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About This Manual 

This guide describes the tools and methods used to write application programs on the 
UL TRIX system. It gives an overview of the commands in the UL TRIX compiler 
system and describes the commands used to build, debug, and optimize programs. 
This guide also describes using C library routines, writing secure programs, and 
calling between the C and Pascal languages. 

This guide does not list the syntax and definition of the elements of each language. 
The guide neither attempts to teach programmers how to write an application, nor 
does it attempt to teach the concepts of C, FORTRAN, Pascal or other languages. 

Audience 
The audience for this manual is the application programmer or system engineer who 
is already familiar with a programming language. This manual gives information 
about tools and concepts particular to programming on an UL TRIX system. 

Organization 
Chapter 1 describes the steps in application development and introduces the tools 
programmers use to develop applications. 

Chapter 2 describes using the compilers and linkers provided with the UL TRIX 
system. This chapter also describes using the make utility to build programs. 

Chapter 3 describes debugging your program using the dbx debugger. 

Chapter 4 describes the profiling and optimization facilities that are available as part 
of the UL TRIX compiler system. You can use these facilities to increase the 
efficiency of your programs. 

Chapter 5 gives an overview of the system calls and library routines and helps 
programmers decide which routines to use for a particular task. This chapter also 
describes using UL TRIX routines to read from and write to files and devices. 

Chapter 6 describes controlling communication between processes running on an 
UL TRIX system. This chapter gives examples of using pipes, handling signals, and 
using sockets. 

Chapter 7 provides security guidelines for designing and writing programs. 

Chapter 8 describes the coding interfaces between C and Pascal and provides 
information for calling and passing arguments between those languages for both the 
RISC and VAX architecture. 

Appendix A describes the extensions and modifications that are supported by the cc 
compiler that runs on the RISC architecture. The extensions and modifications are 
differences between cc on the RISC architecture and the C language defined by 
Kernighan and Ritchie. 



Appendix B describes how the compiler groups C structures in storage for the RISC 
and VAX architectures. 

Appendix C describes the issues involved in porting an application from the VAX 
architecture to the RISC architecture. 

Appendix D describes how to debug the ULTRIX kernel /vmunix on the RISC and 
VAX architectures. 

Related Documents 
See the user's guides for the individual programming languages for descriptions of 
each language. 

See the Guide to Developing International Software if you are writing programs for 
an internationai environment. 

See the Guide to Network Programming if you are writing a network application. 

See the DECrpc Programming Guide if you are developing an application based on 
DECrpc. 

The ULTRIX Reference Pages contain reference information for the commands and 
tools that are described in this manual. The reference pages are available in printed 
form and online. 

To view reference pages online, use the man or what is commands. 

The -f option to the man or what is commands allows you to view a one-line 
summary of the specified topic name. Occasionally, the same topic name appears in 
more than one section of the ULTRIX Reference Pages. This situation occurs, for 
example, when a command and a system call have the same name. Section 1 of the 
reference pages describes using the command, while Section 2 describes using the 
system call. Using the - f option, you can determine where to look to read about 
each occurrence of a topic. For example, the following man command lists all 
occurrences of the chmod topic: 

% man -f chmod 
chmod (1) 
chmod, fchmod (2) 

- change file mode 
- change mode of file 

If you want to read only the information about the system call, specify Section 2 of 
the reference pages on the man command line. For example, the following command 
displays the chmod(2) reference page for the chmod system call and not its Section 1 
(command) counterpart: 

% man 2 chmod 

To read general information about a group of commands or routines, display the 
intro reference page for a particular section. For example, to read information 
about the math library, display the intro(3m) reference page by entering the 
following command: 

% man 3m intro 
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Conventions 
% 

# 

user input 

system output 

UPPERCASE 
lowercase 

cat(l) 

RISC Specific 

VAX Specific 

The default user prompt is your system name followed by a right 
angle bracket. In this manual, a percent sign ( % ) is used to represent 
this prompt. 

A number sign is the default superuser prompt. 

This bold typeface is used in interactive examples to indicate typed 
user input. 

This typeface is used in interactive examples to indicate system 
output. It is also used in code examples and other screen displays. In 
text, this typeface indicates the exact name of a command, option, 
partition, pathname, directory, or file. 

The UL TRIX system differentiates between lowercase and uppercase 
characters. Literal strings that appear in text, examples, syntax 
descriptions, and function definitions must be typed exactly as shown. 

Cross-references to the ULTRIX Reference Pages include the 
appropriate section number in parentheses. For example, a reference 
to cat(l) indicates that you can find the material on the cat 
command in Section 1 of the reference pages. 

Some information in this manual is specific to systems that run on the 
RISC architecture. This information is labeled RISC specific 
throughout the manual. 

Some information in this manual is specific to systems that run on the 
VAX architecture. This information is labeled VAX specific 
throughout the manual. 
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Introduction 1 

This manual contains information about how to create and maintain programs and 
applications on an ULTRIX system. Use this manual in conjunction with the 
manuals in the documentation set for your programming language and with other 
manuals in the UL TRIX documentation set that contain detailed information about 
topics only summarized here. 

The following topics are covered in this manual: · 

• Compiling, linking, running, and building programs 

• Library routines and system calls 

• Programming language interfaces 

• Using object files and libraries 

• Debugging tools 

• Checking programs and improving performance 

• Interprocess communication 

• Messages and error handling 

• Security guidelines 

In some cases, all the relevant information you need is included in this manual. In 
other cases, a section contains overview information and then refers to other manuals 
that describe the topic in detail. 

This manual applies to UL TRIX operating systems running on both the RISC and 
VAX platforms. You can assume that the environments behave in the same way 
unless differences are identified in the manual. 

This chapter describes the phases you go through in developing an application and 
tells you which UL TRIX tools to use during those phases. The chapter also discusses 
the following topics: 

• Specifications and design considerations 

• Major software development tools 

• Source file control 

• Program installation tools 



1.1 Application Development Phases 
There are five major phases in developing a new application: 

• Requirements and specifications 

• Design 

• Implementation 

• Testing 

• Installation and maintenance 

The first phase involves outlining the requirements and specifications for the 
application. You need to answer the following types of questions: 

• What tasks will the application perform? 

• In what kind of environment will the application run? 

• Who will be using the application? 

• Does the application need to be portable? 

For example, you need to know whether users will have workstations or window 
terminals or whether they will be working on character-cell terminals. If you are 
writing an application that will run on different operating systems or different 
hardware platforms, should your application or program be POSIX conformant? Is 
your application going to be used in several countries and, if so, do you need to 
follow internationalization guidelines? Are there security issues that you need to be 
concerned about? All these questions and more need to be answered during the 
requirements and specifications phase. 

During this phase, you also need to consider how you plan to do your development 
work. For example, what major tools will you use for linking, debugging, 
implementing, and testing? Do you plan to call routines and use common files? Do 
you need to use a source control utility? Which installation utilities will people use 
to install your application? 

The second phase involves de'>lgn. During this phase, you design the flow of the 
program, sketching out the various functions and how they will fit together. You can 
also determine whether you can use existing routines, system calls, or common files 
to perform various functions in the application. 

During the implementation phase you set up your programming environment and 
choose the tools you will use to create and modify the source files. Other tasks you 
will do include analyzing source code and building the application. 

The testing phase involves testing the application, debugging the code, and analyzing 
performance. 

The final phase includes making the program available for installation. 

The UL TRIX operating system contains a number of tools and system features to 
help you with each phase. Table 1-1 shows which ULTRIX tools and features 
address the programming needs in each phase. 
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Table 1-1: Programming Phases and ULTRIX 

Phase Tools/Features 

Requirements and specifications Standards 

Design 

Implementation 

Testing 

Maintaining 

Window Environments 
Internationalization 
Security 

Routines 
Libraries 
Common Files 

SCCS 

vi, GNU emacs, ex, ed 
lint, grep, cxref 
trace, ctrace 
sed, time 
dbx,dxdb 
make, compilers 
threads 

di ff 
shell scripts 
pixie, prof, gprof 

setld 
tar, pxtar 

As you can see from the table, in many instances an UL TRIX system offers more 
than one tool to do a job. Deciding which tool to use, as well as which programming 
language, is your choice. 

1.2 Specification and Design Considerations 
When designing an application, you need to make certain decisions that depend on 
the nature of the application. UL TRIX provides a number of features and tools to 
help you create applications that are, for example, portable, internationalized, or 
window-oriented. 

One of the primary design considerations concerns adhering to UNIX-environment 
standards and portability. If you plan to write an application to run on an UL TRIX 
system well as on other UNIX-based operating systems, you probably want to 
consider following X/Open Portability guidelines and POSIX standards. You might 
also want to avoid using extensions to the ANSI standards that apply to the 
programming language you are using. 

Another consideration is the terminal environment in which your application will be 
used. If end users have workstations or window terminals, you might want to design 
your application to use window displays and menus for the interface rather than 
command lines. The UL TRIX Worksystem Software contains a toolkit, a User 
Interface Language, and a window manager to help you create window interfaces for 
your application. 

You might also need to design your application so that it can be used in a variety of 
countries. The UL TRIX operating system contains an internationalization package 
that provides tools and functions to help you write software to be used by people 
working in different natural languages. 
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1.2.1 Standards 

Use of programming standards enhances the portability of programs and applications. 
Standard-compliant code is independent of the hardware or even the operating system 
on which the program runs. Writing programs according to portability standards 
makes it easy for users to move between systems without major retraining. Some 
standards include internationalization concepts as part of program portability. 

The following are the primary standards in the UNIX programming environment: 

• ANSI 

• ISO 

• POSIX 

• X/Open 

The various ANSI standards apply to specific programming tools such as 
programming languages, networks and communications protocols, character coding, 
and database systems. Information on conformance and extensions to a particular 
ANSI standard appears in the documentation set for the particular language, network 
system, or database system. 

The UL TRIX operating system is conformant with the ISO, POSIX, and X/Open 
standards. For the most part, these standards apply to programs coded in C. 

The UL TRIX system provides tools that allow you to write programs that conform to 
the POSIX and X/Open standards. Writing standard conformant programs involves 
the following: 

• Working in the System V shell 

• Using standard-conformant header files and the standard-conformant function 
library 

• Compiling your program in the standard-conformant environment 

The System V shell (sh5) contains features that are implemented to follow the 
POSIX standard. You change your login shell to the System V shell by using the 
chsh command. This command modifies your entry in the system password file. 
The Big Gray Book: The Next Step with ULTRIX has an example of a shell script 
that invokes the System V shell. (In a distributed environment, you might need to 
have your system administrator change your entry in the distributed password 
database.) 

The ULTRIX header files contain POSIX- and X/Open-conformant information. 
These definitions are conditional and depend on the definition of two preprocessor 
symbols. When the symbols are defined correctly, POSIX- or X/Open-conformant 
header information is included in your program. (Otherwise, the default UL TRIX 
header information is included.) 

ULTRIX provides the libcP function library, which conforms to the POSIX and 
X/Open standards. To use the standard conformant library, you must link with it as 
well as to the Berkeley Software Distribution (BSD) library, libc. Some functions 
differ between the two libraries. (For information on the differences, see Table 5-8.) 

For your program to include standard conformant header information and functions 
from the standard conformant function library, you must compile your program in the 
standard environment. For information on compiling in the standard environment, 
see Section 2.1.4 
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If your standard-conformant program fails to compile, you need to check your 
programming environment to make sure that the POSIX function library is installed 
on your system. Lack of the POSIX function library will cause your program not to 
compile. 

Later chapters contain more information on creating POSIX- and X/Open-conformant 
programs. For details about POSIX on the UL TRIX operating system, see the PO SIX 
Conformance Document. Information on the POSIX standard is contained in the 
IEEE Standard Portable Operating System Interface for Computer Environments, 
published by the Institute of Electrical and Electronics Engineers, Inc. For detailed 
guidelines that meet the X/Open portability and connectivity objectives, see the 
X/Open Portability Guide documentation set. 

1.2.2 Window Environments 
The ULTRIX Worksystem Software (UWS) environment includes DECwindows 
applications, the X User Interface (XUI), X programming libraries, and guidelines for 
creating applications with XUI-compliant interfaces. The XUI provides a rich 
development environment for creating window-oriented applications. 

The XUI allows you to develop applications that have simple, consistent, graphics­
oriented interfaces. The consistency feature is important because it enables users to 
transfer knowledge gained from using one application to another, thus reducing the 
amount of learning time required and increasing their productivity. 

The two major components of the graphics environment are the Xlib and XUI 
Toolkit programming libraries. Xlib supplies low-level routines for performing basic 
graphic and window functions. The XUI Toolkit library contains high-level routines 
for creating and managing user interface objects such as menus, scroll bars, and 
buttons. Typically, applications call routines from both libraries. 

Using XUI Toolkit routines simplifies the task of creating a window interface. For 
example, creating a menu with XVI requires one call to a single XUI Toolkit routine. 
Creating the same menu using Xlib would require many more calls and lines of code. 
Using XUI Toolkit routines helps ensure that your application interface conforms to 
the XUI style, which is designed to make applications easy to learn and use. 

The XUI Toolkit also includes the XUI User Interface Language (UIL) compiler and 
XUI Resource Manager (DRM) routines, which enable you to create an entire 
interface with one library call. The UIL and DRM let you separate form from 
function so that you can specify and modify the interface without having to 
recompile the entire application. 

Using XUI programming library routines, you can write applications that create and 
manage windows to display output and accept input. Generally, the user interface for 
such an application consists of a series of windows. XUI programming library 
routines enable you to organize and manage a hierarchy of windows. 

For an overview of UWS, see the Introduction to the ULTRIX Worksystem Software 
Environment. The Guide to Writing Applications Using XU/ Toolkit Widgets and the 
Guide to the XU/ Toolkit: C Language Binding focus on creating window 
applications. 
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1.2.3 Internationalization 

An internationalized application allows users to interact with that application in their 
own language. Such applications are also designed to reflect the culture of the users' 
region. 

Conventions for representing data can vary from one country to another and from 
region to region within a single country. Data such as number representation, 
currency symbols, and date representation are different, depending upon the local 
culture. For example, if your application displays or accepts monetary data, you 
want your users to be able to read or enter that data according to their local customs. 
The sum of five thousand monetary units would appear differently in different 
countries: 

• $5,000 (United States dollars) 

• L. 5.000 (Italian lire) 

• 5,000 Dr (Greek drachmae) 

To meet these internationalization requirements, you need to create applications that 
make no assumptions about language, locals customs, or coded character sets. Data 
specific to the local culture is held separate from the program logic. You use run­
time facilities to bind your application to the appropriate language message text. 

The UL TRIX internationalization package consists of the following tools and files: 

• Message catalogs and associated tools 

• A special set of library routines 

• Internationalized interlace definitions of standard C library routines 

• An announcement mechanism 

• Language support databases 

• An international compiler for each database 

Another consideration for multicultural applications is international keyboard support. 
In the international environment, you often use characters that your local keyboard 
might not support. You can create characters that do not exist as standard keys on 
your keyboard by using compose sequences. (A compose sequence is a series of 
keystrokes that maps to a single character.) Using these sequences, you can create 
any character from the character set that your terminal or DECterm session (assuming 
you are using ULTRIX Worksystem Software) currently has available. 

For details about the UL TRIX internationalization package, see the Guide to 
Developing International Software. 

1.3 Major Software Development Tools 
ULTRIX is compatible with a number of higher-level languages and includes tools 
for linking and debugging programs. 

1.3.1 Languages That Run in the UL TRIX Environment 

The chief language that the UL TRIX operating system supports is C. Ii1 fact, a C 
language compiler is bundled with the UL TRIX operating system. Languages that 
the UL TRIX operating system supports include the following: 
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• UL TRIX C (bundled with UL TRIX) 

• DECC 

• VAX C for ULTRIX 

• DEC Fortran 

• VAX FORTRAN for ULTRIX 

• Pascal for RISC 

Generally, programs written in languages that run on VAX hardware are compatible 
between the UL TRIX and VMS systems, provided they contain no system-specific 
dependencies. 

Other languages available through Digital include Ada, COBOL, and Lisp. 

Table 2-1 lists the compilers, their associated commands, and their respective 
platforms. 

1.3.2 Linkers 

In most instances, you can use the compiler command to link separate program object 
files into a single executable program. 

As part of the compilation process, most compilers call the linker, ld, to combine 
one or more object files into a single program object file. In addition, the linker 
resolves external references, searches libraries, and performs all other processing 
required to create object files that are ready for execution. The resulting object 
module can either be executed or can serve as input for a separate l d run. (You can 
invoke the linker separately from the compiler by issuing the ld command.) 

UL TRIX allows you to create applications composed of source program modules 
written in different languages. In these instances, you compile each program module 
separately and then link the compiled modules together in a separate step. 

See Chapter 2 as well as the documentation sets for the individual languages for 
detailed information on compiling and linking programs. For information on the 
ld( 1) command, see the ULTRIX Reference Pages. 

1.3.3 Debuggers 

The primary debugging tool on the UL TRIX operating system is dbx. In the 
window environment, you use the dxdb debugger, which is part of the ULTRIX 
Worksystem Software product. In addition, ULTRIX provides ct race and lint. 
The ctrace utility is a C program debugger; lint is a tool for checking syntax in 
C programs. 

Other debugging tools include error, which inserts error messages from a compiler 
into the source files at each point where an error occurs; gcore, which creates a core 
image file of a running process; and trace, which traces the system calls made by a 
command. 

The dbx debugger, the most comprehensive debugging tool in a nonwindow 
environment, is discussed in detail in this manual. For information on dxdb, see the 
Guide to the dxdb Debugger in the ULTRIX Worksystem Software documentation 
set. The other tools are discussed in this manual and in the ULTRIX Ref ere nee 
Pages. 
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1.4 Source File Control 
An integral part of creating a software application is managing the development and 
maintenance processes. The UL TRIX operating system has the SCCS (Source Code 
Control System) utility to help you store application modules in a directory, track 
changes made to those module files, and monitor user access to the files. 

SCCS on the UL TRIX operating system provides support similar to SCCS utilities 
on other UNIX systems. In addition, ULTRIX has an secs preprocessor, which 
provides an interface to the more traditional SCCS commands. 

SCCS maintains a record of changes made to files stored using the utility. The 
record can include information on why the changes were made, who made them, and 
when they were made. You can use SCCS to recover previous versions of files as 
well as maintain different versions simultaneously. SCCS is useful for application 
project management because it does not allow two people to modify the same file 
simultaneously. 

The secs preprocessor provides a user-friendly interface for the SCCS user. Some 
of the commands are intuitive; others allow you to combine two SCCS functions in a 
single s cc s command. 

To use SCCS, you first need to create SCCS directories and files. If you are 
designing a large application with several developers, it might be advisable to assign 
a project librarian to set up the directory and files, and then be responsible for 
maintaining them. The project librarian "owns" all the files in the directory, 
regardless of who created them, and therefore can manipulate the files at any time 
without needing superuser privileges. 

Once you have set up the SCCS directory and have created SCCS files, you can use 
SCCS commands to manipulate those files in the following ways: 

• Retrieve files for compilation 

Using the secs get command, you can retrieve files from the SCCS directory 
to compile your application. Although you can specify an option to get a 
writable copy of the specified file, it is best to use the secs edit command for 
making modifications. 

• Retrieve files for editing 

You use the secs edit command to retrieve files so you can modify them. 
This action reserves the files so that no one else can modify them while you are 
working on them. Once the files are in your own directory, you can use any 
available editor to make your changes. 

• Merge changes into the stored SCCS file 

After you have made all the changes you want to the file, you use the secs 
delta command to merge those changes into the SCCS-stored file. SCCS 
prompts you for a comment to store with the changes. You use this comment to 
describe the changes you made to the file. 

• Get information about your SCCS files 
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Several secs commands give you information about SCCS files. The secs 
info command tells you which files are currently being edited and the names of 
the users who have retrieved the files for editing. The secs check command 
is almost identical to secs info, however, it does not print a message if 
nothing is being edited. It returns a nonzero exit status if anything is being 
edited. You can use this status in an install entry in a makefile to abort the 



operation if any file is reserved for editing. 

The secs delta 'secs tell' command is also similar to the secs 
info command, except that it displays only the names of the files being edited. 
The secs what command tells you which version of a program is being run on 
your system. 

SCCS is helpful in creating new releases, restoring old versions, reverting to older 
versions, and selectively deleting older versions. You can also use the utility to audit 
changes, recover a corrupted edit file, and maintain different versions of the same 
application. 

For more information on using SCCS and the s cc s command, see the Guide to the 
Source Code Control System and the sccs(l) reference page. 

1.5 Program Installation Tools 
Once you have created your program or application, you might want to kit it so that 
it can be distributed easily to other users. The ULTRIX operating system has several 
utilities that you can use to install, remove, combine, validate, and configure 
programs and applications. 

Software for UL TRIX systems consists of a hierarchical group of files and 
directories. If your application or program consists of more than one file, or even of 
more than one directory, you need to determine how the files and directories are 
grouped within the hierarchy. The set l d installation process preserves the integrity 
of each product's hierarchy when it is transferred from the development system to a 
production system (that is, when the product is installed). The kitting process 
includes grouping the component files for the product into subsets, some of which 
can be installed at the option of the system administrator. 

Using the setld utility and its related tools to install and manage software products 
on UL TRIX systems provides the following benefits: 

• Installation security 

The setld utility verifies each subset immediately after it is transferred from 
one system to another to make sure that the transfer was successful. Each subset 
is recoverable in case you need to reinstall one that has been damaged or deleted. 

• Flexibility 

With the setld utility, you can let users choose which optional subsets to 
install. Also, users have tl~e option of deleting subsets and then reinstalling them 
later, as needed. You might use this feature to provide multiple language support 
for your application or to allow users to select among optional features of your 
application. 

• Uniformity 

The setld utility is an integral part of the ULTRIX installation 
implementations. Using this utility to prepare and install software kits for your 
application enhances compatibility with future UL TRIX installation architecture. 
In addition, kits produced with setld can be loaded on a server machine for 
installation over the network using the Remote Installation Services (RIS) utility 
or the Diskless Management Services (DMS) utility. 
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Using setld, you can load your application on any of the following distribution 
media for installation on other systems: 

• Data disks, such as RA60 disk packs or CDROM optical discs 

• TK50 tapes 

• MT9 tapes 

1.5.1 Utilities for Creating setld-Compatible Kits 

In order for people to use the setld utility to install your application, you must 
create your kit so that it is compatible with set l d. There are two UL TRIX utilities 
that you use to create such kits: 

• newinv 

The newinv utility processes a master inventory input file. The output of the 
newinv utility is a file that has the current master inventory of the software 
product. This file contains a list of all the files that make up your application and 
tells which subset each file belongs to. 

• kits 

The kits utility produces subset images, inventories, and control files from the 
input files that have been transferred from your source directory. The utility also 
generates data files that make up the media master in the output directory. 

Information about using the newinv and the kits utilities is located in the Guide 
to Preparing Software for Distribution on ULTRIX Systems. 

1.5.2 Additional Installation Options 

If you want to have your program or application installed remotely or into a diskless 
environment, you need to plan the file configuration up front. The UL TRIX operating 
system contains the Remote Installation Services (RIS) utility to enable users to 
remotely install software and the Diskless Management Services (DMS) utility to 
enable users on a client machine to use software installed in a special DMS area on a 
server machine. 

The RIS utility performs remote installation services. These services allow users to 
install software on a client machine through the TCP/IP local network. Both the 
server and the client can be either a RISC or a VAX machine running the UL TRIX 
operating system. 

The DMS utility allows users to install products into a diskless management services 
area on a server machine and register diskless clients. Once a client machine is 
registered, users on that client can access the software on the server machine without 
having it installed on the client machine. Both the server and client can be either a 
RISC or a VAX machine running the UL TRIX operating system. 

If you want to prepare your program or application for use with either RIS or DMS, 
refer to the documentation on each utility. For information on RIS, see the Guide to 
Remote Installation Services; for information on DMS, see the Guide to Diskless 
Management Services. 
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Compiling, Linking, and Building Programs 2 

This chapter describes the components of the compiler system, how to use them, and 
how to build programs using an automated method. This chapter discusses the 
following topics: 

• Compiler commands, sometimes called driver programs, examine the command 
line for options and files, and pass the appropriate options and files to the various 
components (such as preprocessors and compilers). Thus, a driver program 
controls which of the other components are run. 

• Preprocessors may be run before the appropriate compiler. For example, the C 
language preprocessor is the cpp preprocessor. 

• Compilers (or the assembler) read one or more source files and create an object 
module (usually a temporary file) for the linker. 

• The Archiver stores either object ( coff) files in an archive object library or ucode 
files in an archive ucode library. 

• The Linker (link editor) reads one or more object files and creates the executable 
program. 

• You can build an application in an automated way by creating makefiles that you 
process using the make command. 

You create and modify source programs using the text editor of your choice, such as 
vi. 

2.1 Compiling Using Driver Programs 
Each language compiler has its associated compiler command (such as cc, c8 9, or 
f7 7) , which in tum invokes the appropriate driver program. When you type the 
appropriate command followed by the appropriate options and at least one file name, 
the driver program examines the specified options and the suffix of each file name to 
determine which preprocessor or compiler (or the assembler or linker) is to process 
each file. 

For instance, a file named main. c is assumed to be a C language program to be 
processed by the C language preprocessor ( cpp) and C compiler; a file named 
test . p is similarly assumed to be a Pascal program. 

In the UL TRIX programming environment, a single compiler command can compile 
and link the source file to create an executable program. In addition, if multiple 
source files have been specified, files may be passed to other compilers before 
linking. When you type a compiler command, the driver program can perform 
multiple actions: 

• Based on the file name suffix of each file, the driver program decides whether to 
call the appropriate preprocessor, compiler (or assembler), or linker. You can 
specify command options to prevent linking or to prevent or request 
preprocessing. 



• The default behavior is that source files are automatically linked together if 
compilation (or assembly) is successful. You can specify the -c option to prevent 
linking (and thus prevent creation of the executable program) and retain the . o 
object file for a subsequent link operation. 

• The linker creates an executable program file with a default name of a. out. 
You can use the -o name option to specify a name other than a. out. 

• In most cases, to run an executable program in your current working directory, 
you only need to type its file name. To run the program a. out located in your 
current directory (if your current directory is in your path), type: 

% a.out 

If the executable program is not in a directory in your path, type the directory 
path before the file name or type: 

% ./a.out 

The compiler commands invoke the driver programs that compile, optimize, generate 
object code, and link your programs. Each driver program knows the appropriate 
libraries associated with the main program (most include libc. a) and passes those 
libraries to the linker. 

The linker is usually accessed using one of the compiler commands instead of the ld 
command, even if you need to link only object files. 

Unlike the compiler commands, the assembler (as) can only assemble a single file, 
which is assumed to contain assembler code (the suffix is ignored). The as 
command does not automatically link the assembled object file. Thus, if you use the 
assembler, you need to use a separate ld command. 

Table 2-1 shows the compilers available for use on UL TRIX systems, whether they 
are part of the UL TRIX operating system, and on which platforms they apply. (For a 
more recent list of available products, contact a Digital sales representative.) 

Table 2-1: Compilers Available for RISC and VAX Processors 

Compiler 
Command 

as 
cob 
cc 
c89 
f77 
fort 
lisp b 

pc 

Table note: 

Language 

Assembly 
COBOL 
C (pee) 
C (DEC C) 
FORTRAN 
FORTRAN 
Lisp 
Pascal 

Included with 
UL TRIX Kit for: 

RISC, VAX 

RISC, VAX 
Risca 

VAX 

Layered 
Product for: 

RISC 

RISC 
VAX 
RISC 
RISC 

a. DEC C ( c8 9 command) currently (Version 4.2) must be separately ordered (for 
media cost), but is included in the UL TRIX license. It provides ANSI C 
compatibility. 
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b. Lisp uses the lisp command to start up the Lisp environment, allowing you to 
use other Lisp commands to compile files and so forth. Lisp does not pass 
information to cc and does not invoke the assembler. 

2.1.1 Compiler Command Input and Output Files 
Most driver programs recognize an input file by its filename suffix. Table 2-2 lists 
the valid suffixes for languages available for the RISC and VAX platforms. 

Table 2-2: Compiler Command Input and Output File Suffixes 

Suffix 

. a 

. c 

. e 

.f, .for, .F, .FOR 

. o 

. p 

. r 

. s 

.b 

. cob, .cbl, .CBL 

.i 

.lsp, .lisp 

. u 

Description 

Object archive library . 

C source file . 

e fl source file . 

FORTRAN source file. 

Object file . 

Pascal source file . 

rat for source file . 

Assembly source file . 

RISC Specific 

ucode object library. Not all RISC compilers can generate ucode 
files . 

COBOL source file. 

An intermediate file created by preprocessor execution (before 
compilation) in the source language of the processing driver. For 
example: 

pc -c source.i 

In this case, the pc command assumes that source. i contains 
Pascal source code. 

Lisp source file . 

ucode object file. Not all RISC compilers can generate ucode files . 

2.1.2 Components of the Compiler System 

When you compile a program, you usually select one or more options that affect 
debugging, optimization, and profiling facilities, as well as the names assigned to 
output files. 

Figure 2-1 illustrates the relationship between the major components of the compiler 
system and their primary input and output files for RISC driver programs and the 
fort command driver on the VAX platform. ( Figure 4-1 provides additional detail 
on the use of RISC platform ucode files and optimization.) 
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Figure 2-1: Major Compiler Phases 
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Figure 2-2 illustrates the relationship between the major components of the compiler 
system and their primary inputs and outputs for all VAX driver programs except the 
fort command driv~r. 
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Figure 2-2: Compiler Phases Used by Most VAX Driver Programs 
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Note that FORTRAN on both the RISC and VAX platforms use preprocessors that 
the other languages do not use. 

Figure 2-3 illustrates the relationship of the FORTRAN preprocessors. 
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Figure 2-3: The FORTRAN Preprocessors 
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Some options have defaults. For example, the default name for object files is 
filename.o 

The specified filename is the name of the source file without its filename suffix. 
The default name for an executable program file is a. out. 

The following example shows compilation of two C source files, main. c and 
sub. c, that generates an executable program file. The following command invokes 
the compiler: 

% cc main.c sub.c 

The C compiler compiles the source files (main. c and sub. c), creates one or 
multiple object modules (depending on the compiler), which are deleted after linking, 
and a single executable program, a. out. 

2.1.3 Compiling Multilanguage Programs 

For a very large application, it may be easiest to perform incremental compilation 
and subsequent linking of the application. When the source language of the main 
program differs from that of a subprogram and neither language is C, you may need 
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to compile each program module separately with its respective driver and then link 
them in a separate step. In either case, you can create objects suitable for linking by 
specifying the - c option, which stops the driver after it creates the object file. For 
example: 

% cc -c main.c more.c 
% pc -c rest.p 
% pc main.o more.o rest.o 

Figure 2-4 illustrates the compilation control flow for these commands. 

Figure 2-4: Compiling Multilanguage Programs 
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Most language driver programs pass information to cc, which, after processing, 
passes information to 1 d. When one of the modules to be compiled is a C program, 
you can usually use the driver command of the other language to compile and link 
both modules. In most cases, if the driver command invokes cc, such as the 
FORTRAN and Pascal compilers, use the command driver associated with that 
language to make sure the correct compiler is invoked and that the correct libraries 
are passed to the linker. 

For instance, if you have a FORTRAN main program main. f that calls a C 
function contained in syscall. c, you could use the f77 (RISC) command or the 

Compiling, Linking, and Building Programs 2-7 



fort (VAX) command to compile and link both modules. For example: 

% £77 main.£ syscall.c 

2.1.4 Compiling in the POSIX or X/Open Environment 

As mentioned in Chapter 1, the UL TRIX system allows you to write programs that 
conform to the POSIX or X/Open standards. When you write standards-conformant 
programs, you must compile your program in the POSIX or X/Open programming 
environment. You can compile your program in one of these environments using one 
of two methods: 

• Set an environment variable and preprocessor symbols before you issue the cc or 
c89 command 

• Set the environment variable and preprocessor symbols on the cc or c 8 9 
command line. 

Follow these steps to set the environment variable and preprocessor symbols before 
you issue the cc or c8 9 command: 

1. Define the PROG_ENV variable. For example: 

% PROG_ENV=POSIX; export PROG_ENV 

You must set the PROG_ENV variable to POSIX when you write POSIX- or 
X/Open-conformant programs. 

2. Create a local header file that defines the the _POSIX_SOURCE or 
_XOPEN_SOURCE preprocessor symbol. (You can also define the preprocessor 
symbols directly in your source file.) 

Define only the _POSIX_SOURCE symbol if you are writing POSIX-conformant 
programs. Define both _POSIX_SOURCE and _XOPEN_SOURCE if you are 
writing X/Open-conformant programs. 

The following example shows a local header file that defines the 
_POSIX_SOURCE and _XOPEN_SOURCE preprocessor symbols: 

#define POSIX SOURCE 
#define -XOPEN-SOURCE 

- -

3. Include the local header file in your source program. (If you define the 
preprocessor symbols directly in your source file, skip this step.) Place the 
include directive for the local header file before any include directive for an 
UL TRIX header file. 

For example, if you name the local header file standard head. h, use the 
following directive in your source program: -

# include "standard head.h" 
# include "stdio.h" 

Be sure to include the local header file in each source file for your program. 

4. Compile your program using the cc or c8 9 command. 

For example, suppose you are writing an X/Open conformant program and your 
program consists of three modules named main. c, more. c, and rest. c. To 
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compile your program, issue the following command: 
% cc main.c more.c rest.c 

When you compile a program in the POSIX environment and the 
_POSIX_SOURCE and _XOPEN_SOURCE symbols are defined, the cpp or 
cpp 8 9 preprocessor includes X/Open conformant header information in your 
program. The ld linker includes standard conformant functions in your program 
image. 

You can define the _POSIX_SOURCE or _XOPEN_SOURCE symbol and the 
PROG_ENV variable on the cc or c89 command line, using the -D and -Y 
command options. These options allow you to avoid modifying source code to 
define a preprocessor symbol and issuing commands to define the PROG_ENV 
variable. The following example uses cc command options to define 
_POSIX_SOURCE and PROG_ENV: 

% cc -D_POSIX_SOURCE -YPOSIX main.c more.c rest.c 

In this example, the -D option defines the _POSIX_SOURCE symbol to the value 1. 
The -Y option sets the programming environment to POSIX. These definitions are in 
effect only during the execution of the cc command. For more information on the 
-D and -Y options, see the cc(l) and c8 9(1) reference pages. 

2.1.5 Using error with Compiler Driver Programs 

When the compiler issues a diagnostic message indicating that your source code 
contains an error, you might want to see the error displayed beside the source line 
that caused the error. You can use the error command to take errors from the cc 
command and insert those messages into your source file at the point the error 
occurred. In addition to the cc command, error supports as, ccom, cpp, f77, 
ld, lint, make, pc, and pi. 

You normally run the error command with the language processor connected 
through a pipe to its standard input. Some language processors write error messages 
to standard output; others write messages to standard error. To be sure error message 
are passed to error, pipe both standard output and standard error into the error 
command. If an error message refers to more than one line in a source file, error 
duplicates the messages and inserts it before each appropriate line. 

The error command has the following syntax: 

[ language_processor I& J error [ options J 

For complete information on the options to the error command, see error(l) in 
the ULTRIX Reference Pages. 

The following example attempts to use the cc command to compile a program 
named sample. c. The output from cc is sent to the error command. 

% cc samp1e.c I& error 

2 non specific errors follow 
[unknown] ese if ( (tmp = getenv("TEXT")) != 0) 
[unknown] ese if ( (tmp = getenv("TEXT")) != 0) 
1 file contains errors "sample.c" (1) 

File "sample.c" has 2 error. 
2 of these errors can be inserted into the file. 

You touched file(s): "sample.c" 
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The error command inserts the error message as a comment in the source file. The 
comment has the following format: 

/*### [ error message text] %%%*/ 

Editing sample. c and searching for"/*###" reveals the following error: 

str[O]=' ' 
if(argc > 1) 

strncpy(str,*++argv,MAX); 
/*###43 [cc] Error: syntax error%%%*/ 
/*###43 [cc] Error: ese undefined%%%*/ 

ese if ( (tmp = getenv ("TEXT") ) ! = 0) 
strncpy(str,tmp,MAX); 

In this case, the source code line flagged by the error messages contains an ''else'' 
clause that is missing a letter. 

2.2 Using the C Preprocessor 
The C preprocessor ( cpp) is invoked by default for . c and . p files by most driver 
programs. With FORTRAN, each file with a . F suffix causes cpp to be 
automatically invoked for that file. For . f, . for, and . FOR files, cpp is not 
automatically invoked when used with the fort (VAX) or f77 (RISC) command. 
Except for the assembler, most driver commands allow you to invoke cpp by using 
the - cpp option on the driver command line. 

If you use the c 8 9 command, the C preprocessor is cpp 8 9, which can be separately 
invoked. 

2.2.1 Including Common Definition Files 

When you write programs, you often have common definition files that you share 
among a program's modules. These files usually define known constants, declare 
types (routines types or data types, including data structures), and declare function 
prototypes (such as library functions or system services). Definition files, called 
#include or header files in the C programming language, let you share common 
information between files in a program. These header files typically have a . h suffix. 

Most supported languages allow you to include these files in your program's source 
code using the C preprocessor, but if a header file contains C code, include it only 
from a C language program. 

If you intend to debug your program using the dbx debugger, do not place 
executable code in an include file. The debugger recognizes an include file as one 
line of source code; none of the source lines in the file appears during the debugging 
session. 

To specify an include file in your program, begin the #include directive in column 
1 of your source file. There are two forms of the #include directive, where the 
file to be included is specified using double quotation marks or angle brackets, as 
follows: 

#include "file]" 
#include <file2> 

Each file name listed in this manner indicates the name of the include file. Because 
the name of the first include file is in double quotation marks, the C preprocessor 
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searches for them first in the directory where the source file is located and then 
searches the default directory, /usr/include. Because the names of the next 
include file is enclosed in angle brackets, the C preprocessor searches for them only 
in the default directory, I us r I include. You can specify the pathname before the 
filename in the #include directive. 

You can also use the -Idir option to specify additional pathnames (directories) to 
be searched by the C preprocessor for #include files. The C preprocessor searches 
first in the directory where the source file resides, followed by the specified pathname 
dir, and then the standard directory /usr I include . For most compiler 
commands, if di r is omitted, the standard directory I us r I include is not 
searched. The c89 driver allows the -Idir form as well as the form -I dir (a 
space between the -I and dir) for POSIX compatibility. 

If you want to prevent the c8 9 driver from searching the /usr I include directory, 
you must specify the - I option either directly before another option or at the end of 
the command line. When the c 8 9 driver sees - I on the command line followed by 
a space and then a hyphen ( -) or the end of the line, the driver interprets the option as 
-I (directory /usr I include is not searched). If the characters following are 
neither a hyphen nor the end of the line, c 8 9 interprets those characters as the 
additional pathname to search, di r. 

2.2.2 Setting Up Shareable Include Files in RISC Programs 

For the RISC architecture, C, Pascal, FORTRAN, and assembly source code can 
reside in the same #include files and then can be conditionally included in 
programs as required. To set up a shareable include file, create a . h file and 
conditionalize the respective code as follows: 

#ifdef LANGUAGE C 

#endif 
#if def LANGUAGE PASCAL 

#endif 
#ifdef LANGUAGE FORTRAN 

#endif 
#ifdef LANGUAGE ASSEMBLY 

#endif 

2.3 Creating Archive Libraries 
An archive library is a file that contains one or more routines in object ( . o) or ucode 
(. u) file format. (Only RISC systems support the ucode file format and not all RISC 
compilers produce ucode files.) When a program calls an object or ucode file not 
explicitly included in the program, the linker looks for that object in an archive 
library. The linker then loads only that object (not the whole library), and links it 
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with the calling program. For more information about linking with archive libraries, 
see Section 2.4.3. 

To create an archive library, you must first create object files or ucode files. Use a 
compiler command to create object files from your source file. For example, the 
following cc command creates an object file from the source file main. c: 

% cc -c -o main.o main.c 

To create a ucode file, use a compiler command similar to the following: 

% cc -j main.c 

This command creates a file named main. u. 

Use the ar archiver to create and maintain archive libraries that contain your object 
or ucode files. The ar archiver performs the following tasks: 

• Copies new files into the archive library 

• Replaces existing files in the library 

• Moves files within the library 

• Extracts individual files from the library into individual object or ucode files 

• Displays information about files in the archive library 

To execute the ar command, use the following syntax: 

ar options [ posname J archive file ... 

You name the archive you want created or modified in the archive argument. The 
f i 1 e argument names the object or ucode files you want the archiver to use. You 
can name a number of object or ucode files. 

When you are inserting or moving files in the archive, you can determine their 
position using the posname argument. In the posname argument, you name an 
existing file in the archive. You then use command options to specify adding a file 
before or after the file you specify in posname. 

The following shows an example of using the ar command: 

% ar -r libfft.a main.o 

This command specifies adding the main. o file to the end of the libfft. a 
archive. 

You should also run ranlib on a archive library to add a table of contents for 
linking purposes, such as: 

% ranlib libfft.a 

For more information about the ar and ranlib commands, including descriptions 
of the options you can use, see ar(l) and ranlib(l) in the ULTRIX Reference 
Pages. 

2.4 Linking Files 
The linker (ld) combines one or more object files (in the order specified) into one 
executable program file, performing relocation, external symbol resolutions, and all 
other processing required to make object files ready for execution. Unless you 
specify otherwise, the linker names the executable program file a. out. You can 
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execute the program file or use it as input for another linker operation. 

The linker supports all the standard command line features of other UNIX system 
linkers (except System V command language files, which contain a description of a 
load module). 

For further information about the linker, see ld(l) in the ULTRIX Reference Pages. 

2.4.1 Linking Using the Compiler Commands 

You can use a compiler command instead of the 1 d command to link separate 
objects into one executable program. Because the compiler driver programs 
automatically pass the libraries associated with that language to the linker, using the 
compiler command is usually recommended. You can also specify additional 
libraries to be searched for unresolved references using the -1 option. 

Depending on the nature of the application, decide whether to compile and then 
separately link or to perform both compilation and linking using one compiler 
command. Factors to consider include whether all source files are in the same 
language, whether all source files are readily available, the number of object files, and 
so forth. 

One reason to compile and link modules with a single command is when you want to 
optimize your program. Most compilers support increasing levels of optimization 
with the use of certain options. For example, the -00 option requests no 
optimization (usually for debugging purposes), while the -01 option requests certain 
local (module specific) optimizations. On RISC systems, you can request cross­
module optimizations by using the -03 or -04 option. (These options are valid only 
when the multiple modules you are compiling are written in the same language.) In 
this case, compiling and linking in one operation allows the compiler to perform the 
maximum possible optimizations. 

Certain compilers may provide a combination of options (such as -c and -o name) 
that allow multiple source files to be compiled into a single object module, which 
allows the interprocedural optimizations to occur, yet retains the object file (see your 
language documentation). 

Each compiler command (except the assembler) recognizes the . o suffix as the name 
of a file that contains object code suitable for linking and imµiediately invokes the 
linker. You could link object modules using the pc Pascal driver, as follows: 

% pc -o all main.o more.o rest.o 

This command produces the executable program object of the specified name, all. 
You could achieve the same results using the cc compiler command, as follows: 

% cc -o all main.o more.o rest.o -lp -lm 

Figure 2-5 illustrates the control flow for the pc and cc commands used in these 
examples. 
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Figure 2-5: Example of pc and cc Driver Control Flow 
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Note that to link the appropriate libraries with the cc driver, you must specify two 
additional options that the pc driver uses by default: the -lp option, which specifies 
the Pascal link library, and the - lm option, which specifies the math link library. 
Both pc and cc use the C library libc. a by default. 

For information about the default libraries used by each compiler command, see the 
appropriate command in the ULTRIX Reference Pages, such as cc(l), and the 
reference pages for layered products. 

2.4.2 Linking Using the Id Command 

The ld command is usually only used with object modules created by the assembler. 
The l d command has the following syntax: 

Id options object ... 

Because the as assembler does not automatically invoke the linker, to link a program 
written in assembly language, do either of the following: 

• Assemble and link by using one of the other compiler commands (for example, 
cc). The . s suffix of the assembly language source file automatically causes the 
compiler command to invoke the assembler. 

• Assemble by using as; then link the resulting object file by using ld. 

For further information about the options and libraries that affect the linking process, 
see ld(l) in the ULTRIX Reference Pages. 

2.4.3 Specifying Libraries 

When you compile your program on the UL TRIX system, it is automatically linked 
with the C library, libc. a. If you use routines that are not in libc. a or one of 
the other archive libraries associated with your compiler command, you must 
explicitly link your program with the library. Otherwise, your program will not be 
linked correctly. This section explains three situations in which you need to 
explicitly specify libraries and the options you use to specify the libraries. 

If you compile multilanguage programs, be sure to explicitly request any required 
run-time libraries to handle unresolved references. You load the libraries by 
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specifying the -lstring, where string is an abbreviation of the library name. 

For example, if you write your main program in C and some procedures in Pascal, 
you must explicitly specify the 1 ibp . a Pascal library and the 1 ibrn . a math library 
by specifying the -1 p and - lm options. When you use these options, the loader 
replaces the -1 with 1 ib and adds the specified character (p or m) and the . a suffix. 
Then, it searches the following directories for the resulting library name (in this case 
libp. a and librn. a): 

• /lib 

• /usr I lib 

• /usr I local/ lib 

For a list of the libraries that each language uses, see the reference pages for the 
appropriate command. 

You may need to specify libraries when you use UNIX system packages that are not 
part of a particular language. The reference pages for these packages list the required 
libraries. For example, the plotting subroutines require the libraries listed in the 
plot(lg) reference page. 

If you store object or ucode files in an archive library, you must include the 
pathname of the library on the compiler or loader command line. For example, the 
following command specifies that the libfft. a archive library in the 
/usr I jones directory is to be loaded along with the Pascal library libp. a: 

% cc main.o more.o rest.o /usr/jones/libfft.a -lp 

The linker searches libraries in the order you specify. Therefore, if any file in your 
archive library uses data or procedures from the Pascal library, you must specify the 
archive library line before you specify the Pascal library. 

Using ucode object libraries is similar to using other object libraries. To load from a 
ucode library, specify the - k 1 x compiler option or ucode loader option. The 
following example loads a file from a ucode library: 

% cc -klucode_lib -o output main.u more.u rest.u 

Because the libraries are searched as they are encountered on the command line, the 
order in which you specify them is important. If a library is made from both 
assembly and high-level language routines, the ucode object library contains code 
only for the high-level language routines. Unlike a coff object library, the ucode 
library does not contain code for the routines. In this case, you must specify to the 
ucode loader both the ucode object library and the coff object library, in that order, to 
ensure that all modules are loaded from the proper library. 

If the compiler driver is to perform both a ucode load step and a final load step, the 
object file created after the ucode load step is placed in the position of the first ucode 
file specified or created on the command line in the final load step. 

2.4.4 Linker Options 
Table 2-3 describes some of the more frequently used linker options that are available 
with most driver programs. 
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Table 2-3: Linker Options 

Linker Option 

-Ldir 

-lstring 

-o name 

-bestGnum 

-G num 

Description 

Specifies the pathname dir as an additional search directory 
for the linker, which is searched for unresolved global 
references before the directories associated with the driver 
command used. For those driver programs that use the ld 
linker, the directories searched are I lib, /usr I lib, and 
/usr/local/lib. The c89 command allows a space 
between the-Land dir (in the form of -L dir) for POSIX 
compatibility. Other compiler commands allow the use of -L 
as an option to indicate not to search in the standard 
directories. 

Specifies additional libraries to be searched, in addition to the 
libraries associated with the driver command used. The 
characters specified as x are added to 1 ib and form a file 
name of a library. For example, if you specified -lm, the linker 
searches for libm. a. This option can be repeated in the 
desired search order to specify multiple additional libraries. 
The c 8 9 command allows a space between the -1 and 
string (in the form -1 string) for POSIX compatibility. 

Specifies a file name name be given to the executable program 
rather than the default, a. out. 

RISC Specific 

Requests that ld calculate an efficient value for the data size 
limit of the global pointer area. The calculated value can be 
used as num for the -G num option in a subsequent link 
operation. 

Specifies n um, in bytes, as the limiting size of global data 
items to be included in the global pointer area for this link 
operation. The default value is 8 bytes. The more data items 
placed in the global pointer area, the faster the program 
executes. However, if too many data items are included 
because of a high n um value, the total size of all data items 
below the n um value could exceed the fixed size of the global 
pointer area (65,536 bytes), resulting in a link error. If this 
error occurs, reduce the specified n um value. 

2.5 Building Programs with the make Program 
The make program keeps track of the many files that compose a large program. 
Information about file dependencies and how files are to be processed is stored in a 
makefile. Thereafter, the make command processes only those files that have been 
changed - or depend on files that have been changed - since the last make. 
Using make ensures that whenever a program is rebuilt, only the required processing 
is performed; files that do not need to be recompiled or relinked are not. 

For more information about the make program, see make(l) in the ULTRIX 
Reference Pages, and the article Make-A Program for Maintaining Computer 
Programs in the ULTRIX Supplementary Documents, Volume 2: Programmer. 
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Makefiles are text files you create and edit. Makefiles contain two types of lines: 

• Statements of dependencies, such as file A depends on files B and C 

• Commands to be executed, such as c 8 9 - o A B . o c . o 

Consider a program called big program that is made from three C modules: x. c, 
y . c, and z . c. -

• Module x. c includes project. h 

• Modules x. c and y. c include stdio. h 

• Object file y. o uses the user-supplied library pro j lib. a 

• Object files y. o and z. o use the object library I lib/ libcurses. a. 

The makefile for big_program is shown in Example 2-1. 

Example 2-1: Makefile 

# The executable file depends on object files 
ill all x.o y.o z.o # Comments are ended by the end of the line 
~ c89 -o big program x.o y.o z.o -lcurses -lprojlib 

- # This command is executed if x.o, y.o, z.o, 
# or any of the libraries change 

# The object files depend on source files and headers 
x.o x.c project.h # x.o depends on x.c and project.h 

~ c89 -c x.c # This command is executed if x.c 
# or project.h change 

y.o y.c stdio.h # y.o depends on y.c and stdio.h 
c89 -c y.c # This command is executed if y.c or 

z.o z.c # z.o depends on z.c 

stdio.h 

c89 -c z.c # This command is executed if z.c changes 

Each line that issues a command must begin with a tab. 

The numbers in the following list correspond to the numbers in Example 2-1: 

change 

l1J The name before the colon is called a target. It depends on everything after the 
colon; in this case, three object files. A target can be a name created for 
convenience (as all has been). Any target can be specified on the make 
command line. 

121 This line links, but does not compile (because the files end with . o ). This 
example command line includes both the curses and c libraries. 

!al This line compiles, but does not link (because of the -c option) x. c, which 
includes stdio. h with an #include preprocessor directive. 

The makefile in Example 2-1 can be written a shorter way, as shown in Example 2-2. 
The first character of every command line still must be a tab. 

Example 2-2: Shorter Makefile 

all x.o y.o z.o 
c89 -o big_program x.o y.o z.o -lcurses -le 

~ x.o y.o : stdio.h 
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The numbers in the following list correspond to the numbers in Example 2-2: 

111 This line is identical to the one in the previous example. 

121 This is the only dependency line needed because make assumes x. o, y. o, and 
z . o depend on C source files of the same name but with a . c ending. The only 
other information needed is that x. o and y. o depend on stdio. h. 

Each time a component of big program changes, all that must be done to create a 
new executable file is issue the make command. The make program compares the 
times that dependent files were last changed, then compiles and links only the files 
that must be. The make command searches the current directory, first for a file 
named makefile, then for a file named Makefile. Makefiles with other names 
can be specified with the -f option; for example: 

% make -f Big_prog_makefile 

Any name to the left of a colon in a makefile is a target. If no target is specified on 
the make command line, the first target in the makefile is used. In Example 2-2, the 
default target is a 11. In the following command, the target is y . o: 

% make y.o 

2.5.1 make Macros 

The make command has its own macros that can be defined within makefiles. These 
macros allow groups of objects to be handled by a single name, as shown in Example 
2-3. A macro name is a string to the left of an equal sign; whatever is to the right of 
the equal sign is the macro's expansion. Macros are invoked by preceding the macro 
name with a dollar sign and left. parentheses, and following the name with a right 
parentheses; for example: $ (MACRO) . 

Example 2-3: Makefile with Macros 

# makefile for big_program rewritten using macros 

C89 OPTIONS = -g -std # A macro for compiler options 

OBJECTS = x.o y.o z.o # A macro for object files 

LIBS = -lcurses -le # A macro for libraries 

big_program : $(OBJECTS) # big_program depends on OBJECTS 
c89 $(C89_0PTIONS) $(OBJECTS) $(LIBS) 

x.o y.o : stdio.h 

Macros can be redefined on the make command line; for example, the following 
command changes the c 8 9 options: 

% make "C89 OPTIONS = -g -std -check" 

2.5.2 Performing Other Tasks with make 

Targets need not be file names; they can be any word, as shown in Example 2-4. 
Therefore, targets can lead to groups of commands that perform tasks other than 
compiling and linking. 
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Example 2-4: Makefile with Command Targets 

# This makefile can run lint on source files, print source files 
# that have changed since the last printing 

SOURCE = x.c y.c z.c 

OBJECTS = x.o y.o z.o 

LIBS = -lcurses -le 

big_program: $(OBJECTS) 
c89 -o big_program $(OBJECTS) $(LIBS) 

x.o y.o : stdio.h 

clean : rm *.o 

lint $(SOURCE) 
lint $(SOURCE) 
touch lint 

print $(SOURCE) makefile 
lpr $? 
touch print 

# The command "make clean" removes all 
# object files from the working directory 

# If any source file has changed, 
# run lint on all the source files. 
# Update the time of the most recent lint run 

# If makefile or any source file has changed, 
# print files changed since the last printing. 
# Update the time of the most recent printing 

In Example 2-4, clean, lint, and print are targets that cause make to execute 
shell commands. Any shell commands can be used. The make-defined macro$? 
stands for dependency names that are younger than the target. Consider the line 
below the print target: 1 pr $?; this line prints the makefile and every file in the 
SOURCE macro ( x. c y. c z. c) if they are younger than the print target. In 
other words, a file is printed if it has been changed since make with the print 
target was last run. 

The preceding makefile could be used with the following command to run lint on 
source files changed since the last running of make with the lint target: 

% make lint 

The following command specifies multiple targets: 

% make big_program print clean 

2.5.3 Updating Makefiles with make 

A makefile can be used to update itself. Example 2-5 shows code from the end of a 
makefile that uses the compiler to calculate dependencies and write a new makefile. 
Having code like this at the end of your makefile frees you from keeping track of file 
dependencies. 
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Example 2-5: Automatic Makefile Updating 

depend: 
rm -f eddep makedep 
${CC} ${CIDIRS} ${DFLAGS} -Em *.c I \ 
awk ' { if ($$1 != prev) { print rec; rec = $$0; prev = $$1; } \ 

else { if (length (rec $$2) > 78) { print rec; rec = $$0; } \ 
else rec = rec 11 11 $$2 } } \ 

END { print rec } ' > makedep ; \ 
${ECHO} '/A# DO NOT DELETE THIS LINE/+1,$$d' >eddep 
${ECHO} '$$r makedep' >>eddep 
${ECHO} 'w Makefile' >>eddep 
rm -f Makefile.bak 
mv Makefile Makefile.bak 
chmod 755 Makefile.bak 
ex - Makefile.bak < eddep 
${ECHO} '# DEPENDENCIES MUST END AT END OF FILE' >>Makefile 
${ECHO} '# IF YOU PUT STUFF HERE IT WILL GO AWAY' >> Makefile 
${ECHO} '# see make depend above' >>Makefile 
rm -f eddep makedep 
chmod 444 Makefile 

# DO NOT DELETE THIS LINE -- make depend uses it 

Issuing the make command with depend as the target writes a new makefile 
containing your program's current dependencies. The output is similar to the 
following: 

# DO NOT DELETE THIS LINE -- make depend uses it 

declarator.o: declarator.c ./ .. /cs common/master.h 
declarator.o: /sybil/ANSI/release/lnclude/setjmp.h 
declarator.o: /sybil/ANSI/release/include/sys/types.h 
declare.o: declare.c /sybil/ANSI/release/include/string.h 
declare.o: ./ .. /cs common/master.h /sybil/ANSI/release/include/setjmp.h 
expression.o: expression.c ./ .. /cs common/root stub.h 
initial.o: initial.c /sybil/ANSI/r~lease/include/string.h 
initial.o: ./ .. /cs common/master.h /sybil/ANSI/release/include/setjmp.h 
lex.o: /sybil/ANSI/release/include/ctype.h ./preproc.h ./ .. /cs/locator.h 
lex.o: ./ .. /compiler message/message ids.h 
macro.o: macro.c /sybil/ANSI/release/include/string.h 
macro.o: /sybil/ANSI/release/include/time.h 
parse.o: parse.c /sybil/ANSI/release/include/ctype.h 
parse.o: /sybil/ANSI/release/include/stdlib.h ./ .. /cs_common/root stub.h 
# DEPENDENCIES MUST END AT END OF FILE 
# IF YOU PUT STUFF HERE IT WILL GO AWAY 
# see make depend above 
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Debugging Programs 3 

The dbx debugger is an interactive, symbolic debugger that you can use to find 
errors in your program code. You can use dbx to debug a running program or to 
examine a core file. The dbx debugger can perform the following tasks: 

• Display source code with line numbers 

• Execute source code conditionally 

• Execute source code one line at a time 

• Execute source code one machine instruction at a time 

• Set and remove breakpoints 

• Trace a line, a variable, or a routine 

• Trap signals sent to your program 

• Call routines outside of normal program flow 

• Display the contents of variables 

• Assign a value to a variable 

• Debug the ULTRIX kernel, /vmunix. (For information about debugging the 
ULTRIX kernel, see Appendix D.) 

UL TRIX also provides a DECwindows interface to dbx, which is called dxdb. For 
information on dxdb, see the Guide to the dxdb Debugger in the UL TRIX 
Worksystem Software documentation. 

To demonstrate the dbx utility, this chapter gives an example of debugging a sample 
program. Although this example works on both RISC and VAX systems, on VAX 
systems, the output may differ from the example. In particular, line numbers and 
event numbers might be different. For information about the sample program and a 
listing of the entire program, see Section 3.4. 

3.1 The dbx Command 
To use dbx, you must first compile your program using the -g option on the 
compiler command line. This option provides symbol table information needed by 
dbx. (For information about the compiler commands and the -g option, see the 
reference page that describes the compiler you use.) 

To invoke dbx you issue the dbx command at the shell prompt. The dbx command 
has the following syntax: 

dbx [ options J L object J [ core J 

Table 3-1 summarizes the options available on the dbx command line. 



Table 3-1 : dbx Command Options 

Option Purpose 

-c Selects a command file other than . dbxini t. (For information on 
creating a command file, see Section 3.3.) 

-i Invokes dbx in interactive mode. This option causes the debugger to not 
treat source lines beginning with number signs(#) as comments. 

-I directory Adds the directory you name to the list of directories dbx uses when it 
searches for a source file. By default, dbx searches the current directory 
and the directory where object is located. You can specify multiple 
directories by using multiple - I options. 

- k Maps memory addresses. This option is useful for kernel debugging. 

- r Executes the object file you name on the command line immediately. If 

-pixie 

program execution terminates with an error, dbx displays the message 
that describes the error. You can then either invoke the debugger or let 
the program continue exiting. The dbx debugger reads from I dev /tty 
when you specify the - r option and standard input is not a terminal. On 
RISC systems, if the program executes successfully, dbx prompts you for 
input. On VAX systems, if the program executes successfully, dbx exits. 

RISC Specific 

Reads in output from the pixie utility. The pixie utility is a code 
profiler. 

For this option to work, you must have executable pixie output and the 
nonpixie executable file in the same directory. The pixie output 
must be named filename. pixie, where filename is the name of 
the executable file. 

On the command line, the object argument names the object file that dbx reads as 
input. Name the object file of the program you want to debug using dbx. If you 
omit the object argument, dbx prompts you for the name of an object file, as 
shown: 

enter object file name (default is 'a.out'): 

You can either enter the name of an object file or press the Return key. If you press 
the Return key, dbx attempts to read a file named a. out from the current directory. 
If no a. out file exists, dbx exits. 

The core argument on the dbx command line names a core dump file. When you 
name a core dump file on the dbx command line, you can get information about the 
state of your program when it failed. The core dump file contains an image of 
memory at the time your program failed. Using dbx commands, you can display the 
value of variables at the time of failure, the values in registers, and so on. The 
debugger displays information from the core dump file, rather than from memory as 
it usually does. 

If your program takes arguments, do not enter them on the dbx command line; enter 
them as arguments to the run command, as described in Section 3.2.3. 
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3.2 Sample dbx Session 
The dbx debugger provides many commands for debugging your program. The 
following sections take you through an example that demonstrates commonly used 
commands. The sections also describe the commands and explain the output from the 
commands. 

For information on all the dbx commands, including their syntax, see dbx(l) in the 
ULTRIX Reference Pages. 

The sample program is provided on your UL TRIX systems in the file 
/usr/examples/dbx/dbx sample. c. To follow the example, first copy the 
sample program to your area byissuing the following command: 

% cp /usr/examples/dbx/dbx_sample.c dbx_sample.c 

Then, compile the sample program by issuing this command: 

% cc -g dbx_sample.c 

Finally, invoke dbx, as shown: 

% dbx 
enter object file name (default is 'a.out') :IReturnl 
dbx version 2.10 
Type 'help' for help. 
reading symbolic information 
main: 28 signal(SIGINT,handler); 
(dbx) 

To exit from dbx, issue the quit command described in Section 3.2.18. 

Example 3-2 shows the dbx sample. c program, which is used throughout the 
chapter to demonstrate the ctbx commands. 

3.2.1 Displaying Source Lines (list) 

Use the list command to display lines in your program. If you issue the list 
command without arguments, dbx lists lines beginning at the current source line. 
You can specify a range of line numbers to list or a beginning line number and the 
number of lines you want dbx to list. 

If you do not specify how many lines to list, dbx lists a default number of lines. 
How many lines the debugger lists depends on the type of terminal you are using. 
You can change the default by modifying the $listwindow debugger variable. 
(For information on modifying debugger variables, see Section 3.3.) 

At certain times during program execution, source code is not available to the 
debugger. For example, suppose you call a C library function and program execution 
stops while that function is executing. If you issue the list command without 
arguments, dbx displays the following message: 

Source not available. 

The debugger attempts to list source lines beginning at the current line, but it cannot 
list lines in libc. To list source code lines, you must specify lines in your program 
to list or name a routine in your program. 
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The following example demonstrates using list: 

(dbx) list l,Sill 
1 /* This program is a small editor that can make very simple 
2 * changes to lines of text. 
3 */ 
4 
5 #include <stdio.h> 

( dbx) list stredi t ~ 
78 void stredit(source) 
79 char source[]; 
80 { 
81 register char *start; 
82 
83 
84 if(*source == '\0') 
85 
86 
87 
88 
89 
90 

return; 
switch (choice) { 
/* Convert to upper case */ 
case 1: 

while(*source != '\0') { 
if(!isspace(*source)) 

(dbx) list~ 
91 *source = toupper(*source); 

source++; 92 
93 
94 break; 
95 /* Convert to lower case */ 
96 case 2: 
97 while(*source != '\0') { 
98 if(!isspace(*source)) 
99 *source= tolower(*source); 

100 source++; 
101 
102 break; 

[1] The list command displays lines 1 through 5. 

121 The list command displays lines in the stredit () function, which is one of 
the functions in the sample program. 

131 The list command displays lines beginning at the current line, which is the one 
following the last line displayed by the previous list command. 

3.2.2 Creating Breakpoints (stop) 

Use the st op command to create a breakpoint in your program. The st op 
command allows you to specify a line number to stop at or a routine to stop in. You 
can also specify that the debugger stop execution when a variable changes value. 

The debugger assigns an event number to each breakpoint. You use the event number 
to remove the breakpoint. For information about removing breakpoints, see Section 
3.2.6. 

The following example demonstrates using stop: 

(dbx) stop at 5811] 
[2] stop at "sample.c":58 
(dbx) stop in getline~ 
[3] stop in getline 
( dbx) stop choice~ 
[4] stop ifchanged choice 
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[1] The stop command sets a breakpoint at line 58 in the module named 
sample. c. The program will stop immediately before the debugger executes 
source code line 58. 

The debugger assigns event number 2 to this breakpoint. On RISC systems, the 
dbx debugger uses event number 1 internally, so the first event you create is 
always number 2. 

121 The stop command sets a breakpoint in the get line () function. (The 
get line() function is one of the functions in the sample program.) The 
program will stop immediately before the debugger executes the first source in 
get line(). 

The debugger assigns event number 3 to this breakpoint. 

~ The stop command will cause program execution to stop when the choice 
variable changes value. 

The debugger assigns event number 4 to this breakpoint. 

3.2.3 Running Your Program (run and rerun) 

Use the run or rerun command to run your program under control of the 
debugger. These commands begin program execution at the beginning of your 
program. You can pass arguments to your program on the run or re run command 
line. If you specify arguments with the run command, issuing rerun without 
arguments passes the same arguments to the program. Otherwise, run and re run 
are identical. 

Because the run and rerun commands always begin execution at the beginning of 
the program, you cannot use them to continue execution from a breakpoint. For 
information on continuing execution from a breakpoint, see Section 6.4. 

The breakpoints you set always remain active, no matter how many times you reissue 
the run or rerun command. For information on deleting breakpoints see Section 
6.5. 

The following example demonstrates using run and rerun: 

(dbx) run l1J 

[3] [getline:69 ,Ox400318] for(i=O; i<MAX i++) 121 
(dbx) run "test" 13] 

Choose an editing change: 

1 UPPERCASE 
2 lowercase 
3 Initial Capital On All Words 
4 No blanks 
5 Exit 

[2] [main:58 ,Ox4002b8] printf("Enter your choice: "); 
(dbx) rerun~ 

Choose an editing change: 

1 UPPERCASE 
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2 lowercase 
3 Initial Capital On All Words 
4 No blanks 
5 Exit 

[2] [main:58 ,Ox4002b8] printf("Enter your choice: "); 
(dbx) 

(j] The run command executes the program from its beginning. The breakpoint in 
the get line () function stops program execution. 

On VAX systems, the breakpoint on the choice variable stops program execution. 
The debugger executes that breakpoint when the choice variable is initialized. 
Issue the cont command to continue program execution until the debugger 
executes the breakpoint in get line(). 

12] When a breakpoint stops program execution, dbx displays a message. The 
message indicates the event number of the breakpoint, the routine and line 
number in which the stop occurred, the current address of program execution, and 
the text of the next source line dbx will execute. 

131 The run command executes the program from the beginning and passes a string 
to the program. Because the run command argument supplies input to the 
program, the program does not execute the get line ( ) function. The breakpoint 
in get line ( ) , therefore, cannot stop program execution. The breakpoint at line 
58 stops program execution. 

~ The rerun command executes the program from the beginning. The command 
passes the same argument as the run command passed and program execution is 
identical to the execution caused by the run command with the test argument. 
The breakpoint at line 58 stops the program. 

3.2.4 Setting Environment Variables (setenv) 

To set an environment variable, issue the setenv command. You can use this 
command to set the value of an existing environment variable or create a new 
environment variable. The environment variable is used by both dbx and the 
program you are running under dbx control. 

The following demonstrates using setenv: 

(dbx) setenv TEXT "test" [j] 
( dbx) run l2J 

Choose an editing change: 

1 UPPERCASE 
2 lowercase 
3 Initial Capital On All Words 
4 No blanks 
5 Exit 

[2] [main:58 ,Ox4002b8] printf("Enter your choice: "); 
( dbx) setenv TEXT "" ~ 
(dbx) run~ 
[3] [getline:69 ,Ox400318] for(i=O; i<MAX ; i++) 

(j] The setenv command sets the environment variable TEXT to the value "test". 
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121 The run command executes the program from the beginning. The program reads 
input from the environment variable TEXT if it is defined. In this case, the 
environment variable is defined, so the program does not need to execute the 
get 1 ine ( ) function to get input. Program execution stops at the breakpoint at 
line 58. 

~ The setenv command sets the environment variable TEXT to null. 

~ The run command executes the program. Because the TEXT environment 
variable contains a null value, the program must get input. The program executes 
the get line () function and stops at the breakpoint in that function. 

3.2.5 Displaying the Status of Debugger Events (status) 

Use the status command to display the list of active breakpoints and trace events. 
The status command displays the event number and type of each breakpoint and 
trace event. 

On RISC systems, you can create a record event. The status command on RISC 
systems also shows the status of any record events. 

On VAX systems, you can redirect the output of the status command to a file. Use 
the right angle bracket (>) as you do at the shell prompt to redirect output. 

The following example demonstrates using status: 

(dbx) status BJ 
[2] stop at "sample. c": 58 
[3] stop in getline 
[4] stop ifchanged choice 

l1J The status command displays the current debugger events. 

3.2.6 Removing Debugger Events (delete) 

Use the de 1 et e command to remove a debugger event, such as a breakpoint or trace 
event. To remove all debugger events, issue either the delete all or delete * 
command. 

Specifying an event number that does not correspond to an existing event has no 
effect. 

When you delete an event, the debugger does not reuse the event number assigned to 
that event. The debugger always increments the event number by one when it creates 
a new event. 

The following example demonstrates delete: 

( dbx) status BJ 
[2] stop at "sample.c":58 
[3] stop in getline 
[4] stop ifchanged choice 
( dbx) de1ete 4 [2J 
( dbx) status~ 
[2] stop at "sample.c":58 
[3] stop in getline 
( dbx) de1ete * [4] 

111 The status command displays the current debugger events. 
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12] The delete command removes debugger event number 4. Event number 4 
corresponds to the breakpoint that is set on the choice variable. 

131· The status command displays the debugger events that are current after dbx 
executes the delete command. 

~ The delete command removes all the breakpoints. 

3.2.7 Continuing Execution After a Breakpoint (cont) 
Use the cont command to continue execution after a breakpoint. When you issue 
the cont command without arguments, one of the following occurs: 

• Your program runs until a breakpoint stops execution. 

• Your program stops execution due to an error. 

• Your program executes successfully to its end. 

You can specify a signal name to cause your program to execute as if it received that 
signal. 

On RISC systems, you can specify that execution continue only until a particular line 
is reached or until a particular routine is reached. 

You cannot use the cont command to begin program execution. Only the !Un and 
rerun commands can begin program execution. For information on those commands, 
see Section 3.2.3. 

The following example demonstrates using cont: 
(dbx) stop at 48 [jJ 
[5] stop at "sam,£le.c":48 
(dbx) stop at 5112] 
[6] stop at "sample.c":51 
( dbx) run 13] 

[5] stopped at [main:48 ,Ox400254] 
(dbx) cont~ 
Enter a text line: test 
[6] stopped at [main:51 ,Ox400268] 

getline (str); 

printf("\n"); 

[j] The stop command sets a breakpoint at line 48. 

121 The st op command sets a breakpoint at line 51 

@I The run command executes the program from the beginning. Program execution 
stops when dbx executes the breakpoint at line 48. 

~ The cont command continues execution from where it stopped. 

IS] The program prompts for input. Enter ''test''. The program continues to execute 
until dbx executes the breakpoint at line 51. 

3.2.8 Executing One Source Line at a Time (next and step) 
Use the next command to execute the next source line. If the source line contains a 
call to a routine, dbx executes the entire routine. Program execution stops after the 
called routine returns to the calling routine. 
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On RISC systems, you can specify an integer that determines the number of times the 
debugger executes the next command. 

Use the step command to execute the next source line. If the source line contains a 
call to a routine, the dbx debugger stops at the first line of the routine. 

On RISC systems, you can specify an integer that determines the number of times the 
debugger executes the step command. 

To execute your source program one line at a time from the beginning, set a 
breakpoint at line 1 in the program. Then, issue the run command. After program 
execution stops at the breakpoint, use next or step to continue program execution. 

When you are using the next and step commands, breakpoints appear to be 
inactive. These commands stop your program at the end of each source line. The 
debugger does not issue a message for other breakpoints or trace events that have 
been reached. The exception to this rule is when you are using the next command 
and the debugger encounters a breakpoint in a routine. In this case, the breakpoint in 
the routine operates normally. 

The following example demonstrates using next and step: 

(dbx) run[] 

[6] stopped at [main:48 ,Ox400254] getline(str); l2J 
( dbx) step raJ 
[getline:69 ,Ox400318] for(i=O; i<MAX i++) 
( dbx) step 141 
[getline:71 ,Ox400330] st[i]=getchar(); 
( dbx) step[§] 
Enter a text line: test[§] 

[getline:72 ,Ox4003b0] if (st[i]=='\n') 
(dbx) runlZJ 

[6] stopped at 
(dbx) next[ijl 

[main:48 ,Ox400254] getline(str); 

Enter a text line: test 
[main: SO ,Ox40025c] i = strlen(str); 
(dbx) next~ 
[7] [main:51 , Ox400268] printf ("\n"); 
( dbx) status [Q] 
[5] stop at "sample.c":48 
[6] stop at "sample.c":51 
( dbx) delete s [i] 

[1] The run command executes the program from the beginning. The breakpoint at 
line 48 stops program execution. 

12) The message displays the name of the routine in which execution stopped, the 
line number where execution stopped, the current address of program execution, 
and the source line that will be executed when the program continues. 

~ The step command executes the source code at line 48 in the source program. 
Line 48 in the source program contains the call to the get line () function. 

~ The step command executes line 69 in the source program. Line 69 is the first 
line in get line (). 

151 The step command executes the source code at line 71 in the source program. 
Line 71 in the source program is the second executable line in get line(). 
This line reads input; enter ''test''. 
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1§1 The run command executes the program from the beginning. The breakpoint at 
line 48 stops program execution. 

l.ZI The next command executes line 49 in the source program. That line contains a 
call to get line (). The next command executes the entire get line () 
function. The get 1 ine () function prompts you for input. Enter ''test''. 

~ The next command executes line 50 in the source program. Line 50 is the first 
line after the return from get line() in the source program. 

l9J The status command displays the currently active breakpoints. 

[1]] The delete command removes the breakpoint at line 48. 

3.2.9 Tracing Program Execution {trace) 
Use the trace command to trace the execution of the program. 

On RISC systems, you can use trace to trace the following: 

• The execution of a particular source line. 

• The call to and return from a routine. 

• The value of a variable at a particular source line. You can specify a condition to 
limit the trace to times when the condition is true. 

• The value of a variable in a routine. You can specify a condition to limit the trace 
to times when the condition is true. 

On VAX systems, you can use trace to trace the following: 

• The execution of a source line in the program. You can specify a condition to 
limit the trace to times when the condition is true. 

• The execution of each source line in a routine or in the entire program. You can 
specify a condition to limit the trace to times when the condition is true. 

• The value of an expression at the specified source line. You can specify a 
condition to limit the trace to times when the condition is true. 

• The value of a variable. You can limit the trace to a particular source line, a 
routine, or times when a condition you specify is true. 

The following example demonstrates using trace: 
(dbx) stop in getlineffl 
[8] stop in getline 
( dbx) run l2J 

[8] stopped at [getline:69 ,Ox400318] for(i=O; i<MAX i++) 
( dbx) trace i in get line~ 
[8] trace sample.getline.i in getline 
(dbx) cont~ 
Enter a text line:test 
[8] sample.getline.i changed before [getline: line 71]: 1§1 

new value = 1; 
[8] sample.getline.i changed before [getline: line 71]: 

old value = 1; 
new value = 2; 

[8] sample.getline.i changed before [getline: line 71]: 
old value = 2; 
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new value = 3; 
[8] sample.getline.i changed before [getline: line 71]: 

old value = 3; 
new value = 4; 

[8] sample.getline.i changed before [getline: line 76]: 
old value = 4; 
new value = 5; 

[6] stopped at [main:51 ,Ox400268] printf("\n"); 1§1 

[j] The stop command sets a breakpoint in the get line() function. 

[2J The run command executes the program from the beginning. The breakpoint in 
get line () stops program execution. 

[al The trace command traces the value of the i variable in the scope of 
get line(). 

~ The cont command continues execution. When the program prompts you for 
input, enter the string "test". 

15] The trace command displays a message each time the value of the i variable 
changes. The message displays the fully qualified name of the variable being 
traced, the line at which the variable changed value, the old value of the variable 
(if applicable), and the new value of the variable. 

The i variable changes value five times during the execution of get line (). 

[§] Program execution stops when the debugger executes the breakpoint at line 51. 

3.2.10 Assigning Values to Program Variables (assign) 

Use the assign command to assign a value to a program variable. The value you 
specify must have the same data type as the program variable. For example, you 
cannot assign a floating point number to an integer variable. You can assign the value 
of one variable to another variable. Name the variable into vv hich you want to store a 
value on the left-hand side of the equal sign(=). Name the other variable on the 
right-hand side of the equal sign. 

The following example demonstrates using assign: 

(dbx) assign i = 100E3 i.1] 

incompatible types 
(dbx) assign i = 2212! 
22 

[j] The assign command attempts to store a floating point value in the integer 
variable i. The debugger displays the message ''incompatible types,'' which 
indicates that it cannot store the floating point value. 

On VAX systems you receive the following message when you issue the 
assign command: 

i not active 

Issue the run command. Program execution stops when the debugger executes 
the breakpoint in the get 1 ine ( ) function. At that point, the i variable is active, 
and you can assign a value to it. 

[j] The assign command stores the value 22 in the i variable. The debugger 
displays the value to indicate that it has been stored successfully. 
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3.2.11 Displaying the Value of Variables (print and printf) 

Use either the pr int or pr int f command to display the value of a particular 
variable. The print command displays the value of a variable without formatting it. 
The printf command allows you to specify a format for the variable value. You 
can specify the same formats as you can using the pr int f () C library routine, 
except that the dbx printf command does not support the %s format. (For more 
information about the printf () C library routine, see printf(3) in the ULTRIX 
Reference Pages.) 

You can specify expressions, such as 1 + 2, on the print command line. The 
debugger resolves the expression and displays the result. For more information about 
specifying debugger expressions, see dbx(l) in the ULTRIX Reference Pages. 

The debugger encloses strings in quotation marks when it displays them. If the string 
contains a carriage return character, dbx displays the closing quotation mark as the 
first character in the second line of the display. 

The following example demonstrates using the print and printf commands: 

( dbx) print i ff] 
22 
(dbx) printf"%x %d\n",i,i~ 
16 22 
( dbx) print str 13] 
"test 

[j] The pr int command displays the value of the i variable. 

121 The pr int f command displays the value of the i variable using hexadecimal 
and decimal notation. 

~ The print command displays the value of the str variable. 

3.2.12 Displaying the Names of Active Routines (where) 

Use the where command to display the names of active routines. On RISC systems, 
you can specify an integer that determines how many stack levels the debugger 
displays. 

The following example demonstrates using where: 

(dbx) runffl 

[7] [getline:69 ,Ox400318] for(i=O; i<MAX; i++) 
( dbx) where ~ 
> 0 getline(st = Ox7fffbe78 = "") ["sample.c":69, Ox400318] 

1 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258] 

[j] The run command executes the program from the beginning. The breakpoint in 
the get line () function stops program execution. 

121 The where command displays the following information about the active 
routines: 

- The right angle bracket (> ), which indicates the debugger's current scope. 

- The activation level of each routine. 
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The routine name. 

The contents of any arguments passed to the routine. 

The source module name and line number. 

The program counter for the current point of execution. In this case, the first 
program counter value (Ox400318) is the program counter at the point where 
execution stopped. The second program counter value (Ox400258) is the 
program counter at the call to the get line () function. 

3.2.13 Changing the Debugger's Scope (func) 
Use the func command to change the debugger's scope. By default, the debugger's 
scope is the active routine. The debugger uses its scope to resolve references to 
variable names and line numbers. 

When you issue the func command, you change the debugger's scope to a routine 
other than the current one. 

Changing the debugger's scope to a new routine does not make that routine active. 
In other words, you cannot use the func command to alter program flow. 

On RISC systems, you can specify an integer on the func command line. The 
integer specifies the activation level of an active routine. Once you issue the func 
command with an integer, the routine that corresponds to that activation level 
becomes the debugger's scope. 

The following example demonstrates using func: 

( dbx) where 11] 
> 0 getline(st = Ox7fffbe78 = "") ["sample.c":69, Ox400318] 

1 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258] 
( dbx) func main 12] 
main: 48 getline(str); 
( dbx) where~ 

0 getline(st = Ox7fffbe78 = "") ["sample.c":69, Ox400318] 
> 1 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258] 
( dbx) func stredit ~ 
stredit: 84 if(*source == '\0') 
( dbx) where~ 

0 getline(st = Ox7fffbe78 = "") ["sample.c":69, Ox400318] 
1 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258] 

111 The where command displays the list of active routines. The debugger's scope is 
the get line() function. 

121 The func command changes the debugger's scope to main(). The message 
displays the routine name of the new scope, the current source line number in that 
routine, and the text of the next source line dbx will execute. 

131 The where command verifies the change in the debugger's scope. 

~ The func command changes the debugger's scope to the stredit () function. 

~ The where command displays the list of active routines. Because stredi t () 
is inactive, that routine is not on the list. Therefore, the debugger does not display 
a pointer to the routine that contains the current scope. 
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3.2.14 Displaying Fully Qualified Variable Names (which and whereis) 

Use either the which or where is command to display the fully qualified name of a 
variable. The which command displays the fully qualified name of the variable you 
name, as defined by the current debugger scope. The whereis command displays 
the fully qualified name of each occurrence of the specified variable. 

The following example demonstrates using which and whereis: 

( dbx) which i l1J 
sample.getline.i 
( dbx) whereis i 121 
sample.getline.i sample.main.i 

ff] The which command displays the fully qualified name of the i variable, 
including the program module name, the routine name, and the variable name. 
Because the debugger's current scope is the get line() function, the fully 
qualified name is sample.getline.i. 

l2J The whereis command displays the fully qualified name of all i variables that 
are declared in the program. 

3.2.15 Calling Routines (call) 

Use the call command to execute a routine in your program. The call command 
executes the routine you name on the command line. You can pass parameters to the 
routine by specifying them as arguments to the call command. 

The call command does not alter the flow of your program. Once the routine 
returns, program execution resumes at the point where you issued the call 
command. 

The following example demonstrates using call: 

( dbx) stop in stredi t l1J 
[9] stop in stredit 
(dbx) call stredit (&str) 121 
[9] [stredit:84 ,Ox400448] if(*source '\0') 
( dbx) status~ 
[6] stop at "sample.c":51 
[7] stop in getline 
[8] trace sample.getline.i in getline 
[9] stop in stredit 
( dbx) delete 7; delete 8@ 

[1] The stop command sets a breakpoint in the stredi t () function. 

121 The cal 1 command begins executing the object code associated with 
stredi t (). The str argument passes a string by reference to stredi t. 

On VAX systems, you must pass the str argument by value. Issue the following 
call command to call the stredit () function: 
(dbx) call stredit (str) 

This command passes the type that stredit () expects on a VAX system. 

ff] The status command displays the currently active breakpoints and trace events. 

121 The delete commands delete the breakpoint at line 51 and the trace event. 
When you specify more than one command on the dbx command line, you must 
separate the commands with a semicolon(;). 
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3.2.16 Catching and Ignoring Signals (catch and ignore) 

Use the catch and ignore commands to determine which signals dbx catches. 

The debugger catches some signals by default. To see which signals dbx is currently 
catching, issue the cat ch command without arguments. 

To cause dbx to catch a signal, name that signal on the catch command line. When 
dbx catches a signal, it intercepts that signal before it reaches your program. 

To cause dbx to ignore a signal, issue the ignore command. The ignore 
command causes the debugger to pass the named signal to your program, rather than 
intercepting that signal. 

The following example demonstrates using catch and ignore: 

(dbx) catch[] 
INT QUIT ILL TRAP IOT EMT FPE BUS SEGV SYS PIPE TERM URG STOP TTIN TTOU 
IO XCPU XFSZ VTALRM PROF WINCH LOST USRl USR2 
( dbx) ignore int [21 
(dbx) runl3] 

Enter a text line: lctrl/CI@ 
AC disabled - Re-enter input: 
test~ 
[7] stopped at [main:51 ,Ox400268] 
( dbx) catch int !§] 

printf ("\n"); 

( dbx) run III 

Enter a text line: ICtrl/C I~ 
Interrupt [read.read:18 +Ox8,0x403fa8] 

Source not available 

111 The catch command without arguments displays a list of the signals that dbx is 
currently catching. In this case, the list displays the signals that dbx catches by 
default. 

121 The ignore command causes dbx to ignore the SIGINT signal. You can 
generate the SIGINT signal by pressing Ctrl/C at the keyboard. 

131 The run command begins program execution from the beginning. 

~ When the program prompts for input, enter Ctrl/C. Because dbx ignores that 
signal, the signal is passed through to the program, which contains a routine to 
handle Ctrl/C. That routine executes and the program continues. 

151 The cat ch command specifies that dbx catch the SIG INT signal. 

1§1 The run command begins program execution 

IZJ When the program prompts for input, enter Ctrl/C again. 

~ The debugger interprets the Ctrl/C signal and stops program execution during the 
call to the read () function. The debugger displays a message that lists the 
following: 

The signal that interrupted program execution 

The routine in which execution stopped 

The current program counter 

- The text of the current .source line, if possible 
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In this case, the debugger cannot display the source line from read () because that 
function is in the C library; the debugger cannot display source code from the C 
library. 

3.2.17 Repeating Comrn~nds (pressing Return, history, and !) 

You can repeat commands in dbx by pressing the Return key and using the history 
list. Pressing the Return key at the ( dbx) prompt reexecutes the last command you 
entered. 

The dbx debugger maintains a list of the commands you issue in its history list. 
You can repeat commands in the history list using the exclamation point ( !). 

By default, the debugger stores the previous 20 commands in its history list. You can 
change the number of commands the debugger stores by assigning a different value to 
the $lines variable on RISC systems or the $historywindow variable on VAX 
systems. (For information on setting the value of debugger variables, see Section 
3.3.) 

The following example demonstrates repeating commands using the Return key and 
the history list: 

( dbx) history 111 
197 print str 
198 run 
199 where 
200 where 
201 func main 
202 where 
203 func stredit 
204 where 
205 which i 
206 whereis i 
207 stop in stredit 
208 call stredit (&str) 
209 status 
210 delete 7; delete 8 
211 catch 
212 ignore int 
213 run 
214 catch int 
215 run 
216 history 
(dbx) !204~ 
( ! 204 = where) 
> 0 read.read(OxO, OxO, OxO, OxO, OxO) [" .. /read.s":18, Ox403fa8] 

1 _filbuf(OxO, Ox46, Ox7fffbd0e, Ox32, Ox15) [" .. /filbuf.c":144, 
Ox40119c] 

2 getline(st = Ox7fffbe78 = "") ["sample.c":71, Ox400394] 
3 main(argc = 1, argv = Ox7fffbee4) ["sample.c":48, Ox400258] 

(dbx) !r@I 
( ! r = run) 

Enter a text line: test 
[6] st~ at [main: 51 , Ox400268] 
( dbx) l.BfilJmJJ ~ 
run 
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Enter a text line: test 
[6] stopped at [main:51 ,Ox400268] printf ("\n"); 

111 The history command displays the history list, which contains the last 20 
commands issued during the session. 

121 The ! 2 0 4 command executes command number 204 in the history list. In this 
case, command number 204 is the where command. 

131 The ! r command executes the most recent command that begins with the letter 
"r." In this case, ! r executes the run command. When the program prompts for 
input, enter the string "test". 

~ Pressing the Return key executes the last command issued; in this case, the run 
command. When the program prompts for input, enter the string ''test''. 

3.2.18 Ending a Debugging Session (quit) 

To leave dbx when you complete a debugging session, issue the quit command. 

The following example demonstrates using quit: 

(dbx) quit 
% 

The quit command ends the dbx session and returns you to the shell prompt. 

3.3 Initializing dbx 
You can create an initialization file for dbx that contains commands you normally 
issue at the beginning of each dbx session. You must name the initialization file 
. dbxini t. The debugger searches for the . dbxini t file in your current 
directory. If the debugger finds no . dbxini t file in your current directory, it 
searches your home directory (the directory assigned to the $HOME environment 
variable). Each time you invoke the debugger, it reads and executes the commands 
in . dbxini t. Example 3-1 contains a sample dbx initialization file. 

Example 3-1: Sample dbx Initialization File 

alias stopget "stop in getline" m 
set $listwindow = 5 121 
set $lines = 25 ~ 
setenv EDITOR = ex ~ 

[j] The alias command defines an alias for the st op command. Issuing the 
stopget alias sets a breakpoint at the get line () function. 

121 The set command changes the value of the $listwindow variable to 5. Once 
the debugger executes this set command, the list command will display 5 
lines by default. 

131 The set command changes the value of the $lines variable to 25. The 
$1 ine s variable controls how many history lines the debugger stores. The 
debugger will store 25 commands in the history list after it executes this 
command. 

~ The setenv command sets the environment variable EDITOR to ex. When this 
environment variable is set to the ex editor, that editor is invoked when you issue 
the edit command in dbx. 
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For more information on debugger variables and their default values, see dbx(l) in 
the ULTRIX Reference Pages. 

3.4 Sample Program 
The sample program used in this chapter is a simple editor that reads a line from 
standard input, performs some changes, and writes the modified line to standard 
output. Example 3-2 shows the complete program. 

Example 3-2: Sample Editor Program 

/* This program is a simple editor that can make changes 
* to lines of text. 
*/ 

#include <stdio.h> 
#include <signal.h> 
#define MAX 80 

void getline(); 
void stredit(); 
void handler(); 
extern char *getenv(); 

int choice = O; 

main(argc,argv) 
int argc; 
char **argv; 
{ 

char str[MAX]; 
char *tmp; 
char newline; 
int i; 

/* 
* Declare a signal handler for AC. 
*/ 

signal(SIGINT,handler); 
/* 

* A text string argument may be entered: 
* 1. as a command line argument 
* 2. as the value of an environment variable 
* 3. interactively 

* 
* Once a command line argument or environment string has 
* been processed, the user is prompted for additional text. 
* If both a command line argument and an environment string 
* are given, only the command line argument is processed. 
*/ 

str[O]=' '; 
if(argc > 1) 

strncpy(str,*++argv,MAX); 
else if ( (tmp = getenv("TEXT")) != 0) 

strncpy(str,tmp,MAX); 

if(str[O]==' '){ 
printf("\n\nEnter a text line: "); 
getline(str); 

i strlen ( str); 
printf ( "\n"); 
printf("Choose an editing change:\n\n"); 
printf(" 1 UPPERCASE\n"); 
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Example 3-2: (continued) 
printf (" 2 
printf(" 3 
printf(" 4 
printf(" 5 

lowercase\n"); 
Initial Capital On All Words\n"); 
No blanks\n"); 
Exit\n\n"); 

printf ("Enter your choice: ") ; 
scanf("%d%c", &choice,&newline); 
stredit(str); 
printf("\n%s\n", str); 

void getline(st) 
char *st; 

int i; 

for(i=O; i<MAX ; i++) 
{ 

st[i)=getchar(); 
if (st [i) ==' \n') 

break; 

st [++i] =' '; 

void stredit(source) 
char source[]; 
{ 

register char *start; 

if(*source ==' ') 
return; 

switch(choice) { 

/* Convert to upper case */ 
case 1: 

while(*source !=' ') { 
if(!isspace(*source)) 

break; 

*source= toupper(*source); 
source++; 

/* Convert to lower case */ 
case 2: 

while(*source !=' ') { 
if(!isspace(*source)) 

break; 

*source= tolower(*source); 
source++; 

/* Capitalize first letter of each word */ 
case 3: 

if(!isspace(*source)) 
*source= toupper(*source); 

source++; 
while (*source != ' ') { 

if(isspace(*(source-1)) && !isspace(*source)) 
*source= toupper(*source); 

source++; 

break; 

/* Remove all blanks */ 
case 4: 

start=source; 
while(*source !=' ') { 

while(*source && isspace(*source)) 
source++; 

while(*source && !isspace(*source)) 
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Example 3-2: (continued) 

} 

/* 

*start++ = *source++; 

*start = *source; 
break; 

case 5: 
exit(O); 

default: 
strcpy(source,"Invalid edit choice.\n"); 
break; 

* Signal handler for AC 
*/ 

void 
handler(sig, code, scp) ~ 
int sig, code; 
struct sigcontext *scp; 
{ 

fprintf(stderr,"\n\nAC disabled - Re-enter input:\n"); 

[j] The main () function calls two other functions, get line () and stredit (). 
The main () function also displays messages that help the application user give 
the appropriate input to the program. The user can choose an editing change. The 
choices are as follows: 

- Display the string in all uppercase letters 

Display the string in all lowercase letters 

- Display the string with initial capital letters on all words 

Display the string without blanks 

Exit from the program 

121 The get line ( ) function gets input from the application uset. 

~ The stredi t () function performs the editing change. The function is divided 
into a case statement, one case for each possible editing change. The default case 
is that the program fails with the message "Invalid edit choice." 

~ The signal handler ensures that the program continues after the application user 
enters Ctrl/C. 

3.5 Built-in dbx Command Aliases 
You can use the alias command to create aliases for dbx commands. In addition, 
the debugger has a set of predefined aliases that you can use. Table 3-2 lists the 
predefined aliases. 

Table 3-2: Predefined dbx Command Aliases 

Alias 

c 

d 
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Command Description 

Continues program execution after a breakpoint 

Deletes the specified item from the status list 



Table 3-2: (continued) 

Alias Command Description 

e Edits the specified file 

j Displays the events on the status list 

n Executes the next line without stopping in routines 

p Displays the value of the specified expression or variable 

q Ends the debugging session 

r Reruns the program 

s Executes the next line, stopping after each line in any routine 

t Performs a stack trace 

a 

b 

bp 

f 

g 

h 

1 

li 

ni or 
Si 

pd 

pi 

po 

pr 

px 

ri 

ro 

s 

si 

u 

w 

w 
wi 

RISC Specific 

Assigns a value to a program variable 

Sets a breakpoint at a specified line 

Stops in a specified routine 

Moves to the specified activation level on the stack 

Goes to the specified line and begins executing the program there 

Lists all items currently on the history list 

Lists the next 10 lines of source code 

Lists the next 10 machine instructions 

Executes the specified number of assembly code instructions without 
stopping in any routine (ni) or stopping after each line in any routine 
(Si). 

Displays the value of the specified expression or variable in decimal 
notation 

Replays dbx commands that were saved with the record input 
command 

Displays the value of the specified expression or variable in octal 

Displays the value of each register 

Displays the value for the specified variable or expression in 
hexadecimal notation 

Records each command you enter in the specified file 

Records all debugger output in the specified file 

Executes the specified number of lines stopping at each line in any 
routine 

Executes the specified number of assembly code instructions 

Lists the previous 10 lines 

Lists the 5 lines preceding and following the current line 

Lists the 10 lines preceding and following the current line 

Lists the 5 machine instructions preceding and following the current 
machine instruction 
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Table 3-2: (continued) 

Alias Command Description 

h 

1 
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VAX Specific 

Lists the help text that describes dbx commands 

Lists the number of lines specified by the $listwindow variable 



Checking Programs and Improving 4 
Performance 

This chapter describes several UL TRIX programs that can help programmers check 
their code for errors before compiling it, and improve program performance once the 
program works. 

4.1 Checking C Source Files with lint 
The lint command checks C source files for code that is wasteful, nonportable, or 
likely to cause bugs. Because lint is stricter and quicker than most compilers, run 
source files through lint before compiling them. (However, lint is superfluous 
when used with the c8 9 compiler, which performs the same kind of checking as 
lint.) The lint command writes messages to stdout for every error or 
questionable usage. For complete information on lint and its options, see lint(l) 
in the ULTRIX Reference Pages. 

The following example shows sample output from lint: 

% lint program.c 
program.c: 
program.c(73): warning: c unused in function getline ~ 
printf returns value which is always ignored ~ 
scanf returns value which is always ignored ~ 

ill The first message, calls attention to line 73: 
getline (st) 

char *st; 

char c; 
int i; 

/* This is line 73 */ 

for(i=O; i<=MAX ; i++) 
{ 

st[i]=getchar(); 
if (st [ i ] ==' \ n' ) 

break; 
} 
st[++i]='\0'; 

The variable c, declared in the function getline, is never used and should be 
deleted. 

121 The return value from printf is not checked. Checking the return value of 
every function is a good programming practice. 

131 The return value from scanf is not checked. Checking the return value of every 
function is a good programming practice. 



4.2 Monitoring Program Execution with ctrace 
The ct race command allows you to watch a C program's flow and observe 
changes to variables, looking for unexpected behavior. Running ctrace on a 
source file places additional code into the file; this code causes executable statements 
and referenced or modified variables and their values to be written to stdout during 
the program's execution. Your C source file must compile without errors before you 
use ct race on it. For more information, see ctrace(l) in the ULTRIX Reference 
Pages. 

To use ct race, follow these steps: 

1. Run ct race on a C source file. The ctrace command sends its output (the 
modified file) to stdout, so redirect stdout to a file; for example: 

% ctrace program.c > ctrace.c 

2. Compile and link the expanded code; for example: 

% cc ctrace.c 

3. Run the program; for example: 

% a.out 

As the program runs, its source lines are written to stdout, as shown in Example 4-1. 

Example 4-1: Sample ctrace Output 

25 ff] for ( j = 0 ; j < 10 ; j++) 
/* j -- 0 */ 

26 rec_l.buf [j] = i + 1; 
/* j -- 0 */ 

l2J /* i -- 0 */ 
/* rec_l.buf [j] -- 1 */ 

25 for (j = 0 ; j < 10 ; j++) 
/* j -- 1 */ 

26 rec 1. buf [ j] = i + 1; 
/* j -- 1 */ 
/* i -- 0 */ 
/* rec_l.buf [j] -- 1 */ 

~ I* repeating */ 
/* repeated 8 times */ 

25 for ( j = 0 ; j < 10 j++) 
/* j -- 10 or '\n' */ 

[j] The numbers on the left are line numbers relative to the original C source file. 

l2J Lines that look like C comments display information about the preceding line. 

[3] Loops are detected by ct race, which displays the looping code only once but 
tells how many repetitions occur. 

4.2.1 Tracing Only Certain Functions 
Sifting through the trace of a large program is tedious. A bug can often be isolated 
to certain functions, or certain functions can be dismissed as the source of a proplem. 
To discrimi~ate among functions, use the -f and -v options to ct race: 

-f functions Trace only these functions 
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-v functions Trace all functions except these 

For example: 

% ctrace -f getline main program.c > ctraced.c 

The preceding command creates the file ct raced. c, which (when compiled, 
linked, and run) shows a trace of the functions getline( ) and main( ). The following 
command produces the file ct raced. c, which (when compiled and run) shows a 
trace of the entire program except the functions getline() and main(): 

% ctrace -v getline main crude editor.c > ctraced.c 

4.2.2 Tracing Only Certain Sections of Code 

To trace only certain sections of code, insert the ctroff() and ctron() functions around 
code you do not want to trace. The ctroff() and ctron() functions tum ct race off 
and on, respectively, as shown in Example 4-2. 
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Example 4-2: Tracing Certain Sections with ctrace 

#include <stdio.h> 

main() 
{ 

FILE *fp; 
struct rec 

char type; 
short buf[lO]; 
rec_l; 

int i, j, status; 

fp = fopen("data_file.txt", "w+"); 

ctroff(); /**** Turn off tracing ****/ 

for (i = 0 
{ 

i < 3 i++) 

for (j 0 j < 10 ; j++) 
rec_l.buf[j] = i + 1; 

rec_l.type = Ox31 + i; 
fwrite(&rec_l, sizeof(rec_l), 1, fp); 

ctron(); /**** Turn tracing back on ****/ 

fseek(fp, sizeof(rec_l), 0); 

fread(&rec_l, sizeof(rec_l), 1, fp); 

printf("The second structure:\n\tType:\t%c\n\tContents: ", 
rec_l.type); 

for(i = 0 ; i < 10 ; i++) 
printf(i != 9 ? "%d" 

fclose (fp); 
exit(O); 

"%d\n", rec_l .buf [i]); 

When run through ctrace, compiled, linked, and run, the preceding program 
produces the following output: 
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3 main() 
12 fp = fopen("data file.txt", "w+"); 

/* fp == 32772 *f 
14 ctroff(); 

/* trace off */ 
I* trace on */ 

27 fseek(fp, sizeof(rec_l), 0); 
/* fp == 32772 */ 

29 fread(&rec 1, sizeof(rec 1), 1, fp); 
/* fp == 32772 */ -

31 printf ("The second structure:\n\tType:\t%c\n\tContents: ", 
rec 1 . type) ; 

/* rec_l.type == 50 or '2' *I The second structure: 
Type:2 
Contents: 

33 for(i = 0 ; i < 10 ; i++) 
/* i == o */ 

34 printf(i != 9? "%d" "%d\n", rec_l.buf[i]); 
/* i == o *I 
I* rec_l.buf [i] == 2 */ 2 

33 for(i = 0 ; i < 10 ; i++) 
/* i == 1 */ 

34 

33 

36 

37 

printf (i != 9 ? 
/* i == 1 */ 
/* rec_l.buf [i) 

/* repeating */ 2 2 2 2 
/* repeated 8 times */ 

for(i = 0 ; i < 10 
/* i == 10 or '\n' 
fclose(fp); 
/* fp == 32772 */ 
exit(O); 

"%d " "%d\n", 

== 2 */ 2 
2 2 2 2 

; i++) 
*I 

rec_l.buf[i]); 

Note that the code between the ctroff() and ctron() function calls still executes, but 
the code itself does not appear. 

4.3 Profiling Code on RISC Systems 
Code profiling shows you where most of your code's execution time is spent. 
Knowing which sections of code are used most allows you to improve efficiency 
where it will do the most good. There are three types of code profiling: 

• Basic block counting, which counts the number of times each basic block is 
executed. (A basic block is an instruction sequence entered only at its beginning, 
and left only at its end.) Basic block counting shows which lines of code are 
used most. 

• Invocation counting, which counts the number of times each routine is invoked. 

• PC sampling, which reveals the amount of time spent in various parts of the 
program by periodically examining the PC (program counter) during the 
program's execution. 

A source code compiler and two other programs, pixie and prof, are the tools that 
provide this information. The following sections provide an overview and examples 
of pixie and prof usage. For more information, see pixie(l) and prof(2) in 
the ULTRIX Reference Pages. 
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4.3.1 Basic Block and Invocation Counting 

To get basic block and invocation counts for a program, follow these steps: 

1. Compile and link, without the -p option; for example: 

% cc -o program program.c 

2. Run the pixie program on the executable file; for example: 

% pixie program 

The output from pixie is two files. One is an equivalent program called 
program. pixie by default (where program is the input file name), 
containing additional code that counts block execution. The other is a file called 
program.Addrs (where program is the input file name), which is used by 
prof. 

3. Run the pixie-modified program, which creates the file program. Counts 
(where program is the input file name), which is used by prof; for example: 

% program.pixie 

4. Run prof with the -pixie option, which makes the information in 
program. Counts and program.Addrs readable and writes it to stdout; for 
example: 

prof -pixie program 

The basic block counting information appears as shown in Example 4-3. 
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Example 4-3: Basic Block and Invocation Count Output from prof 

Profile listing generated Wed Oct 17 17:32:30 1990 with: 
ill prof -pixie program 

blkclr and bzero ( .. /bzero.s) synonymous: using latter 

* -p[rocedures] using basic-block counts; 
* sorted in descending order by the number of cycles executed in 
* each procedure; unexecuted procedures are excluded 

121 
10373 cycles 

* 
* 
* 

~ 
151 

* 
* 
* 

cycles %cycles cum % cycles bytes procedure (file) 
/call /line 

3481 33.56 33.56 56 14 flsbuf ( .. /flsbuf .c) -
2653 25.58 59.13 242 18 doprnt ( .. /doprnt. c) -

818 7.89 67.02 205 13 more core ( .. /malloc. c) 
652 6.29 73.31 652 21 main (program. c) 
619 5.97 79.27 619 19 fwalk ( .. /data. c) 
304 2.93 82.20 76 10 malloc ( .. /malloc.c) 

-p[rocedures] using invocation counts; 
sorted in descending order by number of calls per procedure; 
unexecuted procedures are excluded 

invocations total 

calls %calls cum% bytes procedure (file) 

63 41. 72 41. 72 608 flsbuf ( .. /flsbuf. c) -
11 7.28 49.01 4872 doprnt ( .. /doprnt.c) 
11 7.28 56.29 96 printf ( .. /printf.c) 

6 3.97 60.26 48 sbrk ( .. /sbrk.s) 
4 2 :65 62.91 32 close ( .. I close. s) 
4 2.65 65.56 388 malloc ( .. /malloc. c) 

-h[eavy] using basic-block counts; 
sorted in descending order by the number of cycles executed in 
each line; unexecuted lines are excluded 

* 
* 
* 

--------------------------------------------------------------------
~ 
procedure (file) line bytes cycles % cum 

* 
* 
* 

_doprnt ( .. /doprnt. c) 305 84 561 5.41 5.41 
flsbuf ( .. /flsbuf. c) 135 52 511 4.93 10.33 
flsbuf ( .. /flsbuf. c) 166 32 441 4.25 14.59 
flsbuf ( .. /flsbuf. c) 131 28 434 4.18 18.77 

main (program. c) 26 48 360 3.47 22.24 
fwalk ( .. /data. c) 88 20 320 3.08 25.33 

* 
* 
* 

% 
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ffl This is the command line that invoked prof. When no options that produce a 
listing or another file are specified, -procedures and -heavy are used by 
default. 

121 This section shows where the cycles were spent. Each routine in the program is 
listed on the right. The heading cum% stands for cumulative percent; this 
column lists the total percentage of cycles consumed for the procedure to the right 
and every procedure above. For example, 67.02% of all cycles were spent on the 
morecore, _ doprnt, and_ f lsbuf procedures. 

131 This section shows how often each procedure was invoked. 

~ This section shows how many cycles each program line consumed. The number 
in the line column refers to the line number of the file shown in the left 
column; for example, the line that consumed the most (561) cycles, was line 305 
in the file doprnt. c. 

Separate runs of a program can produce different basic block information, especially 
if different input is supplied. However, an average of the different runs can be 
obtained using the following steps: 

1. Run the pixie-created program (program. pixie, see Section 4.3.1) several 
times with different input. Each run creates another program. Counts file. 
Between runs, rename program. Counts so that it is not overwritten by the 
next run of program. pixie; for example: 

% program.pixie < input_l 
% mv program.Counts programl.Counts 
% program.pixie < input_2 
% mv program.Counts program2.Counts 
% program.pixie < input_3 
% mv program.Counts program3.Counts 

2. Create a report for the average of all runs, as follows: 

% prof -pixie program program[123] .Counts 

4.3.2 PC Sampling 
To get PC (program counter) information for a program, follow these steps: 

1. Compile and link the program with the -p option; for example: 

% cc -p program.c -o program 

2. Run the profiled program; for example: 

% program 

Profiling data is stored in the profile data file, which has the default name 
mon. out. 

3. Run prof, which converts the information in the profile data file to a readable 
form; for example: 

% prof -procedure program 

The prof output for PC sampling appears as shown in Example 4-4. 
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Example 4-4: PC Sampling Output from prof 

Profile listing generated Thu Oct 18 16:50:26 1990 with: 
prof -procedure program 

blkclr and bzero ( .. /bzero.s) synonymous: using latter 

* 
* 
* 

-p[rocedures] using pc-sampling; 
sorted in descending order by total time spent in each 
procedure; unexecuted procedures excluded 

Each sample covers 8.00 byte(s) for 25% of 0.0400 seconds 

%time 

75.0 
25.0 

seconds cum % 

0.0300 75.0 
0.0100 100.0 

cum sec procedure (file) 

0.03 open ( .. /open.s) 
0.04 write ( .. /write.s) 

You can run the profiled program several times with different inputs to create 
different profile data files and average the results using prof. To create several 
profile data files, set the PROFDIR environment variable as follows: 

• In the C shell: 

% setenv PROFDIR string 

• In the Bourne shell: 

% PROFDIR = string ; export PROFDIR 

Setting PROFDIR causes each profile data file to be saved in a file named 
string /pid. program, rather than man. out. The file name 

* 
* 
* 

string /pid. program is composed of program, which is the program's name 
as it appears in argv [OJ, and pid, which is the process ID of the individual 
program run and is different for every run. To get the PC sampling average for all 
runs issue the prof command; for example: 

% prof -procedure program /string/*.program 

4.4 Profiling Code on VAX Systems 
Code profiling shows you where most of your code's execution time is spent. 
Knowing which sections of code are used most allows you to improve efficiency 
where it will do the most good. There are two types of code profiling: 

• The flat profile, which shows the following for each routine: 

The time it used 

The percentage of total program time it used 

The number of times it was called 

• The call graph profile, which shows everything the flat profile does, plus the 
following: 

- All parents (routines that called the routine) 
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- All children (routines called by the routine) 

- The percentage of total program time used by the routine and its children 

- Other pieces of information, explained in the output file. 

A language compiler with a -pg option, and the gprof program are the tools that 
provide this information. 

4.4.1 Getting a Profile Output File 

To obtain a profile output file for a program, follow these steps: 

1. Compile and link the program with the -pg option; for example: 

% cc -pg program.c -o program 

2. Run the program, which creates the file gmon. out, in which profile information 
is stored; for example: 

% program 

3. Run gprof. By default, gprof searches for a. out as the executable file, and 
gmon. out as the profile data file. Output is written to stdout; for example: 

% gprof program > program.gprof 

In the preceding example, the profile output is written to the file program. gprof. 

The profile output contains the flat profile followed by the call graph profile. Both 
profiles are preceded by explanations of the headings and information. 

For more information, see gprof(l) in the ULTRIX Reference Pages. 

4.5 Optimizing Programs on a RISC System 
When you optimize your code, your program runs faster and its object is smaller in 
size. Optimizing your program can also speed up development time. For example, 
your coding time can be reduced if you let an optimizing tool relate programming 
details to execution time efficiency. This time savings lets you focus on the more 
crucial global structure of your program. Moreover, programs often yield code 
sequences that can be optimized regardless of how well you write your source 
program. 

On ULTRIX systems running on the RISC architecture, the optimizer is uopt. The 
uopt optimizer is invoked when you use the -0, -02, or -03 option on the 
compiler command line. (Note that the DEC Fortran product does not use the uopt 
optimizier. See your DEC Fortran documentation for information on optimizing 
DEC Fortran programs.) If you omit these options from the compiler command line, 
limited optimizations are performed. The code generator and assembler phases of the 
compiler perform the limited optimizations. (For information about using the -03 
option, see Section 4.5.5.) 

4.5.1 Overview of the uopt Optimizer 

The uopt optimizer improves the performance of object programs by transforming 
existing code into more efficient coding sequences. Although the same optimizer 
processes all compiler optimizations, it does distinguish between the various 
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languages supported by the compiler programs to take advantage of the different 
language semantics involved. 

Most compilers perform certain code optimizations, although the extent to which they 
perform these optimizations varies widely. The RISC compilers perform extensive 
optimizations compared with the average compiler available. These advanced 
optimizations are the results of the latest research into better and more powerful 
compiler techniques. 

The compilers perform both machine-independent and machine-dependent 
optimizations. Machines with RISC architectures provide a better target for 
machine-dependent optimizations, because the low-level instructions of RISC 
machines provide more optimization opportunities than the high-level instructions in 
other machines. 

Even optimizations that are machine independent have been found to be effective on 
machines with RISC architectures. Although most of the optimizations performed by 
the uopt optimizer are machine independent, they have been specifically tailored to 
this RISC environment. 

The RISC architecture emphasizes the use of registers. Therefore, register use has 
significant impact on program performance. For example, fetching a value from a 
register is significantly faster than fetching a value from storage. The uopt optimizer 
makes the best possible use of registers. 

In allocating registers, the optimizer selects those data items most suited for registers, 
taking into account their frequency of use and their location in the program structure. 
In addition, the optimizer assigns values to registers so that their contents move 
minimally within loops and during procedure invocations. 

Figure 4-1 shows the optimization phases of the compiler. 
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Figure 4-1: Optimization Phases of the Compiler 
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As the figure shows, the uload and umerge phases of the compilation permit 
global optimization among separate units in the same compilation. Often, programs 
are divided into separate files, called modules or compilation units, which are 
compiled separately. This saves compile time during program development because 
a change requires recompilation of only one module rather than the entire program. 

Traditionally, program modularity restricted the optimization of code to a single 
module at a time rather than over the full breadth of the program. For example, calls 
to procedures that reside in other modules could not be fully optimized together with 
the code that called them. 
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The uld and umerge phases of the compiler overcome this deficiency. The uld 
phase links many modules into a single compilation unit. Then, ume rge orders the 
procedures for optimal processing by uopt. 

4.5.2 Things to Consider Before You Optimize a Program 

Before you optimize your program, be sure it is fully developed and is relatively 
error free. Although the optimizer does not alter the flow of control within a 
program, it may move operations so that the object code does not correspond to the 
source code. 

Once you optimize a program, using dbx to find errors is more difficult. The symbol 
table that the compiler creates to support symbolic debugging cannot reflect the 
optimizations that uopt performs. This situation can make it difficult for you to use 
dbx because, for example, a variable value that dbx displays may not reflect the 
actual value stored in the variable. 

If you are writing Pascal programs, be aware that the -c option of the Pascal 
compiler inhibits some optimizations. The -C option performs bounds checking. 
Unless bounds checking is crucial, do not specify the -c option when you compile a 
program you want to optimize. 

Optimizations are most useful in program areas that contain loops. The optimizer 
moves loop-invariant code sequences outside loops so that they are performed only 
once instead of multiple times. Apart from loop-invariant code, loops often contain 
loop-induction expressions that can be replaced with simple increments. In programs 
composed of mostly loops, global optimization can often reduce the running time 
significantly. 

The following examples illustrate the results of loop optimization on source code that 
is compiled both with and without the -0 compiler option. Example 4-5 shows the 
source code that contains a loop. 

Example 4-5: Source Code of a Program to be Optimized 

void 
left(a, distance) 

char a[]; 
int distance; 
{ 

int j, length; 
length strlen(a) - distance; 
for (j 0; j < length; j++) 

a[j] = a[j +distance]; 

Example 4-6 shows the assembler code that would be output if this program were 
compiled without the -0 option. 
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Example 4-6: Unoptimized Code Output 

# 8 for ( j=O; j<length; j++) 
SW $0, 36($sp) # j = 0 
ble $24, 0, $33 # length >= j 

$32: 
# 9 a [j] = a [ j+distance]; 

lw $25, 36 ($sp) # j 
lw $8, 44($sp) # distance 
addu $ 9' $25, $8 # j+distance 
lw $10, 40($sp) # address of a 
ad du $11, $10, $9 # address of a[j+ 
lb $12, 0 ($11) # a [ j+distance] 
ad du $13, $10, $25 # address of a[j] 
sb $12, 0($13) # a [ j] 
lw $14, 36($sp) # j 
ad du $15, $14, 1 # j+l 
SW $15, 36($sp) # j++ 
lw $3, 32($sp) # length 
blt $15, $3, $32 # j < length 

$33: 

Example 4-7 shows the assembler code that would be output if this program were 
compiled with the -0 option. 

Example 4-7: Optimized Code Output 

# 8 for ( j=O; j<length; j++) 
move $5, $0 # j = 0 
ble $4, 0, $33 # length >= j 
move $2, $16 # address of a[j] 
ad du $6, $16, $17 # address of a[j+distance] 

$32: 
# 9 a [j] = a [ j+distance]; 

lb $3, 0 ($6) # a [ j+distance] 
sb $3, 0($2) # a [j] 
ad du $5, $5, 1 # j++ 
ad du $2, $2, 1 # address of next a [j] 
ad du $6, $6, 1 # address of next a[j+distance] 
blt $5, $4, $32 # j < length 

$33: 

The optimized version contains fewer total instructions and fewer instructions that 
reference memory. Wherever possible, the optimizer replaces load and store 
instructions (which reference memory) with the faster computational instructions that 
perform operations only in registers. 

4.5.3 Improving C Program Optimization 

When you write a C program, you can follow certain guidelines that help you write 
code that is easier to optimize. Some practices are helpful when you use the uopt 
optimizer. Others are helpful when you use only the limited optimizations provided 
by the code generator and assembler phases of the compiler. This section explains 
practices that help uopt optimize well and practices that help the code generator and 
assembler optimize well. 

The following practices can help increase optimizing opportunities for uopt: 
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• A void using indirect calls. 

Indirect calls (calls that use routines or pointers to functions as arguments) cause 
unknown side effects (that is, change global variables) that can reduce the amount 
of optimization. A void using indirect calls. 

• Use function return values. 

Use function return values instead of reference parameters. 

• Use the do while statement when possible. 

Use do while instead of while or for when possible. When you use do 
while, the optimizer does not have to duplicate the loop condition to move code 
from within the loop to outside the loop. 

• A void using unions for integer and floating point types. 

A void unions that cause overlap between integer and floating point data types. 
Using this type of union keeps the optimizer from assigning the fields to registers. 

• Use local variables. 

A void using global variables. Minimizing the use of global variables increases 
optimization opportunities for the compiler. Declare any variable outside of a 
function as static, unless that variable is referenced by another source file. 

• Use value parameters. 

Use value parameters instead of reference parameters or global variables. 
Reference parameters have the same degrading effects as the use of pointers. 

• A void using aliases. 

A void using aliases by introducing local variables to store dereferenced values. 
(A dereferenced value is the value obtained from a specified address.) 
Dereferenced values are affected by indirect operations and calls, but 1ocal 
variables are not. Therefore, local variables can be kept in registers. The 
following three examples show how the proper placement of pointers and the 
elimination of aliasing lets the compiler produce better code: 

Source code: 
int len = 10; 
char a[lO]; 
void 
zero() 

{ 

char *p; 
for (p =a; p != a +len; ) *p++ = 0; 
} 

Generated assembly code: 
# 8 for (p a; p != a + len; *p++ 

move $2, $4 # p = a 
lw $3, len 
ad du $24, $4, $3 
beq $24, $4, $33 # a + len 

$32: 
sb $0, 0($2) # *p = 0 
ad du $2, $2, 1 # p++ 
lw $25, len 
ad du $8, $4, $25 
bne $8, $2, $32 # len + a 

$33: 

0; 

!= a 

!= p 
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To increase the efficiency of the preceding example, you can use one of two 
methods: 

Use subscripts instead of pointers. 

In the example that follows, the use of subscripting in the procedure a zero 
eliminates aliasing. The compiler keeps the value of len in a register, which 
saves two instructions. A pointer is used by the compiler to access the 
variable a efficiently, even though a pointer is not specified in the source 
code. 

Source code: 
void 
azero () 

{ 

int i; 
for (i = 0; i != len; i++) a[i] = O; 
} 

Generated assembly code: 
# 14 for (i = O; i != len; i++) a[i] 0; 

$34: 

$35: 

move $2, $0 # i = 0 
beq $3, 0, $35 # len != 0 
la $14, a 
move $2, $14 
addu $4, $3, $14 # a[len] 

sb 
ad du 
bne 

$0, 0 ($2) 
$2, $2, 1 
$2, $4, $34 

# *a = 0 
# a++ 
# a != a[len] 

Use local variables. 

Specifying len as a local variable or formal argument ensures that aliasing 
can not take place and permits the compiler to place l en in a register, as 
shown: 

Source code: 
char a[lO]; 
void 
lpzero (len) 

int len; 
{ 

char *p; 
for (p = a; p != a + len; 
} 

Generated assembly code: 
# 8 for (p = a; p != 

move $2, $6 
addu $5, $6, $4 
beq $5, $ 6, $33 

$32: 
sb $0, 0($2) 
ad du $2, $2, 1 
bne $5, $2, $32 

$33: 

*p++ = 0; 

a + len; *p++ = 0; 
# p = a 

# a + len != a 

# *p = 0 
# p++ 
# a + len != p 

As the previous examples show, using local variables is a slightly more efficient 
way to eliminate aliasing than using subscripts instead of pointers. 

• Write straightforward code. 

When you write code, make it straightforward and easy to understand. For 
example, do not use autoincrement ( ++) and autodecrement ( --) operators within 
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an expression. When you use these operators for their values, rather than for their 
side effects, you often get bad code. For example: 

Bad: 
while (n--) { 

Good: 
while (n != 0) { 

n--; 

• Use register declarations. 

The compiler automatically assigns variables to registers. However, specifically 
declaring a register type lets the compiler make more aggressive assumptions 
when assigning register variables. Therefore, when possible declare variables as 
register. 

• A void passing addresses. 

Passing addresses can create aliases, force the optimizer to store variables from 
registers in their home storage locations, and significantly reduce optimization 
opportunities that would otherwise be performed by the compiler. Do not pass 
addresses. 

• Avoid using a variable number of arguments. 

Avoid functions that take a variable number of arguments. Using a variable 
number of arguments causes the optimizer to unnecessarily save all parameter 
registers on entry. 

The following practices can help increase optimizing opportunities for the code 
generation and assembler phases of the compiler: 

• Use tables rather than if-then-else or switch statements. The following 
shows an example that demonstrates this practice: 

Good: 
if ( i == 1 ) c = 'l'; 
else c = '0'; 

More efficient: 
c = "Ol"[i]; 

• As an optimizing technique, the compiler puts the first four parameters of a 
parameter list into registers, where they remain during execution of the called 
routine. Therefore, always declare as the first four parameters those variables that 
are most frequently manipulated in the called routine, with floating-point 
parameters preceding nonfloating-point parameters. 

• Use word-size variables instead of smaller ones if enough space is available. 
This practice may take more space, but it is more efficient. 

• Rely on libc functions (for example, strcpy, strlen, strcmp, bcopy, 
bzero, memset, and memcpy). These functions are coded for efficiency. 

• Use the unsigned data type for variables wherever possible. Because it knows the 
unsigned variable will always be greater than or equal to zero (>=0), the compiler 
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can perform optimizations that would not otherwise be possible. Also, the 
compiler generates fewer instructions for multiply and divide operations that use 
a power of 2. 

For example: 

int i; 
unsigned j; 

return i/2 + j/2; 

The compiler generates four instructions for the signed i/2 operations: 

000000 bgez 
000004 move 
000008 addiu 
OOOOOc sra 

r14, OxC 
rl, r14 
rl, rl, 1 
r15, rl, 1 

By contrast, the compiler generates only one instruction for the unsigned j/2 
operation: 

000010 srl r24,r5,1 # j I 2 

In the preceding examples, the i/2 expression is less efficient than the j/2 
expression. 

4.5.4 Improving Pascal Program Optimization 

When you write a Pascal program, you can follow certain guidelines that help you 
write code that is easier to optimize. Some practices are helpful when you use the 
uopt optimizer. Others are helpful when you use only the limited optimizations 
provided by the code generator and assembler phases of the compiler. This section 
explains practices that help uopt optimize well and practices that help the code 
generator and assembler optimize well. 

The following practices can help increase optimizing opportunities for uopt: 

• A void indirect calls. 

Indirect calls (calls that use routines or pointers to functions as arguments) cause 
unknown side effects (that is, change global variables) that can reduce the amount 
of optimization. Therefore, avoid using indirect calls. 

• Use function return values. 

Use function return values instead of reference parameters. 

• Use the repeat statement when possible. 

Use repeat instead of while or for when possible. When you use repeat, 
the optimizer does not have to duplicate the loop condition to move code from 
within the loop to outside the loop. 

• A void using certain variant records. 

A void variant records that cause overlap between integer and floating point data 
types. A voiding this type of variant record keeps the optimizer from assigning 
the fields to registers. 
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• Use local variables. 

A void using global variables. Minimizing the use of global variables increases 
optimization opportunities for the compiler. 

• Use value parameters. 

Use value parameters instead of reference parameters or global variables. 
Reference parameters have the same degrading effects as the use of pointers. 

• Use packed arrays only when space is limited. 

Packed arrays prevent the moving of induction expressions from within a loop to 
outside the loop. Use them only when you need to save space. 

The following practices can help increase optimizing opportunities for the code 
generator and assembler phases of the compiler: 

• As an optimizing technique, the compiler puts the first four parameters of a 
parameter list into registers, where they remain during execution of the called 
routine. Therefore, always declare as the first four parameters those variables that 
are most frequently manipulated in the called routine with floating-point 
parameters preceding nonfloating-point parameters. 

• Use word-size variables instead of smaller ones if enough space is available. 
This may take more space, but it is more efficient. 

• Use predefined functions as much as possible. For example, use max and min 
rather than if-then-else statements and use shift and bitwise instead 
of div and mod. 

4.5.5 Optimizing Your Program Fully 

When you optimize your program fully, the uld and umerge phases of the 
compiler merge the separate modules in your program into a single module. The 
uopt optimizer is then able to optimize across the modules in your program. 

To fully optimize your program, invoke the uopt optimizer using the -03 option on 
the cc command line. This section provides examples of compiling and optimizing 
a multimodule program. One example demonstrates compiling and optimizing the 
modules simultaneously, while the other example demonstrates compiling modules 
separately and optimizing them later. The examples provided in this section assume 
that the program myprogram consists of three files: a. c, b. c, and c. c. 

To compile and fully optimize all three files, enter the following command: 

% cc -03 -o myprogram a.c b.c c.c 

This example causes the compiler to compile, load, merge, and optimize the three 
modules as a single unit. 

You may want to compile the modules of your program separately and then optimize 
them using the -03 option. Follow these steps to optimize modules you compile 
separately: 

1. Use the - j option when you compile each source file, as shown in the following 
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example: 

% cc -j a.c 
% cc -j b.c 
% cc -j c.c 

The -j option causes the compiler driver to produce a . u file (the standard 
compiler front-end output, which is made up of ucode, an internal language used 
by the compiler). None of the remaining compiler phases are executed, as is 
illustrated by Figure 4-2. 

Figure 4-2: Output From the -j Compiler Option 

r:::u:::1c::i 
a.c ( b.c "_c _____ _ 

~ CCompiler 

ZK-0073U-R 

2. Perform optimization and complete the compilation process, by entering the 
following command: 

% cc -03 -o myprogram a.u b.u c.u 

Figure 4-3 illustrates the results of executing this command. 
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Figure 4-3: ucode File Optimization 
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4.5.6 Optimizing Large Programs 
Because compilation time increases by the square of the program module size, the 
compiler enforces an upper limit on the size of a module that can be optimized. By 
default, the limit is 500 basic blocks. 

To. ensure that all modules are optimized regardless of their size, specify the -0 
1 imi t option when you compile your program. Replace 1 imi t with the maximum 
size, in basic blocks, of any module that you want the compiler to optimize. If a 
routine is larger in basic blocks than the default or current -0 1 imi t value, the 
uopt optimizer warns you that the routine is too large. In addition, uopt displays a 
message that contains the minimum -0 1 imi t value to specify for the routine to be 
optimized. 
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The following example demonstrates how to specify the maximum size of modules to 
be optimized: 

% cc -0(750] a.c b.c c.c 

This cc command specifies optimizing modules that contain 750 or less basic blocks. 

4.6 Optimizing Programs on a VAX System 
When you optimize your code, your program runs faster and its object is smaller in 
size. Using the the optimizer can also speed up development time. For example, 
your coding time can be reduced if you let the optimizer relate programming details 
to execution time efficiency. This time savings lets you focus on the more crucial 
global structure of your program. Moreover, programs often yield code sequences 
that can be optimized regardless of how well you write your source program. 

On UL TRIX systems running on the VAX architecture, the optimizer is c 2. The c 2 
optimizer is invoked when you use the -0, option compiler command line. (Note that 
the VAX FORTRAN/UL TRIX and VAX C/ULTRIX products do not use the c2 
optimizer. See your documentation for those products for information on optimizing 
VAX FORTRAN/ULTRIX and VAX C/UL TRIX programs.) If you omit the c2 
option from the compiler command line, limited optimizations are performed. The 
code generator phase of the compiler performs the limited optimizations. 

The following sections provide an overview of issues to consider before you optimize 
a program and ways in which you can write your C program so that c2 and the code 
generator optimize well. 

4.6.1 Things to Consider Before You Optimize a Program 

Before you optimize your program, be sure it is fully developed and is relatively 
error free. Although the optimizer does not alter the flow of control within a 
program, it may move operations so that the object code does not correspond to the 
source code. These changed sequences of code may create confusion when you use 
the debugger. 

If you are writing Pascal programs, be aware that the -C option of the Pascal 
compiler inhibits some optimizations. The -C option performs bounds checking. 
Unless bounds checking is crucial, do not specify the -c option when you optimize a 
Pascal program. 

4.6.2 Improving C Program Optimization 

The following recommendations can help increase optimizing opportunities for the 
optimizer ( c 2). 

• A void using indirect calls. 

Indirect calls (calls that use routines or pointers to functions as arguments) cause 
unknown side effects (that is, change global variables) that can reduce the amount 
of optimization. A void using indirect calls. 

• Use function return values. 

Use function return values instead of reference parameters. 

• A void using certain unions. 

4-22 Checking Programs and Improving Performance 



A void unions that cause overlap between integer and floating point data types. 
Using this type of union keeps the optimizer from assigning the fields to registers. 

• Use local variables. 

A void using global variables. Minimizing the use of global variables increases 
optimization opportunities for the compiler. Declare any variable outside of a 
function as static, unless that variable is referenced by another source file. 

• Use value parameters. 

Use value parameters instead of reference parameters or global variables. 
Reference parameters have the same degrading effects as the use of pointers. 

• A void using aliases. 

Avoid using aliases by introducing local variables to store dereferenced values. 
(A dereferenced value is the value obtained from a specified address.) 
Dereferenced values are affected by indirect operations and calls, whereas local 
variables are not. Therefore, local variables can be kept in registers. The 
following three examples show how the proper placement of pointers and the 
elimination of aliasing lets the compiler produce better code: 

Source code: 
int len = 10; 
char a[lO]; 
void 
zero() 

{ 

register char *p; 
for (p =a; p != a +len; 
} 

Generated assembly code: 
# for (p = a; p != a+len; 

moval _a,rll 
jbr L20 

L2000001: 
clrb (rll) + 

L20: addl3 _len,$_a,r0 
cmpl rll,rO 
jneq L2000001 

*p++ 0; 

*p++ = 0; 
# P = a 

# *p++ = 0 
# a+len 
# p != a+len 

To increase the efficiency of the preceding example, you can use one of two 
methods: 

Use subscripts instead of pointers. 

In the following example, the use of subscripting in the procedure azero 
eliminates aliasing. The compiler keeps the value of len in a register, which 
saves two instructions. A pointer is used by the compiler to access a 
efficiently, even though a pointer is not specified in the source code. 

Source code: 
void 
azero () 

{ 

register int i; 
for (i = O; i != len; i++) a[i] 0; 
} 

Generated assembly code: 
# for (i = O; i != len; i++) a[i] 0; 

clrl rll # i = 0 
jbr L20 

L2000001: 
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clrb a[rll] # a[i] = 0 -
incl rll # i++ 

L20: cmpl rll, len # i != len 
jneq L200000 

Use local variables. 

In the following example, specifying 1 en as a local variable or formal 
argument ensures that aliasing cannot take place and permits the compiler to 
place len in a register. 

Source code: 
char a[lO]; 
void 
lpzero(len) 

register int len; 
{ 

register char *p; 
for (p = a; p != a + len; ) *p++ O; 
} 

Generated assembly code: 
# for (p = a; p != a+len; 

movl 4(ap),rll 
moval _a,rlO 
jbr Ll9 

L2000001: 

Ll9: 
clrb 
addl3 
cmpl 
jneq 

(rlO)+ 
rll,$_a,r0 
rlO,rO 
L2000001 

*p++ = 0; 
# P = a 
# register p 

# *p++ = 0 
# a+len 
# p != a+len 

As the previous examples show, using local variables is a slightly more efficient 
way to eliminate aliasing than using subscripts instead of pointers. 

• Write straightforward code. 

When you write code, make it straightforward and easy to understand. For 
example, do not use autoincrement ( ++) and autodecrement ( --) operators within 
an expression. When you use these operators for their values, rather than for their 
side effects, you often get inefficient code. For example: 

Bad: 
while (n--) { 

Good: 
while (n != 0) { 

n--; 

• Use register declarations. 

Because the compiler will not place a variable in a register unless directed to do 
so, declare variables as register whenever possible. 

The following practices can help increase the optimizing opportunities for the code 
generator: 
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• Use tables rather than if-then-else or switch statements. The following 
example shows how the use of tables makes code more efficient: 

Good: 
i f ( i == 1 ) c = ' 1 ' ; 
else c = '0'; 

More efficient: 
c = "Ol"[i]; 

, • Rely on libc functions (for example, strcpy, strlen, strcmp, bcopy, 
bzero, memset, and memcpy). These functions are coded for efficiency. 

4.7 Controlling the Size of Global Pointer Data on RISC 
Systems 

Global pointer data is constants and variables that the compiler places in the . s data 
and . sbss portions of the data and bss segments shown in Figure 4-4. This area 
is referred to as the global pointer area. 

Figure 4-4: Global Pointer Area 
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(The . rdata, . data, and . sdata sections contain initialized data, and the 
. sbss and .bss sections reserve space for uninitialized data that is created by the 
kernel loader for the program before execution and filled with zeros.) 

In general, the compiler creates two machine instructions to access a global value. 
However, by using a register as a global pointer (called $gp), the compiler creates 
the 65,536-byte global pointer area where a program can access any value with a 
single machine instruction - half the number of instructions required without a global 
pointer. 

To maximize the number of individual variables and constants that a program can 
access in the global pointer area, the compiler first places those variables and 
constants that take the fewest bytes of memory. By default, the variables and 
constants occupying eight or fewer bytes are placed in the global pointer area, and 
those occupying more than eight bytes are placed in the . data and .bss sections. 
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4.7.1 Limiting the Size of Global Pointer Data 

The more data that the compiler places in the global pointer area, the faster a 
program executes. However, if the data to be placed in the global pointer area 
exceeds 65,536 byte~, the linker displays an error message and does not create an 
executable object fil~. In this case, you need to recompile your program and use the 
-G option to reduce the use of global data. 

For most programs, the 8-byte default produces optimal results. However, the 
compiler provides the -G option to let you change the default size. For example: 

% cc -G 12 a.c b.c c.c 

This command causes the compiler to place only those variables and constants that 
occupy 12 or fewer bytes in the global pointer area. 

The compiler places some variables in the global pointer area regardless of the setting 
specified by the -G option. For example, a program written in assembly language 
might contain . sdata directives that cause variables and constants to be placed into 
the global pointer area regardless of size. Moreover, the -G option does not affect 
variables and constants in libraries and objects compiled beforehand. 

To alter the allocation size for the global pointer area for data from these objects, you 
must recompile them and specify the -G option and the desired value. 

4.7.2 Obtaining Optimal Global Data Size 

Two potential problems exist in specifying a maximum size in the -G option: 

• Using a value that is too small can reduce the speed of the program. 

• Using a value that is too large can cause more than the maximum of 65 ,536 bytes 
to be placed in the data area, which creates an error condition and produces an 
unexecutable object module. 

The -best Gn um linker option helps you avoid these problems by predicting an 
optimal value to specify for the -G option. This section provides examples of using 
the -bestGnum option and the related -nocount and -count options. 

In the following example, the compiler displays a message that provides the best 
value for -G: 

% pc -bestGnum myprogram.p 
All data will fit into the global pointer area 
Best -G num value to compile with is 80 (or greater) 

Because all data fits into the global pointer area, no recompilation is necessary. 

Consider the following example, which specifies 70,000 as the maximum size of a 
data item to be placed in the global pointer area: 

% pc ersatz.p -G 70000 -bestGnum 
gp relocation out-of-range errors have occurred and bad object file 
produced (corrective action must be taken) 
Best -G num value to compile with is 1024 
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In this example, the linker does not produce an executable load module and 
recommends a recompilation as follows: 

% pc real.p -G 1024 

When you use the -bestGnum option without using -nocount or -count, the 
compiler assumes that you cannot recompile any libraries to which it would link 
automatically. Because you cannot recompile these libraries, you cannot specify a 
new value for them using the -G option. The linker ignores libraries you cannot 
recompile when predicting the optimal value for the -G option. 

If you link to system-supplied libraries other than those that are included 
automatically, you must specify -nocount before the library, as shown in the 
following example: 

% cc -bestGnum myprogram.c -nocount -1m 

Because the system does not automatically link with the lm library and because you 
cannot recompile the library, the linker should not count that library when predicting 
the best value for -G. The -nocount option ensures that the linker ignores the lm 
library. 

You can explicitly specify that the linker both include and exclude specific libraries 
in predicting the -G value, as shown in the following example: 

% cc -o plotter -bestGnum plotter.o -nocount libieee.a-count \ 
liblaser.a 

In this example, the linker assumes that you cannot recompile the libieee. a 
library and that it continues to occupy the same space in .the global pointer area. The 
compiler assumes that you can recompile plotter. o and liblaser. a, and it 
produces a recommended -G value to use on recompilation. 

4.7.3 Allocating the Global Pointer Area 

If your program contains several modules and the data for all modules is too large to 
fit in the global pointer area, you can allocate the global pointer area to the module 
that is most active. For example, suppose your program consists of modules a . c, 
b. c, and c. c. You discover by using prof that most of the execution time is 
spent in module a. c. To make your program efficient, allocate the global pointer 
area to the a . c module, as shown: 

% cc -c -G 1000 a.c 
% cc -c -G 0 b.c c.c 

These commands cause the compiler to allow only the data from the a . c module to 
occupy the global pointer area. 
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Library Routines and System Calls 5 

UL TRIX provides a number of routines you can call from your program. These 
routines perform programming tasks, such as reading or writing a file, and they 
perform tasks that control the system, such as mounting a file system. The routines 
UL TRIX provides are grouped into two major types: library routines and system 
calls. 

The library routines are C functions grouped in various archive libraries. System 
calls are the system primitive routines that are entry points to the UL TRIX kernel. 
Like library routines, system calls are callable from C. 

When possible, use a library routine or system call instead of writing a routine of 
your own to perform a particular task. Using system calls and library routines saves 
you coding and debugging time. Because most library routines and system calls are 
standard across UNIX systems, using them makes your program more portable. 

This chapter provides information about UL TRIX library routines and system calls, 
compilation and linking considerations, and the contents of the various libraries. 
This chapter also describes using UL TRIX input and output routines to manipulate 
data. 

For information about UL TRIX library routines beyond what is given in this chapter, 
see Section 3 in the ULTRIX Reference Pages. For more information about the 
system calls, see Section 2 in the ULTRIX Reference Pages. 

5.1 Compiling and Linking Considerations 
When you compile and link your program, the compilers for C, Pascal, FORTRAN, 
and perhaps other languages automatically attempt to resolve references by searching 
the standard C library, libc. a. This library contains all the system calls, the 
general purpose library routines, and the following groups of special library routines: 

• Routines that perform standard input and output 

• Routines that control the internet network 

• Routines that control the X/Open Transport Interface 

• Routines that control the Yellow Pages Service (YP) 

In addition to l ibc . a, the system contains other libraries with which you can.link 
your program. For example, if your program uses the interface to Kerberos, you must 
link it with the libkrb. a, libknet. a, and libdes. a libraries. For information 
on linking with a library other than libc, see Section 2.4.3. 

When you call a library routine or system call in your program, you must declare the 
routine or system call, just as you would any other routine in your program. UL TRIX 
provides header files that contain declarations of the library routines and system calls. 
For example, if you call a standard 1/0 routine that is in libc, you must include the 
header file <stdio . h> in your program. You might also need to include other 
header files, depending on which routine you call. See the reference page for a 



specific library routine or system call to determine what header files other than 
<stdio. h> you need to include. For information on including header files in your 
program, see Section 2.2. 

5.2 The C Library 
The standard C library, libc. a, contains the system calls, many commonly used 
routines, and groups of special library routines. 

The following list refers you to other sources for information about routines in 
libc. a: 

• See Section 5 .4 for information on performing input and output with l ib c 
routines. 

• See Guide to the X/Open Transport Interface for information on controlling the 
X/Open Transport Interface using lib c routines. 

• See Chapter 6 for information on controlling interprocess communication using 
lib c routines. 

5.2.1 Character Processing Routines and Macros 

Table 5-1 describes C library routines associated with character processing. These 
routines require the inclusion of header file <ct ype . h>. 

Table 5-1: Character Processing Routines and Macros 

Name 

isalnum () 

isalpha () 

isascii () 

iscntrl () 

isdigit () 

isgraph () 

is lower () 

isprint () 

ispunct () 

is space() 

isupper () 

isxdigit () 

toascii () 

tolower () 
_tolower () 

toupper () 
_toupper () 

Description 

Tests for an alphanumeric ASCII character. 

Tests for an alphabetic character. 

Tests for an ASCII character. 

Tests for a control character. 

Tests for a digit. 

Tests for a graphic ASCII character (any printing character other 
than a space). 

Tests for a lowercase letter. 

Tests for a printing ASCII character (including a space). 

Tests for a punctuation character (printing character that is 
nonalphanumeric and greater than octal 40). 

Tests for one of the following white space characters: space, form 
feed, new line, carriage return, horizontal tab, or vertical tab. 

Tests for an uppercase letter. 

Tests for a hexadecimal digit. 

Converts an integer to an ASCII character. 

Converts an uppercase letter to lowercase. 

Converts a lowercase letter to uppercase. 
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Related to the toascii () conversion routine, the math library routines atoi () , 
atol (), atof () , strtol (), strtoul (),and strtod () convert string data 
to various numeric forms. 

5.2.2 Standard 1/0 Routines 
Table 5-2 describes C library routines associated with standard 1/0 operations on files 
and with file access. These routines require the inclusion of header file <stdio. h>. 
Standard 1/0 routines are also described in int ro(3s). 

Table 5-2: Standard 1/0 Routines Related to Files and File Access 

Name 

fclose () 

fflush () 

fdopen () 

fopen () 

freopen () 

setbuf () 
setvbuf () 

tmpfile () 

tmpnam() 
tempnam() 

Description 

Flushes buffers of the specified stream and closes the specified 
stream, including disassociating the stream from the file. 

Flushes buffered data of the specified stream. 

Associates a stream with an open file. 

Opens the specified file, including associating a stream with the 
file. You need to specify the file mode to indicate the types of 
operations to be performed. 

Opens the specified file after attempting to close the file associated 
with the stream. 

Associates a buffer with an input or output file. 

Creates a temporary file. 

Generates a valid file name for a temporary file. 

Related routines include the C library routine remove ( ) and the system calls 
creat (), rename(), and unlink(). 

Table 5-3 describes standard 1/0 routines associated with formatted 1/0 and character 
1/0. These routines require the inclusion of header file <stdio. h>. 

Table 5-3: Standard 1/0 Routines for Formatted 110 and Character 1/0 

Name Description 

Formatted 1/0 Routines: 

fprintf () Writes output to the specified stream using the specified format. 

f scanf () Reads input from the specified stream using the specified format. 

printf () Writes output to stdout. 

scanf () Reads input from stdin. 

Library Routines and System Calls 5-3 



Table 5-3: (continued) 

Name Description 

sprint f () Writes output to the specified string, terminated by a null 
character. 

sscanf () Reads input from a specified string. 

vfprintf () Similar to fprintf (),except a variable argument list is used 
(requires an additional header file). 

vprintf () Similar to printf (),except a variable argument list is used 
(requires an additional header file). 

vsprintf () Similar to sprintf (),except a variable argument list is used 
(requires an additional header file). 

Character I/0 Routines: 

fgetc () 

fgets () 

fputc () 

fputs () 

getc () 

getchar () 

gets() 

putc () 

putchar () 

puts() 

ungetc () 

Reads the next character from the specified input stream (as an 
integer). This is the function used by the macro getc (). 

Reads up to the specified number of characters from the specified 
stream. 

Writes the next character to the specified output stream. 

Writes the specified string to the specified output stream. 

Similar to f get c ( ) , except it is implemented as a macro. 

Similar to fgetc (),but uses stdin. 

Reads characters from stdin into an array. 

Similar to fputc (), except it is implemented as a macro. 

Similar to fputc (),except it is directed only to stdout. 

Writes a string to the stdout stream. 

Pushes the specified character back into the input stream and 
leaves the stream at the position before the inserted character. 

Table 5-4 describes the standard 1/0 routines associated with direct 1/0, file 
positioning, and error handling. Like other standard 1/0 routines, these routines 
require the inclusion of header file <stdio. h>. 

Table 5-4: Standard 1/0 Routines for Direct 1/0, File Positioning, and 
Error Handling 

Name 

Direct I/O Routines: 

fread () 

fwrite () 

File Positioning Routines: 

fgetpos () 
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Description 

Reads the specified number of data elements into an array from the 
specified stream. 

Writes the specified number of data elements from an array onto 
the specified stream. 

Stores and returns the current value of the file position indicator 
for the specified stream. 



Table 5-4: (continued) 

Name Description 

f seek () Sets the file position indicator to the specified offset for the 
specified stream. 

f setpos () Sets the file position indicator for the specified stream. Usually 
used with f getpos (). 

ftell () Returns the current file position indicator for the specified stream. 

rewind () Sets the current file position indicator for the specified stream to 
the beginning of the file. 

Error Handling Routines: 

clearerr () 

feof () 

ferror () 

perror () 

Clears the end-of-file and error indicators for the specified stream. 

Tests whether the end-of-file indicator is set for the specified 
stream. 

Tests the error indicator for the specified stream. If an error is 
present, use errno or the strerror () routine to return the 
value. 

Maps the error number to a error message and prints it to 
stderr. 

Routines that might be used with error handling routines include the C library 
functions set jmp () and longjmp () , which allow non-local transfer of control. 

5.2.3 Memory Management, Environment, and General Functions 

Table 5-6 describes C library routines associated with pseudo-number generation, 
memory management, environment and process control, sorting and searching, and 
integer arithmetic. Most of these routines require the inclusion of header file 
<stdlib. h>. 

Table 5-5: General Routines 

Name 

Pseudo-Random Number 
Generation Routines: 

rand() 

srand () 

Memory Management Routines: 

calloc () 

free() 

malloc () 

realloc () 

Description 

Returns a sequence of pseudo-random integers based on the 
specified seed. Should be preceded by a call to srand (). 

Sets the specified argument as a seed. This seed determines the 
values returned by rand ( ) . 

Allocates a zero-filled area of memory using a specified number of 
units of the same size. 

Deallocates an area of memory previously allocated by 
calloc(),malloc(),orrealloc(). 

Allocates a contiguous space in memory of the specified size. 

Changes the size of allocated memory to the specified size. 
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Table 5-5: (continued) 

Name Description 

Environment and Process 
Control Routines: 

abort() 

exit() 

getenv() 

papen() 

putenv () setenv () 

system () 

unsetenv () 

Searching and Sorting Routines: 

bsearch () 

hsearch () 

tsearch () 

qsort () 

Integer Arithmetic Routines: 

abs() 

div() 

labs() 

ldiv () 

5.2.4 String Operations 

Causes abnormal program termination by use of the SIGABRT 
(SIGIOT) signal (which may be caught). 

Causes normal program termination to occur. 

Searches an environment variable list for a specified string. 

Initiates pipe I/0 and executes a Bourne shell command. 
Terminate using pc lose (). 

Sets an environment variable. 

Passes the specified string &s a command for shell ~xecution. 

Unsets an environment variable. 

Used for searching and sorting array elements in conjunction with 
a user function. The bsearch () routine returns a pointer to the 
matching element of the array. The user function examines two 
arguments and returns a value indicating whether the first is 
greater than the second, the second is greater than the first, or that 
they are equal. 

Performs a hashed table search. Used with hcreate () and 
hdelete (). Requires <search. h>. 

Initiates a binary tree search. Used with tfind () and related 
routines. Requires <search. h>. 

Sorts an array of the specified number of elements. 

Returns an absolute value for the specified integer. 

Performs division of two integer values, returning the quotient and 
remainder. 

Returns the absolute value of the specified long integer. 

Performs division of two long integer values, returning the 
quotient and remainder as long integers. 

Table 5-6 describes C library routines associated with string operations. These 
routines require the inclusion of header file <string. h>. 

Table 5-6: String Processing Routines 

Name 

memcpy () 
memmove () 

Description 

Copies the specified number of characters from one area of 
memory to another. Using memmove ( ) uses an intermediate 
buffer if the two areas overlap. 
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Table 5-6: 

Name 

memchr () 

memcmp () 

memset () 

strcpy () 

strncpy () 

strcat () 

strncat () 

strcmp () 

strcoll () 

strncmp () 

strxfrm () 

strchr () 

strcspn () 

strpbrk () 

strrchr () 

strspn () 

strstr () 

strtok () 

strerror () 

strlen () 

(continued) 

Description 

Returns a pointer to the first occurrence of the specified character, 
examining the specified number of characters from an area of 
memory. 

Compares two arguments lexicographically in memory, looking at 
the specified number of characters, and indicates whether one is 
greater than, less than, or equal to the other. 

Sets the first specified number of characters in memory to the 
value of the specified character. 

Copies one specified string to another string. 

Copies one specified string to another string, up to the specified 
number of characters. 

Copies (appends) a specified string to the end of another string. 

Copies (appends) a specified string to the end of another string, up 
to the specified number of characters. 

Compares two arguments and indicates whether one is greater 
than, less than, or equal to the other. 

Compares two strings lexicographically, using collating 
information defined in the program's locale. 

Compares two arguments up to the specified number of characters 
and indicates whether one is greater than, less than, or equal to the 
other. 

Transforms one string into another string. 

Locates the first occurrence of the specified character in a string. 

Returns the length of a segment of a string that does not contain 
any of the characters in a second string. 

Locates the position of a string that contains any of the characters 
of the second string. 

Locates the last occurrence of a specified character in a string. 

Returns the length of a string that consists of only characters from 
the second string. 

Locates the first occurrence of a specified series of characters in a 
string. 

Breaks a specified string into a sequence of tokens. 

Returns a pointer to the message text for a given error number. 

Returns the length of a string. 

Certain string handling routines are also provided in the Internationalization library, 
including routines related to multiple byte strings, which include rnb 1 en ( ) , 
rnbtowc (), rnbstowcs (), set locale (), wctornb (),and wcstornbs (). 
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5.2.5 Date and Time Routines 

Table 5-7 describes the C library routines associated with date and time conversion, 
and time processing. These routines require the inclusion of header file <time . h>. 

Table 5-7: Date and Time Processing Routines 

Name 

Time Conversion Routines: 

asctime () 

ctime () 

gmtime () 

localtime () 

strftime () 

tzset () 

Time Processing Routines: 

clock () 

difftime () 

mktime () 

time() 

Description 

Converts a time structure to ASCII format. 

Converts integer time to ASCII format. 

Returns pointer to a time structure, using GMT. 

Returns pointer to a time structure, using local time. 

Converts time to ASCII format using a conversion specifier. 

Sets the local time zone. 

Returns the processor time used. 

Returns the difference between two times. 

Converts a time structure to calendar time. 

Returns the current calendar time. 

5.2.6 System Calls and Other C Library R·outines 

The system calls allow you to access entry points to the kernel from your program to 
perform system tasks. For example, the system calls allow you to control sockets, 
control processes (such as fork()), handle signals (such as sigvec ()),return file 
status (such as f stat()), perform basic I/0 (as described in Section 5.4), tum 
accounting on and off (such as acct ()),mount and unmount file systems (such as 
mount ()),get or set the system clock, and so on. 

Other C library routines not listed previously in this section perform a variety of 
tasks, including routines to execute a file (such as execl () ), perform floating-point 
conversion (such as ftoi () ), change (usually reduce) process priority (such as 
nice () ), suspend program execution for a specified interval (such as sleep () ), 
and so on. Some of these library routines are typically used in combination with 
system calls. 

5.3 Other Commonly Used Library Routines 
The following sections describe many of the library routines not described in Section 
5.2. 

5.3.1 The Standard Conformant Function Library 

ULTRIX provides a function library, libcP. a, that conforms to the POSIX and 
X/Open standards. To use this library, you must link with it, in addition to linking 
with libc. a. 
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It is important to be aware of differences between the standard-conformant functions 
in libcP. a and the functions in libc. a. Table 5-8 lists the functions that differ 
and explains how the 1 ib cP functions differ from 1 ib c functions. 

Table 5-8: Standard Conformant Library Functions That Differ from C 
Library Functions 

libcP Function 

abort() 

ctermid () 

cuserid () 

fclose () 

fflush () 

fopen () 
fdopen () 
freopen () 

nice() 

opendir () 

printf () 
fprintf () 

scanf () 

sleep() 

sprintf () 

tzset () 

ungetc () 

5.3.2 The Curses Library 

Differences from libc Function 

Closes open files before aborting the process with a SIGABRT 
signal. 

Returns a null string if the program has no controlling terminal. 

Uses the effective user ID, instead of the login user ID. 

Seeks to the byte following the last one your program read or 
wrote before closing the file. 

Writes buffers even if the file is a read-only file. 

Causes the ''a'' and ''a+'' mode strings to append with no 
overwrite. 

Returns the new priority value minus NZERO. NZERO is the 
default process priority as defined in <limits. h>. On ULTRIX 
systems, NZERO is 20. 

Sets the FD_ CLOSEXEC flag on the type DIR • 

On success, returns the number of characters printed. 

Treats the E, G, and X conversion codes the same as thee, g, and 
x conversion codes. 

Can be interrupted by signals. 

Returns the number of characters formatted. This return value 
difference affects the syntax of the function call. (See the ULTRIX 
Reference Pages for more information.) 

Defines the timezone and daylight global variables, which you 
must declare as long and int, respectively. 

Clears the EOF indicator for the stream. 

The X/Open curses library, libcursesX. a, contains routines that perform screen 
management tasks. The library allows you to perform common terminal-dependent 
frunctions without being aware of the detailed description of the current teminal. For 
information on using the curses library, see Guide to X/Open curses Screen Handling. 

5.3.3 The Internationalization Library 
The internationalization library, libi. a, contains routines that provide a convenient 
method of writing applications so that they operate in the application user's natural 
languages. You can use the library to display output that is formatted correctly for the 
application user, even if users in several countries use the same application. For 
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information on using the internationalization library, see the Guide to Developing 
International Software. 

5.3A The Kerberos Library 

The Kerberos libraries are libkrb. a, libknet. a, libdes. a, and libacl. a. 
These libraries authenticate changes made to messages that applications send across a 
TCP/IP network and protect against the unauthorized modification of such messages. 
For information on using the Kerberos library, see the Guide to Kerberos. 

5.3.5 The Mathematical Library 
The mathematical library, 1 ibrn. a, provides functions that are useful for performing 
mathematical equations. For example, the math library provides a function for 
calculating the inverse hyperbolic function of a real value, performing bessel 
operations, and so on. 

For more information, refer to int ro(3m). 

5.3.6 The Network Computing System Library 

The Network Computing System (NCS) Library contains routines that allow you to 
develop distributed applications. When you develop distributed applications, you 
usually do not use many of the routines directly. Instead, you write interface 
definitions in Network Interface Definition Language (NIDL) and use the NIDL 
Compiler to generate most of the required calls to the library. 

For more information about developing distributed applications, see DECrpc 
Programming Guide. 

5.3. 7 Optional Product Libraries 

Other libraries may exist on your system and may be associated with optional 
products, such as languages or windowing systems. For instance, FORTRAN 
provides section 3f library routines that simplify calling section 3 routines (written in 
C) from FORTRAN. Similarly, other optional Digital products may provide separate 
libraries. 

5.4 System 1/0 and Standard 1/0 
ULTRIX has two groups of routines for performing I/0. These groups are called 
system I/0 (system calls) and standard I/0 (library routines). 

System I/0 routines: 

• Are UL TRIX system calls to the kernel 

• Use file descriptors for file access 

• Are documented in Section 2 of the ULTRIX Reference Pages 

Standard I/0 routines: 

• Are contained in I us r I 1 ib I 1 ib c . a 

• Use a pointer to a FI LE structure (defined in <stdio . h>) for file access 
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• Call system 1/0 routines, but are faster than system I/0 for small sequential reads 
(see Figure 5-1) 

• Are documented in Section 3 of the ULTRIX Reference Pages 

Figure 5-1 compares file access using system I/0 to file access using standard 1/0. 
The read () system call places a specified file in buffer cache, but fread () places 
it in buffer cache and process cache. Reading a file using system I/O's read () 
routine requires a trap to the kernel. Standard I/O's fread () routine reads from 
process cache, requiring no kernel trap, and is therefore faster for small sequential 
reads. 

Figure 5-1: System 1/0 Versus Standard 1/0: File Reading 
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Table 5-9 lists standard I/0 and system I/0 routines. 
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Table 5-9: System 1/0 and Standard 1/0 

Action System 1/0 Standard 1/0 

File descriptor int f d None 
declaration 

FI LE structure pointer None #include <stdio.h> 
declaration FILE *fp 

Open a file open() fopen () 

Close a file close () fclose () 

Read from a file read() fread(), fgets (), fscanf () 

Write to a file write() fwrite(), fputs (), fprintf () 

Position the file pointer lseek () fseek () 
within a file 

5.4.1 File 1/0 

The program in Example 5-1 performs file I/0 using standard I/0 routines. 

Example 5-1: Using Standard 1/0 Routines 

/* standard io.c This program uses standard I/O routines to create a 
data file in the working directory, write 3 structures 
to the data file, and read back the second structure. 

*/ 
#include <stdio.h> /* Contains the definition of the FILE structure */ 

main() 
{ 

FILE *fp; 
struct rec 

char type; 
short buf [10]; 
rec_l; 

int i, j, 
status; 

/* Pointer to a FILE structure */ 

/* Some meaningless character data */ 
/* Some meaningless integer data */ 

/* A record to be written and read */ 
/* Loop counters */ 

/* Status variable */ 

fp fopen("data_file.txt", /* Create or open data_file.txt */ 
"w+"); /*Open it for reading and writing*/ 

if fp ==NULL ) /* fopen() returns NULL for failure */ 
perror("standard_io.c: fopen"), exit(l); 

for (i = 0 i < 3 i++) /* Write 3 structures to data file.txt */ 

for ( j 0 j < 10 ; j ++) 
rec_l.buf [j] = i + 1; 

rec_l.type = Ox31 + i; 

status= fwrite(&rec_l, 
sizeof(rec_l), 
1, 
fp); 

if ( status == 0 ) 

/* Fill the buffer with integers */ 
/* ASCII character */ 

/* Write rec_l */ 
/* Size of items to be written */ 

/* Number of items */ 
/* File to write to */ 

/* Failure */ 
perror("standard_io.c: fwrite"), exit(l); 

status = fseek(fp, /*Place fp's read-write pointer */ 
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Example 5-1: (continued) 
sizeof(rec_l), 
0); 

if ( status == -1 ) 

/* this many bytes */ 
/* from the beginning of the file */ 

/* Failure */ 
perror("standard_io.c: fseek"), exit(l); 

status = fread(&rec_l, 
sizeof(rec_l), 
1, 
fp); 

if ( status == 0 ) 

/* Store at this location */ 
/* an item of this size */ 

/* Just one item */ 
/* Read from this file */ 

/* Failure */ 
perror("standard_io.c: fread"), exit(l); 

printf ("Second structtire:\n\tType:\t%c\n\tContents: ", 
rec_l.type); 

for(i = 0 ; i < 10 ; i++) 
printf(i != 9 ? "%d" 

fclose (fp); 
exit(O); 

"%d\n", rec_l.buf[i]); 

/* Close the file */ 

The program in Example 5-2 performs file 1/0 using system 1/0 routines. The 
program in Example 5-2 performs the same tasks as those in Example 5-1, but uses 
system 1/0 routines instead of standard 1/0 routines. 

Example 5-2: Using System 1/0 Routines 

/* systemio.c This program uses system I/O routines to create a data 
file in the working directory, write 3 structures to the 
data file, and read back the second structure. 

*/ 
#include <stdio.h> 
#include <sys/file.h> 

main() 
{ 

int fd; 
struct rec 

char type; 
short buf [ 10]; 
rec_l; 

int i, j, 
status; 

fd open("data_file.txt", 
O_CREAT I O_RDWR, 
0644); 

if ( fd == -1 ) 

/* File descriptor */ 

/* Some meaningless character data */ 
/* Some meaningless integer data */ 

/* A record to be written and read */ 
/* Loop counters */ 

/* Status variable */ 

/* Open data_file.txt */ 
/* Flags: create, read-write */ 

/* Create file with this mode */ 
/* Failure */ 

perror("systemio.c: open"), exit(l); 

for (i = 0 
{ 

i < 3 i++) I* Write 3 structures to data file.txt */ 

for (j 0 j < 10 ; j++) 
rec_l.buf [j] = i + 1; 

rec_l.type = Ox31 + i; 
/* Fill the buffer with integers */ 

/* ASCII character */ 

status = write(fd, 
&rec 1, 
sizeof (rec_l)); 

if status == -1 ) 

I* Write to file fd */ 
/* Copy data starting at this location */ 

/* Copy this much data */ 
/* Failure */ 

perror("systemio.c: write"), exit(l); 
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Example 5-2: (continued) 

status = lseek(fd, 
sizeof (rec_l), 
L_SET); 

if ( status == -1 ) 

/*Place fd's read-write pointer */ 
/* this many bytes */ 
/* from the beginning of the file */ 

/* Failure */ 
perror("systemio.c: lseek"), exit(l); 

status = read(fd, 
&rec_l, 
sizeof(rec_l)); 

if ( status == -1 ) 
perror("systemio.c: read"), exit(l); 

/* Read from file fd */ 
/* Store at this location */ 

/* Read this much data */ 
/* Failure */ 

printf("The second structure:\n\tTyp~:\t%c\n\tContents: ", 
rec_l.type, i); 

for(i = 0 ; i < 10 ; i++) 
printf(i != 9 ? "%d " 

close(fd); 
exit{O); 

5.4.2 Device 1/0 

"%d\n", rec_l.buf[i]); 

/* Close the file */ 

Writing to or reading from a device in an ULTRIX system is accomplished using 
system I/0 routines. Instead of data files, device files are used. Every device in an 
UL TRIX system has a device file associated with it. Reading from or writing to a 
device file is reading or writing the device; they are the same thing. 

All device files for an UL TRIX system are kept in the I dev directory. Each device 
file's name consists of a code that tells what the device is, followed by a number 
assigned to that device; for example, /dev/ra13a is an MSCP disk controller 
because the file name begins with ra. The Guide to System Environment Setup lists 
device codes and their meanings. 

There are two different types of device IiO: 

• Character mode (also called raw) 

• Block mode (also called cooked). 

Devices are usually configured to accept only one mode. Printers and terminals use 
character I/0, but disks can use either. Generally, an r preceding a disk device's file 
name means the device is character mode. To be certain which mode to use, issue 
the file command, supplying the device file as an argument; for example: 

% file /dev/nrmtOh 
/dev/nrmtOh: character special (36/12) HSC70 #1 TA78 tape #0 offline 

In this example, the tape nrmt Oh is a character mode file (as indicated by the words 
character special). 
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To write to this device, open it using its file name; fot example: 

fd =open ("/dev/nrmtOh", O WRONLY); /*Open the tape for writing*/ 
write (fd, buf, sizeof (buf)}; /*Write the contents of buf to the tape */ 

System I/0 routines and standard I/0 routines perform both character and block 
device I/0. The type of 1/0 is determined by the device being accessed. Which 
routine a program uses depends on the behavior the programmer wants. 

5.4.2.1 Character Mode (Raw) Device 1/0 

In character 1/0, device drivers are read and written to directly. Device drivers are 
called by the reading and writing routines. The buffer cache is not used. If input 
from a device is going to be processed or manipulated, using fread () to read the 
input into the user's process space might make the most sense. If it is important to 
the program that output he written to a device before the program continues, using 
write ( ) to make the program wait until the device driver has finished writing 
might be best. 

5.4.2.2 Block Mode (Cooked) Device 1/0 

In block mode 1/0, the reading and writing routines read and write the buffer cache. 
The kernel calls device drivers as needed to fill or empty the cache. 

5.4.3 Controlling Devices with ioctl{) 

The ioctl() system call can be used to control 1/0 on files, disks, sockets, 
terminals, and tapes. The i o ct 1 ( ) call has the following form: 

ioctl(fd, /*An open device file descriptor*/ 
request, /* A device-specific request */ 
ptr); /*A pointer to either char or 

a device-specific structure */ 

The second argument to ioctl () is a device-specific request that names the type of 
action desired, such as TIOCGETC, which gets information about a terminal's 
current characteristics. All device-specific requests are defined in < i o ct 1 . h>. 

The third argument to ioct 1 () is a pointer to char or a device-specific structure, 
which stores information about the device. These structures are written to if the 
request is to obtain information, or read from if the request is to change device 
characteristics. The structure used varies with the request made. These structures are 
defined in various headers, depending on device type, as shown in Table 5-10. 

Table 5-10: Headers That Define Structures Used with ioctl() 

Device Header That Defines Needed ioctl () Structures 

Data file None 

Disk <sys/dkio.h> 

Generic device <sys I devio. h> 

Socket <sys/ socket. h> 

Tape <sys/mtio. h> 

Terminal <sys/ sgtty. h> 
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5.4.3.1 Multibuffered 1/0 with Character Mode (Raw) Devices 

If a program is reading or writing a raw device, the program waits (is blocked) until 
the I/0 is complete. If there are several I/0 operations, the waits are serial because 
there is a single buffer that must be emptied before it can be reused; for example: 

f d = open ("/dev/nrmtOh", O_WRONLY); 
write (fd, bufl, sizeof (bu fl) ) ; /* Process waits until 

bu fl is written to f d */ 
write (fd, buf2, sizeof (buf2) ) ; /* Process waits until 

buf2 is written to fd */ 
write (fd, buf3, sizeof(buf3)); /* Process waits until 

buf3 is written to fd */ 

Having multiple buffers speeds I/0 to raw devices. The ioctl() system call with 
the FIONBUF argument is used for multibuffered I/0; for example : 

int buffers = 3; I* Number of buffers needed */ 
char data_l[lOO], data_2[100], data_3[100], 

*ptr = data_3; 

ioctl(fd, FIONBUF, &buffers); I* Create three buffers for I/O *I 

write(fd, data 1, 100); /* No waiting */ -
write(fd, data 2, 100); /* No waiting *I -
write(fd, data 3, 100); /* No waiting */ 

-

/* Perform other work here while the writes complete */ 

status= ioctl(fd, FIONBDONE, &ptr); /* Wait for write to data 3 */ 

/* Perform work here that must be done after the writes are complete */ 

Using ioctl () with the FIONBDONE argument is not the only way to determine 
when multiple I/0 operations are done; there are three other ways: 

fcntl(fd, F_SETFL, FASYNC); /*Send SIGIO signal when fd's I/O is done*/ 

fcntl(fd, F_SETFL, FNDELAY); /*Alter the behavior of ioctl(fd, */ 
/* FIONBDONE, ... ) so that the ioctl() */ 
/* call does not block, but merely */ 
/* returns EWOULDBLOCK */ 

select(); /* Wait a maximum specified time for the I/O to finish */ 

Example 5-3 shows a complete program that uses multiple buffers to write to a tape. 
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Example 5-3: Multibuffered Writing to a Tape 

/* tape_write.c Perform multi-buffered output to a raw tape. Write 
four buffers of BUFSIZE bytes each to a tape. The 
first buffer contains 'A's, the second 'B's, 
and so forth. 

*/ 
#include <stdio.h> 
#include <sys/file.h> 
#include <sys/ioctl.h> 

#define BUFSIZE 100000 

main() 
{ 

char bufl[BUFSIZE], 
*ptr = buf4; 

long i; 
int fd, 

buffers = 4; 

buf2[BUFSIZE], buf3[BUFSIZE], buf4[BUFSIZE], 
/* Pointer to the last buffer */ 

/* Loop counter */ 
/* File descriptor */ 

/* Number of buffers needed */ 

fd open("/dev/nrmtOh", O_WRONLY); /*Open tape for write only*/ 
if fd == -1 ) 

perror("tape_write.c: open"), exit(l); /* Failure */ 

i++) for (i = 0 ; i < BUFSIZE 
{ /* Fill the arrays with data */ 

bufl [i] 'A'; 
buf2[i] 'B'; 
buf3 [i] 'C' ; 
buf4[i] 'D'; 

if ioctl(fd, FIONBUF, &buffers) == -1 ) /* Create multiple*/ 
perror("tape_write.c: ioctl FIONBUF"), exit(l); /*buffers*/ 

if write(fd, bufl, sizeof(bufl)) == -1) /*Write the four*/ 
perror("tape_write.cl: write"), exit(l);/* buffers to tape*/ 

if write(fd, buf2, sizeof(buf2)) == -1) 
perror("tape write.c2: write"), exit(l); 

if write(fd, buf3, sizeof(buf3)) == -1) 
perror("tape write.c3: write"), exit(l); 

if write(fd, buf4, sizeof(buf4)) == -1 ) 
perror("tape_write.c4: write"), exit(l); 

if ( ioctl(fd, FIONBDONE, &ptr) == -1 ) /*Wait for last write */ 
perror("tape_write.c: ioctl FIONBDONE"), exit(l); 

close(fd); 
exit(O); 

For more information on using multiple buffers to speed 1/0 to raw devices, see 
nbuf(4) and ioctl(2) in the ULTRIX Reference Pages. 

5.4.3.2 Tape Control with ioctl() 

The MTIOCTOP ioctl () request specifies tape 1/0 operations. The mtop 
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structure, defined in <mt i o . h>, is used with this request: 

struct mtop 

} ; 

short mt_op; 
daddr t mt_count; 

/* Operation to perform (defined in mtio.h) */ 
/* Perform it this many times */ 

Consider the following example: 

struct mtop tape_l; 

tape_l.mt_op = MTFSF; 
tape_l.mt_count = 3; 

/* Move forward one file, */ 
/*three times for each ioctl() call */ 

ioctl(fd, MTIOCTOP, &tape_l); /* Move the tape forward three files */ 

Example 5-4 gives an example of tape 1/0 using ioctl(). 

See mtio(4) in the ULTRIX Reference Pages for more information on tape 1/0. 

Example 5-4: Writing, Rewinding, and Reading a Tape 

/* tape_read_write.c Write ten 100-byte records to the /dev/nrmtOh tape. 

*/ 

Rewind the tape and read the odd-numbered records. 
Rewind the tape and read the even-numbered records. 

#include <sys/ioctl.h> 
#include <sys/types.h> 
#include <sys/mtio.h> 
#include <sys/file.h> 

#define BUFSIZE 100 

main() 
{ 

struct mtop tape; 
int fd, 

i, j' 
status; 

char buf[BUFSIZE]; 

/* Tape structure defined in <sys/mtio.h> */ 
/* File descriptor */ 

/* Loop counters */ 
/* Status variable */ 

/* Data buffer */ 

fd open ( "/dev/nrmtOh", 
O_RDWR); 

/* Open the tape device file */ 
/* Open for reading and writing */ 

if fd <= 0 ) 
perror("tape read_write.c: open"), exit(l); 

tape.mt_op = MTREW; 
tape.mt_count = 1; 

/* MTREW means rewind the tape */ 
/* Do it once */ 

status= ioctl(fd, /*File to act on*/ 
MTIOCTOP, /* Perform a tape operation */ 
&tape);/* This structure holds the operation: MTREW */ 

if ( status == -1 ) /* Failure */ 
perror("tape read_write.c: MTREW"), exit(l); 

for (i = 0 i < 10 ; i++) 
{ 

for ( j 0; j < BUFSIZE; j++)/* Record 0 contains '0' s' record */ 
buf [j] = i + Ox30; /* 1 is 'l's, and so on to 9 */ 

if write(fd, buf, BUFSIZE) -1 ) /*Write buf to the tape*/ 
perror("tape_read_write.c: write"), exit(l); /*Failure*/ 
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Example 5-4: (continued) 
tape.mt_op = MTWEOF; /*Overwrite MTREW with MTWEOF (write an EOF)*/ 

if ( ioctl(fd, MTIOCTOP, &tape) -1 ) /*Write EOF on the tape*/ 
perror("tape_read_write.c: MTWEOF"), exit(l); /*Failure*/ 

tape.mt_op = MTREW; /* Overwrite MTWEOF with MTREW */ 

if ( ioctl(fd, MTIOCTOP, &tape) == -1 ) /*Rewind the tape */ 
perror("tape_read_write.c: MTREW"), exit (1); /* Failure */ 

/* Read the odd-numbered 
tape.mt_op = MTFSR; 

while ( read(fd, buf, BUFSIZE) != 0 ) 
{ 

printf("%.100s\n", buf); 
ioctl(fd, MTIOCTOP, &tape); 

tape.mt_op = MTREW; 
ioctl(fd, MTIOCTOP, &tape); 

/* Read the even-numbered 
tape.mt_op = MTFSR; 
ioctl(fd, MTIOCTOP, &tape); 

while ( read(fd, buf, BUFSIZE) != 0 ) 
{ 

printf("%.100s\n", buf); 
ioctl(fd, MTIOCTOP, &tape); 

} 

close(fd); 

records and write to terminal 
I* Move forward one record 

/* Read a record 

/* Print a record 
/* Skip one record 

/* Rewind the tape 

records and write to terminal 
I* Move forward one record 

/* Skip one record 

/* Read a record 

/* Print a record 
/* Skip one record 

5.4.3.3 Terminal Control with ioctl() 

There are several ioct 1 () requests that control terminal I/0 operations; all are 
defined in <sys/ ioctl. h> and explained in the tty(4) reference page. Several 
different structures are used with these requests because of the patchwork evolution 
of the UL TRIX terminal driver. Each structure contains a certain part of a terminal's 
data. 

The sgttyb structure, defined in <sgtty. h>, is used with most of the requests, 
including TIOCGETP (get terminal characteristics) and TIOCSETP (set terminal 
characteristics): 

struct sgttyb 
char sg_ispeed; /* Input speed */ 
char sg_ospeed; I* Output speed */ 
char sg_erase; /* Erase character */ 
char sg_kill; /* Kill character *I 
int sg_flags; /* Mode flags */ 

} ; 

The sg flags element in the sgttyb structure can be one of several flags defined 
in <sys/ ioctl. h> and explained in the tty(4) reference page. Table 5-11 shows 
a few of the most common flags. 
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Table 5-11: Common Terminal 1/0 Modes 

Flag Meaning 

RAW Characters are passed uninterpreted to the program as soon as 
they are typed. Characters are sent as 8 bits and are not 
echoed to stdout 

CBREAK Like raw, but characters are echoed, and interrupts, delays, 
and parity still work 

TANDEM A stop character (DC3) is sent when the input queue is full, 
and a start character (DC 1) is sent when the queue is ready 
for more input 

LCASE Uppercase characters are converted to lowercase 

Example 5-5 shows how to save, change, and restore a terminal's characteristics 
using sgttyb. 

Example 5-5: Setting Terminal Characteristics 

/* sgttyb.c Set the terminal characteristics (in the sgttyb structure) 
to CBREAK and NOECHO. Read characters and echo 
incorrectly at the terminal until CTRL/A is typed. 

*/ 
#include <stdio.h> 
#include <sgtty.h> /*Includes <sys/ioctl>, which includes <sys/ttyio>*/ 
#include <sys/file.h> 

main() 
{ 

struct sgttyb orig settings, 
new_settings; 

int fd, 
status; 

char c; 

/*Structure to hold current settings*/ 
/*Structure to hold new settings*/ 

/*File descriptor*/ 
/*Status variable*/ 

/*Character read from the terminal*/ 

/*Because stdin or stdout could be redirected, open*/ 
/*"/dev/tty", whic~ is guaranteed to be my terminal*/ 

if ( (fd = open("/dev/tty", O_RDWR, /*Open for read-write*/ 
0)) == -1 ) 

perror("sgttyb.c: open"), exit(l); 

status= ioctl(fd, 
TIOCGETP, 
&orig_settings); 

if ( status == -1 ) 

/*Failure*/ 

/*For this terminal */ 
/*get the current settings*/ 
/*and store them here */ 

perror("sgttyb.c: ioctl GET 1"), exit(l); /*Failure*/ 

status= ioctl(fd, TIOCGETP, &new_settings);/*Store them here too*/ 
if ( status == -1 ) 

perror("sgttyb.c: ioctl GET 2"), exit(l); /*Failure*/ 

new_settings.sg_flags &= -ECHO; 
new_settings.sg_flags I= CBREAK; 

if ( ioctl(fd, TIOCSETP, &new_settings) 
== -1 ) 

/*Turn off echoing*/ 
/*Turn on CBREAK mode*/ 

/*Install new settings*/ 

perror("sgttyb.c: ioctl SET 1"), exit(l); 
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Example 5-5: (continued) 
write(fd, "Type some character\n", 21); /*Solicit input*/ 

/*Read a character*/ 
/*Increment c, and while not CTRL/A ... */ 

read(fd, &c, 1); 
while (c++ != '\001') 
{ 

write(fd, &c, 1); 
read (fd, &c, 1); 

/*Write the next*/ 
/*Read a character*/ 

if ioctl(fd, TIOCSETP, &orig_settings) /*Restore the original*/ 
== -1 ) /*terminal settings */ 
perror("sgttyb.c: ioctl SET 2"), exit(l); 

exit (0); 

The tchars structure, defined in <sys/ttyio. h>, is used with the TIOCGETC 
(get special characters) and TIOCSETC (set special characters) requests: 

struct tchars { 
char t intrc; /* Interrupt Default CTRL/? 
char t_quitc; /* Quit Default CTRL/\ 
char t startc; /* Start output Default CTRL/Q -
char t _stopc; /* Stop output Default CTRL/S 
char t_eofc; /* End-of-file (EOF) Default CTRL/D 
char t_brkc; /* Input delimiter (like nl) Default = -1 

} ; 

Example 5-6 shows how to store, change, and reset a terminal's special characters 
using tchars. 

Example 5-6: Changing a Terminal's Special Characters 

/* tchars.c Change the EOF character to be CTRL/A 
*/ 
#include <sgtty.h> 
#include <stdio.h> 

main() 
{ 

struct tchars orig_char, 
new ..... char; 

ioctl(O, 
TIOCGETC, 
&orig_char); 

ioctl(O, TIOCGETC, &new_char); 

new_char.t_eofc = '\001'; 
ioctl(O, TIOCSETC, &new_char); 

puts("Executing cat> myfile 
system("cat > myfile"); 

/* 

CTRL/A is 

/* The original settings 
/* The altered settings 

/* Descriptor 0 is st din 
Get the special characters 

/* Store them here 

/* Store them here also 

/* Change EOF to AA 
/* Reset the special chars 

EOF"); /* Prompt for input 
I* Execute cat command 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*I 
*/ 

*/ 
*/ 
*/ 

*/ 

*/ 
*/ 

*/ 
*/ 

ioctl(O, TIOCSETC, &orig_char); /* Reset to the original chars */ 

exit(O); 

The ltchars structure, defined in <sys/ttyio. h>, is used with the TIOCGLTC 
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(get local special characters) and TIOCSLTC (set local special characters) requests: 

struct ltchars { 

char t_suspc; /* Stop process signal Default CTRL/Z 
char t_dsuspc; /* Delayed stop process Default CTRL/Y 
char t_rprhtc; /* Reprint line Default CTRL/R 
char t f lushc; /* Flush output (toggles) Default CTRL/O 
char t_werasc; /* Word erase Default CTRL/W 
char t_lnextc; /* Literal next character Default CTRL/V 

} ; 

The remaining structure is just a word; defined in <ioctl. h> and explained in the 
tty( 4) reference page, that is used with the four local-mode word requests, such as 
TIOCLGET (get.the current local word) and TIOCLBIC (clear these bits in the local 
word). The local-mode word consists of several values (that can be combined using 
a bitwise OR); for example: 

• LTOSTOP~Send SIGTTOU for background output 

• LTILDE-Convert,.., to ' on output (for Hazeltine terminals) 

• LCTLECH-Echo input control characters as AX, and delete as A? 

Example 5-7 shows how to change a terminal's local mode word. 

Example 5-7: Changing a Terminal's Local Mode Word 

/* local word.c Turn off echoing of control characters 
in the A<character> form 

*/ 
#include <stdio.h> 
#include <sgtty.h> 

main() 
{ 

*I 
*/ 
*I 
*I 
*/ 
*/ 

short word; 
int status; 

/*Holds the terminal's local word*/ 
/* Returned status */ 

status= ioctl(O, 
TIOCLGET, 
&word); 

if ( status == -1 ) 

/* Descriptor 0 is stdin */ 
/* Get the current word */ 

/* Store it here */ 

perror("local_word.c: ioctl GET"), exit(l); /* Failure */ 

word &= -LCTLECH; /* Change the appropriate bits in word */ 

if ( ioctl(O, TIOCLSET, &word) == -1)/* Set the local word to word*/ 
perror("local_word.c: ioctl SET"), exit(l); /*Failure*/ 

exit (0); 
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Interprocess Communication 6 

This chapter describes three different methods of interprocess communication that can 
be used in programs: 

• Pipes 

• Signals 

• Sockets 

6.1 Pipes 
A pipe is a memory buffer. Each pipe holds up to PIPE_MAX bytes of data 
(PIPE_MAX, defined in <limits .h>, is usually 4096). Pipes are created by the 
pipe() system call, and are accessed by file descriptors contained in an integer 
array. 

Pipes can only be used between related processes: between parent and child, or 
between siblings (child processes from the same parent). Figure 6-1 depicts a parent 
process and child process communicating through a pipe. 

Figure 6-1: A Pipe 

fd[O] ... I' '\ ... fd[O] 

Parent Process 
4096 

Child Process Bytes 

fd[1] ... ~ .L ... fd[1] 

As Figure 6-1 shows, both processes can read to and write from the pipe, and each 
process can read the data it has written. Therefore, it is prudent to use pipes for one­
w~y communication by closing (with the close() system call) either the write or 
read end pf the pipe in each process, as shown in Figure 6-2. 



Figure 6-2: A One-Way Pipe 
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Bytes 
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The program in Example 6-1 creates a pipe, creates a child process, and then 
communicates with the child, as depicted in Figure 6-2. A child process has access 
to pipes created by its parent before the child was created. 

Example 6-1 : Creating a Child and a Pipe 

I* pipe.c Creates a pipe and a child process. The parent reads a 
line from stdin and writes it to the pipe. The child 
reads a line from the pipe and writes it to stdout. 

*I 

#include <stdio.h> 

main() 
{ 

int 

char 

pid, /* Process ID returned by fork() */ 
Number of bytes read from the pipe by the child */ n, I* 

fd[2]; /* Array that holds the pipe file descriptors */ 
par_line [81), /* Line buffer for parent */ 
chi line[81]; /* Line buffer for child */ -

if ( pipe (fd) -- -1 /* Create a pipe */ 
perror("pipe.c: pipe failed"), exit(l); 

if ( (pid = fork()) -- -1 ) /* Create a child */ 
perror("pipe.c: fork failed"), exit(l); 

if (pid == 0) 
{ 

/*Child process; execute child's code*/ 

else 
{ 

close(fd[l]); 
n = read(fd[OJ, chi line, 80); 
chi_line[n] = '\0'; 

/* Close write end of pipe */ 
/* Read from pipe */ 

printf("Child: your line was %s\n", chi_line); 
exit(O); /*Successful exit from child*/ 

/*Parent process; execute parent's code*/ 

close(fd[O]); 
printf("Enter line: "); 
gets (par_ line); 
write(fd(l], par line, 
wait(O); -
exit(O); 

/* Close read side of pipe */ 

/* Read a line from stdin */ 
strlen(par line));/* Write line to pipe*/ 

- /* Wait for child to exit */ 
/* Successful exit from parent */ 
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The following list contains information about pipes: 

• Processes communicating through pipes must be related: parent and child, or 
siblings. 

• By convention, always read file descriptor [ 0 J , and write file descriptor [ 1 J , in 
both parent and child. 

• Messages in pipes have no record boundaries; for example, a parent could write 
100 bytes, and a child could read 25 bytes 4 times, or the other way around. 

• A process can read its own data from a pipe. 

• Reading an empty pipe blocks the process; the process waits until there is 
something in the pipe to read, unless specific measures are taken. (See Section 
6.3.4.) 

• Writing to a full pipe (4096 bytes on most systems) blocks the process; the 
process waits' until the pipe empties enough to take the message, unless specific 
measures are taken. (See Section 6.3.4.) 

• If all write channels ( f d [ 1 J ) to a pipe are closed, the reader of that pipe will 
read an EOF when that pipe is empty. 

• Reads from a pipe destroy the data; the data in a pipe cannot be peeked at. 

6.1.1 Redirecting stdin, stdout, and stderr to Pipes 

ULTRIX provides up to 64 file descriptors per process (numbered 0-63), which the 
system uses as handles on various objects: disk files, special files, sockets, pipes, and 
others. The first three file descriptors in any process are: 

• File descriptor 0, Standard input (stdin) 

• File descriptor 1, Standard output (stdout) 

• File descriptor 2, Standard error (stderr) 

Subsequent file descriptors are allocated sequentially; a pipe () call, for example, 
returns file descriptor 3 for reading and 4 for writing. (In Example 6-1, these values 
are stored in f d [ 0 J and fd [ 1], respectively.) 

The dup () system call allocates a new file descriptor that points to an object already 
pointed to by a file descriptor. Therefore, dup () can be used to redirect a process's 
stdin, stdout, or stderr to a pipe. 

The idea is to create a pipe, then close (with the close () system call) an existing 
file descriptor, stdout for example, and then immediately call dup (), supplying the 
write channel to the pipe as the object to which the newly allocated descriptor points. 
Because dup () always allocates the lowest available file descriptor, it will allocate 
file descriptor 1, the descriptor given up when stdout was closed. Now, any writes to 
stdout (which the system knows as file descriptor 1) are written to the pipe. The 
writer, for example the ls shell command, writes to file descriptor 1 just as it always 
does, but now file descriptor 1 points to a pipe rather than stdout. Figure 6-3, Figure 
6-4, and Figure 6-5 depict what happens. 

Figure 6-3 shows the file descriptors that are allocated for a process and its child after 
a pipe has been created. The numbers in Figure 6-3 are the file descriptors for stdin, 
stdout, and stderr. The values of fd [ 0 J and f d [ 1 J are 3 and 4, respectively. 
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Figure 6-3: File Descriptors of Two Processes with a Pipe 
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Figure 6-4 depicts the processes in Figure 6-3 after the parent executes the following 
system calls: 

close(fd[O]); /* Clo~e the pipe read descriptor */ 
close(l); /*Close stdout */ 
dup(fd[l]); /*Allocate the lowest available descript~r, which */ 

/* is the just-closed 1, and make it point to what */ 
/* fd [1] points to (the pipe write descriptor) */ 

close(fd[l]); /*Close the original pipe write descriptor */ 

Figure 6-4: stdout Redirected in a Parent 
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Figure 6-5 depicts the processes in Figure 6-4 after the child executes the following 
system calls: 

close(fd[l]); 
close(O); 
dup(fd[O]); 

close (fd [OJ); 

/* Close the pipe write descriptor */ 
*/ 

Allocate the lowest available descriptor, which */ 
/* Close stdin 
/* 
/* 
/* 
/* 

is the just-closed O, and make it point to what */ 
fd[O] points to (the pipe read descriptor) */ 

Close the original pipe read descriptor */ 

Figure 6-5: stdout Redirected in a Parent, and stdin Redirected in a 
Child 
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Now, all four of the original file descriptors into and out of the pipe are closed. The 
parent's stdout writes to the pipe, and the child's stdin reads from the pipe. 

The program in Example 6-2 establishes the communication channels shown in 
Figure 6-5, then executes a shell command that writes to stdout (who) in the parent, 
and executes a shell command that reads from stdin ( we -1) in the child. 
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Example 6-2: Redirecting stdin and stdout to a Pipe 

/* redirect.c This program uses the dup() system call to implement 
this shell command: who I wc -1, which tells how many 
users are on a system. 

*/ 

#include <stdio.h> 

main() 
{ 

int pid, 
fd[2); 

/* Process ID returned by fork() */ 
/* Array that holds the pipe file descriptors */ 

if ( pipe(fd) == -1 /* Create a pipe */ 
perror("redirect.c: pipe failed"), exit(l); 

if ( (pid =fork()) == -1 ) /*Create a child*/ 
perror("redirect.c: fork failed"), exit(l); 

if ( pid == 0 ) 
{ 

/*Child process; execute child's code */ 

else 
{ 

/* Make 
close(fd[l]); 
close(O); 
dup(fd[O]); 
close(fd[OJ); 

stdin the read channel of the pipe and exec 'we' */ 
/* Close write side of pipe */ 

/* Close stdin (file descriptor 2) */ 
/* Make file descriptor 2 (stdin) same as fd[O) */ 

/* Close old read end of pipe */ 

if ( execlp ("we", "we", "-1", 0) == -1) /* Run we -1 */ 
perror("redirect.c child: execl failed"), exit(l); 

/*Parent process: execute parent's code*/ 

/* Make stdout 
close(fd[O]); 
close(l); 
dup(fd[l]); 
close(fd[l]); 

the write channel of the pipe and exec 'who' */ 
/* Close read side of pipe */ 

/* Close stdout (file descriptor 1) */ 
/* Make file descriptor 1 (stdout) same as fd[l] */ 

/* Close old write end of pipe */ 

if ( execlp("who", "who", 0) == -1 /* Run who */ 
perror("redirect.c parent: execlp failed"), exit(l); 

6.1.2 Creating Pipes with popen() 

Use the popen () library routine to create a child process to execute a Bourne shell 
(sh) command. A popen () call also creates a one-way pipe between the parent 
and child processes. The popen () routine is like a combination of pipe (), 
fork(), and exec(). Here is what the popen () library routine does: 

1. Creates a pipe 

2. Creates a child process 

3. Creates a Bourne shell in the child process that executes the shell command 
specified in the popen () call 

4. Causes the shell command to read or write the pipe to communicate with the 
parent process 
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5. Returns a standard 1/0 file pointer as the channel to the pipe for the parent to read 
or write 

Figure 6-6 illustrates what happens when the following popen ( ) call is made: 

#include <stdio.h> 
FILE *fp; 
fp = popen ("date", "r"); /* The parent can read the output of date */ 

/* using the standard I/O file pointer fp */ 

exit status pclose(fp); /*Close the file pointer*/ 

Figure 6-6: Calling popen() with date for Reading 
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The program in Example 6-3, who pipe. c, does what the program in Example 6-2 
does; it implements the shell command who I WC -1. But who pipe. c uses 
popen () rather than dup () . Figure 6-7 depicts what happens when who _pipe is 
run. 

Example 6-3: Creating Child Processes to Run Shell Commands 

/* who_pipe.c 

*/ 

#include <stdio.h> 
#include <ctype.h> 

main() 
{ 

char buf[133]; 
FILE * fp - read, 

*fp_write; 

if ( (fp_read 

Create two child processes to implement the shell 
command: who I wc -1 

/* A line buffer 
/* A file pointer that reads from the first pipe 
/* A file pointer that writes to the second pipe 

popen("who", "r")) == NULL ) /* Create a process 
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Example 6-3: (continued) 
perror("who_pipe: popen who"), exit(l); 

if ( (fp_write = popen("wc -1", "w")) 
== NULL ) 

perror("who_pipe: popen we"), exit(l); 

while ( fgets(buf, 132, fp_read) != 
fputs(buf, fp_write); 

NULL ) 

/* 
/* 
/* 

/* 
/* 
/* 
/* 

/* 
/* 
/* 
/* 

running 'who' that */ 
can be read from */ 
fp_read */ 

Create a process */ 
running 'we' that */ 
can be written to */ 
through fp_write *I 

Read a line from */ 
'who' (fp_read) */ 
and write it to */ 
'we' (fp_write) */ 

pclose(fp_read); 
pclose(fp_write); 

/* Close the file pointer */ 
/* Close the file pointer */ 

exit(O); /* Successful exit */ 

Figure 6-7: who_pipe.c 
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6.2 Signals 
UL TRIX defines a set of about 30 signals that can be delivered to a process. If a 
signal is not caught by the receiving process, that process is subject to the default 
behavior for processes receiving that signal, which can be termination, termination 
with a core image produced, or no action at all. 

Signals are caught by the sigvec () system call and the signal() library routine. 
This section discusses only signal () because it is an easier-to-use version of 
sigvec (). 

A process that uses signal () can take one of three actions for each type of signal 
it receives: 
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• Ignore the signal. The signal is discarded as if it were never sent. 

• Block the signal. The signal is queued but not delivered. 

• Catch the signal. Control is passed to a routine written by the user to handle a 
particular signal. 

To see all the signals available on your system, see s i gve c(2) in the ULTRIX 
Reference Pages. The following signals are some of the more common ones: 

• SIGINT, Interrupt (can be generated from a keyboard by Ctrl/C) 

• SIGQUIT, Quit 

• SIGKILL, Kill (cannot be caught, blocked, or ignored) 

• SIGSYS, Bad argument to system call 

• SIG STOP, Stop (cannot be caught, blocked, or ignored) 

• SIGPIPE, Write on a pipe with no reader 

• SIGALRM, Alarm clock 

• SIGFPE, Floating point exception 

• SIGIO, I/O has become possible on a descriptor 

• SIGUSRl, User-defined signal 1 

• SIGUSR2, User-defined signal 2 

Signals can only be sent between the following types of processes: 

• From the kernel to a process 

• Between parent and child processes 

• Between unrelated processes that have the same UID 

6.2.1 Catching Signals 
The s i gna 1 ( ) library routine can be used to catch signals. A process can catch 
many different signals and, except in the System V environment, once signal () is 
called for a particular signal type, that signal is caught each time it is received. (In 
the System V environment, it is caught only once; signal() must be recalled to 
catch the signal again.) 

The s i gna 1 ( ) routine takes two arguments. The first argument is the signal to 
catch, such as SIGINT. The second argument is what to do with the signal. The 
second argument can be the address of a signal handler function, or one of these 
values defined in <signal. h>: 

• SIG_IGN, ignore the signal 

• SIG_DFL, accept the default action for the signal, useful for resetting signal 
behavior 

• SIG_ERR, terminate the process 

The signal () routine returns the previous action for the signal. If the following 
call to signal () is the first for SIGINT in a program, the value of xis SIG_DFL 
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(default action), unless changed by the shell (see Section 6.2.2): 

x = signal(SIGINT, SIG_IGN); 

If a signal handler had been previously declared for SIGINT, the address of that 
handler would have been returned. 

The program in Example 6-4 ignores interrupts. If run, its infinite loop must be 
terminated some other way. 

Example 6-4: Ignoring a Signal 

/* signal. c 
*/ 

Catch the SIGINT (interrupt) signal and ignore it. 

#include <signal.h> 

main() 
{ 

signal(SIGINT, SIG_IGN); /* Ctrl/C will not stop this program, but*/ 
/* Ctrl/Z or kill -9 will. */ 

for(;;) 
printf("Looping forever. Ctrl/C is useless against me.\n"); 

6.2.2 Handling Signals 
The second argument to signal() can be the address of a signal handler. A 
routine that is declared to be a signal handler receives three arguments when the 
signal it handles is received by the process; it need not use any of them. The three 
parameters have the following syntax: 

signal_handler(int signal_number; long code; struct sigcontext *scp) 

• signal_ number is the value of the signal as defined in <signal. h>. 

• code is an additional piece of information, usually supplied with SIGFPE 
(floating point exception), that further specifies the cause of the signal; for 
example: 

FPE_INTOVF _TRAP, for integer overflow 

FPE_FLTDIV _TRAP, for floating-point division by zero 

ILL_RESAD_FAULT, for attempting to access a reserved address 

All codes are listed in <signal. h>. 

• scp points to a structure of type sigcontext, defined in <signal. h>. The 
sigcontext structure stores the process context before a signal was sent, in the 
event that it needs to be restored after receiving a signal. 

The program in Example 6-5 does not ignore the SIGINT signal; it handles it. 
SIGINT does stop write_ text. c, but not before the program cleans up after 
itself. 

6-10 Interprocess Communication 



Example 6-5: Handling a Signal 

/* write text.c 

*/ 

#include <stdio.h> 
#include <signal.h> 

main() 
{ 

Prompt for input, place input in file 'tmp'. 
If interrupted by CTRL/C, remove 'tmp' and exit. 

FILE *fp; 
char c; 
void sigint_handler(); 

/* File pointer to 'tmp' */ 
/* Character read from terminal */ 
/* The SIGINT signal handler */ 

if ( signal(SIGINT, SIG IGN) 
!= SIG_IGN ) 

signal(SIGINT, 
sigint_handler); 

/* 
/* 
/* 
/* 

/* If SIGINT is already being */ 
/* ignored, don't declare a */ 
/* handler for it (see text) */ 

Make sigint_handler handle all */ 
SIGINT signals. signal() blocks */ 
other SIGINTs while a SIGINT is */ 
being handled */ 

fp = fopen ( "tmp", "w") ; 
printf("Enter text.\n"); 
while ( (c=getchar()) != EOF) 

/* Open file 'tmp' for writing */ 
/* Prompt for text */ 

/* Get a char and write it to 'tmp' */ 
putc (c, fp); 

puts("EOF typed before CTRL/C"); 
exit(O); /* Successful exit */ 

void sigint_handler() 
{ 

/* Remove the file 'tmp', and kill this */ 
/* program. Do not return to main() */ 

if ( unlink("tmp") != -1) 
puts ("The tmp file has been removed .. ") ; 

exit(l); 

A signal sent from the keyboard, such as an interrupt (SIGINT), is sent to all 
processes associated with that terminal. However, the shell turns off interrupts sent 
to background processes (those started with an ampersand [ & ] at the end of their 
command line). That is why the program in Example 6-5 called signal() for 
SIGINT and tested its value (see Section 6.2.1) before declaring a handler for 
SIGINT. If write text. c declares that all SIGINTs are to be handled by its 
handler, then the shell does not tum off interrupts when the process is run in the 
background. The write text. c program tests the current state of interrupt 
handling, and continues to ignore interrupts if they are currently being ignored. 

If you want your program to detect and handle signals, but your program cannot be 
stopped just anywhere, have your signal handler merely set a flag and return. 
Execution resumes at the exact point the signal occurred. The flag can be tested after 
the crucial code path is complete. A similar strategy is signal blocking (see Section 
6.2.4). 

The program in Example 6-6 shows how to handle arithmetic exceptions and take an 
action based on the type of exception, as revealed in the code argument passed to 
the signal handler. The arith trap. c program also shows a difference between 
faults and traps. With traps, the-PC is incremented before a signal is handled; when 
execution returns from the signal handler, the next instruction is executed. With 
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faults, the PC is not incremented; when execution returns from the signal handler, the 
faulting instruction is executed again. Therefore, the signal handler in 
ari th_ trap. c exits after a fault. 

Example 6-6: Using a Signal Handler's code Argument 

/* arith_trap.c Establish a signal handler for arithmetic traps. 

*/ 

Create a division by zero trap and a floating-point 
overflow fault to try the mechanism. (Note that this 
program will not compile using c89 because the c89 
compiler detects the attempt to divide by zero.) 

#include <signal.h> 
#include <stdio.h> 

main() 
{ 

void sigfpe_handler(); 
short i, j; 
float r, s; 

/* The signal handler */ 
/* Variables used in causing the faults, */ 
/* thereby generating SIGFPE signals */ 

signal(SIGFPE, sigfpe_handler); /*Make the SIGFPE signal handler*/ 

j 0; 
i 32 I j; /* Cause a divide by zero arithmetic trap */ 

r 1.0e20; 
s r * r; /* Cause a floating-point overflow fault */ 

exit(O); /* Successful exit */ 

void sigfpe_handler(signal_nurnber, code) 
int signal_nurnber, code; 

printf("Signal %d received\t", signal_number); 

switch (code) 
{ 

case FPE INTOVF TRAP 

case FPE INTDIV TRAP 

puts("Integer Overflow"); 
break; 

puts("Integer Division by Zero"); 
break; 

case FPE FLTOVF FAULT: puts("Floating Overflow Fault"); 

default: 
printf ("Code 
exit(l); 

6.2.3 Sending Signals 

e·xit (1); /* Because the PC points to */ 
/* the faulting instruction */ 

%d\n", code); 

Signals can be sent from a keyboard. To see which signals are mapped to keys on 
your keyboard, issue the command stty everything. Signals sent from a 
keyboard are received by all processes in the process group associated with the 
terminal. 
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Signals can be sent between related processes: parent and child, and siblings. A 
Process sends a signal to another process by using the k i 11 ( ) system call, which 
takes the process ID of the receiving process as its first argument, and the signal to 
be sent (such as SIGPIPE) as its second argument. 

A process sends a signal to a process group by using the killpg () system call, 
which is the same as kill () except that the first argument is the process group ID. 
(Process group IDs are returned by the getpgrp () system call.) 

The program in Example 6-7, has a parent process send a signal to its child, which 
handles the signal and exits. 

Example 6-7: Sending a Signal Between Processes 

/* signal_child.c Parent process sends SIGINT to a child process. 
The child process handles the signal and exits. 

*/ 

#include <signal.h> 
#include <stdio.h> 

main() 
{ 

int pid; /*The child's process ID returned by fork() */ 
void SIGINT_handler(); /*The signal handler routine*/ 

if ( (pid =fork()) == 0) /*Child process; execute child's code*/ 
{ 

else 

signal(SIGINT, SIGINT_handler); 
pause(); 

/* Make signal handler */ 
I* Wait for a signal */ 

sleep(l); 
kill(pid, SIGINT); 
wait(O); 
exit(O); 

/*Parent process; execute parent's code*/ 

/* Wait a second for child to be born */ 
/* Send signal to child */ 

/* Wait until child terminates */ 
/* Successful exit */ 

void SIGINT handler(signal number) 
int signal_number; -

/* Identify the signal received */ 
/* (SIGINT = 2) and exit */ 

printf("Signal %d received from parent.\n", signal number); 
exit(O); /*-Successful exit*/ 

6.2.4 Blocking Signals 
A signal can be blocked to protect certain sections of code from receiving signals 
when the work being done should not be interrupted. Unlike ignoring a signal, 
blocking a signal merely postpones it until the process is ready to handle the signal, 
after the crucial code section has been executed. 

A blocked signal is put in a queue and handled as soon as the block is released. The 
order in which the blocked signals are released is implementation dependent. 
Multiple occurrences of the same signal are not saved. 

The sigblock () system call blocks signals through the use of a signal mask; if the 
nth bit in the mask is set, signal n is blocked. (See <signal. h> for the values of 

Interprocess Communication 6-13 



signals.) After the crucial code has been executed, the sigpause () system call is 
used to release any blocked signals from the queue, and restore the old mask: 

long oldmask; 

oldmask = sigblock(O); 
sigblock(SIGSYS I SIGTRAP); 

/* Get the current mask */ 
/* Block SIGSYS and SIGTRAP */ 

/* Code protected from SIGSYS and SIGTRAP goes here */ 

sigpause(oldmask); /* Release blocked signals and restore old mask */ 

6.2.5 Signals and Timers 
The alarm () library routine sends the SIGALRM signal to the calling process. 
SIGALRM terminates the process if it is not caught or blocked. The program in 
Example 6-8 shows how use a 1 a rm ( ) . 

Example 6-8: Using alarm() 

/* alarm.c Use alarm() to send SIGALRM in the number 
of seconds specified on the command line 

*/ 

#include <signal.h> 
#include <stdio.h> 

main(argc,argv) 
char **argv; 
int argc; 

void sigalrm_handler(); 
char *strcpy (); 

if (argc != 2) { 
fprintf(stderr, "Usage: %s seconds\n", argv[O]); 
exit(l); 

signal(SIGALRM, sigalrm_handler); /* Make SIGALRM handler */ 

alarm((unsigned) atoi(argv[l])); /*Make argv[l] an unsigned int, */ 
/* and send SIGALRM in argv[l] seconds */ 

pause(); 

printf ("Back in main() .\n"); 

void sigalrm_handler() 
{ 

/* Block until the signal is delivered */ 

/* SIGALRM handler */ 

printf ("Awake after alarm. \n"); 
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6.2.5.1 Timed Intervals 

For each process, the system provides three timers that take a starting value and 
count down to zero: 

• ITIMER_REAL, which counts down in real time. A SIGALRM signal is sent 
when ITIMER_REAL expires. 

• ITIMER_ VIRTUAL, which counts down in process virtual time (runs only while 
the process has the CPU in nonsystem mode, also known as user mode). A 
SIGVTALRM is sent when !TIMER_ VIRTUAL expires. 

• ITIMER_PROF, which counts down in both process virtual time and when the 
system is running on behalf of the process. This timer is meant to be used for 
code profiling. A SIGPROF signal is sent when ITIMER_PROF expires. 

These timers are set with the set it imer () system call, which takes two 
arguments, and an optional third argument. The first argument is the name of the 
timer to be set (such as ITIMER_REAL). The second argument is the address of an 
it ime rv a 1 structure, defined in <time . h>, which contains the amount of time to 
count down for the first iteration, and the amount of time to count down for 
subsequent iterations. The itimerval structure is shown in Example 6-9. 

Example 6-9: The itimerval Structure 

struct itimerval { 
struct timeval it_interval; 

struct timeval it_value; 

} ; 

struct timeval 
long tv sec; 
long tv_usec; 

} ; 

/* Time to count down 
after the first */ 

/* Time to count down 
the first time */ 

/* Seconds */ 
/* Microseconds */ 

If itimerval. it interval is zero, the timer counts down once; if it is non­
zero, the timer repeats for the life of the process. A signal (SIGALRM, 
SIGVTALRM, or SIGPROF, depending on the timer used) is sent after it value 
time elapses, and a signal is sent thereafter each time it _interval time elapses. 

The optional third argument is also the address of an it ime rv a 1 structure; this one 
is used for receiving the previous values contained in i timerval. 

The getitimer () system call gets the current values in the itimerval structure 
for the specified timer. The program in Example 6-10 shows how setitimer and 
getitimer can be used. 
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Example 6-10: Using setitimer and getitimer 

/* timer.c Illustrate the use of the setitimer() and getitimer() 
system calls. 

*/ 

#include <signal.h> 
#include <time.h> 
#include <stdio.h> 

main() 
{ 

short i, j; 
void announce(); 

/* Loop counter and generic variable */ 
/* SIGALRM's signal handler */ 

struct itimerval val, current_val; /* Defined in <time.h> */ 

signal(SIGALRM, announce); 

val.it interval.tv sec = 3; 
val.it-interval.tv-usec = 0; 
val.it value.tv sec = 10; 
val.it-value.tv-usec = 0; 

/* Handler for SIGALRM */ 

/* Count 3 sec. each time after first */ 
/* Microseconds */ 

/* Count 10 seconds the first time */ 
/* Microseconds */ 

setitimer(ITIMER_REAL, &val, 0); /* Start the timer */ 

for(i = 0 ; i < 100000; i++) 
{ 

j = (i*34987 + 89320.5)/41; /* Waste time */ 

if ( (i % 25000) == 0 ) /* Occasionally show how much time remains */ 
{ 

getitimer(ITIMER REAL, &current val); 
printf("it value: %d\n", current val.it value.tv sec); 
printf("i<)nterval: %d\n", current_val-:-it_inter-;al.tv_sec); 
} 

void announce() 
{ 

puts("\nTimer expired\n"); 

6.3 Sockets 
Sockets are another interprocess communication mechanism. Sockets are similar to 
pipes, except the communicating processes need not be related, and there is only a 
single channel for each process, but this channel is full duplex (two-way read and 
write). 

Sockets are created with a domain. The domains supported on your system can be 
found in <socket. h>. Here are a few common domains: 

• AF_ UNIX, for processes on the same node 

• AF _!NET, (internet) for processes on different nodes using TCP/IP 

• AF _DECnet, for processes on different nodes using DECnet 

• AF _SNA, for processes on different nodes using SNA 
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Each socket has a certain type, which defines its communication semantics. The 
following list shows the most common types and their attributes (see <socket. h> 
for all types on your system): 

• Stream: SOCK_STREAM 

- Available in all domains 

- A connected socket 

- Data is sequenced, reliable, and unduplicated 

- Record boundaries are not preserved (for example, 10 bytes can be written 
three times, then all 30 bytes can be read at once) 

• Datagram: SOCK_DGRAM 

- Available only in AF _UNIX and AF _!NET domains 

- An unconnected socket 

- Data is not guaranteed·to be sequenced, reliable, or unduplicated (user 
protocols must be used) 

- Record boundaries are preserved 

• Sequenced Packet: SOCK_SEQPACKET 

- Available only in AF _DECnet domain 

- Same as stream, but record boundaries are preserved 

• Raw: SOCK_RA W 

- No specific semantics 

- Used for unprocessed access to internal network layers 

If a process reads a datagram socket immediately after writing to it, it can read back 
its own message. This is not true of stream sockets. 

For each socket in a program, there must be a structure that receives the socket name. 
Each structure is defined in a header, as shown in Table 6-1. 

Table 6-1: Socket Name Structures 

Domain 

AF_UNIX 

AF_INET 

AF DECnet 

Structure 

sockaddr un 

sockaddr in 

sockaddr dn 

Header 

<un.h> 

<netinet/in.h> 

<netdnet/dn.h> 

6.3.1 Using a Datagram Socket Between Processes on the Same Node 

The two example programs in this section communicate through a datagram socket in 
the AF _UNIX domain (which means both processes must be on the same node). Both 
programs must obtain a socket descriptor and close the socket when they are through, 
but only one binds a name to the socket and removes the socket file after closing the 
socket, as shown in Table 6-2. 
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Table 6-2: System Calls for Datagram Socket Communication 

Server Program 

sd =socket(); 

bind() ; 

Get a socket descriptor 
(like a file descriptor). 

Name the socket. The 
name is used by both 
processes to 
communicate through 
the same socket. 

sendto () ; recvfrom () ; Send and receive 
messages 

c 1 o s e ( ) ; Close the socket. 

unlink () ; Remove the socket file 
(AF_ UNIX domain 
only). If the file is not 
removed, future 
attempts to bind to a 
socket of the same 
name will fail. 

Client Program 

sd =socket(); 

sendto(); recvfrom(); 

close(); 

The program in Example 6-11 creates a datagram socket and reads from it. The 
program in Example 6-12 writes to that socket. Figure 6-8 illustrates how these two 
independent processes communicate. Their only connection is that both use the same 
socket name. 
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Figure 6-8: Communicating Through a Datagram Socket 

Process 1 

/* Read_datagram.c */ 

strcpy(sock_name.sun_path, 
"/tmp/socket"); 

sd =socket( ... ); 
bind( ... ); 

Process 1 blocks, waiting for 
the socket to be written to. 

Process 1 

/* Read_datagram.c */ 

recvf rom ( ... ) ; 

sd 

/tmp/socket 

Process 2 

"/tmp/socket"); 
sd =socket( ... ); 
sendto ( ... ); 

Process 2 writes to the socket, 
unblocking process 1. 
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Example 6-11 : Creating and Reading a Datagram Socket 

/* read_datagram.c Use a datagram socket to read 5 messages from 
write_datagram.c. AF_UNIX domain: no networking. 

*I 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 

main () 
{ 

int sd, 
i, 
status; 

char buf[80]; 
struct sockaddr_un sock_name; 

/* Socket descriptor */ 
/* for loop counter */ 
/* Status */ 
/* Buffer to hold the messages */ 
/* Defined in <sys/un.h> */ 

strcpy(sock_name.sun_path, "/tmp/socket"); /*Declare the socket*/ 
/* file by copying the name into sock name */ 

sd socket(AF_UNIX, 
SOCK_DGRAM, 
0) ; 

/* Get a socket descriptor, AF UNIX domain */ 
-/* Datagram */ 

/* Use default protocol */ 

if ( sd == -1) 
perror("read_datagram.c: socket"), exit(l); 

status =bind( /* Bind the descriptor to the name */ 
sd, /* Socket descriptor */ 
&sock_name, /* Structure containing the name */ 
sizeof(sock_name)); /*Size of structure*/ 

if ( status == -1 ) 
perror("read_datagram.c: bind"), exit(l); 

for (i = 0 
{ 

i < 5 ; i++) /* Read 5 messages from the socket */ 

status recvfrom( 

if ( status == -1 

sd, 
buf, 
sizeof (buf) , 
0, 0, 0); 

/* Get a message */ 
/* Socket descriptor */ 

/* A message */ 
/* Size of the message */ 

/* No flags */ 

perror("read_datagram.c: recvfrom"), exit(l); 

printf("%s\n", buf); 

close(sd); 

unlink("/tmp/socket"); 

/* Print a message */ 

/* Close the socket */ 

/* Remove the socket file (necessary */ 
/* only in AF UNIX domain) */ 

The compiled version of read datagram. c must be run first. Then 
write_datagram. c must be run on the same node. 
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Example 6-12: Writing to a Datagram Socket 

/* write_datagram.c datagram sockets employed to write 5 messages to 
read_datagram.c. AF UNIX domain; no networking. 

*/ 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 

main() 
{ 

int sd, /* Socket descriptor */ 
i, 
status; 

/* for loop counter */ 
/* sendto()'s status */ 

static char msg[] = "socket message "; 
char str[20]; 

/* The basic message sent */ 
/* The actual message sent */ 
/* Defined in <sys/un.h> */ struct sockaddr_un sock_name; 

strcpy(sock name.sun path, 
"/tmp/socket"); 

/* Declare the socket file by copying */ 
/* the name into sock name. */ 

sd socket(AF_UNIX, 
SOCK_DGRAM, 
0) ; 

/* Get a socket descriptor, AF UNIX domain */ 
-/* Datagram */ 

/* Use default protocol */ 

if ( sd == -1 ) 
perror("write_datagram.c: socket"), exit(l); 

for (i = 0 ; i < 5 ; i++)/* Write 5 messages to socket in sendto() */ 

sprintf (str, "%s%d", msg, i); /* Form message */ 

status = sendto(sd, /* Socket descriptor */ 
str, /* Message */ 
sizeof(str), /*Size of message*/ 
0, /* No flags */ 
&sock name, /* The sockaddr un structure */ 

- /* containing the socket file name */ 
sizeof(sock_name)); /*Size of structure*/ 

if ( status == -1 ) 
perror("write_datagram.c: sendto"), exit(l); 

close(sd); 

unlink("/tmp/socket"); 

/* Close the socket */ 

/* Remove the socket file (necessary */ 
/* only in AF_UNIX domain) */ 

6.3.2 Using a Stream Socket between Processes on the Same Node 

The two example programs in this section communicate through a stream socket in 
the AF _UNIX domain (which means both processes must be on the same node). Both 
programs must obtain a socket descriptor and close the socket when they are through, 
but only one binds a name to the socket and removes the socket file after closing the 
socket, as shown in Table 6-3. 
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Table 6-3: System Calls for Stream Socket Communication 

Server Program 

sd =socket(); 

bind(); 

listen(); 

accept(); 

send() ; recv () ; 

close(); 

unlink (); 

Get a socket descriptor (like a file 
descriptor). 

Name the socket. The name is 
used by both processes to 
communicate through the same 
socket. 

Specify how many connection 
requests can be queued to this 
socket. 

Wait for a connection (or take the 
next one in the queue) and create a 
new socket descriptor for it. By 
default, the process blocks if no 
connections are pending, and 
unblocks when a connect request is 
made. 

Request a socket connection. 

Send and receive messages. 
NOTE: not sendto () and 
recvfrom (),as with datagrams. 

Close the socket. 

Remove the socket file (AF _UNIX 
domain only). If the file is not 
removed, future attempts to bind to 
a socket of the same name will 
fail. 

Client Program 

sd =socket(); 

connect(); 

send(); recv(); 

close(); 

The program in Example 6-13 creates an AF_ UNIX domain stream socket and writes 
to it. The program in Example 6-14 reads everything from the socket in a single 
read; record boundaries are not preserved. 

Example 6-13: Creating and Writing to a Stream Socket 

/* write stream.c Create an AF UNIX domain (same node) stream 
socket and w~it for read stream.c to connect 
to that socket. Send 5 messages to read_stream.c. 

*/ 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 

main() 
{ 

int sd, 
newsd, 
i, 
status; 
static char msg[] = "socket message"; 
char str [20]; 
struct sockaddr un sock_name; 
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/* Socket descriptor 
/* New socket descriptor 
/* for loop counter 
/* Status 

*/ 
*/ 
*/ 
*/ 

/* 
/* 
I* 

The basic message sent */ 
The actual message sent */ 
Defined in <sys/un.h> */ 



Example 6-13: (continued) 
strcpy(sock name.sun path, "/tmp/stream"); /*Declare the socket*/ 

- - /* file by copying the name into sock name */ 

sd socket(AF_UNIX, /*Get a socket descriptor, AF_UNIX domain*/ 
SOCK_STREAM, /* Stream socket */ 
0); /*Use default protocol*/ 

if ( sd == -1 ) 
perror("write_stream.c: socket"), exit(l); 

status = bind( /* Bind the descriptor to the name */ 
sd, /* Socket descriptor */ 
&sock_name, /* Structure containing the name */ 
sizeof(sock_name)); /*Size of structure*/ 

if ( status == -1 ) 
perror("write_stream.c: socket"), exit(l); 

if (listen(sd, 3) == -1) /* 3 connect requests can be queued to sd */ 
perror("write_stream.c: listen"), exit(l); 

newsd = accept(sd, 

0, 
0) ; 

if ( newsd == -1 ) 

/* Block, or accept the first pending */ 
/* connection, returning a new socket */ 
/* descriptor for the new connection. */ 

/* An unused result parameter */ 
/* An unused result parameter */ 

perror("write_stream.c: accept"), exit(l); 

for ( i = 0 ; i < 5 ; i++) /* Write 5 messages to the */ 
/* new socket descriptor */ 

sprintf(str, "%s%d", msg, i); 

status = send(newsd, 
str, 
strlen ( str) , 
0); 

if ( status == -1) 

/* Form the message */ 

/* Socket descriptor to write to */ 
/* String to write */ 

/* Length of the string */ 
/* No flags */ 

perror("write_stream.c: send"), exit(l); 

close(sd); 
close(newsd); 
unlink("/tmp/stream"); 

/* Close the socket descriptor */ 
/* Close the socket descriptor */ 

/* Remove the socket file */ 

The compiled version of write st ream. c must be run first. Then 
read st ream. c must be run on the same node. 

Example 6-14: Reading from a Stream Socket 

/* read stream.c Read 5 messages in a single recv() call through 
a stream socket. 

*/ 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
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Example 6-14: (continued) 
main() 
{ 

int sd, 
count, 
status; 
char buf[200]; 
struct sockaddr_un sock_name; 

/* Socket descriptor */ 
/* Number of bytes read by recv() */ 
/* Status */ 
/* A buffer to hold the message */ 
/* Defined in <sys/un.h> */ 

strcpy(sock name.sun path, "/tmp/stream"); /*Declare the socket*/ 

sd 

- - /* file by copying the name into sock name */ 

socket(AF_UNIX, 
SOCK_STREAM, 
0); 

/* Get a socket descriptor, AF UNIX domain */ 
/* Stream socket */ 

/* Use default protocol */ 

if ( sd == -1 ) 
perror{"read_stream.c: socket"), exit(l); 

status= connect{sd, /*Block, or get a connection to sd */ 
&sock_name, /* Structure containing the name */ 
sizeof(sock_name)); /*Size of structure*/ 

if (status == -1 
perror("read_stream.c: connect"), exit(l); 

sleep(3); /* Allow writer time to send all the messages */ 

count 
/* Read all messages from 
recv( /* Returns number 

sd, 
buf, 
sizeof(buf), 
0) ; 

if ( count == -1 

server with one large recv{) call */ 
of bytes read (0 = closed socket) */ 
/* Socket descriptor to read from */ 

/* Buffer to hold what is read */ 
/* Size of the buffer */ 

/* No flags */ 

perror("read_stream.c: recv"), exit(l); 

printf("%.*s\n\n", couht, buf); /*Write buffer contents to stdout */ 

close(sd); /*Close the socket descriptor*/ 

6.3.3 Using a Stream Socket between Processes on Different Nodes 

Sockets created in the AF _!NET domain can communicate across a TCP/IP network. 
AF _!NET sockets must have their names placed in a sockaddr in structure, 
defined in <netinet/in.h>. Filling in the members of this structure is the chief 
difference between using an AF _INET domain socket and an AF_ UNIX socket. 

The program in Example 6-15 creates an AF _!NET stream socket on node rust, 
then listens for connections. The program in Example 6-16 connects to that socket 
and writes to the process running the program in Example 6-15. 
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Example 6-15: Reading a Stream Socket Across an Internet Network 

/* inet server.c Bind port Ox1234 on node "rust" and accept a 
connection from inet client.c on another node. 
Read a message from inet client.c and write it 
to stdout. 

*/ 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 

#define PORT Ox1234 /*Pick a port number (like a descriptor), but*/ 
/* Ox0-0x1023 is reserved for root */ 

main() 
{ 

int sd, /* Socket descriptor */ 
newsd, /* Socket descriptor */ 
count; /* Number of bytes read by recv() */ 
char buf[lOO]; /* Buffer to hold the message read */ 
struct sockaddr in sin; /* Defined in <netinet/in.h> */ 

/* Get a stream socket descriptor in the Internet domain */ 
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) 

perror("inet_server.c: 

bzero(&sin, sizeof(sin)); 
sin.sin_family = AF_INET; 
sin.sin_port = htons(PORT); 

socket"), exit(l); 

/* Fill in the sockaddr in structure */ 
/* Fill the structure with zeros */ 

/* Internet domain */ 
/* Convert host to network byte order */ 

if (bind(sd, &sin, sizeof(sin)) -1) /*Bind the port number*/ 
perror("inet server.c: bind"), exit(l);/* to the socket */ 

/* Specify number of connection requests */ 
if (listen(sd, 5) == -1) /* that can be queued to server process */ 

perror("inet server.c: listen"), exit(l); 

if ((newsd = accept(sd, 0, 0)) == -1) /*Wait for connect request*/ 
perror("inet_server.c: accept"), exit(l); 

/* Read the message from the client */ 
if ((count= recv(newsd, buf, sizeof(buf), 0)) == -1) 

perror("inet server.c: recv"), exit(l); 

printf("Message received:\n%.*s\n", count, buf); /*Print message*/ 

close(sd); 
close(newsd); 
exit(O); 

/* Close the socket descriptor */ 
/* Close the socket descriptor */ 

The compiled version of inet server. c must be run on node rust before 
inet client is run. inet client can be run on node rust or any node 
connected to rust by TCP /IP. 
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Example 6-16: Writing a Stream Socket Across an Internet Network 

/*inet_client.c Form a connection with inet server.c at port Ox1234 
on node "rust" and write a message to the server 

*/ 

#include <sys/types.h> 
#include <netdb.h> 
#include <netinet/in.h> 
#include <sys/socket.h> 

#define PORT Ox1234 

main() 
{ 

/*Pick a port number (like a descriptor), but*/ 
/* 0-1023 is reserved for root */ 

int sd; /* Socket descriptor */ 
static char msg[] = "Socket message through the Internet domain"; 
struct sockaddr_in sin; /* Defined in <netinet/in.h> */ 
struct hostent *hp; /* Defined in netdb.h; used by gethostbyname() */ 

/* Put data about the remote node in a hostent structure */ 
if ((hp = gethostbyname ("rust")) == 0) 

perror("inet_client.c: gethostbyname"), exit(l); 

/* Fill in the sockaddr_in structure */ 
bzero(&sin, sizeof(sin)); /*Fill the structure with zeros*/ 
bcopy(hp->h addr, &sin.sin_addr, hp->h length);/* Copy host address*/ 
sin.sin_famTly = hp->h addrtype; - /* Copy address type */ 
sin.sin_port = htons(PORT); /*Convert host to network byte order*/ 

/* Get a stream socket descriptor in the Internet domain */ 
if ({sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) 

perror("inet_client.c: socket"), exit(l); 

/* Connect to the remote server (port Ox1234 at "rust") */ 
if (connect(sd, &sin, sizeof(sin)) == -1) 

perror("inet_client.c: connect"), exit(l); 

if (send(sd, msg, sizeof(msg), 0) == -1) /*Write a message to*/ 
perr~r("inet_client.c: write"), exit(l); /*the remote server */ 

close(sd); 
exit (0); 

6.3.4 Socket Flow Control 

Processes communicating through sockets can be blocked (prevented from executing 
further). A socket-writing process is blocked if more than 4K bytes remain unread in 
the socket. A socket-reading process is blocked if the socket is empty. To avoid 
being blocked under these conditions, programs can use the f cntl () system call. 
To determine if a socket is ready for I/0, and to optionally be blocked if it is not, 
programs can use the select () system call. 

A process that writes to a socket with no readers receives a SIGPIPE signal. Without 
a SIGPIPE signal handler, the process terminates. 
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6.3.4.1 Using fcntl() to Prevent Blocking 

During 1/0, the f cntl () system call can prevent a process from being blocked to a 
single descriptor. 

#include <fcntl.h> 

result fcntl (sd, /* Socket to act on *I 
F_SETFL, /* Set flags (the flag is FNDELAY) *I 
FNDELAY); /* No delay. If read or write call would */ 

I* block, the read or write call returns */ 
/* -1 and sets errno to EWOULDBLOCK. The *I 
/* program continues *I 

After executing the previous code to prevent being blocked, the process can 
continually try the 1/0 until it is possible. However, using the FASYNC flag causes 
a SlGIO signal to be sent to the process when non-blocking 1/0 is possible: 

#include <fcntl.h> 

result fcntl (sd, 
F_SETFL, 
FASYNC); 

/* Socket to act on */ 
/* Set flags (the flag is FASYNC) */ 
/* Send a SIGIO signal to the process */ 
/* when non-blocking I/O is possible */ 

A program that uses the preceding call to f cntl () must have a SlGlO signal 
handler. 

6.3.4.2 Using select() to Determine Descriptor Status 

The select () system call determines whether any of a set of descriptors is ready 
for 1/0; for example: 

#include <sys/time.h> 

struct timeval *timeout; 
int nfound, num_fds, *readfds, *writefds, *execptfds; 

nf ound = select ( I* Returns the number of ready descriptors 
num_fds, I* Check first num fds bits (descriptors) 
readfds, I* Bit mask of descriptors to be read 
writefds, I* Bit mask of descriptors to be written 
execptfds, /* Bit mask of descriptors with exception 

/* conditions pending 
timeout); I* How much time to wait for select () 

Descriptor n is checked if bit n is 1 in any of the three bitmasks. Therefore, 
descriptor sd can be added to a bit mask using the following statement: 

mask I= 1 << sd; 

The select () call clears bits from masks for the descriptors that are not ready; that 
is, the bit mask parameters receive return arguments that are bit masks depicting 
which descriptors are ready for I/0. 

If timeout is 0, select () blocks the process until a descriptor specified in one 
of the mask arguments is ready for 1/0. Otherwise, timeout must be a pointer to a 
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timeval structure (defined in <sys/time. h>): 

struct timeval 
long tv_sec; /* Seconds */ 
long tv_usec; /* Microseconds */ 

} ; 

If the values in the timeval structure are 0, select() polls each descriptor only 
once. Otherwise, the descriptors are polled continuously until the specified time has 
elapsed. 

The program in Example 6-17 makes an AF_ UNIX stream socket, accepts a 
connection, waits awhile, then writes to the socket. The program in Example 6-18 
connects to the socket and uses select ( ) to block the process until something is 
written to the socket. 

Example 6-17: A Slow Socket Writer 

/* slow writer.c Make an AF UNIX stream socket, accept a connection, 
waste some time, then send a message. 

*/ 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 

main(} 
{ 

int sd, newsd; /* Socket descriptors */ 
static char message[] = "Was this message worth waiting for?"; 
struct sockaddr_un sock_name; /* Defined in <sys/un.h> */ 

strcpy(sock_name.sun_path, "/tmp/socket"); /* Name the socket */ 

/* Get a socket descriptor */ 
if ( (sd = socket(AF_UNIX, SOCK_STREAM, 0)) == -1) 

perror("slow_writer.c: socket"), exit(l); 

/* Bind the descriptor to the name */ 
if ( bind(sd, &sock_name, sizeof(sock_name)) == -1) 

perror("slow_writer.c: bind"), exit(l); 

/*Make the descriptor's connection queue 5 connections long*/ 
if listen(sd, 5) == -1 ) 

perror("slow_writer.c: listen"), exit(l); 
/* Block until there is a connection request */ 

if ( (newsd = accept(sd, O, 0)) == -1) 
perror("slow_writer.c: accept"), exit(l); 

sleep(5); 

if ( send(newsd, message, strlen(message), 0) 
== -1 ) 

perror("slow_writer.c: send"), exit(l); 

/* Waste 5 seconds */ 

/* Send a message */ 

close(sd); 
close(newsd); 
unlink("/tmp/socket"); 

/* Close the descriptor */ 
/* Close the descriptor */ 

/* Remove the socket file */ 
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Example 6-18: Using select() to Wait on a Stream Socket 

/* patient_reader.c Use select() to determine when a message can be 
read from an AF UNIX domain stream socket 

*/ 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 

main() 
{ 

int sd, 
count, 
nfound, 
rmask = O; 

char buf[80]; 
struct sockaddr 

/* Socket descriptor */ 
/* Number of bytes returned by recv() */ 
/*Number of descriptors found by select() */ 
/* Bit mask of descriptors ready for reading */ 
/* Buffer to hold the message read */ 

un sock_name; /* Defined in <sys/un.h> */ 

strcpy(sock_name.sun_path, "/tmp/socket"); /* Name the socket */ 

/* Get a socket descriptor */ 
if ( (sd = socket(AF_UNIX, SOCK_STREAM, 0)) == -1) 

perror("patient_reader.c: socket"), exit(l); 

/* Request a connection */ 
if ( connect(sd, &sock name, sizeof(sock_name)) == -1) 

perror("patient_reader.c: connect"), exit(l); 

rmask I= 1 << sd; /* Set the bit for the sd descriptor */ 

nfound =select( /*Returns the number of ready descriptors */ 
32, /* Check descriptors (bits) 0-31 */ 
&rmask,/* Descriptors checked for read readiness */ 
0, /* Check no descriptors for write readiness */ 
0, /* Check no descriptors for exceptions */ 
0); /*Block until sd can be read */ 

if ( nfound == -1 ) 
perror("patient_reader.c: select"), exit(l); 

/* After select unblocks, print some data and read the message */ 
printf ("Number of desc. found= %d\nReturned select mask= %x\n", 

nfound, rmask); 

if ( (count= recv(sd, buf, sizeof(buf), 0)) == -1) 
perror("patient_reader.c: recv"), exit(l); 

/* Print the message */ 
printf("Message through socket: %.*s\n", count, buf ); 

close(sd); /* Close the descriptor */ 

The slow_writer program (Example 6-17) must be run before the 
patient_reader program (Example 6-18). Both programs must be run on the 
same node. 
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6.3.5 Special Stream Socket Features 
Stream socket messages have two special abilities: the ability to be peeked at, and the 
ability to skip to the front of the message queue (out-of-bounds messages). 

6.3.5.1 Peeking at a Message 

Figure 6-9 shows a typical message queue between two processes communicating 
through an AF_ UNIX domain stream socket. 

Figure 6-9: Socket Message Queue 

Process 1 

sd 

;-~-LM:..:.=es=s=a~g~e~1,--~._.sd Process 2 

The reading process receives the data in the order sent. When a message is read, it is 
removed from the queue. But when a message is peeked at, it remains in the queue. 
The peeking process gets a preview of the next message without reading it and, 
hence, removing it from the queue. Peeking is accomplished with the MSG _PEEK 
argument to recv (): 

count = recv(sd, /* Socket descriptor to peek */ 
buf, /* Character array to hold the message */ 
sizeof(buf), /*How many bytes to read */ 
MSG_PEEK); /*Just peek; don't remove bytes from socket*/ 

6.3.5.2 Sending and Receiving Out-of-Bounds Messages 

A process writing to a socket can send an out-of-bounds message to that socket by 
using the MSG_ OOB argument to send (): 

status = send(newsd, 
message, 
sizeof (message), 
MSG_OOB); 

/* Socket descriptor to write to */ 
/* Message to write */ 
/* How many bytes to write */ 
/* Send the message out of bounds */ 

An out-of-bounds message uses a parallel socket channel, bypassing all messages in 
the queue. In Figure 6-10, process 1 writes three normal messages to a socket, and 
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then writes an out-of-bounds message (message 4) to that socket. Process 2, which 
has connected to that socket, receives a SIGURG signal, meaning that an out-of­
bounds message has been sent to the socket it is connected to. Process 2 can now 
read either message 1, or the out-of-bounds message 4. Typically, a SIGURG signal 
handler is invoked by a reading process to read out-of-bounds messages. 

Figure 6-10: Out-of-Bounds Message 

Process 1 

sd 

The process reading the stream socket receives a SIGURG signal when an out-of­
bounds message arrives. Out-of-bounds messages are read by using the MSG_ OOB 
argument to recv (): 

count = recv ( sd, 
buf, 
sizeof(buf), 
MSG_OOB); 

*/ /* Socket descriptor to peek 
/* Character array to hold the 
/* How many bytes to read 

message */ 

/* Read the out-of-bounds message, 
/* not the next regular message 

*I 
*/ 
*I 

6.3.6 Additional Socket Information 

The following sections discuss ancillary socket features. 

6.3.6.1 Special Socket Options 

The getsockopt () and setsockopt () system calls can be used to get and set 
special socket options. For more information, see setsockopt(2) and 
getsockopt(2) in the ULTRIX Reference Pages. 

6.3.6.2 Using read() and write() 

The read () and write () system calls can be used on socket descriptors just as 
they are on file descriptors. However, out-of-band messages and message peeking 
cannot be used. 
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6.3.6.3 Closing Halves of a Socket 

Sockets are full duplex connections (read and write both directions). To close half of 
a socket, making it read-only or write-only for a particular process, the 
shutdown () system call can be used; for example: 

shutdown(sd, /* The socket descriptor to act on */ 
0); /* 0 stops reading, 1 stops writing, 2 stops both*/ 

Any pending send(), recv (),write(), and read() calls are flushed (not 
discarded), so messages are not lost. 
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Writing Secure Programs 7 

This chapter presents security guidelines for these programming tasks: 

• Using open file descriptors 

• Responding to signals 

• Specifying a secure search path 

• Protecting permanent and temporary files 

• Handling errors 

• Using privileged processes 

• Writing SUID and SGID programs 

• Authenticating users 

• Writing shell scripts and protecting compiled programs 

• Programming in a DECwindows environment 

This chapter also discusses the UL TRIX system calls and library routines that have 
security implications. All system calls and library routines discussed in this chapter 
are documented in the ULTRIX Reference Pages. 

7.1 Using Open File Descriptors with Child Processes 
A child process can inherit all the open file descriptors of its parent process and 
therefore can have the same type of access to files that the parent has. This 
relationship creates a security concern. 

For example, suppose you write a set user ID (SUID) program that does the 
following: 

• Allows users to write data to a sensitive, privileged file 

• Creates a child process that runs in a nonprivileged state 

Because the parent SUID process opens a file for writing, the child (or any user 
running the child process) can write to that sensitive file. 

To protect sensitive, privileged files from users of a child process, close all file 
descriptors that are not needed by the child process before the child is created. An 
efficient way to close file descriptors before creating a child process is to use the 
f cntl system call. You can use this call to set the close-on-exec flag on the 
file after you open it. File descriptors that have this flag set are automatically closed 
when the process exec's a new program. 

For more information, see f cntl(2). 



7.2 Responding to Signals 
The UL TRIX operating system generates signals in response to certain events. The 
event could be initiated by a user at a terminal (such as quit, interrupt, or stop), by a 
program error (such as a bus error), or by another program (such as kill). 

By default, most signals terminate the receiving process; however, some signals only 
stop the receiving process. Many signals, such as SIGQUIT or SIGTRAP, write the 
core image to a file for debugging purposes. A core image file might contain 
sensitive information, such as passwords. 

To protect sensitive information in core image files and protect programs from being 
interrupted by input from the keyboard, write programs that capture signals such as 
SIGQUIT, SIGTRAP, or SIGTSTP. Use the signal routine to cause your process 
to change its response to a signal. This routine enables a process to ignore a signal or 
call a subroutine when the signal is delivered. (The SIGKILL and SIGSTOP signals 
cannot be caught, ignored, or blocked. They are always passed to the receiving 
process.) For more information, see signal(3) and. sigvec(2). 

Also be aware that child processes inherit the signal mask that the parent process sets 
before calling fork. The execve system call resets all caught signals to the 
default action; ignored signals remain ignored. Therefore, be sure that processes 
handle signals appropriately before you call fork or execve. For more 
information, see f ork(2) and execve(2). 

7.3 Specifying a Secure Search Path 
If you use the popen, system, or exec*p routines, which execute /bin/ sh, be 
careful when specifying a pathname or defining the shell PATH variable. The PATH 
variable is a security-sensitive variable because it specifies the search path for 
executing commands and scripts on your system. For more information, see 
environ(7), popen(3), and system(3). 

The following list describes how to create a secure search path: 

• Specify absolute path names for the PATH variable. 

• Do not include public or temporary directories, other users' directories, or the 
current working directory in your search path. Including these directories 
increases the possibility of inadvertently executing the wrong program or of being 
trapped by a malicious program. 

• Be sure that system directories appear before user directories in the list. This 
prevents you from mistakenly executing a program that might have the same 
name as a system program. 

• Analyze your path list syntax, especially use of nulls, decimal points, and colons. 
A null entry or decimal point entry in a path list specifies the current working 
directory and a colon is used to separate entries in the path list. For this reason, 
the first entry following an equal sign should never begin with a colon. 

• If there is a colon at the end of the path list, certain shells and exec*p search 
the current working directory last. To avoid having various shells interpret this 
trailing colon in different ways, use the decimal point to reference the current 
working directory rather than using a null entry to reference the current working 
directory. 
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You might want to use the execve system call rather than any of the exec*p 
routines because execve requires that you specify the pathname. For more 
information, see execve(2). 

7.4 Protecting Permanent and Temporary Files 
If your program uses any permanent files (for example, a database), make sure that 
these files have restrictive permissions and that your program provides controlled 
access. These precautions also apply to shared memory segments, semaphores, and 
interprocess communication mechanisms; set restrictive permissions on all of these 
objects. 

Programs sometimes create temporary files to store data while the program is 
running. Follow these precautions when you use temporary files: 

• Be sure your program deletes temporary files before it exits. 

• A void storing sensitive information in temporary files, unless the information has 
been encrypted. 

• Give only the owner of the temporary file read and write permission. Set the file 
creation mask to 077 by using the umask(2) system call at the beginning of the 
program. 

• Create temporary files in private directories that are writable only by the owner. 
If you must use I tmp, ask your security administrator to set the sticky bit on the 
directory (mode 1777), so that files in it can be deleted only by the file owner, the 
owner of the directory, or the superuser. 

A common practice is to create a temporary file, then unlink the file while it is still 
open. This limits access to any processes that had the file open before the unlink; 
when the processes exit, the inode is released. 

Note that this use of unlink on an NFS-mounted file system takes a slightly different 
action. The client kernel renames the file and the unlink is sent to NFS only when the 
process exits. You cannot guarantee that the file will be inaccessible to someone else, 
but you can be reasonably sure that the file will be inaccessible when the process 
exits. In any case, always explicitly ensure that no temporary files remain after the 
process exits. 

7.5 Handling Errors 
Most system calls and library routines return an integer return code, which indicates 
the success or failure of the call. Always check the return code to make sure that a 
routine succeeded. If the call fails, test the global variable errno to find out why it 
failed. 

The errno variable is set when an error occurs in a system call. You can use this 
value to obtain a more detailed description of the error condition. This information 
can help the program decide how to respond, or produce a more helpful diagnostic 
message. This error code corresponds to an error name in <errno. h>. For more 
information, see errno(2). 

The following errno values indicate a possible security breach: 

EPERM Indicates an attempt by someone other than the owner to modify a file in 
a way reserved to the file owner or superuser. It can also mean that a 
user attempted to do something that is reserved for a superuser. 
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EACCES Indicates an attempt to access a file for which the user does not have 
permission. 

EROFS Indicates an attempt to access a file on a mounted file system when that 
permission has been revoked. 

If your program makes a privileged system call, but the resulting executable program 
does not have superuser privilege, it will fail when it tries to execute the privileged 
system call. If the security administrator has set up the audit system to log failed 
attempts to execute privileged system calls, the failure will be audited. 

If your program detects a possible security breach, do not have it display a diagnostic 
message that could help an attacker defeat the program. For instance, do not display a 
message that indicates the program is about to exit because the attacker's real user ID 
(UID) did not match a UID in an access file, or even worse, go on to provide the 
name of the access file. In addition, you could program a small delay before issuing 
a message to prevent programmed attempts to penetrate your program by 
systematically trying various inputs. 

7.6 Using Privileged Processes 
Any process that runs with an effective UID of 0 is a privileged process. A process 
runs with an effective UID of 0 if one of the following is true: 

• The process executing the program is a superuser process 

• The program's UID is set to root and the SETUID bit is set 

You must be alert to the fact that some system calls and library routines, when called 
by a privileged process, behave differently than the way they behave when called by 
a nonprivileged process. 

For example, the setuid routine sets both the real and effective UIDs, and the 
setgid routine sets both the real and effective group IDs (GIDs). A nonprivileged 
process can only set the effective UID to the real UID. A privileged process is not 
restricted in this fashion and can set these values as it chooses. For more 
information, see setuid(3) and setgid(3). 

Additionally, some system calls can only be called from a privileged process. For 
example, only a privileged process can call sethostid or chroot. For more 
information, see sethostid(2) and chroot(2). 

All system calls bypass file protections when called from a privileged process. The 
following list provides some examples of system calls that behave differently from 
their nonprivileged behavior when called from a privileged process, or can be called 
only by a privileged process: 

Restricted to root 

Different for root 
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acct,adjtime,audcntl,audgen,chroot, 
exportfs,setdomainname,sethostid, 
sethostname,settimeofday,plock,reboot, 
setgroups,setquota,stime,swapon,and 
vhangup. 

bind,chown,setpriority,setrlimit,kill, 
killpg,link,mknod,mount,quota,setpgrp, 
setregid, setreuid,setsysinfo,socket,and 
ulimit. 



Bypass permissions msgctl, msgsnd, msgrcv, semctl, semop, 
shmctl, shmat, and any calls that use file-system 
pathnames. 

Make sure that your compile environment (BSD, SYSTEM_FIVE, POSIX, or 
X_ OPEN) does not change the behavior that you expect from a system call or library 
routine. 

7.6.1 Use Minimum Privileges 

Because a privileged process has extraordinary powers, create a program that runs as 
a privileged process only if there is no other way to accomplish the task, and remove 
superuser privileges (the program's UID is not root) when the process no longer 
requires them. 

Once a privileged process uses the setreuid system call to change its real and 
effective UIDs to something other than 0, it cannot regain superuser privileges. If you 
write a program that performs both privileged and nonprivileged operations and plan 
to use setreuid to reduce the amount of time the process spends in a privileged 
state, remember to perform all privileged operations before calling setreuid. For 
more information, see setreuid(2). 

Another approach is to have the program retain superuser privileges and create child 
processes for nonprivileged operations. Each child process would call setreuid to 
give up its privileged status. This separates privileged from nonprivileged operations 
within the program, reducing the potential for error or compromise while in a 
privileged state. 

7.6.2 Use Care When Allocating System Resources 

Privileged programs can deliberately or accidentally have a negative effect on the 
services available to users. For example, privileged programs can call ulimi t and 
nice to increase file-size limits and set higher priorities for themselves. These 
changes might have the side effect of denying services to users. · Therefore, be careful 
when you allocate system resources or change system parameters; check for side 
effects to avoid monopolizing system resources. For more information, see 
ulimit(2) and nice(l). 

7.6.3 Know the Process's Real UID 

Before performing certain privileged operations, you might want to know who is 
actually running the program. Use the getuid system call to determine the real UID 
associated with the process. To decide whether or not to allow access to a file, use 
the access system call to determine if the real UID (the user) could access the file 
in question without the power of a privileged process. You can use this call to decide 
when to limit the inherent access privileges associated with an effective DID of 0. 
For more information, see getuid(2) and access(2). 

7.6.4 Audit Security-Relevant Events 

If your security administrator has enabled security auditing, the audit daemon, 
audi td, reads data from I dev I audit and stores that data in the auditlog. The 
audit subsystem can record a wide range of system events. The security 
administrator can choose events to be logged. For more information, see audi td(8) 
and audi tmask(8). For a complete description of the audit subsystem, see the 
Security Guide for Administrators. 
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You might want to write a program that generates an audit record for process events. 
You might also want to change the events that are audited or the items that are 
recorded in an audit record for a process. The following privileged system calls and 
library routine enable you to interact with the audit subsystem: 

audgen This system call generates an audit record for a specified operation or 
event and stores it in the auditlog. Your process can call audgen 
directly, or it can use the library routine, audgenl, for this operation. 
For more information, see audgen(2) and audgenl(3x). 

audcntl Provides control over options offered by the audit subsystem. For 
more information, see audcntl(2). 

Audit record generation depends on a combination of the system audit mask and the 
process audit mask. Each process has an audit mask and an audit control flag, both 
of which originate in I etc/ auth. Each event that can be audited is represented in 
both the system and the process masks. Whether the event is audited depends on the 
audit control flag, as described in the following list: 

• If the process audit control flag is set to AND, both masks must indicate that the 
event is to be audited. 

• If the process audit control flag is set to OR, at least one of the masks must 
indicate that the event is to be audited. 

• If the process audit control flag is set to OFF, no events for the process are 
audited. 

• If the process audit control flag is set to USR, the process is audited according to 
the process mask only. 

The following example shows how a privileged program turns off auditing for the 
current process only: 

/* Turns off auditing for this process */ 
# include <sys/audit.h> 
audcntl (SET_PROC_ACNTL, (char *)0, 0, AUDIT_OFF, 0); 

Example 7-1 shows two ways a privileged program can generate an audit record: by 
using the audgen system call, and by using the audgenl library routine. 

Example 7-1: Two Ways to Generate an Audit Record 

/* audgen system call to generate a sample audit record */ 

#include <sys/audit.h> 

main() 
{ 

char tmask[AUD_NPARAM]; 
struct { 

char *a; 
int b; 

} aud_arg; 
int i; 

tmask[O] = T_CHARP; 
tmask[l] = T_ERROR; 
tmask (2] ' '; 
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Example 7-1: (continued) 
aud_arg.a = "anything you want to put in the record"; 
aud_arg.b = -1; 

if ( audgen ( AUTH_EVENT, tmask, &aud_arg -1 ) 
perror ( "audgen" ); 

/* audgenl library routine to generate the same sample audit record */ 

#include <sys/audit.h> 

main() 
{ 

if ( audgenl ( AUTH_EVENT, T_CHARP, "any string", T_CHARP, 
"anything you want to put in the record", T_ERROR, -1, 0 ) -1 ) 

perror ( "audgenl" ); 

In Example 7-1, the argv argument is a pointer to an argument vector. Each entry 
in the token type array describes the corresponding entry in the argument vector. In 
this example, T .CHARP is a token type describing the string "anything you want to 
put in the recorCf'. T ERROR is a token type associated with the error value of -1. 
You can create an audit record containing up to eight token types and values. 

In Example 7-2, a privileged program uses the audcntl system call to change the 
events that are audited for this process. This example shows how to adjust the 
process audit control flag. 

Example 7-2: Using the audcntl Call to Change the Audit Control Flag 

/* Change the events that are audited for this process */ 
# include <syscall.h> 
# include <sys/audit.h> 
# define LEN (SYSCALL_MASK_LEN+TRUSTED_MASK_LEN) 

char buf[LEN]; 
/* Change process mask to specify auditing for login and failed 
* setgroups (note that 'buf' is initially set to zero). The 
* process mask is AND'ed with the system mask. This results 
* in only LOGIN and SYS_setgroups being audited for this process 
* (and only if the system mask also specifies LOGIN and/or 
* SYS setgroups). 
*/ -

/* Get process control flag to AND */ 
if (audcntl (SET_PROC_ACNTL, (char *)0, 0, AUDIT_AND, 0) -1) 

perror ("audcntl"); 

/* Get process mask */ 
A_PROCMASK_SET (buf, SYS_setgroups, 0, 1 ); 
A_PROCMASK_SET (buf, LOGIN, 1, 1 ); 
if (audcntl (SET_PROC_AMASK, buf, LEN, 0, 0 ) == -1 ) 

perror ("audcntl"); 

In Example 7-2, the A_PROCMASK_SET macro, from audit .h, takes the following 
arguments: 

1. The buffer into which the mask is being built (buf). 

2. The event name, from sys call. h for system calls and audit. h for events 
(SYS_setgroups and LOGIN) 

3. An integer (l=yes, O=no) that indicates whether a successful occurrence of the 
event should be audited. 
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4. An integer (l=yes, O=no) that indicates whether a failed occurrence of the event 
should be audited. 

7.6.5 Use Care When Creating Daemons as Privileged Programs 

Daemons are long-lived, background processes that provide system-related services. 
Some standard daemons are the swapper, pagedaemon, cron, elcsd, and lpd 
daemons. Daemons do not necessarily have to be privileged programs; however, most 
daemons require privileged access to carry out their tasks. If you create a daemon as 
a privileged program, take the same care as with any other privileged program. The 
following list describes some ways to make your privileged daemons more secure: 

• Check who is actually requesting the service. Note that this can be a problem if 
the connection is through a socket, because the information about who is 
requesting the service is not available from a socket. 

The best approach for safely using sockets in privileged daemons is as follows: 

- Use !NET-domain sockets. If you must use UNIX sockets, place the sockets 
in a protected directory. 

- Have the daemon check that the other side of the connection is a privileged 
port. A socket can be marked privileged only if the superuser created it. 
Only privileged sockets can send broadcast packets or bind addresses in 
privileged portions of an address space. The daemon can determine whether 
the other side of the connection is a privileged port through the accept or 
getpeername system calls. For more information, see accept(2) and 
getpeername(2). 

- Write an auxiliary privileged program that connects to the daemon using a 
privileged port. For example, the auxiliary program can use the rresvport 
routine to get a privileged port. This requires superuser access. For more 
information, see rresvport(3). This auxiliary program can perform checks 
on the user, because it knows who invoked it (either from the audit UID or 
the real UID). The auxiliary program can then communicate this information 
to the daemon. The daemon refuses to accept any connection that is not from 
the auxiliary program. 

• Remove the controlling terminal using the ioctl ( fd, TIOCNOTTY) function 
call. 

• Create separate processes for nonprivileged tasks, and remove privileges at the 
beginning of the routines. If you have separate programs that work with the 
daemon, in the same way that lpr works with lpd, make sure that the 
interaction between the programs cannot be exploited to create a security breach. 
Put proper protections on both programs. For more information, see lpr(l). 

• Put proper ownership and protections on any permanent or temporary files. Clean 
up any temporary files before exiting. You might want to use a directory other 
than /tmp, dep~nding on the number of files and security issues. Make sure·that 
only the daemon can write to any important directories (or that the sticky bit is 
set). You might want to create a separate account for the daemon in order to 
control file ownership and access. 
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7.7 Writing SUID and SGID Programs 
SUID and SGID programs change the effective UID or GID of a process to the UID 
or GID of the program. They are a solution to the problem of providing controlled 
access to system-level files and directories, because they grant a process the access 
rights of the files' owner. 

The potential for security abuse is higher for programs in which the user ID is set to 
root or the group ID is set to any group that provides write access to system-level 
files. Simply stated, do not write a program that sets the user ID to root unless 
there is no other way to accomplish the task. If you must write a program that sets 
the user ID to root, refer to Section 7.6 for information about writing secure 
privileged programs. 

The chown system call automatically removes any SUID or SGID bits on a file, 
unless the RUID of the executing process is set to zero. This prevents the accidental 
creation of SUID or SGID programs owned by the root account. For more 
information, see chown(2). 

The following list provides suggestions for creating more secure SUID and SGID 
programs: 

• Verify all user-provided pathnames with the access system call. 

• Trap all relevant signals to prevent core dumps. 

• Test for all error conditions, such as system call return values and buffer 
overflow. 

When possible, create SGID programs rather than SUID programs. One reason is that 
file access is generally more restrictive for a group than for a user. If your SGID 
program is compromised, the restrictive file access reduces the range of actions 
available to the attacker. 

Another reason is that it is easier to access files owned by the user executing the 
SGID program. When a user executes an SUID program, the original effective UID is 
no longer available for use for file access. However, when a user executes an SGID 
program, the user's primary GID is still available as part of the group access list. 
Therefore, the SGID process still has group access to the files that the primary GID 
could access. 

7.8 Authenticating Users 
You need access to the following to authenticate a user on an UL TRIX system: 

• Usemame 

• Password 

• I etc/passwd file 

• I etc/ svc. conf file 

The system administrator may optionally configure the system to store the passwords 
for each account in a database, auth, which is not accessible to unprivileged 
processes. In addition to the password, this database contains much additional 
information about the user, including password expiration information. The contents 
of the file I etc/ svc. conf determines if this database is to be used. 
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There are two ways to authenticate a user on an UL TRIX system. The simple way is 
to use the authenticate user library routine, as documented in 
authenticate_ user(3x~ 

Another method to authenticate a user is to follow these steps (although using 
authenticate_user performs the same checks and produces the same results): 

1. Use the getpwnam library routine to get the passwd database entry 
corresponding to the usemame. For infoffi1ation, see getpwnam(3). 

2. Use the gets vc library routine to get security information from the 
I etc/ svc. conf file. For information, see getsvc(3). 

3. Check the value of the sec level field in the I etc/ svc. conf file to 
determine where the password is stored and whether password expiration 
information is available. 

- If the security level is SEC BSD, the password is stored in the pas swd 
database. No password exprration information is available. 

- If the security level is SEC UPGRADE, password expiration information is 
available. The password is usually stored in the passwd database. The 
exception is if the entry in the pas swd database is exactly equal to the string 
"*". In this case, the password is stored in the auth database. 

- If the security level is SEC ENHANCED, password expiration information is 
available and the password!s always stored in the auth database. 

4. Encrypt the password supplied using the first two characters of the old encrypted 
password as the salt argument. 

- If the password came from the passwd database, use the crypt library 
routine. For information about encrypting passwords and using salt, see 
crypt(3.) 

- If the password came from the au th database, use the crypt 16 function. 
For information about encrypting passwords with the crypt 16 function and 
using salt, see crypt(3). 

5. Compare the encrypted password the user entered with the password in the 
passwd or auth database. If the two encrypted passwords match, the password 
is valid. 

6. If password expiration information is available, further verify the password by 
testing that the password has not expired. 

To perform this test, check the password modification time stored in the auth 
database record against the maximum password lifetime information, which is 
also stored there, using the current system time as a reference. If modification 
time plus maximum lifetime is less than the current system time, the password 
has expired and the account is not valid. 

An additional time factor, called the soft expiration time, can also be used in the 
calculation to provide a grace period during which users can log into the system 
provided they change their passwords immediately. 

7. Depending on your application, you may also want to check the A LOG IN flag in 
the au th database record for the user. -

Example 7-3 shows· a routine that authenticates a user's password. 
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Example 7-3: Routine to Authenticate a User 

/* 
* authenticate - a routine to verify a user's password. 
*/ 

#include <pwd.h> 
#include <sys/svcinfo.h> 
#include <auth.h> 
int authenticate(username, passwd) 
char *username, *passwd; 

struct passwd *pwd, *getpwnam(); 
AUTHORIZATION *auth, *getauthuid(); 
char *pp, *crypt(), *cryptl6 (), * (*fp) (); 
struct svcinfo *svcinfo; 
auth = (AUTHORIZATION *) 0; 
if(! (pwd=getpwnam(username))) 

return O; /* no account */ 
if(! (svcinfo=getsvc())) 

return O; /* should never happen */ 
switch(svcinfo->svcauth.seclevel) { 
case SEC BSD: 

pp = pwd->pw_passwd; 
fp = crypt; 
break; 

case SEC UPGRADE: 
if(! (auth=getauthuid(pwd->pw uid))) 

return O; /* no auth-entry */ 
if ( ! strcmp (pwd->pw_passwd, "*")) { 

} else { 

pp auth->a_password; 
fp cryptl6; 

pp pwd->pw_passwd; 
fp crypt; 

break; 
case SEC ENHANCED: 

default: 

if(! (auth=getauthuid(pwd->pw uid))) 
return O; /* no auth-entry */ 

pp = auth->a_password; 
fp = cryptl 6; 
break; 

return 0; /* bad seclevel in /etc/svc.conf */ 

if(!*pp && *passwd) 
return 0; /* bad password */ 

if(strcmp((*fp) (passwd, pp), pp)) 
return O; /* bad password */ 

if(auth) { 
long expiration, time(); 
if(auth->a_pw_maxexp) { 

expiration = auth->a_pass_mod + auth->a_pw_maxexp; 
if(time((long *) 0) >expiration) 

return O; /* password expired */ 

if(! (auth->a authmask & A LOGIN)) 
return O; /* account disabled */ 

return l; 

Writing Secure Programs 7-11 



Note 

Although the authenticate user, getpwnam, and getauthuid 
library functions transparently retrieve entries served from remote hosts, 
you must get a Kerberos ticket-granting ticket before you can obtain 
auth database entries for hosts served through BIND/Hesiod. See the 
Guide to Network Programming for information about using Kerberos. 

7.9 Protecting Shell Scripts and Compiled Programs 
A shell script is a file containing shell commands. Shell scripts can include variables 
and flow control constructions. If you must use a shell script to handle sensitive data, 
set and export path before writing the body of the script. Do not make shell scripts 
SUID or SGID. 

Compiled programs enjoy a measure of security that shell scripts do not. You can 
allow users to execute compiled programs while restricting those users from reading 
the source files. Because users need both read and execute permission to run a shell 
script, they have a much better chance of deciphering and compromising the script. 
For this reason, compile any program whose compromise represents a security risk 
and make it available to the general user only as an executable file. 

Deny access to any source files. Remove read permission for group and other on the 
executable file to deny users the opportunity to use a debugger on the file. 

7.10 Security Concerns when Programming in a DECwindows 
Environment 

The following sections discuss four ways to increase security in a DECwindows 
programming environment: 

• Restrict access control 

• Protect keyboard input 

• Block keyboard and mouse events 

• Protect device-related events 

For a detailed description of Xl ib library calls and the X Window System Protocol, 
see the X Window System: The Complete Reference to Xlib, X Protocol, ICCCM, 
XLFD. 

7.10.1 Restrict Access Control 

The access control list is the key to security in the DECwindows environment. This 
list names the hosts on the network that can access a workstation display. Users 
logged in to hosts listed in the access control list can read from, write to, and copy 
the contents of any window by specifying the window ID. Unlike files, windows 
cannot be protected from authorized users by setting permissions on them. 

When a system is installed, the only host listed in the access control list is the local 
host. The local host is the system on which the window system is running. For 
example, when workstation rook is booted for the first time, rook is the only host 
listed in its access control list. 
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The system access control list is stored in a privileged file called I etc/X*. hosts. 
The asterisk specifies the number of the workstation display. When a system is 
installed, this file is either empty or does not exist. The security administrator 
maintains this file, usually by leaving it empty to protect the workstations on the 
network from security attacks. If a user does not add any hosts to the workstation 
access control list (using the Security option from the Customize menu) the 
I etc/X*. Hosts file determines the access control list for that workstation. 

Table 7 -1 lists the Xl ib library function calls that maintain the access control list for 
a local worksystem display. That is, the function calls in the table can be executed 
only for the host where the access list is to be changed. 

Table 7-1: Xlib Library Function Calls That Maintain the Access Control 
List of A Local Worksystem Display 

Call Purpose 

XAddHost Add a single host to the access control list for the 
workstation display. 

XAddHosts Add the specified hosts to the access control list for the 
workstation display. 

XListHosts List the hosts on the access control list of the workstation 
display. This call enables a program to find out which hosts 
can connect to the workstation display. 

XRemoveHost Remove the specified host from the access control list for the 
workstation display. 

XRemoveHost s Remove the specified hosts from the access control list for 
the workstation display. 

XEnableAccessControl Enable the use of the access control list at the workstation. 

XDisableAccessControl Disable the use of the access control list at the workstation. 

7 .10.2 Protect Keyboard Input 

Users logged into hosts listed in the access control list can call the 
XGrabKeyboard function to take control of the keyboard. When a client has called 
this function, the X server directs all keyboard events only to that client. Using this 
call, an attacker could easily grab the input stream from a window and direct it to 
another window. The attacker could return simulated keystrokes to the window to 
fool the user running the window. Thus, the user might not realize that anything was 
wrong. 

The ability of an attacker to capture a user's keystrokes threatens the confidentiality 
of the data stored on the workstation. 

DECterm windows provide a secure keyboard mode that directs everything a user 
types at the workstation keyboard to a single, secure window. Users can set this 
mode by selecting the Secure Keyboard item from the Commands menu in a 
DECterm window. 

Include a secure keyboard mode in programs that deal with sensitive data. This 
precaution is especially important if your program prompts a user for a password. 
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Some guidelines for implementing secure keyboard mode follow: 

• Use the XGrabKeyboard call to the Xlib library. 

• Use a visual cue to let the user know that secure keyboard mode has been set, for 
example, reverse video on the screen. 

• Use the XUngrabKeyboard function to release the keyboard grab when the 
user reduces the window to an icon. Releasing the keyboard frees the user to 
direct keystrokes to another window. 

7 .10.3 Block Keyboard and Mouse Events 

Hosts listed in the access control list can send events to any window if they know its 
ID. The XSendEvent call enables the calling application to send keyboard or 
mouse events to the specified window. An attacker could use this call to send 
potentially destructive data to a window. For example, this data could execute the 
rm -rf * command or use a text editor to change the contents of a sensitive file. 
If the terminal was idle, a user might not notice these commands being executed. 

The ability of an attacker to send potentially destructive data to a workstation 
window threatens the integrity of the data stored on the workstation. 

DECterm windows block keyboard and mouse events sent from another client if the 
allowSendEvents resource is set to False in the . Xdefaul ts file. 

You can write programs that block events sent from other clients. The 
XSendEvent call sends an event to the specified window and sets the 
send_ event flag in the event structure to True. Test this flag for each keyboard 
and mouse event that your program accepts. If the flag is set to Fa 1 s e , the event 
was initiated by the keyboard and is safe to accept. 

7 .10.4 Protect Device-Related Events 

Device-related events, such as keyboard and mouse events, propagate upward from 
the source window to ancestor windows until one of the following conditions is met: 

• A client selects the event for a window by setting its event mask 

• A client rejects the event by including that event in the do-not-propagate 
mask 

You can use the XReparentWindow function to change the parent of a window. 
This call changes a window's parent to another window on the same screen. All you 
need to know to change a window's parent is the window ID. With the window ID 
of the child, you can easily discover the window ID of its parent. 

The misuse of the XReparentWindow call can threaten security in a windowing 
system. The new parent window can select any event that the child window does not 
select. 

Take these precautions to protect against this type of abuse: 

• Have the child window select the device events that it needs. This precaution 
prevents the new parent from intercepting events that propagated upward from the 
child. Parent windows that centralize event handling for child windows are at 
greater security risk. An attacker can change the parent and intercept the events 
intended for the children. Therefore, it is safer for each child window to handle 
its own device events. Events that the child explicitly selects never propagate. 
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• Have the child window specify that device events will not propagate further in the 
window hierarchy. This precaution prevents any device event from propagating 
to the parent window, regardless of whether the child requested the event. 

• Have the child window ask to be notified when its parent window is changed by 
setting the StructureNotify or SubstructureNotify bit in the child 
window's event mask. For information on setting these event masks, see the X 
Window System: The Complete Reference to Xlib, X Protocol, ICCCM, XLFD. 

7 .11 System Calls and Library Routines with Security 
Implications 

The following tables list many of the UL TRIX system calls and library routines that 
have security implications for programmers. 

UL TRIX C programs can be compiled for BSD, SYSTEM_FIVE, POSIX, or X/Open 
environments. For detailed information, see the Reference Pages Section 2: System 
Calls and the Reference Pages Section 3: Library Routines. 

Some system calls and library routines that are not covered in this section might have 
implicit security concerns. Also, the misuse of a system call or library routine that 
does not seem to have any security concerns could threaten the security of a 
computer system. For example, all system calls bypass file access permissions when 
called by a privileged process. Ultimately, programmers are responsible for the 
security implications of their programs. 

7 .11.1 System Calls 
Table 7-2 lists the system calls that have security relevance for programmers. 

Table 7-2: Security-Relevant System Calls 

Category 

File control 

Process control 

File attributes 

User and group ID 

Auditing 

General 

System Calls 

creat 
fcntl 
mknoda 

fork 
execve 
setpgrpa 
sigblock 

access 
chmoda 
chowna 

getegid 
getgid 
geteuid 
setreuida 

audcntla 

syscall 

open 
read 
write 

sigpause 
sigsetmask 
sigvec 

chroota 
stat 
umask 

getuid 
setgroupsa 
setreuida 

audgena 
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Table note: 

a. Either these system calls can be called only by a privileged process or when they 
are called by a privileged process, they behave differently from the way they 
behave when called by a nonprivileged process. See the ULTRIX Reference 
Pages for more information. 

7.11.2 Library Routines 

Library routines are system services that programs can call. Many library routines 
use system calls. Table 7-3 lists ULTRIX library routines that have security 
implications. 

Table 7-3: Security-Relevant Library Routines 

Category 

File control 

Password handling 

Process control 

Group processing 

Identifying the user 

Password encryption 

User and group ID 

Authorization 
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Library Routines 

fopen 

get pass 
getpwnam 
getpwent 
getpwuid 

signal 

getgrent 
getgrnam 
getgrgid 

cuserid 
get login 

crypt 

setuid 
setegid 
seteuid 

getauthent 
getauthuid 
storeauthent 
authenticate user 

po pen 

putpwent 
setpwent 
endpwent 

setgrent 
endgrent 

getpwuid 

encrypt 

setgid 
setrgid 
setruid 

setauthent 
setauthfile 
endauthent 



Calling Between C and Pascal 8 

This chapter describes the coding interfaces between C and Pascal and gives rules 
and examples for calling and passing arguments between these languages. The 
chapter addresses the differences for both the RISC and VAX architectures. 

For detailed information on how C variables appear in storage when compiled using 
the cc command, see Appendix B. For information about how variables of other 
languages appear in storage, see the documentation for that language. 

8.1 Differences Between C and Pascal 
In general, calling C from Pascal and Pascal from C is fairly simple. Both Pascal 
and C allow only one main routine in a program, which can be written in either 
Pascal or C. Most data types in each language have natural counterparts in the other 
language. However, differences do exist in the following areas: 

• Passing string data 

• Calling routines with a variable number of arguments 

• Type checking 

• Passing arrays 

• Passing single-precision floating point values (VAX specific) 

• Passing floating point values (RISC specific) 

• Using procedure and function arguments (RISC specific) 

• Passing file variables (RISC specific) 

8.1.1 Passing String Data 

The C and Pascal languages handle strings differently. Pascal handles string data as 
fixed-length arrays of characters. String parameters are typically declared as follows: 

VARS: PACKED ARRAY[l .. 100] OF CHAR; 

The upper bound ( 100 in this case) is assumed to be large enough to handle most 
processing requirements efficiently. In passing an array, Pascal passes the entire 
array, as specified, and pads to the end of the array with spaces. Most C functions 
treat strings as pointers to a single character and use pointer arithmetic to step 
through the string. A null character (\0 in C) terminates a string in C. Therefore, 
when passing a string from Pascal to C, terminate the string with a null character 
(chr(O) in Pascal). 

Example 8-1 and Example 8-2 show a Pascal program that calls the atoi C function 
and passes the string s. Note that the program ensures that the string terminates with 
a null character. Example 8-1 shows the program on a RISC system and Example 



8-2 shows the program on a VAX system. 

Example 8-1: Passing String Data on a RISC System 

type 
astrindex = 1 .. 20; 
astring = packed array [astrindex] of char; 
function atoi(var c: astring): integer; external; 

program ptest(output); 
var 

s: astring; 
i: astrindex; 

begin 
argv(l, s); { This predefined Pascal function 

is an extension } 
writeln(output, s); 
{ Guarantee that the string is null-terminated 

(but may eliminate the last character if the argument 
is too long). "lbound" and "hbound" are extensions. } 

s[hbound(s)] := chr(O); 
for i := lbound(s) to hbound(s) do 

if s[i] = ' ' then 
begin 
s(i] := chr(O); 
break; 
end; 

writeln(output, atoi(s)); 
end. 

Example 8-2: Passing String Data on a VAX System 

program example(output); 
type 

examplestr =packed array [1 .. 10] of char; 
var 

s : examplestr; 
i : integer; 

function atoi( vars examplestr ) 
begin 

end. 

s := '100'; 
s [ 4] : = chr ( 0) ; 
i := atoi(s); 
writeln(i); 

integer; external; 

For more information on atoi, see atof(3) in the ULTRIX Reference Pages. 

8.1.2 Calling Routines with a Variable Number of Arguments 

You can define C functions that take a variable number of arguments (for example, 
pr int f and its variants). Such functions can be called from Pascal, but they must 
be defined with a specific number of parameters in your Pascal program. 

8.1.3 Type Checking 
Pascal performs run-time checks on certain variables for errors; in contrast, C does 
not. For example, when a reference to an array exceeds its bounds in a Pascal 
program, the error is flagged (if run-time checks are not suppressed). Do not expect a 
C function to detect similar errors when you pass data to it from a Pascal program. 
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8.1.4 Passing Arrays 

C never passes arrays by value. In C, an array is actually a pointer. Therefore, 
passing an array actually passes its address, which corresponds to Pascal variable­
parameter (VAR) array passing, or passing by reference. Passing Pascal arrays by 
reference (VAR) instead of value is usually more efficient. Therefore, most Pascal 
array parameters are V ARs. When it is necessary to call a Pascal routine with a by­
value array parameter from C, pass a C structure containing the corresponding array 
declaration. 

8.1.5 Passing Single-Precision Floating Point Values (VAX Specific) 

Pascal on the VAX platform provides only double-precision floating-point data 
(Pascal data type real). Thus, only double-precision floating-point data can be passed 
(C data type double). 

8.1.6 Passing Floating Point Values (RISC Specific) 

In function calls, C automatically converts single-precision floating point values to 
double precision. By contrast, Pascal passes single-precision floating by-value 
arguments directly. 

When passing double-precision values between C and Pascal routines, follow these 
guidelines: 

• If possible, write the Pascal routine so that it receives and returns double­
precision values. 

• If the Pascal routine cannot receive a double-precision value, write a Pascal 
routine to accept double-precision values from C and then have that routine call 
the single-precision Pascal routine. 

Passing single-precision values by reference between C and Pascal does not pose a 
problem. 

8.1.7 Using Procedure and Function Arguments (RISC Specific) 

C function variables and arguments consist of a single pointer. In contrast, Pascal 
procedure and function arguments consist of a pointer to machine code and a pointer 
to the stack frame of the lexical parent of the function. Such values can be declared 
as structures in C. To create such a structure, put the C function pointer in the first 
word and zero in the second. C functions cannot be nested and, thus, have no lexical 
parent. Therefore, the second word is irrelevant. 

Note that you cannot call a C function with a function parameter from Pascal. 

8.1.8 Passing File Variables (RISC Specific) 

The Pascal text type and the C stdio package's declaration FILE* are compatible. 
However, Pascal passes file variables only by reference; a Pascal routine cannot pass 
a file variable by value to a C function. As with any reference parameter, C 
functions that pass files to Pascal routines should pass the address of the FILE* 
variable. 
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8.2 Calling Pascal from C 
To call a Pascal routine from a C program, follow these steps: 

1. Write a C extern declaration in the following form: 

extern void name(); 

2. Call the Pascal procedure with actual arguments. 

Be sure that the arguments are of the type that Pascal expects. Table 8-1 lists the 
C argument types that match those expected by the called Pascal routine. 

Table 8-1: C Argument Types 

Pascal Type Expected 

integer 

subrange 

char 

boolean 

enumeration 

pointer types 

reference parameter 

record types 

by-reference array parameters 

by-value array parameters 

cardinal 

real 

double 

procedure 

function 

by-reference text 

real 

CType 

integer or char value -231 •. 231 -1 

integer or char value in subrange 

integer or unsigned char (0 to 127) 

integer or char (0 or 1) 

integer or char (0 .. N-1) 

pointer type 
und <0. := lbound(s) 

pointer to the appropriate type 

structure or union type 

corresponding array type 

structure that contains the corresponding array 

RISC Specific 

unsigned int 

none 

float or double 

struct {void *p(); int *l} 

struct {function-type */(); int *l} 

FILE** 

VAX Specific 

double 

3. Declare a variable in which to store the return value. 

Be sure the return value data type and the data type of the variable you declare 
are compatible. Table 8-2 provides guidelines for declaring a return value type. 
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Table 8-2: Guidelines for Declaring Return Value Types 

Pascal Return 
Value Type 

integer'l 

char 

boolean 

enumeration 

pointer type 

record type 

array type 

none 

cardinalb 

real 

double 

real 

Table notes: 

CType 
Declaration 

int 

char 

char 

unsigned or corresponding enum (signed in C) 

corresponding pointer type 

corresponding structure or union type 

structure containing corresponding array type 

void 

RISC Specific 

unsigned int 

none 

double 

VAX Specific 

double 

a. Applies also to subranges with lower bounds <0. 

b. Applies also to subranges with. lower bounds ~O. 

8.2.1 Calling Pascal from C on a RISC System 

This section contains examples of calling a Pascal program from a C program on a 
RISC system. 

To pass a pointer to a function in a call from C to Pascal, you must pass a structure 
by value. The first word of the structure must contain the function pointer, and the 
second must contain a zero. Pascal requires this format because it expects an 
environment specification in the second word. 

Example 8-3 shows code for a C function calling a Pascal function. 

Example 8-3: Calling a Pascal Function 

Pascal function: 
function bah( 

var f: text; 
i: integer 
) : double; 

begin 

end {bah}; 
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Example 8-3: (continued) 
C declaration of bah: 
extern double bah(); 
C call: 
int i; double d; 
FILE *f; 
d = bah(&f, i); 

Example 8-4 shows a C function calling a Pascal procedure. 

Example 8-4: Calling a Pascal Procedure 

Pascal procedure: 
type 

int_array = array[l .. 100] of integer; 
procedure zero ( 

var a: int_array; 
n: integer 
) 

begin 

end {zero}; 
C declaration: 
extern void zero(); 
C call: 
int a[lOO]; int n; 
zero(a, n); 

Example 8-5 shows a C function that passes strings to a Pascal procedure, which then 
prints them. Note the following: 

• The Pascal procedure must check for the null [chr(O)] character, which indicates 
the end of the string passed by the C routine. 

• The Pascal procedure must not write to output; instead, it uses the stdout file­
stream descriptor passed by the C routine. 

Example 8-5: Passing a String to a Pascal Procedure (RISC Specific) 

C call: 
/* Send the last command-line argument to Pascal routine */ 
#include <stdio.h> 
main(argc, argv) 

int argc; char **argv; 
{ 

FILE *temp = stdout; 
if (argc != 0) 

p_routine(&temp, argv[argc - l]); 

Pascal procedure: 
{ We assume the string passed to us by the routine 

will not exceed 100 bytes in length } 
type 

astring =packed array (1 .. 100] of char; 
procedure p~routine(var f: text; var c: astring); 

var 
i: integer; 

begin 
i := lbound(c); 
while (i < hbound(c)) and (c[i] <> chr(O)) do 

begin 
write(f, c(i]); 
i := i + l; 

end; 
writeln(f); 
end; 
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8.2.2 Calling Pascal from C 011 a VAX System 

Example 8-6 is a C to Pascal call on a VAX system. It shows a C function that 
passes strings to a Pascal procedure, which then prints them. Note the following: 

• The Pascal procedure must check for the null [chr(O)] character, which indicates 
the end of the string passed by the C routine. 

• The Pascal procedure must not write to output; instead, it uses the stdout file­
stream descriptor passed by the C routine. 

Example 8-6: Passing a String to a Pascal Procedure (VAX Specific) 

C call: 
/* Send the last command-line argument to Pascal routine */ 
#include <stdio.h> 
main(argc, argv) 

int argc; char **argv; 
{ 

if (argc != 0) 
p_routine(argv[argc - l]); 

Pascal procedure: 
{ We assume the string passed to us by the routine 

will not exceed 100 bytes in length } 
type 

astring =packed array [l .. 100] of char; 
procedure p_routine(var c: astring); 

var 
i: integer; 

begin 
i := 1; 
while (i < 100) and (c[i] <> chr(O)) do 

begin 
write(c[i]); 
i := i + 1; 
end; 

writeln; 
end; 

8.3 Calling C from Pascal 
Follow these steps to call a C function from Pascal: 

1. Write a Pascal declaration that describes the C function. 

If the C function returns a value, write a Pascal function declaration. Otherwise, 
you can write a Pascal procedure declaration. 

2. Write the call, specifying the actual arguments you want to pass. 

Be sure that the data types of the arguments are data types that the C function 
expects. Table 8-3 describes the Pascal argument types that match those expected 
by the called C function. 
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Note that on RISC systems, a Pascal routine cannot pass a function pointer to a C 
function. 

Table 8-3: Pascal Argument Types 

Type Expected 
By C Function 

in ta 

shortb 

unsigned short 

unsigned char 

chazC 

enum type 

struct type 

union type 

array type 

unsigned intd 
unsigned short 
float 
double 
FILE* 

FILE** 

unsigned int c 

unsigned short 
double 

Table notes: 

Pascal Type 

integer 

integer (or -32768 .. 32767) 

cardinal (or 0 .. 65535) 

char 

integer (or -128 .. 127) 

corresponding enumeration type 

corresponding record type 

corresponding record type 

corresponding array type passed by reference (VAR) 

RISC Specific 

cardinal 
cardinal (or 0 .. 65535) 
double 
double 
text (passed by reference - VAR) 

corresponding pointer type or 
corresponding type passed by reference (VAR) 

none 
0 .. 65535 
real 

VAX Specific 

a. Same as types signed int, long, signed long, signed. 

b. Same as type signed short. 

c. Same as type signed char. 

d. Same as types unsigned, unsigned long. 

3. Declare a return value for the function, if necessary. 
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Portable C (pee) Implementation Notes A 

The C language supported by the pee ULTRIX compiler is an implementation of the 
language defined in The C Programming Language by Kernighan and Ritchie 
(Prentice Hall, 1978). The language that the pee compiler supports differs from the 
C defined by Kernighan and Ritchie in certain ways. This appendix discusses the 
pee language implementation details. 

A.1 Specifying the varargs.h Macros 
If a function takes a variable number of arguments (for example, the C library 
functions printf and seanf), you must use the macros defined in the 
varargs. h header file. 

The va del macro declares the formal parameter va alist, which is either the 
format descriptor for the remaining parameters or a parameter itself. 

The va start macro must be called within the body of the function whose 
argumellt list is to be traversed. The function then can transverse the list or pass its 
va _list pointer to other functions to transverse the list. The type of the 
va _start argument is va _list, which is defined in varargs. h. 

The va arg macro accesses the value of an argument rather than obtaining its 
address:-This macro handles those type names that can be transformed into the 
appropriate pointer type by appending an asterisk ( * ), which handles most simple 
cases. 

The argument type in a variable argument list must never be an integer type smaller 
than int and must never be float. 

For more information, see varargs(5) in the ULTRIX Reference Pages. 

The following example illustrates using varargs macros: 

#include <varargs.h> 
#include <stdio.h> 
enum operations {load, store, add, sub}; 
main() { 

void emit(); 
emit(load, 'I'' 0, 4) ; 
emit(load, 'I'' 4, 4) ; 
emit(add, I I I); 
emit(store,'I', 0, 4) ; 

void 
emit(op, va alist) 
/* emit tak~s a variable number of arguments and prints 
/* them according to the operational format. */ 
enum operations op; 
va_dcl { 
va list arg ptr; 
register int length, offset; 
register char type; 
va_start(arg_ptr); 
switch(op) { 



} 
} 

case add: /* print operation and length */ 
type= va_arg(arg_ptr, int); 
printf("add %c\n", type); 
break; 

case sub: /* print operation and length */ 
type= va arg(arg ptr, int); 
printf("s-;:;-b %c\n"; type); 
break; 

case load: /* print operation, offset, and length */ 
type= va_arg(arg_ptr, int); 
offset= va_arg(arg_ptr, int); 
length= va arg(arg ptr, int); 
printf("load %c %d %d\n", type, offset, length); 
break; 

case store: 
type= va_arg(arg_ptr, int); 
offset= va_arg(arg_ptr, int); 
length= va_arg(arg_ptr, int); 
printf("store %c %d %d\n", type, offset, length); 

The expected output from this code is as follows: 

load I 0 4 
load I 4 4 
add I 
store I 0 4 

A.2 Deviations 
C does not support the entry keyword, which has no defined use. Additionally, on 
the RISC architecture C does not support the a sm keyword as implemented by some 
C compilers to allow for the inclusion of assembly language instructions. 

A.3 Extensions 
UL TRIX language extensions to Kernighan and Ritchie C include the following: 

• The en um type is a set of values represented by identifiers called enumeration 
constants; enumeration constants are specified when the type is defined. For 
information on the alignment, size, and value ranges of the en um type, see 
Appendix B. 

• The void type allows you to specify that no value be returned from a function. 

• The vo 1ati1 e type modifier is used when programming l/0 devices, In 
addition, the const keyword has been reserved for future use. For more 
information on the volatile modifier, see Chapter 2. 
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A.4 Translation Limits 
Table A-1 lists the maximum limits imposed on certain items by the pee compiler: 

Table A-1: C Compiler Limitations 

C Specifications Maximum 

Nesting Levels 
Compound statements ::;30 
Iterations 
Selections 
Conditional compilations 

Maximum number of type 9 
modifiers (array, pointers, 
function, volatile) 

Case labels 500 

Function call parameters 150 
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Storage Mapping for C Data B 

This appendix describes the alignment, size, and value ranges for C data types. The 
appendix also describes the alignment the compiler uses for arrays, structures, and 
unions. Finally, the appendix describes the C storage classes. Except where 
differences are noted, the information in this appendix applies to both the RISC and 
VAX architectures. 

For information on the storage mapping for languages other than C, refer to the 
compiler documentation for that language. 

B.1 Alignment, Si-ze, and Value Ranges of C Data Types 
Table B-1 describes how the C compiler implements size, alignment, and value 
ranges for each data type. 

Table 8-1: C Data Type Size, Alignment, and Value Ranges 

Type Size Alignment Signed Unsigned 

int 32 bits word a -231 to 231 -1 0 to 232 -1 

long 32 bits word a -231 to 231 -1 0 to 232 -1 

en urn 32 bits word a -231 to 231 -1 

short 16 bits halfworda -32,768 to 32,767 0 to 65,535 

charb 8 bits byte -128 to 127 0 to 255 

floatc 32 bits word a See Table B-2 

doubled 64 bits doubleworde See Table B-2 

pointer 32 bits word a 0 to 232 -1 

Table notes: 

a. Byte boundary divisible by 4. 

b. Byte boundary divisible by 2. 

c. Unless the unsigned attribute is used, char is assumed to be signed. 

d. Single precision floating point (IEEE single precision on RISC and F-floating on 
VAX). 

e. Double precision floating point (IEEE double precision on RISC and D- or G­
floating on VAX). 

f. Byte boundary divisible by 8. 

Table B-2 shows the approximate valid value ranges for float and double data types. 



Table B-2: Size Ranges for the Float and Double Data Types 

Float Double 

RISC Specific 

Maximum Value 3.40282356 * 1038 

Normalized Minimum 1.17549429 * 10-38 

Value 

Denormalized Minimum 1.40129846 * 10-46 

Value 

1.7976931348623158 * 10308 

2.2250738585012012 * 1 o-308 

4.9406564584124654 * 10-324 

VAX Specific 

Maximum Value 1.7014118 * 1038 

Minimum Value 2.9387359 * 10-39 

1.701411834604692291 * 1038 (D-float) 
8.988465674311579 * 10307 (G-float) 

2.93873587705571880 * 10-39 (D-float) 
5.5626846462680035 * 10-3o9 (G-float) 

The limits . h and float . h header files, which are usually found in 
/usr I include, contain C macros that define minimum and maximum values for 
the various data types. For information about the macro names and values, see the 
appropriate header file. 

8.2 Storage Mapping of C Arrays, Structures, and Unions 
An array has the same boundary requirements as the data type specified for the array. 
The size of an array is the size of the data type multiplied by the number of elements. 
For example: 

double x[2] [3] 

The size of the resulting array would be 48 bytes (that is, 2*3*8, where 8 is the size 
in bytes of the double floating-point type). 

Each member of a structure begins at an offset from the structure base. The offset 
corresponds to the order in which a member is declared; the first member is at offset 
0. 

The size of a structure in the object file is the size of its combined members plus 
padding added, where necessary, by the compiler. The following rules apply to 
structures: 

• Structures must align on the same boundary as that required by the member with 
the most restrictive boundary requirement. The boundary requirements, by 
increasing degree of restrictiveness, are byte, halfword, word, and doubleword. 

• The compiler ends the structure on the same alignment boundary on which it 
begins. For example, if a structure begins on an even-byte boundary, it also ends 
on an even-byte boundary. 
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The following example shows a structure declaration: 

struct S { 
int v; 
char n[lO]; 

The following figure illustrates how this structure would exist when mapped out in 
storage: 

Big Endian 
l-v--lv_l_v_l--vl~n-ol-n-1l-n2_1_n3-I 

ByteO 2 3 4 5 6 7 

I n41 n51 nsl n71 nal n91 I 
Byte 8 9 10 11 12 1 3 14 15 

Little Endian (Digital products) 

I n3 I n2 I n 1 ( no I v I v I v I v I 
Byte 7 6 5 4 3 2 1 0 

I I n91 nal n71 nsl n5 I n41 
Byte 15 14 13 12 11 10 9 8 

D Padded bytes 

ZK-0065U-R 

Even though the byte count defined by the int v and char n components is 14, 
the length of the structure is 16 bytes. Because int has a stricter boundary 
requirement (word boundary) than char (byte boundary), the structure must end on a 
word boundary (a byte offset divisible by 4). Therefore, the compiler adds two bytes 
of padding to meet this requirement. 

An array of data structures illustrates the reason for this requirement. For example, if 
the structure in the previous figure were the element type of an array, some of the 
int v components would not be aligned properly without the 2-byte pad. 

Alignment requirements may cause padding to appear in the middle of a structure. 
For example: 

struct S { 
char n[lO]; 
int v; 

The following figure illustrates how this structure would exist when mapped out in 
storage: 
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Big Endian 
,-n-0 .... , n-1 .... f n-2-f -n3 ..... f -n4_f _n5_f _n6 ..... ,-n-7f 

Byte 0 1 2 3 4 5 6 7 

I v I v I v I v I 
Byte 8 9 1 0 11 12 13 14 15 

Little Endian (Digital products) 

f n7lnsl n5l n4l n3ln2ln1lnol 

Byte 7 6 5 4 3 2 0 

I v I v I v I v I 
Byte 15 14 13 12 11 1 0 9 8 

D Padded bytes 

ZK-0066U-R 

Note that the size of the structure remains 16 bytes, but two bytes of padding follow 
the n component to align v on a word boundary. 

Bit fields are packed from the most-significant bit to least-significant bit in a word; 
they cannot exceed 32 bits; and they can be signed or unsigned. For example: 

struct S { 
unsigned offset :12; 
unsigned page :10; 
unsigned segment :9; 
unsigned supervisor :1; 

}virtual_address; 

The following figure illustrates how this structure would exist when mapped out in 
storage: 

Big Endian 
Byte 0 3 

,~-----o-ff-s-et _________ p_a_g_e---l-se_g_m_e-nt~l,__I 

Bit 31 19 g 1. t 0 
supervisor 

Little Endian (Digital products) 
Byte 3 0 

1----1-s-eg_m_e_n-tf---p-a_g_e__,,__ _____ of-fs_e_t ____ ,_.I 
Bit t 30 22 12 O 

supervisor 

ZK-0067U-R 

Note that the compiler moves the fields that overlap a word boundary to the next 
word. 
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The compiler aligns a nonbit field that follows a bit-field declaration to the next 
boundary appropriate for its type. For example: 

struct S { 

}x; 

unsigned a :3; 
char b; 
short c; 

The following figure illustrates how this structure would exist when mapped out in 
storage: 

Big Endian 

I a I 
31 28 23 

b 
16 

Little Endian (Digital products) 

I c I b 
31 15 

D Padded bits 

c 

0 

al 
7 3 

ZK-0068U-R 

Note that five bits of padding are added after unsigned a so that char b aligns 
on a byte boundary, as required. 

A union must align on the same boundary as the member with the most restrictive 
boundary requirement. The boundary requirements, by increasing degree of 
restrictiveness, are: byte, halfword, word, and doubleword. For example, a union 
containing char, int, and double data types must align on a doubleword boundary, as 
is required by the double data type. 

8.3 C Storage Classes 
Table B-3 lists the C storage classes. 

Table B-3: C Storage Classes 

Class Description 

auto Storage is allocated at execution and exists only for the duration of that block 
activation. 

static The compiler allocates storage, which remains fixed for the duration of the 
program. Static variables reside in the program's bss section if they are not 
initialized; otherwise, they are placed in the data section. 

register The compiler allocates variables with the register storage class to 
registers. For programs compiled with the -o option, the optimization phase 
of the compiler tries to assign all variables to registers, regardless of the 
storage class specified. 
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Table B-3: (continued) 

Class Description 

extern The variable refers to storage defined elsewhere in an external data definition. 
The compiler does not allocate storage to extern variable declarations; it 
uses the following logic in defining and referencing them: 

If you omit extern and an initializer is present, a definition for the symbol 
is emitted. If you specify two or more such definitions among all the files 
that form a program you receive an error message at link time or before. If 
no initializer is present, a common definition is emitted. Any number of 
common definitions of the same identifier can coexist. 

If you specify extern the compiler assumes that declaration refers to a name 
defined elsewhere. A declaration having an initializer is invalid. If you never 
use an identifier you declare, the compiler does not issue an external reference 
to the linker. 

B.4 volatile Type Qualifier (RISC Specific) 
You specify the volatile type qualifier for variables that may be modified in ways 
unknown to the compiler. For example, you might specify volatile for an object 
corresponding to a memory mapped input/output port or an object accessed by an 
asynchronously interrupting function. Except for expression evaluation, no phase of 
the compiler optimizes any of the code dealing with objects declared as volatile. 

If you assign a volatile pointer to another pointer without the volatile 
specification, the compiler treats the other pointer as nonvolatile. For example, 
suppose a program contains the following declarations and assignment statement: 

volatile int *i; 
int *j; 

j = i; 

The compiler treats the assignment statement as if the pointer j has been cast as 
follows: 

(volatile*) j = i 

The compiler treats j as a nonvolatile pointer and the object it points to as 
nonvolatile (the compiler may optimize it). Note that the -volatile compiler 
option causes all objects to be compiled as volatile. 
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Porting Applications from a VAX System to C 
a RISC System 

Many of the applications you write to run on a VAX UL TRIX system will run with 
little modification on a RISC UL TRIX system. Other applications will need 
substantial modification for you to port them from a VAX to a RISC system. 

This appendix describes differences between the VAX and RISC systems. The 
appendix also gives information on modifying your VAX program so that it will run 
on a RISC system. 

C.1 Differences in Files 
One of the differences between RISC and VAX systems is the size, format, and 
contents of files. The following sections describe these differences in files. 

C.1.1 Executable Image Size 
Executable images on RISC systems are larger and therefore take up more disk space 
than their counterparts on VAX systems. This size difference is due to the 
instruction set of the RISC architecture. Typically, images on RISC systems are 30 
to 40 percent larger than on VAX systems. 

C.1.2 Object Format 
Unlike VAX systems, RISC systems use Common Object File Format (COFF) for 
object files. If your program contains hard-coded initializations that depend upon the 
VAX nlist structure, you must change them when you port the program to a RISC 
system. 

C.1.3 Contents of the a.out.h File 

The a. out. h header file does not include exec.hon RISC systems, as it does on 
VAX systems. 

C.2 Differences in Functions 
Some system calls or other functions have a different effect or are used differently on 
a RISC system than on a VAX system. This section describes differences in 
functions. 

C.2.1 The brk and getrlimit System Calls 
On VAX systems, virtual address space begins at zero. Program text starts at zero 
and runs to &etext. Program data begins after &etext and follows to &edata. 
The bss segment then follows to & end, and the rest of memory is available for 
growth. 



On RISC systems, the virtual address space begins at Ox00400000. The text segment 
starts at Ox00400000 and runs to &etext. Rather than beginning directly after 
&etext, data begins at OxlOOOOOOO. The data segment continues to &edata and is 
followed by the bss segment to & end. The rest of memory is available for growth. 

This difference changes the interaction between the brk and getrlimit system 
calls. On VAX systems, when you call get r 1 imi t to get RLIMIT _DAT A, the 
value returned by get r 1 imi t is an approximation for the maximum value that you 
could pass to the brk system call. On RISC systems, the correct value is as follows: 

"the value returned by a getrlimit" + OxlOOOOOOO 

One way to work around this problem is to use the sbrk call, instead of the brk 
call. 

C.2.2 Functions that Return a Pointer 

On VAX systems, if a function that returns a pointer returns -1 error status, you can 
make the following comparison: 

if (ptr < 0) 

This comparison can be true because pointers are signed values on a VAX system. 
On a RISC system, the comparison is never true because pointers are unsigned 
values. The compiler removes the code for the comparison, so the program cannot 
catch the error status. 

On a RISC system, you can use the following comparison to test the return value 
when a function returns a pointer: 

if ((int)ptr < 0) 

The following comparison is also valid: 

if (ptr == (char *) -1) 

C.3 Attach Point for Shared Memory Segments 
The attach points for shared memory segments in the virtual address space of a 
process on a RISC system are different from a process on a VAX system. On both 
systems, you attach shared memory segments by using the shmat system call. On a 
RISC system, the shared memory segments fall between the text segment and the 
private data segment, by default. Therefore, you can expand your private data 
segment (by using the sbrk or brk system call) regardless of an attached shared 
memory segment. 

When you create a shared memory segment on a RISC sys.tern, its attach point in the 
virtual address space of your process must be aligned on a 4-megabyte boundary. If 
you let the system default create the attach point, the system aligns the shared 
memory segment properly. If you must explicitly attach to a given address, that 
address must be at a 4-megabyte boundary or you must set the SHM_RND flag. If 
the SHM_RND flag is set, the system rounds the address you specify to a 4-
megabyte boundary. This restriction is imposed by hardware constraints. 

Whenever possible, use the system default to create an attach point. For details on 
creating attach points, see shmop(2) in the ULTRIX Reference Pages. 
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C.4 Differences in Data Representation and Manipulation 
RISC and VAX systems occasionally differ in the way they represent and manipulate 
data. The following sections describe these differences. 

C.4.1 Floating Point and Double Precision Data 
Unlike VAX systems, the kernel on a RISC system does not manipulate floating 
point or double precision values in the kernel. The kernel manipulates only integer 
values. The kernel assigns the Floating Point Unit (FPU) to a process. 

The f ixpoint. h header file contains macros to convert an integer to its floating 
point format. You can include this header file in your program and use the macros. 

In addition, VAX processors typically use D-float floating-point format. RISC 
processors use IEEE floating-point format, which is similar to G-float format. Thus, 
on RISC systems, you can use a greater range of floating point numbers but the 
numbers have less precision (fewer decimal places). 

If your program needs the extra precision of D-float format or if your program must 
be cognizant of the low-level format of floating point numbers, it will be difficult to 
port to a RISC system. RISC systems provide no equivalent to D-float or H-fioat 
format. 

If your program incorrectly treats a floating value as a double precision value, or a 
double precision value as floating, it might run on a VAX system, in spite of the 
error. On a RISC system, this programming error causes incorrect results. 

C.4.2 NULL Pointers 

On VAX systems, you can dereference a NULL pointer because page zero of user 
process space is mapped and valid. On RISC systems, however, you cannot 
dereference a NULL pointer without a segmentation violation. You must test the 
pointer to be sure it is not NULL before you dereference it. 

C.4.3 Data Alignment 
On VAX systems, short words (2 bytes) or long words (4 bytes) can be accessed on 
any byte boundary. On RISC systems, however, references must be "naturally" 
aligned. Short words (2 bytes) must be on an even byte boundary. Long words ( 4 
bytes) must be accessed on a boundary evenly divisible by 4. 

If your program contains an unaligned access, the system attempts to correct the 
unaligned access. If the system is able to accomplish the correction, it displays a 
message on the controlling terminal (if one exists) stating at what pc the alignment 
error was encountered. If the system is not able to correct the unaligned access, it 
terminates the process with a SIGBUS (bus error) signal. The correction that the 
system attempts might affect the performance of your program. 

One common cause of an attempt to access unaligned data occurs when you use the 
C language. Although the C compiler aligns data based on its size, it allows you to 
create a pointer to unaligned data by casting a variable. For example, suppose your 
program contains a pointer to char, which you cast to be a pointer to struct. 

Porting Applications from a VAX System to a RISC System C-3 



The alignment rules for a structure are more restrictive than they are for a character 
string. Becausv of the alignment rules, the pointer to struct can create an 
unaligned access to the char * buffer if you use it to access the middle of the 
buffer. 

For further information, see uac(l) in the ULTRIX Reference Pages. 

C.5 Page Size 
The page size on a RISC system is 4 kilobytes (4*1024 bytes). On a VAX system, 
the page size is 512 bytes and UL TRIX manipulates data two pages at a time (or 1 
kilobyte [2*512 bytes] at a time). This page size difference can affect the memory 
management performed by your program. 

If your program manipulates memory using pages, get the page size by using the 
getpagesize system call. (For further information, see getpagesize(2) in the 
ULTRIX Reference Pages.) Alternatively, you can include the vrnrnac. h header file 
and use the macros defined in it for page size manipulations. 

C.6 Command Differences 
Some commands that you use during program development differ between RISC and 
VAX systems. This section describes the differences in the commands. 

C.6.1 The prof Command 
The prof command provides information about what routines in your program 
execute the most or the least. The RISC version of prof is functionally different 
from the VAX version. For an explanation of using prof on a RISC system see 
Section 4.3. 

C.6.2 The ranlib Command 
On a VAX system, the ran 1 ib command organizes archives of object files to allow 
faster linking. This command exists on RISC systems as a shell script that passes a 
flag to the ar librarian. The ar librarian performs the same function as ranlib. 

C.6.3 The lint Command 
The 1 int command searches your program for coding errors, coding that is not 
portable, and inefficient coding. The lint command differs on RISC and VAX 
systems. The differences are in the messages lint displays, the conditions it checks, 
and the command you use to build libraries. On a VAX system, you use the 
following command to build a lint library for a program named myprog. c: 

% lint -c libname myprog.c 

On a RISC system, you use the following command: 

% lint -c myprog.c 

For more information about lint, see Section 4.1. 
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C.6.4 Commands that Read or Write Object Files 

RISC and VAX systems use different formats for object files and load modules. 
Therefore, the following utilities are slightly different on the two architectures: 

• ar 

• dbx 

• ld 

• nm 

• size 

• strip 

C.7 C Compiler Differences 
The RISC C (cc) compiler is different from the VAX C (cc) compiler. The 
following list describes differences between the two compilers: 

• The RISC C compiler does not support the const keyword. 

• Pointers on RISC systems are unsigned; on VAX systems they are signed. 

• You cannot use a pointer as the expression with a switch statement on RISC 
systems. 

• On RISC systems, you cannot dereference NULL pointers, including arguments 
to the strlen function. 

• The RISC C compiler does not support the asm pseudo function call. 

• The RISC C compiler does not allow the following obsolete form of 
initialization: 

int i 0; 

The preceding example works on a VAX system, but the VAX C compiler issues 
a warning. The example generates an error message on a RISC system. 

• The RISC C compiler has boundary alignment rules. The only effect this 
difference should have on your program is that its performance might be slower 
than on a VAX system. This performance change could occur because the kernel 
corrects alignment errors. Where possible align double-words, words, and half­
words on "natural" boundaries. For more information, see Section C.4.3 and 
uac(l) in the ULTRIX Reference Pages. 

• The varargs function is different on RISC systems. Your program will fail if 
it ''walks'' an argument list by incrementing the address of an argument, 
particularly if the arguments are double precision values. Use the macros in 
varargs. h when you use functions that have a variable number of arguments. 
Compiling with the -varargs option on RISC systems causes the compiler to 
detect nonportable code. 

• The set jmp/ longjmp buffer is larger on RISC systems than on VAX systems. 
Programs with a hard-coded 10 word buffer fail; programs that include 
set j mp . h and declare a variable of type j mp_ bu f work correctly. 

• On RISC systems, global symbols do not have an extra leading underscore. This 
difference mostly affects assembly-language programs. 
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• RISC systems define a macro (for example, LANGUAGE_C) for the preprocessor 
that makes it possible to write multilingual include files. 

• For cpp predefined symbols, ul tr ix, unix, and bsd4 2 are defined on both 
RISC and VAX systems. On RISC systems, the equivalent predefined symbol of 
vax is mips. RISC systems also supports the symbols MIPSEL and 
host_mips. 

• If you use a global data item as if it is a code location (for example, if a data 
structure has the same name as a system call), the compiler displays an error 
message similar to the following one at load time: 

/lib/libc.a(gethostent.o): jump relocation out-of-range, bad object 
file produced, can't jump from Ox4197a0 to Ox10008198 (stat) 

If you see this message, change the name of the data structure. (In this example, 
it was named stat.) 

• The RISC C compiler does not allow the same . c or . o file to be listed twice on 
a command line. The compiler generates doubly defined symbol errors. The 
VAX C compiler allows you to specify the same source or object file twice. 

• On VAX systems, the cc -L option on the command line affects all -1 options. 
On RISC systems, the cc - L option operates only on -1 options that follow it. 
Therefore, if you want the - L option to affect all -1 options, you must specify 
the - L option first. 

• The -Md or -Mg options are not needed on RISC systems. The hardware has 
only one double precision format. 

• The RISC C compiler does not support the -R option (read-only text). 

• Profiling on VAX systems has two levels that can be selected with the -p and 
-pg options. Profiling on RISC systems also has two levels that can be selected 
with the -p option or by running the post-processor pixie program. The RISC 
C compiler is not affected by either option; all work is done in the assembler or 
loader (or postprocessor). 

• One level of optimization exists on VAX systems, which is off by default and 
enabled with the -o option. Five levels of optimization exist on RISC systems. 
By default, the second level is used, which can be disabled with the -00 option. 
The -0 or -02 options invoke optimization that is comparable to the 
optimization on a VAX system. To have you program optimized more fully, use 
the -03 and -04 options. The RISC C compiler also has the -Olimi t option 
that allows optimization to be bypassed with overly complicated code sections. 
For more information, see Section 4.5. 

!t ' 

• On both RISC and VAX systems, the -t and - B options specify passes and 
paths. However, RISC systems provide more pass names. In addition, the RISC 
C compiler option - h is equivalent to the VAX C compiler option - B. The - B 
option on RISC systems speci~es a suffix for the pass name. 

• Like optimization, RISC systems offer four levels for debugging information 
(controlled by the -g option). VAX systems have only two (on and oft). 
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Kernel Debugging D 

This appendix describes how to debug the ULTRIX kernel, /vmunix, using various 
UL TRIX programs. The debugging procedure differs for RISC and VAX processors; 
this chapter addresses both processor types. 

D.1 RISC Kernel Debugging 
This section shows how to debug the UL TRIX kernel, I vrnun ix, on a RISC system. 

Before you debug the kernel, you should understand the following: 

• The layout of system memory, which is described in Table D-1 

• The layout of the stacks, which is described in Table D-2 

• The layout of address space, which is described in Table D-3 

Table D-1: System Memory Map 

Physical 
Address KSEG1 Use 

Ox00030000 Oxa0030000 upward UL TRIX kernel text, data, and bss 

Ox0002ffff Oxa002ffff 
to Additional PROM space (64K) 

Ox00020000 Oxa0020000 

OxOOOlffff OxaOOlffff 
to lK netblock (host and client network 

OxOOOlfcOO OxaOOlfcOO boot information) 

OxOOOlfbff OxaOOlfbff 
to 1 K UL TRIX save state area 

OxOOOlf 800 Oxa00lf800 

Ox000lf7ff Oxa00lf7ff downward 
to 1 K UL TRIX temporary startup stack 

OxOOOlf 400 OxaOOlf 400 

Ox0001f3ff Oxa00lf3ff downward dbgmon stack (a few K less than 64K) 
OxOOOlOOOO OxaOOlOOOO upward dbgmon text, data, and bss 

OxOOOOffff OxaOOOffff downward PROM monitor stack 
Ox00000500 Oxa0000500 upward PROM monitor bss 

Ox000004ff Oxa00004ff 
to Restart block 

Ox00000400 Oxa0000400 

Ox000003ff Oxa00003ff 
to General exception code 

Ox00000080 Oxa0000080 (note CPU addresses as Ox80000080) 

Ox0000007f Oxa000007f 



Table D-1: (continued) 

Physical 
Address KSEG1 Use 

to utlbmiss exception code 
OxOOOOOOOO OxaOOOOOOO (note CPU addresses as Ox80000000) 

The kernel has no interrupt stack: only kernel, user, and idle stacks. 

Table D-2: Stacks on RISC Systems 

Stack Description 

Startup stack Starts at Ox8001 f7ff, growing downward, and is used 
during system startup until a kernel stack is available 

Kernel stack Starts at Oxffff eOOO (KSEG2 space) and grows down 

User struct Starts at Oxffff cOOO (KSEG2 space) and goes up 

Per-CPU database Starts at Oxffff 8000 (KSEG2 space) and goes up 

User stack Starts at Ox7fff fOOO (KUSEG space, one guard page 
Ox7fff fOOO to 7fff ffff) and grows down 

The system is always in virtual address mode; there is no physical address mode. 

Table D-3: Address Space on RISC Systems 

Address Space Description 

KSEGO Not mapped, cached-for kernel text 
Virtual address: 8000 0000 --7 9fff ffff (512 MB) 

KSEGl Not mapped, not cached-for 1/0 space 
Virtual address: aOOO 0000 --7 bfff ffff (512 MB) 

KSEG2 Mapped, cached-for stacks and kernel mallocs 
Virtual address: cOOO 0000 --7 ffff ffff (1 GB) 

KUSEG Mapped, cached-for user space 
Virtual address: 0 --7 7fff ffff (2 GB) 

More information about debugging an UL TRIX kernel on a RISC system can be 
found in the following header files: 

/sys/h/proc.h 
/sys/h/user.h 
/sys/machine/mips/entrypt.h 
/sys/machine/mips/frame.h 
/sys/machine/mips/pcb.h 
/sys/machine/mips/pte.h 
/sys/machine/mips/reg.h 

The crash System V program might also be useful. 
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D.1.1 Using nm to Determine Where a Crash Occurred 

When you system crashes, you can use nm to determine which routine was executing 
when the crash occurred. This tool is most useful when your system does not create a 
core dump, but displays and Exception Program Counter (EPC) on the console. The 
following command displays the name list (symbol table) of the vmunix image in 
numerical order: 

% nm -n /vmunix 

To determine which routine was executing, find the address that is closest to, but less 
than, the EPC from the crash. This address is the starting address of the routine 
executing when the system crashed. Subtract the start address of this routine from 
the EPC to get the offset from the beginning of the routine in which the error 
occurred. Then, use the dbx debugger to find the incorrect instruction. 

The following shows an example of nm output: 

First Kernel text address: 8003,0000 (192k bytes above 8000,0000) 
80030000 T start 
80030000 T eprol 
800300ac T putstr 
80030148 T lputc 
8003018c T en reset 

First Kernel data address: is approximately 8011,0000 
80112030 D Sysmap 
8011c830 D Usrptmap 
801lf920 D camap 
801lf930 D kmempt 
8011f930 D ecamap 
80123930 D Forkmap 

D.1.2 Debugging a RISC Kernel with dbx 

You can use the dbx debugger to debug a kernel that crashes and creates a core file. 
You can determine where the crash occurred and use dbx to display instructions and 
data. 

To invoke dbx to debug a nonrunning kernel, issue the following command: 

% dbx -k vmunix.n vmcore.n 

If you have a multiprocessor system, you must then determine which CPU crashed. 
The system contains the paniccpu variable, which it sets to the number of the CPU 
that crashed. You determine the value of that variable by issuing the following 
command: 

(dbx) print paniccpu 
1 

In this case, CPU number 1 crashed. 

Once you determine which CPU crashed, you must set the context for dbx by setting 
the dbx variable $pid. The following example shows how to set the context for 
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dbx: 

(dbx) set $pid = cpudata[l].cpu_proc.p_pid 

Because CPU number 1 crashed, you specify the number 1 as the array index in the 
cpudata [ 1] . cpu proc .p pid variable name. If a CPU other than number 1 
crashed, replace 1 wrth the appropriate number. 

Once you have set the context for dbx or if you have only one CPU, you can use the 
dbx command where to display a stack trace, as shown: 

(dbx) where 

The following list describes dbx commands that are useful in kernel debugging: 

• address I count mode 

Display the contents of the specified address. Replace count with the number 
of locations you want to display and mode with one of the following modes: 

d or D, which spcecify short or longword decimal notation 

- o or 0, which specify short or longword octal notation 

x or X, which specify short or longword hexadecimal notation 

c, which specifies a byte as type char 

- s, which specifies null-terminated string 

f, which specifies single-precision real format 

g, which specifies double-precision real format 

i, which specifies machine instructions 

For example, if the system reported an EPC of Ox8000dead when it crashed, you 
can use dbx to determine where in the kernel that PC is located. The following 
command decodes nine instructions (and shows line numbers) starting at 
Ox8000dead. Note that code that is conditioned out (with #if def statements) does 
not count in dbx 's line numbering. 

(dbx) Ox8000dead/9i 
8000dead bleq 8000deaf 
8000deaf cvtfd *-18074(r0),$0.5 
8000deb4 movl (r9), (r6) 
8000deb7 decl 8015fe28 
8000debd movl r7,rl 
8000dec0 mfpr $12,rO 
8000dec3 mtpr rl,$12 
8000dec6 ret 
8000dec7 halt 
(dbx) 

• print gnode [n] 

Display the gnode structure n in the gnode table 

• print text [n] 

Display the text structure n in the text table 

• set $pid= n 

Set process context (current process) to process ID n (Allows you to issue 
trace, print *up, print *up. u _procp, and so on for that process) 
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• print *up 

Display the u_area of the current process 

• pr int *up. u _procp 

Display the process structure of the current process ID 

To debug a running kernel, issue the following command: 

% dbx -k /vmunix 

Then use dbx commands to examine the kernel. You might also find the following 
two commands useful when you debug a running kernel: 

• & <symbol> I <mode> 

Display the ~ddress and contents of the specified symbol. The dbx debugger 
displays the contents in the specified mode. For a list of modes, see the 
address I count mode command in the preceding list. 

• assign symbol= value 

Assign the value to the named symbol. (You must be logged in as root to 
change the value of symbols in a running kernel.) 

D.1.3 Getting a Stack Trace on Any Process 

To perform a stack trace on a process, get the PID of the process to be traced by 
issuing the p s command: 

% ps -k1ax vmunix.n vmcore.n 

The ps options have the following meanings: 

• The -k option specifies using the kernel file vmcore .n instead of /dev/kmem 
and /dev/mem. 

• The -1 option displays the process status in long format, giving more 
information than the default display. 

• The -a option displays all processes (not just your own) associated with a 
terminal. 

• The - x option shows processes not associated with a terminal. 

See ps(l) in the ULTRIX Reference Pages for complete information. 

Invoke dbx and set $pid to the PID of the process you wish to examine. For 
example: 

(dbx) set $pid = 1125 

Now you can execute trace, print *up, p'rint *up. u_procp, and other 
commands on process 1125. 

Any process stored registers in the u_area is in exception frame format, and you can 
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display the registers by issuing the following dbx command: 

(dbx) print up.u_arO 

D.1.4 Examining the Exception Frame 

All error traps and interrupts (except cache parity errors) generate an exception 
condition. Exception conditions trap to VECTOR(exception) in locore. s. The 
exception routine saves state in the exception frame (on the stack). 

For interrupts, VECTOR(VEC_int) is called, which saves additional state on the 
exception frame, and calls intr ( ) (in trap. c). The intr ( ) routine calls the 
specific interrupt handler through cOvec_tbl. 

For traps, the individual trap routines are called through the causevec. These routines 
[ VEC addrerr ( ) , VEC ibe ( ) , and VEC dbe ( ) ] in turn call 
VECTOR (VEC trap) , will.ch saves additionalstate on the exception frame, and 
calls trap ( ) (in trap. c). 

A pointer to the exception frame (EP) is passed as an argument to the following 
routines: trap ( ) , intr ( ) , tlbmod ( ) , tlbmiss (), and sys call ( ) . 
Therefore, by using dbx to get a trace, you can determine the address of the 
exception frame by displaying the EP argument. You can then display the exception 
frame with a dbx command such as: 

(dbx) Oxffffnnnn/41X 

The offsets within the exception frame are defined as follows (see 
I sys/machine/mips/reg. h): 

#define EF _ARGSA VEO 
#define EF _ARGSA VEl 
#define EF _ARGSA VE2 
#define EF _ARGSA VE3 
#define EF _AT 
#define EF _VO 
#define EF _ V 1 
#define EF _AO 
#define EF _A 1 
#define EF _A2 
#define EF _A3 
#define EF _TO 
#define EF _ T 1 
#define EF _ T2 
#define EF _ T3 
#define EF _ T 4 
#define EF _ T5 
#define EF _ T6 
#define EF _ T7 
#define EF _so 
#define EF _S 1 
#define EF _S2 
#define EF _S3 
#define EF _S4 
#define EF _S5 
#define EF _S6 
#define EF _S7 
#define EF _ T8 
#define EF _ T9 
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0 /* arg save for c calling seq */ 
1 /* arg save for c calling seq *I 
2 /* arg save for c calling seq *I 
3 /* arg save for c calling seq *I 
4 /* rl: assembler temporary*/ 
5 /* r2: return value 0 *I 
6 /* r3: return value 1 */ 
7 /* r4: argument 0 *I 
8 /* r5: argument 1 *I 
9 /* r6: argument 2 */ 

10 /* r7: argument 3 */ 
11 /* r8: caller saved 0 *I 
12 /* r9: caller saved 1 */ 
13 /* rlO: caller saved 2 */ 
14 /* rl 1: caller saved 3 */ 
15 /* r12: caller saved 4 */ 
16 /* r13: caller saved 5 *I 
17 /* r14: caller saved 6 */ 
18 /* r15: caller saved 7 */ 
19 /* r16: callee saved 0 */ 
20 /* r17: callee saved 1 *I 
21 /* r18: callee saved 2 */ 
22 /* r19: callee saved 3 */ 
23 /* r20: callee saved 4 *I 
24 /* r21: callee saved 5 */ 
25 /* r22: callee saved 6 */ 
26 /* r23: callee saved 7 */ 
27 /* r24: code generator 0 *I 
28 /* r25: code generator 1 */ 



#define EF _KO 
#define EF _K 1 
#define EF _GP 
#define EF _SP 
#define EF _S8 
#define EF _RA 
#define EF _SR 
#define EF _MDLO 
#define EF _MDHI 
#define EF _BADY ADDR 
#define EF_CAUSE 
#define EF _EPC 

29 /* r26: kernel temporary 0 *I 
30 /* r27: kernel temporary 1 *I 
31 /* r28: global pointer*/ 
32 /* r29: stack pointer *I 
33 /* r30: callee saved 8 */ 
34 /* r31: return address *I 
35 /* status register */ 
36 /* low mult result */ 
37 /* high mult result */ 
38 /* bad virtual address */ 
39 /* cause register *I 
40 /* program counter *I 

D.1.5 Debugging Hung Systems 

When your system is hung, it might display the Program Counter (PC) and Stack 
Pointer (SP) on the console when it crashes. In this case, you can get a stack trace 
easily using dbx and then examine the stack frame to determine what routine was 
executing when the system crashed. Section D.1.5.1 describes using dbx to get a 
stack trace when you have the PC and SP. Section D.1.5.3 describes examining the 
stack frame. 

If your system does not display the PC and SP on the console when it crashes, you 
must get that informatiom from a core dump. However, when you are debugging a 
hung system, the values saved in the u_area for the currently active process are the 
old values that the system saved the last time it moved the process out of memory for 
a context switch. In this case, you must find the real kernel stack as described in 
Section D.1.5.2. Then, you can examine the stack frame as described in Section 
D.1.5.3. 

D.1.5.1 Using dbx to Perform a Stack Trace 

Follow these steps to perform a stack trace using dbx on a hung system: 

1. Determine whether the idle process is running by issuing the command in the 
following example. If a CPU other than number 1 crashed, replace 1 with the 
appropriate CPU number. If you have only one CPU, replace 1 with 0. 

(dbx) &cpudata[l].cpu_noproc/d 
1 

If dbx displays a 1, the idle process is running. 

2. Set the $pid dbx variable. The value you assign to the variable depends upon 
whether the idle process is running. 

Set the context for dbx to the idle process by issuing the following command: 

(dbx) set $pid = 3 

However, if the idle process is not running, set the context for dbx as follows: 

(dbx) set $pid = cpudata[l].cpu_proc.p_pid 

If a CPU other than number 1 hung, replace 1 with the appropriate CPU number. 
If you have only one CPU, replace 1 with 0. 

3. Set the $pc and $ sp variables. 
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Set the $pc variable to the PC address displayed on the console. Likewise, set 
the $ sp variable to the SP address displayed on the console. The following 
example shows setting these two variables: 

(dbx) assign $pc = Ox80040f20 
Ox80040f20 
(dbx) assign $sp = Oxffffd290 
Oxffffd290 

4. Perform the stack trace by issuing the where command as follows: 

(dbx) where 

D.1.5.2 Finding the Real Kernel Stack 

If your system does not display a PC or SP value, you must determine where the real 
kernel stack is. 

The kernel stack for each process in the system is located at virtual address 
OxffffeOOO in KSEG2 space. The system has an array of NPROC u_areas that are 8K 
bytes each. Each u_area contains the user struct and kernel stack for the process. 
Even though each user process has its u_area at the same virtual address in KSEG2 
space, each u_area is mapped to a unique physical address. When the context 
switches, the first two entries in the TLB (safe entries) are established for mapping 
the u_area for that user process. Figure D-1 shows how the kernel stack and user 
structure appear in memory. 

Figure D-1 : Kernel Stack and User Structure in Memory 

Kernel stack: Oxffff,eOOO ..------. 

t 
User struct: Oxffff ,cOOO 

higher addresses 

8K bytes for kernel. stack 
and user struct in KSEG2 space 
(see param.h) 

lower addresses 

ZK-0192U-R 

Within dbx, you can display the kernel stack with a command such as the following: 

(dbx) Oxffffd000/1028X 

This command dumps the kernel stack from low to high memory (most recent events 
to oldest events). 
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D.1.5.3 Examining Stack Frames 

Use the odump utility to create a symbol table dump of vmunix. n: 

% odum.p -P /vmunix.n > vmunix.syms 

(See the runtime pdr structure in the file /usr I include/ sym. h for the 
format of the run-time procedure descriptor created by the loader.) 

The fpoff field as shown by odump is the frame size for the particular procedure 
entry. Figure D-2 illustrates the general format of the stack (stack frames). 

Figure D-2: Stack Frame in Memory 
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Using the symbol table dump, you can work your way back up the call history on the 
stack. Examples of usage are in libexc: unwind. c, exception. c, and 
exception. h. 

It might be equally productive to start at the top of the kernel stack (high memory) 
and look for the return address of VEC sys call ( ) on the stack. This return 
address is where VEC syscall ( ) calls syscall ( ) , and where the stack frame 
for entry into sys call ( ) has the return address of VEC sys call ( ) saved on 
the stack. -

The following dbx command shows the instructions in VEC sys call ( ) , in 
particular where syscall ( ) was called, allowing you to see the return address on 
the stack: 

(dbx) VEC_syscall/30i 
[VEC_syscall, Ox800c3868] 
[VEC_syscall:590, Ox800c386c] 
[VEC_syscall:591, Ox800c3870] 
[VEC_syscall:592, Ox800c3874] 
[VEC_syscall:593, Ox800c3878] 
[VEC_syscall:594, Ox800c387c] 

ori 
mtcO 
SW 

SW 

move 
move 

r5,rl6,0xl 
r5,sr 
r2,20(sp) 
r3,24(sp) 
r5,r2 
r6,rl6 
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[VEC_syscall:595, Ox800c3880] 
[VEC_syscall:595, Ox800c3884] 
[VEC_syscall:596, Ox800c3888] 
[VEC_syscall:596, Ox800c388c] 

jal 
nop 
bne 
nop 

syscall 

r2,r0,0x800c3810 

The return address is Ox800c3888. Using dbx and the dump of the kernel stack, you 
can examine the stack to determine what happened to the system. 

D.1.6 Forcing a Panic on a System That Is Not Hung 

To force a panic on a system that is not hung, login as root and issue the following 
command: 

# dbx -k /vmunix /dev/mem 

The following dbx command forces a panic on the next network interrupt, even in 
single-user mode (do not issue this command on diskless systems because it will not 
dump): 

(dbx) assign ln_softc=O 

The following command also panics the system: 

(dbx) assign gnodeops=O 

Note 

Do not overwrite the process structure, because dbx will not be able to 
work on the image. Do not overwrite the console structures, because you 
will not see the panic messages. 

D.1.7 Forcing a Memory Dump on a DS2100 or DS3100 

To force a memory dump on a DS2100 or DS3100 system, press the restart button. 
Pressing the restart button halts the machine and clears memory, unless the 
bootmode variable is first set to r (restart). The following example shows how to 
set the bootmode variable (>>>represents the console prompt): 

>>> setenv bootmode r 

With the bootmode variable set to r, .pressing the restart button dumps memory and 
rebo9ts the machine. The dump might be silent and take several minutes. 

D.1.8 Forcing a Memory Dump on a DS5000 

To force a memory dump on a DS5000, press the restart button. Pressing the restart 
button halts the machine and clears memory, unless the halt a ct ion variable is 
first set tor (restart). The following example shows how to set the haltaction 
variable(>>> represents the console prompt): 

>>> setenv haltaction r 

With the haltaction variable set tor, pressing the restart button dumps memory 
and reboots the machine. The dump might be silent and take several minutes. 
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D.1.9 Forcing a Memory Dump on a 055400 or 055800 
To force a memory dump on a DS5400 or DS5800 system, follow these steps: 

1. Set the break enable switch to the up position (pointing to the dot in the circle). 

2. Press the break key to get the console prompt(>>>). 

3. Run the memory dump routine by issuing the go command with the kernel start 
address + 8. For example, suppose the kernel start address is Ox80030000; in this 
case, the command is as follows: 

>>> go Ox80030008 

D.1.10 Console Commands 
The following list gives the syntax for a number of console commands that are useful 
for debugging a RISC kernel: 

• The following command dumps the contents of memory starting at the specified 
address and displays the specified number of longwords in hexadecimal format: 

dump -w -x address# count 

The following command dumps the contents of memory, starting at addressl, 
ending at address2. The output is displayed as longwords in hexadecimal 
format: 

dump -w -x address 1: address2 

The following command dumps the startup stack: 

dump -w -x Ox8001f400:0x8001f800 

• The following command examines a byte, halfword, or word at the specified 
virtual address (To examine physical location 0, use address Ox8000 0000.): 

e [ -b I -h I -w J address 

• The following command transfers control to given entry point: 

go [pc] 

• The following commands display help information for the specified command or, 
if no command is given, the command menu: 

help [ command] 

? [command] 

• The following command displays the current value of the specified environment 
variable, or if no variable is specified, all environment variables: 

printenv [van 
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• The following command sets the specified environment variable to the specified 
string: 

setenv var string 

• The following command deletes the specified environment variable: 

unsetenv var 

• The following command tests all components and subsystems: 

ta 

• The following command constrains memory size to the specified number of bytes: 

boot memlimit=bytes 

D.2 VAX Kernel Debugging 
This section shows how to debug the ULTRIX kernel, /vmunix, on a VAX system. 
In addition to the information in this section, you might find A Tutorial Introduction 
to ADB in the Supplementary Documents, Volume 2: Programmer useful when you 
debug /vmunix. Refer also to the following header files: 

• I sys/h/proc. h 

• I sys/h/user. h 

• I sys/VAX/pcb. h 

• /sys/VAX/trap.h 

The crash System V program might also be useful 

Normally, you debug /vmunix, when your system crashes. On a VAX processor, 
crashes typically occur because of a hardware trap, hardware machine check, or 
software panic. The following list describes these types of crashes and the actions 
the system takes during the crash: 

• Hardware trap 

When a hardware trap occurs, the system pushes the PSL, PC, code, and trap type 
onto the interrupt stack. Depending on the trap type, the code is often the last 
virtual address that was accessed, and is therefore the code that caused the trap 
(see I sys/VAX/trap. h for an explanation of trap types). The ULTRIX trap 
routine, I sys/VAX/trap. c, is called through the SCB. The trap routine, in 
tum, calls the panic routine. 

An example of a trap is a process that accesses an address outside the process's 
address space, which causes trap type 8, a segmentation fault. 

• Hardware machine check 

When a hardware machine check occurs, the system pushes a processor dependent 
machine check frame onto the interrupt stack. The UL TRIX machine check 
routine, I sys/vax/machdep. c, is called through the SCB. If unrecoverable, 
the machine check calls the panic routine. 
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An example of a machine check is a parity memory error. 

• Software panic 

When a software panic occurs, the kernel software detects an internal 
inconsistency while the system is running on the kernel stack. The kernel routine 
that detects the inconsistency calls the panic routine (see the VAX Architecture 
Handbook for more information). 

D.2.1 Using nm to Determine Where a Crash Occurred 

For a system crash that gives a PC on the console, you can use nm to determine 
which routine was executing. The following command displays the name list 
(symbol table) of the vmunix image in numerical order: 

% nm -n /vmunix 

To determine which routine was executing, find the address that is closest to, but less 
than, the PC from the crash; this address is the starting address of the routine 
executing when the system crashed. Subtract the starting address of this routine from 
the faulting PC to get the offset from the beginning of the routine in which the error 
occurred. Then, use the adb debugger to find the incorrect instruction. 

D.2.2 Forcing a Crash Dump 

If the system is hung, you can force a crash dump. To do this, halt the processor and 
enter console mode. (In this section,>>> represents the console prompt.) Then, issue 
the following command to get the address of the crash dump routine: 
>» E/P/L 4 ! Get address of dump routine 

P 00000004 OOOOlCOO 

The console' s response is the address of the crash dump routine, which can then be 
run by typing: 

>>> D PSL 041FOOOO 
»> S 80001COO 

Set PSL to interrupt stack and IPL to 31 
Run the dump routine 

If the interrupt stack is invalid, the crash dump routine is not called. (The interrupt 
stack is in kernel address space, starting just below the address of the crash dump 
routine [doadump], and growing down in memory. The interrupt stack has a fixed 
size of several pages.) 

There is another way to force a crash dump. But first, examine the PC and stack 
pointers, noting their values, because they will be changed by the commands to force 
a dump: 
>>> E/G F Examine general register F (PC) 

G OOOOOOOF 80001EAD 
>>> E PSL Examine the PSL 

M 00000000 04Cl0004 
>>> E SP Examine the stack pointer 

G OOOOOOOE 000393E8 
>>> E/I 0 Examine internal register 0 (KSP) 

I 00000000 7FFFFDAC 
>>> E/I 3 Examine internal register 3 (USP) 

I 00000003 7FFFE2F4 
»> E/I 4 Examine internal register 4 (ISP) 

I 00000004 80000COO 
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Now set the PC to -1, and continue: 
>>> D/G F FFFFFFFF 
>>> D PSL OOlFOOOO 
>>> c 

Deposit -1 in PC 
Set IPL at 31 to block interrupts 
Continue processing 

The preceding commands force a segmentation fault, causing a crash dump. 
Unfortunately, some machine state is changed using this method. However, all disk 
writes are completed (as if sync had been executed). 

If neither of the prior methods work, you might still be able to get a crash dump by 
initializing the processor before starting the crash dump routine. Initializing the 
processor sets it to a known state, which includes setting the PSL to run on the 
interrupt stack, setting the IPL to 31, and disabling memory mapping. Unfortunately, 
even more machine state is changed; depending on the processor, the initialization 
might corrupt the ISP, KSP, POBR, POLR, PIBR, and PlLR. 

»> E/P/L 4 
P 00000004 OOOOlCOO 

>>> I 
>» S 80001COO 

Get address of dump routine 

Initialize the processor 
Run dump routine 

D.2.3 Getting a Stack Trace on Any Process 
To perform a stack trace on a process, get the PID of the process to be traced by 
issuing the p s command: 

% ps -klax vmunix.n vmcore.n 

The ps options have the following meanings: 

-k Use kernel file (vmcore .n instead of /dev/kmem and /dev/mem) 

-I Display in long format, giving more information 

-a Show all processes (not just your own) associated with a terminal 

-x Show processes not associated with a terminal 

See ps(l) in the ULTRIX Reference Pages for complete information. 

The preceding p s command displays the PIDs of every process on the system. Note 
the PID of the process you are interested in. Now issue the I etc/pstat command 
with the -p, -a, and -k options: 

% pstat -pak vmunix.n vmcore.n 

The pstat options have the following meanings: 

-p Display process table for active processes 

-a Describe all process slots 

-k Required option when a core file is specified 

See pstat(8) in the ULTRIX Reference Pages for complete information. 

The following shows an example of p stat output: 
195/1044 processes 

LOC S F POIP PRI SIG UID SLP TIM CPU NI PGRP PIO PPID 
ADDR RSS SRSS SIZE WCHAN LINK TEXTP CLKT TTYP 

801e5f70 1 3 0 0 0 0 0 127 0 20 0 0 0 
c96 0 0 0 15f936 lea170 0 0 

801e6030 1 1 0 30 0 0 87 127 0 20 0 1 0 
96df lc6 0 lfO le6030 le9f30 218e80 0 
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801e60f0 1 
96bf 0 

3 0 1 0 
0 2000 le60f0 

0 127 127 
0 0 

0 20 0 2 0 
0 

Locate the PID you want in the PID field, second from right. The process's location 
(the memory location of the process structure) is in the LOC field, the leftmost field. 
(In the preceding example, the location of process 0 is 801e5f70.) Check the 
process's state and flag codes, second and third fields, labeled S and F. 

Invoke adb with the following command: 

% adb -k vmunix.n vmcore.n 

The following adb commands yield the address of the u_area of process 0 (from the 
preceding example): 
80le5f70/X ! Show contents of process structure's first field 

801e5f70: 8000feff 

IRffiurnl ! Show contents of process structure's second field 

801e5f74: 80f03a00 

IReturnl ! Show contents of process structure's third field 

801e5f7c: 81000fff 

IReturnl ! Show contents of process structure's fourth field 

801e5f80: 801ee3e0 

IReturnl ! Show contents of process structure's fifth field 

801e5f88: 80a20fff 

The fifth field in the process structure contains the address that maps the u_area (see 
proc. h: proc struct and p_addr field); the following adb commands set a stack 
trace for the process: 
80a20fff$p 
$c 

Set process context for adb 
! Trace stack of process in question 

D.2.4 adb Command Summary 
You can invoke the adb debugger to debug either a crash image or a running system. 
To invoke adb on a crash image, issue the following command: 

% adb -k vmunix vmcore 

To invoke adb on a running system, issue the following command: 

% adb -k -w /vmunix /dev/m.em 

Once you invoke adb you can use a number of commands to perform debugging 
tasks. Several adb commands allow you to specify a format for the output from the 
command. The following list describes the format characters you use on the 
command line to control the format of adb's output: 

• d - specifies signed decimal word output 

• D - specifies signed decimal longword output 

• f - specifies floating point longword output 

• F - specifies floating point double output 

• o - specifies unsigned octal word output 

• O - specifies unsigned octal longword output 
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• q - specifies signed octal word output 

• Q - specifies signed octal longword output 

• s - specifies string output 

• u - specifies unsigned decimal word output 

• U - specifies unsigned decimal longword output 

• x - specifies hexadecimal word output 

• X - specifies hexadecimal longword output 

The following list describes several commonly used adb commands: 

• ? [address] f 

Display, using the format character f, values in the disk image starting at 
address. 

• I [address] f 

Display, using the format character f, values in the core file starting at 
address . 

• = f 

Display, using the format character f, the virtual address of a symbol. 

• * ( s cb-4 ) $ c 

Trace stack of whichever stack was currently active (interrupt or kernel) in this 
format: 

func 3 (args) from addr 3 
func 2 (args) from addr 2 
func 1 (args) from addr 1 

(newest) 

(oldest) 

The func 1 ( ) routine calls func 2 ( ) from addr_l in func 1 ( ) . 
Therefore,the stack frame with the saved PC of addr_l (return address), is the 
stack frame of func_2 () . 

• address $c 

Trace stack starting from address 

• routine-name +2 [/] [?] i 

Display assembly instructions starting at the beginning of the named routine ( + 2 
skips over the register save mask) 

• address [/] [?] i 

Display assembly instructions starting at address 

• Return 

Examine the location after the last examined location 

Examine the location before the last examined location 

• [!] [?] w value 

Write value to the last addressed location 
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• $R 

Show register contents 

• range $8 

Extend range of symbolic names 

D.2.5 adb Scripts 

The directory /usr I lib/ adb contains adb scripts that format kernel data 
structures. The following list shows some ways you might use the scripts: 

• address $< script 

Apply script at address 

• u block $<u 

Apply the user structure script at symbolic address u block (the current u 
block; that is, the user structure of the current procesS) 

• address $<proc 

Apply the proc script at address, obtained from the user structure 

• address $<pcb 

Apply the pcb script at address 

D.2.6 Examining Stack Frames with adb 

Using adb to examine stack frames is useful for seeing values of local variables. 
The following adb commands are useful in examining stack frames: 

• (scb-4) /X 

Display the address of the current stack, which is stored in scb-4. If the address 
is 800nnnnn, the system was using the interrupt stack when it crashed; if the 
address is 1ff nnnnn, the system was using the kernel stack. 

• intstack/20X 

Starting at the address of intstack, display 20 longwords in hexadecimal 
format. 

• u$<u 

Show the first item in the user structure, which is the kernel stack pointer (KSP). 

• KSP/20X 

Starting at the address of KSP, display 20 longwords in hexadecimal format. 

To find a stack frame (a call frame for a procedure call), look for a 0 longword 
(condition handler) followed by a longword with bit 29 set, which indicates a call 
(for example, 2e000000). Figure D-3 illustrates a stack frame in memory. 
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Figure D-3: Stack Frame in Memory 
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The calls instruction pushes the argument count onto the stack, then aligns the 
stack and creates the stack frame (call frame), which is the saved register through the 
condition handler. (For more information, see the VAX-11 Architecture Reference 
Manual.) 
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Special Characters 

! command (dbx), 3-16 

$? make macro, 2-19 

A 

abort() routine, 5-5 

behavior of in standard conformant environment, 

5-9 

abs() routine, 5-5 

absolute path name 

use of for security, 7-2 

accept system call, 7-8 

stream socket and, 6-22 

access control list, 7-12 

access system call, 7-5 

activation level 

effect of func command on, 3-13 

active routine 

effect of func command on, 3-13 

adb debugger 

using to debug vmunix, D-15 

address space (RISC), D-2 

AF_ DECnet domain, 6-16 

structure used with, 6-17 

AF_ INET domain, 6-16 

structure used with, 6-17, 6-24 

AF _SNA domain, 6-16 

AF_ UNIX datagram socket, 620, 621 

AF_ UNIX domain, 6-16 

structure used with, 6-17 

alarm() routine 

signals and, 6-14 

timers and, 6-14 

alias 

built-in for dbx commands, 3-20 

alias command (dbx) 

using in an initialization file, 3-17 

allowSendEvents resource 

use of in a secure environment, 7-14 

ANSI standard, 1-4 

a.out.h header file 

Index 

contents of on VAX and RISC systems, C-1 

application development 

phases of, 1-2 

ar command, 2-11 

archive library, 2-11 to 2-12 

creating, 2-11 

effect of on -G option value calculation, 4-27 

array 

passing between C and Pascal, 8-3 

storage mapping, B-2 

as command 

availability of, 2-2 

input to, 2-2 

using error with, 2-9 

using separate Id command, 2-2, 2-14 

asctim() routine, 5-8 

assembler language 

See as command 

assign command (dbx), 3-11 

atexit() routine, 5-5 

atof() routine, 5-3 

atoi() routine, 5-3 

atol() routine, 5-3 

audcntl system call, 7-6 to 7-8 

audgen system call, 7-6 to 7-8 



audgenl() routine, 7-6 to 7-8 

audit control flag, 7-6 

changing, 7-7 

audit file, 7-5 

audit record 

creating for a privileged process, 7-6 

auditd daemon, 7-5 

auditlog file, 7-5 

auth database, 7-9 

reading during user authentication, 7-10 

authenticate_ user() routine, 7-1 O 

auto storage class, B-5 

B 

basic block counting, 4-6 to 4-8 

averaging, 4-8 

-bestGnum option, 4-26 

big endian storage 

compared to little endian storage, B-3 

bind system call 

datagram socket and, 6-18 

stream socket and, 6-22 

bit field 

storage mapping, B-4 

block mode device 1/0, 5-14, 5-15 

blocking signals 

See signal 

Bourne shell 

path variable syntax, 7-2 

breakpoint 

continuing program execution after, 3-8 

displaying status of, 3-7 

duration of, 3-5 

removing, 3-7 

setting, 3-4 

brk system call 

effect of on program portability, C-1 

bsearch() routine, 5-5 

.bss section 

contents, 4-25 

byte boundary, B-1 

lndex-2 

c 
C data type 

location of value range definition, B-2 

storage mapping, B-1 to B-6 

C FILE declaration (RISC), 8-3 

C implementation, A-1 to A-3 

C language, 1-6 

writing programs that optimize well (RISC), 4-14 

to 4-18 

writing programs that optimize well (VAX), 4-22 

to 4-25 

C routine 

calling from Pascal, 8-2 

C shell 

path variable syntax, 7-2 

C storage class, B-5 

c2 optimizer (VAX), 4-22 

c89 command 

availability of, 2-2 

effect of -D option, 2-9 

effect of in the standard conformant environment, 

2-9 

effect of -Y option, 2-9 

preprocessor used by, 2-10 

syntax differences between cc and c89, 2-11, 2-16 

call command (dbx), 3-14 

calling C from Pascal, 8-7 to 8-8 

calling Pascal from C, 8-4 to 8-7 

calloc() routine, 5-5 

catching signals, 6-9 

See signal 

CBREAK terminal 1/0 mode, 5-20 

cc command 

availability of, 2-2 

effect.of -D option, 2-9 

effect of in the standard conformant environment, 

2-9 

effect of -j option (RISC), 4-19 

effect of -0 limit option (RISC), 4-21 

effect of -0 option (VAX), 4-22 

effect of -03 option (RISC), 4-19 

effect of -Y option, 2-9 

RISC and VAX compared, C-5 to C-6 



cc command (cont.) 

syntax differences between cc and c89, 2-11, 2-16 

use by other compiler commands, 2-7 

using error with, 2-9 

char data type 

storage mapping, B-1 

character mode device 1/0, 5-14, 5-15 

child process 

calling setreuid to reduce superuser privilege, 7-5 

creating, 62 

inherited file access, 7-1 

running shell command, 6-7 

signal mask and, 7-2 

chown system call 

using to remove SUID or SGID permissions, 7-9 

clearerr() routine, 5-4 

clock() routine, 5-8 

close system call 

datagram socket and, 6-18 

pipes and, 6-1 

stream socket and, 6-22 

close-on-exec flag, 7-1 

cob command 

availability of, 2-2 

COBOL language 

availability of, 2-2 

code profiling 

See profiling code 

comment 

as error message from the error command, 2-10 

compiler 

See individual compiler commands 

See compiler system 

compiler options 

controlling cpp include file search path, 2-11 

controlling linker library search path, 2-16 

default object file name, 2-6 

-lstring, 2-14 to 2-15 

related to linking, 2-15 to 2-16 

syntax differences between cc and c89, 2-11, 2-16 

to invoke cpp, 2-10 

to rename output program, 2-2, 2-13, 2-16 

to retain object file and prevent linking, 2-6 

using to retain object file and prevent linking, 2-2 

compiler system 

available languages, 2-2 

compilation, 2-6 

compiler commands, 2-1 to 2-3 

components, 2-3 to 2-11 

driver programs, 2-1 to 2-3 

file suffixes and, 2-3 

header file use, 2-10 

invocation, 2-6 

libraries, 2-14 

linker, 2-12 to 2-16 

list of compiler commands, 2-2 

list of driver commands, 2-2 

multilanguage programs, 2-6 

options, 2-6 

phases, 2-3 

shareable include files (RISC), 2-11 

using error with, 2-9 

connect system call 

stream socket and, 6-22 

const keyword 

effect of on program portability, C-5 

cont command (dbx), 3-8 

cooked device 1/0, 5-14, 5-15 

core file 

security consideration, 7-2 

-count option, 4-26 

cpp command 

using error with, 2-9 

cpp preprocessor 

including header files, 2-10 to 2-11 

use with compiler commands, 2-10 to 2-11 

creat() routine, 5-3 

crypt() routine 

using for password authentication, 7-10 

ctermid() routine 

behavior of in standard conformant environment, 

5-9 

ctime() routine, 5-8 

ctrace command, 1-7, 4-2 to 4-5, 4-2 

ctype.h file, 5-2 

cuserid() routine 

behavior of in standard conformant environment, 

5-9 

lndex-3 



D 

daemon 

creating secure, 7-8 

data 

storing in a secure location, 7-3 

data alignment 

effect of on program portability, C-3 

.data section 

contents, 4-25 

data segment 

allocating on a RISC system, C-2 

data structure 

ltchars, 5-21 

mtop, 5-17 

sgttyb, 5-19 

storage mapping, B-2 to B-5 

tchars, 5-21 

data type 

mismatch when calling C from Pascal, 8-2 

Pascal and C correspondence, 8-4 

datagram socket 

See socket 

dbx debugger, 1-7, 3-1 to 3-22 

command alias list, 3-20 

specifying more than one command on a command 

line,3-14 

using on optimized code, 4-13 

using to debug vmunix, D-3 

debugging, 1-7 

See also dbx debugger 

DEC C, 1-6 

availability of, 2-2 

DEC Fortran, 1-6 

availability of, 2-2 

DECterm window 

See DECwindows environment 

DECwindows environment 

use of in a secure environment, 7-13 

writing secure programs in, 7-12 to 7-15 

define directive 

using to define a preprocessor symbol, 2-8 

delete command (dbx), 3-7 

lndex-4 

/dev/audit 

See audit file 

device 

controlling, 5-15 

device codes, 5-14 

device files, 5-14 

device 1/0, 5-14 

block mode, 5-15 

character mode, 5-15 

cooked,5-15 

raw, 5-15 

types, 5-14 

devio.h header file, 5-15 

D-float data type 

effect of on program portability, C-3 

ditftime() routine, 5-8 

Diskless Management Services 

See DMS 

div() routine, 5-5 

dkio.h header file, 5-15 

DMS, 1-9, 1-10 

domain 

See specific domain names 

See socket domain 

double data type 

storage mapping, B-1 

value range, B-2 

doubleword boundary, B-1 

DRM (XUI Resource Manager), 1-5 

dump command 

using at the console prompt, D-11 

dup system call, 6-3 

dxdb debugger, 1-7 

E 

EACCES erno value, 7-4 

enum data type 

storage mapping, B-1 

environment variable 

PROFDIR, 4-9 

setting in dbx, 3-6 

EPERM erno value, 7-3 



EROFS erno value, 7-4 

errno variable, 7-3 

use with ferror(), 5-4 

error command, 1-7, 2-9 

output, 2-10 

/etc/svc.conf file 

See svc.conf file 

execl() routine, 5-8 

executable image 

creating, 2-2, 2-12 

size difference between VAX and RISC systems, 

C-1 

execve system call 

effect of on signal handling in a child process, 7-2 

exit() routine, 5-5 

expression 

displaying with dbx, 3-12 

using dbx to resolve, 3-12 

extern storage class, B-5 

F 

fi7 command 

availability of, 2-2 

use with C programs, 2-7 

using error with, 2-9 

FASYNC flag 

fcntl and, 6-27 

fault 

difference from trap, 6-11 

fclose() routine, 5-3 

behavior of in standard conformant environment, 

5-9 
fcntl system call, 627, 6-26 

preventing process blocking, 6-27 

using to set the close-on-exec flag, 7-1 

fdopen() routine, 5-3 

behavior of in standard conformant environment, 

5-9 
feof() routine, 5-4 

f error() routine, 5-4 

mush() routine, 5-3 

behavior of in standard conformant environment, 

5-9 

fgetc() routine, 5-3 

f getpos() routine, 5-4 

f gets() routine, 5-3 

file access 

controlling, 7-5 

file command, 5-14 

file descriptor, 6-3 

closing, 7-1 

pipes and, 6-1 

file ownership 

security consideration for a privileged daemon, 7-8 

file variable (RISC), 8-3 

files 

See also object file 

See also ucode file 

protecting, 7-3 

float data type 

storage mapping, B-1 

value range, B-2 

float.h file 

contents of, B-2 

floating point data 

effect of on program portability, C-3 

passing between Pascal and C, 8-3 

fopen() routine, 5-3 

behavior of in standard conformant environment, 

5-9 
fork system call 

effect of on signal handling in the child process, 

7-2 

fork() routine, 5-8 

fort command 

availability of, 2-2 

FORTRAN language 

supported products, 1-6 

FORTRAN preprocessor, 2-5 

fprintf() routine, 5-3 

behavior of in standard conformant environment, 

5-9 
fputc() routine, 5-3 

fputs() routine, 5-3 

fread() routine, 5-4 

free() routine, 5-5 
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freopen() routine, 5-3 

behavior of in standard conforrnant environment, 

5-9 

fscanf() routine, 5-3 

fseek() routine, 5-4 

fsetpos() routine, 5-4 

fstat() routine, 5-8 

ftell() routine, 5-4 

ftoi() routine, 5-8 

func command (dbx), 3-13 

function variable 

comparison between C and Pascal (RISC), 8-3 

fwrite() routine, 5-4 

G 

-G option 

using to reduce the size of global data, 4-26 

gcore, 1-7 

getc() routine, 5-3 

getchar() routine, 5-3 

getenv() routine, 5-5 

getitimer system call, 616, 6-15 

getpeername system call, 7-8 

getpgrp system call, 6-13 

getpwnam() routine 

using to authenticate a user, 7-10 

getrlimit system call 

effect of on program portability, C-1 

gets() routine, 5-3 

getsockopt system call, 6-31 

getsvc() routine 

using to authenticate a user, 7-10 

getuid system call, 7-5 

G-float data type 

effect of on program portability, C-3 

global pointer area 

allocating to a program's most active module, 4-27 

compiler command options, 2-16 

definition of, 4-25 

gm on.out file, 4-10 

gmtime() routine, 5-8 

gprof command, 4-10 
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H 

halfword boundary, B-1 

handling signals 

See signal 

hardware machine check, D-12 

hardware trap, D-12 

hcreate() routine, 5-5 

hdestroy() routine, 5-5 

header files 

description of, 2-10 

including in programs, 2-10 

limitations with dbx use, 2-10 

POSIX conformant, 2-8 

shareable (RISC), 2-11 

standards conformance in, 1-4 

use with multiple languages, 2-11 

using to define preprocessor symbols, 2-8 

history command (dbx), 3-16 

$historywindow variable, 3-16 

hsearch() routine, 5-5 

if def directive 

use with header file, 2-11 

ignoring signals 

See signal 

include directive 

using, 2-8, 2-10 

installation tools, 1-9 

instruction set 

effect of on image size for RISC systems, C-1 

int data type 

storage mapping, B-1 

internationalization, 1-6 

interprocess communication 

security consideration, 7-3 

interrupt signal 

handling, 6-11 

sent to background processes, 6-11 

invocation counting, 4-6 

1/0 

multibuffered, 517, 5-16 



1/0 routines 

See also specific routine names 

standard I/O, 5-3 

system compared with standard, 5-10 

ioctl system call, 5-15 

structures used with, 5-15 

tape drive control with, 5-17 

terminal control with, 5-19 

using in a secure program, 7-8 

<ioctl.h>, 5-15 

ioctl.h header file, 5-19 

isalnum() routine, 5-2 

isalpha() routine, 5-2 

isascii() routine, 5-2 

iscntrl() routine, 5-2 

isdigit() routine, 5-2 

isgraph() routine, 5-2 

islower() routine, 5-2 

ISO standard, 1-4 

isprint() routine, 5-2 

ispunct() routine, 5-2 

isspace() routine, 5-2 

isupper() routine, 5-2 

isxdigit() routine, 5-2 

ITIMER_PROF timer, 6-15 

ITIMER_REAL timer, 6-15 

itimerval structure, 6-15 

ITIMER_ VIRTUAL timer, 6-15 

K 
kernel stack (RISC), D-2 

keyboard 

securing, 7-14 to 7-15 

kill system call 

signals and, 6-13 

killpg system call 

signals and, 6-13 

kit, 1-10 

L 

labs() routine, 5-5 

language 

See programming language 

language interfaces 

between C and Pascal, 8-1 to 8-8 

LCASE terminal 110 mode, 5-20 

LCTLECH, 5-22 

Id command 

using error with, 2-9 

Id linker 

command syntax, 2-14 

description, 2.,....12 

options commonly used, 2-15 

specifying libraries, 2-14 to 2-15 

standard library search path, 2-16 

use of with compiler commands, 2-1 to 2-14 

using to determine the best -G option value, 4-26 

ldiv() routine, 5-5 

libc 

character processing routines and macros, 5-2 

compiling and linking considerations, 5-1 

contents of, 5-2 to 5-8 

date and time routines, 5-7 

environment and process routines, 5-5 

general functions, 5-5 

memory management routines, 5-5 

standard I/0 routines, 5-3 

string operations, 5-6 

system calls, 5-8 

libcP library 

differences from C library, 5-9 

libraries 

C, 5-2 to 5-8 

compiling and linking considerations, 5-1 

POSIX, 1-5 

standard I/0, 5-3 

X, 1-5 

library routine 

See routine 

limits.h file 

contents of, B-2 
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$lines variable, 3-16 

defining in an initialization file, 3-17 

linkers 

See also Id linker 

described, 1-7 

lint command, 1-7, 4-1 

using error with, 2-9 

lisp command 

availability of, 2-2 

list command (dbx), 3-3 

listen system call 

stream socket and, 6-22 

$1istwindow variable, 3-3 

defining in an initialization file, 3-17 

little endian storage 

compared to big endian storage, B-3 

localtime() routine, 5-8 

long data type 

storage mapping, B-1 

longjmp buffer, C-5 

longjmp() routine, 5-5 

ltchars data structure, 5-21 

L TILDE, 5-22 

L TOSTOP, 5-22 

M 
make 

$?macro, 2-19 

building programs with, 2-16 to 2-20 

macro, 2-18 

make command 

using error with, 2-9 

makefile, 217, 2-16 to 2-18 

specifying name for, 2-18 

updating, 2-19 

malloc() routine, 5-5 

man command, xvi 

mblen() routine, 5-7 

mbstowcs() routine, 5-7 

mbtowc() routine, 5-7 

memchr() routine, 5-6 

memcmp() routine, 5-6 
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memcpy() routine, 5-6 

memmove() routine, 5-6 

memory 

See also system memory map (RISC) 

virtual address space use by programs, C-1 

memset() routine, 5-6 

message 

in pipe, 6-3 

mktime() routine, 5-8 

moo.out file, 4-8 

mouse 

securing, 7-14 to 7-15 

MSG_ OOB argument, 6-30, 6-31 

MSG_ PEEK argument, 6-30 

MTIOCTOP request, 5-17 

mtio.h header file, 5-15 

mtop data structure, 5-17 

multibuffered 1/0, 517, 5-16 

N 

newinv utility, 1-10 

next command (dbx), 3-8 

NFS file 

effect of unlinking, 7-3 

nice command, 7-5 

nice() routine, 5-8 

behavior of in standard conformant environment, 

5-9 

nlist structure 

effect of on portability, C-1 

nm command (RISC) 

using to debug /vmunix, D-3 

nm command (VAX) 

using to debug /vmunix, D-13 

-nocount option, 4-26 

NULL pointer 

effect of on program portability, C-3 

0 
-03 option 

using, 4-19 



object file 

format used on RISC systems, C-1 

storing in an archive library, 2-11 

odump utility 

using to examine a stack frame, D-9 

-0 limit option, 4--21 

open file descriptor 

security consideration, 7-1 

opendir() routine 

behavior of in standard conformant environment, 

5-9 
optimization 

compiler options for, 2-13 

optimizing programs (RISC), 4--10 to 4--22 

optimizing programs (VAX), 4--22 to 4--25 

out-of-bounds socket messages, 6-30 

p 

page size, C-4 

Pascal language, 1-6 

availability of, 2-2 

calling C routines in, 8-2 

writing programs that optimize well (RISC), 4--18 

to 4--19 

Pascal text type (RISC), 8-3 

passwd database 

See password 

password 

use of for user authentication, 7-10 

using expiration information, 7-10 

PATH variable 

defining in a secure environment, 7-2 

null entry in, 7-2 

using to write a secure shell script, 7-12 

pathname 

See absolute pathname 

See relative pathname 

pc command 

availability of, 2-2 

-C option (RISC), 4--13 

use with C programs, 2-7 

using error with, 2-9 

pc command (VAX) 

effect of -C option, 4--22 

PC sampling, 49, 4--8 

averaging, 4--9 

pclose() routine, 5-5 

peeking 

at socket messages, 6-30 

Per-CPU database (RISC), D-2 

permanent file, 7-3 

perror() routine, 5-4 

-pg option, 4--10 

pi command 

using error with, 2-9 

PID 
displaying for all processes, D-5 

$pid variable 

setting, D-5 

pipe, 6-1 

creating, 62 

file descriptors and, 6-1 

messages in, 6-3 

reading an empty, 6-3 

redirecting stderr to, 6-3 to 6-6 

redirecting stdin to, 6-3 to 6-6 

redirecting stdout to, 6-3 to 6-6 

writing to full, 6-3 

pipe system call, 6-1 

PIPE _MAX, 6-1 

pixie command, 4-6 

pointer 

returned by a function, C-2 

pointer data type 

storage mapping, B-1 

popen library routine 

creating pipes with, 6-6 to 6-8 

popen() routine, 5-5 

POSIX environment 

compiling a program in, 2-8 

POSIX standard, 1-4 

function library, 1-5 

_POSIX_SOURCE preprocessor symbol 

defining, 2-8 

defining on the cc command line, 2-9 

effect of on compilation when defined, 2-8 
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preprocessor symbol 

See also _POSIX_SOURCE preprocessor symbol 

See also _XOPEN_SOURCE preprocessor symbol 

defining on the c89 command line, 2-9 

defining on the cc command line, 2-9 

preprocessors 

associated with C, 2-1, 2-10 

associated with FORTRAN, 2-5 

print command (dbx), 3-12 

printf command (dbx), 3-12 

printf() routine, 5-3 

behavior of in standard conformant environment, 

5-9 

privileged port 

identifying, 7-8 

privileged process 

calling routines from, 7-4 

potential resource allocation problem, 7-5 

security consideration for daemons, 7-8 

privileged socket 

using in a secure program, 7-8 

procedure 

See routine 

process 

See child process 

See privileged process 

process audit 

turning off, 7-6 

process audit mask, 7-6 

process group ID, 6-13 

Process Identification 

See PID 

prof command, 4-6 to 4-8 

PROFDIR environment variable, 4-9 

profiling code 

RISC, 4-5 to 4-9 

VAX, 4-9 to 4-10 

PROG _ ENV environment variable 

defining, 2-8 

defining on the c89 command line, 2-9 

defining on the cc command line, 2-9 

program 

compiling in the standard conformant environment, 

2-8 
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program (cont.) 

debugging using dbx, 3-1 to 3-22 

default output file name, 2-2 

finding errors in, 2-9 

optimizing on RISC systems, 4-10 to 4-22 

optimizing on VAX systems, 4-22 to 4-25 

protecting access to, 7-12 

running, 2-2 

running under the control of dbx, 3-5 

program argument 

effect of specifying on dbx run command line, 3-5 

program counter sampling 

See PC sampling 

programming language 

See also specific programming languages 

supported, 1-6 

ps command (VAX) 

using to debug the kernel, D-14 

putc() routine, 5-3 

putchar() routine, 5-3 

putenv() routine, 5-5 

puts() routine, 5-3 

Q 

qsort() routine, 5-5 

R 

rand() routine, 5-5 

ranlib command, 2-12 

raw device VO, 5-14, 5-15 

RAW terminal 1/0 mode, 5-20 

.rdata section 

contents, 4-25 

read system call, 6-31 

shutdown system call and, 6-32 

real urn 
See UID 

realloc() routine, 5-5 

record event 

displaying status of, 3-7 

removing, 3-7 



recv system call 

out-of-bounds message reading, 6-31 

peeking at socket messages, 6-30 

shutdown system call and, 6-32 

stream socket and, 6-22 

recvfrom system call 

datagram socket and, 6-18 

register 

use of in optimizing, 4-11 

register storage class, B-5 

relative pathname 

security consideration, 7-2 

Remote Installation Services 

See RIS 

remove() routine, 5-3 

rename() routine, 5-3 

rerun command (dbx), 3-5 

return value 

data type of when calling between C and Pascal, 

8-5 

rewind() routine, 5-4 

RIS, 1-9 

routines 

See also individual routine names 

C library, 5-2 to 5-8 

calling from a privileged process, 7-4 to 7-5 

calling under dbx control, 3-14 

common return value, 7-3 

curses library, 5-9 

displaying active with dbx, 3-12 

internationalization library, 5-7, 5-9 

kerberos library, 5-10 

math library, 5-10 

network computing system library, 5-10 

standard conformant library, 5-8 

tracing execution of, 3-10 

run command (dbx), 3-5 

s 
.sbss section 

contents, 4-25 

scanf() routine, 5-3 

behavior of in standard conformant environment, 

5-9 

SCCS (Source Code Control System), 1-8 

sccs command, 1-8 

.sdata section 

contents, 4-25 

Secure Keyboard menu item, 7-13 

security breach 

possible program responses to, 7-4 

security level 

reading svc.conf file to determine, 7-10 

segment 

security consideration, 7-3 

select system call, 6-26 

descriptor 1/0 and, 6-27 

select.h header file, 5-15 

semaphore 

security consideration, 7-3 

send system call 

out-of-bounds message writing, 6-30 

shutdown system call and, 6-32 

stream socket and, 6-22 

sending signals 

See signal, sending 

sendto system call 

datagram socket and, 6-18 

set group ID program 

See SGID program 

set user ID program 

See SUID program 

setbuf() routine, 5-3 

setenv command (dbx), 3-6 

using in an initialization file, 3-17 

setenv() routine, 5-5 

setgid() routine, 7-4 

setitimer system call, 616 

signals and, 6-15 

setjmp buffer, C-5 

setjmp() routine, 5-5 

setld utility, 1-9 

setlocale() routine, 5-7 

setreuid system call, 7-5 

setsockopt system call, 6-31 

setuid() routine, 7-4 

setvbuf() routine, 5-3 
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SGID program 

security consideration, 7-9 

sgttyb data structure, 5-19 

sgtty.h header file, 5-15 

sh5, 1-4 

shared memory segment, C-2 

shell 

defining variables in a secure environment, 7-2 

System V, 1-4 

shell command 

in child process, 6-7 

shell script 

security consideration, 7-12 

shell variable 

See specific shell variables 

short data type 

storage mapping, B-1 

shutdown system call 

closing halves of socket, 6-32 

read system call and, 6-32 

recv system call and, 6-32 

send system call and, 6-32 

write system call and, 6-32 

SIGALRM signal, 6-9, 6-14 

ITIMER_REAL and, 6-15 

sigblock system call 

signals and, 6-13 

sigcontext data structure 

signal handler and, 6-10 

SIG_DFL signal, 6-9 

SIG_ ERR signal, 6-9 

SIGFPE signal, 6-9 

signal handler and, 6-10 

SIG_ IGN signal, 6-9 

SIGINT signal, 6-9 

handling, 6-11 

sent to background processes, 6-11 

SIGIO signal, 6-9 

fcntl and, 6-27 

SIGKILL signal, 6-9 

signal, 6-8 

blocking, 6-9, 6-13 to 6-14 

catching, 6-9 to 6-10 

from keyboard, 6-11 
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signal (cont.) 

handling, 6-10 to 6-12 

ignoring, 610, 6-9 

secure response to, 7-2 

sending, 6-12 to 6-13 

timer and, 6-14 

signal handler 

See signal 

signal library routine, 6-8 

signal mask 

used with sigblock, 6-13 

signal routine, 7-2 

signal.h header file, 6-9 

sigpause system call 

signals and, 6-14 

SIGPIPE signal, 6-9 

SIGPROF signal 

ITIMER_PROF and, 6-15 

SIGQUIT signal, 6-9 

security consideration, 7-2 

SIGSTOP signal, 6-9 

SIGSYS signal, 6-9 

SIGTRAP signal 

security consideration, 7-2 

SIGURG signal, 6-31 

SIGUSRl signal, 6-9 

SIGUSR2 signal, 6-9 

sigvec system call, 6-8, 6-9 

sigvec() routine, 5-8 

sleep() routine, 5-8 

behavior of in standard conformant environment, 

5-9 

sockaddr _ dn data structure, 6-17 

sockaddr _in data structure, 6-17, 6-24 

sockaddr _ un data structure, 6-17 

SOCK_DGRAM socket type 

description of, 6-1 7 

socket, 6-16 

blocking, 6-26 

closing halves of, 6-32 

datagram, 6-17 to 6-21 

determining who is requesting service, 7-8 

flow control, 6-26 to 6-29 

out-of-bounds messages and, 6-30 



socket (cont.) 

peeking, 6-30 

security consideration for use with daemons, 7-8 

stream, 6-21 to 6-26 

types of, 6-17 

socket domain, 6-16 

structures used with, 6-17 

socket system call 

datagram socket and, 6-18 

stream socket and, 6-22 

socket type, 6-17 

SOCK _RAW socket type 

description of, 6-17 

SOCK_SEQPACKET socket type 

description of, 6-17 

SOCK_ STREAM socket type 

description of, 6-17 

software panic, D-13 

Source Code Control System 

See secs 
source file 

controlling access to, 1-8 

displying with dbx, 3-3 

finding errors in, 2-9 

sprintf() routine, 5-3 

behavior of in standard conformant environment, 

5-9 

srand() routine, 5-5 

sscanf() routine, 5-3 

stack frame 

format of, D-9 

standard 

programming to, 1-4 

standard error 

piping to error command, 2-9 

redirecting to pipe, 6-3 to 6-6 

standard input 

redirecting to pipe, 6-3 to 6-6 

standard 1/0 

compared with system 1/0, 5-10 to 5-22 

standard 1/0 routines, 5-12 

See also specific routine names 

standard output 

piping to error command, 2-9 

standard output (cont.) 

redirecting to pipe, 6-3 to 6-6 

static storage class, B-5 

status command (dbx), 3-7 

std err 

See standard error 

stdio 

See standard input 

stdio.h header file, 5-1, 5-3, 5-4 

stdlib.h header file, 5-5 

std out 

See standard output 

step command (dbx), 3-8 

sticky bit 

using to secure temporary files, 7-3 

stop command (dbx), 3-4 

storage class 

See C storage class 

strcat() routine, 5-6 

strchr() routine, 5-6 

strcmp() routine, 5-6 

strcoll() routine, 5-6 

strcpy() routine, 5-6 

strcspn() routine, 5-6 

stream socket 

See socket, stream 

strerror() routine, 5-6 

strftime() routine, 5-8 

string data 

how displayed by the dbx print command, 3-12 

passing between C and Pascal (RISC), 8-1 

passing between C and Pascal (VAX), 8-2 

string.h header file, 5-6 

strlen() routine, 5-6 

strncat() routine, 5-6 

strncmp() routine, 5-6 

strncpy() routine, 5-6 

strpbrk() routine, 5-6 

strrchr() routine, 5-6 

strspn() routine, 5-6 

strstr() routine, 5-6 

strtok() routine, 5-6 

strtol() routine, 5-3 
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strtoul() routine, 5-3 

structure 

See data structure 

strxfrm() routine, 5-6 

stty command, 6-12 

sum program 

security consideration, 7-9 

superuser privilege 

calling setreuid to reduce, 7-5 

svc.conf file 

getting security information from, 7-10 

system audit mask, 7-6 

system call 

calling from a privileged process, 7-4 to 7-5 

common return value, 7-3 

overview of, 5-8 

security consideration for a failed call, 7-4 

system crash 

determining which routine failed, D-3 

forcing on a VAX system, D-13 

system interrupt 

examining the exception frame after, D-6 

system 1/0 

compared with standard 1/0, 5-10 to 5-22 

system 1/0 routines, 5-13 

See also specific routine names 

system memory map (RISC), D-1 

System V, 1-4 

signals and, 6-9 

system() routine, 5-5 

T 

TANDEM terminal 1/0 mode, 5-20 

tape reading 

using ioctl system call, 5-17 to 5-19 

tape rewinding 

using ioctl system call, 5-17 to 5-19 

tape writing 

using ioctl system call, 5-17 to 5-19 

tchars data structure, 5-21 

tempnam() routine, 5-3 

temporary file, 7-3 
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terminal 

changing local-mode word of, 522, 5-22 

changing special characters of, 521 

setting characteristics of, 5-19, 5-20 

setting mode of, 5-19 

terminal control 

using ioctl system call, 5-19 

terminal 1/0 modes, 5-20 

See also specific mode names 

tfind() routine, 5-5 

time() routine, 5-8 

timed interval, 6-15 to 6-16 

time.h header file, 5-8, 6-15 

timer 

signal and, 6-14 

timeval, 6-27 

TIOCGETC request, 5-21 

TIOCGLTC request, 5-21 

TIOCLBIC request, 5-22 

TIOCLGET request, 5-22 

TIOCSETC request, 5-21 

TIOCSL TC request, 5-21 

tmp file 

security consideration, 7-2 

tmpfile() routine, 5-3 

tmpnam() routine, 5-3 

toascii() routine, 5-2 

tolower() routine, 5-2 

toupper() routine, 5-2 

trace command, 1-7 

trace command (dbx), 3-10 

trace event 

displaying status of, 3-7 

removing, 3-7 

tracing 

code sections, 4-3 

functions, 4-2 

with dbx debugger, 3-10 to 3-11 

trap 

difference from fault, 6-11 

tsearch() routine, 5-5 

tzset() routine, 5-8 

behavior of in standard conformant environment, 

5-9 



u 
ucode 

definition of, 4-20 

ucode file 

creating, 4-19 

storing in an archive libary, 2-11 

urn 
determining real, 7-5 

UIL (X User Interface Language), 1-5 

uld compiler phase, 4-19 

ulimit system call, 7-5 

ULTRIX Worksystem Software 

See UWS 

umask system call 

using to secure temporary files, 7-3 

umerge compiler phase, 4-19 

ungetc() routine, 5-3 

behavior of in standard conformant environment, 

5-9 

union 

storage mapping, B-5 

unlink system call 

datagram socket and, 6-18 

stream socket and, 6-22 

using to protect file access, 7-3 

unlink() routine, 5-3 

unsetenv() routine, 5-5 

uopt optimizer 

functions of, 4-10 

updating makefiles, 2-19 

user authentication, 7-9 

example routine, 7-11 

user identification 

See UID 

user input 

security consideration, 7-13 

user stack (RISC), D-2 

user struct (RISC), D-2 

/usr/tmp file 

See tmp file 

UWS (UL TRIX Worksystem Software) 

programming environment, 1-5 

v 
varargs.h macros, A-1 

variable 

manipulating with dbx, 3-10 to 3-12 

VAX compiler 

phases, 2-4 

V AX FORTRAN (UL TRIX) 

availability of, 2-2 

vbsprintf() routine, 5-3 

vfprintf() routine, 5-3 

virtual address space 

layout of, C-1 

volatile storage class (RISC), B-6 

use of with pointer data type, B-6 

vprintf() routine, 5-3 

w 
wcstombs() routine, 5-7 

wctomb() routine, 5-7 

where command (dbx), 3-12 

whereis command (dbx), 3-14 

which command (dbx), 3-14 

window environment, 1-5 

write system call, 6-31 

shutdown system call and, 6-32 

x 
X programming libraries, 1-5 

X User Interface 

See XVI 

XAddHost() routine, 7-13 

XAddHosts() routine, 7-13 

XDisableAccessControl() routine, 7-13 

XEnableAccessControl() routine, 7-13 

XGrabKeyboard() routine, 7-13 

Xlib, 1-5 

XListHosts() routine, 7-13 

X/Open environment 

compiling a program in, 2-8 

X/Open standard, 1-4 

_XOPEN_SOURCE preprocessor symbol 

defining, 2-8 
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XRemoveHost() routine, 7-13 

XRemoveHosts() routine, 7-13 

XReparentWindow() routine 

using in a secure environment, 7-14 

XSendEvent routine, 7-14 

XSendEvent() routine, 7-14 

XUI (X User Interface), 1-5 

XUI Resource Manager 

See DRM 

XUI User Interface Language 

See UIL 
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How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing 
your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from 
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call 
800-DIGIT AL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

* Internal 

Call 

800-DIGITAL 

809-754-7575 

800-267-6215 

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local Digital Subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local Digital subsidiary or 
approved distributor 

SSB Order Processing - WMO/El5 
or 
Software Supply Business 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

*For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments ULTRIX 
Guide to Languages and Programming 

AA-ML94C-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

Please rate this manual: Excellent Good Fair Poor 
Accuracy (software works as manual says) D D D D 
Completeness (enough information) D D D D 
Clarity (easy to understand) D D D D 
Organization (structure of subject matter) D D D D 
Figures (useful) D D D D 
Examples (useful) D D D D 
Index (ability to find topic) D D D D 
Page layout (easy to find information) D D D D 

What would you like to see more/less of? 

What do you like best about this manual? 

What do you like least about this manual? 

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

What version of the software described by this manual are you using? 

Name{fitle ----------------------­ Dept. 

Company 

Mailing Address --------------------------------

Email ------------ Phone 
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