;

char buf[80];
struct sockaddr

/* Socket descriptor */
/* Number of bytes returned by recv() */
/*Number of descriptors found by select() */
/* Bit mask of descriptors ready for reading */
/* Buffer to hold the message read */

un sock_name; /* Defined in <sys/un.h> */

strcpy(sock_name.sun_path, "/tmp/socket"); /* Name the socket */

/* Get a socket descriptor */
if ((sd = socket(AF_UNIX, SOCK_STREAM, 0)) == -1)

perror("patient_reader.c: socket"), exit(l);

/* Request a connection */
if (connect(sd, &sock name, sizeof(sock_name)) == -1)

perror("patient_reader.c: connect"), exit(l);

rmask I= 1 << sd; /* Set the bit for the sd descriptor */

nfound =select(/*Returns the number of ready descriptors */
32, /* Check descriptors (bits) 0-31 */
&rmask,/* Descriptors checked for read readiness */
0, /* Check no descriptors for write readiness */
0, /* Check no descriptors for exceptions */
0); /*Block until sd can be read */

if (nfound == -1)
perror("patient_reader.c: select"), exit(l);

/* After select unblocks, print some data and read the message */
printf ("Number of desc. found= %d\nReturned select mask= %x\n",

nfound, rmask);

if ((count= recv(sd, buf, sizeof(buf), 0)) == -1)
perror("patient_reader.c: recv"), exit(l);

/* Print the message */
printf("Message through socket: %.*s\n", count, buf);

close(sd); /* Close the descriptor */

The slow_writer program (Example 6-17) must be run before the
patient_reader program (Example 6-18). Both programs must be run on the
same node.

Interprocess Communication 6-29

6.3.5 Special Stream Socket Features
Stream socket messages have two special abilities: the ability to be peeked at, and the
ability to skip to the front of the message queue (out-of-bounds messages).

6.3.5.1 Peeking at a Message

Figure 6-9 shows a typical message queue between two processes communicating
through an AF_ UNIX domain stream socket.

Figure 6-9: Socket Message Queue

Process 1

sd

;-~-LM:..:.=es=s=a~g~e~1,--~._.sd Process 2

The reading process receives the data in the order sent. When a message is read, it is
removed from the queue. But when a message is peeked at, it remains in the queue.
The peeking process gets a preview of the next message without reading it and,
hence, removing it from the queue. Peeking is accomplished with the MSG _PEEK
argument to recv ():

count = recv(sd, /* Socket descriptor to peek */
buf, /* Character array to hold the message */
sizeof(buf), /*How many bytes to read */
MSG_PEEK); /*Just peek; don't remove bytes from socket*/

6.3.5.2 Sending and Receiving Out-of-Bounds Messages

A process writing to a socket can send an out-of-bounds message to that socket by
using the MSG_ OOB argument to send ():

status = send(newsd,
message,
sizeof (message),
MSG_OOB);

/* Socket descriptor to write to */
/* Message to write */
/* How many bytes to write */
/* Send the message out of bounds */

An out-of-bounds message uses a parallel socket channel, bypassing all messages in
the queue. In Figure 6-10, process 1 writes three normal messages to a socket, and

6-30 Interprocess Communication

then writes an out-of-bounds message (message 4) to that socket. Process 2, which
has connected to that socket, receives a SIGURG signal, meaning that an out-of­
bounds message has been sent to the socket it is connected to. Process 2 can now
read either message 1, or the out-of-bounds message 4. Typically, a SIGURG signal
handler is invoked by a reading process to read out-of-bounds messages.

Figure 6-10: Out-of-Bounds Message

Process 1

sd

The process reading the stream socket receives a SIGURG signal when an out-of­
bounds message arrives. Out-of-bounds messages are read by using the MSG_ OOB
argument to recv ():

count = recv (sd,
buf,
sizeof(buf),
MSG_OOB);

/ / Socket descriptor to peek
/* Character array to hold the
/* How many bytes to read

message */

/* Read the out-of-bounds message,
/* not the next regular message

*I
*/
*I

6.3.6 Additional Socket Information

The following sections discuss ancillary socket features.

6.3.6.1 Special Socket Options

The getsockopt () and setsockopt () system calls can be used to get and set
special socket options. For more information, see setsockopt(2) and
getsockopt(2) in the ULTRIX Reference Pages.

6.3.6.2 Using read() and write()

The read () and write () system calls can be used on socket descriptors just as
they are on file descriptors. However, out-of-band messages and message peeking
cannot be used.

Interprocess Communication 6-31

6.3.6.3 Closing Halves of a Socket

Sockets are full duplex connections (read and write both directions). To close half of
a socket, making it read-only or write-only for a particular process, the
shutdown () system call can be used; for example:

shutdown(sd, /* The socket descriptor to act on */
0); /* 0 stops reading, 1 stops writing, 2 stops both*/

Any pending send(), recv (),write(), and read() calls are flushed (not
discarded), so messages are not lost.

6-32 Interprocess Communication

Writing Secure Programs 7

This chapter presents security guidelines for these programming tasks:

• Using open file descriptors

• Responding to signals

• Specifying a secure search path

• Protecting permanent and temporary files

• Handling errors

• Using privileged processes

• Writing SUID and SGID programs

• Authenticating users

• Writing shell scripts and protecting compiled programs

• Programming in a DECwindows environment

This chapter also discusses the UL TRIX system calls and library routines that have
security implications. All system calls and library routines discussed in this chapter
are documented in the ULTRIX Reference Pages.

7.1 Using Open File Descriptors with Child Processes
A child process can inherit all the open file descriptors of its parent process and
therefore can have the same type of access to files that the parent has. This
relationship creates a security concern.

For example, suppose you write a set user ID (SUID) program that does the
following:

• Allows users to write data to a sensitive, privileged file

• Creates a child process that runs in a nonprivileged state

Because the parent SUID process opens a file for writing, the child (or any user
running the child process) can write to that sensitive file.

To protect sensitive, privileged files from users of a child process, close all file
descriptors that are not needed by the child process before the child is created. An
efficient way to close file descriptors before creating a child process is to use the
f cntl system call. You can use this call to set the close-on-exec flag on the
file after you open it. File descriptors that have this flag set are automatically closed
when the process exec's a new program.

For more information, see f cntl(2).

7.2 Responding to Signals
The UL TRIX operating system generates signals in response to certain events. The
event could be initiated by a user at a terminal (such as quit, interrupt, or stop), by a
program error (such as a bus error), or by another program (such as kill).

By default, most signals terminate the receiving process; however, some signals only
stop the receiving process. Many signals, such as SIGQUIT or SIGTRAP, write the
core image to a file for debugging purposes. A core image file might contain
sensitive information, such as passwords.

To protect sensitive information in core image files and protect programs from being
interrupted by input from the keyboard, write programs that capture signals such as
SIGQUIT, SIGTRAP, or SIGTSTP. Use the signal routine to cause your process
to change its response to a signal. This routine enables a process to ignore a signal or
call a subroutine when the signal is delivered. (The SIGKILL and SIGSTOP signals
cannot be caught, ignored, or blocked. They are always passed to the receiving
process.) For more information, see signal(3) and. sigvec(2).

Also be aware that child processes inherit the signal mask that the parent process sets
before calling fork. The execve system call resets all caught signals to the
default action; ignored signals remain ignored. Therefore, be sure that processes
handle signals appropriately before you call fork or execve. For more
information, see f ork(2) and execve(2).

7.3 Specifying a Secure Search Path
If you use the popen, system, or exec*p routines, which execute /bin/ sh, be
careful when specifying a pathname or defining the shell PATH variable. The PATH
variable is a security-sensitive variable because it specifies the search path for
executing commands and scripts on your system. For more information, see
environ(7), popen(3), and system(3).

The following list describes how to create a secure search path:

• Specify absolute path names for the PATH variable.

• Do not include public or temporary directories, other users' directories, or the
current working directory in your search path. Including these directories
increases the possibility of inadvertently executing the wrong program or of being
trapped by a malicious program.

• Be sure that system directories appear before user directories in the list. This
prevents you from mistakenly executing a program that might have the same
name as a system program.

• Analyze your path list syntax, especially use of nulls, decimal points, and colons.
A null entry or decimal point entry in a path list specifies the current working
directory and a colon is used to separate entries in the path list. For this reason,
the first entry following an equal sign should never begin with a colon.

• If there is a colon at the end of the path list, certain shells and exec*p search
the current working directory last. To avoid having various shells interpret this
trailing colon in different ways, use the decimal point to reference the current
working directory rather than using a null entry to reference the current working
directory.

7-2 Writing Secure Programs

You might want to use the execve system call rather than any of the exec*p
routines because execve requires that you specify the pathname. For more
information, see execve(2).

7.4 Protecting Permanent and Temporary Files
If your program uses any permanent files (for example, a database), make sure that
these files have restrictive permissions and that your program provides controlled
access. These precautions also apply to shared memory segments, semaphores, and
interprocess communication mechanisms; set restrictive permissions on all of these
objects.

Programs sometimes create temporary files to store data while the program is
running. Follow these precautions when you use temporary files:

• Be sure your program deletes temporary files before it exits.

• A void storing sensitive information in temporary files, unless the information has
been encrypted.

• Give only the owner of the temporary file read and write permission. Set the file
creation mask to 077 by using the umask(2) system call at the beginning of the
program.

• Create temporary files in private directories that are writable only by the owner.
If you must use I tmp, ask your security administrator to set the sticky bit on the
directory (mode 1777), so that files in it can be deleted only by the file owner, the
owner of the directory, or the superuser.

A common practice is to create a temporary file, then unlink the file while it is still
open. This limits access to any processes that had the file open before the unlink;
when the processes exit, the inode is released.

Note that this use of unlink on an NFS-mounted file system takes a slightly different
action. The client kernel renames the file and the unlink is sent to NFS only when the
process exits. You cannot guarantee that the file will be inaccessible to someone else,
but you can be reasonably sure that the file will be inaccessible when the process
exits. In any case, always explicitly ensure that no temporary files remain after the
process exits.

7.5 Handling Errors
Most system calls and library routines return an integer return code, which indicates
the success or failure of the call. Always check the return code to make sure that a
routine succeeded. If the call fails, test the global variable errno to find out why it
failed.

The errno variable is set when an error occurs in a system call. You can use this
value to obtain a more detailed description of the error condition. This information
can help the program decide how to respond, or produce a more helpful diagnostic
message. This error code corresponds to an error name in <errno. h>. For more
information, see errno(2).

The following errno values indicate a possible security breach:

EPERM Indicates an attempt by someone other than the owner to modify a file in
a way reserved to the file owner or superuser. It can also mean that a
user attempted to do something that is reserved for a superuser.

Writing Secure Programs 7-3

EACCES Indicates an attempt to access a file for which the user does not have
permission.

EROFS Indicates an attempt to access a file on a mounted file system when that
permission has been revoked.

If your program makes a privileged system call, but the resulting executable program
does not have superuser privilege, it will fail when it tries to execute the privileged
system call. If the security administrator has set up the audit system to log failed
attempts to execute privileged system calls, the failure will be audited.

If your program detects a possible security breach, do not have it display a diagnostic
message that could help an attacker defeat the program. For instance, do not display a
message that indicates the program is about to exit because the attacker's real user ID
(UID) did not match a UID in an access file, or even worse, go on to provide the
name of the access file. In addition, you could program a small delay before issuing
a message to prevent programmed attempts to penetrate your program by
systematically trying various inputs.

7.6 Using Privileged Processes
Any process that runs with an effective UID of 0 is a privileged process. A process
runs with an effective UID of 0 if one of the following is true:

• The process executing the program is a superuser process

• The program's UID is set to root and the SETUID bit is set

You must be alert to the fact that some system calls and library routines, when called
by a privileged process, behave differently than the way they behave when called by
a nonprivileged process.

For example, the setuid routine sets both the real and effective UIDs, and the
setgid routine sets both the real and effective group IDs (GIDs). A nonprivileged
process can only set the effective UID to the real UID. A privileged process is not
restricted in this fashion and can set these values as it chooses. For more
information, see setuid(3) and setgid(3).

Additionally, some system calls can only be called from a privileged process. For
example, only a privileged process can call sethostid or chroot. For more
information, see sethostid(2) and chroot(2).

All system calls bypass file protections when called from a privileged process. The
following list provides some examples of system calls that behave differently from
their nonprivileged behavior when called from a privileged process, or can be called
only by a privileged process:

Restricted to root

Different for root

7-4 Writing Secure Programs

acct,adjtime,audcntl,audgen,chroot,
exportfs,setdomainname,sethostid,
sethostname,settimeofday,plock,reboot,
setgroups,setquota,stime,swapon,and
vhangup.

bind,chown,setpriority,setrlimit,kill,
killpg,link,mknod,mount,quota,setpgrp,
setregid, setreuid,setsysinfo,socket,and
ulimit.

Bypass permissions msgctl, msgsnd, msgrcv, semctl, semop,
shmctl, shmat, and any calls that use file-system
pathnames.

Make sure that your compile environment (BSD, SYSTEM_FIVE, POSIX, or
X_ OPEN) does not change the behavior that you expect from a system call or library
routine.

7.6.1 Use Minimum Privileges

Because a privileged process has extraordinary powers, create a program that runs as
a privileged process only if there is no other way to accomplish the task, and remove
superuser privileges (the program's UID is not root) when the process no longer
requires them.

Once a privileged process uses the setreuid system call to change its real and
effective UIDs to something other than 0, it cannot regain superuser privileges. If you
write a program that performs both privileged and nonprivileged operations and plan
to use setreuid to reduce the amount of time the process spends in a privileged
state, remember to perform all privileged operations before calling setreuid. For
more information, see setreuid(2).

Another approach is to have the program retain superuser privileges and create child
processes for nonprivileged operations. Each child process would call setreuid to
give up its privileged status. This separates privileged from nonprivileged operations
within the program, reducing the potential for error or compromise while in a
privileged state.

7.6.2 Use Care When Allocating System Resources

Privileged programs can deliberately or accidentally have a negative effect on the
services available to users. For example, privileged programs can call ulimi t and
nice to increase file-size limits and set higher priorities for themselves. These
changes might have the side effect of denying services to users. · Therefore, be careful
when you allocate system resources or change system parameters; check for side
effects to avoid monopolizing system resources. For more information, see
ulimit(2) and nice(l).

7.6.3 Know the Process's Real UID

Before performing certain privileged operations, you might want to know who is
actually running the program. Use the getuid system call to determine the real UID
associated with the process. To decide whether or not to allow access to a file, use
the access system call to determine if the real UID (the user) could access the file
in question without the power of a privileged process. You can use this call to decide
when to limit the inherent access privileges associated with an effective DID of 0.
For more information, see getuid(2) and access(2).

7.6.4 Audit Security-Relevant Events

If your security administrator has enabled security auditing, the audit daemon,
audi td, reads data from I dev I audit and stores that data in the auditlog. The
audit subsystem can record a wide range of system events. The security
administrator can choose events to be logged. For more information, see audi td(8)
and audi tmask(8). For a complete description of the audit subsystem, see the
Security Guide for Administrators.

Writing Secure Programs 7-5

You might want to write a program that generates an audit record for process events.
You might also want to change the events that are audited or the items that are
recorded in an audit record for a process. The following privileged system calls and
library routine enable you to interact with the audit subsystem:

audgen This system call generates an audit record for a specified operation or
event and stores it in the auditlog. Your process can call audgen
directly, or it can use the library routine, audgenl, for this operation.
For more information, see audgen(2) and audgenl(3x).

audcntl Provides control over options offered by the audit subsystem. For
more information, see audcntl(2).

Audit record generation depends on a combination of the system audit mask and the
process audit mask. Each process has an audit mask and an audit control flag, both
of which originate in I etc/ auth. Each event that can be audited is represented in
both the system and the process masks. Whether the event is audited depends on the
audit control flag, as described in the following list:

• If the process audit control flag is set to AND, both masks must indicate that the
event is to be audited.

• If the process audit control flag is set to OR, at least one of the masks must
indicate that the event is to be audited.

• If the process audit control flag is set to OFF, no events for the process are
audited.

• If the process audit control flag is set to USR, the process is audited according to
the process mask only.

The following example shows how a privileged program turns off auditing for the
current process only:

/* Turns off auditing for this process */
include <sys/audit.h>
audcntl (SET_PROC_ACNTL, (char *)0, 0, AUDIT_OFF, 0);

Example 7-1 shows two ways a privileged program can generate an audit record: by
using the audgen system call, and by using the audgenl library routine.

Example 7-1: Two Ways to Generate an Audit Record

/* audgen system call to generate a sample audit record */

#include <sys/audit.h>

main()
{

char tmask[AUD_NPARAM];
struct {

char *a;
int b;

} aud_arg;
int i;

tmask[O] = T_CHARP;
tmask[l] = T_ERROR;
tmask (2] ' ';

7-6 Writing Secure Programs

Example 7-1: (continued)
aud_arg.a = "anything you want to put in the record";
aud_arg.b = -1;

if (audgen (AUTH_EVENT, tmask, &aud_arg -1)
perror ("audgen");

/* audgenl library routine to generate the same sample audit record */

#include <sys/audit.h>

main()
{

if (audgenl (AUTH_EVENT, T_CHARP, "any string", T_CHARP,
"anything you want to put in the record", T_ERROR, -1, 0) -1)

perror ("audgenl");

In Example 7-1, the argv argument is a pointer to an argument vector. Each entry
in the token type array describes the corresponding entry in the argument vector. In
this example, T .CHARP is a token type describing the string "anything you want to
put in the recorCf'. T ERROR is a token type associated with the error value of -1.
You can create an audit record containing up to eight token types and values.

In Example 7-2, a privileged program uses the audcntl system call to change the
events that are audited for this process. This example shows how to adjust the
process audit control flag.

Example 7-2: Using the audcntl Call to Change the Audit Control Flag

/* Change the events that are audited for this process */
include <syscall.h>
include <sys/audit.h>
define LEN (SYSCALL_MASK_LEN+TRUSTED_MASK_LEN)

char buf[LEN];
/* Change process mask to specify auditing for login and failed
* setgroups (note that 'buf' is initially set to zero). The
* process mask is AND'ed with the system mask. This results
* in only LOGIN and SYS_setgroups being audited for this process
* (and only if the system mask also specifies LOGIN and/or
* SYS setgroups).
*/ -

/* Get process control flag to AND */
if (audcntl (SET_PROC_ACNTL, (char *)0, 0, AUDIT_AND, 0) -1)

perror ("audcntl");

/* Get process mask */
A_PROCMASK_SET (buf, SYS_setgroups, 0, 1);
A_PROCMASK_SET (buf, LOGIN, 1, 1);
if (audcntl (SET_PROC_AMASK, buf, LEN, 0, 0) == -1)

perror ("audcntl");

In Example 7-2, the A_PROCMASK_SET macro, from audit .h, takes the following
arguments:

1. The buffer into which the mask is being built (buf).

2. The event name, from sys call. h for system calls and audit. h for events
(SYS_setgroups and LOGIN)

3. An integer (l=yes, O=no) that indicates whether a successful occurrence of the
event should be audited.

Writing Secure Programs 7-7

4. An integer (l=yes, O=no) that indicates whether a failed occurrence of the event
should be audited.

7.6.5 Use Care When Creating Daemons as Privileged Programs

Daemons are long-lived, background processes that provide system-related services.
Some standard daemons are the swapper, pagedaemon, cron, elcsd, and lpd
daemons. Daemons do not necessarily have to be privileged programs; however, most
daemons require privileged access to carry out their tasks. If you create a daemon as
a privileged program, take the same care as with any other privileged program. The
following list describes some ways to make your privileged daemons more secure:

• Check who is actually requesting the service. Note that this can be a problem if
the connection is through a socket, because the information about who is
requesting the service is not available from a socket.

The best approach for safely using sockets in privileged daemons is as follows:

- Use !NET-domain sockets. If you must use UNIX sockets, place the sockets
in a protected directory.

- Have the daemon check that the other side of the connection is a privileged
port. A socket can be marked privileged only if the superuser created it.
Only privileged sockets can send broadcast packets or bind addresses in
privileged portions of an address space. The daemon can determine whether
the other side of the connection is a privileged port through the accept or
getpeername system calls. For more information, see accept(2) and
getpeername(2).

- Write an auxiliary privileged program that connects to the daemon using a
privileged port. For example, the auxiliary program can use the rresvport
routine to get a privileged port. This requires superuser access. For more
information, see rresvport(3). This auxiliary program can perform checks
on the user, because it knows who invoked it (either from the audit UID or
the real UID). The auxiliary program can then communicate this information
to the daemon. The daemon refuses to accept any connection that is not from
the auxiliary program.

• Remove the controlling terminal using the ioctl (fd, TIOCNOTTY) function
call.

• Create separate processes for nonprivileged tasks, and remove privileges at the
beginning of the routines. If you have separate programs that work with the
daemon, in the same way that lpr works with lpd, make sure that the
interaction between the programs cannot be exploited to create a security breach.
Put proper protections on both programs. For more information, see lpr(l).

• Put proper ownership and protections on any permanent or temporary files. Clean
up any temporary files before exiting. You might want to use a directory other
than /tmp, dep~nding on the number of files and security issues. Make sure·that
only the daemon can write to any important directories (or that the sticky bit is
set). You might want to create a separate account for the daemon in order to
control file ownership and access.

7-8 Writing Secure Programs

7.7 Writing SUID and SGID Programs
SUID and SGID programs change the effective UID or GID of a process to the UID
or GID of the program. They are a solution to the problem of providing controlled
access to system-level files and directories, because they grant a process the access
rights of the files' owner.

The potential for security abuse is higher for programs in which the user ID is set to
root or the group ID is set to any group that provides write access to system-level
files. Simply stated, do not write a program that sets the user ID to root unless
there is no other way to accomplish the task. If you must write a program that sets
the user ID to root, refer to Section 7.6 for information about writing secure
privileged programs.

The chown system call automatically removes any SUID or SGID bits on a file,
unless the RUID of the executing process is set to zero. This prevents the accidental
creation of SUID or SGID programs owned by the root account. For more
information, see chown(2).

The following list provides suggestions for creating more secure SUID and SGID
programs:

• Verify all user-provided pathnames with the access system call.

• Trap all relevant signals to prevent core dumps.

• Test for all error conditions, such as system call return values and buffer
overflow.

When possible, create SGID programs rather than SUID programs. One reason is that
file access is generally more restrictive for a group than for a user. If your SGID
program is compromised, the restrictive file access reduces the range of actions
available to the attacker.

Another reason is that it is easier to access files owned by the user executing the
SGID program. When a user executes an SUID program, the original effective UID is
no longer available for use for file access. However, when a user executes an SGID
program, the user's primary GID is still available as part of the group access list.
Therefore, the SGID process still has group access to the files that the primary GID
could access.

7.8 Authenticating Users
You need access to the following to authenticate a user on an UL TRIX system:

• Usemame

• Password

• I etc/passwd file

• I etc/ svc. conf file

The system administrator may optionally configure the system to store the passwords
for each account in a database, auth, which is not accessible to unprivileged
processes. In addition to the password, this database contains much additional
information about the user, including password expiration information. The contents
of the file I etc/ svc. conf determines if this database is to be used.

Writing Secure Programs 7-9

There are two ways to authenticate a user on an UL TRIX system. The simple way is
to use the authenticate user library routine, as documented in
authenticate_ user(3x~

Another method to authenticate a user is to follow these steps (although using
authenticate_user performs the same checks and produces the same results):

1. Use the getpwnam library routine to get the passwd database entry
corresponding to the usemame. For infoffi1ation, see getpwnam(3).

2. Use the gets vc library routine to get security information from the
I etc/ svc. conf file. For information, see getsvc(3).

3. Check the value of the sec level field in the I etc/ svc. conf file to
determine where the password is stored and whether password expiration
information is available.

- If the security level is SEC BSD, the password is stored in the pas swd
database. No password exprration information is available.

- If the security level is SEC UPGRADE, password expiration information is
available. The password is usually stored in the passwd database. The
exception is if the entry in the pas swd database is exactly equal to the string
"*". In this case, the password is stored in the auth database.

- If the security level is SEC ENHANCED, password expiration information is
available and the password!s always stored in the auth database.

4. Encrypt the password supplied using the first two characters of the old encrypted
password as the salt argument.

- If the password came from the passwd database, use the crypt library
routine. For information about encrypting passwords and using salt, see
crypt(3.)

- If the password came from the au th database, use the crypt 16 function.
For information about encrypting passwords with the crypt 16 function and
using salt, see crypt(3).

5. Compare the encrypted password the user entered with the password in the
passwd or auth database. If the two encrypted passwords match, the password
is valid.

6. If password expiration information is available, further verify the password by
testing that the password has not expired.

To perform this test, check the password modification time stored in the auth
database record against the maximum password lifetime information, which is
also stored there, using the current system time as a reference. If modification
time plus maximum lifetime is less than the current system time, the password
has expired and the account is not valid.

An additional time factor, called the soft expiration time, can also be used in the
calculation to provide a grace period during which users can log into the system
provided they change their passwords immediately.

7. Depending on your application, you may also want to check the A LOG IN flag in
the au th database record for the user. -

Example 7-3 shows· a routine that authenticates a user's password.

7-10 Writing Secure Programs

Example 7-3: Routine to Authenticate a User

/*
* authenticate - a routine to verify a user's password.
*/

#include <pwd.h>
#include <sys/svcinfo.h>
#include <auth.h>
int authenticate(username, passwd)
char *username, *passwd;

struct passwd *pwd, *getpwnam();
AUTHORIZATION *auth, *getauthuid();
char *pp, *crypt(), *cryptl6 (), * (*fp) ();
struct svcinfo *svcinfo;
auth = (AUTHORIZATION *) 0;
if(! (pwd=getpwnam(username)))

return O; /* no account */
if(! (svcinfo=getsvc()))

return O; /* should never happen */
switch(svcinfo->svcauth.seclevel) {
case SEC BSD:

pp = pwd->pw_passwd;
fp = crypt;
break;

case SEC UPGRADE:
if(! (auth=getauthuid(pwd->pw uid)))

return O; /* no auth-entry */
if (! strcmp (pwd->pw_passwd, "*")) {

} else {

pp auth->a_password;
fp cryptl6;

pp pwd->pw_passwd;
fp crypt;

break;
case SEC ENHANCED:

default:

if(! (auth=getauthuid(pwd->pw uid)))
return O; /* no auth-entry */

pp = auth->a_password;
fp = cryptl 6;
break;

return 0; /* bad seclevel in /etc/svc.conf */

if(!*pp && *passwd)
return 0; /* bad password */

if(strcmp((*fp) (passwd, pp), pp))
return O; /* bad password */

if(auth) {
long expiration, time();
if(auth->a_pw_maxexp) {

expiration = auth->a_pass_mod + auth->a_pw_maxexp;
if(time((long *) 0) >expiration)

return O; /* password expired */

if(! (auth->a authmask & A LOGIN))
return O; /* account disabled */

return l;

Writing Secure Programs 7-11

Note

Although the authenticate user, getpwnam, and getauthuid
library functions transparently retrieve entries served from remote hosts,
you must get a Kerberos ticket-granting ticket before you can obtain
auth database entries for hosts served through BIND/Hesiod. See the
Guide to Network Programming for information about using Kerberos.

7.9 Protecting Shell Scripts and Compiled Programs
A shell script is a file containing shell commands. Shell scripts can include variables
and flow control constructions. If you must use a shell script to handle sensitive data,
set and export path before writing the body of the script. Do not make shell scripts
SUID or SGID.

Compiled programs enjoy a measure of security that shell scripts do not. You can
allow users to execute compiled programs while restricting those users from reading
the source files. Because users need both read and execute permission to run a shell
script, they have a much better chance of deciphering and compromising the script.
For this reason, compile any program whose compromise represents a security risk
and make it available to the general user only as an executable file.

Deny access to any source files. Remove read permission for group and other on the
executable file to deny users the opportunity to use a debugger on the file.

7.10 Security Concerns when Programming in a DECwindows
Environment

The following sections discuss four ways to increase security in a DECwindows
programming environment:

• Restrict access control

• Protect keyboard input

• Block keyboard and mouse events

• Protect device-related events

For a detailed description of Xl ib library calls and the X Window System Protocol,
see the X Window System: The Complete Reference to Xlib, X Protocol, ICCCM,
XLFD.

7.10.1 Restrict Access Control

The access control list is the key to security in the DECwindows environment. This
list names the hosts on the network that can access a workstation display. Users
logged in to hosts listed in the access control list can read from, write to, and copy
the contents of any window by specifying the window ID. Unlike files, windows
cannot be protected from authorized users by setting permissions on them.

When a system is installed, the only host listed in the access control list is the local
host. The local host is the system on which the window system is running. For
example, when workstation rook is booted for the first time, rook is the only host
listed in its access control list.

7-12 Writing Secure Programs

The system access control list is stored in a privileged file called I etc/X*. hosts.
The asterisk specifies the number of the workstation display. When a system is
installed, this file is either empty or does not exist. The security administrator
maintains this file, usually by leaving it empty to protect the workstations on the
network from security attacks. If a user does not add any hosts to the workstation
access control list (using the Security option from the Customize menu) the
I etc/X*. Hosts file determines the access control list for that workstation.

Table 7 -1 lists the Xl ib library function calls that maintain the access control list for
a local worksystem display. That is, the function calls in the table can be executed
only for the host where the access list is to be changed.

Table 7-1: Xlib Library Function Calls That Maintain the Access Control
List of A Local Worksystem Display

Call Purpose

XAddHost Add a single host to the access control list for the
workstation display.

XAddHosts Add the specified hosts to the access control list for the
workstation display.

XListHosts List the hosts on the access control list of the workstation
display. This call enables a program to find out which hosts
can connect to the workstation display.

XRemoveHost Remove the specified host from the access control list for the
workstation display.

XRemoveHost s Remove the specified hosts from the access control list for
the workstation display.

XEnableAccessControl Enable the use of the access control list at the workstation.

XDisableAccessControl Disable the use of the access control list at the workstation.

7 .10.2 Protect Keyboard Input

Users logged into hosts listed in the access control list can call the
XGrabKeyboard function to take control of the keyboard. When a client has called
this function, the X server directs all keyboard events only to that client. Using this
call, an attacker could easily grab the input stream from a window and direct it to
another window. The attacker could return simulated keystrokes to the window to
fool the user running the window. Thus, the user might not realize that anything was
wrong.

The ability of an attacker to capture a user's keystrokes threatens the confidentiality
of the data stored on the workstation.

DECterm windows provide a secure keyboard mode that directs everything a user
types at the workstation keyboard to a single, secure window. Users can set this
mode by selecting the Secure Keyboard item from the Commands menu in a
DECterm window.

Include a secure keyboard mode in programs that deal with sensitive data. This
precaution is especially important if your program prompts a user for a password.

Writing Secure Programs 7-13

Some guidelines for implementing secure keyboard mode follow:

• Use the XGrabKeyboard call to the Xlib library.

• Use a visual cue to let the user know that secure keyboard mode has been set, for
example, reverse video on the screen.

• Use the XUngrabKeyboard function to release the keyboard grab when the
user reduces the window to an icon. Releasing the keyboard frees the user to
direct keystrokes to another window.

7 .10.3 Block Keyboard and Mouse Events

Hosts listed in the access control list can send events to any window if they know its
ID. The XSendEvent call enables the calling application to send keyboard or
mouse events to the specified window. An attacker could use this call to send
potentially destructive data to a window. For example, this data could execute the
rm -rf * command or use a text editor to change the contents of a sensitive file.
If the terminal was idle, a user might not notice these commands being executed.

The ability of an attacker to send potentially destructive data to a workstation
window threatens the integrity of the data stored on the workstation.

DECterm windows block keyboard and mouse events sent from another client if the
allowSendEvents resource is set to False in the . Xdefaul ts file.

You can write programs that block events sent from other clients. The
XSendEvent call sends an event to the specified window and sets the
send_ event flag in the event structure to True. Test this flag for each keyboard
and mouse event that your program accepts. If the flag is set to Fa 1 s e , the event
was initiated by the keyboard and is safe to accept.

7 .10.4 Protect Device-Related Events

Device-related events, such as keyboard and mouse events, propagate upward from
the source window to ancestor windows until one of the following conditions is met:

• A client selects the event for a window by setting its event mask

• A client rejects the event by including that event in the do-not-propagate
mask

You can use the XReparentWindow function to change the parent of a window.
This call changes a window's parent to another window on the same screen. All you
need to know to change a window's parent is the window ID. With the window ID
of the child, you can easily discover the window ID of its parent.

The misuse of the XReparentWindow call can threaten security in a windowing
system. The new parent window can select any event that the child window does not
select.

Take these precautions to protect against this type of abuse:

• Have the child window select the device events that it needs. This precaution
prevents the new parent from intercepting events that propagated upward from the
child. Parent windows that centralize event handling for child windows are at
greater security risk. An attacker can change the parent and intercept the events
intended for the children. Therefore, it is safer for each child window to handle
its own device events. Events that the child explicitly selects never propagate.

7-14 Writing Secure Programs

• Have the child window specify that device events will not propagate further in the
window hierarchy. This precaution prevents any device event from propagating
to the parent window, regardless of whether the child requested the event.

• Have the child window ask to be notified when its parent window is changed by
setting the StructureNotify or SubstructureNotify bit in the child
window's event mask. For information on setting these event masks, see the X
Window System: The Complete Reference to Xlib, X Protocol, ICCCM, XLFD.

7 .11 System Calls and Library Routines with Security
Implications

The following tables list many of the UL TRIX system calls and library routines that
have security implications for programmers.

UL TRIX C programs can be compiled for BSD, SYSTEM_FIVE, POSIX, or X/Open
environments. For detailed information, see the Reference Pages Section 2: System
Calls and the Reference Pages Section 3: Library Routines.

Some system calls and library routines that are not covered in this section might have
implicit security concerns. Also, the misuse of a system call or library routine that
does not seem to have any security concerns could threaten the security of a
computer system. For example, all system calls bypass file access permissions when
called by a privileged process. Ultimately, programmers are responsible for the
security implications of their programs.

7 .11.1 System Calls
Table 7-2 lists the system calls that have security relevance for programmers.

Table 7-2: Security-Relevant System Calls

Category

File control

Process control

File attributes

User and group ID

Auditing

General

System Calls

creat
fcntl
mknoda

fork
execve
setpgrpa
sigblock

access
chmoda
chowna

getegid
getgid
geteuid
setreuida

audcntla

syscall

open
read
write

sigpause
sigsetmask
sigvec

chroota
stat
umask

getuid
setgroupsa
setreuida

audgena

Writing Secure Programs 7-15

Table note:

a. Either these system calls can be called only by a privileged process or when they
are called by a privileged process, they behave differently from the way they
behave when called by a nonprivileged process. See the ULTRIX Reference
Pages for more information.

7.11.2 Library Routines

Library routines are system services that programs can call. Many library routines
use system calls. Table 7-3 lists ULTRIX library routines that have security
implications.

Table 7-3: Security-Relevant Library Routines

Category

File control

Password handling

Process control

Group processing

Identifying the user

Password encryption

User and group ID

Authorization

7-16 Writing Secure Programs

Library Routines

fopen

get pass
getpwnam
getpwent
getpwuid

signal

getgrent
getgrnam
getgrgid

cuserid
get login

crypt

setuid
setegid
seteuid

getauthent
getauthuid
storeauthent
authenticate user

po pen

putpwent
setpwent
endpwent

setgrent
endgrent

getpwuid

encrypt

setgid
setrgid
setruid

setauthent
setauthfile
endauthent

Calling Between C and Pascal 8

This chapter describes the coding interfaces between C and Pascal and gives rules
and examples for calling and passing arguments between these languages. The
chapter addresses the differences for both the RISC and VAX architectures.

For detailed information on how C variables appear in storage when compiled using
the cc command, see Appendix B. For information about how variables of other
languages appear in storage, see the documentation for that language.

8.1 Differences Between C and Pascal
In general, calling C from Pascal and Pascal from C is fairly simple. Both Pascal
and C allow only one main routine in a program, which can be written in either
Pascal or C. Most data types in each language have natural counterparts in the other
language. However, differences do exist in the following areas:

• Passing string data

• Calling routines with a variable number of arguments

• Type checking

• Passing arrays

• Passing single-precision floating point values (VAX specific)

• Passing floating point values (RISC specific)

• Using procedure and function arguments (RISC specific)

• Passing file variables (RISC specific)

8.1.1 Passing String Data

The C and Pascal languages handle strings differently. Pascal handles string data as
fixed-length arrays of characters. String parameters are typically declared as follows:

VARS: PACKED ARRAY[l .. 100] OF CHAR;

The upper bound (100 in this case) is assumed to be large enough to handle most
processing requirements efficiently. In passing an array, Pascal passes the entire
array, as specified, and pads to the end of the array with spaces. Most C functions
treat strings as pointers to a single character and use pointer arithmetic to step
through the string. A null character (\0 in C) terminates a string in C. Therefore,
when passing a string from Pascal to C, terminate the string with a null character
(chr(O) in Pascal).

Example 8-1 and Example 8-2 show a Pascal program that calls the atoi C function
and passes the string s. Note that the program ensures that the string terminates with
a null character. Example 8-1 shows the program on a RISC system and Example

8-2 shows the program on a VAX system.

Example 8-1: Passing String Data on a RISC System

type
astrindex = 1 .. 20;
astring = packed array [astrindex] of char;
function atoi(var c: astring): integer; external;

program ptest(output);
var

s: astring;
i: astrindex;

begin
argv(l, s); { This predefined Pascal function

is an extension }
writeln(output, s);
{ Guarantee that the string is null-terminated

(but may eliminate the last character if the argument
is too long). "lbound" and "hbound" are extensions. }

s[hbound(s)] := chr(O);
for i := lbound(s) to hbound(s) do

if s[i] = ' ' then
begin
s(i] := chr(O);
break;
end;

writeln(output, atoi(s));
end.

Example 8-2: Passing String Data on a VAX System

program example(output);
type

examplestr =packed array [1 .. 10] of char;
var

s : examplestr;
i : integer;

function atoi(vars examplestr)
begin

end.

s := '100';
s [4] : = chr (0) ;
i := atoi(s);
writeln(i);

integer; external;

For more information on atoi, see atof(3) in the ULTRIX Reference Pages.

8.1.2 Calling Routines with a Variable Number of Arguments

You can define C functions that take a variable number of arguments (for example,
pr int f and its variants). Such functions can be called from Pascal, but they must
be defined with a specific number of parameters in your Pascal program.

8.1.3 Type Checking
Pascal performs run-time checks on certain variables for errors; in contrast, C does
not. For example, when a reference to an array exceeds its bounds in a Pascal
program, the error is flagged (if run-time checks are not suppressed). Do not expect a
C function to detect similar errors when you pass data to it from a Pascal program.

8-2 Calling Between C and Pascal

8.1.4 Passing Arrays

C never passes arrays by value. In C, an array is actually a pointer. Therefore,
passing an array actually passes its address, which corresponds to Pascal variable­
parameter (VAR) array passing, or passing by reference. Passing Pascal arrays by
reference (VAR) instead of value is usually more efficient. Therefore, most Pascal
array parameters are V ARs. When it is necessary to call a Pascal routine with a by­
value array parameter from C, pass a C structure containing the corresponding array
declaration.

8.1.5 Passing Single-Precision Floating Point Values (VAX Specific)

Pascal on the VAX platform provides only double-precision floating-point data
(Pascal data type real). Thus, only double-precision floating-point data can be passed
(C data type double).

8.1.6 Passing Floating Point Values (RISC Specific)

In function calls, C automatically converts single-precision floating point values to
double precision. By contrast, Pascal passes single-precision floating by-value
arguments directly.

When passing double-precision values between C and Pascal routines, follow these
guidelines:

• If possible, write the Pascal routine so that it receives and returns double­
precision values.

• If the Pascal routine cannot receive a double-precision value, write a Pascal
routine to accept double-precision values from C and then have that routine call
the single-precision Pascal routine.

Passing single-precision values by reference between C and Pascal does not pose a
problem.

8.1.7 Using Procedure and Function Arguments (RISC Specific)

C function variables and arguments consist of a single pointer. In contrast, Pascal
procedure and function arguments consist of a pointer to machine code and a pointer
to the stack frame of the lexical parent of the function. Such values can be declared
as structures in C. To create such a structure, put the C function pointer in the first
word and zero in the second. C functions cannot be nested and, thus, have no lexical
parent. Therefore, the second word is irrelevant.

Note that you cannot call a C function with a function parameter from Pascal.

8.1.8 Passing File Variables (RISC Specific)

The Pascal text type and the C stdio package's declaration FILE* are compatible.
However, Pascal passes file variables only by reference; a Pascal routine cannot pass
a file variable by value to a C function. As with any reference parameter, C
functions that pass files to Pascal routines should pass the address of the FILE*
variable.

Calling Between C and Pascal 8-3

8.2 Calling Pascal from C
To call a Pascal routine from a C program, follow these steps:

1. Write a C extern declaration in the following form:

extern void name();

2. Call the Pascal procedure with actual arguments.

Be sure that the arguments are of the type that Pascal expects. Table 8-1 lists the
C argument types that match those expected by the called Pascal routine.

Table 8-1: C Argument Types

Pascal Type Expected

integer

subrange

char

boolean

enumeration

pointer types

reference parameter

record types

by-reference array parameters

by-value array parameters

cardinal

real

double

procedure

function

by-reference text

real

CType

integer or char value -231 •. 231 -1

integer or char value in subrange

integer or unsigned char (0 to 127)

integer or char (0 or 1)

integer or char (0 .. N-1)

pointer type
und <0. := lbound(s)

pointer to the appropriate type

structure or union type

corresponding array type

structure that contains the corresponding array

RISC Specific

unsigned int

none

float or double

struct {void *p(); int *l}

struct {function-type */(); int *l}

FILE**

VAX Specific

double

3. Declare a variable in which to store the return value.

Be sure the return value data type and the data type of the variable you declare
are compatible. Table 8-2 provides guidelines for declaring a return value type.

8-4 Calling Between C and Pascal

Table 8-2: Guidelines for Declaring Return Value Types

Pascal Return
Value Type

integer'l

char

boolean

enumeration

pointer type

record type

array type

none

cardinalb

real

double

real

Table notes:

CType
Declaration

int

char

char

unsigned or corresponding enum (signed in C)

corresponding pointer type

corresponding structure or union type

structure containing corresponding array type

void

RISC Specific

unsigned int

none

double

VAX Specific

double

a. Applies also to subranges with lower bounds <0.

b. Applies also to subranges with. lower bounds ~O.

8.2.1 Calling Pascal from C on a RISC System

This section contains examples of calling a Pascal program from a C program on a
RISC system.

To pass a pointer to a function in a call from C to Pascal, you must pass a structure
by value. The first word of the structure must contain the function pointer, and the
second must contain a zero. Pascal requires this format because it expects an
environment specification in the second word.

Example 8-3 shows code for a C function calling a Pascal function.

Example 8-3: Calling a Pascal Function

Pascal function:
function bah(

var f: text;
i: integer
) : double;

begin

end {bah};

Calling Between C and Pascal 8-5

Example 8-3: (continued)
C declaration of bah:
extern double bah();
C call:
int i; double d;
FILE *f;
d = bah(&f, i);

Example 8-4 shows a C function calling a Pascal procedure.

Example 8-4: Calling a Pascal Procedure

Pascal procedure:
type

int_array = array[l .. 100] of integer;
procedure zero (

var a: int_array;
n: integer
)

begin

end {zero};
C declaration:
extern void zero();
C call:
int a[lOO]; int n;
zero(a, n);

Example 8-5 shows a C function that passes strings to a Pascal procedure, which then
prints them. Note the following:

• The Pascal procedure must check for the null [chr(O)] character, which indicates
the end of the string passed by the C routine.

• The Pascal procedure must not write to output; instead, it uses the stdout file­
stream descriptor passed by the C routine.

Example 8-5: Passing a String to a Pascal Procedure (RISC Specific)

C call:
/* Send the last command-line argument to Pascal routine */
#include <stdio.h>
main(argc, argv)

int argc; char **argv;
{

FILE *temp = stdout;
if (argc != 0)

p_routine(&temp, argv[argc - l]);

Pascal procedure:
{ We assume the string passed to us by the routine

will not exceed 100 bytes in length }
type

astring =packed array (1 .. 100] of char;
procedure p~routine(var f: text; var c: astring);

var
i: integer;

begin
i := lbound(c);
while (i < hbound(c)) and (c[i] <> chr(O)) do

begin
write(f, c(i]);
i := i + l;

end;
writeln(f);
end;

8-6 Calling Between C and Pascal

8.2.2 Calling Pascal from C 011 a VAX System

Example 8-6 is a C to Pascal call on a VAX system. It shows a C function that
passes strings to a Pascal procedure, which then prints them. Note the following:

• The Pascal procedure must check for the null [chr(O)] character, which indicates
the end of the string passed by the C routine.

• The Pascal procedure must not write to output; instead, it uses the stdout file­
stream descriptor passed by the C routine.

Example 8-6: Passing a String to a Pascal Procedure (VAX Specific)

C call:
/* Send the last command-line argument to Pascal routine */
#include <stdio.h>
main(argc, argv)

int argc; char **argv;
{

if (argc != 0)
p_routine(argv[argc - l]);

Pascal procedure:
{ We assume the string passed to us by the routine

will not exceed 100 bytes in length }
type

astring =packed array [l .. 100] of char;
procedure p_routine(var c: astring);

var
i: integer;

begin
i := 1;
while (i < 100) and (c[i] <> chr(O)) do

begin
write(c[i]);
i := i + 1;
end;

writeln;
end;

8.3 Calling C from Pascal
Follow these steps to call a C function from Pascal:

1. Write a Pascal declaration that describes the C function.

If the C function returns a value, write a Pascal function declaration. Otherwise,
you can write a Pascal procedure declaration.

2. Write the call, specifying the actual arguments you want to pass.

Be sure that the data types of the arguments are data types that the C function
expects. Table 8-3 describes the Pascal argument types that match those expected
by the called C function.

Calling Between C and Pascal 8-7

Note that on RISC systems, a Pascal routine cannot pass a function pointer to a C
function.

Table 8-3: Pascal Argument Types

Type Expected
By C Function

in ta

shortb

unsigned short

unsigned char

chazC

enum type

struct type

union type

array type

unsigned intd
unsigned short
float
double
FILE*

FILE**

unsigned int c

unsigned short
double

Table notes:

Pascal Type

integer

integer (or -32768 .. 32767)

cardinal (or 0 .. 65535)

char

integer (or -128 .. 127)

corresponding enumeration type

corresponding record type

corresponding record type

corresponding array type passed by reference (VAR)

RISC Specific

cardinal
cardinal (or 0 .. 65535)
double
double
text (passed by reference - VAR)

corresponding pointer type or
corresponding type passed by reference (VAR)

none
0 .. 65535
real

VAX Specific

a. Same as types signed int, long, signed long, signed.

b. Same as type signed short.

c. Same as type signed char.

d. Same as types unsigned, unsigned long.

3. Declare a return value for the function, if necessary.

8-8 Calling Between C and Pascal

Portable C (pee) Implementation Notes A

The C language supported by the pee ULTRIX compiler is an implementation of the
language defined in The C Programming Language by Kernighan and Ritchie
(Prentice Hall, 1978). The language that the pee compiler supports differs from the
C defined by Kernighan and Ritchie in certain ways. This appendix discusses the
pee language implementation details.

A.1 Specifying the varargs.h Macros
If a function takes a variable number of arguments (for example, the C library
functions printf and seanf), you must use the macros defined in the
varargs. h header file.

The va del macro declares the formal parameter va alist, which is either the
format descriptor for the remaining parameters or a parameter itself.

The va start macro must be called within the body of the function whose
argumellt list is to be traversed. The function then can transverse the list or pass its
va _list pointer to other functions to transverse the list. The type of the
va _start argument is va _list, which is defined in varargs. h.

The va arg macro accesses the value of an argument rather than obtaining its
address:-This macro handles those type names that can be transformed into the
appropriate pointer type by appending an asterisk (*), which handles most simple
cases.

The argument type in a variable argument list must never be an integer type smaller
than int and must never be float.

For more information, see varargs(5) in the ULTRIX Reference Pages.

The following example illustrates using varargs macros:

#include <varargs.h>
#include <stdio.h>
enum operations {load, store, add, sub};
main() {

void emit();
emit(load, 'I'' 0, 4) ;
emit(load, 'I'' 4, 4) ;
emit(add, I I I);
emit(store,'I', 0, 4) ;

void
emit(op, va alist)
/* emit tak~s a variable number of arguments and prints
/* them according to the operational format. */
enum operations op;
va_dcl {
va list arg ptr;
register int length, offset;
register char type;
va_start(arg_ptr);
switch(op) {

}
}

case add: /* print operation and length */
type= va_arg(arg_ptr, int);
printf("add %c\n", type);
break;

case sub: /* print operation and length */
type= va arg(arg ptr, int);
printf("s-;:;-b %c\n"; type);
break;

case load: /* print operation, offset, and length */
type= va_arg(arg_ptr, int);
offset= va_arg(arg_ptr, int);
length= va arg(arg ptr, int);
printf("load %c %d %d\n", type, offset, length);
break;

case store:
type= va_arg(arg_ptr, int);
offset= va_arg(arg_ptr, int);
length= va_arg(arg_ptr, int);
printf("store %c %d %d\n", type, offset, length);

The expected output from this code is as follows:

load I 0 4
load I 4 4
add I
store I 0 4

A.2 Deviations
C does not support the entry keyword, which has no defined use. Additionally, on
the RISC architecture C does not support the a sm keyword as implemented by some
C compilers to allow for the inclusion of assembly language instructions.

A.3 Extensions
UL TRIX language extensions to Kernighan and Ritchie C include the following:

• The en um type is a set of values represented by identifiers called enumeration
constants; enumeration constants are specified when the type is defined. For
information on the alignment, size, and value ranges of the en um type, see
Appendix B.

• The void type allows you to specify that no value be returned from a function.

• The vo 1ati1 e type modifier is used when programming l/0 devices, In
addition, the const keyword has been reserved for future use. For more
information on the volatile modifier, see Chapter 2.

A-2 Portable C (pee) Implementation Notes

A.4 Translation Limits
Table A-1 lists the maximum limits imposed on certain items by the pee compiler:

Table A-1: C Compiler Limitations

C Specifications Maximum

Nesting Levels
Compound statements ::;30
Iterations
Selections
Conditional compilations

Maximum number of type 9
modifiers (array, pointers,
function, volatile)

Case labels 500

Function call parameters 150

Portable C (pee) Implementation Notes A-3

Storage Mapping for C Data B

This appendix describes the alignment, size, and value ranges for C data types. The
appendix also describes the alignment the compiler uses for arrays, structures, and
unions. Finally, the appendix describes the C storage classes. Except where
differences are noted, the information in this appendix applies to both the RISC and
VAX architectures.

For information on the storage mapping for languages other than C, refer to the
compiler documentation for that language.

B.1 Alignment, Si-ze, and Value Ranges of C Data Types
Table B-1 describes how the C compiler implements size, alignment, and value
ranges for each data type.

Table 8-1: C Data Type Size, Alignment, and Value Ranges

Type Size Alignment Signed Unsigned

int 32 bits word a -231 to 231 -1 0 to 232 -1

long 32 bits word a -231 to 231 -1 0 to 232 -1

en urn 32 bits word a -231 to 231 -1

short 16 bits halfworda -32,768 to 32,767 0 to 65,535

charb 8 bits byte -128 to 127 0 to 255

floatc 32 bits word a See Table B-2

doubled 64 bits doubleworde See Table B-2

pointer 32 bits word a 0 to 232 -1

Table notes:

a. Byte boundary divisible by 4.

b. Byte boundary divisible by 2.

c. Unless the unsigned attribute is used, char is assumed to be signed.

d. Single precision floating point (IEEE single precision on RISC and F-floating on
VAX).

e. Double precision floating point (IEEE double precision on RISC and D- or G­
floating on VAX).

f. Byte boundary divisible by 8.

Table B-2 shows the approximate valid value ranges for float and double data types.

Table B-2: Size Ranges for the Float and Double Data Types

Float Double

RISC Specific

Maximum Value 3.40282356 * 1038

Normalized Minimum 1.17549429 * 10-38

Value

Denormalized Minimum 1.40129846 * 10-46

Value

1.7976931348623158 * 10308

2.2250738585012012 * 1 o-308

4.9406564584124654 * 10-324

VAX Specific

Maximum Value 1.7014118 * 1038

Minimum Value 2.9387359 * 10-39

1.701411834604692291 * 1038 (D-float)
8.988465674311579 * 10307 (G-float)

2.93873587705571880 * 10-39 (D-float)
5.5626846462680035 * 10-3o9 (G-float)

The limits . h and float . h header files, which are usually found in
/usr I include, contain C macros that define minimum and maximum values for
the various data types. For information about the macro names and values, see the
appropriate header file.

8.2 Storage Mapping of C Arrays, Structures, and Unions
An array has the same boundary requirements as the data type specified for the array.
The size of an array is the size of the data type multiplied by the number of elements.
For example:

double x[2] [3]

The size of the resulting array would be 48 bytes (that is, 2*3*8, where 8 is the size
in bytes of the double floating-point type).

Each member of a structure begins at an offset from the structure base. The offset
corresponds to the order in which a member is declared; the first member is at offset
0.

The size of a structure in the object file is the size of its combined members plus
padding added, where necessary, by the compiler. The following rules apply to
structures:

• Structures must align on the same boundary as that required by the member with
the most restrictive boundary requirement. The boundary requirements, by
increasing degree of restrictiveness, are byte, halfword, word, and doubleword.

• The compiler ends the structure on the same alignment boundary on which it
begins. For example, if a structure begins on an even-byte boundary, it also ends
on an even-byte boundary.

8-2 Storage Mapping for C Data

The following example shows a structure declaration:

struct S {
int v;
char n[lO];

The following figure illustrates how this structure would exist when mapped out in
storage:

Big Endian
l-v--lv_l_v_l--vl~n-ol-n-1l-n2_1_n3-I

ByteO 2 3 4 5 6 7

I n41 n51 nsl n71 nal n91 I
Byte 8 9 10 11 12 1 3 14 15

Little Endian (Digital products)

I n3 I n2 I n 1 (no I v I v I v I v I
Byte 7 6 5 4 3 2 1 0

I I n91 nal n71 nsl n5 I n41
Byte 15 14 13 12 11 10 9 8

D Padded bytes

ZK-0065U-R

Even though the byte count defined by the int v and char n components is 14,
the length of the structure is 16 bytes. Because int has a stricter boundary
requirement (word boundary) than char (byte boundary), the structure must end on a
word boundary (a byte offset divisible by 4). Therefore, the compiler adds two bytes
of padding to meet this requirement.

An array of data structures illustrates the reason for this requirement. For example, if
the structure in the previous figure were the element type of an array, some of the
int v components would not be aligned properly without the 2-byte pad.

Alignment requirements may cause padding to appear in the middle of a structure.
For example:

struct S {
char n[lO];
int v;

The following figure illustrates how this structure would exist when mapped out in
storage:

Storage Mapping for C Data 8-3

Big Endian
,-n-0 , n-1 f n-2-f -n3 f -n4_f _n5_f _n6 ,-n-7f

Byte 0 1 2 3 4 5 6 7

I v I v I v I v I
Byte 8 9 1 0 11 12 13 14 15

Little Endian (Digital products)

f n7lnsl n5l n4l n3ln2ln1lnol

Byte 7 6 5 4 3 2 0

I v I v I v I v I
Byte 15 14 13 12 11 1 0 9 8

D Padded bytes

ZK-0066U-R

Note that the size of the structure remains 16 bytes, but two bytes of padding follow
the n component to align v on a word boundary.

Bit fields are packed from the most-significant bit to least-significant bit in a word;
they cannot exceed 32 bits; and they can be signed or unsigned. For example:

struct S {
unsigned offset :12;
unsigned page :10;
unsigned segment :9;
unsigned supervisor :1;

}virtual_address;

The following figure illustrates how this structure would exist when mapped out in
storage:

Big Endian
Byte 0 3

,~-----o-ff-s-et _________ p_a_g_e---l-se_g_m_e-nt~l,__I

Bit 31 19 g 1. t 0
supervisor

Little Endian (Digital products)
Byte 3 0

1----1-s-eg_m_e_n-tf---p-a_g_e__,,__ _____ of-fs_e_t ____ ,_.I
Bit t 30 22 12 O

supervisor

ZK-0067U-R

Note that the compiler moves the fields that overlap a word boundary to the next
word.

8-4 Storage Mapping for C Data

The compiler aligns a nonbit field that follows a bit-field declaration to the next
boundary appropriate for its type. For example:

struct S {

}x;

unsigned a :3;
char b;
short c;

The following figure illustrates how this structure would exist when mapped out in
storage:

Big Endian

I a I
31 28 23

b
16

Little Endian (Digital products)

I c I b
31 15

D Padded bits

c

0

al
7 3

ZK-0068U-R

Note that five bits of padding are added after unsigned a so that char b aligns
on a byte boundary, as required.

A union must align on the same boundary as the member with the most restrictive
boundary requirement. The boundary requirements, by increasing degree of
restrictiveness, are: byte, halfword, word, and doubleword. For example, a union
containing char, int, and double data types must align on a doubleword boundary, as
is required by the double data type.

8.3 C Storage Classes
Table B-3 lists the C storage classes.

Table B-3: C Storage Classes

Class Description

auto Storage is allocated at execution and exists only for the duration of that block
activation.

static The compiler allocates storage, which remains fixed for the duration of the
program. Static variables reside in the program's bss section if they are not
initialized; otherwise, they are placed in the data section.

register The compiler allocates variables with the register storage class to
registers. For programs compiled with the -o option, the optimization phase
of the compiler tries to assign all variables to registers, regardless of the
storage class specified.

Storage Mapping for C Data 8-5

Table B-3: (continued)

Class Description

extern The variable refers to storage defined elsewhere in an external data definition.
The compiler does not allocate storage to extern variable declarations; it
uses the following logic in defining and referencing them:

If you omit extern and an initializer is present, a definition for the symbol
is emitted. If you specify two or more such definitions among all the files
that form a program you receive an error message at link time or before. If
no initializer is present, a common definition is emitted. Any number of
common definitions of the same identifier can coexist.

If you specify extern the compiler assumes that declaration refers to a name
defined elsewhere. A declaration having an initializer is invalid. If you never
use an identifier you declare, the compiler does not issue an external reference
to the linker.

B.4 volatile Type Qualifier (RISC Specific)
You specify the volatile type qualifier for variables that may be modified in ways
unknown to the compiler. For example, you might specify volatile for an object
corresponding to a memory mapped input/output port or an object accessed by an
asynchronously interrupting function. Except for expression evaluation, no phase of
the compiler optimizes any of the code dealing with objects declared as volatile.

If you assign a volatile pointer to another pointer without the volatile
specification, the compiler treats the other pointer as nonvolatile. For example,
suppose a program contains the following declarations and assignment statement:

volatile int *i;
int *j;

j = i;

The compiler treats the assignment statement as if the pointer j has been cast as
follows:

(volatile*) j = i

The compiler treats j as a nonvolatile pointer and the object it points to as
nonvolatile (the compiler may optimize it). Note that the -volatile compiler
option causes all objects to be compiled as volatile.

8-6 Storage Mapping for C Data

Porting Applications from a VAX System to C
a RISC System

Many of the applications you write to run on a VAX UL TRIX system will run with
little modification on a RISC UL TRIX system. Other applications will need
substantial modification for you to port them from a VAX to a RISC system.

This appendix describes differences between the VAX and RISC systems. The
appendix also gives information on modifying your VAX program so that it will run
on a RISC system.

C.1 Differences in Files
One of the differences between RISC and VAX systems is the size, format, and
contents of files. The following sections describe these differences in files.

C.1.1 Executable Image Size
Executable images on RISC systems are larger and therefore take up more disk space
than their counterparts on VAX systems. This size difference is due to the
instruction set of the RISC architecture. Typically, images on RISC systems are 30
to 40 percent larger than on VAX systems.

C.1.2 Object Format
Unlike VAX systems, RISC systems use Common Object File Format (COFF) for
object files. If your program contains hard-coded initializations that depend upon the
VAX nlist structure, you must change them when you port the program to a RISC
system.

C.1.3 Contents of the a.out.h File

The a. out. h header file does not include exec.hon RISC systems, as it does on
VAX systems.

C.2 Differences in Functions
Some system calls or other functions have a different effect or are used differently on
a RISC system than on a VAX system. This section describes differences in
functions.

C.2.1 The brk and getrlimit System Calls
On VAX systems, virtual address space begins at zero. Program text starts at zero
and runs to &etext. Program data begins after &etext and follows to &edata.
The bss segment then follows to & end, and the rest of memory is available for
growth.

On RISC systems, the virtual address space begins at Ox00400000. The text segment
starts at Ox00400000 and runs to &etext. Rather than beginning directly after
&etext, data begins at OxlOOOOOOO. The data segment continues to &edata and is
followed by the bss segment to & end. The rest of memory is available for growth.

This difference changes the interaction between the brk and getrlimit system
calls. On VAX systems, when you call get r 1 imi t to get RLIMIT _DAT A, the
value returned by get r 1 imi t is an approximation for the maximum value that you
could pass to the brk system call. On RISC systems, the correct value is as follows:

"the value returned by a getrlimit" + OxlOOOOOOO

One way to work around this problem is to use the sbrk call, instead of the brk
call.

C.2.2 Functions that Return a Pointer

On VAX systems, if a function that returns a pointer returns -1 error status, you can
make the following comparison:

if (ptr < 0)

This comparison can be true because pointers are signed values on a VAX system.
On a RISC system, the comparison is never true because pointers are unsigned
values. The compiler removes the code for the comparison, so the program cannot
catch the error status.

On a RISC system, you can use the following comparison to test the return value
when a function returns a pointer:

if ((int)ptr < 0)

The following comparison is also valid:

if (ptr == (char *) -1)

C.3 Attach Point for Shared Memory Segments
The attach points for shared memory segments in the virtual address space of a
process on a RISC system are different from a process on a VAX system. On both
systems, you attach shared memory segments by using the shmat system call. On a
RISC system, the shared memory segments fall between the text segment and the
private data segment, by default. Therefore, you can expand your private data
segment (by using the sbrk or brk system call) regardless of an attached shared
memory segment.

When you create a shared memory segment on a RISC sys.tern, its attach point in the
virtual address space of your process must be aligned on a 4-megabyte boundary. If
you let the system default create the attach point, the system aligns the shared
memory segment properly. If you must explicitly attach to a given address, that
address must be at a 4-megabyte boundary or you must set the SHM_RND flag. If
the SHM_RND flag is set, the system rounds the address you specify to a 4-
megabyte boundary. This restriction is imposed by hardware constraints.

Whenever possible, use the system default to create an attach point. For details on
creating attach points, see shmop(2) in the ULTRIX Reference Pages.

C-2 Porting Applications from a VAX System to a RISC System

C.4 Differences in Data Representation and Manipulation
RISC and VAX systems occasionally differ in the way they represent and manipulate
data. The following sections describe these differences.

C.4.1 Floating Point and Double Precision Data
Unlike VAX systems, the kernel on a RISC system does not manipulate floating
point or double precision values in the kernel. The kernel manipulates only integer
values. The kernel assigns the Floating Point Unit (FPU) to a process.

The f ixpoint. h header file contains macros to convert an integer to its floating
point format. You can include this header file in your program and use the macros.

In addition, VAX processors typically use D-float floating-point format. RISC
processors use IEEE floating-point format, which is similar to G-float format. Thus,
on RISC systems, you can use a greater range of floating point numbers but the
numbers have less precision (fewer decimal places).

If your program needs the extra precision of D-float format or if your program must
be cognizant of the low-level format of floating point numbers, it will be difficult to
port to a RISC system. RISC systems provide no equivalent to D-float or H-fioat
format.

If your program incorrectly treats a floating value as a double precision value, or a
double precision value as floating, it might run on a VAX system, in spite of the
error. On a RISC system, this programming error causes incorrect results.

C.4.2 NULL Pointers

On VAX systems, you can dereference a NULL pointer because page zero of user
process space is mapped and valid. On RISC systems, however, you cannot
dereference a NULL pointer without a segmentation violation. You must test the
pointer to be sure it is not NULL before you dereference it.

C.4.3 Data Alignment
On VAX systems, short words (2 bytes) or long words (4 bytes) can be accessed on
any byte boundary. On RISC systems, however, references must be "naturally"
aligned. Short words (2 bytes) must be on an even byte boundary. Long words (4
bytes) must be accessed on a boundary evenly divisible by 4.

If your program contains an unaligned access, the system attempts to correct the
unaligned access. If the system is able to accomplish the correction, it displays a
message on the controlling terminal (if one exists) stating at what pc the alignment
error was encountered. If the system is not able to correct the unaligned access, it
terminates the process with a SIGBUS (bus error) signal. The correction that the
system attempts might affect the performance of your program.

One common cause of an attempt to access unaligned data occurs when you use the
C language. Although the C compiler aligns data based on its size, it allows you to
create a pointer to unaligned data by casting a variable. For example, suppose your
program contains a pointer to char, which you cast to be a pointer to struct.

Porting Applications from a VAX System to a RISC System C-3

The alignment rules for a structure are more restrictive than they are for a character
string. Becausv of the alignment rules, the pointer to struct can create an
unaligned access to the char * buffer if you use it to access the middle of the
buffer.

For further information, see uac(l) in the ULTRIX Reference Pages.

C.5 Page Size
The page size on a RISC system is 4 kilobytes (4*1024 bytes). On a VAX system,
the page size is 512 bytes and UL TRIX manipulates data two pages at a time (or 1
kilobyte [2*512 bytes] at a time). This page size difference can affect the memory
management performed by your program.

If your program manipulates memory using pages, get the page size by using the
getpagesize system call. (For further information, see getpagesize(2) in the
ULTRIX Reference Pages.) Alternatively, you can include the vrnrnac. h header file
and use the macros defined in it for page size manipulations.

C.6 Command Differences
Some commands that you use during program development differ between RISC and
VAX systems. This section describes the differences in the commands.

C.6.1 The prof Command
The prof command provides information about what routines in your program
execute the most or the least. The RISC version of prof is functionally different
from the VAX version. For an explanation of using prof on a RISC system see
Section 4.3.

C.6.2 The ranlib Command
On a VAX system, the ran 1 ib command organizes archives of object files to allow
faster linking. This command exists on RISC systems as a shell script that passes a
flag to the ar librarian. The ar librarian performs the same function as ranlib.

C.6.3 The lint Command
The 1 int command searches your program for coding errors, coding that is not
portable, and inefficient coding. The lint command differs on RISC and VAX
systems. The differences are in the messages lint displays, the conditions it checks,
and the command you use to build libraries. On a VAX system, you use the
following command to build a lint library for a program named myprog. c:

% lint -c libname myprog.c

On a RISC system, you use the following command:

% lint -c myprog.c

For more information about lint, see Section 4.1.

C-4 Porting Applications from a VAX System to a RISC System

C.6.4 Commands that Read or Write Object Files

RISC and VAX systems use different formats for object files and load modules.
Therefore, the following utilities are slightly different on the two architectures:

• ar

• dbx

• ld

• nm

• size

• strip

C.7 C Compiler Differences
The RISC C (cc) compiler is different from the VAX C (cc) compiler. The
following list describes differences between the two compilers:

• The RISC C compiler does not support the const keyword.

• Pointers on RISC systems are unsigned; on VAX systems they are signed.

• You cannot use a pointer as the expression with a switch statement on RISC
systems.

• On RISC systems, you cannot dereference NULL pointers, including arguments
to the strlen function.

• The RISC C compiler does not support the asm pseudo function call.

• The RISC C compiler does not allow the following obsolete form of
initialization:

int i 0;

The preceding example works on a VAX system, but the VAX C compiler issues
a warning. The example generates an error message on a RISC system.

• The RISC C compiler has boundary alignment rules. The only effect this
difference should have on your program is that its performance might be slower
than on a VAX system. This performance change could occur because the kernel
corrects alignment errors. Where possible align double-words, words, and half­
words on "natural" boundaries. For more information, see Section C.4.3 and
uac(l) in the ULTRIX Reference Pages.

• The varargs function is different on RISC systems. Your program will fail if
it ''walks'' an argument list by incrementing the address of an argument,
particularly if the arguments are double precision values. Use the macros in
varargs. h when you use functions that have a variable number of arguments.
Compiling with the -varargs option on RISC systems causes the compiler to
detect nonportable code.

• The set jmp/ longjmp buffer is larger on RISC systems than on VAX systems.
Programs with a hard-coded 10 word buffer fail; programs that include
set j mp . h and declare a variable of type j mp_ bu f work correctly.

• On RISC systems, global symbols do not have an extra leading underscore. This
difference mostly affects assembly-language programs.

Porting Applications from a VAX System to a RISC System C-5

• RISC systems define a macro (for example, LANGUAGE_C) for the preprocessor
that makes it possible to write multilingual include files.

• For cpp predefined symbols, ul tr ix, unix, and bsd4 2 are defined on both
RISC and VAX systems. On RISC systems, the equivalent predefined symbol of
vax is mips. RISC systems also supports the symbols MIPSEL and
host_mips.

• If you use a global data item as if it is a code location (for example, if a data
structure has the same name as a system call), the compiler displays an error
message similar to the following one at load time:

/lib/libc.a(gethostent.o): jump relocation out-of-range, bad object
file produced, can't jump from Ox4197a0 to Ox10008198 (stat)

If you see this message, change the name of the data structure. (In this example,
it was named stat.)

• The RISC C compiler does not allow the same . c or . o file to be listed twice on
a command line. The compiler generates doubly defined symbol errors. The
VAX C compiler allows you to specify the same source or object file twice.

• On VAX systems, the cc -L option on the command line affects all -1 options.
On RISC systems, the cc - L option operates only on -1 options that follow it.
Therefore, if you want the - L option to affect all -1 options, you must specify
the - L option first.

• The -Md or -Mg options are not needed on RISC systems. The hardware has
only one double precision format.

• The RISC C compiler does not support the -R option (read-only text).

• Profiling on VAX systems has two levels that can be selected with the -p and
-pg options. Profiling on RISC systems also has two levels that can be selected
with the -p option or by running the post-processor pixie program. The RISC
C compiler is not affected by either option; all work is done in the assembler or
loader (or postprocessor).

• One level of optimization exists on VAX systems, which is off by default and
enabled with the -o option. Five levels of optimization exist on RISC systems.
By default, the second level is used, which can be disabled with the -00 option.
The -0 or -02 options invoke optimization that is comparable to the
optimization on a VAX system. To have you program optimized more fully, use
the -03 and -04 options. The RISC C compiler also has the -Olimi t option
that allows optimization to be bypassed with overly complicated code sections.
For more information, see Section 4.5.

!t '

• On both RISC and VAX systems, the -t and - B options specify passes and
paths. However, RISC systems provide more pass names. In addition, the RISC
C compiler option - h is equivalent to the VAX C compiler option - B. The - B
option on RISC systems speci~es a suffix for the pass name.

• Like optimization, RISC systems offer four levels for debugging information
(controlled by the -g option). VAX systems have only two (on and oft).

C-6 Porting Applications from a VAX System to a RISC System

Kernel Debugging D

This appendix describes how to debug the ULTRIX kernel, /vmunix, using various
UL TRIX programs. The debugging procedure differs for RISC and VAX processors;
this chapter addresses both processor types.

D.1 RISC Kernel Debugging
This section shows how to debug the UL TRIX kernel, I vrnun ix, on a RISC system.

Before you debug the kernel, you should understand the following:

• The layout of system memory, which is described in Table D-1

• The layout of the stacks, which is described in Table D-2

• The layout of address space, which is described in Table D-3

Table D-1: System Memory Map

Physical
Address KSEG1 Use

Ox00030000 Oxa0030000 upward UL TRIX kernel text, data, and bss

Ox0002ffff Oxa002ffff
to Additional PROM space (64K)

Ox00020000 Oxa0020000

OxOOOlffff OxaOOlffff
to lK netblock (host and client network

OxOOOlfcOO OxaOOlfcOO boot information)

OxOOOlfbff OxaOOlfbff
to 1 K UL TRIX save state area

OxOOOlf 800 Oxa00lf800

Ox000lf7ff Oxa00lf7ff downward
to 1 K UL TRIX temporary startup stack

OxOOOlf 400 OxaOOlf 400

Ox0001f3ff Oxa00lf3ff downward dbgmon stack (a few K less than 64K)
OxOOOlOOOO OxaOOlOOOO upward dbgmon text, data, and bss

OxOOOOffff OxaOOOffff downward PROM monitor stack
Ox00000500 Oxa0000500 upward PROM monitor bss

Ox000004ff Oxa00004ff
to Restart block

Ox00000400 Oxa0000400

Ox000003ff Oxa00003ff
to General exception code

Ox00000080 Oxa0000080 (note CPU addresses as Ox80000080)

Ox0000007f Oxa000007f

Table D-1: (continued)

Physical
Address KSEG1 Use

to utlbmiss exception code
OxOOOOOOOO OxaOOOOOOO (note CPU addresses as Ox80000000)

The kernel has no interrupt stack: only kernel, user, and idle stacks.

Table D-2: Stacks on RISC Systems

Stack Description

Startup stack Starts at Ox8001 f7ff, growing downward, and is used
during system startup until a kernel stack is available

Kernel stack Starts at Oxffff eOOO (KSEG2 space) and grows down

User struct Starts at Oxffff cOOO (KSEG2 space) and goes up

Per-CPU database Starts at Oxffff 8000 (KSEG2 space) and goes up

User stack Starts at Ox7fff fOOO (KUSEG space, one guard page
Ox7fff fOOO to 7fff ffff) and grows down

The system is always in virtual address mode; there is no physical address mode.

Table D-3: Address Space on RISC Systems

Address Space Description

KSEGO Not mapped, cached-for kernel text
Virtual address: 8000 0000 --7 9fff ffff (512 MB)

KSEGl Not mapped, not cached-for 1/0 space
Virtual address: aOOO 0000 --7 bfff ffff (512 MB)

KSEG2 Mapped, cached-for stacks and kernel mallocs
Virtual address: cOOO 0000 --7 ffff ffff (1 GB)

KUSEG Mapped, cached-for user space
Virtual address: 0 --7 7fff ffff (2 GB)

More information about debugging an UL TRIX kernel on a RISC system can be
found in the following header files:

/sys/h/proc.h
/sys/h/user.h
/sys/machine/mips/entrypt.h
/sys/machine/mips/frame.h
/sys/machine/mips/pcb.h
/sys/machine/mips/pte.h
/sys/machine/mips/reg.h

The crash System V program might also be useful.

D-2 Kernel Debugging

D.1.1 Using nm to Determine Where a Crash Occurred

When you system crashes, you can use nm to determine which routine was executing
when the crash occurred. This tool is most useful when your system does not create a
core dump, but displays and Exception Program Counter (EPC) on the console. The
following command displays the name list (symbol table) of the vmunix image in
numerical order:

% nm -n /vmunix

To determine which routine was executing, find the address that is closest to, but less
than, the EPC from the crash. This address is the starting address of the routine
executing when the system crashed. Subtract the start address of this routine from
the EPC to get the offset from the beginning of the routine in which the error
occurred. Then, use the dbx debugger to find the incorrect instruction.

The following shows an example of nm output:

First Kernel text address: 8003,0000 (192k bytes above 8000,0000)
80030000 T start
80030000 T eprol
800300ac T putstr
80030148 T lputc
8003018c T en reset

First Kernel data address: is approximately 8011,0000
80112030 D Sysmap
8011c830 D Usrptmap
801lf920 D camap
801lf930 D kmempt
8011f930 D ecamap
80123930 D Forkmap

D.1.2 Debugging a RISC Kernel with dbx

You can use the dbx debugger to debug a kernel that crashes and creates a core file.
You can determine where the crash occurred and use dbx to display instructions and
data.

To invoke dbx to debug a nonrunning kernel, issue the following command:

% dbx -k vmunix.n vmcore.n

If you have a multiprocessor system, you must then determine which CPU crashed.
The system contains the paniccpu variable, which it sets to the number of the CPU
that crashed. You determine the value of that variable by issuing the following
command:

(dbx) print paniccpu
1

In this case, CPU number 1 crashed.

Once you determine which CPU crashed, you must set the context for dbx by setting
the dbx variable $pid. The following example shows how to set the context for

Kernel Debugging D-3

dbx:

(dbx) set $pid = cpudata[l].cpu_proc.p_pid

Because CPU number 1 crashed, you specify the number 1 as the array index in the
cpudata [1] . cpu proc .p pid variable name. If a CPU other than number 1
crashed, replace 1 wrth the appropriate number.

Once you have set the context for dbx or if you have only one CPU, you can use the
dbx command where to display a stack trace, as shown:

(dbx) where

The following list describes dbx commands that are useful in kernel debugging:

• address I count mode

Display the contents of the specified address. Replace count with the number
of locations you want to display and mode with one of the following modes:

d or D, which spcecify short or longword decimal notation

- o or 0, which specify short or longword octal notation

x or X, which specify short or longword hexadecimal notation

c, which specifies a byte as type char

- s, which specifies null-terminated string

f, which specifies single-precision real format

g, which specifies double-precision real format

i, which specifies machine instructions

For example, if the system reported an EPC of Ox8000dead when it crashed, you
can use dbx to determine where in the kernel that PC is located. The following
command decodes nine instructions (and shows line numbers) starting at
Ox8000dead. Note that code that is conditioned out (with #if def statements) does
not count in dbx 's line numbering.

(dbx) Ox8000dead/9i
8000dead bleq 8000deaf
8000deaf cvtfd *-18074(r0),$0.5
8000deb4 movl (r9), (r6)
8000deb7 decl 8015fe28
8000debd movl r7,rl
8000dec0 mfpr $12,rO
8000dec3 mtpr rl,$12
8000dec6 ret
8000dec7 halt
(dbx)

• print gnode [n]

Display the gnode structure n in the gnode table

• print text [n]

Display the text structure n in the text table

• set $pid= n

Set process context (current process) to process ID n (Allows you to issue
trace, print *up, print *up. u _procp, and so on for that process)

D-4 Kernel Debugging

• print *up

Display the u_area of the current process

• pr int *up. u _procp

Display the process structure of the current process ID

To debug a running kernel, issue the following command:

% dbx -k /vmunix

Then use dbx commands to examine the kernel. You might also find the following
two commands useful when you debug a running kernel:

• & <symbol> I <mode>

Display the ~ddress and contents of the specified symbol. The dbx debugger
displays the contents in the specified mode. For a list of modes, see the
address I count mode command in the preceding list.

• assign symbol= value

Assign the value to the named symbol. (You must be logged in as root to
change the value of symbols in a running kernel.)

D.1.3 Getting a Stack Trace on Any Process

To perform a stack trace on a process, get the PID of the process to be traced by
issuing the p s command:

% ps -k1ax vmunix.n vmcore.n

The ps options have the following meanings:

• The -k option specifies using the kernel file vmcore .n instead of /dev/kmem
and /dev/mem.

• The -1 option displays the process status in long format, giving more
information than the default display.

• The -a option displays all processes (not just your own) associated with a
terminal.

• The - x option shows processes not associated with a terminal.

See ps(l) in the ULTRIX Reference Pages for complete information.

Invoke dbx and set $pid to the PID of the process you wish to examine. For
example:

(dbx) set $pid = 1125

Now you can execute trace, print *up, p'rint *up. u_procp, and other
commands on process 1125.

Any process stored registers in the u_area is in exception frame format, and you can

Kernel Debugging 0-5

display the registers by issuing the following dbx command:

(dbx) print up.u_arO

D.1.4 Examining the Exception Frame

All error traps and interrupts (except cache parity errors) generate an exception
condition. Exception conditions trap to VECTOR(exception) in locore. s. The
exception routine saves state in the exception frame (on the stack).

For interrupts, VECTOR(VEC_int) is called, which saves additional state on the
exception frame, and calls intr () (in trap. c). The intr () routine calls the
specific interrupt handler through cOvec_tbl.

For traps, the individual trap routines are called through the causevec. These routines
[VEC addrerr () , VEC ibe () , and VEC dbe ()] in turn call
VECTOR (VEC trap) , will.ch saves additionalstate on the exception frame, and
calls trap () (in trap. c).

A pointer to the exception frame (EP) is passed as an argument to the following
routines: trap () , intr () , tlbmod () , tlbmiss (), and sys call () .
Therefore, by using dbx to get a trace, you can determine the address of the
exception frame by displaying the EP argument. You can then display the exception
frame with a dbx command such as:

(dbx) Oxffffnnnn/41X

The offsets within the exception frame are defined as follows (see
I sys/machine/mips/reg. h):

#define EF _ARGSA VEO
#define EF _ARGSA VEl
#define EF _ARGSA VE2
#define EF _ARGSA VE3
#define EF _AT
#define EF _VO
#define EF _ V 1
#define EF _AO
#define EF _A 1
#define EF _A2
#define EF _A3
#define EF _TO
#define EF _ T 1
#define EF _ T2
#define EF _ T3
#define EF _ T 4
#define EF _ T5
#define EF _ T6
#define EF _ T7
#define EF _so
#define EF _S 1
#define EF _S2
#define EF _S3
#define EF _S4
#define EF _S5
#define EF _S6
#define EF _S7
#define EF _ T8
#define EF _ T9

D-6 Kernel Debugging

0 /* arg save for c calling seq */
1 /* arg save for c calling seq *I
2 /* arg save for c calling seq *I
3 /* arg save for c calling seq *I
4 /* rl: assembler temporary*/
5 /* r2: return value 0 *I
6 /* r3: return value 1 */
7 /* r4: argument 0 *I
8 /* r5: argument 1 *I
9 /* r6: argument 2 */

10 /* r7: argument 3 */
11 /* r8: caller saved 0 *I
12 /* r9: caller saved 1 */
13 /* rlO: caller saved 2 */
14 /* rl 1: caller saved 3 */
15 /* r12: caller saved 4 */
16 /* r13: caller saved 5 *I
17 /* r14: caller saved 6 */
18 /* r15: caller saved 7 */
19 /* r16: callee saved 0 */
20 /* r17: callee saved 1 *I
21 /* r18: callee saved 2 */
22 /* r19: callee saved 3 */
23 /* r20: callee saved 4 *I
24 /* r21: callee saved 5 */
25 /* r22: callee saved 6 */
26 /* r23: callee saved 7 */
27 /* r24: code generator 0 *I
28 /* r25: code generator 1 */

#define EF _KO
#define EF _K 1
#define EF _GP
#define EF _SP
#define EF _S8
#define EF _RA
#define EF _SR
#define EF _MDLO
#define EF _MDHI
#define EF _BADY ADDR
#define EF_CAUSE
#define EF _EPC

29 /* r26: kernel temporary 0 *I
30 /* r27: kernel temporary 1 *I
31 /* r28: global pointer*/
32 /* r29: stack pointer *I
33 /* r30: callee saved 8 */
34 /* r31: return address *I
35 /* status register */
36 /* low mult result */
37 /* high mult result */
38 /* bad virtual address */
39 /* cause register *I
40 /* program counter *I

D.1.5 Debugging Hung Systems

When your system is hung, it might display the Program Counter (PC) and Stack
Pointer (SP) on the console when it crashes. In this case, you can get a stack trace
easily using dbx and then examine the stack frame to determine what routine was
executing when the system crashed. Section D.1.5.1 describes using dbx to get a
stack trace when you have the PC and SP. Section D.1.5.3 describes examining the
stack frame.

If your system does not display the PC and SP on the console when it crashes, you
must get that informatiom from a core dump. However, when you are debugging a
hung system, the values saved in the u_area for the currently active process are the
old values that the system saved the last time it moved the process out of memory for
a context switch. In this case, you must find the real kernel stack as described in
Section D.1.5.2. Then, you can examine the stack frame as described in Section
D.1.5.3.

D.1.5.1 Using dbx to Perform a Stack Trace

Follow these steps to perform a stack trace using dbx on a hung system:

1. Determine whether the idle process is running by issuing the command in the
following example. If a CPU other than number 1 crashed, replace 1 with the
appropriate CPU number. If you have only one CPU, replace 1 with 0.

(dbx) &cpudata[l].cpu_noproc/d
1

If dbx displays a 1, the idle process is running.

2. Set the $pid dbx variable. The value you assign to the variable depends upon
whether the idle process is running.

Set the context for dbx to the idle process by issuing the following command:

(dbx) set $pid = 3

However, if the idle process is not running, set the context for dbx as follows:

(dbx) set $pid = cpudata[l].cpu_proc.p_pid

If a CPU other than number 1 hung, replace 1 with the appropriate CPU number.
If you have only one CPU, replace 1 with 0.

3. Set the $pc and $ sp variables.

Kernel Debugging D-7

Set the $pc variable to the PC address displayed on the console. Likewise, set
the $ sp variable to the SP address displayed on the console. The following
example shows setting these two variables:

(dbx) assign $pc = Ox80040f20
Ox80040f20
(dbx) assign $sp = Oxffffd290
Oxffffd290

4. Perform the stack trace by issuing the where command as follows:

(dbx) where

D.1.5.2 Finding the Real Kernel Stack

If your system does not display a PC or SP value, you must determine where the real
kernel stack is.

The kernel stack for each process in the system is located at virtual address
OxffffeOOO in KSEG2 space. The system has an array of NPROC u_areas that are 8K
bytes each. Each u_area contains the user struct and kernel stack for the process.
Even though each user process has its u_area at the same virtual address in KSEG2
space, each u_area is mapped to a unique physical address. When the context
switches, the first two entries in the TLB (safe entries) are established for mapping
the u_area for that user process. Figure D-1 shows how the kernel stack and user
structure appear in memory.

Figure D-1 : Kernel Stack and User Structure in Memory

Kernel stack: Oxffff,eOOO ..------.

t
User struct: Oxffff ,cOOO

higher addresses

8K bytes for kernel. stack
and user struct in KSEG2 space
(see param.h)

lower addresses

ZK-0192U-R

Within dbx, you can display the kernel stack with a command such as the following:

(dbx) Oxffffd000/1028X

This command dumps the kernel stack from low to high memory (most recent events
to oldest events).

D-8 Kernel Debugging

D.1.5.3 Examining Stack Frames

Use the odump utility to create a symbol table dump of vmunix. n:

% odum.p -P /vmunix.n > vmunix.syms

(See the runtime pdr structure in the file /usr I include/ sym. h for the
format of the run-time procedure descriptor created by the loader.)

The fpoff field as shown by odump is the frame size for the particular procedure
entry. Figure D-2 illustrates the general format of the stack (stack frames).

Figure D-2: Stack Frame in Memory

High memory

Virtual frame pointer --..

Stack pointer --..
(frame register)

Low memory

arg n
•
• .

arg 1

local vars

saved R31 (ret)

!----------------------------
more saved regs

16-23,30

arg passing
area

.
• .

Space for all args,
even though first 4
args passed in registers

j l Frame offset

Frame size

l
ZK-0194U-R

Using the symbol table dump, you can work your way back up the call history on the
stack. Examples of usage are in libexc: unwind. c, exception. c, and
exception. h.

It might be equally productive to start at the top of the kernel stack (high memory)
and look for the return address of VEC sys call () on the stack. This return
address is where VEC syscall () calls syscall () , and where the stack frame
for entry into sys call () has the return address of VEC sys call () saved on
the stack. -

The following dbx command shows the instructions in VEC sys call () , in
particular where syscall () was called, allowing you to see the return address on
the stack:

(dbx) VEC_syscall/30i
[VEC_syscall, Ox800c3868]
[VEC_syscall:590, Ox800c386c]
[VEC_syscall:591, Ox800c3870]
[VEC_syscall:592, Ox800c3874]
[VEC_syscall:593, Ox800c3878]
[VEC_syscall:594, Ox800c387c]

ori
mtcO
SW

SW

move
move

r5,rl6,0xl
r5,sr
r2,20(sp)
r3,24(sp)
r5,r2
r6,rl6

Kernel Debugging D-9

[VEC_syscall:595, Ox800c3880]
[VEC_syscall:595, Ox800c3884]
[VEC_syscall:596, Ox800c3888]
[VEC_syscall:596, Ox800c388c]

jal
nop
bne
nop

syscall

r2,r0,0x800c3810

The return address is Ox800c3888. Using dbx and the dump of the kernel stack, you
can examine the stack to determine what happened to the system.

D.1.6 Forcing a Panic on a System That Is Not Hung

To force a panic on a system that is not hung, login as root and issue the following
command:

dbx -k /vmunix /dev/mem

The following dbx command forces a panic on the next network interrupt, even in
single-user mode (do not issue this command on diskless systems because it will not
dump):

(dbx) assign ln_softc=O

The following command also panics the system:

(dbx) assign gnodeops=O

Note

Do not overwrite the process structure, because dbx will not be able to
work on the image. Do not overwrite the console structures, because you
will not see the panic messages.

D.1.7 Forcing a Memory Dump on a DS2100 or DS3100

To force a memory dump on a DS2100 or DS3100 system, press the restart button.
Pressing the restart button halts the machine and clears memory, unless the
bootmode variable is first set to r (restart). The following example shows how to
set the bootmode variable (>>>represents the console prompt):

>>> setenv bootmode r

With the bootmode variable set to r, .pressing the restart button dumps memory and
rebo9ts the machine. The dump might be silent and take several minutes.

D.1.8 Forcing a Memory Dump on a DS5000

To force a memory dump on a DS5000, press the restart button. Pressing the restart
button halts the machine and clears memory, unless the halt a ct ion variable is
first set tor (restart). The following example shows how to set the haltaction
variable(>>> represents the console prompt):

>>> setenv haltaction r

With the haltaction variable set tor, pressing the restart button dumps memory
and reboots the machine. The dump might be silent and take several minutes.

D-10 Kernel Debugging

D.1.9 Forcing a Memory Dump on a 055400 or 055800
To force a memory dump on a DS5400 or DS5800 system, follow these steps:

1. Set the break enable switch to the up position (pointing to the dot in the circle).

2. Press the break key to get the console prompt(>>>).

3. Run the memory dump routine by issuing the go command with the kernel start
address + 8. For example, suppose the kernel start address is Ox80030000; in this
case, the command is as follows:

>>> go Ox80030008

D.1.10 Console Commands
The following list gives the syntax for a number of console commands that are useful
for debugging a RISC kernel:

• The following command dumps the contents of memory starting at the specified
address and displays the specified number of longwords in hexadecimal format:

dump -w -x address# count

The following command dumps the contents of memory, starting at addressl,
ending at address2. The output is displayed as longwords in hexadecimal
format:

dump -w -x address 1: address2

The following command dumps the startup stack:

dump -w -x Ox8001f400:0x8001f800

• The following command examines a byte, halfword, or word at the specified
virtual address (To examine physical location 0, use address Ox8000 0000.):

e [-b I -h I -w J address

• The following command transfers control to given entry point:

go [pc]

• The following commands display help information for the specified command or,
if no command is given, the command menu:

help [command]

? [command]

• The following command displays the current value of the specified environment
variable, or if no variable is specified, all environment variables:

printenv [van

Kernel Debugging D-11

• The following command sets the specified environment variable to the specified
string:

setenv var string

• The following command deletes the specified environment variable:

unsetenv var

• The following command tests all components and subsystems:

ta

• The following command constrains memory size to the specified number of bytes:

boot memlimit=bytes

D.2 VAX Kernel Debugging
This section shows how to debug the ULTRIX kernel, /vmunix, on a VAX system.
In addition to the information in this section, you might find A Tutorial Introduction
to ADB in the Supplementary Documents, Volume 2: Programmer useful when you
debug /vmunix. Refer also to the following header files:

• I sys/h/proc. h

• I sys/h/user. h

• I sys/VAX/pcb. h

• /sys/VAX/trap.h

The crash System V program might also be useful

Normally, you debug /vmunix, when your system crashes. On a VAX processor,
crashes typically occur because of a hardware trap, hardware machine check, or
software panic. The following list describes these types of crashes and the actions
the system takes during the crash:

• Hardware trap

When a hardware trap occurs, the system pushes the PSL, PC, code, and trap type
onto the interrupt stack. Depending on the trap type, the code is often the last
virtual address that was accessed, and is therefore the code that caused the trap
(see I sys/VAX/trap. h for an explanation of trap types). The ULTRIX trap
routine, I sys/VAX/trap. c, is called through the SCB. The trap routine, in
tum, calls the panic routine.

An example of a trap is a process that accesses an address outside the process's
address space, which causes trap type 8, a segmentation fault.

• Hardware machine check

When a hardware machine check occurs, the system pushes a processor dependent
machine check frame onto the interrupt stack. The UL TRIX machine check
routine, I sys/vax/machdep. c, is called through the SCB. If unrecoverable,
the machine check calls the panic routine.

D-12 Kernel Debugging

An example of a machine check is a parity memory error.

• Software panic

When a software panic occurs, the kernel software detects an internal
inconsistency while the system is running on the kernel stack. The kernel routine
that detects the inconsistency calls the panic routine (see the VAX Architecture
Handbook for more information).

D.2.1 Using nm to Determine Where a Crash Occurred

For a system crash that gives a PC on the console, you can use nm to determine
which routine was executing. The following command displays the name list
(symbol table) of the vmunix image in numerical order:

% nm -n /vmunix

To determine which routine was executing, find the address that is closest to, but less
than, the PC from the crash; this address is the starting address of the routine
executing when the system crashed. Subtract the starting address of this routine from
the faulting PC to get the offset from the beginning of the routine in which the error
occurred. Then, use the adb debugger to find the incorrect instruction.

D.2.2 Forcing a Crash Dump

If the system is hung, you can force a crash dump. To do this, halt the processor and
enter console mode. (In this section,>>> represents the console prompt.) Then, issue
the following command to get the address of the crash dump routine:
>» E/P/L 4 ! Get address of dump routine

P 00000004 OOOOlCOO

The console' s response is the address of the crash dump routine, which can then be
run by typing:

>>> D PSL 041FOOOO
»> S 80001COO

Set PSL to interrupt stack and IPL to 31
Run the dump routine

If the interrupt stack is invalid, the crash dump routine is not called. (The interrupt
stack is in kernel address space, starting just below the address of the crash dump
routine [doadump], and growing down in memory. The interrupt stack has a fixed
size of several pages.)

There is another way to force a crash dump. But first, examine the PC and stack
pointers, noting their values, because they will be changed by the commands to force
a dump:
>>> E/G F Examine general register F (PC)

G OOOOOOOF 80001EAD
>>> E PSL Examine the PSL

M 00000000 04Cl0004
>>> E SP Examine the stack pointer

G OOOOOOOE 000393E8
>>> E/I 0 Examine internal register 0 (KSP)

I 00000000 7FFFFDAC
>>> E/I 3 Examine internal register 3 (USP)

I 00000003 7FFFE2F4
»> E/I 4 Examine internal register 4 (ISP)

I 00000004 80000COO

Kernel Debugging D-13

Now set the PC to -1, and continue:
>>> D/G F FFFFFFFF
>>> D PSL OOlFOOOO
>>> c

Deposit -1 in PC
Set IPL at 31 to block interrupts
Continue processing

The preceding commands force a segmentation fault, causing a crash dump.
Unfortunately, some machine state is changed using this method. However, all disk
writes are completed (as if sync had been executed).

If neither of the prior methods work, you might still be able to get a crash dump by
initializing the processor before starting the crash dump routine. Initializing the
processor sets it to a known state, which includes setting the PSL to run on the
interrupt stack, setting the IPL to 31, and disabling memory mapping. Unfortunately,
even more machine state is changed; depending on the processor, the initialization
might corrupt the ISP, KSP, POBR, POLR, PIBR, and PlLR.

»> E/P/L 4
P 00000004 OOOOlCOO

>>> I
>» S 80001COO

Get address of dump routine

Initialize the processor
Run dump routine

D.2.3 Getting a Stack Trace on Any Process
To perform a stack trace on a process, get the PID of the process to be traced by
issuing the p s command:

% ps -klax vmunix.n vmcore.n

The ps options have the following meanings:

-k Use kernel file (vmcore .n instead of /dev/kmem and /dev/mem)

-I Display in long format, giving more information

-a Show all processes (not just your own) associated with a terminal

-x Show processes not associated with a terminal

See ps(l) in the ULTRIX Reference Pages for complete information.

The preceding p s command displays the PIDs of every process on the system. Note
the PID of the process you are interested in. Now issue the I etc/pstat command
with the -p, -a, and -k options:

% pstat -pak vmunix.n vmcore.n

The pstat options have the following meanings:

-p Display process table for active processes

-a Describe all process slots

-k Required option when a core file is specified

See pstat(8) in the ULTRIX Reference Pages for complete information.

The following shows an example of p stat output:
195/1044 processes

LOC S F POIP PRI SIG UID SLP TIM CPU NI PGRP PIO PPID
ADDR RSS SRSS SIZE WCHAN LINK TEXTP CLKT TTYP

801e5f70 1 3 0 0 0 0 0 127 0 20 0 0 0
c96 0 0 0 15f936 lea170 0 0

801e6030 1 1 0 30 0 0 87 127 0 20 0 1 0
96df lc6 0 lfO le6030 le9f30 218e80 0

D-14 Kernel Debugging

801e60f0 1
96bf 0

3 0 1 0
0 2000 le60f0

0 127 127
0 0

0 20 0 2 0
0

Locate the PID you want in the PID field, second from right. The process's location
(the memory location of the process structure) is in the LOC field, the leftmost field.
(In the preceding example, the location of process 0 is 801e5f70.) Check the
process's state and flag codes, second and third fields, labeled S and F.

Invoke adb with the following command:

% adb -k vmunix.n vmcore.n

The following adb commands yield the address of the u_area of process 0 (from the
preceding example):
80le5f70/X ! Show contents of process structure's first field

801e5f70: 8000feff

IRffiurnl ! Show contents of process structure's second field

801e5f74: 80f03a00

IReturnl ! Show contents of process structure's third field

801e5f7c: 81000fff

IReturnl ! Show contents of process structure's fourth field

801e5f80: 801ee3e0

IReturnl ! Show contents of process structure's fifth field

801e5f88: 80a20fff

The fifth field in the process structure contains the address that maps the u_area (see
proc. h: proc struct and p_addr field); the following adb commands set a stack
trace for the process:
80a20fff$p
$c

Set process context for adb
! Trace stack of process in question

D.2.4 adb Command Summary
You can invoke the adb debugger to debug either a crash image or a running system.
To invoke adb on a crash image, issue the following command:

% adb -k vmunix vmcore

To invoke adb on a running system, issue the following command:

% adb -k -w /vmunix /dev/m.em

Once you invoke adb you can use a number of commands to perform debugging
tasks. Several adb commands allow you to specify a format for the output from the
command. The following list describes the format characters you use on the
command line to control the format of adb's output:

• d - specifies signed decimal word output

• D - specifies signed decimal longword output

• f - specifies floating point longword output

• F - specifies floating point double output

• o - specifies unsigned octal word output

• O - specifies unsigned octal longword output

Kernel Debugging D-15

• q - specifies signed octal word output

• Q - specifies signed octal longword output

• s - specifies string output

• u - specifies unsigned decimal word output

• U - specifies unsigned decimal longword output

• x - specifies hexadecimal word output

• X - specifies hexadecimal longword output

The following list describes several commonly used adb commands:

• ? [address] f

Display, using the format character f, values in the disk image starting at
address.

• I [address] f

Display, using the format character f, values in the core file starting at
address .

• = f

Display, using the format character f, the virtual address of a symbol.

• * (s cb-4) $ c

Trace stack of whichever stack was currently active (interrupt or kernel) in this
format:

func 3 (args) from addr 3
func 2 (args) from addr 2
func 1 (args) from addr 1

(newest)

(oldest)

The func 1 () routine calls func 2 () from addr_l in func 1 () .
Therefore,the stack frame with the saved PC of addr_l (return address), is the
stack frame of func_2 () .

• address $c

Trace stack starting from address

• routine-name +2 [/] [?] i

Display assembly instructions starting at the beginning of the named routine (+ 2
skips over the register save mask)

• address [/] [?] i

Display assembly instructions starting at address

• Return

Examine the location after the last examined location

Examine the location before the last examined location

• [!] [?] w value

Write value to the last addressed location

D-16 Kernel Debugging

• $R

Show register contents

• range $8

Extend range of symbolic names

D.2.5 adb Scripts

The directory /usr I lib/ adb contains adb scripts that format kernel data
structures. The following list shows some ways you might use the scripts:

• address $< script

Apply script at address

• u block $<u

Apply the user structure script at symbolic address u block (the current u
block; that is, the user structure of the current procesS)

• address $<proc

Apply the proc script at address, obtained from the user structure

• address $<pcb

Apply the pcb script at address

D.2.6 Examining Stack Frames with adb

Using adb to examine stack frames is useful for seeing values of local variables.
The following adb commands are useful in examining stack frames:

• (scb-4) /X

Display the address of the current stack, which is stored in scb-4. If the address
is 800nnnnn, the system was using the interrupt stack when it crashed; if the
address is 1ff nnnnn, the system was using the kernel stack.

• intstack/20X

Starting at the address of intstack, display 20 longwords in hexadecimal
format.

• u$<u

Show the first item in the user structure, which is the kernel stack pointer (KSP).

• KSP/20X

Starting at the address of KSP, display 20 longwords in hexadecimal format.

To find a stack frame (a call frame for a procedure call), look for a 0 longword
(condition handler) followed by a longword with bit 29 set, which indicates a call
(for example, 2e000000). Figure D-3 illustrates a stack frame in memory.

Kernel Debugging D-17

Figure D-3: Stack Frame in Memory

Low

t
Local Stack Variables

Stack Frame:

3 3 2 2 2 1 1
1 0 9 8 7 6 5 5 4 0

0

SPA I 1 I oI Reg Mask <27:16> J saved PSW <15:5> I 0

FP,SP

saved AP

saved FP

saved PC

saved RO

•
•
•

saved R11

Immediately above stack frame:

(0 to 3 bytes stack pointer alignment, as per SPA)

N (number of args passed) AP

t
N longwords (the argument list) High

ZK-0193U-R

The calls instruction pushes the argument count onto the stack, then aligns the
stack and creates the stack frame (call frame), which is the saved register through the
condition handler. (For more information, see the VAX-11 Architecture Reference
Manual.)

D-18 Kernel Debugging

Special Characters

! command (dbx), 3-16

$? make macro, 2-19

A

abort() routine, 5-5

behavior of in standard conformant environment,

5-9

abs() routine, 5-5

absolute path name

use of for security, 7-2

accept system call, 7-8

stream socket and, 6-22

access control list, 7-12

access system call, 7-5

activation level

effect of func command on, 3-13

active routine

effect of func command on, 3-13

adb debugger

using to debug vmunix, D-15

address space (RISC), D-2

AF_ DECnet domain, 6-16

structure used with, 6-17

AF_ INET domain, 6-16

structure used with, 6-17, 6-24

AF _SNA domain, 6-16

AF_ UNIX datagram socket, 620, 621

AF_ UNIX domain, 6-16

structure used with, 6-17

alarm() routine

signals and, 6-14

timers and, 6-14

alias

built-in for dbx commands, 3-20

alias command (dbx)

using in an initialization file, 3-17

allowSendEvents resource

use of in a secure environment, 7-14

ANSI standard, 1-4

a.out.h header file

Index

contents of on VAX and RISC systems, C-1

application development

phases of, 1-2

ar command, 2-11

archive library, 2-11 to 2-12

creating, 2-11

effect of on -G option value calculation, 4-27

array

passing between C and Pascal, 8-3

storage mapping, B-2

as command

availability of, 2-2

input to, 2-2

using error with, 2-9

using separate Id command, 2-2, 2-14

asctim() routine, 5-8

assembler language

See as command

assign command (dbx), 3-11

atexit() routine, 5-5

atof() routine, 5-3

atoi() routine, 5-3

atol() routine, 5-3

audcntl system call, 7-6 to 7-8

audgen system call, 7-6 to 7-8

audgenl() routine, 7-6 to 7-8

audit control flag, 7-6

changing, 7-7

audit file, 7-5

audit record

creating for a privileged process, 7-6

auditd daemon, 7-5

auditlog file, 7-5

auth database, 7-9

reading during user authentication, 7-10

authenticate_ user() routine, 7-1 O

auto storage class, B-5

B

basic block counting, 4-6 to 4-8

averaging, 4-8

-bestGnum option, 4-26

big endian storage

compared to little endian storage, B-3

bind system call

datagram socket and, 6-18

stream socket and, 6-22

bit field

storage mapping, B-4

block mode device 1/0, 5-14, 5-15

blocking signals

See signal

Bourne shell

path variable syntax, 7-2

breakpoint

continuing program execution after, 3-8

displaying status of, 3-7

duration of, 3-5

removing, 3-7

setting, 3-4

brk system call

effect of on program portability, C-1

bsearch() routine, 5-5

.bss section

contents, 4-25

byte boundary, B-1

lndex-2

c
C data type

location of value range definition, B-2

storage mapping, B-1 to B-6

C FILE declaration (RISC), 8-3

C implementation, A-1 to A-3

C language, 1-6

writing programs that optimize well (RISC), 4-14

to 4-18

writing programs that optimize well (VAX), 4-22

to 4-25

C routine

calling from Pascal, 8-2

C shell

path variable syntax, 7-2

C storage class, B-5

c2 optimizer (VAX), 4-22

c89 command

availability of, 2-2

effect of -D option, 2-9

effect of in the standard conformant environment,

2-9

effect of -Y option, 2-9

preprocessor used by, 2-10

syntax differences between cc and c89, 2-11, 2-16

call command (dbx), 3-14

calling C from Pascal, 8-7 to 8-8

calling Pascal from C, 8-4 to 8-7

calloc() routine, 5-5

catching signals, 6-9

See signal

CBREAK terminal 1/0 mode, 5-20

cc command

availability of, 2-2

effect.of -D option, 2-9

effect of in the standard conformant environment,

2-9

effect of -j option (RISC), 4-19

effect of -0 limit option (RISC), 4-21

effect of -0 option (VAX), 4-22

effect of -03 option (RISC), 4-19

effect of -Y option, 2-9

RISC and VAX compared, C-5 to C-6

cc command (cont.)

syntax differences between cc and c89, 2-11, 2-16

use by other compiler commands, 2-7

using error with, 2-9

char data type

storage mapping, B-1

character mode device 1/0, 5-14, 5-15

child process

calling setreuid to reduce superuser privilege, 7-5

creating, 62

inherited file access, 7-1

running shell command, 6-7

signal mask and, 7-2

chown system call

using to remove SUID or SGID permissions, 7-9

clearerr() routine, 5-4

clock() routine, 5-8

close system call

datagram socket and, 6-18

pipes and, 6-1

stream socket and, 6-22

close-on-exec flag, 7-1

cob command

availability of, 2-2

COBOL language

availability of, 2-2

code profiling

See profiling code

comment

as error message from the error command, 2-10

compiler

See individual compiler commands

See compiler system

compiler options

controlling cpp include file search path, 2-11

controlling linker library search path, 2-16

default object file name, 2-6

-lstring, 2-14 to 2-15

related to linking, 2-15 to 2-16

syntax differences between cc and c89, 2-11, 2-16

to invoke cpp, 2-10

to rename output program, 2-2, 2-13, 2-16

to retain object file and prevent linking, 2-6

using to retain object file and prevent linking, 2-2

compiler system

available languages, 2-2

compilation, 2-6

compiler commands, 2-1 to 2-3

components, 2-3 to 2-11

driver programs, 2-1 to 2-3

file suffixes and, 2-3

header file use, 2-10

invocation, 2-6

libraries, 2-14

linker, 2-12 to 2-16

list of compiler commands, 2-2

list of driver commands, 2-2

multilanguage programs, 2-6

options, 2-6

phases, 2-3

shareable include files (RISC), 2-11

using error with, 2-9

connect system call

stream socket and, 6-22

const keyword

effect of on program portability, C-5

cont command (dbx), 3-8

cooked device 1/0, 5-14, 5-15

core file

security consideration, 7-2

-count option, 4-26

cpp command

using error with, 2-9

cpp preprocessor

including header files, 2-10 to 2-11

use with compiler commands, 2-10 to 2-11

creat() routine, 5-3

crypt() routine

using for password authentication, 7-10

ctermid() routine

behavior of in standard conformant environment,

5-9

ctime() routine, 5-8

ctrace command, 1-7, 4-2 to 4-5, 4-2

ctype.h file, 5-2

cuserid() routine

behavior of in standard conformant environment,

5-9

lndex-3

D

daemon

creating secure, 7-8

data

storing in a secure location, 7-3

data alignment

effect of on program portability, C-3

.data section

contents, 4-25

data segment

allocating on a RISC system, C-2

data structure

ltchars, 5-21

mtop, 5-17

sgttyb, 5-19

storage mapping, B-2 to B-5

tchars, 5-21

data type

mismatch when calling C from Pascal, 8-2

Pascal and C correspondence, 8-4

datagram socket

See socket

dbx debugger, 1-7, 3-1 to 3-22

command alias list, 3-20

specifying more than one command on a command

line,3-14

using on optimized code, 4-13

using to debug vmunix, D-3

debugging, 1-7

See also dbx debugger

DEC C, 1-6

availability of, 2-2

DEC Fortran, 1-6

availability of, 2-2

DECterm window

See DECwindows environment

DECwindows environment

use of in a secure environment, 7-13

writing secure programs in, 7-12 to 7-15

define directive

using to define a preprocessor symbol, 2-8

delete command (dbx), 3-7

lndex-4

/dev/audit

See audit file

device

controlling, 5-15

device codes, 5-14

device files, 5-14

device 1/0, 5-14

block mode, 5-15

character mode, 5-15

cooked,5-15

raw, 5-15

types, 5-14

devio.h header file, 5-15

D-float data type

effect of on program portability, C-3

ditftime() routine, 5-8

Diskless Management Services

See DMS

div() routine, 5-5

dkio.h header file, 5-15

DMS, 1-9, 1-10

domain

See specific domain names

See socket domain

double data type

storage mapping, B-1

value range, B-2

doubleword boundary, B-1

DRM (XUI Resource Manager), 1-5

dump command

using at the console prompt, D-11

dup system call, 6-3

dxdb debugger, 1-7

E

EACCES erno value, 7-4

enum data type

storage mapping, B-1

environment variable

PROFDIR, 4-9

setting in dbx, 3-6

EPERM erno value, 7-3

EROFS erno value, 7-4

errno variable, 7-3

use with ferror(), 5-4

error command, 1-7, 2-9

output, 2-10

/etc/svc.conf file

See svc.conf file

execl() routine, 5-8

executable image

creating, 2-2, 2-12

size difference between VAX and RISC systems,

C-1

execve system call

effect of on signal handling in a child process, 7-2

exit() routine, 5-5

expression

displaying with dbx, 3-12

using dbx to resolve, 3-12

extern storage class, B-5

F

fi7 command

availability of, 2-2

use with C programs, 2-7

using error with, 2-9

FASYNC flag

fcntl and, 6-27

fault

difference from trap, 6-11

fclose() routine, 5-3

behavior of in standard conformant environment,

5-9
fcntl system call, 627, 6-26

preventing process blocking, 6-27

using to set the close-on-exec flag, 7-1

fdopen() routine, 5-3

behavior of in standard conformant environment,

5-9
feof() routine, 5-4

f error() routine, 5-4

mush() routine, 5-3

behavior of in standard conformant environment,

5-9

fgetc() routine, 5-3

f getpos() routine, 5-4

f gets() routine, 5-3

file access

controlling, 7-5

file command, 5-14

file descriptor, 6-3

closing, 7-1

pipes and, 6-1

file ownership

security consideration for a privileged daemon, 7-8

file variable (RISC), 8-3

files

See also object file

See also ucode file

protecting, 7-3

float data type

storage mapping, B-1

value range, B-2

float.h file

contents of, B-2

floating point data

effect of on program portability, C-3

passing between Pascal and C, 8-3

fopen() routine, 5-3

behavior of in standard conformant environment,

5-9
fork system call

effect of on signal handling in the child process,

7-2

fork() routine, 5-8

fort command

availability of, 2-2

FORTRAN language

supported products, 1-6

FORTRAN preprocessor, 2-5

fprintf() routine, 5-3

behavior of in standard conformant environment,

5-9
fputc() routine, 5-3

fputs() routine, 5-3

fread() routine, 5-4

free() routine, 5-5

lndex-5

freopen() routine, 5-3

behavior of in standard conforrnant environment,

5-9

fscanf() routine, 5-3

fseek() routine, 5-4

fsetpos() routine, 5-4

fstat() routine, 5-8

ftell() routine, 5-4

ftoi() routine, 5-8

func command (dbx), 3-13

function variable

comparison between C and Pascal (RISC), 8-3

fwrite() routine, 5-4

G

-G option

using to reduce the size of global data, 4-26

gcore, 1-7

getc() routine, 5-3

getchar() routine, 5-3

getenv() routine, 5-5

getitimer system call, 616, 6-15

getpeername system call, 7-8

getpgrp system call, 6-13

getpwnam() routine

using to authenticate a user, 7-10

getrlimit system call

effect of on program portability, C-1

gets() routine, 5-3

getsockopt system call, 6-31

getsvc() routine

using to authenticate a user, 7-10

getuid system call, 7-5

G-float data type

effect of on program portability, C-3

global pointer area

allocating to a program's most active module, 4-27

compiler command options, 2-16

definition of, 4-25

gm on.out file, 4-10

gmtime() routine, 5-8

gprof command, 4-10

lndex-6

H

halfword boundary, B-1

handling signals

See signal

hardware machine check, D-12

hardware trap, D-12

hcreate() routine, 5-5

hdestroy() routine, 5-5

header files

description of, 2-10

including in programs, 2-10

limitations with dbx use, 2-10

POSIX conformant, 2-8

shareable (RISC), 2-11

standards conformance in, 1-4

use with multiple languages, 2-11

using to define preprocessor symbols, 2-8

history command (dbx), 3-16

$historywindow variable, 3-16

hsearch() routine, 5-5

if def directive

use with header file, 2-11

ignoring signals

See signal

include directive

using, 2-8, 2-10

installation tools, 1-9

instruction set

effect of on image size for RISC systems, C-1

int data type

storage mapping, B-1

internationalization, 1-6

interprocess communication

security consideration, 7-3

interrupt signal

handling, 6-11

sent to background processes, 6-11

invocation counting, 4-6

1/0

multibuffered, 517, 5-16

1/0 routines

See also specific routine names

standard I/O, 5-3

system compared with standard, 5-10

ioctl system call, 5-15

structures used with, 5-15

tape drive control with, 5-17

terminal control with, 5-19

using in a secure program, 7-8

<ioctl.h>, 5-15

ioctl.h header file, 5-19

isalnum() routine, 5-2

isalpha() routine, 5-2

isascii() routine, 5-2

iscntrl() routine, 5-2

isdigit() routine, 5-2

isgraph() routine, 5-2

islower() routine, 5-2

ISO standard, 1-4

isprint() routine, 5-2

ispunct() routine, 5-2

isspace() routine, 5-2

isupper() routine, 5-2

isxdigit() routine, 5-2

ITIMER_PROF timer, 6-15

ITIMER_REAL timer, 6-15

itimerval structure, 6-15

ITIMER_ VIRTUAL timer, 6-15

K
kernel stack (RISC), D-2

keyboard

securing, 7-14 to 7-15

kill system call

signals and, 6-13

killpg system call

signals and, 6-13

kit, 1-10

L

labs() routine, 5-5

language

See programming language

language interfaces

between C and Pascal, 8-1 to 8-8

LCASE terminal 110 mode, 5-20

LCTLECH, 5-22

Id command

using error with, 2-9

Id linker

command syntax, 2-14

description, 2.,....12

options commonly used, 2-15

specifying libraries, 2-14 to 2-15

standard library search path, 2-16

use of with compiler commands, 2-1 to 2-14

using to determine the best -G option value, 4-26

ldiv() routine, 5-5

libc

character processing routines and macros, 5-2

compiling and linking considerations, 5-1

contents of, 5-2 to 5-8

date and time routines, 5-7

environment and process routines, 5-5

general functions, 5-5

memory management routines, 5-5

standard I/0 routines, 5-3

string operations, 5-6

system calls, 5-8

libcP library

differences from C library, 5-9

libraries

C, 5-2 to 5-8

compiling and linking considerations, 5-1

POSIX, 1-5

standard I/0, 5-3

X, 1-5

library routine

See routine

limits.h file

contents of, B-2

lndex-7

$lines variable, 3-16

defining in an initialization file, 3-17

linkers

See also Id linker

described, 1-7

lint command, 1-7, 4-1

using error with, 2-9

lisp command

availability of, 2-2

list command (dbx), 3-3

listen system call

stream socket and, 6-22

$1istwindow variable, 3-3

defining in an initialization file, 3-17

little endian storage

compared to big endian storage, B-3

localtime() routine, 5-8

long data type

storage mapping, B-1

longjmp buffer, C-5

longjmp() routine, 5-5

ltchars data structure, 5-21

L TILDE, 5-22

L TOSTOP, 5-22

M
make

$?macro, 2-19

building programs with, 2-16 to 2-20

macro, 2-18

make command

using error with, 2-9

makefile, 217, 2-16 to 2-18

specifying name for, 2-18

updating, 2-19

malloc() routine, 5-5

man command, xvi

mblen() routine, 5-7

mbstowcs() routine, 5-7

mbtowc() routine, 5-7

memchr() routine, 5-6

memcmp() routine, 5-6

lndex-8

memcpy() routine, 5-6

memmove() routine, 5-6

memory

See also system memory map (RISC)

virtual address space use by programs, C-1

memset() routine, 5-6

message

in pipe, 6-3

mktime() routine, 5-8

moo.out file, 4-8

mouse

securing, 7-14 to 7-15

MSG_ OOB argument, 6-30, 6-31

MSG_ PEEK argument, 6-30

MTIOCTOP request, 5-17

mtio.h header file, 5-15

mtop data structure, 5-17

multibuffered 1/0, 517, 5-16

N

newinv utility, 1-10

next command (dbx), 3-8

NFS file

effect of unlinking, 7-3

nice command, 7-5

nice() routine, 5-8

behavior of in standard conformant environment,

5-9

nlist structure

effect of on portability, C-1

nm command (RISC)

using to debug /vmunix, D-3

nm command (VAX)

using to debug /vmunix, D-13

-nocount option, 4-26

NULL pointer

effect of on program portability, C-3

0
-03 option

using, 4-19

object file

format used on RISC systems, C-1

storing in an archive library, 2-11

odump utility

using to examine a stack frame, D-9

-0 limit option, 4--21

open file descriptor

security consideration, 7-1

opendir() routine

behavior of in standard conformant environment,

5-9
optimization

compiler options for, 2-13

optimizing programs (RISC), 4--10 to 4--22

optimizing programs (VAX), 4--22 to 4--25

out-of-bounds socket messages, 6-30

p

page size, C-4

Pascal language, 1-6

availability of, 2-2

calling C routines in, 8-2

writing programs that optimize well (RISC), 4--18

to 4--19

Pascal text type (RISC), 8-3

passwd database

See password

password

use of for user authentication, 7-10

using expiration information, 7-10

PATH variable

defining in a secure environment, 7-2

null entry in, 7-2

using to write a secure shell script, 7-12

pathname

See absolute pathname

See relative pathname

pc command

availability of, 2-2

-C option (RISC), 4--13

use with C programs, 2-7

using error with, 2-9

pc command (VAX)

effect of -C option, 4--22

PC sampling, 49, 4--8

averaging, 4--9

pclose() routine, 5-5

peeking

at socket messages, 6-30

Per-CPU database (RISC), D-2

permanent file, 7-3

perror() routine, 5-4

-pg option, 4--10

pi command

using error with, 2-9

PID
displaying for all processes, D-5

$pid variable

setting, D-5

pipe, 6-1

creating, 62

file descriptors and, 6-1

messages in, 6-3

reading an empty, 6-3

redirecting stderr to, 6-3 to 6-6

redirecting stdin to, 6-3 to 6-6

redirecting stdout to, 6-3 to 6-6

writing to full, 6-3

pipe system call, 6-1

PIPE _MAX, 6-1

pixie command, 4-6

pointer

returned by a function, C-2

pointer data type

storage mapping, B-1

popen library routine

creating pipes with, 6-6 to 6-8

popen() routine, 5-5

POSIX environment

compiling a program in, 2-8

POSIX standard, 1-4

function library, 1-5

_POSIX_SOURCE preprocessor symbol

defining, 2-8

defining on the cc command line, 2-9

effect of on compilation when defined, 2-8

lndex-9

preprocessor symbol

See also _POSIX_SOURCE preprocessor symbol

See also _XOPEN_SOURCE preprocessor symbol

defining on the c89 command line, 2-9

defining on the cc command line, 2-9

preprocessors

associated with C, 2-1, 2-10

associated with FORTRAN, 2-5

print command (dbx), 3-12

printf command (dbx), 3-12

printf() routine, 5-3

behavior of in standard conformant environment,

5-9

privileged port

identifying, 7-8

privileged process

calling routines from, 7-4

potential resource allocation problem, 7-5

security consideration for daemons, 7-8

privileged socket

using in a secure program, 7-8

procedure

See routine

process

See child process

See privileged process

process audit

turning off, 7-6

process audit mask, 7-6

process group ID, 6-13

Process Identification

See PID

prof command, 4-6 to 4-8

PROFDIR environment variable, 4-9

profiling code

RISC, 4-5 to 4-9

VAX, 4-9 to 4-10

PROG _ ENV environment variable

defining, 2-8

defining on the c89 command line, 2-9

defining on the cc command line, 2-9

program

compiling in the standard conformant environment,

2-8

lndex-10

program (cont.)

debugging using dbx, 3-1 to 3-22

default output file name, 2-2

finding errors in, 2-9

optimizing on RISC systems, 4-10 to 4-22

optimizing on VAX systems, 4-22 to 4-25

protecting access to, 7-12

running, 2-2

running under the control of dbx, 3-5

program argument

effect of specifying on dbx run command line, 3-5

program counter sampling

See PC sampling

programming language

See also specific programming languages

supported, 1-6

ps command (VAX)

using to debug the kernel, D-14

putc() routine, 5-3

putchar() routine, 5-3

putenv() routine, 5-5

puts() routine, 5-3

Q

qsort() routine, 5-5

R

rand() routine, 5-5

ranlib command, 2-12

raw device VO, 5-14, 5-15

RAW terminal 1/0 mode, 5-20

.rdata section

contents, 4-25

read system call, 6-31

shutdown system call and, 6-32

real urn
See UID

realloc() routine, 5-5

record event

displaying status of, 3-7

removing, 3-7

recv system call

out-of-bounds message reading, 6-31

peeking at socket messages, 6-30

shutdown system call and, 6-32

stream socket and, 6-22

recvfrom system call

datagram socket and, 6-18

register

use of in optimizing, 4-11

register storage class, B-5

relative pathname

security consideration, 7-2

Remote Installation Services

See RIS

remove() routine, 5-3

rename() routine, 5-3

rerun command (dbx), 3-5

return value

data type of when calling between C and Pascal,

8-5

rewind() routine, 5-4

RIS, 1-9

routines

See also individual routine names

C library, 5-2 to 5-8

calling from a privileged process, 7-4 to 7-5

calling under dbx control, 3-14

common return value, 7-3

curses library, 5-9

displaying active with dbx, 3-12

internationalization library, 5-7, 5-9

kerberos library, 5-10

math library, 5-10

network computing system library, 5-10

standard conformant library, 5-8

tracing execution of, 3-10

run command (dbx), 3-5

s
.sbss section

contents, 4-25

scanf() routine, 5-3

behavior of in standard conformant environment,

5-9

SCCS (Source Code Control System), 1-8

sccs command, 1-8

.sdata section

contents, 4-25

Secure Keyboard menu item, 7-13

security breach

possible program responses to, 7-4

security level

reading svc.conf file to determine, 7-10

segment

security consideration, 7-3

select system call, 6-26

descriptor 1/0 and, 6-27

select.h header file, 5-15

semaphore

security consideration, 7-3

send system call

out-of-bounds message writing, 6-30

shutdown system call and, 6-32

stream socket and, 6-22

sending signals

See signal, sending

sendto system call

datagram socket and, 6-18

set group ID program

See SGID program

set user ID program

See SUID program

setbuf() routine, 5-3

setenv command (dbx), 3-6

using in an initialization file, 3-17

setenv() routine, 5-5

setgid() routine, 7-4

setitimer system call, 616

signals and, 6-15

setjmp buffer, C-5

setjmp() routine, 5-5

setld utility, 1-9

setlocale() routine, 5-7

setreuid system call, 7-5

setsockopt system call, 6-31

setuid() routine, 7-4

setvbuf() routine, 5-3

lndex-11

SGID program

security consideration, 7-9

sgttyb data structure, 5-19

sgtty.h header file, 5-15

sh5, 1-4

shared memory segment, C-2

shell

defining variables in a secure environment, 7-2

System V, 1-4

shell command

in child process, 6-7

shell script

security consideration, 7-12

shell variable

See specific shell variables

short data type

storage mapping, B-1

shutdown system call

closing halves of socket, 6-32

read system call and, 6-32

recv system call and, 6-32

send system call and, 6-32

write system call and, 6-32

SIGALRM signal, 6-9, 6-14

ITIMER_REAL and, 6-15

sigblock system call

signals and, 6-13

sigcontext data structure

signal handler and, 6-10

SIG_DFL signal, 6-9

SIG_ ERR signal, 6-9

SIGFPE signal, 6-9

signal handler and, 6-10

SIG_ IGN signal, 6-9

SIGINT signal, 6-9

handling, 6-11

sent to background processes, 6-11

SIGIO signal, 6-9

fcntl and, 6-27

SIGKILL signal, 6-9

signal, 6-8

blocking, 6-9, 6-13 to 6-14

catching, 6-9 to 6-10

from keyboard, 6-11

lndex-12

signal (cont.)

handling, 6-10 to 6-12

ignoring, 610, 6-9

secure response to, 7-2

sending, 6-12 to 6-13

timer and, 6-14

signal handler

See signal

signal library routine, 6-8

signal mask

used with sigblock, 6-13

signal routine, 7-2

signal.h header file, 6-9

sigpause system call

signals and, 6-14

SIGPIPE signal, 6-9

SIGPROF signal

ITIMER_PROF and, 6-15

SIGQUIT signal, 6-9

security consideration, 7-2

SIGSTOP signal, 6-9

SIGSYS signal, 6-9

SIGTRAP signal

security consideration, 7-2

SIGURG signal, 6-31

SIGUSRl signal, 6-9

SIGUSR2 signal, 6-9

sigvec system call, 6-8, 6-9

sigvec() routine, 5-8

sleep() routine, 5-8

behavior of in standard conformant environment,

5-9

sockaddr _ dn data structure, 6-17

sockaddr _in data structure, 6-17, 6-24

sockaddr _ un data structure, 6-17

SOCK_DGRAM socket type

description of, 6-1 7

socket, 6-16

blocking, 6-26

closing halves of, 6-32

datagram, 6-17 to 6-21

determining who is requesting service, 7-8

flow control, 6-26 to 6-29

out-of-bounds messages and, 6-30

socket (cont.)

peeking, 6-30

security consideration for use with daemons, 7-8

stream, 6-21 to 6-26

types of, 6-17

socket domain, 6-16

structures used with, 6-17

socket system call

datagram socket and, 6-18

stream socket and, 6-22

socket type, 6-17

SOCK _RAW socket type

description of, 6-17

SOCK_SEQPACKET socket type

description of, 6-17

SOCK_ STREAM socket type

description of, 6-17

software panic, D-13

Source Code Control System

See secs
source file

controlling access to, 1-8

displying with dbx, 3-3

finding errors in, 2-9

sprintf() routine, 5-3

behavior of in standard conformant environment,

5-9

srand() routine, 5-5

sscanf() routine, 5-3

stack frame

format of, D-9

standard

programming to, 1-4

standard error

piping to error command, 2-9

redirecting to pipe, 6-3 to 6-6

standard input

redirecting to pipe, 6-3 to 6-6

standard 1/0

compared with system 1/0, 5-10 to 5-22

standard 1/0 routines, 5-12

See also specific routine names

standard output

piping to error command, 2-9

standard output (cont.)

redirecting to pipe, 6-3 to 6-6

static storage class, B-5

status command (dbx), 3-7

std err

See standard error

stdio

See standard input

stdio.h header file, 5-1, 5-3, 5-4

stdlib.h header file, 5-5

std out

See standard output

step command (dbx), 3-8

sticky bit

using to secure temporary files, 7-3

stop command (dbx), 3-4

storage class

See C storage class

strcat() routine, 5-6

strchr() routine, 5-6

strcmp() routine, 5-6

strcoll() routine, 5-6

strcpy() routine, 5-6

strcspn() routine, 5-6

stream socket

See socket, stream

strerror() routine, 5-6

strftime() routine, 5-8

string data

how displayed by the dbx print command, 3-12

passing between C and Pascal (RISC), 8-1

passing between C and Pascal (VAX), 8-2

string.h header file, 5-6

strlen() routine, 5-6

strncat() routine, 5-6

strncmp() routine, 5-6

strncpy() routine, 5-6

strpbrk() routine, 5-6

strrchr() routine, 5-6

strspn() routine, 5-6

strstr() routine, 5-6

strtok() routine, 5-6

strtol() routine, 5-3

lndex-13

strtoul() routine, 5-3

structure

See data structure

strxfrm() routine, 5-6

stty command, 6-12

sum program

security consideration, 7-9

superuser privilege

calling setreuid to reduce, 7-5

svc.conf file

getting security information from, 7-10

system audit mask, 7-6

system call

calling from a privileged process, 7-4 to 7-5

common return value, 7-3

overview of, 5-8

security consideration for a failed call, 7-4

system crash

determining which routine failed, D-3

forcing on a VAX system, D-13

system interrupt

examining the exception frame after, D-6

system 1/0

compared with standard 1/0, 5-10 to 5-22

system 1/0 routines, 5-13

See also specific routine names

system memory map (RISC), D-1

System V, 1-4

signals and, 6-9

system() routine, 5-5

T

TANDEM terminal 1/0 mode, 5-20

tape reading

using ioctl system call, 5-17 to 5-19

tape rewinding

using ioctl system call, 5-17 to 5-19

tape writing

using ioctl system call, 5-17 to 5-19

tchars data structure, 5-21

tempnam() routine, 5-3

temporary file, 7-3

lndex-14

terminal

changing local-mode word of, 522, 5-22

changing special characters of, 521

setting characteristics of, 5-19, 5-20

setting mode of, 5-19

terminal control

using ioctl system call, 5-19

terminal 1/0 modes, 5-20

See also specific mode names

tfind() routine, 5-5

time() routine, 5-8

timed interval, 6-15 to 6-16

time.h header file, 5-8, 6-15

timer

signal and, 6-14

timeval, 6-27

TIOCGETC request, 5-21

TIOCGLTC request, 5-21

TIOCLBIC request, 5-22

TIOCLGET request, 5-22

TIOCSETC request, 5-21

TIOCSL TC request, 5-21

tmp file

security consideration, 7-2

tmpfile() routine, 5-3

tmpnam() routine, 5-3

toascii() routine, 5-2

tolower() routine, 5-2

toupper() routine, 5-2

trace command, 1-7

trace command (dbx), 3-10

trace event

displaying status of, 3-7

removing, 3-7

tracing

code sections, 4-3

functions, 4-2

with dbx debugger, 3-10 to 3-11

trap

difference from fault, 6-11

tsearch() routine, 5-5

tzset() routine, 5-8

behavior of in standard conformant environment,

5-9

u
ucode

definition of, 4-20

ucode file

creating, 4-19

storing in an archive libary, 2-11

urn
determining real, 7-5

UIL (X User Interface Language), 1-5

uld compiler phase, 4-19

ulimit system call, 7-5

ULTRIX Worksystem Software

See UWS

umask system call

using to secure temporary files, 7-3

umerge compiler phase, 4-19

ungetc() routine, 5-3

behavior of in standard conformant environment,

5-9

union

storage mapping, B-5

unlink system call

datagram socket and, 6-18

stream socket and, 6-22

using to protect file access, 7-3

unlink() routine, 5-3

unsetenv() routine, 5-5

uopt optimizer

functions of, 4-10

updating makefiles, 2-19

user authentication, 7-9

example routine, 7-11

user identification

See UID

user input

security consideration, 7-13

user stack (RISC), D-2

user struct (RISC), D-2

/usr/tmp file

See tmp file

UWS (UL TRIX Worksystem Software)

programming environment, 1-5

v
varargs.h macros, A-1

variable

manipulating with dbx, 3-10 to 3-12

VAX compiler

phases, 2-4

V AX FORTRAN (UL TRIX)

availability of, 2-2

vbsprintf() routine, 5-3

vfprintf() routine, 5-3

virtual address space

layout of, C-1

volatile storage class (RISC), B-6

use of with pointer data type, B-6

vprintf() routine, 5-3

w
wcstombs() routine, 5-7

wctomb() routine, 5-7

where command (dbx), 3-12

whereis command (dbx), 3-14

which command (dbx), 3-14

window environment, 1-5

write system call, 6-31

shutdown system call and, 6-32

x
X programming libraries, 1-5

X User Interface

See XVI

XAddHost() routine, 7-13

XAddHosts() routine, 7-13

XDisableAccessControl() routine, 7-13

XEnableAccessControl() routine, 7-13

XGrabKeyboard() routine, 7-13

Xlib, 1-5

XListHosts() routine, 7-13

X/Open environment

compiling a program in, 2-8

X/Open standard, 1-4

_XOPEN_SOURCE preprocessor symbol

defining, 2-8

lndex-15

XRemoveHost() routine, 7-13

XRemoveHosts() routine, 7-13

XReparentWindow() routine

using in a secure environment, 7-14

XSendEvent routine, 7-14

XSendEvent() routine, 7-14

XUI (X User Interface), 1-5

XUI Resource Manager

See DRM

XUI User Interface Language

See UIL

lndex-16

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGIT AL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/El5
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

*For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Guide to Languages and Programming

AA-ML94C-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) D D D D
Completeness (enough information) D D D D
Clarity (easy to understand) D D D D
Organization (structure of subject matter) D D D D
Figures (useful) D D D D
Examples (useful) D D D D
Index (ability to find topic) D D D D
Page layout (easy to find information) D D D D

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name{fitle ----------------------­ Dept.

Company

Mailing Address --------------------------------

Email ------------ Phone

- - - - - · Do Not Tear - Fold Here and Tape

111rnaama™
-----------------------------rr--r]----------~~;:~~---

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-2698

I lh1111 lhlh111ll1111l1ll1hd1l11hdd111ldl11I

------· Do Not Tear-Fold Here

IF MAILED IN THE
UNITED STATES

Cut
Alonj?;
Dotted
Line

