
UL TRIX SCSI/CAM Architecture

Guide to Writing Device Drivers for the
UL TRIX SCSI/CAM Architecture Interfaces

Order Number: AA-PN5HA-TE

January 1992

Product Version: SCSI/CAM for UL TRIX RISC Version 4.2. Version 1.0.
SCSI/CAM for UL TRIX RISC Version 4.2A. Version
1.0

Operating System and Version: UL TRIX Version 4.2 (RISC). UL TRIX Version 4.2A
(RISC)

This manual describes the SCSI/CAM Architecture interfaces. It also describes how to
write device drivers for the SCSI/CAM implementation ..

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

© Digital Equipment Corporation 1991
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Bookreader, CDA, DDIF, DDIS, DEC, DECnet, DECstation, DEC system, DECUS,
DECwindows. DTIF. MASSBUS, MicroVAX, Q-bus. ULTRIX, ULTRIX Mail Connection. ULTRIX
Worksystem Software, UNIBUS, VAX, VAXstation. VMS, VT, XUI, and the DIGITAL logo.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Contents

About This Manual

Audience xvii

Organization xvii

Related Documentation .. xviii

Conventions

1 UL TRIX SCSI/CAM Software Architecture

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Overview

CAM User Agent Device Driver

SCSI/CAM Peripheral Device Drivers .. .

1.3.1 USCA Common Device Driver Modules
1.3.2 USCA Generic Device Driver Modules
1.3.3 CAM SCSI Disk Device Driver Modules
1.3.4 CAM SCSI Tape Device Driver Modules
1.3.5 CAM SCSI CDROM! AUDIO Device Driver Modules

SCSI/CAM Special I/O Interface

The SCSI/CAM Configuration Driver .. .

CAM Transport Layer (XP'f)

SCSI Interface Module Layers (SIM)

2 CAM User Agent Modules

xix

1-1

1-3

1-4

1-4
1-5
1-5
1-5
1-5

1-5

1-5

1-6

1-6

2.1 User Agent Introduction .. 2-1

2.2 User Agent Error Handling -.. 2-1

2.3 User Agent Data Structures ... 2-2

2.3.1 The UAGT_CAM_CCB Data Structure 2-2

2.3.1.1 The uagt_ccb Member ... 2-3
2.3.1.2 The uagt_ccblen Member ... 2-3

2.3.1.3 The uagt_buffer Member 2-3
2.3.1.4 The uagt_buflen Member .. 2-3
2.3.1.5 The uagt_snsbuf Member ... 2-3
2.3.1.6 The uagt_snslen Member .. 2-3
2.3.1.7 The uagt:...cdb Member ... 2-3
2.3.1.8 The uagt_cdblen Member 2-3
2.3.1.9 The uagt_ftags Member .. 2-4

2.3.2 The U AGT _CAM_SCAN Data Structure .. 2-4

2.4 User Agent Routines 2-4

2.4.1 The uagt_open Routine ... 2-4
2.4.2 The uagt_close Routine 2-4
2.4.3 The uagt_ioctl Routine ... 2-5

2.5 Sample User Agent Drivers 2-5

2.5.1 Sample User Agent Driver Inquiry Program 2-5

2.5.1.1 The Include Files and Definitions Section 2-5
2.5.1.2 The Main Program Section ... 2-6
2.5.1.3 The User Agent Open Section ... 2-7
2.5.1.4 Filling in XPT_SCSI_IO Request CCB_HEADER Fields 2-7
2.5.1.5 Filling in INQUIRY Command CCB_HEADER Fields 2-8
2.5.1.6 Filling in the U AGT _ CAM_ CCB Fields 2-9
2.5.1.7 Sending the CCB to the CAM Subsystem 2-9
2.5.1.8 Print INQUIRY Data Routine ... 2-10
2.5.1.9 Print CAM Status Routine .. 2-12
2.5.1.10 Sample Output for a Valid Nexus .. 2-14
2.5.1.11 Sample Output for an Invalid Nexus 2-14

2.5.2 Sample User Agent Scanner Driver Program 2-15

2.5.2.1 Scanner Program Header File .. 2-15
2.5.2.2 The Include Files Section ... 2-16
2.5.2.3 The CDB Setup Section ... 2-16
2.5.2.4 The Definitions Section .. 2-17
2.5.2.5 The Main Program Section ... 2-17
2.5.2.6 The Nexus Conversion Section ... 2-19
2.5.2.7 The Parameter Assignment Section .. 2-20
2.5.2.8 The Data Structure Setup Section 2-21
2.5.2.9 The Window Parameters Setup Section 2-23
2.5.2.10 CCB Setup for the DEFINE WINDOW Command 2-24
2.5.2.11 The Error Checking Section 2-26
2.5.2.12 CCB Setup for the READ Command 2-29
2.5.2.13 The Read and Write Loop Section 2-30
2.5.2.14 The Local Function Definition Section 2-32

ivContents

3 USCA Common Modules

3.1 Common SCSI Device Driver Data Structures 3-1

3.1.1 Peripheral Device Unit Table ... 3-1
3.1.2 Peripheral Device Structure ... 3-2

3.1.2.1 The pd_dev Member .. 3-2
3.1.2.2 The pd_spec_size Member .. 3-3

3.1.3 Device Descriptor Structure ... 3-3
3.1.4 Mode Select Table Structure 3-3
3.1.5 Density Table Structure .. 3-4

3.1.5.1 The den_blocking Member ... 3-4

3.1.6 SCSIICAM Peripheral Device Driver Working Set Structure 3-4

3.1.6.1 The pws_ftink. Member .. 3-4
3.1.6.2 The pws_blink Member ... 3-4
3.1.6.3 The pws_ccb Member 3-5

3.2 Common SCSI Device Driver Macros ... 3-5

3.3 Common SCSI Device Driver Routines 3-6

3.3.1

3.3.2

Common 110 Routines

3.3.1.1
3.3.1.2
3.3.1.3

The ccmn_init Routine .. .
The ccmn_open_unit Routine
The ccmn_close_unit Routine

Common Queue Manipulation Routines

3-8

3-8
3-8
3-8

3-8

3.3.2.1 The ccmn_send_ccb Routine ... 3-9
3.3.2.2 The ccmn_rem_ccb Routine .. 3-9
3.3.2.3 The ccmn_abort_que Routine .. 3-9
3.3.2.4 The ccmn_term_que Routine .. 3-9

3.3.3 Common CCB Management Routines .. 3-10

3.3.3.1 The ccmn~et_ccb Routine ... 3-10
3.3.3.2 The ccmn_rel_ccb Routine ... 3-10
3.3.3.3 The ccmn_io_ccb_bld Routine .. 3-11
3.3.3.4 The ccmn~dev_ccb_bld Routine .. 3-11
3.3.3.5 The ccmn_sdev_ccb_bld Routine ... 3-11
3.3.3.6 The ccmn_sasy_ccb_bld Routine ... 3-11
3.3.3.7 The ccmn_rsq_ccb_bld Routine ... 3-11
3.3.3.8 The ccmn_pinq_ccb_bld Routine 3-11
3.3.3.9 The ccmn_abort_ccb_bld Routine .. 3-12
3.3.3.10 The ccmn_term_ccb_bld Routine ... 3-12
3.3.3.11 The ccmn_bdr_ccb_bld Routine ... 3-12
3.3.3.12 The ccmn_br_ccb_bld Routine .. 3-12

3.3.4 Common SCSI 110 Command Building Routines 3-12

3.3.4.1 The ccmn_tur Routine .. 3-13

Contents v

3.3.4.2
3.3.4.3

The ccmn_start_unit Routine
The ccmn_mode_select Routine

3-13
3-13

3.3.5 Common CCB Status Routine ... 3-13
3.3.6 Common Buf Structure Pool Management Routines 3-14

3.3.6.1 The ccmnJet_bp Routine .. 3-14
3.3.6.2 The ccmn_rel_bp Routine ... 3-14

3.3.7 Common Data Buffer Pool Management Routines 3-14

3.3.7.1 The ccmnJet_dbuf Routine ... 3-14
3.3.7.2 The ccmn_rel_dbufRoutine .. 3-14

3.3.8 Miscellaneous Common Routines .. 3-14

3.3.8.1
3.3.8.2
3.3.8.3
3.3.8.4

The ccmn_ccbwait Routine .. .
The ccmn_DoSpecialCmd Routine
The ccmn_SysSpecialCmd Routine
The ccmn_errlog Routine .. .

3-15
3-15
3-15
3-15

4 USCA Generic Modules

4.1 Prerequisites for Using the CAM Generic Routines 4-1

4.1.1 Ioctl Commands .. ,4-1
4.1.2 Error Handling .. 4-2
4.1.3 Kernel Interface 4-2

4.2 Data Structures Used by Generic Routines ... 4-2

4.3

4.2.1 The Generic-Specific Structure .. 4-2

4.2.1.1 The gen_ftags Member ... 4-2
4.2.1.2 The gen_state_ftags Member 4-3
4.2.1.3 The gen_resid Member .. 4-3

4.2.2 The Generic Action Structure .. 4-3

4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6

The act_ccb Member
The act_ret_error Member
The act_fatal Member
The act_ccb_status Member
The act_scsi_status Member
The act_chkcond_error Member

Generic 110 Routines

4.3.1 The cgen_open Routine
4.3.2 The cgen_close Routine
4.3.3 The cgen_read Routine .. .
4.3.4 The cgen_write Routine
4.3.5 The cgen_strategy Routine
4.3.6 The cgen_ioctl Routine

4-3
4-4
4-4
4-4
4-4
4-4

4-4

4-5
4-5
4-5
4-6
4-6
4-6

vi Contents

4.4 Generic Internal Routines .. 4-6

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

The cgen_ccb_chkcond Routine .. .
The cgen_done Routine
The cgen_iodone Routine
The cgen_async Routine
The cgen_nllnphys Routine
The cgen_slave Routine
The cgen_attach Routine .. .

4-7
4-7
4-7
4-7
4-8
4-8
4-8

4.5 Generic Command Support Routines .. 4-8

4.5.1 The cgen_ready Routine ... 4-8
4.5.2 The cgen_open_sel Routine ... 4-9
4.5.3 The cgen_mode_sns Routine ... 4-9

5 CAM Data Structures

5.1 CAM Control Blocks .. 5-1

5.1.1 The CCB_HEADER Structure ... 5-2

5.1.1.1 The my_addr and cam_ccb_Ien Members 5-2
5.1.1.2 The cam_func_code Member .. 5-2
5.1.1.3 The cam_status Member ... 5-3

5.2 110 Data Structure 0.. 5-4

5.2.1 The CCB_SCSIIO Structure .. 5-4
5.2.2 The CDB_UN Structure .. 5-5

5.3 Control CCB Structures 5-5

5.3.1 The CCB_RELSIM Structure .. 5-5
5.3.2 The CCB_SETASYNC Structure ... 5-5
5.3.3 The CCB_ABORT Structure ... 5-6
5.3.4 The CCB_RESETBUS Structure ... 5-6
5.3.5 The CCB_RESETDEV Structure ... 5-6
5.3.6 The CCB_ TERMIO Structure ... 5-6

5.4 Configuration CCB Structures .. 5-7

5.4.1 The CCB_GETDEV Structure ... 5-7
5.4.2 The CCB_SETDEV Structure ... 5-7
5.4.3 The CCB_PATHINQ Structure .. 5-7

6 SCSI/CAM Configuration Driver Modules

6.1 Configuration Driver Introduction 6-1

6.2 Configuration Driver XPf Interface .. 6-1

Contents vii

6.3

6.4

6.5

Configuration Driver Data Structures

6.3.1 The Configuration driver control structure .. .

6.3.1.1 The ccfg_flags Member
6.3.1.2 The inq_buf Member .. .

6.3.2 The CAM Equipment Device Table .. .

6.3.2.1 The edt Member
6.3.2.2 The edt_scan_count Member
6.3.2.3 The edt_flags Member .. .

6.3.3 The SCSI/CAM Peripheral Driver Configuration Structure

6.3.3.1 The cpd_name Member
6.3.3.2 The cpd_slave Member
6.3.3.3 The cpd_attach Member .. .
6.3.3.4 The cpd_unload Member

The cam_config.c File .. .

Configuration Driver Entry Point Routines

6.5.1
6.5.2
6.5.3
6.5.4

The ccfg_slave Routine
The ccfg_attach Routine
The ccfg_action Routine
The ccfg_edtscan Routine

7 CAM XPT 110 Support Routines

6-1

6-2

6-2
6-2

6-2

6-2
6-3
6-3

6-3

6-3
6-3
6-3
6-3

6-3

6-4

6-5
6-5
6-5
6-5

7.1 The xpt_action Routine ... 7-1

7.2 The xpt_ccb_alloc Routine .. 7-1

7.3 The xpt_ccb_free Routine .. 7-1

7.4 The xpt_init Routine ... 7-2

8 CAM SIM Modules

8.1

8.2

SIM Asynchronous Callback Handling

SIM Routines Used by Device Driver Writers

8.2.1 The sim_action Routine
8.2.2 The sim_init Routine

9 USCA Error Handling

8-1

8-2

8-2
8-2

9.1 CAM Error Handling Macro .. 9-1

9.2 CAM Error Logging Structures .. 9-2

viii Contents

9.3

9.2.1

9.2.2

The Error Entry Structure .. .

9.2.1.1 The ent_type Member
9.2.1.2 The ent_size Member .. .
9.2.1.3 The ent_total_size Member .. .
9.2.1.4 The ent_vers Member
9.2.1.5 The ent_data Member
9.2.1.6 The ent_pri Member

The Error Header Structure

9.2.2.1
9.2.2.2
9.2.2.3
9.2.2.4
9.2.2.5
9.2.2.6
9.2.2.7

The hdr_type Member ~
The hdr_size Member
The hdr_class Member .. .
The hdr_subsystem Member .. .
The hdr_entries Member
The hdr_Iist Member
The hdr_pri Member

The cam_logger Routine

9-2

9-2
9-2
9-2
9-3
9-3
9-3

9-3

9-3
9-3
9-4
9-4
9-4
9-4
9-4

9-4

10 USCA Debugging Facilities

10.1 CAM Debugging Variables .. 10-1

10.1.1 The camdbg_flag Variable ... 10-1
10.1.2 The camdbg_id Variable ... 10-2

10.2 CAM Debugging Macros ... 10-2

10.3 CAM Debugging Routines ... 10-3

10.3.1 CAM Debugging Status Routines ... 10-4

10.3.1.1 The cdbg_CamFunction Routine .. 10-4
10.3.1.2 The cdbg_CamStatus Routine ... 10-4
10.3.1.3 The cdbg_ScsiStatus Routine .. 10-5
10.3.1.4 The cdbg_SystemStatus Routine .. 10-5

10.3.2 CAM Dump Routines ... 10-5

10.3.2.1 The cdbg_DumpCCBHeader Routine 10-5
10.3.2.2 The cdbg_DumpCCBHeaderAags Routine 10-5
10.3.2.3 The cdbg_DumpSCSIIO Routine ... 10-6
10.3.2.4 The cdbg_DumpPDRVws Routine 10-6
10.3.2.5 The cdbg_DumpABORT Routine .. 10-6
10.3.2.6 The cdbg_DumpTERMIO Routine 10-6
10.3.2.7 The cdbg_DumpBuffer Routine ... 10-6
10.3.2.8 The cdbg_GetDeviceName Routine 10-6
10.3.2.9 The cdbg_DumplnquiryData Routine 10-6

Contents ix

11 Programmer-Defined SCSI/CAM Device Drivers

11.1 Progranuner-Defined SCSI/CAM Data Structures 11-1

11.1.1 Programmer-Defined Peripheral Device Unit Table 11-1

11.1.1.1 The pu_device Member .. 11-1
11.1.1.2 The pu_opens Member ... 11-2
11.1.1.3 The pu_config Member .. 11-2
11.1.1.4 The pu_type Member ... 11-2

11.1.2 Programmer-Defined Peripheral Device Structure 11-2

11.1.2.1 The pd_active_list Member ... 11-3
11.1.2.2 The pd_active_ccb Member .. 11-3
11.1.2.3 The pd_que_depth Member ... 11-3
11.1.2.4 The pd_pend_list Member .. 11-3
11.1.2.5 The pd_pend_ccb Member .. 11-3
11.1.2.6 Thepd_devMember .. 11-3
11.1.2.7 The pd_bus Member .. 11-3
11.1.2.8 The pd_target Member ... 11-3
11.1.2.9 The pd_Iun Member ... 11-3
11.1.2.10 The pd_unit Member .. 11-3
11.1.2.11 The pd_flags and pd_state Members 11-4
11.1.2.12 The pd_abort_cnt Member .. 11-4
11.1.2.13 The pd_cam_flags Member ... 11-4
11.1.2.14 The pd_ta[Laction Member ... 11-4
11.1.2.15 The pd_dev_inq Member .. 11-4
11.1.2.16 The pd_ms_index Member .. 11-4
11.1.2.17 The pd_dev_desc Member .. 11-4
11.1.2.18 The pd_specific Member 11-4
11.1.2.19 The pd_spec_size Member .. 11-4
11.1.2.20 The pd_sense_ptr Member .. 11-4
11.1.2.21 The pd_sense_Ien Member .. 11-4
11.1.2.22 The pd_recov _hand Member ... 11-4
11.1.2.23 The pd_read_count Member .. 11-5
11.1.2.24 The pd_write_count Member ... 11-5
11.1.2.25 The pd_read_bytes Member 11-5
11.1.2.26 The pd_write_bytes Member ... 11-5
11.1.2.27 The pd_Ik_device Member .. 11-5

11.1.3 Programmer-Defined Device Descriptor Structure 11-5

x Contents

11.1.3.1
11.1.3.2
11.1.3.3
11.1.3.4
11.1.3.5
11.1.3.6
11.1.3.7
11.1.3.8
11.1.3.9
11.1.3.10

The dd_pv _name Member
The dd_Iength Member
The dd_dev_name Member
The dd_device_type Member
The dd_def_partition Member
The dd_block_size Member
The dd_max_record Member
The dd_density_tbl Member
The dd_modesel_tbl Member

The dd_flags Member .. .

11-6
11-6
11-6
11-6
11-6
11-6
11-6
11-6
11-7
11-7

11.1.3.11 The dd_scsi_optcmds Member ... 11-7
11.1.3.12 The dd_ready_time Member .. 11-7
11.1.3.13 The dd_que_deptb Member ... 11-7
11.1.3.14 The dd_ valid Member .. 11-7
11.1.3.15 The dd_inq_Ien Member ... 11-7
11.1.3.16 The dd_req_sense_Ien Member .. 11-7

11.1.4 Programmer-Defined Density Table Structure 11-8

11.1.4.1 The den_flags Member 11-8
11.1.4.2 The den_density _code Member ... 11-8
11.1.4.3 The den_compress_code Member .. 11-8
11.1.4.4 The den_speed_setting Member ... 11-8
11.1.4.5 The den_buffered_setting Member 11-8
11.1.4.6 The den_blocking Member ... 11-8
11.1.4.7 Sample Density Table Structure Entry.................................. 11-9

11.1.5 Programmer-Defined Mode Select Table Structure 11-9

11.1.5.1 The ms_page Member .. 11-10
11.1.5.2 The ms_data Member ... 11-10
11.1.5.3 The ms_data_Ien Member ... 11-10
11.1.5.4 The ms_ent_sp_pf Member ... 11-11
11.1.5.5 Sample Mode Select Table Structure Entry 11-11

11.2 Sample SCSI/CAM Device-Specific Data Structures

11.2.1 Programmer-Defined Tape-Specific Structure

11.2.1.1 The ts_flags Member
11.2.1.2 The ts_state_flags Member
11.2.1.3 The ts_resid Member .. .
11.2.1.4 The ts_block_size Member .. .
11.2.1.5 The ts_density Member
11.2.1.6 The ts_records Member
11.2.1. 7 The ts_num_filemarks Member .. .
11.2.1.8 The ts_softcnt Member
11.2.1.9 The ts_hardcnt Member

11.2.2 Programmer-Defined Disk- and CDROM-Specific Structure

11.2.2.1 The ds_bufud Member .. .
11.2.2.2 The ds_dkn Member
11.2.2.3 The ds_bbr_state Member .. .
11.2.2.4 The ds_bbr_retry Member .. .
11.2.2.5 The ds_bbr_rwccb Member .. .
11.2.2.6 The ds_bbr_reasccb Member .. .
11.2.2.7 The ds_tur_ccb Member .. .
11.2.2.8 The ds_start_ccb Member .. .
11.2.2.9 The ds_mdsel_ccb Member .. .
11.2.2.10 The ds_rdcp_ccb Member .. .
11.2.2.11 The ds_read_ccb Member .. .
11.2~2.12 The ds_prev_ccb Member .. .
11.2.2.13 The ds_block_size Member .. .

11-11'

11-1 F

11-12
11-12
11-13
11-13"
11-13
11-13
11-13
11-13
11-13

11-14

11-14
11-14
11-14
11-14
11-14
11-15
11-15
11-15
11-15
11-15
11-15
11-15
11-15

Contents xi

11.3

11.2.2.14 The ds_tot_size Member ... 11-15
11.2.2.15 The ds_media_changes Member .. 11-15
11.2.2.16 The ds_pt Sructure ... 11-15
11.2.2.17 The ds_openpart Member .. 11-15

11.2.3 SCSI/CAM CDROM/AUDIO I/O Control Commands 11-15

11.2.3.1 Structures Used by SCSI/CAM CDROM/AUDIO I/O Control
Commands .. 11-16

11.2.3.1.1 Structure Used by All SCSI/CAM CDROM/AUDIO I/O
Control COJl1l1lands 11-17

11.2.3.1.2 Structure Used by the CDROM_PLAY_AUDIO and
CDROM_PLAY_VAUDIOCommands 11-18

11.2.3.1.3 Structure Used by the CDROM_PLAY_AUDIO_MSF
and CDROM_PLA Y _MSF Commands 11-18

11.2.3.1.4 Structure Used by the CDROM_PLA Y _AUDIO_TI
Command ... 11-19

11.2.3.1.5 Structure Used by the CDROM_PLA Y _AUDIO_TR
Command 11-20

11.2.3.1.6 Structure Used by the CDROM_TOC_HEADER
Command 11-20

11.2.3.1.7 Structures Used by the CDROM_TOC_ENTRYS
Command 11-21

11.2.3.1.8 Structures Used by the
CDROM_READ_SUBCHANNEL Command 11-22

11.2.3.1.9 Structures Used by the CDROM_READ_HEADER
Command ... 11-26

11.2.3.1.10 Structure Used by the CDROM_PLAY_TRACK
Command ... 11-27

11.2.3.1.11 Structure Used by the
CDROM_PLAYBACK_CONTROL and
CDROM_PLAYBACK_STATUS Commands 11-27

11.2.3.1.12 Structure Used by the
CDROM_PLAYBACK_CONTROL Command 11-28

11.2.3.1.13 Structure Used by the
CDROM_PLAYBACK_STATUS Command 11-28

Adding a Programmer-Defined SCSI/CAM Device 11-30

12 SCSI/CAM Special 1/0 Interface

12.1 Application Program Access .. 12-1

12.2 Device Driver Access .. ~....................... 12-2

12.3 SCSI/CAM Special Command Tables ... 12-3

12.3.1 The sph_flink and sph_blink Members .. 12-4
12.3.2 The sph_cmd_table Member .. 12-4
12.3.3 The sph_device_type Member .. 12-4

xii Contents

12.3.4
12.3.5

The sph_table_flags Member
The sph_table_name Member

12.4 SCSI/CAM Special Command Table Entries

12.4.1 The spc_ioctl_cmd and spc_sub_command Members
12.4.2 The spc_cmd_flags Member
12.4.3 The spc_command_code Member .. .
12.4.4 The spc_device_type Member
12.4.5 The spc_cmd_parameter Member .. .
12.4.6 The spc_cam_flags Member
12.4.7 The spc_file_flags Member
12.4.8 The spc_data_Iengt.l1 Member
12.4.9 The spc_timeout Member
12.4.10 The spc_docmd Member .. .
12.4.11 The spc_lllkcdb Member .. .
12.4.12 The spc_setup Member .. .
12.4.13 The spc_cdbp Member
12.4.14 The spc_cmdp Member .. .
12.4.15 Sample SCSI/CAM Special Command Table

12.5 SCSI/CAM Special I/O Argument Structure .. .

12.5.1 The sa_flags Member
12.5.2 The sa_dey Member .. .
12.5.3 The sa_unit, sa_bus, sa_target, and sa_Iun Members
12.5.4 The sa_ioctl_cmd Member
12.5.5 The sa_ioctl_scmd Member .. .
12.5.6 The sa_ioctl_data Member
12.5.7 The sa_device_name Member
12.5.8 The sa_device_type Member
12.5.9 The sa_iop_lengtb and sa_iop_buffer Members
12.5.10 The sa_file_flags Member
12.5.11 The sa_sense_Iengt.l1 and sa_sense_buffer Members
12.5.12 The sa_user_Iength and sa_user_buffer Members
12.5.13 The sa_bp Member
12.5.14 The sa_ccb Member
12.5.15 The special_cmd Member
12.5.16 The special_header Member .. .
12.5.17 The sa_cmd_parameter Member .. .
12.5.18 The sa_error Member
12.5.19 The sa_start Member
12.5.20 The sa_data_Iength and sa_data_buffer Members
12.5.21 The sa_cdb_pointer Member
12.5.22 The sa_cdb_Iength Member
12.5.23 The sa_cmd_flags Member
12.5.24 The sa_retry_count Member
12.5.25 The sa_retry _limit Member
12.5.26 The sa_timeout Member
12.5.27 The sa_xfer_resid Member

12-4
12-4

12-5

12-5
12-5
12-6
12-6
12-6
12-6
12-6
12-6
12-6
12-6
12-7
12-7
12-7
12-7
12-7

12-8

12-10
12-10
12-11
12-11
12-11'
12-11
12-11
12-11
12-11
12-11
12-12
12-12
12-12
12-12
12-12
12-12
12-12
12-13
12-13
12-13
12-13
12-13
12-13
12-14
12-14
12-14
12-14

Contents xiii

12.5.28
12.5.29
12.5.30

The sa_specific Member
Sample Function to Create a CDB
Sample Function to Set Up Parameters

12-14
12-14
12-15

12.6 SCSI/CAM Special I/O Control Command .. 12-16

12.6.1 The sp_flags Member .. 12-17
12.6.2 The sp_dev, sp_unit, sp_bus, sp_target, and sp_lun Members 12-18
12.6.3 The sp_sub_command Member .. 12-18
12.6.4 The sp_cmd_parameter Member ... 12-18
12.6.5 The sp_iop_length and sp_iop_buffer Members 12-18
12.6.6 The sp_sense_lengtb, sp_sense_resid, and sp_sense_buffer Members 12-18
12.6.7 The sp_user_lengtb and sp_user_buffer Members 12-18
12.6.8 The sp_timeout Member ... 12-19
12.6.9 The sp_retry_count Member .. 12-19
12.6.10 The sp_retry_limit Member ... 12-19
12.6.11 The sp_xfer_resid Member .. 12-19
12.6.12 Sample Function to Create an I/O Control Command 12-19

12.7 Oilier Sample Code 12-20

12.7.1 Sample Code to Open a Device .. 12-20
12.7.2 Sample Code to Create a Driver Entry Point 12-22

A Header Files Used by Device Drivers

B Summary of Device Driver Routines

C SCSI/CAM Routines in ULTRIX Reference Page Format

Index

Figures

1-1: CAM Environment Model .. 1-2

1-2: ULTRIX SCSI/CAM Architecture Implementation Model.............................. 1-3

12-1: Application Program Flow Through SCSI/CAM Special I/O Interface 12-2

12-2: Device Driver Flow Through SCSI/CAM Special I/O Interface 12-3

Tables

2-1: User Agent Routines .. 2-4

3-1: Members ofilie PDRV_DEVICE Structure ... 3-2

3-2: Common Identification Macros ... 3-5

xiv Contents

3-3: Common Lock Macros

3-4: Conunon I/O Routines .. .

3-5: Common Queue Manipulation Routines .. .

3-6: Common CCB Management Routines

3-7: Common SCSI I/O Command Building Routines

3-8: Miscellaneous Common Routines

4-1: Generic I/O Routines .. .

4-2: Generic Internal Routines .. .

4-3: Generic Command Support Routines

5-1: CAM Control Blocks .. .

5-2: CAM Function Codes

5-3: CAM Status Codes

6-1: Configuration Driver Entry Point Routines

7 -1: XP'f I/O Support Routines

10-1: CAM Debugging Status Routines

10-2: CAM Dump Routines

11-1: SCSI/CAM CDROM/AUDIO I/O Control Commands

11-2: Structures Used by SCSI/CAM CDROM/AUDIO I/O Control Commands

12-1: SCSI/CAM Special I/O Argument Structure

A-I: Header Files Used by Device Drivers

A-2: Header Files Used by SCSI/CAM Drivers

B-1: Summary of Device Driver Routines

3-6

3-8

3-9
3-10

3-12

3-15

4-4

4-6

4-8

5-1

5-2

5-3

6-4

7-1

10--4

10-5

11-16:

11-16

12-8

A-I
A-3

B-1

Contents xv

About This Manual

This manual contains infonnation needed by systems engineers who write device
drivers for the UL TRIX SCSI/CAM Architecture interfaces.

Audience
This manual is intended for systems engineers who:

• Develop programs in the C language using standard library routines

• Know one or more UNIX shells, other than csh

• Understand basic UL TRIX components such as the kernel, shells, processes,
configuration, autoconfiguration, and so forth

• Understand how to use the UL1RIX programming tools, compilers, and
debuggers

• Develop programs in an environment that includes dynamic memory allocation,
linked list data structures, multitasking and symmetric multiprocessing (SMP)

• Understand the hardware device for which the driver is being written

Organization
This manual is organized as follows:

Chapter 1 UL TRIX SCSI/CAM Software Architecture

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Presents an overview of the UL TRIX SCSI CAM Architecture
(USCA).
CAM User Agent Modules
Describes the User Agent routines provided by Digital for SCSI/CAM
peripheral device driver writers
USCA Common Modules
Describes the common data structures, routines, and macros provided
by Digital for SCSI/CAM peripheral device driver writers
USCA Generic Modules
Describes the generic routines provided by Digital for SCSI/CAM
peripheral device driver writers
CAM Data Structures
Describes members of the CAM data structures used by SCSI device
drivers.
SCSI/CAM Configuration Driver Modules
Describes the CAM Configuration driver data structures and routines
that call the initialization routines in all the CAM subsystem modules.
CAM XPT I/O Support Routines

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Appendix A

Appendix B

Appendix C

Discusses the Transport (XPT) layer routines used with SCSI device
drivers.
CAM SIM Modules
Discusses the data structures and routines used with the SCSI
Interface Module (SIM) layers that interface with the CAM
subsystem.
USCA Error Handling
Discusses the macro, data structures, and routines supplied by Digital
for error handling in SCSI/CAM device drivers.
USCA Debugging Facilities
Describes the debugging routines supplied by Digital for SCSI/CAM
peripheral device driver writers.
Programmer-Defined SCSI/CAM Device Drivers
Describes how programmers can define SCSI/CAM device drivers,
with examples.
SCSI/CAM Special I/O Interface
Describes the SCSI/CAM special I/O interface supplied by Digital to
process special SCSI I/O commands, with examples.
Header Files Used by SCSI/CAM Device Drivers
Summarizes the header files used by SCSI/CAM device drivers.
Summary of Device Driver Routines
Summarizes the general device driver routines used by SCSI/CAM
device drivers.
SCSI/CAM Routines in UL TRIX Reference Page Format
Provides more detailed descriptions of the USCA routines in UL TRIX
reference page format.

Related Documentation
Readers of this guide are assumed to be familiar with the following documents:

• American National Standard for Infonnation Systems, SCSI-2 Common Access
Method: Transport and SCSI Interface Module, working draft, X3T9.2/90-186
Tenns used in this guide, such as CAM Control Block (CCB), are defined in that
document. Copies may be purchased from Global Engineering, 2805 McGaw St,
Irvine, CA 92714, telephone 800-854-7179.

• American National Standard for Infonnation Systems, Small Computer Systems
Interface - 2 (SCSI - 2), X3T9/89-042

The following documents contain infonnation that pertains to writing device drivers:

• Guide to Writing and Porting VMEbus and TURBOchannel Device Drivers
This guide contains infonnation needed by systems engineers who write and port
device drivers for the VMEbus and the TURBOchannel. Systems engineers who
write drivers that operate on other buses can find infonnation on driver concepts,
interfaces to device driver routines, kernel structures, kernel routines used by
device drivers, installation of device drivers, and header files related to device
drivers.

• Guide to Configuration File Maintenance
This guide contains infonnation on how to maintain the system configuration file
and how to build a new kernel, either automatically or manually. The
configuration file provides you with the ability to configure your system to meet

xviii About This Manual

your needs. You should read this manual if you are responsible for maintaining
an UL TRIX system. You should also read parts of this manual if you are
planning to modify or write device drivers.

• Guide to the Error Logger
This guide contains information about the error logger and how it records and
reports errors and other events that occur on your UL TRIX system. The guide
gives an overview of the error logger, describes how to control error logger
functions, and describes using the Error Report Formatter, uerf. You should
read this manual if you manage error information on an UL TRIX system.

Conventions

%

% cat

filename

cat file

cat(1)

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to represent
this prompt.

A regular constant-width typeface is used for code examples, system
prompts in interactive examples, and names of commands and other
literal strings in text. A bold constant-width typeface is used for
typed user input in interactive examples and for routines in function
definitions.
In examples, syntax descriptions, and function definitions, this
typeface indicates variable values.
In syntax definitions, a bold sans serif typeface is used for literal
strings and a sloping sans serif typeface is used for variable values.

A cross-reference to a reference page include the appropriate section
number in parentheses. For example, a reference to cat(l) indicates
that you can find the material on the cat command in Section 1 of
the reference pages.

About This Manual xix

UL TRIX SCSI/CAM Software Architecture 1

This chapter provides an overview of the UL TRIX Small Computer System Interrace
(SCSI) Connnon Access Method (CAM) Architecture (USCA). which is a reliable,
maintainable, and high performance SCSI subsystem based on the industry-standard
CAM architecture. Readers of this guide should be familiar with the following
documents:

• American National Standard for Information Systems, SCSI-2 Common Access
Method: Transport and SCSI Interface Module, working draft, X3T9.2/90-186

Terms used in this guide, such as CAM Control Block (CCB), are defined in that
document. Copies may be purchased from Global Engineering, 2805 McGaw St,
Irvine, CA 92714, telephone 800-854-7179.

• American National Standard for Information Systems, Small Computer Systems
Interface - 2 (SCSI - 2), X3T9/89-042

This chapter describes the following:

• The CAM and USCA environment models

• The User Agent driver

• The SCSI/CAM peripheral device driver routines

- The CAM connnon routines supplied by Digital

- The generic routines supplied by Digital

- The SCSI disk device routines

- The SCSI tape device routines

- The SCSI CDROM! AUDIO device connnands

- The SCSI/CAM Special I/O interrace

• The CAM Configuration driver

• The CAM Transport layer

• The SCSI Interface Module (SIM)

1.1 Overview
The CAM architecture defines a software model that is layered, providing hardware
independence for SCSI device drivers and SCSI system software. In the CAM
model, which is illustrated in Figure 1-1, a single SCSI/CAM peripheral driver
controls SCSI devices of the same type, for example, direct access devices. This
driver communicates with a device on the bus through a defined interface. Using this
interface makes a SCSI/CAM peripheral device driver independent of the underlying
SCSI Host Bus Adapter (HBA).

This hardware independence is achieved by using the Transport (XPf) and SCSI
Interface Module (SIM) components of CAM. Because the XPf/SIM interface is
defined and standardized t users and third parties can write SCSI/CAM peripheral
device drivers for a variety of devices and use existing operating system support for
SCSI. The drivers do not contain SCSI HBA dependencies; therefore t they can run
on any hardware platform that has an XPf/SIM interface present.

Figure 1-1: CAM Environment Model

............. 1' ··· .. · · · ·l· ·· ~ .. · ·T ··· .. · .. · ·· .. · 1'

SCSI
User

Disk Tape Level
Driver Driver Toaster Pass-Thru

Drivers I- Driver

l J I I
I

... , ...

Transport Layer - XPT

I I I
SCSI Interface SimpieSIM

Intelligent Module-SIM

I SIM

I I Host Bus Intelligent
Adaptor -HBA HBA SimpleHBA I

ZK-03SQU-R

Figure 1-2 illustrates the UL TRIX SCSI/CAM implementation of that model.

1-2 ULTRIX SCSI/CAM Software Architecture

Figure 1-2: ULTRIX SCSI/CAM Architecture Implementation Model

Peripheral
Drivers

User
Agent
Driver

Configuration
Driver

Transport Layer - XPT

ZK-0252U-R

1.2 CAM User Agent Device Driver
The User Agent driver lets user process CAM Control Block (CCB) requests to the
XPT pass through for processing. The CCB contains all· infonnation required to
fulfill the request. The user process calls the User Agent indirectly, using the
ioctl(2) system call. A new User Agent CCB is allocated by a call to the XPT
layer, and the user-process CCB infonnation is copied into kernel space. The new
CCB is filled in with the CCB values from the user process. If necessary, the user
data areas are locked in memory. The CCB is then sent to the CAM subsystem for
processing.

Once the request has completed, the User Agent driver's completion routine is called.
That routine perfonns all necessary cleanup operations and notifies the user process
that the request is complete.

The User Agent allows multiple processes to issue CCBs, so there may be multiple
processes sleeping on the User Agent. All CCBs are queued at the SIM layer.

ULTRIX SCSI/CAM Software Architecture 1-3

1.3 SCSI/CAM Peripheral Device Drivers
SCSI/CAM peripheral device drivers convert operating system requests, such as user
process reads or writes, into CAM requests that the SCSI/CAM subsystem can
process. Each type of SCSI/CAM peripheral driver is responsible for a specific class
of SCSI device, such as SCSI tape devices. The SCSI/CAM peripheral driver
handles error codes and conditions for its SCSI device class.

SCSI/CAM peripheral drivers convert input/output (liD) requests into CAM Control
Blocks (CCBs) that contain SCSI Command Descriptor Blocks (COBs). CCBs are
presented to the underlying transport layer, XPT, to initiate 110 requests. SCSI/CAM
peripheral drivers implement SCSI device error recovery, for example, dynamic bad
block replacement (DBBR). The SCSI device driver has no access to SCSI device
control and status registers (CSRs) and receives no SCSI device interrupts.

The major/minor device-number pair, which is 16 bits wide, is used as an argument
when creating the device special file associated with a specific SCSI device and is
contained in the buf structure when accessing the device in raw or blocked mode.
The 16 bits are allocated as follows:

15 1211109 76 43 0

Major Index Bus # Target 10 LUN Device Specific

ZK-0403U-R

The major number range goes from HEX 60 to HEX 6f and the minor number range
goes from HEX 00 to HEX fO. For example, a device that starts with a major
number of Ox60 and a minor number of OxOO represents Bus 0, Target 0, and
Logical Unit O. The last SCSI device that this sample device driver would control
has major number Ox6f and minor number OxfO. This represents Bus 4, Target 7, and
Logical Unit 7.

This section provides overviews of the following:

• Common SCSI device driver modules

• Generic SCSI device driver modules

• SCSI disk device driver modules

• SCSI tape device driver modules

• SCSI COROM! AUDIO device driver modules

Chapters 3, 4, and 11 describe the data structures and the routines associated with
each module.

1.3.1 USCA Common Device Driver Modules

The conunon SCSI device driver structures and routines can be shared among all the
SCSI/CAM peripheral drivers written by device driver writers for UL TRIX. Using
these conunon routines can speed the process of writing a SCSI device driver by
providing routines that any SCSI device driver can use to perform operations.

1-4 UL TRIX SCSI/CAM Software Architecture

1.3.2 USCA Generic Device Driver Modules

Digital supplies predefined data structures and fonnats that SCSI device driver
writers can use to write generic SCSIICAM peripheral device drivers. These data
structures and fonnats can be used in conjunction with the conunon routines.
Chapter 4 includes a sample generic SCSI device driver using the common routines.

1.3.3 CAM SCSI Disk Device Driver Modules

The SCSIICAM peripheral disk driver supports removable (floppy) and
nonremovable direct access SCSI disk devices and CDROM devices. The user
interface consists of the major/minor device number pair and the ioctl commands
supported by the SCSI disk device driver. The SCSI disk device driver also uses the
common routines.

1.3.4 CAM SCSI Tape Device Driver Modules

The SCSI tape device structures and routines are exclusive to the SCSIICAM
peripheral tape driver. The user interface consists of the major/minor device number
pair and the ioctl commands supported by the SCSI tape device driver. The SCSI
tape device driver also uses the common routines.

1.3.5 CAM SCSI CDROM/AUDIO Device Driver Modules

The SCSI CDROM! AUDIO device commands, which are described in Chapter 11,
use the SCSI CDROM/AUDIO device structures. The SCSI CDROM/AUDIO
device driver also uses the conunon routines.

1.4 SCSI/CAM Special I/O Interface
The USCA software includes an interface developed to process special SCSI 110
control conunands used by the existing Digital SCSI subsystem and to aid in porting
new or existing SCSI device drivers from other vendors to the USCA. With the
SCSIICAM special 110 interface, SCSIICAM peripheral driver writers do not need
detailed knowledge of either the system-specific or the CAM-specific structures and
routines used to issue a SCSI command to the CAM 110 subsystem.

1.5 The SCSI/CAM Configuration Driver
The Configuration driver is responsible for configuring and initializing the CAM
subsystem. This driver is also responsible for maintaining the cam_edt []
infonnation structure.

When the system powers up, the Configuration driver initializes the local and global
CAM subsystem data structures. The Configuration driver also calls the XPf and
SIM initialization routines. Once the subsystems are initialized, the Configuration
driver perfonns a SCSI-bus scan by sending the SCSI Device Inquiry command. The
cam_edt [] structure contains the returned SCSI inquiry data for the SCSIICAM
peripheral drivers to access. The drivers, using the XPf_GDEV _TYPE and
XPT _SDEV _TYPE get and set device infonnation CCBs, can access the data
contained in cam_edt [].

UL TRIX SCSI/CAM Software Architecture 1-5

1.6 CAM Transport Layer (XPT)
The CAM transport layer, XPf, handles the CAM requests from the SCSI/CAM
peripheral drivers and routes them to the appropriate SIM module. The XPT provides
routines which are called by the SCSI/CAM peripheral driver to allocate and
deallocate CAM control blocks (CCBs). In addition, the XPT provides routines that
are used to initiate requests to the SIM· and to issue asychronous callbacks.

1.7 SCSI Interface Module Layers (SIM)
The SCSI Interface Module, SIM, has the most interaction with the SCSI bus
protocol, timings, and other hardware-specific operations. Although this is a single
component in the CAM model, it is divided into four logical sublayers in UL TRIX:

• SIM XPT - The SIM layer that interfaces to the XPT to initiate I/O on behalf of
the SCSI/CAM peripheral drivers.

• SIM SCHEDULER - The SIM layer that schedules requests to the SIM HBAs.

• SIM HBA - The SIM layer that contains the HBA device-specific information.

• SIM DME - A low level layer that contains the architecture-specific data­
movement code.

1-6 UL TRIX SCSI/CAM Software Architecture

CAM User Agent Modules 2

This chapter describes the functions of the UL lRIX User Agent SCSI device driver.
It also describes the User Agent data structures and routines used by the User Agent
SCSI device driver.

2.1 User Agent Introduction
The UL TRIX User Agent SCSI device driver lets device driver writers write an
application program to build a CAM Control Block (CCB) request. The User Agent
driver lets the user-process request pass through to the XPT layer for processing.
This gives user processes access to the SCSI/CAM subsystem and to all types of
SCSI/CAM peripheral devices attached to the system.

This is a simple method for passing the CCB's SCSI request to the devices using the
SIMs. The kernel does not have to be rebuilt if the device driver writer wants to
change values within the CCBs.

The CCB contains all the information required to perform the request. The user
process calls the User Agent SCSI device driver using the ioctl system call. See
ioctl(2) for more information. The User Agent ioctl routine, uagt_ioctl, is
called through the device switch table, which is indexed by the major device number
of the User Agent driver specified in the ioctl call. The ioctl commands
supported by the User Agent SCSI device driver are: DEVIOCGET, which returns
the SCSI device driver status; UAGT_CAM_IO, which sends the specified CCB to
the XPT layer for processing; UAGT_CAM_SINGLE_SCAN, which causes the scan
of a bus, target, and LUN; and UAGT_CAM_FULL_SCAN, which causes the scan
of a bus.

A CCB is allocated in the kernel and the user process's CCB is copied to the kernel
CCB. The User Agent SCSI device driver sleeps waiting for the request to complete;
then, all necessary cleanup is performed, and the user process is notified of the
completion of the request. If a signal is caught, an ABORT CCB is issued to try to
terminate the outstanding CCB for the user process.

The User Agent SCSI device driver allows multiple processes access to the XPT
layer; therefore, there may be multiple processes sleeping on the User Agent. All
CCBs passed through by the User Agent are queued at the SIM layer.

2.2 User Agent Error Handling
The User Agent SCSI device driver performs limited error checking on the CCB
pointed to in the UAGT_CAM_CCB structure passed from the user process. The
User Agent driver verifies that the uagt_ccblen is not greater than the maximum
length for a CCB, checks that the XPT function code is valid, and checks that the
Target ID and LUN specified are within the range allowed. The User Agent does not
issue a REQUEST SENSE command in response to a CHECK CONDITION status.
Autosensing is assumed to be enabled. The application program is responsible for

issuing a RELEASE SIM QUEUE CCB.

The following error codes are returned by the User Agent:

• EFAULT - An error occurred in copying to or from user space.

• EBUSY - Out of resources (the User Agent request table is full).

• EINVAL - An invalid target or LUN was passed to the User Agent driver, or the
CCB copied from the user process contained an invalid parameter.

2.3 User Agent Data Structures
This section describes the data structures the User Agent uses.

2.3.1 The UAGT_CAM_CCB Data Structure

The User Agent SCSI device driver uses the UAGT_CAM_CCB data structure to
communicate with the user processes requesting access to the SCSI/CAM subsystem.

The user process fills in the pointers in the UAGT_CAM_CCB data structure. The
structure is copied into kernel space. The user process's CCB is copied into kernel
space by the User Agent.

If necessary, the user data area and the sense data area are locked in memory. If the
pointers are not needed with the requested CCB, the pointers must be set to NULL.

The CCB contains all the infonnation necessary to execute the requested XPT
function. The addresses in the CCB are used by the SIM and must be valid. The
User Agent will not modify the corresponding pointers in the CCB.

The CCB definition is different for each of the following XPT functions supported by
the User Agent SCSI device driver:

• XPT_NOOP - Execute nothing.

• XPT_SCSI_IO - Execute the requested SCSI 10.

• XPT_GDEV_TYPE - Get the device type information.

• XPT_PATH_INQ - Path inquiry.

• XPT _REL_SIMQ - Release the SIM queue that was frozen by a previous
CHECK CONDITION status.

• XPT_SASYNC_CB - Set async callback parameters.

• XPT _SDEV _TYPE - Set the device type information.

• XPT_ABORT - Abort the selected CCB.

• XPT_RESET_BUS - Reset the SCSI bus.

• XPT_RESET_DEV - Reset the SCSI device, BDR.

• XPT_TERM_IO - Terminate the selected CCB.

If a signal is generated by the user process, the User Agent creates an XPT_ABORT
CCB to abort the outstanding 110 and then waits for the completion of the 110 and
notifies the user process when the aborted CCB is returned to the User Agent.

2-2 CAM User Agent Modules

The UAGT_CAM_CCB structure is defined as follows:

typedef struct uagt_cam_ccb
{

CCB_HEADER *uagt_ccb;
u long uagt ccblen;
u=char *uagt_buffer;
u_long uagt_buflen;
u_char *uagt_snsbuf;
u_long uagt_snslen;
CDB_UN *uagt_cdb;
u_long uagt_cdblen;
u_long uagt_flags;

UAGT_CAM_CCB;

2.3.1.1 The uagt_ ccb Member

/* pointer to the users CCB */
/* length of the users CCB */
/* pointer for the data buffer */
/* length of user request */
/* pointer for the sense buffer */
/* length of user's sense buffer */
/* ptr for a CDB if not in CCB */
/* CDB length if appropriate */
/* See below */

The uagt_ccb member contains a pointer to the user process's CCB that will be
copied into kernel space.

2.3.1.2 The uagt_ccblen Member

The uagt_ccblen member contains the length of the user process's CCB.

2.3.1.3 The uagt_buffer Member

The uagt_buffer member contains a pointer to the user process's data buffer.
This member is used only by the User Agent.

2.3.1.4 The uagt_buflen Member

The uagt_buflen member contains the length of the user process's data buffer.
This member is used only by the User Agent.

2.3.1.5 The uagt_ snsbuf Member

The uagt_snsbuf member contains a pointer to the user process's autosense data
buffer. This member is used only by the User Agent.

2.3.1.6 The uagt_snslen Member

The uagt_snslen member contains the length of the user process's autosense data
buffer. This member is used only by the User Agent.

2.3.1.7 The uagt_cdb Member

If the user process's CCB contains a pointer to a COB, then the uagt _ cdb also
contains a pointer to a Command Descriptor Block (COB) that is to be locked in
memory. This member and the uagt_cdblen member are used only by the User
Agent driver. The CCB must also contain valid pointers and counts.

2.3.1.8 The uagt_cdblen Member

The uagt _ cdblen contains the length of the Connnand Descriptor Block, if
appropriate.

CAM User Agent Modules 2-3

2.3.1.9 The uagt_flags Member

The uagt flags contains the UAGT_NO_INT_SLEEP bit, which, if set, indicates
that the User Agent should not sleep at an interruptible priority.

2.3.2 The UAGT_CAM_SCAN Data Structure
The User Agent SCSI device driver uses the UAGT_CAM_SCAN data structure to
communicate with user level programs that need to have access to the CAM
subsystem. The structure is copied into kernel space as part of the ioetl system
call from user space for the UAGT _CAM_SINGLE_SCAN and
UAGT_CAM_FULL_SCAN commands. The user program fills in the pointers in
this structure and the User Agent SCSI device driver correctly fills in the
corresponding pointers in the CCB.

The UAGT_CAM_SCAN structure is defined as follows:

typedef struct uagt_carn_scan {
u_char ucs_bus;
u_char ucs_target;
u_char ucs_lun;

UAGT_CAM_SCAN;

2.4 User Agent Routines

/* Bus id for scan */
/* Target id for scan */
/* LUN for scan */

This section describes the User Agent routines supplied by Digital. Table 2-1 lists
the name of each routine and gives a summary description of its function. The
sections that follow contain a more detailed description of each User Agent routine.
Descriptions of the routines with syntax information, in UL TRIX reference page
format, are included in alphabetical order in Appendix C.

Table 2-1: User Agent Routines

Routine

uagt_open
uagt_close
uagt_ioctl

Summary Description

handles the open of the User Agent driver
handles the close of the User Agent driver
handles the ioctl system call for the User Agent driver

2.4.1 The uagt_open Routine
The uagt_open routine handles the open of the User Agent driver.

The character device special file name used for the open is Idev learn.

2.4.2 The uagt_close Routine
The uagt _ elose routine handles the close of the User Agent driver. For the last
close operation for the driver, if any queues are frozen, a RELEASE SIM QUEUE
CCB is sent to the XPT layer for each frozen queue detected by the User Agent.

2-4 CAM User Agent Modules

2.4.3 The uagt_ioctl Routine
The uagt_ioctl routine handles the ioctl system call for the User Agent driver.
The ioctl commands supported are: DEVIOCGET, to obtain the User Agent
driver's SCSI device status; UAGT_CAM_IO, the ioctl define for calls to the User
Agent driver; UAGT_CAM_SINGLE_SCAN, to scan a bus, target, and LUN; and
UAGT_CAM_FULL_SCAN, to scan a bus.

For SCSI 110 CCB requests, the user data area is locked before passing the CCB to
the XPT. The User Agent sleeps waiting for the 110 to complete and issues a
ABORT CCB if a signal is caught while sleeping.

2.5 Sample User Agent Drivers
Two sample User Agent driver programs follow. The first sample program uses the
User Agent driver to perform a SCSI INQUIRY command to a device on a selected
nexus.

The second sample program is a scanner control program that sets up a scanner, reads
scan line data from the device, and writes the data to a file, using the User Agent
driver.

Both programs are included with the USCA software and reside in the
/usr/examples directory.

2.5.1 Sample User Agent Driver Inquiry Program
This section contains the User Agent sample inquiry application program,
caminq . c, with annotations to the code. The user enters the string inq followed
by the numbers identifying the bus, target, and LUN nexus to be checked for a valid
device. If the device is valid, the INQUIRY data is displayed at the console. If the
device is invalid, an error message appears.

2.5.1.1 The Include Flies and Definitions Section

This section describes the portion of the User Agent sample inquiry application
program that lists the include files, local definitions, and data initialization for the
program.

/* -- */
/* Include files needed for this program. */

#include <stdio.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <strings.h>
#include <ctype.h>
#include <sys/cam.h>
#include <sys/dec_cam.h>
#include <sys/uagt.h>
#include <sys/scsi_all.h>

/* CAM defines from the CAM document */
/* CAM defines for Digital CAM source files */
/* CAM defines for the UAgt driver */
/* CAM defines for ALL SCSI devices */

CAM User Agent Modules 2-5

/* -- */
/* Local defines */

#define INQUIRY_LEN 36 /* general inquiry length */ ffi

/* -- */
/* Initialized and uninitialized data. */

[j] This line defines a constant of 36 bytes for the length of the inquiry expected by
the user from the SCSI device.

121 This line declares a global character array, buf, with a size of 36 bytes as defined
by the INQUIRY_LEN constant.

2.5.1.2 The Main Program Section

This section describes the main program portion of the User Agent sample inquiry
application program.

/* ------------------------------------~-------------------------- */
/* The main code path. The CCB/CDB and UAGT_CAM_CCB are set up for

an INQUIRY command to the Bus/Target/Lun selected by the command
line arguments. The returned INQUIRY data is displayed to the
user if the status is valid. If the returned status indicates
an error, the error is reported instead of the INQUIRY data. */

main(argc, argv)
int argc;
char *argv [] ;
{

pyrprn .. Tn; n nr; nr ; nn n;:)r;:) (' ~ Ii1
extern void print_ccb_status();

u_char id, targid, lun;
int fd;

UAGT_CAM_CCB ua_ccb;
CCB_SCSIIO ccb;
ALL_INQ_CDB *inq;

/* from the command line */
/* unit number from the open */ ~

/* local uagt structure */ i
/* local CCB */ ~
/* pointer for the CDB */ ~

/* Make sure that all the arguments are there. */ i

if (argc != 4) {
printf("SCSI INQ bus target lun\n");
exit ();

}

/* Convert the nexus information from the command line. */m

id
targid
lun

atoi(argv[l]);
atoi(argv[2]);
atoi(argv[3]);

I1J These two forward references define routines that are used later in the program to
print out the INQUIRY data or to print out the CAM status if there was an error.

12I The file descriptor for the User Agent driver returned by the open system call,
which executes in Section 2.5.1.3.

2-6 CAM User Agent Modules

[3J This line declares an uninitialized local data structure, ua _ ccb, of the type
UAGT_CAM_CCB, which is defined in the file /usr/sys/h/uagt. h. This
structure is copied from user space into kernel space as part of the ioctl system
call. Section 2.5.1.7 describes this procedure.

1iI This line declares an uninitialized local data structure, ccb, of the type
CCB_SCSIIO , which is defined in the file /usr/sys/h/cam. h. The
members of this structure needed for the XPT _SCSI_IO request are filled in
Section 2.5.1.4. The members of this structure needed for the INQUIRY
command are filled in Section 2.5.1.5.

l5J This line declares a pointer, inq, to a data structure, ALL_INQ_CDB, which is
defined in the file /usr/sys/h/scsi all. h. This structure is filled in
Section 2.5.1.5. -

16I This section of code makes sure the user entered the correct number of
arguments. The user should have entered the string inq, followed by three
numeric characters representing the bus, target, and LUN to be checked for a
valid status.

III This section of code converts the numeric characters entered and assigns them, in
order, to bus, target, and LUN.

2.5.1.3 The User Agent Open Section

This section describes the portion of the User Agent sample inquiry application
program where the User Agent is opened.

/* Open the User Agent driver and report any errors. */

if «fd = open (ll/dev/camll , O_RDWR, 0» < 0) Ii]
{

}

perror(II Error on CAM UAgt Open:II);
exit (1) i

11I The program attempts to open the User Agent device special file, /dev/cam,
with the O_RDWR flag, which allows reading and writing. If the file descriptor
returned by the open system call indicates that the open failed by returning a
negative value, < 0, the program reports an error and exits. Otherwise, the
program opens the device.

2.5.1.4 Filling In XPT_SCSI_IO Request CCB_HEADER Fields

This section describes the portion of the User Agent sample inquiry application
program where the members of the CCB_HEADER needed for an XPf _SCSI_IO
request are filled in.

/* set up the CCB for an XPT_SCSI_IO request. The INQUIRY command
will be sent to the device, instead of sending an XPT_GDEV_TYPE. */

/* set up the CAM header for the xp'r_SCSI_IO function. */

ccb.cam_ch.my_addr = (struct ccb_header *)&ccb; /* "Its" address */ ffi
cCb.cam_ch.cam_ccb_len = sizeof(CCB_SCSIIO); /* a SCSI I/O CCB */
ccb.cam_ch.cam_func_code = XPT_SCSI_IO; /* the opcode */
ccb.cam_ch.cam_path_id = id; /* selected bus */ ~

CAM User Agent Modules 2-7

cCb.cam_ch.cam_target_id = targid;
cCb.cam_ch.cam_target_lun "" lun;

/* selected target */
/* selected lun */

/* The needed CAM flags are : CAM_DIR_IN - The data will come from
the target, CAM_DIS_AUTOSENSE - Do not issue a REQUEST SENSE packet
if there is an error. */

[j] This section of code fills in some of the CCB_HEADER fields of the SCSI 110
CCB structure defined as ccb, for processing by the XPT layer. The structure
was declared in Section 2.5.1.2.

121 These three lines assign the bus, target, and LUN to the corresponding fields in
the CCB_HEADER structure.

IaJ This line sets the necessary CAM flags for the INQUIRY: CAM_DIR_IN, which
specifies that the· direction of the data is incoming; and
CAM_DIS_AUTOSENSE, which disables the autosense feature. These flags are
defined in /usr/sys/h/cam. h.

2.5.1.5 Filling In INQUIRY Command CCB_HEADER Fields

This section describes the portion of the User Agent sample inquiry application
program where the members of the CCB_HEADER needed for the INQUIRY
command are filled in. This is the structure that is passed to the XPT layer by the
User Agent driver.

/* set up the rest of the CCB for the INQUIRY command. */

/* where the data goes */ ~
ccb.cam_dxfer_len "" INQUIRY_LEN; /* how much data */
ccb.cam_timeout = CAM_TIME_DEFAULT;/* use the default timeout */ ~
ccb.cam_cdb_len "" sizeof(ALL_INQ_CDB); /* how many bytes for inquiry *Ai

/* Use a local pointer to access the particular fields in the INQUIRY

CDB. */

inq->opcode = ALL_INQ_OP;
inq->evpd '" 0;
inq->lun '" 0;
inq->page "" 0;

inq->control '" 0;

/* inquiry command */ ~
/* no product data */

/* not used in SCSI-2 */
/* no product pages */

/* for the buffer space */
/* no control flags */

(j] This line sets the cam da ta ptr member of the SCSI 110 CCB structure to the
address of the first element in-the bu f array, which is defined as 36 bytes in
Section 2.5.1.1.

121 This line specifies using the default timeout, which is the value assigned to the
CAM_TIME_DEFAULT constant. This constant is set in the
/usr/sys/h/cam. h file to indicate that the SIM layer's default timeout is to
be used. The current value of the SIM layer's default timeout is five seconds.

13I This line sets the length of the Command Descriptor Block in the CCB to the
length of an inquiry CDB .. The inquiry CDB, ALL_INQ_CDB, which is defined
in the /usr/sys/h/scsi_all. h file, is six bytes.

2-8 CAM User Agent Modules

(jJ This line assigns the inq pointer, which is type ALL_INQ_CDB, to the address
of the cam cdb bytes member of the CDB_UN union. This union is defined
in /usr/sYs/h/cam.h as the cam_cdb_io member of the SCSI liD CCB
structure.

~ These lines use the inq pointer to access the fields of the cam_cdb_bytes
array within the ccb structure as though it is an ALL_INQ_CDB structure. The
ALL_INQ_CDB structure is defined in the /usr/sys/h/scsi_all. h file.

2.5.1.6 Filling In the UAGT _CAM_CCB Fields

This section describes the portion of the User Agent sample inquiry application
program where the members of the UAGT_CAM_CCB structure are filled in for the
ioctl call. This is the structure that is passed to the User Agent driver.

1* set up the fields for the User Agent Ioctl call. *1

ua_ccb.uagt_ccb = (CCB_HEADER *)&ccbj 1* where the CCB is *1 ~
ua_ccb.uagt_ccblen = sizeof(CCB_SCSIIO)j 1* how many bytes to pull in *1 ~
ua_ccb.uagt_buffer = &buf[Olj 1* where the data goes *1 i
ua_ccb.uagt_buflen = INQUIRY_LENj 1* how much data *1 i

ua_ccb.uagt_snsbuf = (u_char *)NULLj 1* no Autosense data *1 ~
ua_ccb.uagt_snslen = OJ 1* no Autosense data *1

~. ua_ccb.uagt_cdb = (COB_UN *)NULLj 1* COB is in the CCB *1 ~
ua_ccb.uagt_cdblen = OJ 1* COB is in the CCB *1

[j] This line initializes the uagt ccb member of the ua ccb structure with the
address of the local CCB_HEAoER structure, ccb. -

121 This line sets the length of the uagt _ ccblen member to the length of the SCSI
I/O CCB structure that will be used for this call.

131 This line initializes the uagt_buffer member with the user space address of
the array buf, which was allocated 36 bytes in Section 2.5.1.1.

(jJ This line initializes the uagt buflen member with the value of the constant
INQUIRY_LEN, which is the-number of bytes of inquiry data that will be
returned.

~ These two lines reflect that the autosense features are turned off in the CAM
flags.

!§! These two lines reflect that the Command Descriptor Block information is in the
SCSI I/O CCB structure filled in Section 2.5.1.4.

2.5.1.7 Sending the CCB to the CAM Subsystem

This section describes the portion of the User Agent sample inquiry application
program where the ccb is sent to the CAM subsystem.

1* Send the CCB to the CAM subsystem using the User Agent driver,
and report any errors. *1

if(ioctl(fd, UAGT_CAM_IO, (caddr_t)&ua_ccb) < 0) m
{

perror("Error on CAM UAGT Ioctl:");
close(fd); 1* close the CAM file *1 i

exit(l) ;

CAM User Agent Modules 2-9

/* If the CCB completed successfully, then print out the INQUIRY
information; if not, report the error. */

if (ccb.cam_ch.cam_status 1= CAM_REQ_CMP)
{

print_ccb_status(&(ccb.cam_ch»; /* report the error values */ I

else

/* report the INQUIRY info */ ~

[j] This line passes the local UAGT_CAM_CCB structure, ua_ccb, to the User
Agent driver, using the ioctl system call. The arguments passed are the file
descriptor returned by the open system call; the User Agent ioctl command,
UAGT_CAM_IO, which is defined in the /usr/sys/h/uagt . h file; and the
contents of the ua_ccb structure. The User Agent driver copies in the SCSI 110
CCB and sends it to the XPT layer. When the 110 completes, the User Agent
returns to the application program, returning status within the ua _ ccb structure.

I2J If the ioctl call fails, this code displays an error message, closes the device
special file, /dev /cam, and exits.

I3J If the CAM status is anything other than CAM_REQ_CMP, indicating the
request completed, an error message is printed indicating the CAM status
returned.

~ If the request completes, the pr int _ inq_ da ta routine is called to display the
INQUIRY data.

2.5.1.8 Print INQUIRY Data Routine

This section of the User Agent sample inquiry application program converts the rest
of the fields of inquiry data to a human-readable form and sends it to the user's
screen.

/* Define the type and qualifier string arrays as globals to allow for
compile-time initialization of the information. */

caddr_t periph_type[] = {

"Direct-access",
"Sequential-access",
"Printer" ,
"Processor" ,
"Write-once" ,
"CD-ROM" ,

] ;

"Scanner" ,
"Optical memory",
"Medium changer",
"Communications",
"Graphics Arts"
/* Same as OA */

/* Reserved */
/* Unknown */

/* Peripheral Device Type */
/* OOh */

/* Olh */
/* 02h */
/* 03h */

/* 04h */
/* 05h */
/* 06h */
/* 07h */

/* OBh */
/* 09h */
/* OAh */

/* OBh */
/* OCh - lEh */
/* lFh */

/* peripheral Qualifier */
"Device supported, is (may be) connected", /* OOOb */
"Device supported, is not connected", /* OOlb */

2-10 CAM User Agent Modules

} i

"<Reserved qualifier>",
"No device supported for this Lun"
1* Vendor specific *1

1* 010b *1
1* Ollb *1
1* 1xxb *1

1* -- *1
1* Local routine to print out the INQUIRY data to the user. *1

void
print_inq_data(ip) W

ALL_INQ_DATA *ipi

char vendor_id[91i ~
char prod_id[171;
char prod_rev_lvl[Sli

caddr_t periph_type_ptr, periph_qual_ptr;
int ptype;

1* Make local copies of the ASCII text, so that it can be NULL
terminated for the printf() routine. *1

strncpy(vendor_id, (caddr_t)ip->vid, 8); i
vendor_id[81 = '\0';
strncpy(prod_id, (caddr_t)ip->pid, 16);
prod_id[161 - '\0';
strncpy(prod_rev_lvl, (caddr_t)ip->revlevel, 4);
prod_rev_lvl[41 = '\0';

1* Convert sparse device type and qualifier values into strings *1

ptype = ip->dtype; ~
periph_type-ptr = "Reserved"i
if (ptype OxlF) periph_type_ptr
if (ptype OxOB) ptype = OxOA;

"Unknown" ;

if (ptype <= OxOA) periph_type_ptr = periph_type[ptypeli

periph_qual_ptr = "<Vendor specific qualifier>";
if (ip->pqual <= 3) periph_qual_ptr periph_qual[ip->pquall;

printf("periph Device Type = Ox\x = \s Device\n", ~
ip->dtype, periph_type_ptr)i

printf("periph Qualifier = Ox\X = \s\n", ip->pqual,
periph_qual_ptr);

printf("Device Type Modifier = OX\X\tRMB = Ox\X = Medium \s\n",
ip->dmodify, ip->rmb, (ip->rmb?"is removable":
"is not removable"»;

printf("ANSI Version - OX\X\t\tECMA Version - Ox\X\n",
ip->ansi, ip->ecma);

printf("ISO Version = Ox\X\t\tAENC = Ox\X\tTrmIOP = Ox\x\n",
ip->iso, ip->aenc, ip->trmiop);

printf("Response Data Format = OX\X\tAddit Length = Ox\d\n",
ip->rdf, ip->addlen);

printf("SftRe c Ox\XCmdQue - Ox\X\tLinked - OX\X\tsync - Ox\X\n",
ip->sftre, ip->cmdque, ip->linked, ip->sync);

printf("Wbus16 - Ox\X\tWbus32 = Ox\X\tRelAdr = Ox\X\n",
ip->wbus16, ip->wbus32, ip->reladdr);

printf("Vendor Identification - \s\nProduct Identification - \s\n",
vendor_id, prod_id)i

printf("Product Revision Level - \s\n\n",
prod_rev_lvl) ;

fflush(stdout); i

CAM User Agent Modules 2-11

l1J This line declares the print_inq_data function that prints out the INQUIRY
data for a valid nexus. The function's argument, ip, is a pointer to the
ALL_INQ_DATA structure defined in the /usr/sys/h/scsi all. h file.

[21 These three lines declare three character arrays to contain the Vendor ID, the
Product ID, and the Product revision level to be displayed. Each array is declared
with one extra byte to hold the NULL string tenninator.

131 This section copies the ALL_INQ_DA T A member, v id,. into the local array
vendor_id; the ALL_INQ_DATA member, pid, into the local array
prod_id; and the ALL_INQ_DATA member, revlevel, into the local array,
prod_rev_lvl. The arrays are passed to the standard C library function,
strncopy, which copies the data and then terminates each string copy with a
NULL, so that it can be output to the printf function in the fonnat desired.

~ This section converts the device type and qualifier values into human-readable
words. The conversions are perfonned on defined and undefined numeric
combinations.

151 This section decodes and displays the inquiry data as hexadecimal numbers and
strings.

161 This line calls the standard C 110 function, ff lush, to write out the data from
the internal buffers.

2.5.1.9 Print CAM Status Routine

This section describes the portion of the User Agent sample inquiry application
program that defines the routine to print out the CAM status for an invalid nexus.

/* -- */
/* Local routines and data structure to report in text and Hex
form the returned CAM status. */

struct cam_status table { ffi
u_char cam_status;
caddr_t status_msg;

cam_statustable[] = { I
{ CAM_REQ_INPROG, "CCB request is in progress" },
{ CAM _ REQ_ CMP ,
{ CAM_REQ_ABORTED,
{ CAM_UA_ABORT,
{ CAM_REQ_CMP_ERR,
{ CAM_BUSY,
{ CAM_REQ_INVALID,
{ CAM_PATH_INVALID,
{ CAM_DEV_NOT_THERE,
{ CAM_UA_TERMIO,
{ CAM_SEL_TIMEOUT,
{ CAM_CMD_TIMEOUT,
{ CAM_MSG_REJECT_REC,
{ CAM_SCSI_BUS_RESET,
{ CAM_UNCOR_PARITY,
{ CAM_AUTOSENSE_FAIL,

{ CAM_DATA_RUN_ERR,
{ CAM_UNEXP_BUSFREE,
{ CAM_SEQUENCE_FAIL,
{ CAM_CCB_LEN_ERR,
{ CAM_PROVIDE_FAIL,
{ CAM_BDR_SENT,
{ CAM_REQ_TERMIO,

2-12 CAM User Agent Modules

"CCB request completed w/out error" },
"CCB request aborted by the host" },
"Unable to Abort CCB request" },
"CCB request completed with an err" },
"CAM subsystem is busy" },
"CCB request is invalid" },
"Bus ID supplied is invalid" },
"Device not installed/there" },
"Unable to Terminate I/O CCB req" },
"Target selection timeout" },
"Command timeout" },
"Reject received"
"Bus reset sent/received"
"Parity error occured"
"Request sense cmd fail"
"No HBA detected Error"
"Overrun/underrun error"
"BUS free" },

},

} ,
} ,
} ,
} ,
} ,

"Bus phase sequence failure" } ,
"CCB length supplied is inadaquate"
"To provide requ. capability"
"A SCSI BDR msg was sent to target"
"CCB request terminated by the host"

} ,
} ,
} ,
} ,

} ;

{ CAM_LUN_INVALID,
{ CAM_TID_INVALID,
{ CAM_FUNC_NOTAVAIL,
{ CAM_NO_NEXUS,
{ CAM_lID_INVALID,
{ CAM_CDB_RECVD,
{ CAM_SCSI_BUSY,
{ CAM_SIM_QFRZN,
{ CAM_AUTOSNS_VALID,

"LUN supplied is invalid" },
"Target ID supplied is invalid" },
"Requested function is not available" },
"Nexus is not established" } ,
"The initiator ID is invalid" },
"The SCSI CDB has been received" },
"SCSI bus busy" },
"The SIM queue is frozen" },
"Autosense data valid for target" }

int cam_statusentrys - sizeof(cam_statustable) / \
sizeof(cam_statustable[O]); ~

char *
camstatus(cam_status) ~

register u_char cam_status;

register struct cam_statustable *cst = cam_statustable; ~
register entrys;

fore entrys - 0; entrys < cam_statusentrys; cst++) { i
if(cst->cam_status == cam_status) (

return (cst->status_msg);

return ("Unknown CAM Status");

void
print_ccb_status(cp) m
CCB_HEADER *cp;
{

printf("cam_status = Ox%X\t (%s%s%s)\n", cp->cam_status,
«cp->cam_status & CAM_AUTOSNS_VALID) ? "AutoSns Valid-II),
«cp->cam_status & CAM_SIM_QFRZN) ? "SIM Q Frozen-" : 1111),

camstatus(cp->cam status & CAM STATUS MASK »i
fflush(stdout); i - --

m This line defines an array of structures. It is declared as a global array to allow
compile-time initialization. Each structure element of the array contains two
members, cam status, the CAM status code, and status msg, a brief
description of the meaning of the status code. The CAM status codes and
messages are defined in the /usr/sys/h/cam. h file.

121 These lines initialize the CAM status array with the status values and their text
equivalents.

I3J This line declares an integer variable whose contents equal the size of the total
CAM status array divided by the size of an individual array element. This integer
is the number of the element in the array.

141 The next two lines define a function that returns a pointer to a text string with the
cam_status field of the CCB_HEADER as an argument. The cam_status
member is declared as a register variable so that its values are stored in a machine
register for efficiency.

15I This line declares a register structure pointer to point to each element of the CAM
status array and initializes it to point to the beginning of the CAM status array.
A local register variable, entrys, will be used to traverse the CAM status array.

(§) This section of code examines each element in the array, incrementing cst until
a match between the status from the CCB and a status value in the array is found,

CAM User Agent Modules 2-13

in which case the address of the CAM status description string, status_msg, is
returned. If all the elements are examined without a match, the "Unknown CAM
Status" message address is returned.

IZ1 The next two lines define a routine that uses a pointer to the CCB _HEADER
structure of the INQUIRY CCB and calls the C library routine, printf, to print
out the hexadecimal value and the appropriate description of)the CAM status
returned.

l8J This line calls the standard C 110 function, fflush, to write out the data from
the internal buffers.

2.5.1.10 Sample Output for a Valid Nexus

This section contains an example of the output of the User Agent sample inquiry
application program when the user enters a valid nexus.

#inq 0 0 0

Periph Device Type = OxO
Device Type Modifier OxO
ANSI Version = Ox!
ISO Version = OxO
Response Data Format = Oxl
SftRe = OxO CmdQue = OxO
Wbusl6 = OxO Wbus32 = OxO
Vendor ID = DEC i
Product ID = RZ56 (C) DEC·~
Product Rev Level = 0300 ~

Periph Qualifier = OxO m
RMB = OxO
ECMA Version = OxO
AENC = OxO TrmIOP = OxO
Addit Length = Ox3l
Linked = OxO Sync = Oxl
RelAdr = OxO

[1] See the American National Standard for Infonnation Systems, Small Computer
Systems Interface - 2 (SCSI - 2), X3T9/89-042 for a description of each of the
fields of the inquiry data returned.

121 This line shows the value of the vendor id variable declared in the
print_inq_data routine in Section 2.5.1.8 as a local copy of the text string.

131 This line shows the value of the prod id variable declared in the
print_inq_data routine in Section-2.5.1.8 as a local copy of the text string.

14I This line shows the value of the prod rev I vI variable declared in the
print_inq_data routine in Section-2.5.1:8 as a local copy of the text string.

2.5.1.11 Sample Output for an Invalid Nexus

This section contains an example of the output of the User Agent sample inquiry
application program when the user enters an invalid nexus.

#inq 0 2 0

cam_status ~ Ox4A (SIM Q Frozen-Target selection timeout) W

[1] This line shows that the contents of the cam status member of the
CCB _HEADER structure returned was CAM-='SIM_ QFRZN, which indicates a
lack of response from the specified nexus. See the cam_statustable in
Section 2.5.1.9.

2-14 CAM User Agent Modules

2.5.2 Sample User Agent Scanner Driver Program

2.5.2.1

This section contains the User Agent sample scanner program, cscan. c, with
annotations to the code. It also contains the cscan. h file, which defines the
WINDOW _P ARAM.;,..BLOCK structure used in the program.

Scanner Program Header File
This section describes the header file, cscan. h, that contains definitions of
structures for the program to use.
/* cscan.h Header file for cscan.c (CAM Scanner driver) 28-oct-1991 */

/* Scanner Window Parameter Block definition; all multi-byte quantities
are defined as unsigned bytes due to the need to store the values in
swapped order. */

typedef struct {
u_char rsvd1[6]; /* Reserved bytes in Header: Must Be Zero */
u_char WDBLen[2]; /* Number of Window Parameter bytes following */ W
u_char WID; /* Window ID: Must Be Zero */
u_char rsvd2; /* Reserved bytes in Header: Must Be Zero */
u_char XRes[2];
u_char YRes[2];
u_char OpLeftX[4];
u_char OpLefty[4];
u_char width [4];
u_char Length[4];
u_char Bright;
u_char Thresh;
u_char Contrast;
u_char ImgTyp;

u_char PixBits;

/* x-axis resolution: MOST be same as YRes */
/* Y-axis resolution: MOST be same as XRes */

/* Opper left X positon of scan window */
/* Opper left Y positon of scan window */
/* Scan width (Y-axis length) */
/* Scan length (X-axis length) */

/* Brightness: Must Be Zero */
/* Threshold: Must Be Zero */

/* Contrast: Must Be Zero */
/* Image type: 0 = bi-level mono; 2 : multi-level

mono; 3 = bi-level full color; 5 = multi­
level full color; others reserved */

/* Bits per pixel: 1 = bi-level; 4 = 16 shades;
8 = 256 shades; others reserved */

u_char HalfTone[2];/* Halftone Pattern: Must Be Zero */
u_char PadTyp:3;
u_char rsvd3:4;

/* Padding type for non-byte pixels: MOST BE 1 */
/* Reserved bits: Must Be Zero */

u_char RevImg:1; /* 0 = normal image; 1 = reverse image */
u_char Bitorder[2];/* Bit ordering: Must Be Zero */
u_char CompTyp; /* compression type: Must Be Zero */
u_char CompArg; /* compression argument: Must Be Zero */
u_char rsvd4[6]; /* Reserved: Must Be Zero */

u_char ColorSel;

u_char ImgCorr;

u_char ThreshR;
u_char ThreshG;
u_char ThreshB;
u_char ShtTyp:l;
u_char rsvd5:3;
u_char ShtDen:4;

/* Header select (return with data): 0 = no header;
1 = return header with data; others reserved */

/* Color select (selects color to use when doing a
mono-color scan): 0 = default to Green; 1 =
scan using Red; 2 = scan using Green; 3 =
scan using Blue; others reserved */

/* Image data correction method: 0 - default to
normal; 1 - soft image; 2 = enhance (low);
3 = enhance (high); others reserved */

/* Threshold level, Red: 0 - default level */
/* Threshold level, Green: 0 - default level */
/* Threshold level, Blue: 0 = default level */
/* Sheet type: 0 - reflection; 1 - transparency */

/* Reserved bits: Must Be Zero */
/* Sheet density (transparency): 0 = normal; 1 =

light; 2 = dark; others reserved */

CAM User Agent Modules 2-15

[1] The length in bytes of a single scan window descriptor. The first 48 bytes are
defined in the American National Standard for Infonnation Systems, Small
Computer Systems Interface - 2 (SCSI - 2), X3T9/89-042 and the remaining bytes
are vendor-specific. The specific structure members used may depend on the
scanner device.

2.5.2.2 The Include Files Section

This section, which is the beginning of the cscan program, describes the portion of
the User Agent sample scanner program that lists the include files for the program.
/* _ ...•.. _ ..•.... __ ... _•..........• - _.- ..•......•.. */

/* Include files needed for this program. */

#include <stdio.h>
#include <unistd.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <strings.h>
#include <ctype.h>
#include <math.h>
#include <sys/cam.h> /* CAM defines from the CAM document */
#include <sys/dec_cam.h> /* CAM defines for Digital CAM source files */
#include <sys/uagt.h> /* CAM defines for the UAgt driver */
#include <sys/scsi_all.h> /* CAM defines for ALL SCSI devices */
#include "cscan.h" /* Scanner structure definitions */

2.5.2.3 The COB Setup Section

This section describes the portion of the User Agent sample scanner program that
defines the COBs for the program.

/* The Define Window Parameters CDB (10 bytes). */

typedef struct
u_char opcodei /* 24 hex
u_char 5, /* 5 bits reserved

lun 3; /* logical unit number
u_char 8; /* Reserved byte
u_char 8; /* Reserved byte
u_char 8; /* Reserved byte
u_char 8; /* Reserved byte
u_char param_Ien2; /* MSB parameter list
u_char param_lenlj /* parameter list
u_char param_IenO; /* LSB parameter list
u_char control; /* The control byte

}SCAN_DEF_WIN_CDB;

/* The Define Window Parameters op code */

Ox24

/* The Read (data or gamma table) CDB (10 bytes). */

typedef struct
u_char opcodej /* 28 hex
u_char : 5, /* 5 bits reserved

lun : 3; /* logical unit number
u_char tran_typej /* transfer data type:

2-16 CAM User Agent Modules

length
length
length

*/
*/

*/
*/
*/
*/
*/
*/ m
*/
*/
*/

*/
*/
*/
*/

/* O=data, 3=gamma */ 121
u_char 8; /* Reserved byte */
u_char tran - id1; /* MSB transfer identification */ 131
u_char tran - id2; /* LSB trans id: */

/* 0 =data, 1/2/3= gamma */
u_char param_len2; /* MSB parameter list length */
u_char param_lenl; /* parameter list length */
u_char param_lenO; /* LSB parameter list length */
u_char control; /* The control byte */

}SCAN_READ_CDB;

/* The Read (data or gamma table) op code */

[j] The parameter list length members specify the number of bytes sent during the
OAT AOUT phase. The parameters are usually mode parameters, diagnostic
parameters, and log parameters that are sent to a target. If set to 0 (zero), no data
is to be transferred.

121 The types of data that are to be read. The choices are: image data scan lines or
gamma correction table data.

131 These two bytes are used with the transfer type byte to indicate that the data to be
read is image scan lines, 0 (zero), or one of the following types of gamma
correction table data: red, 1; green, 2; or blue, 3.

2.5.2.4 The Definitions Section

This section describes the portion of the User Agent sample scanner program that
specifies the local definitions and initializes data.

/* --- */
/* Local defines */
#define SENSE_LENl8 /* max sense length from scanner */ m

/* --- */
/* Initialized and uninitialized data. */

[j] This line defines a constant of 18 bytes for the length of the sense data from the
scanner.

121 This line declares a character array, sense, with a size of 18 bytes as defined by
the SENSE_LEN constant.

2.5.2.5 The Main Program Section

This section describes the main program portion of the User Agent sample scanner
program.

/* ---~-------------- */
/* The main code path. The CCB/CDB and UAGT_CAM_CCB are set up for the

DEFINE WINDOW PARAMETERS and READ commands to the Bus/Target/LUN. */

main(argc, argv,envp)
int argc;
char *argv[];

CAM User Agent Modules 2-17

char *envp[);

/* .. */

/* Local variables and structures */

extern void clear_mem(); m
extern void swap_short_store();
extern void swap_long_store();

u_char id, targid, lun;
char *cp;
int nexus;

int fd;
int od;
char FileHead[200);
int i, n;
u_char *bp;
int retry_cnt;
int reset_flag;

double Xwid, Ylen;

/* from envir variable SCAN·NEXUS */ ~

/* unit number for the CAM open */ ~
/* unit number for the file open */ ~

/* buffer for file header info */

/* general usage byte pointer */
/* error retry counter */
/* flag to indicate reset tried */

/* scan area in inches */ ~
u_short WXYRes; /* variables for window calulations */
u_long wwidth, wLength, WinPix, LineBytes, TotalBytes; ~
u_char WHdrSel; ~

UAGT_CAM_CCB ua_ccb_sim_rel; /* local uagt structure */ ~
CCB_RELSIM ccb_sim_rel; /* local CCB */ i
UAGT_CAM_CCB ua_ccb_reset_dev; /* local uagt structure */ WW
CCB_RESETDEV ccb_reset_dev; /* local CCB */ ffD

UAGT_CAM_CCB ua_ccb; /* local uagt structure */ ffi
CCB_SCSIIO ccb; /* local CCB */ ~
SCAN_DEF_WIN_CDB *win; /* pointer for window def COB */ ffj
SCAN_READ_CDB *read; /* pointer for read COB */ ~

WINDOW_PARAM_BLOCK Window; /* parameter block, window def */ Bi

u_char ReadData[400*12*3); /* Max bytes/line */ ~
u_char *RDRp, *RDGp, *RDBp; /* Red, Green, Blue pointers */
u_char writeData[400*12*3); /* Max bytes/line */ ffi

/* writeData pointer */

l11 These forward references declare routines that are used later in the program. The
routines are defined in Section 2.5.2.14.

121 The bus, target, and LUN are specified in octal digits in the SCAN-NEXUS
environment variable. The value for the LUN should be 0 (zero).

131 The file descriptor for the User Agent driver returned by the open system call,
which executes in Section 2.5.2.7.

~ The file descriptor for the output file returned by the open system call, which
executes in Section 2.5.2.7.

I§I Real values to contain the X and Y dimensions of the scan window.

I§I Variables to hold calculated information about the scan window.

[11 Variable to hold the flag byte indicating whether a window header is to be
returned with the data. The value of the variable is stored in the HdrSel
member of the WINDOW _P ARAM_BLOCK structure is set to 1. The
WINDOW_PARAM_BLOCK is defined in Section 2.5.2.1.

2-18 CAM User Agent Modules

181 This line declares an uninitialized local data structure, ua_ccb_sim_rel, to be
used for the RELEASE SIM QUEUE CCB connnand.

1&1 This line declares an uninitialized local data structure, ccb s im reI, of the
type CCB_RELSIM , which is defined in the file /usr/sYs/h/cam. h.

ffOI This line declares an uninitialized local data structure, ua ccb reset dev, to
be used for the BUS DEVICE RESET CCB connnand. - - -

[j] This line declares an uninitialized local data structure, ccb reset de v, of the
type CCB_RESETDEV , which is defined in the file /usr/sys/h/cam. h.

(jj This line declares an uninitialized local data structure, ua _ ccb, of the type
UAGT_CAM_CCB, which is defined in the file /usr/sys/h/uagt . h. This
structure is copied from user space into kernel space as part of the ioctl system
call.

[jj This line declares an uninitialized local data structure, ccb, of the type
CCB_SCSIIO , which is defined in the file /usr/sys/h/cam. h.

!HI This line declares a pointer to the data structure SCAN_DEF _ WIN_CDB , which
is defined in Section 2.5.2.3.

ff5I This line declares a pointer to the data structure SCAN_READ_CDB , which is
defined in Section 2.5.2.3.

ff6I This line declares an uninitialized local data structure, Window, of the type
WINDOW_PARAM_BLOCK, which is defined in Section 2.5.2.1.

l1Zl This line declares an array to contain a scan line of the maximum size that can be
read, which is 14,400 bytes. This array is used to read a scan line from the
scanner.

1181 This line declares an array large enough to contain the maximum-size scan line,
which is 14,400 bytes. This array is used to write the scan line, converted to 3-
byte pixels, to the output file.

2.5.2.6 The Nexus Conversion Section

This section describes the portion of the User Agent sample scanner program where
the nexus information contained in the SCAN -NEXUS environment variable is
converted to the values for bus, target, and LUN.

1* Find the environment variable SCAN-NEXUS. If not found, return
error message. If found, convert the nexus information from the
variable to bus, target ID and LUN values. Return an error
message if any of the values are not octal digits. *1

nexus" 0; 1* Reset valid data flag *1
for (i-O; envp[iJ 1= NULL; i++)
{

cp .. envp[iJ; 111
if (strncmp(Cp,"SCAN-NEXDS=",ll) -= 0)/* Find environment variable *1
{

nexus .. -1;
cp +- 11;

1* set tentative flag *1

if (*cp < '0' I I *cp > '7') break; i
id .. (u_char)(*cp++) - (u_char)('O');
if (*cp++ 1= ' ') break;
if (*cp < '0' I I *cp > '7') break;
targid = (u_char)(*cp++) - (u_char)('O');
if (*cp++ 1= ' ') break;

1* Advance to data *1

CAM User Agent Modules 2-19

if (*cp < '0' II *cp> '7') break;
lun = (u_char)(*cp) - (u_char)('O');
nexus = 1; /* set good data flag * /

if (nexus == -1) i

printf("Invalid SCAN-NEXUS; set to octal digits 'bus target lun'\n");
exit(1);

if (nexus == 0) i
{

printf("Set environment variable SCAN-NEXUS to 'bus target lun' (octal\
digits)\n\n");

exit(1) ;

printf("Scanner nexus set to: bus %d, target %d, LUN %d\n\n",id, \
targid, lun); I5J

[j] This section scans through all of the environment variables passed to the program
by the system, looking for the variable SCAN-NEXUS.

I2J This section checks to make sure SCAN-NEXUS contains octal digits for bus,
target, and LUN.

131 This error message appears if the digits are not octal.

Ij) This error message appears if SCAN-NEXUS is not set.

15I This message displays the values for bus, target, and LUN.

2.5.2.7 The Parameter Assignment Section

This section describes the portion of the User Agent sample scanner program that
assigns the parameters entered by the user on the command line to the appropriate
variables and opens the necessary files.

/* Make sure that the correct number of arguments are present.
If not, return an error message with usage information. */

if (argc 1= 5) { ffi

printf("Usage is: cscan XYres Xwid Ylen out_file\n");
printf(" XYres is integer pix/inch; Xwid & Ylen are real \

inches\n\n");
exit();

/* Convert the parameter information from the command line. */

WXYRes - atoi(argv[I]);
Xwid - atof(argv[2]);
Ylen = atof(argv[3]);

/* X & Y resolution */
/* X width in inches */
/* Y length in inches */

/* Verify that the X & Y resolution is one of the legal values */

switch (WXYRes) iii
{

case 25:
case 150:
case 200:
case 300:
case 400:

break;

2-20 CAM User Agent Modules

default:
printf("Illegal X & Y resolution; must be 25, 150, 200, \

300, 400\n");
exit(l);

/* Verify that the X width is positive and less than 11.69 inches */ I

if (Xwid < 0 I I Xwid > 11.69)
{

printf("X width must be positive and less than 11.69 inches\n");
exit(1) ;

/* Verify that the Y length is positive and less than 17.00 inches */

if (Ylen < 0 I I Ylen > 17.00)
{

printf("Y length must be positive and less than 17.00 inches\n");
exit(l);

/* Open the output file ("truncating" it if it exists) and report */
/* any errors. */ ~

if «od = open(argv[4], O_WRONLYIO_CREATlo_TRUNC, 0666» < 0)
{

perror("Error on Output File Open");
exit(1);

/* Open the User Agent driver and report any errors. */

if «fd = open("/dev/cam", O_RDWR, 0» < 0)
{

perror("Error on CAM UAgt open");
exit(l);

[j] The user enters the X and Y scan resolutions in pixels per inch, the width (X)
and length (Y) of the scan area in inches, and the name of the output file on the
command line.

I2J This section checks for the legal scan resolutions the user can enter.

raJ These two sections check that the user entered legal values for X and Y.

[jJ These two sections open the User Agent driver and the output file.

2.5.2.8 The Data Structure Setup Section

This section describes the portion of the User Agent sample scanner program that sets
up the data structures for the XPT _REL_SIMQ and XPT _RESET _DEV commands.
/* -- Begin static setups of SIMQ Release and Device Reset structures -- */

/* set up the CCB for an XPT_REL_SIMQ request. */

/* set up the CAM header for the XPT_REL_SIMQ function. */

ccb_sim_rel.cam_ch.my_addr = (struct ccb_header *)&ccb_sim_reli
/* "Its" address */ ffi

cCb_sim_rel.cam_ch.cam_ccb_len = sizeof(CCB_RELSIM)i /* a SIMQ release */

CAM User Agent Modules 2-21

ccb_sim_rel.cam_ch.cam_func_code = XPT_REL_SIMQ; 1* the opcode *1
cCb_sim_rel.cam_ch.cam_path_id = id; 1* selected bus *1
ccb_sim_rel.cam_ch.cam_target_id = targid; 1* selected target *1

1* selected lun *1

1* The needed CAM flags are: CAM_DIR_NONE - No data will be transferred. *1

1* set up the fields for the User Agent Ioctl call. *1

ua_ccb_sim_rel.uagt_ccb = (CCB_HEADER *)&ccb_sim_rel;
1* where the CCB is *1 ~

ua_ccb_sim_rel.uagt_ccblen - sizeof(CCB_RELSIM); 1* bytes in CCB *1
ua_ccb_sim_rel.uagt_buffer = (u_char *)NULLi
ua_ccb_sim_rel.uagt_buflen = Oi
ua_ccb_sim_rel.uagt_snsbuf = (u_char *)NULLi
ua_ccb_sim_rel.uagt_snslen Oi
ua_ccb_sim_rel.uagt_cdb = (COB_UN *)NULLi
ua_ccb_sim_rel.uagt_cdblen = Oi

1* no data *1
1* no data *1

1* no Autosense data *1
1* no Autosense data *1

1* COB is in the CCB *1
1* COB is in the CCB *1

1* set up the CCB for an XPT_RESET_DEV request. *1

1* set up the CAM header for the XPT_RESET_DEV function. *1

ccb_reset_dev.cam_ch.my_addr = (struct ccb_header *)&ccb_reset_devi
1* "Its" address *1 i

ccb_reset_dev.cam_ch.cam_ccb_len = sizeof(CCB_RESETDEV)il* a SCSI 1/0 CCB *1
cCb_reset_dev.cam_ch.cam_func_code - XPT_RESET_DEVi 1* the opcode *1
cCb_reset_dev.cam_ch.cam_path_id = id; 1* selected bus *1
cCb_reset_dev.cam_ch.cam_target_id = targidi 1* selected target *1

1* selected lun *1

1* The needed CAM flags are: CAM_DIR_NONE - No data will be transferred. *1

1* set up the fields for the User Agent Ioctl call. *1

ua_ccb_reset_dev.uagt_ccb = (CCB_HEADER *)&ccb_reset_devi
1* where the CCB is *1 ~

ua_ccb_reset_dev.uagt_ccblen = sizeof(CCB_RESETDEV);I* bytes in CCB *1
ua_ccb_reset_dev.uagt_buffer = (u_char *)NULL; 1* no data *1
ua_ccb_reset_dev.uagt_buflen = Oi 1* no data *1
ua_ccb_reset_dev.uagt_snsbuf - (u_char *)NULL;
ua_ccb_reset_dev.uagt_snslen - Oi
ua_ccb_reset_dev.uagt_cdb - (CDB_UN *)NULLi
ua_ccb_reset_dev.uagt_cdblen = 0;

1* no Autosense data *1
1* no Autosense data *1

1* COB is in the CCB *1
1* COB is in the CCB *1

1* -- End of static setups of SIMQ Release and Device Reset structures -- *1

m This section of code fills in some of the CCB_HEADER fields of the RELEASE
SIM QUEUE CCB structure defined as cob_sim_rel, for the
XPT_REL_SIMQ command. The structure was declared in Section 2.5.2.5

121 This section of code fills in some of the CCB_HEADER fields of the
CCB_RELSIM structure defined as ua oob sim reI, for the RELEASE SIM
QUEUE CCB command. The structure was declared in Section 2.5.2.5

131 This section of code fills in some of the CCB_HEADER fields of the
CCB_RESETDEV structure defined as ccb reset dev, for the
XPT_RESET_DEV conunand. The structure was declared in Section 2.5.2.5

2-22 CAM User Agent Modules

~ This section of code fills in some of the CCB_HEADER fields of the
CCB_RESETDEV structure defined as ua ccb reset dev, for the BUS
DEVICE RESET CCB command. The strUcture-was declared in Section 2.5.2.5

2.5.2.9 The Window Parameters Setup Section
This section describes the portion of the User Agent sample inquiry application
program that fills in the scan window parameters and sends a SCSI SET WINDOW
PARAMETERS command to the scanner.

/* Fill in window parameters for scanner and send DEFINE WINDOW */
/* PARAMETERS command to the scanner. Note that the X&Y resolution */
/* and the X width and Y length are specified on the command line. */

wwidth = Xwid*(double)WXYReSi
wLength .. Ylen*(double)WXYReSi
WHdrSel = Oi

tifdef NO_HEADER_FOR_NOW
WHdrSel .. 1i

tendif

/* X width inches to pixels */ ffi
/* Y length inches to lines */
/* Don't return header */

/* Return header w. data */

WinPix - Wwidth*WLengthi /* Pixels in window */ ~
LineBytes .. wwidth*3i /* Full color, 8-bit pixels */
TotalBytes .. WHdrSel*256 + winPix*3i /* Full color, 8-bit pixels */

printf("Window parameters:\n")i ~
printf(" width = %6d pixels/line, Length = %6d linesi Total" %10d pixels\n",

wwidth, wLength, WinPix)i
printf(" Bytes/line" %6di Total bytes/image = %10d\n", LineBytes,

TotalByteS) i

/* Fill in window parameters for scanner and send DEFINE WINDOW PARAMETERS */
/* command to the scanner. */

clear_mem(&Window, sizeof(Window»i /* Clear whole DWP block */ ~
swap_short_store(&Window.WDBLen[O], Ox2F)i /* REQUIRED length */ ~
swap_short_store(&window.XRes[OI, WXYReS)i /* X and Y MUST BE THE SAME */
swap_short_store(&Window.YRes[O], WXYReS)i /* X and Y MUST BE THE SAME */
/* Upper Left X & Y left at zero */
swap_Iong_store(&window.Width[O], WWidth)i
swap_long_store(&window.Length[O], WLength)i
window.lmgTyp = 5i /* Multi-level full color */ i
Window.PixBits .. 8i /* 8-bit pixels */ m
Window.PadTyp .. 1i /* REQUIRED value */ i
Window.RevImg - 1i /* Reverse -= 0,0,0 .. black */ i
Window.HdrSel .. WHdrSel; /* set return header control */ Ha
/* All other values left at zero */

/* Display current contents of bytes in window parameter block */ ffD

printfC"Window Parameter block Cin hex):\n")i
fore i-O, bp=cu_char *)&Window; i < sizeof(window)i i++, bp++) {

printfc"%.2x ", *bp)i
if (i 7) printf("\n")i
if (i == 8+21) printfC"\n")i

printf ("\n\n") i

[j] This section converts the X and Y values entered from the command line in
inches into pixels. The value of WXYRes is an int; however, the values of
xwid and Ylen are floating point values. To perform the calculations to

CAM User Agent Modules 2-23

detennine the values of WWidth, the nwnber of pixels per line, and WLength,
the number of scan lines, the value of WXYRes must be converted to a real
number. For example, if the value entered for X were 4.5 and the resolution
selected were 300, WWidth would equal 1,350 pixels per line. If the value
entered for Y were 3.5, the result would be 1,050 scan lines.

121 This section of the program calculates the nwnber of bytes in the scan window
based on the total number of pixels. For example, the calculation using the
previous figures would yield 1,417,500 pixels as the value of WinP ix. To
calculate the number of bytes per line, WWidth is multiplied by 3, which is the
number of bytes per pixel. The total nwnber of bytes in the scan window, using
the figures in the example, would be 4,252,500 bytes.

131 These lines display the results of the calculations.

Ij] This line calls the clear mem function to set the local
WINDOW _PARAM_BLOCK structure, Window, to O's (zeroes) in preparation
for storing the byte values in swapped order. The WINDOW_PARAM_BLOCK
structure was defined in Section 2.5.2.1. The clear mem function is defined in
Section 2.5.2.14. -

15l This section of code· calls the functions that put the bytes of short and long
integer values into big-endian storage. The functions are defined in Section
2.5.2.14.

l§I This line sets the image type for the scanner. The setting of 5 means multilevel,
full color.

lZ1 This line sets the number of bits per pixel. The setting of 8 means 256 shades.

181 This line sets the padding type for nonbyte pixels. The setting of 1 means pad
with 0 (zero).

lSI This line sets the reverse image. The setting of 1 means white pixels are
indicated by 1 (one) and black pixels are indicated by 0 (zero).

[1Ql This line sets the selection for returning a header with the data. The setting of
WHdrSel was set to 0 (do not include the header).

(jj] This section displays the contents of the bytes in the window parameter block.

2.5.2.10 CCB Setup for the DEFINE WINDOW Command

This section describes the portion of the User Agent sample scanner program where
the fields of the CCB_HEADER needed for an XPT_SCSI_IO request are filled in.

1* set up the CCB for an XPT_SCSI_IO request. The DEFINE WINDOW
PARAMETERS command will be sent to the device. *1

1* set up the CAM header for the XPT_SCSI_IO function. *1

ccb.cam_ch.my_addr - (struct ccb_header *)&ccb; 1* "Its" address *1 W
cCb.cam_ch.cam_ccb_len - sizeof(CCB_SCSIIO); 1* a SCSI 110 CCB *1
ccb.cam_ch.cam_func_code = XPT_SCSI~IO; 1* the opcode *1
cCb.cam_ch.cam_path_id - id; 1* selected bus *1
cCb.cam_ch.cam_target_id = targid; 1* selected target *1
ccb.cam_ch.cam_target_lun = lun; 1* selected lun *1

1* The needed CAM flags are: CAM_DIR_OUT - The data will go to the target. *1

2-24 CAM User Agent Modules

/* set up the rest of the CCB for the DEFINE WINDOW PARAMETERS command. */

ccb.cam_data_ptr = (u_char *)&Window; 1* where the parameter.s are */ 121
ccb.cam_dxfer_len = sizeof(Window); /* how much data *1 ~
cCb.cam_timeout = CAM_TIME_DEFAULT; /* use the default timeout */ ~
cCb.cam_cdb_len = sizeof(SCAN_DEF_WIN_CDB); /* how many bytes for cdb */ ~
cCb.cam_sense_ptr - &sense[O);
ccb.cam_sense_len = SENSE_LEN;

1* Autosense data area */
1* Autosense data length */

/* Use a local pointer to access the fields in the DEFINE WINDOW PARAMETERS
CDB. *1

clear_mem(win,sizeof(SCAN_DEF_WIN_CDB»; 1* clear all bits in CDB *1 ~
win->opcode = SCAN_DEF_WIN_OP; 1* define window command *1 i
win->lun = lun; /* lun on target */
win->param_lenO = sizeof(Window);
win->param_lenl = 0;
win->param_len2 = 0;
win->control = 0;

1* for the buffer space */

1* no control flags */

/* Set up the fields for the User Agent Ioctl call. *1 i

ua_ccb.uagt_ccb = (CCB_HEADER *)&ccb; 1* where the CCB is *1 ~
ua_ccb.uagt_ccblen = sizeof(CCB_SCSIIO); /* how many bytes to gather */ ~
ua_ccb.uagt_buffer = (u_char *)&Window;
ua_ccb.uagt_buflen = sizeof(Window);

ua_ccb.uagt_snsbuf = &sense[O);
ua_ccb.uagt_snslen = SENSE_LEN;
ua_ccb.uagt_cdb = (CDB_UN *)NULL;
ua_ccb.uagt_cdblen = 0;

1* where the parameters are */ ~
1* how much data */ ~

1* Autosense data area */ ~
/* Autosense data length *1
1* CDB is in the CCB *1 ~
1* CDB is in the CCB */

(j] This section of code fills in some of the CCB _HEADER fields of the SCSI 110
CCB structure defined as ccb, for processing by the XPT layer. The structure
was declared in Section 2.5.2.5.

I2J This line assigns the cam_data_ptr member of the local CCB_SCSIIO data
structure, ccb, to the address of the Window parameter block. The Window
parameter block structure was filled in Section 2.5.2.9.

131 This line sets the data transfer length to the length of the Window structure.

iii This line specifies using the default timeout, which is the value assigned to the
CAM_TIME_DEFAULT constant. This constant is set in the
/usr/sys/h/cam. h file to indicate that the SIM layer's default timeout is to
be used. The current value of the SIM layer's default timeout is five seconds.

~ This line sets the length of the cam_ cdblen member to the length of the
SCAN_DEF _ WIN_CDB structure.

I6J This line assigns the win pointer, which is type SCAN_DEF _ WIN_CDB, to the
address of the cam cdb bytes member of the CDB_UN union. This union is
defined in /usr/sYs/h/cam. h as the cam cdb io member of the SCSI 110
CCB structure. - -

III This line calls the clear mem function to clear the local
SCAN_DEF _ WIN_CDB Structure in preparation for storing the values needed for
the DEFINE WINDOW operation. The SCAN_DEF _ WIN_CDB structure was
defined in Section 2.5.2.3. The clear mem function is defined in Section
2.5.2.14. -

CAM User Agent Modules 2-25

18I These lines use the win pointer to access the bytes of the cam_cdb_bytes
array as though it is a SCAN_DEF _ WIN_CDB structure. The
SCAN_DEF _ WIN_CDB structure is defined in Section 2.5.2.3

lSI This section of the code assigns the program address of the CCB into the CCB
pointer member and the program address of the Window parameter block into the
data pointer member of the ua _ ccb structure of type U AGT _ CAM_ CCB, as
defined in the /usr/sys/h/uagt. h file. This structure is copied from user
space into kernel space as part of the ioctl system call that is executed in
Section 2.5.2.11 This structure was declared in Section 2.5.2.3.

[1Q) This line initializes the uagt ccb member of the ua ccb structure with the
address of the local CCB_HEAoER structure, ccb. -

[j] This line sets the length of the uagt_ccblen member to the length of the SCSI
liD CCB structure that will be used for this call.

l12I This line initializes the uagt_buffer member with the user space address of
the Window parameter block.

l13I This line initializes the uagt_buflen member with the number of bytes in the
Window parameter block.

[1jI These two lines reflect that the autosense features are turned on in the CAM flags.

[15J These two lines reflect that the Command Descriptor Block information is in the
SCSI liD CCB structure filled in Section 2.5.2.5.

2.5.2.11 The Error Checking Section

This section describes the portion of the User Agent sample scanner program that
attempts to set the window parameters and recover from possible scanner errors.

/* send the CCB to the CAM subsystem using the User Agent driver.
If an error occurs, report it and attempt corrective action. */

retry_cnt = 10;
reset_flag = 0;

retry_swp:

/* initialize retry counter */
/* initialize reset flag */

printf("Attempt to Set window Parameters\n");
if(ioctl(fd, UAGT_CAM_IO, (caddr_t)&ua_ccb) < 0) ffi
(

perrOr("Error on CAM UAgt Ioctl to Define Window Parameters");
close(fd); /* close the CAM file */
exit(l);

/* If the CCB did not complete successfully then report the error. */

if (ccb.cam_ch.cam_status I- CAM_REQ_CMP)
(

print_ccb_statuS("CAM UAgt Define Window Ioctl",
&(ccb.cam_ch)); /* report the error values */

printf(" cam_scsi_status - Ox\.2x\n", ccb.cam_scsi_status); i

/* 1st check if the SIM Queue is frozen. If it is, release it. */

if (ccb.cam_ch.cam_status & CAM_SIM_QFRZN) (
printf("Attempt to release SIM Queue\n");
if(ioctl(fd, UAGT_CAM_IO, (caddr_t)&ua_ccb_siro_rel) < 0) (Ii

perror("Error on CAM UAgt Release Siro Queue loctl");
close(fd); /* close the CAM file */

2-26 CAM User Agent Modules

exit(l)i

/* If the Release siro Q CCB did not complete successfully then
report the error and exit. */

print_ccb_status("CAM UAgt Release SIM Queue Ioctl",
&(ccb_sim_rel.cam_ch))i /* report the error values */

if (ccb_siro_rel.cam_ch.cam_status 1= CAM_REQ_CMP) {
print_ccb_status("CAM UAgt Release SIM Queue Ioctl",

&(ccb_sim_rel.cam_ch))i /* report the error values */ ~
close(fd)i /* close the CAM file */
exit(l) i

/* Next, if we haven't done one yet, attempt a device reset to clear any
device error. */

if (reset_flag++ 0)

printf("Attempt to Reset the scanner\n")i
if(ioctl(fd, OAGT_CAM_IO, (caddr_t)&ua_ccb_reset_dev) < 0) { ~

perror("Error on CAM OAgt Device Reset Ioctl")i
close(fd)i /* close the CAM file */
exit(l) i

/* If the Reset Device CCB did not complete successfully then
report the error and exit. */

print_ccb_status("CAM OAgt Device Reset Ioctl",
&(ccb_reset_dev.cam_ch))i /* report the error values */

if (ccb_reset_dev.cam_ch.cam_status 1= CAM_REQ_CMP) { i
print_ccb_statuS("CAM OAgt Device Reset Ioctl",

& (ccb_reset_dev.cam_ch))i /* report the error values */
close(fd)i /* close the CAM file */
exit(l) i

/* Wait the 28 seconds that the scanner takes to come back to life
after a reset; no use to do anything else. */

printf("Scanner was reset, wait 28 Seconds for it to recover ... \n");
sleep(28) ;

/* Last, count if all retries are used up. If not, try the SWP again. If so,
give up and exit. */

printf("Retry counter value - \d\n",retry_cnt);
if (retry_cnt-- > 0) goto retry_SWP;

close(td) ;
exit(l);

/* close the CAM file */

else

/* Output status information on success for debugging. */

print_ccb_status("CAM OAgt SET WINDOW PARAMETERS Ioctl",
&(ccb.cam_ch))i /* report the error values */

CAM User Agent Modules 2-27

printf(" cam_scsi_status = Ox%.2X\n", ccb.cam_scsi_status);
printf("\nWindow parameter set up successful\n")i
}

/* output header information (magic number, informational comment, X and Y
dimensions and maximum pixel values) to the data file and display it for
the user. */

sprintf(FileHead,"P6\n\~ X&Y resolution = %d dpi, %d pixels/line, \
%d lines", III

WXYReS,WWidth,wLength);
sprintf(strchr(FileHead,NULL),"\n%d %d 255\n",Wwidth,WLength)i
write(od,FileHead,strlen(FileHead»;
printf("File header data --\n%s\n",FileHead);

[1] This section of code attempts to set the window parameters. This line passes the
local UAGT_CAM_CCB structure, ua ccb, to the User Agent driver, using the
ioctl system call. The arguments passed are the file descriptor returned by the
open system call; the User Agent ioctl command, UAGT_CAM_IO, which is
defined in the /usr/sys/h/uagt. h file; and the contents of the ua_ccb
structure. The User Agent driver copies in the SCSI I/O CCB and sends it to the
XPT layer. When the I/O completes, the User Agent returns to the application
program, returning status within the ua _ ccb structure.

121 If the CAM status is anything other than CAM_REQ_ CMP, indicating the
request completed, an error message is printed indicating the CAM status
returned.

13I This section of code attempts to clear the SIM queue if it is frozen. This line
passes the local UAGT_CAM_CCB structure, ua_ccb_sim_rel, to the User
Agent driver, using the ioctl system call. The arguments passed are the file
descriptor returned by the open system call; the User Agent ioctl command,
UAGT_CAM_IO, which is defined in the /usr/sys/h/uagt. h file; and the
contents of the ua _ ccb _ s im _reI structure. The User Agent driver copies in
the SCSI I/O CCB and sends it to the XPT layer. When the operation completes,
the User Agent returns to the application program, returning status within the
ua cob structure.

~ If the CAM status is anything other than CAM_REQ_CMP, indicating the
request completed, an error message is printed indicating the CAM status
returned. An error message is displayed and the program exits.

151 This section of code attempts a device reset. This line passes the local
UAGT_CAM_CCB structure, ua_ccb_reset_dev, to the User Agent driver,
using the ioctl system call. The arguments passed are: the file descriptor
returned by the open system call; the User Agent ioctl command,
UAGT_CAM_IO, which is defined in the /usr/sys/h/uagt. h file; and the
contents of the ua_ocb_reset_dev structure. The User Agent driver copies
in the SCSI I/O CCB and sends it to the XPT layer. When the operation
completes, the User Agent returns to the application program, returning status
within the ua ccb structure.

l6J If the CAM status is anything other than CAM_REQ_CMP, indicating the
request completed, an error message is printed indicating the CAM status
returned. An error message is displayed and the program exits.

1ZI If the scan window parameters were set up successfully, a portable pixmap P6 file
is created. This section displays the X and Y resolutions in dots per inch, pixels
per line, and number of lines, taking the values that were generated from the code

2-28 CAM User Agent Modules

2.5.2.12

in Section 2.5.2.9.

CCB Setup for the READ Command

This section describes the portion of the User Agent sample inquiry application
program that sets up the CCBs for a READ command.
/* set up the CCB for an XPT_SCSI_IO request. The READ (data) command will be

sent to the device. */

/* set up the CAM header for the XPT_SCSI_IO function. */

cCb.cam_ch.my_addr = (struct ccb_header *)&ccb; /* "Its" address */ ~
ccb.cam_ch.cam_ccb_len = sizeof(CCB_SCSIIO); /* a SCSI I/O CCB */
ccb.cam_ch.cam_func_code = XPT_SCSI_IO;
ccb.cam_ch.cam_path_id = id;
cCb.cam_ch.cam_target_id = targid;
ccb.cam_ch.cam_target_lun = lun;

/* the opcode */
/* selected bus */

/* selected target */
/* selected lun */

/* The needed CAM flags are: CAM_DIR_IN - The data will corne from the target. */

/* Set up the rest of the CCB for the READ command. */

/* where the data goes */ i
cCb.cam_dxfer_len = LineBytes; /* how much data */
ccb.cam_timeout = 100; /* use timeout of 100Sec */
ccb.cam_cdb_len = sizeof(SCAN_READ_CDB); /* how many bytes for read */ ~
ccb.cam_sense_ptr &sense[O); /* Autosense data area */
cCb.cam_sense_len = SENSE_LEN; /* Autosense data length */

/* Use a local pointer to access the fields in the DEFINE WINDOW PARAMETERS
CDB. */

clear_mem(read,sizeof(SCAN_READ_CDB»; /* clear all bits in CDB */ i
read->opcode = SCAN_READ_OP; /* define window command */
read->lun .. lun; /* lun on target */
read->param_IenO LineBytes&255; /* for the buffer space */
read->param_lenl (LineBytes»8)&255;
read->param_len2 = (LineBytes»16)&255;
read->control .. 0; /* no control flags */

/* set up the fields for the User Agent Ioctl call. */

ua_ccb.uagt_ccb = (CCB_HEADER *)&ccb; /* where the CCB is */ i
ua_ccb.uagt_ccblen .. sizeof(CCB_SCSIIO); /* bow many bytes to pull in */ ~
ua_ccb.uagt_buffer - ReadData; /* where the data goes */ I
ua_ccb.uagt_buflen LineBytes; /* how much data */ i

ua_ccb.uagt_snsbuf - &sense[O);
ua_ccb.uagt_snslen R SENSE_LEN;
ua_ccb.uagt_cdb - (CDB_UN *)NULL;
ua_ccb.uagt_cdblen - 0;

n = TotalBytes + strlen(FileHead);

/* Autosense data area */ ~
/* Autosense data length */
/* CDB is in the CCB */ [D
/* CDB is in the CCB */

printf("Total bytes in file \12d.\n", n);

printf("\nRead data from scanner and write to file\n");

CAM User Agent Modules 2-29

I1J This section of code fills in some of the CCB_HEADER fields of the SCSI 110
CCB structure defined as ccb, for processing by the XPT layer. The structure
was declared in Section 2.5.2.5.

121 This line sets the cam _ da ta _ptr to the address of the ReadDa ta array
defined in Section 2.5.2.5.

131 This line sets the data transfer length to the length of the SCAN_READ_CDB
structure.

~ This line sets the read pointer, which is type SCAN_READ...,CDB, to the
address of the cam cdb len member of the CDB UN union. This union is
defined in /usr/sYs/h/cam. h as the cam cdb - io member of the SCSI 110
CCB structure. - -

151 This line calls the clear_mem function to clear the local SCAN_READ~CDB
structure, read, in preparation for storing the values needed for the READ
operation. The SCAN_READ_CDB structure was defined in Section 2.5.2.3.
The clear mem function is defined in Section 2.5.2.14.

I§] These lines use the read pointer to access the bytes of the cam _ cdb _bytes
array as though they are in a SCAN_DEF _ WIN_CDB structure. The
SCAN_READ_CDB structure is defined in Section 2.5.2.3.

III This line sets the length of the uagt _ ccblen member to the length of the SCSI
110 CCB structure that will be used for this call.

Ii This line sets the uagt_buffer member of the ua_ccbstructure.

raJ This line sets the size of the data buffer to the number of bytes contained in the
buffer pointed to by the cam_data_ptr member of the ccb structure.

[1QI These two lines reflect that the autosense features are turned on in the CAM flags.

[1] These two lines reflect that the Command Descriptor Block information is in the
SCSI 110 CCB structure filled in Section 2.5.2.5.

2.5.2.13 The Read and Write Loop Section

This section describes the portion of the program where the data is read, reformatted,
and placed in the output buffer.

/* ****************** Beginning of read/write loop ***************** */

for (i=O; i<WLength; i++) {

printf(" Read scanner line number %8d\r",i);
fflush(stdout); ~

/* Send the CCB to the CAM subsystem via the User Agent driver,
and report any errors. */

if(ioctl(fd, UAGT_CAM_IO, (caddr_t)&ua_ccb) < 0) i
{

perror(n\nError on CAM UAgt Ioctl to Read data line");
close(fd); /* close the CAM file */
exit(l);

/* If the CCB completed successfully then print out the data read,
if not report the error. */

2-30 CAM User Agent Modules

printf ("\n ") ;
print_ccb_statuS("CAM UAgt Read data line Ioctl",

& (ccb.cam_ch)); /* report the error values */
printf(" cam_scsi_status = Ox%.2X\n", ccb.cam_scsi_status);
close(fd); /* close the CAM file */
exit(l);

else

Hifdef CUT_FaR_NOW
printf(" Data line read successfully\n")i

Hendif

/* Re-format the data from blocks of R, G and B data to tuples
of (R,G,B) data for the data file. Set up pointers to the
beginning of each of the blocks of the Red, the Green and the
Blue data bytes and another pointer to the output buffer.
Then loop, collecting one each of Red, Green and Blue,
putting each into the output data buffer. */ ~

RDRp = ReadData;
RDGp c RDRp + WWidthi
RDBp = RDGp + WWidth;
WDp = WriteDatai

/* Red bytes are first */
/* Green bytes are next */
/* Blue bytes are last */

for (n = 0 ; n < wwidth; n++)

*WDp++ *RDRp++;
*WDp++ *RDGp++;
*WDp++ = *RDBp++;

/* Now write the re-formatted data to the output file. */

write(od,WriteData,LineBytes); /* write data to file */

/* ****************** End of read/write loop ***************** */
printf("\nSuccessful read and write to file\n");
close(fd); /* close the CAM file */
close(od); /* close the output file */

[j] This line calls the standard C 110 function t fflusht to force the scan line
number to the user's display.

121 This section of code attempts to read a scan line. This line passes the local
UAGT_CAM_CCB structuret ua_ ccbt to the User Agent drivert using the
ioctl system call. The arguments passed are the file descriptor returned by the
open system call; the User Agent ioctl commandt UAGT_CAM_IOt which is
defined in the /usr/sys/h/uagt.h file; and the contents of the ua ccb
structure. The User Agent driver copies in the SCSI 110 CCB and sends it to the
XPT layer. When the 110 completest the User Agent returns to the application
programt returning status within the ua _ ccb structure.

131 The scan line read in contains all the red bytes, then all the green bytes, then all
the blue bytes, in sequence. This section of code reformats the bytes into pixels
for the output file by placing a red byte, then a green bytet then a blue byte
together on the output file scan line.

CAM User Agent Modules 2-31

2.5.2.14 The Local Function Definition Section

This section describes the portion of the User Agent sample scanner program that
defines functions used within the program.
/* Local routines and data structure to report in text and Hex form the
returned CAM status. */
struct cam_statustable (~

u_char cam_status;
caddr_t status_msg;

cam_statustable{) - {
{ CAM_REQ_INPROG,
{ CAM_REQ_CMP,

"CCB request is in progress"),

{ CAM_REQ_ABORTED,
"CCB request completed w/out error" },
"CCB request aborted by the host" },
"Unable to Abort CCB request" },
"CCB request completed with an err" },

CAM_UA_ABORT,
CAM_REQ_CMP_ERR,
CAM_BUSY,
CAM_REQ_INVALID,
CAM_PATH_INVALID,
CAM_DEV_NOT_THERE,
CAM_UA_TERMIO,
CAM_SEL_TIMEOUT,
CAM_CMD_TIMEOUT,
CAM_MSG_REJECT_REC,
CAM_SCSI_BUS_RESET,
CAM_UNCOR_PARITY,
CAM_AUTOSENSE_FAIL,
CAM_NO_HBA,
CAM_DATA_RUN_ERR,
CAM_UNEXP_BUSFREE,
CAM_SEQUENCE_FAIL,
CAM_CCB_LEN_ERR,
CAM_PROVIDE_FAIL,
CAM_BDR_SENT,
CAM_REQ_TERMIO,

"CAM subsystem is busy" },
"CCB request is invalid" },
"Bus ID supplied is invalid" },
"Device not installed/there" },
"Unable to Terminate I/O CCB req" },
"Target selection timeout"
"Command timeout"
"Reject received"
"Bus reset sent/received"
"parity error occured"
"Request sense cmd fail"

} ,
} ,
} ,

} ,

} ,

} ,

"No RBA detected Error" },

} ;

CAM _ IJUN _ INVALID,
CAM_TID_INVALID,
CAM_FUNC_NOTAVAIL,
CAM_NO_NEXUS,
CAM_IID_INVALID,
CAM_CDB_RECVD,
CAM_SCSI_BUSY,

"Overrun/underrun error" },
"BUS free" },
"Bus phase sequence failure" },
"CCB length supplied is inadaquate" },
"To provide requ. capability" },
"A SCSI BDR msg was sent to target" },
"CCB request terminated by the host" },
"LUN supplied is invalid" },
"Target ID supplied is invalid" },
"Requested function is not available" },
"Nexus is not established" },
"The initiator ID is invalid" },
"The SCSI CDB has been received" },
"SCSI bus busy"

int cam_statusentrys E sizeof(cam_statustable) /
sizeof(cam_statustable{O);
char * camstatus(cam_status
register u_char cam_status;
{

register struct cam_statustable *cst - cam_statustable;
register entrys;
for(entrys - 0; entrys < cam_statusentrys; cst++) {

if(cst->cam_status == cam_status)
return (cst->status_msg);

return ("Unknown CAM Status");

void print_ccb_status(id_string,cp) i
char *id_string;
CCB_HEADER *cp;
{

register i;

printf("Status from %sO,id_string);

2-32 CAM User Agent Modules

printf(H cam_status = Ox%.2X (%s%s%S)O, cp->cam_status,
«cp->cam_status & CAM_AUTOSNS_VALID) ? "AutoSns Valid- H),
«cp->cam_status & CAM_SIM_QFRZN) ? "SIM Q Frozen-" : ""),
camstatus(cp->cam_status & CAM_STATUS_MASK »i

if (cp->cam_status & CAM_AUTOSNS_VALID) {
printf("Autosense Data (in heX):O)i
fore i=Oi i < SENSE_LENi i++)

printf("%.2X H, sense[i)i
printf(IfO)i

fflush(stdout) i

void clear_mem(bp,n)
u_char *bPi

/* Clear n bytes of memory beginning at bp */ i

int ni

register ii
register u_char *ptri
for(i=O, ptr=bpi i<ni i++, ptr++) *ptr = 0;

void swap_short_store(bp,val) /* store short into byte-reversed storage */ ~
u_char *bPi
u_short vali

u_short tempi
register u_char *ptri
ptr = bPi
*(bp++) (u_char)(val»8)i
*bp

/* Copy pointer */
/* store high byte first */
/* Then store low byte */

void swap_long_store(bp,val)
u_char *bp;

/* Store long into byte-reversed storage */ ~

u_long val;
{

*(bp++) (u_char) (val»24)i
*(bp++) = (u_char) (val»16)i
*(bp++) = (u_char)(val»8)i
*bp

/* store high byte first */

/* Store low byte last */

[j] This function is described in Section 2.5.1.9.

l2J This function prints out the CCB status.

l3J This function clears out all the bits in an area of memory, such as a structure or
an array, to be sure all are set to 0 (zero) and that there is no extraneous data
before executing a SCSI/CAM command.

~ This function puts the bytes of a short (16-bit) integer value into big-endian
storage to confonn with SCSI byte ordering.

l5J This function puts the bytes of a long (32-bit) integer value into byte-reversed
storage to confonn with SCSI byte ordering.

CAM User Agent Modules 2-33

USCA Common Modules 3

This chapter describes the common data structures, macros, and routines provided by
Digital for SCSI/CAM peripheral device driver writers. These data structures,
macros, and routines are used by the generic SCSI/CAM peripheral device driver
routines described in Chapter 4.

U sing the common and generic routines helps ensure that your SCSI/CAM peripheral
device drivers are consistent with the UL TRIX SCSI/CAM Architecture. See
Chapter 11 if you plan to define your own SCSI/CAM peripheral device drivers. See
Chapter 12 for infonnation about the SCSI/CAM special I/O interface to process
special SCSI I/O commands.

If a SCSI/CAM device driver writer needs to understand all members of a structure,
the complete structure is shown and each member described. If a SCSI/CAM device
driver writer needs to understand only specific members of a structure, those
members are listed in a table, and only those members are described.

3.1 Common SCSI Device Driver Data Structures
This section describes the SCSI/CAM peripheral common data structures. The
following data structures are described:

• PDRV _UNIT_ELEM, the Peripheral Device Unit Table

• PDRV _DEVICE, the Peripheral Device Structure

• DEV _DESC, the Device Descriptor Structure

• MODESEL_ TBL, the Mode Select Table Structure

• DENSITY _TBL, the Density Table Structure

• PDRV _ WS, the SCSI/CAM Peripheral Device Driver Working Set Structure

3.1.1 Peripheral Device Unit Table
The Peripheral Device Unit Table is an array of SCSI/CAM peripheral device unit
elements. The size of the array is the maximum number of possible devices, which
is determined by the maximum number of SCSI controllers allowed for the system.
The structure is allocated statically and is defined as follows:

typedef struct pdrv_unit_elem {
PDRV_DEVICE *pu_devicei /* Pointer to peripheral device structure */
u_short pu_opensj /* Total number of opens against unit */
u_short pu_configj /* Indicates whether the device type */

u_char pu_typej
PDRV_UNIT_ELEMi

/* configured at this address */
/* Device type - byte 0 from inquiry data */

The pu _ dev ice field is filled in with a pointer to a CAM-allocated peripheral SCSI
device (PDRV_DEVICE) structure when the first call to the ccmn_open_unit
routine is issued for a SCSI device that exists.

3.1.2 Peripheral Device Structure
A SCSI/CAM peripheral device structure, PDRV _DEVICE, is allocated for each
SCSI device that exists in the system. This structure contains the queue header
structure for the SCSI/CAM peripheral device driver CCB request queue. It also
contains the Inquiry data obtained from a GET DEVICE TYPE CCB. Table 3-1 lists
the members of the PDRV _DEVICE structure that a SCSI/CAM peripheral device
driver writer using the common routines provided by Digital may use. Chapter 11
shows the complete structure for those driver writers who are not using the common
routines.

Table 3-1: Members of the PDRV _DEVICE Structure

Member Name Data Type

dev t

pd_bus u char

pd_target u char

pd_lun u char

pd_flags u_long

pd_state u char

pd_abort_cnt u char

pd_dev_inq[INOLENl u char

*pd_dev_desc DEV_DESC

pd_specific caddr_t

pd_spec_size u_long

*(pd_recov_hand)() void

pd_lk_device lock t

Description

The major/minor device number pair that
identifies the bus number, target ID, and
LUN associated with this SCSI device.
Passed to the common open routine.
SCSI target's bus controller number.
SCSI target's ID number.
SCSI target's logical unit number.
May be used to indicate the state of a SCSI
device driver.
May be used for recovery.
May be used for recovery.
Inquiry data obtained from issuing a GET
DEVICE TYPECCB.
Pointer to the SCSI device descriptor.
Pointer to device-specific infonnation.
Size of device-specificinfonnation
structure.
Recovery bandler.
SMP lock for the device.

The pd_specifc field is filled in with a pointer to an allocated structure that
contains device-specific information.

3.1.2.1 The pd_dev Member

The major/minor device number pair that identifies the bus number, target ID, and
LUN associated with this SCSI device.

3-2 USCA Common Modules

3.1.2.2 The pd_spec_slze Member
The size, in bytes, of the device-specific infonnation structure passed from the SCSI
device driver to the common open routine.

3.1.3 Device Descriptor Structure
There is a read - only SCSI device descriptor structure, DEV _DESC, defined for
each device supported by Digital. A user may supply a new DEV _DESC structure
by adding it to /usr/sys/data/cam_data. c and reI inking the kernel. The
DEV _DESC structure follows:

typedef struct dev_desc {
u_char dd_pv_name[IDSTRING_SIZE]i

/* Product ID and vendor string from */
/* Inquiry data */

u_char dd_lengthi /* Length of dd_pv_name string */
u_char dd_dev_name[DEV_NAME_SIZE]i

/* Device name string - see defines */
/* in devio.h */

u_long dd_device_typei /* Bits 0 - 23 contain the device */
/* class, bits 24-31 contain the */
/* SCSI device type */

struct pt info *dd_def_partitioni
/* Default partition sizes - disks */

u_long dd_block_sizei /* Block/sector size */
u_long dd_max_recordi /* Maximun transfer size in bytes */

/* allowed for the device */
DENSITY_TBL *dd_density_tbl;

/* Pointer to density table - tapes */
MODESEL_TBL *dd_modesel_tbli

/* Mode select table pointer - used */
/* on open and recovery */

u_long dd_flags; /* Option flags (bbr, etc) */
u_long dd_scsi_optcmdsi/* Optional commands supported */
u_long dd_ready_time; /* Time in seconds for powerup dev ready */
u_short dd_que_depthi /* Device queue depth for devices */

/* which support command queueing */
u_char dd_valid; /* Indicates which data length */

/* fields are valid */
u_char dd_inq_len; /* Inquiry data length for device */
u_char dd_req_sense_leni

/* Request sense data length for */
/* this device */

3.1.4 Mode Select Table Structure

The Mode Select Table Structure is read and sent to the SCSI device when the first
call to the SCSI/CAM peripheral open routine is issued on a SCSI device. There can
be a maximum of eight entries in the Mode Select Table Structure. Chapter 11
contains a description of each structure member. The definition for the Mode Select
Table Structure, MODESEL_TBL, follows:

typedef struct modesel_tbl {
struct ms_entry{

u char rns_pagei /*
u char *ms_data; /*
u char ms data_leni /*
u char rns_ent_sp_pfi/*

/*
/*

Page number */
Pointer to Mode Select data */
Mode Select data length */
Save Page and Page format bits */
BIT 0 l=Save Page, */

O=Don't Save Page */

USCA Common Modules 3-3

}ms_entry[MAX_OPEN_SELS]i
}MODESEL_TBLi

3.1.5 Density Table Structure

1* BIT 1 1=SCSI-2, O=SCSI-l *1

The Density Table Structure allows for the definition of eight densities for each type
of SCSI tape device unit. Chapter 11 contains a description of each structure
member. The definition for the Density Table Structure, DENSITY_TBL, follows:

typedef struct density_tbl {
struct density{

u_char den_flags; /* VALID, ONE_FM etc */
u_char den_density_code;
u char
u_char
u_char

den_compress_code; /* Compression code if supported */
den_speed_setting; /* for this density */
den_buffered_setting;

u_long den_blocking;
}density[MAX_TAPE_DENSITY];

}DENSITY_TBL;

3.1.5.1 The den_blocking Member

/* Buffer control setting */
/* 0 variable etc. */

The den _blocking member contains the blocking factor for this SCSI tape device.
A NULL (0) setting specifies that the. blocking factor is variable. A positive value
represents the number of bytes in a block, for example, 512 or 1024.

3.1.6 SCSI/CAM Peripheral Device Driver Working Set Structure
The SCSI I/O CCB contains cam _pdrv _ptr, a pointer to the SCSI/CAM
peripheral device driver working set area for the CCB. This structure is also
allocated by the XPT when the xpt_ccb_alloc routine is called to allocate a
CCB. The PDRV _ WS structure follows:

typedef struct
struct pdrv_ws
struct pdrv_ws
CCB_SCSIIO
u_long
u_long
u_char

pdrv ws {
*pws_flink;
*pws_blink;

/* Linkage of working set CCBs */
/* that we have queued */

pws_ccb; / Pointer to this CCB. */
pws_flagsi /* Generic to driver */
pws_retry_cnt; /* Retry count for this request */

/* Pointer to peripheral device */
/* structure */

pws_sense_buf[DEC_AUTO_SENSE_SIZE)i

3.1.6.1 The pws_fllnk Member

The pws _ f 1 ink member of the pdrv _ ws structure is a pointer to the forward link
of the working set CCBs that have been queued.

3.1.6.2 The pws_bllnk Member

The pws_blink member of the pdrv_ws structure is a pointer to the backward
link of the working set CCBs that have been queued.

3-4 USCA Common Modules

3.1.6.3 The pws_ccb Member

The pws _ ccb member is a pointer to this CCB. The CCB header is filled in by the
common routines.

3.2 Common SCSI Device Driver Macros
The SCSI/CAM peripheral device driver common macros are supplied by Digital for
SCSI device driver writers to use. These macros are defined in the
/usr/sys/h/pdrv.h file. There are two categories of macros:

• Macros to obtain identification infonnation about each SCSI device

• Locking macros

Table 3-2 lists each identification macro name, its call syntax, and a brief description
of its purpose.

Table 3-2: Common Identification Macros

Name Syntax Description

Returns the bus ID of the
device that is identified in the
major/minor device number
pair.

Returns the target ID of the
device that is identified in the
major/minor device number
pair.

Returns the target LUN of the
device that is identified in the
major/minor device number
pair.

Returns the Peripheral Device
Unit Table entry for the device
that is identified in the
major/minor device number
pair.

Returns the pointer to the
Peripheral Device Structure for
the device that is identified in
the major/minor device number
pair.

Table 3-3 lists each locking macro name, its call syntax, and a brief description of its
purpose.

USCA Common Modules 3-5

Note
Synunetric Multiprocessing (SMP) is not enabled in this release.

Table 3-3: Common Lock Macros

Name Syntax Description

PDRV _INIT_LOCK PDRV_INIT_LOCK(pd) Initializes the Peripheral
Device Structure lock.

PDRV _IPLSMP _LOCK PDRV_IPLSMP_LOCK(pd, Raises the IPL and locks the
lk_type, saveipl) Peripheral Device Structure.

PDRV_IPLSMP_UNLOCK PDRV_IPLSMP_UNLOCK(pd, Unlocks the Peripheral Device
saveipl) Structure and lowers the IPL.

PDRV _SMP _LOCK PDRV_SMP_LOCK(pd) Locks the Peripheral Device
Structure.

PDRV _SMP _SLEEPUNLOCK PDRV_SMP_SLEEPUNLOCK(chan, Unlocks the Peripheral Device
pri, pd) Structure.

3.3 Common SCSI Device Driver Routines
The SCSI/CAM peripheral common device driver routines can be allocated into
categories as follows:

• Initialization, open, and close routines, which handle the initialization of
SCSI/CAM peripheral device drivers and the common open and close of the
drivers. The following routines are in this category:

- ccmn in it

- ccmn_open_unit

- ccmn close unit - -
• CCB queue manipulation routines, which manage placing and removing CCBs

from the appropriate queues as well as aborting and terminating 110 for SCSI 110
CCBs on the queue's active list. The following routines are in this category:

- ccmn send ccb

- ccmn rem ccb - -
- ccmn_abort_que

- ccmn_term_que

• CCB allocation, build, and deallocation routines, which allocate CCBs, fill in the
common portion of the CCB_HEADER, as well as create and send specific types
of CCB requests to the XPT. The following routines are in this category:

- ccmn _get _ ccb

- ccmn reI ccb

- ccmn io ccb bId - -

3-6 USCA Common Modules

- ccmn_gdev_ccb_bld

- ccmn sdev ccb bId - -
- ccmn_sasy_ccb_bld

- ccmn_rsq_ccb_bld

- ccmn_pinq_ccb_bld

- ccmn abort ccb bId - --
- ccmn term ccb bId - - -
- ccmn bdr ccb bId - -
- ccmn br ccb bId - - -

• Common routines to build and send SCSI 110 commandst which are called during
the open or recovery sequence of a device. The calling routine must sleep while
the command completest if necessary. The following routines are in this
category:

- ccmn tur

- ccmn start unit

- ccmn mode select - -
• CCB status routine, which assigns CAM status values to a few general

classifications. The following routine is in this category:

- ccmn ccb status - -
• Buf structure pool allocation and deallocation routines, which allocate and

deallocate buf structures from the buffer pool. The following routines are in this
category:

- ccmn_get_bp

- ccmn_rel_bp

• Data buffer pool allocation and deallocation routines, which allocate and
deallocate data buffer areas from the pool. The following routines are in this
category:

- ccmn_get_dbuf

- ccmn reI dbuf - -
• Routines to perfonn miscellaneous operations. The following routines are in this

category:

- ccmn ccbwait

- ccmn_SysSpecialCmd

- ccmn_DoSpecialCmd

- ccmn_errlog

Descriptions of the routines with syntax infonnationt in UL TRIX reference page
fonnatt are included in alphabetical order in Appendix C.

USCA Common Modules 3-7

3.3.1 Common 1/0 Routines
This section describes the common SCSI/CAM peripheral device driver initialization
and 110 routines. Table 3-4 lists the name of each routine and gives a summary
description of its function. The sections that follow contain a more detailed
description of each routine.

Table 3-4: Common 1/0 Routines

Routine

ccmn_init
ccmn_open_unit

3.3.1.1 The ccmn_lnlt Routine

Summary Description

initializes the XPT and the unit table lock structure
handles the common open for all SCSI/CAM peripheral
device drivers
handles the common close for all SCSI/CAM peripheral
device drivers

The ccmn ini t routine initializes the XPf and the unit table lock structure. The
first time the ccmn_init routine is called, it calls the xpt_init routine to request
the XPf to initialize the CAM subsystem.

3.3.1.2 The ccmn_open_unlt Routine

The ccmn open unit routine handles the common open for all SCSI/CAM
peripheral device drivers. It must be called for each open before any SCSI device­
specific open code is executed.

On the first call to the ccmn open unit routine for a device, the
ccmn gdev ccb bId routine is called to issue a GET DEVICE TYPE CCB to
obtain-the Inquiry data. The ccmn _open _ uni t routine allocates the Peripheral
Device Structure, PDRV _DEVICE, and a device-specific structure, either
TAPE_SPECIFIC or DISK_SPECIFIC, based on the device size argument passed.
The routine also searches the cam _ devdes c _ tab to obtain a pointer to the Device
Descriptor Structure for the SCSI device and increments the open count. The
statically allocated pdrv _ uni t _table structure contains a pointer to the
PDRV _DEVICE structure. The PDRV _DEVICE structure contains pointers to the
DEV _DESC structure and to the device-specific structure.

3.3.1.3 The ccmn_close_unlt Routine

The ccmn close unit routine handles the common close for all SCSI/CAM
peripheral device drivers. It sets the open count to zero.

3.3.2 Common Queue Manipulation Routines
This section describes the common SCSI/CAM peripheral device driver queue
manipulation routines. Table 3-5 lists the name of each routine and gives a summary
description of its function. The sections that follow contain a more detailed
description of each routine.

3-8 USCA Common Modules

Table 3-5: Common Queue Manipulation Routines

Routine

ccmn send ccb - -

ccmn rem ccb

Summary Description

sends CCBs to the XPT layer by calling the xpt _action
routine
removes a SCSI 110 CCB request from the SCSIICAM
peripheral driver active queue and starts a tagged request if a
tagged CCB is pending
sends an ABORT CCB request for each SCSI 110 CCB on
the active queue
sends a TERMINATE 110 CCB request for each SCSI 110
CCB on the active queue

3.3.2.1 The ccmn_send_ccb Routine

The ccmn_send_ccb routine sends CCBs to the XPT layer by calling the
xpt_action routine. This routine must be called with the Peripheral Device
Structure locked.

For SCSI liD CCBs that are not retries, the request is placed on the active queue. If
the CCB is a tagged request and the tag queue size for the device has been reached,
the request is placed on the tagged pending queue so that the request can be sent to
the XPT at a later time. A high-water mark of half the queue depth for the SCSI
device is used for tagged requests so that other initiators on the SCSI bus will not be
blocked from using the device.

3.3.2.2 The ccmn_rem_ccb Routine

The ccmn _rem _ ccb routine removes a SCSI 110 CCB request from the SCSIICAM
peripheral driver active queue and starts a tagged request if a tagged CCB is pending.
If a tagged CCB is pending, the ccmn _rem _ ccb routine places the request on the
active queue and calls the xpt_action routine to start the tagged request.

3.3.2.3 The ccmn_abort_que Routine

The ccmn_abort_que routine sends an ABORT CCB request for each SCSI liD
CCB on the active queue. This routine must be called with the Peripheral Device
Structure locked.

The ccmn abort que routine calls the ccmn abort ccb bId routine to
create an ABORT CCB for the first active CCB on the active queue and send it to
the XPT. It calls the ccmn send ccb routine to send the ABORT CCB for each of
the other CCBs on the active queue that are marked as active to the XPT. The
ccmn abort que routine then calls the ccmn reI ccb routine to return the
ABORT CCB to the XPT. - -

3.3.2.4 The ccmn_term_que Routine

The ccmn_term_que routine sends a TERMINATE 110 CCB request for each
SCSI liD CCB on the active queue. This routine must be called with the Peripheral
Device Structure locked.

USCA Common Modules 3-9

The ccmn term que routine calls the ccmn term ccb bId routine to create a
TERMINATE IIO-CCB for the first active CCB on the active queue and send it to
the XPT. It calls the ccmn send ccb routine to send the TERMINATE 110 CCB
for each of the other CCBs on the active queue that are marked as active to the XPT.
The ccmn term que routine then calls the ccmn reI ccb routine to return the
TERMINATE IIO-CCB to the XPT. - -

3.3.3 Common CCB Management Routines
This section describes the common SCSIICAM. peripheral device driver CCB
allocation, build, and deallocation routines. Table 3-6 lists the name of each routine
and gives a summary description of its function. The sections that follow contain a
more detailed description of each routine.

Table 3-6: Common CCB Management Routines

Routine

ccmn_rel_ccb

ccmn_io_ccb_bld
ccmn_gdev_ccb_bId
ccmn_sdev_ccb_bId
ccmn_sasy_ccb_bId

ccmn-pinq_ccb_bId
ccmn abort ccb bId - --
ccmn_term_ccb_bId
ccmn_bdr_ccb_bId

Summary Description

allocates a CCB and fills in the common portion of the CCB
header
releases a CCB and returns the sense data buffer for SCSI 110
CCBs, if allocated
allocates a SCSI 110 CCB and fills it in
creates a GET DEVICE TYPE CCB and sends it to the XPT
creates a SET DEVICE TYPE CCB and sends it to the XPT
creates a SET ASYNCHRONOUS CALLBACK CCB and
sends it to the XPT
creates a RELEASE SIM QUEUE CCB and sends it to the
XPT
creates a PATH INQUIRY CCB and sends it to the XPT
creates an ABORT CCB and sends it to the XPT
creates a TERMINATE 110 CCB and sends it to the XPT
creates a BUS DEVICE RESET CCB and sends it to the
XPT
creates a BUS RESET CCB and sends it to the XPT

3.3.3.1 The ccmn_get_ccb Routine

The ccmn get ccb routine allocates a CCB and fills in the common portion of the
CCB header. The routine calls the xpt ccb alloc routine to allocate a CCB
structure. The ccmn _get _ ccb routine fills iii the common portion of the CCB
header and returns a pointer to that CCB_HEADER.

3.3.3.2 The ccmn_rel_ccb Routine

The ccmn reI ccb routine releases a CCB and returns the sense data buffer for
SCSI 110 CCBs,-if allocated. The routine calls the xpt ccb free routine to

. release a CCB structure. For SCSI 110 CCBs, if the sense data length is greater than
the default sense data length, the ccmn _ rel_ ccb routine calls the
ccmn_rel_dbuf routine to return the sense data buffer to the data buffer pool.

3-10 USCA Common Modules

3.3.3.3 The ccmn_lo_ccb_bld Routine

The ccmn io ccb bId routine allocates a SCSI 110 CCB and fills it in. The
routine caliS the ccmn get ccb routine to obtain a CCB structure with the header
portion filled in. The ccron-=-io_ccb_bld routine fills in the SCSI IIO-specific
fields from the parameters passed and checks the length of the sense data to see if it
exceeds the length of the reselVed sense buffer. If it does, a sense buffer is allocated
using the ccmn_get_dbuf routine.

3.3.3.4 The ccmn_gdev _ccb_bld Routine

The ccron gdev ccb bId routine creates a GET DEVICE TYPE CCB and sends
it to the xPr. The routine calls the ccron get ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The
ccron gdev ccb bId routine calls the ccron send ccb routine to send the
CCB Structure to the XPT. The request is carried out iriiinediately, so it is not placed
on the device driver's active queue.

3.3.3.5 The ccmn_sdev_ccb_bld Routine

The ccron sdev ccb bId routine creates a SET DEVICE TYPE CCB and sends
it to the xPr. The routine calls the ccmn get ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The routine fills in the
device type field of the CCB and calls the ccron send ccb routine to send the
CCB structure to the XPT. The request is carried out inllnediately, so it is not placed·'
on the device driver's active queue.

3.3.3.6 The ccmn_sasy_ccb_bld Routine

The ccmn sasy ccb bId routine creates a SET ASYNCHRONOUS
CALLBACK CCB and sends it to the XPT. The routine calls the ccmn get ccb
routine to allocate a CCB structure and fill in the common portion of the -CCB -
header. The routine fills in the asynchronous fields of the CCB and calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver's active queue.

3.3.3.7 The ccmn_rsq_ccb_bld Routine

The ccmn_rsq_ccb_bId routine creates a RELEASE SIM QUEUE CCB and
sends it to the XPT. The routine calls the ccron get ccb routine to allocate a
CCB structure and fill in the common portion of the CCB header. The routine calls
the ccron_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver's active queue.

3.3.3.8 The ccmn_plnq_ccb_bld Routine

The ccmn_pinq_ccb_bId routine creates a PATH INQUIRY CCB and sends it to
the XPT. The routine calls the ccmn get ccb routine to allocate a CCB structure
and fill in the common portion of the CCB header. The routine calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver's active queue.

USCA Common Modules 3-11

3.3.3.9 The ccmn_abort_ccb_bld Routine

The ccmn abort ccb bId routine creates an ABORT CCB and sends it to the
XPT. The routine calls the ccmn get ccb routine to allocate a CCB structure and
fill in the connnon portion of the CCB header. The routine fills in the address of the
CCB to be aborted and calls the ccmn send ccbroutine to send the CCB
structure to the XPT. The request is carried out innnediately, so it is not placed on
the device driver's active queue.

3.3.3.10 The ccmn_term_ccb_bld Routine

The ccmn term ccb bId routine creates a TERMINATE I/O CCB and sends it
to the XPf-:- The routine calls the ccmn get ccb routine to allocate a CCB
structure and fill in the common portion of the-CCB header. The routine fills in the
CCB to be tenninated and calls the ccmn send ccb routine to send the CCB
structure to the XPT. The request is carried out iilunediately, so it is not placed on
the device driver's active queue.

3.3.3.11 The ccmn_bdr_ccb_bld Routine

The ccmn bdr ccb bId routine creates a BUS DEVICE RESET CCB and sends
it to the xPr. The routine calls the ccmn get ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The routine calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The request is
carried out innnediately, so it is not placed on the device driver's active queue.

3.3.3.12 The ccmn_br_ccb_bld Routine

The ccmn br ccb bId routine creates a BUS RESET CCB and sends it to the
XPT. Theroutlne calls the ccmn get ccb routine to allocate a CCB structure and
fill in the connnon portion of the CCB header. The routine calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The request is
carried out innnediately, so it is not placed on the device driver's active queue.

3.3.4 Common SCSI 1/0 Command Building Routines
This section describes the common SCSI/CAM peripheral device driver SCSI I/O
command build and send routines. Table 3-7 lists the name of the routine and gives
a summary description of its function. The sections that follow contain a more
detailed description of each routine.

Table 3-7: Common SCSI 1/0 Command Building Routines

Routine

ccmn_tur

ccmn_start_unit

ccmn mode select - -

3-12 USCA Common Modules

Summary Description

creates a SCSI 110 CCB for the TEST UNIT READY
command and sends it to the XPT for processing
creates a SCSI 110 CCB for the START UNIT conmand and
sends it to the XPT for processing
creates a SCSI 110 CCB for the MODE SELECT command
and sends it to the XPT for processing

3.3.4.1 The ccmn_tur Routine

The ccmn tur routine creates a SCSI 110 CCB for the TEST UNIT READY
command and sends it to the XPT for processing. This routine may be called from
interrupt context since it will not wait (sleep) for the command to complete.

The ccmn tur routine calls the ccmn io ccb bId routine to obtain a SCSI 110
CCB structure. The ccmn tur routine calIs the ccmn send ccb routine to send
the SCSI 110 CCB to the XPT. - -

3.3.4.2 The ccmn_start_unlt Routine

The ccmn start unit routine creates a SCSI 110 CCB for the START UNIT
command and sends it to the XPT for processing. This routine may be called from
interrupt context since it will not wait (sleep) for the command to complete.

The ccmn start unit routine calls the ccmn io ccb bId routine to obtain a
SCSI 110 CCB structure. The ccmn start unIt routinecalls the
ccmn_send_ccb routine to send the SCSI iib CCB to the XPf.

3.3.4.3 The ccmn_mode_select Routine

The ccmn mode select routine creates a SCSI 110 CCB for the MODE SELECT
command and sends it to the XPT for processing. This routine may be called from
interrupt context since it will not wait (sleep) for the command to complete. The
routine calls the ccmn io ccb bId routine to obtain a SCSI 110 CCB structure.
It uses the ms _index parameier to-index into the Mode Select Table pointed to by the
dd_modsel_tbl member of the Device Descriptor Structure for the SCSI device.
The ccmn mode select routine calls the ccmn send ccb routine to send the
SCSI 110 CCB to tlte XPT. - -

3.3.5 Common CCB Status Routine

This section describes the common SCSIICAM peripheral device driver CCB status
routine. The ccmn_ccb_status routine assigns individual CAM status values to
generic categories. The following table shows the returned category for each CAM
status value:

CAM Status

CAM_REO_INPROG
CAM_REO_CMP
CAM_REO_ABORTED
CAM_UA_ABORT
CAM_REO_CMP_ERR
CAM_BUSY
CAM_REO_INVALID
CAM_PATH_INVALID
CAM_DEV_NOT_THERE
CAM_UA_TERMIO
CAM_SEL_TIMEOUT
CAM_CMD_TIMEOUT
CAM_MSG_REJECT_REC
CAM_SCSI_BUS_RESET
CAM_UNCOR_PARITY
CAM_AUTOSENSE_FAIL
CAM_NO_HBA

Assigned Category

CAT_INPROG
CAT_CMP
CAT_ABORT
CAT_ABORT
CAT_CMP_ERR
CAT_BUSY
CAT_CCB_ERR
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_ABORT
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_RESET
CAT_DEVICE_ERR
CAT_BAD_AUTO
CAT_NO_DEVICE

USCA Common Modules 3-13

CAM Status

CAM_DATA_RUN_ERR
CAM_UNEXP_BUSFREE
CAM_SEQUENCE_FAIL
CAM_CCB_LEN_ERR
CAM_PROVIDE_FAIL
CAM_BDR_SENT
CAM_REQ_TERMIO
CAM_LUN_INVALID
CAM_TID_INVALID
CAM_FUNC_NOTAVAIL
CAM_NO_NEXUS
CAM_lID_INVALID
CAM_SCSI_BUSY
Other

Assigned Category

CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_CCB_ERR
CAT_CCB_ERR
CAT_RESET
CAT_ABORT
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_CCB_ERR
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_SCSI_BUSY
CAT_UNKNOWN

3.3.6 Common Buf Structure Pool Management Routines
This section describes the common SCSI/CAM peripheral device driver buf
structure pool allocation and deallocation routines.

3.3.6.1 The ccmn_get_bp Routine

The ccmn get bp routine allocates a buf structure. This function must not be
called at interrupt context. The function may sleep waiting for resources.

3.3.6.2 The ccmn_rel_bp Routine

The ccmn_re1_bp routine deallocates a buf structure.

3.3.7 Common Data Buffer Pool Management Routines
This section describes the common SCSI/CAM peripheral device driver data buffer
pool allocation and deallocation routines.

3.3.7.1 The ccmn_get_dbuf Routine

The ccmn _get _ dbuf routine allocates a data buffer area of the size specified by
calling the kernel memory allocation routines.

3.3.7.2 The ccmn_rel_dbuf Routine

The ccmn _ re 1_ dbu f routine deallocates a data buffer.

3.3.8 Miscellaneous Common Routines
This section describes the common SCSI/CAM peripheral device driver routines that
perfonn miscellaneous operations. Table 3-8 lists the name of each routine and gives
a summary description of its function.

3-14 USCA Common Modules

Table 3-8: Miscellaneous Common Routines

Routine Summary Description

ccmn ccbwai t sleeps waiting for a SCSI 110 CCB request to complete

ccmn_DoSpecialCmd provides a simplified interface to the special command
routine

ccmn_SysSpecialCmd lets a system request issue SCSI 110 connnands to the
SCSIICAM special 110 interface

ccmn _err log reports error conditions for the SCSIICAM peripheral device
driver

3.3.8.1 The ccmn_ccbwalt Routine
The ccmn_ccbwait routine sleeps waiting for a SCSI 110 CCB request to
complete. If the priority is greater than PZERO, the ccmn_ccbwait routine sleeps
at an interruptible priority in order to catch signals.

3.3.8.2 The ccmn_DoSpeclalCmd Routine
The ccmn_DoSpecialCmd routine provides a simplified interface to the special
command routine. The routine prepares for and issues special commands.

3.3.8.3 The ccmn_ SysSpeclalCmd Routine

The ccmn_SysSpecialCmd routine lets a system request issue SCSI 110
commands to the SCSI/CAM special 110 interface. This permits existing SCSI
commands to be issued from within kernel code.

3.3.8.4 The ccmn_errlog Routine

The ccmn _ err log routine reports error conditions for the SCSIICAM peripheral
device driver. The routine is passed a pointer to the name of the function in which
the error was detected. The routine builds informational strings based on the error
condition.

USCA Common Modules 3-15

USCA Generic Modules 4

This chapter describes the generic data structures and routines provided by Digital for
SCSIICAM peripheral device driver writers. The generic data structures and routines
can be used as templates for SCSIICAM peripheral device drivers to interface with
the CAM subsystem to perform standard 110 operations. See Chapter 12 for a
description of the SCSIICAM special 110 interface, which processes special 110
control commands that are not issued to the device through the standard driver entry
points.

The generic routines use the common SCSI/CAM peripheral device driver routines
described in Chapter 3. Using the common and generic routines helps ensure that
SCSIICAM peripheral device drivers are consistent with the UL TRIX SCSIICAM
Architecture. See Chapter 11 if you plan to define your own SCSIICAM peripheral
device drivers.

4.1 Prerequisites for Using the CAM Generic Routines
The generic device driver routines use the common routines and data structures
supplied by Digital. See Chapter 3 for information about how to use the common
data structures and routines.

The following routines must be called with the Peripheral Device Structure locked:

• ccmn send ccb - -
• ccmn _abort_que

• ccmn_term_que

4.1.1 loctl Commands
The writer of a generic SCSIICAM peripheral device driver has two options for
implementing ioctl commands within the driver:

• Use the ioctl commands that are already defined in /usr/sys/h/ioctl. h
and implement those that are appropriate for the type of device.

• Create new ioctl definitions by modifying the /usr/sys/h/ioctl. h file
to reflect the new ioctl definitions and to implement the new ioctl
commands within the driver. See the Guide to Writing and Porting VMEbus and
TURBOchannel Device Drivers for more information.

It is possible that conflicts with future releases of the operating system may result
when new ioctl commands are implemented.

See Chapter 12 for information about the SCSI/CAM special 110 interface to handle
SCSI special 110 commands.

4.1.2 Error Handling
The writer of the device driver is responsible for all error handling within the driver
and for notifying the user process of the error.

4.1.3 Kernel Interface
The kernel entry points for any device driver are defined for both character and block
devices in the structures cdevsw and bdevsw defined in the
/usr /sys/h/conf . h file. The kernel entry points are implemented in the
cdevswand bdevsw switch tables in the
/usr/sys/machine/common/conf . c file. If the device driver does not
implement a specific kernel entry point, then the corresponding entries in the
cdevswand bdevsw switch tables must be null. See the Guide to Writing and
Porting VMEbus and TURBOchannel Device Drivers for more information.

4.2 Data Structures Used by Generic Routines
This section describes the generic data structures programmers adapt when they write
their own SCSI/CAM peripheral device drivers. The following. data structures are
described:

• CGEN_SPECIFIC, the Generic-Specific Structure

• CGEN_ACTION, the Generic Action Structure

4.2.1 The Generic-Specific Structure
A SCSI/CAM peripheral device structure, CGEN_SPECIFIC, is defined for the
device controlled by the driver. The CGEN_SPECIFIC structure is defined as
follows:

typedef generic_specific struct {
u_long gen_flags; /* flags - EOM, write locked */
u_long gen_state_flagsi/* STATE - UNIT_ATTEN, RESET etc. */
u_long gen_resid; /* Last operation residual count */

}CGEN_SPECIFICi

4.2.1.1 The gen_flags Member

The gen_flags member is used to indicate certain conditions of the SCSI unit.
The possible flags are:

Flag Name

CGEN_EOM

CGEN_OFFLINE

4-2 USCA Generic Modules

Description

The unit is positioned at the end of media.

The device is returning DEVICE NOT READY in
response to a command. The media is either not
loaded or is being loaded.

The unit is either write protected or is opened read
only.

A soft error has been reported by the SCSI unit.

Flag Name

CGEN HARDERR

Description

A hard error has been reported by the SCSI unit. It
can be reported either through an ioctl or by
marking the buf structure as EIO.

4.2.1.2 The gen_state_flags Member

The gen state flags member is used to indicate certain states of the driver and
of the SCSI unit. The possible flags are:

Flag Name

CGEN NOT READY_STATE

CGEN_RESET_PENDING_STATE

CGEN_OPENED_STATE

4.2.1.3 The gen_resld Member

Description

The unit was opened with the FNDELA Y flag and
the unit had a failure during the open, but was seen.

A check condition occurred and the sense key was
UNIT ATIENTION. This usually indicates that a
media change has occurred, but it could indicate
power up or reset. Either way, current settings are
lost.

Indicates notification of a reset condition on the
device or bus.

A reset is pending.

The unit is opened.

The gen_resid member contains the residual byte count from the last operation.

4.2.2 The Generic Action Structure

The SCSI/CAM peripheral device structure, CGEN_ACfION, is passed to the
generic driver's action routines to be filled in according to the success or failure of
the command. The CGEN_ACTION structure is defined as follows:

typedef struct generic_action {
CCB_SCSIIO *act_ccbi

act_ret_errori
act_fatali
act_ccb_statusi

1* The CCB that is returned to caller *1
/* Error code if any *1
1* Is this considered fatal? *1
1* The CCB status code *1

long
u_long
u_long
u_long
u_long

act_scsi_statusi
act_chkcond_errori

/* The SCSI error code *1
/* The check condition error *1

)CGEN_ACTIONi

4.2.2.1 The act_ccb Member

The act_ccb member is a pointer to the SCSI I/O CCB returned to the calling
routine.

USCA Generic Modules 4-3

4.2.2.2 The act_ret_error Member

The act_ret_error contains the error code, if any, returned from the operation.

4.2.2.3 The act_fatal Member

The act_fatal indicates whether an error returned was fatal. The possible flags
are:

Flag Name

ACT_FAILED

ACT_RESOURCE

ACT_PARAMETER

ACT_RETRY_EXCEDED

Description

The action has failed.

Memory availability problem.

An invalid parameter was passed.

The maximwn retry count for the operation has been
exceeded.

4.2.2.4 The act_ccb_status Member

The act_ccb_status member indicates the CAM generic category code for the
CCB that was returned from the ccmn ccb status routine. - -

4.2.2.5 The act_scsl_status Member

The act scsi status member indicates the SCSI status code if the CCB
completed with an error status. The SCSI status codes are defined in the
/usr/sys/h/scsi_status. h file.

4.2.2.6 The act_chkcond_error Member

The act chkcond error member contains the check condition code returned
from the cgen ccb- chkcond routine, if the cam scsi status member of the
SCSI I/O CCBis equal to SCSI_STAT_CHECK_CONDITioN. The Check
Condition codes are defined in the /usr/sys/h/cam..;..generic. h file.

4.3 Generic 1/0 Routines
The generic routines described in this section handle open, close, read, write, and
other 110 requests from user processes. Table 4-1 lists the name of each routine and
gives a short description of its function. Descriptions of the routines with syntax
infonnation, in UL TRIX reference page format, are included in· alphabetical order in
Appendix C.

Table 4-1: Generic 1/0 Routines

Routine

cgen_close

4-4 USCA Generic Modules

Summary Description

called by the kernel when a user process requests an open of
the device
closes the device

Table 4-1: (continued)

Routine Summary Description

cgen_read
cgen_write
cgen_strategy
cgen_ioctl

handles synchronous read requests for user processes
handles synchronous write requests for user processes
handles all 110 requests for user processes
handles user process requests for specific actions other than
read, write, open, or close for SCSI tape devices

4.3.1 The cgen_open Routine
The cgen _open routine is called by the kernel when a user process requests an
open of the device. The cgen_open routine calls the ccmn_open_unit routine,
which manages the SMP _LOCKS and, if passed the exclusive use flag for SCSI
devices, makes sure that no other process has opened the device. If the
ccmn _ open _ uni t routine returns success, the necessary data structures are
allocated.

The cgen_open routine calls the ccmn_sasy _ccb_bld routine to register for
asynchronous event notification for the device. The cgen _ open routine then enters
a for loop based on the power-up time specified in the Device Descriptor Structure
for the device. Within the loop, calls are made to the cgen _ready routine, which
calls the ccmn tur routine to issue a TEST UNIT READY command to the device.

The cgen open routine calls the ccmn reI ccb routine to release the CCB.
The cgen =: open routine checks certain State fiags for the device to decide whether"
to send the initial SCSI mode select pages to the device. Depending on the setting of -:,
the state flags CGEN_ UNIT _A TTEN_STA TE and CGEN_RESET _STATE, the
cgen _open routine calls the cgen _open _ sel routine for each mode select page
to be sent to the device. The cgen open sel routine fills out the Generic Action
Structure based on the completion status of-the CCB for each mode select page it
sends.

4.3.2 The cgen_close Routine
The cgen_close routine closes the device. The routine checks any device flags
that are defined to see if action is required, such as rewind on close or release the
unit. The cgen _close closes the device by calling the ccmn _close _ uni t
routine.

4.3.3 The cgen_read Routine
The cgen_read routine handles synchronous read requests for user processes. It
passes the user process requests to the cgen_strategy routine. The cgen_read
routine calls the ccmn get bp routine to allocate a buf structure for the user
process read request. When the I/O is complete, the cgen_read routine calls the
ccmn_rel_bp routine to deallocate the buf structure.

USCA Generic Modules 4-5

4.3.4 The egen_ write Routine
The cgen _ wr i te routine handles synchronous write requests for user processes.
The routine passes the user process requests to the cgen_strategy routine. The
cgen write routine calls the comn get bp routine to allocate a buf structure
for the user process write request. When the I/O is complete, the cgen _ wr i te
routine calls the ccmn _ rel_bp routine to deallocate the buf structure.

4.3.5 The egen_strategy Routine
The qgen_strategy routine handles all I/O requests for user processes. It
performs specific checks, depending on whether the request is synchronous or
asynchronous and on the SCSI device type. The cgen_strategy routine calls the
ccmn io ccb bId routine to obtain an initialized SCSI I/O CCB and build either
a read-or a-writecommand based on the information contained in the buf structure.
The cgen_strategy routine then calls the ccmn_send_ccb to place the CCB
on the active queue and send it to the XPT layer.

4.3.6 The egen_toetl Routine
The cgen _ ioctl routine handles user process requests for specific actions other
than read, write, open, or close for SCSI tape devices. The routine currently issues a
DEVIOCGET ioctl command for the device, which fills out the devget structure
passed in, and then calls the cgen_mode_sns routine which issues a
SCSI_MODE_SENSE to the device to determine the device's state. The routine then
calls the comn reI ccb routine to release the CCB. When the call to
cgen_mode_sns Completes, the cgen_ioctl routine fills out the rest of the
devget structure based on information contained in the mode sense data.

4.4 Generic Internal Routines
The generic routines described in this section are examples that show one method of
handling errors, events, and conditions. SCSI/CAM peripheral device driver writers
must implement routines for handling errors, events, and conditions that are
compatible with the design and the functionality of the specific device. Table 4-2
lists the name of each routine and gives a short description of its function.
Descriptions of the routines with syntax information, in UL TRIX reference page
format, are included in alphabetical order in Appendix C.

Table 4-2: Generic Internal Routines

Routine

cgen_ccb_chkcond
cgen_done
cgen_iodone
cgen_async
cgen_minphys

cgen_slave
cgen_attach

4-6 USCA Generic Modules

Summary Description

decodes the autosense data for a device driver
the entry point for all nonread and nonwrite 110 callbacks
the entry point for all read and write 110 callbacks
handles notification of asynchronous events
compares the b_bcount with the maximum transfer limit
for the device
called at system boot to initialize the lower levels
called for each bus, target, and LUN after the cgen_slave
routine returns SUCCESS

4.4.1 The cgen_ccb_chkcond Routine
The cgen ccb chkcond routine decodes the autosense data for a device driver
and returns the appropriate status to the calling routine. The routine is called when a
SCSI 110 CCB is returned with a CAM status of CAM_REQ_CMP _ERR (request
completed with error) and a SCSI status of SCSI_STAT_CHECK_CONDITION. The
routine also sets the appropriate flags in the Generic-Specific Structure.

4.4.2 The cgen_done Routine
The cgen _done routine is the the entry point for all nonread and nonwrite 110
callbacks. The generic device driver uses two callback entry points, one for all
nonuser 110 requests and one for all user 110 requests. The SCSIICAM peripheral
device driver writer can declare multiple callback routines for each type of command
and can fill the CCB with the address of the appropriate callback routine.

This is a generic routine for all nonread and nonwrite SCSI 110 CCBs. The SCSI 110
CCB should not contain a pointer to a buf structure in the cam_req_map member
of the structure. If it does, then a wake-up call is issued on the address of the CCB
and the error is reported. If the SCSI 110 CCB does not contain a pointer to a bu f
structure in the cam_req_map member, then a wake-up call is issued on the address
of the CCB and the CCB is removed from the active queques. No CCB completion
status is checked because that is the responsibility of the routine that created the CCB
and is waiting for completion status. When this routine is entered, context is on the
interrupt stack and the driver cannot sleep waiting for an event.

4.4.3 The cgen_iodone Routine
The cgen_iodone routine is the entry point for all read and write 110 callbacks.
This is a generic routine for all read and write SCSI 110 CCBs. The SCSI 110 CCB
should contain a pointer to a buf structure in the cam_req_map member of the
structure. If it does not, then a wake-up call is issued on the address of the CCB and .
the error is reported. If the SCSI 110 CCB does contain a pointer to a buf structure
in the cam_req_map member, as it should, then the completion status is decoded.
Depending on the CCB' s completion status, the correct fields within the bu f
structure are filled out.

The device's active queues may need to be aborted because of errors or because the
device is a sequential access device and the transaction was an asynchronous request.

The CCB is removed from the active queques by a call to the ccmn _rem _ ccb
routine and is released back to the free CCB pool by a call to the ccmn _ rel_ ccb
routine. When the cgen iodone routine is entered, context is on the interrupt
stack and the driver cannot sleep waiting for an event.

4.4.4 The cgen_async Routine
The cgen_async routine handles notification of asynchronous events. The routine
is called when an Asynchronous Event Notification(AEN), Bus Device Reset (BDR),
or Bus Reset (BR) occurs. The routine sets the CGEN_RESET _STATE flag and
clears the CGEN_RESET_PEND_STATE flag for BDRs and bus resets. The routine
sets the CGEN_ UNIT _A TTEN_ST A TE flag for AEN s.

USCA Generic Modules 4-7

4.4.5 The egen_minphys Routine
The cgen_minphys routine compares the b_bcount with the maximum transfer
limit for the device. The routine compares the b_bcount field in the buf structure
with the maximum transfer limit for the device in the Device Descriptor Structure.
The count is adjusted if it is greater than the limit.

4.4.6 The egen_slave Routine
The cgen_slave routine is called at system boot to initialize the lower levels. The
routine also checks the bounds for the unit number to ensure it is within the allowed
range and sets the device-configured bit for the device at the specified bust target, and
LUN.

4.4.7 The egen_attach Routine
The cgen_attach routine is called for each bus, target, and LUN after the
cgen slave routine returns SUCCESS. The routine calls the ccmn open unit
routine, passing the bus, target, and LUN information. --

The cgen attach routine calls the ccmn close unit routine to close the
device. Ifa device of the specified type is found, the-device identification string is
printed. See the Guide to Writing and Porting VMEbus and TURBOchannel Device
Drivers for more information.

4.5 Generic Command Support Routines
The generic routines described in this section are SCSI/CAM command support
routines. Table 4-3 lists the name of each routine and gives a short description of its
function. Descriptions of the routines with syntax information, in UL TRIX reference
page fonnat, are included in alphabetical order in Appendix C.

Table 4-3: Generic Command Support Routines

Routine

cgen_ready

cgen_open_sel

cgen_mode_sns

Summary Description

issues a TEST UNIT READY connnand to the unit defined

issues a SCSI_MODE_SELECT command to the SCSI
device

issues a SCSI_MODE_SENSE connnand to the unit defined

4.5.1 The cgen_ready Routine
The cgen ready routine issues a TEST UNIT READY command to the unit
defined. The routine calls the ccmn tur routine to issue the TEST UNIT READY
command and sleeps waiting for cOnUnand status.

4-8 USCA Generic Modules

4.5.2 The cgen_open_sel Routine

The cgen open sel routine issues a SCSI_MODE_SELECT command to the
SCSI device. The-mode select data sent to the device is based on the data contained
in the Mode Select Table Structure for the device, if one is defined. The
CGEN_ACTION structure is filled in for the calling routine based on the completion
status of the CCB.

The cgen open sel routine calls the ccmn mode select routine to create a
SCSI I/O CCB and send it to the XPr for processing. -

4.5.3 The cgen_mode_sns Routine

The cgen mode sns routine issues a SCSI_MODE_SENSE command to the unit
defined. The CGEN_ACTION structure is filled in for the calling routine based on
the completion status of the CCB.

USCA Generic Modules 4-9

CAM Data Structures 5

Data structures are the mechanism used to pass infonnation between peripheral
device drivers and the CAM subsystem. This chapter describes the CAM data
structures used by peripheral device drivers.

Specifically t the chapter discusses the following:

• CAM Control Blocks (CCB)

• Input/Output (110) data structures

• Control CCB structures

• Configuration data structures

Other chapters reference these structures. You can read this chapter now to become
familiar with the structures t or you can refer to it when you encounter references to
the structures in other chapters.

5.1 CAM Control Blocks
The CAM Control Block (CCB) data structures let the device driver writer specify
the action to be perfonned by the XPT and SIM. The CCBs are allocated by calling
the xpt_ccb_alloc routine.

Table 5-1 contains the name of each CCB data structure and a brief description of its
purpose.

Table 5-1: CAM Control Blocks

CCB Name

CCB_SCSIIO
CCB_GETDEV
CCB_PATHINQ
CCB_RELSIM
CCB_SETASYNC
CCB_SETDEV
CCB_ABORT
CCB_RESETBUS
CCB_RESETDEV
CCB_TERMIO

Description

Requests SCSI 110
Gets device type
Sends a path inquiry
Releases SIM queue
Sets asynchronous callback
Sets device type
Aborts XPT request
Resets SCSI bus
Resets SCSI device
Tenninates 110 process request

All CCBs contain a CCB_HEADER structure. Peripheral device driver writers need
to understand the CCB HEADER data structure t which is discussed in the section that
follows. -

5.1.1 The CCB_HEADER Structure
SCSI/CAM peripheral device driver writers allocate a CCB structure by calling the
xpt_ccb_alloc routine. The CCB_HEADER structure is common to all CCBs
and is the first structure filled in. It contains the following members:

typedef struct ccb_header
{

struct ccb_header *my_addr; /*
u_short cam_ccb_len; /*
u_char cam_func_code; /*
u char cam_status; /*

u char cam_path_id;

The address of this CCB */
Length of the entire CCB */
XPT function code */
Returned CAM subsystem */
status */

u char cam_target_id;
u char cam_target_lun;
u_long cam_flags;

/*
/*
/*
/*
/*
/*

Path ID for the request */
Target device ID */
Target LUN number */
Flags for operation of */
the subsystem */

5.1.1.1 The my _addr and cam_ccb_len Members

The my _ addr member is set to a pointer to the virtual address of the starting
address of the CAM Control Block (CCB). It is automatically filled in by the
xpt_ccb_alloc routine.

The cam _ ccb _1 en member is set to the length in bytes of this specific CCB type.
This field is filled in by the ccmn _get _ ccb routine. The length includes the
my _addr and cam_ccb_len members.

5.1.1.2 The cam_func_code Member

The cam_func_code member lets device-driver writers specify the CCB type
XPT/SIM functions. Device-driver writers can set this member to one of the function
codes listed in Table 5-2.

Table 5-2: CAM Function Codes

Function Code

XPT_NOOP

XPT_SCSI_IO

XPT_PATH_INQ

XPT_REL_SIMQ

XPT_ASYNC_CB

5-2 CAM Data Structures

Meaning

Do not execute anything in the XPT/SIM.

Execute the requested SCSI 110. Specify the details of the
SCSI 110 by setting the appropriate members of the
CCB_SCSIIO structure.

Get the device type infonnation. Obtain this infonnation by
referencing the CCB_GETDEV structure.

Get the path inquiry infonnation. Obtain this infonnation by
referencing the CCB_PATHINQ structure.

Release the SIM queue that is frozen.

Set the asynchronous callback parameters. Obtain
asynchronous callback infonnation from the
CCB _ S ETASYNC structure.

Set the device type infonnation. Obtain the device type
infonnation from the CCB_SETDEV structure.

Table 5-2: (continued)

Function Code

XPT_RESET_BUS

XPT_RESET_DEV

XPT_TERM_IO

Meaning

Abort the specified CCB. Specify the abort to the CCB by
setting the appropriate member of the CCB _ABORT
structure.

Reset the SCSI bus.
Reset the SCSI device.
Tenninate the I/O process. Specify the CCB process to
tenninate by setting the appropriate member of the
CCB_TERMIO structure.

5.1.1.3 The cam_status Member

The cam status member is the action or event that occurred during this CAM
Control mock (CCB) request. The cam_status member is set by the XPT/SIM
after the specified function completes. A CAM_REQ_INPROG status indicates that
either the function is still executing or is still in the queue. The XPT/SIM can set this
member to one of the CAM status codes listed in Table 5-3

Table 5-3: CAM Status Codes

CAM Status Code

CAM_REO_INPROG

CAM_REO_CMP

CAM_REO_ABORTED

CAM_REO_UA_ABORT

CAM_REO_CMP_ERR

CAM_BUSY

CAM_REO_INVALID

CAM_PATH_INVALID

CAM_DEV_NOT_THERE

CAM_UA_TERMIO

CAM_SEL_TIMEOUT

CAM_CMD_TIMEOUT

CAM_MSG_REJECT_REC

CAM_SCSI_BUS_RESET

CAM_UNCOR_PARITY

CAM_AUTOSENSE_FAIL

CAM_NO_HBA

Meaning

A CCB request is in progress.

A CCB request completed without errors.
A CCB request was aborted by the host processor.
The SIM was not able to abort the specified CCB.
The specified CCB request completed with an error.

The CAM subsystem is busy. The CCB returns to the caller;
the request must be resubmitted.
The specified CCB request is not valid.
The path ID specified in the cam_path_id member of the
CCB_HEADER structure is not valid.
The specified SCSI device is not installed at this location.
The CAM subsystem was unable to tenninate the specified
CCB I/O request.
A target-selection timeout occurred.
A command timeout occurred.
A message rejection was received by the SIM.

The SCSI bus-reset was issued by the SIM or was seen on
the bus by the SIM.
An uncorrectable parity error occurred.
The autosense request-sense command failed.

No HBA was detected.

CAM Data Structures 5-3

Table 5-3: (continued)

CAM Status Code Meaning

CAM_DATA_RUN_ERR

CAM_UNEXP_BUSFREE

CAM_SEQUENCE_FAIL

CAM_CCB_LEN_ERR

A data overflow or underflow error occurred.
An unexpected bus free was detected.
A target bus phase-sequence failure occurred.
The CCB length specified in the cam_ccb_len member of
the CCB_HEADER structure is incorrect.

CAM_PROVIDE_FAIL

CAM_BDR_SENT

CAM_REQ_TERMIO

CAM_SIM_OFRZN

CAM_AUTOSNS_VALID

The requested capability could not be provided.
A SCSI BDR message was sent to the target.
The CCB request was tenninated by the host.
The SIM queue is frozen.
Autosense data is valid for target.

5.2 1/0 Data Structure
Peripheral device drivers make SCSI device action requests through the following
data structures:

• The CCB_SCSIIO structure

• The CDB _ UN structure

5.2.1 The CCB_SCSIIO Structure

A peripheral driver indicates to the XPTISIM that it wants to make a SCSI device
action request by setting the cam _ func _code member of the CCB _HEADER
structure to the constant XPT_SCSI_IO. The peripheral-driver writer then uses the
CCB_SCSIIO structure to specify the requests.

The CCB_SCSIIO structure contains the following members:
typedef struct
{

CCB HEADER cam_chi /* Header information fields */
u_char *cam_pdrv_ptri /* Ptr to the Peripheral driver */

/* working set */
CCB_HEADER *cam_next_ccbi /* Ptr to the next CCB for action */
u_char *cam_req_map; /* Ptr for mapping info on the Req. */
void (*cam_cbfcnp)(); /* Callback on completion function */
u_char *cam_data_ptr; /* Pointer to the data buf/SG list */
u_long cam_dxfer_len; /* Data xfer length */
u_char *cam_sense_ptr; /* Pointer to the sense data buffer */
u_char cam_sense_len; /* Num of bytes in the Autosense buf */
u_char cam_cdb_len; /* Number of bytes for the CDB */
u_short cam_sglist_cnt; /* Num of scatter/gather list entries */
u_long cam_osd_rsvdO; /* OSDReserved field, for alignment */
long cam_resid; /* Transfer residual length: 2's comp */
CDB_UN cam_cdb_io; /* Union for CDB bytes/pointer */
u_long cam_timeout; /* Timeout value */
u_char *cam_msg_ptr; /* Pointer to the message buffer */
u_short cam_msgb_len; /* Num of bytes in the message buf */
u_short cam_vu_flags; /* Vendor unique flags */
u_char cam_tag_action; /* What to do for tag queuing */

5-4 CAM Data Structures

u char cam iorsvdO[3]i /* Reserved field, for alignment */
u=char cam=sim_priv[SIM_PRIV]i /* SIM private data area */

CCB_SCSIIOi

5.2.2 The COB_UN Structure

The CDB_UN structure contains:

typedef union
{

u_char *cam_cdb_ptr; /* Pointer to the CDB bytes to send */
u_char cam_cdb_bytes[IOCDBLEN]; /* Area for the inline CDB to send */

CDB_UN;

5.3 Control CCB Structures
The control CCB structures allow the driver writer to specify such tasks as resetting
the SCSI bus, tenninating an 110 process request, and so forth. This section discusses
the following control structures:

• CCB_RELSIM

• CCB_SETASYNC

• CCB_ABORT

• CCB_RESETBUS

• CCB_RESETDEV

• CCB_TERMIO

These structures are discussed in the sections that follow.

5.3.1 The CCB_RELSIM Structure

Device-driver writers use the CCB RELSIM structure to release the SIM's internal
CCB queue. The CCB_RELSIM structure contains:

typedef struct
{

/* Header information fields */

5.3.2 The CCB_SETASYNC Structure

SCSI/CAM peripheral device driver writers use the CCB_SETASYNC structure to
set the asynchronous callback for notification of the following events when they
occur:

• Unsolicited SCSI BUS DEVICE RESET (BDR)

• Unsolicited RESELECTION

• SCSI AEN (asynchronous event notification enabled)

• Sent BDR to target

• SIM module loaded

CAM Data Structures 5-5

• SIM module unloaded

• New devices found

The CCB_SETASYNC structure is defined as follows:

typedef struct
{

u_long cam_async_flags;
void (*cam_async_func)();
u_char *pdrv_bufi

u_char pdrv_buf_len;
CCB_SETASYNC;

5.3.3 The CCB_ABORT Structure

/* Header information fields */
/* Event enables for Callback response */
/* Async Callback function address */
/* Buffer set aside by the */
/* peripheral driver */
/* The size of the buffer */

Device-driver writers use the CCB ABORT structure to abort a CCB that is on the
SIM queue. The CCB _ABORT struCture contains:

typedef struct
{

CCB HEADER cam_chi
CCB HEADER *cam_abort_ch;

CCB_ABORT;

/* Header information fields */
/* Pointer to the CCB to abort */

5.3.4 The CCB_RESETBUS Structure

Device-driver writers use the CCB RESETBUS structure to reset the SCSI bus. The
CCB_RESETBUS structure is defined as follows:

typedef struct
{

CCB HEADER cam_chi
CCB_RESETBUS;

/* Header information fields */

5.3.5 The CCB_RESETDEV Structure

Device-driver writers use the CCB_RESETDEV structure to reset a single SCSI
device. The CCB RESETDEV structure is defined as follows:

typedef struct
{

CCB HEADER cam_chi
CCB_RESETDEV;

/* Header information fields */

5.3.6 The CCB_TERMIO Structure
Device-driver writers use the CCB _ TERMIO structure to tenninate an I/O process
request. The CCB _ TERMIO structure is defined as follows:

typedef struct
{

CCB_HEADER *cam_termio_ch;
CCB_TERMIO;

5-6 CAM Data Structures

/* Header information fields */
/* Pointer to the CCB to terminate */

5.4 Configuration CCB Structures
The configuration CCB structures let the driver writer obtain infonnation such as the
device type, version number for the SIMlHBA, and vendor IDS. The following
configuration CCBs are described in this section:

• The CCB_GETDEV structure

• The CDB_SETDEV structure

• The CDB_PATHINQ structure

These structures are discussed in the following sections.

5.4.1 The CCB_GETDEV Structure

Device-driver writers use the CCB_GETDEV structure to obtain a device type and
inquiry infonnation. The CCB _ GETDEV structure is defined as follows:

typedef struct
{

CCB_HEAOER cam_chi
u_char cam_pd_typei
char *cam_inq_datai

CCB_GETOEVi

/* Header information fields */
/* Peripheral device type from the TLUN */
/* Ptr to the inquiry data space */

5.4.2 The CCB_SETDEV Structure

Device-driver writers use the CCB_SETDEV structure to set the device type. The
CCB SETDEV structure is defined as follows:

typedef struct
{

CCB HEADER cam_chi
u_char cam_dev_typei

CCB_SETDEVi

/* Header information fields */
/* Value for the dev type field in EDT */

5.4.3 The CCB_PATHINQ Structure
Device-driver writers use the CCB_PA THINQ structure to obtain SIM infonnation
such as supported features and version numbers. The CCB_PATHINQ structure is
defined as follows:

typedef struct
{

CCB_HEADER cam_chi
u_char cam_version_numi
u_char cam_hba_inquirYi
u_char cam_target_sprti
u_char cam_hba_misci
u_char cam_vuhba_flags[VUHBA]i
u_long cam_sim_privi
u_long cam_async_flagsi
u_char cam_hpath_idi
u_char cam_initiator_idi
char cam_sim_vid[SIM_ID]i
char cam_hba_vid[HBA_IO]i
u_char *cam_osd_usagei

CCB_PATHINQi

/* Header information fields */
/* Version number for the SIM/HBA */
/* Mimic of INQ byte 7 for the HBA */
/* Flags for target mode support */
/* Misc HBA feature flags */
/* Vendor unique capabilities */
/* Size of SIM private data area */
/* Event cap. for Async Callback */
/* Highest path 10 in the subsystem */
/* ID of the HBA on the SCSI bus */
/* Vendor 10 of the SIM */
/* Vendor 10 of the HBA */
/* Ptr for the OSO specific area */

CAM Data Structures 5-7

SCSI/CAM Configuration Driver Modules 6

This chapter describes the data structures and routines used by the Configuration
driver to interface with the CAM subsystem. It also describes the
/usr/sys/io/carn/carn_config. c file, which contains SCSI/CAM peripheral
device driver configuration information. SCSI/CAM peripheral device driver writers
add to this file external declarations and entries to the SCSI/CAM peripheral driver
configuration table for their peripheral device drivers.

6.1 Configuration Driver Introduction
The Configuration driver dynamically initializes the XPf and SIM layers of the
CAM subsystem, at run time. This enables support for a generic kernel that is
configured for all processors and all CAM subsystem software, for example, all HBA
drivers. After initialization is complete, the Configuration driver scans the SCSI bus
and stores INQUIRY information about each SCSI device detected.

Once the CAM subsystem is initialized and the scanning information stored, the
SCSI/CAM peripheral device drivers can use the subsystem. They can determine
what devices have been detected and allocate memory appropriately. They can also
request resources from the XPT layer using the XPT _ GDEV _TYPE and
XPT_SDEV _TYPE get and set device information CCBs.

The Configuration driver module logically exists in the SCSI/CAM peripheral device
driver layer above the XPT.

6.2 Configuration Driver XPT Interface
The Configuration driver is responsible for supporting the following XPT routines:

• GET DEVICE TYPE CCB

• SET DEVICE TYPE CCB

• SET ASYNCHRONOUS CALLBACK CCB

The Configuration driver also supports the configuration and bus scanning for loaded
SIM modules.

6.3 Configuration Driver Data Structures
This section describes the following Configuration driver data structures:

• CCFG_CTRL - The Configuration driver control structure

• EDT - The CAM equipment device table

• CAM_PERIPHERAL_DRIVER - The SCSI/CAM peripheral driver configuration
structure

6.3.1 The Configuration driver control structure
The Configuration driver control structure, CCFG_CfRL, contains flags used by the
Configuration driver for the scanning process. It also sets aside an area to contain the
data returned from the INQUIRY CCBs during the initial scanning process. The
structure is defined as follows:

typedef struct ccfg_ctrl
{

u_long ccfg_flags;
ALL_INQ_DATA inq_buf;
struct lock_t c_lk_ctrl;

CCFG_CTRL;

6.3.1.1 The ccfg_flag5 Member

/* controlling flags */
/* scratch area for the INQUIRY data */
/* for locking on the control struct */

The ccfg_flags member contains the flags used by the Configuration driver to
control operations. The possible settings are as follows:

• EDT _INSCAN - Which signals that an EDT scan is in progress

• INQ_INPROG - Which indicates that an INQUIRY CCB is in progress

6.3.1.2 The Inq_buf Member

The inq_ buf member sets aside a working or temporary area to hold the returned
data described in the standard INQUIRY structure, ALL_INQ_OATA, which is
defined in the file /usr/sys/h/scsi_all. h.

6.3.2 The CAM Equipment Device Table
The Configuration driver works with the XPT to allocate, initialize, and maintain the
CAM equipment device table structure, EDT. An EDT structure is allocated for each
SCSI bus. The structure is an 8x8-element array that contains device inquiry
information, asynchronous callback flags, and a signal flag if a device was found,
based on the number of targets and the number of LUN s on the SCSI bus. The
structure is defined as follows:

typedef struct edt
{

CAM_EDT_ENTRY edt[NDPS][NLPT];
u_long edt_flags;
u_long edt_scan_count;
struct lock_t c_lk_edt

} EDT;

6.3.2.1 The edt Member

/* a layer for targets/LUNs */
/* flags for EDT access */
/* # of XPT ASYNC CB readers */
/* for locking per bus */

The edt member is a structure of the type CAM_EDT_ENTRY, which is defined in
the /usr/sys/h/cam. h file. Each CAM_BOT_ENTRY structure is an entry in
the CAM equipment device table containing the SCSI 10 and LUN for each device
on the SCSI bus. The array dimensions are the number of devices per SCSI bus
(NOPS) and the number of LUNs per target (NLPT). The structure and constants are
defined in the /usr/sys/h/dec_cam. h file.

6-2 SCSI/CAM Configuration Driver Modules

6.3.2.2 The edt_scan_count Member

The edt_scan_count member contains the nwnber of processes reading the EDT
structure.

6.3.2.3 The edt_flags Member

The edt_flags member sets the flags for controlling access to the CAM
equipment device table.

6.3.3 The SCSI/CAM Peripheral Driver Configuration Structure
CAM_PERIPHERAL_DRIVER, the SCSI/CAM peripheral driver configuration
structure, contains the name of the device and defines the routines that are accessed
as part of the system configuration process. The structure is defined as follows:

typedef struct carn_peripheral_driver
{
char *cpd_narne;
int (*cpd_slave)();
int (*cpd_attach)();
int (*cpd_unload)();

CAM_PERIPHERAL_DRIVER;

6.3.3.1 The cpd_name Member

The cpd _name member is a pointer to the device name contained in the
ui devname member of the kernel data structure, uba device. See the Guide
to Writing and Porting VMEbus and TURBOchannel DeVice Drivers for more
information.

6.3.3.2 The cpd_slave Member

The cpd_slave member is a function pointer to the SCSI/CAM peripheral device
driver slave routine, which finds the device attached to the SCSI bus controller.

6.3.3.3 The cpd_attach Member

The cpd _ at ta ch member is a function pointer to the SCSI/CAM peripheral device
driver attach routine, which attaches the device to the controller and initializes the
driver fields for the device.

6.3.3.4 The cpd_unload Member

Not implemented.

6.4 The cam_config.c File
The Configuration driver file, /usr/sys/io/cam/cam_config. c, contains
SCSI/CAM peripheral device driver configuraton information. SCSI/CAM peripheral
device driver writers edit the file, as the superuser, to add extern declarations for
their hardware devices and to add entries for the devices to the SCSI/CAM peripheral
driver configuration table.

The section of the file where the extern declarations are added looks like the

SCSI/CAM Configuration Driver Modules 6-3

following:

extern int crzslave () , crzattach(); /* Disk Driver */
extern int ctzslave(), ctzattach(); /* Tape Driver */
extern int cczslave(), cczattach(); /* CD-ROM Driver */

/* VENDOR: Add the extern declarations for your hardware following this
comment line. */

A sample declaration for third-party SCSI/CAM peripheral device driver might be as
follows:

extern int toastslave(), toastattach(); /* Non-tape or -disk Driver */

The section of the file where the SCSI/CAM peripheral driver configuration table
entries are added looks like the following:

/*
* CAM Peripheral Driver Configuration Table.
*/

struct cam_peripheral_driver cam_peripheral_drivers[]
{ "crz", crzslave, crzattach },
{ "ctz", ctzslave, ctzattach },
{ "ccz", cczslave, cczattach }

/* VENDOR: Add your hardware entries following this comment line. */
} ;

When you add your entry, be sure to place a comma (,) after the last member in the
structure supplied by Digital. A sample entry for third-party hardware might be as
follows:

("ccz", cczslave, cczattach),

/* VENDOR: Add your hardware entries following this comment line. */
("wheat", toastslave, toastattach), /* Non-tape or -disk Driver */

} i

6.5 Configuration Driver Entry Point Routines
The following Configuration driver routines are entry point routines that are
accessible to the XPT and SIM modules as part of the Configuration driver interface.
Table 6-1 lists the name of each routine and gives a short description of its function.
The sections that follow contain a more detailed description of each routine.
Descriptions of the routines with syntax information, in UL TRIX reference page
format, are included in alphabetical order in Appendix C.

Table 6-1: Configuration Driver Entry Point Routines

Routine Summary Description

calls a SCSI/CAM peripheral driver's slave routine after a
match on the cpd name member of the
CAM_PERIPHERAL_DRIVER structure is found
calls a SCSI/CAM peripheral driver's attach routine after a
match on the cpd name member of the
CAM_PERIPHERAL_DRIVER structure is found

6-4 SCSI/CAM Configuration Driver Modules

Table 6-1: (continued)

Routine Summary Description

calls the internal routines that handle any CCB that accesses
the CAM equipment device table structure
issues SCSI INQUIRY commands to all possible SCSI
targets and LUNs attached to the buses

6.5.1 The ccfg_slave Routine
The ccfg_slave routine calls a SCSI/CAM peripheral driver's slave routine after a
match on the cpd name member of the CAM_PERIPHERAL_DRIVER structure is
found. The routine is called during autoconfiguration. The ccfg_slave routine
locates the configured driver in the SCSI/CAM peripheral driver configuration table.
If the driver is located successfully, the SCSI/CAM peripheral driver's slave routine
is called with a pointer to the unit information structure for the device from the
kernel uba device structure and the virtual address of its control and status
register (CSR). The SCSI/CAM peripheral driver's slave routine performs its own
slave initialization.

6.5.2 The ccfg_attach Routine

The ccfg_attach routine calls a SCSI/CAM peripheral driver's attach routine
after a match on the cpd _name member of the CAM_PERIPHERAL_DRIVER
structure is found. The routine is called during autoconfiguration. The
ccfg_attach routine locates the configured driver in the SCSI/CAM peripheral
driver configuration table. If the driver is located successfully, the SCSI/CAM
peripheral driver's attach routine is called with a pointer to the unit information
structure for the device from the kernel uba dev ice structure. The SCSI/CAM
peripheral driver's attach routine performs its own attach initialization.

6.5.3 The ccfg_action Routine

The ccfg_action routine calls the internal routines that handle any CCB that
accesses the CAM equipment device table structure. The CAM function codes
supported are XPT_GDEV _TYPE, XPT_SASYNC_CB, and XPT_SDEV _TYPE.

6.5.4 The ccfg_edtscan Routine
The ccfg_edtscan routine issues SCSI INQUIRY connnands to all possible SCSI
targets and LUNs attached to the buses. The routine uses the CAM subsystem in the
normal manner by sending SCSI I/O CCBs to the SIMs. The INQUIRY data
returned is stored in the EDT structures and the cam _ tl un _ found flag is set. This
routine can be called by the SCSI/CAM peripheral device drivers to reissue a full,
partial, or single bus scan command.

SCSI/CAM Configuration Driver Modules 6-5

CAM XPT 1/0 Support Routines 7

This chapter contains descriptions of the Transport (XPT) layer routines used by
SCSI/CAM device driver writers. Table 7-1 contains a list of the routines with a
short description of each. Following the table is a description of each routine.
Descriptions of the routines with syntax infonnation, in UL TRIX reference page
fonnat, are included in alphabetical order in Appendix C.

Table 7-1: XPT 1/0 Support Routines

Routine

xpt_action
xpt_ccb_alloc
xpt_ccb_free
xpt_init

Summary Description

calls the appropriate XPr/SIM routine
allocates a CAM Control Block (CCB)
frees a previously allocated CCB
validates the initialized state of the CAM subsystem

7.1 The xpt_action Routine
The xpt _action routine calls the appropriate XPT/SIM routine. The routine
routes the specified CCB to the appropriate SIM module or to the Configuration
driver, depending on the CCB type and on the path ID specified in the CCB.
Vendor-unique CCBs are also supported. Those CCBs are passed to the appropriate
SIM module according to the path ID specified in the CCB.

7.2 The xpt_ccb_alloc Routine
The xpt_ccb_alloc routine allocates a CAM Control Block (CCB) for use by a
SCSI/CAM peripheral device driver. The xpt_ccb_alloc routine returns a pointer
to a preallocated data buffer large enough to contain any CCB structure. The
peripheral device driver uses this structure for its XPT/SIM requests. The routine also
ensures that the SIM private data space and peripheral device driver pointer,
cam _pdrv _ptr, are set up.

7.3 The xpt_ccb_free Routine
The xpt_ccb_free routine frees a previously allocated CCB. The routine returns
a CCB, previously allocated by a peripheral device driver, to the CCB pool.

7.4 The xpt_init Routine
The xpt ini t routine validates the initialized state of the CAM subsystem. The
routine itlItializes all global and internal variables used by the CAM subsystem
through a call to the Configuration driver. Peripheral device drivers must call this
routine either during or prior to their own initialization. The xpt _ ini t routine
simply returns to the calling SCSI/CAM peripheral device driver if the CAM
subsystem was previously initialized.

7-2 CAM XPT 1/0 Support Routines

CAM 81M Modules 8

This chapter describes how the SIM layers handle asynchronous callbacks. It also
describes the following SIM routines:

• sim action

• sim init

Descriptions of the routines with syntax infonnation, in UL TRIX reference page
fonnat, are included in alphabetical order in Appendix C.

8.1 81M Asynchronous Callback Handling
This section describes how the SIM layers handle asynchronous callbacks from the
XPT to SCSI/CAM peripheral device drivers when an event such as a SCSI Bus
Device Reset (BDR) or an Asynchronous Event Notification (AEN) occurs.

Each SCSI/CAM peripheral device driver registers an asynchronous callback function
for each active SCSI device during driver initialization. The SCSI/CAM peripheral
device drivers use the ccmn_sasy _ccb_bld routine to create a SET
ASYNCHRONOUS CALLBACK CCB and send it to the XPT.

The async flags field of the CCB are set to 1 for those events of which the
SCSI/CAM peripheral device driver wants to be notified using the asynchronous
callback function. The possible async_flags settings are:

Flag Name Description

A new device was found during a rescan.

A previously loaded SIM driver has deregistered.

A loaded SIM driver has registered.

A bus device reset (BDR) message was sent to the
target.

A SCSI Asynchronous Event Notification has been
received.

An unsolicited reselection of the system by a device
on the bus has occurred.

A SCSI bus RESET occurred.

8.2 81M Routines Used by Device Driver Writers
This section describes the SIM routines device driver writers need to understand.

8.2.1 The sim_action Routine
The sim_action routine initiates an 110 request from a SCSIICAM peripheral
device driver. The routine is used by the XPT for immediate as well as for queued
operations. When the operation completes, the SIM calls back directly to the
peripheral driver using the CCB callback address, if callbacks are enabled and the
operation is not to be carried out immediately.

The SIM determines whether an operation is to be carried out immediately or to be
queued according to the function code of the CCB structure. All queued operations,
such as "Execute SCSI 110" (reads or writes), are placed by the SIM on a nexus­
specific queue and return with a CAM status of CAM_INPROG.

Some immediate operations, as described in the American National Standard for
Infonnation Systems, SCSI-2 Common Access Method: Transport and SCSI Interface
Module, working draft, X3T9.2/90-186, may not be executed immediately. However,
all CCBs to be carried out immediately return to the XPT layer immediately. For
example, the ABORT CCB command does not always complete synchronously with
its call; however, the CCB_ABORT is returned to the XPT immediately. An
XPT_RESET_BUS CCB returns to the XPT following the reset of the bus.

8.2.2 The sim_init Routine
The sim init routine initializes the SIM. The SIM clears all its queues and
releases ail allocated resources in response to this call. This routine is called using
the function address contained in the CAM_SIM_ENTRY structure. This routine can
be called at any time; the SIM layer must ensure that data integrity is maintained.

8-2 CAM SIM Modules

USCA Error Handling 9

This chapter describes the error-logging macros, data structures, and routines
provided by Digital for SCSI/CAM peripheral device driver writers.

9.1 CAM Error Handling Macro
Digital supplies an error~logging macro, CAM_ERROR, with the USCA software.
SCSI device driver writers can activate the macro by defining the constant
CAMERRLOG. Errors are reported using the same error-logging interface to each of
the modules within the CAM subsystem.

The macro is defined in the /usr/sys/io/cam/cam_errlog. h file as follows:.

#if defined(CAMERRLOG) && 1 defined (lint)
define CAM_ERROR(FUNC, MSGSTR, EFLAGS, ARG4, ARG5, ARG6) \

{ \
/* VARARGS */ \
(void) (*local_errlog) (FUNC, MSGSTR, EFLAGS, ARG4, ARG5, ARG6)i \

#else /* CAMERRLOG and not lint */
define CAM_ERROR(FUNC, MSGSTR, EFLAGS, ARG4, ARGS, ARG6) \

{ \
/* VARARGS */
printf("%s: %s\n", \

« (FUNC) 1= (char *)NULL) ? (FUNC) "CAM Subsystem"), \
«(MSGSTR) 1= (char *)NULL) ? (MSGSTR) "Unknown Error" »i\

#endif /* CAMERRLOG and not lint */
#endif /* _CAM_ERRLOG_ */

The arguments to the macro contain different types of information. The first two
arguments to the macro are strings containing the function name and the message
string that is sent to the error logger from the function. If the CAMERRLOG macro
is undefined, the message string is reported to the console. The third argument
contains error flags for the local error handler. The remaining arguments are local
parameters defined by the writer of the error-logging routine~

The CAM_ERROR macro presents a consistant error-logging interface to the
modules within the CAM subsystem. Using the macro lets all the routines within
each module that need to report and log error information use the same macro call
and arguments. Using this macro also keeps each reported error string with the code
within the module that originally reported the error.

Individual modules contain their own module-specific error-logging routines. Each
source file contains a declaration of the pointer to the local error-logging routine as

follows:

static void (*local_errorlog)();

The macro calls the local error-logging routine through the local pointer. The pointer
is loaded with the local error-handler address, either within the initiailization code for
that module or as part of the initialized data. The following example shows the
address of the sx_ errorlog function being loaded to the local error-logging
variable,local_errlog:

extern void sx_errorlog();
static void (*local_errlog)() = sx_errorlog;

SCSI/CAM peripheral common modules can declare the local pointer to contain the
error handler from another SCSI/CAM peripheral common module.

9.2 CAM Error Logging Structures
This section describes the following CAM error-logging data structures:

• CAM_ERR_ENTRY, the Error Entry Structure

• CAM_ERR_HDR, the Error Header Structure

The structures are defined in the /usr/sys/h/cam_logger. h file.

9.2.1 The Error Entry Structure
The Error Entry Structure, CAM_ERR_ENTRY, describes an entry in the error log
packet. There can be multiple entries in an error log packet. The structure is defined
as follows:

typedef struct cam_err_entry
u_longent_type;
u_long ent_size;
u_longent_total_size;
u_long ent_ vers;
u_char*ent_data;
u_long ent_pri;

}CAM_ERR_ENTRY;

9.2.1.1 The ent_type Member

/* string, TAPE_SPECIFIC, CCB, etc */
/* Size of the data (eCB, TAPE_SPEC)*/
/* To preserve alignment (uerf) */
/* Version number of type */
/* Pointer to whatever string, etc */
/* FULL or Brief uerf output */

The en t _ type member contains the type of data in the entry, which can be a string,
a structure, or a CCB. Numerous types of strings are defined in the
/usr/sys/h/cam_logger. h file. CCBs are assigned to one of the XPT
function codes listed in the /usr/sys/h/cam. h file.

9.2.1.2 The ent_slze Member

The en t _ s i z e member contains the size, in bytes, of the data in the entry.

9.2.1.3 The ent_total_slze Member

The ent_ total_size member preserves long-word alignment for compatibility
with the uerf error-reporting utility. The cam_logger routine fills in this
member. See the Guide to the Error Logger for infonnation about the uerf utility.

9-2 USCA Error Handling

9.2.1.4 The ent_ vers Member

The ent vers member is the version nwnber of the contents of the ent type
member.-See the #define PDRV DEVICE VERS line in the -
/usr/sys/h/pdrv. h file for an example of associating a version nwnber with a
structure.

9.2.1.5 The ent_ data Member

The ent_data member contains a pointer to the contents of the ent_type
member.

9.2.1.6 The ent_prl Member

The en t _pr i member contains the output from the uer futility, which can be in
brief or full report fonnat. See the Guide to the Error Logger for infonnation about
the uerf utility.

9.2.2 The Error Header Structure
The Error Header Structure, CAM_ERR_HDR, contains all the data needed by the
uerf utility to detennine that the packet is a CAM error log packet. See the Guide
to the Error Logger for infonnation about the uerf utility. The structure is defined
as follows:
typedef struct cam_err_hdr

u_short hdr_type;
u_long hdr_size;
u_char hdr_class;

/* Packet type - CAM_ERR_PKT */
/* Filled in by cam_logger */
/* Sub system class Tape, disk,

* sii_dme , etc ..
*/

* Mostly for controller type
* But the current errloger uses
* disk tape etc if no controller
* is known .. So what we will do
* is dup the disk and tape types
* in the lower number 0 - If and
* the controllers asc sii 5380
* etc can use the uppers.
*/

u_long hdr_entries; /* Number of error entries in list*/
CAM_ERR_ENTRY *hdr_list; /* Pointer to list of error entries*/
u_long hdr_pri; /* Error logger priority. */

}CAM_ERR_HDR;

9.2.2.1 The hdr _type Member

The hdr _type member contains the error-packet type, which must be
CAM_ERR_PKT.

9.2.2.2 The hdr_slze Member

The hdr_size member is filled in by the cam_logger routine.

USCA Error Handling 9-3

9.2.2.3 The hdr_class Member

The hdr class member identifies the CAM module that detected the error and
assigns itto one of the Defined Device Types listed in the
/usr/sys/h/scsi all. h file. The device classes are defined in the
/usr/sys/h/cam_logger. h file.

9.2.2.4 The hdr_subsystem Member

The hdr_subsystem member identifies the CAM subsystem controller that
detected the error and assigns it to one of the Defined Device Types listed in the
/usr/sys/h/scsi all. h file. The device classes are defined in the
/usr/sys/h/cam_logger. h file.

9.2.2.5 The hdr _entries Member

The hdr entries member contains the number of entries in the header list.

9.2.2.6 The hdr _list Member

The hdr _1 i st member contains a pointer to a list of error entries.

9.2.2.7 The hdr _prl Member

The hdr _pr i member identifies the priority of the error and assigns it to one of the
priorities listed in the /usr/sys/io/cam/errlog . h file.

9.3 The cam_logger Routine
The cam_logger routine allocates a system error log buffer and fills in a uerf
error log packet. The routine fills in the busJ targetJ and LUN infonnation from the
Error Header Structure passed to it and copies the Error Header Structure and the
Error Entry Structures and data to the error log buffer.

9-4 USCA Error Handling

USCA Debugging Facilities 10

This chapter describes the debugging macros and routines provided by Digital for
SCSI/CAM peripheral device driver writers.

10.1 CAM Debugging Variables
There are two levels of debugging within the CAM modules: debugging independent
of a bus, target, or LUN, and debugging that tracks a specific bus, target, or LUN.
USCA debugging is turned on by defining the program constant CAMDEBUG in the
/usr/sys/io/cam/cam_debug. h file and recompiling the source files.

This section describes the variables that contain the information for each level of
debugging the CAM subsystem. The variables are:

• camdbg_flag - Which turns on specific cprintf calls within the kernel,
depending on its setting, to capture information independent of a particular SCSI
ID.

• camdbg_id - Which contains the specific bus, target, and LUN information for
tracking.

The macros, PRINTD and CALLD, use the variables for tracking target-specific
messages and for allowing specific subsets of the DEBUG statements to be printed.
The macros are defined in the /usr/sys/io/cam/cam_debug. h file.

10.1.1 The camdbg_flag Variable

The most significant bit, bit 31, of the camdbg_flag variable is the bit that
indicates whether the target information is valid. If set, it indicates that the
camdbg_id variable contains valid bus, target, and LUN information for the device
to be tracked. Bits 30 to 0 define the debug flag setting. The possible settings, in
ascending hexadecimal order, with a brief description of each, follow:

Flag Name

CAMD_INOUT

CAMD_FLOW

CAMD_PHASE

CAMD_SM

CAMD_ERRORS

CAMD_CMD_EXP

CAMD_IO_MAPPING

CAMD_DMA_FLOW

CAMD_DISCONNECT

Description

Routine entry and exit

Code flow through the modules

SCSI phase values

State machine settings

Error handling

Expansion of commands and responses

DME I/O mapping for user space

DME Dynamic Memory Allocation flow

Signal disconnect handling

Flag Name

CAMD_TAGS

CAMD_POOL

CAMD_AUTOS

CAMD_CCBALLOC

CAMD_MSGOUT

CAMD_MSGIN

CAMD_STATUS

CAMD_CONFIG

CAMD_SCHED

CAMD_SIMQ

CAMD_TAPE

CAMD_COMMON

CAMD_DISK

CAMD_DISK_REC

CAMD_DBBR

CAMD_CDROM

CAMD_INTERRUPT

TVALID

Description

Tag queuing code

XPT tracking in the DEC CAM packet pool

Autosense handling

CCB allocation and free flow

Messages going out

Messages coming in

SCSI status bytes

CAM configuration paths

SIM scheduler points

SIM queue manipulation

SCSI/CAM peripheral tape flow

SCSI/CAM peripheral conunon flow

SCSI/CAM peripheral disk flow

SCSI/CAM peripheral disk recovery flow

SCSI/CAM peripheral disk Dynamic Bad Block
Recovery flow

SCSI/CAM peripheral CDROM functions

SIM trace Interrupts

The bus, target, and LUN bits are valid in the
camdbgjd variable

10.1.2 The camdbg_id Variable
The camdbg_ id variable contains the bus, target, and LUN (B/TIL) infonnation for
a specific target to track for debugging infonnation. In the current implementation,
the bits are divided into three parts, with the remainder reserved. The bits are
allocated as follows: bits 31 to 16, Reserved; bits 15 to 8, Bus number; bits 7 to 4,
Target number; and bits 3 to 0, LUN number. Multiples of four bits are used to
assign hexadecimal values into the camdbg_id variable.

10.2 CAM Debugging Macros
The PRINTD and CALLD macros track target-specific messages and allow specific
subsets of the debugging statements to be printed.

This PRINTD macro, which prints debugging infonnation if CAMDEBUG is
defined, follows.

/*
* Conditionally Print Debug Information.
*/

#if defined(CAMDEBUG) && Idefined(lint)
define PRINTD(B, T, L, F, X)

{ \ Bl
/* NOSTRICT */ \
if(camdbg_flag & (int)F) \ i
{ \

10-2 USCA Debugging Facilities

} \

if(«camdbg flag & TVALID) CK 0) I I \ ~
«(Camdbg_flag & TVALID) 1= 0) && \ ~

{ \

««camdbg_id & BMASK) » BSHIFT) == B) II (B == NOBTL» && \ ~
««camdbg_id & TMASK) »TSHIFT) == T) II (T == NOBTL» && \
(« (camdbg_id & LMASK) » LSHIFT) == L) II (L == NOBTL»)) \

/* VARARGS */ \
(void)(*cdbg_printf) X ; \
} \

#endif /* 1 defined (lint)

ffI The Bt Tt and L arguments are for target-specific tracking. The F argument is a
flag for tracking specific subsets of the printf statements. The F flag argument
is compared with the camdbg_flag variable to detennine if the user wants to
see the message. The X argument must be a complete printf argument set
enclosed within parenthesest ()t to allow the preprocessor to include it in the final
printf statement.

121 This statement checks to see if any of the flags for the PRINTD macro are turned
on. It does not look for an exact match so that the same PRINTD macro can be
used for different settings of the flags in camdbg_flag.

131 This section of code checks for any target information available for tracing a
target. The first condition checks to see if the target valid bit is not set. If it is
nott the OR condition is met and the call to the printf utility is made.

IjJ If the TV ALID bit is sett the bUSt targett and LUN fields in the camdbg_ id
variable must be compared to the Bt Tt and L arguments. If TV ALID is true and
bus equals B, target equals T, and LUN equals L, then also print.

I6J This construct checks the B, Tt and L fields. For example, the following
statement checks the B field:

««camdbg_id & BMASK) » BSHIFT) == B) I I (B == NOBTL»

The statement masks out the other fields and shifts the bus value down to allow
comparision with the B argument. The arguments can also have a "wildcard"
value, NOBTL. When the wildcard value is used, the B or T or L comparision is
always true.

The CALLD macro uses the same if statement constructs to conditionally call a
debugging function using the following def ine statement:

define CALLD(B, T, L, F, X)

10.3 CAM Debugging Routines
The SCSI/CAM peripheral device debugging routines can be allocated into categories
as follows:

• Routines that generate reports on CAM functions and status in either a brief form
listing the name as it is defined in the applicable header filet or in the form of a
sentence. The following routines are in this category:

- cdbg_CamFunction

- cdbg_CamStatus

USCA Debugging Facilities 10-3

- cdbg_ScsiStatus

- cdbg_SystemSta tus

• Routines that dump the contents of CCBs, SCSI/CAM Peripheral Device Driver
Working Set Structures, and other SCSI/CAM commands for examination. The
following routines are in this category:

- cdbg_ DumpCCBHeader

- cdbg_DumpCCBHeaderFlags

- cdbg_DumpSCSIIO

- cdbg_DumpPDRVws

- cdbg_DumpABORT

- cdbg_DumpTERMIO

- cdbg_DumpBuffer

- cdbg_GetDeviceName

- cdbg_DumplnquiryData

Descriptions of the routines with syntax infonnation, in UL TRIX reference page
fonnat, are included in alphabetical order in Appendix C.

10.3.1 CAM Debugging Status Routines

This section describes the SCSI/CAM peripheral device debugging routines that
report status. Table 10-1 lists the name of each routine and gives a summary
description of its function. The sections that follow contain a more detailed
description of each routine.

Table 10-1: CAM Debugging Status ,Routines

Routine

cdbg_CamFunction
cdbg_CamStatus
cdbg_ScsiStatus
cdbg_SystemStatus

Summary Description

reports CAM XPT function codes
decodes CAM CCB status codes
reports SCSI status codes
reports system error codes

10.3.1.1 The cdbg_CamFunctlon Routine

The cdbg_ CamFunction routine reports CAM XPf function codes. Program
constants are defined to allow either the function code name only or a brief
explanation to be printed. The XPT function codes are defined in the
/usr/sys/h/cam. h file.

10.3.1.2 The cdbg_ CamStatus Routine

The cdbg CamStatus routine decodes CAM CCB status codes. Program
constants are defined to allow either the status code name only or a brief explanation
to be printed. The CAM status codes are defined in the /usr/sys/h/cam. h file.

10-4 USCA Debugging Facilities

10.3.1.3 The cdbg_ScslStatus Routine

The cdbg_ScsiStatus routine reports SCSI status codes. Program constants are
defined to allow either the status code name only or a brief explanation to be printed.
The SCSI status codes are defined in the /usr/sys/h/scsi_status. h file.

10.3.1.4 The cdbg_SystemStatus Routine

The cdbg_SystemStatus routine reports system error codes. The system error codes
are defined in the /usr/sys/h/errno. h file.

10.3.2 CAM Dump Routines
This section describes the SCSI/CAM peripheral device debugging routines that
dump contents for examination. Table 10-2 lists the name of each routine and gives
a summary description of its function. The sections that follow contain a more
detailed description of each routine.

Table 10-2: CAM Dump Routines

Routine

cdbg_DumpCCBHeader

cdbg_DumpCCBHeaderFlags

cdbg_DumpSCSIIO
cdbg_Dump PD RVws

cdbg_DumpABORT
cdbg_DumpTERMIO
cdbg_DumpBuffer

cdbg_GetDeviceName

cdbg_DumplnquiryData

Summary Description

dumps the contents of a CAM Control Block (CCB)
header structure
dumps the contents of the cam_flags member of
a CAM Control Block (CCB) header structure
dumps the contents of a SCSI I/O CCB
dumps the contents of a SCSI/CAM Peripheral
Device Driver Working Set Structure
dumps the contents of an ABORT CCB
dumps the contents of a TERMINATE I/O CCB
dumps the contents of a data buffer in hexadecimal
bytes
returns a pointer to a character string describing the
dtype member of an ALL_INQ.DATA structure
dumps the contents of an ALL_INQ.DATA
structure

10.3.2.1 The cdbg_DumpCCBHeader Routine

The cdbg_DumpcCBHeader routine dumps the contents of a CAM Control Block
(CCB) header structure. The CAM Control Block (CCB) header structure is defined
in the /usr/sys/h/cam. h file.

10.3.2.2 The cdbg_DumpCCBHeaderFlags Routine

The cdbg_DumpCCBHeaderFlags routine dumps the contents of the
cam flags member of a CAM Control Block (CCB) header structure. The CAM
Control Block (CCB) header structure is defined in the /usr/sys/h/cam. h file.

USCA Debugging Facilities 10-5

10.3.2.3 The cdbg_DumpSCSIlO Routine

The cdbg_DumpSCSIIO routine dumps the contents of a SCSI I/O CCB. The
SCSI I/O CCB is defined in the /usr/sys/h/cam. h file.

10.3.2.4 The cdbg_DumpPDRVws Routine

The cdbg_DumpPDRVws routine dumps the contents of a SCSI/CAM Peripheral
Device Driver Working Set Structure. The SCSI/CAM Peripheral Device Driver
Working Set Structure is defined in the /usr/sys/h/pdrv. h file.

10.3.2.5 The cdbg_DumpABORT Routine

The cdbg_ DumpABORT routine dumps the contents of an ABORT CCB. The
ABORT CCB is defined in the /usr/sys/h/cam. h file.

10.3.2.6 The cdbg_DumpTERMIO Routine

The cdbg_DumpTERMIO routine dumps the contents of a TERMINATE I/O CCB.
The TERMINATE I/O CCB is defined in the /usr/sys/h/cam. h file.

10.3.2.7 The cdbg_DumpBuffer Routine

The cdbg_DumpBuffer routine dumps the contents of a data buffer in
hexadecimal bytes. The calling routine must display a header line. The fonnat of the
dump is 16 bytes per line.

10.3.2.8 The cdbg_ GetDevlceName Routine

The cdbg_GetDeviceName routine returns a pointer to a character string
describing the d type member of an ALL_INQ_DA T A structure. The
ALL_INQ_DATA structure is defined in the /usr/sys/h/scsi_all. h file.

10.3.2.9 The cdbg_DumplnqulryData Routine

The cdbg DumplnquiryData routine dumps the contents of an
ALL_INQ=DA T A structure. The ALL_INQ_DAT A structure is defined in the
/usr/sys/h/scsi_all. h file.

10-6 USCA Debugging Facilities

Programmer-Defined SCSI/CAM Device
Drivers 11

This chapter describes how programmers can write their own device drivers for
SCSI/CAM peripheral devices using a combination of common data structures and
routines provided by Digital and programmer-defined routines and data structures.
This chapter describes only the programmer-defined data structures and routines. See
Chapter 3 for a description of the common data structures and routines.

The chapter also describes how to add a programmer-defined device driver to the
USCA system.

11.1 Programmer-Defined SCSI/CAM Data Structures
This section describes the SCSI/CAM peripheral data structures programmers must
use if they write their own device drivers. The following data structures are
described:

• PDRV _UNIT_ELEM - The Peripheral Device Unit Table

• PDRV _DEVICE - The Peripheral Device Structure

• DEV _DESC - The Device Descriptor Structure

• DENSITY_TBL - The Density Table Structure

• MODESEL_ TBL - The Mode Select Table Structure

11.1.1 Programmer-Defined Peripheral Device Unit Table

The Peripheral Device Unit Table is an array of SCSI/CAM peripheral device unit
elements. The size of the array is the maximum number of possible devices, which
is detennined by the maximum number of SCSI controllers allowed for the system.
The structure is allocated statically and is defined as follows:

typedef struct pdrv_unit_elem {
PDRV_DEVICE *pu_device; /* Pointer to peripheral device structure */
u_short pu_opens; /* Total number of opens against unit */
u_short pu_configi /* Indicates whether the device type */

/* configured at this address */
u_char pu_typei /* Device type - byte 0 from inquiry data */

PDRV_UNIT_ELEMi

11.1.1.1 The pu_devlce Member

The pu_device field is filled in with a pointer to a CAM-allocated peripheral SCSI
device (PDRV _DEVICE) structure when the first call to the ccmn open unit
routine is issued for a SCSI device that exists. --

11.1.1.2 The pu_ opens Member

The total number of opens against the unit.

11.1.1.3 The pu_conflg Member

Indicates whether a device of the specified type is configured at this bus/targetlLUN.

11.1.1.4 The pu_type Member

The device type from byte 0 (zero) of the Inquiry data.

11.1.2 Programmer-Defined Peripheral Device Structure
A SCSI/CAM peripheral device structure, PDRV _DEVICE, is allocated for each
SCSI device that exists in the system. The PDRV _DEVICE structure is defined as
follows:

typedef struct pdrv_device {
PD_LIST pd_active_list; /* Forward active pointer of CCBs */

/* which have been sent to the XPT */
u_long pd_active_ccb; /* Number of active CCBs on queue */
u_long pd_que_depth; /* Tagged queue depth - indicates the */

/* maximum number of commands the unit */

u_long
dev_t
u_char
u_char
u_char
u_char
u_long
u_long
u short
u_short
u_long
u_char

u_long

DEV_DESC
caddr_t
u short
caddr_t

/* can store internally */
/* Forward active pointer of pending CCBs */
/* which have not been sent to the XPT due */
/* to a full queue for tagged requests */

pd_pend_ccb; /* Number of pending CCBs */
pd dev; /* CAM major/minor number */
pd_bus; /* SCSI controller number */
pd_target; /* SCSI target id */
pd lun; /* SCSI target lun */
pd unit; /* unit number */
pd_soft_err; /* Number of soft errors */
pd hard err; /* Number of hard errors */
pd_soft_err_limit;/* Max no. of soft errors to report */
pd_hard_err_Iimit;/* Max no. of hard errors to report */
pd_flags; /* Specific to peripheral drivers */
pd_state; /* Specific to peripheral drivers - can */

/* be used for recovery */
/* Specific to peripheral drivers - can */
/* be used for recovery */
/* Used to hold the default settings */
/* for the cam_flags field in CCBs */

pd_tag_action; /* Used to hold the default settings for */
/* the cam_tag_action field of the SCSI */
/* I/O CCB */

pd_dev_inq[INQLEN];

pd_ms_ index;

*pd_dev_desc;
pd_specific;
pd_spec_size;
pd_sense_ptr;

/* Inquiry data obtained from GET */
/* DEVICE TYPE CCB */
/* contains the current index into the
/* Mode Select Table when sending Mode
/* Select data on first open */
/* Pointer to our device descriptor */
/* Pointer to device specific info */
/* Size of device specific info */
/* Pointer to the last sense data */

*/
*/

/* bytes retrieved from device */
u_short pd_sense_len; /* Length of last sense data */
void (*pd_recov_hand)();

/* Specific to peripheral drivers - can */

11-2 Programmer-Defined SCSI/CAM Device Drivers

/* be used to point to the recovery */
/* handler for the device */

u_Iong pd_read_count; /* Number of reads to device */
u_long pd_write_count; /* Number of writes to device */
u_long pd_read_bytes; /* Number of bytes read from device */
u_long pd_write_bytes; /* Number of bytes written to device */
struct lock_t pd lk device;

/* SMP lock for the device */
PDRV_DEVICE

11.1.2.1 The pd_8ctlve_lIst Member

A pointer to the first CCB on the active queue.

11.1.2.2 The pd_8ctlve_ccb Member

The number of CCBs on the active queue.

11.1.2.3 The pd_que_depth Member

The depth of the tagged queue, which is the maximum number of commands that the
peripheral driver will send to the SCSI device.

11.1.2.4 The pd_pend_lIst Member

A pointer to the first CCB on the pending queue.

11.1.2.5 The pd_pend_ccb Member

The number of CCBs on the pending queue.

11.1.2.6 The pd_dev Member

The major/minor device number pair that identifies the bus number, target ID, and
LUN associated with this SCSI device.

11.1.2.7 The pd_bus Member

SCSI target's bus controller number.

11.1.2.8 The pd_ target Member

SCSI target's ID number.

11.1.2.9 The pd_lun Member

SCSI target's logical unit number.

11.1.2.10 The pd_unlt Member

SCSI device's unit number.

Programmer-Defined SCSI/CAM Device Drivers 11-3

11.1.2.11 The pd_flags and pd_state Members

These are specific to SCSI/CAM peripheral device drivers. They can be used for
recovery.

11.1.2.12 The pd_abort_cnt Member

This is specific to SCSI/CAM peripheral device drivers. It can be used for recovery.

11.1.2.13 The pd_cam_flags Member

This contains the default settings for the cam_flags field in the CAM Control
Block (CCB) header structure. The flags are defined in the /usr/sys/h/cam. h
file.

11.1.2.14 The pd_ta9_actlon Member

This contains the default settings for the HBAISIM queue actions field,
cam_tag_action, in the SCSI I/O CCB structure. The queue actions are defined
in the /usr/sys/h/cam. h file.

11.1.2.15 The pd_dev_lnq Member

This is inquiry data.

11.1.2.16 The pd_ms_lndex Member

The current index into the Mode Select Table that is pointed to in the Device
Descriptor Structure.

11.1.2.17 The pd_dev_desc Member

A pointer to the DEV _DESC structure for the SCSI device.

11.1.2.18 The pd_speclflc Member

A pointer to a device-specific structure filled in by the ccmn _open _ uni t routine.

11.1.2.19 The pd_spec_slze Member

The size of the device-specific infonnation.

11.1.2.20 The pd_sense_ptr Member

A pointer to the last sense data bytes retrieved from the device.

11.1.2.21 The pd_sense_len Member

The length, in bytes, of the last sense data retrieved from the device.

11.1.2.22 The pd_recov _hand Member

This is specific to SCSI/CAM peripheral device drivers. It can be used to point to
the recovery handler for the device.

11-4 Programmer-Defined SCSI/CAM Device Drivers

11.1.2.23 The pd_read_count Member

Number of read operations from device. Used for performance statistics.

11.1.2.24 The pd_wrlte_count Member

Number of write operations to device. Used for performance statistics.

11.1.2.25 The pd_read_bytes Member

Total number of bytes read from device. Used for performance statistics.

11.1.2.26 The pd_wrlte_bytes Member

Total number of bytes written to device. Used for performance statistics.

11.1.2.27 The pd_lk_devlce Member

The lock structure.

11.1.3 Programmer-Defined Device Descriptor Structure
A Device Descriptor Structure entry, DEV _DESC, must be added to the
cam_devdesc_tab for each programmer-defined SCSI device that exists in the
system. The file /usr/sys/data/cam_data. c contains examples of entries
supplied by Digital. The DEV _DESC structure is defined as follows:

typedef struct dev_desc {
u_char dd_pv_name[IDSTRING_SIZE]i

/* Product ID and vendor string from */
/* Inquiry data */

u char dd_lengthi /* Length of dd_pv_name string */
u_char dd_dev_name[DEV_NAME_SIZE]i

/* Device name string - see defines */
/* in devio.h */

u_long dd_device_typei /* Bits 0 - 23 contain the device */
/* class, bits 24-31 contain the */
/* SCSI device type */

struct pt_info *dd_def_partitioni
/* Default partition sizes - disks */

u_long dd_block_sizei /* Block/sector size */
u_long dd_max_recordi /* Maximun transfer size in bytes */

/* allowed for the device */
DENSITY_TBL *dd_density_tbli

/* Pointer to density table - tapes */
MODESEL_TBL *dd_modesel_tbli

/* Mode select table pointer - used */
/* on open and recovery */

u_long dd_flagsi /* Option flags (bbr, etc) */
u_long dd_scsi_optcmdsi/* Optional commands supported */
u_long dd_ready_timei /* Time in seconds for powerup dev ready */
u_short dd_que_depthi /* Device queue depth for devices */

/* which support command queueing */
u_char dd_valid; /* Indicates which data length */

/* fields are valid */
u_char dd_inq_len; /* Inquiry data length for device */
u_char dd_req_sense_len;

/* Request sense data length for */
/* this device */

Programmer-Defined SCSI/CAM Device Drivers 11-5

11.1.3.1 The dd_pv _name Member

The product ID and vendor returned string identifying the drive obtained from the
Inquiry data. The product ID makes up the first eight characters of the string. The
IDSTRING_SIZE constant is defined in the /usr/sys/h/pdrv. h file.

11.1.3.2 The dd_length Member

This specifies the length of the dd_pv _name string. The match is made on the total
string returned by the unit.

11.1.3.3 The dd_dev _name Member

The ULTRIX device name string, which is defined in the /usr/sys/h/devio. h
file. A generic name of DEV _RZxx should be used for non-Digital disk devices.
The following generic names are provided for tapes: DEV _TZQIC, for 1I4-inch .
cartridge tape units; DEV _ TZ9TK for 9-track tape units; DEV _ TZ8MM, for 8-
millimeter tape units; DEV _TZRDAT, for RDAT tape units; DEV _TZ3480, for IBM
3480-compatible tape units; and DEV _ TZxx, for tape units that do not fit into any of
the predefined generic categories.

11.1.3.4 The dd_devlce_type Member

Bits 24-31 contain the SCSI device class, for example, ALL_DTYPE_DIRECf,
which is defined in the /usr/sys/h/scsi_all. h file. The bits 0-23 contain the
device subclass, for example, SZ_HARD_DISK, which is defined in the
/usr/sys/h/pdrv. h file.

11.1.3.5 The dd_def_partltlon Member

A pointer to the default partition sizes for disks, which are defined in the
/usr/sys/data/cam_data. c file. Tape devices should define this as
sz_null_sizes. Disk devices may use sz_rzxx_sizes, which assumes that
the disk has at least 48 Mbytes. The sz_rzxx_sizes should not be modified. If
you want to create your own partition table, make an entry for your device in the
device descriptor table in the /usr/sys/data/cam_data. c file.

11.1.3.6 The dd_block_slze Member

The block or sector size of the unit, in bytes, for disks and CDROMs. You can
obtain the correct number of bytes from the documentation for your device.

11.1.3.7 The dd_max_record Member

The maximwn number of bytes that can be transferred in one request for raw 110.
Errors result if your system does not have enough physical memory or if the unit
cannot handle the size of transfer specified.

11.1.3.8 The dd_denslty_tbl Member

A pointer to the Density Table Structure entry for a tape device.

11-6 Programmer-Defined SCSI/CAM Device Drivers

11.1.3.9 The dd_modesel_tbl Member

A pointer to the Mode Select Table Structure entry for the devices. The Mode Select
Table Structure is read and sent to the SCSI device when the first open call is issued
and during recovery. This field is optional and should be used only for advanced
SCSI device customization.

11.1.3.10 The dd_flags Member

The option flags, which can be SZ_NOSYNC, indicating that the device cannot
handle synchronous transfers; SZ_BBR, indicating that the device allows bad block
recovery; SZ_NO_DISC, indicating that the device cannot handle disconnects; and
SZ_NO_TAG, indicating tagged queueing is not allowed. SZ_NO_TAG overrides
inquiry data. The flags are defined in the /usr/sys/h/pdrv. h file.

11.1.3.11 The dd_scsl_optcmds Member

The optional SCSI commands that are supported, as defined in the
/usr /sys/h/pdrv . h file. The possible commands are NO_OPT_CMDS;
SZ_RWIO, which enables reading and writing IO-byte CDBs; SZ_PREV _ALLOW,
which prevents or allows media removal; and SZ_EXT _RESRV, which enables
reserving or releasing file extents.

~ 1.1.3.12 The dd_ready _time Member

The maximum time, in seconds, allowed for the device to power up. For disks, this
represents power up and spin up time. For tapes, it represents power up, load, and
rewind to Beginning of Tape.

11.1.3.13 The dd_que_depth Member

The maximum number of queued requests for devices that support queueing. Refer
to the documentation for your device to detennine if your device supports tag
queuing and, if so, the depth of the queue.

11.1.3.14 The dd_ valid Member

This indicates which data length fields are valid. The data length bits,
DD_REQSNS_ V AL and DD_INQ_ V AL, are defined in the /usr/sys/h/pdrv . h
file.

11.1.3.15 The dd_lnq_len Member

The inquiry data length for the device. This field must be used in conjunction with
the DD_INQ_VAL flag.

11.1.3.16 The dd_req_sense_len Member

The request Sense data length for the device. This field must be used in conjunction
with the DD_REQSNS_ VAL flag.

Programmer-Defined SCSI/CAM Device Drivers 11-7

11.1.4 Programmer-Defined Density Table Structure

The Density Table Structure allows for the definition of eight densities for each type
of SCSI tape device unit. A density is defined using the lower three bits of the unit's
minor number. Refer to the SCSI tape device unit documentation for the density
code, compression code, and blocking factor for each density.

The /usr/sys/data/cam_data. c file contains Density Table Structure entries
for all devices known to Digital. Programmers can add entries for other SCSI tape
devices at the end of the Digital entries. The definition for the Density Table
Structure, DENSITY _TBL, follows:

typedef struct density_tbl {
struct density{

u_char den_flags; /* VALID, ONE_FM etc */
u_char den_density_code;
u_char den_compress_code; /* Compression code if supported */
u_char den_speed_setting; /* for this density */
u_char den_buffered_setting;

u_long den_blocking;
}density[MAX_TAPE_DENSITY);

}DENSITY_TBL;

11.1.4.1 The den_flags Member

/* Buffer control setting */
/* 0 variable etc. */

The den_flags specified indicate which fields in the DENSITY_TBL structure are
valid for this density. The flags are: DENS_ VALID, to indicate whether the structure
is valid; ONE_FM, to write one file mark on closing for QIC tape units;
DENS_SPEED_ VALID, to indicate the speed setting is valid for multispeed tapes;
DENS_BUF _ VALID, to run in buffered mode; and DENS_COMPRESS_ VALID, to
indicate compression code, if supported.

11.1.4.2 The den_denslty_code Member

The den_dens it y _code member contains the SCSI density code for this density.

11.1.4.3 The den_compress_code Member

The den_compress_code member contains the SCSI compression code for this
density, if the unit supports compression.

11.1.4.4 The den_speed_settlng Member

The den_speed_setting member contains the speed setting for this density.
Some units support variable speed for certain densities.

11.1.4.5 The den_buffered_settlng Member

The den_buffered_setting member contains the buffer control setting for this
density.

11.1.4.6 The den_blocking Member

The den_blocking member contains the blocking factor for this SCSI tape device.
A NULL (0) setting specifies that the blocking factor is variable. A positive value
represents the number of bytes in a block, for example, 512 or 1024.

11-8 Programmer-Defined SCSI/CAM Device Drivers

11.1.4.7 Sample Density Table Structure Entry

This section contains a sample portion of a Density Table Structure entry for the
TZKIO SCSI tape device, which supports both fixed and variable length records:

DENSITY TBL
tzkl0 dens = {
{ Minor 00

Flags
DENS VALID I DENS_BUF_VALID IONE_FM ,

Density code Compression code
SEQ_BOOOR_BPI, NULL,

Buffered setting
1,
} ,

Minor 06

Flags

Blocking
512

Speed setting
NULL,

DENS VALID DENS_BUF_VALID IONE_FM ,

Density code Compression code
SEQ_QIC320, NULL,

Buffered setting
1,
} ,
{ Minor 07

Flags

Blocking
1024

Speed setting
NULL,

DENS VALID DENS_BUF_VALID IONE_FM ,

Density code Compression code
SEQ_QIC320, NULL,

Buffered setting
1,
}
}i end of tzkl0 dens

Blocking
NULL

Speed setting
NULL,

11.1.5 Programmer-Defined Mode Select Table Structure
The Mode Select Table Structure is read and sent to the SCSI device when the first
call to the SCSI/CAM peripheral open routine is issued on a SCSI device. There can
be a maximum of eight entries in the Mode Select Table Structure. The definition for
the Mode Select Table Structure, MODESEL_ TBL, follows:

typedef struct modesel_tbl {
struct ms_entry{

u char
u char
u_char
u char

ms_pagei /*
ms_datai /
ms_data_leni /*
ms_ent_sp_pfi/*

/*
/*
/*

}ms_entry[MAX_OPEN_SELS]i
}MODESEL_TBLi

Page number */
Pointer to Mode Select data */
Mode Select data length */
Save Page and Page format bits */
BIT 0 I=Save Page, */

O=Don't Save Page */
BIT 1 I=SCSI-2, O=SCSI-l */

Programmer-Defined SCSI/CAM Device Drivers 11-9

11.1.5.1 The ms_page Member

The ms_page member contains the SCSI page number for the device type. For
example, the page number would be Ox 1 0 for the device configuration page for a
SCSI tape device.

11.1.5.2 The mS_data Member

11.1.5.3

The ms_data member contains a pointer to the mode select data for the device. Set
up the page data and place the address of the page structure in this field. A sample
page definition for page Ox 1 0 for the TZK 1 0 follows:
SEQ_MODE_DATA6
tzklO_pagelO = {

{ Parameter header

mode len
NULL,

medium type
NULL,

speed
NULL,

Buf_mode wp
OxOI, NULL,
} ,
{ Mode descriptor

Density num_blks2
NULL, NULL,

num_blksO
NULL,

blk lenl
NULL,
} ,
{

reserved

blk lenO
NULL

Page data for page Ox2

PAGE header
by teO by tel
OxIO, OxOe,

byte2 byte3 byte4
OxOO, OxOO, 40,

byte7 byteS byte9
NULL, OxeO, NULL,

bytel2 bytel3 bytel4
NULL, NULL, NULL,
}
} ;

blk desc len - -
sizeof(SEQ_MODE_DESC)

num blksl
NULL,

blk len2
NULL,

byteS byte6
40, NULL,

bytelO by tell
Ox3S, NULL,

bytelS
NULL

The mS_data_len Member

The ms _data_len member contains length of a page, which is the number of bytes
to be sent to the device.

11-10 Programmer-Defined SCSI/CAM Device Drivers

11.1.5.4 The ms_ent_sp_pf Member

The ms_ent_sp_pf member contains flags for the MODE SELECT COB that the
device driver fonnats.

11.1.5.5 Sample Mode Select Table Structure Entry

This section contains a sample portion of a Mode Select Table Structure entry for the
TZK 1 0 SCSI tape device:

MODESEL TBL
tzklO mod =
{ MODE PAGE ENTRY 1

Page number
Ox02,

Data len
28,
} ,

MODE PAGE ENTRY 8

Page number
NULL,

Data len
NULL,
} ,
} ;

Ox2

The data pointer
(u_char *)&tzklO_page2,

SCSI2??

The data pointer
(u_char *)NULL,

SCSI2??
NULL

11.2 Sample SCSI/CAM Device-Specific Data Structures
This section provides samples of the SCSI/CAM peripheral data structures
programmers must define if they write their own device drivers. The following data
structures are described:

• TAPE_SPECIFIC - The Tape-Specific Structure

• DISK_SPECIFIC - The Disk- and CDROM-Specific Structure

11.2.1 Programmer-Defined Tape-Specific Structure
SCSI/CAM peripheral device driver writers can create their own tape-specific data
structures. A sample TAPE_SPECIFIC structure for a SCSI tape devicet as defined
in the /usr/sys/io/cam/cam_tape. h filet follows:

typedef struct
u_long ts_flags; /* Tape flags - BOM,EOT */
u_long ts_state_flags; /* STATE - UNIT_ATTEN, RESET etc. */
u_long ts_resid; /* Last operation residual count */
u_long ts_block_size; /* See below for a complete desc. */
u_long tS_density; /* What density are we running at */
u_long ts_records; /* How many records in since last tpmark */
u_long ts_num_filemarks; /* number of file marks into tape */
u_long ts_softcnt; /* Number of soft errors */
u_long ts_hardcnt; /* Number of hard errors */

}TAPE SPECIFIC; ,-

Programmer-Defined SCSI/CAM Device Drivers 11-11

11.2.1.1 The tS_flags Member

Flags used to indicate tape condition. The possible flags are:

Flag Name

CTAPE_BOM

CTAPE_EOM

CTAPE_OFFLINE

CTAP E_WRT_P ROT

CTAPE_BLANK

CTAPE_WRITTEN

CTAPE_CSE

CTAPE_SOFTERR

CTAPE_HARDERR

CTAPE_DONE

CTAPE_RETRY

CTAPE_ERASED

CTAPE_TPMARK

CTAPE_SHRTREC

CTAPE_REWINDING

CTAPE_TPMARK_PENDING

Description

The tape is positioned at the beginning.

The unit is positioned at the end of media.

The device is returning DEVICE NOT READY in
response to a command. The media is either not
loaded or is being loaded.

The unit is either write protected or is opened read
only.

The tape is blank.

The tape has been written during this procedure.

Clear serious exception.

A soft error has been reported by the SCSI unit.

A hard error has been reported by the SCSI unit. It
can be reported either through an ioctl or by
marking the buf structure as EIO.

The tape procedure is finished.

Indicates a retry can be attempted.

The tape has been erased.

A tape mark has been detected during a read
opeation. This cannot occur during a write
operation.

The size of the record retrieved is less than the size
requested. Reported using an ioctl.

Reading in the reverse direction. This is not
implemented.

The tape is rewinding.

The tape mark is to be reported on the next 110
operation.

11.2.1.2 The ts_state_flags Member

Flags used to indicate tape state. The possible flags are:

Flag Name

11-12 Programmer-Defined SCSI/CAM Device Drivers

Description

The unit was opened with the FNDELA Y flag. The
unit was detected, but the open failed.

A check condition occurred and the sense key was
UNIT ATIENTION. This usually indicates that the
media was changed. Current tape position is lost.

Flag Name

CTAPE_RESET_PENDING_STATE

CTAPE_OPENED_STATE

CTAPE_DISEOT_STATE

CTAPE_ABORT TPPEND_STATE

11.2.1.3 The ts_resld Member

Description

Indicates a reset condition on the device or on the
bus.

A reset is pending.

The unit is opened.

No notification of end of media is required.

Indicates that a tape mark was detected for a fixed
block operation with nonbuffered 110. The queue is
aborted.

Directs the open routine to call the ctz_auto_density
routine when a unit attention is noticed, because tape
density has been detennined and all reads are to
occur at that density.

This flag is set when a conunand is orphaned. The
process does not wait for completion, such as a
rewind operation.

Tape position is lost due to command failure.

Residual count from the last tape command.

11.2.1.4 The tS_block_slze Member

Used to distinguish between blocks and bytes for fixed-block tapes. Conunands for
devices like 9-track tape, which have variable length records, assume bytes.

11.2.1.5 The tS_denslty Member

The current density at which the SCSI tape device is operating.

11.2.1.6 The ts_records Member

The number of records read since the last tape mark.

11.2.1.7 The ts_"um_fllemarks Member

The number of file marks encountered since starting to read the tape.

11.2.1.8 The ts_softcnt Member

Number of soft errors reported by each SCSI unit.

11.2.1.9 The tS_hardcnt Member

Number of hard errors reported by each SCSI unit.

Programmer-Defined SCSI/CAM Device Drivers 11-13

11.2.2 Programmer-Defined Disk- and CDROM-Specific Structure

SCSIICAM peripheral device driver writers can create their own disk- and CDROM­
specific data structures. A sample DISK_SPECIFIC structure for a SCSI disk device,
as defined in the /usr/sys/io/cam/cam_disk. h file, follows:

typedef struct disk_specific
struct buf *ds_bufhd;

ds_dkn;
ds_bbr_state;

u_long ds_bbr_retry;
CCB_SCSIIO *ds_bbr_rwccb;
CCB_SCSIIO *ds_bbr_reasccb;
CCB_SCSIIO *ds_tur_ccb;

CCB_SCSIIO *ds_start_ccb;
CCB_SCSIIO *ds_mdsel_ccb;

u_long
u_long
u_long

struct pt
u_long

}DISK_SPECIFIC;

ds_block_size;
ds_tot_size;
ds_media_changes;

ds_pt;
ds_openpart;

11.2.2.1 The ds_bufhd Member

/* Anchor for requests which come */
/* into strategy that cannot be */
/* started due to error recovery */
/* in progresss. */
/* Used for system statistics */
/* Used indicate the current */
/* BBR state if active */
/* BBR retries for reassignment */
/* R/W ccb used for BBR */
/* Reassign ccb used for BBR */
/* SCSI I/O CCB for tur cmd */
/* during recovery */
/* SCSI I/O CCB for start unit */
/* SCSI I/O CCB for mode select */
/* cmd during recovery */
/* SCSI I/O CCB for read capacity */
/* cmd during recovery */
/* SCSI I/O CCB for Read cmd */
/* during recovery */
/* SCSI I/O CCB for Prevent */
/* Media Removal cmd during recovery */
/* This units block size */
/* Total disk size in blocks */
/* Number of times media was */
/* changed - removables */
/* Partition structure */
/* Bit mask of open parts */

Pointer to a buffer header structure to contain requests that come to the driver but
cannot be started due to error recovery in progress. The requests are issued when
error recovery is complete.

11.2.2.2 The ds_dkn Member

Used for system statistics.

11.2.2.3 The dS_bbr_state Member

Used to indicate the current state if bad block recovery (BBR) is active.

11.2.2.4 The ds _bbr _retry Member

Number of retries to attempt for reassignment of bad blocks.

11.2.2.5 The ds_bbr_rwccb Member

Pointer for the SCSI 110 CCB for the ReadlWrite command used for recovery.

11-14 Programmer-Defined SCSI/CAM Device Drivers

11.2.2.6 The ds_bbr _reasccb Member

Pointer for the SCSI I/O CCB for the Reassign command used for recovery.

11.2.2.7 The ds_tur_ccb Member

Pointer for the SCSI I/O CCB for the TEST UNIT READY command used for
recovery.

11.2.2.8 The ds_start_ccb Member

Pointer for the SCSI I/O CCB for the START UNIT command used for recovery.

11.2.2.9 The ds_mdsel_ccb Member

Pointer for the SCSI I/O CCB for the MODE SELECT command used for recovery.

11.2.2.10 The ds_rdcp_ccb Member

Pointer for the SCSI I/O CCB for the Read Capacity command used for recovery.

11.2.2.11 The ds _read_ ccb Member

Pointer for the SCSI 110 CCB for the Read command used for recovery.

11.2.2.12 The ds _prey _ ccb Member

Pointer for the SCSI 110 CCB for the Prevent Removal command during recovery.

11.2.2.13 The ds_block_slze Member

This SCSI disk device's block size in bytes.

11.2.2.14 The ds_tot_slze Member

Total SCSI disk device size in blocks.

11.2.2.15 The ds_medla_changes Member

For removable media, the number of times the media was changed.

11.2.2.16 The ds_pt Sructure

Structure defining the current disk partition layout.

11.2.2.17 The ds _ openpart Member

Bit mask of open partitions.

11.2.3 SCSI/CAM CDROM/AUDIO I/O Control Commands

This section describes the standard and vendor-unique I/O control commands to use
for SCSI CDROM/ AUDIO devices. The commands are defined in the
/usr/sys/io/cam/cam_disk. h file. See Chapter 13 of American National
Standard for Information Systems, Small Computer Systems Interface - 2 (SCSI - 2),

Programmer-Defined SCSI/CAM Device Drivers 11-15

X3T9/89-042 for general infonnation about the COROM device model. Table 11-1
lists the name of each command and describes its function.

Table 11-1: SCSI/CAM CDROM/AUDIO I/O Control Commands

Command

S1andard Commands
CD ROM_PAU S E_PLAY
CDROM_RESUME_PLAY
CDROM_PLAY_AUDIO

CDROM_PLAY_AUDIO_TI
CD ROM_PLAY_AUD IO_TR
CDROM_TOC_HEADER
CDROM_TOC_ENTRYS
CDROM_EJECT_CADDY
CDROM_READ_SUBCHANNEL
CDROM_READ_HEADER

Vendor-Unique Commands
CDROM_PLAY_VAUDIO
CDROM PLAY MSF - -
CD ROM_PLAY_T RACK

Description

Pauses audio operation
Resumes audio operation
Plays audio in Logical Block Address
(LBA) fonnat
Plays audio in Minute-/Second-lFrame-units
(MSF) fonnat
Plays audio track or index
Plays audio track relative
Reads Table of Contents (TOC) header
Reads Table of Contents (TOC) entries
Ejects the CDROM caddy
Readssubchannelda~
Reads track header

CDROM_PLAYBACK_CONTROL
CDROM_PLAYBACK_STATUS
CDROM_SET_ADDRESS_FORMAT

Plays audio LBA fonnat
Plays audio MSF format
Plays audio track
Controls playback
Checks playback s~tus
Sets address fonnat

11.2.3.1 Structures Used by SCSI/CAM CDROM/ AUDIO I/O Control Commands

Some of the SCSI COROM/AUOIO device 110 control commands use data
structures. This section describes those data structures. The structures are defined in
the /usr/sys/io/cam/cam disk. h file. Table 11-2 lists the name of each
structure and the commands that use it.

Table 11-2: Structures Used by SCSI/CAM CDROM/AUDIO I/O Control
Commands

Structure

cd_address

cdylay_audio

cdylay_audio_ti

cdylay_track

cd_toc_header

Command

All

CDROM_PLA Y _AUDIO
CDROM_PLA Y _ V AUDIO

CDROM_PLA Y _AUDIO_MSF
CDROM_PLA Y _MSF

CDROM_PLA Y _AUDIO_TI

CDROM_PLA Y _AUDIO_TR
CDROM_PLA Y _TRACK

CDROM_TOC_HEADER

11-16 Programmer-Defined SCSI/CAM Device Drivers

Table 11-2: (continued)

Structure Command

cd toc CDROM_TOC_ENTRYS
cd_toc_entry CDROM_TOC_ENTRYS
cd_sub_channel CDROM_READ_SUBC~L

cd_subcyosition CDROM_READ_SUBC~L

cd_subc_media_catalog CDROM_READ_SUBC~L

cd_subc_isrc_data CDROM_READ_SUBC~L

cd_subc_header CDROM_READ_SUBC~L

cd_subc_channel_data CDROM_READ_SUBC~EL

cd_subc_information CDROM_READ_SUBC~L

cd_read_header CDROM_READ_HEADER
cd_read_header_data CDROM_READ_HEADER
cdylayback CDROM_PLAYBACK_CONTROL

CDROM_PLA YBACK_ST A TUS

11.2.3.1.1 Structure Used by All SCSI/CAM CDROM/AUDIO I/O Control
Commands - This section describes the cd address union that defines the SCSI

CORaM/AUDIO device Track Address structure and that all the SCSI
CORaM/AUDIO device 110 control commands use. The SCSI CORaM/AUDIO
device returns track addresses in either LBA or MSF fonnat.

union cd address

} ;

/*

struct {
u char
u_char
u_char
u_char

msf;
struct {

u char
u_char
u_char
u char

lba;

: 8;
m_units;
s_units;
f_units;

addr3;
addr2;
addrli
addrO;

/* Minutes/Seconds/Frame format

/* Logical Block Address format

* CD-ROM Address Format Definitions.
*/

*/

*1

#define CDROM LBA FORMAT 0 1* Logical Block Address format */
#define CDROM=MSF=FORMAT I 1* Minute Second Frame format */

The structure members and their descriptions follow:

Structure Member

m units

Description

The minute-units binary number of the
MSF fonnat for CDROM media

Programmer-Defined SCSI/CAM Device Drivers 11-17

Structure Member Description

s units

f units

addr3

addr2

addrl

addrO

The second-units binary number of the
MSF foonat for CDROM media

The frame-units binary number of the MSF
fonnat for CDROM media

The fourth logical block address of LBA
fonnat for disk media

The third logical block address of LBA
fonnat for disk media

The second logical block address of LBA
fonnat for disk media

The first logical block address of LBA
fonnat for disk media

11.2.3.1.2 Structure Used by the CDROM_PLA Y _AUDIO and
CDROM_PLA Y _ VAUDIO Commands - This section describes the structure that is used by

the CDROM_PLAY_AUDIO and CDROM_PLAY_ VAUDIO conunands. The
structure is defined as follows:

struct cd_play_audio {
u_long pa_lba; /* Logical block address. */
u_long pa_length; /* Transfer length in blocks. */

} ;

The structure members and their descriptions follow:

Structure Member Description

pa Iba The LBA where the audio playback
operation is to begin.

pa_length The number of contiguous logical blocks to
be played.

11.2.3.1.3 Structure Used by the CDROM_PLA Y _AUDIO _MSF and
CDROM_PLA Y _MSF Commands - This section describes the structure that is used by the

CDROM_PLAY_AUDIO_MSF and CDROM_PLAY_MSF conunands. The
structure is defined as follows:

struct cd_play_audio_msf {

} ;

u_char msf_starting_M_unit;
u char msf starting S unit;
u=char msf=starting=F=unit;
u_char msf_ending_M_unit;
u char msf ending S unit;
u=char msf=ending=F=unit;

11-18 Programmer-Defined SCSI/CAM Device Drivers

/* Starting M-unit */
/* Starting S-unit */
/* Starting F-unit */
/* Ending M-unit */
/* Ending S-unit */
/* Ending F-unit */

The structure members and their descriptions follow:

Structure Member Description

rnsf_starting_M_unit The minute-unit field of the absolute MSF
address at which the audio play operation is
to begin.

rnsf_starting_S_unit The second-unit field of the absolute MSF
address at which the audio play operation is
to begin.

rns f _ starting _ F _ uni t The frame-unit field of the absolute MSF
address at which the audio play operation is
to begin.

rnsf_ending_M_unit The minute-unit field of the absolute MSF
address at which the audio play operation is
to end.

rnsf_ending_S_unit The second-unit field of the absolute MSF
address at which the audio play operation is
to end.

rnsf_ending_F_unit The frame-unit field of the absolute MSF
address at which the audio play operation is
to end.

11.2.3.1.4 Structure Used by the CDROM_PLA Y _AUDIO _ TI Command - This
section describes the structure that is used by the CDROM_PLAY_AUDIO_TI
command. The structure is defined as follows:

/*
* Define Minimum and Maximum Values
*/

#define CDROM MIN TRACK 1
#define CDROM MAX TRACK 99
#define CDROM MIN INDEX 1
#define CDROM MAX INDEX 99

struct cd_play_audio_ti

} i

u_char ti_starting_tracki
u_char ti_starting_indexi
u_char ti_ending_tracki
u char ti_ending_indexi

for Track & Index.

/* Minimum track number */
/* Maximum track number */
/* Minimum index value */
/* Maximum index value */

/* Starting track number */
/* Starting index value */
/* Ending track number */
/* Ending index value */

The structure members and their descriptions follow:

Structure Member

ti_ending_track

Description

The track number at which the audio play
operation starts.

The index number within the track at which
the audio play operation starts.

The track number at which the audio play
operation ends.

Programmer-Defined SCSI/CAM Device Drivers 11-19

Structure Member

ti_ending_index

Description

The index number within the track at which
the audio play operation ends.

11.2.3.1.5 Structure Used by the CDROM_PLA Y _AUDIO _ TR Command - This
section describes the structure that is used by the COROM_PLAY_AUOIO_TR
command. The structure is defined as follows:

struct cd_play_audio_tr {
u_long tr_lba; /* Track relative LBA */
u_char tr_starting_track;
u_short tr_xfer_length;

/* Starting track number */
/* Transfer length */

] ;

The structure members and their descriptions follow:

Structure Member

tr Iba

tr_starting_track

tr_xfer_length

Description

The logical block address relative to the
track being played. A negative value
indicates a start location within the audio
pause area at the beginning of the track.

Track number at which play is to start.

The number of contiguous logical blocks to
be output as audio data.

11.2.3.1.6 Structure Used by the CDROM_TOC_HEADER Command - This section
describes the structure that is used by the COROM_TOC_HEADER command. The
structure is defined as follows:

struct cd_toc_header {
u_char th_data_lenl;
u char th_data_lenO;

/* Toe data length MSB */
/* Toe data length LSB */
/* Starting track number */
/* Ending track number */

u char th_starting_track;
u char th_ending_track;

] ;

The structure members and their descriptions follow:

Structure Member

th_data_lenl

th data lenD - -

Description

The total number of bytes in the table of
contents for MSF fonnat.

The total number of bytes in the table of
contents for LBA fonnat.

Starting track number for which data is to
be returned. If the value is 0 (zero), data is
to be returned starting with the first track on
the medium.

11-20 Programmer-Defined SCSI/CAM Device Drivers

Structure Member Description

The track number at which the audio play
operation ends.

11.2.3.1.7 Structures Used by the CDROM_ TOC _ENTRYS Command - This section
describes the structures that are used by the CDROM_TOC_ENTRYS command.
The structures are defined as follows:

struct cd_toc {

} ;

u char toc_address_format;
u char toc_starting_track;
u short toc_alloc_length;
caddr t toc_buffer;

/* Address format to return */
/* Starting track number */
/* Allocation length */
/* Pointer to Toe buffer */

The structure members and their descriptions follow:

Structure Member Description

toc_address_format The address format, LBA or MSF.

toc_starting_track The track number at which the audio play
operation starts.

toc_alloc_length The allocation length of the table of
contents buffer in bytes

toc buffer A pointer to the TOe buffer.

struct cd_toc_entry {

} ;

u_char 8;
u_char te_control 4;
u_char te_addr_type 4;
u_char te_track_number;
u_char 8;
union cd_address te_absaddr;

/* Reserved *j
j* control field (attributes) *j
j* Address type information */
/* The track number */
/* Reserved *j
/* Absolute CD-ROM Address *j

The structure members and their descriptions follow:

Structure Member

te_control

Bit No.

0

1

2

3

Description

The control field containing attributes. The
possible settings follow:

Set to 0 (Zero) Set to 1
Audio without Audio with preemphasis
preemphasis

Digital copy prohibited Digital copy permitted

Audio track Data track

Two-channel audio Four-channel audio

Programmer-Defined SCSI/CAM Device Drivers 11-21

te_addr_type

te_track_nwnber

Address-type infonnation, MSF or LBA

The current track number that is being
played.

te absaddr The absolute address of the audio track,
MSF or LBA format.

11.2.3.1.8 Structures Used by the CDROM_READ _ SUBCHANNEL Command -
The CDROM_READ_SUBCHANNEL command requests subchannel data and the
state of audio play operations from the target device. This section describes the
structure that is used by the CDROM_READ_SUBCHANNEL command. The
structure is defined as follows:

/*
* CD-ROM Sub-Channel Q Address Field Definitions.
*/

#define CDROM NO INFO_SUPPLIED OxO
#define CDROM_CURRENT_POS_DATA Oxl
#define CDROM_MEDIA_CATALOG_NUM Ox2
#define CDROM_ENCODES_ISRC Ox3

/* Codes Ox4 through Ox7 are Reserved

/*
* CD-ROM Data Track Definitions

*/
#define CDROM_AUDIO_PREMPH OxOl
#define CDROM_COPY_PERMITTED Ox02
#define CDROM_DATA_TRACK Ox04
#define CDROM_FOUR_CHAN_AUDIO Ox10

/*
* Sub-Channel Data Format Codes
*/

#define CDROM_SUBQ_DATA
#define CDROM_CURRENT_POSITION
#define CDROM_MEDIA_CATALOG
#define CDROM_ISRC

OxOO
Ox01
Ox02
Ox03

/* Information not supplied */
/*
/*
/*
/*
/*

*/

Encodes current position data */
Encodes media catalog number */
Encodes ISRC */
ISRC=International-Standard- */

Recording-Code */

/* 0/1 = Without/with Pre-emphasis */
/* 0/1 = Copy Prohobited/Allowed */
/* 0 = Audio, 1 = Data track */
/* 0 = 2 Channel, 1 = 4 Channel */

/* Sub-Channel data information */
/* Current position information */
/* Media catalog number */
/* ISRC information */
/* ISRC=International-Standard- */
/* Recording-Code */

/* Codes Ox4 through OxEF are Reserved */
/* Codes OxFO through OxFF are Vendor Specific */

/*
* Audio Status Definitions returned by Read Sub-Channel Data Command

*/
#define AS_AUDIO_INVALID OxOO /* Audio status not supported */
#define AS_PLAY_IN_PROGRESS Ox11 /* Audio play operation in prog */
#define AS_PLAY_PAUSED Ox12 /* Audio play operation paused */
#define AS_PLAY_COMPLETED Ox13 /* Audio play completed */
#define AS_PLAY_COMPLETED Ox13 /* Audio play completed */
#define AS_PLAY_ERROR Ox14 /* Audio play stopped by error */
#define AS_NO_STATUS Ox1S /* No current audio status */

struct cd_sub_channel
u_char sch_address - format; /* Address format to return */
u_char sCh_data_formati /* Sub-channel data format code */
u_char sch_track_numberi /* Track number */
u_short sch_alloc_lengthi /* Allocation length */
caddr_t sch_buffer; /* Pointer to SUBCHAN buffer */

11-22 Programmer-Defined SCSI/CAM Device Drivers

} ;

The structure members and their descriptions follow:

Structure Member Description

sCh_address_format The address fonnat, LBA or MSF.

sCh_data_format The type of subchannel data to be returned.

sch_ track_ntUDber The track from which ISRC data is read.

sch_alloc_length The allocation length of the table of
contents buffer in bytes

sch_buffer A pointer to the SUBCHAN buffer defined
by the sch_data_format member.

struct cd_subc_position {
u_char scp_data_format; /* Data Format code */

} ;

u_char scp_control 4;
u_char scp_addr_type 4;
u_char scp_track_number;
u_char scp_index_number;
union cd_address scp_absaddr;
union cd_address scp_reladdr;

/* Control field (attributes) */
/* Address type information */
/* The track number */
/* The index number */
/* Absolute CD-ROM Address */
/* Relative CD-ROM Address */

#define scp_absmsf scp_absaddr.msf
#define scp_abslba scp_absaddr.lba
#define scp_relmsf scp_reladdr.msf
#define scp_rellba scp_reladdr.lba

The structure members and their descriptions follow:

Structure Member

scp_data_format

scp_control

Description

Data fonnat code.

The control field containing attributes. The
possible settings follow:

Bit No. Set to 0 (Zero) Set to 1
o Audio without

preemphasis
Audio with preemphasis

1 Digital copy prohibited Digital copy pennitted

2 Audio track Data track

3 Two-channel audio Four-channel audio

scp_addr_type Address-type infonnation, MSF or LBA
fonnat. The address fonnat, LBA or MSF.

The current track number that is being
played.

The index number within an audio track.

Programmer-Defined SCSI/CAM Device Drivers 11-23

u_char
u char
u_char
u_char

The absolute address of the audio track,
MSF or LBA format.

The CDROM address relative to the track
being played.

/* Data Format code */
8; /* Reserved */
8; /* Reserved */
8; /* Reserved */
7, /* Reserved */

smc_mc_valid
u_char smc_mc_number[15];

1; /* Media catalog valid 1 - True */
/* Media catalog number ASCII */

} ;

The structure members and their descriptions follow:

Structure Member

smc data format - -
smc mc valid

smc_mc_number

struct cd_subc - isrc_data

Description

Data format code.

Media catalog number is valid.

Media catalog number.

{

u_char sid_data format; /* Data Format code -
u_char 8; /* Reserved */
u_char sid - track_number; /* The track number
u_char 8; /* Reserved */
u_char 7, /* Reserved */

*/

*/

sid_tc_valid 1; /* Track code valid, 1 ., True */
u_char sid - tc_number[15]; /* International-Standard-

/* Recording-Code (ASCII)
} ;

The structure members and their descriptions follow:

Structure Member

sid_data_format

sid track number - -
sid tc valid

sid_tc_number[15]

struct cd_subc_header {

Description

Data fonnat code.

The current track number at which ISRC is
located.

The track code is valid.

The track code number.

u_char 8; /* Reserved */
/* Audio status */

*/
*/

u_char sh_audio_status;
u_char sh_data_lenl;
u_char sh_data_lenO;

/* Sub-Channel Data length MSB */
/* Sub-Channel Data length LSB */

} ;

11-24 Programmer-Defined SCSI/CAM Device Drivers

The structure members and their descriptions follow:

Structure Member

sh audio status - -

Description

The audio status code.

The subchannel data length for MSF
fonnat.

The subchannel data length for LBA
fonnat.

struct cd_subc_channel_data {
struct cd_subc_header scd_header;
struct cd_subc_position scd_position_data;
struct cd_subc_media_catalog scd_media_catalog;
struct cd_subc_isrc_data scd_isrc_data;

} ;

The structure members and their descriptions follow:

Structure Member Description

The subchannel data header, which is four
bytes.

sCd_position_data

scd_media_catalog

CDROM current-position data infonnation.

The Media Catalog Number data
infonnation.

sCd_isrc_data Track Intemational-Standard-Recording­
Code (ISRC) data infonnation.

struct cd_subc_information {
struct cd_subc_header sci_header;
union {

struct cd_subc_channel_data sci_channel_data;
struct cd subc position sci position data;
struct cd=subc=media_catalog sci_media_catalog;
struct cd_subc_isrc_data sci_isrc_data;

sci_data;
} ;

#define sci_scd
#define sci_scp
#define sci smc
#define sci sid

sci data.sci channel data
sci=data.sci=position_data
sci_data.sci_media_catalog
sci_data.sci_isrc_data

#define CDROM_DATA_MODE_ZERO 0 /* All bytes zero */
#define CDROM_DATA_MODE_ONE 1
#define CDROM_DATA_MODE_TWO 2
/* Modes Ox03-0xFF are reserved. */

/* Data mode one format */
/* Data mode two format */

This structure is used to allocate data space. The structure members and their
descriptions follow:

Structure Member Description

Programmer-Defined SCSI/CAM Device Drivers 11-25

Structure Member Description

sci_channel_data

sci_position_data

sci_media_catalog

sci isrc data

Space for channel data.

- -

Space for current position data.

Space for Media Catalog data.

Space for ISRC data.

11.2.3.1.9 Structures Used by the CDROM_READ _HEADER Command - This
section describes the structures that are used by the CDROM_READ _HEADER
command. The structures are defined as follows:
struct cd_read_header {

} ;

u_char rh_address_format;
u_long rh_lba;

u_short rh_alloc_length;
caddr_t rh_buffer;

/* Address format to return */
/* Logical block address */

/* Allocation length */
/* Pointer to header buffer */

The structure members and their descriptions follow:

Structure Member Description

rh_address_format

rh_lba

rh_alloc_length

rh buffer

The address fonnat, LBA or MSF.

The logical block address for LBA fonnat.

The allocation length of the header buffer.

A pointer to the header buffer.

struct cd_read_header_data {
u_char rhd_data_mode;
u_char
u_char

8;
8;

u_char 8;
union cd_address rhd_absaddr;

} ;

#define rhd_msf rhd_absaddr.msf
#define rhd_lba rhd_absaddr.lba

/* CD-ROM data mode */
/* Reserved */
/* Reserved */
/* Reserved */
/* Absolute CD-ROM address */

The structure members and their descriptions follow:

Structure Member

rhd_data_mode

rhd_absaddr

Description

The CDROM data mode type.

The absolute address of the audio track,
MSF or LBA fonnat.

11-26 Programmer-Defined SCSI/CAM Device Drivers

11.2.3.1.10 Structure Used by the COROM_PLA Y _TRACK Command - This section
describes the structure that is used by the CDROM_PLA Y _TRACK command. The
structure is defined as follows:

struct cd_play_track {
u_char pt_starting_tracki
u char pt_starting_indexi
u char pt_number_indexesi

/* Starting track number */
/* Starting index value */
/* Number of indexes */

} i

The structure members and their descriptions follow:

Structure Member Description

The track number at which the audio play
operation starts.

The index number within the track at which
the audio play operation starts.

The number of index values in the audio
encoding on CDROM media.

11.2.3.1.11 Structure Used by the COROM_PLA YBACK_ CONTROL and
COROM_PLAYBACK_STATUS Commands - This section describes the structures that are,~

used by the CDROM_PLAYBACK_CONTROL and
CDROM_PLA YBACK_ST ATUS commands. The structures are defined as follows:

/*
* Definitions for Playback Control/Playback status Output Selection

Codes */
#define CDROM_MIN_VOLUME
#define CDROM_MAX_VOLUME
#define CDROM_PORT_MUTED
#define CDROM_CHANNEL_O
#define CDROM_CHANNEL_l
#define CDROM_CHANNEL_O_l

struct cd_playback {

OxO
OxFF
OxO
Oxl
Ox2
Ox3

/* Minimum volume level */
/* Maximum volume level */
/* Output port is muted */
/* Channel 0 to output port */
/* Channel 1 to output port */
/* Channel 0 & 1 to output port */

u_short pb_alloc_length;
caddr_t pb_buffer;

/* Allocation length */
/* Pointer to playback buffer */

} ;

The structure members and their descriptions follow:

Structure Member

pb_allce_length

pb_buffer

Description

Allocation length of the playback buffer.

A pointer to the playback buiJer.

Programmer-Defined SCSI/CAM Device Drivers 11-27

11.2.3.1.12 Structure Used by the COROM_PLA YBACK_ CONTROL Command -
This section describes the structure that is used by the
CDROM_PLAYBACK_CONTROL conunand. The structure is defined as follows:

struct cd_playback_control {

u_char pc_ reserved[lO]; /* Reserved */
u_char pc_ chanO select : 4, /* Channel 0 selection code */ -

4; /* Reserved */
u_char pc chanO - volume; /* Channel 0 volume level */
u_char pc chanl select : 4, /* Channel 1 selection code */ -

4; /* Reserved */
u char pc_ chanl - volume; /* Channel 1 volume level */
u_char pc_ chan2 - select : 4, /* Channel 2 selection code */

4; /* Reserved */
u_char pc chan2 volume; /* Channel 2 volume level */ - -
u_char pc_chan3_ select : 4, /* Channel 3 selection code */

4; /* Reserved */
u_char pc_chan3_volume; /* Channel 3 volume level

} ;

The structure members and their descriptions follow:

Structure Member

pc_chanD_select

pc chanD volmne - -
pc_chanl_select

pc_chanl_volmne

pc_chan2_select

pc_chan2_volmne

pc_chan3_select

pc_chan3_volmne

Description

The selection code for Channel O. The low
four bits are reserved.
The volume level value for Channel O.

The selection code for Channell. The low
four bits are reserved.

The volume level value for Channell.
The selection code for Channel 2. The low
four bits are reserved.

The volume level value for Channel 2.

The selection code for Channel 3. The low
four bits are reserved.

The volume level value for Channel 3.

*/

11.2.3.1.13 Structure Used by the COROM_PLAYBACK_STATUS Command­
This section describes the structure that is used by the
CDROM_PLA YBACK_ST ATUS conunand. The structure is defined as follows:

/*
* Audio status return by Playback Status Command.
*/

#define PS_PLAY_IN_PROGRESS
#define PS_PLAY_PAUSED
#define PS_MUTING_ON
#define PS_PLAY_COMPLETED
#define PS_PLAY_ERROR
#define PS_PLAY_NOT_REQUESTED

/*

OxOO /*
OxOl /*
Ox02 /*
Ox03 /*
Ox04 /*
Ox05 /*

Audio Play Oper In Progess */
Audio Pause Oper In Progress
Audio Muting on */
Audio Play Oper Completed */
Error Occurred During Play */
Audio Play Oper Not Requested

* Data structure returned by Playback Status Command.
*/

8; /* Reserved */

11-28 Programmer-Defined SCSI/CAM Device Drivers

*/

*/

) ;

u_char ps_lbamsf 1,

u_char ps_data_len1;
u_char ps_data_lenO;
u_char ps_audio_status;

7;

u_char ps_control 4,
4;

union cd_address ps_absaddr;
u_char ps_chanO_select: 4,

4;
u_char ps_chanO_volume;
u_char ps_chan1_select: 4,

4;
u_char ps chan1_volume;
u_char ps_chan2_select: 4,

4;
u_char ps_chan2_volume;
u_char ps_chan3_select: 4,

4;

/* Address format 0/1 = LBA/MSF */
/* Reserved */
/* Audio data length MSB */
/* Audio data length LSB */
/* Audio status */
/* Control field (attributes) */
/* Reserved */
/* Absolute CD-ROM address */
/* Channel 0 selection code */
/* Reserved */
/* Channel 0 volume level */
/* Channel 1 selection code */
/* Reserved */
/* Channel 1 volume level */
/* Channel 2 selection code */
/* Reserved */
/* Channel 2 volume level */
/* Channel 3 selection code */
/* Reserved */
/* Channel 3 volume level */

The structure members and their descriptions follow:

Structure Member

ps_lbamsf

ps_data_lenl

ps_audio_status

ps_control

Description

The address format: a 0 (zero) means LBA;
a 1 means MSF.
The audio data length if the address fonnat
is MSF.
The audio data length if the address fonnat
is LBA.

The audio status
The control field containing attributes. The
possible settings follow:

Bit No. Set to 0 (Zero) Set to 1

ps absaddr

o Audio without
preemphasis

Audio with preemphasis

1 Digital copy prohibited Digital copy permitted

2 Audio track Data track
3 Two-channel audio Four-channel audio

The low four bits are reserved.
The absolute address of the audio track,
MSF or LBA format.

ps_chanO_select The selection code for Channel O. The low
four bits are reserved.

ps_chanO_volume

ps_chanO_select

ps_chanl_volume

The volume level setting for Channel O.

The selection code for Channel O. The low
four bits are reserved.
The volume level setting for Channel 1.

Programmer-Defined SCSI/CAM Device Drivers 11-29

ps_chanl_select

ps_chan2_volume

ps_chan2_select

ps_chan3_volume

The selection code for Channel 1. The low
four bits are reserved.
The volume level setting for Channel 2.
The selection code for Channel 2. The low
four bits are reserved.
The volume level setting for Channel 3.

11.3 Adding a Programmer-Defined SCSI/CAM Device
The procedure for installing device drivers described in Guide to Writing and Porting
VMEbus and TURBOchannel Device Drivers applies to adding SCSI/CAM peripheral
device drivers to your system. Follow that procedure after completing the entries to
the SCSI/CAM-specific structures described in this chapter and in Chapter 3.

11-30 Programmer-Defined SCSI/CAM Device Drivers

SCSIICAM Special 1/0 Interface 12

This chapter describes the SCSIICAM special 110 interlace. The USCA software
includes an interlace developed to process special SCSI 110 control commands used
by the existing Digital SCSI subsystem and to aid in porting new or existing SCSI
device drivers from other vendors to the USCA.

Application programs issue 110 control commands using the ioctl system call to
send special SCSI 110 commands to a peripheral device. The term "special" refers to
commands that are not usually issued to the device through the standard driver entry
points. SCSI device drivers usually require the special 110 control commands in
addition to the standard read and wri te system calls. With the SCSIICAM
special 110 interlace, SCSIICAM peripheral driver writers do not need detailed
knowledge of either the system-specific or the CAM-specific structures and routines
used to issue a SCSI command to the CAM liD subsystem.

12.1 Application Program Access
Application programs access the SCSIICAM special 110 interlace by making requests
to peripheral drivers using the ioctl system call. This system call is processed by
system kernel support routines that invoke the device driver's 110 control command
entry point in the character device switch table defined in the
machine/cornmon/conf . c file. The device driver's 110 control routine accesses
the special 110 interlace using either the supplied SCSIICAM peripheral common
routine, ccmn_DoSpecialCmd, or a driver-specific routine. Figure 12-1 shows the
flow of application program requests through the operating system to the SCSIICAM
special 110 interlace and the CAM 110 subsystem.

Figure 12-1: Application Program Flow Through SCSIICAM Special 1/0
Interface

Application Program Interface
Issues I/O Control System Call via

int ioctl (jnt fd, int cmd, char *data)

CAM Peripheral Driver I/O Control
Command Entry Point Entered via

int xxioctl (dev_t dev, int and, caddr_t data, int flags)

Invoke Peripheral Common Routine via
int ccmn_DoSpecialCmd (dev_t dev, int crrr:i, caddr_t data

int flags, CCB_SCSIIO *ccb, int sf/ags)

Invoke SCSI Special I/O Command
Processing Entry Point

1
s'irrE'.n!tArt 'sIi~ACt

12.2 Device Driver Access

ZK-0264U-R

SCSIICAM peripheral device drivers access the SCSIICAM special 110 interface
using either the supplied SCSIICAM peripheral common routine,
ccmn_SysSpecialCmd, or using a driver-specific routine. Figure 12-2 shows the
flow of system requests from device drivers through the SCSIICAM special 110
interface and the CAM 110 subsystem.

12-2 SCSI/CAM Special I/O Interface

Figure 12-2: Device Driver Flow Through SCSI/CAM Special I/O
Interface

Driver Interface Entry from
User Application via system call for

open() , close(), read(), write(), or ioctl()

Driver Entry Points
Entered in Process Context

int xxx_open (dev_t dev, int flags)

Allocate 1/0 Parameters Buffer
for Command on the Kernel Stack.

Stack part of 'struct user' (user area)

Allocate Kernel Data Buffer,
if required, for Data Movement via

u_char ccmm _get _ dbuf (uJong size)

Set Up 1/0 Parameter Fields as
Required for this Special Command

Peripheral Driver Common Routine
int ccmm_sysspecialCmd (dev_t dev, int cmd, caddr_t data,

int flags, CCB_SCSIIO "ccb, int sflags)

Common Processing via Routine
int cCJTUn_DoSpecialCmd (dev_t dev, int cmd, caddr_t data,

int flags, CCB_SCSIIO "ccb. int sflags)

Same Processing as Application Program Interface

ZK-0470U-R

12.3 SCSI/CAM Special Command Tables
The SCSIICAM special liD interface includes default command tables that provide
backwards compatibility with existing SCSI liD control commands. The following
predefined SCSI/CAM Special Command Tables are included:

• cam_GenericCmds

SCSIICAM Special 1/0 Interface 12-3

• cam DirectCmds

• cam_AudioCmds

• cam_SequentialCmds

• cam MtCmds

The interface also allows conunands to be added to the existing conunand tables and
new conunand tables to be added. The SCSIICAM special 110 interface includes
routines that manipulate the tables so programmers can write device drivers to easily
add and remove conunand tables.

The conunand table header structure, SPECIAL_HEADER, provides a bit mask of
device types that can be used with a conunand table. The Special Conunand Header
Structure is defined as follows:

/*
* Special Command Header Structure:
*/

typedef struct special_header {
struct special_header *sph_flinki
struct special_header *sph_blinki
struct special_cmd *sph_cmd_tablei
u:,...long sph_device_typei
u_long sph_table_flagsi
caddr_t sph_table_namei

SPECIAL_HEADERi

/* Forward link to next table */
/* Backward link to prev table */
/* Pointer to command table */
/* The device types supported */
/* Flags to control cmd lookup */
/* Name of this command table */

12.3.1 The sph_flink and sph_blink Members

These are table-linkage members that allow conunand tables to be dynamically added
or removed from the list of tables searched by the SCSIICAM special 110 interface
when processing commands.

12.3.2 The sph_cmd_table Member

A pointer to the Special Conunand Entry Structure.

12.3.3 The sph_device_type Member

The device types supported by this SCSIICAM Special Command Table.

12.3.4 The sph_table_flags Member

The SPH_SUB_COMMAND, which indicates that the conunand table contains
subcommands.

12.3.5 The sph_table_name Member

The name of this SCSIICAM Special Conunand Table.

12-4 SCSI/CAM Special I/O Interface

12.4 SCSI/CAM Special Command Table Entries
Each SCSI/CAM Special Command Table contains multiple entries. Each entry
provides enough infonnation to process the command associated with that entry. The
command tables can be dynamically added, but the entries within the command
tables are not dynamic. Each command table's entries are statically defined so that
individual entries cannot be appended to the table. The Special Command Entry
Structure structure is defined as follows:

/*
* Special Command Entry Structure:
*/

typedef struct special_cmd {
int spc_ioctl_cmd;
int spc_sub_command;
u_char spc_cmd_flags;
u_char spc_cmd_code;
u_short : 16;
u_long spc_device_type;
u_long spc_cmd_parameter;
u_Iong spc_cam_flags;
u_long spc_file_flags;
int spc_data_length;
int spc_timeout;
int (*spc_docmd)();
int (*spc_mkcdb)();
int (*spc_setup)();
caddr_t spc_cdbp;
caddr_t spc_cmdp;

SPECIAL_CMD;

/* The I/O control command code */
/* The I/O control sub-command */
/* The special command flags */
/* The special command code */
/* Unused ... align next field */
/* The device types supported */
/* Command parameter (if any) */
/* The CAM flags field for CCB */
/* File control flags (fcntl) */
/* Kernel data buffer length */
/* Timeout for this command */
/* Function to do the command */
/* Function to make SCSI CDB */
/* Setup parameters routine */
/* Pointer to prototype CDB */
/* Pointer to the command name */

12.4.1 The spc_ioctl_cmd and spc_sub_command Members
These members contain the SCSI I/O control command code and subcommand used
to locate the appropriate table entry. The subcommand is checked only if flags are
set that indicate a subcommand exists.

12.4.2 The spc_cmd_flags Member
This member contains flags to control the action of the SCSI/CAM special I/O
interface routines. The flag definitions are described in the following table:

Flag Name

SPC_SUSER

SPC_COPYIN

SPC_COPYOUT

SPC_NOINTR

SPC_DATA_IN

SPC_DATA_OUT

SPC_DATA_NONE

SPC_SUB_COMMAND

SPC_INOUT

SPC_DATA_INOUT

Description

Restricted to superuser.
User buffer to copy from.

User buffer to copy to.

Do not allow sleep interrupts.

Data direction is from device.

Data direction is to device.

No data movement for command.

Entry contains subcommand.
Copy in and out.

Copy data in and out.

SCSI/CAM Special I/O Interface 12-5

12.4.3 The spc_command_code Member

This member contains the special SCSI opcode used to execute this command. This
member is used during the creation of the COB. .

12.4.4 The spc_device_type Member

This member defines the specific device types with which this command is used. For
example, direct-access and readonly direct-access devices share many of the same
commands. Therefore, rather than duplicating command table entries, both device
types can use the same command table. The values that are valid for this member are
those defined in the Inquiry data device type member of the inquiry_info
structure, which is defined in the /usr/sys/h/scsi_all. h file.

12.4.5 The spc_cmd_parameter Member

This member is used to define any special parameters used by the command. For
example, the SCSI START COB command, which is defined in the
/usr/sys/h/scsi_direct. h file, is used for stopping, starting, and ejecting a
COROM caddy. The parameter member can be defined as the subcommand code so
a common routine can be used to create the COB.

12.4.6 The spc_cam_flags Member

This member contains the CAM flags necessary for processing the command. The
CAM flags are defined in the file /usr/sys/h/carn. h.

12.4.7 The spc_file_flags Member

This member contains the file access bits required for accessing the command. For
example, the command can be restricted to device files opened for read and write
access. The file flags are defined in the file /usr/sys/h/file. h.

12.4.8 The spc_data_length Member

This member describes the length of the buffer to hold additional kernel data that is
required to process the command. Usually, this member is set to 0 (zero), since the
data buffer lengths are normally decoded from the 110 command code or taken from a
member in the I/O parameter buffer.

12.4.9 The spc_timeout Member

This member defines the default timeout for this command. This value is used for
the SCSI 110 CCB timeout member, unless it is overridden by the timeout member in
the Special 110 Argument Structure.

12.4.10 The spc_docmd Member

This member specifies the routine to invoke to execute the command. A routine is
required by 110 commands that need special servicing. For example, if the 110
command does not return all the data read by the SCSI command, then a routine is
needed to handle this special servicing.

12-6 SCSI/CAM Special I/O Interface

12.4.11 The spc_mkcdb Member

This member specifies the routine that is invoked to create the COB for the
command. A routine is not necessary for simple commands, such as TEST UNIT
READY. However, any command that requires additional members to be set up in
the COB prior to issuing the SCSI command must define this routine.

12.4.12 The spc_setup Member
This member is required by any command that has special setup requirements. For
example, commands that pass a user buffer and length as part of the 110 parameters
buffer structure must have a setup routine to copy these members to the Special 110
Argument Structure. This applies to all previously defined commands, but does not
apply to commands implemented using the new SCSI_SPECIAL 110 control
command code.

12.4.13 The spc_cdbp Member
This member is used by commands that can be implemented using a prototype COB.
A prototype COB is a SCSI command that can be implemented using a statically
defined SCSI COB. Fields within the COB do not change. Usually, simple SCSI
commands, such as SCSI_START_UNIT, can be implemented with a prototype COB
so that the make COB routine is not required.

12.4.14 The spc_cmdp Member

This member points to a string that describes the name of the command. This string
is used during error reporting and during debugging.

12.4.15 Sample SCSI/CAM Special Command Table
The example that follows shows a sample SCSIICAM Special Command Table with
one entry defined:

#include " .. /h/cdrorn.h"
#include " .. /h/rntio.h"
#include " .. /h/rzdisk.h"

#include " .. /h/cam.h"
#include " .. /h/carn_special.h"
#include " .. /h/dec_cam.h"
#include " .. /h/scsi_all.h"
#include " .. /h/scsi_direct.h"
#include " .. /h/scsi_rodirect. h"
#include " .. /h/scsi_sequential.h"
#include " .. /h/scsi_special.h"

extern int scrnn_MakeForrnatUnit(), scrnn_SetupForrnatUnit()i

/*
* Command Header for Direct-Access Command Table:
*/

struct special_header cam_DirectCmdsHdr =
(struct special_header *) 0, /* sph_flink */
(struct special_header *) 0, /* sph_blink */
cam_DirectCrnds, /* sph_cmd_table */
(BM(DTYPE_DIRECT) I BM(DTYPE_RODIRECT»,/* sph_device_type */
0, /* sph_table_flags */
"Direct Access Commands" /* sph_table_name */

} i

SCSI/CAM Special I/O Interface 12-7

1**

* *
*
*

Special Direct Access Command Table *
*

** ******************1
struct special_cmd cam_DirectCmds[] = {

) i

1*

{ SCSI_FORMAT_UNIT,

) ,

0,
(SPC_COPYIN I SPC_DATA_OUT),
DIR_FORMAT_OP,
BM(DTYPE_DIRECT),
0,
CAM_DIR_OUT,
FWRITE,
-1,
(60 * ONE_MINUTE),
(int (*)(» 0,
scmn_MakeFormatUnit,
scmn_SetupFormatUnit,
(caddr_t) 0,
"format unit"

1* spc_ioctl_cmd *1
1* spc_sub_command *1
1* spc_cmd_flags *1
1* spc_cmd_code*1
1* spc_device_type *1
1* spc_cmd_parameter *1
1* spc_cam_flags *1
1* spc_file_flags *1
1* spc_data_length *1
1* spc_timeout *1
1* spc_docmd *1
1* spc_mkcdb *1
1* spc_setup *1
1* spc_cdbp *1
1* spc_cmdp *1

* Define Special Commands Header & Table for Initialization Routine.
*1

struct special_header *cam_SpecialCmds = &cam_SpecialCmdsHdri

struct special header *cam SpecialHdrs[] =

{ &cam=GenericcmdsHdr, &cam_DirectCmdsHdr, &cam_AudioCmdsHdr,
&cam_SequentialCmdsHdr, &cam_MtCmdsHdr, °)i

12.5 SCSI/CAM Special I/O Argument Structure
A Special I/O Argument Structure is passed to the SCSI/CAM special I/O interface
to control processing of the I/O control command being executed. The structure
members provide information to process a special command for different SCSI
subsystems. Default settings and routines invoked by the SCSI/CAM special I/O
interface can be overridden by the calling routine. Table 12-1 shows the members
that are mandatory for the calling routine to set up, the members that are optional,
and the members that are used or filled in by the SCSI/CAM special I/O interface:

Table 12-1: SCSI/CAM Special I/O Argument Structure

Member Name

u_long sa_flags;

dev_t sa_dev;

u char sa_unit;

u_char sa_bus;

u_char sa_targeti

u_char sa_luni

int sa_ioctl_cmdi

12-8 SCSI/CAM Special I/O Interface

Type

M

M

U

M

M

M

M

Description

Flags to control command

Device major/minor number

Device logical unit nwnber

SCSI host adapter bus number

SCSI device target number
. SCSI logical unit· number

The 110 control command

Table 12-1: (continued)

Member Name Type

int sa_ioctl_scmdi C
caddr_t sa_ioctl_datai C
caddr_t sa_device_namei M

int sa_device_typei M

int sa_iop_lengthi I

caddr_t sa_iop_bufferi I

int sa_file_flagsi M

int sa_sense_length; 0

u_char sa_sense_residi I

caddr_t sa_sense_bufferi 0
int sa_user_lengthi I

caddr_t sa_user_buffer; I

struct buf *sa_bpi 0
CCB_SCSIIO *sa_ccbi 0
struct special_cmd *sa_spc; I

struct special_header *sa_sph; 0
u_long sa_cmd_parameter; I

int (*sa_error)(); 0
int (*sa_start)(); 0

int sa_data_length; I

caddr t sa_data_buffer; I

caddr_t sa_cdb~ointer; I

u char sa_cdb_length; I

u_char sa_cmd_flagsi I

u char sa_retry_counti I

u char sa_retrY_limit; 0

int sa_timeout; 0
int sa_xfer_residi I

caddr t sa_specifici 0

Description

The subcommand, if any

The command data pointer

Pointer to the device name

The peripheral device type

Parameters' buffer length

Parameters' buffer address

The file control flags

Sense data buffer length

Sense data residual count

Sense data buffer address

User data buffer length

User data buffer address

Kernel I/O request buffer

CAM control block buffer

Special command table entry

Special connnand table header

Connnand parameter, if any

The error report routine

The driver start routine

Kernel data buffer length

Kernel data buffer address

Pointer to the CDB buffer

Length of the CDB buffer

The special connnand flags

The current retry count

Times to retry this command

Timeout for this command

Transfer residual count

Driver-specific infonnation

Legend: M - Mandatory. Must be set up by the caller.
C - Command Dependent. Depends on special connnand.
o -= Optional. Optionally overrides defaults.
I -= Interface. Used or filled in by SCSI/CAM special I/O interface.
U - Unused. Not used by SCSI/CAM special I/O interface.

Several of the members marked as mandatory in Table 12-1 are set up initially by the
routine that allocates the Special 110 Argument Structure. The following members
are initialized by the allocation routine: sa_bus; sa_target; sa_lun;
sa_unit (same as target); sa_retry_limit (set to 30); and sa_start (set to
xpt_action).

SCSI/CAM Special I/O Interface 12-9

Fields that are identified as optional in Table 12-1 can be defined by the caller to
override some of the defaults used by the SCSI/CAM special I/O interface. The
following table describes the defaults used by the SCSI/CAM special I/O interface:

Member Name

sa_sense_length

sa_ccb

sa_timeout

12.5.1 The sa_flags Member

Default

Set to DEC_AUTO_SENSE_SIZE,
which is defined in
/usr/sys/h/dec_cam.h.

Sense buffer in SCSI/CAM
Peripheral Device Driver Working
Set Structure.

Allocated as needed for data
movement commands.

Allocated by the CAM
xpt _ ccb _ alloc routine.

Special interface error report
routine.

Uses the CAM xpt_action
routine.

Uses the timeout value from the
SCSI/CAM Special Command
Table entry.

Is not set up or used by
SCSI/CAM special I/O interface.

This member is used to control the actions of the SCSI/CAM special I/O interface.
The low order five bits of this member can be set by the calling routine. All other
bits in this member are reserved. The table that follows shows the control flags that
can be set by the calling routine:

Flag Name Description

SA_NO_ERROR_RECOVERY Do not perfonn error recovery.

SA_NO_ERROR_LOGGING Do not log error messages.

SA_NO_SLEEP_INTR Do not allow sleep interrupts.

SA_NO_SIMQ_THAW Leave SIM queue frozen on errors.

SA_NO_WAIT_FOR_IO Do not wait for 110 to complete.

12.5.2 The sa_dey Member
This member contains the device major/minor number pair passed into the device
driver routines. It is used to fill in the bp _ dev member of the system I/O request
member.

12-10 SCSI/CAM Special I/O Interface

12.5.3 The sa_unit, sa_bus, sa_target, and sa_lun Members
These members are used to address the SCSI device to which the command is being
sent. The sa unit member is not used, but has been included for device drivers
that implement logical device mapping.

12.5.4 The sa_ioctl_ cmd Member
This member contains the I/O control command to be processed. This command
usually maps directly to a SCSI I/O Command, but that is not necessary. For
example, the Digital-specific SCSI_GET_SENSE command returns the sense data
from the last failing command. A REQUEST SENSE command is not issued to the
device, because autosense is assumed to have been enabled on the failing command,
and the sense data is part of the common Peripheral Device Structure.

12.5.5 The sa_ioctl_scmd Member
This member must be filled in for special commands implemented with a
subcommand code. For example, magnetic tape I/O control commands have both an
I/O control command code and a subroutine command code.

12.5.6 The sa_ioctl_data Member
An I/O parameters buffer is required if the I/O control command transfers data to and
from the kernel. If the request came from an application program, this buffer is
normally passed into the driver ioctl routine.

12.5.7 The sa_device_name Member
This member contains a pointer to the device name string that is used when reporting
device errors.

12.5.8 The sa_device_type Member
This member contains the device type member from the Inquiry data. This member
controls the SCSI/CAM Special Command Tables and the entries within each
command table that are searched for the SCSI/CAM special I/O command being
issued.

12.5.9 The sa_lop_length and sa_iop_buffer Members
These members are used internally by the SCSI/CAM special I/O interface when
processing a command. If I/O would normally be performed directly to the I/O
parameters buffer because no other buffer was set up, then a kernel buffer is allocated
and set up in these members.

12.5.10 The sa_file_flags Member
This member contains the file flags passed into the device driver routines. The flags
describe access control bits associated with the device. The file access flags are
defined in the /usr/sys/h/file. h file.

SCSI/CAM Special 1/0 Interface 12-11

12.5.11 The sa_sense_length and sa_sense_buffer Members

These members set up the sense buffer and expected sense data length that are used
by autosense when device errors occur. If these members are not set up by the
calling routine, then the SCSIICAM special 110 interface uses the sense buffer
allocated in the SCSIICAM Peripheral Device Driver·Working Set Structure that is
pointed to by the SCSI 110 CCB.

12.5.12 The sa_user _length and sa_user _buffer Members

These members are set up by command setup routines to describe the user buffer and
user data length required by a command. Requests from application programs that
pass a user buffer and length in the 1/0 parameter buffers require a setup routine to
copy this information into those members. The SCSIICAM special 110 interface
checks access and locking on this address range and sets up the address and length in
the SCSI 110 CCB for the command.

12.5.13 The sa_bp Member

This member contains a pointer to a system 110 request buffer for commands that
perform data movement directly to user address space. A system buffer is not
required if a kernel data buffer is used for 110. If the calling routine does not pass a
previously allocated request buffer in this member, and the SCSIICAM special 110
interface determines that the 110 requires one based on the 110 buffer address, then a
request buffer is allocated and deallocated automatically by the SCSIICAM special
110 interface.

12.5.14 The sa_ccb Member

This member contains a pointer to the SCSI 110 CCB for a command. If the calling
routine does not specify a SCSI 110 CCB in this member, then the SCSIICAM
special 110 interface automatically allocates and deallocates a SCSI 110 CCB for the
command.

12.5.15 The special_ cmd Member

This member is used internally by the SCSIICAM special 110 interface to save the
SPECIAL_ CMD after a command is located.

12.5.16 The speCial_header Member
This member can be used by the calling routine to specify the SCSIICAM Special
Command Table to search for the special command. This lets device drivers restrict
the SCSIICAM Special Command Tables that are searched. If this member is not
used, then all the SCSIICAM Special Command Tables in the list are searched for an
entry that matches the special command being processed.

12.5.17 The sa_cmd_parameter Member

This member is used to store the command parameter, if any, from the command
entry associated with this special command. This member is used by special support
routines when setting up members for a particular COB.

12-12 SCSI/CAM Special I/O Interface

12.5.18 The sa_error Member
This member contains the routine to be invoked when an error condition is detected.
If not specified, a SCSI/CAM special 110 interface support routine handles the error
condition. Otherwise, the routine is called as follows:

status = (*sap->sa_error)(ccb, sense);

This member can be specified for drivers requiring specialized error handling and for
specific error logging. The SCSIICAM special 110 interface's error logging uses the
mprintf facility to report errors. Both sense key and CAM status members are
logged.

12.5.19 The sa_start Member
This member contains the routine that starts processing the SCSI liD CCB. If not
specified, the CAM xpt_action routine is used. The routine is invoked as
follows:

(void) «sap->sa_start) (ccb);

12.5.20 The sa_data_length and sa_data_buffer Members
These members are used internally by the SCSIICAM special liD interface to store
the address and length of an additional kernel buffer required for a command. These
members are usually initialized by the resulting value of the Special Command Entry
Structure member, spc_data_length, but can be used by SCSIICAM special 110
command developers if needed.

12.5.21 The sa_cdb_pointer Member
This member is used internally by the SCSIICAM special 110 interface to save a
pointer to the COB for this special command. This member may point to a prototype
COB; to a driver-allocated COB buffer, if the CAM_COB_POINTER flag is set in
CCB header; or to the COB buffer allocated within the SCSI 110 CCB. This member
is set up with the COB buffer address before the Special Command Header Structure
make COB routine is invoked as follows:

status = (*spc->spc_mkcdb) (sap, cdbp);

12.5.22 The sa_cdb_length Member
This member is used to specifiy the size in bytes of the COB required by a SCSI
command. If the Special Command Header Structure make COB routine does not set
up this member, then the SCSI Group Code is decoded to determine the length.

12.5.23 The sa_cmd_flags Member
This member is initialized from the Special Command Header Structure
spc_cmd_flags member so SCSIICAM special liD command support routines
have easy and quick access to the flags.

SCSI/CAM Special I/O Interface 12-13

12.5.24 The sa_retry _count Member
This member contains the number of retrys that were required to successfully
complete the request. It is filled in by the SCSIICAM special 110 interface after
processing the command.

12.5.25 The sa_retry _limit Member
This member contains the maximum number of times a command is retried. The
only retries automatically handled by the SCSIICAM special 110 interface are a sense
key of Unit Attention~ or a SCSI bus status of Bus Busy or Reservation Conflict. All
other· error conditions must be handled by the calling routine.

12.5.26 The sa_timeout Member

This member contains the timeout value~ in seconds~ to use with the command being
processed. This member can be specified by the calling routine. If it is not specified~
the timeout value is taken from the Special Command Entry Structure. This member
is used to initialize the cam _ timeou t member of the SCSI 110 CCB before issuing
the command.

12.5.27 The sa_xfer _resid Member
This member contains the residual byte count of data movement commands. This
member is copied from the cam_res id member of the SCSI 110 CCB before
returning to the caller.

12.5.28 The sa_specific Member
This member is not set up or used by the SCSIICAM special 110 interface. It
provides a mechanism for device driver code to pass driver-dependant infonnation to
SCSIICAM special 110 command support routines. The SCSIICAM peripheral driver
common routine ccmn_DoSpecialCmd passes the pointer to the Peripheral Device
Structure in this member.

12.5.29 Sample Function to Create a COB
The following sample function illustrates how to use the SCSIICAM special 110
interface to create a CDB for a SCSI FORMAT_UNIT command:

1***

* *
* scmn_MakeFormatUnit() - Make Format unit Command Descriptor Block.*

*
* Inputs:

*
*
* Return Value:

*
*

sap - Special command argument block pointer.
cdbp - Pointer to command descriptor block.

Returns 0 for SUCCESS, or error code on failures.

*
*
*
*
*
*
*

***1
int
scmn_MakeFormatUnit (sap, cdbp)
register struct special_args *sap; m
register struct dir_format_cdb6 *cdbp; ~
{

register struct special_cmd *spc = sap->sa_spc; ~

12-14 SCSI/CAM Special 110 Interface

register struct format_params *fp; i

fp = (struct format_params *) sap->sa_iop_buffer;
cdbp->opcode = (u char) spc->spc cmd code;
if (fp->fp_defect; == VENDOR_DEFECTS) { ~

cdbp->fmt_data = 1;
cdbp->cmp_1ist = 1;

else if (fp->fp_defects == KNOWN_DEFECTS) {
cdbp->fmt_data = 1;
cdbp->cmp_list = 0;

else if (fp->fp_defects -= NO_DEFECTS) (
cdbp->fmt_data = 0;
cdbp->cmp_list = 0;

cdbp->defect_list_fmt = fp->fp_format; i
cdbp->vendor_specific = fp->fp_pattern;
cdbp->interleave1 0;
cdbp->interleaveO = fp->fp_interleave;
return (SUCCESS);

jj) This line declares a register structure pointer to a Special I/O Argument Structure
that controls processing of the I/O command. The Special I/O Argument
Structure is defined in the /usr/sys/h/cam_special. h file.

f2I This line declares a register structure pointer to a structure containing the fonnat
for a 6-byte COB. The structure is defined in the
/usr/sys/h/scsi_direct. h file.

[3J This line declares a register structure pointer to a Special I/O Control Commands
Structure that saves the SPECIAL_CMO after it is located in the sa_spc
member of the Special I/O Argument Structure. The Special I/O Control
Commands Structure is defined in the /usr/sys/h/cam_special . h file.

~ This line declares a register structure pointer to a structure containing the fonnat
parameters for a SCSI FORMAT UNIT command. The structure is defined in the
/usr/sys/h/rzdisk. h file.

15I This section tests the contents of the fp defects member of the fonnat
parameters structure to determine the contents of the fmt_data and cmp_list
members of the dir_format_cdb6 structure.

I§I This section assigns the contents of the dir_format_cdb6 members to the
equivalent members of the format_params structure.

12.5.30 Sample Function to Set Up Parameters
The following sample function illustrates how to use the SCSI/CAM special I/O
interface to set up parameters for a SCSI FORMA T _UNIT command:

/**

* *
* scmn_setupFormatUnit() - Set up Format Unit Parameters. *
*
* Inputs:

*
*
* Return Value:

*
*

sap - Special command argument block pointer.
data = The address of input/output arguments.

Returns 0 for SUCCESS, or error code on failures.

*
*
*
*
*
*
*

**/
int

SCSI/CAM Special 110 Interface 12-15

scmn_SetupFormatUnit (sap, data)
register struct special_args *sapi m
caddr_t data;

struct form2_defect_list_header defect_header; ~
register struct form2 defect list header *ddh = &defect_header;
register struct format_param; *fp~ ~

fp = (struct format_params *) data;
sap->sa_user_buffer = (caddr_t) fp->fp_addri ~

/*
* For diskettes, there are no defect lists.
*/

if («sap->sa_user_length = fp->fp_length) == 0) &&
(fp->fp_defects == NO_DEFECTS)) {

sap->sa_cmd_flags &= -(SPC_INOUT I SPC_DATA_INOUT);
return (SUCCESS);

/*
* Ensure the defect list address is valid (user address).
*/
if (« sap- > sa_flags & SA_SYSTEM_REQUEST) == 0) &&

1 IS_KUSEG(fp->fp_addr)) {
return (EINVAL);

/*
* The format parameters structure is not set up with the length
* of the defect lists as it should be. Therefore, we must copy
* in the defect list header then calculate the defect list length.

*/
if (copyin «caddr_t)fp->fp_addr, (caddr_t)ddh, sizeof(*ddh» 1= 0)

return (EFAULT);

sap->sa_user_length = (int) ((ddh->defect_lenl« 8) +
ddh->defect_lenO + sizeof(*ddh));

return (SUCCESS);

(j] This line declares a register structure pointer to a Special 110 Argument Structure
that controls processing of the I/O command. The Special I/O Argument
Structure is defined in the /usr/sys/h/cam_special. h file.

[2J This line declares a structure pointer to a structure containing the fonnat defect
list header for a SCSI FORMAT UNIT command. The structure is defined in the
/usr/sys/h/rzdisk. h file.

(3) This line declares a register structure pointer to a structure containing the fonnat
parameters for a SCSI FORMAT UNIT command. The structure is defined in the
/usr/sys/h/rzdisk. h file.

~ This line assigns the user buffer data address to the defect list address.

12.6 SCSI/CAM Special I/O Control Command
A SCSI/CAM special liD control command has been defined to provide a single
standard method of implementing new SCSIICAM special liD commands. A
subcommand member is used to determine the specific SCSI command being issued.

12-16 SCSI/CAM Special I/O Interface

The SCSI/CAM special I/O control command structure can be used both in porting
applications using existing SCSI I/O control commands and in implementing new
SCSI commands. Applications can be modified to use this structure to gain control
over subsystem processing. For example, the SCSI/CAM special I/O command flags
can be set to control error recovery and error reporting; sense data can be returned
automatically by specifying a sense buffer address and length; and the command
timeout and retry limit can be specified.

A member in the Special I/O Control Commands Structure must be initialized to zero
if a default value is desired. A nonzero member is used to override the default value.

The SCSI I/O control command and its associated structure and definitions are
included in the file /usr/sys/h/scsi special. h. The scsi special
structure is defined as follows: - -

/*
* structure for Processing Special I/O Control Commands.
*/

struct scsi_special {
u_long sp_flags;
dev_t sp_dev;
u_char sp_unit;
u_char sp_bus;
u_char sp_target;
u_char sp_lun;

} i

int sp_sub_command;
u_long sp_cmd_parameter;
int sp_iop_length;
caddr_t sp_iop_bufferi
u_char sp_sense_lengthi
u_char sp_sense_residi
caddr_t sp_sense_bufferi
int sp_user_lengthi
caddr_t sp_user_buffer;
int sp_timeouti
u_char sp_retry_counti
u_char sp_retry_limiti
int sp_xfer_residi

/* The special command flags */
/* Device major/minor number */
/* Device logical unit number */
/* SCSI host adapter bus number */
/* SCSI device target number */
/* SCSI logical unit number */
/* The subcommand */
/* Command parameter (if any) */
/* Parameters buffer length */
/* Parameters buffer address */
/* Sense data buffer length */
/* Sense data residual count */
/* Sense data buffer address */
/* User data buffer length */
/* User data buffer address */
/* Timeout for this command */
/* Retrys performed on command */
/* Times to retry this command */
/* Transfer residual count */

This structure is used with the following SCSI Special I/O Control Conunand:

#define SCSI SPECIAL _IOWR('p', 100, struct scsi_special)

12.6.1 The sp_flags Member

This member controls the actions of the SCSI/CAM special I/O interface. The low
order three bits can be set by the calling routine. The other bits are reserved for use
by SCSI/CAM peripheral drivers and the SCSI/CAM special I/O interface routines.
The bits that can be set by the calling routine are described as follows:

Flag Name Description

SA NO ERROR_RECOVERY Do not perfonn error recovery.

SA_NO_ERROR_LOGGING Do not log error messages.

SA_NO_SLEEP_INTR Do not allow sleep interrupts.

SCSI/CAM Special 1/0 Interface 12-17

12.6.2 The sp_dev, sp_unlt, sp_bus, sp_target, and sp_lun Members
These members pass the device major/minor number pair and the device bus, target,
LUN, and unit information to the SCSI/CAM special I/O interface when the I/O
control command is not being issued to a SCSI/CAM peripheral device driver. These
members provide the necessary hooks to allow software pseudodevice drivers, such
as the User Agent driver, to send requests to the SCSI/CAM special I/O interface.

12.6.3 The sp_sub_command Member
This member contains the SCSI/CAM special I/O subcommand code of the SCSI
command to execute. This member can also be defined as an I/O control command
to support backwards compatibility with preexisting SCSI I/O control commands.
The SCSI/CAM special I/O interface detects an I/O control command, as opposed to
a subconulland code, and coerces the arguments into the appropriate fonnat for
processing by the support routines associated with that I/O control command. The
predefined subcommand codes are listed in the file
/usr/sys/h/scsi_special.h.

12.6.4 The sp_cmd_parameter Member
This member contains the command parameter, if any, for the SCSI special I/O
command being issued. This parameter is specific to the special command
processing routines and is not used directly by the SCSI/CAM special I/O interface
routines.

12.6.5 The sp_iop_length and sp_iop_buffer Members
These members contain the I/O parameters buffer and length for those commands that
require additional parameters. These members are used by the special command
processing routines to obtain and set up additional infonnation prior to issuing the
SCSI command. For example, the SCSI FORMAT_UNIT I/O control command
passes a format_params structure that describes the fonnat, length, pattern, and
interleave information for the defect list. This infonnation is used by the
scmn_MakeFormatunit support routine when creating the CDB for this
command.

12.6.6 The sp_sense_length, sp_sense_resid, and sp_sense_buffer
Members
These members contain the buffer, length, and residual byte count for the sense data
that is returned when device errors occur. If these members are specified, then the
last sense data is saved in the Peripheral Device Structure from which it can be
obtained by the Digital-specific SCSI_GET_SENSE I/O control command.

12.6.7 The sp_user_length and sp_user_buffer Members
These members contain the user buffer and length for those commands that require
them. The SCSI/CAM special I/O interface performs verification, locking, and
unlocking of the user pages when processing the command.

12-18 SCSI/CAM Special 1/0 Interface

12.6.8 The sp_timeout Member

This member can be specified to override the default timeout, in seconds, which is
usually taken from the Special Command Entry Structure.

12.6.9 The sp_retry_count Member

This member contains the number of retrys that were required to successfully
complete the request. It is filled in by the SCSIICAM special liD interface after
processing the command.

12.6.10 The sp_retry_limit Member

This member contains the maximum number of times a command is retried. The
only retries automatically handled by the SCSI/CAM special liD interface are a sense
key of Unit Attention, or a SCSI bus status of Bus Busy or Reservation Conflict. All
other error conditions must be handled by the calling routine.

12.6.11 The sp_xfer _resid Member

This member is filled in with the transfer residual byte count when a command
completes. The SCSIICAM special liD interface copies the cam_resid member of
the SCSI liD CCB to this member before completing the request.

12.6.12 Sample Function to Create an 1/0 Control Command

The following sample function illustrates how to use the SCSIICAM special liD
interface to create an liD control command:

/***~

* *
* Doloctl() Do An I/O Control Command. *
* ~
* Description: *

*
* This routine issues the specified I/O control command to the

* file descriptor associated with the CD-ROM device driver.

*
* Inputs:

*
*
*
* Return Value:

*
*

cmd = The I/O control command.
argp The command argument to pass.
msgp = The message to display on errors.

Returns 0 / -1 = SUCCESS / FAILURE.

*
*
*
*
*
*
*
*
*

**/
int
Doloctl (cmd, argp, msgp)
int cmdi
caddr t argpi
caddr_t msgpi
{

int statusi
#if defined(CAM)

struct scsi_special special_cmdi ffi
register struct scsi special *sp = &special cmd;
register struct extended_sense *esi ~ -

es = (struct extended sense *)SenseBufPtri

SCSI/CAM Special I/O Interface 12-19

bzero «char *) sp, sizeof(*sp»;
bzero «char *) es, sizeof(*es»;
sp->sp_sub_command = cmd; ~
sp->sp_sense_length = sizeof(*es);
sp->sp_sense_buffer = (caddr_t) es;
sp->sp_iop_length = «cmd & -(_IOC_INOUTI_IOC_VOID» » 16);
sp->sp_iop_buffer = argp;
if «status = ioctl (CdrFd, SCSI_SPECIAL, sp» < 0) { ~

perror (msgp);
if (es->snskey)

cdbg_DumpSenseData (es);

}
#else 1* Idefined(CAM) *1

if «status = ioctl (CdrFd, cmd, argp» < 0) {
perror (msgp);

}
#endif /* defined(CAM) */

return (status);

[1] This line declares a structure to process a special 110 control conunand. The
scsi special structure is defined in the /usr/sys/h/scsi special. h
~. - -

12I This line declares a structure defining the extended sense fonnat for a REQUEST
SENSE command. The extended sense structure is defined in the
/usr/sys/h/rzdisk . h file. -

[3J This section assigns the program parameters to the special_cmd members.

~ This is a standard 110 control call issued from application code. The
SCSI_SPECIAL argument is defined in the /usr/sys/h/scsi_special. h
file.

12.7 Other Sample Code
This section contains other driver code samples that use the SCSIICAM special 110
interface.

12.7.1 Sample Code to Open a Device

The following sample code illustrates how to use the SCSIICAM special liD
interface to open a CDROM device from a device driver:

/**

* *
* cdrom_open() - Driver Entry Point to Open CD-ROM Device.

*
* Inputs: dev - The device major/minor number pair.

* flags - The file open flags (read/write/nodelay).

*
* Outputs: Returns 0 for Success or error code on Failure.

*

*
*
*
*
*
*
*

**/
cdrom_open (dev, flags)
dev_t dey;
int flags;
{

register PDRV_DEVICE *pd; m
DIR_READ_CAP_DATA read_capacity; ~

12-20 SCSI/CAM Special 110 Interface

pd = GET_PDRV_PTR(dev); ~
status = cdrom_read_capacity (pd, capacity, flags);

return (status);

/**

*
* cdrom_read_capacity() - Obtain Disk Capacity Information.

*
* Inputs:

*
*
*
* Outputs:

*

pd = Pointer to peripheral driver structure.
capacity = Pointer to read capacity data buffer.
flags = The file open flags.

Returns 0 for Success or error code on Failure.

*
*
*
*
*
*
*
*
*

**/
int
cdrom_read_capacity (pd, capacity, flags)
PDRV_DEVICE *pd;
DIR_READ_CAP_DATA *capacity;
int flags;

int status;

PRINTD(DEV_BUS_ID(pd->pd_dev), DEV_TARGET(pd->pd_dev),
DEV_LUN(pd->pd_dev), CAMD_CDROM, ~

("[%d/%d/%d] cdrom_read_capacity: ENTRY - pd = Ox%x, \
capacity = Ox%x, flags = Ox%xO,

DEV_BUS_ID(pd->pd_dev), DEV_TARGET(pd->pd_dev),
DEV_LUN(pd->pd_dev), pd, capacity, flags»;

bzero «char *)capacity, sizeof(*capacity»;

status = ccmn_SysSpecialCmd (pd->pd_dev, SCSI_READ_CAPACITY, ~
(caddr_t) capacity, flags, (CCB_SCSIIO *) 0, SA_NO_ERROR_LOGGING);

PRINTD(DEV_BUS_ID(pd->pd_dev), DEV_TARGET(pd->pd_dev),
DEV_LUN(pd->pd_dev), CAMD_CDROM,
("[%d/%d/%d] cdrom_read_capacity: EXIT - status - %d (%s)O,
DEV BUS ID(pd->pd dey), DEV TARGET(pd->pd dey),
DEV=LUN(pd->pd_de;), status~ cdbg_systemstatus(status»); ~

return (status);

[1J This line assigns a register to a Peripheral Device Structure pointer for the device
to be opened. The Peripheral Device Structure is defined in the
/usr/sys/h/pdrv . h file.

I2J This line declares a structure to contain the capacity data returned for the device.
The DIR_READ_CAP _DATA structure is defined in the
/usr/sys/h/scsi_direct. h file.

I3J This line calls the GET _PDRV _P1R macro to return a pointer to the Peripheral
Device Structure for the device. The GET_PDRV _PTR macro is defined in the
/usr/sys/h/pdrv. h file.

SCSI/CAM Special I/O Interface 12-21

[jJ This section uses the bus, target, and lun information to be printed if the
CAMD_CDROM flag is set. The CAMD_CDROM flag is defined in the
/usr/sys/io/cam/cam_debug. h file.

151 This section calls the SCSIICAM peripheral common routine
ccmn_SysSpecialCmd, to issue the SCSI 110 command, passing the
major/minor device number pair for the device and the SCSI_READ _CAPACITY
ioctl conunand, which is defined in the /usr/sys/h/rzdisk. h file. It
sets the SA_NO_ERROR_LOGGING flag, which is defined in the
/usr/sys/h/cam special. h file for device drivers, and in the
/usr/sys/h/scsI_special. h file for application programs.

!§) This debug line calls the cdbg_SystemStatus routine, passing the status as
an argument.

12.7.2 Sample Code to Create a Driver Entry Point

The following sample code illustrates how to use the SCSIICAM special 110
interface to create a driver entry point for 110 control commands:

/***

* *
* cdrom_ioctl() - Driver Entry Point for I/O Control Commands. *

* *
* Inputs:

*
*
*
*
* Outputs:

*

dev = The device major/minor number pair.
cmd = The I/O control command code.
data = The I/O parameters data buffer.
flags = The file open flags (read/write/nodelay).

Returns 0 for Success or error code on Failure.

*
*
*
*
*
*
*

***/
int
cdrom_ioctl (dev, cmd, data, flags)
dev_t dev;
register int cmd;
caddr_t data;
int flags;
(

register PDRV_DEVICE *pd; m
register DISK_SPECIFIC *cdisk;
register DEV_DESC *dd;
int status;

pd GET_PDRV_PTR(dev); ~
dd = pd->pd_dev_desc;
cdisk = (DISK_SPECIFIC *)pd->pd_specific;

switch (cmd) {

/* Process Expected I/O Control Commands */

default:
/*

* Process Special I/O Control Commands.
*/

status ccmn_DoSpecialCmd (dev, cmd, data, flags, ~
(CCB_SCSIIO *) 0, 0);

break;

12-22 SCSI/CAM Special I/O Interface

return (status);

[j] This section reserves registers for pointers to a Peripheral Device Structure and a
Device Descriptor Structure, both of which are defined in the
/usr/sys/h/pdrv . h file, and to a DISK_SPECIFIC structure, which is
defined in the /usr/sys/io/cam/cam_disk. h file.

I2J This line calls the GET _PDRV _PTR macro to return a pointer to the Peripheral
Device Structure for the device. The GET_PDRV _PTR macro is defined in the
/usr/sys/h/pdrv.h

I3J This section calls the SCSIICAM peripheral common routine,
ccmn_DoSpecialCmd, to issue the special liD command.

SCSI/CAM Special I/O Interface 12-23

Header Files Used by Device Drivers A

This appendix contains the following:

• A list of header files used by all device drivers

• A list of header files used by SCSI/CAM peripheral device drivers

• The contents of the /usr/sys/h/cam. h file.

Table A-I lists the header files used by all SCSI device drivers, with a short
description of the contents of each. For convenience, the full path name for the file
is given and the files are listed in alphabetical order. However, device driver code
should be written to include header files by specifying the relative path name instead
of the full path name. For example, /usr/sys/h/buf. h, is the full path name
for the file buf. h , but device driver code to include buf. h should be written as
follows:

#include .. /h/buf.h

Table A-1: Header Flies Used by Device Drivers

Header File

/usr/sys/h/buf.h

/usr/sys/h/elist.h

/usr/sys/h/eonf.h

/usr/sys/h/devio.h

/usr/sys/h/dir.h

/usr/sys/h/errno.h

/usr/sys/h/file.h

Contents

Defines the buf structure used to pass 110
requests to the strategy routine of a
block driver.

Defines the ebloek structure used to hold
elist data.

Defines the bdevsw (block device
switch), edevsw (character device
switch), and linesw (tty control line
switch) structures. This file is included in
the source file
/usr/sys/maehine/eommon/eonf.e.

Defines common structures and definitions
for device drivers and ioetl.

Defines structures and macros that operate
on directories.

Defines the error codes returned to a user
process by a driver. The codes EIO,
ENXIO, EACCES, EBUSY, ENODEV, and
EINVAL are used by driver routines.

Defines I/O mode flags supplied by user
programs to open and fentl system
calls.

Table A-1: (continued)

Header File Contents

/usr/sys/h/inode.h

/usr/sys/h/ioctl.h

/usr/sys/h/kernel.h

/usr/sys/h/map.h

/usr/sys/h/mbuf.h

/usr/sys/h/mtio.h

/usr/sys/h/param.h

/usr/sys/h/proc.h

/usr/sys/h/rzdisk.h

/usr/sys/h/scsi_all.h

/usr/sys/h/scsi_cdbs.h

/usr/sys/h/scsi_direct.h

/usr/sys/h/scsi_opcodes.h

/usr/sys/h/scsi~hases.h

/usr/sys/h/scsi_rodirect.h

Defines values associated with the generic
file system.

Defines commands for ioctl routines in
different drivers.
Defines global variables used by the kernel.

Defines structures associated with resource
allocation maps.

Defines constants related to memory
allocation and macros used for type
conversion.

Defines conmands and structures for
magnetic tape operations.

Defines constants and macros used by the
UL TRIX kernel.

Defines the proc structure, which defines
a user process. This file is not usually
included by device driver source files.

Definitions and data structures for SCSI
disks.

Definitions and data structures that apply to
all SCSI device types according to Chapter
7 of the SCSI-2 specification.
Definitions and data structures that apply to
Command Descriptor Blocks.

Definitions and data structures that apply to
all SCSI direct-access devices according to
Chapter 8 of the SCSI -2 specification.

Definitions of operation codes according to
Chapter 6 of the SCSI -2 specification.

Definitions of SCSI bus phases according to
Chapter 5 of the SCSI-2 specification.
Definitions and data structures that apply to
read-only direct-access devices according to
Chapter 13 of the SCSI 2 specification.

/usr/sys/h/scsi sequential.h
- Definitions and data structures that apply to all

SCSI sequential-access devices according to
Chapter 9 of the SCSI-2 specification.

/usr/sys/h/smp_lock.h

/usr/sys/h/systm.h

/usr/sys/h/time.h

A-2 Header Files Used by Device Drivers

Defines variables and structures for managing
locks for symmetric multiprocessing.
Defines global variables, such as the number of
entries in the block switch and the number of
character switch entries. It also defines the
structure of the system-entry table.

Defines structures and symbolic names used by
time-related routines and macros.

Table A-1: (continued)

Header File Contents

/usr/sys/h/tty.h

/usr/sys/h/types.h

/usr/sys/h/uio.h

/usr/sys/h/user.h

/usr/sys/h/vm.h

/usr/sys/h/v.mmac.h

Defines parameters and structures associated
with interactive tenninals; also defines the
c1 is t structure. This file can be included by
any device driver that uses the c1ist
structure.
Defines system data types and major and minor
device macros.
Definition of the uio structure, some symbolic
names, and an enumerated data type that can be
assigned the value urO_READ or
UrO_WRITE.

Defines the user structure that describes a
user process and passes infonnation about 110
requests to device drivers.
Contains a sequence of include statements that
includes all of the virtual memory-related files.
Including this file is a quick way of including
all of the virtual memory-related files.
Definitions for the vtokpfnum kernel routine.

/usr/sys/machine/common/cpuconf.h
Defines a variety of macros, constants, and
structures used by the system.

Table A-2 lists the header files used by SCSI/CAM peripheral device drivers, along
with a short description of the contents of each. For convenience, the full path name
for the file is given and the files are listed in alphabetical order.

Table A-2: Header Flies Used by SCSI/CAM Drivers

Header File

/usr/sys/h/cam.h

/usr/sys/h/cam_generic.h

/usr/sys/h/cam_109ger.h

/usr/sys/h/cam_special.h

/usr/sys/h/dec_cam.h

/usr/sys/h/pdrv.h

/usr/sys/h/scsi_special.h

Contents

Definitions and data structures for the CAM
subsystem interface.
Examples of definitions and data structures
for a CAM generic device driver.
Definitions and data structures for CAM
subsystem error logging.
Definitions for the SCSIICAM special I/O
interface.
Digital-spcific definitions and data
structures for the CAM routines.
Definitions and data structures for the
SCSI/CAM common routines.
Definitions and data structures for the
SCSI/CAM special I/O control interface.

Header Files Used by Device Drivers A-3

Table A-2: (continued)

Header File Contents

/usr/sys/h/uagt.h

/usr/sys/h/xpt.h

/usr/sys/io/cam/cam_config.h

/usr/sys/io/cam/cam_debug.h

/usr/sys/io/cam/cam_disk.h

/usr/sys/io/cam/cam_errlog.h

/usr/sys/io/cam/cam_tape.h

/usr/sys/io/cam/ccfg.h

/usr/sys/io/cam/dme.h

Definitions and data structures for the User
Agent Device Driver (UAGT) that controls
access to the CAM subsystem.

Definitions and data structures for the
Transport Layer, XPT, in the CAM
subsystem.

SCSI/CAM peripheral device driver
configuration definitions.

CAM debugging macros.

Definitions and data structures for
SCSI/CAM disk devices.

CAM error logging macros.

Definitions and data structures for
SCSI/CAM tape devices.

Definitions and data structures for the
Configuration driver module in the CAM
subsystem.

Definitions and data structures needed by
the CAM SIM Data Mover Engine (DME).

/usr/sys/io/cam/dme 3min 94 dma.h
- - - Definitions and data structures needed by the

CAM SIM Data Mover Engine (DME) for the
DEC station 5000, Model 100 series.

/usr/sys/io/cam/dme~max_sii_ram.h

Definitions and data structures needed by the
CAM SIM Data Mover Engine (DME) for the
DEC station 2100 and DEC station 3100.

/usr/sys/io/cam/dme turbo 94 ram.h
- - - Definitions and data structures needed by the

CAM SIM Data Mover Engine (DME) for the
DEC station 5000, Model 200 series.

/usr/sys/io/cam/sim. h Definitions and data structures needed by the
CAM SIM-related files.

/usr/sys/io/cam/sim94 . h Definitions and data structures needed by the
NCR53C94 SIM module.

/usr/sys/io/cam/simcirq. h Definitions and data structures needed by the
circular-Queue-related functions contained in the
Digital CAM subsystem.

/usr/sys/io/cam/sim_common. h Definitions common to all the SIM-related
source files.

/usr/sys/io/cam/sim_config. h CAM SIM subsystem configuration definitions.

/usr/sys/io/cam/sim_sii. h Definitions and data structures needed by the
Digital SII SIM module.

/usr/sys/io/cam/sim_target. h Definitions needed for target-mode operation of
the SIM.

A-4 Header Files Used by Device Drivers

Table A-2: (continued)

Header File Contents

/usr/sys/io/crum/sim_xpt.h Macros and definitions that are specific to the
SIM XPT component of the USCA subsystem.

The contents of /usr/sys/h/cam. h follow:

/* cam.h Version 1.09 Jul. 18, 1991 */

/* This file contains the definitions and data structures for the CAM
Subsystem interface. The contents of this file should match what
data structures and constants that are specified in the CAM document,
X3T9.2/90-186 Rev 2.5 that is produced by the SCSI-2 committee.

/* --- */

/* Defines for the XPT function codes, Table 8-2 in the CAM spec. */

/* Common function commands, OxOO - OxOF */
#define XPT_NOOP OxOO /* Execute Nothing */
#define XPT_SCSI_IO Ox01 /* Execute the requested SCSI 10 */
#define XPT_GDEV_TYPE Ox02 /* Get the device type information */
#define XPT_PATH_INQ Ox03 /* Path Inquiry */
#define XPT_REL_SIMQ Ox04 /* Release the SIM queue that is frozen */
#define XPT_SASYNC_CB Ox05 /* Set Async callback parameters */
#define XPT_SDEV_TYPE Ox06 /* Set the device type information */

/* XPT SCSI control functions, Ox10 - Ox1F */
#define XPT_ABORTOx10 /* Abort the selected CCB */
#define XPT_RESET_BUS Ox11 /* Reset the SCSI bus */
#define XPT_RESET_DEV Ox12 /* Reset the SCSI device, BDR */
#define XPT_TERM_IO Ox13 /* Terminate the I/O process */

/* HBA engine commands, Ox20 - Ox2F */
#define XPT_ENG_INQ Ox20 /* HBA engine inquiry */
#define XPT_ENG_EXEC Ox21 /* HBA execute engine request */

/* Target mode commands, Ox30 - Ox3F */
#define XPT_EN_LUN Ox30 /* Enable LUN, Target mode support */
#define XPT_TARGET_IO Ox31 /* Execute the target 10 request */

#define XPT_FUNC Ox7F /* TEMPLATE */
#define XPT_VUNIQUE Ox80 /* All the rest are vendor unique commands */

/* -- */

/* General allocation length defines for the CCB structures. */

#define IOCDBLEN 12 /* Space for the CDB bytes/pointer */
#define VUHBA 14 /* Vendor Unique HBA length */
#define SIM_ID 16 /* ASCII string len for SIM ID */
#define HBA_ID 16 /* ASCII string len for HBA ID */
#define SIM_PRIV50 /* Length of SIM private data area */

/* Structure definitions for the CAM control blocks, CCB's for the
subsystem. */

/* Common CCB header definition. */
typedef struct ccb_header
{

/* The address of this CCB */

Header Files Used by Device Drivers A-5

u_short cam_ccb_len;
u char cam_func_code;

/* Length of the entire CCB */
/* XPT function code */

u_char cam_status; /* Returned CAM subsystem status */
u_char cam_hrsvdO; /* Reserved field, for alignment */
u_char cam_path_id; /* Path ID for the request */
u_char cam_target_id; /* Target device ID */
u_char cam_target_luni /* Target LUN number */
u_long cam_flags; /* Flags for operation of the subsystem */

CCB_HEADER;

/* Common SCSI functions. */

/* Union definition for the CDB space in the SCSI I/O request CCB */
typedef union cdb_un
{

u char *cam_cdb_ptr; /* Pointer to the CDB bytes to send */
u_char cam_cdb_bytes[IOCDBLEN]; /* Area for the CDB to send */

CDB_UN;

/* Get device type CCB */
typedef struct ccb_getdev
{

CCB_HEADER cam_chi
char *cam_inq_data;
u_char cam_pd_type;

CCB_GETDEV;

/* Header information fields */
/* Ptr to the inquiry data space */
/* Periph device type from the TLUN */

/* Path inquiry CCB */
typedef struct ccb_pathinq
{

CCB_HEADER cam_chi /* Header information fields */
u char cam_version_num; /* Version number for the SIM/HBA */
u_char cam_hba_inquiry; /* Mimic of INQ byte 7 for the HBA * /
u char cam_target_sprt; /* Flags for target mode support */
u_char cam_hba_misc; /* Misc HBA feature flags */
u_short cam_hba_eng_cnt; /* HBA engine count */
u_char cam_vuhba_flags[VUHBA]i /* Vendor unique capabilities */
u_long cam_sim_priv; /* Size ofSIM private data area */
u_long cam_async_flags; /* Event cap. for Async Callback */
u_char cam_hpath_id; /* Highest path ID in the subsystem */
u_char cam_initiator_id; /* ID of the HBA on the SCSI bus */
u_char cam_prsvdO; /* Reserved field, for alignment */
u_char cam_prsvdl; /* Reserved field, for alignment */
char cam_sim_vid[SIM_ID]; /* Vendor ID of the SIM */
char cam_hba_vid[HBA_ID]; /* Vendor ID of the HBA */
u_char *cam_osd_usage; /* Ptr for the OSD specific area */

CCB_PATHINQ;

/* Release SIM Queue CCB */
typedef struct ccb_relsim
{

CCB_HEADER cam_chi
CCB_RELSIMi

/* Header information fields */

/* SCSI I/O Request CCB */
typedef struct ccb_scsiio
{

CCB_HEADER cam_chi /* Header information fields */
u_char *cam_pdrv_ptri /* Ptr used by the Peripheral driver */
CCB_HEADER *cam_next_ccb; /* Ptr to the next CCB for action */
u_char *cam_req_mapi /* Ptr for mapping info on the Req. */
void (*cam_cbfcnp)(); /* Callback on completion function */
u_char *cam_data_ptr; /* Pointer to the data buf/SG list */
u_long cam_dxfer_leni /* Data xfer length */
u_char *cam_sense_ptr; /* Pointer to the sense data buffer */

A-6 Header Files Used by Device Drivers

u_char cam_sense_leni
u_char cam_cdb_leni
u_short cam_sglist_cnti
u_long cam_osd_rsvdOi
u_char cam_scsi_statusi
u_char cam_sense_residi
u_char cam_osd_rsvdl[21i
long cam_residi
CDB_UN cam_cdb_ioi

1* Num of bytes in the Autosense buf *1
1* Number of bytes for the CDB *1

1* Num of scatter gather list entries *1
1* OSD Reserved field, for alignment *1
1* Returned scsi device status *1
1* Autosense resid length: 2'5 comp */
1* OSD Reserved field, for alignment *1
1* Transfer residual length: 2's comp *1
1* Union for CDB bytes/pointer *1

u_long cam_timeouti 1* Timeout value *1
u_char *cam_msg_ptri 1* Pointer to the message buffer *1
u_short cam_msgb_leni 1* Num of bytes in the message buf *1
u_short cam_vu_flagsi 1* Vendor unique flags *1
u_char cam_tag_actioni 1* What to do for tag queuing *1
u_char cam_iorsvdO[31i 1* Reserved field, for alignment *1
u_char cam_sim_priv[SIM_PRIV 1i 1* SIM private data area *1

CCB_SCSIIOi

1* set Async Callback CCB *1
typedef struct ccb_setasync
{

CCB_HEADER cam_chi 1*
u_long cam_async_flagsi 1*
void (*cam_async_func)()i
u_char *pdrv_bufi 1*
u_char pdrv_buf_leni 1*

CCB_SETASYNCi

1* set device type CCB *1
typedef struct ccb_setdev
{

Header information fields *1
Event enables for Callback resp *1

1* Async Callback function address *1
Buffer set aside by the Per. drv *1
The size of the buffer *1

CCB_HEADER cam_chi
u_char cam_dev_typei

CCB_SETDEVi

/* Header information fields *1
1* Val for the dev type field in EDT *1

1* SCSI Control Functions. *1

1* Abort XPT Request CCB */
typedef struct ccb_abort
{

CCB_HEADER cam_chi 1* Header information fields *1
CCB_HEADER *cam_abort_chi 1* Pointer to the CCB to abort *1

CCB_ABORTi

1* Reset SCSI Bus CCB *1
typedef struct ccb_resetbus
{

CCB HEADER cam_chi
CCB_RESETBUSi

1* Header information fields *1

1* Reset SCSI Device CCB *1
typedef struct ccb_resetdev
{

CCB HEADER cam_chi
CCB_RESETDEVi

1* Header information fields *1

1* Terminate 1/0 Process Request CCB *1
typedef struct ccb_termio
{

1* Header information fields *1
CCB_HEADER *cam_terrnio_chi

CCB_TERMIOi

1* Target mode structures. *1

1* Pointer to the CCB to terminate */

Header Files Used by Device Drivers A-7

typedef struct ccb_en_lun
{

CCB_HEADER cam_chi
u_short cam_grp6_leni
u_short cam_grp7_leni
u_char *cam_ccb_listptri
u_short cam_ccb_listcnti

CCB_EN_LUNi

/* HBA engine structures. */

typedef struct ccb_eng_inq
{

CCB_HEADER cam_chi
u_short cam_eng_numi
u_char cam_eng_typei
u_char cam_eng_algoi
u_long cam_eng_memorYi

CCB_ENG_INQi

/* Header information fields */
/* Group 6 VU CDB length */
/* Group 7 VU CDB length */
/* Pointer to the target CCB list */
/* count of Target CCBs in the list */

/* Header information fields */
/* The number for this inquiry */
/* Returned engine type */
/* Returned algorithm type */
/* Returned engine memory size */

typedef struct cCb_eng_exec /* NOTE: must match SCSIIO size */
{

CCB_HEADER cam_chi /* Header information fields */
u_char *cam_pdrv_ptri /* Ptr used by the Peripheral driver */
u_long cam_engrsvdOi /* Reserved field, for alignment */
u_char *cam_req~api /* Ptr for mapping info on the Req. */
void (*cam_cbfcnp)()i /* callback on completion function */
u_char *cam_data_ptri /* Pointer to the data buf/SG list */
u_long cam_dxfer_leni /* Data xfer length */
u_char *cam_engdata_ptri /* Pointer to the engine buffer data */
u_char cam_engrsvdli /* Reserved field, for alignment */
u_char cam_engrsvd2i /* Reserved field, for alignment */
u_short cam_sglist_cnti /* Num of scatter gather list entries */
u_long cam_dmax_leni /* Destination data maximum length */
u_long cam_dest_leni /* Destination data length */
long cam_src_residi /* Source residual length: 2's comp */
u_char cam_engrsvd3[12]i /* Reserved field, for alignment */
u_long cam_timeouti /* Timeout value */
u_long cam_engrsvd4; /* Reserved field, for alignment */
u_short cam_eng_numi /* Engine number for this request */
u_short cam_vu_flagsi /* Vendor unique flags */
u_char cam_engrsvd5i /* Reserved field, for alignment */
u_char cam_engrsvd6[3]i /* Reserved field, for alignment */
u_char cam_sim_priv[SIM_PRIV]i /* SIM private data area */

CCB_ENG_EXECi

/* The CAM_SIM_ENTRY definition is used to define the entry points for
the SIMs contained in the SCSI CAM subsystem. Each SIM file will
contain a declaration for it's entry. The address for this entry will
be stored in the cam_conftbl[] array along will all the other SIM
entries. */

typedef struct cam_sim_entry
{

long (*sim_init)()i
long (*sim_action)();

CAM_SIM_ENTRYi

/* Pointer to the SIM init routine */
/* Pointer to the SIM CCB go routine */

/* -- */

/* Defines for the CAM status field in the CCB header. */

Itdefine CAM_REQ_INPROG OxOO /* CCB request is in progress */
Itdefine CAM_REQ_CMP OxOl /* CCB request completed w/out error */
Itdefine CAM_REQ_ABORTED Ox02 /* CCB request aborted by the host */

A-8 Header Files Used by Device Drivers

#define CAM_UA_ABORT Ox03 /* Unable to Abort CCB request */
#define CAM_REQ_CMP_ERR Ox04 /* CCB request completed with an err */
#define CAM_BUSY OxOS /* CAM subsystem is busy */
#define CAM_REQ_INVALID Ox06 /* CCB request is invalid */
#define CAM_PATH_INVALIDOx07 /* Path ID supplied is invalid */
#define CAM_DEV_NOT_THEREOx08 /* SCSI device not installed/there */
#define CAM_UA_TERMIO Ox09 /* Unable to Terminate I/O CCB req */
#define CAM_SEL_TIMEOUT OxOA /* Target selection timeout */
#define CAM_CMD_TIMEOUT OxOB /* Command timeout */
#define CAM_MSG_REJECT_RECOxOD /* Message reject received */
#define CAM_SCSI_BUS_RESETOxOE /* SCSI bus reset sent/received */
#define CAM_UNCOR_PARITYOxOF /* Uncorrectable parity err occurred */
#define CAM_AUTOSENSE_FAILOxlO /* Autosense: Request sense cmd fail */
#define CAM_NO_HBA Oxll /* No HBA detected Error */
#define CAM_DATA_RUN_ERROx12 /* Data overrun/underrun error */
#define CAM_UNEXP_BUSFREEOx13 /* Unexpected BUS free */
#define CAM_SEQUENCE_FAILOx14 /* Target bus phase sequence failure */
#define CAM_CCB_LEN_ERR OxlS /* CCB length supplied is inadequate */
#define CAM_PROVIDE_FAILOx16/* Unable to provide requ. capability */
#define CAM_BDR_SENT Ox17 /* A SCSI BDR msg was sent to target */
#define CAM_REQ_TERMIO Ox18 /* CCB request terminated by the host */

#define CAM_LUN_INVALID Ox38 /* LUN supplied is invalid */
#define CAM_TID_INVALID Ox39 /* Target ID supplied is invalid */
#define CAM_FUNC_NOTAVAILOx3A /* The requ. func is not available */
#define CAM_NO_NEXUS Ox3B /* Nexus is not established */
#define CAM_lID_INVALID Ox3C /* The initiator ID is invalid */
#define CAM_CDB_RECVD Ox3E /* The SCSI CDB has been received */
#define CAM_SCSI_BUSY Ox3F /* SCSI bus busy */

#define CAM_SIM_QFRZN Ox40 /* The SIM queue is frozen w/this err */
#define CAM_AUTOSNS_VALIDOx80 /* Autosense data valid for target */

Ox3F /* Mask bits for just the status # */

/* -- */

/* Defines for the CAM flags field in the CCB header. */

#define CAM_DIR_RESV OxOOOOOOOO /* Data direction (00: reserved) */
#define CAM_DIR_IN OxOOOOO040 /* Data direction (01: DATA IN) */
#define CAM_DIR_OUT OxOOOOO080 /* Data direction (10: DATA OUT) */
#define CAM_DIR_NONE OxOOOOOOCO /* Data direction (11: no data) */
#define CAM_DIS_AUTOSENSE OxOOOOO020 /* Disable autosense feature */
#define CAM_SCATTER_VALID OxOOOOOOlO /* Scatter/gather list is valid */
#define CAM_DIS_CALLBACK OxOOOOOO08 /* Disable callback feature */
#define CAM_CDB_LINKED Ox00000004 /* The CCB contains a linked CDB */
#define CAM_QUEUE_ENABLE Ox00000002 /* SIM queue actions are enabled */
#define CAM_CDB_POINTER OxOOOOOOOl /* The CDB field contains a pointer */

#define CAM_DIS_DISCONNECT Ox00008000 /* Disable disconnect */
#define CAM_INITIATE_SYNC OxOOO04000 /* Attempt Sync data xfer, and SDTR */
#define CAM_DIS_SYNC OxOOO02000 /* Disable sync, go to async */
#define CAM_SIM_QHEAD OxOOOOlOOO /* Place CCB at the head of SIM Q */
#define CAM_SIM_QFREEZE OxOOOO0800 /* Return the SIM Q to frozen state */
#define CAM_SIM_QFRZDIS OxOOOO0400 /* Disable the SIM Q frozen state */
#define CAM_ENG_SYNC OxOOOO0200 /* Flush resid bytes before cmplt */

#define CAM_ENG_SGLIST Ox00800000 /* The SG list is for the HBA engine */
#define CAM_CDB_PHYS OxOO400000 /* CDB pointer is physical */
#define CAM_DATA_PHYS Ox00200000 /* SG/Buffer data ptrs are physical */
#define CAM_SNS_BUF_PHYS OxOOlOOOOO /* Autosense data ptr is physical */
#define CAM_MSG_BUF_PHYS OxOO080000 /* Message buffer ptr is physical */
#define CAM_NXT_CCB_PHYS OxOOO40000 /* Next CCB pointer is physical */
#define CAM_CALLBCK_PHYS OxOOO20000 /* Callback func ptr is physical */

Header Files Used by Device Drivers A-9

#define CAM_DATAB_VALID Ox80000000 /* Data buffer valid */
#define CAM_STATUS_VALID Ox40000000 /* status buffer valid */
#define CAM_MSGB_VALID Ox20000000 /* Message buffer valid */
#define CAM_TGT_PHASE_MODE Ox08000000 /* The SIM will run in phase mode */
#define CAM_TGT_CCB_AVAIL Ox04000000 /* Target CCB available */
#define CAM_DIS_AUTODISC Ox02000000 /* Disable autodisconnect */
#define CAM_DIS_AUTOSRP Ox01000000 /* Disable autosave/restore ptrs */

/* -- */

/* Defines for the SIM/HBA queue actions. These value are used in the
SCSI I/O CCB, for the queue action field. [These values should match the
defines from some other include file for the SCSI message phases. We may
not need these definitions here.] */

#define CAM_SIMPLE_QTAG
#define CAM_HEAD_QTAG
#define CAM_ORDERED_QTAG

Ox20 /* Tag for a simple queue */
Ox21 /* Tag for head of queue */
Ox22 /* Tag for ordered queue */

/* -- */

/* Defines for the timeout field in the SCSI I/O CCB. At this time a
value of OxF-F indicates a infinite timeout. A value of OxO-O
indicates that the SIM's default timeout can take effect. */

#define CAM_TIME_DEFAULT
#define CAM_TIME_INFINITY

OxOOOOOOOO /* Use SIM default value */
OxFFFFFFFF /* Infinite timeout for I/O */

/* -- */

/* Defines for the Path Inquiry CCB fields. */

#define CAM_VERSIONOx25 /* Binary value for the current ver */

#define PI_MDP_ABLE
#define PI_WIDE_32
#define PI_WIDE_16
#define PI_SDTR_ABLE
#define PI_LINKED_CDB
#define PI_TAG_ABLE
#define PI_SOFT_RST

Ox80 /* Supports MDP message */
Ox40 /* Supports 32 bit wide SCSI */
Ox20 /* Supports 16 bit wide SCSI */
Ox10 /* Supports SDTR message */
Ox08 /* Supports linked CDBs */
Ox02 /* Supports tag queue message */
Ox01 /* Supports soft reset */

#define PIT_PROCESSOR Ox80 /* Target mode processor mode */
#define PIT_PHASEOx40 /* Target mode phase cog. mode */

#define PIM_SCANHILO Ox80 /* Bus scans from ID 7 to ID 0 */
#define PIM_NOREMOVE Ox40 /* Removable dev not included in scan */
#define PIM_NOINQUIRY Ox20 /* Inquiry data not kept by XPT */

/* -- */

/* Defines for Asynchronous Callback CCB fields. */

#define AC_FOUND_DEVICES Ox80 /* During a rescan new device found */
#define AC_SIM_DEREGISTER Ox40 /* A loaded SIM has de-registered */
#define AC_SIM_REGISTER Ox20 /* A loaded SIM has registered */
#define AC_SENT_BDR OxlO /* A BDR message was sent to target */
#define AC_SCSI_AEN Ox08 /* A SCSI AEN has been received */
#define AC_UNSOL_RESEL Ox02 /* A unsolicited reselection occurred */
#define AC_BUS_RESET OxOl /* A SCSI bus RESET occurred */

/* -- */

/* Typedef for a scatter/gather list element. */

A-10 Header Files Used by Device Drivers

typedef struct sg_elem
{

u char *cam_sg_address; /* Scatter/Gather address */
u_long cam_sg_count; /* Scatter/Gather count */

SG_ELEM;

/* -- */

/* Defines for the HBA engine inquiry CCB fields. */

#define EIT_BUFFER OxOO /* Engine type: Buffer memory */
#define EIT_LOSSLESS Ox01 /* Engine type: Lossless compression */
#define EIT_LOSSLY Ox02 /* Engine type: Lossly compression */
#define EIT_ENCRYPT Ox03 /* Engine type: Encryption */

#define EAD_VUNIQUE OxOO /* Eng algorithm ID: vendor unique */
#define EAD_LZ1V10xOO /* Eng algorithm ID: LZ1 var. 1*/
#define EAD_LZ2V10xOO /* Eng algorithm ID: LZ2 var. 1*/
#define EAD_LZ2V20xOO /* Eng algorithm ID: LZ2 var. 2*/

/* --
/*

/* Unix OSD defines and data structures. */

#define INQLEN 36 /* Inquiry string length to store. */

#define CAM_SUCCESS 0 /* For signaling general success */
#define CAM_FAILURE 1 /* For signaling general failure */

#define CAM_FALSE 0 /* General purpose flag value */
#define CAM_TRUE 1 /* General purpose flag value */

*/
*/

-1 /* for signaling a bad CCB to free */

/* General Union for Kernel Space allocation. Contains all the
possible CCB structures. This union should never be used for
manipulating CCB's its only use is for the allocation and deal location
of raw CCB space. */

typedef union ccb_size_union
{

CCB_SCSIIO csio; /* Please keep this first, for debug/print */
CCB_GETDEV cgd;
CCB_PATHINQ cpi;
CCB_RELSIM crs;
CCB_SETASYNC csa;
CCB_SETDEV csd;
CCB_ABORT cab;
CCB_RESETBUS crb;
CCB_RESETDEV crd;
CCB_TERMIO ctio;
CCB_EN_LUN cel;
CCB_ENG_INQ cei;
CCB_ENG_EXEC cee;

CCB_SIZE_UNION;

/* The typedef for the Async callback information. This structure is
used to store the supplied info from the Set Async Callback CCB, in
the EDT table in a linked list structure. *1

typedef struct async_info
{

struct async_info *cam_async_next; /* pointer to the next structure */
u_long cam_event_enable; /* Event enables for Callback resp */

Header Files Used by Device Drivers A-11

void (*cam_async_func)(); /* Async Callback function address */
u_long cam_async_blen; /* Length of "information" buffer */
u_char *cam_async_ptr; /* Address for the "information */

ASYNC_INFO;

/* The CAM EDT table contains the device information for all the
devices, SCSI ID and LUN, for all the SCSI busses in the system. The
table contains a CAM_EDT_ENTRY structure for each device on the bus.
*/

typedef struct cam_edt_entry
{

long cam_tlun_found; /* Flag for the existence of the target/LUN */
ASYNC_INFO *cam_ainfo; /* Async callback list info for this B/T/L */
u_long cam_owner_tag; /* Tag for the peripheral driver's ownership */
char cam_inq_data[INQLEN]; /* storage for the inquiry data */

CAM_EDT_ENTRY;

/* --- */

A-12 Header Files Used by Device Drivers

Summary of Device Driver Routines B

Table B-1 summarizes the routines used by all device drivers. The table has the
following columns:

• Routine - the driver routine name.

• Structure/file - the structure or file where you define the driver routine entry point.

• Character - an X in this column indicates the routine is applicable to a character
device.

• Block - an X in this column indicates the routine is applicable to a block device.
N/ A indicates not applicable.

For convenience, the routines appear in alphabetical order.

Note

The psize routine is no longer used. Previously, the routine
detennined the location on the disk where UL TRIX should perfonn a
dump. It has been superseded by driver ioctl calls that obtain disk
geometry infonnation.

Table B-1: Summary of Device Driver Routines

Routine Structure/File Character

attach Peripheral driver X

close cdevsw bdevsw X

interrupt System configuration file X

ioctl cdevsw bdevsw X

mmap cdevsw X

open cdevsw bdevsw X

probe SIM X

read cdevsw X

reset cdevsw X

select cdevsw X

slave Peripheral driver X

stop cdevsw X

strategy cdevsw bdevsw X

write cdevsw X

Block

X

X

X

X

N/A

X

X

N/A
N/A
N/A
X

N/A
X

N/A

SCSI/CAM Routines in UL TRIX Reference C
Page Format

This appendix contains a description of each of the routines described in this guide,
in ULTRIX reference page fonnat. The routines are included in alphabetical order.

Name

Syntax

cam_logger - allocates a system error log buffer and fills in a uerf error log packet

uJong camJogger(cam_err _hdr, bus, target, lun)
CAM_ERR_HDR *cam err hdr;
long bus; - -
long target;
long lun;

Arguments

cam err hdr Pointer to the Error Header Structure.

bus SCSI target's bus controller number.

target SCSI target's ID number.

[un SCSI target's logical unit number.

Description
The cam_logger routine allocates a system error log buffer and fills in a uerf
error log packet. The routine fills in the bus, target, and LUN information from the
Error Header Structure passed to it and copies the Error Header Structure and the
Error Entry Structures and data to the error log buffer.

Return Value
None

C-2 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccfg_attach - calls a SCSI/CAM peripheral driver's attach routine after a match on
the cpd_name member of the CAM_PERIPHERAL_DRIVER structure is found

int ccf9_8ttach(ui)
register struct uba_device *ui;

Arguments

ui Pointer to the device infonnation contained in the uba device structure.

Description
The ccfg_attach routine calls a SCSI/CAM peripheral driver's attach routine
after a match on the cpd name member of the CAM_PERIPHERAL_DRIVER
structure is found. The routine is called during autoconfiguration. The
ccfg_attach routine locates the configured driver in the SCSI/CAM peripheral
driver configuration table. If the driver is located successfully, the SCSI/CAM
peripheral driver's attach routine is called with a pointer to the unit infonnation
structure for the device from the kernel uba device structure. The SCSI/CAM
peripheral driver's attach routine perfonns its own attach initialization.

Return Value
0- success
1 - failure
The return value is ignored by autoconfiguration code.

SCSI/CAM Routines in UL TRIX Reference Page Format C-3

Name

Syntax

ccfg_edtscan - issues SCSI INQUIRY commands to all possible SCSI targets and
LUNs attached to the buses

uJong ccfg_edtscan(scan type, bus, target, lun)
long scan type; -
long bus;-
long target;
long lun;

Arguments

scan_type Types of scans are: FULL, which traverses the CAM_EDT _ENTR Y
structure and sends an INQUIRY connnand to each target and LUN;
PARTIAL, which sends an INQUIRY command only to targets and
LUNs flagged as "not found"; or SINGLE, which sends an INQUIRY
connnand to the selected bus, target, and LUN passed as arguments.

bus SCSI target's bus controller number.

target SCSI target's 10 number.

lun SCSI target's logical unit number.

Description
The ccfg_ edtscan routine issues SCSI INQUIRY connnands to all possible
SCSI targets and LUN s attached to the buses. The routine uses the CAM subsystem
in the nonnal manner by sending SCSI 110 CCBs to the SIMs. The INQUIRY data
returned is stored in the EDT structures and the cam_ tlun_found flag is set.
This routine can be called by the SCSIICAM peripheral device drivers to reissue a
full, partial, or single bus scan connnand.

Return Value
CAM_SUCCESS
CAM_FAILURE

C-4 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccfg_slave - calls a SCSI/CAM peripheral driver's slave routine after a match on the
cpd _name member of the CAM_PERIPHERAL_DRIVER structure is found

int ccfg_slave(ui)
register struct uba_device *ui;
caddr_t csr;

Arguments

ui Pointer to the device information contained in the uba_ device structure.

csr The virtual address of the control and status register (CSR) address.

Description
The ccfg_slave routine calls a SCSI/CAM peripheral driver's slave routine after
a match on the cpd _name member of the CAM_PERIPHERAL_DRIVER structure
is found. The routine is called during autoconfiguration. The ccfg_slave routine
locates the configured driver in the SCSI/CAM peripheral driver configuration table.
If the driver is located successfully, the SCSI/CAM peripheral driver's slave routine
is called with a pointer to the unit information structure for the device from the
kernel uba device structure and the virtual address of its control and status
register (CSR). The SCSI/CAM peripheral driver's slave routine performs its own
slave initialization.

Return Value
o = slave is alive
1 - slave is not alive

SCSI/CAM Routines in UL TRIX Reference Page Format C-S

Name

Syntax

cctnn_DoSpecialCmd - provides a simplified interface to the special command
routine

ccmn_DoSpeciaICmd(dev, cmd, data, flags, ccb, sjiags)
dev_t dev;
int cmd;
caddr_t data;
int jlags;
cCB_SCSIIO *ccb;
int sjiags;

Arguments

dev

cmd

data

jiags

ccb

sjiags

Description

The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

The ioctl command, UAGT_CAM_IO.

The user data buffer.

Flags set when a file is open.

Pointer to the SCSI 110 CCB structure. This field is optional.

SCSIICAM special liD control flags. The available flags are:

Flag Name

SA_NO_ERROR_RECOVERY
SA_NO_ERROR_LOGGING
SA_NO_SLEEP_INTR
SA_NO_SIMQ_THAW

Description

Do not perform error recovery
Do not log error messages
Do not allow sleep interrupts
Leave SIM queue frozen when
there are errors

The ccmn_DoSpecialCmd routine provides a simplified interface to the special
command routine. The routine prepares for and issues special commands.

Return Value
The ccmn_DoSpecialCmd routine returns a value of 0 (zero) upon successful
completion. It returns the appropriate error code on failure.

C-6 SCSI/CAM Routines in UL TRIX Reference Page Format

Name
ccmn_SysSpecialCmd -lets a system request issue SCSI I/O commands to the
SCSI/CAM special I/O interface

Syntax
ccmn_SysSpeciaICmd(dev, cmd, data,jlags, ccb, sjlags)
dev_t dev;
int cmd;
caddr_t data;
int jlags;
CCB_SCSIIO *ccb;
int sflags;

Arguments

dev

cmd

data

flags

ccb

sjlags

Description

The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

The ioctI command, UAGT_CAM_IO.

The user data buffer.

Flags set when a file is open.

Pointer to the SCSI I/O CCB structure. This field is optional.

SCSI/CAM special I/O control flags. The available flags are:

Flag Name Description

SA_NO_ERROR_RECOVERY Do not perform error recovery
SA_NO_ERROR_LOGGING Do not log error messages
SA_NO_SLEEP _INTR Do not allow sleep interrupts
SA_NO_SIMQ_THAW Leave SIM queue frozen when

there are errors

The ccmn_SysSpecialCmd routine lets a system request issue SCSI I/O
commands to the SCSI/CAM special I/O interface. This permits existing SCSI
commands to be issued from within kernel code.

Return Value
The ccmn_DoSpecialCmd routine returns a value of 0 (zero) upon successful
completion. It returns the appropriate error code on failure.

SCSI/CAM Routines in ULTRIX Reference Page Format C-7

Name
ccmn_abort_ccb_bld - creates an ABORT CCB and sends it to the XPT

Syntax
ccmn_abort_ccb_bld(dev, camJiags, abort_ccb)
dev_t dev;
u_Iong cam Jags;
CCB_HEADER *abort _ ccb;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

cam Jags The cam Jiags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DI R_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DIS_CALLBACK

CAM_CDB_LINKED

CAM_QUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before tenninating 110

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

c-s SCSI/CAM Routines in UL TRIX Reference Page Format

Flag Name

CAM_DATAB_VALID

CAM_STATUS_VALID

CAM_MSGB_VALID

CAM_TGT_PHASE_MODE

CAM_TGT_CCB_AVAIL

CAM_DIS_AUTODISC

CAM_DIS_AUTOSRP

Description

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosavelrestore pointers

abort ccb Pointer to the CAM Control Block (CCB) header structure to abort.

Description
The ccron abort ccb bId routine creates an ABORT CCB and sends it to the
XPf. The routine cails the ccron get ccb routine to allocate a CCB structure
and fill in the common portion of the CCB header. The routine fills in the address of
the CCB to be aborted and calls the ccron send ccb routine to send the CCB - -
structure to the XPT. The request is carried out inunediately, so it is not placed on
the device driver's active queue.

Return Value
CCB_ABORT pointer

See Also

SCSI/CAM Routines in UL TRIX Reference Page Format C-9

Name

Syntax

ccmn_abort_que - sends an ABORT CCB request for each SCSI 110 CCB on the
active queue

ccmn_abort_que(pd)
PDRV _DEVICE *pd;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

Description
The ccmn _abort_que routine sends an ABORT CCB request for each SCSI 110
CCB on the active queue. This routine must be called with the Peripheral Device
Structure locked.

The camn abort que routine calls the ccmn abort ccb bId routine to
create an ABORT CCB for the first active CCB on the active queue and send it to
the XPT. It calls the ccmn send ccb routine to send the ABORT CCB for each
of the other CCBs on the active queue that are marked as active to the XPT. The
ccmn abort que routine then calls the ccmn reI ccb routine to return the
ABORT CCB to the XPT. - -

Return Value
None

See Also

C-10 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_bdr_ccb_bld - creates a BUS DEVICE RESET CCB and sends it to the XPT

ccmn_bdr _ccb_bld(dev, cam Jiags)
dev_t dev;
u_Iong cam Jiags;

Arguments

dev The major/minor device number pair that identifies the bus number,
target 10, and LUN associated with this SCSI device.

cam Jiags The cam .Jlags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM DIR OUT

CAM_DIR_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DIS_CALLBACK

CAM_CDB_LINKED

CAM_QUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

CAM_SNS_BUF~PHYS

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer t
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before tenninating 110

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

SCSI/CAM Routines in UL TRIX Reference Page Format C-11

Description

Flag Name Description

CAM_MSG_BUF _PHYS Message buffer pointer is physical
address

CAM_NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM_DATAB_ VALID Data buffer valid

CAM_STATUS_ VALID Status buffer valid

CAM_MSGB_ VALID Message buffer valid

CAM_TGT_PHASE_MODE SIM will run in phase mode

CAM_TGT_CCB_AVAIL Target CCB available

CAM_DIS _AUTODISC Disable autodisconnect

CAM_DIS_AUTOSRP Disable autosave/restore pointers

The ccrnn bdr ccb bId routine creates a BUS DEVICE RESET CCB and sends
it to the xPT. The routine calls the ccmn get ccb routine to allocate a CCB
structure and fill in the common portion of tlte CCB header. The routine calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver's active queue.

Return Value
CCB_RESETDEV pointer

See Also

C-12 SCSI/CAM Routines in ULTRIX Reference Page Format

Name

Syntax

ccmn_br_ccb_bld - creates a BUS RESET CCB and sends it to the XPT

ccmn_br _ ccb _bld(dev, cam Jiags)
dev_t dev;
u_Iong cam Jlags;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

cam Jlags The cam Jags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DIR_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DIS_CALLBACK

CAM_CDB_LINKED

CAM_QUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_OFREEZE

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before tenninating I/O

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

SCSI/CAM Routines in ULTRIX Reference Page Format C-13

Description

Flag Name Description

CAM_MSG BUF _PHYS Message buffer pointer is physical
address

CAM _ NXT _ CCB _ PHYS Next CCB pointer is physical
address

CAM _ CALLBCK _ PHYS Callback function pointer is
physical address

CAM_DATAB_ VALID Data buffer valid

CAM_STATUS_VALID Status buffer valid

CAM _MSGB _ VALID Message buffer valid

CAM_TGT_PHASE_MODE SIM will run in phase mode

CAM_TGT_CCB_AVAIL Target CCB available

CAM _DI S _ AUTODISC Disable autodisconnect

CAM _ DIS _AUTOS RP Disable autosavelrestore pointers

The ccmn br ccb bId routine creates a BUS RESET CCB and sends it to the
XPT. The routiiie calls the ccmn get ccb routine to allocate a CCB structure
and fill in the common portion of the CCB header. The routine calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver's active queue.

Return Value
CCB_RESETBUS pointer

See Also

C-14 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_ccb_status - assigns individual CAM status values to generic categories

ccmn_ ccb _status{ ccb)
CCB_HEADER *ccb;

Arguments

ccb Pointer to the CAM Control Block (CCB) header structure whose status is to
be categorized.

Description
The ccmn_ccb_status routine assigns individual CAM status values to generic
categories. The following table shows the returned category for each CAM status
value:

CAM Status

CAM_REO_INPROG
CAM_REO_CMP
CAM_REO_ABORTED
CAM_UA_ABORT
CAM_REO_CMP_ERR
CAM_BUSY
CAM_REO_INVALID
CAM_PATH_INVALID
CAM_DEV_NOT_THERE
CAM_UA_TERMIO
CAM_SEL_TIMEOUT
CAM_CMD_TIMEOUT
CAM_MSG_REJECT_REC
CAM_SCSI_BUS_RESET
CAM_UNCOR_PARITY
CAM_AUTOSENSE_FAIL
CAM_NO_HBA
CAM_DATA_RUN_ERR
CAM_UNEXP_BUSFREE
CAM_SEOUENCE_FAIL
CAM_CCB_LEN_ERR
CAM_PROVIDE_FAIL
CAM_BDR_SENT
CAM_REO_TERMIO
CAM_LUN_INVALID
CAM_TID_INVALID
CAM_FUNC_NOTAVAIL
CAM_NO_NEXUS
CAM_lID_INVALID
CAM_SCSI_BUSY
Other

Assigned Category

CAT_INPROG
CAT_CMP
CAT_ABORT
CAT_ABORT
CAT_CMP_ERR
CAT_BUSY
CAT_CCB_ERR
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_ABORT
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT _DEVICE_ERR
CAT_RESET
CAT_DEVICE_ERR
CAT_BAD_AVTO
CAT_NO_DEVICE
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_CCB_ERR
CAT CCB ERR
CAT=RESET /
CAT_ABORT
CAT_NO_DEVlCE
CAT_NO_DEVICE
CAT_CCB_ERR
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_SCSI_BUSY
CAT_UNKNOWN

SCSI/CAM Routines in UL TRIX Reference Page Format C-15

Return Value
The following categories can be returned:

CAM Status

CAT_INPROG
CAT_CMP
CAT_CMP_ERR
CAT_ABORT

CAT_BUSY
CAT_SCSI_BUSY
CAT_NO_DEVICE
CAT_DEVICE_ERR
CAT_BAD_AUTO
CAT_CCB_ERR
CAT_RESET
CAT_UNKNOWN

Assigned Category

Request is in progress.
Request has completed without error.
Request has completed with error.
Request either has been aborted or tenninated, or it
cannot be aborted or tenninated.
CAM is busy.
SCSI is busy.
No device at address specified in request.
Bus or device problems.
Invalid autosense data.
Invalid CCB.
Unit or bus has detected a reset condition.
Invalid CAM status.

C-16 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_ccbwait - sleeps waiting for a SCSI I/O CCB request to complete

ccmn_ccbwait(ccb, priority)
register CCB_SCSIIO *ccb;
register int *priority;

Arguments

ccb Pointer to the CCB on which to wait.

priority Software priority at which to sleep.

Description
The ccmn_ccbwait routine sleeps waiting for a SCSI I/O CCB request to
complete. If the priority is greater than PZERO, the ccmn _ ccbwai t routine
sleeps at an interruptible priority in order to catch signals.

Return Value
EINTR
o

- Sleep was interrupted due to receiving a signal
- CCB has completed

SCSI/CAM Routines in UL TRIX Reference Page Format C-17

Name

Syntax

ccmn_close_unit - handles the common close for all SCSI/CAM peripheral device
drivers

ccmn_ close _ unit(dev)
dev_t dev;

Arguments

dev The major/minor device number pair that identifies the bus number, target
ID, and LUN associated with this SCSI device.

Description
The ccmn close unit routine handles the common close for all SCSI/CAM
peripheral device driVers. It sets the open count to zero.

Return Value
None

See Also
ccmn_open_unit

C-18 SCSI/CAM Routines in UL TRIX Reference Page Format

Name
ccmn_errlog - reports error conditions for the SCSI/CAM peripheral device driver

Syntax
ccmn_errlog(func strt opt strt flags, ccbt dev, unused)
u_char *Junc sir;
u_char *opt str;
u_Iong flags;
CCB_HEADER *ccb;
dev_t dev;
u_char *unused;

Arguments

Junc_str

opt_str

flags

ccb

dev

unused

Description

Pointer to function in which the error was detected.

Pointer to optional logging string.

Flags for peripherial drivers error types. The flags are:
CAM_INFORMATIONAL; CAM_SOFTERR; CAM_HARDERR;
CAM_SOFfW ARE; and CAM_DUMP _ALL. They are defined in the
/usr/sys/h/cam_logger . h file.

Pointer to the CAM Control Block (CCB) header structure.

The major/minor device number pair that identifies the bus numbert

target 10, and LUN associated with this SCSI device.

Unused. It is needed to match the number of arguments expected by the
CAM_ERROR macro t which is defined in the
/usr/sys/io/cam/cam_errlog. h file

The ccmn_errlog routine reports error conditions for the SCSI/CAM peripheral
device driver. The routine is passed a pointer to the name of the function in which
the error was detected. The routine builds informational strings based on the error
condition.

Return Value
None

SCSI/CAM Routines in UL TRIX Reference Page Format C-19

Name

Syntax

ccmn~dev_ccb_bld - creates a GET DEVICE TYPE CCB and sends it to the XPT

ccmn_gdev _ ccb _bld(dev, cam ..flags, inq_ addr)
dev_t dev;
u_Iong cam ..flags;
u_char tJainq_ addr;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

cam J1ags The cam Jiags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DIR_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_seATTER_VALID

CAM_DI S_CALLBACK

CAM_COB_LINKED

CAM_OUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_OHEAD

CAM_SIM_OFREEZE

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

Description

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)

Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid

Disable callback feature
CCB contains linked COB
SIM queue actions are enabled
CDB field contains pointer

Disable disconnect
Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)
Disable synchronous mode, go to
asynchronous
Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before tenninating 1/0

Scatter/gather list is for HBA
engine

COB pointer is physical address
Scatter/gather/buffer data pointers
are physical address

C-20 SCSI/CAM Routines in UL TRIX Reference Page Format

Flag Name

CAM_DATAB_VALID

CAM_STATUS_VALID

CAM_MSGB_VALID

CAM_TGT_PHASE_MODE

CAM_TGT_CCB_AVAIL

CAM_DIS_AUTODISC

CAM_DIS_AUTOSRP

Description

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CeB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosavelrestore pointers

inq_ addr Pointer to the address for Inquiry data returned.

Description
The ccmn gdev ccb bId routine creates a GET DEVICE TYPE CCB and sends
it to the xPT. Theroutine calls the ccmn get ccb routine to allocate a CCB
structure and fill in the common portion of the CCB header. The
ccmn gdev ccb bId routine calls the ccmn send ccb routine to send the
CCB structure to the XPr. The request is carried-out inimediately, so it is not placed
on the device driver's active queue.

Return Value
CCB_GETDEV pointer

See Also

SCSI/CAM Routines in UL TRIX Reference Page Format C-21

Name
ccmn_get_bp - allocates a bu f structure

Syntax

Arguments
None

Description
The ccmn get bp routine allocates a buf structure. This function must not be
called at interrupt context. The function may sleep waiting for resources.

Return Value
Pointer to buf structure. This pointer may be NULL.

C-22 SCSI/CAM Routines in UL TRIX Reference Page Format

Name
ccmn_get_ccb - allocates a CCB and fills in the common portion of the CCB header

Syntax
ccmn_get_ccb(dev,func_code, camJiags, ccb_len)
dev_t dev;
u_char Junc code;
u_Iong cam Jio,gs;
u_short ccb _len;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

junc_code The XPT function code for the CCB. See American National Standard
for Information Systems, SCSI-2 Common Access Method: Transport
and SCSI Interface Module, working draft, X3T9.2/90-186, Section
8.1.2, for a list of the function codes.

cam Jlags The cam Jiags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DI R_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DI S_CALLBACK

CAM_CDB_LINKED

CAM_QUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_ENG_SYNC

Description

Data direction (00: reserved)
Data direction (01: DATA IN)
Data direction (10: DATA OUT)
Data direction (11: no data)
Disable auto sense feature
Scatter/gather list is valid
Disable callback feature
CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect
Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)
Disable synchronous mode, go to
asynchronous
Place CCB at head of SIM queue
Return SIM queue to frozen state
Flush residual bytes from HBA
data engine before tenninating I/O

SCSI/CAM Routines in UL TRIX Reference Page Format C-23

ccb len

Description

Flag Name

CAM_ENG_SGLIST

CAM_CDB_PHYS

CAM_DATA_PHYS

CAM_DATAB_VALID

CAM_STATUS_VALID

CAM_MSGB_VALID

CAM_TGT_PHASE_MODE

CAM_TGT_CCB_AVAIL

CAM_DIS_AUTODISC

CAM_DIS_AUTOSRP

The length of the CCB.

Description

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosave/restore pointers

The ccmn get ccb routine allocates a CCB and fills in the common portion of
the CCB header. -The routine calls the xpt ccb alloc routine to allocate a CCB
structure. The ccmn _get _ ccb routine filiS in the common portion of the CCB
header and returns a pointer to that CCB_HEADER.

Return Value
Pointer to newly allocated CCB header.

See Also
xpt_ccb_alloc

C-24 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_get_dbuf - allocates a data buffer area of the size specified by calling the
kernel memory allocation routines

ccmn_get_ dbuf(size)
u_Iong size;

Arguments

size Size of buffer in bytes.

Description
The ccmn _get _ dbuf routine allocates a data buffer area of the size specified by
calling the kernel memory allocation routines .

Return Value
Pointer to kernel data space. If this is NULL, no data buffer structures are available
and no more can be allocated.

SCSI/CAM Routines in UL TRIX Reference Page Format C-25

Name
ccmn_init - initializes the XPf and the unit table lock structure

Syntax

Description
The ccmn ini t routine initializes the XPf and the unit table lock structure. The
first time the ccmn ini t routine is called, it calls the xpt ini t routine to
request the XPT to iiiitialize the CAM subsystem. -

Return Value
None

See Also
xpt_init

C-26 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_io_ccb_bld - allocates a SCSI 110 CCB and fills it in

ccmnJo_ccb_bld(dev, data_addr, data_len, sense_len, cam.Jlags, compJunc, \
tag_action, timeout, bp)

dev_t dey;
u_char *data addr;
u_Iong data len;
u_short sense len;
u_Iong cam Jtags;
void (*comp June) 0;
u_char tag action;
u_Iong timeout;
struct buf *bp;

Arguments

dey The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

data addr Pointer to the data buffer.

data len Size of the data transfer.

sense len Length of the sense data buffer to be returned on autosense, which is
predefined as 64 bytes in the DEC_AUTO_SENSE_SIZE environment
variable but can be larger.

cam .Jlags The cam ..flags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DI R_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DIS_CALLBACK

CAM_CDB_LINKED

CAM_QUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

SCSI/CAM Routines in UL TRIX Reference Page Format C-27

Flag Name Description

CAM_DIS_SYNC Disable synchronous mode, go to
asynchronous

CAM_SIM_QHEAD Place CCB at head of SIM queue

CAM_SIM_QFREEZE Return SIM queue to frozen state

CAM_ENG_SYNC Flush residual bytes from HBA
data engine before tenninating 110

CAM_ENG_SGLIST Scatter/gather list is for HBA
engine

CAM_CDB_PHYS CDB pointer is physical address

CAM_DATA_PHYS Scatter/gather/buffer data pointers
are physical address

CAM_SNS_BUF _PHYS Autosense data pointer is physical
address

CAM_MSG_BUF _PHYS Message buffer pointer is physical
address

CAM_NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM_DATAB_VALID Data buffer valid

CAM_STATUS_VALID Status buffer valid

CAM _MSGB _ VALID Message buffer valid

CAM_TGT_PHASEYfODE SIM will run in phase mode

CAM_TGT_CCB_AVAIL Target CCB available

CAM _ DIS _ AUTOD I SC Disable autodisconnect

CAM_DIS_AUTOSRP Disable autosave/restore pointers

comp Junc SCSI device driver I/O callback completion function. This pointer may
be NULL if the CAM DISABLE CALLBACK bit is set in the CAM
FLAGS field.

tag_action Type of action to perform for tagged requests:

timeout

bp

CAM_SIMPLE_QTAG
CAM_HEAD_QTAG
CAM_ORDERED_OTAG

Tag for simple queue
Tag for head of queue
Tag for ordered queue

Timeout for the request in seconds. A value of 0 (zero) indicates the
default, which is five seconds.

A buf structure pointer, which is used for request mapping. This
pointer may be NULL.

C-28 SCSI/CAM Routines in UL TRIX Reference Page Format

Description
The ccmn io ccb bId routine allocates a SCSI 110 CCB and fills it in. The
routine calis the- ccffin get ccb routine to obtain a CCB structure with the header
portion filled in. The ccmn,=-io_ccb_bId routine fills in the SCSI 1I0-specific
fields from the parameters passed and checks the length of the sense data to see if it
exceeds the length of the reserved sense buffer. If it does, a sense buffer is allocated
using the ccmn _get _ dbuf routine.

Return Value
Pointer to a SCSI 110 CCB

See Also

SCSI/CAM Routines in UL TRIX Reference Page Format C-29

Name

Syntax

ccmn_mode_select - creates a SCSI 110 CCB for the MODE SELECT command and
sends it to the XPf for processing

ccmn_mode_select(pd, sense _len, cam Jags, comp June, tag_action, timeout, ms _index)
PDRV _DEVICE *pd;
u_short sense len;
u_Iong cam fogs;
void (*comp June) 0;
u_char tag action;
u_Iong timeout;
unsigned ms _index;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

sense len Length of the sense data buffer to be returned on autosense, which is
predefined as 64 bytes in the DEC_AUTO_SENSE_SIZE environment
variable but can be larger.

cam Jags The cam Jiags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DI R_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DI S_CALLBACK

CAM_COB_LINKED

CAM_QUEUE_ENABLE

CAM_COB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable auto sense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

COB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

C-30 SCSI/CAM Routines in UL TRIX Reference Page Format

Flag Name

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

CAM_DATAB_VALID

CAM_STATUS_VALID

CAM_MSGB_VALID

CAM_TGT_PHASE_MODE

CAM_TGT_CCB_AVAIL

CAM_DIS_AUTODISC

CAM_DIS_AUTOSRP

Description

Flush residual bytes from HBA
data engine before tenninating I/O

Scatter/gather list is for HBA
engine

COB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosave/restore pointers

comp Junc SCSI device driver liD callback completion function. This pointer may
be NULL if the CAM DISABLE CALLBACK bit is set in the CAM
FLAGS field.

tag_action Type of action to perfonn for tagged requests:

CAM_SIMPLE_QTAG
CAM_HEAD_QTAG
CAM_ORDERED_QTAG

Tag for simple queue
Tag for head of queue
Tag for ordered queue

timeout Timeout for the request in seconds. A value of 0 (zero) indicates the
default, which is five seconds.

ms index An index into a page in the Mode Select Table that is pointed to in the
Device Descriptor Structure.

Description
The ccmn mode select routine creates a SCSI liD CCB for the MODE
SELECT command and sends it to the XPT for processing. This routine may be
called from interrupt context since it will not wait (sleep) for the command to
complete. The routine calls the ccmn _ io _ ccb _bId routine to obtain a SCSI liD
CCB structure. It uses the ms _index parameter to index into the Mode Select Table
pointed to by the dd _ modsel_ tbl member of the Device Descriptor Structure for

SCSI/CAM Routines in UL TRIX Reference Page Format C-31

the SCSI device. The ccmn mode select routine calls the ccmn send ccb
routine to send the SCSI 110 CCB to-the XPT. - -

Return Value
CCB_SCSIIO pointer

See Also

C-32 SCSI/CAM Routines in UL TRIX Reference Page Format

Name
ccmn_open_unit - handles the common open for all SCSI/CAM peripheral device
drivers

Syntax
ccmn_open_unit(dev, scsi_ dey _type, flag, dey _size)
dev_t dey;
u_Iong scsi dey type;
u_Iong flag; -
u_Iong dey _size;

Arguments

dey The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

scsi dey type
- - SCSI device type value from Inquiry data.

flag Indicates whether or not the device is being opened for exclusive use. A
setting of 1 means exclusive use; a setting of 0 (zero) means
nonexclusive use.

dey _size The device-specific structure size in bytes.

Description
The ccmn_open_unit routine handles the common open for all SCSI/CAM
peripheral device drivers. It must be called for each open before any SCSI device­
specific open code is executed.

On the first call to the ccmn open unit routine for a device, the
ccmn gdev ccb bId routine is called to issue a GET DEVICE TYPE CCB to
obtain-the Inquiry data. The ccmn_open_unit routine allocates the Peripheral
Device Structure, PDRV _DEVICE, and a device-specific structure, either
TAPE_SPECIFIC or DISK_SPECIFIC, based on the device size argument passed.
The routine also searches the cam_devdesc_tab to obtain a pointer to the Device
Descriptor Structure for the SCSI device and increments the open count. The
statically allocated pdrv _ uni t _table structure contains a pointer to the
PDRV _DEVICE structure. The PDRV _DEVICE structure contains pointers to the
DEV _DESC structure and to the device-specific structure.

Return Value
The ccmn_open_unit routine returns a value of 0 (zero) upon successful
completion.

SCSI/CAM Routines in UL TRIX Reference Page Format C-33

Diagnostics
The ccron _open _ uni t routine fails under the following conditions:

[EBUSY]

[ENXIO]

[EINVAL]

See Also

The device is already opened and the exclusive use bit is set.

The device does not exist.

The scsi dev type parameter does not match the device type in the
Inquiry data returned by GET DEVICE TYPE CCB. The
scsi _ dev _type was not configured.

C-34 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_pinq_ccb_bld - creates a PATH INQUIRY CCB and sends it to the XPT

ccmnJ)inq_ccb_bld(dev, cam Jiags)
dev_t dev;
u_Iong cam Jiags;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

cam Jiags The cam Jags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DI R_OUT

CAM_DIR_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DIS_CALLBACK

CAM CDB LINKED

CAM_QUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

Description

Data direction (00: reserved)
Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid

Disable callback feature
CCB contains linked COB
SIM queue actions are enabled
COB field contains pointer

Disable disconnect
Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous
Place CCB at head of SIM queue
Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before tenninating 110

Scatter/gather list is for HBA
engine
CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address
Autosense data pointer is physical
address

SCSI/CAM Routines in UL TRIX Reference Page Format C-35

Description

Flag Name

CAM_DATAB_VALID

CAM_STATUS_VALID

CAM_MSGB_VALID

CAM_TGT_PHASE_MODE

CAM_TGT_CCB_AVAIL

CAM_DIS_AUTODISC

CAM_DI S_AUTOSRP

Description

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosave/restore pointers

The ccmn_pinq_ccb_bld routine creates a PATH INQUIRY CCB and sends it
to the XPT. The routine calls the ccmn get ccb routine to allocate a CCB
structure and fill in the common portion Of the CCB header. The routine calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver's active queue.

Return Value
CCB_PATHINQ pointer

See Also

C-36 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_rel_bp - deallocates a buf structure

ccmn_reLbp(bp)
struct buf *bp;

Arguments

bp A buf structure pointer, which is used for request mapping.

Description
The ccmn_rel_bp routine deallocates a buf structure.

Return Value
None

SCSI/CAM Routines in UL TRIX Reference Page Format C-37

Name

Syntax

ccmn_rel_ccb - releases a CCB and returns the sense data buffer for SCSI 110 CCBs,
if allocated

ccm n_reLccb (ccb)
CCB_HEADER *ccb;

Arguments

ccb Pointer to the CAM Control Block (CCB) header structure to be released.

Description
The ccmn reI ccb routine releases a CCB and returns the sense data buffer for
SCSI 110 CCBs, if allocated. The routine calls the xpt ccb free routine to
release a CCB structure. For SCSI 110 CCBs, if the sense daullength is greater than
the default sense data length, the ccmn_rel_ccb routine calls the
ccmn_rel_dbuf routine to return the sense data buffer to the data buffer pool.

Return Value
None

See Also

C-38 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_rel_dbuf - deallocates a data buffer

ccmn_rel_dbuf(addr)
caddr_t addr;

Arguments

addr Address of the data buffer to deallocate.

Description
The ccmn_rel_dbuf routine deallocates a data buffer.

Return Value
None

SCSI/CAM Routines in UL TRIX Reference Page Format C-39

Name

Syntax

ccmn_rem_ccb - removes a SCSI 110 CCB request from the SCSIICAM peripheral
driver active queue and starts a· tagged request if a tagged CCB is pending

ccmn_rem_ccb(pd,ccb)
PDRV _DEVICE ·pd;
CCB_SCSIIO ·ccb;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

ccb Pointer to the SCSI 110 CCB structure to remove from the active queue.

Description
The ccmn_rem_ccb routine removes a SCSI 110 CCB request from the
SCSIICAM peripheral driver active queue and starts a tagged request if a tagged
CCB is pending. If a tagged CCB is pending, the ccmn_rem_ccb routine places
the request on the active queue and calls the xpt _ action routine to start the
tagged request.

Return Value
None

See Also

C-40 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_rsq_ccb_bld - creates a RELEASE SIM QUEUE CCB and sends it to the XPT

ccmn_rsq_ccb_bld(dev, cam Jklgs)
dev_t dev;
u_Iong cam Jklgs;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

cam Jklgs The cam .Jlags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DI R_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DI S_CALLBACK

CAM_CDB_LINKED

CAM_QUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before tenninating I/O

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

SCSI/CAM Routines in ULTRIX Reference Page Format C-41

Description

Flag Name Description

CAM_MSG_BUF _PHYS Message buffer pointer is physical
address

CAM_NXT_CCB_PHYS Next CCB pointer is physical
address

CAM _ CALLBCK _ PHYS Callback function pointer is
physical address

CAM_DATAB_ VALID Data buffer valid

CAM_STATUS_VALID Status buffer valid

CAM _ MSGB _ VALID Message buffer valid

CAM_TGT_PHASE_MODE SIM will run in phase mode

CAM_TGT_CCB_AVAIL Target CCB available

CAM_DIS_AUTODISC Disable autodisconnect

CAM_DIS_AUTOSRP Disable autosave/restore pointers

The ccmn rsq ccb bId routine creates a RELEASE SIM QUEUE CCB and
sends it to the xPT. The routine calls the ccmn get ccb routine to allocate a
CCB structure and fill in the common portion of the CCB header. The routine calls
the ccmn_send_ccb routine to send the CCB structure to the XPT. The request is
carried out innnediately, so it is not placed on the device driver's active queue.

Return Value
CCB_RELSIM pointer

See Also

C-42 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_sasy _ccb_bld - creates a SET ASYNCHRONOUS CALLBACK CCB and
sends it to the XPT

ccmn_sasy _ccb_bld(dev, eam .Jiags, asyne .Jklgs, eallb June, buf, buflen)
dev_t dev;
u_Iong eam .Jiags;
u_Iong asyne .Jiags;
void (*eallb June) 0;
u_char *buf;
u_char buflen;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

eam Jlags The eam ...flags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DIR_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DI S_CALLBACK

CAM_CDB_LINKED

CAM_OUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_OHEAD

CAM_SIM_OFREEZE

CAM_ENG_SYNC

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer.
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before terminating 110

Scatter/gather list is for HBA
engine

SCSI/CAM Routines in UL TRIX Reference Page Format C-43

Flag Name

CAM_CDB_PHYS

CAM_DATA_PHYS

CAM_DATAB_VALID

CAM_STATUS_VALID

CAM_MSGB_VALID

CAM_TGT_PHASE_MODE

CAM_TGT_CCB_AVAIL

CAM_DIS_AUTODISC

CAM_DIS_AUTOSRP

Description

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosave/restore pointers

asyne .flags Asynchronous Callback CCB flags for registering a callback routine for a
specific bus, target, and LUN. The flags are defined in the
/usr /sys/h/cam. h file.

eallb June Asynchronous callback function.

buf SCSI/CAM peripheral buffer for asynchronous infonnation.

buflen Allocated SCSI/CAM peripheral buffer length.

Description
The ccmn sasy ccb bId routine creates a SET ASYNCHRONOUS
CALLBACK CCB-and sends it to the XPT. The routine calls the ccmn get ccb
routine to allocate a CCB structure and fill in the conunon portion of the CCB -
header. The routine fills in the asynchronous fields of the CCB and calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The request is
carried out immediately, so it is not placed on the device driver's active queue.

Return Value
CCB_SETASYNC pointer

See Also

c-44 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_sdev _ccb_bld - creates a SET DEVICE TYPE CCB and sends it to the XPT

ccmn_sdev_ccb_bld(dev, camJlags, scsi_dev _type)
dev_t dev;
u_Iong cam Jlags;
u_char scsi _ dev _type;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

camJlags The cam Jags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DI R_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DIS_CALLBACK

CAM_CDB_LINKED

CAM_QUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before tenninating 110

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

SCSI/CAM Routines in UL TRIX Reference Page Format C-45

Flag Name Description

CAM _ SNS _ BUF _ PHYS Autosense data pointer is physical
address

CAM _ MSG _BUF _ PHYS Message buffer pointer is physical
address

CAM_NXT_CCB_PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM_DATAB_VALID Data buffer valid

CAM_STATUS_VALID Status buffer valid

CAM JfSGB _VALID Message buffer valid

CAM_TGT_PHASE_MODE SIM will run in phase mode

CAM_TGT_CCB_AVAIL Target CCB available

CAM_DIS _ AUTOD ISC Disable autodisconnect

CAM _ DIS _AUTOS RP Disable autosave/restore pointers

scsi dev type
- - SCSI device type value from Inquiry data.

Description
The ccmn sdev ccb bId routine creates a SET DEVICE TYPE CCB and sends
it to the xPT. The-routlfle calls the ccmn get ccb routine to allocate a CCB
structure and fill in the common portion of fue CCB header. The routine fills in the
device type field of the CCB and calls the ccmn _send _ ccb routine to send the
CCB structure to the XPT. The request is carried out immediately, so it is not placed
on the device driver's active queue.

Return Value
CCB_SETDEV pointer

See Also

C-46 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_send_ccb - sends CCBs to the XPf layer by calling the xpt _action
routine

ccmn_send_ccb(pd,ccb, retry)
PDRV _DEVICE *pd;
CCB_HEADER *ccb;
u_char retry

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

ccb Pointer to the CAM Control Block (CCB) header structure to be sent to the
xpt _action routine to handle the request.

retry Indicates whether this request is a retry of a request that is already on the
active queue. A 1 indicates RETRY, and a 0 (zero) indicates NOT_RETRY.

Description
The ccmn_send_ccb routine sends CCBs to the XPT layer by calling the
xpt action routine. This routine must be called with the Peripheral Device
Structure locked.

For SCSI I/O CCBs that are not retries, the request is placed on the active queue. If
the CCB is a tagged request and the tag queue size for the device has been reached,
the request is placed on the tagged pending queue so that the request can be sent to
the XPT at a later time. A high-water mark of half the queue depth for the SCSI
device is used for tagged requests so that other initiators on the SCSI bus will not be
blocked from using the device.

Return Value
Value returned from the xpt_action routine.

See Also

SCSI/CAM Routines in UL TRIX Reference Page Format C-47

Name

Syntax

ccmn_start_unit - creates a SCSI 110 CCB for the START UNIT command and
sends it to the XPT for processing

ccmn_start_unit(pd, sense_len, cam...ftags, compJunc, tag_action, timeout)
PDRV _DEVICE *pd;
u_short sense len;
u_Iong cam Jiags;
void (*eomp June) 0;
u_char tag action;
u_Iong timeout;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

sense len Length of the sense data buffer to be returned on autosense, which is
predefined as 64 bytes in the DEC_AUTO_SENSE_SIZE environment
variable but can be larger.

cam Jiags The cam Jlags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DI R_OUT

CAM_DIR_NONE

CAM_DIS~UTOSENSE

CAM_SCATTER_VALID

CAM_DIS_CALLBACK

CAM_CDB_LINKED

CAM_QUEUE_ENABLE

CAM_COB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

C-48 SCSI/CAM Routines in UL TRIX Reference Page Format

Flag Name

CAM_CDB_PHYS

CAM_DATA_PHYS

CAM_DATAB_VALID

CAM_STATUS_VALID

CAM_MSGB_VALID

CAM_TGT_PHASE_MODE

CAM_TGT_CCB_AVAIL

CAM_DIS_AUTODISC

CAM_DIS_AUTOSRP

Description

Flush residual bytes from HBA
data engine before tenninating 110

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosavelrestore pointers

comp Junc SCSI device driver 110 callback completion function. This pointer may
be NULL if the CAM DISABLE CALLBACK bit is set in the CAM
FLAGS field.

tag_action Type of action to perform for tagged requests:

timeout

Description

CAM_SIMPLE_OTAG
CAM_HEAD_OTAG
CAM_ORDERED_OTAG

Tag for simple queue
Tag for head of queue
Tag for ordered queue

Timeout for the request in seconds. A value of 0 (zero) indicates the
default, which is five seconds.

The ccmn start unit routine creates a SCSI liD CCB for the START UNIT
command and sends 1t to the XPf for processing. This routine may be called from
interrupt context since it will not wait (sleep) for the command to complete.

The ccmn start unit routine calls the ccmn io ccb bId routine to obtain
a SCSI liD CCB strUcture. The ccmn start unit routine calls the
ccmn send ccb routine to send the SCSI IJO-CCB to the XPf. - -

SCSI/CAM Routines in UL TRIX Reference Page Format c-49

Return Value
CCB_SCSIIO pointer

See Also

C-50 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_tenn_ccb_bld - creates a TERMINATE 110 CCB and sends it to the XPT

ccmn_term_ccb_bld(dev~ cam .flags~ term _ccb)
dev_t dev;
u_Iong cam .flags;
CCB_HEADER *term_ccb;

Arguments

dev The major/minor device number pair that identifies the bus number~
target ID~ and LUN associated with this SCSI device.

cam .flags The cam ...flags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DIR_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DI S_CALLBACK

CAM_CDB_LINKED

CAM_OUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_OHEAD

CAM_SIM_OFREEZE

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode, go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before tenninating I/O

Scatter/gather list is for HBA
engine

COB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

SCSI/CAM Routines in UL TRIX Reference Page Format C-51

Flag Name

CAM CALLBCK PHYS - -

CAM_DATAB_VALID

CAM_STATUS_VALID

CAM_MSGB_VALID

CAM_TGT_PHASE_MODE

CAM_TGT_CCB_AVAIL

CAM_DIS_AUTODISC

CAM_DIS_AUTOSRP

Description

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosavelrestore pointers

term ccb Pointer to the CAM Control Block (CCB) header structure to tenninate.

Description
The ccmn term ccb bId routine creates a TERMINATE 110 CCB and sends it
to the XPT:-The routinecalls the ccmn get ccb routine to allocate a CCB
structure and fill in the common portion Of the CCB header. The routine fills in the
CCB to be tenninated and calls the camn send ccb routine to send the CCB
structure to the XPT. The request is carried out iIiiinediately, so it is not placed on
the device driver's active queue.

Return Value
CCB_TERMIO pointer

See Also

C-52 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

ccmn_tenn_que - sends a TERMINATE 110 CCB request for each SCSI 110 CCB on
the active queue

ccmn_term_que(pd)
PDRV _DEVICE *pd;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

Description
The ccmn _term_que routine sends a TERMINATE 110 CCB request for each
SCSI 110 CCB on the active queue. This routine must be called with the Peripheral
Device Structure locked.

The ccmn term que routine calls the ccmn term ccb bId routine to create
a TERMINATE 110 CCB for the first active CCB on the active queue and send it to
the XPT. It calls the ccmn send ccb routine to send the TERMINATE 110 CCB
for each of the other CCBs on the active queue that are marked as active to the XPT.
The ccmn term que routine then calls the ccmn reI ccb routine to return
the TERMiNATE 170 CCB to the XPT. --

Return Value
None

See Also

SCSI/CAM Routines in ULTRIX Reference Page Format C-53

Name

Syntax

ccmn_tur - creates a SCSI 110 CCB for the TEST UNIT READY command and
sends it to the XPT for processing

ccmn_tur(pd, sense _len, cam Jiags, comp June, tag_action, timeout)
PDRV _DEVICE .pd;
u_short sense len;
u_Iong cam .Jtags;
void (·comp Junc) 0;
u_char tag action;
u_Iong timeout;

Arguments

pd Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

sense len Length of the sense data buffer to be returned on autosense, which is
predefined as 64 bytes in the DEC_AUTO_SENSE_SIZE environment
variable but can be larger.

cam .Jiags The cam .Jlags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DI R_OUT

CAM_DI R_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DIS_CALLBACK

CAM_COB_LINKED

CAM_QUEUE_ENABLE

CAM_COB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

Description

Data direction (00: reserved)
Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)
Disable autosense feature
Scatter/gather list is valid

Disable callback feature
CCB contains linked CDB
SIM queue actions are enabled
CDB field contains pointer
Disable disconnect
Attempt synchronous data transfer,
after issuing Synchronous Data
Transfer Request (SDTR)
Disable synchronous mode, go to
asynchronous
Place CCB at head of SIM queue
Return SIM queue to frozen state

C-54 SCSI/CAM Routines in UL TRIX Reference Page Format

Flag Name

CAM_CDB_PHYS

CAM_DATA_PHYS

CAM_DATAB_VALID

CAM_STATUS_VALID

CAM_MSGB_VALID

CAM_TGT_PHASE_MODE

CAM_TGT_CCB_AVAIL

CAM_DIS_AUTODISC

CAM_DIS_AUTOSRP

Description

Flush residual bytes from HBA
data engine before tenninating 110

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

Next CCB pointer is physical
address

Callback function pointer is
physical address

Data buffer valid

Status buffer valid

Message buffer valid

SIM will run in phase mode

Target CCB available

Disable autodisconnect

Disable autosavelrestore pointers

comp June SCSI device driver 110 callback completion function. This pointer may
be NULL if the CAM DISABLE CALLBACK bit is set in the CAM
FLAGS field.

tag_action Type of action to perfonn for tagged requests:

timeout

Description

CAM_SIMPLE_OTAG
CAM_HEAD_OTAG
CAM_ORDERED_OTAG

Tag for simple queue
Tag for head of queue
Tag for ordered queue

Timeout for the request in seconds. A value of 0 (zero) indicates the
default, which is five seconds.

The ccmn tur routine creates a SCSI 110 CCB for the TEST UNIT READY
command and sends it to the XPT for processing. This routine may be called from
interrupt context since it will not wait (sleep) for the command to complete.

The ccmn tur routine calls the ccmn io ccb bId routine to obtain a SCSI
110 CCB strUcture. The ccmn_ tur routine calls iiie ccmn_send_ ccb routine to
send the SCSI 110 CCB to the XPT.

SCSI/CAM Routines in UL TRIX Reference Page Format C-55

Return Value
CCB _SCSUO pointer

See Also

C-56 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cdbg_ CamFunction - reports CAM XPf function codes

char * cdbg_CamFunction(camJunction, reportJormat)
register u_char cam Junction;
int report Jormat;

Arguments

cam Junction The entry from the CAM XPf Function Code Table.

report Jormat The fonnat of the message text returned, which can be CDBG_BRIEF
or CDBG_FULL.

Description
The cdbg_CamFunction routine reports CAM XPf function codes. Program
constants are defined to allow either the function code name only or a brief
explanation to be printed. The XPf function codes are defined in the
/usr/sys/h/cam. h file.

Return Value
Returns a character pointer to a text string.

SCSI/CAM Routines in ULTRIX Reference Page Format C-57

Name

Syntax

cdbg_CamStatus - decodes CAM CCB status codes

char * cdbg_CamStatus(cam_status, reportJormat)
register u_char cam status;
int report Jormat;

Arguments

cam status The infonnation from the CAM SCSI 110 CCB.

report Jormat The fonnat of the message text returned, which can be CDBG_BRIEF
or CDBG_FULL.

Description
The cdbg_CamStatus routine decodes CAM CCB status codes. Program
constants are defined to allow either the status code name only or a brief explanation
to be printed. The CAM status codes are defined in the /usr/sys/h/cam. h file.

Return Value
Returns a character pointer to a text string.

c-5S SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cdbg_DumpABORT - dumps the contents of an ABORT CCB

void cdb9_DumpABORT(ccb)
register CCB_ABORT *ccb;

Arguments

ccb Pointer to the ABORT CCB.

Description
The cdbg _ DumpABORT routine dumps the contents of an ABORT CCB. The
ABORT CCB is defined in the /usr/sys/h/cam. h file.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C-59

Name
void cdbg_DwnpBuffer - dumps the contents of a data buffer in hexadecimal bytes

Syntax
void cdbg_DumpBuffer(buffer, size)
char *buffer;
register int size;

Arguments

buffer SCSI/CAM peripheral buffer pointer.

size Size of buffer in bytes.

Description
The cdbg_DumpBuffer routine dumps the contents of a data buffer in
hexadecimal bytes. The calling routine must display a header line. The fonnat of the
dump is 16 bytes per line.

Return Value
None

C-60 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cdbg_DumpCCBHeader - dwnps the contents of a CAM Control Block (CCB)
header structure

void cdb9_DumpCCBHeader(ccb)
register CCB_HEADER *ccb;

Arguments

ccb Pointer to the CAM Control Block (CCB) header structure.

Description
The cdbg_DumpCCBHeader routine dwnps the contents of a CAM Control Block
(CCB) header structure. The CAM Control Block (CCB) header structure is defined
in the /usr/sys/h/cam. h file.

Return Value
None

SCSI/CAM Routines in UL TRIX Reference Page Format C-61

Name

Syntax

cdbg_DumpCCBHeaderFlags - dumps the contents of the cam_flags member of
a CAM Control Block (CCB) header structure

void cdbg_DumpCCBHeaderFlags(cam Jiags)
register u_Iong cam ..Jlags;

Arguments

cam Jlags The cam Jiags flag names and their bit definitions are listed in the table
that follows:

Flag Name

CAM_DIR_RESV

CAM_DIR_IN

CAM_DIR_OUT

CAM_DIR_NONE

CAM_DIS_AUTOSENSE

CAM_SCATTER_VALID

CAM_DIS_CALLBACK

CAM_CDB_LINKED

CAM_QUEUE_ENABLE

CAM_CDB_POINTER

CAM_DIS_DISCONNECT

CAM_INITIATE_SYNC

CAM_SIM_QHEAD

CAM_SIM_QFREEZE

CAM_ENG_SYNC

CAM_CDB_PHYS

CAM_DATA_PHYS

Description

Data direction (00: reserved)

Data direction (01: DATA IN)

Data direction (10: DATA OUT)

Data direction (11: no data)

Disable autosense feature

Scatter/gather list is valid

Disable callback feature

CCB contains linked CDB

SIM queue actions are enabled

CDB field contains pointer

Disable disconnect

Attempt synchronous data transfer.
after issuing Synchronous Data
Transfer Request (SDTR)

Disable synchronous mode. go to
asynchronous

Place CCB at head of SIM queue

Return SIM queue to frozen state

Flush residual bytes from HBA
data engine before tenninating I/O

Scatter/gather list is for HBA
engine

CDB pointer is physical address

Scatter/gather/buffer data pointers
are physical address

Autosense data pointer is physical
address

Message buffer pointer is physical
address

C-62 SCSI/CAM Routines in UL TRIX Reference Page Format

Description

Flag Name Description

CAM _ NXT _ CCB _PHYS Next CCB pointer is physical
address

CAM_CALLBCK_PHYS Callback function pointer is
physical address

CAM_DATAB_ VALID Data buffer valid

CAM_STATUS_VALID Status buffer valid

CAM_MSGB_ VALID Message buffer valid

CAM_TGT_PHASE_MODE SIM will run in phase mode

CAM_TGT_CCB_AVAIL Target CCB available

CAM_DIS _ AUTODISC Disable autodisconnect

CAM _DIS _AUTOSRP Disable autosave/restore pointers

The cdbg_DumpCCBHeaderFlags routine dumps the contents of the
cam_flags member of a CAM Control Block (CCB) header structure. The CAM
Control Block (CCB) header structure is defined in the /usr/sys/h/cam. h file.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C-63

Name

Syntax

cdbg_DwnpInquiryData - dumps the contents of an ALL_INQ_DATA structure

void cdb9_DumplnquiryData(inquiry)
register ALL_INQ_DAT A *inquiry;

Arguments

inquiry Pointer to the ALL_INQ_DAT A structure.

Description
The cdbg_DumplnquiryData routine dumps the contents of an
ALL_INCLDATA structure. The ALL_INQ_DATA structure is defined in the
/usr/sys/h/scsi_all. h file.

Return Value
None

C-64 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cdbg_DumpPDRVws - dumps the contents of a SCSI/CAM Peripheral Device Driver
Working Set Structure

void cdbg_DumpPDRVws(pws)
register PDRV _ WS "'pws;

Arguments

pws Pointer to the SCSI/CAM Peripheral Device Driver Working Set Structure.

Description
The cdbg_DumpPDRVws routine dumps the contents of a SCSI/CAM Peripheral
Device Driver Working Set Structure. The SCSI/CAM Peripheral Device Driver
Working Set Structure is defined in the /usr/sys/h/pdrv. h file.

Return Value
None

SCSI/CAM Routines in UL TRIX Reference Page Format C-65

Name

Syntax

cdbg_DwnpSCSIIO - dumps the contents of a SCSI 110 CCB

void cdb9_DumpSCSIIO(ccb)
register CCB_SCSIIO *ccb;

Arguments

ccb Pointer to the SCSI 110 CCB structure.

Description
The cdbg_DumpSCSIIO routine dumps the contents of a SCSI 110 CCB. The
SCSI 110 CCB is defined in the /usr/sys/h/cam. h file.

Return Value
None

C-66 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cdb~DumpTERMIO - dumps the contents of a TERMINATE 110 CCB

void cdbg_DumpTERMIO(ccb)
register CCB_TERMIO *ccb;

Arguments

ccb Pointer to the TERMINATE 110 CCB.

Description
The cdbg_DumpTERMIO routine dumps the contents of a TERMINATE 110 CCB.
The TERMINATE 110 CCB is defined in the /usr/sys/h/cam. h file.

Return Value
None

SCSI/CAM Routines in UL TRIX Reference Page Format C-67

Name

Syntax

cdbg_GetDeviceName - returns a pointer to a character string describing the dtype
member of an ALL_INQ_DA TA structure

char * cdb9_ GetDeviceName(device_type)
register device_type;

Arguments

device _type SCSI device type value from Inquiry data.

Description
The cdbg_GetDeviceName routine returns a pointer to a character string
describing the dtype member of an ALL_IN~DATA structure. The
ALL_INQ_DATA structure is defined in the /usr/sys/h/scsi_all. h file.

Return Value
Returns a character pointer to a text string.

C-68 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cdbg_ScsiStatus - reports SCSI status codes

char * cdbg_ScsiStatus(scsi_status, reportJormat)
register u_char scsi status;
int report Jonnat;

Arguments

scsi status The SCSI status from the CAM SCSI 110 CCB.

report Jormat

Description

The format of the message text returned, which can be CDBG_BRIEF or
CDBG_FULL.

The cdbg_ScsiStatus routine reports SCSI status codes. Program constants are
defined to allow either the status code name only or a brief explanation to be printed.
The SCSI status codes are defined in the /usr/sys/h/scsi_status. h file.

Return Value
Returns a character pointer to a text string.

SCSI/CAM Routines in UL TRIX Reference Page Format C-69

Name

Syntax

cdbg_SystemStatus - reports system error codes

char * cdbg_SystemStatus(ermo)
int ermo;

Arguments

errno The error number.

Description
The cdbg_SystemStatus routine reports system error codes. The system error codes
are defined in the /usr/sys/h/errno. h file.

Return Value
Returns a character pointer to a text string.

C-70 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cgen_async - handles notification of asynchronous events

void cgen_async(opcode, path_id, target, lun, bufytr, data_cnt)
u_Iong opcode;
u_char path id;
u_char target;
u_char lun;
caddr_t bufytr;
u_char data_cnt;

Arguments

opcode

path_id

target

lun

bufytr

data cnt

Description

SCSI asynchronous callback operation code.

SCSI target's bus controller number.

SCSI target's ID number.

SCSI target's logical unit number.

Buffer address for Asynchronous Event Notification (AEN).

Number of bytes the XPT had to transfer from the SIM' s buffer or the
limit of the SCSI/CAM peripheral buffer.

The cgen _ async routine handles notification of asynchronous events. The routine
is called when an Asynchronous Event Notification(AEN), Bus Device Reset (BDR),
or Bus Reset (BR) occurs. The routine sets the CGEN_RESET _STATE flag and
clears the CGEN_RESET_PEND_STATE flag for BDRs and bus resets. The routine
sets the CGEN_UNIT_ATTEN_STATE flag for AENs.

Return Value
None

SCSI/CAM Routines in UL TRIX Reference Page Format C-71

Name

Syntax

cgen_attach - called for each bus, target, and LUN after the cgen_slave routine
returns SUCCESS

cgen _attach (ui)
struct uba_device *ui;

Arguments

ui Pointer to the device infonnation contained in the uba device
structure.

Description
The cgen_attach routine is called for each bus, target, and LUN after the
cgen slave routine returns SUCCESS. The routine calls the
ccmn:= open _ uni t routine, passing the bus, target, and LUN infonnation.

The cgen attach routine calls the ccmn close unit routine to close the
device. If a device of the specified type is found, the device identification string is
printed. See the Guide to Writing and Porting VMEbus and TURBOchannel Device
Drivers for more infonnation.

Return Value
PROBE_FAILURE
PROBE_SUCCESS

See Also

C-72 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cgen_ccb_chkcond - decodes the autosense data for a device driver

cgen_ccb_ch kcond (pdrv _ dev, ccb)
PDRV _DEVICE *pdrv dev;
CCB_SCSIIO *ccb; -

Arguments

pdrv _ dev Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

ccb Pointer to the SCSI 110 CCB structure.

Description
The cgen_ccb_chkcond routine decodes the autosense data for a device driver
and returns the appropriate status to the calling routine. The routine is called when a
SCSI 110 CCB is returned with a CAM status of CAM_REQ_CMP _ERR (request
completed with error) and a SCSI status of SCSI_STAT_CHECK_CONDITION. The
routine also sets the appropriate flags in the Generic-Specific Structure.

Return Value
An integer indicating one of the following values:

Flag Name

CHK_EOM

CHK FILEMARK

CHK_ILI

CHK_NOSENSE_BITS

CHK_SOFTERR

CHK_NOT_READY

CHK HARDERR

CHK_UNIT_ATTEN

Description

Request sense did not complete
without error. Sense buffer
contents cannot bt! used to
detennine error condition.
Valid bit in sense buffer is not set;
sense data is useless.
End of media detected.
Filemark detected.
Incorrect record length detected.
Sense key equals no sense, but
there are no bits set in byte 2 of
sense data.
Soft error detected; corrected by
unit.
Unit is not ready.
Unit has detected a hard error.

Unit has either had media change
or just powered up.

SCSI/CAM Routines in UL TRIX Reference Page Format C-73

Flag Name

CHK_DATA_PROT

CHK_UNSUPPORTED

CHK_CMD_ABORTED

CHK_INFORMATIONAL

CHK_UNKNOWN_KEY

Description

Unit is write protected.

Sense key that is unsupported has
been returned.

Unit aborted this conunand.

Unit is reporting infonnational
message.

Unit bas returned sense key that is
not supported by SCSI 2
specification.

C-74 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cgen_close - closes the device

cgen_close(dev, flags)
dev_t dev;
intflags;

Arguments

dev The major/minor device number pair that identifies the bus number,
target 10, and LUN associated with this SCSI device.

flags Flags set when a file is open.

Description
The cgen_close routine closes the device. The routine checks any device flags
that are defined to see if action is required, such as rewind on close or release the
unit. The cgen _ close closes the device by calling the ccmn _close _ uni t
routine.

Return Value
The cgen_close routine returns GENERIC_SUCCESS upon successful
completion.

Diagnostics
The cgen _close routine fails under the following condition:

[ENOMEM] Resource problem

See Also
ccmn close unit - -

SCSI/CAM Routines in UL TRIX Reference Page Format C-75

Name

Syntax

cgen_done - the entry point for all nonread and nonwrite 110 callbacks

cgen_done(ccb)
CCB_SCSIIO *ccb;

Arguments

ccb Pointer to the SCSI 110 CCB structure.

Description
The cgen_done routine is the the entry point for all nonread and nonwrite 110
callbacks. The generic device driver uses two callback entry points, one for all
nonuser 110 requests and one for all user 110 requests. The SCSIICAM peripheral
device driver writer can declare multiple callback routines for each type of command
and can fill the CCB with the address of the appropriate callback routine.

This is a generic routine for all nonread and nonwrite SCSI 110 CCBs. The SCSI 110
CCB should not contain a pointer to a bUf structure in the cam_req_map
member of the structure. If it does, then a wake-up call is issued on the address of
the CCB and the error is reported. If the SCSI 110 CCB does not contain a pointer to
a buf structure in the cam_req_map member, then a wake-up call is issued on
the address of the CCB and the CCB is removed from the active queques. No CCB
completion status is checked because that is the responsibility of the routine that
created the CCB and is waiting for completion status. When this routine is entered,
context is on the interrupt stack and the driver cannot sleep waiting for an event.

Return Value
None

C-76 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cgen_ioctl - handles user process requests for specific actions other than read, write,
open, or close for SCSI tape devices

cgenJoctl(dev, cmd, data, flags)
dev_t dev;
int cmd;
caddt_t data;
intflags;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

cmd The ioctl command, UAGT_CAM_IO.

data Pointer to the kernel copy of the structure passed by the user process.

flags User process flags.

Description
The cgen_ioctl routine handles user process requests for specific actions other
than read, write, open, or close for SCSI tape devices. The routine currently issues a
DEVIOCGET ioctl command for the device, which fills out the devget
structure passed in, and then calls the cgen_mode_sns routine which issues a
SCSI_MODE_SENSE to the device to detennine the device's state. The routine then
calls the ccmn reI ccb routine to release the CCB. When the call to
cgen_mode_sns completes, the cgen_ioctl routine fills out the rest of the
devget structure based on infonnation contained in the mode sense data.

Return Value
[EINV AL] The device does not exist.

See Also

SCSI/CAM Routines in UL TRIX Reference Page Format C-77

Name

Syntax

cgen_iodone - the entry point for all read and write 110 callbacks

cgen_iodone(ccb)
CCB_SCSIIO *ccb;

Arguments

ccb Pointer to the SCSI 110 CCB structure.

Description
The cgen _ iodone routine is the entry point for all read and write 110 callbacks.
This is a generic routine for all read and write SCSI 110 CCBs. The SCSI 110 CCB
should contain a pointer to a buf structure in the cam_req_map member of the
structure. If it does not, then a wake-up call is issued on the address of the CCB and
the error is reported. If the SCSI 110 CCB does contain a pointer to a buf structure
in the cam_req_map member, as it should, then the completion status is decoded.
Depending on the CCB' s completion status, the correct fields within the buf
structure are filled out.

The device's active queues may need to be aborted because of errors or because the
device is a sequential access device and the transaction was an asynchronous request.

The CCB is removed from the active queques by a call to the ccmn_rem_ccb
routine and is released back to the free CCB pool by a call to the ccmn _ rel_ ccb
routine. When the cgen _ iodone routine is entered, context is on the interrupt
stack and the driver cannot sleep waiting for an event.

Return Value
None

See Also

C-78 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cgen_minphys - compares the b bcount with the maximum transfer limit for the
device

cgen_minphys(bp)
register struct buf *bp;

Arguments

bp A buf structure pointer, which is used for request mapping.

Description
The cgen_minphys routine compares the b_bcount with the maximum transfer
limit for the device. The routine compares the b_bcount field in the bUf
structure with the maximum transfer limit for the device in the Device Descriptor
Structure. The count is adjusted if it is greater than the limit.

Return Value
None

SCSI/CAM Routines in ULTRIX Reference Page Format C-79

Name

Syntax

cgen_mode_sns - issues a SCSI_MODE_SENSE command to the unit defined

cgen_mode_sns(pdrv _dey, action, done, page_code, page_ctrl, sleep)
PDRV _DEVICE *pdrv dey;
CGEN_ACTION *action;
void (*done) 0;
u_char page code;
u_char page - ctrl;
u_Iong sleep;

Arguments

pdrv _ dey Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

action Pointer to the caller's Generic Action Structure.

done The address of the completion routine to be called when the SCSI
command completes.

page_code The user process's target page.

page _ ctrl The page control settings field.

sleep Whether or not the GENERIC_SLEEP flag is set.

Description
The cgen _mode _ sns routine issues a SCSI_MODE_SENSE command to the unit
defined. The CGEN_ACfION structure is filled in for the calling routine based on
the completion status of the CCB.

Return Value
NULL - command could not be issued
CCB_SCSIIO pointer

See Also
ccmn ccb status - -

C-SO SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cgen_open - called by the kernel when a user process requests an open of the device

cgen_open(dev, flags)
dev_t dev;
intflags;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

flags Flags set when a file is open.

Description
The cgen _open routine is called by the kernel when a user process requests an
open of the device. The cgen_open routine calls the ccmn_open_unit
routine, which manages the SMP _LOCKS and, if passed the exclusive use flag for
SCSI devices, makes sure that no other process has opened the device. If the
ccmn _ open _ uni t routine returns success, the necessary data structures are
allocated.

The cgen_open routine calls the ccmn_sasy _ccb_bld routine to register for
asynchronous event notification for the device. The cgen _ open routine then enters
a f or loop based on the power-up time specified in the Device Descriptor Structure
for the device. Within the loop, calls are made to the cgen_ready routine, which
calls the ccmn tur routine to issue a TEST UNIT READY command to the
device. -

The cgen open routine calls the ccmn reI ccb routine to release the CCB.
The cgen:= open routine checks certain state flags for the device to decide whether
to send the initial SCSI mode select pages to the device. Depending on the setting of
the state flags CGEN_UNIT _A ITEN_ST ATE and CGEN_RESET _STATE, the
cgen open routine calls the cgen open sel routine for each mode select page
to be Sent to the device. The cgen open sel routine fills out the Generic Action
Structure based on the completion status of the CCB for each mode select page it
sends.

Return Value
The cgen _open routine returns GENERIC_SUCCESS upon successful
completion.

Diagnostics
The cgen _open routine fails under the following conditions:

SCSI/CAM Routines in UL TRIX Reference Page Format C-81

[EBUSY]

[ENOMEM]

[EINVAL]

[ENXIO]

[EIO]

See Also

The device is already opened and the exclusive use bit is set.

Resource problem

The scsi _ dev _type parameter does not match the device type in the
Inquiry data returned by GET DEVICE TYPE CCB. The
scsi _ dev _ type was not configured.

The device does not exist.

Check device conditions.

ccrnn_cIose_unit, ccmn_open_unit, ccmn_reI_ccb,
ccrnn_sasy_ccb_bId, ccmn_tur, cgen_open_sel, cgen_close

C-82 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cgen_open_sel- issues a SCSI_MODE_SELECT command to the SCSI device

cgen_open_sel(pdrv _dey, action, InS_index, done, sleep)
PDRV _DEVICE '*'pdrv dey;
CGEN_ACTlON '*'action;
u_Iong ms index;
void ('*'done) 0;
u_Iong sleep;

Arguments

pdrv _ dey Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

action Pointer to the caller's Generic Action Structure.

ms index An index into a page in the Mode Select Table that is pointed to in the
Device Descriptor Structure.

done The address of the completion routine to be called when the SCSI
command completes.

sleep Whether or not the GENERIC_SLEEP flag is set.

Description
The cgen open sel routine issues a SCSI_MODE_SELECT command to the
SCSI device. The mode select data sent to the device is based on the data contained
in the Mode Select Table Structure for the device, if one is defined. The
CGEN_ACTlON structure is filled in for the calling routine based on the completion
status of the CCB.

The cgen open sel routine calls the ccmn mode select routine to create a
SCSI I/O CCB andsend it to the XPT for processing. -

Return Value
None

See Also

SCSI/CAM Routines in UL TRIX Reference Page Format C-83

Name

Syntax

cgen_read - handles synchronous read requests for user processes

cgen_read(dev, uio)
dev_t dev;
struct uio *uio;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

uio Pointer to the device information contained in the uio 110 structure.

Description
The cgen_read routine handles synchronous read requests for user processes. It
passes the user process requests to the cgen_strategy routine. The
cgen read routine calls the ccmn get bp routine to allocate a buf structure
for the user process read request. When thellO is complete, the cgen_read
routine calls the ccmn_rel_bp routine to deallocate the buf structure.

Return Value
The cgen_read routine passes the return from the physio routine.

See Also

C-84 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cgen_ready - issues a TEST UNIT READY command to the unit defined

cgen_ready(pdrv _ dev, action, done, sleep)
PDRV _DEVICE *pdrv dev;
CGEN_ACTION *action;
void (*done) 0;
u_Iong sleep;

Arguments

pdrv _ dev Pointer to the CAM Peripheral Device Structure allocated for each SCSI
device in the system.

action Pointer to the caller's Generic Action Structure.

done The address of the completion routine to be called when the SCSI
conunand completes.

sleep Whether or not the GENERIC_SLEEP flag is set.

Description
The cgen ready routine issues a TEST UNIT READY command to the unit
defined. The routine calls the ccmn tur routine to issue the TEST UNIT READY
command and sleeps waiting for command status.

Return Value
None

See Also
ccmn tur

SCSI/CAM Routines in UL TRIX Reference Page Format C-85

Name

Syntax

cgen_slave - called at system boot to initialize the lower levels

.cgen_slave(ui, reg)
struct uba_device * ui;
caddr_t reg;

Arguments

ui Pointer to the device information contained in the uba device
structure.

reg The virtual address of the controller.

Description
The cgen_slave routine is called at system boot to initialize the lower levels.
The routine also checks the bounds for the unit number to ensure it is within the
allowed range and sets the device-configured bit for the device at the specified bus,
target, and LUN.

Return Value
PROBE_FAILURE
PROBE_SUCCESS

See Also

C-S6 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

cgen_strategy - handles all I/O requests for user processes

cgen_strategy(bp)
struct buf '" bp;

Arguments

bp A buf structure pointer, which is used for request mapping.

Description
The cgen_strategy routine handles all I/O requests for user processes. It
petionns specific checks, depending on whether the request is synchronous or
asynchronous and on the SCSI device type. The cgen_strategy routine calls
the ccmn io ccb bId routine to obtain an initialized SCSI I/O CCB and build
either a read or-a write command based on the infonnation contained in the buf
structure. The cgen strategy routine then calls the ccmn send ccb to
place the CCB on the active queue and send it to the XPf layer.- -

Return Value
[EINVAL]
[EIO]

See Also

SCSI/CAM Routines in UL TRIX Reference Page Format C-87

Name

Syntax

cgen_ write - handles synchronous write requests for user processes

cgen_write(dev, uio)
dev_t dev;
struct uio *uio;

Arguments

dev The major/minor device number pair that identifies the bus number,
target ID, and LUN associated with this SCSI device.

uio Pointer to the device information contained in the uio liD structure.

Description
The cgen _ wr i te routine handles synchronous write requests for user processes.
The routine passes the user process requests to the cgen_strategy routine. The
cgen write routine calls the ccmn get bp routine to allocate a buf structure
for the user process write request. When the -liD is complete, the cgen _ wr i te
routine calls the ccmn_rel_bp routine to deallocate the buf structure.

Return Value
The cgen_write routine passes the return from the physio routine.

See Also

C-88 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

sim_action - initiates an I/O request from a SCSI/CAM peripheral device driver

sim_action(ccb _ hdr)
CCB_HEADER *ccb_hdr;

Arguments

ccb hdr Address of the header for the ccb.

Description
The sim_action routine initiates an 110 request from a SCSI/CAM peripheral
device driver. The routine is used by the XPf for immediate as well as for queued
operations. When the operation completes, the SIM calls back directly to the
peripheral driver using the CCB callback address, if callbacks are enabled and the
operation is not to be carried out immediately.

The SIM determines whether an operation is to be carried out immediately or to be
queued according to the function code of the CCB structure. All queued operations,
such as "Execute SCSI I/O" (reads or writes), are placed by the SIM on a nexus­
specific queue and return with a CAM status of CAM_INPROG.

Some immediate operations, as described in the American National Standard for
Infonnation Systems, SCSI-2 Common Access Method: Transport and SCSI Interface
Module, working draft, X3T9.2/90-186, may not be executed immediately. However,
all CCBs to be carried out innnediately return to the XPf layer immediately. For
example, the ABORT CCB command does not always complete synchronously with
its call; however, the CCB_ABORT is returned to the XPT immediately. An
XPf_RESET_BUS CCB returns to the XPT following the reset of the bus.

Return Value
CAM_REQ_INPROG for queued commands
CAM_REQ_CMP for innnediate commands
A valid CAM error value

See Also
American National Standard for Information Systems, SCSI-2 Common Access
Method: Transport and SCSI Interface Module, working draft, X3T9.2/90-186

SCSI/CAM Routines in.ULTRIX Reference Page Format c-89

Name
sim_init - initializes the SIM

Syntax
simJnit(pathid)
u_Iong pathid;

Arguments

pathid SCSI target's bus controller number.

Description
The sim_init routine initializes the SIM. The SIM clears all its queues and
releases all allocated resources in response to this call. This routine is called using
the function address contained in the CAM_SIM_ENTRY structure. This routine can
be called at any time; the SIM layer must ensure that data integrity is maintained.

Return Value
CAM_RECLCMP

C-90 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

uagt_close - handles the close of the User Agent driver

uagt_close(dev, flag)
dev_t dev;
int flag;

Arguments

dev The major/minor device number pair that identifies the User Agent.

flag Unused.

Description
The uagt _close routine handles the close of the User Agent driver. For the last
close operation for the driver, if any queues are frozen, a RELEASE SIM QUEUE
CCB is sent to the XPT layer for each frozen queue detected by the User Agent.

Return Value
None

See Also

SCSI/CAM Routines in ULTRIX Reference Page Format C-91

Name

Syntax

uagt_ioctl- handles the ioctl system call for the User Agent driver

uagtjoctl(dev, cmd, data, flag)
dev_t dev;
register int cmd;
caddr_t data;
int flag;

Arguments

dev The major/minor device number pair that identifies the User Agent.

cmd The ioctl command, UAGT_CAM_IO.

data Pointer to the UAGT_CAM_CCB structure passed by the user process.

flag Unused.

Description
The uagt_ioctl routine handles the ioctl system call for the User Agent
driver. The ioctl commands supported are: DEVIOCGET, to obtain the User
Agent driver's SCSI device status; UAGT_CAM_IO, the ioctl define for calls to
the User Agent driver; UAGT_CAM_SINGLE_SCAN, to scan a bus, target, and
LUN; and UAGT_CAM_FULL_SCAN, to scan a bus.

For SCSI 110 CCB requests, the user data area is locked before passing the CCB to
the XPT. The User Agent sleeps waiting for the 110 to complete and issues a
ABORT CCB if a signal is caught while sleeping.

Return Value
The uagt_ioctl routine returns a value of 0 (zero) upon successful completion.

Diagnostics
The uagt_ioctl routine fails under the following conditions:

[EFAUL T] Copy to or from user space failed.

[EINVAL]

[EBUSY]

An unsupported cmd value was passed to ioctlO. The CCB copied
from the user process contained an invalid XPT function code, or
an invalid target or LUN.

The maximum allowable number of User Agent requests has been
reached (MAX_UAGT_REQ).

C-92 SCSI/CAM Routines in UL TRIX Reference Page Format

See Also
ioctl(2), xpt_action, xpt_ccb_alloc

SCSI/CAM Routines in UL TRIX Reference Page Format C-93

Name
uagt_open - handles the open of the User Agent driver

Syntax
uagt_open(dev, flag)
dev_t dev;
int flag;

Arguments

dev The major/minor device number pair that identifies the User Agent.

flag Unused.

Description
The uagt _open routine handles the open of the User Agent driver.

The character device special file name used for the open is / dev / cam.

Return Value
The uagt_open routine returns a value of 0 (zero) upon successful completion.

See Also

C-94 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

xpt_action - calls the appropriate XPT/SIM routine

long xpt_action (ch)
CCB_HEADER '" ch;

Arguments

ch Specifies a pointer to the CAM Control Block (CCB) on which to act.

Description
The xpt_action routine calls the appropriate XPT/SIM routine. The routine
routes the specified CCB to the appropriate SIM module or to the Configuration
driver, depending on the CCB type and on the path ID specified in the CCB.
Vendor-unique CCBs are also supported. Those CCBs are passed to the appropriate
SIM module according to the path ID specified in the CCB.

Return Value
Upon completion, the xpt _ action routine returns a valid CAM status value.

See Also

SCSI/CAM Routines in UL TRIX Reference Page Format C-95

Name
xpt_ccb_alloc - allocates a CAM Control Block (CCB)

Syntax

Arguments
None

Description
The xpt_ccb_alloc routine allocates a CAM Control Block (CCB) for use by a
SCSI/CAM peripheral device driver. The xpt _ ccb _ alloc routine returns a
pointer to a preallocated data buffer large enough to contain any CCB structure. The
peripheral device driver uses this structure for its XPf/SIM requests. The routine also
ensures that the SIM private data space and peripheral device driver pointer,
cam _pdrv _ptr , are set up.

Return Value
Upon successful completion, xpt_ccb_alloc returns a pointer to a preallocated
data buffer. The data buffer returned by xpt_ccb_alloc is initialized to be a
SCSI 110 CCB. For other types of CCBs, some fields may have to be reinitialized
for the specific CCB.

See Also
xpt_ccb_free

C-96 SCSI/CAM Routines in UL TRIX Reference Page Format

Name

Syntax

xpt_ccb_free - frees a previously allocated CCB

long xpt_ccb_free(ch)
CCB_HEADER *ch;

Arguments

ch Specifies a pointer to the CCB to be freed. This CCB was allocated in a call
to xpt_ccb_alloc.

Description
The xpt_ccb_free routine frees a previously allocated CCB. The routine returns
a CCB, previously allocated by a peripheral device driver, to the CCB pool.

Return Value
XPT_CCB_INV ALID or CAM_SUCCESS

See Also

SCSI/CAM Routines in UL TRIX Reference Page Format C-97

Name
xpt_init - validates the initialized state of the CAM subsystem

Syntax
long xptjnit()

Arguments
None

Description
The xpt init routine validates the initialized state of the CAM subsystem. The
routine initializes all global and internal variables used by the CAM subsystem
through a call to the Configuration driver. Peripheral device drivers must call this
routine either during or prior to their own initialization. The xpt_init routine
simply returns to the calling SCSI/CAM peripheral device driver if the CAM
subsystem was previously initialized.

Return Value
Upon completion, xpt _ ini t returns one of the following values:

Return Value Meaning

The xpt _ ini t routine initialized the CAM
subsystem.

The xpt ini t routine did not initialize the CAM
sUbsystemand the CAM subsystem cannot be used.

C-98 SCSI/CAM Routines in UL TRIX Reference Page Format

A

ABORT CCB (CAM), 5-6

B
BUS DEVICE RESET CCB (CAM), 5-6

BUS RESET CCB (CAM), 5-6

c
CALLD macro (CAM), 10-1

CAM

common structures and routines, 1-4

Configuration driver structures and routines, 1-5

generic structures and routines, 1-5

overview, 1-1

SCSI CDROMIAUDIO device structures and

commands, 1-5

SCSI disk device structures and routines, 1-5

SCSI tape device structures and routines, 1-5

SCSI/CAM peripheral drivers, 1-4

SCSI/CAM special I/O interface, 1-5

SIM SCSI Interface layer, 1-6

User Agent driver structures and routines, 1-3

XPT transport layer, 1-6

CAM common close unit routine

See also CAM open unit routine

CAM common data structures

introduction, 3-1

CAM common macros

introduction, 3-5

CAM common routines

introduction. 3-1. 3-6

CAM Control Block (CAM), 5-1

Index

CAM Control Block (CCB) header structure

(CAM). 5-2

CAM Control Blocks

described, 5-lt

CAM debug macros

described, 10-1

introduction, 10-1

CAM debug routines

introduction, 10-1

CAM equipment device table (CAM). 6-2

CAM error handling

CAM_ERROR macro. 9-1

introduction, 9-1

CAM error-logging data structures

introduction, 9-2

CAM generic maximum transfer limit routine, 4-8, .

C-79

CAM identification macros

described, 3-5t

CAM locking macros

described, 3-5t

CAM programmer-defined routines

introduction, 11-1

CAM programmer-defined structures

introduction, 11-1

samples, 11-11

CAM routines

cam_logger, C-2, 9-4

ccfg_action, 6-5

ccfg_attach, C-3, 6-5

ccfg_edtscan, C-4, 6-5

ccfg_slave, C-5, 6-5

ccmn_abort_ccb_bld, 3-12, C-9

ccmn_abort_que, 3-9, C-lO

CAM routines (cont.)

ccmn bdr_ccb_bld. 3-12. C-12

ccmn_br_ccb_bld. 3-12. C-14

ccmn_ccb_status. 3-13. C-15

ccmn_ccbwait. 3-15, C-17

ccmn_close_unit, 3-8. C-18

ccmn_DoSpecialCmd. 3-15, C-6

ccmn_errlog. 3-15. C-19

ccmn-8dev_ccb_bld, 3-11, C-21

ccmn-8ecbp. 3-14, C-22

ccmn-8ecccb. 3-10, C-24

ccmn-8eCdbuf, 3-14, C-25

ccmn_init, 3-8. C-26

ccmn_io_ccb_bld, 3-11. C-29

ccmn_mode_select, 3-13, C-31

ccmn_open_unit, 3-8. C-33

ccmn_pinq_ccb_bld, 3-11, C-36

ccmn_reCbp. 3-14. C-37

ccmn_reCccb, 3-10, C-38

ccmn_reCdbuf, 3-14, C-39

ccmn_rem_ccb. 3-9, C-40

ccmn_rsq_ccb_bld. 3-11, C-42

ccmn_sasy_ccb_bld, 3-11. C-44

ccmn_sdev_ccb_bld, 3-11, C-46

ccmn_send_ccb,3-9,C-47

ccmn_starCunit, 3-13. C-49

ccmn_S ysSpecialCmd. 3-15, C-7

ccmn_term_ccb_bld, 3-12, C-52

ccmn_term_que. 3-9, C-53

ccmn_tur, 3-13. C-55

cdbg_CamFunction. 10-4. C-57

cdbg_ CamStatus, 10-4, C-58

cdbg_DumpABORT, 10-6, C-59

cdbg_DumpBuffer, 10-6. C-60

cdbg_DumpCCBHeader, 10-5. C-61

cdbg_DumpCCBHeaderFlags. 10-5. C-63

cdb8-DumpInquiryData. 10-6. C-64

cdbg_DumpPDRVws. 10-6, C-65

cdbg_DumpSCSno. 10-6, C-66

cdbg_DumpTERMIO, 10-6, C-67

cdbg_GetDeviceName, 10-6, C-68

cdbg_ScsiStatus, 10-5, C-69

cdbg_SystemStatus, 10-5, C-70

cgen_async, 4-7, C-71

Index-2

CAM routines (cont.)

cgen_attach. 4-8, C-72

cgen_ccb_chkcond.4-7,C-73

cgen_close,4-5.C-75

cgen_done, 4-7, C-76

cgen_ioctl. 4-6, C-77

cgen_iodone, 4-7, C-78

cgen_minphys,4-8,C-79

cgen_mode_sns, 4-9, C-80

cgen_open,4-5,C-81

cgen_open_sel, 4-9, C-83

cgen_read, 4-5, C-84

cgen_ready, 4-8, C-85

cgen_slave, 4-8, C-86

cgen_strategy, 4-6, C-87

cgen_ write, 4-6, C-88

SCSIICAM special 110 interface, 12-1

sim_action. 8-2, C-89

sim_init, 8-2, C-90

uagt_close, 2-4, C-91

uagCioctl, 2-5. C-92

uagt_open, 2-4, C-94

xpCaction, C-95, 7-1

xpCccb_free, C-97, 7-1

xpCinit, C-98, 7-2

CAM SIM callback handling

description, 8-1

CAM SIM routines

introduction, 8-2

CAM structures

ABORT CCB. 5-6

BUS DEVICE RESET CCB, 5-6

BUS RESET CCB, 5-6

CAM Control Block (CCB) header structure. 5-2,

5-6

CAM Control Block structures, 5-1

CAM_ERR_ENfRY, 9-2

CAM_ERR_HDR. 9-3

CAM_PERIPHERAL_DRIVER, 6-3

CCB_ABORT, 5-6

CCB_GETDEV.5-7

CCB_HEADER. 5-2

CCB_PATHINQ.5-7

CCB_RELSIM.5-5

CAM structures (cont.)

CCB_RESETDEV, 5-6

CCB_scsno, 5-4

CCB_SETASYNC, 5-5

CCB_SETDEV.5-7

CCFG_CTRL, 6-2

cd_address, 11-17

CDB_UN,5-5

CDROM_PLAY_AUDIO and

CDR OM_PLAY _ VAUDIO commands,

11-18

CDR OM_PLAY _AUDIO_MSF and

CDROM_PLAY_MSF commands, 11-18

CDROM_PLA Y _AUDIO_TI command, 11-19

CDROM_PLAY_AUDIO_TR command, 11-20

COROM_PLAYBACK_CONIROL and

CDROM_PLAYBACK_STATUS

commands. 11-27

CDROM_PLAYBACK_CONIROL command,

11-28

CDROM_PLAYBACK_STATUS command,

11-28

CDROM_PLAY_TRACK command. 11-27

COROM_READ_HEADER command, 11-26

CDROM_READ_SUBCHANNEL command,

11-22

CDROM_TOC_ENfRYS command, 11-21

COROM_TOC_HEADER command, 11-20

CGEN_ACllON, 4-3

CGEN_SPECIFIC, 4-2

Density Table Structure, 11-8

DENSITY_TBL,3-4,l1-8

DEV _DESC, 11-5

Device Descriptor Structure, 11-5

DISK_SPECIFIC, 11-14

EOT,6-2

GET DEVICE TYPE CCB, 5-7

MODESEL_TBL, 3-3, 11-9

PATH INQUIRY CCB, 5-7

PDRV_DEVICE,3-2,11-2

PDRV _ WS, 3-4

Peripheral Device Unit Table, 3-1, II-I, 11-2

RELEASE SIM QUEUE CCB, 5-5

SCSI I/O CCB, 5-4

CAM structures (cont.)

SCSI/CAM Special Command Table, 12-3

SCSI/CAM Special Command Table example,

12-7

SET ASYNCHRONOUS CALLBACK CCB, 5-5

SET DEVICE TYPE CCB, 5-7

Special I/O Argument Structure, 12-8

Special 110 Control Commands Structure, 12-16,

12-17

SPECIAL_HEADER,12-3

TAPE_SPECIFIC, 11-11

TERMINATE I/O CCB, 5-6

UAGT_CAM_CCB, 2-2

UAGT_CAM_SCAN,2-4

CAM User Agent driver

error handling, 2-1

introduction, 2-1

CAM XPT routines

introduction, 7-1

CAl\LERROR macro (CAM)

defined,9-1

described, 9-1

camJogger (CAM), C-2, 9-4

CCB..ABORT structure (CAM), 5-6

CCB_GETDEV structure (CAM), 5-7

CCB-"EADER structure (CAM), 5-2

CCBYATIDNQ structure (CAM), 5-7

CCBJELSIM structure (CAM), 5-5

CCBJESETBUS structure (CAM), 5-6

CCBJESETDEV structure (CAM), 5-6

CCB_SCSnO structure (CAM), 5-4

CCB_SETASYNC structure (CAM), 5-5

CCB_SETDEV structure (CAM), 5-7

CCB_TERMIO structure (CAM), 5-6

ccfg...action (CAM), 6-5

ccfg...attach (CAM), C-3, 6-5

ccfg...edtscan (CAM). C-4, 6-5

ccfg...slave (CAM), C-5, 6-5

ccmD-aborLccb_bld (CAM). 3-12, C-9

ccmD-aborLque (CAM), 3-9, C-lO

ccmD-bdr_ccb_bld (CAM), 3-12, C-12

ccmD-br_ccb_bld (CAM), 3-12, C-14

ccmD-ccbJtatus (CAM), 3-13, C-15

Index-3

cCIDlLccbwait (CAM), 3-15, C-17

cCIDlLclose_unit (CAM), 3-8, C-18

ccmnJ)oSpecialCmd (CAM), 3-15, C-6

ccmlLerrlog (CAM), 3-15, C-19

ccmlL3dev_ccb_bld (CAM), 3-11, C-21

ccmlL3eLbp (CAM), 3-14, C-22

ccmlL3eLccb (CAM), 3-10, C-24

cCIDlL3eLdbuf (CAM), 3-14, C-25

cCIDlLinit (CAM), 3-8, C-26

ccmlLio_ccb_bld (CAM), 3-11, C-29

ccmlLmode..select (CAM), 3-13, C-31

cCIDlLopelLunit (CAM), 3-8, C-33

ccmlLpinq_ccb_bld (CAM), 3-11, C-36

cCIDDJeLbp (CAM), 3-14, C-37

ccmDJeLccb (CAM), 3-10, C-38

ccmDJeLdbuf(CAM). 3-14. C-39

cCIDDJe~ccb (CAM). 3-9, C-40

CCIDDJsCl-ccb_bld (CAM). 3-11, C-42

ccmlLSBSy_ccb_bld (CAM), 3-11. C-44

ccmlLSdev_ccb_bld (CAM), 3-11, C-46

cCIDJLsenLccb (CAM), 3-9, C-47

ccmlLStarLunit (CAM). 3-13, C-49

ccmlLSysSpecialCmd (CAM), 3-15. C-7

ccmlLter~ccb_bld (CAM), 3-12, C-52

cCIDlLter~que (CAM), 3-9, C-53

ccmlLtur (CAM), 3-13, C-55

cdb~CamFunction (CAM), 10-4, C-57

cdb~CamStatus (CAM), 10-4. C-58

cdbgJ>umpABORT (CAM), 10-6. C-59

cd~DumpButTer (CAM), 10-6, C-60

cdbgJ>umpCCBHeader (CAM), 10-5, C-61

cdbgJ>umpCCBHeaderFlags (CAM), 10-5. C-63

cdbgJ>umplnquiryData (CAM), 10-6. C-64

cdb~DumpPDRVws (CAM), 10-6, C-65

cdbgJ>umpSCSnO (CAM). 10-6. C-66

cdbgJ>umpTERMIO (CAM), 10-6. C-67

cd~GetDeviceName (CAM), 10-6. C-68

cdb~ScsiStatus (CAM), 10-5. C-69

cdb~SystemStatus (CAM). 10-5, C-70

CDB_UN structure (CAM), 5-5

CGEN-ACTION (CAM), ~3

cgelLasync (CAM), ~7. C-71

cgelLattacb (CAM), 4-8, C-72

Index-4

cgelLccb_cbkcond (CAM), 4-7, C-73

cgelLclose (CAM), 4-5, C-75

cgelLdone (CAM), 4-7, C-76

cgelLioctl (CAM), 4-6, C-77

cgelLiodone (CAM), 4-7. C-78

cgeJLminpbys (CAM), 4-8. C-79

cgelLmodeJns (CAM), ~9, C-80

cgelLopen (CAM), 4-5, C-81

cgelLopelLSel (CAM), 4-9. C-83

cgeDJead (CAM), 4-5. C-84

cgeDJeady (CAM), 4-8, C-85

cgelLSlave (CAM), 4-8, C-86

CGEN_SPECIFIC (CAM), 4-2

cgelLStrategy (CAM), 4-6, C-87

cgelLwrite (CAM), 4-6, C-88

common abort CCB routine (CAM), 3-9, 3-12,

C-9, C-10

common bus-device-reset CCB routine (CAM),

3-12, C-12

common bus-reset CCB routine (CAM), 3-12, C-14

common close unit routine (CAM), 3-8, C-18

common create SCSI I/O CCB for

ccmlLmode..select command (CAM), 3-13,

C-31

common create SCSI I/O CCB for START UNIT

command (CAM), 3-13, C-49

common create SCSI I/O CCB for TEST UNIT

READY command (CAM), 3-13, C-55

common create SCSI I/O CCB routine (CAM),

3-11, C-29

common data structures (CAM)

introduction, 3-1

common deallocate buf structure routine (CAM),

3-14, C-37

common deallocate data butTer routine (CAM),

3-14. C-39

common error logging routine (CAM), 3-15, C-19

common get buf structure routine (CAM), 3-14,

C-22

common get CCB routine (CAM), 3-10, C-24

common get data butTer routine (CAM). 3-14, C-25

common get-device-type CCB routine (CAM), 3-11,

C-21

common initialization routine (CAM), 3-8, C-26

common 110 CCB wait routine (CAM), 3-15, C-17

common open unit routine (CAM), 3-8, C-33

See also common close unit routine (CAM)

common path-inquiry CCB routine (CAM), 3-11,

C-36

common release CCB routine (CAM), 3-10, C-38

common release-SIM .. queue CCB routine (CAM),

3-11, C-42

common remove CCB routine (CAM), 3-9, C-40

common routine to assign generic status categories

(CAM), 3-13, C-15

common routines (CAM)

introduction, 3-1

common send CCB routine (CAM), 3-9, C-47

common set-asynchronous-callback CCB routine

(CAM), 3-11, C-44

common set-devIce-type CCB routine (CAM), 3-11,

C-46

common special command interface routine

(CAM), 3-15, C-6, C-7

common terminate CCB routine (CAM), 3-9, C-53

common terminate I/O CCB routine (CAM), 3-12,

C-52

Configuration driver (CAM)

and XPT routines, 6-1

Configuration driver configuraton file (CAM), 6-3

sample entry, 6-4

Configuration driver control structure (CAM), 6-2

Configuration driver data structures (CAM)

CAM_PERIPHERAL_DRIVER, 6-3

CCFG_CI'RL,6-2

EDT,6-2

introduction, 6-1

Configuration driver routines

entry-point routine introduction, 6-4

Configuration driver routines (CAM)

ccfg_action, 6-5

ccfg_attach, C-3, 6-5

ccfg_edtscan, C-4, 6-5

ccfg_slave, C-5, 6-5

description, 6-1

introduction, 6-1

D

debug macros (CAM)

introduction, H~ 1

debug routines (CAM)

introduction, 10-1

Density Table Structure (CAM), 3-4

Density Table Structure structure (CAM), 11-8

sample entry, 11-9

DENSITY _TBL structure (CAM), 3-4, 11-8

DEV.J)ESC structure (CAM), 11-5

Device Descriptor Structure structure (CAM), 11-5

device driver

summary of device driver routines, B-lt

DISK...SPECIFIC structure (CAM), 11-14

E

Error Entry Structure (CAM), 9-2

error handling (CAM)

CAM_ERROR macro, 9-1

introduction, 9-1

Error Header Structure (CAM), 9-3

error-logging data structures (CAM)

CAM_ERR_ENTRY, 9-2

CAM_ERR_HDR, 9-3

introduction, 9-2

G

generic action data structure (CAM), 4-3

generic asynchronous event handling routine

(CAM), 4-7, C-71

generic attach routine (CAM), 4-8, C-72

generic close unit routine (CAM), 4-5, C-75

See also generic open unit routine (CAM)

generic completion routine (CAM), 4-7, C-76

generic data structures (CAM)

introduction, 4-2

generic 110 completion routine (CAM), 4-7, C-78

generic ioetl command routine (CAM), 4-6, C-77

generic open unit routine (CAM), 4-5, C-81

See also generic close unit routine (CAM)

generic read routine (CAM), 4-5, C-84

See also generic write routine (CAM)

Index-5

generic routines (CAM)

error handling, 4-2

implementing ioctl commands, 4-1

introduction, 4-1

kernel entry points, 4-2

rules, 4-1

generic slave routine (CAM), 4-8, C-86

generic strategy routine (CAM), 4-6, C-87

generic write routine (CAM), 4-6, C-88

See also generic read routine (CAM)

generic-specific data structure (CAM), 4-2

GET DEVICE TYPE CCB (CAM), 5-7

H
header files

M

header files Used by device drivers, A-lt

header files Used by SCSI/CAM device drivers,

A-3t

Mode Select Table Structure (CAM), 3-3, 11-9

Mode Select Table Structure structure (CAM)

sample entry, 11-11

MODESEL_TBL structure (CAM), 3-3, 11-9

p

PATH INQUIRY CCB (CAM), 5-7

PDRV-»EVICE structure (CAM), 3-2, 11-2

PDRV _ WS structure (CAM), 3-4

Peripheral Device Unit Table structure (CAM),

3-1, II-I, 11-2

PRINTD macro (CAM), 10-1

programmer-defined routines (CAM)

introduction, 11-1

programmer-defined structures (CAM)

introduction, 11-1

samples, 11-11

Index-6

R

RELEASE SIM QUEUE CCB (CAM), 5-5

routine to dump a CCB-ABORT (CAM), 10-6,

C-59

routine to dump a CCB-HEADER (CAM), 10-5,

C-61

routine to dump a CCB_SCSnO (CAM), 10-6,

C-66

routine to dump a CCB_TERMIO (CAM), 10-6,

C-67

routine to dump a data butTer (CAM), 10-6, C-60

routine to dump a PDRV_WS (CAM), 10-6, C-65

routine to dump an ALLJNQJ>ATA structure

(CAM), 10-6, C-64

routine to dump camJIags from a CCB-HEADER

(CAM), 10-5, C-63

routine to dump the device type (CAM), 10-6,

C-68

routine to fill in an error log packet (CAM), C-2,

9-4

routine to print CAM status codes (CAM), 10-4,

C-58

routine to print SCSI status codes (CAM), 10-5,

C-69

routine to print system error codes (CAM), 10-5,

C-70

routine to print XPT function codes (CAM), 10-4,

C-57

s
SCSI CDROMIAUDIO device cd_address structure

(CAM), 11-17

SCSI CDROMIAUDIO device

CDROMYLAY-AUDIO and

CDROMYLAY_ VAUDIO commands

structure (CAM), 11-18

SCSI CDROMIAUDIO device

CDROMYLAY-AUDIO~SF and

CDROMYLAY ~SF commands structure

(CAM),11-18

SCSI CDROMIAUDIO device

CDROMYLAY-AUDIO_TI command

structure (CAM)

SCSI CDROMIAUDIO device

CDROMYLAY..AUDIO_TI command

structure (CAM) (cont.)

Book Title (cont.)

11-19 (cont.)

(cont.)

(cont.) ,11-19

SCSI CDROMIAUDIO device

CDROMYLAY..AUDIO_TR command

structure (CAM), 11-20

SCSI CDROMIAUDIO device

CDROMYLAYBACILCONTROL and

CDROMYLAYBACILSTATUS commands

structures (CAM), 11-27

SCSI CDROMIAUDIO device

CDROMYLAYBACILCONTROL

command structure (CAM), 11-28

SCSI CDROMIAUDIO device

CDROMYLAYBACILSTATUS command

structure (CAM), 11-28

SCSI CDROMIAUDIO device

CDROMYLAY_TRACK command

structure (CAM), 11-27

SCSI CDROMIAUDIO device

CDROMJmADJiEADER command

structures (CAM), 11-26

SCSI CDROMIAUDIO device

CDROMJmAD~UBCHANNEL command

structure (CAM), 11-22

SCSI CDROMIAUDIO device

CDRO~TOCJ:NTRYS command

structures (CAM), 11-21

SCSI CDROMIAUDIO device

CDRO~TOCJiEADER command

structure (CAM), 11-20

SCSI CDROMIAUDIO device Track Address

structure (CAM), 11-17

SCSI device

attaching, 4-8, C-72

closing, 2-4, 3-8,4-5, C-18, C-75, C-91

opening, 2-4,3-8,4-5, C-33, C-81, C-94

reading, 4-5, C-84

writing, 4-6, C-88

SCSI 110 CCB (CAM), 5-4

SCSI/CAM peripheral driver configuration

structure (CAM), 6-3

SCSI/CAM peripheral driver configuration table

(CAM)

adding entries, 6-3

sample entry, 6-4

SCSI/CAM Special Command Table (CAM), 12-3

entries, 12-5

SCSI/CAM Special Command Table (CAM)

example, 12-7

SCSI/CAM special I/O interface (CAM), 12-1

See also generic routines (CAM)

application program access, 12-1

command table entries, 12-5

command table example, 12-7

command tables, 12-3

con~olconunand, 12-16,12-17

device driver access, 12-2

introduction, 12-1

liD control conunand processing, 12-8

sample code, 12-20, 12-22

sample function, 12-14, 12-15, 12-19

SCSIICAM Special Command Table, 12-3

SCSIICAM Special Command Table entries, 12-5

SCSIICAM Special Command Table example,

12-7

Special 110 Control Commands Structure, 12-16,

12-17

SPECIAL_HEADER, 12-3

SET ASYNCHRONOUS CALLBACK CCB

(CAM),5-5

SET DEVICE TYPE CCB (CAM), 5-7

SIM action routine (CAM), 8-2, C-89

SIM initialization routine (CAM), 8-2, C-90

SIM routines (CAM)

introduction, 8-1

siID-action (CAM), 8-2, C-89

siID-init (CAM), 8-2, C-90

Special VO Argument Structure (CAM), 12-8

Special VO Control Commands Structure (CAM),

12-16, 12-17

SPECIALJiEADER (CAM), 12-3

Index-7

T

TAPE_SPECIFIC structure (CAM), 11-11

TERMINATE 110 CCB (CAM), 5-6

u
UAGT_CAM..CCB (CAM), 2-2

UAGT_CAM..SCAN (CAM), 2-4

uagLclose (CAM), 2-4, C-91

uagUoctl (CAM), 2-5, C-92

uagLopen routine (CAM), 2-4, C-94

USCA (CAM)

common structures and routines, 1-4

Configuration driver structures and routines, 1-5

generic structures and routines, 1-5

overview, 1-1

SCSI CDROM/AUDIO device structures and

commands, 1-5

SCSI disk device structures and routines, 1-5

SCSI tape device structures and routines, 1-5

SCSIICAM peripheral drivers, 1-4

SCSIICAM special 110 interface, 1-5

SIM SCSI Interface layer, 1-6

User Agent driver structures and routines, 1-3

XPT transport layer, 1-6

User Agent close routine

See also User Agent open routine

User Agent close routine (CAM), 2-4, C-91

User Agent driver (CAM)

error handling, 2-1

introduction, 2-1

sample inquiry programs, 2-5

sample programs, 2-5

sample scanner programs, 2-15

User Agent ioctl routine (CAM), 2-5, C-92

User Agent open routine

See also User Agent close routine

x
XPT free CCB routine (CAM), C-97, 7-1

XPT initialization routine (CAM), C-98, 7-2

XPT routines

xpCccb_alloc, C-96, 7-1

Index-8

XPT routines (CAM)

introduction, 7-1

XPT routing routine (CAM), C-95, 7-1

xpLaction (CAM), C-95, 7-1

xpLccb-Blloc, C-96, 7-1

xpLccb_free (CAM), C-97, 7-1

xpUnit (CAM), C-98, 7-2

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal'"

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2oo8
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMOlE15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments UL TRIX SCSI/CAM Architecture
Guide to Writing Device Drivers for the

ULTRIX SCSI/CAM Architecture Interfaces
AA-PN5HA-TE

Please use this postage-paid fonn to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Perfonnance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? _________________________ _

What do you like least about this manual? ________________________ _

Please list errors you have found in this manual:
Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _____ _

Name/Title ______________________ Dept. ______ _
Company ___________________________________ Dare _______ __

Mailing Address _____________________________ _
____________ Email ____________ Phone ________ _

I
I
I
I
I

.---- Do Not Tear - Fold Here and Tape

1M

-----------------------------111-1-1r---------~~-~:~:---~
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-2698

11

-----. DoNotTear-Fold Here ._--,

Cut
Alone
Dotted
line

Reader's Comments UL TRIX SCSI/CAM Architecture
Guide to Writing Device Drivers for the

UL TRIX SCSI/CAM Architecture Interfaces
AA-PN5HA-TE

Please use this postage-paid fonn to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Perfonnance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of!

What do you like best about this manual? ____________________ _

What do you like least about this manual? ____________________ _

Please list errors you have found in this manual:
Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _____ _

Name/Title _____________________ Dept. ______ _
Company ________________________ Date ____ _
Mailing Address ____________________________ _
____________ Email ___________ Phone ______ _

I
I
I
I
I

- - - -. Do Not Tear - Fold Here and Tape

-----------------------------Illil-Ir---------~~~~:---~
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-2698

11111111111111111111 1111111111 II II II lull 1111 h 11111

-----. Do Not Tear - Fold Here ._--,

Cut
Alon2
Dotted
Une

