dlilglitlall

ULTRIX

Reference Pages Section 1: Commands A -L

Order Number: AA-PCOWA-TE
June 1990

Product Version: ULTRIX Version 4.0 or higher

This manual describes commands from A to L that are available to all ULTRIX users for both
RISC and VAX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1988, 1990
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

ﬂn@nan DECUS ULTRIX Worksystem Software
DECwindows UNIBUS

CDA DTIF VAX

DDIF MASSBUS VAXstation

DDIS MicroVAX VMS

DEC Q-bus VMS/ULTRIX Connection

DECnet ULTRIX VT

DECstation ULTRIX Mail Connection XUI

Ethernet is a registered trademark of Xerox Corporation.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers.
System V is a registered trademark of AT&T.

Tektronix is a trademark of Tektronix, Inc.

Teletype is a registered trademark of AT&T in the USA and other countries.

UNIX is a registered trademark of AT&T in the USA and other countries.

About Reference Pages

The ULTRIX Reference Pages describe commands, system calls, routines, file
formats, and special files for RISC and VAX platforms.

Sections

The reference pages are divided into eight sections according to topic. Within each
section, the reference pages are organized alphabetically by title, except Section 3,
which is divided into subsections. Each section and most subsections have an
introductory reference page called intro that describes the organization and
anything unique to that section.

Some reference pages carry a one- to three-letter suffix after the section number, for
example, scan(lmh). The suffix indicates that there is a ‘‘family’’ of reference
pages for that utility or feature. The Section 3 subsections all use suffixes and other
sections may also have suffixes.

Following are the sections that make up the ULTRIX Reference Pages.

Section 1: Commands

This section describes commands that are available to all ULTRIX users. Section 1 is
split between two binders. The first binder contains reference pages for titles that fall
between A and L. The second binder contains reference pages for titles that fall
between M and Z.

Section 2: System Calls

This section defines system calls (entries into the ULTRIX kernel) that are used by
all programmers. The introduction to Section 2, intro(2), lists error numbers with
brief descriptions of their meanings. The introduction also defines many of the terms
used in this section.

Section 3: Routines

This section describes the routines available in ULTRIX libraries. Routines are
sometimes referred to as subroutines or functions.

Section 4: Special Files

This section describes special files, related device driver functions, databases, and
network support.

Section 5: File Formats

This section describes the format of system files and how the files are used. The files
described include assembler and link editor output, system accounting, and file
system formats.

Section 6: Games

The reference pages in this section describe the games that are available in the
unsupported software subset. The reference pages for games are in the document
Reference Pages for Unsupported Software.

Section 7: Macro Packages and Conventions

This section contains miscellaneous information, including ASCII character codes,
mail addressing formats, text formatting macros, and a description of the root file
system.

Section 8: Maintenance

This section describes commands for system operation and maintenance.

Platform Labels

The ULTRIX Reference Pages contain entries for both RISC and VAX platforms.
Pages that have no platform label beside the title apply to both platforms. Reference
pages that apply only to RISC platforms have a ‘‘RISC’’ label beside the title and the
VAX-only reference pages that apply only to VAX platforms are likewise labeled
with ““VAX.”” If each platform has the same command, system call, routine, file
format, or special file, but functions differently on the different platforms, both
reference pages are included, with the RISC page first.

Reference Page Format

Each reference page follows the same general format. Common to all reference pages
is a title consisting of the name of a command or a descriptive title, followed by a
section number; for example, date(1l). This title is used throughout the
documentation set.

The headings in each reference page provide specific information. The standard
headings are:

Name Provides the name of the entry and gives a short description.
Syntax Describes the command syntax or the routine definition. Section 5
reference pages do not use the Syntax heading.

Description Provides a detailed description of the entry’s features, usage, and
syntax variations. ,

Options Describes the command-line options.

Restrictions Describes limitations or restrictions on the use of a command or
routine.

Examples Provides examples of how a command or routine is used.

iv About Reference Pages

Return Values Describes the values returned by a system call or routine. Used in
Sections 2 and 3 only.

Diagnostics Describes diagnostic and error messages that can appear.

Files Lists related files that are either a part of the command or used
during execution.

Environment Describes the operation of the system call or routine when
compiled in the POSIX and SYSTEM V environments. If the
environment has no effect on the operation, this heading is not
used. Used in Sections 2 and 3 only.

See Also Lists related reference pages and documents in the ULTRIX
documentation set.

Conventions

The following documentation conventions are used in the reference pages.

% The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

user input This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in text to indicate the exact name of a
command, routine, partition, pathname, directory, or file. This
typeface is also used in interactive examples to indicate system
output and in code examples and other screen displays.

UPPERCASE The ULTRIX system differentiates between lowercase and

lowercase uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

rlogin This typeface is used for command names in the Syntax portion
of the reference page to indicate that the command is entered
exactly as shown. Options for commands are shown in bold
wherever they appear.

filename In examples, syntax descriptions, and routine definitions, italics
are used to indicate variable values. In text, italics are used to
give references to other documents.

[] In syntax descriptions and routine definitions, brackets indicate
items that are optional.

{1} In syntax descriptions and routine definitions, braces enclose lists

from which one item must be chosen. Vertical bars are used to
separate items.

About Reference Pages v

« o In syntax descriptions and routine definitions, a horizontal ellipsis
indicates that the preceding item can be repeated one or more
times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

cat(l) Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(1) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

Online Reference Pages

The ULTRIX reference pages are available online if installed by your system
administrator. The man command is used to display the reference pages as follows:

To display the 1s(1) reference page:

% man ls

To display the passwd(1) reference page:

% man passwd

To display the passwd(5) reference page:

% man 5 passwd

To display the Name lines of all reference pages that contain the word ‘‘passwd’’:
% man -k passwd

To display the introductory reference page for the family of 3xti reference pages:

% man 3xti intro

Users on ULTRIX workstations can display the reference pages using the
unsupported xman utility if installed. See the xman(1X) reference page for details.

Reference Pages for Unsupported Software

The reference pages for the optionally installed, unsupported ULTRIX software are in
the document Reference Pages for Unsupported Software.

vi About Reference Pages

intro(1)

Name
intro — introduction to commands
Description
This section describes publicly accessible commands in alphabetic order. Certain
distinctions of purpose are made in the headings:
€3 Commands of general utility.
(1c) Commands for communication with other systems.
(1g) Commands used primarily for graphics and computer-aided design.
(lint) Commands used for internationalization. For more information see
internat(lint).
(1mh) Commands specific to the Message Handler.
(Incs) Commands used for NCS (Network Computing System).
(1sh5) Commands interpreted by the sh5 (System V Release 2) shell.
(lyp) Commands specific to the Yellow Pages (YP) service.
Note
Commands related to system maintenance used to appear in section 1
reference pages and were distinguished by (1m) at the top of the page.
These reference pages now appear in section 8.
Diagnostics

Upon termination each command returns two bytes of status, one supplied by the
system giving the cause for termination and, in the case of normal termination, one
supplied by the program. For more information, see wait(1l) and exit(2). The
former byte is 0 for normal termination; the latter is customarily O for successful
execution. A nonzero status indicates a problem such as erroneous parameters, or bad
or inaccessible data. It is called variously exit code, exit status, or return code, and is
described only where special conventions are involved.

Commands 1-1

VAX

2780e (1)

Name

2780e — spooler for the IBM 2780 emulator

Syntax

2780e [-m] [-a] [-q] [-b] [-t] [-Sfile] [H#num] file... [-o file...]

Description

The 2780e command puts the files named as arguments, along with a single control
file that guides each file’s execution, into usr/spool/rJje and calls the 2780d
program. This program sends the files to the IBM system.

Options

The following options may be needed to format data transmitted to an IBM system.

—# Waits for num files to be received as output from job and gives default file
names in the form Ruseridpid.

—a Send file as a priority job. Used only by the superuser. This file will be placed
ahead of the next regular file or at the end of other priority jobs.

-b Transmits the file to an IBM system that accepts multiple record transmission.

-m Notifies user by mail that file was sent and output was received.

~0 Name output files with specified file names. This option must be at the end of
the command line. Anything listed after this option is interpreted as an output
file name.

—q Prepares the file for transmission and places it in /usr/spool/rje but does
not call 2780d to transmit.

=S Sends contents of file to the IBM as a sign-on card. If this option is not
specified, a default sign-on card in the spool area is used.

-t Sends data in transparent mode. This option is used for files which contain
special control or protocol characters.

Files

fetc/2780d Program that transmits files.

[usr/spool/rje Spool directory

/usr/spool/rje/rjetemp.out Temporary file for incoming files

See Also

2780d(8), 3780e(1)

1-2 Commands

3780e (1)

Name

3780e — spooler for the IBM 3780 emulator
Syntax

3780e [~C] [~m] [~a] [-q] [~t[b]] [~Sfile] [#num] file... [-o file]
Description

The 3780e command puts the files named as arguments, along with a single control

file that guides each file’s execution, into usr/spool/r-je and calls the 2780d

program. This program sends the files to the IBM system.
Options

The following options may be needed to format the data transmitted to an IBM

system.

—# Waits for num files to be received as output and gives default file names in the
form Ruseridpid.

-a Send file as a priority job. Used only by the superuser. This file will be placed
ahead of the next regular file or at the end of other priority jobs.

—C Prevents the compression of spaces when files are sent.

-m Sends mail when file is sent and when output from submitted file is received
successfully.

—0 Names output file with specified file names. This option must be at the end of
the command line. Anything listed after this option is interpreted as an output
file name.

—q Prepares file for transmission and places it in /usr/spool/rje but does not
call 2780d to transmiit it.

—S Send contents of the file to the IBM as a sign-on card. If this option is not
specified, then a default sign-on card in the spool area will be used.

-t Sends data in transparent mode. This option is used for files which contain
special control or protocol characters. Use this option if the IBM system does
not accept multiple 80 column card records in transparent mode.

—tb Transmits the file to IBM that accepts multiple 80 column card records in

transparent mode.

Commands 1-3

VAX

VAX 3780e(1)

Files
fetc/2780d Program that transmits files
[usr/spool/rje Spool directory
[ust/spool/rje/rjetemp.out Temporary file for incoming files
See Also

2780d(8), 2780e(1)

1-4 Commands

adb (1) VAX

Name

adb — interactive C program debugger

Syntax
adb [-w] [-k] [-1dir] [objfil [corfil1]

Description

The adb command is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the execution of UNIX
programs.

The objfil is normally an executable program file, preferably containing a symbol
table. If it does not contain a symbol table then the symbolic features of adb cannot
be used. However, the file can still be examined. The default for objfil is a.out .
The corfil is assumed to be a core image file produced after executing objfil; the
default for corfil is core.

Requests to adb are read from the standard input and responses are to the standard
output. If the —w flag is present then both objfil and corfil are created if necessary
and opened for reading and writing so that files can be modified using adb.

The —k option makes adb do UNIX kernel memory mapping; it should be used
when core is a UNIX crash dump or /dev/mem.

The -I option specifies a directory where files to be read with $< or $<< (see the
EXPRESSIONS section) are sought. The default directory is /usr/lib/adb.

The adb command ignores QUIT; INTERRUPT causes return to the next adb
command.

In general requests to adb are of the form
[address] [, count][command][;]

If address is present then dot is set to address. Initially dot is set to 0. For most
commands count specifies how many times the command is executed. The default
count is 1. Address and count are expressions.

The interpretation of an address depends on its context. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the
subprocess. If the operating system is being debugged either post-mortem or using
the special file /dev/memn to interactive examine and/or modify memory the maps
are set to map the kernel virtual addresses which start at 0x80000000. For further
details of address mapping, see ADDRESSES.

Expressions

. The value of dot.
The value of dot incremented by the current increment.
A The value of dot decremented by the current increment.

The last address typed.

Commands 1-5

VAX

adb(1)

integer

A number. The prefixes Oo and 0O (‘‘zero oh’’) force interpretation in
octal radix; the prefixes Ot and OT force interpretation in decimal
radix; the prefixes Ox and 0X force interpretation in hexadecimal radix.
Thus 0020 = 0t16 = 0x10 = sixteen. If no prefix appears, then the
default radix is used; see the $d command. The default radix is
initially hexadecimal. The hexadecimal digits are
0123456789abcdefABCDEF with the obvious values. Note that a
hexadecimal number whose most significant digit would otherwise be
an alphabetic character must have a 0x (or 0X) prefix (or a leading
zero if the default radix is hexadecimal).

integer fraction

A 32 bit floating point number.

‘ccee”’ The ASCII value of up to 4 characters.

< name The value of name, which is either a variable name or a register name.
The adb debugger maintains a number of variables (see
VARIABLES) named by single letters or digits. If name is a register
name then the value of the register is obtained from the system header
in corfil. The register names are those printed by the $» command.

symbol A symbol is a sequence of upper or lower case letters, underscores or
digits, not starting with a digit. The backslash character \ may be used
to escape other characters. The value of the symbol is taken from the
symbol table in objfil. An initial underscore (_) will be prepended to
symbol if needed.

_ symbol In C, the true name of an external symbol begins with _. It may be
necessary to use this name to distinguish it from internal or hidden
variables of a program.

routine.name The address of the variable name in the specified C routine. Both
routine and name are symbols. If name is omitted the value is the
address of the most recently activated C stack frame corresponding to
routine. This form is currently broken on the VAX; local variables
can be examined only with dbx(1).

(exp) The value of the expression exp.

Monadic operators

*exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

—exp Integer negation.

~€XP Bitwise complement.

#exp Logical negation.

Dyadic operators are left associative and are less binding than monadic operators.

el +e2 Integer addition.

el—e2 Integer subtraction.

el *e2 Integer multiplication.

el %e2 Integer division.

1-6 Commands

el &e2
elle2
el #e2

Commands

adb(1) VAX

Bitwise conjunction.
Bitwise disjunction.

E1 rounded up to the next multiple of e2.

Most commands consist of a verb followed by a modifier or list of modifiers. The
following verbs are available. The commands question mark (?) and slash (/) may be
followed by an asterisk (*); see the ADDRESSES section for further details.

i

If

Locations starting at address in objfil are printed according to the
format f. dot is incremented by the sum of the increments for each
format letter.

Locations starting at address in corfil are printed according to the
format f and dot is incremented as for question mark (?).

The value of address itself is printed in the styles indicated by the
format f. (For i format, the question mark (?) is printed for the parts
of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each
format character may be preceded by a decimal integer that is a repeat count for the
format character. While stepping through a format, dot is incremented by the amount
given for each format letter. If no format is given then the last format is used. The
format letters available are as follows:

02

Print 2 bytes in octal. All octal numbers output by adb are preceded
by 0.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.

Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the standard escape convention
where control characters are printed as AX and the delete character is
printed as A?.

Print the addressed characters until a zero character is reached.

Print a string using the AX escape convention (see the format C1
above). n is the length of the string including its zero terminator.
Print 4 bytes in date format. For further information, see ct ime(3).
Print as machine instructions. 7 is the number of bytes occupied by
the instruction. This style of printing causes variables 1 and 2 to be
set to the offset parts of the source and destination respectively.
Print the value of dot in symbolic form. Symbols are checked to
ensure that they have an appropriate type as indicated below:

Commands 1-7

VAX

adb (1)

p4
to

r0
n0

n."
A

+

newline

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

Print the addressed value in symbolic form using the same rules for
symbol lookup as a0.

When preceded by an integer tabs to the next appropriate tab stop.
For example, 8t moves to the next 8-space tab stop.

Print a space.

Print a new line.

Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.
Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1.

[2/11 value mask

[2/1w value ...

Words starting at dot are masked with mask and compared with value
until a match is found. If L is used then the match is for 4 bytes at a
time instead of 2. If no match is found then dot is unchanged;
otherwise dot is set to the matched location. If mask is omitted then
-1 is used.

Write the 2-byte value into the addressed location. If the command is
W, write 4 bytes. Odd addresses are not allowed when writing to the
subprocess address space.

[2/Im bl el fI[?/]

>name
!

$modifier

1-8 Commands

New values for (b1, el, fI) are recorded. If less than three expressions
are given then the remaining map parameters are left unchanged. If
the ‘?” or ‘/’ is followed by ‘*’ then the second segment (b2, e2,/2) of
the mapping is changed. If the list is terminated by ‘?” or ‘/° then the
file (objfil or corfil respectively) is used for subsequent requests. So
that, for example, ‘/m?’ will cause /’ to refer to objfil.

Dot is assigned to the variable or register named.
A shell (/bin/sh) is called to read the rest of the line following ‘!.
Miscellaneous commands. The following modifiers are available:

<f Read commands from the file f. If this command is executed in
a file, further commands in the file are not seen. If fis omitted,
the current input stream is terminated. If a count is given, and is
zero, the command will be ignored. The value of the count will
be placed in variable 9 before the first command in f is executed.

<<f Similar to < except it can be used in a file of commands without
causing the file to be closed. Variable 9 is saved during the
execution of this command, and restored when it completes.
There is a (small) finite limit to the number of << files that can
be open at once.

>f Append output to the file f, which is created if it does not exist.
If f is omitted, output is returned to the terminal.

? Print process id, the signal which caused stoppage or

:modifier

g o

T 5 < 40 O =

adb(1) VAX

termination, as well as registers such as $r. This is the default if
modifier is omitted.

Print the general registers and the instruction addressed by pec.
Dot is set to pc.

Print all breakpoints and their associated counts and commands.

C stack backtrace. If address is given then it is taken as the
address of the current frame instead of the contents of the
frame—pointer register. If C is used then the names and (32 bit)
values of all automatic and static variables are printed for each
active function. (broken on the VAX). If count is given then
only the first count frames are printed.

Set the default radix to address and report the new value. Note
that address is interpreted in the (old) current radix. Thus
¢“10$d’’ never changes the default radix. To make decimal the
default radix, use ‘0t10$d”’.

The names and values of external variables are printed.
Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).
All integers input are regarded as octal.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

(Kernel debugging) Change the current kernel memory mapping
to map the designated user structure to the address given by
the symbol _u. The address argument is the address of the
user’s user page table entries.

(Kernel debugging) The address argument is the CPU number.
Change the current kernel memory mapping to that of the
specified CPU. If no address is provided, the status of each of
the CPUs in the system is displayed. This option is ONLY
valid with the -k option.

Manage a subprocess. The following modifiers are available:

bc

Set breakpoint at address. The breakpoint is executed count—1
times before causing a stop. Each time the breakpoint is
encountered the command c is executed. If this command is
omitted or sets dot to zero then the breakpoint causes a stop.

Delete breakpoint at address.

Run objfil as a subprocess. If address is given explicitly then |
the program is entered at this point; otherwise the program is
entered at its standard entry point. count specifies how many
breakpoints are to be ignored before stopping. Arguments to the
subprocess may be supplied on the same line as the command.
An argument starting with < or > causes the standard input or
output to be established for the command.

Commands 1-9

VAX

adb (1)

¢s The subprocess is continued with signal s, see sigvec(2). If
address is given then the subprocess is continued at this address.
If no signal is specified then the signal that caused the
subprocess to stop is sent. Breakpoint skipping is the same as
for r.

ss As for ¢ except that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run as a
subprocess as for r. In this case no signal can be sent; the
remainder of the line is treated as arguments to the subprocess.

k The current subprocess, if any, is terminated.

Variables

The adb command provides a number of variables. Named variables are set initially
by adb but are not used subsequently. The following numbered variables are
reserved for communication:

0 The last value printed.

1 The last offset part of an instruction source.
2 The previous value of variable 1.

9 The count on the last $< or $<< command.

On entry the following are set from the system header in the corfil. If corfil does not
appear to be a core file then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The ‘magic’ number (0407, 0410 or 0413).
] The stack segment size.
t The text segment size.
Addresses

The address in a file associated with a written address is determined by a mapping
associated with that file. Each mapping is represented by two triples (b1, el, fI) and
(b2, e2, f2) and the file address corresponding to a written address is calculated as
follows:

bl<address<el => file address=address+fl-bl, otherwise,
b2<address<e2 = file address=address+f2-b2,

otherwise, the requested address is not legal. In some cases (for example, for
programs with separated I and D space) the two segments for a file may overlap. If a
? or/ is followed by an * then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If
either file is not of the kind expected then, for that file, b/ is set to 0, el is set to the
maximum file size and fI is set to 0. This way the whole file can be examined with
no address translation.

1-10 Commands

adb (1)

Restrictions

Because no shell is invoked to interpret the arguments of the : r command, the
customary wildcard and variable expansions cannot occur.

Diagnostics

When there is no command or format given to adb, the string ‘adb’ appears. adb
displays comments about inaccessible files, syntax errors, abnormal termination of
commands, etc. Exit status is 0, unless last command failed or returned nonzero

status.
Files

a.out

core
See Also

cc(1), dbx(1), ptrace(2), a.out(5), core(5)

Commands 1-11

VAX

addbib (1)

Name
addbib - create or extend bibliographic database

Syntax
addbib [-p promptfile] [-a] database

Description

When this program starts up, answering ‘‘y’’ to the initial ‘‘Instructions?’’ prompt
yields directions; typing ‘‘n’’ or RETURN skips them. The addbib command then
prompts for various bibliographic fields, reads responses from the terminal, and sends
output records to a database. A null response (just RETURN) means to leave out that
field. A minus sign (-) means to go back to the previous field. A trailing backslash
allows a field to be continued on the next line. The repeating ‘‘Continue?’’ prompt
allows the user either to resume by typing ‘‘y’’ or RETURN, to quit the current session
by typing ‘‘n’’ or ‘‘q’’, or to edit the database with any system editor (vi, ex,
edit, ed).

Options

—a Suppresses prompting for an abstract. Asking for an abstract is the default.
Abstracts are ended with a CTRL/D.

—p Causes use of a new prompting skeleton, defined in prompitfile. This file should
contain prompt strings, a tab, and the key-letters to be written to the database.

The most common key-letters and their meanings are given below. The addbib
insulates you from these key-letters, since it gives you prompts in English. However,
if you edit the bibliography file later, you need this information.

%A Author’s name

%B Book containing article referenced

%C City (place of publication)

%D Date of publication

%E Editor of book containing article referenced
%F Footnote number or label (supplied by refer)
%G Government order number

%H Header commentary, printed before reference
%1 Issuer (publisher)

%] Journal containing article

%K Keywords to use in locating reference

%L Label field used by —k option of refer

%M Bell Labs Memorandum (undefined)

%N Number within volume

%0 Other commentary, printed at end of reference
%P Page number(s)

%Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished)

1-12 Commands

addbib (1)

%S Series title

%T Title of article or book

%V Volume number

%X Abstract — used by roffbib, not by refer
%Y,Z ignored by refer

Except for ‘A’, each field should be given once. Only relevant fields should be
supplied. An example is:

$A Bill Tuthill

$T Refer - A Bibliography System
$I Computing Services

%C Berkeley

%D 1982

%0 UNX 4.3.5.

Files
promptfile Optional file to define prompting

See Also
indxbib(1), lookbib(1), refer(1), roffbib(1), sortbib(1)

Commands 1-13

admin(1)

Name
admin — SCCS file administrator

Syntax

admin [-n] [~i[name]] [-rrel] [-t[name]] [-fflag [flag-val]] [-dflag [flag-val]]
[-alogin] [—elogin] [-m[list 1] [-y[comment]] [-h] [-2] files

Description

The admin command is used to create new SCCS files and to change parameters of
existing ones. Arguments to admin, which may appear in any order, consist of
keyletter arguments, which begin with —, and named files (note that SCCS file names
must begin with the characters s.). If a named file does not exist, it is created, and its
parameters are initialized according to the specified keyletter arguments. Parameters
not initialized by a keyletter argument are assigned a default value. If a named file
does exist, parameters corresponding to specified keyletter arguments are changed,
and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are ignored. If a name of - is
given, the standard input is read; each line of the standard input is taken to be the
name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are
ignored.

Options

Each keyletter argument is explained as though only one named file is to be
processed, because the effects of the arguments apply independently to each named
file. The list of arguments is as follows:

-n This keyletter indicates that a new SCCS file is to be created.

—i[name] The name of a file from which the text for a new SCCS file
is to be taken. The text constitutes the first delta of the file
(see the —r keyletter for the delta numbering scheme).

If the i keyletter is used, but the file name is omitted, the
text is obtained by reading the standard input until an end-
of-file is encountered. If this keyletter is omitted, then the
SCCS file is created empty.

Only one SCCS file can be created by an admin command
in which the i keyletter is supplied. Using a single admin
command to create two or more SCCS files requires that they
be created empty (no —i keyletter). Note that the —i keyletter
implies the —n keyletter.

-rrel The release into which the initial delta is inserted. This
keyletter may be used only if the —i keyletter is also used. If
the —r keyletter is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1. By
default, initial deltas are named 1.1.

1-14 Commands

—t[name]

—fflag

admin (1)

The name of a file from which descriptive text for the SCCS
file is to be taken. If the -t keyletter is used and admin is
creating a new SCCS file (the —n and/or —i keyletters are also
used), the descriptive text file name must also be supplied.

In the case of existing SCCS files: (1) a —t keyletter without
a file name causes removal of descriptive text (if any)
currently in the SCCS file; and (2) a —t keyletter with a file
name causes text (if any) in the named file to replace the
descriptive text (if any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly, a value for the
flag, to be placed in the SCCS file. Several f keyletters can
be supplied on a single admin command line. The
allowable flags and their values are:

Allows use of the —b keyletter on a get (1) command
to create branch deltas.

cceil The highest release (‘‘ceiling’’), a positive number no

higher than 9999, which may be retrieved by a get(1)
command for editing. The default value for an
unspecified ¢ flag is 9999.

ffloor The lowest release (‘‘floor’’), a positive number

greater than O but less than 9999, which may be
retrieved by a get (1) command for editing. The
default value for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a get(1)

command.

Causes the "No id keywords (ge6)" message issued by
get(l) or delta(l) to be treated as a fatal error. In
the absence of this flag, the message is only a warning.
The message is issued if no SCCS identification
keywords are found in the text retrieved or stored in
the SCCS file. For further information, see get(1).

Allows concurrent get(1) commands for editing on the
same SID of an SCCS file. This allows multiple
concurrent updates to the same version of the SCCS
file.

Vist A list of releases to which deltas can no longer be

made (get —e against one of these ‘‘locked’’ releases
fails). The list has the following syntax:

<list> ::= <range> | <list> , <range>
<range>:= RELEASE NUMBER| a

The character a in the list is equivalent to specifying
all releases for the named SCCS file.

Causes delta(l) to create a null delta in each of
those releases (if any) being skipped when a delta is
made in a new release. For example, in making delta

Commands 1-15

admin(1)

—dflag

=1list

-alogin

-elogin

1-~16 Commands

5.1 after delta 2.7, releases 3 and 4 are skipped. These
null deltas serve as anchor points, so that branch deltas
can later be created from them. The absence of this
flag causes skipped releases to be nonexistent in the
SCCS file, preventing branch deltas from being created
from them in the future.

qtext User definable text substituted for all occurrences of

the %Q% keyword in SCCS file text retrieved by
get(1).

mmod Module name of the SCCS file substituted for all

occurrences of the %M% keyword in SCCS file tex
retrieved by get(1). If the m flag is not specified, the
value assigned is the name of the SCCS file with the
leading s. removed.

ttype Type of module in the SCCS file substituted for all

occurrences of %Y % keyword in SCCS file text
retrieved by get(1).

vlpgm] Causes delta(l) to prompt for modification request

(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number
validity checking program. For further information,
see delta(l). (If this flag is set when creating an
SCCS file, the m keyletter must also be used even if
its value is null).

Causes deletion of the specified flag from an SCCS file. The
—d keyletter can be specified only when processing existing
SCCS files. Several —d keyletters can be supplied on a single
admin command. See the —f keyletter for allowable flag
names.

A list of releases to be unlocked. See the —f keyletter for a
description of the 1 flag and the syntax of a list.

A login name or numerical ULTRIX System group ID to be
added to the list of users which can make deltas (changes) to
the SCCS file. A group ID is equivalent to specifying all
login names common to that group ID. Several a keyletters
can be used on a single admin command line. As many
logins or numerical group IDs as desired can be on the list
simultaneously. If the list of users is empty, then anyone
can add deltas.

A login name or numerical group ID to be erased from the
list of users allowed to make deltas (changes) to the SCCS
file. Specifying a group ID is equivalent to specifying all
login names common to that group ID. Several e keyletters
can be used on a single admin command line.

admin (1)

—~ylcomment] The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical to that of
delta(l). Omission of the —y keyletter results in a default
comment line being inserted in the form:
date and time created YY/MM/DD HH:MM:SS by login
The -y keyletter is valid only if the —i or —n keyletters are
specified.

—m{mrlist] The list of modification requests (MR) numbers is inserted
into the SCCS file as the reason for creating the initial delta
in a manner identical to delta(l). The v flag must be set
and the MR numbers are validated if the v flag has a value
(the name of an MR number validation program).
Diagnostics occur if the v flag is not set or MR validation
fails.

-h Causes admin to check the structure of the SCCS file and to
compare a newly computed check-sum (the sum of all the
characters in the SCCS file except those in the first line) with
the check-sum that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced. For further
information, see sccsfile(s).

This keyletter inhibits writing on the file, so that it nullifies
the effect of any other keyletters supplied. It is, therefore,
only meaningful when processing existing files.

-z The SCCS file check-sum is recomputed and stored in the
first line of the SCCS file (see —h, above).

Note that use of this keyletter on a truly corrupted file may
prevent future detection of the corruption.

Diagnostics

Use sccshelp(1) for explanations.

Restrictions

Files

When creating a new SCCS file with the -n or -i options, the g-file path name cannot
be of the form s.file-name.

The last component of all SCCS file names are of the form s.file-name. New SCCS
files are given mode 444. For further information, see chmod(1). Write permission
in the pertinent directory is required to create a file. All writing done by admin is to
a temporary x-file, called X.file-name, created with mode 444 if the admin command
is creating a new SCCS file, or with the same mode as the SCCS file if it exists. For
further information, see get(1). After successful execution of admin, the SCCS
file is removed if it exists, and the x-file is renamed with the name of the SCCS file.
This ensures that changes are made to the SCCS file only if no errors occurred.

The mode of the SCCS files prevents any modification at all except by SCCS
commands. '

Commands 1-17

admin(1)

If it should be necessary to patch an SCCS file for any reason, the mode may be
changed to 644 by the owner, allowing use of ed(1).

NOTE

Care must be taken that correct commands are used when patching an
SCCS file, otherwise further corruption of the file can occur.

The edited file should always be processed by an admin-h to check for corruption,
followed by an admin-z to generate a proper check-sum. Another admin-h is
recommended to ensure the SCCS file is valid.

The admin command also makes use of a transient lock file (called z.file-name),
which is used to prevent simultaneous updates to the SCCS file by different users.
For further information, see get(1).

See Also

delta(1), ed(1), get(1), help(1), prs(1), sccs(1), what(1), sccsfile(S)
Guide to the Source Code Control System

1-18 Commands

ali(1mh)

Name
ali — list mail aliases

Syntax
ali [-alias aliasfile] [~list] [-nolist] [-normalize] [-nonormalize] [-user
<useradr>] [-nouser] aliases ... [~help]

Description
The command ali searches the specified mail alias files for each of the given
aliases. It creates a list of addresses for those aliases, and displays that list on the
screen.

Options

You specify the alias files using the —~alias aliasfile option. You can specify more
than one alias file, but each aliasfile must be preceded by its own ~alias flag. You
must specify an aliasfile; either at the command line itself, or in your
.mh_profile.

If you specify the —1ist option, each address appears on a separate line; otherwise,
the addresses are separated by commas and printed on as few lines as possible.

You can make ali display all the aliases that contain a specific name by using the
—user useraddress option The —user option directs ali to perform its processing
in an inverted fashion: instead of listing the addresses that each given alias expands
to, ali lists the aliases that expand to each given address. You must specify the
complete username that you have used in your mh-alias file. The following
example shows how this option can be used.

% ali —user Parker@Venus
Parker@Venus: Group, Reviewers, Badminton

If the —-normalize option is given, ali tries to track down the official hostname
of the address.

Each alias is processed as described in mh-alias(5mh).

The defaults for ali are:

—-alias /usr/new/lib/mh/MailAliases
-nolist

-nonormalize

-nouser

Commands 1-19

ali (1mh)

Files
$HOME/.mh_profile The user profile
fetc/passwd List of users
fetc/group List of groups
See Also
mh-alias(Smh)

1-20 Commands

anno(1mh)

Name
anno — annotate messages

Syntax
anno [+folder] [msgs] [-—component field] [-inplace] [-noinplace] [-text body]
[-help]

Description
The command anno annotates the specified messages in the named folder using the
field and body. You can use anno with dist, forw, and repl, to keep track of
the distribution and forwarding of, and replies to your messages. By using anno,
you can perform arbitrary annotations of your own. Each message selected is
annotated with the following lines:

field: date
field: body

Options
The -inplace switch causes annotation to be done in place in order to preserve
links to the annotated message.
The —component field specified should be a valid RFC 822-style message field
name, which means that it should consist of alphanumerics (or dashes) only. The
body specified is arbitrary text.
If a —component field is not specified when anno is invoked, anno prompts you
for the field-name for the annotation.
If a folder is given, it becomes the current folder. The first message annotated
becomes the current message.
The defaults for anno are:
+folder defaults to the current folder
msgs defaults to the current message
-noinplace.

Files
$HOME/ .mh_profile The user profile

Profile Components

Path: To determine your MH directory
Current—Folder: To find the default current folder

See Also

dist(1mh), forw(1mh), repl(1mh)

Commands 1-21

apply (1)

Name

apply — apply a command to a set of arguments

Syntax

apply [-ac] [-n] command args...

Description

The apply program runs the named command on each argument arg in turn.
Normally arguments are chosen singly; the optional number # specifies the number of
arguments to be passed to command. If n is zero, command is run without arguments
once for each arg. Character sequences of the form %d in command, where d is a
digit from 1 to 9, are replaced by the d’th following unused arg. If any such
sequences occur, n is ignored, and the number of arguments passed to command is
the maximum value of d in command. The percent sign (%) character can be changed
by the —a option.

Examples
The following command line is similar to 1s(1):
apply echo *
The next example compares the specified a files to the specified b files:
apply -2 cmp al bl a2 b2 ...

The following example run the who command 5 times and links all files in the
current directory to the directory /usr/ joe:

apply '1ln %1 /usr/joe’ *

Restrictions

Shell metacharacters in command may have unexpected results; it is best to enclose
complicated commands in single quotes (’ ’).

You cannot pass a literal, *%?2’, if the percent sign (%) is the argument expansion
character.

See Also
sh(1)

1-22 Commands

apropos(1)

Name
apropos — locate commands by keyword lookup
Syntax
apropos keyword...
Description
The apropos command shows which manual sections contain instances of any of
the given keywords in their title. Each word is considered separately and the case of
letters is ignored. Words that are part of other words are listed. Thus, looking for
the word compile hits all instances of ‘compiler’ also.
If the line starts ‘name(section) ...” you can do ‘man section name’ to get the
documentation for it. The following command line lists all commands that have to
do with formatting:
apropos format
To then access the reference page for the printf subroutine that you see listed, type:
man 3s printf
The apropos command is actually just the -k option to the man command.
Files
/usr/lib/whatis data base
See Also

man(1), whatis(1), catman(8)

Commands 1-23

RISC

ar(1)
Name
ar — archive and library maintainer
Syntax
ar option [posname] filel ... fileN
Description
The archiver ar maintains groups of files as a single archive file. This utility is
generally used to create and update library files that the link editor uses; however,
you can use the archiver for other similar purposes.
NOTE
This version uses a portable ASCII-format archive that you can use on
various machines that run UNIX. If you have an archive that uses an
older format, see arcv(8).
Options

This section describes the options and suboptions that you can use with the ar utility.
Suboptions must be specified with options. Following is a list and description of the
options:

d Deletes the specified files from the archive file.

r Replaces the specified files in the archive file. If you use the suboption u
with r, the archiver only replaces those files that have last-modified dates
later than the archive files. If you use a positioning character (from the set
abi) you must specify the posname argument to tell the archiver to put the
new files after (a) or before (b or i). Otherwise, the archiver puts new files
at the end of the archive.

q Appends the specified files to the end of the archive file. The archiver
does not accept suboption positioning characters with the q option. It also
does not check whether the files you want to add already exist in the
archive. Use the q option only to avoid quadratic behavior when you
create a large archive piece by piece.

t Prints a table of contents for the files in the archive file. If you do not
specify any filenames, the archiver builds a table of contents for all files.
If you specify filenames, the archiver builds a table of contents only for
those files.

p Prints the specified files from the archive.

m Moves the specified files to the end of the archive. If you specify a
positioning character, you must also specify the posname (as in option r)
to tell the archiver where to move the files.

X Extracts the specified files from the archive. If you do not specify any
filenames, the archiver extracts all files. When it extracts files, the
archiver does not change any file. Normally, the last-modified date for
each extracted file shows the date when someone extracted it; however,
when you use o, the archiver resets the last-modified date to the date
recorded in the archive.

1-24 Commands

ar(1) RISC

Makes a symbol definition (symdef file) as the first file of an archive.

This file contains a hash table of ranlib structures and a corresponding
string table. The symdef file’s name is based on the byte ordering of the
hash table and the byte ordering of the file’s target machine. Files must be
consistent in their target byte ordering before the archiver can create a
symdef file. If you change the archive contents, the symdef file becomes
obsolete because the archive file’s name changes. If you specify s, the
archiver creates the symdef file as its last action before finishing execution.
You must specify at least one other archive option (m, p, g, r, or t) when
you use the s option. For UMIPS-V, archives include member objects
based on the definition of a common object only. For UMIPS-BSD, they
define the common object, but do not include the object.

Gives a file-by-file description as the archiver makes a new archive file
from an old archive and its constituent files. When you use this option
with t, the archiver lists all information about the files in the archive.
When you use this option with p, the archiver precedes each file with a
name.

Suppresses the normal message that the archiver prints when it creates the
specified archive file. Normally, the archiver creates the specified archiver
file when it needs to.

Places temporary files in the local directory. If the I option is not used
then the value of the environment symbol, TMPDIR, is used as the
directory for temporary files. If TMPDIR is not defined or if the directory
it references is not writable then /tmp is used.

The suboptions do these things:

a

b

Restrictions

Specifies that the file goes after the existing file (posname). Use this
suboption with the m or r options.

Specifies that the file goes before the existing file (posname). Use this
suboption with the m or r options.

Specifies that the file goes before the existing file (posname). Use this
suboption with the m or r options.

Forces a newly created file to have the last-modified date that it had before
it was extracted from the archive. Use this suboption with the x option.

Prevents the archiver from replacing an existing file unless the replacement
is newer than the existing file. This option uses the UNIX system last
modified date for this comparison. Use this suboption with the r option.

If you specify the same file twice in an argument list, it can appear twice in the
archive file.

The o option does not change the last-modified date of a file unless you own the
extracted file or you are the superuser.

Commands 1-25

RISC ar(1)

Files

/tmp/v* temporaries

See Also
lorder(1), 1d(1), odump(1), ranlib(1), ranhash(3x), ar(5), arcv(8)

1-26 Commands

ar(1) VAX

Name
ar — archive and library maintainer

Syntax
ar —key [posname] afile name...

Description
The ar command maintains groups of files combined into a single archive file. The
ar command is used to create and update library files as they are used by the loader.
This version of ar uses a ASCII-format archive, which can be used by the various
machines running UNIX. Programs for dealing with older formats are also available.
For further information, see arcv(8).
The key is one character from the following set: d, r, q, t, p, m, X. The key
character can be concatenated with one or more of the following optional characters:
v,u,a,ib,cl 0. The afile is the archive file. The names are constituent files in
the archive file.

Options

The OPTIONS section is divided into two sections: the first section lists the key
characters and their meanings, and the second section lists the optional characters and
their meanings.

For backward compatibility, the keys work without the dash (-). The definitions of
the key characters are as follows:

d Deletes the named files from the archive file.

m Moves the named files to the end of the archive. If a positioning character
is present, then the posname argument must be present and, as in r, it will
specify where the files are to be moved.

p Prints the named files in the archive.

q Appends the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added files are already in the archive. The q option is used primarily
to avoid quadratic behavior when you are creating a large archive piece-
by-piece.

r Replaces the named files in the archive file. If the optional character u is
used with r, then only those files with last-modified dates later than the
archive files are replaced. If an optional positioning character from the set
a, b, or i is used, then the posname argument must be present and it
specifies that new files should be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

t Prints a table of contents of the archive file. If no names are given, all
files in the archive are included in the table of contents. If file names are
specified, only those files are included in the table of contents.

X Extracts the named files. If no names are given, all files in the archive are
extracted. However, x does not alter the archive file. Normally the last-

Commands 1-27

VAX ar(1)

modified date of each extracted file is the date when it is extracted.
However, if o is used, the last-modified date is reset to the date recorded
in the archive.

The following optional characters can be used in conjunction with the key characters:

a
b
c

Restrictions

Tells the ar command that new files should be placed after posname.

Tells the ar command that new files should be placed before posname.
Suppresses the message that is normally produced when afile is created.
Tells the ar command that new files should be placed before posrame.

Places files in the local directory. If the 1 option is not used then the value of
the environment symbol, TMPDIR, is used as the directory for temporary files.
If TMPDIR is not defined or if the directory it references is not writable then
/tmp is used.

Resets the last-modified date to the date recorded in the archive. Normally the
last-modified date is the date when the file was extracted.

Replaces only those files with last-modified dates later than the archive files.
See the r key character.

Gives a file-by-file description of the making of a new archive file from the old
archive and the constituent files. When used with the t option, it gives a long
listing of all information about the files. When used with the p option, it
precedes each file with a name.

The ar command truncates the filenames to 15 characters.

If the same file is mentioned twice in an argument list, it may be put in the archive

twice.

The last-modified date of a file is not altered by the o option if the user is not the
owner of the extracted file or a super-user.

Files

/tmp/v* temporaries

See Also

1d(1), lorder(1), ranlib(1), ar(5), arcv(8)

1-28 Commands

Commands 1-29

as(1) RISC
Name
as — RISC assembler
Syntax
as [option] ... file
Description

The assembler, as , produces RISC object code in RISC extended coff format (the

default) and binary assembly language. The as assembler does not run the loader. It

accepts the argument file which is a symbolic assembly language source program.

When assembled, it produces an object file.

The assembler, as, always defines the C preprocessor macros mips, host_mips, unix

and LANGUAGE_ASSEMBLY to the C macro preprocessor. It also defines

SYSTYPE_BSD by default, but this changes if the —systype name option is specified

(see the OPTIONS section).

Options

The following options are available with as. In addition, these options can be used

with cc(1).

—g0 Do not produce symbol table information for symbolic debugging.
This is the default.

-zl Produce additional symbol table information for accurate but
limited symbolic debugging of partially optimized code.

—g or —g2 Produce additional symbol table information for full symbolic
debugging and do not perform optimizations that limit full
symbolic debugging.

-3 Produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the
debugger inaccurate.

-w Suppress warning messages.

-P Run only the C macro preprocessor and place the result in a file.
If the source file has a suffix, change the suffix to .i. If the source
file does not have a suffix, an .i is added to the source file name.
The .i file does not contain number lines (#). This sets the —cpp
option.

-E Run only the C macro preprocessor on the file and send the result
to the standard output. This sets the —cpp option.

—0 output Name the final output file output. If this option is used, the a.out
file is not affected.

~Dname=def

~Dname Define the name to the C macro preprocessor, as if by #define. If
definition is not given, the name is defined as 1.

—Uname Remove any initial definition of name.

RISC

as(1)

=Ldir Search for #include files whose names do not begin with slash (/)
in the directory of the file argument, then in directories specified in
-I options, and finally in the standard directory (/usr/include).

= | Do not search for #include files in the standard directory
(/usr/include).

-G num Specify the maximum size, in bytes, of a data item that is to be
accessed from the global pointer. The num argument is interpreted
as a decimal number. If num is zero, data is not accessed from the
global pointer. The default value for num is 8 bytes.

-v Print the passes as they execute with their arguments, input files,
and output files. Also prints resource usage in the C-shell time
format.

-v Print the version of the driver and the versions of all passes. This
is performed with the what(1) command.

—cpp Run the C macro preprocessor on assembly source files before
compiling. This is the default for as(1).

-~nocpp Do not run the C macro preprocessor on assembly source files
before compiling.

Either object file target byte ordering can be produced by as. The default target byte
ordering matches the machine where the assembler is running. The options ~EB and
-EL specify the target byte ordering (big-endian and little-endian, respectively). The
assembler also defines a C preprocessor macro for the target byte ordering. These C
preprocessor macros are MIPSEB and MIPSEL for big-endian and little-endian byte
ordering respectively.

-EB Produce object files targeted for big-endian byte ordering. The C
preprocessor macro MIPSEB is defined by the assembler.

-EL Produce object files targeted for little-endian byte ordering. The C
preprocessor macro MIPSEL is defined by the assembler.

The following option can only be used with the as command:
-m Apply the M4 preprocessor to the source file before assembling it.

The following option is primarily used to provide UNIX compilation environments
other than the native compilation environment.

-systype name Use the named compilation environment name. See
compilation(7) for the compilation environments that are
supported and their names. This has the effect of changing the
standard directory for #include files. The new items are located in
their usual paths but with /name prepended to their paths. Also a
preprocessor macro of the form SYSTYPE_NAME (with name
capitalized) is defined in place of the default SYSTYPE_BSD.

The options described below primarily aid compiler development and are not
generally used:

-Hc Halt compiling after the pass specified by the character c,
producing an intermediate file for the next pass. The ccanbe|[a
]. It selects the assembler pass in the same way as the —t option. If
this option is used, the symbol table file produced and used by the

1-30 Commands

as(1)

passes is the last component of the source file with the suffix
changed to .T, or a .T is added if the source file has no suffix. This
file is not removed.

Build and use intermediate file names with the last component of
the source file’s name replacing its suffix with the conventional
suffix for the type of file (for example, .G file for binary assembly
language). If the source file has no suffix the conventional suffix is
added to the source file name. These intermediate files are never
removed even when a pass encounters a fatal error.

—Wc[c...],argl[;argZ...]

Pass the argument[s] argi to the compiler pass{es] c/c..J. The c’s
are one of [pab]. The c’s selects the compiler pass in the same
way as the -t option.

The options —t[hpab], —hpath, and —Bstring select a name to use for a particular
pass. These arguments are processed from left to right so their order is significant.
When the —-B option is encountered, the selection of names takes place using the last
-h and -t options. Therefore, the —B option is always required when using —h or —t.
Sets of these options can be used to select any combination of names.

—t[hpab]

~hpath

—Bstring

Select the names. The names selected are those designated by the
characters following the —t option according to the following table:
Name Character

include h (see note below)

cpp p
as0 a
asl b

If the character h is in the —t argument then a directory is added to
the list of directories to be used in searching for #include files.
This directory name has the form
COMP_TARGET_ROOT/usr/includestring . This directory is to contain
the include files for the string release of the compiler. The
standard directory is still searched.

Use path rather than the directory where the name is normally
found.

Append string to all names specified by the —t option. If ~t option
has not been processed before the —B, the —t option is assumed to
be ‘‘hpab’’. This list designates all names.

Invoking the assembler with a name of the form asstring has the same effect as using
a —=Bstring option on the command line.

Commands 1-31

RISC

RISC

as(1)

If the environment variable COMP_HOST_ROOT is set, the value is used as the root
directory for all pass names rather than the default slash (/). If the environment
variable COMP_TARGET_ROOT is set, the value is used as the root directory for the
includes rather than the default slash (/).

If the environment variable ROOTDIR is set, the value is used as the root directory for
all names rather than the default /usr/. This also affects the standard directory for
#include files, /usr/finclude .

If the environment variable TMPDIR is set, the value is used as the directory to place
any temporary files rather than the default /tmp/.

Other arguments are ignored.

Files
file.o

a.out
/tmp/ctm?
[ust/lib/cpp
[usr/lib/asO
/usr/lib/as1

fusr/include

See Also

object file

assembler output

temporary

C macro preprocessor

symbolic to binary assembly language translator
binary assembly language assembler and reorganizer
standard directory for #include files

cc(1), as(1), what(1)

1-32 Commands

as(1) VAX

Name
as — assembler
Syntax
as [-d124] [-L] [-W] [-V] [-]J] [-R] [t directory] [-o objfile] [name...]
Description
The as assembler assembles the named files, or the standard input if no file name is
specified.
Options

—-d Specifies number of bytes for offsets that involve forward or external references
and have sizes unspecified in assembly language. The default is —d4.

-J Uses long branches to resolve jumps when byte-displacement branches are
insufficient. This must be used when a compiler-generated assembly contains
branches of more than 32k bytes.

-L Saves defined labels beginning with L, which are normally discarded. The
compilers generate such temporary labels.

—o0 Specifies the name of the output file. If this option is omitted, a . out is
assumed.

-R Make initialized data segments read only, by concatenating them to the text
segments. This prevents the need to run editor scripts on assembly code to
make initialized data read only and shared.

-t Specifies a directory other than the default /tmp to receive the temporary file.

-V Uses virtual memory rather than a temporary file for immediate storage.

-W Do not complain about errors.

All undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is used.

Files

/tmp/as* default temporary files

a.out default resultant object file
See Also

adb(1), dbx(1), 1d(1), nm(1), a.out(5)
ULTRIX Supplementary Documents, Vol. III: System Manager

Commands 1-33

at(1)

Name

at, batch — execute commands at a later time
Syntax

at time [day] [file]

at —r job...

at -1 [job...]

batch [file]

Description

The at and batch commands use a copy of the named file (standard input default)
as input to sh(l) or csh(l) at a later time. A cd command to the current directory
is inserted at the beginning, followed by assignments to all environment variables.
When the script is run, it uses the user and group ID of the creator of the copy file.

The at command allows the user to specify when the commands should be executed,
while jobs queued with batch execute when the load level of the system permits.

The environment variables, current directory, umask, and ulimit are retained
when the commands are executed. However, open files, traps, and priority are lost.

Users are permitted to use the at and batch commands if their name appears in the
file /usr/lib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if the user should be denied
access to at and batch. If neither file exists, only the superuser is allowed to
submit a job. If only the at .deny file exists and is empty, global usage is
permitted. The allow/deny files consist of one user name per line.

The time is 1 to 4 digits. It can, but does not have to be, followed by A, P, N or M
which stand for AM, PM, noon or midnight, respectively. The A, P, N, and M
suffixes are case-insensitive. One and two digit numbers are interpreted as hours,
three and four digits to be hours and minutes. If three digits are specified, the first
digit is interpreted to be an hour in the range 0-9, and the second and third digits as
minutes. If no letters follow the digits, a 24 hour clock time is presumed.

In addition to 1-4 digits, and suffixes A, P, M, N, you can also specify:

at hh:mm

at h:mm

at ham

at hpm

at noon

at midnight

The optional day is either a month name followed by a day number or by a day of
the week. If the word week follows, the at or batch command is invoked in seven
days. Both commands also recognize standard abbreviations for the days of the week
and months of the year. The following are examples of legitimate commands:

at 8am jan 24

at 1530 fr week

1-34 Commands

at(1)

The at programs are executed by periodic execution of the command
/usr/lib/atrun from cron(8). The granularity of at depends upon how often
atrun is executed. The cron command examines the crontab file every minute.
The crontab file determines when /usr/1lib/atrun is executed. The default is
every 15 minutes on the 1/4 hour. Editing /etc/crontab makes
/usr/lib/atrun run more or less frequently.

Standard output or error output is lost unless it is redirected.

The at and batch commands write the job number to standard error.

Options
-r Removes jobs previously scheduled by at or batch. The
number is the number reported at invocation by at or
batch. Only the superuser is allowed to remove another
user’s jobs.
-1 Used to obtain or verify the job numbers.

Restrictions

Due to the granularity of the execution of /usr/1lib/atrun, there may be bugs
in scheduling jobs almost exactly 24 hours into the future.

Diagnostics

Complains about various syntax errors and times that are out of range.

Files
/usr/lib/atrun executor run by cron(8)
in /usr/spool/at:
yy.ddd.hhhh.* activity for year yy, day dd, hour hhhh.
lasttimedone last hhhh
past activities in progress
[usr/spool/at/at.allow list of allowed users
[usr/spool/at/at.deny list of denied users
[ust/spool/at spool directory
/usr/lib/cron XOPEN compatibility
See Also

crontab(5), cron(8)

Commands 1-35

awk (1)

Name

awk — pattern scanning and processing language
Syntax

awk [-Fc] [-f prog][-] [file...]
Description

The awk command scans each input file for lines that match any of a set of patterns
specified in prog. With each pattern in prog there can be an associated action that
will be performed when a line of a file matches the pattern. The set of patterns may
appear literally as prog, or in a file specified as —f prog.

Files are read in order; if there are no files, the standard input is read. The file name
‘-’ means the standard input. Each line is matched against the pattern portion of
every pattern-action statement; the associated action is performed for each matched
pattern.

An input line is made up of fields separated by white space. (This default can be
changed by using FS, as described below.) The fields are denoted $1, $2, ... ; $0
refers to the entire line.

A pattern-action statement has the form

pattern { action }
A missing { action } means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new lines or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, —, *, /, %, and
concatenation (indicated by a blank). The C operators ++, —, +=, —=, *=, /=, and
%= are also available in expressions. Variables may be scalars, array elements
(denoted x[i]) or fields. Variables are initialized to the null string. Array subscripts
may be any string, not necessarily numeric; this allows for a form of associative

memory. String constants are quoted "...".

The print statement prints its arguments on the standard output (or on a file if >file is
present), separated by the current output field separator, and terminated by the output
record separator. The printf statement formats its expression list according to the
format. For further information, see print £(3s).

1-36 Commands

awk (1)

The built-in function /length returns the length of its argument taken as a string, or of
the whole line if no argument. There are also built-in functions exp, log, sqrt, and
int. The last truncates its argument to an integer. substr(s, m, n) returns the n-
character substring of s that begins at position m. The function

sprintf(fmt, expr, expr, ...) formats the expressions according to the print £(3s)
format given by fint and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of regular
expressions and relational expressions. Regular expressions must be surrounded by
slashes and are as in egrep. Isolated regular expressions in a pattern apply to the
entire line. Regular expressions may also occur in relational expressions.

A pattern may consist of two patterns separated by a comma; in this case, the action
is performed for all lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ~
(for contains) or !~ (for does not contain). A conditional is an arithmetic expression,
a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first
input line is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with
BEGIN { FS ="c" }
or by using the —Fc option.

Other variable names with special meanings include NF, the number of fields in the
current record; NR, the ordinal number of the current record; FILENAME, the name
of the current input file; OFS, the output field separator (default blank); ORS, the
output record separator (default new line); and OFMT, the output format for numbers
(default "%.6g").

Options
- Used for standard input file.
-Fc Sets interfield separator to named character.
~fprog Uses prog file for patterns and actions.

Commands 1-37

awk (1)

Examples

Print lines longer than 72 characters:
length > 72

Print first two fields in opposite order:
{ print $2, $1 }

Add up first column, print sum and average:

{ s += 351
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{ for (1 = NF; 1 > 0; =--i) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Restrictions

There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add O to it; to force it to be treated as a string
concatenate "" to it.

See Also

lex(1), sed(1)
"Awk — A Pattern Scanning and Processing Language" ULTRIX Supplementary
Documents Vol. II: Programmer

1-38 Commands

basename (1)

Name
basename — strip directory names from pathname
Syntax
basename string [suffix]
Description
The basename command deletes from string any prefix ending in a slash (/) and the
suffix, and prints the result on the standard output. The basename command also
handles limited regular expressions in the same manner as ed(1). The basename
command is often used inside substitution marks (" *) within shell procedures.
Examples

The following example shell script compiles the file /usr/src/bin/cat.c and
moves the output to cat in the current directory:

cc /usr/src/bin/cat.c
mv a.out ' basename $1 .c'

The following example echoes only the base name of the file /etc/syslog.conf

by removing the prefix and any possible sequence of characters following the period
in the file’s name:

% basename /etc/syslog.conf "..*"
syslog

See Also
dirname(1), ex(1), sh(1)

Commands 1-39

bc(1)

Name

bc — interactive arithmetic language processor

Syntax
be [—c] [-1] [file...]

Description

The bc command provides an interactive processor for a language which resembles
C but provides unlimited precision arithmetic. It takes input from any files given,
then reads the standard input. The -l argument stands for the name of an arbitrary
precision math library. The syntax for bc programs is as follows: L means letter a-
z, E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L[E]
The words ‘ibase’, ‘obase’, and ‘scale’

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators
+ — * [% 7 (% is remainder; is power)
++ — (prefix and postfix; apply to names)
== <= = !: < >
=+=—=*=/= %= N=
Statements
E
{S;..;S}
if(E)S
while (E) S

for(E;E;E)S

null statement

break

quit

Function definitions

defineL (L,...,L) {
autoL, ..., L
S;...S
return (E)

1-40 Commands

be(1)

Functions in -1 math library
s(x) sine
c(x) cosine
e(x) exponential
1(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is
an assignment. Either semicolons or new lines may separate statements. Assignment
to scale influences the number of digits to be retained on arithmetic operations in the
manner of dc(1). Assignments to ibase or obase set the input and output number
radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. ‘Auto’ variables are pushed
down during function calls. When using arrays as function arguments or defining
them as automatic variables empty square brackets must follow the array name.

The following example defines a function to compute an approximate value of the
exponential function:
scale = 20

define e(x){
auto a, b, ¢, i, s

a =1
b=1
s =1
for(i=1; 1l==1; i++){
a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+cC

}

The following command line then prints approximate values of the exponential
function of the first ten integers:

for (i=1; i<=10; i++) e(1)
The bc command is actually a preprocessor for dc(1), which it invokes
automatically, unless the —¢ (compile only) option is present. In this case the dc
input is sent to the standard output instead.

Options

—C Compiles input only.

-1 Names arbitrary precision math library.

Commands 1-41

bc(1)

Restrictions
The for statement must have all three E’s.
Quit is interpreted when read, not when executed.

Variables must be a single lower case letter. Upper case letters are used only as
digits for bases greater than 10.

Files
/usr/lib/lib.b mathematical library

See Also

dc(1)
‘“‘BC — An arbitrary precision desk-calculator language’® ULTRIX Supplementary
Documents Vol. 1: General User

1--42 Commands

bdiff(1)

Name
bdiff — big file differential comparator

Syntax
bdiff filel file2 [n] [-s]

Description

The bdiff command is used to find lines that must be changed in two files to bring
them into agreement. Its purpose is to allow processing of files that are too large for
diff(1).

The bdiff command ignores lines common to the beginning of both files, splits the
remainder of each file into n-line segments, and invokes di ££(1) upon
corresponding segments. The value of n is 3500 by default. If the optional third
argument is given and if it is numeric, it is used as the value for #n. This is useful in
those cases in which 3500-line segments are too large for di ££, causing it to fail.

The output of the bdiff command is the same as the output of the diff command:
line numbers are adjusted to account for the segmenting of the files to make it look
as if the files had been processed whole. Note that because of the segmenting of the
files, bdif £ does not necessarily find the smallest sufficient set of file differences.

If either filel or file2 is —, the standard input is read. The optional —s (silent)
argument specifies that no diagnostics are to be printed by bdiff. However, this
does not suppress possible exclamations by dif£. If both optional arguments are
specified, they must appear in the order indicated above.

Options
=S Suppresses normal diagnostic messages.

Diagnostics

Use sccshelp(l) for explanations.

Files

See Also
diff(1)

Commands 1-43

biff (1)

Name

biff — be notified if mail arrives and who it is from

Syntax
biff [yn]

Description

The biff command informs the system whether you want to be notified when mail
arrives during the current terminal session. The command, biff y, enables
notification; the command, bi £ £ n, disables it. The biff command with no
options displays the current status of biff.

When mail notification is enabled, the header and first few lines of the message will
be printed on your screen whenever mail arrives. A “‘biff y’’ command is often
included in the file .login or .profile to be executed at each login.

The biff command operates asynchronously. For synchronous notification use the
MAIL variable of sh(1) or the mail variable of csh(1).

Options

-n Disables notification that mail has arrived.

-y Enables notification that mail has arrived.

See Also
csh(1), mail(1), sh(1), comsat(8c)

1-44 Commands

binmail (1)

Name

binmail — send or receive mail among users

Syntax

/bin/mail [+] [-i] [person...]
/bin/mail [+] [—i] -f file

Description

This is the old version 7 UNIX system mail program. The default mail command is
described in mail(1), and its binary is in the directory /usr/ucb. The
/bin/mail program is still used to actually deliver a mail message into the users
system-wide mailbox (/usr/spool/mail/*), however, the reading of these
messages has been replaced with the program /usr/ucb/mail. Do not remove
/bin/mail from your system.

The mail command with no argument prints a user’s mail, message-by-message, in
last-in, first-out order; the optional argument + displays the mail messages in first-in,
first-out order. For each message, it reads a line from the standard input to direct the
disposition of the message.

Issue the following commands from the mail program prompt:

<CR> Go on to next message

d Delete message and go on to the next.

P Print message again.

- Go back to previous message.

s [file...] Save the message in the named files (‘mbox’ default).

w [file...] Save the message, without a header, in the named files
(‘mbox’ default).

m [person...] Mail the message to the named persons (yourself is default).

EOT (control-D) Put unexamined mail back in the mailbox and stop.

q Same as EOT.

lcommand Escape to the Shell to do command.

* Print a command summary.

An interrupt normally terminates the mail command; the mail file is unchanged.

When persons are named, mail takes the standard input up to an end-of-file (or a
line with just *.”) and adds it to each person’s mail file. The message is preceded by
the sender’s name and a postmark. Lines that look like postmarks are prepended
with ‘>’. A person is usually a user name recognized by login(l). To denote a
recipient on a remote system, prefix person by the system name and exclamation
mark. For further information, see uucp(1c).

The mail program sends a message to the screen that there is mail when the user
logs in.

Commands 1-45

binmail (1)

When /bin/mail is used to deliver mail, (usually sendmai1(8) calls
/bin/mail to do this), a mailbox is created for the user in the directory
/usr/spool/mail, if it doesn’t already exist. The mailbox is created with the
mode 700 so that only its owner can access it. In addition, the directory
/usr/spool/mail has the mode 777 with the sticky bit set. The mode is 777 so
that other mail programs, notably /usr/ucb/mail, can create the appropriate
lock files to prevent another process from writing to the mailbox at the same time.
The sticky bit set on the directory prevents one user from unlinking another user’s
mailbox.

Options
-f Displays mail messages contained in the specified file (next
argument) in place of your mailbox file.
-i Notifies mail to continue after interrupts.
Restrictions
Race conditions sometimes result in a failure to remove a lock file.
Files
[etc/passwd to identify sender and locate persons
[usr/spool/mail/* incoming mail for user *
mbox saved mail
/tmp/ma* temp file
fusr/spool/mail/*.Jock lock for mail directory
dead.letter unmailable text
See Also

mail(1), uucp(lc), uux(lc), write(1), sendmail(8)

1-46 Commands

burst(1mh)

Name

burst — explode digests into messages

Syntax

burst [+folder] [msgs] [-inplace] [-noinplace] [-quiet] [-noquiet] [-verbose]
[-noverbose] [-help]

Description

The burst command extracts the original messages from a forwarded message,
discards the forwarder’s header details and places the burst message at the end of the
current folder. You can specify messages, other than the current forwarded message,
by using burst with the <+folder> and <msgs> arguments. If you specify a
message, that message becomes the current folder. If you specify a folder, that folder
becomes the current folder.

You can use burst to expand a message, that contains a number of messages that
have been packed into one file for ease of mailing, into its constituent messages. The
packf and forw commands can both pack individual messages into a single
message or file.

The burst command can also be used on Internet digests.

As an example of the way in which burst can be used, imagine that you have gone
on a business trip and have been allocated a guest account on a local machine. While
you are away you redirect all your mail to the local machine. At the end of the trip,
there is some mail that you want to keep when you return. Rather than send a
number of mail messages, you can use forw to pack all the individual messages into
one large message, and forward it to your normal account (after disabling the
redirection).

When you return you can use burst to expand the single message into its
constituent messages.

Options

If -inplace is given, each digest is replaced by the table of contents for the digest.
The original digest is removed. The burst command then renumbers all of the
messages in the folder following the digest to make room for each of the messages
contained within the digest. These messages are placed immediately after the digest.

If -noinplace is given, each digest is preserved, no table of contents is produced,
and the messages contained within the digest are placed at the end of the folder.
Other messages are not tampered with in any way.

The —quiet switch directs burst to be silent about reporting messages that are not
in digest format.

The —verbose switch directs burst to tell you the general actions that it is taking
to explode the digest.

The burst command has the following defaults:

+folder defaults to the current folder
msgs defaults to cur
-noinplace

Commands 1-47

burst(1mh)

Files

-noquiet
-noverbose

If ~inplace is given, then the first message burst becomes the current message.

This leaves the context ready for a show of the table of contents of the digest, and a
next to see the first message of the digest. If —-noinplace is given, then the first
message extracted from the first digest burst becomes the current message. This
leaves the context in a similar, but not identical, state to the context achieved when
using —inplace. '

The burst program enforces a limit on the number of messages which may be
expanded from a single message. This number is about 1000 messages. However,
there is usually no limit on the number of messages which may reside in the folder
after the messages have been expanded.

Although burst uses a sophisticated algorithm to determine where one encapsulated
message ends and another begins, not all programs that create digests use an
encapsulation algorithm. The burst command only works on messages that have
been encapsulated according to the guidelines laid down by the proposed standard
RFC 934. This basically means that the encapsulated message is considered to start
after burst encounters a line of dashes. If you attempt to burst a message that
has not been encapsulated according to RFC 934, the results may be unpredictable.
In most cases, this means that burst may find an encapsulation boundary
prematurely and split a single encapsulated message into two or more messages.

Furthermore, any text which appears after the last encapsulated message is not placed
in a separate message by burst. In the case of encapsulated messages, this text is
usually an End-of-digest string. Note that when the —~inplace option is used, this
trailing information is lost. However, in practice this is not a problem, since
correspondents usually place remarks in text prior to the first encapsulated message,
and this information is not lost.

$HOME/.mh_profile The user profile

Profile Components

Path: To determine your MH directory

Current-Folder: To find the default current folder

Msg-Protect: To set mode when creating a new message
See Also

inc(1mh), msh(1mh)
Proposed Standard for Message Encapsulation (RFC 934)

1-48 Commands

cal(1)

Name

cal — print calendar

Syntax
cal [month] year

Description

The cal command prints a calendar for the specified year. If a month is also
specified, a calendar just for that month is printed. The year can be between 1 and
9999. The month is a number between 1 and 12. The following example produces a
calendar for October 1988.

cal 10 1988

Restrictions

The year is always considered to start in January.

Commands 1-49

calendar(1)

Name
calendar — calendar reminder service
Syntax
calendar [-]
Description |
The calendar command consults the file ‘calendar’ in the current directory and
prints out lines that contain today’s or tomorrow’s date. The calendar command
recognizes most month-day dates, such as Dec. 7, december 7, 12/7, but it does not
recognize dates formatted in the following ways: 7 December or 7/12. If you give
the month as * with a date, such as, * 1, that day in any month will do. On
weekends, specifying tomorrow extends through Monday.
When an argument is present, the calendar command searches through a user’s
calendar file in his login directory and sends him any positive results by mail(1).
Normally this is done daily under control of cron(8).
The calendar file is first run through the C preprocessor, /1ib/cpp, to include any
other calendar files specified with the #include syntax. Included calendars are shared
by all users, and are maintained and documented by the local administration.
Options
- Functions for every user who has a calendar file in his login directory.
Restrictions
The calendar’ s extended idea of tomorrow does not account for holidays.
Files
calendar
/usr/lib/calendar to figure out today’s and tomorrow’s dates
[etc/passwd
/tmp/cal*
/lib/cpp, egrep, sed, mail as subprocesses
See Also

at(1), cron(8), mail(1)

1-50 Commands

capsar(1)

Name

capsar — prepares documents not in ASCII format for transport in the mail system
Syntax

capsar [-c] [-t] [-x[hTD1] [file]
Description

The capsar utility allows ULTRIX mail to support documents containing non-
ASCII data, such as DDIF. Only the DDIF and DOTS data types are currently
supported. DDIF is Digital’s standard format for document interchange. DOTS is an
encapsulation of the encoded interchange form of a number of related data objects
into a single composite object. For more information, see DDIF(5) and DOTS(5).

The capsar utility prepares a DOTS file or a DDIF document for transport in the
mail system by performing the following steps:

1) The DDIF document is converted to DOTS format. As a DDIF document
may contain more than one file, all files within the DDIF document are
incorporated into one DOTS file which can be sent as one mail message.

2) Each DOTS file is then compressed and encoded using only printing ASCII
characters. This is because ULTRIX mail software only supports 7 bit mail.

3) The capsar routine encapsulates coded documents by adding leading and
trailing lines, each surrounded by a <CR>. The lines should begin with 2 or
more dashes (-) and some text that indicates the nature of the encapsulated
message. The following is a typical encapsulated mail message:

To: anybody@anynode

Cc:
Subject: Another DDIF document

——————————— motd.ddif : DOTS.ctod.compress.uuencode message

begin 0 motd.ddif

M__]@*" , (™ !BO.#PS$# 8S5* &UO=&0NO&1IOHOS) %546 "AQ"B !@8K
MS@ P$’’'T1$248MI96YC;VIE9"IRO79I<VSB;&4Q9&]1C=6UE;G2@@/__ ?X"@
ME@(! 85! ((/1$1)1B17?4D5!1%]415A4HX#)% !1E& ($1E>’0Q1G)0;G0@Q
end

——————————— End of motd.ddif : DOTS.ctod.compress.uuencode message

The capsar command can also extract different parts of a mail message,
namely, the header information, the text part of the message, and the DOTS
file that was encapsulated as described above.

Extracting the DOTS file is done by parsing the mail message and detecting the
leading and trailing encapsulation boundaries. Decoding and uncompressing the data
results in the original DOTS file.

The capsar utility is built into Rand MH to provide DDIF mail support. It can,
however, be used with ucb mail.

Commands 1-51

capsar(1)
Options

-C
-t

—xh

T
-xD

Examples

Causes capsar to create an encapsulated DOTS bodypart from file. The file
must be a DOTS/DDIF type document.

Causes capsar to write to the standard output the message type of file.
Message type can be either text or DOTS.

Extracts the mail header lines from file. The header line must be at the
beginning of the file and separated from the remaining text by a <CR> or
<CRLF>. Each header line is a string containing a header field name (for
example, Subject), a colon (:), one or more spaces, and a field value. Each
header line may have embedded continuation sequences it it (for example, LF
followed by spaces or tabs).

Extracts all the text parts of the mail message in file to the standard output.

Extracts any DOTS bodyparts in file. The DOTS document is sent to the
standard output. This is the reverse of the —c¢ option above.

The file must be specified for the —c option. If file is not specified with the —x
or -t option then the standard input is used.

The following are examples of how to use the capsar command:

Encapsulates a DDIF document

capsar -c file.ddif | more

Lists the header line from the mail message

capsar -xh file.mail

Extracts the encapsulated DOTS file from the file

capsar -xD file > file.dots

or

capsar -xD file | dtoc

1-52 Commands

capsar (1)

In order to mail a DDIF/DOTS document you can use one of the following:

capsar —-c¢ file.ddif | mail -s "subject" address
capsar -c file.ddif | mhmail -subject "subject" address

Use the second command if you are using RAND mh.

A DOTS file is extracted from dxmail first extracting the message into a file. The
dxmail utility has an extract feature built in so capsar -xD isn’t needed.

See Also

compress(1), ctod(1), dtoc(1), mail(1), mh(1mh), mhmail(1mh), uuencode(l),
vdoc(1), prompter(1mh), DDIF(S), DOTS(S)

Commands 1~-53

cat(1)

Name
cat — concatenate and print data
Syntax
cat[-b][~-e][-n][-s][-t][-u][-v]file..
Description
The cat command reads each file in sequence and displays it on the standard output.
Therefore, to display the file on the standard output you type:
cat file
To concatenate two files and place the result on the third you type:
cat filel file2 > file3
If no input file is given, or if a minus sign (-) is encountered as an argument, cat
reads from the standard input file. Output is buffered in 1024-byte blocks unless the
standard output is a terminal, in which case it is line buffered. The cat utility
supports the processing of 8-bit characters.
Options
-b Ignores blank lines and precedes each output line with its line number.
—e Displays a dollar sign ($) at the end of each output line.
-n Precedes all output lines (including blank lines) with line numbers.
—s Squeezes adjacent blank lines from output and single spaces output.
~t Displays non-printing characters (including tabs) in output. In addition to
those representations used with the —v option, all tab characters are displayed
as AL
—u Unbuffers output.
—v Displays non-printing characters (excluding tabs). For example, <CTRL/X>
displays on the screen as AX. The delete character (octal 0177) displays as A?.
Non-ASCII characters (with the high bit set) display as M- (which is the meta
character) followed by the low 7 bits.
See Also

cp(1), ex(1), more(1), pr(1), tail(1)

1-54 Commands

catpw(1)

Name
catpw — prints all password entries

Syntax
catpw

Description
The catpw command prints password entries for all users known to the system
using the format in passwd(5). Password entries are gathered from all sources
including Yellow Pages, Kerberos, and /etc/passwd.

See Also

getpwent(3), passwd(5)

Commands 1-55

cb(1)

Name
cb — C program beautifier

Syntax
cb

Description

The cb command places a copy of the C program from the standard input on the
standard output with spacing and indentation that displays the structure of the
program.

1-56 Commands

Name

Syntax

cc — RISC C compiler

cc [option] ... file

Description

The cc command invokes the RISC ucode C compiler. It produces RISC object
code in RISC extended coff format (the default), binary or symbolic ucode, ucode
object files and binary or symbolic assembly language.

The cc command accepts the following arguments:

o Arguments ending in .c are interpreted as C source programs. They are
compiled, and the resulting object file has the same name as the source
program except .o is substituted for .c. If a single C source program is
compiled and loaded at once, the .o file is deleted.

. Arguments ending in .s are interpreted as assembly source programs. When
they are assembled, they produce a .o file.

J Arguments ending in .i are interpreted as C source after being processed by the
C preprocessor. They are compiled without being processed by the C
preprocessor.

If the highest level of optimization is specified (with the =03 flag) or only ucode
object files are to be produced (with the —j flag) each C source file is compiled into a
ucode object file. The ucode object file is left in a file whose name consists of the last
component of the source with .u substituted for .c.

The following suffixes aid compiler development, but are not generally used: .B, .O.,
.S, and .M. These arguments are interpreted as binary ucode, produced by the front
end, optimizer, ucode object file splitter, and ucode merger respectively. Arguments
whose names end with .U are assumed to be symbolic ucode. Arguments whose
names end with .G are assumed to be binary assembly language, which is produced
by the code generator and the symbolic to binary assembler.

Files that are assumed to be binary ucode, symbolic ucode, or binary assembly
language by the suffix conventions are also assumed to have their corresponding
symbol table in a file with a .T suffix.

The cc command always defines the C preprocessor macro LANGUAGE_C when a
. file is being compiled. The cc command defines the C preprocessor macro
LANGUAGE_ASSEMBLY when a .s file is compiled.

Options

The following options are interpreted by cc(1). See 1d(1) for load-time options.

-C Suppress the loading phase of the compilation and force an object
file to be produced even if only one program is compiled.

—g0 Do not produce symbol table information for symbolic debugging.
This is the default.

Commands 1~57

RISC

cc(1)

-l

—g or —-g2

—feedback file

—cord

-]

-ko output

1-58 Commands

Produce additional symbol table information. Provides accurate,
but limited symbolic debugging of partially optimized code.

Produce additional symbol table information for full symbolic
debugging, but do not perform optimizations that limit full
symbolic debugging.

Produce additional symbol table information for full symbolic
debugging for fully optimized code. This option can affect
debugger accuracy.

Suppress warning messages.

Do not permit profiling. This is the default. If loading happens,
the standard runtime startup routine (crt0.0) is used and the
profiling libraries are not searched.

Set up for profiling by periodically sampling the value of the
program counter. This option only affects the loading. When
loading happens, this option replaces the standard runtime startup
routine with the profiling runtime startup routine (mert0.0) and
searches the level 1 profiling library (libprofl.a). When profiling
happens, the startup routine calls monstartup(3) and produces a
file mon.out that contains execution-profiling data for use with the
postprocessor prof(1).

Turn off all optimizations.
Turn on all optimizations that complete fast. This is the default.
Invoke the global ucode optimizer.

Perform all optimizations, including global register allocation.

This option must precede all source file arguments. With this
option, a ucode object file is created for each C source file and left
in a .u file. The newly created ucode object files, the ucode object
files specified on the command line, the runtime startup routine,
and all the runtime libraries are ucode linked. Optimization is
performed on the resulting ucode linked file and then it is linked as
normal producing an a.out file. A resulting .o file is not left from
the ucode linked result. In fact —¢ cannot be specified with —03.

Use with the —cord option to specify the feedback file. This file is
produced by pro£(1) with its —feedback option from an execution
of the program produced by pixie(1).

Run the procedure-rearranger on the resulting file after linking.

The rearrangement is performed to reduce the cache conflicts of the
program’s text. The output is left in the file specified by the —o
output option or a.out by default. At least one —feedback file must
be specified.

Compile the specified source programs, and leave the ucode object
file output in corresponding files with the .u suffix.

Name the output file created by the ucode loader as output. This
file is not removed. If this file is compiled, the object file is left in
a file whose name consists of output with the suffix changed to an

;"-;i)name=d¢—ef
| —Dname

—0 output

B

~Uname

~1dir

-V

—std

~Yenvironment

cc(1) RISC

.0. If output has no suffix, an .o suffix is appended to output.

Pass options that start with a —k to the ucode loader. This option
is used to specify ucode libraries (with ~klx) and other ucode
loader options.

Compile the specified source programs and leave the symbolic
assembly language output in corresponding files suffixed with .s.

Run only the C macro preprocessor and put the result for each
source file using suffix convention (for example, .c and .s) in a
corresponding .i file. The .i file does not have number lines (#) in
it. This sets the —cpp option.

Run only the C macro preprocessor on the files (regardless of any
suffix or not), and send the result to the standard output. This sets
the —cpp option.

Name the final output file output. If this option is used, the file
a.out is unaffected.

Define the name to the C macro preprocessor, as if by ‘#define’. If
a definition is not given, the name is defined as 1.

Remove any initial definition of name.

Search for #include files whose names do not begin with a slash (/)
in the following order: (1) in the directory of the dir argument, (2)
in the directories specified by -I options, (3) in the standard
directory (/usr/include).

Do not search for #include in the standard directory (/usr/include).

Specify the maximum size, in bytes, of a data item that is to be
accessed from the global pointer. The num argument is interpreted
as a decimal number. If num is zero, data is not accessed from the
global pointer. The default value for num is 8 bytes.

Print the passes as they execute with their arguments and their
input and output files. Also prints resource usage in the C shell
time format.

Print the version of the driver and the versions of all passes. This
is done with the what (1) command.

Produce warnings for things that are not standard in the language.

Compiles C programs for environment. If environment is
SYSTEM_FIVE or is omitted, it defines SYSTEM_FIVE for the
preprocessor, cpp . If the loader is invoked, it specifies that the
System V version of the C runtime library is used. Also, if the
math library is specified with the -Im option, the System V
version is used. If environment is POSIX, it defines POSIX for the
preprocessor. If the environment variable PROG_ENYV has the
value SYSTEM_FIVE or POSIX, the effect is the same as when
specifying the corresponding —Yenvironment option to cc. The
~Y option overrides the PROG_ENV variable; ~YBSD can be used
to override all special actions.

Commands 1-59

RISC

cc(1)

—cpp Run the C macro preprocessor on C and assembly source files
before compiling. This is the default for cc(l).

-nocpp Do not run the C macro preprocessor on C and assembly source
files before compiling.

~Olimit num Specify the maximum size, in basic blocks, of a routine that will
be optimized by the global optimizer. If a routine has more than
the specified number of basic blocks, it cannot be optimized and a
message is printed. A -0, —02, or —03 must be used to specify
the global optimizer. The argument must also be specified. The
argument num is interpreted as a decimal number. The default
value for num is 1500 basic blocks.

-signed Causes all char declarations to be signed char declarations. This is
the default.
-unsigned Causes all char declarations to be unsigned char declarations.
-volatile Causes all variables to be treated as volatile.
—varargs Prints warnings for lines that may require the varargs.h macros.
-f Causes the compiler not to promote expressions of type float to
type double.
NOTE

The —-EB and -EL options are needed only when compiling for RISC
machines from vendors other than Digital.

The default target byte ordering matches the machine where the compiler is running.
The options —-EB and —-EL specify the target byte ordering (big-endian and little-
endian, respectively). The compiler also defines a C preprocessor macro for the
target byte ordering. These C preprocessor macros are MIPSEB and MIPSEL for
big-endian and little-endian byte ordering respectively.

If the specified target byte ordering does not match the machine where the compiler
is running, then the runtime startups and libraries come from /usr/libeb for big-
endian runtimes on a little-endian machine and from /usr/libel for little-endian
runtimes on a big-endian machine.

-EB Produce object files targeted for big-endian byte ordering. The C
preprocessor macro MIPSEB is defined by the compiler.

-EL Produce object files targeted for little-endian byte ordering. The C
preprocessor macro MIPSEL is defined by the compiler.

The following options primarily aid compiler development and are not generally
used:

-Hc Halt compiling after the pass specified by the character c,
producing an intermediate file for the next pass. The ¢ can be
[fjusmoca]. It selects the compiler pass in the same way as the —t
option. If this option is used, the symbol table file produced and
used by the passes is the last component of the source file with the
suffix changed to .T. It is not removed.

-K Build and use intermediate file names with the last component of
the source file’s name replacing its suffix with the conventional

1-60 Commands

cc(1)

suffix for the type of file (for example, .B file for binary ucode,
produced by the front end). These intermediate files are never
removed even when a pass encounters a fatal error. When ucode
linking is performed and the —K option is specified, the base name
of the files created after the ucode link is u.out by default. If -ko
output is specified, the base name of the object file is output
without the suffix. Suffixes are appended to output if it does not
have a suffix.

~# Converts binary ucode files (.B) or optimized binary ucode files
(.0) to symbolic ucode (a .U file). If a symbolic ucode file is to be
produced by converting the binary ucode from the C compiler front
end then the front end option —Xu is used.

-Wc/c...].argl[,arg2...]
Pass the argument[s] argi to the compiler pass[es] c[c..]. The ¢’s
are one of [pfjusmocablyz]. The c’s selects the compiler pass in
the same way as the —t option.

The options —t[hpfjusmocablyzrnt], ~hpath, and -Bstring select a name to use for a
particular pass, startup routine, or standard library. These arguments are processed
from left to right so their order is significant. When the ~B option is encountered,
the selection of names takes place using the last —h and —t options. Therefore, the
-B option is always required when using —h or -t. Sets of these options can be used
to select any combination of names.

The —EB or —-EL options and the —p[01] options must precede all =B options because
they can affect the location of runtime libraries and which runtime libraries are used.

~t[hpfjusmocablyzrnt]
Select the names. The names must be selected from the options in
the following table:
Name Character
include h (see note below)
°pp
ccom
yjoin
uld
usplit
umerge
uopt
ugen
as0
asl
1d
ftoc
cord
[m]ert0o r
libprofl.a n
btou, utob t

N « '—'o‘woogm:'—-m*c

If the character h is in the ~t argument then a directory is added to
the list of directories to be used in searching for #include files.
This directory name has the form
COMP_TARGET_ROOT/ust/includestring . This directory is to contain

Commands 1-61

RISC

RISC

cc(1)

the include files for the string release of the compiler. The
standard directory is still searched.

=hpath Use path rather than the directory where the name is normally
found.

—Bstring Append string to all names specified by the —t option. If the —t
option has not been processed before the ~B, the —t option is
assumed to be the following: hpfjusmocablyzrnt. This list
designates all names. If the —t argument has not been processed
before the —B argument, —Bstring is passed to the loader to use
with its —Ix arguments.

Invoking the compiler with a name of the form cestring has the same effect as using
a —-Bstring option on the command line.

If the environment variable COMP_HOST_ROOT is set, the value is used as the root
directory for all pass names rather than the default slash (/). If the environment
variable COMP_TARGET_ROOT is set, the value is used as the root directory for all
include and library names rather than the default slash (/). This affects the standard
directory for #include files, /usr/include, and the standard library, /ust/lib/libc.a. If
this is set then the only directory that is searched for libraries, using the -lx option, is
COMP_TARGET_ROOT/usr/lib .

If the environment variable TMPDIR is set, the value is used as the directory to place
any temporary files rather than the default /tmp/ .

If the environment variable RLS_ID_OBJECT is set, the value is used as the name of an
object to link in if a link takes place. This is used to add release identification
information to objects. It is always the last object specified to the loader.

Other arguments are assumed to be either loader options or C—compatible object files,
typically produced by an earlier cc run, or perhaps libraries of C—compatible
routines. These files, together with the results of any compilations specified, are
loaded in the order given, producing an executable program with the default name
a.out.

Options

The ULTRIX C compiler provides the following default symbols for your use. These
symbols are useful in ifdef statements to isolate code for one of the particular cases.
Thus, these symbols can be useful for ensuring portable code.

unix Any UNIX system

bsd4_2 Berkeley UNIX Version 4.2

ultrix ULTRIX only

mips Any RISC architecture

MIPSEL Little endian variant of MIPS architecture

host_mips Native compilation environment (as opposed to cross-compiler)

1-62 Commands

Restrictions

The standard library, /usr/lib/libc.a, is loaded by using the —Ic loader option and not a
full path name. The wrong library may be loaded if there are files with the name
libc.astring in the directories specified with the —L loader option or in the default
directories searched by the loader.

Files

cc(1)

The handling of include directories and libc.a is confusing.

file.c

file.o

a.out
/tmp/ctm?
[usr/lib/cpp
fusr/lib/ccom
/usr/lib/ujoin
fusr/bin/uld
fusr/lib/usplit
fusr/lib/umerge
/usr/lib/uopt
/usr/lib/ugen
[usr/lib/asO
fusr/lib/as1
fusr/lib/crt0.0
Jusr/lib/mcrt0.0
fusr/lib/libc.a

[usr/lib/libprof1.a

fusr/include
fusr/bin/ld
Jusr/lib/ftoc
fusr/lib/cord
[fusr/bin/btou
fusr/bin/utob

mon.out

input file

object file

loaded output

temporary

C macro preprocessor

C front end

binary ucode and symbol table joiner
ucode loader

binary ucode and symbol table splitter
procedure intergrator

optional global ucode optimizer

code generator

symbolic to binary assembly language translator
binary assembly language assembler and reorganizer
runtime startup

startup for profiling

standard library, see intro(3)

level 1 profiling library

standard directory for #include files
MIPS loader

interface between prof(1) and cord
procedure-rearranger

binary to symbolic ucode translator
symbolic to binary ucode translator
file produced for analysis by pro£f(1)

Runtime startups and libraries for the opposite byte sex of machine the compiler is
running on have the same names but are located in different directories. For big-
endian runtimes on a little-endian machine the directory is /usr/libeb and for little-
endian runtimes on a big-endian machine the directory is /usr/libel.

See Also
dbx(1), 1d(1), pixie(1), prof(1), what(1), monitor(3)

Commands 1-63

RISC

VAX

cc(1)
Name

Syntax

cc — C compiler

cc [option...] file...

Description

The cc command invokes the ULTRIX C compiler and accepts the following types
of arguments:

L Arguments whose names end with .c
o Arguments whose names end with .s

. Other arguments that are interpreted as either loader option arguments or
C-compatible object programs

Arguments ending in .c are interpreted as C source programs. They are compiled, and
each object program is left on a file whose name is the same as the source file except
.0 is substituted for .c. If a single C program is compiled and loaded all at once, the
.0 file is deleted.

Arguments ending with .s are interpreted as assembly source programs. They are
assembled, producing an .o file.

Arguments other than those ending with .c or .s were produced by previous cc runs
or by libraries of C-compatible routines.

The first argument passed to the 1d(1) loader is always one of the three crt0 files
used for start up. The compiler uses /1ib/mcrt0.o when the —p flag is given,
/usr/lib/gcrt0.o when the —pg is given, and /1ib/crt0.o otherwise. If
loading executables by hand, you must include the appropriate file.

Options

These options are accepted by cc. See 1d(1) for load-time options.

-b Does not pass —lc to 1d(1) by default.

-Bstring Finds substitute compiler passes in the files named string with the
suffixes cpp, ccom, and c2.

—C Suppresses the loading phase of the compilation and forces an
object file to be produced even if only one program is compiled.

-C Stops the macro preprocessor from omitting comments.

—Dname=def

—Dname Defines the name to the processor, as if by #define. If no

definition is given, the name is defined as 1.

-E Runs only the macro preprocessor on the named C programs and
sends the result to the standard output.

-Em Runs only the macro preprocessor on the named C programs and
produces the makefile dependencies.

1-64 Commands

~Idir

~Ix

-0 output

-pg

-R

-S
-t [p02al]

cc(1) VAX

Specifies that computations involving only FFLOAT numbers be
done in single precision and not promoted to double. Procedure
arguments are still promoted to double. Programs with a large
number of single-precision computations will run faster with this
option; however, a slight loss in precision may result due to the
saving of intermediate results in a single-precision representation.

Directs the compiler to produce additional symbol table
information for dbx(1). Also passes the -Ig flag to 1d(1).

Searches first in the directory of the dir argument for #include
files whose names do not begin with a slash (/), then in directories
named in -I options, and, finally, in directories on a standard list.

Abbreviates the library name /lib/libx.a, where x is a string. If that
library name does not exist, 1d searches /usr/lib/libx.a and then
/Jusr/local/lib/libx.a. The placement of the -1 library option is
significant because a library is searched when its name is
encountered.

Specifies the floating point type to be used for double-precision
floating point and is passed on to 1d(1) as the map option.

Specifies the default DFLOAT and passes the —lc flag to 1d(1).

Specifies GFLOAT and passes the -lcg flag to 1d(1), causing the
GFLOAT version of libc to be used. If the math library is used
with code compiled with the -Mg flag, it is linked to the GFLOAT
version by specifying —Img on the cc(l) or 1d(1) command.

Names the final output file output. If this option is used, the file
a.out is left alone. If the named file has either .0 or .a as a suffix,
the following error message is displayed: -o would overwrite.

Uses the object code optimizer.

Arranges for the compiler to produce code which counts the
number of times each routine is called. If loading takes place, the
—p option replaces the standard startup routine with one that
automatically calls monitor(3) and that arranges to write out a
mon.out file at normal termination of execution of the object
program. An execution profile can then be generated using
prof(l).

Causes the compiler to produce counting code as with —p, but
invokes a run-time recorder that keeps more extensive statistics
and produces a gmon. out file. Also, the —pg option searches a
profiling library in lieu of the standard C library. An execution
profile can then be generated by using gprof(1).

Passed on to as, which makes initialized variables shared and
read-only.

Compiles programs and writes output to .s files.

Finds the designated compiler passes in the files whose names are
constructed by a =B option. In the absence of a —B option, the
string is taken to be /usr/c/.

Commands 1-65

VAX

cc(1)

~Uname Removes any initial definition of name.
-w Suppresses warning diagnostics.

=Yenvironment Compiles C programs for environment. If environment is
SYSTEM_FIVE or is omitted, it defines SYSTEM_FIVE for the
preprocessor, cpp . If the loader is invoked, it specifies that the
System V version of the C runtime library is used. Also, if the
math library is specified with the -lm option, the System V
version is used. If environment is POSIX, it defines POSIX for the
preprocessor. If the environment variable PROG_ENY has the
value SYSTEM_FIVE or POSIX, the effect is the same as when
specifying the corresponding —Yenvironment option to cc. The
-Y option overrides the PROG_ENYV variable; -YBSD can be used
to override all special actions.

Default Symbols

The ULTRIX C compiler provides the following default symbols for your use. These
symbols are useful in ifdef statements to isolate code for one of the particular cases.
Thus, these symbols can be useful for ensuring portable code.

unix Any UNIX system

bsdéd_2 Berkeley UNIX Version 4.2
ultrix ULTRIX only

vax VAX only (as opposed to PDP-11)

Restrictions

The compiler ignores advice to put char, unsigned char, short or unsigned short
variables in registers.

If the ~Mg flag is used to produce GFLOAT code, it must be used when compiling
all the modules which will be linked. Use the ~Mg flag if you use the cc command
to invoke 1d(1) indirectly to link the modules. If 1d(1) is invoked directly, use the
—Icg flag rather than -Ic. If the math library is used, specify the -lmg flag rather than
the —Im flag in order to use the GFLOAT version.

The compiler and the linker 1d(1) cannot detect the use of mixed double floating
point types. If you use them, your program’s results may be erroneous.

Diagnostics

Files

The diagnostics produced by C are intended to be self-explanatory. Occasional
messages may be produced by the assembler or loader.

file.c . input file

file.o object file

a.out loaded output
/tmp/ctm? temporary

/lib/cpp preprocessor
Mlib/ccom compiler

Nlib/c2 optional optimizer
Nlib/crt0.0 runtime startoff
/lib/mcrt0.0 startoff for profiling

1-66 Commands

cc(1) VAX

[usr/lib/gert0.0 startoff for gprof-profiling
Mlib/libc.a standard library, see intro(3)
fusr/libcg.a GFLOAT version of the standard library, see intro(3)
/usr/lib/libc_p.a profiling library, see intro(3)
fust/include standard directory for #include files
mon.out file produced for analysis by prof(1)
gmon.out file produced for analysis by gprof(1)
See Also

adb(1), as(1), cpp(1), dbx(1), error(1), gprof(1), 1d(1), prof(1), monitor(3)

Commands 1-67

cd(1)

Name
cd — change current directory

Syntax
cd directory

Description
The directory becomes the new working directory. The process must have execute
(search) permission in directory.
Because a new process is created to execute each command, cd would be ineffective
if it were written as a normal command. It is therefore recognized and executed by
the shells. In csh you may specify a list of directories in which directory is to be
sought as a subdirectory if it is not a subdirectory of the current directory; see the
description of the cdpath variable in csh(1).

See Also

csh(1), pwd(1), sh(1), chdir(2)

1-68 Commands

cde(1)

Name
cdc — change delta commentary of an SCCS file

Syntax
cdc -rSID [-m[mrlist]1] [-ylcomment]] files

Description

The cdc command changes the delta commentary of each named SCCS file, for the
SID specified by the —r option.

The delta commentary is defined to be the Modification Request (MR) and comment
information usually specified by the delta command (-m and -y options).

The delta commentary may consist of one or more lines, terminated by a dot in
column one of a new line.

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except non-SCCS files (last component of the path name
does not begin with s.) and unreadable files, which are silently ignored. If a name of
- is given, the standard input is read (see RESTRICTIONS). Each line of the
standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of option arguments, and
file names.

All the described option arguments apply independently to each named file.
Options

—m[mrlist] Adds or deletes modification numbers. If the SCCS file has the v
flag set then a list of MR numbers to be added and/or deleted in
the delta commentary of the SID specified by the —r option may be
supplied. For further information, see admin(1). A null MR list
has no effect.

MR entries are added to the list of MRs in the same manner as that
of delta(l). In order to delete an MR, precede the MR number
with the character ! (see Examples). If the MR to be deleted is
currently in the list of MRs, it is removed and changed into a
comment line. A list of all deleted MRs is placed in the comment
section of the delta commentary and is preceded by a comment
line stating that they were deleted.

If =m is not used and the standard input is a terminal, the prompt
MRs? is issued on the standard output before the standard input is
read. If the standard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments? prompt (see -y
option).

MRs in a list are separated by blanks and/or tab characters. An
unescaped new-line character terminates the MR list.

Note that if the v flag has a value it is taken to be the name of a
program (or shell procedure) which validates the correctness of the
MR numbers. For further information, see admin(1). Ifa

Commands 1-69

cdc (1)

nonzero exit status is returned from the MR number validation
program, cdc terminates and the delta commentary remains
unchanged.

-rSID Specifies the SCCS Identification string of a delta for which the
delta commentary is to be changed.

~ylcomment] Replaces existing commentary for the delta specified by the -r
option. The previous comments are kept and preceded by a
comment line stating that they were changed. A null comment has
no effect.

If -y is not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before the
standard input is read; if the standard input is not a terminal, no
prompt is issued. A dot in column one of a new line terminates
the comment text.

Certain permissions are necessary to modify the SCCS file; generally, however, if you
made the delta, you can change its delta commentary, and if you own the file and
directory you can modify the delta commentary.

Examples

This example shows how to add b178-12345 and b179-00001 to the MR list, remove
bl77-54321 from the MR list, and add the comment ‘“trouble®’ to delta 1.6 of s.file.

sccscde -rl.6 -m"bl78-12345 !b177-54321 b179-00001" -ytrouble .file
This example does the same thing.

scecscde ~rl.6 .file

-MRs? !bl77-54321 bl78-12345 b179-00001

comments? trouble

Restrictions

If SCCS file names are supplied to the cdc command via the standard input (- on the
command line), then the —m and -y options must also be used.

Diagnostics
See sccshelp(l) for explanations.
Files
x-file For more information, see delta(l)
z-file For more information, see delta(l)
See Also

admin(1), delta(1), get(1), help(1), prs(1), sccs(1), scesfile(5)
Guide to the Source Code Control System

1-70 Commands

Name

cdoc(1)

cdoc — invokes CDA Converter

Syntax

cdoc [—s format] [—d format 1[O options_file] [—o outputfile] inputfile

Description

The cdoc command converts the revisable format file, inputfile, to another revisable
format or to a final form file. If inputfile is not specified, cdoc reads from standard
input. Unless a destination file is specified with the —o option, the cdoc command
writes files to standard output.

Options

—s format

—d format

-0 options_file

Specifies the format of inputfile and invokes an appropriate
input converter as part of CDA. The ddif, dtif, dots (for
analysis output only) and text converters are provided in the
base system kit. Additional converters can be added by the
CDA Converter Library and other layered products.
Converter Library and other layered products. Contact your
system manager for a complete list of the input formats
supported on your system. The default format is ddif.

Specifies the format of outputfile and invokes an appropriate
output converter as part of CDA. The ddif, dtif, text,
analysis, and ps converters are provided in the base system
kit. Additional converters can be added by the CDA
Converter Library and other layered products. Contact your
system manager for a complete list of the output formats
supported on your system. The default format is ddif.

Names the file passed to the input and output converters to
control specific processing options for each converter. Refer
to your documentation set for a description of converter
options.

The options file has a default file type of .cda_options. Each
line of the options file specifies a format name that can
optionally be followed by _input or _output to restrict the
option to either an input or output converter. The second
word is a valid option preceded by one or more spaces, tabs,
or a slash (/) and can contain upper- and lowercase letters,
numbers, dollar signs, and underlines. The case of letters is
not significant. If an option requires a value, then spaces,
tabs, or an equal sign can separate the option from the value.

Each line can optionally be preceded by spaces and tabs and

can be terminated by any character other than those that can

be used to specify the format names and options. The syntax
and interpretation of the text that follows the format name is

specified by the supplier of the front and back end converters
for the specified format.

Commands 1-71

cdoc(1)

—o outputfile

See Also

To specify several options for the same input or output
format, specify one option on a line. If an invalid option for
an input or output format or an invalid value for an option is
specified, the option may be ignored or an error message
may be returned. Each input or output format that supports
processing options specifies any restrictions or special
formats required when specifying options.

By default, any messages that occur during processing of the
options file are written to the system standard error
location. For those input and output formats that support a
LOG option, messages can be directed to a log file.

Specifies the name of the output file. If not specified, cdoc
writes to standard output.

vdoc(1), dxvdoc(1X), DDIF(5), DTIF(S), DOTS(5), CDA(5)

1-72 Commands

cflow (1)

Name

cflow — generate C flow graph
Syntax

cflow [-r] [-ix] [-i_] [-dnum] files
Description

The cflow command analyzes a collection of C, YACC, LEX, assembler, and object
files and attempts to build a graph charting the external references. Files suffixed in
.y, J, .¢, and .i are YACC’d, LEX’d, and C-preprocessed (bypassed for .i files) as
appropriate and then run through the first pass of 1int(1). The -I, =D, and -U
options of the C-preprocessor are also understood. Files suffixed with .s are
assembled and information is extracted from the symbol table. The output of all this
non-trivial processing is collected and turned into a graph of external references
which is displayed upon the standard output.

Each line of output begins with a reference, or line, number, followed by a suitable
number of tabs indicating the level. Following the reference number is the name of
the global, a colon, and the global’s definition. (See the i _ option for information
on names that begin with an underscore.) For information extracted from C source,
the definition consists of an abstract type declaration (for example, char *), and, the
name of the source file and the line number where the definition was found. The
name of the source file and the line number are delimited by angel brackets.
Definitions extracted from object files indicate the file name and location counter
under which the symbol appeared (for example, text). Leading underscores in C-
style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name
contain only the reference number of the line where the definition may be found. For
undefined references, only < > is printed.

The following is an example in file.c:

int iz
main ()
{
£0 -
QO
}
£()
{
i =nh();

}

The command

cflow -ix file.c

produces the following output:

main: int (), <file.c 4>
f: int (), <file.c 11>
h: <>
i: int, <file.c 1>

O W

Commands 1-73

cflow(1)

When the nesting level becomes too deep, the —e option of pr(1) can be used to
compress the tab expansion to something less than every eight spaces.

Options

—dnum The num decimal integer indicates the depth at which the
flow graph is cut off. By default this is a very large number.
Attempts to set the cutoff depth to a nonpositive integer will
be met with contempt.

-i_ Includes names that begin with an underscore. The default is
to exclude these functions (and data if -ix is used).

-ix Includes external and static data symbols. The default is to
include only functions in the flow graph.

-r Reverse the ‘‘caller:callee’’ relationship producing an
inverted listing showing the callers of each function. The
listing is also sorted in lexicographical order by callee.

Restrictions

Files produced by lex(1) and yacc(l) cause the reordering of line number
declarations which can confuse cflow. To get proper results, feed c£1low the
yacc or lex input.

Diagnostics

Complains about bad options. Complains about multiple definitions and only
believes the first. Other messages may come from the various programs used (for
example, the C-preprocessor).

See Also
as(1), cc(1), lex(1), lint(1), nm(1), pr(1), yacc(1)

1-74 Commands

checknr(1)

Name
checknr — check nroff/troff files

Syntax
checknr [-s] [-f] [-a.x1.y1.x2.y2.xn.yn] [—c.x1.x2.x3... .xn] [file...]

Description

The checknr command checks a list of nrof£(1) or trof£(1) input files for
certain kinds of errors involving mismatched opening and closing delimiters and
unknown commands. If no files are specified, checknr checks the standard input.
Delimiters checked are:

5 Font changes using \fx ... \fP.
Size changes using \sx ... \s0.

Macros that come in open ... close forms, for example, the .TS and .TE
macros which must always come in pairs.

The checknr command knows about the ms(7) and me(7) macro packages.

The checknr command is intended to be used on documents that are prepared with
checknr in mind, much the same as 1int(1). It expects a certain document
writing style for \f and \s commands, in that each \fx must be terminated with \fP and
each \sx must be terminated with \sO. While it will work to directly go into the next
font or explicitly specify the original font or point size, and many existing documents
actually do this, such a practice will produce complaints from checknr. Since it is
probably better to use the \fP and \sO forms anyway, you should think of this as a
contribution to your document preparation style.

Options

-a Allows additional pairs of macros to be added to the list. This must be
followed by groups of six characters, each group defining a pair of macros.
The six characters are a period, the first macro name, another period, and the
second macro name. For example, to define a pair .BS and .ES, use —a.BS.ES.

—¢ Defines commands otherwise complained about as undefined.
—f Ignores \f font changes.

—-s Ignores\s size changes.

Restrictions

There is no way to define a 1 character macro name using -a.
Does not correctly recognize certain reasonable characters, such as conditionals.

Commands 1-75

checknr (1)

Diagnostics
Complaints about unmatched delimiters.
Complaints about unrecognized commands.

Various complaints about the syntax of commands.

See Also
eqn(1), nroff(1), troff(1), ms(7), me(7)

1-76 Commands

chin (1)

Name
chfn — change system finger entry

Syntax
chfn [loginname]

Description
The chfn command is used to change information about users. This information is
used by the finger(1) program, among others. It consists of the user’s real name,
office room number, office phone number, and home phone number. The chfn
command prompts the user for each field. Included in the prompt is a default value,
which is enclosed between brackets. The default value is accepted simply by typing
<CR>. To enter a blank field, type the word ‘none’. This is an example:
% chfn
Changing finger information for doe
Name [John Doce]:
Office number [ABC-1/KO0]: DEF-2/K1l
Office Phone []: 1863
Home Phone [5771546]: none
The chfn command allows phone numbers to be entered with or without hyphens.
No entries may contain colons, commas, or control characters.
It is a good idea to run finger after running chfn to make sure everything is the
way you want it.
The optional argument loginname is used to change another person’s finger
information. This can only be done by the superuser.

Restrictions
The encoding of the office and extension information is installation dependent.
Because two users may try to write the passwd file at once, a synchronization
method was developed. On rare occasions, a message that the password file is
"busy" will be printed. In this case, chfn sleeps for a while and then tries to write
to the passwd file again.
If the passwd entry is distributed from another host chfn will not modify it.

Files
/etc/passwd
/etc/ptmp

See Also

chsh(1), finger(1), passwd(1), passwd(Syp)

Commands 1-77

chgrp(1)

Name
chgrp - change file group

Syntax
chgrp [fR] group file...

Description

The chgrp command changes the group ID of one or more files or directories. For
file, you may specify either a full or partial path. For group, you may specify either
a decimal GID or a group name found in the group file.

The user entering the chgrp command must either be the superuser, or be the owner
of the file and belong to the specified group.

Options
—f Inhibits display of errors that are returned if chgrp fails to change the group
identifier of a file.

-R Causes chgrp to recursively descend any directories subordinate to file and to
set the specified group for each file encountered. When symbolic links are
encountered, chgrp changes the group identifier of the link file but does not
traverse the path associated with the link.

Examples

Change group to admin for filea and fileb:
chgrp admin filea fileb

Files

/etc/group
/etc/passwd
/etc/yp/src/group
/etc/yp/src/passwd
See Also
chown(2), group(5), group(Syp), passwd(5), passwd(5yp)

1-78 Commands

chmod(1)

Name
chmod — change file mode

Syntax
chmod [—fR] mode file...

Description
Permissions on files are set according to mode and file parameters.

For file, you can specify either a full or partial path. You can specify multiple files,
separated by spaces.

For mode, you specify one of two variants: absolute mode or symbolic mode.

Absolute Mode

For mode in absolute form, you specify an octal number constructed from the sum of
one or more of the following values:

4000 set user ID on execution (applies to executable files only)
2000 set group ID on execution (applies to executable files only)
1000 set sticky bit (see chmod(2) for more information)

0400 read by owner

0200 write by owner

0100 execute, or search if file is a directory, by owner

0040 read by group

0020 write by group

0010 execute, or search if file is a directory, by group

0004 read by others

0002 write by others

0001 execute, or search if file is a directory, by others

For example, the absolute mode value that provides read, write, and execute
permission to owner, read and execute permission to group, and read and execute
permission to others is 755 (400+200+100+40+10+4+1). The absolute mode value
that provides read, write, and execute permission to owner and no permission to
group or others is 700 (400+200+100).

Symbolic Mode
To specify mode in symbolic form, use the following format:
[who] op permission [op permission] ...
NOTE

Spaces are included in the preceding format so that you can read the
arguments; however, as will be shown in examples that follow, you do
not enter spaces between mode arguments.

Specify who using the letters u (for owner), g (for group) and o (for others) either
alone or in combination. You can also specify the letter a (for all), which is is
equivalent to the letter combination ugo. If you omit the who parameter, a is
assumed. For more information, see umask(2).

Commands 1-79

chmod (1)

For the op parameter, specify the plus sign (+) to add permission to the file’s mode,
the minus sign (=) to remove permission from the file’s mode, or the equal sign (=)
to assign permission absolutely (denying or revoking any permission not explicitly
specified following the equal sign). The first command in the following example
provides group with execute permission for £ilea in addition to any other
permissions group currently has for filea. The second command limits the
permission that group has for £ileb to execute alone:

chmod g+x filea
chmod g=x fileb

For the permission parameter, specify any combination of the letters r (read), w
(write), x (execute), s (set owner or group id), and t (save text — sticky).
Alternatively, you can specify the letter u, g, or o to set permission for the who
parameter to be the same as the permission currently granted to the user category
indicated by the letter. In the following example, the group (g) is given the same
permissions on £ilea as currently granted to owner (u):

chmod g=u filea

You can revoke all permissions by specifying the who argument followed by =, and
omitting the permission argument. For example, the following command removes all
permissions from others for fileb:

chmod o= fileb

When specifying more than one symbolic mode for file, separate the modes with
commas. The mode changes are applied in the sequence specified. In the following
example, write permission is added to the permissions already granted to the owner
of £ilea and group is then granted the same permissions on filea as granted the
owner:

chmod u+w,g=u filea

Options
~f Inhibits display of errors that are returned if chmod fails to change the mode
on a file.

-R Causes chmod to recursively descend any directories subordinate to file and to
set the specified mode for each file encountered. However, when symbolic
links are encountered, chmod does not change the mode of the link file and
does not traverse the path associated with the link. Note that the —R option is
useful only when file identifies a directory that is not empty.

Restrictions
The permission letter s is used only with who letter u or g.

Only the owner of a file or someone logged on as superuser may change the mode of
that file.

1-80 Commands

chmod(1)

Examples

Using absolute mode, provide read, write, and search permission to the owner, and
read and search permission to others for a directory named public:

chmod 755 ~harris/public

Using absolute mode, set the UID for progrmb execution to be the UID of of the
file owner rather than the UID of the user running the program as follows:

chmod 4000 progrmb
Using symbolic mode, perform the same operation as described for the preceding

example:
chmod u=s progrmb

Using symbolic mode, deny write permission to others for the file ourspec:

chmod o-w ourspec

Using symbolic mode, give execute permission on file myprog to all user categories:

chmod +x myprog

Using symbolic mode, give write permission to all group members, deny write
permission to others, and give search permission to owner on docdir:

chmod g+w,o-r,u+x docdir

Using symbolic mode, give read and execute permissions to others for a directory
named programs, and then recursively descend the paths subordinate to
programs, adding the same permissions for others on all files and directories
included in the subordinate paths:

chmod -R o+rx programs

NOTE

In the preceding example, if programs were the name of a file rather
than a directory, chmod would change the mode only of the programs
file.

See Also
1s(1), chmod(2), stat(2), umask(2), chown(8)

Commands 1-81

chsh(1)

Name
chsh — change login shell
Syntax

chsh [loginname]

Description

The chsh command is a command similar to passwd, except that it is used to
change the login shell field of the password file rather than the password entry. The
program will prompt you for a new shell. The shell name supplied must match one of
the entries in /etc/shells. If no name is given the shell will be unchanged and the
diagnostic "Login shell unchanged" will be printed.

An example use of this command is:

% chsh
Changing login shell for bill
Shell [/bin/csh]l: sh

Restrictions

Both the new shell and the old shell must be found in /etc/shells to be able to change
the shell.

If the passwd entry is distributed from another host chsh will not modify it.

Files
fetc/shells

See Also
chfn(1), passwd(1), yppasswd(1yp), passwd(Syp)

1-82 Commands

clear (1)

Name
clear — clear terminal screen

Syntax
clear

Description
The clear command clears your screen if this is possible. It looks in the
environment for the terminal type and then in /etc/termcap to figure out how to
clear the screen.

Files

fetc/ftermcap terminal capability data base

Commands 1-83

cmp (1)

Name
cmp — compare two files

Syntax
cmp [-1 | =s] filel file2 [skipl] [skip2]

Description
The cmp command compares two files. If either filel or file2 is ‘~’°, standard input is
used for the file. With no options, cmp makes no comment if the files are the same.
If they differ, it reports the byte and line number at which the difference occurred to
standard output. If one file is an initial subsequence of the other a message including
the file name is written to standard error.
The optional skipl and skip2 parameters are initial byte offsets into filel and file2
respectively and may be either octal, by specifying a leading O, or decimal. When
using skipl and skip2 the offset is treated as the start of the respective input file.
Only one option may be specified at a time. Only one of the input files may be
standard input at a time. Because the line number is not calculated when using either
of the options the use of either flag will increase the speed of cmp .

Options
-1 Long format: prints the byte number (decimal) and the differing bytes (octal)

for each difference.

—-s Suppresses normal output and sets the exit code only.

Diagnostics
Exit code O is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

See Also

comm(1), diff(1)

1-84 Commands

col(1)

Name

col — filter reverse line feeds

Syntax

col [-options]

Description

The col command reads the standard input and writes the standard output. It
performs the line overlays implied by reverse line feeds (ESC-7 in ASCII) and by
forward and reverse half line feeds (ESC-9 and ESC-8, respectively). The col
command is particularly useful for filtering multicolumn output made with the . rt
command of nrof£f, and for filtering output resulting from the tb1l preprocessor.

Although col accepts half line motions in its input, it does not normally output
them. Instead, text that would appear between lines is moved to the next lower full
line boundary.

The control characters SO (ASCII code 017) and SI (ASCII code 016) are assumed to
start and end text in an alternate character set. The character set (primary or
alternate) associated with each printing character read is remembered. On output, SO
and SI characters are generated where necessary to maintain the correct treatment of
each character.

The col command normally converts white space to tabs to shorten printing time. If
the —h option is given, this conversion is suppressed.

On input, the only control characters accepted are <space>, <backspace>, <tab>,
<return>, <newline>, etc... The VT character is an alternate form of full reverse
linefeed, included for compatibility with earlier programs of this type. All other non-
printing characters are ignored.

Options

-b Assumes that the output device does not have backspacing.
—f Suppresses moving half lines to the next full line.
-h Suppresses conversion of white space to tabs.

-p Forces through unchanged any unknown escape sequences that are found
in its input. This option should be used with care.

-X Suppresses conversion of white space to tabs (same as -h).

Restrictions

Cannot back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

See Also
tbl(1), nroff(1)

Commands 1-85

colert(1)

Name
colert — filter nroff output for CRT previewing

Syntax
colert [-] [-2] [file...]

Description

The colcrt command provides virtual half-line and reverse line feed sequences for
terminals without such capability, and on which overstriking is destructive. Half-line
characters and underlining (changed to dashing ‘-’) are placed on new lines in
between the normal output lines.

Options
— Suppresses all underlining. It is especially useful for previewing allboxed tables
from tb1(1).

-2 Causes half-lines to be printed, double spacing the output. Normally, a minimal
space output format is used which will suppress empty lines. The program
never suppresses two consecutive empty lines, however. The -2 option is useful
for sending output to the line printer when the output contains superscripts and
subscripts which would otherwise be invisible.

Examples

A typical use of colcrt would be:

tbl exum2.n | nroff -ms | colcrt - | more

Restrictions
Can’t back up more than 102 lines.

General overstriking is lost; as a special case ‘I’ overstruck with ‘-’ or underline
becomes ‘+’.

Lines are trimmed to 132 characters.

See Also
col(1), more(1), nroff(1), ul(1)

1--86 Commands

colrm(1)

Name

colrm — remove columns from a file

Syntax

colrm [startcol[endcol]

Description

The colrm command removes selected columns from a file. Input is taken from
standard input. Output is sent to standard output.

If called with one parameter the columns of each line will be removed starting with
the specified column. If called with two parameters the columns from the first
column to the last column will be removed.

Column numbering starts with column 1.

See Also
expand(1)

Commands 1-87

comb (1)

Name

Syntax

comb — combine delta versions of SCCS file

comb [-o0] [-s] [-psid] [—clist] files

Description

The comb command generates a shell procedure which, when run, will reconstruct
the given SCCS files. For further information, see sh(1). The reconstructed files are
generally smaller than the original files. The arguments may be specified in any
order, but all keyletter arguments apply to all named SCCS files. If a directory is
named, comb behaves as though each file in the directory were specified as a named
file, except non-SCCS files (last component of the path name does not begin with s.)
and unreadable files, which are silently ignored. If a name of — is given, the standard
input is read; each line of the standard input is taken to be the name of an SCCS file
to be processed.

The generated shell procedure is written on the standard output.

Each keyletter argument is explained as though only one named file is to be
processed, but the effects of any keyletter argument apply independently to each
named file.

Options
—clist Preserves specified deltas. See get(1) for the syntax of a listz. All other
deltas are discarded.
-0 Causes the reconstructed file to be accessed at the release of the delta to

be created. Otherwise the reconstructed file would be accessed at the
most recent ancestor. Use of the —o keyletter may decrease the size of
the reconstructed SCCS file. It may also alter the shape of the delta tree
of the original file.

-pSID Indicates oldest delta to be preserved. All older deltas are discarded in
the reconstructed file.

- Generates a shell procedure which produces a report. This report gives
the file name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original — combined) / original
It is recommended that before any SCCS files are actually combined, one
should use this option to determine exactly how much space is saved by
the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

Restrictions

The comb command may rearrange the shape of the tree of deltas. It may not save
any space; in fact, it is possible for the reconstructed file to actually be larger than the
original.

1-88 Commands

comb (1)

Diagnostics
See sccshelp(l) for explanations.

Files
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

See Also

admin(1), delta(1), get(1), help(1), prs(1), sccs(1), sccsfile(S)
The Guide to the Source Code Control System

Commands 1-89

comm (1)

Name
comm — compare sorted data
Syntax
comm [-[123]] filel file2
Description
The comm command reads filel and file2, which should be ordered in ASCII
collating sequence, and produces a three column output: lines only in filel; lines only
in file2; and lines in both files. The file name ‘-’ means the standard input.
Options
1 Suppresses column one: lines in filel only.
2 Suppresses column two: lines in file2 only.
3 Suppresses column three: lines in filel and file2.
Thus comm ~12 prints only the lines common to the two files. And comm -23 prints
only lines in the first file but not in the second. Finally, comm —123 is not an option.
See Also

cmp(1), diff(1), diff3(1), diffmk(1), join(1), unig(1)

1-90 Commands

comp (1mh)

Name
comp — compose a message

Syntax
comp [+folder] [msg] [—draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [-editor editorname] [-noedit] [file filename] [-form formfile]
[-use] [-nouse] [-whatnowproc program] [-nowhatnowproc] [-help]

Description
Use comp to create a new message for mailing. When you run comp, it provides a
message template for you to fill in and invokes an editor so that you can complete the
message.
A mail message consists of a mail header and the body of the message. The mail
header contains all the information that determines who is going to receive the mail
message. It can also give the recipients some information about the sender. The
body of the message is the actual text of the message that you want to send. The
header is separated from the body of the text by a blank line or by a line of dashes.
The header must be separated from the body of the message in this way for the
message to be identified properly when it is sent (see send(1mh)).
The standard message header contains the following elements:
To:
cc:
Subject:

Options

You can specify an alternative mail header by setting up a file called components in
your MH directory. This is used instead of the default mail header by MH. You can
also direct comp to use an alternative header by using the —form formfile option.

comp normally invokes an editor, unless you have used the —-noedit flag. The
default editor is prompter, which is a very rudimentary editor (see
prompter(lmh)). You can specify your own choice of editor using the ~editor
editorname option. If you regularly use the same editor you can specify it by
specifying it in the editor: line of your mh-profile. The following example
shows how to set up vi as the editor you’ll use to compose mail messages.

editor: /usr/ucb/vi

You can direct comp to use an existing message by specifying a folder or a msg
argument. You can not supply both a —form formfile and a +folder or a msg
argument.

If you supply a +folder argument, comp will use the current message in the specified
folder as the draft for your message. If you specify a message number as an
argument and you do not have a drafts folder set up, comp will use that message
from the current folder. If you do have a drafts folder set up, comp will use the
specified message from your drafts folder. This is similar to specifying
comp-use, except that comp—use will only take messages from the draft or

Commands 1-91

comp (1mh)

Files

drafts folders. The draft file or drafts folder are used by the comp, dist,
repl, and forw commands. If any of these commands are terminated without
sending the draft, you can edit the draft again by using comp —use.

If the draft already exists, comp will ask you what you want to do with the draft.
The available options are:

quit aborts comp leaving the draft intact

replace replaces the existing draft with the appropriate message form
use allows you to edit the existing draft

list displays the draft message

refile refiles the existing draft message in the specified folder

and provides a new message form for you to complete
You have to specify a +foldername when you specify refile. If you use quit—d
you will exit from the editor and delete the draft message. The +foldername
argument to refile is required.

The ~draftfolder +folder and -draftmessage msg switches invoke the MH
draft folder facility. The —~draftfolder +foldername switch lets you specify the
folder that an unsent draft will be stored in. The ~draftmessage msg switch lets
you create a message with a meaningful name. If you quit without sending a
message, that message will be stored, as a file with the specified name, in your Mail
directory. You can use dist, forw, and send to access the specified draft file.

The —file filename switch makes comp use the named file as the message draft.

When you exit from the editor, comp invokes the whatnow program. See
whatnow(1lmh) for a discussion of available options. You can also specify your
own whatnow process using the -whatnowproc program. If you do specify your
own whatnow program, you should not call it whatnow. You can suppress the
whatnow program entirely by using the —nowhatnowproc switch. However, as
the whatnow program normally starts the initial edit, -nowhatnowproc will
prevent you from editing the message.

The defaults for comp are:

+foldername defaults to the current folder
msg defaults to the current message
-nodraftfolder

-nouse

/usr/new/lib/mh/components The message skeleton

<mh-dir>/components Alternative to the standard skeleton
$HOME/.mh_profile Your user profile
<mh-dir>/draft The draft file

Profile Components

Path: To determine your MH directory
Draft-Folder: To find the default draft—folder

Editor: To override the default editor

Msg-Protect: To set mode when creating a new message (draft)
fileproc: Program to refile the message

whatnowproc: Program to ask the ‘“What now?’’ questions

1-92 Commands

comp (1mh)

See Also

dist(1mh), forw(1mh), prompter(1mh), repl(1mh), send(1mh), whatnow(1mh),
mh-profile(Smh)

Commands 1-93

compact(1)

Name

compact, uncompact, ccat — compress and uncompress files, and cat them

Syntax

compact [name...]
uncompact [name... |
ccat [file...]

Description

The compact command compresses the named files using an adaptive Huffman
code. If no file names are given, the standard input is compacted to the standard
output. The compact command operates as an on-line algorithm. Each time a byte
is read, it is encoded immediately according to the current prefix code. This code is
an optimal Huffman code for the set of frequencies seen so far. It is unnecessary to
prepend a decoding tree to the compressed file since the encoder and the decoder start
in the same state and stay synchronized. Furthermore, compact and uncompact
can operate as filters. In particular,

. | compact | uncompact |
operates as a (very slow) no-op.

When an argument file is given, it is compacted and the resulting file is placed in
file.C; file is unlinked. The first two bytes of the compacted file code the fact that the
file is compacted. This code is used to prohibit recompaction.

The amount of compression to be expected depends on the type of file being
compressed. Typical values of compression are: Text (38%), Pascal Source (43%),
C Source (36%) and Binary (19%). These values are the percentages of file bytes
reduced.

The uncompact command restores the original file from a file compressed by
compact . If no file names are given, the standard input is uncompacted to the
standard output.

The ccat command cats the original file from a file compressed by compact,
without uncompressing the file.

The compact command is present only for compatibility. In general, the
compress(1) command runs faster and gives better compression.

1-94 Commands

compact(1)

Restrictions

The last segment of the file name must contain fewer than thirteen characters to allow
space for the appended ’.C’.

Files
*.C compacted file created by compact, removed by uncompact

See Also

compress(1)

Commands 1-95

RISC

compress (1)

Name

compress, uncompress, zcat — compress and expand data

Syntax

compress [~f 1 [=v][—][=b bits][name ...]
uncompress [f][-v][—c][name ...]
zcat [name ...]

Description

The compress command reduces the size of the named files using adaptive
Lempel-Ziv coding. Whenever possible, each file is replaced by one with the
extension .Z, while keeping the same ownership modes, access, and modification
times. If no files are specified, the standard input is compressed to the standard
output. Compressed files can be restored to their original form using uncompress
or zcat.

The —f option will force compression of name, even if it does not actually shrink
name, or if the corresponding name .Z file already exists. If the —f option is omitted,
the user is asked whether an existing name.Z file should be overwritten (unless
compress is run in the background under /bin/sh).

The —¢ (cat) option makes compress/uncompress write to the standard output without
changing any files. Neither uncompress —c nor zcat alter files.

The compress command uses the modified Lempel-Ziv algorithm. Common
substrings in the file are first replaced by 9-bit codes 257 and up. When code 512 is
reached, the algorithm switches to 10-bit codes and continues to use more bits until
the limit specified by the —b flag is reached (default 16). The bits must be between 9
and 16. The default can be changed in the source to allow compress to be run on a
smaller machine.

After the bits limit is attained, compress periodically checks the compression ratio.
If the ratio is increasing, compress continues to use the existing code dictionary.
However, if the compression ratio decreases, compress discards the table of
substrings and rebuilds it from scratch. This allows the algorithm to adapt to the
next block of the file.

Note that the —b flag is omitted for uncompress, since the bits parameter specified
during compression is encoded within the output along with a number that ensures
that neither decompression of random data nor recompression of compressed data is
attempted.

How much each file is compressed depends on the size of the input, the number of
bits per code, and the distribution of common substrings. Typically, text such as
source code or English is reduced by 50-60%. Compression is generally much better
than that achieved by Huffman coding or adaptive Huffman coding, and takes less
time to compute.

The —v option displays the percent reduction of each file.

If an error occurs, exit status is 1. However, if the last file was not compressed
because it became larger, the status is 2. Otherwise, the status is 0.

1-96 Commands

compress (1) RISC
Options

—f Forces compression of name.

—c Makes compress/uncompress write to the standard output.
-b Specifies the allowable bits limit. The default is 16.

—v Displays the percent reduction of each file.

Diagnostics

Usage: compress [—fvc] [-b maxbits] [file ...]
Invalid options were specified on the command line.

Missing maxbits
Maxbits must follow -b.

file: not in compressed format
The file specified to uncompress has not been compressed.

file: compressed with xx bits, can only handle yy bits
The file was compressed by a program that could deal with more
bits than the compress code on this machine. Recompress the file
with smaller bits.

file: already has .Z suffix -- no change
The file is assumed to be compressed already. Rename the file
and try again.

file already exists; do you wish to overwrite (y or n)?
Type y if you want the output file to be replaced; type n if you do
not.

uncompress: corrupt input
A SIGSEGYV violation was detected which usually means that the
input file is corrupted.

Compression: xx.xx%
Percent of the input saved by compression. (For the —v option
only.)

-- not a regular file: unchanged
If the input file is not a regular file (for example, a directory), it
remains unchanged.

-- has xx other links: unchanged
The input file has links; it is left unchanged. See 1n(1) for more
information.

-- file unchanged
No savings is achieved by compression. The input remains
unchanged.

Restrictions

Although compressed files are compatible between machines with large memory,
-b12 should be used for file transfer to architectures with a small process data space
(64KB or less).

Commands 1-97

VAX

compress (1)

Name

compress, uncompress, zcat — compress and expand data

Syntax

compress [options][name ...]
uncompress [options][name ...]
zcat [name ...]

Description

The compress command reduces the size of the named files using adaptive
Lempel-Ziv coding. Whenever possible, each file is replaced by one with the
extension .Z, while keeping the same ownership modes, access, and modification
times. If no files are specified, the standard input is compressed to the standard
output. Compressed files can be restored to their original form using uncompress
or zcat.

The compress command uses the modified Lempel-Ziv algorithm. Common
substrings in the file are first replaced by 9-bit codes 257 and up. When code 512 is
reached, the algorithm switches to 10-bit codes and continues to use more bits until
the limit specified by the —b flag is reached (default 16). The bits must be between 9
and 16. The default can be changed in the source to allow compress to be run on a
smaller machine.

After the bits limit is attained, compress periodically checks the compression ratio.
If the ratio is increasing, compress continues to use the existing code dictionary.
However, if the compression ratio decreases, compress discards the table of
substrings and rebuilds it from scratch. This allows the algorithm to adapt to the
next block of the file.

How much each file is compressed depends on the size of the input, the number of
bits per code, and the distribution of common substrings. Typically, text such as
source code or English is reduced by 50-60%. Compression is generally much better
than that achieved by Huffman coding or adaptive Huffman coding, and takes less
time to compute.

If an error occurs, exit status is 1. However, if the last file was not compressed
because it became larger, the status is 2. Otherwise, the status is 0.

Options

-b The -b flag is omitted for uncompress, since the bits parameter specified
during compression is encoded within the output along with a number that
ensures that neither decompression of random data nor recompression of
compressed data is attempted.

—c The cat option. Makes compress/uncompress write to the standard output
without changing any files. Neither uncompress —¢ or zcat alter files.

—f Forces compression of name , even if it does not actually shrink name , or if
the corresponding name .Z file already exists. If the —f option is omitted, the
user is asked whether an existing name .Z file should be overwritten unless
compress is run in the background under /bin/sh.

1-98 Commands

compress (1) VAX

—q Quiet, not as verbose.
-v Displays the percent reduction of each file.
-V Prints version and options.

Diagnostics

Usage: compress [-fvc] [-b maxbits] [file ...]
Invalid options were specified on the command line.

Missing maxbits
Maxbits must follow —b.

file: not in compressed format
The file specified to uncompress has not been compressed.

file: compressed with xx bits, can only handle yy bits
The file was compressed by a program that could deal with more
bits than the compress code on this machine. Recompress the file
with smaller bits.

file: already has .Z suffix -- no change
The file is assumed to be compressed already. Rename the file
and try again.

file: filename too long to tack on .Z
The file cannot be compressed because its name is longer than 12
characters. Rename and try again.

file already exists; do you wish to overwrite (y or n)?
Type y if you want the output file to be replaced; type n if you do
not.

uncompress: corrupt input
A SIGSEGYV violation was detected which usually means that the
input file is corrupted.

Compression: xx.xx%
Percent of the input saved by compression. (For the —v option
only.)

-- not a regular file: unchanged
If the input file is not a regular file (for example, a directory), it
remains unchanged.

-- has xx other links: unchanged
The input file has links; it is left unchanged. See 1n(1) for more
information.

-- file unchanged
No savings is achieved by compression. The input remains
unchanged.

Restrictions

Although compressed files are compatible between machines with large memory,

-b12 should be used for file transfer to architectures with a small process data space
(64KB or less).

Commands 1-99

RISC

cord(1)

Name

cord — rearranges procedures in an executable to facilitate better cache mapping.

Syntax

cord [—c cachesize] [=f 1 [—o outfile 1 [—p maxphases][=v] obj reorder

Description

The cord command rearranges procedures in an executable object to maximize
efficiency in a machine’s cache. By rearranging the procedures properly, the
instruction cache miss rate is reduced. The cord command does not attempt to
determine the correct ordering, but is given a reorder file containing the desired
procedure order. The reorder file is generated by the £t oc program which in turn
generates a reorder file from a set of profile feedback files (see prof(1)).

Processed lines in the reorder file are called procedure lines. Each procedure line
must be on a separate source line. Each procedure line must contain the source name
of the file, followed by a blank followed by a qualified procedure name (nested
procedures need to be qualified x.y where x is the outer procedure). A newline or
blank can follow the procedure name:

foo.c bar >>i ignore this stuff<<

Lines beginning with a pound sign (#) are comments. Lines beginning with a dollar
sign ($) are considered cord directive lines. The only directive currently understood
is $phase. This directive will consider the rest of the file (until the end of file or
next $phase) as a new phase of the program and will order the procedures
accordingly. Procedures may appear in more than one phase, resulting in more than
one copy of it in the final binary. The cord command will try to relocate references
to a procedure to a copy in the requesting phase’s list of procedures first and then a
random copy if one is not found.

You should use the —cord option to a compiler driver like cc rather than execute
cord directly. Options to cord can be specified with ~-Wz,cordarg0,cordargl,.... If
you have to run cord manually, you should run it once with the driver using the -v
flag on a simple program to see the exact passes and their arguments involved in
using cord.

The obj argument is an executable object with its relocation information intact. This
can be achieved by passing the —r —z —d options to the linker, 1d. The ~r linker
option maintains relocation information in the object, but will not make it a
ZMAGIC file (hence —z) nor will it allocate common variables (hence —d) as it would
without the option.

1-100 Commands

Options

—c cachesize

-f

-0 outputfile

—p phasemax

Restrictions

cord(1) RISC

Specify the cachesize of the machine you want to execute on in
bytes. This only affects the —f option. If not specified 65536 is
used.

Flip the first cachepage size procedures. The assumption when
cord was written was that procedures would be reordered by
procedure density (cycles/byte). This option ensures that the
densest part of each page following the first cachepage would
conflict with least dense part of the first cachepage.

specifies the output file. If not specified, a.out is used.

Specifies the maximum number of phases allowed. The default is
20.

Prints verbose information. This includes listing those procedures
considered part of other procedures and cannot be rearranged (these
are basically assembler procedures that may contain relative
branches to other procedures rather than relocatable ones). The
listing also list those procedures in the flipped area (if any) and a
mapping of old location to new.

Since cord works from an input list of procedures generated from profile output, the
resulting binary is data dependent. In other words, it may only perform well on the
same input data that generated the profile information and may perform worse than
the original binary on other data. Furthermore, if the hot areas in the cache don’t fit
well into one cachepage, performance can degrade.

See Also

cc(1), ftoc(1), 1d(1), prof(1l)

Commands 1-101

RISC

cord2(1)

cord2 — rearranges basic blocks in an executable file to facilitate better cache
mapping.

cord?2 [-v] [-0 outfile] [-c cachewords] [-d] [-b bridge_limit] [-n] [-A addersfile] [[-C
countsﬁle]] Obj

Description

The cord2 command extracts basic blocks from a program and deposits them in a
new area in the text, making jumps to and from that area as necessary. By separating
the basic blocks, you can reduce instruction cache miss rates. The cord2 command
takes the output of a pixie profiling run as input (see pixie(l)).

The executable object file has the suffix obj. The cord2 command only requires one
addersfile; it creates the filename by appending .Bbaddrs to the obj filename if none
is specified with -A. Multiple counts files can be specified from many runs with
multiple -C arguments. If none are specified, cord2 creates the counts filename by
appending .Counts to the obj name.

Multiple counts files are added together into an internal counts array represented with
C double-type elements. The counts array elements contain the density of a block or
cycles/byte. If you specify -n, then the counts are normalized so that each counts
array entry is cycles/totalcycles. When one counts file is specified, the default is to
favor small blocks; -n negates that. When many counts files are specified, -n also
negates favoring one counts file. This is because its totalcycles may exceed the
totalcycles of another counts file.

The cord2 command determines which basic blocks to insert by sorting the counts
array and collecting the blocks with the highest counts that can fit into the new area.
The cord2 command may skip over huge blocks that do not fit at the end of the new
area.

Once the blocks are determined, they are inserted into the new area, and their original
location is modified to jump to the new area. At the end of each block in the new
area, a jump is added back to the original block’s subsequent or fall-through location,
and the branch/jump target (if necessary). Both entering and exiting the new area is
optimized to take advantage of other blocks in the new area and jump delay slots.

Often, there may be one or more fall-through blocks of a block in the new area which
are small, hardly ever used, and not in the new area. If the block following these
fall-through blocks is in the new area, the fall-through blocks are called bridge
blocks. It may be more costly to generate jumps to and from bridge blocks rather
than to simply copy them.

The cord2 command allows you to specify that bridge blocks be added to the new
area if they total less than the bridge_limit instructions between two new-area blocks.
You can specify the bridge limit with -b; the default is zero. Bridge blocks can
bump blocks out of the new area that might normally fit into it.

1-102 Commands

cord2(1) RISC

NOTE

Because the cord2 command works from profile output, the resulting
binary is data dependent. In other words, it may perform well only on the
same input data that generated the profile information, and may perform
worse than the original binary on other data. Furthermore, if the hot
areas in the cache do not fit well into one cachepage, performance can
degrade.

Options
The cord2 command also accepts these options:

-d Fill the delay slots with nops only when adding jumps to and from the new
area.

-v Print verbose information. This includes statistics about the cord2 process.

-v -v Print all of the -v information, but include detailed disassemblies of the code
moved, changed, and generated by cord2.

-c cachewords
Specify the number of words in the cache of the machine on which you want to
execute. This is actually the size of the new area. The cachesize may be a
misnomer, as you can specify a size other than your machine’s cache size;
however, it is probably the correct number.

-0 outputfile
Specify the output file. If it is not specified, the default is a.out.cord2.

Restrictions

The cord2 command adds the new area to the end of text so any program using the
etext symbol may not work. See 1d(1).

See Also
pixie(1), cord(1)

Commands 1-103

cp(1)

cp — copy file data

cp [-f1[- 1[-p1filel file2
cp[f1[-i 1[-p][-r]file.. directory

cp[~f1[=i]1[-p1[-r]directory... directory

p command copies filel onto file2. The mode and owner of file2 are preserved

if it already existed; the mode of file! is used otherwise. Note that the cp command
will not copy a file onto itself.

second form, one or more files are copied into the directory with their original

third form, one or more source directories are copied into the destination

directory with their original file names.

Forces existing destination pathnames to be removed before copying, without
prompting for confirmation. The —i option is ignored if the —f option is
specified.

Prompts user with the name of file whenever the copy will cause an old file to
be overwritten. A yes answer will cause cp to continue. Any other answer will
prevent it from overwriting the file.

Preserves (duplicates) in the copies the modification time, access time, file
mode, user ID, and group ID as allowed by the permissions of the source files,
ignoring the present umask.

Copies directories. Entire directory trees, including their subtrees and the
individual files they contain, are copied to the specified destination directory.
The directory, its subtrees, and the individual files retain their original names.
For example, to copy the directory reports, including all of its subtrees and
files, into the directory news, enter the following command:

Ccp -r reports news

Name
Syntax
Description
The ¢
In the
file names.
In the
Options
—f
-
-p
-I
See Also

cat(1), pr(1), mv(1)

1-104 Commands

Name

cpio(1)

cpio — copy file archives in and out

Syntax

cpio —o [keys]

cpio —i [keys] { patterns]

cpio —-p [keys] directory

Description

The cpio command is a filter designed to let you copy files to or from an archive.
The cpio command differs from the ar command in that cpio lets you archive any
kind of file, while ar is limited to program object files.

Options

Copies files that match the specified pattern. If the pattern is not specified,
copies in all files. Extracts files from the standard input, which is assumed to
be the product of a previous cpio —o, and places them into the user’s current
directory tree. For files with the same name, the newer file replaces the older
file unless the —u option is used.

Only files with names that match patterns are selected. The patterns are
specified using the notation for names described in sh(1l). In patterns, the
slash for directories (/) is included in searches using meta-characters. For
example, suppose the archive contains the file £ilep and the pathname
information in the archive indicates that the directory below contains the file
file2p. This command copies both files into the user’s current directory:

cpio -i *p < /dev/rmt0Ol

Multiple patterns may be specified and if no patterns are specified, the default
for patterns is * (that is, select all files). The extracted files are conditionally
created and copied into the current directory tree based upon the options
described below. The cpio command has three function keys, each with its
own set of options.

Copies out the specified files. Reads the standard input to obtain a list of path
names and copies those files onto the standard output together with path name
and status information.

Copies files into the specified destination directory, which must already exist.
Reads the standard input to obtain a list of path names of files that are
conditionally created. This list of files is copied into the destination directory
tree based upon the options used. For files with the same name, the newer file
replaces the older file unless the —u option is used.

Commands 1-105

cpio(1)

Keys

6 Processes a file with the UNIX System Sixth Edition format.

a Retains original access times of input files, and can be used with —o and —p.
Normally, the read(s) used in the copy update the copied file’s access time.

B Determines input/output is to be blocked 5,120 bytes to the record. This
option is meaningful only with data directed to or from /dev/rmt ?h or
/dev/rmt?1.

b Swaps both bytes and halfwords.

c Creates header information in ASCII format and can be used with —i and ~o.

d Creates subdirectories, as needed, below the specified destination directory.

f Copies all files except those that match the specified pattern.

k Enables symbolic link handling and is used with the —i, —0, and —p options.

1 Creates links wherever possible.

m Retains modification time for each copied file. This option does not work on
directories or symbolic links that are being copied; the directory is always reset
to show the access time when the copy was made.

r Interactively renames files. If you respond with a null line, the file is skipped
(not copied). Use only with the —i option.

S Swaps bytes while copying files in.

S Swaps half words while copying files in.

t Prints a table of contents of the input (no files are created).

u Copies files unconditionally. (Otherwise, an older file will not replace a newer
file with the same name).

v Displays detailed (verbose) information as it copies and/or creates file. When
used with the t option, the table of contents looks like the output of an Is -l
command. For further information, see 1s(1).

Examples

This example shows how to copy the contents of the user’s current directory into an

archive.

ls | cpio -o > /dev/rmt01l
This example shows how to duplicate a directory hierarchy.

mkdir ~phares/newdir
cd ~phares/olddir
find . -print | cpio -pdl ~phares/newdir

This example shows how to copy all files and directories with names containing the
characters "chapter" in user smith’s home directory and underlying directories.

find ~smith -name ’*chapter*’ =-print | cpio -o > /dev/rmtOh
This example shows the results of using the r option with the —i function key.

ls | cpio ~ir > ~smith/newdir
Rename <filel>

1-106 Commands

cpio(1)

newnamefilel
Rename <file2>
<RETURN>
Skipped

Rename <file3>
newnamefile3

In some cases, the —cpio option of the find command can be used more effectively
than pipes and redirects using cpio. For instance, the following example

find . -print | cpio =-oB > /dev/rmt0Ol
can be handled more efficiently by:
find . -cpio /dev/rmt0l

To copy the contents of a directory (with symbolic link handling enabled) to the tape
drive, type:

ls | cpio -ok > /dev/rmtOh
To restore the archived files back into a directory, type:
cpio -ik < /dev/rmtOh

The following example moves files, including symbolic links, from an old directory
to a new directory:

mkdir ~craig/newdir
cd ~craig/olddir
ls | cpio -pdk ~craig/newdir

Restrictions

Pathnames are restricted to 128 characters.

When there are too many unique linked files, the program runs out of memory and
cannot trace them. In this case, linking information is lost.

Only the superuser can copy special files.

See Also
ar(1), find(1), cpio(5)

Commands 1-107

RISC cpp(1)

Name

cpp — the C language preprocessor

Syntax
Nib/epp [option ... 1[ifile [ofile 1]

Description

The cpp command is the C language preprocessor which is invoked as the first pass
of any C compilation using the cc(1) command. Thus, the output of cpp is
designed to be in a form acceptable as input to the next pass of the C compiler.

The preferred way to invoke cpp, however, is through the cc(1) command. See
m4(1) for a general macro processor.

Arguments

The cpp command optionally accepts two file names as arguments. The ifile and
ofile are, respectively, the input and output for the preprocessor. They default to
standard input and standard output if no argument is supplied.

Options
-B Strips C++-style comments (begin with // and end with

newline).

-C Passes along all comments, except those found on cpp
directive lines. By default, cpp strips C-style comments.

-M Generates dependency lists suitable for use with make(1)
instead of the normal output.

-P Preprocesses the input without producing the line control
information used by the next pass of the C compiler.

-R Permits recursion when a macro is expanded.

~Uname Removes any initial definition of name, where name is a
reserved symbol that is predefined by the preprocessor. The
symbols predefined by this implementation are bsd4_2,
ultrix, unix, mips, host_mips, and MIPSEL.

—Dname

—Dname=def Defines name as if by a #define directive. If no =def is
given, name is defined as 1. The -D option has lower
precedence than the —U option. That is, if the same name is
used in both a -U option and a —D option, the name remains
undefined regardless of the order of the options.

~Idir Changes the algorithm for searching for #include files whose

names do not begin with a slash (/) to look in dir before
looking in the directories on the standard list. Thus,
#include files whose names are enclosed in quotes (" ")
will be searched for first in the directory of the file with the
#include line, then in directories named in -I options, and,

1-108 Commands

Directives

cpp(1) RISC

finally, in directories on a standard list. For #include files
whose names are enclosed in angle brackets (<>), the
directory of the file with the #include line is not searched.

All cpp directives start with lines that begin with a pound sign (#). Any number of
blanks and tabs are allowed between the pound signs and the directive. The
following is a list of the directives:

#define name(arg, ...,arg) token-string

#undef name

#include "filename"
#include <filename>

Replaces subsequent instances of name and the following set
of tokens that is enclosed in parentheses by foken-string.
Each occurrence of an arg in the foken-string is replaced by
the corresponding set of tokens in the comma-separated list.
Note that spaces between name and the left parenthesis (()
are not allowed. When a macro with arguments is expanded,
the arguments are placed unchanged into the expanded
token-string . After the entire token-string has been
expanded, cpp re-starts its scan for names to expand at the
beginning of the newly created token-string.

Causes the definition of name (if any) to be forgotten.

Includes the contents of filename , which will then be run
through cpp. When the <filename> notation is used,
filename is searched for in the standard places. See the I
option above for more detail.

#line integer-constant "filename"

#endif

#ifdef name

#tifndef name

#if constant-expression

Causes cpp to generate line control information for the next
pass of the C compiler. Integer-constant is the line number
of the next line and filename is the file that it comes from. If
"filename" is not given, the current file name is unchanged.

Ends a section of lines begun by a test directive (#if, #ifdef,
or #ifndef). Each test directive must have a matching
#endif.

Defines text that will appear in the output if name has been
the subject of a previous #define without being the subject
of an intervening #undef.

Defines text that will not appear in the output if name has
been the subject of a previous #define without being the
subject of an intervening #undef.

Defines text that will appear in the output if constant-
expression is not zero. All binary non-assignment C
operators, which include the ?: , en dash (~), exclamation
mark (!), and tilde (~) are legal in constant-expression. The
precedence of the operators is the same as defined by the C
language. There is also a unary operator defined, which can
be used in constant-expression in these two forms: defined

Commands 1-109

RISC

cpp(1)

#else

(name) or defined name. This allows the utility of #ifdef
and #ifndef in a #if directive. Only these operators, integer
constants, and names which are known by cpp should be
used in constant-expression. In particular, the sizeof
operator is not available.

Reverses the notion of the test directive which matches this
directive. So if lines prior to this directive are ignored, the
following lines will appear in the output. The reverse is also
true.

#elif constant-expression

Defines text that will appear in the output if the preceding
test directive and all intervening #elif directives equalled
zero and the constant-expression did not equal zero. The
rules for constant-expression are the same as for the #if
directive.

The test directives and the possible #else and #elif directives can be nested.

In addition to these directives, the System V #ident directive is recognized and

ignored.

Two special names are understood by cpp: __LINE_ _ is defined as the current line
number (as a decimal integer) and __FILE__ is defined as the current file name (as a
C string). They can be used in any situations where you would use other defined
names, including in macros.

Diagnostics

The error messages produced by cpp are self-explanatory. The line number and
filename where the error occurred are printed along with the diagnostic.

Files

Jusr/include

See Also

cc(1), m4(1)

1-110 Commands

standard directory for #include files

cpp(1)

Name
cpp — the C language preprocessor

Syntax
Nib/cpp [option ... 11 ifile [ofile 1]

Description

The cpp command is the C language preprocessor which is invoked as the first pass
of any C compilation using the cc(1) command. Thus, the output of cpp is
designed to be in a form acceptable as input to the next pass of the C compiler.

The preferred way to invoke cpp, however, is through the cc(1) command. See
m4(1) for a general macro processor.
Arguments

The cpp command optionally accepts two file names as arguments. The ifile and
ofile are, respectively, the input and output for the preprocessor. They default to
standard input and standard output if no argument is supplied.

Options
-B Strips C++-style comments (begin with // and end with

newline).

-C Passes along all comments, except those found on cpp
directive lines. By default, cpp strips C-style comments.

-M Generates dependency lists suitable for use with make(1)
instead of the normal output.

-P Preprocesses the input without producing the line control
information used by the next pass of the C compiler.

-R Permits recursion when a macro is expanded.

~Uname Removes any initial definition of name, where name is a
reserved symbol that is predefined by the preprocessor. The
symbols predefined by this implementation are bsd4_2,
ultrix, unix, and vax.

~Dname

—Dname=def Defines name as if by a #define directive. If no =def is
given, name is defined as 1. The —-D option has lower
precedence than the —U option. That is, if the same name is
used in both a —U option and a -D option, the name remains
undefined regardless of the order of the options.

-Idir Changes the algorithm for searching for #include files whose

names do not begin with a backslash (/) to look in dir
before looking in the directories on the standard list. Thus,
#include files whose names are enclosed in quotes (" ")
will be searched for first in the directory of the file with the
#include line, then in directories named in -I options, and,

Commands 1-111

VAX

VAX cpp(1)

Directives

finally, in directories on a standard list. For #include files
whose names are enclosed in braces (<>), the directory of
the file with the #include line is not searched.

All cpp directives start with lines that begin with a pound sign (#). Any number of
blanks and tabs are allowed between the pound signs and the directive. The
following is a list of the directives:

#define name(arg, ...,arg) token-string

#undef name

#include "filename"
#include <filename>

Replaces subsequent instances of name and the following set
of tokens that is enclosed in parentheses by foken-string.
Each occurrence of an arg in the token-string is replaced by
the corresponding set of tokens in the comma-separated list.
Note that spaces between name and the left parenthesis (()
are not allowed. When a macro with arguments is expanded,
the arguments are placed unchanged into the expanded
token-string . After the entire token-string has been
expanded, cpp re-starts its scan for names to expand at the
beginning of the newly created token-string.

Causes the definition of name (if any) to be forgotten.

Includes the contents of filename , which will then be run
through cpp. When the <filename> notation is used,
filename is searched for in the standard places. See the -1
option above for more detail.

#line integer-constant "filename"

#endif

#ifdef name

#ifndef name

#if constant-expression

1-~112 Commands

Causes cpp to generate line control information for the next
pass of the C compiler. Integer-constant is the line number
of the next line and filename is the file that it comes from. If
"filename" is not given, the current file name is unchanged.

Ends a section of lines begun by a test directive (#if, #ifdef,
or #ifndef). Each test directive must have a matching
#endif.

Defines text that will appear in the output if name has been
the subject of a previous #define without being the subject
of an intervening #undef.

Defines text that will not appear in the output if name has
been the subject of a previous #define without being the
subject of an intervening #undef.

Defines text that will appear in the output if constant-
expression is not zero. All binary non-assignment C
operators, which include the ?: , minus sign (—), exclamation
mark (!), and tilde (~) are legal in constant-expression. The
precedence of the operators is the same as defined by the C
language. There is also a unary operator defined, which can
be used in constant-expression in these two forms: defined

cpp(1) VAX

(name) or defined name. This allows the utility of #ifdef
and #ifndef in a #if directive. Only these operators, integer
constants, and names which are known by cpp should be
used in constant-expression. In particular, the sizeof
operator is not available.

#else Reverses the notion of the test directive which matches this
directive. So if lines prior to this directive are ignored, the
following lines will appear in the output. The reverse is also
true.

#elif constant-expression
Defines text that will appear in the output if the preceding
test directive and all intervening #elif directives equalled
zero and the constant-expression did not equal zero. The
rules for constant-expression are the same as for the #if
directive.

The test directives and the possible #else and #elif directives can be nested.

In addition to these directives, the System V #ident directive is recognized and
ignored.

Two special names are understood by cpp: __LINE_ _is defined as the current line
number (as a decimal integer) and __FILE_ _ is defined as the current file name (as a
C string). They can be used in any situations where you would use other defined
names, including in macros.

Diagnostics

The error messages produced by cpp are self-explanatory. The line number and
filename where the error occurred are printed along with the diagnostic.

Files
fusr/include standard directory for #include files
See Also

cc(1), m4(1).

Commands 1-113

cpustat(1)

Name

cpustat — report CPU statistics
Syntax

cpustat [—cfhs] [interval] [count]
Description

The cpustat command displays statistics about each CPU in the system. A full
screen interface is provided, and the display is updated at intervals specified by the
user. If interval is specified, then successive updates are summaries over the last
interval seconds. If count is specified, the statistics and/or the state are repeated
count times.

The display format fields are:

Statistics : Information about how each CPU’s time is being utilized

us% Percent of time spent in user mode
ni% Percent of time spent in nice mode
sy% Percent of time spent in system mode
id% Percent of time spent idle by the CPU
CSW Number of context switches

sys Number of system calls

trap Number of traps

intr Number of device interrupts

ipi Number of inter processor interrupts
ttyin Number of characters input through tty

ttyout Number of character output through tty
State : Information about different states of each CPU
cpuid Unique identifier of the CPU

state CPU state:
B - boot CPU
D - disable soft errors
S - stopped
R - running
T - TB needs invalidation
P - panicked

ipi-mask interprocessor interupt mask:
P - panic
R - console print
S - schedule
D - disable
T - TB invalidation
H - stop CPU

1-114 Commands

Options

-S
-h

cpustat(1)

proc Indicates if the CPU has an associated process (Y/N)
pid Process id of the running process

If any statistic field value exceeds 9999, it is shown in a scaled representation
with the suffix k, which indicates multiplication by 1000, or with the suffix m,
which indicates multiplication by 1000000. For example, the value 12345
would appear as 12k.

Displays state information about each CPU.

Displays statistics and state information on a full screen. If the —f option is
used, the following commands can be entered from the screen:

c Display only state information about each CPU
d Go to the default mode of display

h Display the help screen. Typing any character while on the help
screen will display the original screen.

S Display only statistics
Displays statistics about each CPU in the system.

Provides help information about the usage of cpustat.

If none of the options are specified, cpustat will report a summary of the statistics
since the system has been booted and the state of each CPU.

Examples

To print the system status every five seconds ten times, type the following:

% cpustat 5 10

Files
/dev/kmem
/vmunix
See Also

iostat(1), vmstat(1)

Commands 1~-115

crypt(1)

Name

Syntax

crypt — encode/decode (available only if the Encryption layered product is installed)

crypt key < input.File > output.File

Description

This reference page describes software that is available only if the Encryption layered
product is installed.

The crypt command reads from the standard input and writes on the standard
output. You must supply a key which selects a particular transformation. If no
password is given, crypt demands a key from the terminal and turns off printing
while the key is being typed in. The crypt command encrypts and decrypts with
the same key.

Files encrypted by crypt are compatible with those treated by the ed, ex and vi
editors in encryption mode.

The security of encrypted files depends on three factors: the fundamental method
must be hard to solve, direct search of the key space must be infeasible, and sneak
paths by which keys or clear text can become visible must be minimized.

The crypt command implements a one-rotor machine designed along the lines of
the German Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work required is likely
to be large.

The transformation of a key into the internal settings of the machine is deliberately
designed to be expensive, for example, to take a substantial fraction of a second to
compute. However, if keys are restricted to three lowercase letters, then encrypted
files can be read by expending only a substantial fraction of five minutes of machine
time.

Since the key you choose is an argument to the crypt command, it is potentially
visible to users executing ps(1) or a derivative. To minimize this possibility, crypt
destroys any record of the key immediately upon entry. The most vulnerable aspect
of crypt is the choice of keys and key security.

Examples

The following examples use KEY as the key to encrypt and decrypt files. The first
example encrypts the file plain.File, naming the resulting encrypted file
crypt.File. The second example decrypts the file crypt .File, naming the
resulting decrypted file decrypt .File. The third example prints the encrypted
file in clear text.

crypt KEY < plain.File > crypt.File
crypt KEY < cfypt.File > decrypt.File

crypt KEY < crypt.File | pr

1-116 Commands

crypt(1)
Files
/dev/tty for typed key

See Also
ed(1), ex(1), vi(1), xsend(1), crypt(3), makekey(8)

Commands 1-117

csh(1)

Name
csh — C shell Command Interpreter

Syntax
csh [—cefinstvVxX] [arg...]

Description

The csh command is a command language interpreter that consists of a history
mechanism, job control facilities, and a C-like syntax. While this command has a set
of built-in functions that it performs directly, the command line interpreter also reads
and translates commands that invokes other programs. Additionally, you can create
shell scripts which the csh command can interpret. Shell scripts are files which
contain executable instructions.

The percent sign (%) represents the system prompt. It indicates that you can begin
entering commands to the system. Each command line that you type is read and
broken into words. This sequence of words is placed on a command history list and
then parsed. When the entire command line has executed, the percent sign reappears
and you can enter another command. See the History Substitution and Jobs sections
for more information.

To use the csh commands full job control facilities, you must invoke the tty driver
described in tty(4). This driver allows generation of interrupt characters from the
keyboard which stop execution of a job. For details on setting options in the tty
driver, see stty(l).

Note that your environment setup is controlled by commands in the home directory
of your .cshrc file. The csh ccommand executes these commands when you enter
the system. Additionally, if this is a login shell, the Shell also executes the
commands in your .login file. These files usually contain your options for the tty
driver and tset(1), (terminal settings). When a login shell session ends, commands
are executed from the .logout file in your home directory.

Lexical Structure

The shell splits input lines into words at blanks and tabs with the following
exceptions:

1 ampersand (&)

. bar (1)

. semicolon (;)

° Left (<) and right (>) angle brackets
. Left (() and right ()) parenthesis

The previous metacharacters form separate words. If doubled as follows, these
metacharacters form single words:

o Doubled ampersand (&&)
o Double bars (Il
L Double left (<<) and right (>>) brackets

1-118 Commands

csh(1)

. Backslash (\)
. Single (" *) and double (" ") quotation marks.

Metacharacters can be a part of other words. Additionally, if you do not want a
metacharacter to be interpreted as such by the system, you can precede it with a
backslash (\). A new line that is preceded by a is equivalent to a blank.

Strings enclosed in single quotes (" *) or strings enclosed in double quotes (" ") form
parts of a word. Metacharacters in these strings, including blanks and tabs, do not

form separate words. This is described in more detail later. Within single quotes or
double quotes, a new line preceded by a backslash (\) gives a true new line character.

When the shell’s input is not a terminal, the pound sign (#) introduces a comment
which continues to the end of the input line. It is prevented this special meaning
when preceded by a backslash (\) and single or double quotation marks.

Commands

Jobs

A command is a word or sequence of words that directs the system to perform a
certain function. You can separate commands with a bar (|) which forms a pipeline.
The output that results from each command in the pipeline is connected to the input
of the next. For example, in the following pipeline, a file is copied and the output is
piped to standard output (the screen):

% cp /example/dir/test . | more

You can form and execute several pipelines by separating each pipeline with a
semicolon (;). You can also force a command to complete execution in the
background by typing an ampersand (&) at the end of the command line.

You can form a simple command (which may be a component of a pipeline and so
on) by placing any of the above in parenthesis (()). As in the C language, you can
also separate pipelines with a double bar (Il) or double ampersands (&&). The double
bar tells the command interpreter to execute the second command only if the first
command fails. The double ampersands tells the command interpreter to execute the
second command if the first command is successful.

The Shell associates each command or pipeline with a job index. By typing jobs at
the system prompt, a table of the current jobs is printed on your screen. Each job
listed has a small integer number associated with it. For example, if you force a job
into the background using an ampersand (&), the shell displays the job number and
process id of that job as follows:

(1] 1234

In the previous example, the job number is 1 indicating that this is a background job
and the process id is 1234,

If you are running a job in the foreground, you can suspend execution of that job by
typing a CTRL/Z. The Shell then indicates that the job has been stopped and the
system prompt reappears. If you type jobs at the prompt, the display indicates that a
job has been stopped. You can either enter another command at the prompt or you
can manipulate the state of the job you suspended as follows:

. Place the job in background by using the bg command.

Commands 1-119

csh(1)

. Continue to execute the job by placing it in the foreground using the fg
command.

A CTRL/Z takes effect immediately and is like an interrupt. For example, pending
output and unread output are discarded when the CTRL/Z is issued. You can also
type a CTRL/Y which does not generate a stop signal until a program attempts to
perform a read(2) operation.

If a job that is being run in the background attempts to read from the terminal, it will
stop. Background jobs can produce output. You can prevent background jobs from
producing output by issuing the following command:

stty tostop

There are several ways to refer to jobs in the shell. For example, to bring job
number 1 into the foreground, type %1 or fg %1. Similarly, %1 & returns job 1 to
the background. If a job does not have an ambiguous prefix, you can restart a job by
it’s prefix. For example, %ex would restart a suspended ex job, if it is the only
suspended ex job. You use also use %7?string which specifies a job whose command
line contains string. Again, string cannot be an ambiguous name.

The Shell tracks the current and previous jobs. For example, in output displays of
jobs, the current job is marked with a plus sign (+) and the previous job is marked
with a minus sign (-). Hence, you can type %+ for the current job and %- for the
previous job. You can also specify %% which specifies the current job.

Status Reporting

The Shell performs status reporting when the process state changes. For example, if
a job becomes blocked and further processing is not possible, the Shell informs you
just before it prints a prompt. If, however, you set the Shell variable notify, the Shell
provides you with immediate status of background jobs. As opposed to notifying
you of all changes in background jobs, the Shell command notify can mark a single
process so that only its status change is reported. To mark a single file, type notify
after starting a background job. By default, only the current process is marked.

If you try to exit from the Shell while jobs are stopped, the following warning
appears:

You have stopped jobs.
You can use the jobs command to view the stopped jobs. If you immediately try to

exit again, the Shell does not provide a second warning and suspended jobs are
terminated.

Substitutions

The various transformations the shell performs on the input is now described in the
order in which they occur.

History Substitutions

History substitutions allow you to use words from previously typed commands as
portions of new commands. This enables you to repeat commands, arguments, or fix
spelling mistakes from the previous command.

1-120 Commands

csh(1)

An exclamation point (!) marks the beginning of a history substitution. It can appear
anywhere in the input stream (including the beginning) as long as it is not nested.
An input line that contains history substitution is echoed to the screen before it is
executed.

The exclamation point (!) may be preceded by a backslash (\) if you want to escape
its special meaning. If an exclamation point is followed by a blank, tab, new line,
equal sign (=), or left parenthesis ((), it is passed unchanged.

Any command line that is typed at the terminal is saved on the history list. You can
increase or decrease the size of your history list using the history variable; the
previous command is always retained regardless of its value. Commands are
numbered sequentially from 1. To display the history on your terminal, type history
at the prompt as follows:

% history

This command lists the commands that were previously typed. For example:

1 write michael
2 ex write.c

3 cat oldwrite.c
4 diff*write.c

The commands are shown with their event numbers. Although it is not usually
necessary to use event numbers, you can reinvoke any command by combining the
exclamation point (!) with any event number. For example, if you are referencing the
previous history list, !4 reinvokes the command line diff*write.c. You can also
reinvoke a command without the event number as long as it is not ambiguous. For
example, !c invokes event 3 or !wri invokes event 1. The line !?mic? also refers to
event 1. If you type !!, the last command entered in reinvoked.

To select words from an event, follow the event specification with a colon (:) and a
designator for the desired words. The words of arinput line are numbered from 0, the
first (usually command) word being O, the second word (first argument) being 1, and
so forth. The basic word designators are:

first (command) word

n’th argument

first argument, that is ‘1’

last argument

word matched by (immediately preceding) ?s ? search
x-y range of words

-y abbreviates ‘0-y’

QQ%"'B (o]

* abbreviates ‘!-$’, or nothing if only 1 word in event
X * abbreviates ‘x—-$’
x— like ‘x *’ but omitting word ‘$’

The colon (:) separating the event specification from the word designator can be
omitted if the argument selector begins with a ‘!’, ‘$’, ‘*’ ‘=’ or ‘%’. After the
optional word designator can be placed a sequence of modifiers, each preceded by a
colon (:). The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.

T Remove a trailing ‘.xxx’ component, leaving the root name.
e Remove all but the extension ‘.xxx’ part.

s/lr] Substitute [for r

Commands 1-121

csh(1)

Remove all leading pathname components, leaving the tail.

Repeat the previous substitution.

Apply the change globally, prefixing the above, for example, ‘g&’.
Print the new command but do not execute it.

Quote the substituted words, preventing further substitutions.

Like q, but break into words at blanks, tabs and new lines.

0T o o

Unless preceded by a ‘g’ the modification is applied only to the first modifiable word.
With substitutions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the
editors, but rather strings. Any character may be used as the delimiter in place of ‘/’;
a ‘" quotes the delimiter into the / and r strings. The character ‘&’ in the right hand
side is replaced by the text from the left. A °\’ quotes ‘&’ also. A null / uses the
previous string either from a / or from a contextual scan string s in ‘!?s?’. The
trailing delimiter in the substitution may be omitted if a new line follows
immediately as may the trailing ‘?’ in a contextual scan.

A special abbreviation of a history reference occurs when the first non-blank
character of an input line is a circumflex (). This is equivalent to ‘!!:s/’ providing a
convenient shorthand for substitutions on the text of the previous line. Thus
‘AIbAlib/’ fixes the spelling of 1b in the previous command. Finally, a history
substitution may be surrounded with ‘{’ and ‘}’ if necessary to insulate it from the
characters which follow. Thus, after ‘Is —1d ~paul’ we might do ‘!{1}a’ to do ‘Is -1d
~paula’, while ‘!la’ would look for a command starting ‘la’.

Quotations with “and "

The quotation of strings by ‘”’ and ‘"’ can be used to prevent all or some of the
remaining substitutions. Strings enclosed in ‘”’ are prevented any further
interpretation. Strings enclosed in ‘"’ may be expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one
special case (see Command Substitution below) does a ‘"’ quoted string yield parts of
more than one word; ‘”’ quoted strings never do.

Alias Substitution

The shell maintains a list of aliases that can be established, displayed, and modified
by the alias and unalias commands.

After the shell scans a command line, it parses the line into distinct commands. Then,
the shell checks the first word of each command, in left-to-right order, to determine if
the command line contains an alias. When the shell finds an alias, it substitutes the
definition of the alias for the alias in the command line. The shell reads the definition
of the alias using the history mechanism and treats the definition as if it was the
previous input line. If the alias definition makes no reference to the history list, the
shell leaves the command’s argument unchanged.

For example, the following command creates an alias called ‘‘Is:”’
% alias 1s “1s -1’
After you issue this alias command, you receive information about files such as their

mode, number of links, owner, and so on when you use the Is alias. For example, the
following shows the output from the Is alias created in the preceeding example:

% 1s /usr/smith/text_file
-rw-r--r-- 1 smith 21 Mar 12 11:53 text_file

1-122 Commands

csh(1)

You can also create aliases that allow you to supply arguments on the command line
and arguments in the alias definition, as shown in the following example:

% alias lookup “grep \!" /etc/passwd’

You must specify ‘“\’’ before the ! to prevent the substitution from occurring in the
alias command. The following shows the output from the lookup alias:

% lookup smith
smith:2vrugqPosbG/bE:1321:10::/usr/smith:/bin/csh

The lookup alias finds and displays user Smith’s entry in the /etc/passwd file.

You can specify an alias within an alias definition. After the shell finds an alias and
substitutes its definition, it searches again for aliases. The shell flags definitions that
begin with the same word as the alias to prevent infinite loops. Other loops are
detected and cause an error.

You can use parser metasyntax in an alias command. For example, the following is a
valid command that creates the print alias:

% alias print “pr \!* | 1lpr’

The print alias pipes output from the pr command to the 1pr command.

Variable Substitution

The shell maintains a set of variables, each of which has as value a list of zero or
more words. Some of these variables are set by the shell or referred to by it. For
instance, the argv variable is an image of the shell’s argument list, and words of this
variable’s value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset
commands. Of the variables referred to by the shell a number are toggles; the shell
does not care what their value is, only whether they are set or not. For instance, the
verbose variable is a toggle which causes command input to be echoed. The setting
of this variable results from the —v command line option.

Other operations treat variables numerically. The ‘@’ command permits numeric
calculations to be performed and the result assigned to a variable. Variable values
are, however, always represented as (zero or more) strings. For the purposes of
numeric operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed,
variable substitution is performed keyed by ‘$’ characters. This expansion can be
prevented by preceding the ‘$’ with a \’ except within ‘"’s where it always occurs,
and within ‘”’s where it never occurs. Strings quoted by *’ are interpreted later (see
Command substitution below) so ‘$’ substitution does not occur there until later, if at
all. A ‘$’ is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable
expanded separately. Otherwise, the command name and entire argument list are
expanded together. It is thus possible for the first (command) word to this point to-
generate more than one word, the first of which becomes the command name, and the
rest of which become arguments.

Commands 1-123

csh(1)

(318}

Unless enclosed in ‘"’ or given the ‘:q” modifier the results of variable substitution
may eventually be command and file name substituted. Within ‘"’ a variable whose
value consists of multiple words expands to a (portion of) a single word, with the
words of the variables value separated by blanks. When the ‘:q” modifier is applied
to a substitution the variable will expand to multiple words with each word separated
by a blank and quoted to prevent later command or file name substitution.

The following metasequences are provided for introducing variable values into the
shell input. Except as noted, it is an error to reference a variable which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each separated by a
blank. Braces insulate name from following characters which would otherwise
be part of it. Shell variables have names consisting of up to 20 letters and
digits starting with a letter. The underscore character is considered a letter.
If name is not a shell variable, but is set in the environment, then that value is
returned (but : modifiers and the other forms given below are not available in
this case).

$namef[selector]

${name[selector]}
May be used to select only some of the words from the value of name. The
selector is subjected to ‘$’ substitution and may consist of a single number or
two numbers separated by a ‘~’. The first word of a variables value is
numbered ‘1°. If the first number of a range is omitted it defaults to ‘1°. If the
last member of a range is omitted it defaults to ‘$#name’. The selector ‘*’
selects all words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name

${#name}
Gives the number of words in the variable. This is useful for later use in a
‘[selector]’.

$0
Substitutes the name of the file from which command input is being read. An
error occurs if the name is not known.

$number
$ {number}

Equivalent to ‘$argv[number]’.
$*

Equivalent to ‘$argv[*]’.
The modifiers “:h’, “:t’, :r’, “:q” and ‘:x’ may be applied to the substitutions above as
may ‘:gh’, “:gt’ and “:gr’. If braces ‘{’ ’} appear in the command form then the
modifiers must appear within the braces.

NOTE
The current implementation allows only one colon (:) modifier on each
‘$’ expansion.”

The following substitutions may not be modified with colon (:) modifiers.

1-124 Commands

csh(1)

$?name
${?name}
Substitutes the string ‘1’ if name is set, ‘0’ if it is not.

$?0
Substitutes ‘1’ if the current input file name is known, ‘0’ if it is not.

$3

Substitute the (decimal) process number of the (parent) shell.

$<
Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a shell script.

Command And File Name Substitution

The remaining substitutions, command and file name substitution, are applied
selectively to the arguments of built-in commands. This means that portions of
expressions which are not evaluated are not subjected to these expansions. For
commands which are not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after input-output
redirection is performed, and in a child of the main shell.

Command Substitution

Command substitution is indicated by a command enclosed in **’. The output from
such a command is normally broken into separate words at blanks, tabs and new
lines, with null words being discarded, this text then replacing the original string.
Within ‘"’s, only new lines force new words; blanks and tabs are preserved.

In any case, the single final new line does not force a new word. Note that it is thus
possible for a command substitution to yield only part of a word, even if the
command outputs a complete line.

File Name Substitution

If a word contains any of the characters “*’, ‘?°, ‘[’ or ‘{’ or begins with the character
‘~’, then that word is a candidate for file name substitution, also known as

‘globbing’. This word is then regarded as a pattern, and replaced with an
alphabetically sorted list of file names which match the pattern. In a list of words
specifying file name substitution it is an error for no pattern to match an existing file
name, but it is not required for each pattern to match. Only the metacharacters ‘*’,
‘?” and ‘[’ imply pattern matching, the characters ‘~’ and ‘{’ being more akin to
abbreviations.

In matching file names, the character ‘.’ at the beginning of a file name or
immediately following a ‘/°, as well as the character ‘/’ must be matched explicitly.
The character ‘*’ matches any string of characters, including the null string. The
character ‘?’ matches any single character. The sequence ‘[...]” matches any one of
the characters enclosed. Within ‘[...]’, a pair of characters separated by ‘-’ matches
any character lexically between the two.

The character ‘~’ at the beginning of a file name is used to refer to home directories.
Standing alone, that is ‘~’, it expands to the invokers home directory as reflected in
the value of the variable Aome. When followed by a name consisting of letters, digits
and ‘-’ characters the shell searches for a user with that name and substitutes their
home directory; thus ‘~ken’ might expand to ‘/usr/ken’ and ‘~ken/chmach’ to

Commands 1-125

csh(1)

‘/usr/ken/chmach’. If the character ‘~’ is followed by a character other than a letter
or ‘/’ or appears not at the beginning of a word, it is left undisturbed.

The metanotation ‘a{b,c,d}e’ is a shorthand for ‘abe ace ade’. Left to right order is
preserved, with results of matches being sorted separately at a low level to preserve
this order. This construct may be nested. Thus ‘~source/s1/{oldls,Is}.c’ expands to
‘fust/source/s1/oldls.c /usr/source/s1/ls.c’ whether or not these files exist without any
chance of error if the home directory for ‘source’ is ‘/ust/source’. Similarly
‘../{memo,*box}’ might expand to ‘../memo ../box ../mbox’. (Note that ‘memo’ was
not sorted with the results of matching ‘*#box’.) As a special case ‘{’, ‘}’ and ‘{}’
are passed undisturbed.

Input/output

The standard input and standard output of a command may be redirected with the
following syntax:

< name
Open file name (which is first variable, command and file name expanded) as
the standard input.

<< word
Read the shell input up to a line which is identical to word. Word is not
subjected to variable, file name or command substitution, and each input line is
compared to word before any substitutions are done on this input line. Unless
a quoting V', ‘", ‘”’ or *** appears in word variable and command substitution
is performed on the intervening lines, allowing \’ to quote ‘$’, \’ and *’.
Commands which are substituted have all blanks, tabs, and new lines
preserved, except for the final new line which is dropped. The resultant text is
placed in an anonymous temporary file which is given to the command as
standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not exist then it is
created; if the file exists, it is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character
special file (for example, a terminal or ‘/dev/null’) or an error results. This
helps prevent accidental destruction of files. In this case the ‘!’ forms can be
used and suppress this check.

The forms involving ‘&’ route the diagnostic output into the specified file as
well as the standard output. Name is expanded in the same way as ‘<’ input
file names are.

>> name

>>& name

>>! name

>>&! name
Uses file name as standard output like ‘>’ but places output at the end of the
file. If the variable noclobber is set, then it is an error for the file not to exist
unless one of the ¢!’ forms is given. Otherwise similar to ‘>’.

1-126 Commands

csh(1)

A command receives the environment in which the shell was invoked as modified by
the input-output parameters and the presence of the command in a pipeline. Thus,
unlike some previous shells, commands run from a file of shell commands have no
access to the text of the commands by default; rather they receive the original
standard input of the shell. The ‘<<’ mechanism should be used to present inline
data. This permits shell command scripts to function as components of pipelines and
allows the shell to block read its input. Note that the default standard input for a
command run detached is not modified to be the empty file ‘/dev/null’; rather the
standard input remains as the original standard input of the shell. If this is a terminal
and if the process attempts to read from the terminal, then the process will block and
the user will be notified (see Jobs above.)

Diagnostic output may be directed through a pipe with the standard output. Simply
use the form ‘I &’ rather than just ‘I’.

Expressions

A number of the built-in commands (to be described subsequently) take expressions,
in which the operators are similar to those of C, with the same precedence. These
expressions appear in the @, exit, if, and while commands. The following operators
are available:

Il && | & == ==~ In <= >=2 <> << > + - %[%! ~ ()

Here the precedence increases to the right, ‘=="‘!=" ‘=~ and ‘!~’, ‘<=’ ‘>=" ‘<’ and
>, ‘<<’ and >>’, ‘+” and ‘-, ‘*’ /’ and ‘%’ being, in groups, at the same level.
The ‘==" ‘|=" ‘=~ and ‘!~’ operators compare their arguments as strings; all others
operate on numbers. The operators ‘=~ and ‘!~ are like ‘!="and ‘==’ except that
the right hand side is a pattern (containing, for example, ‘*’s, ‘?’s and instances of
‘[...I") against which the left hand operand is matched. This reduces the need for use
of the switch statement in shell scripts when all that is really needed is pattern
matching.

Strings which begin with ‘O’ are considered octal numbers. Null or missing
arguments are considered ‘0’. The result of all expressions are strings, which
represent decimal numbers. It is important to note that no two components of an
expression can appear in the same word; except when adjacent to components of
expressions which are syntactically significant to the parser (‘&’ ‘I’ ‘<’ > ‘(’ “)")
they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed
in ‘{’ and ¢}’ and file enquiries of the form ‘~/ name’ where / is one of:

read access
write access
execute access
existence
ownership
7ero size
plain file
directory

o_v-hNooxg'-t

The specified name is command and file name expanded and then tested to see if it
has the specified relationship to the real user. If the file does not exist or is
inaccessible then all enquiries return false, that is ‘0’. Command executions succeed,
returning true, that is ‘1°, if the command exits with status 0, otherwise they fail,

Commands 1~127

csh(1)

returning false, that is ‘0’. If more detailed status information is required then the
command should be executed outside of an expression and the variable status
examined.

Control Flow

The shell contains a number of commands which can be used to regulate the flow of
control in command files (shell scripts) and (in limited but useful ways) from
terminal input. These commands all operate by forcing the shell to reread or skip in
its input and, due to the implementation, restrict the placement of some of the
commands.

The foreach, switch, and while statements, as well as the if~then—else form of the if
statement require that the major keywords appear in a single simple command on an
input line as shown below.

If the shell’s input is not seekable, the shell buffers up input whenever a loop is being
read and performs seeks in this internal buffer to accomplish the rereading implied by
the loop. (To the extent that this allows, backward goto’s will succeed on non-
seekable inputs.)

Built-in Commands

Built-in commands are executed within the shell. If a built-in command occurs as
any component of a pipeline except the last then it is executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name.
The final form assigns the specified wordlist as the alias of name; wordlist is
command and file name substituted. Name is not allowed to be alias or
unalias.

alloc
Shows the amount of dynamic core in use, broken down into used and free
core, and address of the last location in the heap. With an argument shows
each used and free block on the internal dynamic memory chain indicating its
address, size, and whether it is used or free. This is a debugging command and
may not work in production versions of the shell; it requires a modified version
of the system memory allocator.

bg

bg %job ...
Puts the current or specified jobs into the background, continuing them if they
were stopped.

break
Causes execution to resume after the end of the nearest enclosing foreach or
while. The remaining commands on the current line are executed. Multi-level
breaks are thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

1-128 Commands

csh(1)

case label:
A label in a switch statement as discussed below.

cd

cd name

chdir

chdir name
Change the shell’s working directory to directory name. If no argument is
given then change to the home directory of the user.
If name is not found as a subdirectory of the current directory (and does not
begin with ‘/’, *./ or ‘../’), then each component of the variable cdpath is
checked to see if it has a subdirectory name. Finally, if all else fails but name
is a shell variable whose value begins with /°, then this is tried to see if itis a
directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the
commands on the current line are executed.

default:
Labels the default case in a switch statement. The default should come after all
case labels.

dirs
Prints the directory stack; the top of the stack is at the left, the first directory in
the stack being the current directory.

echo wordlist

echo —n wordlist
The specified words are written to the shell’s standard output, separated by
spaces, and terminated with a new line unless the —n option is specified.

else
end
endif
endsw
See the description of the foreach, if, switch, and while statements below.

eval arg ...
As in sh(1). The arguments are read as input to the shell and the resulting
command(s) executed in the context of the current shell. This is usually used
to execute commands generated as the result of command or variable
substitution, since parsing occurs before these substitutions. See test(1) for
an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit

exit(expr)
The shell exits either with the value of the status variable (first form) or with
the value of the specified expr (second form).

fg

fg %job ...
Brings the current or specified jobs into the foreground, continuing them if they
were stopped.

Commands 1-129

csh(1)

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the
sequence of commands between this command and the matching end are
executed. (Both foreach and end must appear alone on separate lines.)

The built-in command continue may be used to continue the loop prematurely
and the built-in command break to terminate it prematurely. When this
command is read from the terminal, the loop is read up once prompting with
‘?* before any statements in the loop are executed. If you make a mistake
typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no ‘\’ escapes are recognized and words are delimited by null
characters in the output. Useful for programs which wish to use the shell to
file name expand a list of words.

goto word
The specified word is file name and command expanded to yield a string of the
form ‘label’. The shell rewinds its input as much as possible and searches for
a line of the form ‘label:’ possibly preceded by blanks or tabs. Execution
continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at
locating commands (and avoiding exec’s). An exec is attempted for each
component of the path where the hash function indicates a possible hit, and in
each component which does not begin with a ‘/’.

history

history »

history -r n

history -h »
Displays the history event list; if n is given only the n most recent events are
printed. The —r option reverses the order of printout to be most recent first
rather than oldest first. The —h option causes the history list to be printed
without leading numbers. This is used to produce files suitable for sourcing
using the —h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with
arguments is executed. Variable substitution on command happens early, at the
same time it does for the rest of the if command. Command must be a simple
command, not a pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, when command is not
executed (this is a bug).

if (expr) then
else if (expr2) then

else

1-130 Commands

csh(1)

endif
If the specified expr is true then the commands to the first else are executed;
else if expr2 is true then the commands to the second else are executed, etc.
Any number of else-if pairs are possible; only one endif is needed. The else
part is likewise optional. (The words else and endif must appear at the
beginning of input lines; the if must appear alone on its input line or after an
else.)

jobs

Jjobs -1
Lists the active jobs; given the -1 options lists process id’s in addition to the
normal information.

kill %job
~ kill —sig %job ...

kill pid

kill —sig pid ...

kill -1
Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by names
(as given in /usr/includel/signal.h, stripped of the prefix ‘‘SIG’’). The signal
names are listed by ‘‘kill -1’’. There is no default, saying just ‘kill’ does not
send a signal to the current job. If the signal being sent is TERM (terminate)
or HUP (hangup), then the job or process will be sent a CONT (continue)
signal as well.

limit

limit resource

limit resource maximum-use
Limits the consumption by the current process and each process it creates to
not individually exceed maximum-use on the specified resource. If no
maximum-use is given, then the current limit is printed; if no resource is given,
then all limitations are given.

The following resources can be controlled:
. cputime (maximum number of cpu-seconds to be used by each process)
e filesize (largest single file which can be created)

° datasize (the maximum growth of the data+stack region by sbrk(2) beyond
the end of the program text)

o stacksize (the maximum size of the automatically-extended stack region)
° coredumpsize (the size of the largest core dump that can be created).

. memoryuse (the maximum amount of main memory a process is allowed to
occupy)

The maximum-use may be given as a (floating point or integer) number
followed by a scale factor. For all limits other than cputime the default scale is
‘k’ or ‘kilobytes’ (1024 bytes); a scale factor of ‘m’ or ‘megabytes’ may also
be used. For cputime the default scaling is ‘seconds’, while ‘m’ for minutes or
‘h’ for hours, or a time of the form ‘mm:ss’ giving minutes and seconds may
be used.

For both resource names and scale factors, unambiguous prefixes of the names
suffice.

Commands 1-131

csh(1)

login
Terminate a login shell, replacing it with an instance of /bin/login. This is one
way to log off, included for compatibility with sh(1).

logout
Terminate a login shell. Especially useful if ignoreeof is set.

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. The second form sets the nice to
the given number. The final two forms run command at priority 4 and number
respectively. The super-user may specify negative niceness by using ‘nice
—number ...". Command is always executed in a sub-shell, and the restrictions
place on commands in simple if statements apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be ignored for
the remainder of the script. The second form causes the specified command to
be run with hangups ignored. All processes detached with ‘&’ are effectively
nohup’ed.

notify

notify %job ...
Causes the shell to notify the user asynchronously when the status of the
current or specified jobs changes; normally notification is presented before a
prompt. This is automatic if the shell variable notify is set.

onintr

onintr —

onintr label
Control the action of the shell on interrupts. The first form restores the default
action of the shell on interrupts which is to terminate shell scripts or to return
to the terminal command input level. The second form ‘onintr —’ causes all
interrupts to be ignored. The final form causes the shell to execute a ‘goto
label’ when an interrupt is received or a child process terminates because it was
interrupted.

In any case, if the shell is running detached and interrupts are being ignored,
all forms of onintr have no meaning and interrupts continue to be ignored by
the shell and all invoked commands.

popd

popd +n
Pops the directory stack, returning to the new top directory. With a argument
‘+n’ discards the nth entry in the stack. The elements of the directory stack
are numbered from O starting at the top.

pushd

pushd name

pushd +n
With no arguments, pushd exchanges the top two elements of the directory
stack. Given a name argument, pushd changes to the new directory (using

1-132 Commands

csh(1)

cd) and pushes the old current working directory (as in csw) onto the
directory stack. With a numeric argument, rotates the nth argument of the
directory stack around to be the top element and changes to it. The members
of the directory stack are numbered from the top starting at 0.

rehash
Causes the internal hash table of the contents of the directories in the path
variable to be recomputed. This is needed if new commands are added to
directories in the path while you are logged in. This should only be necessary
if you add commands to one of your own directories, or if a systems
programmer changes the contents of one of the system directories.

repeat count command
The specified command which is subject to the same restrictions as the
command in the one line if statement above, is executed count times. /O
redirections occur exactly once, even if count is 0.

set

set name

set name=word

set name[index J=word

set name=(wordlist)
The first form of the command shows the value of all shell variables.
Variables which have other than a single word as value print as a parenthesized
word list. The second form sets name to the null string. The third form sets
name to the single word. The fourth form sets the index’th component of name
to word; this component must already exist. The final form sets name to the
list of words in wordlist. In all cases the value is command and file name
expanded.

These arguments may be repeated to set multiple values in a single set
command. Note however, that variable expansion happens for all arguments
before any setting occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The
most commonly used environment variable USER, TERM, and PATH are
automatically imported to and exported from the csh variables user, term, and
path; there is no need to use setenv for these.

shift

shift variable
The members of argv are shifted to the left, discarding argv[1]. It is an error
for argv not to be set or to have less than one word as value. The second form
performs the same function on the specified variable.

source name

source —-h name
The shell reads commands from name. Source commands may be nested; if
they are nested too deeply the shell may run out of file descriptors. An error in
a source at any level terminates all nested source commands. Normally input
during source commands is not placed on the history list; the —h option causes
the commands to be placed in the history list without being executed.

Commands 1-133

csh (1)

stop
stop %job ...
Stops the current or specified job which is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal
with AZ. This is most often used to stop shells started by su(1).

switch (string)
case strl:

breaksw
default:

breaksw

endsw
Each case label is successively matched, against the specified string which is
first command and file name expanded. The file metacharacters ‘*’, ‘?” and
‘[...]’ may be used in the case labels, which are variable expanded. If none of
the labels match before a ‘default’ label is found, then the execution begins
after the default label. Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case labels and default labels as
in C. If no label matches and there is no default, execution continues after the
endsw.

time

time command
With no argument, a summary of time used by this shell and its children is
printed. If arguments are given the specified simple command is timed and a
time summary as described under the time variable is printed. If necessary, an
extra shell is created to print the time statistic when the command completes.

umask

umask value
The file creation mask is displayed (first form) or set to the specified value
(second form). The mask is given in octal. Common values for the mask are
002 giving all access to the group and read and execute access to others or 022
giving all access except no write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all
aliases are removed by ‘unalias *’. It is not an error for nothing to be
unaliased. '

unhash
Use of the internal hash table to speed location of executed programs is
disabled.

unlimit resource

unlimit
Removes the limitation on resource. If no resource is specified, then all
resource limitations are removed.

1-134 Commands

csh(1)

unset pattern
All variables whose names match the specified pattern are removed. Thus all
variables are removed by ‘unset *’; this has noticeably distasteful side-effects.
It is not an error for nothing to be unset.

unsetenv pattern
Removes all variables whose name match the specified pattern from the
environment. See also the setenv command above and printenv(l).

wait
All background jobs are waited for. It the shell is interactive, then an interrupt

can disrupt the wait, at which time the shell prints names and job numbers of
all jobs known to be outstanding.

while (expr)

end
While the specified expression evaluates non-zero, the commands between the
while and the matching end are evaluated. Break and continue may be used to
terminate or continue the loop prematurely. (The while and end must appear
alone on their input lines.) Prompting occurs here the first time through the
loop as for the foreach statement if the input is a terminal.

%job
Brings the specified job into the foreground.

%job &
Continues the specified job in the background.

@

@ name = expr

@ namelindex] = expr
The first form prints the values of all the shell variables. The second form sets
the specified name to the value of expr. If the expression contains ‘<’, ©>’, ‘&’
or ‘I’ then at least this part of the expression must be placed within ‘(" ‘)’. The
third form assigns the value of expr to the index’th argument of name. Both
name and its index’th component must already exist.

The operators ‘*=’, ‘+=’, etc are available as in C. The space separating the
name from the assignment operator is optional. Spaces are, however,
mandatory in separating components of expr which would otherwise be single
words.

Special postfix ‘++’ and ‘~—’ operators increment and decrement name
respectively, that is ‘@ i++’.

Pre-defined And Environment Variables

The following variables have special meaning to the shell. Of these, argv, cwd,
home, path, prompt, shell and status are always set by the shell. Except for cwd and
status this setting occurs only at initialization; these variables will not then be
modified unless this is done explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM into
term, and HOME into home, and copies these back into the environment whenever
the normal shell variables are reset. The environment variable PATH is likewise
handled. It is not necessary to worry about its setting other than in the file . cshrc

Commands 1-135

csh(1)

as inferior csh processes will import the definition of path from the environment,
and re-export it if you then change it.

argv

cdpath

cwd
echo

histchars

history

home

ignoreeof

mail

noclobber

noglob

nonomatch

1-136 Commands

Set to the arguments to the shell, it is from this variable that
positional parameters are substituted, that is ‘$1° is replaced by
‘$argv[17]’, and so forth.

Gives a list of alternate directories searched to find subdirectories
in chdir commands.

The full pathname of the current directory.

Set when the —x command line option is given. Causes each
command and its arguments to be echoed just before it is executed.
For non-built-in commands all expansions occur before echoing.
Built-in commands are echoed before command and file name
substitution, since these substitutions are then done selectively.

Can be given a string value to change the characters used in
history substitution. The first character of its value is used as the
history substitution character, replacing the default character !.
The second character of its value replaces the character ! in quick
substitutions.

Can be given a numeric value to control the size of the history list.
Any command which has been referenced in this many events will
not be discarded. Too large values of Aistory may run the shell out
of memory. The last executed command is always saved on the
history list.

The home directory of the invoker, initialized from the
environment. The file name expansion of ‘~’ refers to this
variable.

If set the shell ignores end-of-file from input devices which are
terminals. This prevents shells from accidentally being killed by
control-D’s.

The files where the shell checks for mail. This is done after each
command completion which will result in a prompt, if a specified
interval has elapsed. The shell says ‘You have new mail.” if the
file exists with an access time not greater than its modify time.

If the first word of the value of mail is numeric it specifies a
different mail checking interval, in seconds, than the default, which
is 10 minutes.

If multiple mail files are specified, then the shell says ‘New mail in
name’ when there is mail in the file name.

As described in the section on Input/output, restrictions are placed
on output redirection to insure that files are not accidentally
destroyed, and that ‘>>’ redirections refer to existing files.

If set, file name expansion is inhibited. This is most useful in shell
scripts which are not dealing with file names, or after a list of file
names has been obtained and further expansions are not desirable.

If set, it is not an error for a file name expansion to not match any

notify

path

prompt

savehist

shell

status

time

csh(1)

existing files; rather the primitive pattern is returned. It is still an
error for the primitive pattern to be malformed, that is ‘echo [’ still
gives an error.

If set, the shell notifies asynchronously of job completions. The
default is to rather present job completions just before printing a
prompt.

Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word specifies
the current directory. If there is no path variable then only full
path names will execute. The usual search path is ‘.’, ‘/bin’ and
‘fusr/bin’, but this may vary from system to system. For the
super-user the default search path is ‘/etc’, ‘/bin’ and ‘/usr/bin’. A
shell which is given neither the —¢ nor the —t option will normally
hash the contents of the directories in the path variable after
reading .cshrc, and each time the path variable is reset. If new
commands are added to these directories while the shell is active,
it may be necessary to give the rehash or the commands may not
be found.

The string which is printed before each command is read from an
interactive terminal input. If a ‘!’ appears in the string it will be
replaced by the current event number unless a preceding \ is
given. Defaultis ‘% ’°, or ‘#° for the super-user.

is given a numeric value to control the number of entries of the
history list that are saved in ~/.history when the user logs out.
Any command which has been referenced in this many events will
be saved. During start up the shell sources ~/.history into the
history list enabling history to be saved across logins. Too large
values of savehist will slow down the shell during start up.

The file in which the shell resides. This is used in forking shells
to interpret files which have execute bits set, but which are not
executable by the system. (See the description of Non-built-in
Command Execution below.) Initialized to the (system-dependent)
home of the shell.

The status returned by the last command. If it terminated
abnormally, then 0200 is added to the status. Built-in commands
which fail return exit status ‘1°, all other built-in commands set
status ‘0’.

Controls automatic timing of commands. If set, then any
command which takes more than this many cpu seconds will cause
a line giving user, system, and real times and a utilization
percentage which is the ratio of user plus system times to real time
to be printed when it terminates. The time command can be used
to cause a command to be timed no matter how much CPU time it
takes. Thus

% time cp /etc/rc /usr/bill/rc
0.0u 0.1s 0:01 8% 2+1k 3+2io 1lpf+0w
% time wc /etc/rc /usr/bill/rc

52 178 1347 /etc/zrc

52 178 1347 /usr/bill/rc

Commands 1-137

csh(1)

104 356 2694 total
0.1u 0.1s 0:00 13% 3+3k 5+3io 7pf+0w
%

The preceding example indicates that the cp command used a
negligible amount of user time (u) and about 1/10th of a second
system time (s); the elapsed time was 1 second (0:01), there was
an average memory usage of 2k bytes of program space and 1k
bytes of data space over the cpu time involved (2+1k); the program
did three disk reads and two disk writes (3+2i0), and took one
page fault and was not swapped (1pf+Ow). The word count
command wc on the other hand used 0.1 seconds of user time and
0.1 seconds of system time in less than a second of elapsed time.
The percentage ‘13%’ indicates that over the period when it was
active the command ‘wc’ used an average of 13 percent of the
available CPU cycles of the machine.

verbose Set by the —v command line option, causes the words of each
command to be printed after history substitution.

Non-built-in Command Execution

When a command to be executed is found to not be a built-in command the shell
attempts to execute the command via execve(2). Each word in the variable path
names a directory from which the shell will attempt to execute the command. If it is
given neither a —¢ nor a -t option, the shell will hash the names in these directories
into an internal table so that it will only try an exec in a directory if there is a
possibility that the command resides there. This greatly speeds command location
when a large number of directories are present in the search path. If this mechanism
has been turned off (via unhash), or if the shell was given a —c or —t argument, and
in any case for each directory component of path which does not begin with a ‘/’, the
shell concatenates with the given command name to form a path name of a file which
it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus ‘(cd ; pwd) ; pwd’
prints the home directory; leaving you where you were (printing this after the home
directory), while ‘cd ; pwd’ leaves you in the home directory. Parenthesized
commands are most often used to prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then
it is assumed to be a file containing shell commands and a new shell is spawned to
read it.

If there is an alias for shell then the words of the alias will be prepended to the
argument list to form the shell command. The first word of the alias should be the
full path name of the shell (for example, ‘$shell’). Note that this is a special, late
occurring, case of alias substitution, and only allows words to be prepended to the
argument list without modification.

Argument List Processing

If argument O to the shell is ‘—’ then this is a login shell. The flag arguments are
interpreted as follows:

— The first argument word is taken to be a command string. All remaining
argument words are placed in argv.

1-138 Commands

csh(1)

—e The shell exits if any invoked command terminates abnormally or yields a
noN-zero exit status.

—f The shell will start faster, because it will neither search for nor execute
commands from the file ‘.cshrc’ in the invokers home directory.

—-i The shell is interactive and prompts for its top-level input, even if stdin appears
not to be a terminal. Shells are interactive without this option if their inputs
and outputs are terminals. '

-n Commands are parsed, but not executed. This aids in syntactic checking of
shell scripts.

-s Command input is taken from the standard input.

-t A ssingle line of input is read and executed. A ' may be used to escape the
new line at the end of this line and continue onto another line.

—v Causes the verbose variable to be set, with the effect that command input is
echoed after history substitution.

—x Causes the echo variable to be set, so that commands are echoed immediately
before execution.

-V Causes the verbose variable to be set even before ‘.cshrc’ is executed.
~X Causes the echo variable to be set before ‘.cshrc’ is executed.

After processing of flag arguments if arguments remain but none of the —c, —i, -, or
—t options was given the first argument is taken as the name of a file of commands to
be executed. The shell opens this file, and saves its name for possible resubstitution
by ‘$0’. Since many systems use either the standard version 6 or version 7 shells
whose shell scripts are not compatible with this shell, the shell will execute such a
‘standard’ shell if the first character of a script is not a ‘#’, that is if the script does
not start with a comment. Remaining arguments initialize the variable argv.

Signal Handling

The shell normally ignores quit signals. Jobs running detached (either by ‘&’ or the
bg or %... & commands) are immune to signals generated from the keyboard,
including hangups. Other signals have the values which the shell inherited from its
parent. The shells handling of interrupts and terminate signals in shell scripts can be
controlled by onintr. Login shells catch the terminate signal; otherwise this signal is
passed on to children from the state in the shell’s parent. In no case are interrupts
allowed when a login shell is reading the file ‘.logout’.

Command And Filename Recognition

The csh command recognizes and completes user name aliases, commands
(including built-in csh commands), and filenames. To use this feature, do the
following:

1. Type enough characters at the prompt to make your input to the system unique.
2. Press the ESC key.

If your input is unique, the Shell completes the input line. If the input is not unique,
the terminal signals you with a beep. If you receive a beep, type CTRL/D for a list
of options. You can then type the additional characters that will make your text
unique. After you have provided more input, press the ESC key again.

Commands 1-139

csh(1)

Command Line Editing

The csh command allows you to visually edit command lines using either a vi or
emacs environment. The vi interface is modal and supports a subset of vi
commands. The emacs interface is modeless and supports a subset of emacs
commands. See the Editing Interface section for a list of the available vi and
emacs commands.

To set the editing environment, define the Shell environment variable CSHEDIT as
vi or emacs. If the environment variable CSHEDIT is not defined, the csh
command searches for your EDITOR environment variable. When your EDITOR
environment variable is set to vi, ex, edit, or ed, the csh command defaults to
the vi command interface. If your EDITOR environment is not set to any of the
previously mentioned editors, the default is the emacs command interface. Note
that if neither the CSHEDIT or EDITOR environment variables are defined, the csh
command defaults to the vi command interface.

The new history modifier (:v) allows you to pull commands from the history list to
make them available for editing in visual edit mode. The symbol :v tells the Shell
that you want to enter visual edit mode. For example, the following command line
invokes edit mode for the previously typed cp command line:

lep:v

When you press the ESC key as the first character on a command line, it is
equivalent to typing the following:

thev

Thus, the previous example invokes edit mode for the last command you entered.

Another useful editing feature is scrolling through the history list. After you have
entered edit mode by typing either lcommand:v or the ESC key, you can use the up-
arrow and down-arrow keys to scroll through the history list and you may edit any
command line in that history list.

When you are in edit mode, all control characters are displayed as a space character.
Additional control characters cannot be inserted. Existing control characters are
preserved.

Editing Interface

The available vi commands follow:

Move left one character (r).
Move right one character (r).
Move to the start of the line.
Move to the end of the line.
move forward one word (r).

Move back one word (r).

L I

Move to end of word ().
fx Move forward onto character (r).

Fx Move back onto character (r).

1-140 Commands

tx
Tx
%

AL,AR

/word

n
<RETURN>
AC

(r)

(o)

csh(1)

Move forward up to character (r).
Move back up to character (r).
Move to matching bracket ({[]}).

Insert text before cursor.

Insert text at beginning of line.
Append text after cursor.
Append text at end of line.
Change text (o).

Change to end of line (eol) (c$).
End insertion.

Delete char under cursor (r).

Delete character before cursor (r).

Replace a character (r).

Change case of current character (r).

Delete text (o).

Delete to eol (d9$).

Undo last change.

Undo all changes.

Repeat last text change command (r).

Put text from previous delete after cursor (r).
Put text from previous delete before cursor (r).
Redraw command line.

Search back through the history list for a command containing the
specified word. If the specified word is not delineated by white
space in the history list, the search fails. Typing ESCAPE or
CTRL/C aborts this command.

Repeat last history search.

End edit and execute command.
Quit; no command executed.

A repeat count is accepted.

Works within a cursor motion object.

The available emacs commands follow:

‘@
rA

Set mark (keyword null).

Move to beginning of line.

Commands 1-141

csh(1)

/\B,
AC
AD
AE
AF,
AG
AH,DEL
AK
AL
AR
AS
AT
AUn
AW
AY

CR,NL

ESC-AC
ESC-B
ESC-D
ESC-F
ESC-H
ESC-DEL
ESC-n

AXAC

AXu

AXU

AX~
AXASword

AXAS

1-142 Commands

Move backward a character.

Exit command line edit; do not execute a command.
Delete next character (to kill buffer).

Move to end of line.

Move forward a character.

Cancel partial command.

Delete previous character (to kill buffer).

Kill (delete) to end of line (to kill buffer).

Redraw line display.

Search reverse for a single character.

Search forward for a single character.

Transpose two characters before cursor.

Specify a repeat count before command (default of n is 4).
Delete between cursor and mark (to kill buffer).
Yank from kill buffer.

End edit and execute command.

End edit and execute command.
Move backward a word.

Delete next word.

Move forward a word.

Delete previous word.

Delete previous word.

Repeat count before command.

End edit and execute command.
Undo last change.

Undo all changes.

Change case of next character.

Search back through the history list for a command containing a
specified word. If the specified word is not delineated by white
space in the history list, the search fails. Typing ESCAPE or
CTRL/C aborts this command.

Repeat last history search command. You must be in search mode
to issue this command. Note that AG cancels the previous search
word so that you can enter a new word.

csh(1)

Restrictions

Words can be no longer than 1024 characters.
The system limits argument lists to 10240 characters.

The number of arguments to a command which involves file name expansion is
limited to 1/6’th the number of characters allowed in an argument list.

Command substitutions may substitute no more characters than are allowed in an
argument list.

To detect looping, the shell restricts the number of alias substitutions on a single line
to 20.

When a command is restarted from a stop, the shell prints the directory it started in if
this is different from the current directory; this can be misleading (that is, wrong) as
the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the
form ‘a ; b ; c’ are also not handled gracefully when stopping is attempted. If you
suspend ‘b’, the shell will then immediately execute ‘c’. This is especially noticeable
if this expansion results from an alias. It suffices to place the sequence of commands
in ()’s to force it to a subshell, that is ‘(a;b; c).

Commands within loops, prompted for by ‘?°, are not placed in the history list.
Control structure should be parsed rather than being recognized as built-in
commands. This would allow control commands to be placed anywhere, to be
combined with ‘I’, and to be used with ‘&’ and *;’ metasyntax.

It should be possible to use the colon (:) modifiers on the output of command
substitutions. All and more than one colon (:) modifier should be allowed on ‘$’
substitutions.

Symbolic links fool the shell. In particular, dirs and ‘cd ..” don’t work properly once
you’ve crossed through a symbolic link.

Files
~/.cshrc Read at beginning of execution by each shell.
~/.login Read by login shell, after ‘.cshrc’ at login.
~/.logout Read by login shell, at logout.
/bin/sh Standard shell, for shell scripts not starting with a ‘#’.
ftmp/sh Temporary file for ‘<<’.
fetc/passwd Source of home directories for ‘~name’.
See Also

sh(1), time(1), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), setrlimit(2),
umask(2), wait(2), tty(4), a.out(5), environ(7), time(7)
An Introduction to the C shell

Commands 1-143

csplit(1)

csplit [—s][-k][—f prefix] file argl [...argn]

The csplit command reads file and separates it into n+1 sections, as defined by the
arguments argl...argn. By default, the sections are placed in xx00...xxn (n» may not
be greater than 99). The named file is sectioned in the following way:

From the start of file up to (but not including) the line referenced by arg!.

From the line referenced by argl up to the line referenced by arg2.

From the line referenced by argn to the end of file.

If the file argument is an minus (-) then standard input is used. A minus is an ASCII

Name

csplit — context split
Syntax
Description

00:

01:

n:

octal 055.
Options

-s

-k

—fprefix

Suppresses the printing of all character counts. If the —s
option is omitted, the csplit command prints the character
counts for each file created.

Leaves previously created files intact. If the -k option is
omitted, csplit automatically removes created files if an
€rror occurs.

Names the created files prefix00.. prefixn. The default is
xx00...xxn.

The arguments (argl...argn) to csplit can be a combination of the following:

1-~144 Commands

[rexp/

Yorexp %
Inno

{num}

A file is created for the section from the current line
up to (but not including) the line containing the
regular expression rexp. The current line becomes
the line containing rexp. This argument may be
followed by an optional plus (+) or minus () number
of lines. For example, /Page/-S5.

This argument is the same as /rexp/, except that no
file is created for the section.

A file is created from the current line up to (but not
including) /nno. The current line becomes /nno.

Repeat argument. This argument may follow any of
the above arguments. If it follows a rexp argument,
that argument is applied num more times. If it
follows Inno, the file will be split every /nno lines
(num times) from that point.

csplit(1)

Enclose all rexp type arguments that contain blanks or other characters meaningful to
the Shell in the appropriate quotes. Regular expressions should not contain
embedded new-lines. The csplit command does not affect the original file; it is
the user’s responsibility to remove it.

Examples

csplit -f cobol file /procedure division/ /par5./ /parl6./

This example creates four files, cobol00...cobol03. After editing the files that
csplit created, they can be recombined as follows:

cat cobol0[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example splits the file every 100 lines, up to 10,000 lines. The -k option causes
the created files to be retained if there are less than 10,000 lines; however, an error
message would still be printed.

csplit -k prog.c ’‘smain(%’’ /~}/+1" {20}
Assuming that prog. c follows the normal C coding convention of ending routines
with a right brace (}) at the beginning of the line, this example creates a file
containing each separate C routine (up to 21) in prog.c.

Diagnostics
The diagnostics are self explanatory except for the following:
arg - out of range
This message means that the given argument did not reference a line between the
current position and the end of the file.

See Also
ed(1), sh(1)

Commands 1-145

ctags(1)

Name

ctags — create a tags file

Syntax

ctags [options] name...

Description

The ctags command makes a tags file for ex(1) from the specified C, Pascal and

Fortran sources.

A tags file gives the locations of specified objects (in this case functions and
typedefs) in a group of files. Each line of the tags file contains the object name, the
file in which it is defined, and an address specification for the object definition.
Functions are searched with a pattern, typedefs with a line number. Specifiers are
given in separate fields on the line, separated by blanks or tabs.

Using the tags file, ex can quickly find these objects definitions.

If the —x flag is given, ctags produces a list of object names, the line number and
file name on which each is defined, as well as the text of that line and prints this on
the standard output. This is a simple index which can be printed out as an off-line

readable function index.
Options

-a
-B
-F
-t

~-u

-V

1-146 Commands

Appends information to an existing tags file.
Uses backward search patterns (?...7).

Uses forward search patterns (/.../) (default).
Creates typedef tags.

Updates the specified tags file. All references to tags are
deleted, and the new values are appended to the file. Note
that this option is implemented in a way which is rather
slow. It is usually faster to simply rebuild the zags file.)

The tag main is treated specially in C programs. The tag
formed is created by prepending M to the name of the file,
with a trailing .c removed, if any, and leading pathname
components also removed. This makes use of ctags
practical in directories with more than one program.

Generates an index listing function name, file name, and
pages number. Since the output will be sorted into
lexicographic order, it may be desired to run the output
through sort —f. For example,

ctags -v files | sort ~f > index

Files whose name ends in .c or .h are assumed to be C
source files and are searched for C routine and macro
definitions. Others are first examined to see if they contain
any Pascal or Fortran routine definitions; if not, they are

ctags(1)

processed again looking for C definitions.

-w Suppresses warning diagnostics and generates a listing. This
list contains each object name, its line number, the file name
in which it is defined, and the text.

Restrictions

Recognition of functions, subroutines and procedures for FORTRAN and Pascal
do not deal with block structure. Therefore you cannot have two Pascal procedures
in different blocks with the same name.

Does not know about #ifdefs.

Does not know about Pascal types. Relies on the input being well formed to detect
typedefs. Use of —tx shows only the last line of typedefs.

Files
tags output tags file

See Also
ex(1), vi(1)

Commands 1-147

ctod(1)

Name
ctod — combine DDIS objects into DOTS format

Syntax
ctod [—x] object.ddis

Description

The ctod command combines a DDIS encoded object into a Data Object Transport
Syntax (DOTS) format, which is written to standard output. The object may contain
references to other DDIS files. The purpose of ctod is to create a single file from
multiple references to other files, in order to transfer or move DDIS objects from one
location to another.

object.ddis is a file name, or a minus sign (-) for standard input. If a minus sign is
specified, or if no file name is present, standard input is read. The named object and
its external references, if any, are combined into a DOTS data stream which is
written to standard output.

Because a DOTS stream contains binary data, ct od output should be redirected to a
file or a pipe.

Options
-Xx Specifies that ctod is to DOTS encode the input file without resolving any

external references present in the file. This option is for use only with files
containing no external references.

Restrictions

The only DDIS object types supported in this release are DDIF and DTIF.
Diagnostics

The exit status is O if all files were combined successfully and 1 if any of the files
could not be combined. Consult ‘standard error’ to see what files failed, and why.

If the —x option is used and object .ddis contains any external references, ctod
returns an error status of 1, and writes an error message to ‘standard error’.

See Also
dtoc(1), DDIS(5), DDIE(5), DTIF(5), DOTS(5)

1-148 Commands

ctrace(1)

Name
ctrace — C program debugger

Syntax

ctrace [options] [file]
cte [options] [file]
cter [options 1 [file]

Description

The ctrace command allows you to follow the execution of a C program,
statement by statement. The ctrace command reads the C program in file (or from
standard input if you do not specify file) and inserts statements to print both the text
of each executable statement and the values of all variables referenced or modified.

It then writes the modified program to the standard output. You must put the output
of ctrace into a temporary file because the cc command does not allow the use of
a pipe. You then compile and execute this file.

As each statement in the program executes it is listed at the terminal. The statement
is followed by the name and value of any variables referenced or modified in the
statement, which is followed by any output from the statement. Loops in the trace
output are detected and tracing is stopped until the loop is exited or a different
sequence of statements within the loop is executed. A warning message is printed
every 1000 times through the loop to help you detect infinite loops.

The trace output goes to the standard output so you can put it into a file for
examination with an editor or the tail command.

The ctc command is a shell script that prepares the specified C program file for later
execution. The ctcr command is a shell script that both prepares and executes the

specified C program file.
Options
The only options you will commonly use are:
~f functions Trace only these functions.
=V functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long and pointer
variables are always printed as signed integers. Pointers to character arrays are also
printed as strings if appropriate. Char, short, and int variables are also printed as
signed integers and, if appropriate, as characters. Double variables are printed as
floating point numbers in scientific notation.

You can request that variables be printed in additional formats, if appropriate, with
these options:

-e Floating point
-0 Octal

-u Unsigned

—x Hexadecimal

Commands 1-149

ctrace (1)

These options are used only in special circumstances:

-1n Checks n consecutively executed statements for looping trace
output, instead of the default of 20. Use O to get all the
trace output from loops.

-P Runs the C preprocessor on the input before tracing it. You
can also use the -D, -I, and —U cc(1) preprocessor options.

-ps Changes the trace print functions from the default of
“printf(’’. For example, ‘‘fprintf(stderr,”” would send the
trace to the standard error output.

-rf Uses file f in place of the runtime.c trace function package.
This lets you change the entire print function, instead of just
the name and leading arguments. For further information,
see the —p option.

- Suppresses redundant trace output from simple assignment
statements and string copy function calls. This option can
hide a bug caused by use of the = operator in place of the ==
operator.

-tn Traces n variables per statement instead of the default of 10
(the maximum number is 20). The DIAGNOSTICS section
explains when to use this option.
Examples

Assume the file /c.c contains the following C program:

1 #include <stdio.h>

2 main () /* count lines in input */
3 {
4 int ¢, nl;
5
6 nl = 0;
7 while ((c = getchar()) != EOF)
8 if (c = '\n’)
9 ++nl;
10 printf ("%d\n", nl);

11}

When you enter the following commands and test data the program is compiled and
executed:

cc lc.c

a.out

1
<CTRL/D>

The output of the program is the number 2, which is not correct because there is only
one line in the test data. The error in this program is common, but subtle. When
you invoke ctrace with the following commands:

ctrace lc.c >temp.c
cc temp.c
a.out

the output is

1-150 Commands

ctrace (1)

2 main{()
6 nl = 0;
/* nl == 0 */
7 while ((¢c = getchar()) != EOF)

The program is now waiting for input. If you enter the same test data as before, the
output is the following:

/* ¢ == 49 or "1’ */

8 if (¢ = '\n’)
/* ¢ == 10 or ’'\n’ %/
9 ++nl;
/¥ nl == 1 %/
7 while ({c = getchar()) != EOF)
/* ¢ == 10 or '\n’ */
8 if (¢ = "\n’)
/¥ ¢ == 10 or '\n’ */
9 ++nl;
/* nl == 2 %/
7 while ((c = getchar()) != EOF)
If you now enter an end of file character <CTRL/D>, the final output is the
following:
/% ¢ == -1 %/

10 printf ("$d\n", nl);
/¥ nl == 2 %/2
return

Note that the program output printed at the end of the trace line for the nl variable.
Also note the return comment added by ctrace at the end of the trace output.
This shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned the value ‘‘1’’ in line 7, but in line
8 it has the value ‘“\n”’. Once your attention is drawn to this if statement, you realize
that you used the assignment operator (=) in place of the equal operator (==). You
can easily miss this error during code reading.

Execution-time Trace Control

The default operation for ct race is to trace the entire program file, unless you use
the —f or —v options to trace specific functions. This does not give you statement by
statement control of the tracing, nor does it let you turn the tracing off and on when
executing the traced program.

You can do both of these by adding ctroff and ctron function calls to your
program to turn the tracing off and on, respectively, at execution time. Thus, you can
code arbitrarily complex criteria for trace control with if statements, and you can even
conditionally include this code because ctrace defines the CTRACE preprocessor
variable. For example:

#ifdef CTRACE
if (¢ == "1’ && i > 1000)
ctron():
#endif

You can also turn the trace off and on by setting static variable tr_ct_to 0 and 1,
respectively. This is useful if you are using a debugger that cannot call these
functions directly.

Commands 1-151

ctrace (1)

Restrictions

The ctrace command does not know about the components of aggregates such as
structures, unions, and arrays. It cannot choose a format to print all the components
of an aggregate when an assignment is made to the entire aggregate. The ctrace
command may choose to print the address of an aggregate or use the wrong format
(for example, %e for a structure with two integer members) when printing the value
of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a multi-file
program. This can result in functions called from a loop still being traced, or the
elimination of trace output from one function in a file until another in the same file is
called.

Warnings

You get a ctrace syntax error if you omit the semicolon at the end of the last
element declaration in a structure or union, just before the right brace (}). This is
optional in some C compilers.

Defining a function with the same name as a system function may cause a syntax
error if the number of arguments is changed. Use a different name.

The ctrace command assumes that BADMAG is a preprocessor macro, and that
EOF and NULL are #defined constants. Declaring any of these to be variables, for
example, "int EOF;", will cause a syntax error.

Diagnostics

This section contains diagnostic messages from both ct race and cc, since the
traced code often gets some cc warning messages. You can get cc error messages
in some rare cases, all of which can be avoided.

Ctrace Diagnostics
warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out

of tree space; simplify expression” error. Use the —t option to increase this
number.

warning: statement too long to trace

This statement is over 400 characters long. Make sure that you are using
tabs to indent your code, not spaces.

cannot handle preprocessor code, use —P option
This is usually caused by #ifdef/#endif preprocessor statements in the

middle of a C statement, or by a semicolon at the end of a #define
preprocessor statement.

1-152 Commands

ctrace (1)

’if ... else if” sequence too long

Split the sequence by removing an else from the middle.

possible syntax error, try —P option
Use the —P option to preprocess the ctrace input, along with any

appropriate =D, -1, and -U preprocessor options. If you still get the error
message, check the Warnings section above.

Cc Diagnostics

warning: floating point not implemented

warning: illegal combination of pointer and integer
warning: statement not reached

warning: sizeof returns 0

Ignore these messages.

compiler takes size of function

See the ctrace "possible syntax error” message above.

yacc stack overflow

See the ctrace "if ... else if’ sequence too long" message above.

out of tree space; simplify expression
Use the —t option to reduce the number of traced variables per statement

from the default of 10. Ignore the "ctrace: too many variables to trace"
warnings you will now get.

redeclaration of signal

Either correct this declaration of signal(3), or remove it and #include
<signal.h>.

Commands 1-153

ctrace (1)

unimplemented structure assignment

Use pcc instead of cc(1).

Files
[usr/bin/ctc preparation shell script
[usr/bin/ctcr preparation and run shell script
[usr/lib/ctrace/runtime.c run-time trace package

See Also

ctype(3), printf(3s), setjmp(3), signal(3), string(3)

1-154 Commands

cut(1)

Name

cut — cut out selected fields of each line of a file
Syntax

cut —clist [filel file2...]

cut —flist [-dchar] [-s] [filel file2...]
Description

Use the cut command to cut out columns from a table or fields from each line of a

file. The fields as specified by list can be fixed length, that is, character positions as

on a punched card (—c option), or the length can vary from line to line and be marked
with a field delimiter character like tab (—f option). The cut command can be used
as a filter. If no files are given, the standard input is used.

Use grep(1) to make horizontal ‘‘cuts’’ (by context) through a file, or paste(l) to

put files together in columns. To reorder columns in a table, use cut and paste.

Options

list Specifies ranges that must be a comma-separated list of
integer field numbers in increasing order. With optional —
indicates ranges as in the —o option of nroff/troff for page
ranges; for example, 1,4,7; 1-3,8; -5,10 (short for 1-5,10);
or 3— (short for third through last field).

—c list Specifies character positions to be cut out. For example,
—c1-72 would pass the first 72 characters of each line.

~f list Specifies the fields to be cut out. For example, —f1,7 copies
the first and seventh field only. Lines with no field
delimiters will be passed through intact (useful for table
subheadings), unless —s is specified.

—d char Uses the specified character as the field delimiter. Default is
tab. Space or other characters with special meaning to the
shell must be quoted.

- Suppresses lines with no delimiter characters. Unless
specified, lines with no delimiters will be passed through
untouched. Either the —c¢ or —f option must be specified.

Examples

Mapping of user IDs to names:
cut -d: -fl1l,5 /etc/passwd

To set name to the current login name:

name="+ who am i | cut -f1 -d" "-

Commands 1-155

cut(1)
Diagnostics

"line too long" A line can have no more than 511 characters or fields.

"bad list for ¢/f option"
Missing —c or —f option or incorrectly specified list. No
error occurs if a line has fewer fields than the list calls for.

"no fields" The list is empty.

See Also
grep(1), paste(1)

1-156 Commands

Name

cxref(1)

cxref — generate C program cross reference

Syntax

cxref [options] files

Description

The cxref command analyzes a collection of C files and attempts to build a cross
reference table. The cxref command utilizes a special version of cpp to include
#define’d information in its symbol table. It produces a listing on standard output of
all symbols (auto, static, and global) in each file separately, or with the —c option, in
combination. Each symbol contains an asterisk (*) before the declaring reference.

Options

—C

~Dname
=Idir

-0 file
-s

-t
-Uname

-w<num>

Diagnostics

Prints a combined cross-reference of all input files.
Defines name to processor, as if by #define. Default value is 1.

Searches named directory for #include files whose names do not
begin with a backslash (/).

Directs output to named file.

Operates silently; does not print input file names.
Formats listing for 80-column width.

Removes any initial definition of name.

Width option which formats output no wider than <num> (decimal)
columns. This option will default to 80 if <num> is not specified or is
less than 51.

Error messages usually indicate a problem that will prevent the file from compiling.

Files

/usr/lib/xcpp special version of C-preprocessor.

See Also
cc(1).

Commands 1-157

date (1)

Name

date — print date and time

Syntax
date [-c | -u] [+format] [[yy[mm[dd]]]hhmm][.ss][-[-]tttt][z]]

Description

If no argument is given, or if the argument begins with +, the current date and time
are printed. Otherwise, the current date is set. The first mm is the month number; dd
is the day number in the month; A4 is the hour number (24 hour clock); the second
mm is the minute number; .ss the second; -[-]e##t is the minutes west of Greenwich; a
positive number means your time zone is west of Greenwich (for example, North and
South America) and a negative number means it is east of Greenwich (for example
Europe); z is a one letter code indicating the dst correction mode (n=none, u=usa,
a=australian, w=western europe, m=middle europe, e=eastern europe); yy is the last 2
digits of the year number and is optional. The following example sets the date to Oct
8, 12:45 AM:

date 10080045

The current year is the default if no year is mentioned. The system operates in GMT.
The date takes care of the conversion to and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of the user.
The format for the output is similar to that of the first argument to print £(3s). All
output fields are of fixed size (zero padded if necessary). Each field descriptor is
preceded by % and is replaced in the output by its corresponding value. A single %
is encoded by % %. All other characters are copied to the output without change.
The string is always terminated with a new-line character.

Options

- Perform operations using Coordinated Universal Time (UCT) instead of
the default local time. The UCT does not use leap seconds so UCT is the
same as GMT.

-u Perform operations using Greenwich Mean Time (GMT) instead of the
default local time.

+ format The following is a list of field Descriptors that can be used in the format
(Note: date exits after processing format information) :

%a Locale’s abbreviated weekday name

%A Locale’s full weekday name

%b Locale’s abbreviated month name

%B Locale’s full month name

%c Locale’s date and time representation

%d Day of month as a decimal number (01-31)
%D Date (%om/%d/%y)

1-158 Commands

date (1)

%h Locale’s abbreviated month name

%H Hour as a decimal number (00-23)

%1 Hour as a decimal number (01-12)

%j Day of year (001-366)

%m Number of month (01-12)

%M Minute number (00-59)

%n Newline character

%p Locale’s equivalent to AM or PM

%r Time in AM/PM notation

%S Second number (00-59)

%t Tab character

%T Time (%H/%M/%S)

%U Week number (00-53), Sunday as first day of week
%w Weekday number (0[Sunday]-6)

%W Week number (00-53), Monday as first day of week
%x Locale’s date representation

%X Locale’s time representation

%y Year without century (00-99)

%Y Year with century

%7 Timezone name, no characters if no timezone
% % %

Examples
The following command line
date +%m/%d/%y
generates the following output
04/02/89
The following command line
date +"DATE: %m/%d/$y%nTIME: $H:$M:%S"

generates the following output

DATE: 04/02/89
TIME: 14:45:05

The quotes (") are necessary because the format contains blank characters. Use single
quotes () to prevent interpretation by the shell.

Commands 1-159

date (1)

Diagnostics

Failed to set date: Not owner
You are not the super-user and you tryed to change the date.
CAUTION

Do not change the date while the system is running in multiuser mode.

Restrictions
An attempt to set a date to before 1/1/1970 will result in the date being set to
1/1/1970.

Files
/dev/kmem

1-160 Commands

Name

dbx (1)

dbx - source level debugger

Syntax

dbx [-I directory] [file] [-i] [—r] [-pixie] [object] [core]

Description

The dbx command is a source-level debugger. This enhanced version of dbx works
with cc(1), £77(1), pc(l), as(1), and machine code. Note that £77(1) is a layered
product which may not be installed on your system.

The object file used with the debugger is produced by specifying an appropriate
option (usually —g) to the compiler. The resulting object file contains symbol table
information, including the names of all source files that the compiler translated to
create the object file. These source files are accessible from the debugger. If —g is
not specified, limited debugging is possible.

If a core file exists in the current directory or a coredump file is specified, the dbx
command can be used to look at the state of the program when it faulted.

Running dbx

If a .dbxinit file resides in the current directory or in the user’s home directory, the
commands in it are executed when dbx is invoked.

When invoked, dbx recognizes the following command line options:

=1 directory or =Idirectory

—c file

-1

-r

—pixie

Tells dbx to look in the specified directory for source files.
Multiple directories can be specified by using multiple —/ options.
The dbx command searches for source files in the current
directory and in the object file’s directory whether or not —/ is
used.

Selects a command file other than .dbxinit.

Uses interactive mode. This option does not treat #s as comments
in a file. It prompts for source even when it reads from a file.
With this option, dbx also has extra formatting as if for a
terminal.

Runs the object file immediately.

Uses pixie output. The executable must be an executable.pixie,
and the non-pixie executable must be in the same directory as the
pixie executable.

Multiple commands can be specified on the same command line if you separate them
with a semicolon (;). If you type a string and press the stop character (see stty(1)),
dbx tries to complete a symbol name from the program that matches the string.

Commands 1-161

RISC

RISC

dbx (1)

The Monitor
The following commands control the dbx monitor:

![string] [integer] [~integer]
Specifies a command from the history list.

help Pipes a list of the dbx commands through the more command.
history Prints the items from the history list. The default is 20.
quit Exit dbx.

Controlling dbx

alias [name(argl,...argN) "string"]
Lists all existing aliases, or, if an argument is specified, defines a
new alias.

unalias alias command_name
Removes the specified alias.

delete expressionl, ...expressionN

delete all Deletes the specified item from the status list. The argument all
deletes all items from the status list.

playback input [file]
Replays commands that were saved with the record input
command in a text file.

playback output [file]
Replays debugger output that was saved with the record output
command.

record input [file]
Records all commands typed to the dbx command.

record output [file]
Records all dbx output.

sh [shell command]
Calls a shell from dbx or executes a shell command.

status Lists currently set stop, record, and trace commands.

tagvalue (tagname)
Returns the value of tagname. If the tag extends to more than one
line, or if it contains arguments, an error occurs. tagvalue can be
used in any expression.

set [variable = expression]
Lists existing debugger variables and their values. This command
can also be used to assign a new value to an existing variable or to
define a new variable.

unset variable Removes the setting of a specified debugger variable.

1-162 Commands

dbx (1)
Examining Source
Iregular expression

Searches ahead in the source code for the regular expression.

?regular expression
Searches back in the source code for the regular expression.

edit [file] Calls an editor from the dbx environment.

file [file] Prints the current file name, or, if a file name is specified, this
command changes the current file to the specified file.

func [expression] [procedure]
Moves to the specified procedure (activation level), or, if an
expression or procedure isn’t specified, prints the current activation
level.

list [expression:integer]
list [expression] Lists the specified lines. The default is 10 lines.

tag tagname Sets the current file/line to the location specified by tagname.
Operations are similar to the tag operations in vi(l).

use [directoryl ... directoryN]
Lists source directories, or, if a directory name is specified, this
command substitutes the new directories for the previous list.

whatis variable Prints the type declaration for the specified name.
which variable Finds the variable name currently being used.
whereis variable Prints all qualifications (the scopes) of the specified variable name.
Controlling Programs
assign expressionl = expression2
Assigns the specified expression to a specified program variable.
[n] cont [signal]
cont [signal] to line

cont [signal] in procedure
Continues executing a program after a breakpoint. n breakpoints
are ignored if n is specified before stepping; If specified, signal is
delivered to the processing being debugged.

goto line Goes to the specified line in the source.

next [integer] Steps over the specified number of lines. The default is one. This
command does not step into procedures.

rerun [argl ... argN] [<filel][>file2]

rerun [argl ... argN] [<filel][> &file2]
Reruns the program, using the same arguments that were specified
to the run command. If new arguments are specified, rerun uses
those arguments.

run [arg] ... argN] [<filel] [>file2]

Commands 1-163

RISC

RISC dbx(1)

run [argl ... argN] [<filel] [>&file2]
Runs the program with the specified arguments.

return [procedure]
Continues executing until the procedure returns. If a procedure
isn’t specified, dbx assumes the next procedure.

step [integer] Steps the specified number of lines. This command steps into
procedures. The default is one line.

Setting Breakpoints

catch [signal]l Lists all signals that dbx catches, or, if an argument is specified,
adds a new signal to the catch list.

ignore [signal] Lists all signals that dbx does not catch. If a signal is specified,
this command adds the signal to the ignore list.

stop [variable]
stop [variable] at line [if expression]
stop [variable] in procedure [if expression]

stop [variable] if expression
Sets a breakpoint at the specified point.

trace variable [at line [if expression]

trace variable [in procedure [if expression]
Traces the specified variable.

when [variable] [at line] {command_list}
when [variable] [in procedure] {command_list}

Executes the specified dbx comma separated command list.
Examining Program State

dump [procedure] [.]
Prints variable information about the procedure. If a dot (.) is
specified, this command prints global variable information on all
procedures in the stack and the variables of those procedures.

down [expression]
Moves down the specified number of activation levels in the stack.
The default is one level.

up [expression] Moves up the specified number of activation levels on the stack.
The default is one.

print expressionl,...expressionN :
Prints the value of the specified expression.

printf "string”, expressionl,...expressionN
Prints the value of the specified expression, using C language
string formatting.

printregs Prints all register values.

1-164 Commands

dbx(1) RISC

where Does a stack trace, which shows the current activation levels.

where 7 Prints out only the top 7 levels of the stack.
Debugging At The Machine Level

[n] conti [signal]
conti [signal] to address

conti [signal] in procedure
Continues executing assembly code after a breakpoint. »
breakpoints are ignored if » is specified before stepping; If
specified, signal is delivered to the processing being debugged.

nexti [integer] Steps over the specified number of machine instructions. The
default is one. This command does not step into procedures.

stepi [integer] Steps the specified number of machine instructions. This
command steps into procedures. The default is one instruction.

stopi [variable] at address [at address if expression)
stopi [variable] in procedure [if expression)

stopi [variable] if expression
Sets a breakpoint in the machine code at the specified point.

tracei variable at address [at address if expression]

tracei variable in procedure [at address if expression]
Traces the specified variable in machine instructions.

wheni [variable] [at address] {command_list}

wheni [variable] [in procedure] {command_list}
Executes the specified dbx comma separated command list.

address[?]/<count><mode>
Searching forward (or backward, if ? is specified,) prints the
contents address or disassembles the code for the instruction
address; count is the number of items to be printed at the specified
address. mode is one of the characters in the following table
producing the indicated result:

Print a short word in decimal

Print a long word in decimal

Print a short word in octal

Print a long word in octal

Print a short word in hexadecimal
Print a long word in hexadecimal
Print a byte in octal

Print a byte as a character

Print a string of characters that ends in a null
Print a single precision real number
Print a double precision real number
Print machine instructions

Prints data in typed format.

B0 e OO X OO0 O

Commands 1-165

address/<countL><value><mask>

Searches for a 32-bit word starting at the specified address; count
specifies the number of word to process in the search; an address is
printed when the the word at address, after an AND operation with
mask, is equal to value.

Predefined dbxVariables
The debugger has the following predefined variables:

$addrfmt

$byteaccess

$casesense

$curevent

$curline
$cursrcline
$curpe
$datacache

$dbgmon
$defaultin
$defaultout
$dispix

$hexchars
$hexin

$hexints
$hexstrings

$historyevent
$lines
$listwindow

$main

1~-166 Commands

Specifies the format for addresses. This can be set to any
specification that a C printf statement can format. The default is
Zero.

Same as $addrfmt.

When set to a nonzero value, specifies that uppercase and
lowercase letters be taken into consideration during a search.
When set to 0, the case is ignored. The default is O.

Shows the last even number as seen in the status feature. Set only
by dbx.

Specifies the current line. Set only by dbx.
Shows the last line listed plus 1. Set only by dbx.
Specifies the current address. Used with the wi and /i aliases.

Caches information from the data space so that dbx must access
data space only once. To debug the operating system, set this
variable to 0; otherwise, set it to a nonzero value. The default is 1.

For internal use by dbx.
For internal use by dbx.
For internal use by dbx.

For use when debugging pixie code. When set to 0, machine code
is shown while debugging. When set to 1, pixie code is shown.
The default is 0.

Output characters are printed in hexadecimal format (set, unset).
Specifies that input constants are hexadecimal.

When set to a nonzero value, changes the default output constants
to hexadecimal. Overrides $octints.

When set to 1, specifies that all strings are printed in hexadecimal;
when set to 0, strings are printed in character format.

Shows the current history line.
Number of lines for history. The default is 20
Specifies how many lines the /ist command prints.

Specifies the name of the procedure that dbx begins to process.
The dbx command can point to any procedure. The default is
"main".

$maxstrlen
$octin

$octints

$page

$pagewindow

$printwhilestep

$pimode
$printdata
$printwide

$prompt
$readtextfile

$regstyle

$repeatmode
$rimode

$sigtramp

$tagfile

dbx(1) RISC

Specifies how many characters of a string dbx prints for pointers
to strings. The default is 128.

When set to non-zero, changes the default input constants to octal.
When set, $hexin overrides this setting.

Output integers are printed octal format (set, unset).

Specifies whether to page long information. A nonzero value turns
on paging; a O turns it off. The default is 1.

Specifies how many lines print when information runs longer than
one screen. This can be changed to match the number of lines on
any terminal. If set to O, this variable assumes one line. The
default is 22, leaving space for continuation query.

For use with the step[n] and stepi[~] instructions. A non-zero
integer specifies that all n lines and/or instructions should be
printed out. A zero specifies that only the last line and/or
instruction should be printed out. The default is zero.

Prints input when used with the playback input command. The
default is 0.

When set to a nonzero value, the contents of registers used are
printed next to each instruction displayed. The default is O.

When se to a nonzero value, the contents of variables are printed in
a horizontal format. The default is 0.

Sets the prompt for dbx.

When set to 1, dbx tries to read instructions from the object file
rather than the process. The dbx command executes faster when
debugging remotely using the System Programmer’s Package.
This variable should always be set to 0 when the process being
debugged copies in code during the debugging process. The
default is 1.

A zero value causes registers to be printed out in their normal r
format (r0,r1,..r31). A nonzero value causes the registers to be
printed out in a special format (zero, at, v0, vl,...) commonly used
in debugging programs written in assembly language. The default
is 0

When set to a nonzero value, after pressing the RETURN key (for
an empty line), the last command is repeated. The default is 1.

When set to a nonzero value, input is recorded while recording
output. The default is O.

Tells dbx the name of the code called by the system to invoke
user signal handlers. This variable is set to sigvec on ULTRIX
systems.

Contains a filename, indicating the file in which the tag command
and the tagvalue macro are to search for tags.

Commands 1-167

RISC

dbx (1)

Predefined dbx Aliases
The debugger has the following predefined aliases:

?
a
b

[~x
=)

— e g ™ 0 o 6

li

norS

ni or Si

p
pd
pi

po
pr
pXx

q
r

ri

ro

si

1-168 Commands

Prints a list of all dbx commands.

Assigns a value to a program variable.

Sets a breakpoint at a specified line.

Stops in a specified procedure.

Continues program execution after a breakpoint.
Deletes the specified item from the status list.
Looks at the specified file.

Moves to the specified activation level on the stack.
Goes to the specified line and begins executing the program there.
Lists all items currently on the history list.

Shows what items are on the status list.

Lists the next 10 lines of source code.

Lists the next 10 machine instructions.

Step over the specified number of lines without stepping into
procedure calls.

Step over the specified number of assembly code instructions
without stepping into procedure calls.

Prints the value of the specified expression or variable.
Prints the value of the specified expression or variable in decimal.

Replays dbx commands that were saved with the record input
command.

Prints the value of the specified expression or variable in octal.
Prints values for all registers.

Prints the value for the specified variable or expression in
hexadecimal.

Ends the debugging session.

Runs the program again with the same arguments that were
specified with the run command.

Records in a file every command typed.
Records all debugger output in the specified file.
Steps the next number of specified lines.

Steps the next number of specified lines of assembly code
instructions.

Does a stack trace.

Lists the previous 10 lines.

< %

dbx (1)

Lists the 5 lines preceding and following the current line.
Lists the 10 lines preceding and following the current line.

Lists the 5 machine instructions preceding and following the
machine instruction.

Commands 1-169

RISC

VAX

dbx (1)

Name

dbx — debugger

Syntax

dbx [-r] [-i] [-k] [-] dir] [—c file] [objfile [coredump]

Description

The dbx debugger is a tool for source level debugging and execution of programs
running under the ULTRIX operating system.

After invoking dbx, you can debug interactively by using the commands described
in the Commands section. If the file .dbxinit exists in the current directory, then the
dbx commands in it are executed. If the file does not exist in the current directory,
the user’s home directory is then checked for a .dbxinit file. Note that the init file is
built by appending the characters init to the first eight characters of the debugger’s
name. For example, if you renamed dbx to abcdefghi, the debugger would look for
an initialization file named .abcdefghinit.

Arguments

objfile

- coredump

Options

-r

=Idir

1-170 Commands

An object file that is produced by a compiler with the appropriate
option (usually —g), and that is specified to produce symbol
information in the object file. The cc(1), pc(l), and vcce(l), produce
the appropriate source information. The machine level facilities of
dbx can be used on any program.

The object file contains a symbol table that includes the
name of all the source files translated by the compiler to
create it. These files are available for perusal while using the
debugger.

If no objfile is specified, dbx looks for a file named a. out
in the current directory.

If a file named core exists in the current directory, or a coredump file
is specified, dbx can be used to examine the state of the program
when it faulted.

Executes objfile immediately. If it terminates successfully, dbx exits.
Otherwise, the reason for termination will be reported and the user is
offered the option of entering the debugger or letting the program fault.
The dbx debugger will read from /dev/tty when -r is specified and
standard input is not a terminal.

Forces dbx to act as though standard input is a terminal.
Maps memory addresses, useful for kernel debugging.

Adds dir to the list of directories that are searched when looking for a
source file. Normally, dbx looks for source files in the current directory

dbx (1)

and in the directory where objfile is located. The directory search path can
also be set with the use command.

—cfile Executes the dbx commands in the file before reading from standard
input.

Unless the —r option is specified, the dbx command just prompts and waits for a
command.

Commands

Execution And Tracing Commands

run [args] [< filename] [> filename]

rerun [args] [< filename] [> filename]
Start executing objfile, passing args as command line
arguments; Angle brackets (< or >) can be used to redirect
input or output in the usual manner. When rerun is used
without any arguments, the previous argument list is passed
to the program. Otherwise it is identical to run. If objfile
has been written since the last time the symbolic information
was read in, dbx will read in the new information.

trace [in procedure/function] [if condition]

trace source-line-number [if condition]

trace procedure/function [in procedure/function] [if condition]

trace expression at source-line-number [if condition]

trace variable {in procedure/function] [if condition]
Have tracing information printed when the program is
executed. A number is associated with the command that is
used to turn the tracing off (see the delete command).

The first argument describes what is to be traced. Ifitis a
source-line-number, then the line is printed immediately
prior to being executed. Source line numbers in a file other
than the current one must be preceded by the name of the
file in quotes and a colon, e.g. "mumble.p":17.

If the argument is a procedure or function name, then every
time it is called information is printed telling what routine
called it, from what source line it was called, and what
parameters were passed to it. In addition, its return is noted
and if it’s a function then the value it is returning is also
printed.

If the argument is an expression with an at clause then the
value of the expression is printed whenever the identified
source line is reached.

If the argument is a variable then the name and value of the

Commands 1-171

VAX

VAX

dbx (1)

stop if condition

variable is printed whenever it changes. Execution is
substantially slower during this form of tracing.

If no argument is specified then all source lines are printed
before they are executed. Execution is substantially slower
during this form of tracing.

The clause in procedure/function allows tracing information
to be printed only while executing inside the given procedure
or function.

The condition is a boolean expression and is evaluated prior
to printing the tracing information; if it is false then the
information is not printed.

stop at source-line-number [if condition]
stop in procedure/function [if condition]
stop variable [if condition]

status [> filename]

Stop execution when the given line is reached, procedure or
function called, variable changed, or condition true.

Print out the currently active trace and stop commands.

delete command-number ...

catch number
catch signal-name
ignore number

ignore signal-name

cont integer

cont signal-name

step

1-172 Commands

The traces or stops corresponding to the given numbers are
removed. The numbers associated with traces and stops are
printed by the status command. The command delete*
removes all existing breakpoints and tracepoints at once.

Start or stop trapping a signal before it is sent to the
program. This is useful when a program being debugged
handles signals such as interrupts. A signal may be specified
by number or by a name (for example, SIGINT). Signal
names are case insensitive and the SIG prefix is optional.

By default all signals are trapped except SIGCONT,
SIGCHILD, SIGALRM, and SIGKILL.

Continue execution from where it stopped. If a signal is
specified, the process continues as though it received the
signal. Otherwise, program execution continues as if a
signal had not been encountered.

Execution cannot be continued if the process has called the

“standard procedure exit. The dbx debugger does not allow

the process to exit, thereby letting the user examine the
program state.

Execute one source line.

dbx(1) VAX

next Execute up to the next source line. The difference between
next and step is that if the line contains a call to a procedure
or function the step command will stop at the beginning of
that block, while the next command will not.

return [procedure] Continue until a return to procedure is executed, or until the
current procedure returns if none is specified.

call procedure(parameters)
Execute the object code associated with the named procedure
or function.

Printing Variables And Expressions

Names are resolved first using the static scope of the current function, then using the
dynamic scope if the name is not defined in the static scope. If static and dynamic
searches do not yield a result, an arbitrary symbol is chosen and the message

[using qualified name] is printed. The name resolution procedure may be overridden
by qualifying an identifier with a block name, for example, module.variable. For C,
source files are treated as modules named by the file name without .c.

Expressions are specified with an approximately common subset of C and Pascal (or
equivalently Modula-2) syntax. Indirection can be denoted using either an asterisk
(*) as a prefix or a circumflex (*) as a postfix. Array expressions are enclosed in
brackets ([1), and the field reference operator (.) can be used with pointers as well as
records, making the C operator (->) unnecessary (although it is supported).

Types of expressions are checked; the type of an expression may be overridden by
using (expression)\ype-name.

assign variable = expression
Assign the value of the expression to the variable.

dump [procedure] [> filename]
Print the names and values of variables in the given
procedure, or the current one if none is specified. If the
procedure given is the field reference operator (.), then the
all active variables are dumped.

print expression [, expression ...] :
Print out the values of the expressions.

whatis name Print the declaration of the given name, which may be
qualified with block names as above.

which identifier Print the full qualification of the given identifier, i.e. the
outer blocks that the identifier is associated with.

up [count]

down [count] Move the current function, which is used for resolving
names, up or down the stack count levels. The default count
is 1.

where Print out a list of the active procedures and function.

whereis identifier Print the full qualification of all the symbols whose name

Commands 1-173

VAX

dbx (1)

matches the given identifier. The order in which the
symbols are printed is not meaningful.

Accessing Source Files

[regular expression[/]

?regular expression[?] Search forward or backward in the current source file for the
given pattern.

edit [filename]

edit procedurel/function-name
Invoke an editor on filename or the current source file if
none is specified. If a procedure or function name is
specified, the editor is invoked on the file that contains it.
Which editor is invoked by default depends on the
installation. The default can be overridden by setting the
environment variable EDITOR to the name of the desired
editor.

file [filename] Change the current source file name to filename. If none is
specified then the current source file name is printed.

func [procedure/function]
Change the current function. If none is specified then print
the current function. Changing the current function
implicitly changes the current source file to the one that
contains the function; it also changes the current scope used
for name resolution.

list [source-line-number [, source-line-number]]

list procedure/function List the lines in the current source file from the first line
number to the second inclusive. If no lines are specified, the
next 10 lines are listed. If the name of a procedure or
function is given, lines n-k to n+k are listed, where # is the
first statement in the procedure or function and k is small.

use directory-list Set the list of directories to be searched when looking for
source files.

Command Aliases And Variables

alias name name
alias name string

alias name (parameters) string
When commands are processed, dbx first checks to see if
the word is an alias for either a command or a string. If it is
an alias, then dbx treats the input as though the
corresponding string (with values substituted for any
parameters) had been entered. For example, to define an
alias rr for the command rerun, type

alias rr rerun

1-174 Commands

dbx (1)

To define b as an an alias that sets a stop at a particular line
type

alias b(x) "stop at x"

Subsequently, the command b (12) will be interpreted as
stop at 12.

set name [= expression] The set command defines values for debugger variables.
The names of these variables cannot conflict with names in
the program being debugged and are expanded to the
corresponding expression within other commands. The
following variables have a special meaning:

$frame
Setting this variable to an address causes dbx to
use the stack frame pointed to by the address for
doing stack traces and accessing local variables.
This facility is of particular use for kernel
debugging.

$hexchars

$hexints

$hexoffsets

$hexstrings
When set, dbx prints out characters, integers,
offsets from registers, or character pointers
respectively in hexadecimal.

$listwindow
The value of this variable specifies the number of
lines to list around a function or when the list
command is given without any parameters. Its
default value is 10.

$mapaddrs
Setting (unsetting) this variable causes dbx to start
(stop) mapping addresses. As with the $frame
variable, this is useful for kernel debugging.

$unsafecall

$unsafeassign
When the $unsafecall variable is set, strict type
checking is turned off for arguments to subroutine
or function calls (for example, in the call
statement), as is strict type checking between the
two sides of an assign statement. These variables
should be used with care, because they severely
limit dbx’s usefulness for detecting errors.

unalias name Remove the alias with the given name.

unset name Delete the debugger variable associated with name.

Commands 1-175

VAX

VAX

dbx (1)

Machine Level Commands

tracei [address] [if cond]

tracei [variable] [at address] [if cond]

stopi [address] [if cond]

stopi [at] [address] [if cond]
Turn on tracing or set a stop using a machine instruction
address.

stepi

nexti Single step as in step or next, but do a single instruction
rather than source line.

address ;address/ [mode]

address | [count] [mode]
Print the contents of memory starting at the first address and
continuing up to the second address or until count items are
printed. If you type a period (.) in the address field, the
address following the one printed most recently is used. The
mode specifies how memory will be printed; if it is omitted,
the previous mode that was specified is used. The initial
mode is X,

The following modes are supported:

print the machine instruction

print a short word in decimal

print a long word in decimal

print a short word in octal

print a long word in octal

print a short word in hexadecimal
print a long word in hexadecimal
print a byte in octal

print a byte as a character

print a string of characters terminated by a null byte
print a single precision real number
print a double precision real number

" ™meoTKKQOe TR™

Symbolic addresses are specified by preceding the name with an ampersand (&).
Registers are denoted by $rN where N is the number of the register. Addresses may
be expressions made up of other addresses and the operators plus (+), (-), and
indirection (unary asterisk, *).

Miscellaneous Commands
help Print out a synopsis of dbx commands.

quit Exit dbx.

sh command-line
Pass the command line to the shell for execution. The SHELL

1-176 Commands

dbx (1)

environment variable determines which shell is used.

source filename
Read dbx commands from the given filename.

Restrictions

If you have a program consisting of several object files and each is built from source
files that include header files, the symbolic information for the header files is
reproduced in each object code file. Since one debugger startup usually is done for
each link, having the linker 1d(1) reorganize the symbol information will not save
much time, although it would reduce some of the disk space used.

The problem results from the unrestricted semantics of #include statements in C. For
example, an include file can contain static declarations that are separate entities for
each file in which they are included. If your image is too large for dbx to run,
compile with the —g switch only those files that you are interrested in debugging.
However, even with Modula-2, there is a substantial amount of duplication of symbol
information necessary for inter-module type checking.

Some problems remain with the support for individual languages. Fortran problems
include: (a) inability to assign to logical, logical*2, complex, and double complex
variables, (b) inability to represent parameter constants which are not type integer or
real, (c) peculiar representation for the values of dummy procedures. (The value
shown for a dummy procedure is actually the first few bytes of the procedure text.

To find the location of the procedure, use an ampersand (&) to take the address of the
variable.)

The dbx debugger does not allow you to run a program you do not own unless you
are root. If you are not root, the message message string can’t-write-to-process may
be displayed on your screen when you issue the run command. This occurs when
the dbx debugger tries to set breakpoints because of restrictions on ptrace(2). If you
repeat the run command, your program runs without breakpoints. The dbx debugger
always tries set a breakpoint on exit.

Files
a.out Object file
.dbxinit Initial commands
See Also

cc(1), pe(l), ptrace(1), vee(l)

Commands 1-177

VAX

dc(1)

Name

dc — desktop calculator

Syntax

~de[file]

Description

The dc command is an arbitrary precision arithmetic package. Ordinarily it operates
on decimal integers, but you can specify an input base, output base, and a number of
fractional digits to be maintained. The overall structure of dc is a stacking (reverse

Polish) calculator. If an argument is given, input is taken from that file until its end,
then from the standard input. The following constructions are recognized:

number

+ -/ *

X
[..]

<X >x

1-178 Commands

The value of the number is pushed on the stack. A number is an unbroken
string of the digits 0-9. It may be preceded by an underscore _ to input a
negative number. Numbers may contain decimal points.

% A

The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (/), remaindered (%), or exponentiated (*). The two entries are
popped off the stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

The top of the stack is popped and stored into a register named x, where x
may be any character. If the s is capitalized, x is treated as a stack and the
value is pushed on it.

The value in register x is pushed on the stack. The register x is not altered.
All registers start with zero value. If the 1is capitalized, register x is
treated as a stack and its top value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged. P
interprets the top of the stack as an ascii string, removes it, and prints it.

All values on the stack are printed.

Exits the program. If executing a string, the recursion level is popped by
two. If q is capitalized, the top value on the stack is popped and the string
execution level is popped by that value.

Treats the top element of the stack as a character string and executes it as a
string of dc commands.

Replaces the number on the top of the stack with its scale factor.

Puts the bracketed ascii string onto the top of the stack.

=X

The top two elements of the stack are popped and compared. Register x is
executed if they obey the stated relation.

Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the scale
factor is ignored.

dec(1)

o

Interprets the rest of the line as a UNIX command.
c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for
further input. When the base (number radix) is re-set, all subsequent
numbers are interpreted in the new base.

For example, if the command is issued twice, first to set the base to base 2,
then to reset it back to base 10, the new base value must be given in the
base originally set (that is, ‘2 i’ will set the base to base 2, after which
‘1010 i’ will set it back to base 10).

I Pushes the input base on the top of the stack.

0 The top value on the stack is popped and used as the number radix for
further output.

(o) Pushes the output base on the top of the stack.

k The top of the stack is popped, and that value is used as a non-negative

scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable if
all are changed together.

The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and
executed.

HE Used by bc for array operations.

An example which prints the first ten values of n! is the following:

[lal+dsa*plalO>y]sy
Osal
lyx

Commands 1-179

de (1)

Diagnostics

"x is unimplemented"
X is an octal number.

"stack empty"
Not enough elements on the stack to do what was asked.

"Out of space”
The free list is exhausted (too many digits).

"Out of headers"
Too many numbers being kept around.

"Out of pushdown"
Too many items on the stack.

"Nesting Depth”
Too many levels of nested execution.

See Also
be(l)

1-180 Commands

Name

dd(1)

dd - copy and convert data

Syntax

dd [option = value...]

Description

The dd command copies an input file to an output with any requested conversions.
The dd command is especially suited to I/O on the raw physical devices because it
allows reading and writing in arbitrary record sizes.

After completion, dd reports the number of whole and partial input and output

blocks.

This utility supports EOT handling which allows the use of multiple media. The
utility prompts for the next volume when it encounters the end of the current volume.

Options

Where sizes (n) are given for an option, the number may end with k for kilobytes
(1024 bytes), b for blocks (512 bytes), or w for words (2 bytes). Also, two numbers
may be separated by the character x to indicate a product.

if=name
of=name

ibs=n
obs=n

bs=n

cbs=n

skip=n
files=n

seek=n

rbuf=n

Input file name. The standard input is the default.
Output file name. The standard output is the default.

Input block size, n bytes. The default is 512 bytes. Some
devices do not support greater than 65,535 bytes.

Output block size, n bytes. The default is 512 bytes. Some
devices do not support greater than 65,535 bytes.

Set both input and output block size to r bytes, superseding
ibs and obs. Also, if bs is specified, the copy is more
efficient, since no blocking conversion is necessary.

Conversion buffer size, n bytes. Use only if ascii, unblock,
ebcdic, ibm, or block conversion is specified. For ascii and
unblock, n characters are placed into the conversion buffer,
any specified character mapping is done, trailing blanks are
trimmed and new line added before sending the line to the
output. For ebcdic, ibm, or block, characters are read into
the conversion buffer, and blanks added to make an output
record of size n bytes.

Skip n input records before starting to copy.

Copy n input files before terminating. This option is useful
only when the input is a magnetic tape or similar device.

Seek n records from beginning of output file before copying.

Use n buffers for reading from those raw devices that
support n-buffered I/O. (See Section 4 to check whether a
specific device supports n-buffered I/O.) All » reads are

Commands 1-181

whuf=n

count=n
conv=ascii
conv=ebcdic

conv=ibm

conv=block
conv=unblock
conv=Ilcase
conv=ucase
conv=swab
conv=noerror
conv=sync
conv=nomulti
conv=sparse
CONV=... 4«

Examples

started and each read must complete before the data can be
used. This allows an n-buffered read-ahead on supported
raw devices.

A default of eight read buffers are used if the read device
supports n-buffered I/O and the write device does not.

The rbuf option cannot be used with the whuf option.

Use n buffers for writing from those raw devices that support
n-buffered I/O. (See Section 4 to check whether a specific
device supports n-buffered I/0.) Each write is started but
not known to be complete until all » buffers have been used.
(This allows an n-buffered write-behind on supported raw
devices).

A default of eight write buffers are used if the write device
supports n-buffered I/O.

The wbuf option cannot be used with the rbuf option.
Copy only 7 input records.

Convert EBCDIC to ASCII.

Convert ASCII to EBCDIC.

Slightly different map of ASCII to EBCDIC (see
RESTRICTIONS).

Convert variable length records to fixed length.
Convert fixed length records to variable length.
Map alphabetics to lower case.

Map alphabetics to upper case.

Swap every pair of bytes.

Do not stop processing on an error.

Pad every input record to ibs.

Disable multiple tape volumes.

Create a sparse output file.

Include several arguments for the conv option, separated by
commas (see example below).

The following example shows how to read an EBCDIC tape blocked ten 80-byte
EBCDIC card images per record into the ASCII file x:

dd if=/dev/rmtOh of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. As noted in the DESCRIPTION, the dd command is
especially suited to I/O on the raw physical devices because it allows reading and
writing in arbitrary record sizes.

1-182 Commands

dd(1)

Restrictions

The ASCII/JEBCDIC conversion tables are taken from the 256-character standard in
the Communications of the ACM, November, 1968.

The ibm conversion corresponds to certain IBM print train conventions.

One must specify ‘‘conv=noerror,sync’’ when copying raw disks with bad sectors to
ensure that dd stays synchronized.
On SCSI tape devices when reading a multi-volume tape set the command will exit
normally upon hitting EOT on any volume rather than automatically unloading the
volume and prompting for the next volume as is normal. The user should load the
next volume and issue the command anew.

Diagnostics

f+p records in(out): numbers of full and partial records read(written)

See Also
cp(1), tr(1), nbuf(4)

Commands 1-183

delta(1)

Name

delta — create new SCCS delta to save changes

Syntax
delta [-rSID] [-s] [-n] [—glist] [-m [mrlist]] [~y [comment]] [-p] files

Description

The delta command is used to permanently introduce into the named SCCS file
changes that were made to the file retrieved by get(1) (called the g-file, or generated
file).

The delta command makes a delta to each named SCCS file. If a directory is
named, delta behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of — is given, the
standard input is read (see RESTRICTIONS); each line of the standard input is taken
to be the name of an SCCS file to be processed.

The delta command may issue prompts on the standard output depending upon
certain keyletters specified and flags that may be present in the SCCS file. For further
information, see —m and -y keyletters below and admin(1).

The delta includes commentary, input by the user, that consists of one or more
lines, terminated by a period (.) in column one of a new line.

Keyletter arguments apply independently to each named file.

Options
Keyletter arguments:
—glist Ignores specified list of deltas.

—~m{mrlist] Indicates the modification request number. (-m[mrlist]).

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the
standard input is read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt always precedes the
comments? prompt (see —y keyletter).

MRs in a list are separated by blanks and/or tab characters.
An unescaped new-line character terminates the MR list.

Note that if the v flag has a value it is taken to be the name
of a program (or shell procedure) which will validate the
correctness of the MR numbers. For further information, see
admin(l). If a non-zero exit status is returned from MR
number validation program, delta terminates (it is
assumed that the MR numbers were not all valid).

-n Does not delete edited file.
-p Displays differences before and after delta is applied.
-rSID Identifies which delta is to be made to the SCCS file. Use

1-184 Commands

delta(1)

this keyletter only if two or more outstanding gets for
editing (get —e) on the same SCCS file has been done by the
same person (login name). The SID value specified with the
-1 keyletter can be either the SID specified on the get
command line or the SID to be made as reported by the get
command. For further information, see get(1). A
diagnostic results if the specified SID is ambiguous, or, if
necessary and omitted on the command line.

-s Suppresses all messages.

~ylcomment] Creates delta with specified commentary. text A null string
is considered a valid comment.
If —y is not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before
the standard input is read,; if the standard input is not a
terminal, no prompt is issued. A period (.) in column one of
a newline terminates the comment text.

Restrictions

Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the
SCCS file unless the SOH is escaped. This character has special meaning to SCCS and
will cause an error. For further information, see sccsfile(5).

A get of many SCCS files, followed by a delta of those files, should be avoided
when the get generates a large amount of data. Instead, multiple get /delta
sequences should be used.

If the standard input (=) is specified on the delta command line, the —m (if
necessary) and -y keyletters must also be present. Omission of these keyletters
causes an error to occur.

Diagnostics

Files

See sccshelp(l) for explanations.

g-file Existed before the execution of delta; removed after
completion of delta.

p-file Existed before the execution of delta; may exist after
completion of delta.

g-file Created during the execution of delta; removed after
completion of delta.

x-file Created during the execution of delta; renamed to SCCS
file after completion of delta.

z-file Created during the execution of delta; removed during
the execution of delta.

d-file Created during the execution of delta; removed after
completion of delta.

/usr/bin/bdiff Program to compute differences between the ‘‘gotten’’ file
and the g-file.

Commands 1-185

delta(1)

See Also

admin(1), bdiff(1), cdc(1), get(1), help(1), prs(1), rmdel(1), sccs(1), sccsfile(5)
Guide to the Source Code Control System

1~186 Commands

deroff(1)

Name
deroff — remove formatting codes from text

Syntax
deroff [-w] file...

Description
The deroff command reads each file in sequence and removes all nroff and
troff command lines, backslash constructions, macro definitions, eqgn constructs
(between .EQ and .EN lines or between delimiters), and table descriptions and writes
the remainder on the standard output. The deroff command follows chains of
included files (.so and .nx commands); if a file has already been included, the .so
command is ignored and an .nx command terminates execution. If no input file is
given, deroff reads from the standard input file.

Options
~w Generates word list (one word per line).

Restrictions
The deroff command is not a complete t rof £ interpreter, so it can be confused
by subtle constructs. Most errors result in too much rather than too little output.
The —w flag removes every one— or two—character word.

See Also

diction(1), nroff(1)

Commands 1-187

df(1)

Name

Syntax

df — display free and used disk space

df [-i] [-n] [filesystem...] [file...]

Description

The df command displays the amount of disk space available on the specified file
system, for example, /dev/raOa. It also displays the amount of available disk
space on the file system in which the specified file is contained, for example, SHOME.
If a device is given that has no file systems mounted on it, df displays the
information for the root file system. Without any arguments or options, df displays
shows all mounted filesystems, including those manually mounted without use of the
/etc/fstab file. The numbers are reported in kilobytes.

Unless the —n option is specified, df updates the statistics stored in memory for the
file system specified, before it returns the information.

Options

—i Also report the number of used and free inodes.

-n Do not update the file system statistics stored in memory. Instead, return
whatever statistics are stored in memory. This prevents df from hanging in
the event that a server containing the specified file system is down.

Restrictions

You cannot use the df command to find free space on an unmounted file system
using the block or character special device name. Instead, use the dumpfs
command.

Examples

% df

Filesystem Total kbytes kbytes %

node kbytes used free used Mounted on
/dev/rala 7429 2085 4602 31% /tmp
/dev/rale 30519 14817 12651 54% /usr/spool
/dev/ralh 313233 122858 159052 44% /usr/staffl

The total disk space is the total space that was created during the making of the file
system. The addition of the used space, the free space and a percentage of reserved
space is the total space. The default value for the reserved space is 10%.

1-188 Commands

df (1)

Files

/etc/fstab
List of mounted file systems

See Also
getmnt(2), fstab(5), dumpfs(8), icheck(8), mkfs(8), newfs(8), quot(8)

Commands 1-189

dgate(1c)

Name

Syntax

dgate — log in to a DECnet remote system through an intermediate ULTRIX DECnet
host (gateway system)

dgate host

Description

The dgate command lets you log in from an ULTRIX system without DECnet to a
remote system on DECnet (specified by the host argument) through an intermediate
host, or gateway system: an ULTRIX system attached to DECnet.

The login is accomplished through an intermediate host, or gateway system, to which
your system is connected through a local area (TCP/IP) network. The gateway
system is specified at the local system in the file /etc/dgateway. The gateway
system must be connected through DECnet to the ultimate host system that you
specify in the dgate command.

The dgate program scans input for lines beginning with a tilde character (~). A
tilde-period line disconnects you from your current dgate session. A tilde-CTRL/Z
line suspends dgate and returns you to the parent process. A tilde-tilde line passes
the tilde character on to the remote login session.

Files
/etc/dgateway
~/ .dgateway
See Also

dgateway(5)

1-190 Commands

diction(1)

Name

diction, explain — print wordy sentences; thesaurus for diction
Syntax

diction [-ml] [-mm] [-n] [-f pfile] file...

explain

Description

The diction command finds all sentences in a document that contain phrases from
a data base of bad or wordy diction. Each phrase is bracketed with []. Because
diction runs deroff before looking at the text, formatting header files should be
included as part of the input.

The explain command is an interactive thesaurus for the phrases found by diction.

Options

-mm Overrides default macro package —ms.

-ml Causes deroff to skip lists.

—fpfile Specifies pattern file in addition to default file. Note that

you can specify the —n flag to suppress the default file.

Restrictions

Use of non-standard formatting macros rriay cause incorrect sentence breaks.
See Also

deroff(1)

Commands 1-191

diff(1)
Name

Syntax

diff — differential file comparator

diff [options] dirl dir2
diff [options] filel file2

Description

The diff command compares the contents of files or groups of files, and lists any
differences it finds. When run on regular files, and when comparing text files that
differ during directory comparison, diff tells what lines must be changed in the
files to bring them into agreement. Except in rare circumstances, diff finds a
smallest sufficient set of file differences. If neither filel nor file2 is a directory, then
either can be specified as ‘—’, in which case the standard input is used. If file/ is a
directory, then a file in that directory whose filename is the same as the filename of
file2 is used and likewise if file2 is a directory.

If both arguments are directories, di f £ sorts the contents of the directories by name,
and then runs the regular file di ff algorithm on text files that are different. Binary
files that differ, common subdirectories, and files that appear in only one directory are
listed.

Options

The following options are used when comparing directories:

-1 Displays the output in long format. Each text file is piped through pr(1)
to paginate it; other differences are summarized after all text file
differences are reported.

-n Produces a script similar to that of —e, but in reverse order and with a
count of changed lines on each insert or delete command.

-r Recursively checks files in common subdirectories.

- Displays names of files that are the same.

—Sname Starts a directory in the middle beginning with the specified file.

Except for the -b, i, t, and w options, which may be given with any of the others,
the following formatting options are mutually exclusive:

-b Ignores trailing blanks and other strings of blanks and treats such
portions as equal.

- Displays three context lines with each output line. For backwards
compatibility, —cn causes n number of context lines.

-Cn Displays specified number of context lines with each output line. With —¢
or —C the output format is modified slightly: the output begins with
identification of the files involved and their creation dates and then each
change is separated by a line with a dozen asterisks (*). The lines
removed from filel are marked with minus sign (-); those added to file2
are marked plus sign (+). Lines that are changed from one file to the
other are marked in both files with an exclamation point (!).

1-192 Commands

diff (1)

Changes within »n context lines of each other are grouped together in the
output. This results in output that is usually much easier to interpret.

-Dstring Causes diff to create a merged version of filel and file2 on the standard
output. With C preprocessor controls included, a compilation of the
result without defining string is equivalent to compiling filel, while
defining string will yield file2.

—e Writes output to an ed script. In connection with —e, the following shell
program can help maintain multiple versions of a file. Only an ancestral
file ($1) and a chain of version-to-version ed scripts ($2,$3,...) made by
diff need be available. A latest version message appears on the
standard output.

(shift; cat $*; echo "1,8p°) | ed - $1

If you specify —e when comparing directories the result is a sh(1) script
for converting text files that are common to the two directories from their
state in dirl to their state in dir2.

—f Writes the output in reverse order to a script.

~h Makes a hasty comparison. It works only when changed portions are
short and well separated, but does work on files of unlimited length.

—i Ignores the case of letters. For example A’ will compare equal to ‘a’.

-t Expand tabs in output lines. Normal or —c output adds character(s) to the

front of each line which may affect the indentation of the original source
lines and make the output listing difficult to interpret. This option will
preserves the original indentation.

~w Causes whitespace (blanks and tabs) to be totally ignored. For example,
‘if (a==b)’ will compare equal to ‘if(a==b)’.

There are several options for output format; the default output format contains lines
of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,nd

These lines resemble ed commands to convert filel into file2. The numbers after the
letters pertain to file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward you
can tell how to convert file2 into filel. Asin ed, identical pairs where nl = n2 or
n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by a left angle bracket (<). Then all the lines that are affected in the second
file are listed, flagged by a right angle bracket (>).

Restrictions

Editing scripts produced under the —e or —f option have trouble creating lines
consisting of a single period (.).

When comparing directories with the -b, i, t, or w options specified, diff first
compares the files as cmp does, and then runs the diff algorithm if they are not
equal. If the only differences are in the blank strings, di f £ may report these as
differences.

Commands 1-193

diff (1)

Diagnostics

Exit status is 0 for no differences, 1 for some differences,and 2 if the specified file
cannot be found.

Files
/tmp/d??2?2?°?
/usr/lib/diffh for-h
/bin/pr

See Also

cmp(1), cc(1), comm(1), diff3(1), ed(1)

1-194 Commands

diff3 (1)

Name
diff3 — 3-way differential file comparison

Syntax
diff3 [—ex3] filel file2 file3

Description

The diff3 command compares three versions of a file, and publishes the ranges of
text that disagree, flagged with the following codes:

==== all three files differ
==== filel is different
====) file2 is different
==== file3 is different

The type of change needed to convert a given range of a given file to some other is
indicated in one of these ways:

f:nl a Text is to be appended after line number #/ in file f, where f = 1,
2, or 3.

finl ,n2 ¢ Textis to be changed in the range line n/ to line n2. If nl = n2,
the range may be abbreviated to n/.

The original contents of the range follows immediately after a ¢ indication. When
the contents of two files are identical, the contents of the lower-numbered file is
suppressed.

Options

-3 Produces an ed editor script containing the changes between filel and file2 that
are to be incorporated into file3.

-€ Produces an ed editor script containing the changes between file2 and
file3 that are to be incorporated into filel.

-X Produces an ed editor script containing the changes among all three
files.

Examples

Under the —e option, dif £3 publishes a script for the editor ed that incorporates
into filel all changes between file2 and file3 — that is, the changes that would
normally be flagged and 3. Option —x (-3) produces a script to
incorporate only changes flagged ==== (====3). The following command applies
the resulting script to ‘filel’:

(cat script; echo "1,5%p") ‘ ed - filel

Commands 1-195

diff3(1)

Restrictions
Text lines that consist of a single °.” defeat —e.

Files

Jusr/lib/diff3

See Also
cmp(1), comm(1), diff(1), dffmk(1), join(1), sccsdiff(1), unig(1)

1-196 Commands

diffmk (1)

Name

diffmk — mark differences between files

Syntax

diffmk namel name2 name3

Description

The diffmk command compares two versions of a file and creates a third file that
includes ‘‘change mark’’ commands for nroff or troff. The namel and name2
are the old and new versions of the file. The diffmk command generates name3,
which contains the lines of name2 plus inserted formatter ‘‘change mark’’ (.mc)
requests. When name3 is formatted, changed or inserted text is shown by | at the
right margin of each line. The position of deleted text is shown by a single *.

The diffmk command can be used to produce listings of C (or other) programs
with changes marked. A typical command line for such use is the following:

diffmk old.c new.c tmp; nroff macs tmp | pr
In this example the file macs contains:

pl1
177
.nf
.0
.ae

The .1l request might specify a different line length, depending on the nature of the
program being printed. The .eo and .nc requests are probably needed only for C
programs.

If the characters | and * are inappropriate, a copy of di ffmk can be edited to
change them. The diffmk command is a shell procedure.

Restrictions

Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output, that
is, replacing .sp by .sp 2 will produce a ‘‘change mark’’ on the preceding or
following line of output.

See Also
cmp(1), comm(1), diff(1), nroff(1), join(1), sccsdiff(1), troff(1), uniq(1)

Commands 1-197

dircmp (1)

Name

dircmp — directory comparison

Syntax
dircmp[-d][-s][-wn]dir..

Description

The dircmp command examines dirl and dir2 and generates tabulated information
about the contents of the directories. Listings of files that are unique to each directory
are generated for all the options. If no option is entered, a list is output indicating
whether the filenames common to both directories have the same contents.

This command is supplied for X/OPEN compliance. The same results are available
from dif£(1), which produces results more quickly and effectively.

Options

—-d Compares the contents of files with the same name in both directories and
output a list telling what must be changed in the two files to bring them into
agreement. The list format is described in dif£(1).

-s Suppresses messages about identical files.

-wn Changes the width of the output line to n characters. The default width is 72.

See Also
cmp(1), diff(1).

1-198 Commands

dirname (1)

Name

dirname — deliver directory names from pathname

Syntax
dirname string
Description
The dirname command delivers all but the last level of the path name in string.

Examples
The following example sets the Bourne shell variable NAME to /usr/src/cmd:

NAME=‘dirname /usr/src/cmd/cat.c®

See Also
basename(1), sh(1), sh5(1), ksh(1)

Commands 1-199

RISC

dis (1)
Name
dis — disassemble an object file
Syntax
dis [-h] [-S] [-p procedure] [file ...]
Description
The dis command disassembles object files into machine instructions. Note that
assembler code and machine code can differ depending on the machine type. A file
can be an object or an archive file.
Options
~h Prints the general register names, rather than the software register names.
—p Disassembles only the specified procedure from the object file.
~S Lists the source listings. Otherwise, only instructions are listed.
Restrictions

You cannot disassemble an archive.

1-200 Commands

dist(1mh)

Name
dist — redistribute a message to additional addresses

Syntax
dist [+folder] [msg] [-annotate] [-noannotate] [-draftfolder +folder]
[-draftmessage msg] [-nodraftfolder] [-editor editorname] [-noedit]
[-form formfile] [-inplace] [-noinplace] [-whatnowproc program]
[-nowhatnowproc] [-help]

Description

Use dist to redistribute the current message to addresses that are not on the original
address list.

The program dist is similar to forw. The main difference between the two
commands is that forw encapsulates the message, whereas dist merely resends it.
This is manifested in the scan listing of the messages. A message that has been
forwarded will appear to have been sent by the person who forwarded the message.
A message that has been redistributed using dist will appear to have come from the
sender of the original message. In the following example, messages one and two are
identical apart from the method used to send the message on to additional recipients.

1 20/06 goodman ULTRIX <<As you will see from the attached
2+ 21/06 John As previous, but forwarded <<-—-—-—---- Forwa

When you use dist, you will get a message form to fill in with the details of the
additional recipients. The default message form contains the following elements:

Resent-~To:
Resent-cc:

You can only put recognized header lines in this message form. The dist program
recognizes addresses in the following fields:

Resent-To:

Resent-cc:

Resent-Bcc:

Resent-Fcc: folder

The Resent-Fcc: field will be honored only if you have a corresponding
Resent-Fcc: folder set up in your mh_profile (see send(lmh)). The
headers and the body of the original message are copied to the draft when the
message is sent.

If the file named distcomps exists in your MH directory, it is used instead of the
standard mail header. In either case, the file specified by —form formfile is used if
given.

If the draft already exists, dist asks you what you want to do with the existing
draft. A reply of quit aborts dist, leaving the draft intact; replace replaces
the existing draft with a blank skeleton; and 1ist displays the draft.

Commands 1-201

dist(1mh)
Options

If the ~annotate option is used, the message being distributed is annotated with
the lines:

Resent: date
Resent: addrs

where each address list contains as many lines as required. This annotation is done
only if the message is sent directly from dist . If the message is not sent
immediately from dist, comp —use may be used to re-edit and send the
constructed message, but the annotations do not take place. The —inplace option
causes annotation to be done in place in order to preserve links to the annotated
message.

The ~editor and —noedit switches allow you to specify an editor of your choice;
or to suppress the editor entirely.

Note that while in the editor, the message being resent is available through a link
named @ (assuming the default whatnowproc). In addition, the actual pathname
of the message is stored in the environment variable $editalt, and the pathname
of the folder containing the message is stored in the variable $Smhfolder.

The dist command normally creates the draft of the message in the draft file, or
in the +drafts folder if you have one set up. The —draftfolder +folder and
—draftmessage filename options allow you to create draft messages in alternative
locations. See comp(1mh) for more details.

When you exit from the editor, dist invokes the whatnow program. See
whatnow(1mh) for details of the available options. The invocation of this program
can be inhibited by using the -nowhatnowproc switch. However the whatnow
program starts the initial edit, hence, ~-nowhatnowproc prevents any edit from
occurring.

The dist command does not rigorously check the message being distributed for
adherence to the transport standard, but post called by send does.

The post program will not deliver poorly formatted messages, and dist will not
correct things for you.

If whatnowproc is whatnow, then dist uses the built-in whatnow, program.
However, it does not actually run the whatnow program. Hence, if you define your
own whatnowproc, do not call it whatnow since dist will not run it.

If your current working directory is not writable, the link named @ is not available.

Context

If a folder is given, it will become the current folder. The message distributed will
become the current message. Dist originally used headers of the form
Distribute-xxx: instead of Resent-xxx:. In order to conform with the
ARPA Internet standard, RFC-822, the Resent-xxx: form is now used. Dist
will recognize distribute-—xxx: type headers and automatically convert them to
Resent =-xxx. The defaults for dist are:

+foldername defaults to the current folder
msg defaults to cur

—-noannotate

—-nodraftfolder

1-202 Commands

dist(1mh)

-noinplace
Files
/usr/new/lib/mh/distcomps The message skeleton
<mh-dir>/distcomps Alternative to the standard skeleton
$HOME/ .mh_profile The user profile
<mh-dir>/draft The draft file

Profile Components

Path: To determine your MH directory (mh-dir)

Current-Folder: To find the default current folder

Draft-Folder: To find the default draft-folder

Editor: To override the default editor

fileproc: Program to refile the message

whatnowproc: Program to ask the What now? questions
See Also

comp(1mh), forw(1mh), repl(1mh), send(1mh), whatnow(1mh)

Commands 1-203

domainname (1yp)

Name

domainname — display or set the name of the current domain for this system

Syntax

domainname [nameofdomain]

Description

The domainname command, when used without an argument, displays the name of
the current domain. The /etc/rc.local startup script must be used to set the
current domain name before any other YP commands can be issued.

A domain is a logical grouping of networked-connected systems established for the
purpose of sharing a common set of data files. Domains are only used by the yellow
pages (YP) service and are called YP domains. A YP domain is a directory in
/etc/yp, established through the use of the domainname command, where a YP
server holds all of the YP maps. Each YP map contains a set of keys and associated
key values. For example, in a map called hosts.byname, the host names stored
there constitute the keys. The corresponding internet addresses of each host
constitute the associated key values.

See Also
ypfiles(5yp), ypsetup(8yp)

1-204 Commands

dtoc (1)

Name
dtoc — unpack objects from a DOTS file

Syntax
dtoc [—f][—p 1 [[object.dots] directory]

Description

The dtoc command unpacks the contents of a Data Object Transport Syntax
(DOTYS) file or standard input.

object.dots can be either a file name, or a minus sign (). If a minus sign (-) is
specified, or if no file name is present, dt oc reads from the standard input. If
directory is specified, the contents of the DOTS input is unpacked and stored in the
specified directory. If directory is not specified, the content of the DOTS input is
unpacked into the current directory. The names of the files created are written to
standard output.

A DOTS file may contain a data object which consists of more than one component.
Therefore, it is possible that more than one output file may be generated. As the
object is unpacked, duplicate file or directory names may be encountered. If a
duplicate is encountered, a new output file is generated with a sequential number
appended to its name. For example, if dtoc discovers an existing file foo.ddif
during unpacking, foo.ddif.1 is created.

As an object is unpacked, the external references within each object component are
updated. Because DOTS files may have originated from non-ULTRIX systems,
names of components may be modified as components are unpacked. References to
those renamed components are updated accordingly.

Options

—f Suppresses output of unpacked file names.

—p Causes only the name of the primary input file to be written to standard output.

Implementation

Standard Input

If a minus sign (-) is specified, or if no parameters are specified, standard input is
read until a <CTRL/D> or EOF (end of file) is read. It cannot be specified more than
once. The contents of standard input must conform to the syntax of a single DOTS
file.

Reconstitution Of Names

Object file names and file names of referenced components may be modified as
objects are extracted or unpacked. If names are modified, the references in the
unpacked objects are updated. The handling of names depends in part on the name-
type of the object, as follows:

Commands 1-205

dtoc(1)

ULTRIX file names
Names are unmodified.
VMS file names
The set of rules is as follows:
Convert uppercase letters to lower case.

Convert dollar signs ($) to underscores (_) because dollar
signs have meaning on ULTRIX systems.

Ignore disk volume and directory specifications, if they are
present, because they are not likely to be meaningful on
ULTRIX systems.

Append duplicate file names with a period and a unique
number.

Leave all other characters alone.

Restrictions

A DOTS file is expected to contain dnly a single primary DDIF or DTIF object in
this release. Any subsequent objects in the DOTS file are external references of the
primary object.

Diagnostics

The exit status is O if all objects were unpacked successfully, and 1 if any of the
objects could not be unpacked. Consult standard error to see what failed, and why.

If a nonexistent target directory is specified, dt oc returns error status.

See Also
ctod(1), DDIF(5), DTIF(5), DOTS(5)

1-206 Commands

du(1)

Name

du — print amount of disk usage

Syntax

du [-as] [name...]

Description
The du command gives the number of kilobytes contained in all files and,
recursively, directories within each specified directory or file name. If name is

[

missing, °." is used.
Absence of either —a or —s causes an entry to be generated for each directory only.

A file that has two links to it is only counted once.
Options

—-a Displays the disk usage for each file.

—s Displays a summary total only.

Restrictions

Non-directories given as arguments (not under —a option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

See Also
df(1), quot(8)

Commands 1-207

echo(1)

Name

echo — echo arguments
Syntax

echo [-n] [arg...]
Description

The echo command writes its arguments separated by blanks and terminated by a
new line on the standard output.

Options
-n Suppresses newlines from output.

Examples

The echo command is useful for producing diagnostics in shell programs and for
writing constant data on pipes.

To send diagnostics to the standard error file, type the following:

echo ... 1>&2

1-208 Commands

Name

echo(1sh5)

echo — echo arguments

Syntax

echo[arg]..

Description

The echo command writes its arguments separated by blanks and terminated by a
new-line on the standard output. It also understands C-like escape conventions;
however, beware of conflicts with the shell’s use of the backslash (\) character:

\b
\e
\f
\n
\r
\t
\v
\
\n

backspace

print line without new-line

form-feed

new-line

carriage return

tab

vertical tab

backslash

the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal
number 7, which must start with a zero.

The echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

See Also
sh5(1)

Commands 1-209

ed(1)

Name

Syntax

ed, red — text editor

ed [-] [-pstring] [-x] [file]
red [-] [-x] [file]

Description

The ed text editor is the standard text editor. If you give the file argument, ed
simulates an e command (see below) on the named file; that is to say, the file is read
into ed’s buffer so that it can be edited. The — option suppresses the printing of
character counts by e, r, and w commands, of diagnostics from e and q commands,
and of the ! prompt after a !shell command. The —p option allows you to specify a
prompt string.

NOTE

The —x option is available only if the Encryption layered product is
installed.

If you supply the —x option, an x command is simulated first to handle an encrypted
file. The ed text editor operates on a copy of the file it is editing; changes made to
the copy have no effect on the file until you give a w (write) command. The copy of
the text being edited resides in a temporary file called the buffer. There is only one
buffer.

The red text editor is a restricted version of ed. It allows editing of files only in
the current directory, and prohibits executing shell commands with !shell command.
Attempts to bypass these restrictions result in an error message (restricted shell).

NOTE

When you enter text, tab characters are expanded to every eighth column
as is the default.

Commands to ed have a simple and regular structure: zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every command
that requires addresses has default addresses, so that the addresses can frequently be
omitted.

In general, only one command appears on a line. Certain commands allow the input
of text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In input mode, no commands are
recognized; all input is merely collected. Input mode is exited by typing a period (.)
alone at the beginning of a line.

The ed text editor supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some commands (for
example, 5) to specify portions of a line that are to be substituted. A regular
expression (RE) specifies a set of character strings. A member of this set of strings is
said to be matched by the RE. The REs allowed by ed are constructed as follows:

1-210 Commands

ed(1)

The following one-character REs match a single character:

An ordinary character (not one of those discussed below) is a one-
character RE that matches itself.

A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. . * [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([]).

b. A (caret or circumflex), which is special at the beginning of an entire
RE (see below), or when it immediately follows the left of a pair of
square brackets ([]) (see below).

c. $ (currency symbol), which is special at the end of an entire RE (see
below).

d. The character used to bound (that is, delimit) an entire RE, which is
special for that RE (for example, see how slash (/) is used in the g
command, below.)

A period (.) is a one-character RE that matches any character except new-
line.

A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches any one character in that string. If,
however, the first character of the string is a circumflex (A), the one-
character RE matches any character except new-line and the remaining
characters in the string. The A has this special meaning only if it occurs
first in the string. The minus (=) may be used to indicate a range of
consecutive ASCH characters; for example, [0-9] is equivalent to
[0123456789]. The — loses this special meaning if it occurs first (after an
initial A, if any) or last in the string. The right square bracket (]) does not
terminate such a string when it is the first character within it (after an
initial A, if any). For example, []Ja—f] matches either a right square
bracket (]) or one of the letters a through f inclusive. The four characters
listed in a above stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

A one-character RE is a RE that matches whatever the one-character RE
matches.

A one-character RE followed by an asterisk (*) is a RE that matches zero
or more occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that
matches a range of occurrences of the one-character RE. The values of m
and n must be non-negative integers less than 256; \{m\} matches exactly
m occurrences; \{m,\} matches at least m occurrences; \{m,n\} matches
any number of occurrences between m and n inclusive. Whenever a
choice exists, the RE matches as many occurrences as possible.

The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

Commands 1-211

ed(1)

A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

The expression \n matches the same string of characters as was matched
by an expression enclosed between \(and \) earlier in the same RE. Here
n is a digit; the sub-expression specified is that beginning with the n-th
occurrence of \(counting from the left. For example, the expression
A*\)\1$ matches a line consisting of two repeated appearances of the
samie string.

Finally, an entire RE may be constrained to match only an initial segment or final
segment of a line (or both):

A circumflex (A) at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

A currency symbol ($) at the end of an entire RE constrains that RE to
match a final segment of a line.

The construction Aentire RE$ constrains the entire RE to match the entire line.

The null RE (for example, //) is equivalent to the last RE encountered. See also the
last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description of
each command. Addresses are constructed as follows:

L.

2.
3.
4

The character . addresses the current line.
The character $ addresses the last line of the buffer.
A decimal number » addresses the n-th line of the buffer.

’x addresses the line marked with the mark name character x, which must be a
lower-case letter. Lines are marked with the k command described below.

A RE enclosed by slashes (/) addresses the first line found by searching
forward from the line following the current line toward the end of the buffer
and stopping at the first line containing a string matching the RE. If necessary,
the search wraps around to the beginning of the buffer and continues up to and
including the current line, so that the entire buffer is searched. See also the last
paragraph before FILES below.

A RE enclosed in question marks (?) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the
buffer and stopping at the first line containing a string matching the RE. If
necessary, the search wraps around to the end of the buffer and continues up to
and including the current line. See also the last paragraph before FILES below.

An address followed by a plus sign (+) or a minus sign (-) followed by a
decimal number specifies that address plus (respectively minus) the indicated
number of lines. The plus sign may be omitted.

If an address begins with + or —, the addition or subtraction is taken with
respect to the current line. For example, 5 is understood to mean .-35.

If an address ends with + or —, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of rule 8 immediately

1-212 Commands

ed(1)

above, the address — refers to the line preceding the current line. (To maintain
compatibility with earlier versions of the editor, the character A in addresses is
entirely equivalent to —.) Moreover, trailing + and — characters have a
cumulative effect, so — refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon () stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one
or two addresses assume default addresses when an insufficient number of addresses
is given; if more addresses are given than such a command requires, the last one(s)
are used.

Typically, addresses are separated from each other by a comma (,). They may also
be separated by a semicolon (;). In the latter case, the current line (.) is set to the
first address, and only then is the second address calculated. This feature can be used
to determine the starting line for forward and backward searches (see rules 5. and 6.
above). The second address of any two-address sequence must correspond to a hne
that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the given
addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any
command (except e, f, r, or w) may be suffixed by I, n or p, in which case the current
line is either listed, numbered or printed, respectively, as discussed below under the 1,
n and p commands.

(.)a

<text>

. The append command reads the given text and appends it
after the addressed line; . is left at the last inserted line, or, if
there were none, at the addressed line. Address 0 is legal for
this command: it causes the ‘‘appended’’ text to be placed at
the beginning of the buffer. The maximum number of
characters that may be entered from a terminal is 256 per
line (including the new line character).

(e

<text>
The change command deletes the addressed lines, then
accepts input text that replaces these lines; . is left at the last
line input, or, if there were none, at the first line that was not
deleted.

(.yo)d

The delete command deletes the addressed lines from the
buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end of
the buffer, the new last line becomes the current line.

Commands 1-213

ed(1)

e file

E file

f file

The edit command causes the entire contents of the buffer to
be deleted, and then the named file to be read in; . is set to
the last line of the buffer. If no file name is given, the
currently-remembered file name, if any, is used (see the f
command). The number of characters read is typed; file is
remembered for possible use as a default file name in
subsequent e, r, and w commands. If file is replaced by !,
the rest of the line is taken to be a shell, sh(1), command
whose output is to be read. Such a shell command is not
remembered as the current file name. See also
DIAGNOSTICS below.

The edit command is like e, except that the editor does not
check to see if any changes have been made to the buffer
since the last w command.

If file is given, the file-name command changes the
currently-remembered file name to file; otherwise, it prints
the currently-remembered file name.

(1,$)g/RE/command list

(1,$)G/RE/

1-214 Commands

In the global command, the first step is to mark every line
that matches the given RE. Then, for every such line, the
given command list is executed with . initially set to that
line. A single command or the first of a list of commands
appears on the same line as the global command. All lines
of a multi-line list except the last line must be ended with a
\; a, i, and ¢ commands and associated input are permitted;
the . terminating input mode may be omitted if it would be
the last line of the command list. An empty command list is
equivalent to the p command. The g, G, v, and V
commands are not permitted in the command list. See also
RESTRICTIONS and the last paragraph before FILES
below.

In the interactive Global command, the first step is to mark
every line that matches the given RE. Then, for every such
line, that line is printed, . is changed to that line, and any
one command (other than one of the a, ¢, i, g, G, v,and V
commands) may be input and is executed. After the
execution of that command, the next marked line is printed,
and so on; a new-line acts as a null command; an & causes
the re-execution of the most recent command executed
within the current invocation of G. Note that the commands
input as part of the execution of the G command may
address and affect any lines in the buffer. The G command
can be terminated by an interrupt signal (ASCII DEL or
BREAK).

)

<text>

(.,+1)j

"~ (Dkx

(e

(.,.)ma

(ey.)n

(.5.)p

ed(1)

The help command gives a short error message that explains
the reason for the most recent ? diagnostic.

The help command causes ed to enter a mode in which
error messages are printed for all subsequent ? diagnostics.
It will also explain the previous ? if there was one. The H
command alternately turns this mode on and off; it is
initially off.

The insert command inserts the given text before the
addressed line; . is left at the last inserted line, or, if there
were none, at the addressed line. This command differs
from the a command only in the placement of the input text.
Address 0 is not legal for this command. The maximum
number of characters that may be entered from a terminal is
256 per line (including the new line character).

The join command joins contiguous lines by removing the
appropriate new-line characters. If exactly one address is
given, this command does nothing.

The mark command marks the addressed line with name x,
which must be a lower-case letter. The address “x then
addresses this line; . is unchanged.

The list command prints the addressed lines in an
unambiguous way: a few non-printing characters (for
example, tab, backspace) are represented by (hopefully)
mnemonic overstrikes, all other non-printing characters are
printed in octal, and long lines are folded. An 1 command
may be appended to any other command other than e, f, r, or
W.

The B. move command repositions the addressed line(s) after
the line addressed by a. Address 0 is legal for a and causes
the addressed line(s) to be moved to the beginning of the
file; it is an error if address a falls within the range of
moved lines; . is left at the last line moved.

The number command prints the addressed lines, preceding
each line by its line number and a tab character; . is left at
the last line printed. The n command may be appended to
any other command other than e, f, r, or w.

The print command prints the addressed lines; . is left at the
last line printed. The p command may be appended to any

Commands 1-215

ed(1)

($)r file

(.y.)s/RE/replacement/

other command other than e, f, r, or w; for example, dp
deletes the current line and prints the new current line.

The editor will prompt with a * for all subsequent
commands. The P command alternately turns this mode on
and off; it is initially off.

The quit command causes ed to exit. No automatic write of
a file is done (but see DIAGNOSTICS below).

The editor exits without checking if changes have been made
in the buffer since the last w command.

The read command reads in the given file after the addressed
line. If no file name is given, the currently-remembered file
name, if any, is used (see e and f commands). The
currently-remembered file name is not changed unless file is
the very first file name mentioned since ed was invoked.
Address 0 is legal for » and causes the file to be read at the
beginning of the buffer. If the read is successful, the number
of characters read is typed; . is set to the last line read in. If
file is replaced by !, the rest of the line is taken to be a shell
(sh(1)) command whose output is to be read. For example,
"$r 11s" appends current directory to the end of the file being
edited. Such a shell command is not remembered as the
current file name.

or

(.,.)s/RE/replacement/g

1-216 Commands

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a
match is found, all (non-overlapped) matched strings are
replaced by the replacement if the global replacement
indicator g appears after the command. If the global
indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution
to fail on all addressed lines. Any character other than
space or new-line may be used instead of / to delimit the RE
and the replacement; . is left at the last line on which a
substitution occurred. See also the last paragraph before
FILES below.

An ampersand (&) appearing in the replacement is replaced
by the string matching the RE on the current line. The
special meaning of & in this context may be suppressed by
preceding it by \. As a more general feature, the characters
\n, where n is a digit, are replaced by the text matched by
the n-th regular subexpression of the specified RE enclosed
between \(and \). When nested parenthesized
subexpressions are present, 7 is determined by counting
occurrences of \(starting from the left. When the character

(ey)ta

ed(1)

% is the only character in the replacement, the replacement
used in the most recent substitute command is used as the
replacement in the current substitute command. The %
loses its special meaning when it is in a replacement string
of more than one character or is preceded by a \.

A line may be split by substituting a new-line character into
it. The new-line in the replacement must be escaped by
preceding it by \. Such substitution cannot be done as part
of a g or v command list.

This command acts just like the m command, except that a
copy of the addressed lines is placed after address a (which
may be 0); . is left at the last line of the copy.

The undo command nullifies the effect of the most recent
command that modified anything in the buffer, namely the
most recent a, ¢, d, g, i, j, m, 1, 8, t, v, G, or V command.

(1,$)V/RE/command list

(1,$)V/RE/

(1,8)w file

($)=

\shell command

This command is the same as the global command g except
that the command list is executed with . initially set to every
line that does not match the RE.

This command is the same as the interactive global
command G except that the lines that are marked during the
first step are those that do not match the RE.

The write command writes the addressed lines into the
named file. If the file does not exist, it is created with mode
666 (readable and writable by everyone), unless your umask
setting (see sh(1)) dictates otherwise. The currently-
remembered file name is not changed unless file is the very
first file name mentioned since ed was invoked. If no file
name is given, the currently-remembered file name, if any, is
used (see e and f commands); . is unchanged. If the
command is successful, the number of characters written is
typed. If file is replaced by !, the rest of the line is taken to
be a shell (sh(1)) command whose standard input is the
addressed lines. Such a shell command is not remembered
as the current file name.

The line number of the addressed line is typed; . is
unchanged by this command.

The remainder of the line after the ! is sent to the UNIX
System shell (sh(1)) to be interpreted as a command. Within
the text of that command, the unescaped character % is
replaced with the remembered file name; if a ! appears as the
first character of the shell command, it is replaced with the

Commands 1-217

ed(1)

text of the previous shell command. Thus, !! will repeat the
last shell command. If any expansion is performed, the
expanded line is echoed; . is unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be
printed. A new-line alone is equivalent to .+1p; it is useful
for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its
command level.

Some size limitations: 512 characters per line, 256 characters per global command
list, 64 characters per file name, and 128K characters in the buffer. The limit on the
number of lines depends on the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after the
last new-line. Files (for example, a.out) that contain characters not in the ASCII set
(bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (for example, /) would be
the last character before a new-line, that delimiter may be omitted, in which case the
addressed line is printed. The following pairs of commands are equivalent:

s/s1/s2 s/s1/s2/p

g/s1 g/sl/p

51 7517

Restrictions

A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be used if
the the editor is invoked from a restricted shell. For further information, see sh(1).
The sequence \n in a RE does not match a new-line character.

The 1 command mishandles DEL.

Diagnostics
? for command errors.
?file for an inaccessible file.

(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the
entire buffer, ed warns the user if an attempt is made to destroy ed’s buffer via the e

-or q commands: it prints ? and allows one to continue editing. A second e or ¢

command at this point will take effect. The — command-line option inhibits this
feature.

Files

/tmp/e# temporary; # is the process number.

ed.hup work is saved here if the terminal is hung up.
See Also

grep(1), sed(1), sh(1), stty(1)

1-218 Commands

env(1)

Name
env — set environment for command execution

Syntax
env [-] [name=value] ... [command args]

Description
The env command obtains the current environment, modifies it according to its
arguments, then executes the command with the modified environment. Arguments
of the form name=value are merged into the inherited environment before the
command is executed. The — flag causes the inherited environment to be ignored
completely, so that the command is executed with exactly the environment specified
by the arguments.
If no command is specified, the resulting environment is printed, one name-value pair
per line.

See Also

sh(1), environ(5)

Commands 1-219

error(1)

Name

error — analyze and disperse compiler error messages
Syntax

error [-n] [-s] [-q] [-v] [-t suffixlist] [-] ignorefile] [name]
Description

The error command analyzes and optionally disperses the diagnostic error
messages produced by a number of compilers and language processors to the source
file and line where the errors occurred. It permits error messages and source code to
be viewed simultaneously without using multiple windows in a screen editor.

The error command looks at the error messages, either from the specified file name
or from the standard input. It attempts to determine the following: which language
processor produced each error message, to which source file and line number the
error message refers, and if the error message is to be ignored or not. It also inserts
the error message into the source file as a comment on the line preceding the one
where the error occurred.

Error messages that cannot be categorized by language processor or content are not
inserted into any file, but are sent to the standard output. The error command
touches source files only after all input has been read. By specifying the —q query
option, the user is asked to confirm any potentially dangerous (such as touching a
file) or verbose action.

If the —t touch option and associated suffix list is given, error restricts itself to
touching only those files with suffixes in the suffix list. Error also can be asked (by
specifying —v) to invoke vi(1) on the files in which error messages were inserted;
this prevents the need to remember the names of the files with errors.

The error command is intended to be run with its standard input connected via a
pipe to the error message source. Some language processors put error messages on
their standard error file; others put their messages on the standard output. Hence,
both error sources should be piped together into error. For example, when using
the csh syntax,

make -s lint | & error -q -v

analyzes all the error messages produced by whatever programs make runs when
making lint.

The error command knows about the error messages produced by the following:
make, cc, cpp, ccom, as, 1d, lint, pi, pcand £77. The error
command knows a standard format for error messages produced by the language
processors, so it is sensitive to changes in these formats. For all languages except
Pascal, error messages are restricted to be on one line. Some error messages refer to
more than one line in more than one file. The error command duplicates the error
message and inserts it at all of the places referenced.

The error command does one of six things with error messages.

synchronize Some language processors produce short errors describing
which file it is processing. The error command uses these
to determine the file name for languages that don’t include

1-220 Commands

discard

nullify

not file specific

file specific

true errors

error(1)

the file name in each error message. These synchronization
messages are consumed entirely by error.

Error messages from 1int that refer to one of the two
lint libraries, /ust/lib/llib-Ic and /usr/lib/llib-port are
discarded, to prevent accidently touching these libraries.
Again, these error messages are consumed entirely by
error.

Error messages from 1int can be nullified if they refer to a
specific function, which is known to generate diagnostics
which are not interesting. Nullified error messages are not
inserted into the source file, but are written to the standard
output. The names of functions to ignore are taken from
either the file named .errorrc in the users’s home directory,
or from the file named by the —I option. If the file does not
exist, no error messages are nullified. If the file does exist,
there must be one function name per line.

Error messages that can’t be discerned are grouped together,
and written to the standard output before any files are
touched. They will not be inserted into any source file.

Error message that refer to a specific file, but to no speciﬁc
line, are written to the standard output when that file is
touched.

Error messages that can be intuited are candidates for
insertion into the file to which they refer.

Only true error messages are candidates for inserting into the file they refer to. Other
error messages are consumed entirely by error or are written to the standard

output. The error command inserts the error messages into the source file on the
line preceding the line the language processor found in error. Each error message is
turned into a one line comment for the language, and is internally flagged with the
string “‘###’’ at the beginning of the error, and ‘% %%’ at the end of the error.

This makes pattern searching for errors easier with an editor, and allows the messages

to be easily removed.

In addition, each error message contains the source line number for the line to which
the message refers. A reasonably formatted source program can be recompiled with
the error messages still in it, without having the error messages themselves cause
future errors. For poorly formatted source programs in free format languages, such
as C or Pascal, it is possible to insert a comment into another comment, which can
wreak havoc with a future compilation. To avoid this, programs with comments and
source on the same line should be formatted so that language statements appear

before comments.

The error command catches interrupt and terminate sxgnals, and if in the insertion
phase, terminates what it is doing.

Options

Options available with error are the following:

-1 ignorefile

Ignore the functions listed in the specified file (next
argument).

Commands 1-221

error (1)

-n Does not touch files and sends error messages to the
standard output.
-q Prompts before touching the source file. A ‘‘y”’ or “‘n’’ to

the question is necessary to continue. Absence of the —q
option implies that all referenced files (except those referring
to discarded error messages) are to be touched.

-S Shows error in unsorted order from the error file.

-s Displays statistics for each error type.

-T Terse output.

—t suffixlist Does not touch those files that match the specified suffix.
The suffix list is dot separated, and ‘‘*’” wildcards work.
Thus the suffix list:

".c.y.foo*.h"

allows error to touch files ending with ‘‘.c’’, *“.y”’, ‘‘.foo*”’
and ‘“h”’.

-v Invokes the vi editor on each file that had been touched.

Restrictions

Files

Opens the teletype directly to do user querying.
Source files with links make a new copy of the file with only one link to it.

Changing a language processor’s format of error messages may cause error to not
understand the error message.

The error command, since it is purely mechanical, does not filter out subsequent
errors caused by ‘floodgating’ initiated by one syntactically trivial error.

Pascal error messages belong after the lines affected (error puts them before). The
alignment of the ‘|’ marking the point of error is also disturbed by error.

The error command was designed for work on CRT’s at reasonably high speed. It
does not work as well on slow speed terminals, and has never been used on hard-
copy terminals.

~/.errorrc function names to ignore for /int error messages

/dev/tty user’s teletype

1-222 Commands

ex(1)

Name
ex, edit — text editor
Syntax

ex[-][-v][—=x]1[-ttag][-r][+command][-l] name...

edit [ex options]
Description

The ex editor is the root of a family of editors: edit, ex and vi. The ex editor is

a superset of ed, with the most notable extension being a display-editing facility.

Display-based editing is the focus of vi.

The name argument indicates the files to be edited.

Options

- Suppresses all interactive-user feedback. This option is useful in processing
editor scripts in command files.

=v Equivalent to using vi rather than ex.

-t Equivalent to an initial fag command, that is, editing the file containing the tag
and positioning the editor at its definition.

-r Used to recover after an editor or system crash. It recovers by retrieving the
last saved version of the named file. If no file is specified, it displays a list of
saved files.

-R Sets the read-only option at the start.

+command
Indicates that the editor should begin by executing the specified command. If
the command is omitted, it defaults to $, positioning the editor at the last line
of the first file, initially. Other useful commands here are scanning patterns of
the form +/pattern or line numbers.

-1 Sets up for LISP. That is, it sets the showmatch and lisp options.

NOTE
The —x option is available only if the Encryption layered product is
installed.

—x Causes ex to prompt for a key. The key is used to encrypt and decrypt the
contents of the file. If the file contents have been encrypted with one key, you
must use the same key to decrypt them.

Restrictions

The undo command causes all marks to be lost on lines changed and then restored if
the marked lines were changed.

The undo command does not clear the buffer modified condition.

Commands 1-223

ex(1)

The z command prints a number of logical rather than physical lines. More than a
screenful of output may result if long lines are present.

File input/output errors does not print a name if the command line minus sign (~)
option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn you if you place text in named buffers and do not use it
before exiting the editor.

Null characters are discarded from input files, and cannot appear in output files.

Files
fusr/lib/ex?.7recover recover command
fusr/lib/ex?.7preserve preserve command
[etc/termcap terminal capabilities
~[.exrc editor startup file
[tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
Jusr/preserve preservation directory

See Also

awk(1), ed(1), grep(1), sed(1), vi(1), termcap(5), environ(7)
Edit: A Tutorial and the Ex Reference Manual
ULTRIX Supplementary Documents Vol. I. General User

1-224 Commands

expand (1)

Name
expand, unexpand — expand tabs to spaces, and vice versa

Syntax
expand [~tabstop] [-tabn...] [file...]
unexpand [-a] [file...]

Description
The expand command processes the named files or the standard input writing the
standard output with tabs changed into blanks. Backspace characters are preserved
into the output and decrement the column count for tab calculations. The expand
command is useful for pre-processing character files (before sorting, looking at
specific columns, and so forth) that contain tabs.
If a single tabstop argument is given then tabs are set tabstop spaces apart instead of
the default 8. If multiple tabstops are given then the tabs are set at those specific
columns.
The unexpand command puts tabs back into the data from the standard input or the
named files and writes the result on the standard output. By default only leading
blanks and tabs are reconverted to maximal strings of tabs. If the —a option is given,
then tabs are inserted whenever they would compress the resultant file by replacing
two or more characters.

Options

—+# Sets tabstops the specified number of spaces (#) apart.

-a When used with unexpand, compresses file by inserting tabs for two or more
spaces.

Commands 1-225

expr(1)

Name
expr — evaluate expressions
Syntax
expr arg...
Description
The arguments are taken as an expression. After evaluation, the result is written on
the standard output. Each token of the expression is a separate argument.
The operators and keywords are listed below. The list is in order of increasing
precedence, with equal precedence operators grouped.
expr | expr Yields the first expr if it is neither null nor 0. Otherwise
yields the second expr.
expr & expr Yields the first expr if neither expr is null or 0. Otherwise
yields 0.
expr relop expr The relop is one of < <= = = >=> and yields 1 if the
indicated comparison is true, ’0’ if false. The comparison is
numeric if both expr are integers, otherwise lexicographic.
expr + expr
expr - expr
Yields addition or subtraction of the arguments.
expr * expr
expr | expr
expr % expr
Yields multiplication, division, or remainder of the
arguments.
expr : expr The matching operator compares the string first argument
with the regular expression second argument; regular
expression syntax is the same as that of ed(1). The \(...\)
pattern symbols can be used to select a portion of the first
argument. Otherwise, the matching operator yields the
number of characters matched ("0’ on failure).
(expr) parentheses for grouping.
Examples

The first example adds 1 to the Shell variable a:
a="expr S$a + 1°

The second example finds the file name part (least significant part) of the pathname
stored in variable q,

expr $a : ~.*¥/\(.*¥\)" “ | $a
Note the quoted Shell metacharacters.

1--226 Commands

Diagnostics

The expr command returns the following exit codes:

0 The expression is neither null nor '0’.
1 The expression is null or ’0’.

2 The expression is invalid.

See Also
ed(1), sh(1), test(1)

expr(1)

Commands 1-227

extract (1int)

Name

extract — interactive string extract and replace

Syntax

extract [—i ignorefile] [-m prefix] [—n] [-p patternfile 1 [—s string]
[—u] source-program...

Description

The extract command interactively extracts text strings from source programs.
The extract command replaces the strings it extracts with calls to the catgets
function. The command also writes the string it extracts to a source message
catalog. You use this command to replace hard-coded messages in your program
source file with calls to the catgets command and create a source message catalog.
At run time, the program reads the message text from the message catalog. By
storing messages in a message catalog, instead of in your program, you allow the text
of messages to be translated to a new language or modified without the source
program being changed.

In the source-program argument, you name one or more source programs from which
you want messages extracted. The extract command does not extract messages
from source programs included using the #include directive. Therefore, you
might want to name a source program and all the source programs it includes on a
single extract command line.

You can create a patterns file (as specified by (patternfile) to control how the
extract command extracts and replaces text. The patterns file is divided into
several sections, each of which is identified by a keyword. The keyword must start at
the beginning of a new line, and its first character must be a dollar sign ($).
Following the identifier, you specify a number of patterns. Each pattern begins on a
new line and follows the regular expression syntax you use in the regex(3) routine.
For more information on the patterns file, see the patterns(Sint) reference page.

In addition to the patterns file, you can create a file that indicates strings that
extract ignores. Each line in this ignore file contains a single string to be ignored
that follows the syntax of the regex(3) routine.

When you invoke the ext ract command, it reads the patterns file and the file that
contains strings it ignores. You can specify a patterns file and an ignore file on the
extract command line. Otherwise, the ext ract command matches all strings
and uses a default patterns file.

When you run extract, it displays three windows on your terminal. The first
window contains the program source code. The string that matches a string in the
patterns file is displayed in reverse video.

The second window displays the contents of the source message catalog that the
extract command is creating.

The third window contains a list of the commands that are available. The extract
command displays the current command in reverse video. You can execute the
current command by pressing the RETURN key. Select another command by typing
the first letter in the command name and pressing the RETURN key. The extract
command is not sensitive to the case of letters, so you can use uppercase or

1-228 Commands

extract(1int)

lowercase letters to issue commands.

You can use the following commands to control how extract treats the string
displayed in the first window:

EXTRACT Extract the string into the catalog file and rewrite the source using
the rewrite string in the patterns file.

DUPLICATE If the string has been encountered previously, rewrite the source
program using the same message number as before. The
extract command need not add the message to the source
message catalog again, so this command saves space in catalogs.

IGNORE Ignore this and all subsequent occurrences of this string during this
interactive session. This command does not add the string to the
ignore file.

PASS Pass by (ignore) this occurrence of this particular string.

ADD Ignore this and all subsequent occurrences of this string during this

interactive session. Add the string to the ignore file.

COMMENT Add the comment you enter to the source message catalog. The
extract command prompts you to be sure the comment you
entered is correct. You answer the prompt by typing ‘‘y,”’ n, or q,
without pressing the RETURN key.

QUIT Quit from the interactive session. The extract command

prompts you to be sure you want to quit. Answer ‘‘y’’ or ‘“‘n’’ to
the prompt, without pressing the return key.

The output files that extract creates up to this point are not
removed by this command. However, the files contain only the
result of the string extractions that occurred before you issued the
QUIT command.

HELP Display a description of all the extract commands.

The extract command creates to files in your current working directory. The
command creates a new version of the source program that contains calls to the
catgets function, instead of hard-coded messages. The new version of the source
program has the same name as the input source program, with the prefix ‘‘nl_"’. For
example, if the input source program is named update . c, the output source
program is named nl_update.c

In addition to a new source program, the ext ract command creates a source
message catalog. The source message catalog contains the text for each message
extracted from your input source program. The extract command names the file
by appending ‘‘.msf’’ to the name of the input source program. For example, the
source message catalog for the update. c source program is named update .msf.
You can use the source message catalog as input to the gencat command.

Options

-i Ignore text strings specified in ignorefile . By default, the extract
command searches for ignorefile in the current working directory, your

home directory, and /usr/lib/intln.

If you omit the —i option, extract recognizes all strings specified in the
patterns file.

Commands 1-229

extract (1int)

-m Add prefix to message numbers in the output source program and source
message catalog. You can use this prefix as a mnemonic. You must process
source message catalogs that contain message number prefixes using the
gencat -h option.

-n Create a new source message catalog for each input source program. By
default, if you specify more than one input source program on the extract
command line, the command creates one source message catalog for all the
input source programs.

-p Use patternfile to match strings in the input source program. By default, the
command searches for the pattern file in the current directory, your home
directory and finally /usr/1ib/intln.

If you omit the —p option, the ext ract command uses a default patterns file
that is stored in /usr/1ib/intln/patterns.

-s Write string at the top of the source message catalog. If you omit the —s
option, extract uses the string specified in the $SCATHEAD section of the
patterns file.

-u Use a message file produced by a previous run of strextract. This file
contains details of all the strings which matched the pattern file along with file
offsets and line numbers. By default strextract is run and its output is
used to drive extract.

Restrictions

Given the current syntax of the patterns file, you cannot cause extract to ignore
strings in comments that are longer than one line.

You can specify only one rewrite string for all classes of pattern matches.

The extract command does not extract strings from files you include with the
#include directive. You must run the extract commands on these files
separately.

Your terminal screen must contain at least 80 columns and 24 lines for extract to
display its three windows.

The extract command does not recognize strings that extend beyond one line.

Examples

The following example shows the commands you issue to run the extract
command, create a message catalog from the source message catalog, and compile
the output source program:

% extract -i newignore -p c_patterns remove.c
% gencat remove.cat remove.msf

% vi nl_remove.c

% cc nl_remove.c

In this example, the ext ract command uses the newignore file to determine

which strings to ignore. The command uses the c_patterns file to determines
which strings to match. The input source program is named remove.c.

1-230 Commands

extract (1int)

In response to this command, extract creates the source message catalog
remove.msf and the output source program nl_remove.c.

You must edit n1_remove. c to include the appropriate catopen and catclose
function calls.

The gencat command creates a message catalog and the cc command creates an
executable program.
See Also

intro(3int), gencat(1lint), strextract(1lint), strmerge(lint), regex(3), catopen(3int),
catgets(3int), patterns(Sint)
Guide to Developing International Software

Commands 1-231

eyacc (1)

Name

eyacc — modified yacc allowing much improved error recovery

Syntax

eyacc [-v] [grammar]

Description

The eyacc command is an old version of yacc(1), which produces tables used by
the Pascal system and its error recovery routines. The eyacc command fully
enumerates test actions in its parser when an error token is in the look-ahead set.
This prevents the parser from making undesirable reductions when an error occurs
before the error is detected. The table format is different in eyacc than it was in the
old yacc, as minor changes had been made for efficiency reasons.

See Also
yacce(1)

1-232 Commands

Name

Syntax

file (1)

file — determine file type

file [—c] [f ffile] [-m mfile] filename ...

Description

The £ile command performs a series of tests on each filename argument in an
attempt to classify it. If an argument appears to be ASCII, the £ile command
examines the first 1024 bytes and tries to guess its language.

For character special files, part of this classification is information about which
devices the system shows as active. In particular, device-specific information such as
controller type and unit, device type and unit, and status (offline, write locked,
density, errors) is returned. The general categories currently implemented are disk,
tape, and terminal devices. The supported terminal devices include Local Area
Terminals (LAT) but not Local Area Network (LAN) pseudo-terminals.

The £ile command uses the file /usxr/1ib/file/magic to identify files that
have some sort of magic number. A magic number is any numeric or string constant
that identifies the file containing the constant. Commentary at the beginning of
/usr/lib/file/magic explains its format.

Options

—c Checks the magic file for format errors by printing the internal representation
of the magic file. No file typing is done under —c.

—f Interprets the following argument to be a file containing the names of the files
to be examined.

-m Instructs file to use an alternate magic file.

Restrictions

Files

It often does a poor job of distinguishing C programs, shell scripts, English text, and
ASCII text.

It does not recognize many programming languages, including Modula, Pascal, and
Lisp.

[usr/lib/file/magic

See Also

magic(5)

Commands 1-233

find(1)

Name
find — find files

Syntax

find [options] pathname-list expression

Description

The £ind command recursively descends the directory hierarchy for each pathname
in the pathname-list (that is, one or more pathnames) seeking files that match a
boolean expression written in the primaries given below. In the descriptions, the
argument 7 is used as a decimal integer where +7 means more than #, —n means less
than n , and » means exactly n.

Options

-—atime n

—cpio output

~ctime n
—depth

—exec command

—group gname
—inum »
~links n

-mount
—mtime n
—name filename
-newer file
-0k command

=perm onum

1-234 Commands

Tests true if the file has been accessed in 7 days.

Writes current file on oufput in the format (5120-byte records)
specified in the cpio(5) reference page. The output can be either
a file or tape device. If output is a tape device the cpio B key
must be used to read data from the tape.

Tests true if the file has been changed in » days.

Always true; causes descent of the directory hierarchy to be done
so that all entries in a directory are acted on before the directory
itself (that is, postorder instead of preorder). This can be useful
when £ind is used with cpio to transfer files that are contained
in directories without write permission.

Tests true if specified command returns a O on exit. The end of the
command must be punctuated by an escaped semicolon. A
command argument ‘{}’ is replaced by the current pathname.

Tests true if group ID matches specified group name.
Tests true if the file has inode number #.
Tests true if the file has n links.

Tests true if the current file is on the same file system as the
current starting pathname.

Tests true if the file has been modified in n days.

Tests true if the filename argument matches the current file name.
Normal Shell argument syntax may be used if escaped (watch out
for ‘[’, ‘?” and ‘*’).

Tests true if the current file has been modified more recently than
the argument file.

Executes specified command on standard output, then standard
input is read and command executed only upon response Y.

Tests true if file has specified octal number. For further

find(1)

information, see chmod(1). If onum is prefixed by a minus sign,
more flag bits (017777) become significant and the flags are
compared: (flags&onum)==onum. For further information, see

stat(2).
—print Prints current pathname.
—size n Tests true if the file is # blocks long (512 bytes per block).
~type ¢ Tests true if file is ¢ type (¢ = b, block special file: ¢, character

special file: d, directory: f, plain file: 1, symbolic link: p, type
port: s, type socket).

—user uname Tests true if file owner is login name or numeric user ID.

The primaries may be combined using the following operators (in order of decreasing
precedence):

1) A parenthesized group of primaries and operators (parentheses are special to the
Shell and must be escaped).

2) The negation of a primary (‘!” is the unary rot operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of
two primaries).

4) Alternation of primaries (‘—0’ is the or operator).

Examples

To remove all files named ‘a.out’ or ‘*.0’ that have not been accessed for a week:
find / \(-name a.out -o -name ’'*.0’ \) \
-atime +7 -exec rm {} \;

To find all files on the root file system type:

find / -mount -print

To write all the files on the root file system to tape:

find / -mount -print -cpio /dev/rmt?h
cpio -iBvt < /dev/rmt?h

To find all the mount points on the root file system type:

find / ! -mount -print
Files

/etc/passwd

/etc/group
See Also

cpio(1), cpio(5), sh(1), test(1), fs(5)

Commands 1-235

finger(1)

Name
finger — print user finger information

Syntax
finger [options 1 [name...]

Description
By default, finger lists the login name, full name, terminal name and write status,
idle time, login time, and office location and phone number for each current ULTRIX
user. Terminal write status is noted as an asterisk (*) before the terminal name if
write permission is denied. Idle time is given in minutes if the listing shows a single
integer, hours and minutes if a colon (:) is present, or days and hours if a d is present.
A longer format also exists and is used by finger whenever a list of people’s
names is given. (Account names as well as first and last names of users are
accepted.) This format is multi-line, and includes all the information described above
as well as the user’s home directory and login shell. Additionally, it displays the
information contained in the files .plan and .project, both of which are located in the
user’s home directory. If no list is given, all the people currently logged in are
shown.
The finger command may be used to look up users on a remote machine. The
format is to specify the user as user@host. If the user name is left off, the standard
format listing is provided on the remote machine.

Options
-b Displays a briefer long form list of users.
—~f Disables printing of headers for short and quick outputs.
-h Suppresses printing of the .project file.
—i Displays list of users with idle times.
-1 Displays output in long format.
-m Matches arguments only on user name.
-p Suppresses printing of the .plan file.
—q Displays list of users.
—-s Displays output in short format.
-w Displays narrow short format of specified users.

Restrictions

Only the first line of the .project file is printed.

The user’s .plan or .project file cannot be a link to another file. If either of
these files is something other than a regular file, it will be ignored.

1-236 Commands

finger (1)

Files
/etc/utmp Who file
/etc/passwd User information
/usr/adm/lastlog Last login times
~/.plan Plans
~/.project Projects

See Also

chfn(1), w(1), who(1), fingerd(8c)

Commands 1-237

fmt(1)

Name

fmt — simple text formatter

Syntax

fmt [name...]

Description

The £mt command is a simple text formatter which reads the concatenation of input
files (or standard input if none are given) and produces on standard output a version
of its input with lines as close to 72 characters long as possible. The spacing at the
beginning of the input lines is preserved in the output, as are blank lines and
interword spacing.

The fmt command is meant to format mail messages prior to sending, but may also
be useful for other simple tasks. For instance, within visual mode of the ex editor
(for example, vi) the command

!} fmt

will reformat a paragraph, evening the lines.

Restrictions

The program was designed to be simple and fast — for more complex operations, the
standard text processors are likely to be more appropriate.

See Also
mail(1), nroff(1)

1-238 Commands

fold (1)

Name
fold — fold long lines for finite width output device

Syntax
fold [-b] [-s] [~W width or —width] [file...]

Description

The £fold command is a filter which folds the contents of each specified file, or the

standard input if no file is specified, breaking the lines to have maximum width
width.

Options
-b Causes each ‘<backspace>’ in a line to be interpreted as decrementing the line
length by one.

—s Breaks the line on the last <blank> character found before the specified length.
If none are found the line breaks at the specified length.

-w width or —width
Specify the maximum line width, in bytes. The default value is 80. The width
should be a multiple of 8 if tabs are present, or the tabs should be expanded
using expand(1l) before coming to fold.

Restrictions

The fold command may interfere with underlining.

Return Value

The fold command returns zero (0) on successful completion.

See Also
expand(1)

Commands 1-239

folder (1mh)

Name

folder — set folder or display current foldername

Syntax

folder [+foldername] [msg] [-all] [-fast] [-nofast] [-header] [-noheader] [-pack]
[-nopack] [-recurse] [-norecurse] [-total] [-nototal] [-print] [-noprint] [-list]
[-nolist] [-push] [-pop] [-help]

Description

The folder command lets you set the current folder or display its name and its
contents. It can also be used to manage the folder stack. If you use the folder
command without a +foldername argument, the contents of the current folder will be
displayed on the screen.

If you use folder with the +foldername argument, the specified folder will be set
to be the current folder.

If you use folder with the msg argument, it will set the specified message to be
current.

The display is identical whether you set the folder or display the contents of the
current folder. The following example shows the type of display that is produced.
The display lists the current folder, the number of messages in it, the range of the
messages (low-high), and the current message within the folder, and will flag extra
files if they exist.

inbox+ has 16 messages (3- 22); cur= 15
If a +foldername andfor msg argument are specified, they will become the current
folder and/or message.

Options

Specifying —all will produce a line for each folder in your MH directory, sorted
alphabetically. This is identical to the effect that is obtained if you specify
folders. The display that is obtained is illustrated in the following example.

Folder # of messages (range); cur msg (other files)
V2.3 has 3 messages (1-3).

adrian has 20 messages (1-20); cur= 2.

brian has 16 messages (1-16).

chris has 12 messages (1-12).

copylog has 242 messages (1- 242); cur= 225.

inbox+ has 73 messages (1- 127); cur= 127.

int has 4 messages (1-4); cur= 2 (others) .

jack has 17 messages (1-17); cur= 17.
TOTAL= 387 messages in 8 folders.

The plus sign (+) after inbox indicates that it is the current folder. The folder int
has (others) after the description of the folder. This indicates that the folder int
contains files which are not messages. These files may either be sub-folders, or files
that do not belong under the MH file naming scheme.

1-240 Commands

folder (1mh)

You can get the same effect by specifying folders instead of folder—all (see
folders(lmh).)

The header is output if either an ~all or a ~header switch is specified. It is
suppressed by —noheader. The —total switch will produce only the summary
line. If you select the ~nototal option, the summary line will be suppressed but
the rest of the information about the folders will be displayed.

If —-fast is given, only the folder name will be listed. This is faster because the
folders need not be read.

The —pack switch will compress the message names in a folder, removing holes in
message numbering.

The —recurse switch will list each folder recursively. Use of this option
effectively defeats the speed enhancement of the —fast option, since each folder
must be searched for subfolders. Nevertheless, the combination of these options is
useful.

If you specify a +folder that does not exist, you will be asked whether you want to
create it. This is a good way to create an empty folder for later use. The following
example shows how you can create a sub folder in the folder +test using this method.

% folder +test/testtwo
Create folder "/usr/username/Mail/test/testwo"? y
test/testtwo+ has no messages.

See refile(1mh) for more details of sub folders.
The -push, -pop, and - options can be used to manage the folder stack.

The —push switch directs folder to push the current folder onto the folder-stack,
and make the +folder argument into the current folder. If +folder is not given,
the current folder and the top of the folder-stack are exchanged. This corresponds to
the pushd operation in the Cshell (see csh(l)).

The —pop switch directs folder to discard the top of the folder-stack, after setting
the current folder to that value. No +folder argument is allowed. This corresponds
to the popd operation in the Cshell (see csh(1)) The —push switch and the
—pop switch are mutually exclusive: the last occurrence of either one overrides any
previous occurrence of the other.

The —1ist switch directs folder to list the contents of the folder-stack. No
+folder argument is allowed. After a successful -push or —pop, the -1ist
action is taken. This corresponds to the dirs operation in the Cshell. The defaults
for folder are:

+foldername defaults to the current folder

msg defaults to none

-nofast

—-noheader

-nototal

—-nopack

~norecurse

—print is the default if ~1ist, —push or —pop are specified.

Commands 1-241

folder (1mh)

Files
$HOME/ .mh_profile The user profile

Profile Components

Path: To determine your MH directory
Current-Folder: To find the default current folder
Folder-Protect: To set mode when creating a new folder

Folder-Stack: To determine the folder stack
lsproc: Program to list the contents of a folder
See Also

csh(1), refile(1mh), mhpath(1mh)

1-242 Commands

folders (1mh)

Name
folders — list folders and contents

Syntax
folders [folder] [msg] [-fast] [-nofast] [-header] [-noheader] [-pack] [-nopack]
[-recurse] [-norecurse] [-total] [-nototal] [-print] [-noprint] [-list] [-nolist]
[-push] [-pop] [-help]

Description

The folders command lets you display the names of your folders and the number
of messages that they each contain.

When you use folders, the display contains a line for each folder in your MH
directory, sorted alphabetically. This is illustrated in the following example.

Folder # of messages (range); cur msg (other files)
V2.3 has 3 messages (1-3).

adrian has 20 messages (1-20); cur= 2.

brian has 16 messages (1-16).

chris has 12 messages (1-12) .

copylog has 242 messages (1- 242); cur= 225,

inbox+ has 73 messages (1- 127); cur= 127.

int has 4 messages (1-4); cur= 2 (others) .
jack has 17 messages (1-17) ; cur= 17.

TOTAL= 387 messages in 8 folders.

The plus sign (+) after inbox indicates that it is the current folder. The information
about the int folder includes the term (others). This indicates that the folder int
contains files which are not messages. These files may either be sub-folders, or files
that do not belong under the MH file naming scheme.

In all respects, the effect of using folders is identical to the effect of using folder
-all. See folder(1mh) for details.

If you use folders with the +foldername argument, folders will display all the
subfolders within the nominated folder, as shown in the following example. See
refile(1lmh) for more details of sub folders.

% folders +test

Folder # of messages (range); cur msg (other files)
test+ has 18 messages (1- 18); (others) .
test/testone has 1 message (1- 1).

test/testtwo has no messages.

TOTAL= 19 messages in 3 folders.
If you specify a folder, that folder will become the current folder.

The remainder of the options work as they do for folder-all. See folder(lmh)
for details.

The defaults for folders are;

+foldername defaults to all
msg defaults to none

Commands 1-243

folders (1mh)

-nofast
-noheader
-nototal
-nopack
-norecurse

Restrictions
You cannot have more than 100 folders in any one level.

Files
SHOME/.mh_profile The user profile

Profile Components

Path: To determine your MH directory

Current-Folder: To find the default current folder

Folder-Protect: To set mode when creating a new folder

Folder-Stack: To determine the folder stack

lsproc: Program to list the contents of a folder
See Also

csh(1), refile(1mh), mhpath(1mh)

1-244 Commands

forw (1mh)

Name
forw — forward messages

Syntax
forw [+folder] [msgs] [-annotate] [-noannotate] [-draftfolder FI+folder]
[-draftmessage msg] [-nodraftfolder] [-editor editorname] [-noedit]
[-filter filterfile] [-form formfile] [-format] [-noformat] [~inplace] [-noinplace]
[-whatnowproc program] [-nowhatnowproc] [—digest list] [-issue number]
[-volume number] [-help]

Description
Use forw to send one or more messages on to recipients who were not the original
addressees. A message header is added to the message(s) to be forwarded and the
message is encapsulated. Forwarded messages appear to originate from the forwarder
and not the sender of the original message. In this respect forw is different from
dist. The other difference between forw and dist, is that you can add your
own message to a forwarded message with forw.
An editor is invoked as in comp, and after editing is complete, you are prompted
before the message is sent.
You can forward several messages at once by specifying the message numbers
separated by spaces. The following example would concatenate messages 3, 5 and 7
and forward them as one message.
forw 3 5 7
You can also forward a number of messages by specifying a range. The following
example would forward messages 3, 4, S, 6, 7 as one message. Note that there are no
spaces when you specify a range of messages.
forw 3-7

Options
The default message form contains the following elements:
To:
cC:
Subject:

If the file named forwcomps exists in your MH directory, it will be used instead of
this form. The file specified by —form formfile will be used if given.

If the draft file exists, you cannot normally forward another message until you have
cleared the draft file. This is because forw uses the draft file to compose the
forwarded message. If you attempt to do this, forw will ask you what you want to
do. Press <RETURN> to see the following options.

A reply of quit will abort forw, leaving the draft intact; replace will replace
the existing draft with a blank skeleton; and 1ist will display the draft.

Commands 1-245

forw(1mh)

If you set up the draftfolder: drafts linein your .mh_profile, forw
will forward whichever message(s) you choose, without endangering any unsent
messages (see mh-profile(5Smh)).

If the —~annotate switch is given, each message being forwarded will be annotated
with the lines

Forwarded: date
Forwarded: addrs

where each address list contains as many lines as required. This annotation will be
done only if the message is sent directly from forw. If the message is not sent
immediately from forw, comp —use may be used to re-edit and send the
constructed message, but the annotations will not be added (see comp(1mh)). The
—inplace switch causes annotation to be done in place in order to preserve links to
the annotated message.

When forw is told to annotate the messages it forwards, it does not annotate them
until the draft is successfully sent. If you choose to push at the whatnow? prompt
instead of send, it is possible to confuse forw by re-ordering the folder: For
example, by using

folder -pack

before the message is successfully sent. The functions dist and repl do not have
this problem.

You can specify the editor that you want to use to edit your forwarded message with
the —editor option. You can suppress editing altogether with the —noedit
option.

Although forw uses the —form formfile switch to direct it how to construct the
beginning of the draft, the ~-filter filterfile, -format, and -noformat
switches direct forw as to how each forwarded message should be formatted in the
body of the draft.

If -noformat is specified, then each forwarded message is output exactly as it
appears. If ~format or —filter filterfile is specified, then each forwarded
message is filtered (re-formatted) prior to being output to the body of the draft. The
filterfile for forw should be a standard form file for mh1, as forw will invoke mh1l
to format the forwarded messages. The default message filter that you get with
~format is:

width=80, overflowtext=, overflowoffset=10
leftadjust, compress, compwidth=9
Date:formatfield="%<(nodate{text})%|% (tws{text})%>"
From:

To:

cc:

Subject:

body:nocomponent, overflowoffset=0,noleftadjust, nocompress

If the file named mhl.forward exists in the user’s MH directory, it will be used
instead of this form. In either case, the file specified by ~filter filterfile will be
used if given. To summarize: —noformat will reproduce each forwarded message
exactly, —-format will use mh1l and a default filterfile, mhl.forward, to format
each forwarded message, and —filter filterfile will use the named filterfile to
format each forwarded message with mhl.

1-246 Commands

Files

forw(1mh)

Each forwarded message is separated with an encapsulation boundary so that when
received, the message is suitable for expanding with burst(1mh).

If you use prompter as your editor, you can specify prompter’s ~prepend switch
in the mh_profile file. If you do this any commentary text is entered before the
forwarded messages. See prompter(1lmh) for details of the other prompter
options.

Normally forw uses the draft file, or drafts folder if you have one set up, to
compose the forwarded message in. You can make forw compose the message to
be forwarded in alternative locations by specifying the +foldername or msg
arguments. See comp(1lmh) for details.

When you exit from the editor, forw invokes the whatnow program. See
whatnow(1lmh) for details of the available options. The invocation of this program
can be inhibited by using the -nowhatnowproc switch.

The -digest list, -issue number and —volume number switches implement a
digest facility for MH.

The following defaults are valid:

+foldername defaults to the current folder msgs defaults to the current
message

—noannotate

—nodraftfolder

-noformat

-noinplace

If the whatnowproc is whatnow, then forw uses its own built-in whatnow; it
does not actually run the whatnow program. Hence, if you define your own
whatnowproc, do not call it whatnow since forw will not run it.

/usr/new/lib/mh/forwcomps The message skeleton
<mh-dir>/forwcomps An alternative message skeleton
/usr/new/lib/mh/digestcomps The message skeleton if ~digest is given
or <mh-dir>/digestcomps Rather than the standard skeleton
/usr/new/lib/mh/mhl.forward The message filter

or <mh-dir>/mhl.forward Rather than the standard filter

$HOME/ .mh_profile The user profile

<mh-dir>/draft The draft file

Commands 1-247

forw(1mh)

Profile Components

Path:
Current-Folder:
Draft-Folder:
Editor:
Msg-Protect:
fileproc:
mhlproc:
whatnowproc:

See Also

To determine your MH directory

To find the default current folder

To find the default draft—folder

To override the default editor

To set mode when creating a new message (draft)
Program to refile the message

Program to filter messages being forwarded
Program to ask the ‘“What now?’’ questions

comp(1mbh), dist(1mhs), refile(1mh), repl(1mh), send(1mh), whatnow(1mh)
Proposed Standard for Message Encapsulation (RFC 934)

1-248 Commands

from(1)

The from command prints out the mail header lines in a mailbox file to show you

Uses specified file instead of your normal mail file. If this
option is used, but file argument is not specified, read your
mbox file.

Prints mail headers for mail sent by specified sender.

Name

from — identifies sender of mail
Syntax

from [—f mailbox] [~s sender]
Description

who has sent mail to you.
Options

—f mailbox

—S sender
Files

fust/spool/mail/*
See Also

mail(1)

Commands 1-249

fsplit(1)

Name
fsplit — split a multi-routine Fortran file into individual files

Syntax
fsplit [—e efile...] [file]

Description
The £split command takes as input either a file or standard input containing
Fortran source code. It attempts to split the input into separate routine files of the
form name f, where name is the name of the program unit (for example, function,
subroutine, block data or program). The name for unnamed block data subprograms
has the form blkdtaNNN.f where NNN is three digits and a file of this name does not
already exist. For unnamed main programs the name has the form mainNNN f. If
there is an error in classifying a program unit, or if name f already exists, the
program unit is put in a file of the form zzzNNN.f where zzzNNN f does not already
exist.
Normally each subprogram unit is split into a separate file.

Options
~e efile Splits only specified subprogram units into separate files.

Examples
The following example splits readit and doit into separate files:
fsplit -e readit =-e doit prog.f

Restrictions
The £split command assumes the subprogram name is on the first noncomment
line of the subprogram unit. Nonstandard source formats may confuse fsplit.
It is hard to use —e for unnamed main programs and block data subprograms since
you must predict the created file name.

Diagnostics

If names specified using the —e option are not found, a diagnostic is written to
standard error.

1-250 Commands

ftp(1c)

Name
ftp — file transfer program

Syntax
ftp [-v] [-d] [-i] [-n] [-g] [host]

Description

The ftp command is the user interface to the ARPANET standard File Transfer
Protocol. The program allows a user to transfer files to and from a remote network
site.

The client host with which £tp is to communicate may be specified on the command
line. If the client host is specified on the command line, £tp immediately attempts
to establish a connection to an FTP server on that host; otherwise, ftp enters its
command interpreter and awaits instructions from the user. While £tp is awaiting
commands from the user, it provides the user with the prompt ftp>. The following
commands are recognized by ftp:

! Invokes a shell on the local machine.

$ macro-name [args]
Executes the macro macro-name that was defined with the macdef
command. Arguments are passed to the macro unglobbed.

account [passwd]
Supplies a supplemental password required by a remote system for
access to resources once a login has been successfully completed. If no
argument is included, the user is prompted for an account password in a
non-echoing input mode.

append local-file [remote-file]
Appends a local file to a file on the remote machine. If remote-file is not
specified, the local file name is used in naming the remote file. File
transfer uses the current settings for type, format, mode, and structure.

ascii Sets the file transfer type to network ASCII. This is the default type.

bell Arranges for a bell to sound after each file transfer command is
completed.

binary Sets the file transfer type to support binary image transfer.

bye Terminates the FTP session with the remote server and exits ftp.

case Toggles the remote computer’s file name case mapping during mget

commands. When case is on (default is off), the remote computer’s file
names are written in the local directory with all letters in upper case
mapped to lower case.

cd remote-directory
Changes the working directory on the remote machine to remote-
directory.

cdup Changes the remote machine working directory to the parent of the
current remote machine working directory.

Commands 1-251

ftp(1c)

close Terminates the FTP session with the remote server and returns to the
command interpreter.

cr Toggles the carriage return stripping during ascii type file retrieval.
Records are denoted by a carriage return/linefeed sequence during ascii
type file transfer. When cr is on (the default), carriage returns are
stripped from this sequence to conform with the UNIX single linefeed
record delimiter. Records on non-UNIX remote systems may contain
single linefeeds; when an ascii type transfer is made, these linefeeds may
be distinguished from a record delimiter only when cr is off.

delete remote-file
Deletes the file remote-file on the remote machine.

debug [debug-value]
Toggles the debugging mode. If an optional debug-value is specified, it
is used to set the debugging level. When debugging is on, ftp prints
each command sent to the remote machine, preceded by the string q-->.

dir [remote-directory][local-file] ;
Prints a listing of the directory contents in the directory, remote-
directory, and, optionally, places the output in local-file. If no directory
is specified, the current working directory on the remote machine is used.
If no local file is specified, output comes to the terminal.

disconnect A synonym for close.

form format
Sets the file transfer form to format. The default format is file.

get remote-file [local-file]
Retrieves the remote-file and stores it on the local machine. If the local
file name is not specified, it is given the same name it has on the remote
machine. The current settings for type, form, mode, and structure are
used while transferring the file.

hash Toggles the hash-sign (#) printing for each data block transferred. The
size of a data block is 1024 bytes.

glob Toggles filename expansion for mdelete, mget, and mput . If
globbing is turned off with glob, the file name arguments are taken
literally and not expanded. Globbing for mput is done as in csh(l).
For mdelete and mget, each remote file name is expanded separately
on the remote machine and the lists are not merged. Expansion of a
directory name is likely to be different from expansion of the name of an
ordinary file. The exact result depends on the foreign operating system
and ftp server, and can be previewed by entering: mls remote-files.
Neither mget nor mput is meant to transfer entire directory subtrees of
files. That can be done by transferring a t ar(1) archive of the subtree
(in binary mode).

lcd [directory]
Changes the working directory on the local machine. If no directory is
specified, the user’s home directory is used.

Is [remote-directory 1 local-file]
Prints an abbreviated listing of the contents of a directory on the remote
machine. If remote-directory is left unspecified, the current working

1-252 Commands

ftp(ic)

directory is used. If no local file is specified, the output is sent to the
terminal.

macdef macro-name
Defines a macro. Subsequent lines are stored as the macro macro-name;
a null line (consecutive newline characters in a file or carriage returns
from the terminal) terminates macro input mode. There is a limit of 16
macros and 4096 total characters in all defined macros. Macros remain
defined until a close command is executed.

The macro processor interprets dollar signs ($) and backslashes (\) as
special characters. A dollar sign ($) followed by a number (or numbers)
is replaced by the corresponding argument on the macro invocation
command line. A dollar sign ($) followed by an i signals the macro
processor that the executing macro is to be looped. On the first pass, $i is
replaced by the first argument on the macro invocation command line.
On the second pass it is replaced by the second argument, and so on. A
backslash (\) followed by any character is replaced by that character.

Use the backslash (\) to prevent special treatment of the dollar sign ($).

mdelete remote-files
Deletes the specified files on the remote machine. If globbing is enabled,
the specification of remote files will first be expanded using Is.

mdir remote-files local-file
Obtains a directory listing of multiple files on the remote machine and
places the result in local-file.

mget remote-files
Retrieves the specified files from the remote machine and places them in
the current local directory. If globbing is enabled, the specification of
remote files will first be expanding using 1s.

mkdir directory-name
Makes a directory on the remote machine.

mls remote-files local-file
Obtains an abbreviated listing of multiple files on the remote machine
and places the result in local-file.

mode [mode-name |
Sets the file transfer mode to mode-name. The default mode is the
stream mode.

mput local-files
Transfers multiple local files from the current local directory to the
current working directory on the remote machine.

nmap [inpattern outpattern]
Sets or unsets the filename mapping mechanism. If no arguments are
specified, the filename mapping mechanism is unset. If arguments are
specified, remote filenames are mapped during mput commands and put
commands which are issued without a specified remote target filename.
If arguments are specified, local filenames are mapped during mget
commands and get commands which are issued without a specified local
target filename.

Commands 1-253

ftp(ic)

This command is useful when connecting to a non-UNIX remote
computer with different file naming conventions or practices. The
mapping follows the pattern set by inpattern and outpattern.

Inpattern is a template for incoming filenames (which may have already
been processed according to the ntrans and case settings). Variable
templating is accomplished by including the sequences $1, $2, ..., $9 in
inpattern. Use a backslash (\) to prevent this special treatment of the
dollar sign ($) character. All other characters are treated literally, and are
used to determine the nmap inpattern variable values. For example,
given inpattern $1.$2 and the remote file name mydata.data, $1 has the
value mydata, and $2 has the value data.

The outpattern determines the resulting mapped filename. The
sequences $1, $2,, $9 are replaced by any value resulting from the
inpattern template. The sequence $0 is replace by the original filename.
Additionally, the sequence [seq!,seq2] is replaced by seql if seq! is not
a null string; otherwise it is replaced by seq2. For example, the
command nmap $1.$2.$3 [$1,$2].[$2.file] yields the output filename
myfile.data for input filenames myfile.data and myfile.data.old, myfile.file
for the input filename myfile, and myfile.myfile for the input filename
.nyfile. Spaces may be included in outpattern, as in the example: nmap
$1 Ised "s/ *$//" > $1 . Use the backslash (\) to prevent special
treatment of the dollar sign ($), left bracket ([), right bracket (]), and
comma (,).

ntrans [inchars [outchars 1]

Sets or unsets the filename character translation mechanism. If no
arguments are specified, the filename character translation mechanism is
unset. If arguments are specified, characters in remote filenames are
translated during mput commands and put commands which are issued
without a specified remote target filename. If arguments are specified,
characters in local filenames are translated during mget commands and
get commands which are issued without a specified local target filename.

This command is useful when connecting to a non-UNIX remote
computer with different file naming conventions or practices. Characters
in a filename matching a character in inchars are replaced with the
corresponding character in outchars. If the character’s position in
inchars is longer than the length of outchars, the character is deleted
from the file name.

open host [port]

prompt

Establishes a connection to the specified host FTP server. If an optional
port number is supplied, £tp attempts to contact an FTP server at that
port. If the auto-login option is on (default), £tp automatically attempts
to log the user in to the FTP server (see below).

Toggles interactive prompting. Interactive prompting occurs during
multiple file transfers to allow the user to retrieve or store files
selectively. If prompting is turned off (default), any mget or mput
transfers all files.

Proxy ftp-command

1-254 Commands

Executes an ftp command on a secondary control connection. This

ftp(1c)

command allows simultaneous connection to two remote ftp servers for
transferring files between the two servers. The first proxy command
should be an open, to establish the secondary control connection. Type
the command proxy? to see other ftp commands executable on the
secondary connection. The following commands behave differently
when prefaced by proxy:

open will not define new macros during the auto-login process
close will not erase existing macro definitions

get and mget transfer files from the host on the primary control
connection to the host on the secondary control connection

put, mput, and append transfer files from the host on the secondary
control connection to the host on the primary control connection. Third
party file transfers depend upon support of the ftp protocol PASV
command by the server on the secondary control connection.

put local-file [remote-file]
Stores a local file on the remote machine. If remote-file is unspecified,
the local file name is used in naming the remote file. File transfer uses
the current settings for type, format, mode, and structure.

pwd Prints the name of the current working directory on the remote machine.
quit A synonym for bye.

quote argl arg2 ...
Sends the arguments that are specified, verbatim, to the remote FTP
server. A single FTP reply code is expected in return.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Requests help from the remote FTP server. If a command-name is
specified it is supplied to the server as well.

rename [from][to]
Renames the file from on the remote machine, to the file 0.

reset Clears the reply queue. This command re-synchronizes command/reply
sequencing with the remote ftp server. If the remote server violates the
ftp protocol, resynchronization may be necessary.

rmdir directory-name
Deletes a directory on the remote machine.

runique Toggles storing of files on the local system with unique filenames. If a
file already exists with a name equal to the target local filename for a get
or mget command, a .1 is appended to the name. If the resulting name
matches another existing file, a .2 is appended to the original name. If
this process continues up to .99, an error message is printed, and the
transfer does not take place. The generated unique filename will be
reported. Note that runique will not affect local files generated from a
shell command (see below). The default value is off.

send local-file [remote-file]
A synonym for put.

Commands 1-255

ftp(1c)

sendport Toggles the use of PORT commands. By default, ftp attempts to use a
PORT command when establishing a connection for each data transfer.
If the PORT command fails, ftp uses the default data port. When the
use of PORT commands is disabled, no attempt is made to use PORT
commands for each data transfer. This is useful for certain FTP
implementations which do ignore PORT commands but, incorrectly,
indicate that they have been accepted.

status Shows the current status of ftp.

struct [struct-name |
Sets the file transfer structure to struct-name. By default the file
structure is used.

sunique Toggles storing of files on a remote machine under unique file names.
The remote ftp server must support the ftp protocol STOU command for
successful completion of this command. The remote server reports the
unique name. Default value is off.

tenex Sets the file transfer type to that needed to talk to TENEX machines.
trace Toggles packet tracing.

type [type-name]
Sets the file transfer type to type-name. If no type is specified, the
current type is printed. The default type is network ASCII.

user user-name | password 1| account]
Identifies the user to the remote FTP server. If the password is not
specified and the server requires it, ftp disables the local echo and then
prompts the user for it. If an account field is not specified, and the FTP
server requires it, the user is prompted for it also. Unless ftp is
invoked with auto-login disabled, this process is done automatically on
initial connection to the FTP server.

verbose Toggles the verbose mode. In verbose mode, all responses from the FTP
server are displayed to the user. In addition, if ver