
ULTRIX
•

Reference Pages
Section 1: Commands A-L

Order Number: AA-PCOWA-TE

Reference Pages Section 1: Commands A - L

Order Number: AA-PCOWA-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual describes commands from A to L that are available to all UL TRIX users for both
RISe and VAX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1988, 1990
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystem,s, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IlmaDl1
CDA
DDIF
DDIS
DEC
DECnet
DECstation

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
ULTRIX Mail Connection

UL TRIX Worksystem Software
UNIBUS
VAX
VAX station
VMS
VMS/UL TRIX Connection
VT
XUI

Ethernet is a registered trademark of Xerox Corporation.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers.

System V is a registered trademark of AT&T.

Tektronix is a trademark of Tektronix, Inc.

Teletype is a registered trademark of AT&T in the USA and other countries.

UNIX is a registered trademark of AT&T in the USA and other countries.

About Reference Pages

The ULTRIX Reference Pages describe commands, system calls, routines, file
formats, and special files for RISe and V AX platforms.

Sections
The reference pages are divided into eight sections according to topic. Within each
section, the reference pages are organized alphabetically by title, except Section 3,
which is divided into subsections. Each section and most subsections have an
introductory reference page called intra that describes the organization and
anything unique to that section.

Some reference pages carry a one- to three-letter suffix after the section number, for
example, scan(lmh). The suffix indicates that there is a "family" of reference
pages for that utility or feature. The Section 3 subsections all use suffixes and other
sections may also have suffixes.

Following are the sections that make up the ULTRIX Reference Pages.

Section 1: Commands
This section describes commands that are available to all ULTRIX users. Section 1 is
split between two binders. The first binder contains reference pages for titles that fall
between A and L. The second binder contains reference pages for titles that fall
between M and Z.

Section 2: System Calls
This section defines system calls (entries into the ULTRIX kernel) that are used by
all programmers. The introduction to Section 2, int ra(2), lists error numbers with
brief descriptions of their meanings. The introduction also defines many of the terms
used in this section.

Section 3: Routines
This section describes the routines available in UL TRIX libraries. Routines are
sometimes referred to as subroutines or functions.

Section 4: Special Files
This section describes special files, related device driver functions, databases, and
network support.

Section 5: File Formats

This section describes the format of system files and how the files are used. The files
described include assembler and link editor output, system accounting, and file
system formats.

Section 6: Games
The reference pages in this section describe the games that are available in the
unsupported software subset. The reference pages for games are in the document
Reference Pages for Unsupported Software.

Section 7: Macro Packages and Conventions
This section contains miscellaneous information, including ASCII character codes,
mail addressing formats, text formatting macros, and a description of the root file
system.

Section 8: Maintenance

This section describes commands for system operation and maintenance.

Platform Labels
The ULTRIX Reference Pages contain entries for both RISC and VAX platforms.
Pages that have no platform label beside the title apply to both platforms. Reference
pages that apply only to RISC platforms have a "RISC" label beside the title and the
VAX-only reference pages that apply only to VAX platforms are likewise labeled
with ' 'VAX." If each platform has the same command, system call, routine, file
format, or special file, but functions differently on the different platforms, both
reference pages are included, with the RISe page first.

Reference Page Format
Each reference page follows the same general format. Common to all reference pages
is a title consisting of the name of a command or a descriptive title, followed by a
section number; for example, da t e(1). This title is used throughout the
documentation set.

The headings in each reference page provide specific information. The standard
headings are:

Name

Syntax

Description

Options

Restrictions

Examples

iv About Reference Pages

Provides the name of the entry and gives a short description.

Describes the command syntax or the routine definition. Section 5
reference pages do not use the Syntax heading.

Provides a detailed description of the entry's features, usage, and
syntax variations.

Describes the command-line options.

Describes limitations or restrictions on the use of a command or
routine.

Provides examples of how a command or routine is used.

Return Values

Diagnostics

Files

Environment

See Also

Conventions

Describes the values returned by a system call or routine. Used in
Sections 2 and 3 only.

Describes diagnostic and error messages that can appear.

Lists related files that are either a part of the command or used
during execution.

Describes the operation of the system call or routine when
compiled in the POSIX and SYSTEM V environments. If the
environment has no effect on the operation, this heading is not
used. Used in Sections 2 and 3 only.

Lists related reference pages and documents in the UL TRIX
documentation set.

The following documentation conventions are used in the reference pages.

%

user input

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in text to indicate the exact name of a
command, routine, partition, pathname, directory, or file. This
typeface is also used in interactive examples to indicate system
output and in code examples and other screen displays.

UPPERCASE
lowercase

rlogin

filename

[]

{ I }

The UL TRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

This typeface is used for command names in the Syntax portion
of the reference page to indicate that the command is entered
exactly as shown. Options for commands are shown in bold
wherever they appear.

In examples, syntax descriptions, and routine definitions, italics
are used to indicate variable values. In text, italics are used to
give references to other documents.

In syntax descriptions and routine definitions, brackets indicate
items that are optional.

In syntax descriptions and routine definitions, braces enclose lists
from which one item must be chosen. Vertical bars are used to
separate items.

About Reference Pages v

cat(1)

In syntax descriptions and routine definitions, a horizontal ellipsis
indicates that the preceding item can be repeated one or more
times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(1) indicates that you can find the material on the
cat command in Section I of the reference pages.

Online Reference Pages
The ULTRIX reference pages are available online if installed by your system
administrator. The man command is used to display the reference pages as follows:

To display the ls(1) reference page:

% man ls

To display the passwd(1) reference page:

% man passwd

To display the pas swd(5) reference page:

% man 5 passwd

To display the Name lines of all reference pages that contain the word "passwd":

% man -k passwd

To display the introductory reference page for the family of 3xti reference pages:

% man 3xti intro

Users on ULTRIX workstations can display the reference pages using the
unsupported xman utility if installed. See the xman(IX) reference page for details.

Reference Pages for Unsupported Software
The reference pages for the optionally installed, unsupported UL TRIX software are in
the document Reference Pages for Unsupported Software.

vi About Reference Pages

intro (1)

Name
intro - introduction to commands

Description
This section describes publicly accessible commands in alphabetic order. Certain
distinctions of purpose are made in the headings:

(1)

(lc)

(lg)

(lint)

(1mh)

(1ncs)

(lsh5)

(lyp)

Commands of general utility.

Commands for communication with other systems.

Commands used primarily for graphics and computer-aided design.

Commands used for internationalization. For more information see
internat(1int).

Commands specific to the Message Handler.

Commands used for NCS (Network Computing System).

Commands interpreted by the sh5 (System V Release 2) shell.

Commands specific to the Yellow Pages (YP) service.

Note
Commands related to system maintenance used to appear in section 1
reference pages and were distinguished by (lm) at the top of the page.
These reference pages now appear in section 8.

Diagnostics
Upon termination each command returns two bytes of status, one supplied by the
system giving the cause for termination and, in the case of normal termination, one
supplied by the program. For more information, see wai t(l) and exi t(2). The
former byte is 0 for normal termination; the latter is customarily 0 for successful
execution. A nonzero status indicates a problem such as erroneous parameters, or bad
or inaccessible data. It is called variously exit code, exit status, or return code, and is
described only where special conventions are involved.

Commands 1-1

VAX 2780e (1)

Name
2780e - spooler for the IBM 2780 emulator

Syntax
2780e [-m] [-a] [-q] [-b] [-t] [-Sfile] [-#num]file ... [-ofile ...]

Description
The 2 7 8 0 e command puts the files named as arguments, along with a single control
file that guides each file's execution, into usr/spool/rje and calls the 2780d
program. This program sends the files to the IBM system.

Options

Files

The following options may be needed to format data transmitted to an IBM system.

-# Waits for num files to be received as output from job and gives default file
names in the fonn Ruseridpid.

-a Send file as a priority job. Used only by the superuser. This file will be placed
ahead of the next regular file or at the end of other priority jobs.

-b Transmits the file to an IBM system that accepts multiple record transmission.

-m Notifies user by mail that file was sent and output was received.

-0 Name output files with specified file names. This option must be at the end of
the command line. Anything listed after this option is interpreted as an output
file name.

-q Prepares the file for transmission and places it in / u s r / s p 0 01 / r j e but does
not call 2780d to transmit.

-S Sends contents of file to the IBM as a sign-on card. If this option is not
specified, a default sign-on card in the spool area is used.

-t Sends data in transparent mode. This option is used for files which contain
special control or protocol characters.

/etc/2780d Program that transmits files.

/usr/spool/rje Spool directory

/usr/spool/rje/tjetemp.out Temporary file for incoming files

See Also
2780d(8), 3780e(1)

1-2 Commands

3780e(1)

Name
3780e - spooler for the IBM 3780 emulator

Syntax
3780e [-C] [-m] [-a] [-q] [-t[b]] [-Sfile] [-#num] file ... [-0 file]

Description
The 37 8 0 e command puts the files named as arguments, along with a single control
file that guides each file's execution, into us r / s po 0 1/ r j e and calls the 2780 d
program. This program sends the files to the IBM system.

Options
The following options may be needed to format the data transmitted to an IBM
system.

-# Waits for num files to be received as output and gives default file names in the
form Ruseridpid.

-a Send file as a priority job. Used only by the superuser. This file will be placed
ahead of the next regular file or at the end of other priority jobs.

-C Prevents the compression of spaces when files are sent.

-m Sends mail when file is sent and when output from submitted file is received
successfully.

-0 Names output file with specified file names. This option must be at the end of
the command line. Anything listed after this option is interpreted as an output
file name.

-q Prepares file for transmission and places it in / u s r / s p 001 / r j e but does not
call 2 7 8 0 d to transmit it.

-S Send contents of the file to the IBM as a sign-on card. If this option is not
specified, then a default sign-on card in the spool area will be used.

-t Sends data in transparent mode. This option is used for files which contain
special control or protocol characters. Use this option if the IBM system does
not accept multiple 80 column card records in transparent mode.

-th Transmits the file to IBM that accepts multiple 80 column card records in
transparent mode.

Commands 1-3

VAX

VAX 3780e (1)

Files

/etc/2780d Program that transmits files

/usr/spool/rje Spool directory

/usr/spool/rje/rjetemp.out Temporary file for incoming files

See Also
2780d(8), 2780e(1)

1-4 Commands

adb{1)

Name
adb - interactive C program debugger

Syntax
adb [-w] [-k] [-Idir] [objfil [corfil]]

Description
The adb command is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the execution of UNIX
programs.

The objfil is normally an executable program file, preferably containing a symbol
table. If it does not contain a symbol table then the symbolic features of adb cannot
be used. However, the file can still be examined. The default for objfil is a. out.
The corfil is assumed to be a core image file produced after executing objfil; the
default for corfil is core.

Requests to adb are read from the standard input and responses are to the standard
output. If the -w flag is present then both objfil and corfil are created if necessary
and opened for reading and writing so that files can be modified using adb.

The -k option makes adb do UNIX kernel memory mapping; it should be used
when core is a UNIX crash dump or / dev / mem .

The -I option specifies a directory where files to be read with $< or $« (see the
EXPRESSIONS section) are sought. The default directory is /usr /lib/adb.

The adb command ignores QUIT; INTERRUPT causes retunl to the next adb
command.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to O. For most
commands count specifies how many times the command is executed. The default
count is 1. Address and count are expressions.

The interpretation of an address depends on its context. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the
subprocess. If the operating system is being debugged either post-mortem or using
the special file / dev /mem to interactive examine and/or modify memory the maps
are set to map the kernel virtual addresses which start at Ox80000000. For further
details of address mapping, see ADDRESSES.

Expressions

+
1\

"

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

Commands 1-5

VAX

VAX adb(1)

integer A number. The prefixes 00 and 00 ("zero oh") force interpretation in
octal radix; the prefixes Ot and OT force interpretation in decimal
radix; the prefixes Ox and OX force interpretation in hexadecimal radix.
Thus 0020 = Ot 16 = Ox 1 0 = sixteen. If no prefix appears, then the
default radix is used; see the $d command. The default radix is
initially hexadecimal. The hexadecimal digits are
0123456789abcdefABCDEF with the obvious values. Note that a
hexadecimal number whose most significant digit would otherwise be
an alphabetic character must have a Ox (or OX) prefix (or a leading
zero if the default radix is hexadecimal).

integer .fraction
A 32 bit floating point number.

'cccc The ASCII value of up to 4 characters.

< name The value of name, which is either a variable name or a register name.
The adb debugger maintains a number of variables (see
VARIABLES) named by single letters or digits. If name is a register
name then the value of the register is obtained from the system header
in corfil. The register names are those printed by the $r command.

symbol A symbol is a sequence of upper or lower case letters, underscores or
digits, not starting with a digit. The backslash character \ may be used
to escape other characters. The value of the symbol is taken from the
symbol table in objfil. An initial underscore (_) will be prepended to
symbol if needed.

_ symbol In C, the true name of an external symbol begins with _. It may be
necessary to use this name to distinguish it from internal or hidden
variables of a program.

routine .name The address of the variable name in the specified C routine. Both
routine and name are symbols. If name is omitted the value is the
address of the most recently activated C stack frame corresponding to
routine. This form is currently broken on the VAX; local variables
can be examined only with dbx(1).

(exp) The value of the expression exp.

Monadic operators

*exp

@exp

-exp

_exp

#exp

The contents of the location addressed by exp in corfil.

The contents of the location addressed by exp in objfil.

Integer negation.

Bitwise complement.

Logical negation.

Dyadic operators are left associative and are less binding than monadic operators.

el +e2 Integer addition.

el-e2

el*e2

el%e2

Integer subtraction.

Integer multiplication.

Integer division.

1-6 Commands

el&e2

elle2

el#e2

Commands

Bitwise conjunction.

Bitwise disjunction.

El rounded up to the next multiple of e2.

adb(1)

Most commands consist of a verb followed by a modifier or list of modifiers. The
following verbs are available. The commands question mark (?) and slash (I) may be
followed by an asterisk (*); see the ADDRESSES section for further details.

?f Locations starting at address in obJfil are printed according to the
format f. dot is incremented by the sum of the increments for each
format letter.

If Locations starting at address in corfil are printed according to the
format f and dot is incremented as for question mark (?).

=f The value of address itself is printed in the styles indicated by the
format f. (For i format, the question mark (?) is printed for the parts
of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each
format character may be preceded by a decimal integer that is a repeat count for the
format character. While stepping through a format, dot is incremented by the amount
given for each format letter. If no format is given then the last fonnat is used. The
fonnat letters available are as follows:

02

04
q2
Q4
d2
D4
x2
X4
u2
U4
f4
F8
bl
cl
CI

sn
Sn

Y4
in

aO

Print 2 bytes in octal. All octal numbers output by a db are preceded
by O.
Print 4 bytes in octal.
Print in signed octal.
Print long signed octal.
Print in decimal.
Print long decimal.
Print 2 bytes in hexadecimal.
Print 4 bytes in hexadecimal.
Print as an unsigned decimal number.
Print long unsigned decimal.
Print the 32 bit value as a floating point number.
Print double floating point.
Print the addressed byte in octal.
Print the addressed character.
Print the addressed character using the standard escape convention
where control characters are printed as A X and the delete character is
printed as A?
Print the addressed characters until a zero character is reached.
Print a string using the AX escape convention (see the fonnat Cl
above). n is the length of the string including its zero tenninator.
Print 4 bytes in date format. For further infonnation, see ctime(3).
Print as machine instructions. n is the number of bytes occupied by
the instruction. This style of printing causes variables I and 2 to be
set to the offset parts of the source and destination respectively.
Print the value of dot in symbolic fonn. Symbols are checked to
ensure that they have an appropriate type as indicated below:

Commands 1-7

VAX

VAX adb(1)

p4

to

rO
nO
" ... "0

+

I local or global data symbol
? local or global text symbol
= local or global absolute symbol

Print the addressed value in symbolic form using the same rules for
symbol lookup as aO.
When preceded by an integer tabs to the next appropriate tab stop.
For example, 8t moves to the next 8-space tab stop.
Print a space.
Print a new line.
Print the enclosed string.
Dot is decremented by the current increment. Nothing is printed.
Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

newline Repeat the previous command with a count of 1.

[?/]I value mask
Words starting at dot are masked with mask and compared with value
until a match is found. If L is used then the match is for 4 bytes at a
time instead of 2. If no match is found then dot is unchanged;
otherwise dot is set to the matched location. If mask is omitted then
-1 is used.

[? I]w value ... Write the 2-byte value into the addressed location. If the command is
W, write 4 bytes. Odd addresses are not allowed when writing to the
subprocess address space.

[?/]m b1 e1/1[?/]

>name

$modifier

New values for (b1, e1,/1) are recorded. If less than three expressions
are given then the remaining map parameters are left unchanged. If
the '?' or '/' is followed by '*' then the second segment (b2, e2 ,12) of
the mapping is changed. If the list is terminated by '?' or 'I' then the
file (objfil or corfil respectively) is used for subsequent requests. So
that, for example, '1m?' will cause '/' to refer to objfil.

Dot is assigned to the variable or register named.

A shell (/bin/sh) is called to read the rest of the line following '!'.

Miscellaneous commands. The following modifiers are available:

</ Read commands from the file f. If this command is executed in
a file, further commands in the file are not seen. If / is omitted,
the current input stream is terminated. If a count is given, and is
zero, the command will be ignored. The value of the count will
be placed in variable 9 before the first command in / is executed.

<</ Similar to < except it can be used in a file of commands without
causing the file to be closed. Variable 9 is saved during the
execution of this command, and restored when it completes.
There is a (small) finite limit to the number of « files that can
be open at once.

>/ Append output to the file /, which is created if it does not exist.
If / is omitted, output is returned to the terminal.

? Print process id, the signal which caused stoppage or

1-8 Commands

:modifier

adb(1)

termination, as well as registers such as Sr. This is the default if
modifier is omitted.

r Print the general registers and the instruction addressed by pc.
Dot is set to pc.

b Print all breakpoints and their associated counts and commands.

c C stack backtrace. If address is given then it is taken as the
address of the current frame instead of the contents of the
frame-pointer register. If C is used then the names and (32 bit)
values of all automatic and static variables are printed for each
active function. (broken on the VAX). If count is given then
only the first count frames are printed.

d Set the default radix to address and report the new value. Note
that address is interpreted in the (old) current radix. Thus
"lO$d" never changes the default radix. To make decimal the
default radix, use "OtlO$d".

e The names and values of external variables are printed.

w Set the page width for output to address (default 80).

s Set the limit for symbol matches to address (default 255).

o All integers input are regarded as octal.

q Exit from adb .

v Print all non zero variables in octal.

m Print the address map.

p (Kernel debugging) Change the current kernel memory mapping
to map the designated user structure to the address given by
the symbol _u. The address argument is the address of the
user's user page table entries.

x (Kernel debugging) The address argument is the CPU number.
Change the current kernel memory mapping to that of the
specified CPU. If no address is provided, the status of each of
the CPUs in the system is displayed. This option is ONLY
valid with the -k option.

Manage a subprocess. The following modifiers are available:

be Set breakpoint at address. The breakpoint is executed count-l
times before causing a stop. Each time the breakpoint is
encountered the command c is executed. If this command is
omitted or sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.

r Run objfil as a subprocess. If address is given explicitly theri\
the program is entered at this point; otherwise the program is
entered at its standard entry point. count specifies how many
breakpoints are to be ignored before stopping. Arguments to the
subprocess may be supplied on the same line as the command.
An argument starting with < or > causes the st~ndard input or
output to be established for the command.

Commands 1-9

VAX

VAX adb(1)

cs The subprocess is continued with signal s, see sigvec(2). If
address is given then the subprocess is continued at this address.
If no signal is specified then the signal that caused the
subprocess to stop is sent. Breakpoint skipping is the same as
for r.

ss As for c except that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run as a
subprocess as for r. In this case no signal can be sent; the
remainder of the line is treated as arguments to the subprocess.

k The current subprocess, if any, is terminated.

Variables
The adb command provides a number of variables. Named variables are set initially
by adb but are not used subsequently. The following numbered variables are
reserved for communication:

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.
9 The count on the last $ < or $ < < command.

On entry the following are set from the system header in the corfil. If corfil does not
appear to be a core file then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The 'magic' number (0407, 0410 or 0413).
s The stack segment size.
t The text segment size.

Addresses
The address in a file associated with a written address is determined by a mapping
associated with that file. Each mapping is represented by two triples (b1, e1, /1) and
(b2, e2,j2) and the file address corresponding to a written address is calculated as
follows:

b1~address<e1 => file address=address+/1-bl, otherwise,

b2~address<e2 => file address =address +j2-b2 ,

otherwise, the requested address is not legal. In some cases (for example, for
programs with separated I and D space) the two segments for a file may overlap. If a
? or / is followed by an * then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If
either file is not of the kind expected then, for that file, b1 is set to 0, e1 is set to the
maximum file size and /1 is set to O. This way the whole file can be examined with
no address translation.

1-10 Commands

adb(1) VAX

Restrictions
Because no shell is invoked to interpret the arguments of the : r command, the
customary wildcard and variable expansions cannot occur.

Diagnostics

Files

When there is no command or format given to adb, the string 'adb' appears. adb
displays comments about inaccessible files, syntax errors, abnormal termination of
commands, etc. Exit status is 0, unless last command failed or returned nonzero
status.

a.out
core

See Also
cc(l), dbx(1), ptrace(2), a.out(5), core(5)

Commands 1-11

addbib(1)

Name
addbib - create or extend bibliographic database

Syntax
addbib [-p promptfile] [-a] database

Description
When this program starts up, answering "y" to the initial "Instructions?" prompt
yields directions; typing "n" or RETURN skips them. The addbib command then
prompts for various bibliographic fields, reads responses from the terminal, and sends
output records to a database. A null response (just RETURN) means to leave out that
field. A minus sign (-) means to go back to the previous field. A trailing backslash
allows a field to be continued on the next line. The repeating "Continue?" prompt
allows the user either to resume by typing "y" or RETURN, to quit the current session
by typing "n" or "q", or to edit the database with any system editor (vi, ex,
edit, ed).

Options

-a Suppresses prompting for an abstract. Asking for an abstract is the default.
Abstracts are ended with a CTRL/D.

-p Causes use of a new prompting skeleton, defined in promptfile. This file should
contain prompt strings, a tab, and the key-letters to be written to the database.

The most common key-letters and their meanings are given below. The addbib
insulates you from these key-letters, since it gives you prompts in English. However,
if you edit the bibliography file later, you need this information.

%A Author's name
% B Book containing article referenced
%C City (place of publication)
%D Date of publication
%E Editor of book containing article referenced
%F Footnote number or label (supplied by refer)
%G Government order number
%H Header commentary, printed before reference
%1 Issuer (publisher)
%J J oumal containing article
%K Keywords to use in locating reference
%L Label field used by -k option of refer
%M Bell Labs Memorandum (undefined)
%N Number within volume
%0 Other commentary, printed at end of reference
%P Page number(s)
%Q Corporate or Foreign Author (unreversed)
%R R,eport, paper, or thesis (unpublished)

1-12 Commands

Files

%S
%T
%V
%X
%Y,Z

Series title
Title of article or book
Volume number
Abstract - used by roffbib, not by refer
ignored by refer

addbib(1)

Except for 'A', each field should be given once. Only relevant fields should be
supplied. An example is:

%A Bill Tuthill
%T Refer - A Bibliography System
%I Computing Services
%C Berkeley
%D 1982
%0 UNX 4.3.5.

promptfile Optional file to define prompting

See Also
indxbib(1), lookbib(1), refer(1), rofibib(1), sortbib(1)

Commands 1-13

admin (1)

Name

Syntax

admin - sees file administrator

admio [-0] [-i[name]] [-rrel] [-t[name]] [-(flag (flag-val]] [-dflag (flag-val]]
[-alogin] [-elogin] [-m[list]] [-y[comment]] [-h] [-z]files

Description
The a dmi n command is used to create new sees files and to change parameters of
existing ones. Arguments to admin, which may appear in any order, consist of
key letter arguments, which begin with -, and named files (note that sees file names
must begin with the characters s.). If a named file does not exist, it is created, and its
parameters are initialized according to the specified keyletter arguments. Parameters
not initialized by a keyletter argument are assigned a default value. If a named file
does exist, parameters corresponding to specified keyletter arguments are changed,
and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are ignored. If a name of - is
given, the standard input is read; each line of the standard input is taken to be the
name of an sees file to be processed. Again, non-sees files and unreadable files are
ignored.

Options
Each keyletter argument is explained as though only one named file is to be
processed, because the effects of the arguments apply independently to each named
file. The list of arguments is as follows:

1-14 Commands

-0 This key letter indicates that a new sees file is to be created.

-i[name] The name of a file from which the text for a new sees file

-rrel

is to be taken. The text constitutes the first delta of the file
(see the -r keyletter for the delta numbering scheme).

If the i key letter is used, but the file name is omitted, the
text is obtained by reading the standard input until an end­
of-file is encountered. If this keyletter is omitted, then the
sees file is created empty.

Only one sees file can be created by an admin command
in which the i keyletter is supplied. Using a single admin
command to create two or more sees files requires that they
be created empty (no -i keyletter). Note that the -i keyletter
implies the -0 keyletter.

The release into which the initial delta is inserted. This
keyletter may be used only if the -i keyletter is also used. If
the -r keyletter is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1. By
default, initial deltas are named 1.1.

-t[name]

-fjlag

admin (1)

The name of a file from which descriptive text for the sees
file is to be taken. If the -t keyletter is used and admin is
creating a new sees file (the -0 and/or -i keyletters are also
used), the descriptive text file name must also be supplied.

In the case of existing sees files: (1) a -t keyletter without
a file name causes removal of descriptive text (if any)
currently in the sees file; and (2) a -t keyletter with a file
name causes text (if any) in the named file to replace the
descriptive text (if any) currently in the sees file.

This keyletter specifies ajlag, and, possibly, a value for the
flag, to be placed in the sees file. Several f keyletters can
be supplied on a single admin command line. The
allowable jlags and their values are:

b Allows use of the -b keyletter on a get(1) command
to create branch deltas.

cceil The highest release ("ceiling"), a positive number no
higher than 9999, which may be retrieved by a get(l)
command for editing. The default value for an
unspecified c flag is 9999.

fjloor The lowest release ("floor"), a positive number
greater than 0 but less than 9999, which may be
retrieved by a get(1) command for editing. The
default value for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a get(1)
command.

Causes the "No id keywords (ge6)" message issued by
get(l) or del ta(1) to be treated as a fatal error. In
the absence of this flag, the message is only a warning.
The message is issued if no sees identification
keywords are found in the text retrieved or stored in
the sees file. For further information, see get(l).

j Allows concurrent get(1) commands for editing on the
same SID of an sees file. This allows multiple
concurrent updates to the same version of the sees
file.

llist A list of releases to which deltas can no longer be
made (get -e against one of these "locked" releases
fails). The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= RELEASE NUMBER I a

The character a in the list is equivalent to specifying
all releases for the named sees file.

o Causes del ta(l) to create a null delta in each of
those releases (if any) being skipped when a delta is
made in a new release. For example, in making delta

Commands 1-15

admin (1)

-dflag

-lUst

-alogin

-elogin

1-16 Comm~nds

5.1 after delta 2.7, releases 3 and 4 are skipped. These
null deltas serve as anchor points, so that branch deltas
can later be created from them. The absence of this
flag causes skipped releases to be nonexistent in the
sees file, preventing branch deltas from being created
from them in the future.

qtext User definable text substituted for all occurrences of
the %Q% keyword in sees file text retrieved by
get(l).

mmod Module name of the sees file substituted for all
occurrences of the %M% keyword in sees file tex
retrieved by get(l). If the m flag is not specified, the
value assigned is the name of the sees file with the
leading s. removed.

ttype Type of module in the sees file substituted for all
occurrences of % Y% keyword in sees file text
retrieved by get(l).

v[pgm] Causes del ta(l) to prompt for modification request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number
validity checking program. For further information,
see del ta(l). (If this flag is set when creating an
SCCS file, the m keyletter must also be used even if
its value is null).

Causes deletion of the specified flag from an sees file. The
-d keyletter can be specified only when processing existing
sees files. Several -d key letters can be supplied on a single
admin command. See the -f keyletter for allowable flag
names.

A Ust of releases to be unlocked. See the -f keyletter for a
description of the I flag and the syntax of a list.

A login name or numerical ULTRIX System group ID to be
added to the list of users which can make deltas (changes) to
the sees file. A group ID is equivalent to specifying all
login names common to that group ID. Several a keyletters
can be used on a single admin command line. As many
log ins or numerical group IDs as desired can be on the list
simultaneously. If the list of users is empty, then anyone
can add deltas.

A login name or numerical group ID to be erased from the
list of users allowed to make deltas (changes) to the sees
file. Specifying a group ID is equivalent to specifying all
login names common to that group ID. Several e keyletters
can be used on a single admin command line.

-y[comment]

-m[mrlist]

-h

-z

admin (1)

The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical to that of
del ta(l). Omission of the -y keyletter results in a default
comment line being inserted in the form:
date and time created YY/MM/DD HH:MM:SS by login
The -y keyletter is valid only if the -i or -0 keyletters are
specified.

The list of modification requests (MR) numbers is inserted
into the sees file as the reason for creating the initial delta
in a manner identical to del ta(l). The v flag must be set
and the MR numbers are validated if the v flag has a value
(the name of an MR number validation program).
Diagnostics occur if the v flag is not set or MR validation
fails.

Causes admin to check the structure of the sees file and to
compare a newly computed check-sum (the sum of all the
characters in the sees file except those in the first line) with
the check-sum that is stored in the first line of the sees file.
Appropriate error diagnostics are produced. For further
information, see sccsfile(5).

This keyletter inhibits writing on the file, so that it nullifies
the effect of any other keyletters supplied. It is, therefore,
only meaningful when processing existing files.

The sees file check-sum is recomputed and stored in the
first line of the sees file (see -h, above).

Note that use of this keyletter on a truly corrupted file may
prevent future detection of the corruption.

Diagnostics
Use sccshelp(l) for explanations.

Restrictions

Files

When creating a new sees file with the -0 or -i options, the g-file path name cannot
be of the form s.file-name.

The last component of all sees file names are of the form s.file-name. New sees
files are given mode 444. For further information, see chmod(1). Write permission
in the pertinent directory is required to create a file. All writing done by admin is to
a temporary x-file, called x.file-name, created with mode 444 if the admin command
is creating a new sees file, or with the same mode as the sees file if it exists. For
further information, see get(1). After successful execution of admin, the sees
file is removed if it exists, and the x-file is renamed with the name of the sees file.
This ensures that changes are made to the sees file only if no errors occurred.

The mode of the sees files prevents any modification at all except by sees
commands.

Commands 1-17

admin(1)

If it should be necessary to patch an sees file for any reason, the mode may be
changed to 644 by the owner, allowing use of ed(l).

NOTE

Care must be taken that correct commands are used when patching an
SCCS file, otherwise further corruption of the file can occur.

The edited file should always be processed by an admin-h to check for corruption,
followed by an admin-z to generate a proper check-sum. Another admin-h is
recommended to ensure the sees file is valid.

The admin command also makes use of a transient lock file (called z.file-name),
which is used to prevent simultaneous updates to the sees file by different users.
For further information, see get(1).

See Also
delta(1), ed(l), get(l), help(1), prs(l), sccs(1), what(1), sccsfile(5)
Guide to the Source Code Control System

1-18 Commands

Name

Syntax

ali - list mail aliases

ali [-alias aliasfile] [-list] [-noUst] [-normalize] [-nonormalize] [-user
<useradr>] [-nouser] aliases ... [-help]

ali (1 mh)

Description

The command ali searches the specified mail alias files for each of the given
aliases. It creates a list of addresses for those aliases, and displays that list on the
screen.

Options

You specify the alias files using the - ali a s aliasfile option. You can specify more
than one alias file, but each aliasfile must be preceded by its own - ali a s flag. You
must specify an aliasfile; either at the command line itself, or in your
.mh_profile.

If you specify the -1 i s t option, each address appears on a separate line; otherwise,
the addresses are separated by commas and printed on as few lines as possible.

You can make ali display all the aliases that contain a specific name by using the
-user useraddress option The -user option directs ali to perform its processing
in an inverted fashion: instead of listing the addresses that each given alias expands
to, ali lists the aliases that expand to each given address. You must specify the
complete username that you have used in your mh-alias file. The following
example shows how this option can be used.

% ali -user Parker@Venus
Parker@Venus: Group, Reviewers, Badminton

If the -normalize option is given, ali tries to track down the official hostname
of the address.

Each alias is processed as described in mh-alias(5mh).

The defaults for ali are:
-alias /usr/new/lib/mh/MailAliases
-nolist
-nonormalize
-nouser

Commands 1-19

ali (1 mh)

Files
$HOME/.mh_profile
/etc/passwd
/etc/group

See Also
mh-alias(5mh)

1-20 Commands

The user profile
List of users
List of groups

Name

Syntax

anno(1mh)

anno - annotate messages

anno [+folder] [msgs] [--component field] [-inplace] [-noinplace] [-text body]
[-help]

Description

The command anna annotates the specified messages in the named folder using the
field and body. You can use anna with dist, forw, and repl, to keep track of
the distribution and forwarding of, and replies to your messages. By using anno,
you can perform arbitrary annotations of your own. Each message selected is
annotated with the following lines:

field: date
field: body

Options

Files

The -inplace switch causes annotation to be done in place in order to preserve
links to the annotated message.

The -component field specified should be a valid RFC 822-style message field
name, which means that it should consist of alphanumerics (or dashes) only. The
body specified is arbitrary text.

If a -component field is not specified when anna is invoked, anna prompts you
for the field-name for the annotation.

If a folder is given, it becomes the current folder. The first message annotated
becomes the current message.

The defaults for anna are:
+folder defaults to the current folder
msgs defaults to the current message
-noinplace.

$HOME/.mh_profile The user profile

Profile Components
Path: To determine your MH directory

To find the default current folder Current-Folder:

See Also
dist(1mh), forw(lmh), repl(1mh)

Commands 1-21

apply(1)

Name
apply - apply a command to a set of arguments

Syntax
apply [-ac] [-n] command args ...

Description
The apply program runs the named command on each argument arg in turn.
Normally arguments are chosen singly; the optional number n specifies the number of
arguments to be passed to command. If n is zero, command is run without arguments
once for each arg. Character sequences of the form %d in command, where d is a
digit from 1 to 9, are replaced by the d'th following unused argo If any such
sequences occur, n is ignored, and the number. of arguments passed to command is
the maximum value of d in command. The percent sign (%) character can be changed
by the -a option.

Examples
The following command line is similar to Is(1):

apply echo *

The next example compares the specified a files to the specified b files:

apply -2 cmp a1 b1 a2 b2 ...

The following example run the who command 5 times and links all files in the
current directory to the directory /usr / joe:

apply 'In %1 /usr/joe' *

Restrictions
Shell metacharacters in command may have unexpected results; it is best to enclose
complicated commands in single quotes (' ').

You cannot pass a literal, '%2', if the percent sign (%) is the argument expansion
character.

See Also
she!)

1-22 Commands

apropos (1)

Name
apropos - locate commands by keyword lookup

Syntax
apropos keyword ...

Description

Files

The apropos command shows which manual sections contain instances of any of
the given keywords in their title. Each word is considered separately and the case of
letters is ignored. Words that are part of other words are listed. Thus, looking for
the word compile hits all instances of 'compiler' also.

If the line starts 'name(section) ... ' you can do 'man section name' to get the
documentation for it. The following command line lists all commands that have to
do with formatting:

apropos format

To then access the reference page for the print! subroutine that you see listed, type:

man 3s printf

The apropos command is actually just the -k option to the man command.

/usr/lib/whatis data base

See Also
man(l), whatis(l), catman(8)

Commands 1-23

Rise ar(1)

Name
ar - archive and library maintainer

Syntax
ar option [posname] filel ... fileN

Description
The archiver ar maintains groups of files as a single archive file. This utility is
generally used to create and update library files that the link editor uses; however,
you can use the archiver for other similar purposes.

Options

NOTE

This version uses a portable ASCII-format archive that you can use on
various machines that run UNIX. If you have an archive that uses an
older format, see arcv(8).

This section describes the options and suboptions that you can use with the ar utility.
Suboptions must be specified with options. Following is a list and description of the
options:

d Deletes the specified files from the archive file.

r Replaces the specified files in the archive file. If you use the suboption u
with r, the archiver only replaces those files that have last-modified dates
later than the archive files. If you use a positioning character (from the set
abi) you must specify the posname argument to tell the archiver to put the
new files after (a) or before (b or i). Otherwise, the archiver puts new files
at the end of the archive.

q Appends the specified files to the end of the archive file. The archiver
does not accept suboption positioning characters with the q option. It also
does not check whether the files you want to add already exist in the
archive. Use the q option only to avoid quadratic behavior when you
create a large archive piece by piece.

t Prints a table of contents for the files in the archive file. If you do not
specify any filenames, the archiver builds a table of contents for all files.
If you specify filenames, the archiver builds a table of contents only for
those files.

p Prints the specified files from the archive.

rn Moves the specified files to the end of the archive. If you specify a
positioning character, you must also specify the posname (as in option r)
to tell the archiver where to move the files.

x Extracts the specified files from the archive. If you do not specify any
filenames, the archiver extracts all files. When it extracts files, the
archiver does not change any file. Normally, the last-modified date for
each extracted file shows the date when someone extracted it; however,
when you use 0, the archiver resets the last-modified date to the date
recorded in the archive.

1-24 Commands

ar(1)

s Makes a symbol definition (symdef file) as the first file of an archive.
This file contains a hash table of ranlib structures and a corresponding
string table. The symdef file's name is based on the byte ordering of the
hash table and the byte ordering of the file's target machine. Files must be
consistent in their target byte ordering before the archiver can create a
symdef file. If you change the archive contents, the symdef file becomes
obsolete because the archive file's name changes. If you specify s, the
archiver create~ the symdef file as its last action before finishing execution.
You must specify at least one other archive option (m, p, q, r, or t) when
you use the s option. For UMIPS-V, archives include member objects
based on the definition of a common object only. For UMIPS-BSD, they
define the common object, but do not include the object.

v Gives a file-by-file description as the archiver makes a new archive file
from an old archive and its constituent files. When you use this option
with t, the archiver lists all information about the files in the archive.
When you use this option with p, the archiver precedes each file with a
name.

c Suppresses the normal message that the archiver prints when it creates the
specified archive file. Normally, the archiver creates the specified archiver
file when it needs to.

Places temporary files in the local directory. If the I option is not used
then the value of the environment symbol, TMPDIR, is used as the
directory for temporary files. If TMPDIR is not defined or if the directory
it references is not writable then /tmp is used.

The suboptions do these things:

a Specifies that the file goes after the existing file (posname). Use this
suboption with the m or r options.

b Specifies that the file goes before the existing file (posname). Use this
suboption with the m or r options.

Specifies that the file goes before the existing file (posname). Use this
suboption with the m or r options.

o Forces a newly created file to have the last-modified date that it had before
it was extracted from the archive. Use this suboption with the x option.

u Prevents the archiver from replacing an existing file unless the replacement
is newer than the existing file. This option uses the UNIX system last
modified date for this comparison. Use this suboption with the r option.

Restrictions
If you specify the same file twice in an argument list, it can appear twice in the
archive file.

The 0 option does not change the last-modified date of a file unless you own the
extracted file or you are the superuser.

Commands 1-25

Rise

Rise ar{1)

Files
/tmp/v* temporaries

See Also
lorder(1), Id(1), odump(l), ranlib(1), ranhash(3x), ar(5), arcv(8)

1-26 Commands

ar(1)

Name
ar - archive and library maintainer

Syntax
ar -key [posname] afile name ...

Description
The ar command maintains groups of files combined into a single archive file. The
ar command is used to create and update library files as they are used by the loader.

This version of ar uses a ASCII-format archive, which can be used by the various
machines running UNIX. Programs for dealing with older formats are also available.
For further information, see arcv(8).

The key is one character from the following set: d, r, q, t, p, m, x. The key
character can be concatenated with one or more of the following optional characters:
v, U, a, i, b, C, I, o. The afile is the archive file. The names are constituent files in
the archive file.

Options
The OPTIONS section is divided into two sections: the first section lists the key
characters and their meanings, and the second section lists the optional characters and
their meanings.

For backward compatibility, the keys work without the dash (-). The definitions of
the key characters are as follows:

d Deletes the named files from the archive file.

m Moves the named files to the end of the archive. If a positioning character
is present, then the posname argument must be present and, as in r, it will
specify where the files are to be moved.

p Prints the named files in the archive.

q Appends the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added files are already in the archive. The q option is used primarily
to avoid quadratic behavior when you are creating a large archive piece­
by-piece.

r Replaces the named files in the archive file. If the optional character u is
used with r, then only those files with last-modified dates later than the
archive files are replaced. If an optional positioning character from the set
a, b, or i is used, then the posname argument must be present and it
specifies that new files should be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

t Prints a table of contents of the archive file. If no names are given, all
files in the archive are included in the table of contents. If file names are
specified, only those files are included in the table of contents.

x Extracts the named files. If no names are given, all files in the archive are
extracted. However, x does not alter the archive file. Normally the last-

Commands 1-27

VAX

VAX ar(1)

modified date of each extracted file is the date when it is extracted.
However, if 0 is used, the last-modified date is reset to the date recorded
in the archive.

The following optional characters can be used in conjunction with the key characters:

a Tells the a r command that new files should be placed after posname.

b Tells the ar command that new files should be placed before posname.

c Suppresses the message that is normally produced when afile is created.

Tells the a r command that new files should be placed before posname.

Places files in the local directory. If the I option is not used then the value of
the environment symbol, TMPDIR, is used as the directory for temporary files.
If TMPDIR is not defined or if the directory it references is not writable then
/tmp is used.

o Resets the last-modified date to the date recorded in the archive. Normally the
last-modified date is the date when the file was extracted.

u Replaces only those files with last-modified dates later than the archive files.
See the r key character.

v Gives a file-by-file description of the making of a new archive file from the old
archive and the constituent files. When used with the t option, it gives a long
listing of all information about the files. When used with the p option, it
precedes each file with a name.

Restrictions

Files

The a r command truncates the filenames to 15 characters.

If the same file is mentioned twice in an argument list, it may be put in the archive
twice.

The last-modified date of a file is not altered by the 0 option if the user is not the
owner of the extracted file or a super-user.

/tmp/v* temporaries

See Also
Id(1), lorder(l), ranlib(1), ar(5), arcv(8)

1-28 Commands

as(1)

Name
as - RIse assembler

Syntax
as [option] ... file

Description
The assembler, as , produces RISe object code in RISe extended coif format (the
default) and binary assembly language. The as assembler does not run the loader. It
accepts the argument file which is a symbolic assembly language source program.
When assembled, it produces an object file.

The assembler, as, always defines the e preprocessor macros mips, host_mips, unix
and LANGUAGE_ASSEMBLY to the e macro preprocessor. It also defines
SYSTYPE _ BSD by default, but this changes if the -systype name option is specified
(see the OPTIONS section).

Options
The following options are available with as. In addition, these options can be used
with cc(l).

-gO Do not produce symbol table information for symbolic debugging.

-gl

-g or -g2

-g3

-w
-P

-E

-0 output

-Dname=def
-Dname

-Uname

This is the default.

Produce additional symbol table information for accurate but
limited symbolic debugging of partially optimized code.

Produce additional symbol table information for full symbolic
debugging and do not perform optimizations that limit full
symbolic debugging ..

Produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the
debugger inaccurate.

Suppress warning messages.

Run only the e macro preprocessor and place the result in a file.
If the source file has a suffix, change the suffix to.i. If the source
file does not have a suffix, an .i is added to the source file name.
The .i file does not contain number lines (#). This sets the -cpp
option.

Run only the e macro preprocessor on the file and send the result
to the standard output. This sets the -cpp option.

Name the final output file output. If this option is used, the a.out
file is not affected.

Define the name to the C macro preprocessor, as if by #define. If
definition is not given, the name is defined as 1.

Remove any initial definition of name.

Commands 1-29

Rise

Rise as(1)

-Idir

-I

-Gnum

-v

-v

--cpp

Search for #include files whose names do not begin with slash (I)
in the directory of the file argument, then in directories specified in
-I options, and finally in the standard directory (/usr/include).

Do not search for #include files in the standard directory
(/usr/include).

Specify the maximum size, in bytes, of a data item that is to be
accessed from the global pointer. The num argument is interpreted
as a decimal number. If num is zero, data is not accessed from the
global pointer. The default value for num is 8 bytes.

Print the passes as they execute with their arguments, input files,
and output files. Also prints resource usage in the C-shell time
format.

Print the version of the driver and the versions of all passes. This
is performed with the w hat (1) command.

Run the C macro preprocessor on assembly source files before
compiling. This is the default for as(1).

-nocpp Do not run the C macro preprocessor on assembly source files
before compiling.

Either object file target byte ordering can be produced by as. The default target byte
ordering matches the machine where the assembler is running. The options -EB and
-EL specify the target byte ordering (big-endian and little-endian, respectively). The
assembler also defines a C preprocessor macro for the target byte ordering. These C
preprocessor macros are MIPSEB and MIPSEL for big-endian and little-endian byte
ordering respectively.

-EB Produce object files targeted for big-endian byte ordering. The C
preprocessor macro MIPSEB is defined by the assembler.

-EL Produce object files targeted for little-endian byte ordering. The C
preprocessor macro MIPSEL is defined by the assembler.

The following option can only be used with the as command:

-m Apply the M4 preprocessor to the source file before assembling it.

The following option is primarily used to provide UNIX compilation environments
other than the native compilation environment.

-systype name Use the named compilation environment name. See
compilation(7) for the compilation environments that are
supported and their name s. This has the effect of changing the
standard directory for #include files. The new items are located in
their usual paths but with /name prepended to their paths. Also a
preprocessor macro of the form SYSTVPE_NAME (with name
capitalized) is defined in place of the default SYSTVPE_BSD.

The options described below primarily aid compiler development and are not
generally used:

-He Halt compiling after the pass specified by the character e,
producing an intermediate file for the next pass. The e can be [a
]. It selects the assembler pass in the same way as the -t option. If
this option is used, the symbol table file produced and used by the

1-30 Commands

-K

a8(1)

passes is the last component of the source file with the suffix
changed to .T, or a .T is added if the source file has no suffix. This
file is not removed.

Build and use intermediate file names with the last component of
the source file's name replacing its suffix with the conventional
suffix for the type of file (for example, .0 file for binary assembly
language). If the source file has no suffix the conventional suffix is
added to the source file name. These intermediate files are never
removed even when a pass encounters a fatal error.

-We[e .. .],argJ [,arg2 .. .]
Pass the argument[s] argi to the compiler pass[es] e[e ..]. The e's
are one of [pab]. The c' s selects the compiler pass in the same
way as the -t option.

The options -t[hpab], -hpath, and -Bstring select a name to use for a particular
pass. These arguments are processed from left to right so their order is significant.
When the -B option is encountered, the selection of names takes place using the last
-h and -t options. Therefore, the -B option is always required when using -h or -t.
Sets of these options can be used to select any combination of names.

-t[bpab]

-bpath

-Bstring

Select the names. The names selected are those designated by the
characters following the -t option according to the following table:
Name Character
include h (see note below)
cpp p
asO a
asl b

If the character h is in the -t argument then a directory is added to
the list of directories to be used in searching for #include files.
This directory name has the form
COMP _TARGET_ROOT/usr/includestring . This directory is to contain
the include files for the string release of the compiler. The
standard directory is still searched.

Use path rather than the directory where the name is normally
found.

Append string to all names specified by the -t option. If -t option
has not been processed before the -B, the -t option is assumed to
be "hpab". This list designates all names.

Invoking the assembler with a name of the form asstring has the same effect as using
a -Bstring option on the command line.

Commands 1-31

Rise

Rise 8s(1)

Files

If the environment variable COMP _HOST _ROOT is set, the value is used as the root
directory for all pass names rather than the default slash (/). If the environment
variable COMP _TARGET_ROOT is set, the value is used as the root directory for the
includes rather than the default slash (/).

If the environment variable ROOTDIR is set, the value is used as the root directory for
all names rather than the default /usr/. This also affects the standard directory for
#include files, lusr/include .

If the environment variable TMPDIR is set, the value is used as the directory to place
any temporary files rather than the default /tmp/.

Other arguments are ignored.

file.o

a.out

/tmp/ctm?

lusr/lib/cpp

lusr/lib/asO

lusr/lib/as 1

lusr/include

object file

assembler output

temporary

C macro preprocessor

symbolic to binary assembly language translator

binary assembly language assembler and reorganizer

standard directory for #include files

See Also
cc(l), as(l), what(l)

1-32 Commands

as(1) VAX

Name
as - assembler

Syntax
as [-d124] [-L] [-W] [-V] [-J] [-R] [-t directory] [-0 obJfile] [name ...]

Description
The as assembler assembles the named files, or the standard input if no file name is
specified.

Options

Files

-d Specifies number of bytes for offsets that involve forward or external references
and have sizes unspecified in assembly language. The default is -d4.

-J Uses long branches to resolve jumps when byte-displacement branches are
insufficient. This must be used when a compiler-generated assembly contains
branches of more than 32k bytes.

-L Saves defined labels beginning with L, which are normally discarded. The
compilers generate such temporary labels.

-0 Specifies the name of the output file. If this option is omitted, a. out is
assumed.

-R Make initialized data segments read only, by concatenating them to the text
segments. This prevents the need to run editor scripts on assembly code to
make initialized data read only and shared.

-t Specifies a directory other than the default / tmp to receive the temporary file.

-V Uses virtual memory rather than a temporary file for immediate storage.

- W Do not complain about errors.

All undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file obJfile; if that is omitted, a.out is used.

/tmp/as*

a.out

default temporary files

default resultant object file

See Also
adb(l), dbx(l), ld(l), nm(l), a.out(5)
ULTRIX Supplementary Documents, Vol. III: System Manager

Commands 1-33

at(1)

Name
at, batch - execute commands at a later time

Syntax
at time [day] [file]
at -r job .. .
at -I [job ...]

batch [file]

Description
The at and batch commands use a copy of the namedfile (standard input default)
as input to sh(1) or csh(1) at a later time. A cd command to the current directory
is inserted at the beginning, followed by assignments to all environment variables.
When the script is run, it uses the user and group ID of the creator of the copy file.

The at command allows the user to specify when the commands should be executed,
while jobs queued with batch execute when the load level of the system permits.

The environment variables, current directory, umask, and ulimi t are retained
when the commands are executed. However, open files, traps, and priority are lost.

Users are permitted to use the at and batch commands if their name appears in the
file /usr / lib/ cron/ at. allow. If that file does not exist, the file
/usr / lib/ cron/ at. deny is checked to determine if the user should be denied
access to at and batch. If neither file exists, only the superuser is allowed to
submit a job. If only the at. deny file exists and is empty, global usage is
permitted. The allow/deny files consist of one user name per line.

The time is 1 to 4 digits. It can, but does not have to be, followed by A, P, N or M
which stand for AM, PM, noon or midnight, respectively. The A, P, N, and M
suffixes are case-insensitive. One and two digit numbers are interpreted as hours,
three and four digits to be hours and minutes. If three digits are specified, the first
digit is interpreted to be an hour in the range 0-9, and the second and third digits as
minutes. If no letters follow the digits, a 24 hour clock time is presumed.

In addition to 1-4 digits, and suffixes A, P, M, N, you can also specify:

at hh:mm
at h:mm
at ham
at hpm
at noon
at midnight

The optional day is either a month name followed by a day number or by a day of
the week. If the word week follows, the at or batch command is invoked in seven
days. Both commands also recognize standard abbreviations for the days of the week
and months of the year. The following are examples of legitimate commands:

at Sam jan 24

at 1530 fr week

1-34 Commands

at(1)

The at programs are executed by periodic execution of the command
/usr / lib/ atrun from cron(8). The granularity of at depends upon how often
atrun is executed. The cron command examines the crontab file every minute.
The crontab file determines when /usr / lib/ atrun is executed. The default is
every 15 minutes on the 1/4 hour. Editing / etc/ crontab makes
/usr / lib/ atrun run more or less frequently.

Standard output or error output is lost unless it is redirected.

The at and batch commands write the job number to standard error.

Options

-r

-I

Restrictions

Removes jobs previously scheduled by at or batch. The
number is the number reported at invocation by at or
ba t ch. Only the superuser is allowed to remove another
user's jobs.

Used to obtain or verify the job numbers.

Due to the granularity of the execution of /usr/lib/atrun, there may be bugs
in scheduling jobs almost exactly 24 hours into the future.

Diagnostics
Complains about various syntax errors and times that are out of range.

Files
/usr/lib/atrun

in /usr/spool/at:
yy .ddd.hhhh. *
lasttimedone
past

/usr/spool/at/at.allow
/usr/spool/at/at.deny
/usr/spool/at
/usr/lib/cron

See Also
crontab(5), cron(8)

executor run by cron(8)

activity for year yy, day dd, hour hhhh.
last hhhh
activities in progress
list of allowed users
list of denied users
spool directory
XOPEN compatibility

Commands 1-35

awk(1)

Name
awk - pattern scanning and processing language

Syntax
awk [-Fe] [-f prog] [-] [file ...]

Description
The a w k command scans each input file for lines that match any of a set of patterns
specified in prog. With each pattern in prog there can be an associated action that
will be performed when a line of a file matches the pattern. The set of patterns may
appear literally as prog, or in a file specified as -f prog.

Files are read in order; if there are no files, the standard input is read. The file name
'-' means the standard input. Each line is matched against the pattern portion of
every pattern-action statement; the associated action is performed for each matched
pattern.

An input line is made up of fields separated by white space. (This default can be
changed by using FS, as described below.) The fields are denoted $1, $2, ... ; $0
refers to the entire line.

A pattern-action statement has the form

pattern { action }

A missing { action} means print the line; a missing pattern always matches.

An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new lines or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, *, /, %, and
concatenation (indicated by a blank). The C operators ++, -, +=, -=, *=, /=, and
%= are also available in expressions. Variables may be scalars, array elements
(denoted xU]) or fields. Variables are initialized to the null string. Array subscripts
may be any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted " ... ".

The print statement prints its arguments on the standard output (or on a file if >file is
present), separated by the current output field separator, and terminated by the output
record separator. The printf statement formats its expression list according to the
format. For further information, see printf(3s).

1-36 Commands

awk{1)

The built-in function length returns the length of its argument taken as a string, or of
the whole line if no argument. There are also built-in functions exp, log, sqrt, and
into The last truncates its argument to an integer. substr(s, m, n) returns the n­
character substring of s that begins at position m. The function
sprintf(fmt, expr, expr, ...) formats the expressions according to the printf(3s)
format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of regular
expressions and relational expressions. Regular expressions must be surrounded by
slashes and are as in egrep. Isolated regular expressions in a pattern apply to the
entire line. Regular expressions may also occur in relational expressions.

A pattern may consist of two patterns separated by a comma; in this case, the action
is performed for an lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ,...,
(for contains) or !,." (for does not contain). A conditional is an arithmetic expression,
a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first
input line is read and after the last. BEGIN must be the first pattern, END the last.

A single character e may be used to separate the fields by starting the program with

BEGIN { FS = "c" }

or by using the -Fe option.

Other variable names with special meanings include NF, the number of fields in the
current record; NR, the ordinal number of the current record; FILENAME, the name
of the current input file; OFS, the output field separator (default blank); ORS, the
output record separator (default new line); and OFMT, the output format for numbers
(default "%.6g").

Options

-Fe

-fprog

U sed for standard input file.

Sets interfield separator to named character.

Uses prog file for patterns and actions.

Commands 1-37

awk(1)

Examples
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

s += $1 }
END {print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Restrictions
There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a string
concatenate "" to it.

See Also
lex(l), sed(1)
"Awk - A Pattern Scanning and Processing Language" ULTRIX Supplementary
Documents Vol. II: Programmer

1-38 Commands

basename (1)

Name
basename - strip directory names from pathname

Syntax
basename string [suffix]

Description
The basenarne command deletes from string any prefix ending in a slash (f) and the
suffix, and prints the result on the standard output. The basenarne command also
handles limited regular expressions in the same manner as ed(1). The basenarne
command is often used inside substitution marks (' ...) within shell procedures.

Examples
The following example shell script compiles the file /usr / src/bin/ cat. c and
moves the output to cat in the current directory:

cc lusrlsrc/bin/cat.c
rnv a.out 'basename $1 .c'

The following example echoes only the base name of the file / etc/ syslog. conf
by removing the prefix and any possible sequence of characters following the period
in the file's name:

% basename /etc/sysloq.conf" *"
syslog

See Also
dirname(1), ex(1), sh(1)

Commands 1-39

bc(1)

Name
be - interactive arithmetic language processor

Syntax
be [-c] [-I] [file ...]

Description
The be command provides an interactive processor for a language which resembles
C but provides unlimited precision arithmetic. It takes input from any files given,
then reads the standard input. The -I argument stands for the name of an arbitrary
precision math library. The syntax for be programs is as follows: L means letter a­
z, E means expression, S means statement.

Comments

Names

are enclosed in /* and */.

simple variables: L
array elements: L [E]
The words 'ibase', 'obase', and 'scale'

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

number of significant decimal digits
number of digits right of decimal point

Operators
+ - * / % "(% is remainder; " is power)
++ - (prefix and postfix; apply to names)
== <= >= != < >
= += -= *= /= %= "=

Statements
E
{S; ... ;S}
if(E)S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions

1-40 Commands

define L (L , ... , L) {
auto L, ... , L
S; ... S
return (E)

bc(1)

Functions in -I math library
sex) sine
c(x) cosine
e(x) exponential
lex) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is
an assignment. Either semicolons or new lines may separate statements. Assignment
to scale influences the number of digits to be retained on arithmetic operations in the
manner of de(1). Assignments to ibase or obase set the input and output number
radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. 'Auto' variables are pushed
down during function calls. When using arrays as function arguments or defining
them as automatic variables empty square brackets must follow the array name.

The following example defines a function to compute an approximate value of the
exponential function:

scale = 20
define e(x) {

auto a, b, c, i, s
a 1
b = 1
s = 1
for(i=1; 1==1; i++) {

a = a*x
b = b*i
c = alb
if(c == 0) return(s)
s = s+c

The following command line then prints approximate values of the exponential
function of the first ten integers:

for(i=1; i<=10; i++) e(i)

The be command is actually a preprocessor for de(1), which it invokes
automatically, unless the -c (compile only) option is present. In this case the de
input is sent to the standarq output instead.

Options

-c Compiles input only.

-I Names arbitrary precision math library.

Commands 1-41

bc(1)

Restrictions

Files

The for statement must have all three E's.

Quit is interpreted when read, not when executed.

Variables must be a single lower case letter. Upper case letters are used only as
digits for bases greater than 10.

/ us r /1 ib /1 ib . b mathematical library

See Also
dc(1)
"Be - An arbitrary precision desk-calculator language" ULTRIX Supplementary
Documents Vol. 1: General User

1-42 Commands

bdiff(1)

Name
bdiff - big file differential comparator

Syntax
bdiff filel file2 [n] [-8]

Description
The bdi f f command is used to find lines that must be changed in two files to bring
them into agreement. Its purpose is to allow processing of files that are too large for
diff(l).

The bdi f f command ignores lines common to the beginning of both files, splits the
remainder of each file into n-line segments, and invokes diff(l) upon
corresponding segments. The value of n is 3500 by default. If the optional third
argument is given and if it is numeric, it is used as the value for n. This is useful in
those cases in which 3500-line segments are too large for diff, causing it to fail.

The output of the bdi f f command is the same as the output of the di f f command:
line numbers are adjusted to account for the segmenting of the files to make it look
as if the files had been processed whole. Note that because of the segmenting of the
files, bdi f f does not necessarily find the smallest sufficient set of file differences.

If either filel or file2 is -, the standard input is read. The optional -s (silent)
argument specifies that no diagnostics are to be printed by bdi f f. However, this
does not suppress possible exclamations by di f f. If both optional arguments are
specified, they must appear in the order indicated above.

Options

-8 Suppresses normal diagnostic messages.

Diagnostics
Use sccshelp(l) for explanations.

Files
/tmp/bd?????

See Also
diff(l)

Commands 1-43

biff (1)

Name
biff - be notified if mail arrives and who it is from

Syntax
biff [yo]

Description
The biff command infonns the system whether you want to be notified when mail
arrives during the current tenninal session. The command, biff y, enables
notification; the command, biff 0, disables it. The biff command with no
options displays the current status of biff .

When mail notification is enabled, the header and first few lines of the message will
be printed on your screen whenever mail arrives. A' 'biff y" command is often
included in the file .login or . profile to be executed at each login.

The biff command operates asynchronously. For synchronous notification use the
MAIL variable of sh(l) or the mail variable of csh(1).

Options

-0

-y

See Also

Disables notification that mail has arrived.

Enables notification that mail has arrived.

csh(1), mail(1), sh(1), comsat(8c)

1-44 Commands

Name

Syntax

binmail- send or receive mail among users

Ibin/mail [+] [-i] [person ...]
Ibin/mail [+] [-i] -f file

binmail (1)

Description
This is the old version 7 UNIX system mail program. The default rna i 1 command is
described in rna i 1 (1), and its binary is in the directory / u s r / u cb. The
/bin/mail program is still used to actually deliver a mail message into the users
system-wide mailbox (/usr/spool/mail/*), however, the reading of these
messages has been replaced with the program / u s r / u cb / rna i 1. Do not remove
/bin/mail from your system.

The mail command with no argument prints a user's mail, message-by-message, in
last-in, first-out order; the optional argument + displays the mail messages in first-in,
first-out order. For each message, it reads a line from the standard input to direct the
disposition of the message.

Issue the following commands from the rna i 1 program prompt:

<CR> Go on to next message

d Delete message and go on to the next.

p

s ffile ...]

w ffile ...]

m [person ...]

EOT (control-D)

q

!command

Print message again.

Go back to previous message.

Save the message in the named files ('mbox' default).

Save the message, without a header, in the namedfiles
('mbox'default).

Mail the message to the named persons (yourself is default).

Put unexamined mail back in the mailbox and stop.

Same as EOT.

Escape to the Shell to do command.

* Print a command summary.

An interrupt normally terminates the mail command; the mail file is unchanged.

When persons are named, mail takes the standard input up to an end-of-file (or a
line with just'. ') and adds it to each person's mail file. The message is preceded by
the sender's name and a postmark. Lines that look like postmarks are prepended
with '>'. A person is usually a user name recognized by login(1). To denote a
recipient on a remote system, prefix person by the system name and exclamation
mark. For further information, see uucp(lc).

The rna i 1 program sends a message to the screen that there is mail when the user
logs in.

Commands 1-45

binmail (1)

When /bin/mail is used to deliver mail, (usually sendmail(8) calls
/bin/mail to do this), a mailbox is created for the user in the directory
/usr/spool/mail, if it doesn't already exist. The mailbox is created with the
mode 700 so that only its owner can access it. In addition, the directory
/usr / spool/mail has the mode 777 with the sticky bit set. The mode is 777 so
that other mail programs, notably / u s r / u cb / rna iI, can create the appropriate
lock files to prevent another process from writing to the mailbox at the same time.
The sticky bit set on the directory prevents one user from unlinking another user's
mailbox.

Options

-f Displays mail messages contained in the specified file (next
argument) in place of your mailbox file.

-i Notifies mail to continue after interrupts.

Restrictions
Race conditions sometimes result in a failure to remove a lock file.

Files
/etc/passwd to identify sender and locate persons
/usr/spool/mail/* incoming mail for user *
mbox saved mail
/tmp/ma * temp file
/usr/spool/mail/* .lock lock for mail directory
dead.letter unmailable text

See Also
mail(1), uucp(1 c), uux(1 c), write(1), sendmail(8)

1-46 Commands

Name

Syntax

burst(1mh)

burst - explode digests into messages

burst [+folder] [msgs] [-in place] [-noinplace] [-quiet] [-noquiet] [-verbose]
[-noverbose] [-help]

Description
The burst command extracts the original messages from a forwarded message,
discards the forwarder's header details and places the burst message at the end of the
current folder. You can specify messages, other than the current forwarded message,
by using burst with the <+folder> and <msgs> arguments. If you specify a
message, that message becomes the current folder. If you specify a folder, that folder
becomes the current folder.

You can use burst to expand a message, that contains a number of messages that
have been packed into one file for ease of mailing, into its constituent messages. The
packf and forw commands can both pack individual messages into a single
message or file.

The burst command can also be used on Internet digests.

As an example of the way in which burst can be used, imagine that you have gone
on a business trip and have been allocated a guest account on a local machine. While
you are away you redirect all your mail to the local machine. At the end of the trip,
there is some mail that you want to keep when you return. Rather than send a
number of mail messages, you can use f 0 rw to pack all the individual messages into
one large message, and forward it to your normal account (after disabling the
redirection).

When you return you can use burst to expand the single message into its
constituent messages.

Options
If -inplace is given, each digest is replaced by the table of contents for the digest.
The original digest is removed. The burst command then renumbers all of the
messages in the folder following the digest to make room for each of the messages
contained within the digest. These messages are placed immediately after the digest.

If -noinplace is given, each digest is preserved, no table of contents is produced,
and the messages contained within the digest are placed at the end of the folder.
Other messages are not tampered with in any way.

The -quiet switch directs burst to be silent about reporting messages that are not
in digest format.

The -verbose switch directs burst to tell you the general actions that it is taking
to explode the digest.

The burst command has the following defaults:

+ f 01 de r defaults to the current folder
ms g s defaults to cur
-noinplace

Commands 1-47

burst(1mh)

Files

-noquiet
-noverbose

If -inplace is given, then the first message burst becomes the current message.

This leaves the context ready for a show of the table of contents of the digest, and a
next to see the first message of the digest. If -noinplace is given, then the first
message extracted from the first digest burst becomes the current message. This
leaves the context in a similar, but not identical, state to the context achieved when
using -inplace.

The burst program enforces a limit on the number of messages which may be
expanded from a single message. This number is about 1000 messages. However,
there is usually no limit on the number of messages which may reside in the folder
after the messages have been expanded.

Although bu r s t uses a sophisticated algorithm to determine where one encapsulated
message ends and another begins, not all programs that create digests use an
encapsulation algorithm. The burst command only works on messages that have
been encapsulated according to the guidelines laid down by the proposed standard
RFC 934. This basically means that the encapsulated message is considered to start
after burst encounters a line of dashes. If you attempt to burst a message that
has not been encapsulated according to RFC 934, the results may be unpredictable.
In most cases, this means that burst may find an encapsulation boundary
prematurely and split a single encapsulated message into two or more messages.

Furthermore, any text which appears after the last encapsulated message is not placed
in a separate message by burst. In the case of encapsulated messages, this text is
usually an End-of-digest string. Note that when the - inplace option is used, this
trailing information is lost. However, in practice this is not a problem, since
correspondents usually place remarks in text prior to the first encapsulated message,
and this information is not lost.

$HOME/ .rnh_profile The user profile

Profile Components
Path: To determine your MH directory

To find the default current folder Current-Folder:
Msg-Protect: To set mode when creating a new message

See Also
inc(lmh), msh(lmh)
Proposed Standard for Message Encapsulation (RFC 934)

1-48 Commands

cal (1)

Name
cal - print calendar

Syntax
cal [month] year

Description
The cal command prints a calendar for the specified year. If a month is also
specified, a calendar just for that month is printed. The year can be between 1 and
9999. The month is a number between 1 and 12. The following example produces a
calendar for October 1988.

cal 10 1988

Restrictions
The year is always considered to start in January.

Commands 1-49

calendar (1)

Name
calendar - calendar reminder service

Syntax
calendar [-]

Description
The calendar command consults the file 'calendar' in the current directory and
prints out lines that contain today's or tomorrow's date. The calendar command
recognizes most month-day dates, such as Dec. 7, december 7, 12/7, but it does not
recognize dates fonnatted in the following ways: 7 December or 7/12. If you give
the month as * with a date, such as, * 1, that day in any month will do. On
weekends, specifying tomorrow extends through Monday.

When an argument is present, the calendar command searches through a user's
calendar file in his login directory and sends him any positive results by mail(l).
Nonnally this is done daily under control of cron(8).

The calendar file is first run through the C preprocessor, /1 ib / cpp, to include any
other calendar files specified with the #include syntax. Included calendars are shared
by all users, and are maintained and documented by the local administration.

Options

Functions for every user who has a calendar file in his login directory.

Restrictions

Files

The calendar's extended idea of tomorrow does not account for holidays.

calendar
/usr/lib/calendar to figure out today's and tomorrow's dates
/etc/passwd
/tmp/cal*
/lib/cpp, egrep, sed, mail as subprocesses

See Also
at(l), cron(8), mail(l)

1-50 Commands

capsar(1)

Name
capsar - prepares documents not in ASCII format for transport in the mail system

Syntax
capsar [-c] [-t] [-x[hTD]] [file]

Description
The capsar utility allows ULTRIX mail to support documents containing non­
ASCII data, such as DDIF. Only the DDIF and DOTS data types are currently
supported. DDIF is Digital's standard format for document interchange. DOTS is an
encapsulation of the encoded interchange form of a number of related data objects
into a single composite object. For more information, see DDIF(5) and DOTS(5).

The capsar utility prepares a DOTS file or a DDIF document for transport in the
mail system by performing the following steps:

1) The DDIF document is converted to DOTS format. As a DDIF document
may contain more than one file, all files within the DDIF document are
incorporated into one DOTS file which can be sent as one mail message.

2) Each DOTS file is then compressed and encoded using only printing ASCII
characters. This is because ULTRIX mail software only supports 7 bit mail.

3) The capsar routine encapsulates coded documents by adding leading and
trailing lines, each surrounded by a <CR>. The lines should begin with 2 or
more dashes (-) and some text that indicates the nature of the encapsulated
message. The following is a typical encapsulated mail message:

To: anybody@anynode
Cc:
Subject: Another DDIF document

-----------motd.ddif : DOTS.ctod.compress.uuencode message

begin 0 motd.ddif
M]@*", (" !BO.#P$# 8$* &UO=&ON9&lI9HO$)%546 "A@"B !@8K
MS@ P$"Tl$248M96YCiVlE9"!R979I<V%Bi&4@9&]C=6UEiG2@@/_?X"@
M@(! 8$! «/1$1)lBl?4D5!1%]415A4HX#)% !lE&(%lE>'O@lG)OiGO@

end

-----------End of motd.ddif : DOTS.ctod.compress.uuencode message

The capsar command can also extract different parts of a mail message,
namely, the header information, the text part of the message, and the DOTS
file that was encapsulated as described above.

Extracting the DOTS file is done by parsing the mail message and detecting the
leading and trailing encapsulation boundaries. Decoding and uncompressing the data
results in the original DOTS file.

The capsar utility is built into Rand MH to provide DDIF mail support. It can,
however, be used with ucb mail.

Commands 1-51

capsar(1)

Options

-c Causes capsar to create an encapsulated DOTS bodypart from file. Thefile
must be a DOTS/DDIF type document.

-t Causes capsar to write to the standard output the message type offile.
Message type can be either text or DOTS.

-xh Extracts the mail header lines fromfile~ The header line must be at the
beginning of the file and separated from the remaining text by a <CR> or
<CRLF>. Each header line is a string containing a header field name (for
example, Subject), a colon (:), one or more spaces, and a field value. Each
header line may have embedded continuation sequences it it (for example, LF
followed by spaces or tabs).

-xT Extracts all the text parts of the mail message in file to the standard output.

-xD Extracts any DOTS bodyparts in file. The DOTS document is sent to the

Examples

standard output. This is the reverse of the -c option above.

The file must be specified for the -c option. If file is not specified with the -x
or -t option then the standard input is used.

The following are examples of how to use the capsar command:

Encapsulates a DDIF document

capsar -c file.ddif I more

Lists the header line from the mail message

capsar -xh file.mail

Extracts the encapsulated DOTS file from the file

capsar -xD file> file.dots

or

capsar -xD file I dtoc

1-52 Commands

capsar{1 }

In order to mail a DDIF/DOTS document you can use one of the following:

capsar -c file.ddif I mail -s "subject" address

capsar -c file.ddif mhmail -subject "subject" address

Use the second command if you are using RAND mho

A DOTS file is extracted from dxmail first extracting the message into a file. The
dxmail utility has an extract feature built in so capsar -xD isn't needed.

See Also
compress(1), ctod(1), dtoc(1), mail(l), mh(1mh), mhmail(1mh), uuencode(1),
vdoc(1), prompter(1mh), DDIF(5), DOTS(5)

Commands 1-53

cat (1)

Name
cat - concatenate and print data

Syntax
cat [-b] [-e] [-0] [-s] [-t] [-u] [-v] file ...

Description
The cat command reads eachfile in sequence and displays it on the standard output.
Therefore, to display the file on the standard output you type:

cat file

To concatenate two files and place the result on the third you type:

cat filel file2 > file3

If no input file is given, or if a minus sign (-) is encountered as an argument, cat
reads from the standard input file. Output is buffered in 1024-byte blocks unless the
standard output is a terminal, in which case it is line buffered. The cat utility
supports the processing of 8-bit characters.

Options

-b Ignores blank lines and precedes each output line with its line number.

-e Displays a dollar sign ($) at the end of each output line.

-0 Precedes all output lines (including blank lines) with line numbers.

-s Squeezes adjacent blank lines from output and single spaces output.

-t Displays non-printing characters (including tabs) in output. In addition to
those representations used with the -v option, all tab characters are displayed
as "I.

-u UnbufIers output.

-v Displays non-printing characters (excluding tabs). For example, < CTRL/X >

See Also

displays on the screen as "X. The delete character (octal 0177) displays as "?
Non-ASCII characters (with the high bit set) display as M- (which is the meta
character) followed by the low 7 bits.

cp(1), ex(1), more(I), pr(1), tail(1)

1-54 Commands

catpw{1)

Name
catpw - prints all password entries

Syntax
catpw

Description
The catpw command prints password entries for all users known to the system
using the format in passwd(5). Password entries are gathered from all sources
including Yellow Pages, Kerberos, and /etc/passwd.

See Also
getpwent(3), passwd(5)

Commands 1-55

cb(1)

Name
cb - C program beautifier

Syntax
cb

Description
The cb command places a copy of the C program from the standard input on the
standard output with spacing and indentation that displays the structure of the
program.

1-56 Commands

Name
cc - RIse e compiler

Syntax
cc [option] ... file

Description
The ee command invokes the RISe ucode e compiler. It produces RISe object
code in RISe extended coff format (the default), binary or symbolic ucode, ucode
object files and binary or symbolic assembly language.

The ee command accepts the following arguments:

• Arguments ending in .c are interpreted as e source programs. They are
compiled, and the resulting object file has the same name as the source
program except .0 is substituted for .c. If a single e source program is
compiled and loaded at once, the .0 file is deleted.

• Arguments ending in .s are interpreted as assembly source programs. When
they are assembled, they produce a .0 file.

• Arguments ending in .i are interpreted as e source after being processed by the
e preprocessor. They are compiled without being processed by the e
preprocessor.

If the highest level of optimization is specified (with the -03 flag) or only ucode
object files are to be produced (with the -j flag) each e source file is compiled into a
ucode object file. The ucode object file is left in a file whose name consists of the last
component of the source with .u substituted for .c.

The following suffixes aid compiler development, but are not generally used: .B, .0.,
.S, and .M. These arguments are interpreted as binary ucode, produced by the front
end, optimizer, ucode object file splitter, and ucode merger respectively. Arguments
whose names end with . U are assumed to be symbolic ucode. Arguments whose
names end with .0 are assumed to be binary assembly language, which is produced
by the code generator and the symbolic to binary assembler.

Files that are assumed to be binary ucode, symbolic ucode, or binary assembly
language by the suffix conventions are also assumed to have their corresponding
symbol table in a file with a . T suffix.

The cc command always defines the C preprocessor macro LANGUAGE_ C when a
.c file is being compiled. The ec command defines the e preprocessor macro
LANGUAGE_ASSEMBLY when a .s file is compiled.

Options
The following options are interpreted by ce(1). See Id(1) for load-time options.

-c

-gO

Suppress the loading phase of the compilation and force an object
file to be produced even if only one program is compiled.

Do not produce symbol table information for symbolic debugging.
This is the default.

Commands 1-57

Rise cc(1)

-gl

-g or -g2

-g3

-w

-pO

-pI or-p

-00

-01

-0 or -02

-03

-feedback file

-cord

-j

-ko output

1-58 Commands

Produce additional symbol table information. Provides accurate,
but limited symbolic debugging of partially optimized code.

Produce additional symbol table information for full symbolic
debugging, but do not perform optimizations that limit full
symbolic debugging.

Produce additional symbol table information for full symbolic
debugging for fully optimized code. This option can affect
debugger accuracy.

Suppress warning messages.

Do not permit profiling. This is the default. If loading happens,
the standard runtime startup routine (crtO.o) is used and the
profiling libraries are not searched.

Set up for profiling by periodically sampling the value of the
program counter. This option only affects the loading. When
loading happens, this option replaces the standard runtime startup
routine with the profiling runtime startup routine (mcrtO.o) and
searches the level 1 profiling library (libprofl.a). When profiling
happens, the startup routine calls monstartup(3) and produces a
file mon.out that contains execution-profiling data for use with the
postprocessor prof(l).

Tum off all optimizations.

Tum on all optimizations that complete fast. This is the default.

Invoke the global ucode optimizer.

Perform all optimizations, including global register allocation.
This option must precede all source file arguments. With this
option, a ucode object file is created for each C source file and left
in a .u file. The newly created ucode object files, the ucode object
files specified on the command line, the runtime startup routine,
and all the runtime libraries are ucode linked. Optimization is
performed on the resulting ucode linked file and then it is linked as
normal producing an a.out file. A resulting .0 file is not left from
the ucode linked result. In fact -c cannot be specified with -03.

Use with the -cord option to specify the feedback file. This file is
produced by prof(1) with its -feedback option from an execution
of the program produced by pixie(l).

Run the procedure-rearranger on the resulting file after linking.
The rearrangement is performed to reduce the cache conflicts of the
program's text. The output is left in the file specified by the -0

output option or a.out by default. At least one -feedback file must
be specified.

Compile the specified source programs, and leave the ucode object
file output in corresponding files with the .u suffix.

Name the output file created by the ucode loader as output. This
file is not removed. If this file is compiled, the object file is left in
a file whose name consists of output with the suffix changed to an

-k

@
IGj

-E

-0 output

-Uname

-Idir

-I

-Gnum

-v

-v

-std

- Yenvironment

cc(1)

.0. If output has no suffix, an .0 suffix is appended to output.

Pass options that start with a -k to the ucode loader. This option
is used to specify ucode libraries (with -kIx) and other ucode
loader options.

Compile the specified source programs and leave the symbolic
assembly language output in corresporiding files suffixed with .s.

Run only the C macro preprocessor and put the result for each
source file using suffix convention (for example, .c and .s) in a
corresponding .i file. The.i file does not have number lines (#) in
it. This sets the -cpp option.

Run only the C macro preprocessor on the files (regardless of any
suffix or not), and send the result to the standard output. This sets
the -cpp option.

Name the final output file output. If this option is used, the file
a.out is unaffected.

Define the name to the C macro preprocessor, as if by '#define'. If
a definition is not given, the name is defined as 1.

Remove any initial definition of name.

Search for #include files whose names do not begin with a slash (I)
in the following order: (1) in the directory of the dir argument, (2)
in the directories specified by -I options, (3) in the standard
directory (/usr/include).

Do not search for #include in the standard directory (/usr/include).

Specify the maximum size, in bytes, of a data item that is to be
accessed from the global pointer. The num argument is interpreted
as a decimal number. If num is zero, data is not accessed from the
global pointer. The default value for num is 8 bytes.

Print the passes as they execute with their arguments and their
input and output files. Also prints resource usage in the C shell
time format.

Print the version of the driver and the versions of all passes. This
is done with the what(l) command.

Produce warnings for things that are not standard in the language.

Compiles C programs for environment. If environment is
SYSTEM_FIVE or is omitted, it defines SYSTEM_FIVE for the
preprocessor, cpp. If the loader is invoked, it specifies that the
System V version of the C runtime library is used. Also, if the
math library is specified with the -1m option, the System V
version is used. If environment is POSIX, it defines POSIX for the
preprocessor. If the environment variable PROG_ENV has the
value SYSTEM_FIVE or POSIX, the effect is the same as when
specifying the corresponding - Yenvironment option to cc. The
- Y option overrides the PROG_ENV variable; - YBSD can be used
to override all special actions.

Commands 1-59

Rise

Rise cc(1)

-cpp

-nocpp

-Olimit num

-signed

-unsigned

-volatile

-varargs

-f

Run the C macro preprocessor on C and assembly source files
before compiling. This is the default for cc(l).

Do not run the C macro preprocessor on C and assembly source
files before compiling.

Specify the maximum size, in basic blocks, of a routine that will
be optimized by the global optimizer. If a routine has more than
the specified number of basic blocks, it cannot be optimized and a
message is printed. A -0, -02, or -03 must be used to specify
the global optimizer. The argument must also be specified. The
argument num is interpreted as a decimal number. The default
value for num is 1500 basic blocks.

Causes all char declarations to be signed char declarations. This is
the default.

Causes all char declarations to be unsigned char declarations.

Causes all variables to be treated as volatile.

Prints warnings for lines that may require the varargs.h macros.

Causes the compiler not to promote expressions of type float to
type double.

NOTE

The -EB and -EL options are needed only when compiling for RISC
machines from vendors other than Digital.

The default target byte ordering matches the machine where the compiler is running.
The options -EB and -EL specify the target byte ordering (big-endian and little­
endian, respectively). The compiler also defines a C preprocessor macro for the
target byte ordering. These C preprocessor macros are MIPSEB and MIPSEL for
big-endian and little-endian byte ordering respectively.

If the specified target byte ordering does not match the machine where the compiler
is running, then the runtime startups and libraries come from lusr/libeb for big­
endian runtimes on a little-end ian machine and from lusr/libel for little-endian
runtimes on a big-endian machine.

-EB Produce object files targeted for big-endian byte ordering. The C
preprocessor macro MIPSEB is defined by the compiler.

-EL Produce object files targeted for little-endian byte ordering. The C
preprocessor macro MIPSEL is defined by the compiler.

The following options primarily aid compiler development and are not generally
used:

-Hc

-K

Halt compiling after the pass specified by the character c,
producing an intermediate file for the next pass. The c can be
[fjusmoca]. It selects the compiler pass in the same way as the-t
option. If this option is used, the symbol table file produced and
used by the passes is the last component of the source file with the
suffix changed to . T. It is not removed.

Build and use intermediate file names with the last component of
the source file's name replacing its suffix with the conventional

1-60 Commands

cc(1)

suffix for the type of file (for example, .B file for binary ueode,
produced by the front end). These intermediate files are never
removed even when a pass encounters a fatal error. When ucode
linking is performed and the -K option is specified, the base name
of the files created after the ucode link is U.out by default. If -ko
output is specified, the base name of the object file is output
without the suffix. Suffixes are appended to output if it does not
have a suffix.

-# Converts binary ueode files (.B) or optimized binary ucode files
(.0) to symbolic ueode (a .U file). If a symbolic ucode file is to be
produced by converting the binary ucode from the C compiler front
end then the front end option -Xu is used.

-Wc{c ...],argJ {,arg2 ...]
Pass the argument[s] argi to the compiler pass[es] e{e . .]. The e's
are one of [pfjusmocablyz]. The c' s selects the compiler pass in
the same way as the -t option.

The options -t[hpfjusmocablyzrnt], -hpath, and -Bstring select a name to use for a
particular pass, startup routine, or standard library. These arguments are processed
from left to right so their order is significant. When the -B option is encountered,
the selection of names takes place using the last -h and -t options. Therefore, the
-B option is always required when using -h or -t. Sets of these options can be used
to select any combination of names.

The -EB or -EL options and the -p[Ol] options must precede all -B options because
they can affect the location of runtime libraries and which runtime libraries are used.

-t[hpfjusmocablyzrnt]
Select the names. The names must be selected from the options in
the following table:
Name

include
cpp
ccom
ujoin
uld
usplit
umerge
uopt
ugen
asO
as!
ld

Character
h (see note below)
p
f
j
u
s
m
o
c
a
b
I

fioc y
cord z
[m]crtO.o r
libprofl.a n
btou, utob t

If the character h is in the -t argument then a directory is added to
the list of directories to be used in searching for #include files.
This directory name has the form
COMP _TARGET_ROOT/usr/includestring . This directory is to contain

Commands 1-61

Rise

Rise cc(1)

-hpath

-Bstring

the include files for the string release of the compiler. The
standard directory is still searched.

Use path rather than the directory where the name is normally
found.

Append string to all names specified by the -t option. If the -t
option has not been processed before the -B, the -t option is
assumed to be the following: hpfjusmocablyzmt. This list
designates all names. If the -t argument has not been processed
before the -B argument, -Bstring is passed to the loader to use
with its -Ix arguments.

Invoking the compiler with a name of the form ccstring has the same effect as using
a -Bstring option on the command line.

If the environment variable COMP _HOST_ROOT is set, the value is used as the root
directory for all pass names rather than the default slash (/). If the environment
variable COMP _TARGET_ROOT is set, the value is used as the root directory for all
include and library names rather than the default slash (/). This affects the standard
directory for #include files, /usr/include, and the standard library, /usr/lib/libc.a. If
this is set then the only directory that is searched for libraries, using the -Ix option, is
COMP _TARGET_ROOT/usr/lib .

If the environment variable TMPDIR is set, the value is used as the directory to place
any temporary files rather than the default Itmpl •

If the environment variable RLS_ID_OBJECT is set, the value is used as the name of an
object to link in if a link takes place. This is used to add release identification
information to objects. It is always the last object specified to the loader.

Other arguments are assumed to be either loader options or C-compatible object files,
typically produced by an earlier cc run, or perhaps libraries of C-compatible
routines. These files, together with the results of any compilations specified, are
loaded in the order given, producing an executable program with the default name
a.out.

Options
The ULTRIX e compiler provides the following default symbols for your use. These
symbols are useful in ifdef statements to isolate code for one of the particular cases.
Thus, these symbols can be useful for ensuring portable code.

unix Any UNIX system

bsd4_2

ultrix

mips

MIPSEL

1-62 Commands

Berkeley UNIX Version 4.2

ULTRIX only

Any RISe architecture

Little endian variant of MIPS architecture

Native compilation environment (as opposed to cross-compiler)

cc(1)

Restrictions

Files

The standard library, /usr/lib/libc.a, is loaded by using the -Ie loader option and not a
full path name. The wrong library may be loaded if there are files with the name
libc.astring in the directories specified with the -L loader option or in the default
directories searched by the loader.

The handling of include directories and libc.a is confusing.

file.c
file.o
a.out
/tmp/ctm?
/usr/lib/cpp
/usr/lib/ccom
/usr/lib/uj oin
/usr/bin/uld
/usr/lib/usplit
/usr/lib/umerge
/usr/lib/uopt
/usr/lib/ugen
/usr/lib/asO
/usr/lib/as 1
/usr/lib/crtO.o
/usr/lib/mcrtO.o
/usr/lib/libc.a
/usr/lib/libprofl.a
/usr/include
/usr/bin/ld
/usr/lib/ftoc
/usr/lib/cord
/usr/bin/btou
/usr/bin/utob
mon.out

input file
object file
loaded output
temporary
C macro preprocessor
C front end
binary ucode and symbol table joiner
ucode loader
binary ucode and symbol table splitter
procedure intergrator
optional global ucode optimizer
code generator
symbolic to binary assembly language translator
binary assembly language assembler and reorganizer
runtime startup
startup for profiling
standard library, see intro(3)
level 1 profiling library
standard directory for #include files
MIPS loader
interface between pro f (1) and cord
procedure-rearranger
binary to symbolic ucode translator
symbolic to binary ucode translator
file produced for analysis by prof(1)

Runtime startups and libraries for the opposite byte sex of machine the compiler is
running on have the same names but are located in different directories. For big­
endian runtimes on a little-endian machine the directory is /usr/libeb and for little­
endian runtimes on a big-endian machine the directory is /usr/libel.

See Also
dbx(1), ld(l), pixie(l), prof(1), what(l), monitor(3)

Commands 1-63

Rise

VAX cc(1)

Name
cc - C compiler

Syntax
ee [option ...] file ...

Description
The cc command invokes the ULTRIX C compiler and accepts the following types
of arguments:

• Arguments whose names end with .c

• Arguments whose names end with .s

• Other arguments that are interpreted as either loader option arguments or
C-compatible object programs

Arguments ending in .c are interpreted as C source programs. They are compiled, and
each object program is left on a file whose name is the same as the source file except
.0 is substituted for .c. If a single C program is compiled and loaded all at once, the
.0 file is deleted.

Arguments ending with .s are interpreted as assembly source programs. They are
assembled, producing an .0 file.

Arguments other than those ending with .c or .s were produced by previous c c runs
or by libraries of C-compatible routines.

The first argument passed to the ld(1) loader is always one of the three crtO files
used for start up. The compiler uses /lib/mcrtO. 0 when the -p flag is given,
/usr/lib/gcrtO.o when the -pg is given, and /lib/crtO.o otherwise. If
loading executables by hand, you must include the appropriate file.

Options
These options are accepted by cc. See ld(1) for load-time options.

-b Does not pass -Ie to 1 d(1) by default.

-Bstring

-c

-c
-Dname=def
-Dname

-E

-Em

1-64 Commands

Finds substitute compiler passes in the files named string with the
suffixes cpp, ccom, and c2.

Suppresses the loading phase of the compilation and forces an
object file to be produced even if only one program is compiled.

Stops the macro preprocessor from omitting comments.

Defines the name to the processor, as if by #define. If no
definition is given, the name is defined as 1.

Runs only the macro preprocessor on the named C programs and
sends the result to the standard output.

Runs only the macro preprocessor on the named C programs and
produces the makefile dependencies.

-f

-g

-Idir

-Ix

-M

-Md

-Mg

-0 output

-0

-p

-pg

-R

-8
-t [p02al]

cc(1)

Specifies that computations involving only FFLOA T numbers be
done in single precision and not promoted to double. Procedure
arguments are still promoted to double. Programs with a large
number of single-precision computations will run faster with this
option; however, a slight loss in precision may result due to the
saving of intermediate results in a single-precision representation.

Directs the compiler to produce additional symbol table
information for dbx(1). Also passes the -Ig flag to Id(1).

Searches first in the directory of the dir argument for #include
files whose names do not begin with a slash (/), then in directories
named in -I options, and, finally, in directories on a standard list.

Abbreviates the library name /lib/libx.a, where x is a string. If that
library name does not exist, Id searches /usr/lib/libx.a and then
/usr/local/lib/libx.a. The placement of the -I library option is
significant because a library is searched when its name is
encountered.

Specifies the floating point type to be used for double-precision
floating point and is passed on to 1 d(1) as the map option.

Specifies the default DFLOAT and passes the -Ie flag to Id(1).

Specifies GFLOA T and passes the -leg flag to 1 d(1), causing the
GFLOA T version of libe to be used. If the math library is used
with code compiled with the -Mg flag, it is linked to the GFLOAT
version by specifying -Img on the cc(1) or Id(l) command.

Names the final output file output. If this option is used, the file
a.out is left alone. If the named file has either .0 or .a as a suffix,
the following error message is displayed: -0 would overwrite.

Uses the object code optimizer.

Arranges for the compiler to produce code which counts the
number of times each routine is called. If loading takes place, the
-p option replaces the standard startup routine with one that
automatically calls moni tor(3) and that arranges to write out a
mon.out file at normal termination of execution of the object
program. An execution profile can then be generated using
prof(1).

Causes the compiler to produce counting code as with -p, but
invokes a run-time recorder that keeps more extensive statistics
and produces a gmon. out file. Also, the -pg option searches a
profiling library in lieu of the standard C library. An execution
profile can then be generated by using gprof(1).

Passed on to as, which makes initialized variables shared and
read-only.

Compiles programs and writes output to .s files.

Finds the designated compiler passes in the files whose names are
constructed by a -B option. In the absence of a -B option, the
string is taken to be /usr/c/.

Commands 1-65

VAX

VAX cc(1)

-Uname Removes any initial definition of name.

-w Suppresses warning diagnostics.

- Yenvironment Compiles C programs for environment. If environment is
SYSTEM_FIVE or is omitted, it defines SYSTEM_FIVE for the
preprocessor, cpp. If the loader is invoked, it specifies th~t the
System V version of the C runtime library is used. Also, if the
math library is specified with the -1m option, the System V
version is used. If environment is PO SIX, it defines POSIX for the
preprocessor. If the environment variable PROG_ENV has the
value SYSTEM_FIVE or POSIX, the effect is the same as when
specifying the corresponding - Y environment option to cc. The
• Y option overrides the PROG_ENV variable; • YBSD can be used
to override all special actions.

Default Symbols
The ULTRIX C compiler provides the following default symbols for your use. These
symbols are useful in ifdef statements to isolate code for one of the particular cases.
Thus, these symbols can be useful for ensuring portable code.

un ix Any UNIX system
bsd4 2 Berkeley UNIX Version 4.2
ultrix ULTRIX only
vax VAX only (as opposed to PDP-II)

Restrictions
The compiler ignores advice to put char, unsigned char, short or unsigned short
variables in registers.

If the -Mg flag is used to produce GFLOAT code, it must be used when compiling
all the modules which will be linked. Use the -Mg flag if you use the cc command
to invoke Id(I) indirectly to link the modules. If Id(1) is invoked directly, use the
-Icg flag rather than -Ic. If the math library is used, specify the -Img flag rather than
the -1m flag in order to use the GFLOA T version.

The compiler and the linker 1 d(I) cannot detect the use of mixed double floating
point types. If you use them, your program's results may be erroneous.

Diagnostics

Files

The diagnostics produced by C are intended to be self-explanatory. Occasional
messages may be produced by the assembler or loader.

file.c
file.o
a.out
/tmp/ctm?
/lib/cpp
/lib/ccom
/lib/c2
/lib/crtO.o
/lib/mcrtO.o

input file
object file
loaded output
temporary
preprocessor
compiler
optional optimizer
runtime startoff
startoff for profiling

1-66 Commands

/usr/lib/gcrtO.o
/lib/libc.a
/usr/libcg.a
/usr/lib/libc_p.a
/usr/include
mon.out
gmon.out

See Also

startoff for gprof-profiling
standard library, see intro(3)
GFLOAT version of the standard library, see intro(3)
profiling library, see intro(3)
standard directory for #include files
file produced for analysis by prof(l)
file produced for analysis by gprof(l)

cc(1) VAX

adb(1), as(l), cpp(l), dbx(1), error(1), gprof(1), Id(1), prof(l), monitor(3)

Commands 1-67

cd(1)

Name
cd - change current directory

Syntax
cd directory

Description
The directory becomes the new working directory. The process must have execute
(search) permission in directory.

Because a new process is created to execute each command, cd would be ineffective
if it were written as a normal command. It is therefore recognized and executed by
the shells. In csh you may specify a list of directories in which directory is to be
sought as a subdirectory if it is not a subdirectory of the current directory; see the
description of the cdpath variable in c s h(l).

See Also
csh(l), pwd(l), sh(l), chdir(2)

1-68 Commands

cdc(1)

Name
cdc - change delta commentary of an SCCS file

Syntax
cdc -rSID [-m[mrlist]] [-y[comment]] files

Description
The cdc command changes the delta commentary of each named SCCS file, for the
SID specified by the -r option.

The delta commentary is defined to be the Modification Request (MR) and comment
information usually specified by the delta command (-m and -y options).

The de 1 t a commentary may consist of one or more lines, terminated by a dot in
column one of a new line.

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except non-sees files (last component of the path name
does not begin with s.) and unreadable files, which are silently ignored. If a name of
- is given, the standard input is read (see RESTRICTIONS). Each line of the
standard input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of option arguments, and
file names.

All the described option arguments apply independently to each named file.

Options

-m[mrlist] Adds or deletes modification numbers. If the SCCS file has the v
flag set then a list of MR numbers to be added and/or deleted in
the delta commentary of the SID specified by the -r option may be
supplied. For further information, see admin(l). A null MR list
has no effect.

MR entries are added to the list of MRs in the same manner as that
of de 1 t a(1). In order to delete an MR, precede the MR number
with the character! (see Examples). If the MR to be deleted is
currently in the list of MRs, it is removed and changed into a
comment line. A list of all deleted MRs is placed in the comment
section of the delta commentary and is preceded by a comment
line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt
MRs? is issued on the standard output before the standard input is
read. If the standard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments? prompt (see -y
option).
MRs in a list are separated by blanks and/or tab characters. An
unescaped new-line character terminates the MR list.

Note that if the v flag has a value it is taken to be the name of a
program (or shell procedure) which validates the correctness of the
MR numbers. For further information, see admin(1). If a

Commands 1-69

cdc(1)

-rSID

-y[comment]

nonzero exit status is returned from the MR number validation
program, cdc terminates and the delta commentary remains
unchanged.

Specifies the SCCS Identification string of a delta for which the
delta commentary is to be changed.

Replaces existing commentary for the delta specified by the -r
option. The previous comments are kept and preceded by a
comment line stating that they were changed. A null comment has
no effect.

If -y is not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before the
standard input is read; if the standard input is not a terminal, no
prompt is issued. A dot in column one of a new line terminates
the comment text.

Certain permissions are necessary to modify the sees file; generally, however, if you
made the delta, you can change its delta commentary, and if you own the file and
directory you can modify the delta commentary.

Examples
This example shows how to add b178-12345 and b179-00001 to the MR list, remove
b177-54321 from the MR list, and add the comment "trouble" to delta 1.6 of s.file.

sccscdc -rl.6 -m"b178-12345 !b177-54321 b179-00001" -ytrouble .file

This example does the same thing.

sccscdc -rl.6 .file

-MRs? !b177-54321 b178-12345 b179-00001

comments? trouble

Restrictions
If sees file names are supplied to the cdc command via the standard input (- on the
command line), then the -m and -y options must also be used.

Diagnostics
See sccshelp(l) for explanations.

Files

x-file For more information, see delta(l)

z-file For more information, see delta(l)

See Also
admin(l), delta(l), get(l), help(l), prs(l), sccs(l), sccsfile(5)
Guide to the Source Code Control System

1-70 Commands

cdoc(1)

Name
cdoc - invokes CDA Converter

Syntax
cdoc [-s format] [-d format] [-0 options Jzle] [-0 outputfile] inputfile

Description
The edoe command converts the revisable format file, inputfile, to another revisable
format or to a final form file. If inputfi,le is not specified, edoe reads from standard
input. Unless a destination file is specified with the -0 option, the edoe command
writes files to standard output.

Options

-sformat

-dformat

-0 options Jzle

Specifies the format of inputfile and invokes an appropriate
input converter as part of CDA. The ddif, dtif, dots (for
analysis output only) and text converters are provided in the
base system kit. Additional converters can be added by the
CDA Converter Library and other layered products.
Converter Library and other layered products. Contact your
system manager for a complete list of the input formats
supported on your system. The default format is ddif.

Specifies the format of outputfile and invokes an appropriate
output converter as part of CDA. The ddif, dtif, text,
analysis, and ps converters are provided in the base system
kit. Additional converters can be added by the CDA
Converter Library and other layered products. Contact your
system manager for a complete list of the output formats
supported on your system. The default format is ddif.

Names the file passed to the input and output converters to
control specific processing options for each converter. Refer
to your documentation set for a description of converter
options.

The options file has a default file type of .cda_options. Each
line of the options file specifies a format name that can
optionally be followed by _input or _output to restrict the
option to either an input or output converter. The second
word is a valid option preceded by one or more spaces, tabs,
or a slash (I) and can contain upper- and lowercase letters,
numbers, dollar signs, and underlines. The case of letters is
not significant. If an option requires a value, then spaces,
tabs, or an equal sign can separate the option from the value.

Each line can optionally be preceded by spaces and tabs and
can be terminated by any character other than those that can
be used to specify the format names and options. The syntax
and interpretation of the text that follows the format name is
specified by the supplier of the front and back end converters
for the specified format.

Commands 1-71

cdoc(1)

-0 outputfile

See Also

To specify several options for the same input or output
format, specify one option on a line. If an invalid option for
an input or output format or an invalid value for an option is
specified, the option may be ignored or an error message
may be returned. Each input or output format that supports
processing options specifies any restrictions or special
formats required when specifying options.

By default, any messages that occur during processing of the
options file are written to the system standard error
location. For those input and output formats that support a
LOG option, messages can be directed to a log file.

Specifies the name of the output file. If not specified, cdoc
writes to standard output.

vdoc(1), dxvdoc(1X), DDIF(5), DTIF(5), DOTS(5), CDA(5)

1-72 Commands

cflow (1)

Name
cflow - generate C flow graph

Syntax
cftow [-r] [-ix] [-i_] [-dnum] files

Description
The cflow command analyzes a collection ofc, YACC, LEX, assembler, and object
files and attempts to build a graph charting the external references. Files suffixed in
.y, .1, .c, and .i are YACC'd, LEX'd, and C-preprocessed (bypassed for .i files) as
appropriate and then run through the first pass of lint(1). The -I, -D, and -U
options of the C-preprocessor are also understood. Files suffixed with .s are
assembled and information is extracted from the symbol table. The output of all this
non-trivial processing is collected and turned into a graph of external references
which is displayed upon the standard output.

Each line of output begins with a reference, or line, number, followed by a suitable
number of tabs indicating the level. Following the reference number is the name of
the global, a colon, and the global's definition. (See the i_option for information
on names that begin with an underscore.) For information extracted from C source,
the definition consists of an abstract type declaration (for example, char *), and, the
name of the source file and the line number where the definition was found. The
name of the source file and the line number are delimited by angel brackets.
Definitions extracted from object files indicate the file name and location counter
under which the symbol appeared (for example, text). Leading underscores in C­
style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name
contain only the reference number of the line where the definition may be found. For
undefined references, only < > is printed.

The following is an example infile.c:

int i;

main ()
{

fO
{

f();
g();
f();

i=h();

The command

cflow -ix file.c

produces the following output:

1 main: int(), <file.c 4>
2 f: int(), <file.c 11>
3 h: <>
4
5 g: <>

i: int, <file.c 1>

Commands 1-73

cflow(1)

When the nesting level becomes too deep, the -e option of p r(1) can be used to
compress the tab expansion to something less than every eight spaces.

Options

-dnum

-i

-ix

-r

Restrictions

The num decimal integer indicates the depth at which the
flow graph is cut off. By default this is a very large number.
Attempts to set the cutoff depth to a nonpositive integer will
be met with contempt.

Includes names that begin with an underscore. The default is
to exclude these functions (and data if -ix is used).

Includes external and static data symbols. The default is to
include only functions in the flow graph.

Reverse the "caller:callee" relationship producing an
inverted listing showing the callers of each function. The
listing is also sorted in lexicographical order by callee.

Files produced by lex(l) and yacc(l) cause the reordering of line number
declarations which can confuse cflow. To get proper results, feed cflow the
yacc or lex input.

Diagnostics
Complains about bad options. Complains about multiple definitions and only
believes the first. Other messages may come from the various programs used (for
example, the C-preprocessor).

See Also
as(1), cc(1), lex(1), lintO), nmO), pr(l), yacc(1)

1-74 Commands

checknr(1)

Name
checknr - check nroff/troff files

Syntax
checknr [-s] [-f] [-a.x1.y1.x2.y2 xn.yn] [-c.x1.x2.x3 xn] [file ...]

Description
The checknr command checks a list of nroff(1) or troff(l) input files for
certain kinds of errors involving mismatched opening and closing delimiters and
unknown commands. If no files are specified, checknr checks the standard input.
Delimiters checked are:

5 Font changes using \fx ... \fP.

Size changes using \SX ... \sO.

Macros that come in open ... close forms, for example, the .TS and .TE
macros which must always come in pairs.

The checknr command knows about the ms(7) and me(7) macro packages.

The checknr command is intended to be used on documents that are prepared with
checknr in mind, much the same as lint(l). It expects a certain document
writing style for \f and \s commands, in that each \fx must be terminated with \fP and
each \SX must be terminated with \sO. While it will work to directly go into the next
font or explicitly specify the original font or point size, and many existing documents
actually do this, such a practice will produce complaints from checknr. Since it is
probably better to use the \fP and \sO forms anyway, you should think of this as a
contribution to your document preparation style.

Options

-a Allows additional pairs of macros to be added to the list. This must be
followed by groups of six characters, each group defining a pair of macros.
The six characters are a period, the first macro name, another period, and the
second macro name. For example, to define a pair .BS and .ES, use -a.BS.ES.

-c Defines commands otherwise complained about as undefined.

-f Ignores \f font changes.

-s Ignores \s size changes.

Restrictions
There is no way to define a 1 character macro name using -a.
Does not correctly recognize certain reasonable characters, such as conditionals.

Commands 1-75

checknr(1)

Diagnostics
Complaints about unmatched delimiters.

Complaints about unrecognized commands.

Various complaints about the syntax of commands.

See Also
eqn(1), nroff(1), troff(1), ms(7), me(7)

1-76 Commands

chfn (1)

Name
chfn - change system finger entry

Syntax
chfn [/oginname]

Description
The chfn command is used to change information about users. This information is
used by the finger(1) program, among others. It consists of the user's real name,
office room number, office phone number, and home phone number. The chfn
command prompts the user for each field. Included in the prompt is a default value,
which is enclosed between brackets. The default value is accepted simply by typing
<CR>. To enter a blank field, type the word 'none'. This is an example:

% chfn
Changing finger information for doe
Name [John DoeJ:
Office number [ABC-l/KOJ: DEF-2/K1
Office Phone [J: 1863
Home Phone [5771546J: none

The chfn command allows phone numbers to be entered with or without hyphens.
No entries may contain colons, commas, or control characters.

It is a good idea to run finger after running chfn to make sure everything is the
way you want it.

The optional argument loginname is used to change another person's finger
information. This can only be done by the superuser.

Restrictions

Files

The encoding of the office and extension information is installation dependent.

Because two users may try to write the passwd file at once, a synchronization
method was developed. On rare occasions, a message that the password file is
"busy" will be printed. In this case, chfn sleeps for a while and then tries to write
to the pas swd file again.

If the passwd entry is distributed from another host chfn will not modify it.

/etc/passwd

/etc/ptmp

See Also
chsh(l), finger(l), passwd(l), passwd(5yp)

Commands 1-77

chgrp(1)

Name
chgrp - change file group

Syntax
cbgrp [-fR] group file",

Description
The chgrp command changes the group ID of one or more files or directories. For
file, you may specify either a full or partial path. For group, you may specify either
a decimal GID or a group name found in the group file.

The user entering the chgrp command must either be the superuser, or be the owner
of the file and belong to the specified group.

Options

-f Inhibits display of errors that are returned if chgrp fails to change the group
identifier of a file.

-R Causes chgrp to recursively descend any directories subordinate to file and to
set the specified group for each file encountered. When symbolic links are
encountered, chgrp changes the group identifier of the link file but does not
traverse the path associated with the link.

Examples

Files

Change group to admin for filea and fileb:

chgrp admin filea fileb

/etc/group

/etc/passwd

/etc/yp/src/group

/etc/yp/src/passwd

See Also
chown(2), group(5), group(5yp), passwd(5), passwd(5yp)

1-78 Commands

chmod(1)

Name
chmod - change file mode

Syntax
chmod [-fR] mode file ...

Description
Pennissions on files are set according to mode and file parameters.

For file, you can specify either a full or partial path. You can specify multiple files,
separated by spaces.

For mode, you specify one of two variants: absolute mode or symbolic mode.

Absolute Mode

For mode in absolute fonn, you specify an octal number constructed from the sum of
one or more of the following values:

4000 set user ID on execution (applies to executable files only)
2000 set group ID on execution (applies to executable files only)
1000 set sticky bit (see chmod(2) for more infonnation)
0400 read by owner
0200 write by owner
0100 execute, or search if file is a directory, by owner
0040 read by group
0020 write by group
0010 execute, or search if file is a directory, by group
0004 read by others
0002 write by others
0001 execute, or search if file is a directory, by others

For example, the absolute mode value that provides read, write, and execute
pennission to owner, read and execute pennission to group, and read and execute
permission to others is 755 (400+200+100+40+10+4+1). The absolute mode value
that provides read, write, and execute permission to oWner and no permission to
group or others is 700 (400+200+100).

Symbolic Mode

To specify mode in symbolic form, use the following fonnat:

[who] op permission [op permission] ...

NOTE

Spaces are included in the preceding fonnat so that you can read the
arguments; however, as will be shown in examples that follow, you do
not enter spaces between mode arguments.

Specify who using the letters u (for owner), g (for group) and 0 (for others) either
alone or in combination. You can also specify the letter a (for all), which is is
equivalent to the letter combination ugo. If you omit the who parameter, a is
assumed. For more information, see umask(2).

Commands 1-79

chmod(1)

For the op parameter, specify the plus sign (+) to add permission to the file's mode,
the minus sign (-) to remove permission from the file's mode, or the equal sign (=)
to assign permission absolutely (denying or revoking any permission not explicitly
specified following the equal sign). The first command in the following example
provides group with execute permission for f i 1 e a in addition to any other
permissions group currently has for filea. The second command limits the
permission that group has for f i 1 eb to execute alone:

chmod g+x filea
chmod g=x fileb

For the permission parameter, specify any combination of the letters r (read), W

(write), x (execute), s (set owner or group id), and t (save text - sticky).
Alternatively, you can specify the letter u, g, or 0 to set permission for the who
parameter to be the same as the permission currently granted to the user category
indicated by the letter. In the following example, the group (g) is given the same
permissions on filea as currently granted to owner (u):

chmod g=u filea

You can revoke all permissions by specifying the who argument followed by =, and
omitting the permission argument. For example, the following command removes all
permissions from others for f i 1 eb :

chmod 0= fileb

When specifying more than one symbolic mode for file, separate the modes with
commas. The mode changes are applied in the sequence specified. In the following
example, write permission is added to the permissions already granted to the owner
of f i 1 e a and group is then granted the same permissions on f i 1 e a as granted the
owner:

chmod U+W,g=u filea

Options

-f Inhibits display of errors that are returned if chmod fails to change the mode
on a file.

-R Causes chmod to recursively descend any directories subordinate to file and to
set the specified mode for each file encountered. However, when symbolic
links are encountered, chmod does not change the mode of the link file and
does not traverse the path associated with the link. Note that the -R option is
useful only when file identifies a directory that is not empty.

Restrictions
The permission letter s is used only with who letter u or g.

Only the owner of a file or someone logged on as superuser may change the mode of
that file.

1-80 Commands

chmod(1)

Examples
Using absolute mode, provide read, write, and search permission to the owner, and
read and search permission to others for a directory named pub 1 i c :

chmod 755 -harris/public

Using absolute mode, set the UID for progrmb execution to be the UID of of the
file owner rather than the UID of the user running the program as follows:

chmod 4000 progrmb

Using symbolic mode, perform the same operation as described for the preceding
example:

chmod u=s progrmb

Using symbolic mode, deny write permission to others for the file ourspec:

chmod o-w ourspec

Using symbolic mode, give execute permission on file myprog to all user categories:

chmod +x myprog

Using symbolic mode, give write permission to all group members, deny write
permission to others, and give search permission to owner on docdir:

chmod g+w,o-r,u+x docdir

Using symbolic mode, give read and execute permissions to others for a directory
named programs, and then recursively descend the paths subordinate to
programs, adding the same permissions for others on all files and directories
included in the subordinate paths:

chmod -R o+rx programs

See Also

NOTE

In the preceding example, if p rog rams were the name of a file rather
than a directory, chmod would change the mode only of the programs
file.

Is(1), chmod(2), stat(2), umask(2), chown(8)

Commands 1-81

chsh(1)

Name
chsh - change login shell

Syntax
chsh [/oginname]

Description
The chsh command is a command similar to passwd, except that it is used to
change the login shell field of the password file rather than the password entry. The
program will prompt you for a new shell. The shell name supplied must match one of
the entries in /etc/shells. If no name is given the shell will be unchanged and the
diagnostic "Login shell unchanged" will be printed.

An example use of this command is:

% chsh
Changing login shell for bill
Shell [/bin/csh]: sh

Restrictions

Files

Both the new shell and the old shell must be found in /etc/shells to be able to change
the shell.

If the passwd entry is distributed from another host chsh will not modify it.

/etc/shells

See Also
chfn(l), passwd(l), yppasswd(lyp), passwd(5yp)

1-82 Commands

clear (1)

Name
clear - clear tenninal screen

Syntax
clear

Description

Files

The c 1 ear command clears your screen if this is possible. It looks in the
environment for the tenninal type and then in /etc/termcap to figure out how to
clear the screen.

/etc/tenncap tenninal capability data base

Commands 1-83

cmp(1)

Name
cmp - compare two files

Syntax
cmp [-II -s] filel file2 [skipl] [skip2]

Description
The cmp command compares two files. If either filel or file2 is '-', standard input is
used for the file. With no options, cmp makes no comment if the files are the same.
If they differ, it reports the byte and line number at which the difference occurred to
standard output. If one file is an initial subsequence of the other a message including
the file name is written to standard error.

The optional skipl and skip2 parameters are initial byte offsets into filel and file2
respectively and may be either octal, by specifying a leading 0, or decimal. When
using skipl and skip2 the offset is treated as the start of the respective input file.
Only one option may be specified at a time. Only one of the input files may be
standard input at a time. Because the line number is not calculated when using either
of the options the use of either flag will increase the speed of cmp •

Options

-I Long format: prints the byte number (decimal) and the differing bytes (octal)
for each difference.

-s Suppresses normal output and sets the exit code only.

Diagnostics
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

See Also
comm(1), diff(1)

1-84 Commands

col (1)

Name
col - filter reverse line feeds

Syntax
col [-options]

Description
The col command reads the standard input and writes the standard output. It
perfonns the line overlays implied by reverse line feeds (ESC-7 in ASCII) and by
forward and reverse half line feeds (ESC-9 and ESC-8, respectively). The col
command is particularly useful for filtering multicolumn output made with the . rt
command of nroff, and for filtering output resulting from the tbl preprocessor.

Although col accepts half line motions in its input, it does not nonnally output
them. Instead, text that would appear between lines is moved to the next lower full
line boundary.

The control characters SO (ASCII code 017) and SI (ASCII code 016) are assumed to
start and end text in an alternate character set. The character set (primary or
alternate) associated with each printing character read is remembered. On output, SO
and SI characters are generated where necessary to maintain the correct treatment of
each character.

The col command nonnally converts white space to tabs to shorten printing time. If
the -b option is given, this conversion is suppressed.

On input, the only control characters accepted are <space>, <backspace>, <tab>,
<return>, <newline>, etc ... The VT character is an alternate fonn of full reverse
linefeed, included for compatibility with earlier programs of this type. All other non­
printing characters are ignored.

Options

-b Assumes that the output device does not have backspacing.

-f Suppresses moving half lines to the next full line.

-b Suppresses conversion of white space to tabs.

-p Forces through unchanged any unknown escape sequences that are found
in its input. This option should be used with care.

-x Suppresses conversion of white space to tabs (same as -h).

Restrictions
Cannot back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

See Also
tbl(1), nroff(1)

Commands 1-85

colcrt (1)

Name
colcrt - filter nroff output for CRT previewing

Syntax
colert [-] [-2] [file ...]

Description
The colcrt command provides virtual half-line and reverse line feed sequences for
terminals without such capability, and on which overstriking is destructive. Half-line
characters and underlining (changed to dashing '-') are placed on new lines in
between the normal output lines.

Options

Suppresses all underlining. It is especially useful for previewing aI/boxed tables
from tbl(I).

-2 Causes half-lines to be printed, double spacing the output. Normally, a minimal
space output format is used which will suppress empty lines. The program
never suppresses two consecutive empty lines, however. The -2 option is useful
for sending output to the line printer when the output contains superscripts and
subscripts which would otherwise be invisible.

Examples
A typical use of colcrt would be:

tbl exum2.n I nroff -ms I colcrt - I more

Restrictions
Can't back up more than 102 lines.

General overstriking is lost; as a special case 'I' overstruck with '-' or underline
becomes '+'.

Lines are trimmed to 132 characters.

See Also
col(1), more(I), nroff(1), ul(1)

1-86 Commands

colrm (1)

Name
colrm - remove columns from a file

Syntax
colrm [starteol [endeol]]

Description
The colrrn command removes selected columns from a file. Input is taken from
standard input. Output is sent to standard output.

If called with one parameter the columns of each line will be removed starting with
the specified column. If called with two parameters the columns from the first
column to the last column will be removed.

Column numbering starts with column 1.

See Also
expand(l)

Commands 1-87

comb(1)

Name
comb - combine delta versions of SCCS file

Syntax
comb [-0] [-s] [-psid] [-clist] files

Description
The comb command generates a shell procedure which, when run, will reconstruct
the given sees files. For further information, see sh(l). The reconstructed files are
generally smaller than the original files. The arguments may be specified in any
order, but all keyletter arguments apply to all named sees files. If a directory is
named, comb behaves as though each file in the directory were specified as a named
file, except non-sees files (last component of the path name does not begin with s.)
and unreadable files, which are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an sees file
to be processed.

The generated shell procedure is written on the standard output.

Each keyletter argument is explained as though only one named file is to be
processed, but the effects of any keyletter argument apply independently to each
named file.

Options

-clist

-0

-pSID

Preserves specified deltas. See get(l) for the syntax of a list. All other
deltas are discarded.

Causes the reconstructed file to be accessed at the release of the delta to
be created. Otherwise the reconstructed file would be accessed at the
most recent ancestor. Use of the -0 keyletter may decrease the size of
the reconstructed sees file. It may also alter the shape of the delta tree
of the original file.

Indicates oldest delta to be preserved. All older deltas are discarded in
the reconstructed file.

-s Generates a shell procedure which produces a report. This report gives
the file name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

lOO * (original - combined) / original
It is recommended that before any sees files are actually combined, one
should use this option to determine exactly how much space is saved by
the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

Restrictions
The comb command may rearrange the shape of the tree of deltas. It may not save
any space; in fact, it is possible for the reconstructed file to actually be larger than the
original.

1-88 Commands

Diagnostics

Files

See sccshelp(l) for explanations.

s.COMB
comb?????

The name of the reconstructed SCCS file.
Temporary.

See Also
admin(1), delta(1), get(1), help(1), prs(1), sccs(1), sccsfile(5)
The Guide to the Source Code Control System

comb(1)

Commands 1-89

comm (1)

Name
comm - compare sorted data

Syntax
comm [- [123]] filel file2

Description
The cornm command readsfilel andfile2, which should be ordered in ASCII
collating sequence, and produces a three column output: lines only in filel; lines only
infile2; and lines in both files. The file name '-' means the standard input.

Options

1 Suppresses column one: lines in filel only.

2 Suppresses column two: lines in file2 only.

3 Suppresses column three: lines in file! and file2.

Thus cornm -12 prints only the lines common to the two files. And cornm -23 prints
only lines in the first file but not in the second. Finally, cornrn -123 is not an option.

See Also
cmp(l), diff(l), difI3(1), diffmk(1), join(l), uniq(1)

1-90 Commands

Name

Syntax

comp(1mh)

comp - compose a message

comp [+folder] [msg] [-draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [-editor editorname] [-noedit] [-file filename] [-form formfile]
[-use] [-nouse] [-whatnowproc program] [-nowhatnowproc] [-help]

Description

Use comp to create a new message for mailing. When you run camp, it provides a
message template for you to fill in and invokes an editor so that you can complete the
message.

A mail message consists of a mail header and the body of the message. The mail
header contains all the information that determines who is going to receive the mail
message. It can also give the recipients some information about the sender. The
body of the message is the actual text of the message that you want to send. The
header is separated from the body of the text by a blank line or by a line of dashes.
The header must be separated from the body of the message in this way for the
message to be identified properly when it is sent (see send(lmh».

The standard message header contains the following elements:

To:
cc:
Subject:

Options

You can specify an alternative mail header by setting up a file called components in
your MH directory. This is used instead of the default mail header by MH. You can
also direct comp to use an alternative header by using the - form formfile option.

comp normally invokes an editor, unless you have used the -noedi t flag. The
default editor is prompter, which is a very rudimentary editor (see
prompter(1mh». You can specify your own choice of editor using the -edi tor
editorname option. If you regularly use the same editor you can specify it by
specifying it in the editor: line of your mh-profile. The following example
shows how to set up vi as the editor you'll use to compose mail messages.

editor: /usr/ucb/vi

You can direct comp to use an existing message by specifying a folder or a msg
argument. You can not supply both a -formformfile and a +folder or a msg
argument.

If you supply a +folder argument, comp will use the current message in the specified
folder as the draft for your message. If you specify a message number as an
argument and you do not have a drafts folder set up, comp will use that message
from the current folder. If you do have a drafts folder set up, comp will use the
specified message from your drafts folder. This is similar to specifying
comp-use, except that comp-use will only take messages from the draft or

Commands 1-91

comp(1mh)

Files

drafts folders. The draft file or drafts folder are used by the comp, dist,
repl, and forw commands. If any of these commands are terminated without
sending the draft, you can edit the draft again by using comp -use.

If the draft already exists, comp will ask you what you want to do with the draft.
The available options are:
quit aborts comp leaving the draft intact
replace replaces the existing draft with the appropriate message form
use allows you to edit the existing draft
list displays the draft message
refile refiles the existing draft message in the specified folder

and provides a new message form for you to complete
You have to specify a +foldername when you specify refile. If you use qui t-d
you will exit from the editor and delete the draft message. The +foldername
argument to refile is required.

The -draft folder +folder and -draftmessage msg switches invoke the MH
draft folder facility. The -draft folder +foldername switch lets you specify the
folder that an un sent draft will be stored in. The -draftmessage msg switch lets
you create a message with a meaningful name. If you qu i t without sending a
message, that message will be stored, as a file with the specified name, in your Mail
directory. You can use dist, forw, and send to access the specified draft file.

The - f i 1 e filename switch makes c omp use the named file as the message draft.

When you exit from the editor, comp invokes the whatnow program. See
whatnow(1mh) for a discussion of available options. You can also specify your
own whatnow process using the -whatnowproc program. If you do specify your
own whatnow program, you should not call it what now. You can suppress the
whatnow program entirely by using the -nowhatnowproc switch. However, as
the whatnow program normally starts the initial edit, -nowhatnowproc will
prevent you from editing the message.

The defaults for comp are:

+foldername defaults to the current folder
msg defaults to the current message
-nodraftfolder
-nouse

/usr/new/lib/mh/components
<mh-dir>/components
$HOME/.mh-profile
<mh-dir>/draft

The message skeleton
Alternative to the standard skeleton
Your user profile
The draft file

Profile Components
Path: To determine your MH directory

To find the default draft-folder
To override the default editor

Draft-Folder:
Editor:
Msg-Protect:
fileproc:
whatnowproc:

1-92 Commands

To set mode when creating a new message (draft)
Program to refile the message
Program to ask the "What now?" questions

comp(1mh)

See Also
dist(lmh), forw(1mh), prompter(lmh), repl(lmh), send(lmh), whatnow(1mh),
mh-profile(Smh)

Commands 1-93

compact (1)

Name

Syntax

compact, uncompact, ccat - compress and uncompress files, and cat them

compact [name ...]
uncompact [name ...]
ccat [file ...]

Description
The compact command compresses the named files using an adaptive Huffman
code. If no file names are given, the standard input is compacted to the standard
output. The compact command operates as an on-line algorithm. Each time a byte
is read, it is encoded immediately according to the current prefix code. This code is
an optimal Huffman code for the set of frequencies seen so far. It is unnecessary to
prepend a decoding tree to the compressed file since the encoder and the decoder start
in the same state and stay synchronized. Furthermore, compact and uncompact
can operate as filters. In particular,

• •• I compact I uncompact

operates as a (very slow) no-oPe

When an argument file is given, it is compacted and the resulting file is placed in
file.C; file is unlinked. The first two bytes of the compacted file code the fact that the
file is compacted. This code is used to prohibit recompaction.

The amount of compression to be expected depends on the type of file being
compressed. Typical values of compression are: Text (38%), Pascal Source (43%),
C Source (36%) and Binary (19%). These values are the percentages of file bytes
reduced.

The uncornpact command restores the original file from a file compressed by
compact. If no file names are given, the standard input is uncompacted to the
standard output.

The ccat command cats the original file from a file compressed by compact,
without uncompressing the file.

The compact command is present only for compatibility. In general, the
compress(1) command runs faster and gives better compression.

1-94 Commands

compact{1)

Restrictions
The last segment of the file name must contain fewer than thirteen characters to allow
space for the appended' .C'.

Files

* . C compacted file created by compact, removed by un compact

See Also
compress(1)

Commands 1-95

Rise compress (1)

Name

Syntax

compress, uncompress, zcat - compress and expand data

compress [-f] [-v] [-c] [-b bits] [name ...]
uncompress [-f] [-v] [-c] [name ...]
zcat [name ...]

Descri ption
The compress command reduces the size of the named files using adaptive
Lempel-Ziv coding. Whenever possible, each file is replaced by one with the
extension .Z, while keeping the same ownership modes, access, and modification
times. If no files are specified, the standard input is compressed to the standard
output. Compressed files can be restored to their original form using uncompress
or zcat.

The -f option will force compression of name, even if it does not actually shrink
name, or if the corresponding name .Z file already exists. If the -f option is omitted,
the user is asked whether an existing name.Z file should be overwritten (unless
compress is run in the background under /bin/ sh).

The -c (cat) option makes compress/uncompress write to the standard output without
changing any files. Neither uncompress -c nor zcat alter files.

The compress command uses the modified Lempel-Ziv algorithm. Common
substrings in the file are first replaced by 9-bit codes 257 and up. When code 512 is
reached, the algorithm switches to 10-bit codes and continues to use more bits until
the limit specified by the -b flag is reached (default 16). The bits must be between 9
and 16. The default can be changed in the source to allow compress to be run on a
smaller machine.

After the bits limit is attained, compress periodically checks the compression ratio.
If the ratio is increasing, compress continues to use the existing code dictionary.
However, if the compression ratio decreases, compress discards the table of
substrings and rebuilds it from scratch. This allows the algorithm to adapt to the
next block of the file.

Note that the -b flag is omitted for uncompress, since the bits parameter specified
during compression is encoded within the output along with a number that ensures
that neither decompression of random data nor recompression of compressed data is
attempted.

How much each file is compressed depends on the size of the input, the number of
bits per code, and the distribution of common substrings. Typically, text such as
source code or English is reduced by 50-60%. Compression is generally much better
than that achieved by Huffman coding or adaptive Huffman coding, and takes less
time to compute.

The -v option displays the percent reduction of each file.

If an error occurs, exit status is 1. However, if the last file was not compressed
because it became larger, the status is 2. Otherwise, the status is O.

1-96 Commands

compress (1)

Options

-f Forces compression of name.

-c Makes compress/uncompress write to the standard output.

-b Specifies the allowable bits limit. The default is 16.

-v Displays the percent reduction of each file.

Diagnostics
Usage: compress [-fvc] [-b maxbits] [file ...]

Invalid options were specified on the command line.
Missing maxbits

Maxbits must follow -b.
file: not in compressed fonnat

The file specified to uncompress has not been compressed.
file: compressed with xx bits, can only handle yy bits

The file was compressed by a program that could deal with more
bits than the compress code on this machine. Recompress the file
with smaller bits.

file: already has .Z suffix -- no change
The file is assumed to be compressed already. Rename the file
and try again.

file already exists; do you wish to overwrite (y or n)?
Type y if you want the output file to be replaced; type n if you do
not.

uncompress: corrupt input
A SIGSEGV violation was detected which usually means that the
input file is corrupted.

Compression: xx.xx%
Percent of the input saved by compression. (For the -v option
only.)

-- not a regular file: unchanged
If the input file is not a regular file (for example, a directory), it
remains unchanged.

-- has xx other links: unchanged

-- file unchanged

Restrictions

The input file has links; it is left unchanged. See In(l) for more
infonnation.

No savings is achieved by compression. The input remains
unchanged.

Although compressed files are compatible between machines with large memory,
-b12 should be used for file transfer to architectures with a small process data space
(64KB or less).

Commands 1-97

Rise

VAX compress (1)

Name

Syntax

compress, uncompress, zcat - compress and expand data

compress [options] [name ...]
un compress [options] [name ...]
zcat [name ...]

Description
The compress command reduces the size of the named files using adaptive
Lempel-Ziv coding. Whenever possible, each file is replaced by one with the
extension .Z, while keeping the same ownership modes, access, and modification
times. If no files are specified, the standard input is compressed to the standard
output. Compressed files can be restored to their original form using uncornpress
or zcat .

The compress command uses the modified Lempel-Ziv algorithm. Common
substrings in the file are first replaced by 9-bit codes 257 and up. When code 512 is
reached, the algorithm switches to 10-bit codes and continues to use more bits until
the limit specified by the -b flag is reached (default 16). The bits must be between 9
and 16. The default can be changed in the source to allow compress to be run on a
smaller machine.

After the bits limit is attained, compress periodically checks the compression ratio.
If the ratio is increasing, compress continues to use the existing code dictionary.
However, if the compression ratio decreases, compress discards the table of
substrings and rebuilds it from scratch. This allows the algorithm to adapt to the
next block of the file.

How much each file is compressed depends on the size of the input, the number of
bits per code, and the distribution of common substrings. Typically, text such as
source code or English is reduced by 50-60%. Compression is generally much better
than that achieved by Huffman coding or adaptive Huffman coding, and takes less
time to compute.

If an error occurs, exit status is 1. However, if the last file was not compressed
because it became larger, the status is 2. Otherwise, the status is O.

Options

-b The -b flag is omitted for uncompress, since the bits parameter specified
during compression is encoded within the output along with a number that
ensures that neither decompression of random data nor recompression of
compressed data is attempted.

--c The cat option. Makes compress/uncompress write to the standard output
without changing any files. Neither uncompress --c or zcat alter files.

-f Forces compression of name , even if it does not actually shrink name , or if
the corresponding name .Z file already exists. If the -f option is omitted, the
user is asked whether an existing name .Z file should be overwritten unless
compress is run in the background under /bin/ she

1-98 Commands

compress (1)

-q Quiet, not as verbose.

-v Displays the percent reduction of each file.

-V Prints version and options.

Diagnostics
Usage: compress [-fvc] [-b maxbits] [file ...]

Invalid options were specified on the command line.
Missing maxbits

Maxbits must follow -b.
file: not in compressed format

The file specified to uncompress has not been compressed.
file: compressed with xx bits, can only handle yy bits

The file was compressed by a program that could deal with more
bits than the compress code on this machine. Recompress the file
with smaller bits.

file: already has .Z suffix -- no change
The file is assumed to be compressed already. Rename the file
and try again.

file: filename too long to tack on .Z
The file cannot be compressed because its name is longer than 12
characters. Rename and try again.

file already exists; do you wish to overwrite (y or n)?
Type y if you want the output file to be replaced; type n if you do
not.

uncompress: corrupt input
A SIGSEGV violation was detected which usually means that the
input file is corrupted.

Compression: xx.xx%
Percent of the input saved by compression. (For the -v option
only.)

-- not a regular file: unchanged
If the input file is not a regular file (for example, a directory), it
remains unchanged.

-- has xx other links: unchanged

-- file unchanged

Restrictions

The input file has links; it is left unchanged. See In(l) for more
information.

No savings is achieved by compression. The input remains
unchanged.

Although compressed files are compatible between machines with large memory,
-b12 should be used for file transfer to architectures with a small process data space
(64KB or less).

Commands 1-99

VAX

Rise cord (1)

Name
cord - rearranges procedures in an executable to facilitate better cache mapping.

Syntax
cord [-c cachesize] [-f] [-0 outfile] [-p max phases] [-v] obj reorder

Description
The cord command rearranges procedures in an executable object to maximize
efficiency in a machine's cache. By rearranging the procedures properly, the
instruction cache miss rate is reduced. The cord command does not attempt to
determine the correct ordering, but is given a reorder file containing the desired
procedure order. The reorder file is generated by the f to c program which in turn
generates a reorder file from a set of profile feedback files (see prof(l)).

Processed lines in the reorder file are called procedure lines. Each procedure line
must be on a separate source line. Each procedure line must contain the source name
of the file, followed by a blank followed by a qualified procedure name (nested
procedures need to be qualified x.y where x is the outer procedure). A newline or
blank can follow the procedure name:

foo.c bar »i ignore this stuff«

Lines beginning with a pound sign (#) are comments. Lines beginning with a dollar
sign ($) are considered cord directive lines. The only directive currently understood
is $phase. This directive will consider the rest of the file (until the end of file or
next $phase) as a new phase of the program and will order the procedures
accordingly. Procedures may appear in more than one phase, resulting in more than
one copy of it in the final binary. The cord command will try to relocate references
to a procedure to a copy in the requesting phase's list of procedures first and then a
random copy if one is not found.

You should use the -cord option to a compiler driver like cc rather than execute
cord directly. Options to cord can be specified with -Wz,cordargO,cordargl, If
you have to run cord manually, you should run it once with the driver using the -v
flag on a simple program to see the exact passes and their arguments involved in
using cord.

The obj argument is an executable object with its relocation information intact. This
can be achieved by passing the -r -z -d options to the linker, Id. The -r linker
option maintains relocation information in the object, but will not make it a
ZMAGIC file (hence -z) nor will it allocate common variables (hence -d) as it would
without the option.

1-100 Commands

Options

-c cachesize

-f

-0 outputfile

-p phasemax

-v

Restrictions

cord (1)

Specify the cache size of the machine you want to execute on in
bytes. This only affects the -f option. If not specified 65536 is
used.

Flip the first cachepage size procedures. The assumption when
cord was written was that procedures would be reordered by
procedure density (cycles/byte). This option ensures that the
densest part of each page following the first cachepage would
conflict with least dense part of the first cachepage.

specifies the output file. If not specified, a.out is used.

Specifies the maximum number of phases allowed. The default is
20.

Prints verbose information. This includes listing those procedures
considered part of other procedures and cannot be rearranged (these
are basically assembler procedures that may contain relative
branches to other procedures rather than relocatable ones). The
listing also list those procedures in the flipped area (if any) and a
mapping of old location to new.

Since cord works from an input list of procedures generated from profile output, the
resulting binary is data dependent. In other words, it may only perform well on the
same input data that generated the profile information and may perform worse than
the original binary on other data. Furthermore, if the hot areas in the cache don't fit
well into one cachepage, performance can degrade.

See Also
cc(1), ftoc(l), Id(l), prof(1)

Commands 1-101

Rise

Rise cord2(1)

Name

Syntax

cord2 - rearranges basic blocks in an executable file to facilitate better cache
mapping.

cord2 [-v] [-0 outfilej [-c cachewords] [-d] [-b bridge limit] [-0] [-A addersfile] [(-C
counts file] •••] Db) -

Descri ption
The cord2 command extracts basic blocks from a program and deposits them in a
new area in the text, making jumps to and from that area as necessary. By separating
the basic blocks, you can reduce instruction cache miss rates. The cord2 command
takes the output of a pixie profiling run as input (see pixie(l».

The executable object file has the suffix Db}. The cord2 command only requires one
addersfile; it creates the filename by appending .Bbaddrs to the Db} filename if none
is specified with -A. Multiple counts files can be specified from many runs with
multiple -C arguments. If none are specified, cord2 creates the counts filename by
appending .Counts to the Db} name.

Multiple counts files are added together into an internal counts array represented with
C double-type elements. The counts array elements contain the density of a block or
cycles/byte. If you specify -0, then the counts are nonnalized so that each counts
array entry is cycles/totalcycles. When one counts file is specified, the default is to
favor small blocks; -0 negates that. When many counts files are specified, -0 also
negates favoring one counts file. This is because its totalcycles may exceed the
totalcycles of another counts file.

The cord2 command determines which basic blocks to insert by sorting the counts
array and collecting the blocks with the highest counts that can fit into the new area.
The cord2 command may skip over huge blocks that do not fit at the end of the new
area.

Once the blocks are detennined, they are inserted into the new area, and their original
location is modified to jump to the new area. At the end of each block in the new
area, a jump is added back to the original block's subsequent or fall-through location,
and the branch/jump target (if necessary). Both entering and exiting the new area is
optimized to take advantage of other blocks in the new area and jump delay slots.

Often, there may be one or more fall-through blocks of a block in the new area which
are small, hardly ever used, and not in the new area. If the block following these
fall-through blocks is in the new area, the fall-through blocks are called bridge
blocks. It may be more costly to generate jumps to and from bridge blocks rather
than to simply copy them.

The cord2 command allows you to specify that bridge blocks be added to the new
area if they total less than the bridge _limit instructions between two new-area blocks.
You can specify the bridge _limit with -b; the default is zero. Bridge blocks can
bump blocks out of the new area that might normally fit into it.

1-102 Commands

Options

cord2 (1)

NOTE

Because the cord2 command works from profile output, the resulting
binary is data dependent. In other words, it may perform well only on the
same input data that generated the profile information, and may perform
worse than the original binary on other data. Furthermore, if the hot
areas in the cache do not fit well into one cachepage, performance can
degrade.

The cord2 command also accepts these options:

-d Fill the delay slots with nops only when adding jumps to and from the new
area.

-v Print verbose information. This includes statistics about the cord2 process.

-v -v Print all of the -v information, but include detailed disassemblies of the code
moved, changed, and generated by cord2.

-c cachewords
Specify the number of words in the cache of the machine on which you want to
execute. This is actually the size of the new area. The cachesize may be a
misnomer, as you can specify a size other than your machine's cache size;
however, it is probably the correct number.

-0 outputfile
Specify the output file. If it is not specified, the default is a.out.cord2.

Restrictions
The cord2 command adds the new area to the end of text so any program using the
etext symbol may not work. See ld(1).

See Also
pixie(1), cord(l)

Commands 1-103

Rise

cp(1)

Name
cp - copy file data

Syntax
cp [-f] [-i] [-p]filel file2

cp [-f] [-i] [-p] [-r] file ... directory

cp [-f] [-i] [-p] [-r] directory ... directory

Description
The cp command copies filel onto file2. The mode and owner of file2 are preserved
if it already existed; the mode of filel is used otherwise. Note that the cp command
will not copy a file onto itself.

In the second form, one or more files are copied into the directory with their original
file names.

In the third form, one or more source directories are copied into the destination
directory with their original file names.

Options

-f Forces existing destination pathnames to be removed before copying, without
prompting for confirmation. The -i option is ignored if the -f option is
specified.

-i Prompts user with the name of file whenever the copy will cause an old file to
be overwritten. A yes answer will cause cp to continue. Any other answer will
prevent it from overwriting the file.

-p Preserves (duplicates) in the copies the modification time, access time, file
mode, user ID, and group ID as allowed by the permissions of the source files,
ignoring the present umask.

-r Copies directories. Entire directory trees, including their subtrees and the
individual files they contain, are copied to the specified destination directory.
The directory, its subtrees, and the individual files retain their original names.
For example, to copy the directory report s, including all of its subtrees and
files, into the directory news, enter the following command:

cp -r reports news

See Also
cat(1), pr(l), mv(1)

1-104 Commands

Name

Syntax

cpio - copy file archives in and out

cpio -0 [keys]

cpio -i [keys] [patterns]

cpio -p [keys] directory

cpio (1)

Description
The ep i 0 command is a filter designed to let you copy files to or from an archive.
The epio command differs from the ar command in that epio lets you archive any
kind of file, while ar is limited to program object files.

Options

-i Copies files that match the specified pattern. If the pattern is not specified,
copies in all files. Extracts files from the standard input, which is assumed to
be the product of a previous cpio -0, and places them into the user's current
directory tree. For files with the same name, the newer file replaces the older
file unless the -u option is used.

Only files with names that match patterns are selected. The patterns are
specified using the notation for names described in sh(1). In patterns, the
slash for directories (/) is included in searches using meta-characters. For
example, suppose the archive contains the file filep and the pathname
information in the archive indicates that the directory below contains the file
file2p. This command copies both files into the user's current directory:

cpio -i *p < /dev/rmtOl

Multiple patterns may be specified and if no patterns are specified, the default
for patterns is * (that is, select all files). The extracted files are conditionally
created and copied into the current directory tree based upon the options
described below. The epio command has three function keys, each with its
own set of options.

-0 Copies out the specified files. Reads the standard input to obtain a list of path
names and copies those files onto the standard output together with path name
and status information.

-p Copies files into the specified destination directory, which must already exist.
Reads the standard input to obtain a list of path names of files that are
conditionally created. This list of files is copied into the destination directory
tree based upon the options used. For files with the same name, the newer file
replaces the older file unless the -u option is used.

Commands 1-105

epio (1)

Keys

6 Processes a file with the UNIX System Sixth Edition format.

a Retains original access times of input files, and can be used with -0 and -po
Normally, the read(s) used in the copy update the copied file's access time.

B Determines input/output is to be blocked 5,120 bytes to the record. This
option is meaningful only with data directed to or from / dev / rmt?h or
/dev/rmt?l.

b Swaps both bytes and halfwords.

c Creates header information in ASCII format and can be used with -i and -0.

d Creates subdirectories, as needed, below the specified destination directory.

f Copies all files except those that match the specified pattern.

k Enables symbolic link handling and is used with the -i, -0, and -p options.

Creates links wherever possible.

m Retains modification time for each copied file. This option does not work on
directories or symbolic links that are being copied; the directory is always reset
to show the access time when the copy was made.

r Interactively renames files. If you respond with a null line, the file is skipped
(not copied). Use only with the -i option.

s Swaps bytes while copying files in.

S Swaps half words while copying files in.

t Prints a table of contents of the input (no files are created).

u Copies files unconditionally. (Otherwise, an older file will not replace a newer
file with the same name).

v Displays detailed (verbose) information as it copies and/or creates file. When
used with the t option, the table of contents looks like the output of an Is -I
command. For further information, see ls(I).

Examples
This example shows how to copy the contents of the user's current directory into an
archive.

ls I epio -0 > /dev/rmtOl

This example shows how to duplicate a directory hierarchy.

mkdir -phares/newdir
ed -phares/olddir
find . -print I epio -pdl -phares/newdir

This example shows how to copy all files and directories with names containing the
characters "chapter" in user smith's home directory and underlying directories.

find -smith -name '*ehapter*' -print I epio -0 > /dev/rmtOh

This example shows the results of using the r option with the -i function key.

ls I epio -ir > -smith/newdir
Rename <filel>

1-106 Commands

newnamefi1el
Rename <fi1e2>
<RETURN>
Skipped
Rename <file3>
newnamefile3

cpio (1)

In some cases, the -cpio option of the find command can be used more effectively
than pipes and redirects using cp i o. For instance, the following example

find . -print I epio -oB > /dev/rmt01

can be handled more efficiently by:

find . -epio /dev/rmt01

To copy the contents of a directory (with symbolic link handling enabled) to the tape
drive, type:

15 I epio -ok > /dev/rmtOh

To restore the archived files back into a directory, type:

epio -ik < /dev/rmtOh

The following example moves files, including symbolic links, from an old directory
to a new directory:

mkdir -eraig/newdir
ed -eraig/o1ddir
15 I epio -pdk -eraig/newdir

Restrictions
Pathnames are restricted to 128 characters.

When there are too many unique linked files, the program runs out of memory and
cannot trace them. In this case, linking information is lost.

Only the superuser can copy special files.

See Also
ar(1), find(1), cpio(5)

Commands 1-107

Rise cpp(1)

Name
cpp - the C language preprocessor

Syntax
/lib/cpp [option ...] [ifile [ofile]]

Description
The cpp command is the C language preprocessor which is invoked as the first pass
of any C compilation using the cc(l) command. Thus, the output of cpp is
designed to be in a form acceptable as input to the next pass of the C compiler.

The preferred way to invoke cpp, however, is through the cc(1) command. See
m4(1) for a general macro processor.

Arguments
The cpp command optionally accepts two file names as arguments. The ifile and
ofile are, respectively, the input and output for the preprocessor. They default to
standard input and standard output if no argument is supplied.

Options

-B

-c

-M

-p

-R
-Uname

-Dname
-Dname=def

-Idir

1-108 Commands

Strips c++-style comments (begin with / / and end with
newline).

Passes along all comments, except those found on cpp
directive lines. By default, cpp strips C-style comments.

Generates dependency lists suitable for use with make(l)
instead of the normal output.

Preprocesses the input without producing the line control
information used by the next pass of the C compiler.

Permits recursion when a macro is expanded.

Removes any initial definition of name, where name is a
reserved symbol that is predefined by the preprocessor. The
symbols predefined by this implementation are bsd4_2,
ultrix, unix, mips, host_mips, and MIPSEL.

Defines name as if by a #define directive. If no =def is
given, name is defined as 1. The -D option has lower
precedence than the -U option. That is, if the same name is
used in both a -U option and a -D option, the name remains
undefined regardless of the order of the options.

Changes the algorithm for searching for #include files whose
names do not begin with a slash (/) to look in dir before
looking in the directories on the standard list. Thus,
#include files whose names are enclosed in quotes (" ")
will be searched for first in the directory of the file with the
#include line, then in directories named in -I options, and,

Directives

cpp(1)

finally, in directories on a standard list. For #include files
whose names are enclosed in angle brackets «», the
directory of the file with the #include line is not searched.

All cpp directives start with lines that begin with a pound sign (#). Any number of
blanks and tabs are allowed between the pound signs and the directive. The
following is a list of the directives:

#define name(arg, ••• ,arg) token-string
Replaces subsequent instances of name and the following set
of tokens that is enclosed in parentheses by token-string.
Each occurrence of an arg in the token-string is replaced by
the corresponding set of tokens in the comma-separated list.
Note that spaces between name and the left parenthesis (0
are not allowed. When a macro with arguments is expanded,
the arguments are placed unchanged into the expanded
token-string . After the entire token-string has been
expanded, cpp re-starts its scan for names to expand at the
beginning of the newly created token-string.

#Undef name Causes the definition of name (if any) to be forgotten.

#include ''filename''
#include <filename> Includes the contents of filename , which will then be run

through cpp. When the <.filename> notation is used,
filename is searched for in the standard places. See the -I
option above for more detail.

#line integer-constant ''filename''

#endif

Causes cpp to generate line control information for the next
pass of the C compiler. Integer-constant is the line number
of the next line and filename is the file that it comes from. If
''filename'' is not given, the current file name is unchanged.

Ends a section of lines begun by a test directive (#if, #ifdef,
or #ifndef). Each test directive must have a matching
#endif.

#ifdef name Defines text that will appear in the output if name has been
the subject of a previous #define without being the subject
of an intervening #Undef.

#ifndef name Defines text that will not appear in the output if name has
been the subject of a previous #define without being the
subject of an intervening #Undef.

#if constant-expression Defines text that will appear in the output if constant­
expression is not zero. All binary non-assignment C
operators, which include the ?: , en dash (-), exclamation
mark (!), and tilde (....) are legal in constant-expression. The
precedence of the operators is the same as defined by the C
language. There is also a unary operator defined, which can
be used in constant-expression in these two forms: defined

Commands 1-109

Rise

Rise cpp(1)

#else

(name) or defined name. This allows the utility of #ifdef
and #ifndef in a #if directive. Only these operators, integer
constants, and names which are known by cpp should be
used in constant-expression. In particular, the sizeof
operator is not available.

Reverses the notion of the test directive which matches this
directive. So if lines prior to this directive are ignored, the
following lines will appear in the output. The reverse is also
true.

#eIif constant-expression
Defines text that will appear in the output if the preceding
test directive and all intervening #elif directives equalled
zero and the constant-expression did not equal zero. The
rules for constant-expression are the same as for the #if
directive.

The test directives and the possible #else and #eIif directives can be nested.

In addition to these directives, the System V #ident directive is recognized and
ignored.

Two special names are understood by cpp: __ LINE __ is defined as the current line
number (as a decimal integer) and __ FILE __ is defined as the current file name (as a
C string). They can be used in any situations where you would use other defined
names, including in macros.

Diagnostics

Files

The error messages produced by cpp are self-explanatory. The line number and
filename where the error occurred are printed along with the diagnostic.

/usr/include standard directory for #include files

See Also
cc(1), m4(1)

1-110 Commands

cpp(1)

Name
cpp - the C language preprocessor

Syntax
/lib/cpp [option ...] [ifile [ofile]]

Description
The cpp command is the C language preprocessor which is invoked as the first pass
of any C compilation using the cc(1) command. Thus, the output of cpp is
designed to be in a form acceptable as input to the next pass of the C compiler.

The preferred way to invoke cpp, however, is through the cc(l) command. See
rn4(1) for a general macro processor.

Arguments
The cpp command optionally accepts two file names as arguments. The ifile and
ofile are, respectively, the input and output for the preprocessor. They default to
standard input and standard output if no argument is supplied.

Options

-B

-c

-M

-p

-R
-Uname

-Dname
-Dname=def

-Idir

Strips c++-style comments (begin with / / and end with
newline).

Passes along all comments, except those found on cpp
directive lines. By default, cpp strips C-style comments.

Generates dependency lists suitable for use with rnake(l)
instead of the normal output.

Preprocesses the input without producing the line control
information used by the next pass of the C compiler.

Permits recursion when a macro is expanded.

Removes any initial definition of name, where name is a
reserved symbol that is predefined by the preprocessor. The
symbols predefined by this implementation are bsd4_2,
ultrix, unix, and vax.

Defines name as if by a #define directive. If no =def is
given, name is defined as 1. The -D option has lower
precedence than the -U option. That is, if the same name is
used in both a -U option and a -D option, the name remains
undefined regardless of the order of the options.

Changes the algorithm for searching for #include files whose
names do not begin with a backs lash (/) to look in dir
before looking in the directories on the standard list. Thus,
#include files whose names are enclosed in quotes (" ")
will be searched for first in the directory of the file with the
#include line, then in directories named in -I options, and,

Commands 1-111

VAX

VAX cpp(1)

finally, in directories on a standard list. For #include files
whose names are enclosed in braces «», the directory of
the file with the #include line is not searched.

Directives

All cpp directives start with lines that begin with a pound sign (#). Any number of
blanks and tabs are allowed between the pound signs and the directive. The
following is a list of the directives:

#define name(arg, ••• ,arg) token~string

#Undefname

#include ''filename''
#include <.filename>

Replaces subsequent instances of name and the following set
of tokens that is enclosed in parentheses by token-string.
Each occurrence of an arg in the token-string is replaced by
the corresponding set of tokens in the comma-separated list.
Note that spaces between name and the left parenthesis (0
are not allowed. When a macro with arguments is expanded,
the arguments are placed unchanged into the expanded
token-string . After the entire token-string has been
expanded, cpp re-starts its scan for names to expand at the
beginning of the newly created token-string.

Causes the definition of name (if any) to be forgotten.

Includes the contents of filename , which will then be run
through cpp. When the <filename> notation is used,
filename is searched for in the standard places. See the -I
option above for more detail.

#Iine integer-constant ''filename''

#endif

Causes cpp to generate line control information for the next
pass of the C compiler. Integer-constant is the line number
of the next line and filename is the file that it comes from. If
''filename'' is not given, the current file name is unchanged.

Ends a section of lines begun by a test directive (#if, #ifdef,
or #ifndef). Each test directive must have a matching
#endif.

#ifdef name Defines text that will appear in the output if name has been
the subject of a previous #define without being the subject
of an intervening #Undef.

#ifndef name Defines text that will not appear in the output if name has
been the subject of a previous #define without being the
subject of an intervening #Undef.

#if constant-expression Defines text that will appear in the output if constant­
expression is not zero. All binary non-assignment C
operators, which include the?: , minus sign (-), exclamation
mark (!), and tilde (.....) are legal in constant-expression. The
precedence of the operators is the same as defined by the C
language. There is also a unary operator defined, which can
be used in constant-expression in these two forms: defined

1-112 Commands

#else

cpp(1)

(name) or defined name. This allows the utility of #ifdef
and #ifndef in a #if directive. Only these operators, integer
constants, and names which are known by cpp should be
used in constant-expression. In particular, the sizeof
operator is not available.

Reverses the notion of the test directive which matches this
directive. So if lines prior to this directive are ignored, the
following lines will appear in the output. The reverse is also
true.

#eUf constant-expression
Defines text that will appear in the output if the preceding
test directive and all intervening #eUf directives equalled
zero and the constant-expression did not equal zero. The
rules for constant-expression are the same as for the #if
directive.

The test directives and the possible #else and #eUf directives can be nested.

In addition to these directives, the System V #ident directive is recognized and
ignored.

Two special names are understood by cpp: __ LINE __ is defined as the current line
number (as a decimal integer) and __ FILE __ is defined as the current file name (as a
C string). They can be used in any situations where you would use other defined
names, including in macros.

Diagnostics

Files

The error messages produced by cpp are self-explanatory. The line number and
filename where the error occurred are printed along with the diagnostic.

/usr/include standard directory for #include files

See Also

cc(1), m4(1).

Commands 1-113

VAX

cpustat(1)

Name
cpustat - report CPU statistics

Syntax
cpustat [-cfbs] [interval] [count]

Description
The cpustat command displays statistics about each CPU in the system. A full
screen interface is provided, and the display is updated at intervals specified by the
user. If interval is specified, then successive updates are summaries over the last
interval seconds. If count is specified, the statistics and/or the state are repeated
count times.

The display format fields are:

Statistics: Information about how each CPU's time is being utilized

us% Percent of time spent in user mode

ni% Percent of time spent in nice mode

sy% Percent of time spent in system mode

id% Percent of time spent idle by the CPU

csw Number of context switches

sys Number of system calls

trap Number of traps

intr Number of device interrupts

ipi Number of inter processor interrupts

ttyin Number of characters input through tty

ttyout Number of character output through tty

State : Information about different states of each CPU

cpuid Unique identifier of the CPU

1-114 Commands

state CPU state:
B - boot CPU
D - disable soft errors
S - stopped
R - running
T - TB needs invalidation
P - panicked

ipi-mask interprocessor interupt mask:
P - panic
R - console print
S - schedule
D - disable
T - TB invalidation
H - stop CPU

cpustat{1)

proc Indicates if the CPU has an associated process (YIN)

pid Process id of the running process

If any statistic field value exceeds 9999, it is shown in a scaled representation
with the suffix k, which indicates multiplication by 1000, or with the suffix m,
which indicates multiplication by 1000000. For example, the value 12345
would appear as 12k.

Options

-c Displays state information about each CPU.

-f Displays statistics and state information on a full screen. If the -f option is
used, the following commands can be entered from the screen:

c Display only state information about each CPU

d Go to the default mode of display

h Display the help screen. Typing any character while on the help
screen will display the original screen.

s Display only statistics

-s Displays statistics about each CPU in the system.

-b Provides help information about the usage of cpu stat.

If none of the options are specified, cpu s tat will report a summary of the statistics
since the system has been booted and the state of each CPU.

Examples

Files

To print the system status every five seconds ten times, type the following:

% cpustat 5 10

/dev/kmem
/vmunix

See Also
iostat(1), vmstat(1)

Commands 1-115

crypt (1)

Name
crypt - encode/decode (available only if the Encryption layered product is installed)

Syntax
crypt key < input.File > output.File

Description
This reference page describes software that is available only if the Encryption layered
product is installed.

The crypt command reads from the standard input and writes on the standard
output. You must supply a key which selects a particular transformation. If no
password is given, crypt demands a key from the terminal and turns off printing
while the key is being typed in. The crypt command encrypts and decrypts with
the same key.

Files encrypted by crypt are compatible with those treated by the ed, ex and vi
editors in encryption mode.

The security of encrypted files depends on three factors: the fundamental method
must be hard to solve, direct search of the key space must be infeasible, and sneak
paths by which keys or clear text can become visible must be minimized.

The crypt command implements a one-rotor machine designed along the lines of
the German Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work required is likely
to be large.

The transformation of a key into the internal settings of the machine is deliberately
designed to be expensive, for example, to take a substantial fraction of a second to
compute. However, if keys are restricted to three lowercase letters, then encrypted
files can be read by expending only a substantial fraction of five minutes of machine
time.

Since the key you choose is an argument to the crypt command, it is potentially
visible to users executing ps(l) or a derivative. To minimize this possibility, crypt
destroys any record of the key immediately upon entry. The most vulnerable aspect
of crypt is the choice of keys and key security.

Examples
The following examples use KEY as the key to encrypt and decrypt files. The first
example encrypts the file plain. File, naming the resulting encrypted file
crypt .File. The second example decrypts the file crypt .File, naming the
resulting decrypted file decrypt. File. The third example prints the encrypted
file in clear text.

crypt KEY < plain.File > crypt.File

crypt KEY < crypt.File > decrypt.File

crypt KEY < crypt.File pr

1-116 Commands

Files

/ dev / tty for typed key

See Also
ed(t), ex(t), viet), xsend(l), crypt(3), makekey(8)

crypt (1)

Commands 1-117

csh(1)

Name
csh - C shell Command Interpreter

Syntax
csh [-cefinstvVxX] [arg ...]

Description
The c s h command is a command language interpreter that consists of a history
mechanism, job control facilities, and a C-like syntax. While this command has a set
of built-in functions that it performs directly, the command line interpreter also reads
and translates commands that invokes other programs. Additionally, you can create
shell scripts which the c s h command can interpret. Shell scripts are files which
contain executable instructions.

The percent sign (%) represents the system prompt. It indicates that you can begin
entering commands to the system. Each command line that you type is read and
broken into words. This sequence of words is placed on a command history list and
then parsed. When the entire command line has executed, the percent sign reappears
and you can enter another command. See the History Substitution and Jobs sections
for more information.

To use the c s h commands full job control facilities, you must invoke the tty driver
described in tty(4). This driver allows generation of interrupt characters from the
keyboard which stop execution of a job. For details on setting options in the tty
driver, see st ty(1).

Note that your environment setup is controlled by commands in the home directory
of your .cshrc file. The csh ccommand executes these commands when you enter
the system. Additionally, if this is a login shell, the Shell also executes the
commands in your .login file. These files usually contain your options for the tty
driver and tset(1), (terminal settings). When a login shell session ends, commands
are executed from the .logout file in your home directory.

Lexical Structure
The shell splits input lines into words at blanks and tabs with the following
exceptions:

• ampersand (&)

• bar (I)

• semicolon (;)

• Left «) and right (» angle brackets

• Left (0 and right 0) parenthesis

The previous metacharacters form separate words. If doubled as follows, these
metacharacters form single words:

• Doubled ampersand.(&&)

• Double bars (II)

• Double left «<) and right (») brackets

1-118 Commands

csh(1)

• Backslash (\)

• Single (' ') and double (" ") quotation marks.

Metacharacters can be a part of other words. Additionally, if you do not want a
metacharacter to be interpreted as such by the system, you can precede it with a
backslash (\). A new line that is preceded by a is equivalent to a blank.

Strings enclosed in single quotes (' ') or strings enclosed in double quotes (" ") form
parts of a word. Metacharacters in these strings, including blanks and tabs, do not
form separate words. This is described in more detail later. Within single quotes or
double quotes, a new line preceded by a backslash (\) gives a true new line character.

When the shell's input is not a terminal, the pound sign (#) introduces a comment
which continues to the end of the input line. It is prevented this special meaning
when preceded by a backslash (\) and single or double quotation marks.

Commands

Jobs

A command is a word or sequence of words that directs the system to perform a
certain function. You can separate commands with a bar (I) which forms a pipeline.
The output that results from each command in the pipeline is connected to the input
of the next. For example, in the following pipeline, a file is copied and the output is
piped to standard output (the screen):

% cp /example/dir/test . I more

You can form and execute several pipelines by separating each pipeline with a
semicolon (;). You can also force a command to complete execution in the
background by typing an ampersand (&) at the end of the command line.

You can form a simple command (which may be a component of a pipeline and so
on) by placing any of the above in parenthesis (0). As in the C language, you can
also separate pipelines with a double bar (II) or double ampersands (&&). The double
bar tells the command interpreter to execute the second command only if the first
command fails. The double ampersands tells the command interpreter to execute the
second command if the first command is successful.

The Shell associates each command or pipeline with a job index. By typing jobs at
the system prompt, a table of the current jobs is printed on your screen. Each job
listed has a small integer number associated with it. For example, if you force a job
into the background using an ampersand (&), the shell displays the job number and
process id of that job as follows:

[1] 1234

In the previous example, the job number is 1 indicating that this is a background job
and the process id is 1234.

If you are running a job in the foreground, you can suspend execution of that job by
typing a CTRL/Z. The Shell then indicates that the job has been stopped and the
system prompt reappears. If you type jobs at the prompt, the display indicates that a
job has been stopped. You can either enter another command at the prompt or you
can manipulate the state of the job you suspended as follows:

• Place the job in background by using the bg command.

Commands 1-119

csh(1)

• Continue to execute the job by placing it in the foreground using the fg
command.

A CTRLjZ takes effect immediately and is like an interrupt. For example, pending
output and unread output are discarded when the CTRLjZ is issued. You can also
type a CTRL/y which does not generate a stop signal· until a program attempts to
perform a read(2) operation.

If a job that is being run in the background attempts to read from the terminal, it will
stop. Background jobs can produce output. You can prevent background jobs from
producing output by issuing the following command:

stty tostop

There are several ways to refer to jobs in the shell. For example, to bring job
number 1 into the foreground, type %1 or fg %1. Similarly, %1 & returns job 1 to
the background. If a job does not have an ambiguous prefix, you can restart a job by
it's prefix. For example, %ex would restart a suspended ex job, if it is the only
suspended ex job. You use also use %?string which specifies a job whose command
line contains string. Again, string cannot be an ambiguous name.

The Shell tracks the current and previous jobs. For example, in output displays of
jobs, the current job is marked with a plus sign (+) and the previous job is marked
with a minus sign (-). Hence, you can type %+ for the current job and %- for the
previous job. You can also specify %% which specifies the current job.

Status Reporti ng
The Shell performs status reporting when the process state changes. For example, if
a job becomes blocked and further processing is not possible, the Shell informs you
just before it prints a prompt. If, however, you set the Shell variable notify, the Shell
provides you with immediate status of background jobs. As opposed to notifying
you of all changes in background jobs, the Shell command notify can mark a single
process so that only its status change is reported. To mark a single file, type notify
after starting a background job. By default, only the current process is marked.

If you try to exit from the Shell while jobs are stopped, the following warning
appears:

You have stopped jobs.

You can use the jobs command to view the stopped jobs. If you immediately try to
exit again, the Shell does not provide a second warning and suspended jobs are
terminated.

Su bstituti ons
The various transformations the shell performs on the input is now described in the
order in which they occur.

History Substitutions
Histqry substitutions allow you to use words from previously typed commands as
portions of new commands. This enables you to repeat commands, arguments, or fix
spelling mistakes from the previous command.

1-120 Commands

csh(1)

An exclamation point (!) marks the beginning of a history substitution. It can appear
anywhere in the input stream (including the beginning) as long as it is not nested.
An input line that contains history substitution is echoed to the screen before it is
executed.

The exclamation point (!) may be preceded by a backslash (\) if you want to escape
its special meaning. If an exclamation point is followed by a blank, tab, new line,
equal sign (=), or left parenthesis (0, it is passed unchanged.

Any command line that is typed at the terminal is saved on the history list. You can
increase or decrease the size of your history list using the history variable; the
previous command is always retained regardless of its value. Commands are
numbered sequentially from 1. To display the history on your terminal, type history
at the prompt as follows:

% history

This command lists the commands that were previously typed. For example:

1 write michael
2 ex write.c
3 cat oldwrite.c
4 diff*write.c

The commands are shown with their event numbers. Although it is not usually
necessary to use event numbers, you can reinvoke any command by combining the
exclamation point (!) with any event number. For example, if you are referencing the
previous history list, !4 reinvokes the command line diff*write.c. You can also
reinvoke a command without the event number as long as it is not ambiguous. For
example, !c invokes event 3 or !wri invokes event 1. The line !?mic? also refers to
event 1. If you type!!, the last command entered in reinvoked.

To select words from an event, follow the event specification with a colon (:) and a
designator for the desired words. The words of aPlinput line are numbered from 0, the
first (usually command) word being 0, the second word (first argument) being 1, and
so forth. The basic word designators are:

° first (command) word
n n 'th argument
! first argument, that is '1'
$ last argument
% word matched by (immediately preceding)?s? search
x -y range of words
-y abbreviates 'O-y'
* abbreviates '! -$', or nothing if only 1 word in event
x * abbreviates 'x-$'
x- like 'x *' but omitting word '$'

The colon (:) separating the event specification from the word designator can be
omitted if the argument selector begins with a '!', '$', '*' '-' or '%'. After the
optional word designator can be placed a sequence of modifiers, each preceded by a
colon (:). The following modifiers are defined:

h
r
e
sll Ir I

Remove a trailing pathname component, leaving the head.
Remove a trailing' .xxx' component, leaving the root name.
Remove all but the extension '.xxx' part.
Substitute I for r

Commands 1-121

csh(1)

t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change globally, prefixing the above, for example, 'g&'.
P Print the new command but do not execute it.
q Quote the substituted words, preventing further substitutions.
x Like q, but break into words at blanks, tabs and new lines.

Unless preceded by a 'g' the modification is applied only to the first modifiable word.
With substitutions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the
editors, but rather strings. Any character may be used as the delimiter in place of '/';
a '\' quotes the delimiter into the 1 and r strings. The character '&' in the right hand
side is replaced by the text from the left. A '\' quotes '&' also. A null 1 uses the
previous string either from a 1 or from a contextual scan string sin'!? s ?'. The
trailing delimiter in the substitution may be omitted if a new line follows
immediately as may the trailing '?' in a contextual scan.

A special abbreviation of a history reference occurs when the first non-blank
character of an input line is a circumflex (A). This is equivalent to '!! :s/' providing a
convenient shorthand for substitutions on the text of the previous line. Thus
'I\lbl\lib'" fixes the spelling of Ib in the previous command. Finally, a history
substitution may be surrounded with '{' and '}' if necessary to insulate it from the
characters which follow. Thus, after 'Is -ld -paul' we might do '! {l}a' to do 'Is -Id
-paula', while '!la' would look for a command starting 'Ia'.

Quotations with ' and "

The quotation of strings by'" and '"' can be used to prevent all or some of the
remaining substitutions. Strings enclosed in ", are prevented any further
interpretation. Strings enclosed in "" may be expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one
special case (see Command Substitution below) does a '"' quoted string yield parts of
more than one word; ", quoted strings never do.

Alias Substitution
The shell maintains a list of aliases that can be established, displayed, and modified
by the alias and una lias commands.

After the shell scans a command line, it parses the line into distinct commands. Then,
the shell checks the first word of each command, in left-to-right order, to determine if
the command line contains an alias. When the shell finds an alias, it substitutes the
definition of the alias for the alias in the command line. The shell reads the definition
of the alias using the history mechanism and treats the definition as if it was the
previous input line. If the alias definition makes no reference to the history list, the
shell leaves the command's argument unchanged.

For example, the following command creates an alias called "Is:"

% alias Is 'Is -1'

After you issue this alias command, you receive information about files such as their
mode, number of links, owner, and so on when you use the Is alias. For example, the
following shows the output from the Is alias created in the preceeding example:

% Is /usr/smith/text_file
-rw-r--r-- 1 smith

1-122 Commands

21 Mar 12 11:53 text_file

csh(1)

You can also create aliases that allow you to supply arguments on the command line
and arguments in the alias definition, as shown in the following example:

% alias lookup 'grep \!A /etc/passwd'

You must specify ''\'' before the ! to prevent the substitution from occurring in the
alias command. The following shows the output from the lookup alias:

% lookup smith
smith:2vruqPosbG/bE:1321:10::/usr/smith:/bin/csh

The lookup alias finds and displays user Smith's entry in the / etc/passwd file.

You can specify an alias within an alias definition. After the shell finds an alias and
substitutes its definition, it searches again for aliases. The shell flags definitions that
begin with the same word as the alias to prevent infinite loops. Other loops are
detected and cause an error.

You can use parser metasyntax in an alias command. For example, the following is a
valid command that creates the print alias:

% alias print ' pr \! * I lpr'

The print alias pipes output from the pr command to the Ipr command.

Variable Substitution
The shell maintains a set of variables, each of which has as value a list of zero or
more words. Some of these variables are set by the shell or referred to by it. For
instance, the argv variable is an image of the shell's argument list, and words of this
variable's value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset
commands. Of the variables referred to by the shell a number are toggles; the shell
does not care what their value is, only whether they are set or not. For instance, the
verbose variable is a toggle which causes command input to be echoed. The setting
of this variable results from the -v command line option.

Other operations treat variables numerically. The '@' command permits numeric
calculations to be performed and the result assigned to a variable. Variable values
are, however, always represented as (zero or more) strings. For the purposes of
numeric operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed,
variable substitution is performed keyed by '$' characters. This expansion can be
prevented by preceding the '$' with a '\' except within '''' s where it always occurs,
and within '''''s where it never occurs. Strings quoted by'" are interpreted later (see
Command substitution below) so '$' substitution does not occur there until later, if at
all. A '$' is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable
expanded separately. Otherwise, the command name and entire argument list are
expanded together. It is thus possible for the first (command) word to this point to
generate more than one word, the first of which becomes the command name, and the
rest of which become arguments.

Commands 1-123

csh(1)

Unless enclosed in "" or given the ':q' modifier the results of variable substitution
may eventually be command and file name substituted. Within '''' a variable whose
value consists of multiple words expands to a (portion of) a single word, with the
words of the variables value separated by blanks. When the ':q' modifier is applied
to a substitution the variable will expand to multiple words with each word separated
by a blank and quoted to prevent later command or file name substitution.

The following metasequences are provided for introducing variable values into the
shell input. Except as noted, it is an error to reference a variable which is not set.

$name
${name}

Are replaced by the words of the value of variable name, each separated by a
blank. Braces insulate name from following characters which would otherwise
be part of it. Shell variables have names consisting of up to 20 letters and
digits starting with a letter. The underscore character is considered a letter.
If name is not a shell variable, but is set in the environment, then that value is
returned (but: modifiers and the other forms given below are not available in
this case).

$name[selector]
$ { name[selector] }

May be used to select only some of the words from the value of name. The
selector is subjected to '$' substitution and may consist of a single number or
two numbers separated by a '-'. The first word of a variables value is
numbered '1'. If the first number of a range is omitted it defaults to '1'. If the
last member of a range is omitted it defaults to '$#name'. The selector '*'
selects all words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name
$ {#name}

$0

Oi ves the number of words in the variable. This is useful for later use in a
, [selector]' .

Substitutes the name of the file from which command input is being read. An
error occurs if the name is not known.

$number
$ {number}

Equivalent to '$argv[number]'.

Equivalent to '$argv[*]'.

The modifiers ':h', ':t', ':r', ':q' and ':x' may be applied to the substitutions above as
may ':gh', ':gt' and ':gr'. If braces' {' '}' appear in the command form then the
modifiers must appear within the braces.

NOTE

The current implementation allows only one colon (:) modifier on each
'$' expansion."

The following substitutions may not be modified with colon (:) modifiers.

1-124 Commands

csh(1)

$?name
$ {?name }

Substitutes the string' l' if name is set, '0' if it is not.

$?O
Substitutes' l' if the current input file name is known, '0' if it is not.

$$
Substitute the (decimal) process number of the (parent) shell.

$<
Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a shell script.

Command And File Name Substitution
The remaining substitutions, command and file name substitution, are applied
selectively to the arguments of built-in commands. This means that portions of
expressions which are not evaluated are not subjected to these expansions. For
commands which are not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after input-output
redirection is performed, and in a child of the main shell.

Command Substitution
Command substitution is indicated by a command enclosed in "'. The output from
such a command is normally broken into separate words at blanks, tabs and new
lines, with null words being discarded, this text then replacing the original string.
Within ''''s, only new lines force new words; blanks and tabs are preserved.

In any case, the single final new line does not force a new word. Note that it is thus
possible for a command substitution to yield only part of a word, even if the
command outputs a complete line.

File Name Substitution
If a word contains any of the characters '*', '?', '[' or '{' or begins with the character
, -', then that word is a candidate for file name substitution, also known as
'globbing'. This word is then regarded as a pattern, and replaced with an
alphabetically sorted list of file names which match the pattern. In a list of words
specifying file name substitution it is an error for no pattern to match an existing file
name, but it is not required for each pattern to match. Only the metacharacters '*',
'?' and '[' imply pattern matching, the characters '-' and' {' being more akin to
abbreviations.

In matching file names, the character'.' at the beginning of a file name or
immediately following a '/" as well as the character '/' must be matched explicitly.
The character' *' matches any string of characters, including the null string. The
character'?' matches any single character. The sequence '[...]' matches anyone of
the characters enclosed. Within '[...]', a pair of characters separated by '-' matches
any character lexically between the two.

The character '-' at the beginning of a file name is used to refer to home directories.
Standing alone, that is '-', it expands to the invokers home directory as reflected in
the value of the variable home. When followed by a name consisting of letters, digits
and '-' characters the shell searches for a user with that name and substitutes their
home directory; thus' -ken' might expand to '/usr/ken' and '-ken/chmach' to

Commands 1-125

csh(1)

'/usr/ken/chmach'. If the character , ' is followed by a character other than a letter
or '/' or appears not at the beginning of a word, it is left undisturbed.

The metanotation 'a{b,c,d}e' is a shorthand for 'abe ace ade'. Left to right order is
preserved, with results of matches being sorted separately at a low level to preserve
this order. This construct may be nested. Thus' -source/s 1/ { oldls,ls }.c' expands to
'/usr/source/s1/oldls.c /usr/source/sl/ls.c' whether or not these files exist without any
chance of error if the home directory for 'source' is '/usr/source'. Similarly
'.'/{memo,*box}' might expand to ' . ./memo .. /box . ./mbox'. (Note that 'memo' was
not sorted with the results of matching '* box' .) As a special case '{', '}' and '{ } ,
are passed undisturbed.

Input/output
The standard input and standard output of a command may be redirected with the
following syntax:

< name
Open file name (which is first variable, command and file name expanded) as
the standard input.

« word
Read the shell input up to a line which is identical to word. Word is not
subjected to variable, file name or command substitution, and each input line is
compared to word before any substitutions are done on this input line. Unless
a quoting '\', "", ", or '" appears in word variable and command substitution
is performed on the intervening lines, allowing '\' to quote '$', '\' and "'.
Commands which are substituted have all blanks, tabs, and new lines
preserved, except for the final new line which is dropped. The resultant text is
placed in an anonymous temporary file which is given to the command as
standard input.

> name
>! name
>& name
>&! name

The file name is used as standard output. If the file does not exist then it is
created; if the file exists, it is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character
special file (for example, a terminal or '/dev/null') or an error results. This
helps prevent accidental destruction of files. In this case the '!' forms can be
used and suppress this check.

The forms involving '&' route the diagnostic output into the specified file as
well as the standard output. Name is expanded in the same way as '<' input
file names are.

» name
»& name
»! name
»&! name

1-126 Commands

Uses file name as standard output like '>' but places output at the end of the
file. If the variable noclobber is set, then it is an error for the file not to exist
unless one of the'!' forms is given. Otherwise similar to '>'.

csh(1)

A command receives the environment in which the shell was invoked as modified by
the input-output parameters and the presence of the command in a pipeline. Thus,
unlike some previous shells, commands run from a file of shell commands have no
access to the text of the commands by default; rather they receive the original
standard input of the shell. The '«' mechanism should be used to present inline
data. This permits shell command scripts to function as components of pipelines and
allows the shell to block read its input. Note that the default standard input for a
command run detached is not modified to be the empty file '/dev/null'; rather the
standard input remains as the original standard input of the shell. If this is a terminal
and if the process attempts to read from the terminal, then the process will block and
the user will be notified (see Jobs above.)

Diagnostic output may be directed through a pipe with the standard output. Simply
use the form '\ &' rather than just '\'.

Expressions
A number of the built-in commands (to be described subsequently) take expressions,
in which the operators are similar to those of C, with the same precedence. These
expressions appear in the @, exit, if, and while commands. The following operators
are available:

\ \ && \ ! & == != =- !- <= >= < > « » + - * / % ! - ()

Here the precedence increases to the right, '==' '!=' '=-' and '!-', '<=' '>=' '<' and
'>', '«' and '»', '+' and '-', '*' '/' and '%' being, in groups, at the same level.
The '==' '!=' '=-' and '!-' operators compare their arguments as strings; all others
operate on numbers. The operators '=-' and '!-' are like '!=' and '==' except that
the right hand side is a pattern (containing, for example, '*'s, '?'s and instances of
'[...]') against which the left hand operand is matched. This reduces the need for use
of the switch statement in shell scripts when all that is really needed is pattern
matching.

Strings which begin with '0' are considered octal numbers. Null or missing
arguments are considered '0'. The result of all expressions are strings, which
represent decimal numbers. It is important to note that no two components of an
expression can appear in the same word; except when adjacent to components of
expressions which are syntactically significant to the parser ('&' 'I' '<' '>' '(' ')')
they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed
in '{' and '}' and file enquiries of the form '-I name' where 1 is one of:

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified name is command and file name expanded and then tested to see if it
has the specified relationship to the real user. If the file does not exist or is
inaccessible then all enquiries return false, that is '0'. Command executions succeed,
returning true, that is '1', if the command exits with status 0, otherwise they fail,

Commands 1-127

csh(1)

returning false, that is '0'. If more detailed status infonnation is required then the
command should be executed outside of an expression and the variable status
examined.

Control Flow
The shell contains a number of commands which can be used to regulate the flow of
control in command files (shell scripts) and (in limited but useful ways) from
tenninal input. These commands all operate by forcing the shell to reread or skip in
its input and, due to the implementation, restrict the placement of some of the
commands.

The foreach, switch, and while statements, as well as the if-then-else fonn of the if
statement require that the major keywords appear in a single simple command on an
input line as shown below.

If the shell's input is not seekable, the shell buffers up input whenever a loop is being
read and perfonns seeks in this internal buffer to accomplish the rereading implied by
the loop. (To the extent that this allows, backward goto's will succeed on non­
seekable inputs.)

Built-in Commands
Built-in commands are executed within the shell. If a built-in command occurs as
any component of a pipeline except the last then it is executed in a subshell.

alias
alias name
alias name wordlist

alloc

bg

The first fonn prints all aliases. The second fonn prints the alias for name.
The final fonn assigns the specified wordlist as the alias of name; wordlist is
command and file name substituted. Name is not allowed to be alias or
unalias.

Shows the amount of dynamic core in use, broken down into used and free
core, and address of the last location in the heap. With an argument shows
each used and free block on the internal dynamic memory chain indicating its
address, size, and whether it is used or free. This is a debugging command and
may not work in production versions of the shell; it requires a modified version
of the system memory allocator.

bg %job ...
Puts the current or specified jobs into the background, continuing them if they
were stopped.

break
Causes execution to resume after the end of the nearest enclosing foreach or
while. The remaining commands on the current line are executed. Multi-level
breaks are thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

1-128 Commands

csh(1)

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shell's working directory to directory name. If no argument is
given then change to the home directory of the user.
If name is not found as a subdirectory of the current directory (and does not
begin with '/" './' or '.'/'), then each component of the variable cdpath is
checked to see if it has a subdirectory name. Finally, if all else fails but name
is a shell variable whose value begins with '/" then this is tried to see if it is a
directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the
commands on the current line are executed.

default:

dirs

Labels the default case in a switch statement. The default should come after all
case labels.

Prints the directory stack; the top of the stack is at the left, the first directory in
the stack being the current directory.

echo wordlist
echo -n wordlist

The specified words are written to the shell's standard output, separated by
spaces, and terminated with a new line unless the -n option is specified.

else
end
endif
endsw

See the description of the foreach, if, switch, and while statements below.

eval arg ...
As in she 1). The arguments are read as input to the shell and the resulting
command(s) executed in the context of the current shell. This is usually used
to execute commands generated as the result of command or variable
substitution, since parsing occurs before these substitutions. See test(l) for
an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

fg

The shell exits either with the value of the status variable (first form) or with
the value of the specified expr (second form).

" fg%job ...
Brings the current or specified jobs into the foreground, continuing them if they
were stopped.

Commands 1-129

csh(1)

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the
sequence of commands between this command and the matching end are
executed. (Bothforeach and end must appear alone on separate lines.)

The built-in command continue may be used to continue the loop prematurely
and the built-in command break to terminate it prematurely. When this
command is read from the terminal, the loop is read up once prompting with
'?' before any statements in the loop are executed. If you make a mistake
typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no '\' escapes are recognized and words are delimited by null
characters in the output. Useful for programs which wish to use the shell to
file name expand a list of words.

goto word
The specified word is file name and command expanded to yield a string of the
form 'label'. The shell rewinds its input as much as possible and searches for
a line of the form 'label:' possibly preceded by blanks or tabs. Execution
continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at
locating commands (and avoiding exec's). An exec is attempted for each
component of the path where the hash function indicates a possible hit, and in
each component which does not begin with a '/'.

history
history n
history -r n
history -h n

Displays the history event list; if n is given only the n most recent events are
printed. The -r option reverses the order of printout to be most recent first
rather than oldest first. The -h option causes the history list to be printed
without leading numbers. This is used to produce files suitable for sourcing
using the -h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with
arguments is executed. Variable substitution on command happens early, at the
same time it does for the rest of the if command. Command must be a simple
command, not a pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, when command is not
executed (this is a bug).

if (expr) then

else if (expr2) then

else

1-130 Commands

endif

csh(1)

If the specified expr is true then the commands to the first else are executed;
else if expr2 is true then the commands to the second else are executed, etc.
Any number of else-if pairs are possible; only one endif is needed. The else
part is likewise optional. (The words else and endifmust appear at the
beginning of input lines; the if must appear alone on its input line or after an
else.)

jobs
jobs -I

Lists the active jobs; given the -I options lists process id's in addition to the
normal information.

kill %job
. kill-sig %job ...

kill pid
kill -sig pid ...
kill-I

limit

Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by names
(as given in lusrlincludelsignal.h, stripped of the prefix "SIG"). The signal
names are listed by "kill-I". There is no default, saying just 'kill' does not
send a signal to the current job. If the signal being sent is TERM (terminate)
or HUP (hangup), then the job or process will be sent a CONT (continue)
signal as well.

limit resource
limit resource maximum-use

Limits the consumption by the current process and each process it creates to
not individually exceed maximum-use on the specified resource. If no
maximum-use is given, then the current limit is printed; if no resource is given,
then all limitations are given.

The following resources can be controlled:

• cputime (maximum number of cpu-seconds to be used by each process)

• filesize (largest single file which can be created)

• datasize (the maximum growth of the data+stack region by sbrk(2) beyond
the end of the program text)

• stacksize (the maximum size of the automatically-extended stack region)

• coredumpsize (the size of the largest core dump that can be created).

• memoryuse (the maximum amount of main memory a process is allowed to
occupy)

The maximum-use may be given as a (floating point or integer) number
followed by a scale factor. For all limits other than cputime the default scale is
'k' or 'kilobytes' (1024 bytes); a scale factor of 'm' or 'megabytes' may also
be used. For cputime the default scaling is 'seconds', while 'm' for minutes or
'h' for hours, or a time of the form 'mm:ss' giving minutes and seconds may
be used.

For both resource names and scale factors, unambiguous prefixes of the names
suffice.

Commands 1-131

csh(1)

login
Terminate a login shell, replacing it with an instance of Ibin/login. This is one
way to log off, included for compatibility with sh(l).

logout
Terminate a login shell. Especially useful if ignoreeof is set.

nice
nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second form sets the nice to
the given number. The final two forms run command at priority 4 and number
respectively. The super-user may specify negative niceness by using 'nice
-number ... '. Command is always executed in a sub-shell, and the restrictions
place on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be ignored for
the remainder of the script. The second form causes the specified command to
be run with hangups ignored. All processes detached with '&' are effectively
nohup'ed.

notify
notify % job ...

Causes the shell to notify the user asynchronously when the status of the
current or specified jobs changes; normally notification is presented before a
prompt. This is automatic if the shell variable notify is set.

onintr
onintr -
onintr label

Control the action of the shell on interrupts. The first form restores the default
action of the shell on interrupts which is to terminate shell scripts or to return
to the terminal command input level. The second form 'onintr -' causes all
interrupts to be ignored. The final form causes the shell to execute a 'goto
label' when an interrupt is received or a child process terminates because it was
interrupted.

In any case, if the shell is running detached and interrupts are being ignored,
all forms of onintr have no meaning and interrupts continue to be ignored by
the shell and all invoked commands.

popd
popd +n

Pops the directory stack, returning to the new top directory. With a argument
'+n' discards the n th entry in the stack. The elements of the directory stack
are numbered from 0 starting at the top.

pushd
pushd name
pushd +n

With no arguments, pushd exchanges the top two elements of the directory
stack. Given a name argument, pushd changes to the new directory (using

1-132 Commands

csh(1)

cd) and pushes the old current working directory (as in csw) onto the
directory stack. With a numeric argument, rotates the nth argument of the
directory stack around to be the top element and changes to it. The members
of the directory stack are numbered from the top starting at O.

rehash
Causes the internal hash table of the contents of the directories in the path
variable to be recomputed. This is needed if new commands are added to
directories in the path while you are logged in. This should only be necessary
if you add commands to one of your own directories, or if a systems
programmer changes the contents of one of the system directories.

repeat count command

set

The specified command which is subject to the same restrictions as the
command in the one line if statement above, is executed count times. I/O
redirections occur exactly once, even if count is O.

set name
set name=word
set name[index]=word
set name=(wordlist)

The first form of the command shows the value of all shell variables.
Variables which have other than a single word as value print as a parenthesized
word list. The second form sets name to the null string. The third form sets
name to the single word. The fourth form sets the index'th component of name
to word; this component must already exist. The final form sets name to the
list of words in wordlist. In all cases the value is command and file name
expanded.

These arguments may be repeated to set multiple values in a single set
command. Note however, that variable expansion happens for all arguments
before any setting occurs.

setenv name value

shift

Sets the value of environment variable name to be value, a single string. The
most commonly used environment variable USER, TERM, and PATH are
automatically imported to and exported from the csh variables user, term, and
path; there is no need to use setenv for these.

shift variable
The members of argv are shifted to the left, discarding argv [1]. It is an error
for argv not to be set or to have less than one word as value. The second form
performs the same function on the specified variable.

source name
source -h name

The shell reads commands from name. Source commands may be nested; if
they are nested too deeply the shell may run out of file descriptors. An error in
a source at any level terminates all nested source commands. Normally input
during source commands is not placed on the history list; the -h option causes
the commands to be placed in the history list without being executed.

Commands 1-133

csh(1)

stop
stop %job ...

Stops the current or specified job which is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal
with I\Z. This is most often used to stop shells started by su(1).

switch (string)
case strl:

breaksw

default:

breaksw
endsw

time

Each case label is successively matched, against the specified string which is
first command and file name expanded. The file metacharacters '*', '?' and
'[... r may be used in the case labels, which are variable expanded. If none of
the labels match before a 'default' label is found, then the execution begins
after the default label. Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case labels and default labels as
in C. If no label matches and there is no default, execution continues after the
endsw.

time command
With no argument, a summary of time used by this shell and its children is
printed. If arguments are given the specified simple command is timed and a
time summary as described under the time variable is printed. If necessary, an
extra shell is created to print the time statistic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified value
(second form). The mask is given in octal. Common values for the mask are
002 giving all access to the group and read and execute access to others or 022
giving all access except no write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all
aliases are removed by 'unalias *'. It is not an error for nothing to be
unaliased.

unhash
Use of the internal hash table to speed location of executed programs is
disabled.

unlimit resource
unlimit

Removes the limitation on resource. If no resource is specified, then all
resource limitations are removed.

1-134 Commands

csh(1)

unset pattern
All variables whose names match the specified pattern are removed. Thus all
variables are removed by 'unset *'; this has noticeably distasteful side-effects.
It is not an error for nothing to be unset.

unsetenv pattern

wait

Removes all variables whose name match the specified pattern from the
environment. See also the setenv command above and printenv(l).

All background jobs are waited for. It the shell is interactive, then an interrupt
can disrupt the wait, at which time the shell prints names and job numbers of
all jobs known to be outstanding.

while (expr)

end

%job

While the specified expression evaluates non-zero, the commands between the
while and the matching end are evaluated. Break and continue may be used to
terminate or continue the loop prematurely. (The while and end must appear
alone on their input lines.) Prompting occurs here the first time through the
loop as for the foreach statement if the input is a terminal.

Brings the specified job into the foreground.

%job &
Continues the specified job in the background.

@
@ name = expr
@ name[index] = expr

The first form prints the values of all the shell variables. The second form sets
the specified name to the value of expr. If the expression contains '<', '>', '&'
or 'I' then at least this part of the expression must be placed within '(' ')'. The
third form assigns the value of expr to the index'th argument of name. Both
name and its index'th component must already exist.

The operators '*=', '+=', etc are available as in C. The space separating the
name from the assignment operator is optional. Spaces are, however,
mandatory in separating components of expr which would otherwise be single
words.

Special postfix '++' and '--' operators increment and decrement name
respectively, that is '@ i++'.

Pre-defined And Environment Variables
The following variables have special meaning to the shell. Of these, argv, cwd,
home, path, prompt, shell and status are always set by the shell. Except for cwd and
status this setting occurs only at initialization; these variables will not then be
modified unless this is done explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM into
term, and HOME into home, and copies these back into the environment whenever
the normal shell variables are reset. The environment variable PATH is likewise
handled. It is not necessary to worry about its setting other than in the file. cshrc

Commands 1-135

csh(1)

as inferior csh processes will import the definition of path from the environment,
and re-export it if you then change it.

argv

cdpath

cwd

echo

histchars

history

home

ignoreeof

mail

noclobber

noglob

nonomatch

Set to the arguments to the shell, it is from this variable that
positional parameters are substituted, that is '$1' is replaced by
'$argv[1]', and so forth.

Gives a list of alternate directories searched to find subdirectories
in chdir commands.

The full pathname of the current directory.

Set when the -x command line option is given. Causes each
command and its arguments to be echoed just before it is executed.
For non-built-in commands all expansions occur before echoing.
Built-in commands are echoed before command and file name
substitution, since these substitutions are then done selectively.

Can be given a string value to change the characters used in
history substitution. The first character of its value is used as the
history substitution character, replacing the default character !.
The second character of its value replaces the character ! in quick
substitutions.

Can be given a numeric value to control the size of the history list.
Any command which has been referenced in this many events will
not be discarded. Too large values of history may run the shell out
of memory. The last executed command is always saved on the
history list.

The home directory of the invoker, initialized from the
environment. The file name expansion of '",' refers to this
variable.

If set the shell ignores end-of-file from input devices which are
terminals. This prevents shells from accidentally being killed by
control-D's.

The files where the shell checks for mail. This is done after each
command completion which will result in a prompt, if a specified
interval has elapsed. The shell says 'You have new mail.' if the
file exists with an access time not greater than its modify time.

If the first word of the value of mail is numeric it specifies a
different mail checking interval, in seconds, than the default, which
is 10 minutes.

If multiple mail files are specified, then the shell says 'New mail in
name' when there is mail in the file name.

As described in the section on Input/output, restrictions are placed
on output redirection to insure that files are not accidentally
destroyed, and that '»' redirections refer to existing files.

If set, file name expansion is inhibited. This is most useful in shell
scripts which are not dealing with file names, or after a list of file
names has been obtained and further expansions are not desirable.

If set, it is not an error for a file name expansion to not match any

1-136 Commands

notify

path

prompt

savehist

shell

status

time

csh(1)

existing files; rather the primitive pattern is returned. It is still an
error for the primitive pattern to be malformed, that is 'echo [' still
gives an error.

If set, the shell notifies asynchronously of job completions. The
default is to rather present job completions just before printing a
prompt.

Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word specifies
the current directory. If there is no path variable then only full
path names will execute. The usual search path is '.', '/bin' and
'/usr/bin', but this may vary from system to system. For the
super-user the default search path is '/etc', '/bin' and '/usr/bin'. A
shell which is given neither the -c nor the -t option will normally
hash the contents of the directories in the path variable after
reading . cshrc, and each time the path variable is reset. If new
commands are added to these directories while the shell is active,
it may be necessary to give the rehash or the commands may not
be found.

The string which is printed before each command is read from an
interactive terminal input. If a '!' appears in the string it will be
replaced by the current event number unless a preceding '\' is
given. Default is '% " or '# ' for the super-user.

is given a numeric value to control the number of entries of the
history list that are saved in -I.history when the user logs out.
Any command which has been referenced in this many events will
be saved. During start up the shell sources -I. history into the
history list enabling history to be saved across logins. Too large
values of savehist will slow down the shell during start up.

The file in which the shell resides. This is used in forking shells
to interpret files which have execute bits set, but which are not
executable by the system. (See the description of Non-built-in
Command Execution below.) Initialized to the (system-dependent)
home of the shell.

The status returned by the last command. If it terminated
abnormally, then 0200 is added to the status. Built-in commands
which fail return exit status '1', all other built-in commands set
status '0'.

Controls automatic timing of commands. If set, then any
command which takes more than this many cpu seconds will cause
a line giving user, system, and real times and a utilization
percentage which is the ratio of user plus system times to real time
to be printed when it terminates. The time command can be used
to cause a command to be timed no matter how much CPU time it
takes. Thus

% time ep lete/re lusr/bill/re
O.Ou O.ls 0:01 8% 2+1k 3+2io 1pf+Ow
% time we lete/re lusr/bill/re

52 178 1347 lete/re
52 178 1347 lusr/bill/re

Commands 1-137

csh(1)

verbose

104 356 2694 total
0.1u 0.1s 0:00 13% 3+3k 5+3io 7pf+Ow
%

The preceding example indicates that the cp command used a
negligible amount of user time (u) and about 1/10th of a second
system time (s); the elapsed time was 1 second (0:01), there was
an average memory usage of 2k bytes of program space and lk
bytes of data space over the cpu time involved (2+ lk); the program
did three disk reads and two disk writes (3+2io), and took one
page fault and was not swapped (lpf+Ow). The word count
command we on the other hand used 0.1 seconds of user time and
0.1 seconds of system time in less than a second of elapsed time.
The percentage '13%' indicates that over the period when it was
active the command 'wc' used an average of 13 percent of the
available CPU cycles of the machine.

Set by the -v command line option, causes the words of each
command to be printed after history substitution.

Non-built-in Command Execution
When a command to be executed is found to not be a built-in command the shell
attempts to execute the command via exeeve(2). Each word in the variable path
names a directory from which the shell will attempt to execute the command. If it is
given neither a -c nor a -t option, the shell will hash the names in these directories
into an internal table so that it will only try an exec in a directory if there is a
possibility that the command resides there. This greatly speeds command location
when a large number of directories are present in the search path. If this mechanism
has been turned off (via unhash), or if the shell was given a -c or -t argument, and
in any case for each directory component of path which does not begin with a '/" the
shell concatenates with the given command name to form a path name of a file which
it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus '(cd; pwd) ; pwd'
prints the horne directory; leaving you where you were (printing this after the home
directory), while 'cd; pwd' leaves you in the home directory. Parenthesized
commands are most often used to prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then
it is assumed to be a file containing shell commands and a new shell is spawned to
read it.

If there is an alias for shell then the words of the alias will be prepended to the
argument list to form the shell command. The first word of the alias should be the
full path name of the shell (for example, '$shell'). Note that this is a special, late
occurring, case of alias substitution, and only allows words to be prepended to the
argument list without modification.

Argument List Processing
If argument 0 to the shell is '-' then this is a login shell. The flag arguments are
interpreted as follows:

-c The first argument word is taken to be a command string. All remaining
argument words are placed in argv.

1-138 Commands

csh(1)

-e The shell exits if any invoked command terminates abnormally or yields a
non-zero exit status.

-f The shell will start faster, because it will neither search for nor execute
commands from the file '.cshrc' in the invokers home directory.

-i The shell is interactive and prompts for its top-level input, even if stdin appears
not to be a terminal. Shells are interactive without this option if their inputs
and outputs are terminals.

-0 Commands are parsed, but not executed. This aids in syntactic checking of
shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A '\' may be used to escape the
new line at the end of this line and continue onto another line.

-v Causes the verbose variable to be set, with the effect that command input is
echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed immediately
before execution.

-V Causes the verbose variable to be set even before '.cshrc' is executed.

-X Causes the echo variable to be set before' .cshrc' is executed.

After processing of flag arguments if arguments remain but none of the -c, -i, -s, or
-t options was given the first argument is taken as the name of a file of commands to
be executed. The shell opens this file, and saves its name for possible resubstitution
by '$0'. Since many systems use either the standard version 6 or version 7 shells
whose shell scripts are not compatible with this shell, the shell will execute such a
'standard' shell if the first character of a script is not a '#', that is if the script does
not start with a comment. Remaining arguments initialize the variable argv.

Signal Handling
The shell normally ignores quit signals. Jobs running detached (either by '&' or the
bg or % ... & commands) are immune to signals generated from the keyboard,
including hangups. Other signals have the values which the shell inherited from its
parent. The shells handling of interrupts and terminate signals in shell scripts can be
controlled by onintr. Login shells catch the terminate signal; otherwise this signal is
passed on to children from the state in the shell's parent. In no case are interrupts
allowed when a login shell is reading the file '.logout'.

Command And Filename Recognition
The c s h command recognizes and completes user name aliases, commands
(including built-in csh commands), and filenames. To use this feature, do the
following:

1. Type enough characters at the prompt to make your input to the system unique.

2. Press the ESC key.

If your input is unique, the Shell completes the input line. If the input is not unique,
the terminal signals you with a beep. If you receive a beep, type CTRLID for a list
of options. You can then type the additional characters that will make your text
unique. After you have provided more input, press the ESC key again.

Commands 1-139

csh(1)

Command Line Editing
The csh command allows you to visually edit command lines using either a vi or
emacs environment. The vi interface is modal and supports a subset of vi
commands. The emacs interface is modeless and supports a subset of emacs
commands. See the Editing Interface section for a list of the available vi and
emacs commands.

To set the editing environment, define the Shell environment variable CSHEDIT as
vi or emacs. If the environment variable CSHEDIT is not defined, the csh
command searches for your EDITOR environment variable. When your EDITOR
environment variable is set to vi, ex, edit, or ed, the csh command defaults to
the vi command interface. If your EDITOR environment is not set to any of the
previously mentioned editors, the default is the emacs command interface. Note
that if neither the CSHEDITor EDITOR environment variables are defined, the csh
command defaults to the vi command interface.

The new history modifier (:v) allows you to pull commands from the history list to
make them available for editing in visual edit mode. The symbol :v tells the Shell
that you want to enter visual edit mode. For example, the following command line
invokes edit mode for the previously typed cp command line:

!cp:v

When you press the ESC key as the first character on a command line, it is
equivalent to typing the following:

!! :v

Thus, the previous example invokes edit mode for the last command you entered.

Another useful editing (eature is scrolling through the history list. After you have
entered edit mode by typing either !command:v or the ESC key, you can use the up­
arrow and down-arrow keys to scroll through the history list and you may edit any
command line in that history list.

When you are in edit mode, all control characters are displayed as a space character.
Additional control characters cannot be inserted. Existing control characters are
preserved.

Editing Interface
The available vi commands follow:

h Move left one character (r).

I Move right one character (r).

0 Move to the start of the line.

$ Move to the end of the line.

w move forward one word (r).

b Move back one word (r).

e Move to end of word (r).

fx Move forward onto cQaracter (r).

lfx Move back onto character (r).

1-140 Commands

tx

Tx

%

I

a

A

c

c
<esc>

x

x
r

d

D

u

U

p

p

n

<RETURN>

AC

(r)

(0)

Move forward up to character (r).

Move back up to character (r).

Move to matching bracket ({ []}).

Insert text before cursor.

Insert text at beginning of line.

Append text after cursor.

Append text at end of line.

Change text (0).

Change to end of line (eol) (c$).

End insertion.

Delete char under cursor (r).

Delete character before cursor (r).

Replace a character (r).

Change case of current character (r).

Delete text (0).

Delete to eol (d$).

Undo last change.

Undo all changes.

Repeat last text change command (r).

Put text from previous delete after cursor (r).

Put text from previous delete before cursor (r).

Redraw command line.

csh(1)

Search back through the history list for a command containing the
specified word. If the specified word is not delineated by white
space in the history list, the search fails. Typing ESCAPE or
CTRL/C aborts this command.

Repeat last history search.

End edit and execute command.

Quit; no command executed.

A repeat count is accepted.

Works within a cursor motion object.

The available emacs commands follow:

A@

AA
Set mark (keyword nUll).

Move to beginning of line.

Commands 1-141

csh(1)

I\B,

I\C
I\D
I\E

I\F,
I\G

I\H,DEL

I\K

I\L

I\R

I\S
I\T

I\UD

I\W

I\y

CR,NL

ESC-I\C

ESC-B

ESC-D

ESC-F

ESC-H

ESC-DEL

ESC-D

I\XI\C

1\ Xu

1\ XU

1\ X""

I\XI\Sword

1-142 Commands

Move backward a character.

Exit command line edit; do not execute a command.

Delete next character (to kill buffer).

Move to end of line.

Move forward a character.

Cancel partial command.

Delete previous character (to kill buffer).

Kill (delete) to end of line (to kill buffer).

Redraw line display.

Search reverse for a single character.

Search forward for a single character.

Transpose two characters before cursor.

Specify a repeat count before command (default of n is 4).

Delete between cursor and mark (to kill buffer).

Yank from kill buffer.

End edit and execute command.

End edit and execute command.

Move backward a word.

Delete next word.

Move forward a word.

Delete previous word.

Delete previous word.

Repeat count before command.

End edit and execute command.

Undo last change.

Undo all changes.

Change case of next character.

Search back through the history list for a command containing a
specified word. If the specified word is not delineated by white
space in the history list, the search fails. Typing ESCAPE or
CTRL/C aborts this command.

Repeat last history search command. You must be in search mode
to issue this command. Note that "G cancels the previous search
word so that you can enter a new word.

csh(1)

Restrictions

Files

Words can be no longer than 1024 characters.

The system limits argument lists to 10240 characters.

The number of arguments to a command which involves file name expansion is
limited to l/6'th the number of characters allowed in an argument list.

Command substitutions may substitute no more characters than are allowed in an
argument list.

To detect looping, the shell restricts the number of alias substitutions on a single line
to 20.

When a command is restarted from a stop, the shell prints the directory it started in if
this is different from the current directory; this can be misleading (that is, wrong) as
the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the
form 'a ; b ; c' are also not handled gracefully when stopping is attempted. If you
suspend 'b', the shell will then immediately execute 'c'. This is especially noticeable
if this expansion results from an alias. It suffices to place the sequence of commands
in O's to force it to a subshell, that is '(a ; b ; c)'.

Commands within loops, prompted for by'?', are not placed in the history list.
Control structure should be parsed rather than being recognized as built-in
commands. This would allow control commands to be placed anywhere, to be
combined with 'I', and to be used with '&' and ';' metasyntax.

It should be possible to use the colon (:) modifiers on the output of command
substitutions. All and more than one colon (:) modifier should be allowed on '$'
substitutions.

Symbolic links fool the shell. In particular, dirs and 'cd .. ' don't work properly once
you've crossed through a symbolic link.

-/.cshrc
-/.login
-/.logout
/bin/sh
/tmp/sh*
/etc/passwd

Read at beginning of execution by each shell.
Read by login shell, after '.cshrc' at login.
Read by login shell, at logout.
Standard shell, for shell scripts not starting with a '#'.
Temporary file for '«'.
Source of home directories for '-name'.

See Also
sh(l), time(l), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), setrlimit(2),
umask(2), wait(2), tty(4), a.out(5), environ(7), time(7)
An Introduction to the C shell

Commands 1-143

csplit(1)

Name
csplit - context split

Syntax
csplit [-s] [-k] [-f prefix] file arg 1 [.. . argn]

Description
The csplit command reads file and separates it into n+1 sections, as defined by the
arguments argl ... argn. By default, the sections are placed in xxOO ... xxn (n may not
be greater than 99). The named file is sectioned in the following way:

00: From the start of file up to (but not including) the line referenced by argl.

01: From the line referenced by argl up to the line referenced by arg2.

n: From the line referenced by argn to the end of file.

If the file argument is an minus (-) then standard input is used. A minus is an ASCII
octal 055.

Options

-s

-k

Suppresses the printing of all character counts. If the -s
option is omitted, the cspli t command prints the character
counts for each file created.

Leaves previously created files intact. If the -k option is
omitted, c s p 1 it automatically removes created files if an
error occurs.

-fprefix Names the created files prefixOO ... prefixn. The default is
xxOO ... xxn.

The arguments (argl ... argn) to cspli t can be a combination of the following:

1-144 Commands

Irexp I A file is created for the section from the current line
up to (but not including) the line containing the
regular expression rexp. The current line becomes
the line containing rexp. This argument may be
followed by an optional plus (+) or minus (-) number
of lines. For example, /page/-5.

%rexp%

lnno

{num}

This argument is the same as /rexp/, except that no
file is created for the section.

A file is created from the current line up to (but not
including) lnno. The current line becomes lnno.

Repeat argument. This argument may follow any of
the above arguments. If it follows a rexp argument,
that argument is applied num more times. If it
follows lnno, the file will be split every lnno lines
(num times) from that point.

csplit{1)

Enclose all rexp type arguments that contain blanks or other characters meaningful to
the Shell in the appropriate quotes. Regular expressions should not contain
embedded new-lines. The cspli t command does not affect the original file; it is
the user's responsibility to remove it.

Examples

csplit -f cobol file /procedure division/ /par5./ /par16./

This example creates four files, coboI00 ... coboI03. After editing the files that
cspli t created, they can be recombined as follows:

cat cobolO[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example splits the file every 100 lines, up to 10,000 lines. The -k option causes
the created files to be retained if there are less than 10,000 lines; however, an error
message would still be printed.

csplit -k prog.c '%main(%" /"}/+1' {20}

Assuming that prog. c follows the normal C coding convention of ending routines
with a right brace (}) at the beginning of the line, this example creates a file
containing each separate C routine (up to 21) in prog. c.

Diagnostics
The diagnostics are self explanatory except for the following:

arg - out of range

This message means that the given argument did not reference a line between the
current position and the end of the file.

See Also
ed(1), sh(1)

Commands 1-145

ctags{1)

Name
ctags - create a tags file

Syntax
ctags [options] name ...

Description
The ctags command makes a tags file for ex(1) from the specified C, Pascal and
Fortran sources.

A tags file gives the locations of specified objects (in this case functions and
typedefs) in a group of files. Each line of the tags file contains the object name, the
file in which it is defined, and an address specification for the object definition.
Functions are searched with a pattern, typedefs with a line number. Specifiers are
given in separate fields on the line, separated by blanks or tabs.

Using the tags file, ex can quickly find these objects definitions.

If the -x flag is given, ctags produces a list of object names, the line number and
file name on which each is defined, as well as the text of that line and prints this on
the standard output. This is a simple index which can be printed out as an off-line
readable function index.

Options

-a

-B
-F
-t

-u

-v

1-146 Commands

Appends infonnation to an existing tags file.

Uses backward search patterns (? .. ?).

Uses forward search patterns (I ... /) (default).

Creates typedef tags.

Updates the specified tags file. All references to tags are
deleted, and the new values are appended to the file. Note
that this option is implemented in a way which is rather
slow. It is usually faster to simply rebuild the tags file.)

The tag main is treated specially in C programs. The tag
fonned is created by prepending M to the name of the file,
with a trailing .c removed, if any, and leading pathname
components also removed. This makes use of ctags
practical in directories with more than one program.

Generates an index listing function name, file name, and
pages number. Since the output will be sorted into
lexicographic order, it may be desired to run the output
through sort -f. For example,

ctags -v files I sort -f > index

Files whose name ends in .c or .h are assumed to be C
source files and are searched for C routine and macro
definitions. Others are first examined to see if they contain
any Pascal or Fortran routine definitions; if not, they are

-w

ctags(1 }

processed again looking for C definitions.

Suppresses warning diagnostics and generates a listing. This
list contains each object name, its line number, the file name
in which it is defined, and the text.

Restrictions

Files

Recognition of functions, subroutines and procedures for FORTRAN and Pascal
do not deal with block structure. Therefore you cannot have two Pascal procedures
in different blocks with the same name.

Does not know about #ifdefs.

Does not know about Pascal types. Relies on the input being well formed to detect
typedefs. Use of -tx shows only the last line of typedefs.

tags output tags file

See Also
ex(1), vi(l)

Commands 1-147

ctod{1)

Name
ctod - combine DDIS objects into DOTS format

Syntax
ctod [-x] object.ddis

Description
The ct od command combines a DDIS encoded object into a Data Object Transport
Syntax (DOTS) format, which is written to standard output. The object may contain
references to other DDIS files. The purpose of ctod is to create a single file from
multiple references to other files, in order to transfer or move DDIS objects from one
location to another.

object.ddis is a file name, or a minus sign (-) for standard input. If a minus sign is
specified, or if no file name is present, standard input is read. The named object and
its external references, if any, are combined into a DOTS data stream which is
written to standard output.

Because a DOTS stream contains binary data, ctod output should be redirected to a
file or a pipe.

Options

-x Specifies that ctod is to DOTS encode the input file without resolving any
external references present in the file. This option is for use only with files
containing no external references.

Restrictions
The only DDIS object types supported in this release are DDIF and DTIF.

Diagnostics

The exit status is 0 if all files were combined successfully and 1 if any of the files
could not be combined. Consult 'standard error' to see what files failed, and why.

If the -x option is used and object. ddis contains any external references, ctod
returns an error status of 1, and writes an error message to 'standard error'.

See Also
dtoc(1), DDIS(5), DDIF(5), DTIF(5), DOTS(5)

1-148 Commands

Name

Syntax

ctrace - C program debugger

ctrace [options] [file]
ctc [options] [file]
ctcr [options] [file]

ctrace(1)

Description
The ctraee command allows you to follow the execution of a C program,
statement by statement. The etraee command reads the C program in file (or from
standard input if you do not specify file) and inserts statements to print both the text
of each executable statement and the values of all variables referenced or modified.
It then writes the modified program to the standard output. You must put the output
of etraee into a temporary file because the ee command does not allow the use of
a pipe. You then compile and execute this file.

As each statement in the program executes it is listed at the terminal. The statement
is followed by the name and value of any variables referenced or modified in the
statement, which is followed by any output from the statement. Loops in the trace
output are detected and tracing is stopped until the loop is exited or a different
sequence of statements within the loop is executed. A warning message is printed
every 1000 times through the loop to help you detect infinite loops.

The trace output goes to the standard output so you can put it into a file for
examination with an editor or the tail command.

The etc command is a shell script that prepares the specified C programfile for later
execution. The eter command is a shell script that both prepares and executes the
specified C program file.

Options
The only options you will commonly use are:

-f functions Trace only these functions.

-v functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long and pointer
variables are always printed as signed integers. Pointers to character arrays are also
printed as strings if appropriate. Char, short, and int variables are also printed as
signed integers and, if appropriate, as characters. Double variables are printed as
floating point numbers in scientific notation.

You can request that variables be printed in additional formats, if appropriate, with
these options:

-e Floating point

-0 Octal

-u Unsigned

-x Hexadecimal

Commands 1-149

ctrace (1)

These options are used only in special circumstances:

-I n Checks n consecutively executed statements for looping trace
output, instead of the default of 20. Use 0 to get all the

-p

-p s

-rf

-s

-t n

Examples

trace output from loops.

Runs the C preprocessor on the input before tracing it. You
can also use the -D, -I, and -U cc(1) preprocessor options.

Changes the trace print functions from the default of
, 'printf(' '. For example, "fprintf(stderr, " would send the
trace to the standard error output.

Uses file f in place of the runtime.c trace function package.
This lets you change the entire print function, instead of just
the name and leading arguments. For further information,
see the -p option.

Suppresses redundant trace output from simple assignment
statements and string copy function calls. This option can
hide a bug caused by use of the = operator in place of the ==
operator.

Traces n variables per statement instead of the default of 10
(the maximum number is 20). The DIAGNOSTICS section
explains when to use this option.

Assume the file Ic.c contains the following C program:

1 #include <stdio.h>
2 main() /* count lines in input */
3 {
4 int c, nli
5
6 nl = 0 i
7 while ((c = getchar()) != EOF)
8 if (c = '\n')
9 ++nli

10 printf("%d\n", nl)i
11

When you enter the following commands and test data the program is compiled and
executed:

cc lc.c
a.out
1
<CTRL/D>

The output of the program is the number 2, which is not correct because there is only
one line in the test data. The error in this program is common, but subtle. When
you invoke ctrace with the following commands:

ctrace lc.c >temp.c
cc temp.c
a.out

the output is

1-150 Commands

ctrace (1)

2 main ()
6 nl = 0 i

/* nl == 0 */
7 while ((c = getchar()) != EOF)

The program is now waiting for input. If you enter the same test data as before, the
output is the following:

/* c == 49 or '1' */
8 if (c = '\n')

/* c == 10 or '\n' */
9 ++nli

/* nl == 1 */
7 while ((c = getchar()) != EOF)

/* c == 10 or '\n' */
8 if (c = '\n')

/* c == 10 or '\n' */
9 ++nli

/* nl == 2 */
7 while ((c = getchar()) != EOF)

If you now enter an end of file character <CTRL/D>, the final output is the
following:

/* c == -1 */
10 printf("%d\n", nl)i

/* nl == 2 */2
return

Note that the program output printed at the end of the trace line for the nl variable.
Also note the return comment added by ctrace at the end of the trace output.
This shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned the value "1" in line 7, but in line
8 it has the value "\n". Once your attention is drawn to this if statement, you realize
that you used the assignment operator (=) in place of the equal operator (==). You
can easily miss this error during code reading.

Execution-time Trace Control
The default operation for ctrace is to trace the entire program file, unless you use
the -f or -v options to trace specific functions. This does not give you statement by
statement control of the tracing, nor does it let you tum the tracing off and on when
executing the traced program.

You can do both of these by adding ctroff and ctron function calls to your
program to turn the tracing off and on, respectively, at execution time. Thus, you can
code arbitrarily complex criteria for trace control with if statements, and you can even
conditionally include this code because ctrace defines the CTRACE preprocessor
variable. For example:

#ifdef CTRACE

#endif

if (c == '!' && i > 1000)
ctron()i

You can also turn the trace off and on by setting static variable tr_ct_ to 0 and 1,
respectively. This is useful if you are using a debugger that cannot call these
functions directly.

Commands 1-151

ctrace (1)

Restrictions
The ctrace command does not know about the components of aggregates such as
structures, unions, and arrays. It cannot choose a format to print all the components
of an aggregate when an assignment is made to the entire aggregate. The ctrace
command may choose to print the address of an aggregate or use the wrong format
(for example, %e for a structure with two integer members) when printing the value
of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a multi-file
program. This can result in functions called from a loop still being traced, or the
elimination of trace output from one function in a file until another in the same file is
called.

Warnings
You get a ctrace syntax error if you omit the semicolon at the end of the last
element declaration in a structure or union, just before the right brace (}). This is
optional in some C compilers.

Defining a function with the same name as a system function may cause a syntax
error if the number of arguments is changed. Use a different name.

The ctrace command assumes that BADMAG is a preprocessor macro, and that
EOF and NULL are #defined constants. Declaring any of these to be variables, for
example, "int EOF;", will cause a syntax error.

Diagnostics
This section contains diagnostic messages from both ctrace and cc, since the
traced code often gets some cc warning messages. You can get cc error messages
in some rare cases, all of which can be avoided.

Ctrace Diagnostics

warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C compiler "out
of tree space; simplify expression" error. Use the -t option to increase this
number.

warning: statement too long to trace

This statement is over 400 characters long. Make sure that you are using
tabs to indent your code, not spaces.

cannot handle preprocessor code, use -P option

1-152 Commands

This is usually caused by #ifdef/#endif preprocessor statements in the
middle of a C statement, or by a semicolon at the end of a #define
preprocessor statement.

ctrace (1)

'if ... else if' sequence too long

Split the sequence by removing an else from the middle.

possible syntax error, try -P option

Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -I, and -U preprocessor options. If you still get the error
message, check the Warnings section above.

Cc Diagnostics

warning: floating point not implemented
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0

Ignore these messages.

compiler takes size of function

See the ctrace "possible syntax error" message above.

yacc stack overflow

See the ctrace '''if ... else if' sequence too long" message above.

out of tree space; simplify expression

Use the -t option to reduce the number of traced variables per statement
from the default of 10. Ignore the "ctrace: too many variables to trace"
warnings you will now get.

redeclaration of signal

Either correct this declaration of signal(3), or remove it and #include
<signal.h> .

Commands 1-153

ctrace (1)

unimplemented structure assignment

Use pee instead of ce(1).

Files
/usr/bin/ctc
/usr/bin/ctcr
/usr/lib/ctrace/runtime.c

See Also

preparation shell script
preparation and run shell script
run-time trace package

ctype(3), printf(3s), setjmp(3), signal(3), string(3)

1-154 Commands

cut(1)

Name
cut - cut out selected fields of each line of a file

Syntax
cut -clist [file] file2 ...]
cut -flist [-dchar] [-s] [file] file2 ...]

Description
Use the cut command to cut out columns from a table or fields from each line of a
file. The fields as specified by list can be fixed length, that is, character positions as
on a punched card (-c option), or the length can vary from line to line and be marked
with a field delimiter character like tab (-f option). The cut command can be used
as a filter. If no files are given, the standard input is used.

Use grep(l) to make horizontal "cuts" (by context) through a file, or paste(l) to
put files together in columns. To reorder columns in a table, use cut and paste.

Options

list

-c list

-f list

-d char

-s

Examples

Specifies ranges that must be a comma-separated list of
integer field numbers in increasing order. With optional­
indicates ranges as in the -0 option of nroff/troff for page
ranges; for example, 1,4,7; 1-3,8; -5,10 (short for 1-5,10);
or 3- (short for third through last field).

Specifies character positions to be cut out. For example,
-c1-72 would pass the first 72 characters of each line.

Specifies the fields to be cut out. For example, -fl,7 copies
the first and seventh field only. Lines with no field
delimiters will be passed through intact (useful for table
subheadings), unless -s is specified.

Uses the specified character as the field delimiter. Default is
tab. Space or other characters with special meaning to the
shell must be. quoted.

Suppresses lines with no delimiter characters. Unless
specified, lines with no delimiters will be passed through
untouched. Either the -c or -f option must be specified.

Mapping of user IDs to names:

cut -d: -fI,S /etc/passwd

To set name to the current login name:

name="' who am i I cut -fl -d" ",

Commands 1-155

cut(1)

Diagnostics

"line too long"

"bad list for c / f option"

"no fields"

See Also
grep(1), paste(1)

1-156 Commands

A line can have no more than 511 characters or fields.

Missing -c or -f option or incorrectly specified list. No
error occurs if a line has fewer fields than the list calls for.

The list is empty.

cxref (1)

Name
cxref - generate C program cross reference

Syntax
cxref [options] files

Description
The cxref command analyzes a collection of C files and attempts to build a cross
reference table. The cxref command utilizes a special version of cpp to include
#define'd infonnation in its symbol table. It produces a listing on standard output of
all symbols (auto, static, and global) in each file separately, or with the -e option, in
combination. Each symbol contains an asterisk (*) before the declaring reference.

Options

-e Prints a combined cross-reference of all input files.

-Dname Defines name to processor, as if by #define. Default value is 1.

-Idir Searches named directory for #include files whose names do not
begin with a backslash (t).

-0 file Directs output to named file.

-s Operates silently; does not print input file names.

-t Fonnats listing for 80-column width.

-Uname Removes any initial definition of name.

-w<num> Width option which fonnats output no wider than <num> (decimal)
columns. This option will default to 80 if <num> is not specified or is
less than 51.

Diagnostics
Error messages usually indicate a problem that will prevent the file from compiling.

Files

/usr/lib/xcpp special version of C-preprocessor.

See Also
cc(l).

Commands 1-157

date (1)

Name
date - print date and time

Syntax
date [-c I -u] [+format] [[yy[mm[dd]]]hhmm[.ss][-[-]tttt][z]]

Description
If no argument is given, or if the argument begins with +, the current date and time
are printed. Otherwise, the current date is set. The first mm is the month number; dd
is the day number in the month; hh is the hour number (24 hour clock); the second
mm is the minute number; .ss the second; -[-]tttt is the minutes west of Greenwich; a
positive number means your time zone is west of Greenwich (for example, North and
South America) and a negative number means it is east of Greenwich (for example
Europe); z is a one letter code indicating the dst correction mode (n=none, u=usa,
a=australian, w=westem europe, m=middle europe, e=eastem europe); yy is the last 2
digits of the year number and is optional. The following example sets the date to Oct
8,12:45 AM:

date 10080045

The current year is the default if no year is mentioned. The system operates in GMT.
The date takes care of the conversion to and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of the user.
The format for the output is similar to that of the first argument to printf(3s). All
output fields are of fixed size (zero padded if necessary). Each field descriptor is
preceded by % and is replaced in the output by its corresponding value. A single %
is encoded by % % . All other characters are copied to the output without change.
The string is always terminated with a new-line character.

Options

-c Perform operations using Coordinated Universal Time (UCT) instead of
the default local time. The UCT does not use leap seconds so UCT is the
same as GMT.

-u Perform operations using Greenwich Mean Time (GMT) instead of the
default local time.

+ format The following is a list of field Descriptors that can be used in the format

1-158 Commands

(Note: date exits after processing format information) :

%a Locale's abbreviated weekday name

%A Locale's full weekday name

% b Locale's abbreviated month name

% B Locale's full month name

% c Locale's date and time representation

%d Day of month as a decimal number (01-31)

% D Date (%m/%d/%y)

Examples

% h Locale's abbreviated month name

%H Hour as a decimal number (00-23)

%1 Hour as a decimal number (01-12)

%j Day of year (001-366)

%m Number of month (01-12)

% M Minute number (00-59)

%0 Newline character

%p Locale's equivalent to AM or PM

% r Time in AM/PM notation

% S Second number (00-59)

% t Tab character

%T Time (%H/%M/%S)

% U Week number (00-53), Sunday as first day of week

%w Weekday number (O[Sunday]-6)

% W Week number (00-53), Monday as first day of week

% x Locale's date representation

% X Locale's time representation

% y Year without century (00-99)

% Y Year with century

% Z Timezone name, no characters if no timezone

%% %

The following command line

date +%m/%d/%y

generates the following output

04/02/89

The following command line

date +"DATE: %m/%d/%y%nTIME: %H:%M:%S"

generates the following output

DATE: 04/02/89
TIME: 14:45:05

date (1)

The quotes (") are necessary because the format contains blank characters. Use single
quotes (') to prevent interpretation by the shell.

Commands 1-159

date (1)

Diagnostics

Failed to set date: Not owner
You are not the super-user and you tryed to change the date.

CAUTION

Do not change the date while the system is running in multiuser mode.

Restrictions

Files

An attempt to set a date to before 1/1/1970 will result in the date being set to
1/1/1970.

/dev!kmem

1-160 Commands

dbx(1)

Name
dbx - source level debugger

Syntax
dbx [-I directory] [-cfile] [-i] [-r] [-pixie] [object] [core]

Description
The dbx command is a source-level debugger. This enhanced version of dbx works
with ee(l), f77(l), peel), as(l), and machine code. Note that f77(1) is a layered
product which may not be installed on your system.

The object file used with the debugger is produced by specifying an appropriate
option (usually -g) to the compiler. The resulting object file contains symbol table
information, including the names of all source files that the compiler translated to
create the object file. These source files are accessible from the debugger. If -g is
not specified, limited debugging is possible.

If a core file exists in the current directory or a coredump file is specified, the dbx
command can be used to look at the state of the program when it faulted.

Running dbx
If a .dbxinit file resides in the current directory or in the user's home directory, the
commands in it are executed when dbx is invoked.

When invoked, dbx recognizes the following command line options:

-I directory or -Idirectory

-cfile

-i

-r

-pixie

Tells dbx to look in the specified directory for source files.
Multiple directories can be specified by using multiple -/ options.
The dbx command searches for source files in the current
directory and in the object file's directory whether or not -/ is
used.

Selects a command file other than .dbxinit.

Uses interactive mode. This option does not treat #s as comments
in a file. It prompts for source even when it reads from a file.
With this option, dbx also has extra formatting as if for a
terminal.

Runs the object file immediately.

Uses pixie output. The executable must be an executable.pixie,
and the non-pixie executable must be in the same directory as the
pixie executable.

Multiple commands can be specified on the same command line if you separate them
with a semicolon (;). If you type a string and press the stop character (see stty(l)),
dbx tries to complete a symbol name from the program that matches the string.

Commands 1-161

Rise

Rise dbx(1)

The Monitor

The following commands control the dbx monitor:

![string] [integer] [-integer]

help

history

quit

Specifies a command from the history list.

Pipes a list of the dbx commands through the more command.

Prints the items from the history list. The default is 20.

Exit dbx.

Controlling dbx

alias [name(argl , ... argN) "string"]
Lists all existing aliases, or, if an argument is specified, defines a
new alias.

unalias alias command name
Removes the specified alias.

delete expressionl, .. . expressionN

delete all Deletes the specified item from the status list. The argument all
deletes all items from the status list.

playback input [file]
Replays commands that were saved with the record input
command in a text file.

playback output [file]
Replays debugger output that was saved with the record output
command.

record input [file]
Records all commands typed to the dbx command.

record output [file]
Records all dbx output.

sh [shell command]
Calls a shell from dbx or executes a shell command.

status Lists currently set stop, record, and trace commands.

tagvalue (tagname)
Returns the value of tag name. If the tag extends to more than one
line, or if it contains arguments, an error occurs. tagvalue can be
used in any expression.

set [variable = expression]
Lists existing debugger variables and their values. This command
can also be used to assign a new value to an existing variable or to
define a new variable.

unset variable Removes the setting of a specified debugger variable.

1-162 Commands

dbx(1)

Examining Source

Iregular expression
Searches ahead in the source code for the regular expression.

?regular expression

edit ffile]

file ffile]

Searches back in the source code for the regular expression.

Calls an editor from the dbx environment.

Prints the current file name, or, if a file name is specified, this
command changes the current file to the specified file.

func [expression] [procedure]
Moves to the specified procedure (activation level), or, if an
expression or procedure isn't specified, prints the current activation
level.

list [expression:integer]

list [expression] Lists the specified lines. The default is 10 lines.

tag tagname Sets the current file/line to the location specified by tagname.
Operations are similar to the tag operations in vi(I).

use [directoryl ... directoryN]
Lists source directories, or, if a directory name is specified, this
command substitutes the new directories for the previous list.

whatis variable Prints the type declaration for the specified name.

which variable Finds the variable name currently being used.

whereis variable Prints all qualifications (the scopes) of the specified variable name.

Controlling Programs

assign expressionl = expression2
Assigns the specified expression to a specified program variable.

[n] cont [signal]

cont [signal] to line

cont [signal] in procedure

goto line

next [integer]

Continues executing a program after a breakpoint. n breakpoints
are ignored if n is specified before stepping; If specified, signal is
delivered to the processing being debugged.

Goes to the specified line in the source.

Steps over the specified number of lines. The default is one. This
command does not step into procedures.

rerun [argl ... argN] [<filel]l>file2]

rerun [argl ... argN] [<filel]l>&file2]
Reruns the program, using the same arguments that were specified
to the run command. If new arguments are specified, rerun uses
those arguments.

run [argl ... argN] [<filel] [>file2]

Commands 1-163

Rise

Rise dbx(1)

run [arg] ... argN] [<file]] [>&file2]
Runs the program with the specified arguments.

return [procedure]

step [integer]

Continues executing until the procedure returns. If a procedure
isn't specified, dbx assumes the next procedure.

Steps the specified number of lines. This command steps into
procedures. The default is one line.

Setting Breakpoints

catch [signal] Lists all signals that dbx catches, or, if an argument is specified,
adds a new signal to the catch list.

ignore [signal] Lists all signals that dbx does not catch. If a signal is specified,
this command adds the signal to the ignore list.

stop [variable]

stop [variable] at line [if expression]

stop [variable] in procedure [if expression]

stop [variable] if expression
Sets a breakpoint at the specified point.

trace variable [at line [if expression]

trace variable [in procedure [if expression]
Traces the specified variable.

when [variable] [at line] {command_list}

when [variable] [in procedure] {command list}
Executes the specified dbx comma separated command list.

Examining Program State

dump [procedure] [.]
Prints variable information about the procedure. If a dot (.) is
specified, this command prints global variable information on all
procedures in the stack and the variables of those procedures.

down [expression]
Moves down the specified number of activation levels in the stack.
The default is one level.

up [expression] Moves up the specified number of activation levels on the stack.
The default is one.

print expression] , .. . expressionN
Prints the value of the specified expression.

printf "string", expression] , ... expressionN

printregs

Prints the value of the specified expression, using C language
string formatting.

Prints all register values.

1-164 Commands

where

where n

dbx{1)

Does a stack trace, which shows the current activation levels.

Prints out only the top n levels of the stack.

Debugging At The Machine Level

[n] conti [signal]

conti [signal] to address

conti [signal] in procedure
Continues executing assembly code after a breakpoint. n
breakpoints are ignored if n is specified before stepping; If
specified, signal is delivered to the processing being debugged.

nexti [integer] Steps over the specified number of machine instructions. The
default is one. This command does not step into procedures.

stepi [integer] Steps the specified number of machine instructions. This
command steps into procedures. The default is one instruction.

stopi [variable] at address [at address if expression]

stopi [variable] in procedure [if expression]

stopi [variable] if expression
Sets a breakpoint in the machine code at the specified point.

tracei variable at address [at address if expression]

tracei variable in procedure [at address if expression]
Traces the specified variable in machine instructions.

wheni [variable] [at address] {command_list}

wheni [variable] [in procedure] {command list}
Executes the specified d}:)x comma separated command list.

address[?]/<count><mode>
Searching forward (or backward, if ? is specified,) prints the
contents address or disassembles the code for the instruction
address; count is the number of items to be printed at the specified
address. mode is one of the characters in the following table
producing the indicated result:

d Print a short word in decimal
D Print a long word in decimal
o Print a short word in octal
o Print a long word in octal
x Print a short word in hexadecimal
X Print a long word in hexadecimal
b Print a byte in octal
c Print a byte as a character
s Print a string of characters that ends in a null
f Print a single precision real number
g Print a double precision real number

Print machine instructions
n Prints data in typed format.

Commands 1-165

Rise

Rise dbx(1)

address/ <countL> <value> <mask>
Searches for a 32-bit word starting at the specified address; count
specifies the number of word to process in the search; an address is
printed when the the word at address, after an AND operation with
mask, is equal to value.

Predefined dbxVariables

The debugger has the following predefined variables:

$addrfmt Specifies the format for addresses. This can be set to any
specification that a C printf statement can format. The default is
zero.

$byteaccess

$casesense

$curevent

$curline

$cursrcline

$curpc

$datacache

$dbgmon

$defaultin

$defaultout

$dispix

$hexchars

$hexin

$hexints

$hexstrings

$historyevent

$lines

$listwindow

$main

Same as $addrfmt.

When set to a nonzero value, specifies that uppercase and
lowercase letters be taken into consideration during a search.
When set to 0, the case is ignored. The default is 0.

Shows the last even number as seen in the status feature. Set only
by dbx.

Specifies the current line. Set only by dbx.

Shows the last line listed plus 1. Set only by dbx.

Specifies the current address. Used with the wi and Ii aliases.

Caches information from the data space so that dbx must access
data space only once. To debug the operating system, set this
variable to 0; otherwise, set it to a nonzero value. The default is 1.

For internal use by dbx.

For internal use by dbx.

For internal use by dbx.

For use when debugging pixie code. When set to 0, machine code
is shown while debugging. When set to 1, pixie code is shown.
The default is 0.

Output characters are printed in hexadecimal format (set, unset).

Specifies that input constants are hexadecimal.

When set to a nonzero value, changes the default output constants
to hexadecimal. Overrides $octints.

When set to 1, specifies that all strings are printed in hexadecimal;
when set to 0, strings are printed in character format.

Shows the current history line.

Number of lines for history. The default is 20

Specifies how many lines the list command prints.

Specifies the name of the procedure that dbx begins to process.
The dbx command can point to any procedure. The default is
"main".

1-166 Commands

dbx(1)

$maxstrlen Specifies how many characters of a string dbx prints for pointers
to strings. The default is 128.

$octin When set to non-zero, changes the default input constants to octal.
When set, $hexin overrides this setting.

$octints Output integers are printed octal format (set, unset).

$page Specifies whether to page long information. A nonzero value turns
on paging; a 0 turns it off. The default is 1.

$pagewindow Specifies how many lines print when information runs longer than
one screen. This can be changed to match the number of lines on
any terminal. If set to 0, this variable assumes one line. The
default is 22, leaving space for continuation query.

$printwhilestep For use with the step[n] and stepi[n] instructions. A non-zero
integer specifies that all n lines and/or instructions should be
printed out. A zero specifies that only the last line and/or
instruction should be printed out. The default is zero.

$pimode Prints input when used with the playback input command. The
default is O.

$printdata When set to a nonzero value, the contents of registers used are
printed next to each instruction displayed. The default is O.

$printwide When se to a nonzero value, the contents of variables are printed in
a horizontal format. The default is O.

$prompt Sets the prompt for dbx.

$readtextfile When set to 1, dbx tries to read instructions from the object file
rather than the process. The dbx command executes faster when
debugging remotely using the System Programmer's Package.
This variable should always be set to 0 when the process being
debugged copies in code during the debugging process. The
default is 1.

$regstyle A zero value causes registers to be printed out in their normal r
format (rO,rl, ... r31). A nonzero value causes the registers to be
printed out in a special format (zero, at, vO, vI, ...) commonly used
in debugging programs written in assembly language. The default
is O.

$repeatmode When set to a nonzero value, after pressing the RETURN key (for
an empty line), the last command is repeated. The default is 1.

$rimode When set to a nonzero value, input is recorded while recording
output. The default is O.

$sigtramp Tells dbx the name of the code called by the system to invoke
user signal handlers. This variable is set to sigvec on ULTRIX
systems.

$tagfile Contains a filename, indicating the file in which the tag command
and the tagvalue macro are to search for tags.

Commands 1-167

Rise

Rise dbx (1)

Predefined dbx Aliases
The debugger has the following predefined aliases:

?

a

b

bp

c

d

e

f

g

h

j

Ii

nor S

ni or Si

P
pd

pi

po

pr

px

q

r

ri

ro

s

si

t

u

Prints a list of all dbx commands.

Assigns a value to a program variable.

Sets a breakpoint at a specified line.

Stops in a specified procedure.

Continues program execution after a breakpoint.

Deletes the specified item from the status list.

Looks at the specified file.

Moves to the specified activation level on the stack.

Goes to the specified line and begins executing the program there.

Lists all items currently on the history list.

Shows what items are on the status list.

Lists the next 10 lines of source code.

Lists the next 10 machine instructions.

Step over the specified number of lines without stepping into
procedure calls.

Step over the specified number of assembly code instructions
without stepping into procedure calls.

Prints the value of the specified expression or variable.

Prints the value of the specified expression or variable in decimal.

Replays dbx commands that were saved with the record input
command.

Prints the value of the specified expression or variable in octal.

Prints values for all registers.

Prints the value for the specified variable or expression in
hexadecimal.

Ends the debugging session.

Runs the program again with the same arguments that were
specified with the run command.

Records in a file every command typed.

Records all debugger output in the specified file.

Steps the next number of specified lines.

Steps the next number of specified lines of assembly code
instructions.

Does a stack trace.

Lists the previous 10 lines.

1-168 Commands

w

w
wi

dbx(1)

Lists the 5 lines preceding and following the current line.

Lists the 10 lines preceding and following the current line.

Lists the 5 machine instructions preceding and following the
machine instruction.

Commands 1-169

Rise

VAX dbx(1)

Name
dbx - debugger

Syntax
dbx [-r] [-i] [-k] [-I dir] [-cfile] [objfile [coredump]]

Description
The dbx debugger is a tool for source level debugging and execution of programs
running under the UL TRIX operating system.

After invoking dbx, you can debug interactively by using the commands described
in the Commands section. If the file .dbxinit exists in the current directory, then the
dbx commands in it are executed. If the file does not exist in the current directory,
the user's home directory is then checked for a .dbxinit file. Note that the in it file is
built by appending the characters ini t to the first eight characters of the debugger's
name. For example, if you renamed dbx to abcdefghi, the debugger would look for
an initialization file named .abcdefghinit.

Arguments

objfile

coredump

Options

An object file that is produced by a compiler with the appropriate
option (usually -g), and that is specified to produce symbol
information in the object file. The ee(l), peel), and vee(1), produce
the appropriate source information. The machine level facilities of
dbx can be used on any program.

The object file contains a symbol table that includes the
name of all the source files transl~ted by the compiler to
create it. These files are available for perusal while using the
debugger.

If no objfile is specified, dbx looks for a file named a. out
in the current directory.

If a file named core exists in the current directory, or a coredump file
is specified, dbx can be used to examine the state of the program
when it faulted.

-r Executes objfile immediately. If it terminates successfully, dbx exits.
Otherwise, the reason for termination will be reported and the user is
offered the option of entering the debugger or letting the program fault.
The dbx debugger will read from / dev / tty when -r is specified and
standard input is not a terminal.

-i Forces dbx to act as though standard input is a terminal.

-k Maps memory addresses, useful for kernel debugging.

-Idir Adds dir to the list of directories that are searched when looking for a
source file. Normally, dbx looks for source files in the current directory

1-170 Commands

dbx(1)

and in the directory where objfile is located. The directory search path can
also be set with the use command.

-cfile Executes the dbx commands in the file before reading from standard
input.

Unless the -r option is specified, the dbx command just prompts and waits for a
command.

Commands

Execution And Tracing Commands

run [args] [< filename] [> filename]
rerun [args] [<filename] [>filename]

Start executing obJfile, passing args as command line
arguments; Angle brackets « or » can be used to redirect
input or output in the usual manner. When rerun is used
without any arguments, the previous argument list is passed
to the program. Otherwise it is identical to run. If obJfile
has been written since the last time the symbolic information
was read in, dbx will read in the new information.

trace [in procedure/function] [if condition]
trace source-line-number [if condition]
trace procedure/function [in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedure/function] [if condition]

Have tracing information printed when the program is
executed. A number is associated with the command that is
used to tum the tracing off (see the delete command).

The first argument describes what is to be traced. If it is a
source-line-number, then the line is printed immediately
prior to being executed. Source line numbers in a file other
than the current one must be preceded by the name of the
file in quotes and a colon, e.g. "mumble.p":17.

If the argument is a procedure or function name, then every
time it is called information is printed telling what routine
called it, from what source line it was called, and what
parameters were passed to it. In addition, its return is noted
and if it's a function then the value it is returning is also
printed.

If the argument is an expression with an at clause then the
value of the expression is printed whenever the identified
source line is reached.

If the argument is a variable then the name and value of the

Commands 1-171

VAX

VAX dbx(1)

stop if condition

variable is printed whenever it changes. Execution is
substantially slower during this form of tracing.

If no argument is specified then all source lines are printed
before they are executed. Execution is substantially slower
during this form of tracing.

The clause in procedurelfunction allows tracing information
to be printed only while executing inside the given procedure
or function.

The condition is a boolean expression and is evaluated prior
to printing the tracing information; if it is false then the
information is not printed.

stop at source-line-number [if condition]
stop in procedure/function [if condition]
stop variable [if condition]

status [> filename]

Stop execution when the given line is reached, procedure or
function called, variable changed, or condition true.

Print out the currently active trace and stop commands.

delete command-number •••

catch number

catch signal-name

ignore number

ignore signal-name

cont integer

cont signal-name

step

The traces or stops corresponding to the given numbers are
removed. The numbers associated with traces and stops are
printed by the status command. The command delete*
removes all existing breakpoints and tracepoints at once.

Start or stop trapping a signal before it is sent to the
program. This is useful when a program being debugged
handles signals such as interrupts. A signal may be specified
by number or by a name (for example, SIGINT). Signal
names are case insensitive and the SIG prefix is optional.
By default all signals are trapped except SIGCONT,
SIGCHILD, SIGALRM, and SIGKILL.

Continue execution from where it stopped. If a signal is
specified, the process continues as though it received the
signal. Otherwise, program execution continues as if a
signal had not been encountered.

Execution cannot be continued if the process has called the
standard procedure exit. The dbx debugger does not allow
the process to exit, thereby letting the user examine the
program state.

Execute one source line.

1-172 Commands

next

dbx(1)

Execute up to the next source line. The difference between
next and step is that if the line contains a call to a procedure
or function the step command will stop at the beginning of
that block, while the next command will not.

return [procedure] Continue until a return to procedure is executed, or until the
current procedure returns if none is specified.

call procedure(parameters)
Execute the object code associated with the named procedure
or function.

Printing Variables And Expressions
Names are resolved first using the static scope of the current function, then using the
dynamic scope if the name is not defined in the static scope. If static and dynamic
searches do not yield a result, an arbitrary symbol is chosen and the message
[using qualified name] is printed. The name resolution procedure may be overridden
by qualifying an identifier with a block name, for example, module.variable. For C,
source files are treated as modules named by the file name without .c.

Expressions are specified with an approximately common subset of C and Pascal (or
equivalently Modula-2) syntax. Indirection can be denoted using either an asterisk
(*) as a prefix or a circumflex (A) as a postfix. Array expressions are enclosed in
brackets ([D, and the field reference operator (.) can be used with pointers as well as
records, making the C operator (-» unnecessary (although it is supported).

Types of expressions are checked; the type of an expression may be overridden by
using (expression)\type-name.

assign variable = expression
Assign the value of the expression to the variable.

dump [procedure] [> filename]
Print the names and values of variables in the given
procedure, or the current one if none is specified. If the
procedure given is the field reference operator (.), then the
all active variables are dumped.

print expression [, expression •••]

whatis name

which identifier

up [count]

down [count]

where

whereis identifier

Print out the values of the expressions.

Print the declaration of the given name, which may be
qualified with block names as above.

Print the full qualification of the given identifier, i.e. the
outer blocks that the identifier is associated with.

Move the current function, which is used for resolving
names, up or down the stack count levels. The default count
is 1.

Print out a list of the active procedures and function.

Print the full qualification of all the symbols whose name

Commands 1-173

VAX

VAX dbx(1)

matches the given identifier. The order in which the
symbols are printed is not meaningful.

Accessing Source Files

Iregular expression[/]

?regular expression[?] Search forward or backward in the current source file for the
given pattern.

edit ffilename]

edit procedure/function-name
Invoke an editor on filename or the current source file if
none is specified. If a procedure or function name is
specified, the editor is invoked on the file that contains it.
Which editor is invoked by default depends on the
installation. The default can be overridden by setting the
environment variable EDITOR to the name of the desired
editor.

file ffilename] Change the current source file name to filename. If none is
specified then the current source file name is printed.

fune [procedureJfunction]
Change the current function. If none is specified then print
the current function. Changing the current function
implicitly changes the current source file to the one that
contains the function; it also changes the current scope used
for name resolution.

list [source-line-number [, source-line-number]]
list procedureJfunction List the lines in the current source file from the first line

number to the second inclusive. If no lines are specified, the
next 10 lines are listed. If the name of a procedure or
function is given, lines n-k to n+k are listed, where n is the
first statement in the procedure or function and k is small.

use directory-list Set the list of directories to be searched when looking for
source files.

Command Aliases And Variables

alias name name

alias name string

alias name (parameters) string
When commands are processed, dbx first checks to see if
the word is an alias for either a command or a string. If it is
an alias, then dbx treats the input as though the
corresponding string (with values substituted for any
parameters) had been entered. For example, to define an
alias rr for the command rerun, type

alias rr rerun

1-174 Commands

dbx(1)

To define b as an an alias that sets a stop at a particular line
type

alias b(x) "stop at x"

Subsequently, the command b (12) will be interpreted as
stop at 12.

set name [= expression] The set command defines values for debugger variables.

unalias name

unset name

The names of these variables cannot conflict with names in
the program being debugged and are expanded to the
corresponding expression within other commands. The
following variables have a special meaning:

$ frame
Setting this variable to an address causes dbx to
use the stack frame pointed to by the address for
doing stack traces and accessing local variables.
This facility is of particular use for kernel
debugging.

$hexchars
$hexints
$hexoffsets
$hexstrings

When set, dbx prints out characters, integers,
offsets from registers, or character pointers
respectively in hexadecimal.

$listwindow
The value of this variable specifies the number of
lines to list around a function or when the list
command is given without any parameters. Its
default value is 10.

$mapaddrs
Setting (unsetting) this variable causes dbx to start
(stop) mapping addresses. As with the $frame
variable, this is useful for kernel debugging.

$unsafecall
$unsafeassign

When the $unsafecall variable is set, strict type
checking is turned off for arguments to subroutine
or function calls (for example, in the call
statement), as is strict type checking between the
two sides of an assign statement. These variables
should be used with care, because they severely
limit dbx' s usefulness for detecting errors.

Remove the alias with the given name.

Delete the debugger variable associated with name.

Commands 1-175

VAX

VAX dbx(1)

Machine Level Commands

tracei [address] [if cond]
tracei [variable] [at address] [if cond]
stopi [address] [if cond]
stopi [at] [address] [if cond]

stepi

nexti

Turn on tracing or set a stop using a machine instruction
address.

Single step as in step or next, but do a single instruction
rather than source line.

address ,address/ [mode]
address / [count] [mode]

Print the contents of memory starting at the first address and
continuing up to the second address or until count items are
printed. If you type a period (.) in the address field, the
address following the one printed most recently is used. The
mode specifies how memory will be printed; if it is omitted,
the previous mode that was specified is used. The initial
mode is X.

The following modes are supported:

i print the machine instruction
d print a short word in decimal
D print a long word in decimal
o print a short word in octal
o print a long word in octal
x print a short word in hexadecimal
X print a long word in hexadecimal
b print a byte in octal
c print a byte as a character
s print a string of characters terminated by a null byte
f print a single precision real number
g print a double precision real number

Symbolic addresses are specified by preceding the name with an ampersand (&).
Registers are denoted by $rN where N is the number of the register. Addresses may
be expressions made up of other addresses and the operators plus (+), (-), and
indirection (unary asterisk, *).

Miscellaneous Commands

help Print out a synopsis of dbx commands.

quit Exit dbx.

sh command-line
Pass the command line to the shell for execution. The SHELL

1-176 Commands

environment variable determines which shell is used.

source filename
Read dbx commands from the given filename.

dbx(1)

Restrictions

Files

If you have a program consisting of several object files and each is built from source
files that include header files, the symbolic information for the header files is
reproduced in each object code file. Since one debugger startup usually is done for
each link, having the linker Id(l) reorganize the symbol information will not save
much time, although it would reduce some of the disk space used.

The problem results from the unrestricted semantics of #include statements in C. For
example, an include file can contain static declarations that are separate entities for
each file in which they are included. If your image is too large for dbx to run,
compile with the -g switch only those files that you are interrested in debugging.
However, even with Modula-2, there is a substantial amount of duplication of symbol
infonnation necessary for inter-module type checking.

Some problems remain with the support for individual languages. Fortran problems
include: (a) inability to assign to logical, logical*2, complex, and double complex
variables, (b) inability to represent parameter constants which are not type integer or
real, (c) peculiar representation for the values of dummy procedures. (The value
shown for a dummy procedure is actually the first few bytes of the procedure text.
To find the location of the procedure, use an ampersand (&) to take the address of the
variable.)

The dbx debugger does not allow you to run a program you do not own unless you
are root. If you are not root, the message message string can't-write-to-process may
be displayed on your screen when you issue the run command. This occurs when
the dbx debugger tries to set breakpoints because of restrictions on ptrace(2). If you
repeat the run command, your program runs without breakpoints. The dbx debugger
always tries set a breakpoint on exit.

a.out
.dbxinit

Object file
Initial commands

See Also
cc(l), pc(l), ptrace(l), vcc(l)

Commands 1-177

VAX

dc(1)

Name
dc - desktop calculator

Syntax
de [file]

Description
The de command is an arbitrary precision arithmetic package. Ordinarily it operates
on decimal integers, but you can specify an input base, output base, and a number of
fractional digits to be maintained. The overall structure of de is a stacking (reverse
Polish) calculator. If an argument is given, input is taken from that file until its end,
then from the standard input. The following constructions are recognized:

number The value of the number is pushed on the stack. A number is an unbroken
string of the digits 0-9. It may be preceded by an underscore _ to input a
negative number. Numbers may contain decimal points.

+ _/ * % 1\
The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (/), remaindered (%), or exponentiated (1\). The two entries are
popped off the stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x
may be any character. If the s is capitalized, x is treated as a stack and the
value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not altered.
All registers start with zero value. If the I is capitalized, register x is
treated as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged. P
interprets the top of the stack as an ascii string, removes it, and prints it.

f All values on the stack are printed.

q Exits the program. If executing a string, the recursion level is popped by
two. If q is capitalized, the top value on the stack is popped and the string
execution level is popped by that value.

x Treats the top element of the stack as a character string and executes it as a
string of de commands.

X Replaces the number on the top of the stack with its scale factor.

[000] Puts the bracketed ascii string onto the top of the stack.

<x >x =X

The top two elements of the stack are popped and compared. Register x is
executed if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the scale
factor is ignored.

1-178 Commands

dc(1)

Interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

The top value on the stack is popped and used as the number radix for
further input. When the base (number radix) is re-set, all subsequent
numbers are interpreted in the new base.

For example, if the command is issued twice, first to set the base to base 2,
then to reset it back to base 10, the new base value must be given in the
base originally set (that is, '2 i' will set the base to base 2, after which
'1010 i' will set it back to base 10).

I Pushes the input base on the top of the stack.

o The top value on the stack is popped and used as the number radix for
further output.

o Pushes the output base on the top of the stack.

k The top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable if
all are changed together.

z The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and
executed.

, • Used by be for array operations.

An example which prints the first ten values of n! is the following:

[lal+dsa*plalO>y]sy
Osal
lyx

Commands 1-179

dc(1)

Diagnostics
"x is unimplemented"
x is an octal number.

"stack empty"
Not enough elements on the stack to do what was asked.

"Out of space"
The free list is exhausted (too many digits).

"Out of headers"
Too many numbers being kept around.

"Out of pushdown"
Too many items on the stack.

"Nesting Depth"
Too many levels of nested execution.

See Also
bc(l)

1-180 Commands

dd(1)

Name
dd - copy and convert data

Syntax
dd [option = value ...]

Description
The dd command copies an input file to an output with any requested conversions.
The dd command is especially suited to I/O on the raw physical devices because it
allows reading and writing in arbitrary record sizes.

After completion, dd reports the number of whole and partial input and output
blocks.

This utility supports EOT handling which allows the use of multiple media. The
utility prompts for the next volume when it encounters the end of the current volume.

Options
Where sizes (n) are given for an option, the number may end with k for kilobytes
(1024 bytes), b for blocks (512 bytes), or w for words (2 bytes). Also, two numbers
may be separated by the character x to indicate a product.

if=name Input file name. The standard input is the default.

of=name Output file name. The standard output is the default.

ibs=n Input block size, n bytes. The default is 512 bytes. Some
devices do not support greater than 65,535 bytes.

obs=n Output block size, n bytes. The default is 512 bytes. Some
devices do not support greater than 65,535 bytes.

bs=n

cbs=n

skip=n

files=n

seek=n

rbuf=n

Set both input and output block size to n bytes, superseding
ibs and obs. Also, if bs is specified, the copy is more
efficient, since no blocking conversion is necessary.

Conversion buffer size, n bytes. Use only if ascii, unblock,
ebcdic, ibm, or block conversion is specified. For ascii and
unblock, n characters are placed into the conversion buffer,
any specified character mapping is done, trailing blanks are
trimmed and new line added before sending the line to the
output. For ebcdic, ibm, or block, characters are read into
the conversion buffer, and blanks added to make an output
record of size n bytes.

Skip n input records before starting to copy.

Copy n input files before terminating. This option is useful
only when the input is a magnetic tape or similar device.

Seek n records from beginning of output file before copying.

Use n buffers for reading from those raw devices that
support n-buffered I/O. (See Section 4 to check whether a
specific device supports n-buffered I/O.) All n reads are

Commands 1-181

dd(1)

wbuf=n

count=n

conv=ascii

conv=ebcdic

conv=ibm

conv=block

conv=unblock

conv=lcase

conv=ucase

conv=swab

conv=noerror

conv=sync

conv=nomulti

conv=sparse

conv= ... , •..

started and each read must complete before the data can be
used. This allows an n-buffered read-ahead on supported
raw devices.

A default of eight read buffers are used if the read device
supports n-buffered I/O and the write device does not.

The rbuf option cannot be used with the wbuf option.

Use n buffers for writing from those raw devices that support
n-buffered I/O. (See Section 4 to check whether a specific
device supports n-buffered I/O.) Each write is started but
not known to be complete until all n buffers have been used.
(This allows an n-buffered write-behind on supported raw
devices).

A default of eight write buffers are used if the write device
supports n-buffered I/O.

The wbuf option cannot be used with the rbuf option.

Copy only n input records.

Convert EBCDIC to ASCII.

Convert ASCII to EBCDIC.

Slightly different map of ASCII to EBCDIC (see
RESTRICTIONS).

Convert variable length records to fixed length.

Convert fixed length records to variable length.

Map alphabetics to lower case.

Map alphabetics to upper case.

Swap every pair of bytes.

Do not stop processing on an error.

Pad every input record to ibs.

Disable multiple tape volumes.

Create a sparse output file.

Include several arguments for the cony option, separated by
commas (see example below).

Examples
The following example shows how to read an EBCDIC tape blocked ten 80-byte
EBCDIC card images per record into the ASCII file x:
dd if=/dev/rmtOh of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. As noted in the DESCRIPTION, the dd command is
especially suited to I/O on the raw physical devices because it allows reading and
writing in arbitrary record sizes.

1-182 Commands

dd(1)

Restrictions
The ASCII/EBCDIC conversion tables are taken from the 256-character standard in
the Communications o/the ACM, November, 1968.

The ibm conversion corresponds to certain IBM print train conventions.

One must specify "conv=noerror,sync" when copying raw disks with bad sectors to
ensure that dd stays synchronized.
On SCSI tape devices when reading a multi-volume tape set the command will exit
normally upon hitting EOT on any volume rather than automatically unloading the
volume and prompting for the next volume as is normal. The user should load the
next volume and issue the command anew.

Diagnostics
f+p records in(out): numbers of full and partial records read(written)

See Also
cp(l), tr(1), nbuf(4)

Commands 1-183

delta (1)

Name
delta - create new SCCS delta to save changes

Syntax
delta [-rSlD] [-s] [-n] [-gUst] [-m [mrUst]] [-y [comment]] [-p] files

Description
The del ta command is used to permanently introduce into the named sees file
changes that were made to the file retrieved by get(1) (called the g-file, or generated
file).

The de 1 t a command makes a delta to each named sees file. If a directory is
named, de 1 t a behaves as though each file in the directory were specified as a
named file, except that non-sees files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of - is given, the
standard input is read (see RESTRICTIONS); each line of the standard input is taken
to be the name of an sees file to be processed.

The de 1 t a command may issue prompts on the standard output depending upon
certain keyletters specified and flags that may be present in the sees file. For further
information, see -m and -y keyletters below and admin(l).

The del ta includes commentary, input by the user, that consists of one or more
lines, terminated by a period (.) in column one of a new line.

Keyletter arguments apply independently to each named file.

Options
Keyletter arguments:

-gUst Ignores specified list of deltas.

-m[mrUst] Indicates the modification request number. (-m[mrlist]).

-n
-p

-rSlD

1-184 Commands

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the
standard input is read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt always precedes the
comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters.
An unescaped new-line character terminates the MR list.

Note that if the v flag has a value it is taken to be the name
of a program (or shell procedure) which will validate the
correctness of the MR numbers. For further information, see
admin(l). If a non-zero exit status is returned from MR
number validation program, delta terminates (it is
assumed that the MR numbers were not all valid).

Does not delete edited file.

Displays differences before and after delta is applied.

Identifies which delta is to be made to the sees file. Use

-s

-y[comment]

delta (1)

this keyletter only if two or more outstanding gets for
editing (get -e) on the same sees file has been done by the
same person (login name). The SID value specified with the
-r keyletter can be either the SID specified on the get
command line or the SID to be made as reported by the get
command. For further information, see get(l). A
diagnostic results if the specified SID is ambiguous, or, if
necessary and omitted on the command line.

Suppresses all messages.

Creates delta with specified commentary. text A null string
is considered a valid comment.
If -y is not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before
the standard input is read; if the standard input is not a
terminal, no prompt is issued. A period (.) in column one of
a newline terminates the comment text.

Restrictions
Lines beginning with an SOH Asell character (binary 001) cannot be placed in the
sees file unless the SOH is escaped. This character has special meaning to sees and
will cause an error. For further information, see sccsfile(5).

A get of many sees files, followed by a delta of those files, should be avoided
when the get generates a large amount of data. Instead, multiple get / de 1 t a
sequences should be used.

If the standard input (-) is specified on the de 1 t a command line, the -m (if
necessary) and -y keyletters must also be present. Omission of these keyletters
causes an error to occur.

Diagnostics

Files

See sccshelp(l) for explanations.

g-file

p-file

q-file

x-file

z-file

d-file

lusr/bin/bdiff

Existed before the execution of de 1 t a; removed after
completion of de 1 t a .

Existed before the execution of delta; may exist after
completion of de 1 t a .

Created during the execution of de 1 t a; removed after
completion of de 1 t a .

Created during the execution of de 1 t a; renamed to sees
file after completion of de 1 t a .

Created during the execution of de 1 t a; removed during
the execution of de 1 t a .

Created during the execution of de 1 t a; removed after
completion of de 1 t a .

Program to compute differences between the "gotten" file
and the g-file.

Commands 1-185

delta (1)

See Also
admin(l), bdiff(l), cdc(l), get(l), help(l), prs(l), rmdel(l), sccs(l), sccsfile(5)
Guide to the Source Code Control System

1-186 Commands

deroff(1)

Name
deroff - remove formatting codes from text

Syntax
deroff [-w] file ...

Description
The deroff command reads each file in sequence and removes all nroff and
traff command lines, backs lash constructions, macro definitions, eqn constructs
(between .EQ and .EN lines or between delimiters), and table descriptions and writes
the remainder on the standard output. The de r a f f command follows chains of
included files (.so and .nx commands); if a file has already been included, the .so
command is ignored and an .nx command terminates execution. If no input file is
given, deroff reads from the standard input file.

Options

-w Generates word list (one word per line).

Restrictions
The deroff command is not a complete troff interpreter, so it can be confused
by subtle constructs. Most errors result in too much rather than too little output.

The -w flag removes every one- or two-character word.

See Also
diction(1), nroff(1)

Commands 1-187

df(1)

Name
df - display free and used disk space

Syntax
df [-i] [-0] [filesystem ...] [file ...]

Description
The df command displays the amount of disk space available on the specified file
system, for example, /dev/raOa. It also displays the amount of available disk
space on the file system in which the specifiedfile is contained, for example, $HOME.
If a device is given that has no file systems mounted on it, df displays the
information for the root file system. Without any arguments or options, df displays
shows all mounted filesystems, including those manually mounted without use of the
/etc/fstab file. The numbers are reported in kilobytes.

Unless the -0 option is specified, df updates the statistics stored in memory for the
file system specified, before it returns the information.

Options

-i Also report the number of used and free inodes.

-0 Do not update the file system statistics stored in memory. Instead, return
whatever statistics are stored in memory. This prevents df from hanging in
the event that a server containing the specified file system is down.

Restrictions
You cannot use the df command to find free space on an unmounted file system
using the block or character special device name. Instead, use the dump f s
command.

Examples

% df
Filesystem
node
Idev/ra1a
Idev/raOe
Idev/raOh

Total
kbytes

7429
30519

313233

kbytes
used
2085

14817
122858

kbytes
free
4602

12651
159052

%
used
31%
54%
44%

Mounted on
Itmp
lusrlspool
lusrlstaff1

The total disk space is the total space that was created during the making of the file
system. The addition of the used space, the free space and a percentage of reserved
space is the total space. The default value for the reserved space is 10%.

1-188 Commands

df(1)

Files

/etc/fstab
List of mounted file systems

See Also
getmnt(2), fstab(5), dumpfs(8), icheck(8), mkfs(8), newfs(8), quot(8)

Commands 1-189

dgate(1c)

Name

Syntax

dgate - log in to a DECnet remote system through an intermediate ULTRIX DECnet
host (gateway system)

dgate host

Description

Files

The dg ate command lets you log in from an ULTRIX system without DECnet to a
remote system on DECnet (specified by the host argument) through an intermediate
host, or gateway system: an ULTRIX system attached to DECnet.

The login is accomplished through an intennediate host, or gateway system, to which
your system is connected through a local area (TCPIIP) network. The gateway
system is specified at the local system in the file / etc/ dgateway. The gateway
system must be connected through DECnet to the ultimate host system that you
specify in the dgate command.

The dgate program scans input for lines beginning with a tilde character (....). A
tilde-period line disconnects you from your current dg ate session. A tilde-CTRL/Z
line suspends dg ate and returns you to the parent process. A tilde-tilde line passes
the tilde character on to the remote login session.

/etc/dgateway
"'/.dgateway

See Also
dgateway(5)

1-190 Commands

Name

Syntax

diction, explain - print wordy sentences; thesaurus for diction

diction [-ml] [-mm] [-n] [-f pfile] file ...
explain

diction (1)

Description
The diction command finds all sentences in a document that contain phrases from
a data base of bad or wordy diction. Each phrase is bracketed with []. Because
diction runs deroff before looking at the text, formatting header files should be
included as part of the input.

The explain command is an interactive thesaurus for the phrases found by diction.

Options

-mm

-ml

-fpfile

Restrictions

Overrides default macro package -ms.

Causes deroff to skip lists.

Specifies pattern file in addition to default file. Note that
you can specify the -0 flag to suppress the default file.

Use of non-standard formatting macros may cause incorrect sentence breaks.

See Also
deroff(l)

Commands 1-191

diff (1)

Name

Syntax

diff - differential file comparator

diff [options] dir 1 dir2
diff [options] filel file2

Description
The di f f command compares the contents of files or groups of files, and lists any
differences it finds. When run on regular files, and when comparing text files that
differ during directory comparison, di ff tells what lines must be changed in the
files to bring them into agreement. Except in rare circumstances, di f f finds a
smallest sufficient set of file differences. If neither filel nor file2 is a directory, then
either can be specified as '-', in which case the standard input is used. If filel is a
directory, then a file in that directory whose filename is the same as the filename of
file2 is used and likewise if file2 is a directory.

If both arguments are directories, di f f sorts the contents of the directories by name,
and then runs the regular file di f f algorithm on text files that are different. Binary
files that differ, common subdirectories, and files that appear in only one directory are
listed.

Options
The following options are used when comparing directories:

-I Displays the output in long format. Each text file is piped through pr(1)
to paginate it; other differences are summarized after all text file
differences are reported.

-n

-r

-s
-Sname

Produces a script similar to that of -e, but in reverse order and with a
count of changed lines on each insert or delete command.

Recursively checks files in common subdirectories.

Displays names of files that are the same.

Starts a directory in the middle beginning with the specified file.

Except for the -b, i, t, and w options, which may be given with any of the others,
the following formatting options are mutually exclusive:

-b Ignores trailing blanks and other strings of blanks and treats such
portions as equal.

-e Displays three context lines with each output line. For backwards
compatibility, -en causes n number of context lines.

-C n Displays specified number of context lines with each output line. With-e
or -C the output format is modified slightly: the output begins with
identification of the files involved and their creation dates and then each
change is separated by a line with a dozen asterisks (*). The lines
removed from filel are marked with minus sign (-); those added to file2
are marked plus sign (+). Lines that are changed from one file to the
other are marked in both files with an exclamation point (!).

1-192 Commands

diff(1)

Changes within n context lines of each other are grouped together in the
output. This results in output that is usually much easier to interpret.

-Dstring Causes di f f to create a merged version of filel and file2 on the standard
outpUt. With C preprocessor controls included, a compilation of the
result without defining string is equivalent to compiling filel, while
defining string will yield file2.

-e Writes output to an ed script. In connection with -e, the following shell
program can help maintain multiple versions of a file. Only an ancestral
file ($1) and a chain of version-to-version ed scripts ($2,$3, ...) made by
di f f need be available. A latest version message appears on the
standard output.

(shift; cat $*; echo 'l,$p') I ed - $1

If you specify -e when comparing directories the result is a sh(l) script
for converting text files that are common to the two directories from their
state in dir 1 to their state in dir2.

-f Writes the output in reverse order to a script.

-h Makes a hasty comparison. It works only when changed portions are
short and well separated, but does work on files of unlimited length.

-i Ignores the case of letters. For example 'A' will compare equal to 'a'.

-t Expand tabs in output lines. Normal or -c output adds character(s) to the
front of each line which may affect the indentation of the original source
lines and make the output listing difficult to interpret. This option will
preserves the original indentation.

-w Causes whitespace (blanks and tabs) to be totally ignored. For example,
'if (a == b)' will compare equal to 'if(a==b)'.

There are several options for output format; the default output format contains lines
of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The numbers after the
letters pertain to file2. In fact, by exchanging 'a' for 'd' and reading backward you
can tell how to convertfile2 into filel. As in ed, identical pairs where nl = n2 or
n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by a left angle bracket «). Then all the lines that are affected in the second
file are listed, flagged by a right angle bracket (».

Restrictions
Editing scripts produced under the -e or -f option have trouble creating lines
consisting of a single period (.).

When comparing directories with the -b, i, t, or w options specified, di f f first
compares the files as crop does, and then runs the di f f algorithm if they are not
equal. If the only differences are in the blank strings, di f f may report these as
differences.

Commands 1-193

diff (1)

Diagnostics

Files

Exit status is 0 for no differences, 1 for some differences,and 2 if the specified file
cannot be found.

/tmp/d?????

/usr/lib/diffh fur-h

/bin/pr

See Also
cmp(l), cc(l), comm(l), diff3(l), ed(l)

1-194 Commands

diff3 (1)

Name
diff3 - 3-way differential file comparison

Syntax
diff3 [-ex3] filel file2 file3

Description
The di f f 3 command compares three versions of a file, and publishes the ranges of
text that disagree, flagged with the following codes:

---- all three files differ

====1

====2

====3

filel is different

file2 is different

file3 is different

The type of change needed to convert a given range of a given file to some other is
indicated in one of these ways:

f : nl a Text is to be appended after line number nl in file f, where f = 1,
2, or 3.

f : nl ,n2 c Text is to be changed in the range line nl to line n2. If nl = n2,
the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication. When
the contents of two files are identical, the contents of the lower-numbered file is
suppressed.

Options

-3 Produces an ed editor script containing the changes between file1 and file2 that
are to be incorporated into file3.

-e Produces an ed editor script containing the changes between file2 and
file3 that are to be incorporated into file 1.

-x Produces an ed editor script containing the changes among all three
files.

Examples
Under the -e option, diff3 publishes a script for the editor ed that incorporates
into filel all changes betweenfile2 and file3 - that is, the changes that would
normally be flagged ==== and ====3. Option -x (-3) produces a script to
incorporate only changes flagged ==== (====3). The following command applies
the resulting script to 'file1 ':

(cat script; echo 'l,$p') I ed - filel

Commands 1-195

diff3 (1)

Restrictions

Files

Text lines that consist of a single '.' defeat-e.

/tmp/d3?????
/usr/lib/diff3

See Also
cmp(1), comm(l), diff(l), dffmk(1), join(l), sccsdiff(1), uniq(1)

1-196 Commands

diffmk(1)

Name
diffmk - mark differences between files

Syntax
diffmk name1 name2 name3

Description
The di f fmk command compares two versions of a file and creates a third file that
includes "change mark" commands for nraff or traff. The name1 and name2
are the old and new versions of the file. The di f fmk command generates name3,
which contains the lines of name2 plus inserted formatter "change mark" (.me)
requests. When name3 is formatted, changed or inserted text is shown by I at the
right margin of each line. The position of deleted text is shown by a single *.
The diffmk command can be used to produce listings of C (or other) programs
with changes marked. A typical command line for such use is the following:

diffmk old.c new.c tmp; nroff macs tmp I pr

In this example the file maes contains:

.pl 1

.11 77

.nf

.eo

.nc

The .11 request might specify a different line length, depending on the nature of the
program being printed. The .eo and .De requests are probably needed only for C
programs.

If the characters I and * are inappropriate, a copy of di f fmk can be edited to
change them. The diffmk command is a shell procedure.

Restrictions
Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output, that
is, replacing .sp by .sp 2 will produce a "change mark" on the preceding or
following line of output.

See Also
cmp(1), comm(1), diff(1), nroff(1), join(1), sccsdiff(l), troff(l), uniq(l)

Commands 1-197

dircmp(1)

Name
dircmp - directory comparison

Syntax
dircmp [-d] [-s] [-wn] dir ...

Description
The dircrnp command examines dirl and dir2 and generates tabulated information
about the contents of the directories. Listings of files that are unique to each directory
are generated for all the options. If no option is entered, a list is output indicating
whether the filenames common to both directories have the same contents.

This command is supplied for X/OPEN compliance. The same results are available
from diff(1), which produces results more quickly and effectively.

Options

-d Compares the contents of files with the same name in both directories and
output a list telling what must be changed in the two files to bring them into
agreement. The list format is described in diff(l).

-s Suppresses messages about identical files.

-wn Changes the width of the output line to n characters. The default width is 72.

See Also
cmp(1), diff(1).

1-198 Commands

dirname(1)

Name
dirname - deliver directory names from pathname

Syntax
dirname string

Description
The dirname command delivers all but the last level of the path name in string.

Examples
The following example sets the Bourne shell variable NAME to / u s r / s r c / cmd :

NAME='dirname /usr/src/cmd/cat.c'

See Also
basename(1), she 1), sh5(1), ksh(1)

Commands 1-199

Rise dis (1)

Name
dis - disassemble an object file

Syntax
dis [-h] [-S] [-p procedure] [file ...]

Description
The dis command disassembles object files into machine instructions. Note that
assembler code and machine code can differ depending on the machine type. A file
can be an object or an archive file.

Options

-h Prints the general register names, rather than the software register names.

-p Disassembles only the specified procedure from the object file.

-S Lists the source listings. Otherwise, only instructions are listed.

Restrictions
You cannot disassemble an archive.

1-200 Commands

Name

Syntax

dist - redistribute a message to additional addresses

dist [+folder] [msg] [-annotate] [-noannotate] [-draftfolder +folder]
[-draftmessage msg] [-nodraftfolder] [-editor editorname] [-noedit]
[-formformjile] [-inplace] [-noinplace] [-whatnowproc program]
[-nowhatnowproc] [-help]

dist(1 mh)

Description

Use dist to redistribute the current message to addresses that are not on the original
address list.

The program di s t is similar to f 0 rw. The main difference between the two
commands is that forw encapsulates the message, whereas dist merely resends it.
This is manifested in the scan listing of the messages. A message that has been
forwarded will appear to have been sent by the person who forwarded the message.
A message that has been redistributed using dist will appear to have come from the
sender of the original message. In the following example, messages one and two are
identical apart from the method used to send the message on to additional recipients.

1 20/06 goodman ULTRIX «As you will see from the attached
2+ 21/06 John As previous, but forwarded «------- Forwa

When you use di s t, you will get a message form to fill in with the details of the
additional recipients. The default message form contains the following elements:

Resent-To:
Resent-cc:

You can only put recognized header lines in this message form. The dist program
recognizes addresses in the following fields:
Resent-To:
Resent-ee:
Resent-Bee:
Resent-Fcc: folder

The Resent-Fcc: field will be honored only if you have a corresponding
Resent-Fcc: folder set up in your mhyrofile (see send(lmh)). The
headers and the body of the original message are copied to the draft when the
message is sent.

If the file named di s t c omp s exists in your MH directory, it is used instead of the
standard mail header. In either case, the file specified by -formformjile is used if
given.

If the draft already exists, di s t asks you what you want to do with the existing
draft. A reply of qui t aborts dist, leaving the draft intact; replace replaces
the existing draft with a blank skeleton; and list displays the draft.

Commands 1-201

dist(1mh)

Options

If the -annotate option is used, the message being distributed is annotated with
the lines:

Resent: date
Resent: addrs

where each address list contains as many lines as required. This annotation is done
only if the message is sent directly from di st. If the message is not sent
immediately from dist, comp -use may be used to re-edit and send the
constructed message, but the annotations do not take place. The -inplace option
causes annotation to be done in place in order to preserve links to the annotated
message.

The -editor and -noedi t switches allow you to specify an editor of your choice;
or to suppress the editor entirely.

Note that while in the editor, the message being resent is available through a link
named @ (assuming the default whatnowproc). In addition, the actual pathname
of the message is stored in the environment variable $edi tal t, and the pathname
of the folder containing the message is stored in the variable $mhfolder.

The dist command normally creates the draft of the message in the draft file, or
in the +drafts folder if you have one set up. The -draftfolder +folder and
-draftmessage filename options allow you to create draft messages in alternative
locations. See comp(1mh) for more details.

When you exit from the editor, dist invokes the whatnow program. See
whatnow(lmh) for details of the available options. The invocation of this program
can be inhibited by using the -nowhatnowproc switch. However the whatnow
program starts the initial edit, hence, -nowhatnowproc prevents any edit from
occurring.

The di s t command does not rigorously check the message being distributed for
adherence to the transport standard, but post called by send does.

The post program will not deliver poorly formatted messages, and dist will not
correct things for you.

If whatnowproc is whatnow, then dist uses the built-in whatnow, program.
However, it does not actually run the whatnow program. Hence, if you define your
own whatnowproc, do not call it whatnow since dist will not run it.

If your current working directory is not writable, the link named @ is not available.

Context
If a folder is given, it will become the current folder. The message distributed will
become the current message. Dist originally used headers of the form
Distribute-xxx: instead of Resent-xxx:. In order to conform with the
ARPA Internet standard, RFC-822, the Resent-xxx: form is now used. Dist
will recognize distribute-xxx: type headers and automatically convert them to
Resent -xxx. The defaults for dist are:

1-202 Commands

+foldername defaults to the current folder
msg defaults to cur
-noannotate
-nodraftfolder

dist(1mh)

-noinplace

Files
The message skeleton /usr/new/lib/rnh/distcornps

<rnh-dir>/distcornps
$HOME/.mh-profile
<mh-dir>/draft

Alternative to the standard skeleton
The user profile

Profile Components
Path:
Current-Folder:
Draft-Folder:
Editor:
fileproc:
whatnowproc:

See Also

The draft file

To determine your MH directory (mh-dir)
To find the default current folder
To find the default draft-folder
To override the default editor
Program to refile the message
Program to ask the What now? questions

comp(1mh), forw(1mh), repl(1mh), send(lmh), whatnow(1mh)

Commands 1-203

domainname{1yp)

Name
domainname - display or set the name of the current domain for this system

Syntax
domainname [nameD/domain]

Description
The domainname command, when used without an argument, displays the name of
the current domain. The /etc/rc .local startup script must be used to set the
current domain name before any other YP commands can be issued.

A domain is a logical grouping of networked-connected systems established for the
purpose of sharing a common set of data files. Domains are only used by the yellow
pages (YP) service and are called YP domains. A YP domain is a directory in
/etc/yp, established through the use of the domainname command, where a YP
server holds all of the YP maps. Each YP map contains a set of keys and associated
key values. For example, in a map called hosts . byname , the host names stored
there constitute the keys. The corresponding internet addresses of each host
constitute the associated key values.

See Also
ypfiles(5yp), ypsetup(8yp)

1-204 Commands

dtoc (1)

Name
dtoc - unpack objects from a DOTS file

Syntax
dtoc [-f] [-p] [[object.dots] directory]

Description
The dtoc command unpacks the contents of a Data Object Transport Syntax
(DOTS) file or standard input.

object.dots can be either a file name, or a minus sign (-). If a minus sign (-) is
specified, or if no file name is present, d toe reads from the standard input. If
directory is specified, the contents of the DOTS input is unpacked and stored in the
specified directory. If directory is not specified, the content of the DOTS input is
unpacked into the current directory. The names of the files created are written to
standard output.

A DOTS file may contain a data object which consists of more than one component.
Therefore, it is possible that more than one output file may be generated. As the
object is unpacked, duplicate file or directory names may be encountered. If a
duplicate is encountered, a new output file is generated with a sequential number
appended to its name. For example, if dtoc discovers an existing file faa. ddif
during unpacking, faa. ddif .1 is created.

As an object is unpacked, the external references within each object component are
updated. Because DOTS files may have originated from non-ULTRIX systems,
names of components may be modified as components are unpacked. References to
those renamed components are updated accordingly.

Options

-f Suppresses output of unpacked file names.

-p Causes only the name of the primary input file to be written to standard output.

Implementation

Standard Input

If a minus sign (-) is specified, or if no parameters are specified, standard input is
read until a <CTRL/D> or EOF (end of file) is read. It cannot be specified more than
once. The contents of standard input must conform to the syntax of a single DOTS
file.

Reconstitution Of Names
Object file names and file names of referenced components may be modified as
objects are extracted or unpacked. If names are modified, the references in the
unpacked objects are updated. The handling of names depends in part on the name­
type of the object, as follows:

Commands 1-205

dtoc(1)

UL TRIX file names

Names are unmodified.

VMS file names

The set of rules is as follows:

Convert uppercase letters to lower case.

Convert dollar signs ($) to underscores (_) because dollar
signs have meaning on ULTRIX systems.

Ignore disk volume and directory specifications, if they are
present, because they are not likely to be meaningful on
ULTRIX systems.

Append duplicate file names with a period and a unique
number.

Leave all other characters alone.

Restrictions
A DOTS file is expected to contain only a single primary DDIF or DTIF object in
this release. Any subsequent objects in the DOTS file are external references of the
primary object.

DiagnostiCS
The exit status is 0 if all objects were unpacked successfully, and 1 if any of the
objects could not be unpacked. Consult standard error to see what failed, and why.

If a nonexistent target directory is specified, dtoc returns error status.

See Also
ctod(1), DDIF(5), DTIF(5), DOTS(5)

1-206 Commands

du(1)

Name
du - print amount of disk usage

Syntax
du [-as] [name ...]

Description
The du command gives the number of kilobytes contained in all files and,
recursively, directories within each specified directory or file name. If name is
missing, '.' is used.

Absence of either -a or -s causes an entry to be generated for each directory only.

A file that has two links to it is only counted once.

Options

-a Displays the disk usage for each file.

-s Displays a summary total only.

Restrictions
Non-directories given as arguments (not under -a option) are not listed.

If there are too many distinct linked files, du counts the excess files mUltiply.

See Also
df(l), quot(8)

Commands 1-207

echo(1)

Name
echo - echo arguments

Syntax
echo [-0] [arg ...]

Description
The echo command writes its arguments separated by blanks and terminated by a
new line on the standard output.

Options

-0 Suppresses newlines from output.

Examples
The echo command is useful for producing diagnostics in shell programs and for
writing constant data on pipes.

To send diagnostics to the standard error file, type the following:

echo ••. 1>&2

1-208 Commands

echo(1sh5)

Name
echo - echo arguments

Syntax
echo [arg] ...

Description
The echo command writes its arguments separated by blanks and terminated by a
new-line on the standard output. It also understands C-like escape conventions;
however, beware of conflicts with the shell's use of the backs lash (\) character:

\b backspace
\c print line without new-line
\f form -feed
\0 new-line
\r carriage return
\t tab
\v vertical tab
\\ backs lash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal

number n, which must start with a zero.

The echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

See Also
sh5(l)

Commands 1-209

ed(1)

Name

Syntax

ed, red - text editor

ed [-] [-pstring] [-x] [file]

red [-] [-x] [file]

Description
The ed text editor is the standard text editor. If you give the file argument, ed
simulates an e command (see below) on the named file; that is to say, the file is read
into ed's buffer so that it can be edited. The - option suppresses the printing of
character counts bye, r, and w commands, of diagnostics from e and q commands,
and of the ! prompt after a !shell command. The -p option allows you to specify a
prompt string.

NOTE

The -x option is available only if the Encryption layered product is
installed.

If you supply the -x option, an x command is simulated first to handle an encrypted
file. The e d text editor operates on a copy of the file it is editing; changes made to
the copy have no effect on the file until you give a w (write) command. The copy of
the text being edited resides in a temporary file called the buffer. There is only one
buffer.

The red text editor is a restricted version of ed. It allows editing of files only in
the current directory, and prohibits executing shell commands with !shell command.
Attempts to bypass these restrictions result in an error message (restricted shell).

NOTE

When you enter text, tab characters are expanded to every eighth column
as is the default.

Commands to ed have a simple and regular structure: zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every command
that requires addresses has default addresses, so that the addresses can frequently be
omitted.

In general, only one command appears on a line. Certain commands allow the input
of text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In input mode, no commands are
recognized; all input is merely collected. Input mode is exited by typing a period (.)
alone at the beginning of a line.

The ed text editor supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some commands (for
example, s) to specify portions of a line that are to be substituted. A regular
expression (RE) specifies a set of character strings. A member of this set of strings is
said to be matched by the RE. The REs allowed by ed are constructed as follows:

1-210 Commands

The following one-character REs match a single character:

• An ordinary character (not one of those discussed below) is a one­
character RE that matches itself.

ed(1)

• A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backs lash,
respectively), which are always special, except when they appear
within square brackets ([D.

b. 1\ (caret or circumflex), which is special at the beginning of an entire
RE (see below), or when it immediately follows the left of a pair of
square brackets ([]) (see below).

c. $ (currency symbol), which is special at the end of an entire RE (see
below).

d. The character used to bound (that is, delimit) an entire RE, which is
special for that RE (for example, see how slash (/) is used in the g
command, below.)

• A period (.) is a one-character RE that matches any character except new­
line.

• A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches anyone character in that string. If,
however, the first character of the string is a circumflex (1\), the one­
character RE matches any character except new-line and the remaining
characters in the string. The 1\ has this special meaning only if it occurs
first in the string. The minus (-) may be used to indicate a range of
consecutive ASCn characters; for example, [0-9] is equivalent to
[0123456789]. The -loses this special meaning if it occurs first (after an
initial 1\, if any) or last in the string. The right square bracket (]) does not
terminate such a string when it is the first character within it (after an
initial 1\, if any). For example, []a-f] matches either a right square
bracket (]) or one of the letters a through f inclusive. The four characters
listed in a above stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

• A one-character RE is a RE that matches whatever the one-character RE
matches.

• A one-character RE followed by an asterisk (*) is a RE that matches zero
or more occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

• A one-character RE followed by \{ m \}, \{ m, \}, or \{ m,n \} is a RE that
matches a range of occurrences of the one-character RE. The values of m
and n must be non-negative integers less than 256; \{m\} matches exactly
m occurrences; \{m, \} matches at least m occurrences; \{m,n\} matches
any number of occurrences between m and n inclusive. Whenever a
choice exists, the RE matches as many occurrences as possible.

• The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

Commands 1-211

ed(1)

• A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

• The expression \n matches the same string of characters as was matched
by an expression enclosed between \(and \) earlier in the same RE. Here
n is a digit; the sub-expression specified is that beginning with the n -th
occurrence of \(counting from the left. For example, the expression
A \(.*\)\1$ matches a line consisting of two repeated appearances of the
sallie string.

Finally, an entire RE may be constrained to match only an initial segment or final
segment of a line (or both):

• A circumflex (A) at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

• A currency symbol ($) at the end of an entire RE constrains that RE to
match a final segment of a line.

The construction "entire RE $ constrains the entire RE to match the entire line.

The null RE (for example, II) is equivalent to the last RE encountered. See also the
last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description of
each command. Addresses are constructed as follows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which must be a
lower-case letter. Lines are marked with the k command described below.

5. A RE enclosed by slashes (I) addresses the first line found by searching
forward from the line following the current line toward the end of the buffer
and stopping at the first line containing a string matching the RE. If necessary,
the search wraps around to the beginning of the buffer and continues up to and
including the current line, so that the entire buffer is searched. See also the last
paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the
buffer and stopping at the first line containing a string matching the RE. If
necessary, the search wraps around to the end of the buffer and continues up to
and including the current line. See also the last paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a
decimal number specifies that address plus (respectively minus) the indicated
number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line. For example, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of rule 8 immediately

1-212 Commands

ed(1)

above, the address - refers to the line preceding the current line. (To maintain
compatibility with earlier versions of the editor, the character " in addresses is
entirely equivalent to -.) Moreover, trailing + and - characters have a
cumulative effect, so - refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair ., $.

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one
or two addresses assume default addresses when an insufficient number of addresses
is given; if more addresses are given than such a command requires, the last one(s)
are used.

Typically, addresses are separated from each other by a comma (,). They may also
be separated by a semicolon (;). In the latter case, the current line (.) is set to the
first address, and only then is the second address calculated. This feature can be used
to determine the starting line for forward and backward searches (see rules 5. and 6.
above). The second address of any two-address sequence must correspond to a line
that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the given
addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any
command (except e, f, r, or w) may be suffixed by I, n or p, in which case the current
line is either listed, numbered or printed, respectively, as discussed below under the I,
nand p commands.

(.)a

<text>

(.)c
<text>

(.,.)d

The append command reads the given text and appends it
after the addressed line; . is left at the last inserted line, or, if
there were none, at the addressed line. Address 0 is legal for
this command: it causes the "appended" text to be placed at
the beginning of the buffer. The maximum number of
characters that may be entered from a terminal is 256 per
line (including the new line character).

The change command deletes the addressed lines, then
accepts input text that replaces these lines; • is left at the last
line input, or, if there were none, at the first line that was not
deleted.

The delete command deletes the addressed lines from the
buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end of
the buffer, the new last line becomes the current line.

Commands 1-213

ed(1)

efile

Efile

f file

The edit command causes the entire contents of the buffer to
be deleted, and then the named file to be read in; . is set to
the last line of the buffer. If no file name is given, the
currently-remembered file name, if any, is used (see the f
command). The number of characters read is typed; file is
remembered for possible use as a default file name in
subsequent e, r, and w commands. If file is replaced by!,
the rest of the line is taken to be a shell, she 1), command
whose output is to be read. Such a shell command is not
remembered as the current file name. See also
DIAGNOSTICS below.

The edit command is like e, except that the editor does not
check to see if any changes have been made to the buffer
since the last w command.

If file is given, the file-name command changes the
currently-remembered file name to file; otherwise, it prints
the currently-remembered file name.

(1, $)glRElcommand list

(1, $)GIREI

1-214 Commands

In the global command, the first step is to mark every line
that matches the given RE. Then, for every such line, the
given command list is executed with. initially set to that
line. A single command or the first of a list of commands
appears on the same line as the global command. All lines
of a multi-line list except the last line must be ended with a
\; a, i, and c commands and associated input are permitted;
the. terminating input mode may be omitted if it would be
the last line of the command list. An empty command list is
equivalent to the p command. The g, G, v, and V
commands are not permitted in the command list. See also
RESTRICTIONS and the last paragraph before FILES
below.

In the interactive Global command, the first step is to mark
every line that matches the given RE. Then, for every such
line, that line is printed, • is changed to that line, and any
one command (other than one of the a, c, i, g, G, v, and V
commands) may be input and is executed. After the
execution of that command, the next marked line is printed,
and so on; a new-line acts as a null command; an & causes
the re-execution of the most recent command executed
within the current invocation of G. Note that the commands
input as part of the execution of the G command may
address and affect any lines in the buffer. The G command
can be terminated by an interrupt signal (ASCII DEL or
BREAK).

h

H

(.)i
<text>

(.,.+l)j

. (.)kx

(• , •)1

(.,.)ma

(.,.)0

(.,.)p

ed(1)

The help command gives a short error message that explains
the reason for the most recent ? diagnostic.

The help command causes ed to enter a mode in which
error messages are printed for all subsequent ? diagnostics.
It will also explain the previous ? if there was one. The H
command alternately turns this mode on and off; it is
initially off.

The insert command inserts the given text before the
addressed line; • is left at the last inserted line, or, if there
were none, at the addressed line. This command differs
from the a command only in the placement of the input text.
Address 0 is not legal for this command. The maximum
number of characters that may be entered from a terminal is
256 per line (including the new line character).

The join command joins contiguous lines by removing the
appropriate new-line characters. If exactly one address is
given, this command does nothing .

The mark command marks the addressed line with name x,
which must be a lower-case letter. The address IX then
addresses this line; • is unchanged.

The list command prints the addressed lines in an
unambiguous way: a few non-printing characters (for
example, tab, backspace) are represented by (hopefully)
mnemonic overstrikes, all other non-printing characters are
printed in octal, and long lines are folded. An I command
may be appended to any other command other than e, f, r, or
w.

The B. move command repositions the addressed line(s) after
the line addressed by a. Address 0 is legal for a and causes
the addressed line(s) to be moved to the beginning of the
file; it is an error if address a falls within the range of
moved lines; • is left at the last line moved.

The number command prints the addressed lines, preceding
each line by its line number and a tab character; • is left at
the last line printed. The n command may be appended to
any other command other than e, f, r, or w.

The print command prints the addressed lines; • is left at the
last line printed. The p command may be appended to any

Commands 1-215

ed(1)

p

q

Q

($)r file

other command other than e, f, r, or W; for example, dp
deletes the current line and prints the new current line.

The editor will prompt with a * for all subsequent
commands. The P command alternately turns this mode on
and off; it is initially off.

The quit command causes ed to exit. No automatic write of
a file is done (but see DIAGNOSTICS below).

The editor exits without checking if changes have been made
in the buffer since the last w command.

The read command reads in the given file after the addressed
line. If no file name is given, the currently-remembered file
name, if any, is used (see e and f commands). The
currently-remembered file name is not changed unless file is
the very first file name mentioned since ed was invoked.
Address 0 is legal for r and causes the file to be read at the
beginning of the buffer. If the read is successful, the number
of characters read is typed; • is set to the last line read in. If
file is replaced by!, the rest of the line is taken to be a shell
(sh(l)) command whose output is to be read. For example,
"$r !Is" appends current directory to the end of the file being
edited. Such a shell command is not remembered as the
current file name.

(• , •)slRElreplacementl or
(• , •)slRElreplacementlg

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a
match is found, all (non-overlapped) matched strings are
replaced by the replacement if the global replacement
indicator g appears after the command. If the global
indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution
to fail on all addressed lines. Any character other than
space or new-line may be used instead of I to delimit the RE
and the replacement; • is left at the last line on which a
substitution occurred. See also the last paragraph before
FILES below.

An ampersand (&) appearing in the replacement is replaced
by the string matching the RE on the current line. The
special meaning of & in this context may be suppressed by
preceding it by \. As a more general feature, the characters
\n, where n is a digit, are replaced by the text matched by
the n -th regular subexpression of the specified RE enclosed
between \(and \). When nested parenthesized
subexpressions are present, n is determined by counting
occurrences of \(starting from the left. When the character

1-216 Commands

(. ,.)ta

u

ed(1)

% is the only character in the replacement, the replacement
used in the most recent substitute command is used as the
replacement in the current substitute command. The %
loses its special meaning when it is in a replacement string
of more than one character or is preceded by a \.

A line may be split by substituting a new-line character into
it. The new~line in the replacement must be escaped by
preceding it by \. Such substitution cannot be done as part
of a g or v command list.

This command acts just like the m command, except that a
copy of the addressed lines is placed after address a (which
may be 0); • is left at the last line of the copy.

The undo command nullifies the effect of the most recent
command that modified anything in the buffer, namely the
most recent a, c, d, g, i, j, m, r, s, t, v, G, or V command.

(1, $)v/RE/command list

(1, $)V/RE/

(1, $)w file

($)=

!shell command

This command is the same as the global command g except
that the command list is executed with. initially set to every
line that does not match the RE.

This command is the same as the interactive global
command G except that the lines that are marked during the
first step are those that do not match the RE.

The write command writes the addressed lines into the
named file. If the file does not exist, it is created with mode
666 (readable and writable by everyone), unless your umask
setting (see sh(1)) dictates otherwise. The currently­
remembered file name is not changed unless file is the very
first file name mentioned since ed was invoked. If no file
name is given, the currently-remembered file name, if any, is
used (see e and f commands); • is unchanged. If the
command is successful, the number of characters written is
typed. If file is replaced by !, the rest of the line is taken to
be a shell (sh (1)) command whose standard input is the
addressed lines. Such a shell command is not remembered
as the current file name.

The line number of the addressed line is typed; . is
unchanged by this, command.

The remainder of the line after the ! is sent to the UNIX
System shell (sh (1)) to be interpreted as a command. Within
the text of that command, the unescaped character % is
replaced with the remembered file name; if a ! appears as the
first character of the shell command, it is replaced with the

Commands 1-217

ed(1)

(.+1)<new-line>

text of the previous shell command. Thus,!! will repeat the
last shell command. If any expansion is performed, the
expanded line is echoed; • is unchanged.

An address alone on a line causes the addressed line to be
printed. A new-line alone is equivalent to .+lp; it is useful
for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its
command level.

Some size limitations: 512 characters per line, 256 characters per global command
list, 64 characters per file name, and 128K characters in the buffer. The limit on the
number of lines depends on the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after the
last new-line. Files (for example, a.out) that contain characters not in the ASCII set
(bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (for example, /) would be
the last character before a new-line, that delimiter may be omitted, in which case the
addressed line is printed. The following pairs of commands are equivalent:

sIs 1Is2 sIs l/s2/p
g/sl g/sl/p
?sl ?sl?

Restrictions
A ! command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, r, and w commands cannot be used if
the the editor is invoked from a restricted shell. For further information, see sh(I).
The sequence \0 in a RE does not match a new-line character.
The I command mishandles DEL.

Diagnostics

Files

? for command errors.
?file for an inaccessible file.

(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the
entire buffer, ed warns the user if an attempt is made to destroyed's buffer via the e
or q commands: it prints? and allows one to continue editing. A second e or q
command at this point will take effect. The - command-line option inhibits this
feature.

/tmp/e#
ed.hup

temporary; # is the process number.
work is saved here if the terminal is hung up.

See Also
grep(I), sed(1), sh(l), stty(1)

1-218 Commands

env(1)

Name
env - set environment for command execution

Syntax
env [-] [name=va)ue] ... [command args]

Description
The env command obtains the current environment, modifies it according to its
arguments, then executes the command with the modified environment. Arguments
of the form name =value are merged into the inherited environment before the
command is executed. The - flag causes the inherited environment to be ignored
completely, so that the command is executed with exactly the environment specified
by the arguments.

If no command is specified, the resulting environment is printed, one name-value pair
per line.

See Also
sh(1), environ(5)

Commands 1-219

error (1)

Name
error - analyze and disperse compiler error messages

Syntax
error [-0] [-s] [-q] [-v] [-t suffixlist] [-I ignorefile] [name]

Description
The error command analyzes and optionally disperses the diagnostic error
messages produced by a number of compilers and language processors to the source
file and line where the errors occurred. It permits error messages and source code to
be viewed simultaneously without using multiple windows in a screen editor.

The error command looks at the error messages, either from the specified file name
or from the standard input. It attempts to determine the following: which language
processor produced each error message, to which source file and line number the
error message refers, and if the error message is to be ignored or not. It also inserts
the error message into the source file as a comment on the line preceding the one
where the error occurred.

Error messages that cannot be categorized by language processor or content are not
inserted into any file, but are sent to the standard output. The error command
touches source files only after all input has been read. By specifying the -q query
option, the user is asked to confirm any potentially dangerous (such as touching a
file) or verbose action.

If the -t touch option and associated suffix list is given, error restricts itself to
touching only those files with suffixes in the suffix list. Error also can be asked (by
specifying -v) to invoke vi(1) on the files in which error messages were inserted;
this prevents the need to remember the names of the files with errors.

The error command is intended to be run with its standard input connected via a
pipe to the error message source. Some language processors put error messages on
their standard error file; others put their messages on the standard output. Hence,
both error sources should be piped together into error. For example, when using
the csh syntax,

make -5 lint I & error -q -v

analyzes all the error messages produced by whatever programs make runs when
making lint.

The error command knows about the error messages produced by the following:
make, cc, cpp, ccom, as, ld, lint, pi, pc and f77. The error
command knows a standard format for error messages produced by the language
processors, so it is sensitive to changes in these formats. For all languages except
Pascal, error messages are restricted to be on one line. Some error messages refer to
more than one line in more than one file. The error command duplicates the error
message and inserts it at all of the places referenced.

The error command does one of six things with error messages.

synchronize

1-220 Commands

Some language processors produce short errors describing
which file it is processing. The error command uses these
to determine the file name for languages that don't include

discard

nullify

not file specific

file specific

true errors

error (1)

the file name in each error message. These synchronization
messages are consumed entirely by error.

Error messages from lint that refer to one of the two
1 int libraries, /usr/lib/llib-lc and /usr/lib/llib-port are
discarded, to prevent accidently touching these libraries.
Again, these error messages are consumed entirely by
error.

Error messages from lint can be nullified if they refer to a
specific function, which is known to generate diagnostics
which are not interesting. Nullified error messages are not
inserted into the source file, but are written to the standard
output. The names of functions to ignore are taken from
either the file named .errorrc in the users's home directory,
or from the file named by the -I option. If the file does not
exist, no error messages are nullified. If the file does exist,
there must be one function name per line.

Error messages that can't be discerned are grouped together,
and written to the standard output before any files are
touched. They will not be inserted into any source file.

Error message that refer to a specific file, but to no specific
line, are written to the standard output when that file is
touched.

Error messages that can be intuited are candidates for
insertion into the file to which they refer.

Only true error messages are candidates for inserting into the file they refer to. Other
error messages are consumed entirely by error or are written to the standard
output. The error command inserts the error messages into the source file on the
line preceding the line the language processor found in error. Each error message is
turned into a one line comment for the language, and is internally flagged with the
string "###" at the beginning of the error, and "%%%" at the end of the error.
This makes pattern searching for errors easier with an editor, and allows the messages
to be easily removed.

In addition, each error message contains the source line number for the line to which
the message refers. A reasonably formatted source program can be recompiled with
the error messages still in it, without having the error messages themselves cause
future errors. For poorly formatted source programs in free format languages, such
as C or Pascal, it is possible to insert a comment into another comment, which can
wreak havoc with a future compilation. To avoid this, programs with comments and
source on the same line should be formatted so that language statements appear
before comments.

The error command catches interrupt and terminate signals, and if in the insertion
phase, terminates what it is doing.

Options
Options available with error are the following:

- I ignore file Ignore the functions listed in the specified file (next
argument).

Commands 1-221

error (1)

-D

-q

-s
-5

-T
- t suffixlist

-v

Does not touch files and sends error messages to the
standard output.

Prompts before touching the source file. A "y" or "n" to
the question is necessary to continue. Absence of the -q
option implies that all referenced files (except those referring
to discarded error messages) are to be touched.

Shows error in unsorted order from the error file.

Displays statistics for each error type.

Terse output.

Does not touch those files that match the specified suffix.
The suffix list is dot separated, and "*" wildcards work.
Thus the suffix list:

".c.y .foo*.h"

allows error to touch files ending with ".c", ". y", ".foo*"
and ".h".

Invokes the v i editor on each file that had been touched.

Restrictions

Files

Opens the teletype directly to do user querying.

Source files with links make a new copy of the file with only one link to it.

Changing a language processor's format of error messages may cause error to not
understand the error message.

The error command, since it is purely mechanical, does not filter out subsequent
errors caused by 'floodgating' initiated by one syntactically trivial error.

Pascal error messages belong after the lines affected (error puts them before). The
alignment of the ' I ' marking the point of error is also disturbed by err 0 r .

The error command was designed for work on CRT's at reasonably high speed. It
does not work as well on slow speed terminals, and has never been used on hard­
copy terminals.

.... / . errorrc function names to ignore for lint error messages

/ dev /tty user's teletype

1-222 Commands

Name

Syntax

ex, edit - text editor

ex [-] [-v] [-x] [-t tag] [-r] [+command] [-I] name ...
edit [ex options]

ex(1)

Description
The ex editor is the root of a family of editors: edit, ex and vi. The ex editor is
a superset of ed, with the most notable extension being a display-editing facility.
Display-based editing is the focus of vi.

The name argument indicates the files to be edited.

Options

Suppresses all interactive-user feedback. This option is useful in processing
editor scripts in command files.

-v Equivalent to using vi rather than ex.

-t Equivalent to an initial tag command, that is, editing the file containing the tag
and positioning the editor at its definition.

-r U sed to recover after an editor or system crash. It recovers by retrieving the
last saved version of the named file. If no file is specified, it displays a list of
saved files.

-R Sets the read-only option at the start.

+command
Indicates that the editor should begin by executing the specified command. If
the command is omitted, it defaults to $, positioning the editor at the last line
of the first file, initially. Other useful commands here are scanning patterns of
the form +/pattern or line numbers.

-I Sets up for LISP. That is, it sets the showmatch and lisp options.

NOTE

The -x option is available only if the Encryption layered product is
installed.

-x Causes ex to prompt for a key. The key is used to encrypt and decrypt the
contents of the file. If the file contents have been encrypted with one key, you
must use the same key to decrypt them.

Restrictions
The undo command causes all marks to be lost on lines changed and then restored if
the marked lines were changed.

The undo command does not clear the buffer modified condition.

Commands 1-223

ex(1)

Files

The z command prints a number of logical rather than physical lines. More than a
screenful of output may result if long lines are present.

File input/output errors does not print a name if the command line minus sign (-)
option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn you if you place text in named buffers and do not use it
before exiting the editor.

Null characters are discarded from input files, and cannot appear in output files.

/usr/lib/ex? ?recover
/usr/lib/ex? ?preserve
/etc/termcap
-/.exrc
/tmp!Exnnnnn
/tmp!Rxnnnnn
/usr/preserve

recover command
preserve command
terminal capabilities
editor startup file
editor temporary
named buffer temporary
preservation directory

See Also
awk(1), ed(l), grep(1), sed(1), vi(l), termcap(5), environ(7)
Edit: A Tutorial and the Ex Reference Manual
ULTRIX Supplementary Documents Vol. I: General User

1-224 Commands

Name

Syntax

expand, unexpand - expand tabs to spaces, and vice versa

expand [-tabstop] [-tabn ...] [file ...]
unexpand [-a] [file ...]

expand(1)

Description
The expand command processes the named files or the standard input writing the
standard output with tabs changed into blanks. Backspace characters are preserved
into the output and decrement the column count for tab calculations. The expand
command is useful for pre-processing character files (before sorting, looking at
specific columns, and so forth) that contain tabs.

If a single tabstop argument is given then tabs are set tabstop spaces apart instead of
the default 8. If multiple tabstops are given then the tabs are set at those specific
columns.

The unexpand command puts tabs back into the data from the standard input or the
named files and writes the result on the standard output. By default only leading
blanks and tabs are reconverted to maximal strings of tabs. If the -a option is given,
then tabs are inserted whenever they would compress the resultant file by replacing
two or more characters.

Options

-# Sets tabstops the specified number of spaces (#) apart.

-a When used with unexpand, compresses file by inserting tabs for two or more
spaces.

Commands 1-225

expr (1)

Name
expr - evaluate expressions

Syntax
expr arg ...

Descri ption
The arguments are taken as an expression. After evaluation, the result is written on
the standard output. Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing
precedence, with equal precedence operators grouped.

expr I expr

expr & expr

expr relop expr

expr + expr
expr - expr

expr * expr
expr / expr
expr % expr

expr : expr

(expr)

Examples

Yields the first expr if it is neither null nor O. Otherwise
yields the second expr.

Yields the first expr if neither expr is null or O. Otherwise
yields O.

The relop is one of < <= = != >= > and yields 1 if the
indicated comparison is true, '0' if false. The comparison is
numeric if both expr are integers, otherwise lexicographic.

Yields addition or subtraction of the arguments.

Yields multiplication, division, or remainder of the
arguments.

The matching operator compares the string first argument
with the regular expression second argument; regular
expression syntax is the same as that of ed(1). The \(.•. \)
pattern symbols can be used to select a portion of the first
argument. Otherwise, the matching operator yields the
number of characters matched ('0' on failure).

parentheses for grouping.

The first example adds 1 to the Shell variable a:

a=' expr $a + l'

The second example finds the file name part (least significant part) of the pathname
stored in variable a,

expr $a : '.*/\(.*\)' 'I' $a

Note the quoted Shell metacharacters.

1-226 Commands

expr (1)

Diagnostics
The expr command returns the following exit codes:

o The expression is neither null nor '0'.

1 The expression is null or '0'.

2 The expression is invalid.

See Also
ed(l), sh(1), test(l)

Commands 1-227

extract (1 int)

Name

Syntax

extract - interactive string extract and replace

extract [-i ignorefile] [-m prefix] [-0] [-p patternfile] [-s string]
[-u] source-program ...

Description
The extract command interactively extracts text strings from source programs.
The extract command replaces the strings it extracts with calls to the catgets
function. The command also writes the string it extracts to a source message
catalog. You use this command to replace hard-coded messages in your program
source file with calls to the catgets command and create a source message catalog.
At run time, the program reads the message text from the message catalog. By
storing messages in a message catalog, instead of in your program, you allow the text
of messages to be translated to a new language or modified without the source
program being changed.

In the source-program argument, you name one or more source programs from which
you want messages extracted. The extract command does not extract messages
from source programs included using the # incl ude directive. Therefore, you
might want to name a source program and all the source programs it includes on a
single extract command line.

You can create a patterns file (as specified by (pattern file) to control how the
extract command extracts and replaces text. The patterns file is divided into
several sections, each of which is identified by a keyword. The keyword must start at
the beginning of a new line, and its first character must be a dollar sign ($).
Following the identifier, you specify a number of patterns. Each pattern begins on a
new line and follows the regular expression syntax you use in the regex(3) routine.
For more information on the patterns file, see the pat terns(5int) reference page.

In addition to the patterns file, you can create a file that indicates strings that
extract ignores. Each line in this ignore file contains a single string to be ignored
that follows the syntax of the regex(3) routine.

When you invoke the extract command, it reads the patterns file and the file that
contains strings it ignores. You can specify a patterns file and an ignore file on the
extract command line. Otherwise, the extract command matches all strings
and uses a default patterns file.

When you run extract, it displays three windows on your terminal. The first
window contains the program source code. The string that matches a string in the
patterns file is displayed in reverse video.

The second window displays the contents of the source message catalog that the
extract command is creating.

The third window contains a list of the commands that are available. The extract
command displays the current command in reverse video. You can execute the
current command by pressing the RETURN key. Select another command by typing
the first letter in the command name and pressing the RETURN key. The extract
command is not sensitive to the case of letters, so you can use uppercase or

1-228 Commands

extract (1 int)

lowercase letters to issue commands.

You can use the following commands to control how extract treats the string
displayed in the first window:

EXTRACT Extract the string into the catalog file and rewrite the source using
the rewrite string in the patterns file.

DUPLICATE If the string has been encountered previously, rewrite the source
program using the same message number as before. The
extract command need not add the message to the source
message catalog again, so this command saves space in catalogs.

IGNORE Ignore this and all subsequent occurrences of this string during this
interactive session. This command does not add the string to the
ignore file.

PASS Pass by (ignore) this occurrence of this particular string.

ADD Ignore this and all subsequent occurrences of this string during this
interactive session. Add the string to the ignore file.

COMMENT Add the comment you enter to the source message catalog. The
extract command prompts you to be sure the comment you
entered is correct. You answer the prompt by typing "y," n, or q,
without pressing the RETURN key.

QUIT Quit from the interactive session. The extract command
prompts you to be sure you want to quit. Answer "y" or "n" to
the prompt, without pressing the return key.

HELP

The output files that extract creates up to this point are not
removed by this command. However, the files contain only the
result of the string extractions that occurred before you issued the
QUIT command.

Display a description of all the extract commands.

The extract command creates to files in your current working directory. The
command creates a new version of the source program that contains calls to the
catgets function, instead of hard-coded messages. The new version of the source
program has the same name as the input source program, with the prefix "nl_". For
example, if the input source program is named update. c, the output source
program is named nl_update. c

In addition to a new source program, the extract command creates a source
message catalog. The source message catalog contains the text for each message
extracted from your input source program. The extract command names the file
by appending ".msf" to the name of the input source program. For example, the
source message catalog for the update. c source program is named update .msf.
You can use the source message catalog as input to the gencat command.

Options

·i Ignore text strings specified in ignorefile . By default, the extract
command searches for ignore file in the current working directory, your
home directory, and /usr /lib/ intln.

If you omit the -i option, extract recognizes all strings specified in the
patterns file.

Commands 1-229

extract (1 int)

-m Add prefix to message numbers in the output source program and source
message catalog. You can use this prefix as a mnemonic. You must process
source message catalogs that contain message number prefixes using the
gencat -h option.

-0 Create a new source message catalog for each input source program. By
default, if you specify more than one input source program on the extract
command line, the command creates one source message catalog for all the
input source programs.

-p Use pattern/de to match strings in the input source program. By default, the
command searches for the pattern file in the current directory, your home
directory and finally /usr / lib/ intln.

If you omit the -p option, the extract command uses a default patterns file
that is stored in /usr/lib/intln/patterns.

-s Write string at the top of the source message catalog. If you omit the - s
option, extract uses the string specified in the $CATHEAD section of the
patterns file.

-u Use a message file produced by a previous run of strextract. This file
contains details of all the strings which matched the pattern file along with file
offsets and line numbers. By default strextract is run and its output is
used to drive extract.

Restrictions
Given the current syntax of the patterns file, you cannot cause extract to ignore
strings in comments that are longer than one line.

You can specify only one rewrite string for all classes of pattern matches.

The extract command does not extract strings from files you include with the
#include directive. You must run the extract commands on these files
separately.

Your terminal screen must contain at least 80 columns and 24 lines for extract to
display its three windows.

The extract command does not recognize strings that extend beyond one line.

Examples
The following example shows the commands you issue to run the extract
command, create a message catalog from the source message catalog, and compile
the output source program:

% extract -i newignore -p c-patterns remove.c
% gencat remove.cat remove.msf
% vi nl_remove.c
% cc nl remove.c

In this example, the extract command uses the newignore file to determine
which strings to ignore. The command uses the cyatterns file to determines
which strings to match. The input source program is named remove. c.

1-230 Commands

extract (1 int)

In response to this command, extract creates the source message catalog
remove. ms f and the output source program nl_ remove. c.

You must edit nl_remove. c to include the appropriate catopen and catclose
function calls.

The gencat command creates a message catalog and the cc command creates an
executable program.

See Also
intro(3int), gencat(lint), strextract(lint), strmerge(lint), regex(3), catopen(3int),
catgets(3int), pattems(5int)
Guide to Developing International Software

Commands 1-231

eyacc(1}

Name
eyacc - modified yacc allowing much improved error recovery

Syntax
eyacc [-v] [grammar]

Description
The eyacc command is an old version of yacc(l), which produces tables used by
the Pascal system and its error recovery routines. The eyacc command fully
enumerates test actions in its parser when an error token is in the look-ahead set.
This prevents the parser from making undesirable reductions when an error occurs
before the error is detected. The table format is different in eyacc than it was in the
old yacc, as minor changes had been made for efficiency reasons.

See Also
yacc(l)

1-232 Commands

file (1)

Name

file - detennine file type

Syntax
file [-c] [-f fiile] [-m mfile] filename ...

Description
The f i 1 e command perfonns a series of tests on each filename argument in an
attempt to classify it. If an argument appears to be ASCII, the f i 1 e command
examines the first 1024 bytes and tries to guess its language.

For character special files, part of this classification is infonnation about which
devices the system shows as active. In particular, device-specific infonnation such as
controller type and unit, device type and unit, and status (offline, write locked,
density, errors) is returned. The general categories currently implemented are disk,
tape, and tenninal devices. The supported tenninal devices include Local Area
Tenninals (LAT) but not Local Area Network (LAN) pseudo-tenninals.

The file command uses the file /usr / lib/ file/magic to identify files that
have some sort of magic number. A magic number is any numeric or string constant
that identifies the file containing the constant. Commentary at the beginning of
/usr / lib/ file/magic explains its fonnat.

Options

-c Checks the magic file for fonnat errors by printing the internal representation
of the magic file. No file typing is done under -c.

-f Interprets the followipg argument to be a file containing the names of the files
to be examined.

-m Instructs file to use an alternate magic file.

Restrictions

Files

It often does a poor job of distinguishing C programs, shell scripts, English text, and
ASCII text.

It does not recognize many programming languages, including Modula, Pascal, and
Lisp.

/usrflib/file/magic

See Also
magic(5)

Commands 1-233

find (1)

Name
find - find files

Syntax
find [options] pathname-list expression

Description
The find command recursively descends the directory hierarchy for each pathname
in the pathname-list (that is, one or more pathnames) seeking files that match a
boolean expression written in the primaries given below. In the descriptions, the
argument n is used as a decimal integer where +n means more than n, -n means less
than n , and n means exactly n.

Options

-atime n Tests true if the file has been accessed in n days.

-cpio output Writes current file on output in the format (5120-byte records)
specified in the epio(5) reference page. The output can be either
a file or tape device. If output is a tape device the ep i 0 B key
must be used to read data from the tape.

-ctime n Tests true if the file has been changed in n days.

-depth Always true; causes descent of the directory hierarchy to be done
so that all entries in a directory are acted on before the directory
itself (that is, postorder instead of preorder). This can be useful
when find is used with epio to transfer files that are contained
in directories without write permission.

-exec command Tests true if specified command returns a 0 on exit. The end of the
command must be punctuated by an escaped semicolon. A
command argument '{ }' is replaced by the current pathname.

-group gname Tests true if group ID matches specified group name.

-inurn n Tests true if the file has inode number n.

-links n Tests true if the file has n links.

-mount Tests true if the current file is on the same file system as the
current starting pathname.

-mtime n Tests true if the file has been modified in n days.

-name filename Tests true if the filename argument matches the current file name.

-newer file

-ok command

-perm onum

1-234 Commands

Normal Shell argument syntax may be used if escaped (watch out
for '[', '?' and '*').

Tests true if the current file has been modified more recently than
the argument file.

Executes specified command on standard output, then standard
input is read and command executed only upon response y.

Tests true if file has specified octal number. For further

-print

-size n

-type c

find (1)

information, see chmod(I). If onum is prefixed by a minus sign,
more flag bits (017777) become significant and the flags are
compared: (jlags&onum)==onum. For further information, see
stat(2).

Prints current pathname.

Tests true if the file is n blocks long (512 bytes per block).

Tests true if file is c type (c = b, block special file: c, character
special file: d, directory: f, plain file: I, symbolic link: p, type
port: s, type socket).

-user uname Tests true if file owner is login name or numeric user ID.

The primaries may be combined using the following operators (in order of decreasing
precedence):

1) A parenthesized group of primaries and operators (parentheses are special to the
Shell and must be escaped).

2) The negation of a primary ('!' is the unary not operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of
two primaries).

4) Alternation of primaries ('-0' is the or operator).

Examples
To remove all files named 'a.out' or '*.0' that have not been accessed for a week:

Files

find / \(-name a.out -0 -name '*.0' \) \
-atime +7 -exee rm {} \;

To find all files on the root file system type:

find / -mount -print

To write all the files on the root file system to tape:

find / -mount -print -epio /dev/rmt?h
epio -iBvt < /dev/rmt?h

To find all the mount points on the root file system type:

find / ! -mount -print

/etc/passwd
/etc/group

See Also
cpio(l), cpio(5), sh(l), test(l), fs(5)

Commands 1-235

finger (1)

Name
finger - print user finger infonnation

Syntax
finger [options] [name ...]

Description
By default, finger lists the login name, full name, tenninal name and write status,
idle time, login time, and office location and phone number for each current ULTRIX
user. Tenninal write status is noted as an asterisk (*) before the tenninal name if
write pennission is denied. Idle time is given in minutes if the listing shows a single
integer, hours and minutes if a colon (:) is present, or days and hours if a d is present.

A longer fonnat also exists and is used by finger whenever a list of people's
names is given. (Account names as well as first and last names of users are
accepted.) This fonnat is multi-line, and includes all the infonnation described above
as well as the user's home directory and login shell. Additionally, it displays the
infonnation contained in the files .plan and .project, both of which are located in the
user's home directory. If no list is given, all the people currently logged in are
shown.

The finger command may be used to look up users on a remote machine. The
fonnat is to specify the user as user@host. If the user name is left off, the standard
fonnat listing is provided on the remote machine.

Options

-b Displays a briefer long fonn list of users.

-f Disables printing of headers for short and quick outputs.

-h Suppresses printing of the .project file.

-i Displays list of users with idle times.

-I Displays output in long fonnat.

-m Matches arguments only on user name.

-p Suppresses printing of the .plan file.

-q Displays list of users.

-s Displays output in short fonnat.

-w Displays narrow short fonnat of specified users.

Restrictions

Only the first line of the .project file is printed.

The user's .plan or .project file cannot be a link to another file. If either of
these files is something other than a regular file, it will be ignored.

1-236 Commands

Files

letc/utmp

letc/passwd

Who file

User information

lusr I adml lastlog Last login times

- I . plan Plans

-I.project Projects

See Also
chfn(l), w(l), who(l), fingerd(8c)

finger(1)

Commands 1-237

fmt{1)

Name
fmt - simple text formatter

Syntax
fmt [name ...]

Description
The fmt command is a simple text formatter which reads the concatenation of input
files (or standard input if none are given) and produces on standard output a version
of its input with lines as close to 72 characters long as possible. The spacing at the
beginning of the input lines is preserved in the output, as are blank lines and
interword spacing.

The fmt command is meant to format mail messages prior to sending, but may also
be useful for other simple tasks. For instance, within visual mode of the ex editor
(for example, vi) the command

! }fmt

will reformat a paragraph, evening the lines.

Restrictions
The program was designed to be simple and fast - for more complex operations, the
standard text processors are likely to be more appropriate.

See Also
mail(l), nroff(l)

1-238 Commands

fold (1)

Name
fold - fold long lines for finite width output device

Syntax
fold [-b] [-s] [-w width or -width] [file ...]

Description
The f old command is a filter which folds the contents of each specified file, or the
standard input if no file is specified, breaking the lines to have maximum width
width.

Options

-b Causes each '<backspace>' in a line to be interpreted as decrementing the line
length by one.

-s Breaks the line on the last <blank> character found before the specified length.
If none are found the line breaks at the specified length.

-w width or -width
Specify the maximum line width, in bytes. The default value is 80. The width
should be a multiple of 8 if tabs are present, or the tabs should be expanded
using expand(l) before coming to fold.

Restrictions
The f old command may interfere with underlining.

Return Value
The f old command returns zero (0) on successful completion.

See Also
expand(l)

Commands 1-239

folder (1 mh)

Name

Syntax

folder - set folder or display current foldemame

folder [+foldername] [msg] [-all] [-fast] [-nofast] [-header] [-noheader] [-pack]
[-nopack] [-recurse] [-norecurse] [-total] [-nototal] [-print] [-noprint] [-list]
[-nolist] [-push] [-pop] [-help]

Description

The folder command lets you set the current folder or display its name and its
contents. It can also be used to manage the folder stack. If you use the f 01 de r
command without a +foldername argument, the contents of the current folder will be
displayed on the screen.

If you use folder with the +foldername argument, the specified folder will be set
to be the current folder.

If you use folder with the msg argument, it will set the specified message to be
current.

The display is identical whether you set the folder or display the contents of the
current folder. The following example shows the type of display that is produced.
The display lists the current folder, the number of messages in it, the range of the
messages (low-high), and the current message within the folder, and will flag extra
files if they exist.

inbox+ has 16 messages 3- 22); cur= 15

If a +foldername and/or msg argument are specified, they will become the current
folder and/or message.

Options

Specifying -all will produce a line for each folder in your MH directory, sorted
alphabetically. This is identical to the effect that is obtained if you specify
folders. The display that is obtained is illustrated in the following example.

Folder # of messages (range) ; cur msg (other files)
V2.3 has 3 messages (1-3) .
adrian has 20 messages (1-20) ; cur= 2.
brian has 16 messages (1-16) .
chris has 12 messages (1-12) .
copylog has 242 messages (1- 242); cur= 225.
inbox+ has 73 messages (1- 127); cur= 127.
int has 4 messages (1-4) ; cur= 2 (others) .
jack has 17 messages (1-17); cur= 17.

TOTAL= 387 messages in 8 folders.

The plus sign (+) after inbox indicates that it is the current folder. The folder int
has (others) after the description of the folder. This indicates that the folder int
contains files which are not messages. These files may either be sub-folders, or files
that do not belong under the MH file naming scheme.

1-240 Commands

folder{1mh)

You can get the same effect by specifying folders instead of folder-all (see
folders(lmh).)

The header is output if either an -all or a -header switch is specified. It is
suppressed by -noheader. The -total switch will produce only the summary
line. If you select the -nototal option, the summary line will be suppressed but
the rest of the information about the folders will be displayed.

If -fast is given, only the folder name will be listed. This is faster because the
folders need not be read.

The -pack switch will compress the message names in a folder, removing holes in
message numbering.

The -recurse switch will list each folder recursively. Use of this option
effectively defeats the speed enhancement of the -fast option, since each folder
must be searched for subfolders. Nevertheless, the combination of these options is
useful.

If you specify a +/older that does not exist, you will be asked whether you want to
create it. This is a good way to create an empty folder for later use. The following
example shows how you can create a sub folder in the folder +test using this method.

% folder +test/testtwo
Create folder "/usr/username/Mail/test/testwo"? y

test/testtwo+ has no messages.

See refile(lmh) for more details of sub folders.

The -push, -pop, and - options can be used to manage the folder stack.

The -push switch directs folder to push the current folder onto the folder-stack,
and make the +folder argument into the current folder. If +folder is not given,
the current folder and the top of the folder-stack are exchanged. This corresponds to
the pushd operation in the Cshell (see csh(1)).

The -pop switch directs folder to discard the top of the folder-stack, after setting
the current folder to that value. No +/older argument is allowed. This corresponds
to the popd operation in the Cshell (see csh(1)) The -push switch and the
-pop switch are mutually exclusive: the last occurrence of either one overrides any
previous occurrence of the other.

The -1 i s t switch directs f 01 de r to list the contents of the folder-stack. No
+/older argument is allowed. After a successful -push or -pop, the -list
action is taken. This corresponds to the dirs operation in the Cshell. The defaults
for folder are:

+/oldername defaults to the current folder
msg defaults to none
-nofast
-noheader
-nototal
-nopack
-norecurse
-print is the default if -list, -push or -pop are specified.

Commands 1-241

folder (1 mh)

Files
$HOME/ . mhyrofile The user profile

Profile Components
Path:
Current-Folder:
Folder-Protect:
Folder-Stack:
lsproc:

See Also

To determine your MH directory
To find the default current folder
To set mode when creating a new folder
To determine the folder stack
Program to list the contents of a folder

csh(1), refile(1mh), mhpath(lmh)

1-242 Commands

Name

Syntax

folders (1 mh)

folders - list folders and contents

folders [folder] [msg] [-fast] [-nofast] [-header] [-noheader] [-pack] [-nopack]
[-recurse] [-norecurse] [-total] [-nototal] [-print] [-noprint] [-list] [-nolist]
[-push] [-pop] [-help]

Description

The folders command lets you display the names of your folders and the number
of messages that they each contain.

When you use f 01 de r s, the display contains a line for each folder in your MH
directory, sorted alphabetically. This is illustrated in the following example.

Folder # of messages (range); cur msg (other files)
V2.3 has 3 messages (1-3) .
adrian has
brian has
chris has
copy log has
inbox+ has

20
16
12

242
73

messages (1-20) ; cur= 2.
messages (1-16) .
messages (1-12) .
messages (1- 242); cur= 225.
messages (1- 127); cur= 127.

int has 4 messages (1-4); cur= 2 (others) .
jack has 17 messages (1-17) ; cur= 17.

TOTAL= 387 messages in 8 folders.

The plus sign (+) after inbox indicates that it is the current folder. The information
about the int folder includes the term (others). This indicates that the folder int
contains files which are not messages. These files may either be sub-folders, or files
that do not belong under the MH file naming scheme.

In all respects, the effect of using f 01 de r s is identical to the effect of using folder
-all. See folder(lmh) for details.

If you use folders with the +foldername argument, folders will display all the
subfolders within the nominated folder, as shown in the following example. See
refile(1mh) for more details of sub folders.

% folders +test
Folder # of messages (range) ; cur msg (other files)
test+ has 18 messages (1- 18) ; (others) .
test/testone has 1 message (1- 1) .
test/testtwo has no messages.

TOTAL= 19 messages in 3 folders.

If you specify a folder, that folder will become the current folder.

The remainder of the options work as they do for folder-all. See folder(1mh)
for details.

The defaults for folders are:

+foldername defaults to all
msg defaults to none

Commands 1-243

folders (1 mh)

-nofast
-noheader
-nototal
-nopack
-norecurse

Restrictions

You cannot have more than 100 folders in anyone level.

Files
$HOME/ .mhyrofile The user profile

Profile Components
Path:
Current-Folder:
Folder-Protect:
Folder-Stack:
lsproc:

See Also

To determine your MH directory
To find the default current folder
To set mode when creating a new folder
To determine the folder stack
Program to list the contents of a folder

csh(1), refile(1mh), mhpath(1mh)

1-244 Commands

Name

Syntax

forw(1mh)

forw - forward messages

forw [+Jolder] [msgs] [-annotate] [-noannotate] [-draftfolder FI+folder]
[-draft message msg] [-nodraftfolder] [-editor editorname] [-noedit]
[-filter filterfile] [-formJormfile] [-format] [-noformat] [-in place] [-noinplace]
[-whatnowproc program] [-nowhatnowproc] [-digest list] [-issue number]
[-volume number] [-help]

Description

Use fa rw to send one or more messages on to recipients who were not the original
addressees. A message header is added to the message(s) to be forwarded and the
message is encapsulated. Forwarded messages appear to originate from the forwarder
and not the sender of the original message. In this respect fa rw is different from
di st. The other difference between fa rw and di s t, is that you can add your
own message to a forwarded message with fa rw .

An editor is invoked as in camp, and after editing is complete, you are prompted
before the message is sent.

You can forward several messages at once by specifying the message numbers
separated by spaces. The following example would concatenate messages 3, 5 and 7
and forward them as one message.

forw 3 5 7

You can also forward a number of messages by specifying a range. The following
example would forward messages 3, 4, 5, 6, 7 as one message. Note that there are no
spaces when you specify a range of messages.

forw 3-7

Options

The default message form contains the following elements:

To:
cc:
Subject:

If the file named forwcomps exists in your MH directory, it will be used instead of
this form. The file specified by -form Jormfile will be used if given.

If the draft file exists, you cannot normally forward another message until you have
cleared the draft file. This is because fa rw uses the draft file to compose the
forwarded message. If you attempt to do this, fa rw will ask you what you want to
do. Press <RETURN> to see the following options.

A reply of qui t will abort farw, leaving the draft intact; replace will replace
the existing draft with a blank skeleton; and list will display the draft.

Commands 1-245

forw(1mh)

If you set up the draftfolder: drafts line in your .mhyrofile, forw
will forward whichever message(s) you choose, without endangering any unsent
messages (see mh-profile(Smh)).

If the -annotate switch is given, each message being forwarded will be annotated
with the lines

Forwarded: date
Forwarded: addrs

where each address list contains as many lines as required. This annotation will be
done only if the message is sent directly from forw. If the message is not sent
immediately from forw, comp -use may be used to re-edit and send the
constructed message, but the annotations will not be added (see comp(1mh)). The
-inplace switch causes annotation to be done in place in order to preserve links to
the annotated message.

When f 0 rw is told to annotate the messages it forwards, it does not annotate them
until the draft is successfully sent. If you choose to push at the whatnow? prompt
instead of send, it is possible to confuse forw by re-ordering the folder: For
example, by using

folder -pack

before the message is successfully sent. The functions dist and repl do not have
this problem.

You can specify the editor that you want to use to edit your forwarded message with
the -editor option. You can suppress editing altogether with the -noedi t
option.

Although forw uses the -formformfile switch to direct it how to construct the
beginning of the draft, the -filter filterfile, -format, and -noformat
switches direct f 0 rw as to how each forwarded message should be formatted in the
body of the draft.

If -noformat is specified, then each forwarded message is output exactly as it
appears. If - forma t or - f i 1 t e r filterfile is specified, then each forwarded
message is filtered (re-formatted) prior to being output to the body of the draft. The
filterfile for forw should be a standard form file for mhl, as forw will invoke mhl
to format the forwarded messages. The default message filter that you get with
-format is:

width=80,overflowtext=,overflowoffset=10
leftadjust, compress, compwidth=9
Date:formatfield="%«nodate{text})%I%(tws{text})%>"
From:
To:
cc:
Subject:

body:nocomponent,overflowoffset=O,noleftadjust,nocompress

If the file named mhl. forward exists in the user's MH directory, it will be used
instead of this form. In either case, the file specified by - f i It e r filterfile will be
used if given. To summarize: -noformat will reproduce each forwarded message
exactly, -format will use mhl and a defaultfilterfile, mhl. forward, to format
each forwarded message, and - f i It e r filterfile will use the named filterfile to
format each forwarded message with mhl.

1-246 Commands

Files

forw(1mh)

Each forwarded message is separated with an encapsulation boundary so that when
received, the message is suitable for expanding with burst(lmh).

If you use prompter as your editor, you can specify prompter's -prepend switch
in the mhyrofile file. If you do this any commentary text is entered before the
forwarded messages. See prompter(1mh) for details of the other prompter
options.

Normally forw uses the draft file, or drafts folder if you have one set up, to
compose the forwarded message in. You can make f 0 rw compose the message to
be forwarded in alternative locations by specifying the +/oldername or msg
arguments. See comp(1mb) for details.

When you exit from the editor, forw invokes the whatnow program. See
whatnow(lmh) for details of the available options. The invocation of this program
can be inhibited by using the -nowhatnowproc switch.

The -digest list, -issue number and -volume number switches implement a
digest facility for MH.

The following defaults are valid:

+/oldername defaults to the current folder msgs defaults to the current
message
-noannotate
-nodraftfolder
-noformat
-noinplace

If the whatnowproc is whatnow, then forw uses its own built-in whatnow; it
does not actually run the whatnow program. Hence, if you define your own
whatnowproc, do not call it whatnow since forw will not run it.

/usr/new/lib/mh/forwcomps
<mh-dir>/forwcomps
/usr/new/lib/mh/digestcomps
or <mh-dir>/digestcomps
/usr/new/lib/mh/mhl.forward
or <mh-dir>/mhl.forward
$HOME/.mhyrofile
<mh-dir>/draft

The message skeleton
An alternative message skeleton
The message skeleton if -digest is given
Rather than the standard skeleton
The message filter
Rather than the standard filter
The user profile
The draft file

Commands 1-247

forw(1mh)

Profile Components
Path:
Current-Folder:
Draft-Folder:
Editor:
Msg-Protect:
fileproc:
mhlproc:
whatnowproc:

See Also

To determine your MH directory
To find the default current folder
To find the default draft-folder
To override the default editor
To set mode when creating a new message (draft)
Program to refile the message
Program to filter messages being forwarded
Program to ask the "What now?" questions

comp(1mh), dist(1mhs), refile(1mh), repl(1mh), send(1mh), whatnow(1mh)
Proposed Standard/or Message Encapsulation (RFC 934)

1-248 Commands

from (1)

Name
from - identifies sender of mail

Syntax
from [-f mailbox] [-s sender]

Description
The from command prints out the mail header lines in a mailbox file to show you
who has sent mail to you.

Options

-f mailbox

-s sender

Files
jusrjspool/mail/*

See Also
mail(1)

Uses specified file instead of your normal mail file. If this
option is used, but file argument is not specified, read your
mbox file.

Prints mail headers for mail sent by specified sender.

Commands 1-249

fsplit (1)

Name
fsplit - split a multi-routine Fortran file into individual files

Syntax
fsplit [-e efile ...] [file]

Description
The f s pI it command takes as input either a file or standard input containing
Fortran source code. It attempts to split the input into separate routine files of the
form name.f, where name is the name of the program unit (for example, function,
subroutine, block data or program). The name for unnamed block data subprograms
has the form blkdtaNNN! where NNN is three digits and a file of this name does not
already exist. For unnamed main programs the name has the form mainNNN!. If
there is an error in classifying a program unit, or if name! already exists, the
program unit is put in a file of the form zzzNNN! where zzzNNN! does not already
exist.

Normally each subprogram unit is split into a separate file.

Options

-e efile Splits only specified subprogram units into separate files.

Examples
The following example splits readit and doit into separate files:

fsplit -e readit -e doit prog.f

Restrictions
The fspli t command assumes the subprogram name is on the first noncomment
line of the subprogram unit. Nonstandard source formats may confuse f spli t .

It is hard to use -e for unnamed main programs and block data subprograms since
you must predict the created file name.

Diagnostics
If names specified using the -e option are not found, a diagnostic is written to
standard error.

1-250 Commands

ftp(1c)

Name
ftp - file transfer program

Syntax
ftp [-v] [-d] [-i] [-n] [-g] [host]

Description
The ftp command is the user interface to the ARPANET standard File Transfer
Protocol. The program allows a user to transfer files to and from a remote network
site.

The client host with which ftp is to communicate may be specified on the command
line. If the client host is specified on the command line, ftp immediately attempts
to establish a connection to an FTP server on that host; otherwise, f t P enters its
command interpreter and awaits instructions from the user. While ftp is awaiting
commands from the user, it provides the user with the prompt ftp>. The following
commands are recognized by ftp:

Invokes a shell on the local machine.

$ macro-name [args]
Executes the macro macro-name that was defined with the macdef
command. Arguments are passed to the macro unglobbed.

account [passwd]
Supplies a supplemental password required by a remote system for
access to resources once a login has been successfully completed. If no
argument is included, the user is prompted for an account password in a
non-echoing input mode.

append local-file [remote-file]
Appends a local file to a file on the remote machine. If remote-file is not
specified, the local file name is used in naming the remote file. File
transfer uses the current settings for type, format, mode, and structure.

ascii Sets the file transfer type to network ASCII. This is the default type.

bell

binary

bye

case

Arranges for a bell to sound after each file transfer command is
completed.

Sets the file transfer type to support binary image transfer.

Terminates the FTP session with the remote server and exits ftp.

Toggles the remote computer's file name case mapping during mget
commands. When case is on (default is oft), the remote computer's file
names are written in the local directory with all letters in upper case
mapped to lower case.

cd remote-directory
Changes the working directory on the remote machine to remote­
directory.

cdup Changes the remote machine working directory to the parent of the
current remote machine working directory.

Commands 1-251

ftp(1c)

close Tenninates the FTP session with the remote server and returns to the
command interpreter.

cr Toggles the carriage return stripping during ascii type file retrieval.
Records are denoted by a carriage return/linefeed sequence during ascii
type file transfer. When cr is on (the default), carriage returns are
stripped from this sequence to confonn with the UNIX single linefeed
record delimiter. Records on non-UNIX remote systems may contain
single linefeeds; when an ascii type transfer is made, these linefeeds may
be distinguished from a record delimiter only when cr is off.

delete remote-file
Deletes the file remote-file on the remote machine.

debug [debug-value]
Toggles the debugging mode. If an optional debug-value is specified, it
is used to set the debugging level. When debugging is on, f t P prints
each command sent to the remote machine, preceded by the string q-->.

dir [remote-directory] [local-file]
Prints a listing of the directory contents in the directory, remote­
directory, and, optionally, places the output in local-file. If no directory
is specified, the current working directory on the remote machine is used.
If no local file is specified, output comes to the tenninal.

disconnect A synonym for close.

form format
Sets the file transfer form to format. The default fonnat is file.

get remote-file [local-file]
Retrieves the remote-file and stores it on the local machine. If the local
file name is not specified, it is given the same name it has on the remote
machine. The current settings for type, form, mode, and structure are
used while transferring the file.

hash Toggles the hash-sign (#) printing for each data block transferred. The
size of a data block is 1024 bytes.

glob Toggles filename expansion for mdelete, mget, and mput. If
globbing is turned off with glob, the file name arguments are taken
literally and not expanded. Globbing for mput is done as in csh(l).
For mdelete and mget, each remote file name is expanded separately
on the remote machine and the lists are not merged. Expansion of a
directory name is likely to be different from expansion of the name of an
ordinary file. The exact result depends on the foreign operating system
and ftp server, and can be previewed by entering: mls remote-files.
Neither mget nor mput is meant to transfer entire directory subtrees of
files. That can be done by transferring a tar(l) archive of the subtree
(in binary mode).

Icd [directory]
Changes the working directory on the local machine. If no directory is
specified, the user's home directory is used.

Is [remote-directory] [local-file]
Prints an abbreviated listing of the contents of a directory on the remote
machine. If remote-directory is left unspecified, the current working

1-252 Commands

ftp(1c)

directory is used. If no local file is specified, the output is sent to the
terminal.

macdef macro-name
Defines a macro. Subsequent lines are stored as the macro macro-name;
a null line (consecutive newline characters in a file or carriage returns
from the terminal) terminates macro input mode. There is a limit of 16
macros and 4096 total characters in all defined macros. Macros remain
defined until a close command is executed.

The macro processor interprets dollar signs ($) and backslashes (\) as
special characters. A dollar sign ($) followed by a number (or numbers)
is replaced by the corresponding argument on the macro invocation
command line. A dollar sign ($) followed by an i signals the macro
processor that the executing macro is to be looped. On the first pass, $i is
replaced by the first argument on the macro invocation command line.
On the second pass it is replaced by the second argument, and so on. A
backslash (\) followed by any character is replaced by that character.
Use the backs lash (\) to prevent special treatment of the dollar sign ($).

mdelete remote-files
Deletes the specified files on the remote machine. If glob bing is enabled,
the specification of remote files will first be expanded using Is.

mdir remote-files local-file
Obtains a directory listing of multiple files on the remote machine and
places the result in local-file.

mget remote-files
Retrieves the specified files from the remote machine and places them in
the current local directory. If globbing is enabled, the specification of
remote files will first be expanding using 1 s .

mkdir directory-name
Makes a directory on the remote machine.

mls remote-files local-file
Obtains an abbreviated listing of multiple files on the remote machine
and places the result in local-file.

mode [mode-name]
Sets the file transfer mode to mode-name. The default mode is the
stream mode.

mput local-files
Transfers multiple local files from the current local directory to the
current working directory on the remote machine.

nmap [inpattern out pattern]
Sets or un sets the filename mapping mechanism. If no arguments are
specified, the filename mapping mechanism is unset. If arguments are
specified, remote filenames are mapped during mput commands and put
commands which are issued without a specified remote target filename.
If arguments are specified, local filenames are mapped during mget
commands and get commands which are issued without a specified local
target filename.

Commands 1-253

ftp(1C)

This command is useful when connecting to a non-UNIX remote
computer with different file naming conventions or practices. The
mapping follows the pattern set by inpattern and outpattern.

Inpattern is a template for incoming filenames (which may have already
been processed according to the ntrans and case settings). Variable
templating is accomplished by including the sequences $1, $2, ... , $9 in
inpattern. Use a backslash (\) to prevent this special treatment of the
dollar sign ($) character. All other characters are treated literally, and are
used to determine the nmap inpattern variable values. For example,
given inpattern $1.$2 and the remote file name mydata.data, $1 has the
value mydata, and $2 has the value data.

The outpattern determines the resulting mapped filename. The
sequences $1, $2, , $9 are replaced by any value resulting from the
inpattern template. The sequence $0 is replace by the original filename.
Additionally, the sequence [seq] ,seq2] is replaced by seq1 if seq1 is not
a null string; otherwise it is replaced by seq2. For example, the
command nmap $1.$2.$3 [$1,$2].[$2,file] yields the output filename
myfile.data for input filenames myfile.data and myfile.data.old, myfile.file
for the input filename myfile, and myfile.myfile for the input filename
.myfile. Spaces may be included in outpattern, as in the example: nmap
$1 Ised "s/ *$//" > $1 . Use the backslash (\) to prevent special
treatment of the dollar sign ($), left bracket (D, right bracket (D, and
comma (,).

ntrans [inchars [outchars]]
Sets or unsets the filename character translation mechanism. If no
arguments are specified, the filename character translation mechanism is
unset. If arguments are specified, characters in remote filenames are
translated during mput commands and put commands which are issued
without a specified remote target filename. If arguments are specified,
characters in local filenames are translated during mget commands and
get commands which are issued without a specified local target filename.

This command is useful when connecting to a non-UNIX remote
computer with different file naming conventions or practices. Characters
in a filename matching a character in inchars are replaced with the
corresponding character in outchars. If the character's position in
inchars is longer than the length of outchars, the character is deleted
from the file name.

open host [port]

prompt

Establishes a connection to the specified host FrP server. If an optional
port number is supplied, f t P attempts to contact an FrP server at that
port. If the auto-login option is on (default), ftp automatically attempts
to log the user in to the FrP server (see below).

Toggles interactive prompting. Interactive prompting occurs during
multiple file transfers to allow the user to retrieve or store files
selectively. If prompting is turned off (default), any mget or mput
transfers all files.

proxy ftp-command
Executes an ftp command on a secondary control connection. This

1-254 Commands

ftp(1c)

command allows simultaneous connection to two remote ftp servers for
transferring files between the two servers. The first proxy command
should be an open, to establish the secondary control connection. Type
the command proxy? to see other ftp commands executable on the
secondary connection. The following commands behave differently
when prefaced by proxy:

open will not define new macros during the auto-login process

close will not erase existing macro definitions

get and mget transfer files from the host on the primary control
connection to the host on the secondary control connection

put, mput, and append transfer files from the host on the secondary
control connection to the host on the primary control connection. Third
party file transfers depend upon support of the ftp protocol P ASV
command by the server on the secondary control connection.

put local-file [remote-file]
Stores a local file on the remote machine. If remote-file is unspecified,
the local file name is used in naming the remote file. File transfer uses
the current settings for type, format, mode, and structure.

pwd Prints the name of the current working directory on the remote machine.

quit A synonym for bye.

quote argl arg2 ...
Sends the arguments that are specified, verbatim, to the remote FTP
server. A single FTP reply code is expected in return.

recv remote-file [local-file]
A synonym for get.

remoteheip [command-name]
Requests help from the remote FTP server. If a command-name is
specified it is supplied to the server as well.

rename [from] [to]
Renames the file from on the remote machine, to the file to.

reset Clears the reply queue. This command re-synchronizes command/reply
sequencing with the remote ftp server. If the remote server violates the
ftp protocol, resynchronization may be necessary.

rmdir directory-name
Deletes a directory on the remote machine.

runique Toggles storing of files on the local system with unique filenames. If a
file already exists with a name equal to the target local filename for a get
or mget command, a .1 is appended to the name. If the resulting name
matches another existing file, a .2 is appended to the original name. If
this process continues up to .99, an error message is printed, and the
transfer does not take place. The generated unique filename will be
reported. Note that runique will not affect local files generated from a
shell command (see below). The default value is off.

send local-file [remote-file]
A synonym for put.

Commands 1 255

ftp(1c)

sendport Toggles the use of PORT commands. By default, ftp attempts to use a
PORT command when establishing a connection for each data transfer.
If the PORT command fails, ftp uses the default data port. When the
use of PORT commands is disabled, no attempt is made to use PORT
commands for each data transfer. This is useful for certain FTP
implementations which do ignore PORT commands but, incorrectly,
indicate that they have been accepted.

status Shows the current status of ftp.

struct [struct-name]
Sets the file transfer structure to struct-name. By default the file
structure is used.

sunique Toggles storing of files on a remote machine under unique file names.
The remote ftp server must support the ftp protocol STOU command for
successful completion of this command. The remote server reports the
unique name. Default value is off.

tenex Sets the file transfer type to that needed to talk to TENEX machines.

trace Toggles packet tracing.

type [type-name]
Sets the file transfer type to type-name. If no type is specified, the
current type is printed. The default type is network ASCII.

user user-name [password] [account]
Identifies the user to the remote FTP server. If the password is not
specified and the server requires it, f t P disables the local echo and then
prompts the user for it. If an account field is not specified, and the FTP
server requires it, the user is prompted for it also. Unless ftp is
invoked with auto-login disabled, this process is done automatically on
initial connection to the FTP server.

verbose Toggles the verbose mode. In verbose mode, all responses from the FTP
server are displayed to the user. In addition, if verbose is on, statistics
regarding the efficiency of a file transfer are reported when the transfer is
complete. By default, verbose is on.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quotation (")
marks.

Aborting A File Transfer
To abort a file transfer, use the tenninal interrupt key (usually <CTRL/C». Sending
transfers are halted immediately. Receiving transfers are halted by sending a ftp
protocol ABOR command to the remote server, and discarding any further data
received. The speed at which this is accomplished depends upon the remote server's
support for ABOR processing. If the remote server does not support the ABOR
command, an ftp> prompt appears when the remote server has completed sending the
requested file.

1-256 Commands

ftp(1e)

The terminal interrupt key sequence is ignored when ftp has completed any local
processing and is awaiting a reply from the remote server. A long delay in this mode
may result from ABOR processing, or from unexpected behavior by the remote
server, including violations of the ftp protocol. If the delay results from unexpected
remote server behavior, the localftp program must be killed by hand.

File-Naming Conventions
Files specified as arguments to ftp commands are processed according to the
following rules:

I) Standard input is used for reading and standard output is used for writing when
the file name is specified by a minus sign (-).

2) If the first character of the file name is a vertical line (I), the remainder of the
argument is interpreted as a shell command. The f t P command then forks a
shell, using popen(3) with the argument supplied, and reads (writes) from the
stdout (stdin). If the shell command includes spaces, the argument must be
quoted, as in ''''I Is -It''''. A particularly useful example of this mechanism is:
"dir Imore".

3) If globbing is enabled, local file names are expanded according to the rules used
in the csh(1) (compare to the glob command). If the ftp command expects a
single local file, such as put, only the first filename generated by the globbing
operation is used.

4) For mget commands and get commands with unspecified local file names, the
local filename is the remote filename and can be altered by a case, ntrans, or
nmap setting. The resulting filename may then be altered if runique is on.

5) For mput commands and put commands with unspecified remote file names, the
remote filename is the local filename and may be altered by a ntrans or nmap
setting. The resulting filename can then be altered by the remote server if
sunique is on.

File Transfer Parameters
Many parameters can affect a file transfer. The type can be ascii, image (binary),
ebcdic, or local byte size (for PDP-IO's and PDP-20's generally). The ftp
command supports the ascii and image types of file transfer and local byte size 8 for
tenex mode transfers.

The ftp command supports only the default values for the remaining file transfer
parameters: mode, form, and struct.

The . netre File
The .netrc file contains login and initialization information used by the auto-login
process. It resides in the user's home directory. The following tokens are
recognized; they may be separated by spaces, tabs, or new-lines:

machine name
Identifies a remote machine name. The auto-login process searches the
.netrc file for a machine token that matches the remote machine specified
on the f t P command line or as an open command argument. Once a
match is made, the subsequent .netrc tokens are processed, stopping
when the end of file is reached or another machine token is encountered.

Commands 1-257

ftp(1c)

login name Identifies a user on the remote machine. If this token is present, the
auto-login process initiates a login using the specified name.

password string
Supplies a password. If this token is present, the auto-login process
supplies the specified string if the remote server requires a password as
part of the login process. Note that if this token is present in the .netrc
file, and if the .netrc is readable by anyone other than the user, ftp
aborts the auto-login process.

account string
Supplies an additional account password. When this token is present, the
auto-login process supplies the the remote server with an additional
account password if the remote server requires it. If it does not, the
auto-login process initiates an ACCT command.

macdef name
Defines a macro. This token functions like the ftp macdef command.
A macro is defined with a specified name; its contents begin with the
next .netrc line and continue until a null line (consecutive new-line
characters) is encountered. If a macro named init is defined, it is
automatically executed as the last step in the auto-login process.

Options

-d Enables debugging.

-g Disables file name expansion.

-i Disables interactive prompting during multiple file transfers.

-n Disables autologin during an initial connection. If auto-login is enabled,
f t P will check the .netrc file in the user's home directory for an entry
describing an account on the remote machine. If no entry exists, ftp
will use the login name on the local machine as the user identity on the
remote machine, prompt for a password and, optionally, an account with
which to login.

-v Displays all responses from the remote server as well as all data transfer
statistics.

Restrictions
Correct execution of many commands depends on proper behavior by the remote
server.

The ftpd server prevents the unauthorized users listed in the /etc/ftpusers file from
transferring files.

An error in the treatment of carriage returns in the 4.2BSD UNIX ascii-mode transfer
code has been corrected. This correction may result in incorrect transfers of binary
files to and from 4.2BSD servers using the ascii type. A void this problem by using
the binary image type.

1-258 Commands

ftp{1c)

Files
/etc/ftpusers Contains the list of unauthorized users

See Also
services(5), ftpd(8c), inetd(8c), syslog(8)

Commands 1-259

VAX gcore(1)

Name
gcore - get core images of running processes

Syntax
geore process-id ...

Description
The gcore command creates a core image of each specified process, suitable for use
with adb(l) or dbx(l).

Restrictions

Files

Paging activity that occurs while gcore is running may cause the program to
become confused. For best results, the desired processes should be stopped.

core. <process-id> core images

1-260 Commands

gencat (1 int)

Name
gencat - generate a formatted message catalog

Syntax
gencat [-h hdrfile] catfile msgfile ...

Description
The gencat command takes one or more message source files and either creates a
new catalog or merges new message text into an existing catalog. You should use the
extension .msf for message text files (for example, msgfile .msf) and the
extension. cat for catalogs (for example, cat file. cat) to process files with the
gencat command.

In some cases, a formatted message catalog exists that has the same name the one
that gencat is creating. When this occurs, gencat merges the messages from the
source message catalogs into this existing formatted message catalog. The command
merges the source message catalogs into the formatted message catalog in the same
manner as it merges a group of source message catalogs. If a source message catalog
contains the same set number or message number as a set or message in the
formatted message catalog, the source message catalog set or message has
precedence. For example, if both the source and formatted message catalogs
contain a message number 25, the message text for message 25 in the source message
catalog replaces the message text in the formatted message catalog. Thus, when
source message catalogs are merged with formatted message catalogs, the formatted
catalogs are updated.

The - h option indicates that the source message file contains set and message
mnemonics instead of numeric identifiers. This option causes the gencat command
to create the header file, hdrfile. The header file contains C preprocessor directives
that control the mapping between set and message labels specified in the source
catalogs and the set and message numbers written. to the formatted catalog. If you
use message labels in your program, you must include the header file gencat
creates. Use the #include directive to include the header file. When you specify
the -h option, gencat does not merge source message catalogs with existing
formatted message catalogs. If a formatted message catalog exists, the gencat
command writes over it with the new message catalog. If no formatted message
catalog exists, gencat creates one.

For information on the source format for messages files, see the Guide to Developing
I nternational Software.

Options

-h Generate a header file that maps set and message labels in the formatted
message catalog to set and message labels in source message catalogs.

The gencat command ignores this option if you use set and message numbers,
rather than set and message labels.

You must include the header file hdrfile in your C program if you want to use set and
message labels.

Commands 1-261

gencat (1 int)

Restrictions
Source message catalogs you want to fonnat using gencat can contain either set
and message numbers or set and message labels, but not both.

Numeric message source files are guaranteed portable between X/Open systems.

See Also
intro(3int), extract(lint), trans(lint), catgets(3int), catopen(3int)
Guide to Developing International Software

1-262 Commands

Name

Syntax

get (1)

get - get a copy of sees file

get [-rSCCS] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e] [-I [p]] [-p] [-m]
[-0] [-s] [-b] [-g] [-t]file ...

Description
The get command generates an ASCII text file from each named sees file
according to the specifications given by its options. The options, which begin with -,
can be specified in any order, but all options apply to all named sees files. If a
directory is named, get behaves as though each file in the directory were specified
as a named file, except that non-SeeS files (last component of the path name does
not begin with s.) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be the name of
an sees file to be processed. Again, non-SeeS files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file whose name is
derived from the sees file name by simply removing the leading s.; (see also FILES,
below).

Each of the options is explained below as though only one sees file is to be
processed, but the effects of any options applies independently to each named file.

Options

-rSID

-ccutofJ

-e

Indicates specified delta version number. Table 1 below shows, for the
most useful cases, what version of an sees file is retrieved (as well
as the SID of the version to be eventually created by de 1 t a(1) if the
-e option is also used), as a function of the SID specified.

The cutofJis a date-time in the following form:

YY[MM[DD[HH[MM[SSlllll

No changes (deltas) to the sees file that were created after the
specified cutoff date-time are included in the generated ASCII text file.
Units omitted from the date-time default to their maximum possible
values; that is, -c7502 is equivalent to -c750228235959. Any number
of non-numeric characters may separate the various two digit pieces of
the cutoff date-time. This feature allows one to specify a cutoff date in
the form: "-c77/2/2 9:22:25".

Gets specified delta version for edit. The -e option used in a get for a
particular version (SID) of the sees file prevents further gets from
editing on the same SID until del ta is executed or the j (joint edit)
flag is set in the sees file, see admin(l). Concurrent use of get-e
for different SIDs is always allowed. If the sees front end processor
is used, the command get -e is replaced by edit.

If the g-file generated by get with an -e option is accidentally ruined
while being edited, it may be regenerated by re-executing the get

Commands 1-263

get(1)

-b

command with the -k option in place of the -e option.

sees file protection specified by the ceiling, floor, and authorized
user list stored in the sees file are enforced when the -e option is
used. For further information, see admin(I).

Gets delta from new branch and must be used with -e option. This
option is ignored if the b flag is not present in the file or if the
retrieved delta is not a leaf delta. For further information, see
admin(1). A leaf delta is one that has no successors on the sees file
tree.

NOTE

A branch delta may always be created from a nonleaf delta.

-ilist Includes specified list of deltas. The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= SID I SID - SID

SID, may be in any form shown in the" SID Specified" column of
Table 1. Partial SIDs are interpreted as shown in the "SID
Retrieved" column of Table 1.

-xlist Excludes specified list of deltas. See the -i option for the list format.

-k Does not expand ID keywords. The -k option is implied by the -e
option.

-I Writes a delta summary to an I-file. If -Ip is used then an I-file is not
created; the delta summary is written on the standard output instead.
See FILES for the format of the I-file.

-p Writes text to stdout. No g-file is created. All output which normally
goes to the standard output goes to file descriptor 2 instead, unless the
-s option is used, in which case it disappears.

-s Suppresses all messages, except those for fatal errors. However, fatal
error messages, which always go to file descriptor 2, remain
unaffected.

-m Precedes each text line with delta version number. The format is: SID,
followed by a horizontal tab, followed by the text line.

-0 Precedes each text line with identification keyword. The format is:
%M% value, followed by a horizontal tab, followed by the text line.
When both the -m and 0 option are used, the format is: %M%
value, followed by a horizontal tab, followed by the -m option
generated format.

-g Suppresses the actual retrieval of text from the sees file. It is
primarily used to generate an I-file, or to verify the existence of a
particular SID.

-t Gets most recently created (top) delta. For example, -rl), or release
and level, for example, -rl.2).

-u Sets the time of the g-file to the time of the s-file. This results in a
g-file with a time equal to the last delta. This is useful for build

1-264 Commands

-aseq-no.

get(1)

scripts which extract all files from the sees database and then do a
make.

Retrieves the specified delta sequence number. For further information,
see sccsfile(5). This option is used by the comb command. It is
not a generally useful option, and users should not use it. If both the
-r and -a option are specified, the -a option is used. eare should be
taken when using the -a option in conjunction with the -e option, as
the SID of the delta to be created may not be what one expects. The
-r option can be used with the -a and -e option to control the naming
of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the sees file.

If the -e option is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one named
file or if a directory or standard input is named, each file name is printed (preceded
by anew-line) before it is processed. If the -i option is used included deltas are
listed following the notation "Included"; if the -x option is used, excluded deltas are
listed following the notation "Excluded".

The sees identification strings are defined in the following table:

SID* -b Option Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

none:j: no R defaults to mR mR.mL mR.(mL+1)
none:j: yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R>mR mR.mL R.1***
R no R=mR mR.mL mR.(mL+1)
R yes R>mR mR.mL mR.mL.(mB + 1).1
R yes R=mR mR.mL mR.mL.(mB + 1).1

R R<mRand
hR.mL** hR.mL.(mB + 1).1

R does not exist
Trunk succ.#

R in release > R R.mL R.mL.(mB + 1).1
and R exists

R.L no No trunk succ. R.L R.(L+1)
R.L yes No trunk succ. R.L R.L.(mB+1).1

R.L Trunk succ. R.L R.L.(mB+1).1
in release ~ R

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS + 1)
R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1
R.L.B.S no No branch succ. R.L.B.S R.L.B.(S + 1)
R.L.B.S yes No branch succ. R.L.B.S R.L.(mB + 1).1
R.L.B.S Branch succ. R.L.B.S R.L.(mB + 1).1

* R, L, B, and S are the release, level, branch, and sequence components of the
SID, in that order; m means maximum. Thus, for example, R.mL means the
maximum level number within release R; R.L.(mB+ 1).1 means the first
sequence number on the new branch (that is, maximum branch number plus
one) of level L within release R. Note that if the SID specified is of the form
R.L, R.L.B, or R.L.B.S, each of the specified components must exist.

Commands 1-265

get(1)

** hR is the highest existing release that is lower than the specified, nonexistent,
release R.

*** This is used to force creation of the first delta in a new release.

Successor.

t The -b option is effective only if the b flag is present in the file. An entry of­
means "irrelevant". For further information, see admin(l).

* This case applies if the d (default SID) flag is not present in the file. If the d
flag is present in the file, then the SID obtained from the d flag is interpreted as
if it had been specified on the command line. Thus, one of the other cases in
this table applies.

Identification Keywords
Identifying information is inserted into the text retrieved from the sees file by
replacing identification keywords with their value wherever they occur. The
following keywords may be used in the text stored in an sees file:

Keyword

%M%

%1%

%R%

%L%

%B%

%S%

%D%

%H%

%T%

%E%

%G%

%U%

%Y%

%F%

%P%

%Q%

%C%

1-266 Commands

Module name: either the value of the m flag in the file or if absent, the
name of the sees file with the leading s. removed. For further
information, see admin(l).

sees identification (SID) (%R %. %L%. %B%. %S%) of the retrieved
text.

Release.

Level.

Branch.

Sequence.

Current date (YY/MM/DD).

Current date (MM/DDNY).

Current time (HH:MM:SS).

Date newest applied delta was created (YY/MM/DD).

Date newest applied delta was created (MM/DDNY).

The time the newest applied delta was created (HH:MM:SS).

Module type: value of the t flag in the sees file For further
information, see admin(l).

secs file name.

Fully qualified sees file name.

The value of the q flag in the file. For further information, see
admin(l)'

Current line number. This keyword is intended for identifying output
program messages such as "this shouldn't have happened" type errors.
It is not intended to be used on every line to provide sequence numbers.

%Z%

%W%

%A%

get(1)

The 4-character string @(#) recognizable by what(1).

A shorthand notation for constructing what(l) strings for UNIX program
files. % W% = %Z%%M%<horizontal-tab>%I%

Another shorthand notation for constructing what(1) strings for non­
UNIX program files. %A% = %Z%%Y% %M% %I%%Z%

Restrictions
If the user has write permission in the directory containing the g-files, but the real
user does not, then only one file can be named when the -e option is used.

Diagnostics

Files

See sccshelp(l) for explanations.

Several auxiliary files may be created by get, These files are known generically as
the g-file, I-file, p-file, and z-file. The letter before the hyphen is called the tag. An
auxiliary file name is formed from the SCCS file name: the last component of all
SCCS file names must be of the form s.module-name, the auxiliary files are named
by replacing the leading s with the tag. The g-file is an exception to this scheme: the
g-file is named by removing the s. prefix. For example, s.xyz.c, the auxiliary file
names would be xyz.c, I.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current directory
(unless the -p option is used). A g-file is created in all cases, whether or not any
lines of text were generated by the get. It is owned by the real user. If the-k
option is used or implied its mode is 644; otherwise its mode is 444. Only the real
user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in generating the
retrieved text. The I-file is created in the current directory if the -I option is used; its
mode is 444 and it is owned by the real user. Only the real user need have write
permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or wasn't applied and
ignored;
* if the delta wasn't applied and wasn't ignored.

c. A code indicating a "special" reason why the delta was or was not
applied:

d. Blank.

'1': Included.
'X': Excluded.
'C': Cut off (by a -c option).

e. SCCS identification (SID).
f. Tab character.
g. Date and time (in the form YY /MM/DD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

Commands 1-267

get(1)

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e option along
to delta. Its contents are also used to prevent a subsequent execution of get with an
-e option for the same SID until delta is executed or the joint edit flag, j, see
admin(l), is set in the sees file.

The p-file is created in the directory containing the sees file and the effective user
must have write permission in that directory. Its mode is 644 and it is owned by the
effective user.

The format of the p-file is the following: the gotten SID, followed by a blank,
followed by the SID that the new delta will have when it is made, followed by a
blank, followed by the login name of the real user, followed by a blank, followed by
the date-time the get was executed, followed by a blank and the -i option if it was
present, followed by a blank and the -x option if it was present, followed by a new­
line. There can be an arbitrary number of lines in the p-file at any time; no two lines
can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents
are the binary (two bytes) process ID of the command get that created it. The z-file
is created in the directory containing the sees file for the duration of get. The
same protection restrictions for the p-file apply for the z-file. The z-file is created
mode 444.

See Also
admin(l), delta(l), prs(l), sees(l), secsfile(5), sccshelp(l), what(l)
Guide to the Source Code Control System

1-268 Commands

getopt{1)

Name
getopt - parse command options

Syntax
set - - .. getopt optstring $*"

Description
The getopt command breaks up options in command lines for easy parsing by
Shell procedures and checks for legal options. The optstring option letters are
recognized if a letter is followed by a colon, the option expects an argument which
mayor may not be separated from it by white space. For further information, see
getopt(3c).

The special option, specified by two minus signs (- -), delimits the end of the
options. If the delimiters are used explicitly, get opt recognizes it; otherwise,
get opt generates it. In either case, getopt places the delimiter at the end of the
options. The positional parameters ($1 $2 ...) of the shell are reset so that each
option is preceded by a single minus sign (-) and is in its own positional parameter;
each option argument is also parsed into its own positional parameter.

Examples
The following code fragment shows how you can process the arguments for a
command that can take the options a or b, as well as the option 0, which requires an
argument:

#!/bin/shS
set -- 'getopt abo: $*'
if [$? != 0]
then

fi

echo $USAGE
exit 2

for i in $*
do

case $i in
-a I -b) FLAG=$i; shift;;
-0) OARG=$2; shift 2;;
--) shift; break;;
esac

done

This code accepts any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

Diagnostics
The getopt command prints an error message on the standard error when it
encounters an option letter not included in optstring.

Commands 1-269

getopt{1)

See Also
sh5(1), getopt(3)

1-270 Commands

gprof(1)

Name
gprof - display call graph profile data

Syntax
gprof [options] [a.out [gmon.out ...]]

Description
The gprof command produces an execution profile of C, Pascal, or Fortran77
programs. The effect of called routines is incorporated in the profile of each caller.
The profile data is taken from the call graph profile file (gmon.out default) which is
created by programs which are compiled with the -pg option of cc, pc, and f77 .
That option also links in versions of the library routines which are compiled for
profiling. The symbol table in the named object file (a.out default) is read and
correlated with the call graph profile file. If more than one profile file is specified,
the gpro f output shows the sum of the profile information in the given profile files.

First, a fiat profile is given, similar to that provided by prof(1). This listing gives
the total execution times and call counts for each of the functions in the program,
sorted by decreasing time.

Next, these times are propagated along the edges of the call graph. Cycles are
discovered, and calls into a cycle are made to share the time of the cycle. A second
listing shows the functions sorted according to the time they represent including the
time of their call graph descendents. Below each function entry is shown its (direct)
call graph children, and how their times are propagated to this function. A similar
display above the function shows how this function's time and the time of its
descendents is propagated to its (direct) call graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the
members of the cycle and their contributions to the time and call counts of the cycle.

Options
The following options are available:

-8 Suppresses the printing of statically declared functions. If
this option is given, all relevant information about the static
function (for example, time samples, calls to other functions,
calls from other functions) belongs to the function loaded
just before the static function in the a. out file.

-b Suppresses the printing of a description of each field in the
profile.

-c

-E name

The static call graph of the program is discovered by a
heuristic which examines the text space of the object file.
Static-only parents or children are indicated with call counts
ofO.

Suppresses the printing of the graph profile entry for routine
name (and its descendants) as -e, above, and also excludes
the time spent in name (and its descendants) from the total
and percentage time computations. (For example, -E
mcount -E mcleanup is the default.)

Commands 1-271

VAX

VAX gprof{1)

-e name

-F name

-f name

-s

-z

Restrictions

Suppresses the printing of the graph profile entry for routine
name and all its descendants More than one -e option may
be given. Only one name may be given with each -e option.

Prints the graph profile entry of only the routine name and
its descendants (as -f, above) and also uses only the times of
the printed routines in total time and percentage
computations. More than one -F option may be given.
Only one name may be given with each -F option. The-F
option overrides the -E option.

Prints the graph profile entry of only the specified routine
name and its descendants. More than one -f option may be
given. Only one name may be given with each -f option.

Produces a profile file gmon.sum is produced which
represents the sum of the profile information in all the
specified profile files. This summary profile file may be
given to subsequent executions of gprof (probably also with
a -s) to accumulate profile data across several runs of an
a.out file.

Displays routines which have zero usage (as indicated by
call counts and accumulated time). This is useful in
conjunction with the -c option for discovering which
routines were never called.

Beware of quantization errors. The granularity of the sampling is shown, but remains
statistical at best. We assume that the time for each execution of a function can be
expressed by the total time for the function divided by the number of times the
function is called. Thus the time propagated along the call graph arcs to parents of
that function is directly proportional to the number of times that arc is traversed.

Parents which are not themselves profiled have the time of their profiled children
propagated to them, but they appear to be spontaneously invoked in the call graph
listing, and do not have their time propagated further. Similarly, signal catchers,
even though profiled, appear to be spontaneous (although for more obscure reasons).
Any profiled children of signal catchers should have their times propagated properly,
unless the signal catcher was invoked during the execution of the profiling routine, in
which case all is lost.

The profiled program must call exi t(2) or return normally for the profiling
information to be saved in the groon. out file.

1-272 Commands

Files

a.aut

gman.aut

gman.sum

See Also

the name list and text space.

dynamic call graph and profile.

summarized dynamic call graph and profile.

cc(1), prof(1), profil(2), monitor(3)

gprof(1) VAX

Commands 1-273

graph{1g}

Name
graph - draw a graph

Syntax
graph [option ...]

Description
The graph command with no options takes pairs of numbers from the standard
input as abscissas and ordinates of a graph. Successive points are connected by
straight lines. The graph is encoded on the standard output for display by the
plot(1g) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is
printed as a label beginning on the point. Labels may be surrounded with quotes
" ... ", in which case they may be empty or contain blanks and numbers; labels never
contain new lines.

A legend indicating grid range is produced with a grid unless the -s option is present.

If a specified lower limit exceeds the upper limit, the axis is reversed.

Options

-a Supplies abscissas automatically and uses next two arguments to set
spacing and starting point. Spacing is given by the next argument
(default 1). A second optional argument is the starting point for
automatic abscissas (default 0 or lower limit given by -x).

-b Breaks graph after each label in the input.

-c Uses specified string (next argument) as label.

-g Uses specified number (next argument) in setting up grid style: 0 (no
grid), 1 (frame with ticks), and 2 (full grid). Default is 2.

-h Uses specified number (next argument) as fraction of space for height.

-I Uses specified string (next argument) as graph label.

-m Uses specified number (next argument) in setting up line mode: 0
(disconnected) and 1 (connected). Default is 1.

-r Uses specified number (next argument) as fraction of space to right
before plotting.

-s Saves screen (no erase) before plotting.

-t Transposes vertical and horizontal axes.

1-274 Commands

-u

-w

-x [I]

-y [I]

Restrictions

graph (1g)

Uses specified number (next argument) as fraction of space to move up
before plotting.

Uses specified number (next argument) as fraction of space for width.

Determines x axis logarithmically. Next two arguments after I
determine lower and upper x limits respectively. The third argument
determines grid spacing on x axis.

Same as x but for y axis.

The graph command stores all points internally and drops those for which there is
not room.

Segments that run out of bounds are dropped, not windowed.

Logarithmic axes may not be reversed.

See Also
plot(lg), spline(lg)

Commands 1-275

grep{1 }

Name
grep, egrep, fgrep - search file for regular expression

Syntax
grep [option ...] expression [file.i.]

egrep [option ...] [expression] [file ...]

fgrep [option ...] [strings] [file]

Description
Commands of the grep family search the input files (standard input default) for lines
matching a pattern. Normally, each line found is copied to the standard output.

The grep command patterns are limited regular expressions in the style of ex(l),
which uses a compact nondeterministic algorithm. The egrep command patterns
are full regular expressions. The eg rep command uses a fast deterministic algorithm
that sometimes needs exponential space. The fgrep command patterns are fixed
strings. The f g rep command is fast and compact.

In all cases the file name is shown if there is more than one input file. Take care
when using the characters $ * [" I () and \ in the expression because they are also
meaningful to the Shell. It is safest to enclose the entire expression argument in
single quotes ' '.

The fgrep command searches for lines that contain one of the (new line-separated)
strings.

The egrep command accepts extended regular expressions. In the following
description 'character' excludes new line:

1-276 Commands

A \ followed by a single character other than new line matches that
character.

The character" matches the beginning of a line.

The character $ matches the end of a line.

A • (dot) matches any character.

A single character not otherwise endowed with special meaning matches
that character.

A string enclosed in brackets [] matches any single character from the
string. Ranges of ASCII character codes may be abbreviated as in
'a-z0-9'. A] may occur only as the first character of the string. A literal
- must be placed where it can't be mistaken as a range indicator.

A regular expression followed by an * (asterisk) matches a sequence of 0
or more matches of the regular expression. A regular expression followed
by a + (plus) matches a sequence of 1 or more matches of the regular
expression. A regular expression followed by a ? (question mark) matches
a sequence of 0 or 1 matches of the regular expression.

Two regular expressions concatenated match a match of the first followed
by a match of the second.

grep(1)

Two regular expressions separated by I or new line match either a match
for the first or a match for the second.

A regular expression enclosed in parentheses matches a match for the
regular expression.

The order of precedence of operators at the same parenthesis level is the following:
[], then *+?, then concatenation, then I and new line.

Options

-b

-c

Precedes each output line with its block number. This is sometimes
useful in locating disk block numbers by context.

Produces count of matching lines only.

-e expression Uses next argument as expression that begins with a minus (-).

-f file

-i

-I

-0

-s

-v

-w

-x

Restrictions

Takes regular expression (egrep) or string list (fgrep) fromfile.

Considers upper and lowercase letter identical in making comparisons
(grep and fgrep only).

Lists files with matching lines only once, separated by a new line.

Precedes each matching line with its line number.

Silent mode and nothing is printed (except error messages). This is
useful for checking the error status (see DIAGNOSTICS).

Displays all lines that do not match specified expression.

Searches for an expression as for a word (as if surrounded by ,\<' and
'\>'). For further information, see ex(l), grep only.

Prints exact lines matched in their entirety (fgrep only).

Lines are limited to 256 characters; longer lines are truncated.

Diagnostics
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible
files.

See Also
ex(1), sedO), sh(l)

Commands 1-277

groups (1)

Name
groups - show group memberships

Syntax
groups [user]

Description

Files

The groups command shows the groups to which you or the optionally specified
user belong. Each user belongs to a group specified in the password file
/ete/passwd and possibly to other groups as specified in the file fete/group.
If you do not own a file but you do belong to the group by which it is owned, you
are granted group access to the file.

When a new file is created it is given the group specifications of the directory in
which it resides.

/ete/passwd
fete/group

See Also
setgroups(2)

1-278 Commands

Name
head - give first few lines

Syntax
head [-count] [file ...]

Description

head(1)

This filter gives the first count lines of each of the specified files, or of the standard
input. The default number of lines displayed is lO, if count is omitted.

See Also
tail(l)

Commands 1-279

hostid (1)

Name
hostid - set or print identifier of current host system

Syntax
hostid [identifier]

Description
The hostid command prints the identifier of the current host in hexadecimal. This
numeric value is expected to be unique across all hosts and is normally set to the
host's Internet address. The super-user can set the hostid by giving a hexadecimal
argument. This is usually done in the startup script / etc/ rc .local.

See Also
gethostid(2), sethostid(2)

1-280 Commands

hostname (1)

Name
hostname - print system name

Syntax
hostname [nameofhost]

Description
The hostname command prints the name of the current host, as given before the
"login" prompt. The super-user can set the hostname by giving an argument; this is
usually done in the startup script /etc/rc .local.

See Also
gethostname(2), sethostname(2)

Commands 1-281

ic (1 int)

Name
ic - compiler for language support database

Syntax
ic [-Dname=def] [-Uname] [-Idir] [-v] [-0 output] [source]

Description
The command i c generates a binary international database from a database language
source file. The command either accepts its input from the file source or from the
standard input~ if you do not specify source .

The name of the output file is the name of the codeset in the source file or the name
you specify using the - 0 option.

For information on creating a database language source file~ see the Guide to
Developing International Software.

Options

-D Defines name to the C preprocessor. This option has the same effect as
including the #define name directive at the head of your source file. The
default name definition is 1.

-U Removes any initial preprocessor definition of name .

-I Causes the i c compiler to search the named directory for files you name in an
#include directive.

-0 Specifies the name you want i c to use for the output file. By default, the
compiler uses the name of the codeset in the source file to name the output file.

-v Requests statistics on the number of simple and double letters in the source
file, the number of tables in the source file, and the size of the output binary
file.

Restrictions
The length of the table name modifier is limited to 44 characters.

Examples
The following command causes the i c compiler to compile the GER _ CH . 8859 . in
source file:

% ic -v GER_CH.8859.in
INTLINFO database GER_CH.8859:

257 code table entries (256 simple/1 multi-byte) .
1 property table(s).
1 collation table(s).
1 string table(s) .
3 conversion tables: toascii, tolower, toupper.

5051 bytes total length.

The i c compiler searches for the GER _ CH • 8859 . in file in the current working
directory. The compiler writes compilation statistics to stderr, as requested by the
-v option. The compiler creates a binary file, named GER _ CH . 8859, in the current

1-282 Commands

ic(1int)

working directory.

Return Values
The i e compiler returns zero exit status for successful compilation; it returns
nonzero status if it encounters errors that inhibit generation of a binary file.

Diagnostics

Files

The i e compiler issues four types of messages. The following list describes each of
the four types:

warning

error nn

fatal error

fatal bug

The compiler has detected syntax that may be in error, but does
not adversely effect the binary file.

The compiler has detected an error severe enough to inhibit the
generation of a correct binary file.

The compiler has detected an error that makes it impossible to
proceed with the compilation. This error most often occurs during
compilation of the code table.

This occurs when there are internal errors in the compiler. For
example, this is generally produced when an incompatible source
file is given as an input to ie.

/tmp/ieXXXXXX

/lib/epp

Temporary files

C preprocessor

See Also
intro(3int), setlocale (3), environ (5int), lang (5int), nl_Ianginfo(5int)
Guide to Developing International Software

Commands 1-283

iconv (1)

Name
iconv - international codeset conversion

Syntax
iconv [-d] -f fromcodeset -t tocodeset [file ...]

Description
The iconv command converts the encoding of characters in its input from one
codeset to another codeset. The fromcodeset argument specifies the codeset used to
encode the data in the input; that is, it specifies the input codeset. The tocodeset
argument specifies the codeset to which you want the input data converted; that is, it
specifies the output codeset. The iconv command performs the conversion by
reading rules from a conversion table you create. The command reads its input from
standard input or from one or more files named on the command line. The command
writes its output to standard output.

You define conversion rules in a conversion table. The conversion rules specify how
iconv converts a particular character or group of characters, which are called
tokens. The conversion table is a text file that contains two lists. In the left-hand list,
you specify each token you want iconv to convert. In the right-hand list, you
specify the token you want iconv to create in the output file. For example, if you
issued the following command:

% iconv -fupper -tlower conversion_file

This command uses the conversion table located in the file
/usr/lib/intln/conv/upper_lower, that specifies how to convert from an
uppercase codeset to a lowercase codeset. The following shows part of the conversion
table:

=It

=It Converts from uppercase to lowercase
=It

=It Input token Output token
=It ------------- ------------------

=It

=It Convert
=It

=It

=It Convert
=It

1-284 Commands

A
B
C
D
E
F
G

z

tabs

\011

to spaces

the A umlaut to

A

using

a
b
c
d
e
f
g

z

octal

\040\040\040

lowercase

"a

iconv (1)

Each line in the conversion table must contain two strings, an input token and an
output token. The tokens must be delimited with spaces or tabs. The backslash
character (\) either causes the iconv command to recognize a character it normally
ignores or introduces a three digit octal constant. All octal constants in the
conversion table must contain three digits. Lines that begin with a hash symbol (#)
are comments. The icon v command ignores comment lines and blank lines.

You name the conversion table file using the name of the input codeset, an
underscore, and the name of the output codeset. For example, if your input codeset
is IS0646 and your output codeset is IS08859, you might name the conversion table
file 64 6 8 8 5 9.

The iconv command searches for the conversion table file in the directory specified
by the $ { I CONV } / can v pathname. If the $ {lCONV} environment variable is
undefined, the iconv command searches the /usr / lib/ intln/ conv directory.

The operation of the iconv command is 8-bit transparent.

Options

-d Deletes any characters that are omitted from the conversion table. By default,
the iconv command sends characters that are omitted to the output file without
modifying them.

-f Specifies the name of the input codeset.

-t Specifies the name of the output codeset.

Restrictions
The conversion table file name can contain no more than 255 characters. You may
need to truncate the name of the input codeset or output codeset when you name the
conversion table file.

Examples

Files

The following shows an example of using the iconv command:

This command converts the data in mydatafile from IS0646 encoding to
IS08859 encoding. The iconv command reads the conversion table from the
$ {ICONV} / conv /646 8859 file. If the $ {lCONV} environment variable is
undefined, the iconv command uses the /usr/lib/intln/conv/646_8859
file. If that file does not exist, the iconv command issues an error message and does
not convert the data file. The iconv command writes the results of any conversion
it performs to the file newdatafile

/usr / lib/ conv /fromcodeset tocodeset
$ {ICONV} /conv/fromcodeset-tocodeset

See Also
environ(5int)
Guide to Developing International Software

Commands 1-285

id (1)

Name
id - print user and group ID and names

Syntax
id [-gnru]

Description
The i d command writes a message on the standard output giving the user and group
ID and the corresponding names of the invoking process. If the effective and real
IDs do not match, both are printed.

If multiple groups are supported by the underlying system, the supplementary group
affiliations of the invoking process are also written.

When no options are specified, the standard format of output produced by i d is

<real user id>, <user-name>, <real group id>, <group-name>

Options

-g Outputs only the group ID. The default format is %d\n. This may be
modified by the -n option. The default group ID is the effective group ID;
this may be modified by the -r option.

-n Outputs the name in the format % s\n instead of the numeric ID when the
-u or -g options are used.

-r Outputs the real ID instead of the effective ID when the -u or -g options
are used. There is no option to produce a list of supplementary group IDs
alone.

-u Outputs only the user ID. The default output format is %dOtp. This may
be modified with the -n option. The default user ID is the effective user
ID; this may be modified by the -r option.

See Also
logname(l), getuid(2)

1-286 Commands

Name

Syntax

inc(1mh)

inc - incorporate new mail

inc [+Joldername] [-audit audit-file] [-noaudit] [-changecur] [-nochangecur]
[-formJormatfile] [-format string] [-file name] [-silent] [-nosilent] [-truncate]
[-notruncate] [-width columns] [-help]

Description

Use inc to incorporate mail from your incoming mail drop into an MH folder. If
+folder is not specified, the folder named +inbox in your MH directory will be
used.

The new messages being incorporated are numbered sequentially starting with the
next highest available number in the folder. If the specified (or default) folder does
not exist, inc will ask you whether you want to create it. As the messages are
processed, a scan listing of the new mail is produced. See scan(1mh) for details
of the listing produced.

If your mhyrofile contains a Msg-Protect: nnn entry, it will be used as
the protection on the newly created messages, otherwise the MH default of 0600 will
be used. This means that messages created will be read and write for the user only.
During all operations on messages, this initially assigned protection will be preserved
for each message, so chmod may be used to set a protection on an individual
message, and its protection will be preserved thereafter.

Options

If the switch -audit audit-file is specified (usually as a default switch in the
profile), then inc will append a header line and a line per message to the end of the
specified audit-file with the format:

inc date
<scan line for first message>
<scan line for second message>

<etc.>
This is useful for keeping track of the volume and source of incoming mail.

Note that inc will incorporate even improperly formatted messages into your MH
folder, inserting a blank line prior to the offending component and printing a
comment identifying the bad message.

In all cases, your mail drop will be zeroed, unless the -notruncate switch is
given.

If the profile entry Unseen-Sequence is present and non-empty, then inc will
add each of the newly incorporated messages to each sequence named by the profile
entry. This is similar to the Previous-Sequence profile entry supported by all
MH commands which take <msgs> or <msg> arguments. Note that inc will not
zero each sequence prior to adding messages.

Commands 1-287

inc(1mh)

Files

The -form formatfile, and the -format string, and -width columns switches
allow you to override the default output fonnat of inc. See scan(lmh) for more
details of these options.

By using the -file name switch, you can direct inc to incorporate messages
from a file other than your maildrop. Note that the named file will not be zeroed,
unless the -truncate switch is given.

If the environment variable $MAILDROP is set, then inc uses it as the location of
your maildrop instead of the default. However the - f i 1 e filename switch
overrides this. If this variable is not set, then inc will consult the profile entry
maildrop for this infonnation. If the value found is not absolute, then it is
interpreted relative to your MH directory. If the value is not found, then inc will
look in the standard system location for your maildrop.

The -silent switch directs inc to be quiet and not ask any questions at all. This
is useful for putting inc in the background and going on to other things.

The argument to the - forma t switch must be interpreted as a single token by the
shell that invokes inc. Therefore, you should usually place the argument to this
switch inside double-quotes.

The defaults for this command are:

+folder defaults to inbox
-no audit
-change cur
- forma t defaults as described above
-nosilent
-truncate if -file name not given, -notruncate otherwise
-width defaulted to the width of the tenninal

The folder into which messages are being incorporated will become the current
folder. The first message incorporated will become the current message, unless the
-nochangecur option is specified. This leaves the context ready for a show of
the first new message.

$HOME/.mh_profile
/usr/new /lib/mh/mtstailor
/usr/spooVmaiV$USER

The user profile
tailor file
Location of mail drop

Profile Components
Path:
Alternate-Mailboxes:
Folder-Protect:
Msg-Protect:
Unseen-Sequence:

See Also

To detennine your MH directory
To detennine your mailboxes
To set mode when creating a new folder
To set mode when creating a new message and audit-file
To name sequences denoting unseen messages

chmod(lmh), mhmail(lmh), scan(lmh), mh-mail(5mh), post(8mh)

1-288 Commands

indent{1)

Name
indent - indent and fonnat C program source

Syntax
indent input [output] [flags]

Description
The indent command is intended primarily as a C program fonnatter. Specifically,
indent indents code lines, aligns comments, inserts spaces around operators where
necessary and breaks up declaration lists as in "int a,b,c;".

The indent command does not break up long statements to make them fit within
the maximum line length, but it does flag lines that are too long. Lines are broken so
that each statement starts a new line, and braces appear alone on a line. Also, an
attempt is made to line up identifiers in declarations.

The flags that can be specified follow. They can appear before or after the file names.
If the output file is omitted, the fonnatted file is written back into input and a
"backup" copy of input is written in the current directory. If input is named
"/blah/blah/file", the backup file is named" .Bfile". If output is specified, indent
checks to make sure it is different from input.

Options
The following options are used to control the fonnatting style imposed by indent:

-Innn Detennines maximum length of output line. The default is 75.

-cnnn

-cdnnn

-innn

-dj,-ndj

-v,-nv

-be,-nbe

-dnnn

-br,-bl

Detennines column in which comments start. The default is 33.

Detennines column in which comments on declarations start. The
default is for these comments to start in the same column as other
comments.

Detennines number of spaces for one indentation level. The default is
4.

Causes declarations to be left justified. -ndj causes them to be
indented the same as code. The default is -ndj.

-v turns on "verbose" mode, -nv turns it off. When in verbose
mode, indent reports when it splits one line of input into two or
more lines of output, and it gives some size statistics at completion.
The default is -nv.

Forces newline after each comma in a declaration. -nbc turns off this
option. The default is -be.

Controls the placement of comments which are not to the right of
code. Specifying -d2 means that such comments are placed two
indentation levels to the left of code. The default -dO lines up these
comments with the code. See the section on comment indentation
below.

Specifying -bl causes complex statements to be lined up in a space
order. For example,

Commands 1-289

indent (1)

if (...)
{

code

Specifying -br (the default) makes them look like this:

if (...) {
code

You may set up your own "profile" of defaults to indent by creating the file
" .indent.pro" in your login directory and including whatever switches you like. If
indent is run and a profile file exists, then it is read to set up the program's
defaults. Switches on the command line, though, always override profile switches.
The profile file must be a single line of not more than 127 characters. The switches
should be separated on the line by spaces or tabs.

Multiline expressions

The indent command does not break up complicated expressions that extend over
multiple lines. However, it usually indents such expressions that have already been
broken up correctly. Such an expression might look like the following:

x =

) ;

Comments

(Arbitrary parenthesized expression)
+
(

(Parenthesized expression)

*
(Parenthesized expression)

The indent command recognizes the following four kinds of comments:

1) straight text

2) "box" comments

3) UNIX-style comments

4) comments that should be passed through unchanged

The comments are interpreted as follows:

"Box" comments The indent command assumes that any comment with a
dash immediately after the start of comment (Le. "/*-") is a
comment surrounded by a box of stars. Each line of such a
comment is left unchanged, except that the first non-blank
character of each successive line is lined up with the
beginning slash of the first line. Box comments are indented
(see below).

"Unix-style" comments This is the type of section header which is used extensively
in the UNIX system source. If the start of comment ("/*")
appears on a line by itself, indent assumes that it is a

1-290 Commands

indent(1)

UNIX-style comment. These are treated similarly to box
comments, except the first non-blank character on each line
is lined up with the '*' of the "/*".

Unchanged comments Any comment which starts in column 1 is left completely
unchanged. This is intended primarily for documentation
header pages. The check for unchanged comments is made
before the check for UNIX-style comments.

Straight text All other comments are treated as straight text. Indent fits as
many words (separated by blanks, tabs, or new lines) on a
line as possible. Straight text comments are indented.

Comment indentation

Box, UNIX-style, and straight text comments may be indented. If a comment is on a
line with code it is started in the "comment column", which is set by the -cnnn
command line parameter. Otherwise, the comment is started at nnn indentation levels
less than where code is currently being placed, where nnn is specified by the -dnnn
command line parameter. (Indented comments is never be placed in column 1.) If
the code on a line extends past the comment column, the comment is moved to the
next line.

Restrictions
Does not know how to format "long" declarations.

Diagnostics

Files

Diagnostic error messages, mostly to tell that a text line has been broken or is too
long for the output line.

.indent.pro profile file

Commands 1-291

install (1)

Name
install - install binaries

Syntax
install [-c] [-m mode] [-0 owner] [-g group] [-s] binary destination

Description
The binary is moved to destination. If destination already exists, it is removed
before binary is moved. If the destination is a directory then binary is moved into
the destination directory with its original file-name.

The ins tall command refuses to move a file onto itself.

Options

-c

-g group

-m mode

-0 owner

-s

See Also

Moves or copies binary to destination.

Specifies a different group from group staff for destination.
The destination is changed to group system; the -g group
option may be used to specify a different group. The user
must belong to the specified group and be the owner of the
file or the superuser.

Specifies a different mode from the standard 755 for
destination.

Specifies a different owner from owner root for destination.
The destination is changed to current owner. The -0 owner
option may be used to specify a different owner, but only the
superuser can change the owner.

Strips the binary after it is installed.

chgrp(1), chmod(1), cp(1), mv(1), strip(1), chown(8)

1-292 Commands

i nvcutter (1)

Name
invcutter - generate subset inventory files

Syntax
lusrlsys/dist/invcutter [-d] [-f root-path] [-f version-code]

Description
The invcutter command reads master inventory records from standard input. A
subset inventory record is written to standard output for every record read from the
input. The information contained in the output record is derived from the input record
and the file attribute information in the file hierarchy rooted in the current directory.

Options

-d

-f root-path

-v version-code

Restrictions

Enable debugging. No useful diagnostics are printed.

Specify an alternate root path for finding file attribute
information.

Specify a 3-digit version code for use in the version field of
the output records. The default version code is 010.

All input records must be sorted in ascending order on the pathname field.

Files described in an input record which exist as sockets in the file hierarchy are not
processable.

If a file is described in an input record has a link count greater than 1, all other links
to the file must be represented in the input.

Examples
The following command will generate inventory records for the master inventory
entries in PDS020.mi containing version fields set to 020:

invcutter -v 020 < PDS020.mi

Return Value
An exit status of 0 is returned if all goes well. An exit status of 1 is returned if an
error occurs. See Diagnostics.

Diagnostics
"cannot chdir to pathname (error-message)"
The program cannot change directories to the pathname directory specified with the
-f option. The error-message will provide additional information.

"sort error, record #n"
The nth input record is not in the correct sort order. All input records must be in
ascending ASCII colating sequence on the pathname field.

Commands 1-293

invcutter (1)

"cannot stat filename (error-message)"
An error has occurred attempting to read the atributes of filename. The error-message
explains exactly what happened.

"pathname: illegal file type code 0140000"
The file pathname is a socket. Sockets are not supported as valid file types for
distribution.

"unresolved nUnk n: pathname"
This indicates that file pathname in the master inventory is linked to n files which do
not appear in the master inventory. Check inventory for validity with the newinv
program.

"n unresolved hard links"
This is an informational message stating how many files were detected in the input
inventory which had unresolved links.

See Also
newinv(l), stl_inv(5), stl_mi(5)
Guide to Preparing Software for Distribution on ULTRIX Systems

1-294 Commands

iostat (1)

Name
iostat - report I/O statistics

Syntax
iostat [-c] [-t] [disknames] [interval] [count]

Description
The iostat command reports I/O statistics for terminals, disks and cpus. For
terminals the number of input and output characters are counted. For disks the
number of 512 byte blocks per second and number of transfers per second are
displayed. For cpus, it provides the percentage of time the system has spent in user
mode, in user mode running low priority (niced) processes, in system mode, and
idling. On multiprocessor systems these cpu statistics represent a cumulative
summary of all the cpus.

The optional disknames argument causes disk statistics to be displayed for the
specified disks. If this argument is not specified then disk statistics will be displayed
for the first 3 disks only.

The optional interval argument causes iostat to report once each interval seconds.
The first report is for all time since a reboot and each subsequent report is for the last
interval only.

The optional count argument restricts the number of reports.

Options

-c Displays the percentage of time each cpu spent in user mode, running low
priority (nice'd) processes, in system mode, and idling.

-t Displays the number of characters read from and written to terminals.

Examples

Files

This example will cause cpu and disk statistics for the 5 disks raO, ra1, ra2, ra3, and
ra4.

iostat raO ral ra2 ra3 ra4

This example will cause cpu, terminal, and disk statistics for raO to be displayed and
updated every 2 seconds.

iostat -t raO 2

/dev/kmem
/vmunix

See Also
vmstat(1), cpustat(1)

Commands 1-295

ipcrm (1)

Name
ipcnn - remove a message queue, semaphore set

Syntax
ipcrm [options]

Description
The ipcrm command removes one or more specified messages, semaphores or
shared memory identifiers.

The details of the removes are described in msgctl(2), shmctl(2), and
semctl(2). The identifiers and keys may be found by ipcs(l).

Options

-q msqid

-m shmid

-s semid

-Q msgkey

-M shmkey

-s semkey

See Also

Removes the message queue identifier msqid from the
system and destroys the message queue and data structure
associated with it.

Removes the shared memory identifier shmid from the
system. The shared memory segment and data structure
associated with it are destroyed after the last detach.

Removes the semaphore identifier semid from the system
and destroys the set of semaphores and data structure
associated with it.

Removes the message queue identifier, created with key
msgkey, from the system and destroys the message queue
and data structure associated with it.

Removes the shared memory identifier, created with key
shmkey, from the system. The shared memory segment and
data structure associated with it are destroyed after the last
detach.

Removes the semaphore identifier, created with key semkey,
from the system and destroys the set of semaphores and data
structure associated with it.

ipcs(1), msgct1(2), msgget(2), msgop(2), semct1(2), semget(2), semop(2), shmct1(2),
shmget(2), shmop(2)

1-296 Commands

ipcs (1)

Name
ipcs - report interprocess communication facilities status

Syntax
ipcs [options]

Description
The ipcs command provides information about active, interprocess communication
facilities, message queues, shared memory, and semaphores that are currently active
in the system.

Options
The information is displayed in columns and is controlled by the following options:

-m Displays information about active shared memory segments

-q Displays information about active message queues

-s Displays information about active semaphores

If any of the options -q, -m, or -s are specified, information about only those
indicated are printed. If none of these three is specified, information about all three
are printed.

-a Uses all print options (shorthand notation for -b, -c, -0, -p and -t)

-b Displays the biggest allowable size information (maximum number of
bytes in messages on queue for message queues, size of segments for
shared memory, and number of semaphores in each set for semaphores)

-C Uses the specified core file (next argument) in place of / dev /kmem

-c Displays creator's login name and group name

-N Uses the specified name list (next argument) in place of /vmunix

-0 Displays the outstanding usage information (number of messages in
queue, size of each and number of processes attached to shared memory
segments)

-p Displays the process ID information (process ID of last process to send a
message and process ID of last process to receive a message on message
queues and process ID of creating process and process ID of last process
to attach or detach on shared memory segments)

-t Displays all time statistics (time of the last control operation that changed
the access permissions for all facilities, time of last msgsnd and last
msgrcv on message queues, last shmat and last shmdt on shared
memory, last semop(2) on semaphores)

The column headings and the meaning of the columns in an ipcs listing are given
below. The letters in parentheses indicate the options that cause the corresponding
heading to appear; all means that the heading always appears. Note that these options
only determine what information is provided for each facility; they do not determine
which facilities are listed.

Commands 1-297

ipcs (1)

T (all)

ID (all)

KEY (all)

MODE (all)

OWNER (all)

GROUP (all)

CREATOR (a,c)

CGROUP (a,c)

CBYTES (a,o)

1-298 Commands

Type of facility:

q Message queue

m Shared memory segment

s Semaphore

The identifier for the facility entry.

The key used as an argument to msgget, semget, or
shmget to create the facility entry. Note: The key of a
shared memory segment is changed to IPC_PRIV ATE when
the segment has been removed until all processes attached to
the segment detach it.

The facility access modes and flags.

The mode consists of 11 characters. The first two characters
are interpreted as follows:

R If the process is waiting on a msgrcv.

S If a process is waiting on a msgsnd.

D If the associated shared memory segment has been
removed. It disappears when the last process attached
to the segment detaches it.

C If the associated shared memory segment is to be clear
when the first attach is executed.

If the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to the owner's permissions; the
next, to permissions of others in the user-group of the
facility entry; and the last to all others. Within each set, the
first character indicates permission to write or alter the
facility entry, and the last character is currently unused.

The permissions are indicated as follows:

r If read permission is granted

w If write permission is granted

a If alter permission is granted

If the indicated permission is not granted

The login name of the owner of the facility entry.

The group name of the group of the owner of the facility
entry.

The login name of the creator of the facility entry.

The group name of the group of the creator of the facility
entry.

The number of bytes in messages currently outstanding on
the associated message queue.

QNUM (a,o)

QBYTES (a,b)

LSPID (a,p)

LRPID (a,p)

STIME (a,t)

RTIME (a,t)

CTlME (a,t)

NATTCH (a,o)

SEGSZ (a,b)

CPID (a,p)

LPID (a,p)

ATlME (a,t)

DTlME (a,t)

NSEMS (a,b)

OTlME (a,t)

ipcs (1)

The number of messages currently outstanding on the
associated message queue.

The maximum number of bytes allowed in messages
outstanding on the associated message queue.

The process ID of the last process to send a message to the
associated queue.

The process ID of the last process to receive a message from
the associated queue.

The time the last message was sent to the associated queue.

The time the last message was received from the associated
queue.

The time the associated entry was created or changed.

The number of processes attached to the associated shared
memory segment.

The size of the associated shared memory segment.

The process ID of the creator of the shared memory entry.

The process ID of the last process to attach or detach the
shared memory segment.

The time the last attach was completed to the associated
shared memory segment.

The time the last detach was completed on the associated
shared memory segment.

The number of semaphores in the set associated with the
semaphore entry.

The time the last semaphore operation was completed on the
set associated with the semaphore entry.

Restrictions

Files

Things can change while ipcs is running. The picture it gives is only a close
approximation to reality.

/vmunix
/dev/kmem
/etc/passwd
/etc/group

system namelist
memory
user names
group names

See Also
ipcrm(2), msgop(2), semop(2), shmop(2)

Commands 1-299

join (1)

Name
join - join files

Syntax
join [-a n] [-e string] [-j n m] [-0 list] [-t c] filel file2

Description
The join command compares a field infilel to afield infile2. If the two fields
match, the j 0 i n command combines the line in filel that contains the field with the
line in file2 that contains the field. The command writes its output to standard
output. If you specify a hyphen (-) in the filel argument, join compares standard
input to the contents of file2.

The j 0 i n command compares and combines the input files one line at a time. Each
line in the input file contains one field that j 0 i n uses to determine if two lines
should be joined. This field is called the join field. By default, the join command
uses the first field in each line as the join field. The command compares the join field
in the first line of filel to the join field in the first line of file2. If the two fields
match, the command joins the lines. The command then compares the join fields in
the second line of both files, and so on.

In the input files, fields are separated by tab or space characters. The join
command reads data from the first field until it encounters a tab or space character,
which terminates the first field. By default, the command ignores tab and space
characters, so the next character that is not a tab or space begins the second field.
The second field is terminated by the tab or space that follows it, and the third field
begins with the next character that is not a tab or space. The j 0 i n command reads
fields in this way until it encounters a new line character. Any number of tabs or
spaces can separate two fields, and any number of newline characters can separate
two lines.

Bothfilel andfile2 must be ordered in the collating sequence of the sort-b
command on the fields that the two files are to be joined. By default, join uses the
first field in each line and collates the same as sort -b.

To create output, the join command writes the join field, followed by the remaining
fields in the line from filel, followed by the remaining fields in the line from file2 to
the output file. The following demonstrates how lines in the output appear by
default:

join_field filel.field2 filel.field3 filel.field4 file2.field2 file2.field3

By default, the join command ignores lines that do not contain identical join fields.
The command writes no output for these lines.

You can change how join creates output using command options. For example,
you can cause the command to write output for lines that do not contain identical join
fields. You can also specify a list using the -0 option. In list, you supply a list of
specifiers in the form file .field, where file is either 1 or 2 and field is the number of
the field. For example, 1.2 specifies the second field in the first file and 2.4 specifies
the fourth field in the second file. The following demonstrates how lines in the output
appear if you use these two specifiers:

1-300 Commands

join (1)

filel.field2 field2.field4

International Environment

LC_COLLATE If this environment variable is set and valid, join uses the
international language database named in the definition to
determine collation rules.

LC_CTYPE

LANG

Options

-a[n]

-es

-jnm

-1m

-2m

-0 list

-tc

Restrictions

If this environment variable is set and valid, j 0 i n uses the
international language database named in the definition to
determine character classification rules.

If this environment variable is set and valid join uses the
intemationallanguage database named in the definition to
determine collation and character classification rules. If
LC_COLLATE or LC_CTYPE is defined their definition
supercedes the definition of LANG.

Write lines that contain unmatched join fields to the output file. You
can cause the command to write unmatched lines from only one file
using n. If you specify 1 in n, j 0 i n writes unmatched lines only
from file 1. If you specify 2, join writes unmatched lines only from
file 2.

If you omit the -a option, join writes no output for unmatched lines.

Writes the string you specify in s to the output if you specify a
nonexistent field in the list for the -0 option. For example, if lines in
file 2 contain only three fields, and you specify 2.4 in list, j 0 i n
writes s in place of the nonexistent field.

Defines field m in file n to be the join field. The join command
compares the field you specify in the - j option to the default join
field in the other file. If you omit n, the join command uses the mth
field in both files.

Use the m th field in the first file as the join field. This option is
equivalent to using - jIm.

Use the m field in the second file as the join field. This option is
equivalent to using - j2 m.

Output the joined data according to list. The specifiers in list have the
formatfileJield, where file is either 1 or 2 and field is the number of
the field.

Recognize the tab character c. The presence of c in a line is
significant, both for comparing join fields and creating output.

If you specify the -t option, the join command collates the same as sort with no
options.

Commands 1-301

join (1)

Examples
Suppose that by issuing the following cat commands, you display the files shown in
the example:

% cat file 1
apr 15
aug 20
dec 18
feb 05
% cat file 2
apr 06
aug 14
date
feb 15

Both files are sorted in ascending order.

If you issue the join command without options, the output appears as follows:

% join file_1 file 2
apr 15 06
aug 20 14
feb 05 15

The third line in each input file is not joined in the output because the join fields
(date and dec) do not match.

To join the lines in these files and format the output so that the second field from
each file appears first and the first (join) field appears second, issue the following
command:

% join -0 1.2 1.1 2.2 2.1 file 1 file 2
15 apr 06 apr
20 aug 14 aug
05 feb 15 feb

To write lines that are unmatched to the output, issue the following command:

% join -a file_1 file_2
apr 15 06
aug 20 14
date
dec 18
feb 05 15

See Also
awk(l), comm(l), sort(1), sort5(1), environ(5int)

1-302 Commands

Name

Syntax

kill - send a signal to a process

kill [-sig] processid ...
kill -I

kill (1)

Description
The kill command sends the TERM (terminate, 15) signal to the specified
processes. If a signal name or number preceded by '-' is given as first argument, that
signal is sent instead of terminate. For further information, see sigvec(2).

The terminate signal kills processes that do not catch the signal; 'kill-9 ... ' is a sure
kill, as the KILL (9) signal cannot be caught. By convention, if process number 0 is
specified, all members in the process group (that is, processes resulting from the
current login) are signaled. This works only if you use sh(1) and not if you use
csh(1). To kill a process it must either belong to you or you must be superuser.

The process number of an asynchronous process started with '&' is reported by the
shell. Process numbers can also be found by using c s h(1). It allows job specifiers
"% ... " so process ID's are not as often used as kill arguments. See csh(1) for
details.

Options

-I Lists signal names. The signal names are listed by 'kill-I', and are as given in
/usr/include/signal.h, stripped of the common SIG prefix.

See Also
csh(l), ps(l), kill(2), sigvec(2)

Commands 1-303

kits (1)

Name
kits - generate setld format distribution kits

Syntax
lusrlsys/dist/kits key-file input-path output-path [subset ...]

Description
The kit s command produces subset images, inventorie.s, and control files for an
installation using the setld command. You need to know the key file which
describes the product to be built, a hierarchy from which the component files to be
kitted are to be taken, and a destination directory into which the kit information is to
be placed.

The kits command produces a subset image and a .image file in the output-path
directory for each subset. In the instctrl subdirectory of output-path, kits produces
an inventory file and a control file. Any subset control program for the subset is
transferred to output-path/instctrl. An instctrl directory is created if none existed.

Arguments

key-file

input-path

output-path

subset ...

Restrictions

The path name of the manufacturing key file which describes the
product to be kitted. Unless optional subset arguments are
specified, all subsets listed in the descriptor section of the key-file
are kitted.

The path name which specifies the top of a hierarchy of files. This
hierarchy contains the files which are to be kitted into subsets.

The name of the directory to be used to store the subset image and
data files produced by the command.

The names of individual subsets can be specified by optionally
listing them on the command line. If they are specified, only those
subsets will be kitted. The kits program assumes that all other
subsets for the product have been kitted and that their images are
in the directory specified by output-path. The key file specified
must contain descriptors for each of the optional named subsets.

Any subset control programs to be provided with the kit must be located in a
directory scps in the working directory where the kits program is invoked. If no
subset control program is found for a subset, an empty one is created.

Examples
The following example shows the command used to produce a kit using key file
ULT400.k in the current directory to package files from the hierarchy Ivarlkitslinput
and place the results in /var/kits/output.

kits ULT400.k /var/kits/input /var/kits/output

The next example shows the same usage, but specifies that only the ULTACCT400
subset is to be created.

1-304 Commands

kits (1)

kits ULT400.k /var/kits/input /var/kits/output ULTACCT400

Diagnostics

Files

kits: key-file not found
The kits program was unable to find the key-file specified on the command line.

kits: input-path not found
The ki ts program was unable to find the specified input-path.

kits: output-path not found
The kit s program was unable to find the specified output-path.

kits: cannot create instctrl directory.
The ki ts program cannot create an instctrl directory under output-path. Check that
the user has write permission to output-path.

kits: key-file format error
One of the NAME, CODE, VERS, MI or ROOT values in the specified key-file is
either missing or has a null value.

Inventory file pathname not found
The master inventory file pathname specified in the MI entry of the key-file cannot be
found. Verify that the pathname is accessible from the current directory.

Generating media creation information .•• failed.
There are no records in the master inventory file for a subset which is being kitted.
Check the master inventory file for correctness of content and format.

No such subset in key-file subset subset
A subset name specified on the command line does not have a descriptor line in the
key-file. Check the spelling of the subset name on the command line. Check the
contents of the key-file.

compression failed. status = status
The compression option was specified in the key-file and an attempt to compress a
subset failed. This should not happen. Run the ki t s program once more.

ts . subset* temporary files.

s t de r r log of subset packaging activity

See Also
invcutter(l), tarsets(1), stl_comp(5), stl_ctrl(5), stl_image(5), stl_inv(5), stl_key(5),
stl_mi(5), stl_scp(5), setld(8)
Guide to Preparing Software for Distribution on ULTRIX Systems

Commands 1-305

ksh(1)

Name
ksh, rksh - KomShell, a standard/restricted command and programming language

Syntax
ksh [±aefbikmnoprstuvx] [±o option] ... [-c string] [arg ...]
rksh [±aefbikmnoprstuvx] [±o option] . .. [-c string] [arg ...]

Description
The k s h shell is a command and programming language that executes commands
read from a tenninal or a file. The rksh shell is a restricted version of the command
interpreter ksh; it is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. See Invocation for
the meaning of arguments to the shell.

Definitions

A metacharacter is one of the following characters:

; & () I < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters, digits, or
underscores starting with a letter or underscore. Identifiers are used as names for
functions and 'named parameters'. A word is a sequence of characters separated by
one or more non-quoted metacharacters.

A command is a sequence of characters in the syntax of the shell language. The shell
reads each command and carries out the desired action either directly or by invoking
separate utilities. A special command is a command that is carried out by the shell
without creating a separate process. Except for documented side effects, most special
commands can be implemented as separate utilities.

Commands

A simple-command is a sequence of blank separated words which may be preceded
by a parameter assignment list. See Environment below. The first word specifies
the name of the command to be executed. Except as specified below, the remaining
words are passed as arguments to the invoked command. The command name is
passed as argument 0 (see exec(2)). The value of a simple-command is its exit
status if it tenninates normally, or (octal) 200+status if it terminates abnonnally (see
signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I. The standard
output of each command but the last is connected by a pipe(2) to the standard input
of the next command. Each command is run as a separate process; the shell waits for
the last command to terminate. The exit status of a pipeline is the exit status of the
last command.

A list is a sequence of one or more pipelines separated by;, &, &&, or I I, and
optionally terminated by;, &, or I &. Of these five symbols, ;, &, and I & have
equal precedence, which is lower than that of && and I I. The symbols && and I
also have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the
preceding pipeline (that is, the shell does not wait for that pipeline to finish). The

1-306 Commands

ksh(1)

symbol I & causes asynchronous execution of the preceding command or pipeline
with a two-way pipe established to the parent shell. The standard input and output of
the spawned command can be written to and read from by the parent Shell using the -r option of the special commands read and print described later. The symbol &&
(I) causes the list following it to be executed only if the preceding pipeline returns
a zero (non-zero) value. An arbitrary number of new-lines may appear in a list,
instead of a semicolon, to delimit a command.

A command is either a simple-command or one of the following. Unless otherwise
stated, the value returned by a command is that of the last simple-command executed
in the command.

for identifier [in word ...] ;do list ;done
Each time a for command is executed, identifier is set to the next word
taken from the in word list. If in word . .. is omitted, then the for
command executes the do list once for each positional parameter that is
set (see Parameter Substitution). Execution ends when there are no
more words in the list.

select identifier [in word ...] ;do list ;done
A select command prints on standard error (file descriptor 2), the set of
words, each preceded by a number. If in word ... is omitted, then the
positional parameters are used instead (see Parameter Substitution
below). The PS3 prompt is printed and a line is read from the standard
input. If this line consists of the number of one of the listed words, then
the value of the parameter identifier is set to the word corresponding to
this number. If this line is empty the selection list is printed again.
Otherwise the value of the parameter identifier is set to null. The contents
of the line read from standard input is saved in the parameter REPL Y.
The list is executed for each selection until a break or end-of-file is
encountered.

case word in [[(]pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file­
name generation (see File Name Generation below).

if list ;then list [elif list ;then list]... [;else list] ;fi
The list following if is executed and, if it returns a zero exit status, the list
following the first then is executed. Otherwise, the list following elif is
executed and, if its value is zero, the list following the next then is
executed. Failing that, the else list is executed. If no else list or then list
is executed, then the if command returns a zero exit status.

while list ;do list ;done
until list ;do list ;done

A while command repeatedly executes the while list and, if the exit status
of the last command in the list is zero, executes the do list; otherwise the
loop terminates. If no commands in the do list are executed, then the
while command returns a zero exit status; until may be used in place of
while to negate the loop termination test.

(list) Execute list in a separate environment. Note, that if two adjacent open
parentheses are needed for nesting, a space must be inserted to avoid
arithmetic evaluation as described below.

Commands 1-307

ksh(1)

{ list;} The list is simply executed. Note that unlike the metacharacters (and),
{ and } are 'reserved words' and must at the beginning of a line or after a ;
in order to be recognized.

[[expression]]
Evaluates expression and returns a zero exit status when expression is true.
See Conditional Expressions for a description of expression.

function identifier { list ;}
identifier 0 { list ;}

Define a function which is referenced by identifier. The body of the
function is the list of commands between { and}. (See Functions below).

time pipeline
The pipeline is executed and the elapsed time as well as the user and
system time are printed on standard error.

The following reserved words are only recognized as the first word of a command
and when not quoted:

if then else eUf fi case esac for while until do done {
} function select time [[]]

Comments
A word beginning with # causes that word and all the following characters up to a
new-line to be ignored.

Aliasing
The first word of each command is replaced by the text of an alias if an alias for this
word has been defined. The first character of an alias name can be any non-special
printable character, but the rest of the characters must be the same as for a valid
identifier. The replacement string can contain any valid Shell script including the
metacharacters listed above. The first word of each command in the replaced text,
other than any that are in the process of being replaced, will be tested for aliases. If
the last character of the alias value is a blank then the word following the alias will
also be checked for alias substitution. Aliases can be used to redefine special builtin
commands but cannot be used to redefine the reserved words listed above. Aliases
can be created, listed, and exported with the ali a s command and can be removed
with the unalias command. Exported aliases remain in effect for scripts invoked
by name, but must be reinitialized for separate invocations of the Shell (See
Invocation below).

Aliasing is performed when scripts are read, not while they are executed. Therefore,
for an alias to take effect the alias definition command has to be executed before the
command which references the alias is read. .

Aliases are frequently used as a short hand for full path names. An option to the
aliasing facility allows the value of the alias to be automatically set to the full
pathname of the corresponding command. These aliases are called tracked aliases.
The value of a tracked alias is defined the first time the corresponding command is
looked up and becomes undefined each time the PATH variable is reset. These
aliases remain tracked so that the next subsequent reference will redefine the value.
Several tracked aliases are compiled into the shell. The -h option of the set
command makes each referenced command name into a tracked alias.

1-308 Commands

ksh(1)

The following 'exported aliases' are compiled into the shell but can be unset or
redefined:

autoload=' typeset -fu'
false='let 0'
functions='typeset -r
hash=' alias -t'
history='fc -I'
integer=' typeset -i'
nohup='nohup'
r='fc -e-!
true=':'
type='whence -v'

Tilde Substitution

After alias substitution is performed, each word is checked to see if it begins with an
unquoted -. If it does, then the word up to a 1 is checked to see if it matches a user
name in the / etc/passwd file. If a match is found, the - and the matched login
name is replaced by the login directory of the matched user. This is called a 'tilde
substitution'. If no match is found, the original text is left unchanged. A - by itself,
or in front of a I, is replaced by the value of the HOME parameter. A - followed by
a + or - is replaced by $PWD and $OLDPWD respectively.

In addition, tilde substitution is attempted when the value of a 'variable assignment
parameter' begins with a-.

Command Substitution

The standard output from a command enclosed in parentheses preceded by a dollar
sign ($()) or a pair of grave accents (, ') may be used as part or all of a word;
trailing new-lines are removed. In the second (archaic) form, the string between the
quotes is processed for special quoting characters before the command is executed.
(See Quoting). The command substitution $(cat file) can be replaced by the
equivalent but faster $(<file). Command substitution of most special commands that
do not perfonn input/output redirection are carried out without creating a separate
process.

An arithmetic expression enclosed in double parenthesis preceded by a dollar sign (
$«))) is replaced by the value of the arithmetic expression within the double
parenthesis.

Process Substitution.

This feature is only available on versions of the operating system that support the
/ dev / f d directory for naming open files. Each command argument of the form
«list) or >(list) will run process list asynchronously connected to some file in
/ dev / fd. The name of this file will become the argument to the command. If the
form with > is selected then writing on this file will provide input for list. If < is
used, then the file passed as an argument will contain the output of the list process.
For example,

paste «cut -fi filel) «cut -f3 file2) I tee >(processl) >(process2)

cuts fields 1 and 3 from the files filel and file2 respectively, pastes the results
together, and sends it to the processes processl and process2, as well as putting it
onto the standard output. Note that the file, which is passed as an argument to the

Commands 1-309

ksh(1)

command, is a system pipe so programs that expect to Iseek on the file will not
work.

Parameter Substitution
A parameter is an identifier, one or more digits, or any of the characters *, @, #, ?, -,
$, and!. A 'named parameter' (a parameter denoted by an identifier) has a value and
zero or more attributes. Named parameters can be assigned values and attributes by
using the typeset special command. The attributes supported by the Shell are
described later with the type s et special command. Exported parameters pass
values and attributes to the environment.

The shell supports a one-dimensional array facility. An element of an array
parameter is referenced by a subscript. A subscript is denoted by a [, followed by an
'arithmetic expression' (see Arithmetic Evaluation) followed by a 1. To assign
values to an array, use set -A name value.... The value of all subscripts must be
in the range of 0 through 1023. Arrays need not be declared. Any reference to a
named parameter with a valid subscript is legal and an array will be created if
necessary. Referencing an array without a subscript is equivalent to referencing the
element zero.

The value of a named parameter may also be assigned by writing:

name=value [name=value] ...

If the integer attribute, -i, is set for name the value is subject to arithmetic evaluation
as described below.
Positional parameters, parameters denoted by a number, may be assigned values with
the set special command. Parameter $0 is set from argument zero when the shell is
invoked.
The character $ is used to introduce substitutable parameters.
${parameter}

The shell reads all the characters from ${ to the matching } as part of the
same word even if it contains braces or metacharacters. The value, if any,
of the parameter is substituted. The braces are required when parameter is
followed by a letter, digit, or underscore that is not to be interpreted as
part of its name or when a named parameter is subscripted. If parameter
is one or more digits then it is a positional parameter. A positional
parameter of more than one digit must be enclosed in braces. If parameter
is * or @, then all the positional parameters, starting with $1, are
substituted (separated by a field separator character). If an array identifier
with subscript * or @ is used, then the value for each of the elements is
substituted (separated by a field separator character).

${#parameter}
If parameter is * or @, the number of positional parameters is substituted.
Otherwise, the length of the value of the parameter is substituted.

${#identifier[*]}
The number of elements in the array identifier is substituted.

${parameter :-word}
If parameter is set and is non-null then substitute its value; otherwise
substitute word.

${parameter :=word}
If parameter is not set or is null then set it to word; the value of the
parameter is then substituted. Positional parameters may not be assigned
to in this way.

1-310 Commands

ksh(1)

${parameter: ?word}
If parameter is set and is non-null then substitute its value; otherwise,
print word and exit from the shell. If word is omitted then a standard
message is printed.

${parameter :+word}
If parameter is set and is non-null then substitute word; otherwise
substitute nothing.

${parameter#pattern}
${parameter##pattern}

If the Shell pattern matches the beginning of the value of parameter, then
the value of this substitution is the value of the parameter with the
matched portion deleted; otherwise the value of this parameter is
substituted. In the first form the smallest matching pattern is deleted and
in the second form the largest matching pattern is deleted.

${parameter % pattern}
${parameter % % pattern}

If the Shell pattern matches the end of the value of parameter, then the
value of this substitution is the value of the parameter with the matched
part deleted; otherwise substitute the value of parameter. In the first form
the smallest matching pattern is deleted and in the second form the largest
matching pattern is deleted.

In the above, word is not evaluated unless it is to be used as the substituted string, so
that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the shell only ch~cks
whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set
command.

? The decimal value returned by the last executed command.
$ The process number of this shell.

Initially, the value _ is an absolute pathname of the shell or
script being executed as passed in the environment.
Subsequently it is assigned the last argument of the previous
command. This parameter is not set for commands which are
asynchronous. file when checking for mail.
The process number of the last background command invoked.

ERRNO The value of ermo as set by the most recently failed system
call. This value is system dependent and is intended for
debugging purposes.

LINENO The line number of the current line within the script or
function being executed.

OLDPWD The previous working directory set by the cd command.
OPT ARG The value of the last option argument processed by the

getopts special command.
OPTIND The index of the last option argument processed by the

getopts special command.
PPID The process number of the parent of the shell.
PWD The present working directory set by the cd command.

Commands 1-311

ksh(1)

RANDOM Each time this parameter is referenced, a random integer,
unifonnly distributed between 0 and 32767, is generated. The
sequence of random numbers can be initialized by assigning a
numeric value to RANDOM.

REPLY This parameter is set by the select statement and by the read
special command when no arguments are supplied.

SECONDS Each time this parameter is referenced, the number of seconds
since shell invocation is returned. If this parameter is
assigned a value, then the value returned upon reference will
be the value that was assigned plus the number of seconds
since the assignment.

The following parameters are used by the shell:

1-312 Commands

CDPATH
The search path for the cd command.

COLUMNS

If this variable is set, the value is used to define the width of the edit
window for the shell edit modes and for printing select lists.

EDITOR
If the value of this variable ends in emacs, gmacs, or vi and the
VISUAL variable is not set, then the corresponding option (see Special
Command set below) will be turned on.

ENV If this parameter is set, then parameter substitution is performed on
the value to generate the pathname of the script that will be executed
when the shell is invoked. (See Invocation below.) This file is
typically used for alias and function definitions.

FCEDIT
The default editor name for the fc command.

FPATH
The search path for function definitions. This path is searched when
a function with the -u attribute is referenced and when a command is
not found. If an executable file is found, then it is read and executed
in the current environment.

IFS Internal field separators, nonnally space, tab, and,new-Iine that is
used to separate command words which result from command or
parameter substitution and for separating words with the special
command read. The first character of the IFS parameter is used to
separate arguments for the $* substitution (See Quoting below).

HISTFILE
If this parameter is set when the shell is invoked, then the value is
the pathname of the file that will be used to store the command
history. (See Command re-entry below.)

HISTSIZE
If this parameter is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will be
greater than or equal to this number. The default is 128.

HOME
The default argument (home directory) for the cd command.

LINES
If this variable is set, the value is used to detennine the column
length for printing select lists. Select lists will print vertically until
about two-thirds of LINES lines are filled.

ksh(1)

LOGNAME

MAIL

The name of the user's login account, corresponding to the login
name in the user database.

If this parameter is set to the name of a mail file and the MAILPATH
parameter is not set, then the shell informs the user of arrival of mail
in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will check for
changes in the modification time of any of the files specified by the
MAILPATH or MAIL parameters. The default value is 600 seconds.
When the time has elapsed the shell will check before issuing the
next prompt.

MAILPATH

PATH

A colon (:) separated list of file names. If this parameter is set then
the shell informs the user of any modifications to the specified files
that have occurred within the last MAILCHECK seconds. Each file
name can be followed by a ? and a message that will be printed. The
message will undergo parameter substitution with the parameter, $_
defined as the name of the file that has changed. The default
message is you have mail in $.

The search path for commands (see Execution below). The user may
not change PATH if executing under rksh (except in .profile).

PSI The value of this parameter is expanded for parameter substitution to
define the primary prompt string which by default is "$ ". The
character ! in the primary prompt string is replaced by the command
number (see Command Re-entry below).

PS2 Secondary prompt string, by default "> ".
PS3 Selection prompt string used within a select loop, by default' '#? "
PS4 The value of this parameter is expanded for parameter substitution

and precedes each line of an execution trace. If omitted, the
execution trace prompt is "+ ".

SHELL
The pathname of the shell is kept in the environment. At invocation,
if the basename of this variable matches the pattern *r*sh, then the
shell becomes restricted.

TMOUT
If set to a value greater than zero, the shell will terminate if a
command is not entered within the prescribed number of seconds
after issuing the PSI prompt. (Note that the shell can be compiled
with a maximum bound for this value which cannot be exceeded.)

VISUAL
If the value of this variable ends in emacs, gmacs, or vi then the
corresponding option (see Special Command set below) will be
turned on.

The shell gives default values to PATH, PSt, PS2, MAILCHECK, TMOUT and IFS,
while HOME, SHELL ENV and MAIL are not set at all by the shell (although HOME is set
by login(1)). On some systems MAIL and SHELL are also set by login(l)).

Commands 1-313

ksh(1)

Blank Interpretation.
After parameter and command substitution, the results of substitutions are scanned
for the field separator characters (those found in IFS) and split into distinct
arguments where such characters are found. Explicit null arguments ("" or ") are
retained. Implicit null arguments (those resulting from parameters that have no
values) are removed.

File Name Generation.
Following substitution, each command word is scanned for the characters *, ?, and [
unless the -f option has been set. If one of these characters appears then the word is
regarded as a pattern. The word is replaced with lexicographically sorted file names
that match the pattern. If no file name is found that matches the pattern, then the
word is left unchanged. When a pattern is used for file name generation, the
character. at the start of a file name or immediately following a /, as well as the
character / itself, must be matched explicitly. In other instances of pattern matching
the / and. are not treated specially.

* Matches any string, including the null string.
? Matches any single character.
[...]

Matches anyone of the enclosed characters. A pair of characters
separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening "["is a "! "
then any character not enclosed is matched. A - can be included in
the character set by putting it as the first or last character.

A pattern-list is a list of one or more patterns separated by each other with a I .
Composite patterns can be formed with one or more of the following:

?(pattern-list)
Optionally matches anyone of the given patterns.

* (pattern-list)
Matches zero or more occurrences of the given patterns.

+(pattern-list)
Matches one or more occurrences of the given patterns.

@(pattern-list)
Matches exactly one of the given patterns.

!(pattern-list)
Matches anything, except one of the given patterns.

Quoting.
Each of the metacharacters listed above (See Definitions above) has a special
meaning to the shell and causes termination of a word unless quoted. A character
may be quoted (that is, made to stand for itself) by preceding it with a \. The pair
\new-line is ignored. All characters enclosed between a pair of single quote marks
("), are quoted. A single quote cannot appear within single quotes. Inside double
quote marks (n n), parameter and command substitution occurs and \ quotes the
characters \, " n, and $. The meaning of $* and $@ is identical when not quoted or
when used as a parameter assignment value or as a file name. However, when used
as a command argument, $* is equivalent to n$ld $2d ... n, where d is the first
character of the IFS parameter, whereas $@ is equivalent to $1 "$2" Inside
grave quote marks (' ') \ quotes the characters \, ',and

1-314 Commands

ksh(1)

If the grave quotes occur within double quotes then \ also quotes the character".

The special meaning of reserved words or aliases can be removed by quoting any
character of the reserved word. The recognition of function names or special
command names listed below cannot be altered by quoting them.

Arithmetic Evaluation.

An ability to perform integer arithmetic is provided with the special command let.
Evaluations are performed using long arithmetic. Constants are of the form
[base#]n where base is a decimal number between two and thirty-six representing
the arithmetic base and n is a number in that base. If base is omitted then base lOis
used.

An arithmetic expression uses the same syntax, precedence, and associativity of
expression of the C language. All the integral operators, other than ++, --, ?:, and,
are supported. Named parameters can be referenced by name within an arithmetic
expression without using the parameter substitution syntax. When a named
parameter is referenced, its value is evaluated as an arithmetic expression.

An internal integer representation of a named parameter can be specified with the -i
option of the typeset special command. Arithmetic evaluation is performed on the
value of each assignment to a named parameter with the -i attribute. If you do not
specify an arithmetic base, the first assignment to the parameter determines the
arithmetic base. This base is used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative form of the let
command is provided. For any command which begins with a «, all the characters
until a matching)) are treated as a quoted expression. More precisely, « ...)) is
equivalent to let" ... ".

Prompting.

When used interactively, the shell prompts with the value of PSI before reading a
command. If at any time a new-line is typed and further input is needed to complete
a command, then the secondary prompt (that is, the value of PS2) is issued.

Conditional Expressions.

A conditional expression is used with the [[compound command to test attributes of
files and to compare strings. Word splitting and file name generation are not
performed on the words between [[and]]. Each expression can be constructed from
one or more of the following unary or binary expressions:
-a file True, if file exists.
-b file True, if file exists and is a block special file.
-c file True, if file exists and is a character special file.
-d file True, if file exists and is a directory.
-f file True, if file exists and is an ordinary file.
-g file True, if file exists and is has its setgid bit set.
-k file True, if file exists and is has its sticky bit set.
-D string True, if length of string is non-zero.
-0 option True, if option named option is on.
-p file True, if file exists and is a fifo special file or a pipe.
-r file True, if file exists and is readable by current process.
-s file True, if file exists and has size greater than zero.
-t fildes True, if file descriptor number fildes is open and associated with a terminal

device.

Commands 1-315

ksh(1)

-ufile
-w file
-x file

-z string
-Lfile
-0 file
-G file

True, if file exists and is has its setuid bit set.
True, if file exists and is writable by current process.
True, if file exists and is executable by current process. If file exists and is
a directory, then the current process has permission to search in the
directory.
True, if length of string is zero.
True, if file exists and is a symbolic link.
True, if file exists and is owned by the effective user id of this process.
True, if file exists and its group matches the effective group id of this
process.

-S file True, if file exists and is a socket.
filel -Dt file2

True, if filel exists and is newer than file2 .
filel -ot file2

True, if filel exists and is older than file2 .
filel -ef file2

True, if filel and file2 exist and refer to the same file.
string = pattern

True, if string matches pattern.
string ! = pattern

True, if string does not match pattern.
string 1 < string2

True, if stringl comes before string2 based on ASCII value of their
characters.

string 1 > string2
True, if string 1 comes after string2 based on ASCII value of their
characters.

expl -eq exp2
True, if expl is equal to exp2.

expl -De exp2
True, if expl is not equal to exp2.

exp 1 -It exp2
True, if expl is less than exp2.

expl -gt exp2
True, if expl is greater than exp2.

expl -Ie exp2
True, if expl is less than or equal to exp2.

expl -ge exp2
True, if expl is greater than or equal to exp2.

In each of the above expressions, if file is of the form Idev/fdln, where n is an
integer, then the test applied to the open file whose descriptor number is n.

A compound expression can be constructed from these primitives by using any of the
following, listed in decreasing order of precedence.
(expression)

True, if expression is true. Used to group expressions.
! expression

True if expression is false.
expressionl && expression2

True, if expressionl and expression2 are both true.
expressionl II expression2

1-316 Commands

ksh(1)

True, if either expression] or expression2 is true.

Input/output.

Before a command is executed, its input and output may be redirected using a special
notation interpreted by the shell. The following may appear anywhere in a simple­
command or may precede or follow a command and are not passed on to the invoked
command. Command and parameter substitution occurs before word or digit is used
except as noted below. File name generation occurs only if the pattern matches a
single file and blank interpretation is not performed.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does
not exist then it is created. If the file exists, and the noclobber
option is on, this causes an error; otherwise, it is truncated to zero
length.

>Iword

»word

<>word

«[-]word

< & dig it

<&-

Sames as >, except that it overrides the noclobber option.

Use file word as standard output. If the file exists then output is
appended to it (by first seeking to the end-of-file); otherwise, the file
is created.

Open file word for reading and writing as standard input.

The shell input is read up to a line that is the same as word, or to an
end-of-file. No parameter substitution, command substitution or file
name generation is performed on word. The resulting document,
called a here-document, becomes the standard input. If any
character of word is quoted, then no interpretation is placed upon
the characters of the document; otherwise, parameter and command
substitution occurs, \new-Iine is ignored, and \ must be used to
quote the characters \, $, " and the first character of word. If - is
appended to «, then all leading tabs are stripped from word and
from the document.

The standard input is duplicated from file descriptor digit (see
dup(2». Similarly for the standard output using >& digit.

The standard input is closed. Similarly for the standard output
using >&-.

<&p The input from the co-process is moved to standard input.

>&p The output to the co-process is moved to standard output.

If one of the above is preceded by a digit, then the file descriptor number referred to
is that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each
redirection in terms of the (file descriptor, file) association at the time of evaluation.
For example:

Commands 1-317

ksh(1)

. .. l>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2
with the file associated with file descriptor 1 (that is, fname). If the order of
redirections were reversed, file descriptor 2 would be associated with the terminal
(assuming file descriptor 1 had been) and then file descriptor 1 would be associated
with file fname .

If a command is followed by & and job control is not active, then the default
standard input for the command is the empty file /dev/null. Otherwise, the
environment for the execution of a command contains the file descriptors of the
invoking shell as modified by input/output specifications.

Environment.
The environment (see environ(7» is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list. The names must be
identifiers and the values are character strings. The shell interacts with the
environment in several ways. On invocation, the shell scans the environment and
creates a parameter for each name found, giving it the corresponding value and
marking it export. Executed commands inherit the environment. If the user modifies
the values of these parameters or creates new ones, using the export or typeset -x
commands they become part of the environment. The environment seen by any
executed command is thus composed of any name-value pairs originally inherited by
the shell, whose values may be modified by the current shell, plus any additions
which must be noted in export or typeset -x commands.

The environment for any simple-command or function may be augmented by
prefixing it with one or more parameter assignments. A parameter assignment
argument is a word of the form identifier=value. Thus:

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all parameter assignment arguments are placed in the
environment, even if they occur after the command name. The following first prints
a=b c and then c:

echo a=b c
set -k
echo a=b c

This feature is intended for use with scripts written for early versions of the shell and
its use in new scripts is strongly discouraged. It is likely to disappear someday.

Functions.

The function reserved word, described in the Commands section above, is used to
define shell functions. Shell functions are read in and stored internally. Alias names
are resolved when the function is read. Functions are executed like commands with
the arguments passed as positional parameters. (See Execution below).

Functions execute in the same process as the caller and share all files and present
working directory with the caller. Traps caught by the caller are reset to their default
action inside the function. A trap condition that is not caught or ignored by the
function causes the function to terminate and the condition to be passed on to the

1-318 Commands

ksh(1)

caller. A trap on EXIT set inside a function is executed after the function completes
in the environment of the caller. Ordinarily, variables are shared between the calling
program and the function. However, the typeset special command used within a
function defines local variables whose scope includes the current function and all
functions it calls.

The special command return is used to return from function calls. Errors within
functions return control to the caller.

Function identifiers can be listed with the -f or +f option of the typeset special
command. The text of functions will also be listed with -f. Function can be
undefined with the -f option of the unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf option
of the typeset command allows a function to be exported to scripts that are executed
without a separate invocation of the shell. Functions that need to be defined across
separate invocations of the shell should be specified in the ENV file with the -xf
option of typeset

Jobs.

If the monitor option of the set command is turned on, an interactive shell associates
a job with each pipeline. It keeps a table of current jobs, printed by the jobs
command, and assigns them small integer numbers. When a job is started
asynchronously with &, the shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had
one (top-level) process, whose process id was 1234.

This paragraph and the next require features that are not in all versions of the UNIX
operating system and may not apply. If you are running a job and wish to do
something else you may hit the key AZ (control-Z) which sends a STOP signal to the
current job. The shell will then normally indicate that the job has been 'Stopped',
and print another prompt. You can then manipulate the state of this job, putting it in
the background with the bg command, or run some other commands and then
eventually bring the job back into the foreground with the foreground command fg.
A A Z takes effect immediately and is like an interrupt in that pending output and
unread input are discarded when it is typed.

A job being run in the background will stop if it tries to read from the terminal.
Background jobs are normally allowed to produce output, but this can be disabled by
giving the command "stty to stop " . If you set this tty option, then background jobs
will stop when they try to produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell .. A job can be referred to by the
process id of any process of the job or by one of the following:
%number The job with the given number.
%string Any job whose command line begins with string.
%?string Any job whose command line contains string.
% % Current job.
% + Equivalent to % %.
%- Previous job.

Commands 1-319

ksh(1)

This shell learns immediately whenever a process changes state. It normally informs
you whenever a job becomes blocked so that no further progress is possible, but only
just before it prints a prompt. This is done so that it does not otherwise disturb your
work.

When the monitor mode is on, each background job that completes triggers any trap
set for CHLD.

When you try to leave the shell while jobs are running or stopped, you will be
warned that 'You have stopped(running) jobs.' You may use the jobs command to
see what they are. If you do this or immediately try to exit again, the shell will not
warn you a second time, and the stopped jobs will be terminated.

Signals.
The !NT and QUIT signals for an invoked command are ignored if the command is
followed by & and job monitor option is not active. Otherwise, signals have the
values inherited by the shell from its parent (but see also the trap command below).

Execution.
Each time a command is executed, the above substitutions are carried out. If the
command name matches one of the Special Commands listed below, it is executed
within the current shell process. Next, the command name is checked to see if it
matches one of the user defined functions. If it does, the positional parameters are
saved and then reset to the arguments of the function call. When the function
completes or issues a return, the positional parameter list is restored and any trap set
on EXIT within the function is executed. The value of a function is the value of the
last command executed. A function is also executed in the current shell process. If a
command name is not a special command or a user defined function, a process is
created and an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). The default path
is Ibin:/usr/bin: (specifying Ibin, lusr/bin, and the current directory in that order).
The current directory can be specified by two or more adjacent colons, or by a colon
at the beginning or end of the path list. If the command name contains a I then the
search path is not used. Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission but is not a directory or an a.out
file, it is assumed to be a file containing shell commands. A sub-shell is spawned to
read it. All non-exported aliases, functions, and named parameters are removed in
this case. If the shell command file doesn't have read permission, or if the setuid
and/or setgid bits are set on the file, then the shell executes an agent whose job it is
to set up the permissions and execute the shell with the shell command file passed
down as an open file. A parenthesized command is executed in a sub-shell without
removing non-exported quantities.

Command Re-entry.
The text of the last HISTSIZE (default 128) commands entered from a terminal device
is saved in a history file. The file $HOME/.sh_history is used if the HISTFILE
variable is not set or is not writable. A shell can access the commands of all
interactive shells which use the same named HISTFILE. The special command fc is
used to list or edit a portion of this file. The portion of the file to be edited or listed
can be selected by number or by giving the first character or characters of the

1-320 Commands

ksh(1)

command. A single command or range of commands can be specified. If you do not
specify an editor program as an argument to fc then the value of the parameter
FCEDIT is used. If FCEDIT is not defined then /bin/ed is used. The edited
command(s) is printed and re-executed upon leaving the editor. The editor name - is
used to skip the editing phase and to re-execute the command. In this case a
substitution parameter of the form old=new can be used to modify the command
before execution. For example, if r is aliased to 'fc -e...! then typing 'r bad=good c'
will re-execute the most recent command which starts with the letter c, replacing the
first occurrence of the string bad with the string good.

In-line Editing Options

Normally, each command line entered from a terminal device is simply typed
followed by a new-line ('RETURN' or 'LINE FEED'). If either the emacs, gmacs,
or vi option is active, the user can edit the command line. To be in either of these
edit modes set the corresponding option. An editing option is automatically selected
each time the VISUAL or EDITOR variable is assigned a value ending in either of these
option names.

The editing features require that the user's terminal accept 'RETURN' as carriage
return without line feed and that a space (' ') must overwrite the current character on
the screen. ADM terminal users should set the "space - advance" switch to 'space'.
Hewlett-Packard series 2621 terminal users should set the straps to 'bcGHxZ etX'.

The editing modes implement a concept where the user is looking through a window
at the current line. The window width is the value of COLUMNS if it is defined,
otherwise 80. If the line is longer than the window width minus two, a mark is
displayed at the end of the window to notify the user. As the cursor moves and
reaches the window boundaries the window will be centered about the cursor. The
mark is a > «, *) if the line extends on the right (left, both) side(s) of the window.

The search commands in each edit mode provide access to the history file. Only
strings are matched, not patterns, although a leading A in the string restricts the
match to begin at the first character in the line.

Emacs Editing Mode

This mode is entered by enabling either the emacs or gmacs option. The only
difference between these two modes is the way they handle AT. To edit, the user
moves the cursor to the point needing correction and then inserts or deletes characters
or words as needed. All the editing commands are control characters or escape
sequences. The notation for control characters is caret (A) followed by the
character. For example, AF is the notation for control F. This is entered by
depressing 'f' while holding down the 'CTRL' (control) key. The 'SHIFT' key is
not depressed. (The notation A? indicates the DEL (delete) key.)

The notation for escape sequences is M- followed by a character. For example, M-f
(pronounced Meta f) is entered by depressing ESC (ascii 033) followed by 'f'. (M-F
would be the notation for ESC followed by 'SHIFT' (capital) 'F'.)

All edit commands operate from any place on the line (not just at the beginning).
Neither the "RETURN" nor the "LINE FEED" key is entered after edit commands
except when noted.

Commands 1-321

ksh(1)

I\F
M·f

I\B
M·b
I\A
I\E
1\]char
M·I\]char
I\XI\X
erase

I\D
M·d
M·I\H
M·h
M·I\?

I\C
M·c
M·)
I\K

I\W
M·p
kill

I\y
I\L
I\@
M·space
I\J
I\M
eo!

M·<
M·>
I\N

1\ Rstring

1-322 Commands

Move cursor forward (right) one character.
Move cursor forward one word. (The emacs editor's idea of a word is a
string of characters consisting of only letters, digits and underscores.)
Move cursor backward (left) one character.
Move cursor backward one word.
Move cursor to start of line.
Move cursor to end of line.
Move cursor forward to character char on current line.
Move cursor back to character char on current line.
Interchange the cursor and mark.
(User defined erase character as defined by the stty(l) command, usually
1\ H or #.) Delete previous character.
Delete current character.
Delete current word.
(Meta-backspace) Delete previous word.
Delete previous word.
(Meta-DEL) Delete previous word (if your interrupt character is I\?
(DEL, the default) then this command will not work).
Transpose current character with next character in emacs mode.
Transpose two previous characters in gmacs mode.
Capitalize current character.
Capitalize current word.
Change the current word to lower case.
Delete from the cursor to the end of the line. If preceded by a numerical
parameter whose value is less than the current cursor position, then
delete from given position up to the cursor. If preceded by a numerical
parameter whose value is greater than the current cursor position, then
delete from cursor up to given cursor position.
Kill from the cursor to the mark.
Push the region from the cursor to the mark on the stack.
(User defined kill character as defined by the stty command, usually I\G
or @.) Kill the entire current line. If two kill characters are entered in
succession, all kill characters from then on cause a line feed (useful when
using paper terminals).
Restore last item removed from line. (Yank item back to the line.)
Line feed and print current line.
(Null character) Set mark.
(Meta space) Set mark.
(New line) Execute the current line.
(Return) Execute the current line.
End-of-file character, normally 1\ D, is processed as an End-of-file only if
the current line is null.
Fetch previous command. Each time 1\ P is entered the previous
command back in time is accessed. Moves back one line when not on
the first line of a multi-line command.
Fetch the least recent (oldest) history line.
Fetch the most recent (youngest) history line.
Fetch next command line. Each time 1\ N is entered the next command
line forward in time is accessed.
Reverse search history for a previous command line containing string. If
a parameter of zero is given, the search is forward. String is terminated
by a "RETURN" or "NEW LINE". If string is preceded by a 1\, the

AO

M-digits

M-letter

M-.

M­
M-*"

M-ESC

M-=
AU
\

AV
M-#

ksh(1)

matched line must begin with string. If string is omitted, then the next
command line containing the most recent string is accessed. In this case
a parameter of zero reverses the direction of the search.
Operate - Execute the current line and fetch the next line relative to
current line from the history file.
(Escape) Define numeric parameter, the digits are taken as a parameter to
the next command. The commands that accept a parameter are AF, AB,
erase, AC, AD, AK, AR, AP, AN, A], M-., M_A], M- , M-b, M-c, M-d,
M-f, M-b M-I and M_AH. -
Soft-key - Your alias list is searched for an alias by the name _letter and
if an alias of this name is defined, its value will be inserted on the input
queue. The letter must not be one of the above meta-functions. M­
]letter Soft-key - Your alias list is searched for an alias by the name

letter and if an alias of this name is defined, its value will be inserted
on the input queue. The can be used to program functions keys on many
terminals.
The last word of the previous command is inserted on the line. If
preceded by a numeric parameter, the value of this parameter determines
which word to insert rather than the last word.
Same as M-•.
Attempt file name generation on the current word. An asterisk is
appended if the word doesn't match any file or contain any special
pattern characters.
File name completion. Replaces the current word with the longest
common prefix of all filenames matching the current word with an
asterisk appended. If the match is unique, a / is appended if the file is a
directory and a space is appended if the file is not a directory.
List files matching current word pattern if an asterisk were appended.
Multiply parameter of next command by 4.
Escape next character. Editing characters, the user's erase, kill and
interrupt (normally A?) characters may be entered in a command line or
in a search string if preceded by a \. The \ removes the next character's
editing features (if any).
Display version of the shell.
Insert a # at the beginning of the line and execute it. This causes a
comment to be inserted in the history file.

Vi Editing Mode
There are two typing modes. Initially, when you enter a command you are in the
input mode. To edit, the user enters control mode by typing ESC (033) and moves
the cursor to the point needing correction and then inserts or deletes characters or
words as needed. Most control commands accept an optional repeat count prior to
the command.

When in vi mode on most systems, canonical processing is initially enabled and the
command will be echoed again if the speed is 1200 baud or greater and it contains
any control characters or less than one second has elapsed since the prompt was
printed. The ESC character terminates canonical processing for the remainder of the
command and the user can then modify the command line. This scheme has the
advantages of canonical processing with the type-ahead echoing of raw mode.

Commands 1-323

ksh(1)

If the option viraw is also set, the terminal will always have canonical processing
disabled. This mode is implicit for systems that do not support two alternate end of
line delimiters, and may be helpful for certain terminals.

Input Edit Commands

By default the editor is in input mode.
erase (User defined erase character as defined by the stty command,

usually AH or #.) Delete previous character.
A W Delete the previous blank: separated word.
A D Terminate the shell.
AV Escape next character. Editing characters, the user's erase or

kill characters maybe entered in a command line or in a
search string if preceded by a AV. The AV removes the next
character's editing features (if any).

\ Escape the next erase or kill character.
Motion Edit Commands

These commands will move the cursor.
[count]1 Cursor forward (right) one character.
[count]w Cursor forward one alpha-numeric word.
[count]W Cursor to the beginning of the next word that follows a blank:.
[count]e Cursor to end of word.
[count]E Cursor to end of the current blank: delimited word.
[count]h Cursor backward (left) one character.
[count]b Cursor backward one word.
[count]B Cursor to preceding blank separated word.
[count] I Cursor to column count.
[count]fc Find the next character c in the current line.
[count]Fc Find the previous character c in the current line.
[count]tc Equivalent to f followed by h.
[count]Tc Equivalent to F followed by I.
[count]; Repeats count times, the last single character find command, f,

[count],
o
A

$

F, t, or T.
Reverses the last single character find command count times.
Cursor to start of line.
Cursor to first non-blank: character in line.
Cursor to end of line.

Search Edit Commands

These commands access your command history.
[count]k Fetch previous command. Each time k is entered the previous

command back in time is accessed.
[count]- Equivalent to k.
[countlj Fetch next command. Each time j is entered the next

command forward in time is accessed.
[count]+ Equivalent to j.
[count]G The command number count is fetched. The default is the

least recent history command.
/ string Search backward through history for a previous command

containing string. String is terminated by a "RETURN" or
"NEW LINE". If string is preceded by a A, the matched line

1-324 Commands

?string
n
N

ksh(1)

must begin with string. If string is null the previous string
will be used.
Same as / except that search will be in the forward direction.
Search for next match of the last pattern to / or ? commands.
Search for next match of the last pattern to / or ?, but in
reverse direction. Search history for the string entered by the
previous / command.

Text Modification Edit Commands
These commands will modify the line.
a Enter input mode and enter text after the current character.
A Append text to the end of the line. Equivalent to $a.
[count]cmotion
c[count]motion

c

S
D

Delete current character through the character that motion
would move the cursor to and enter input mode. If motion is
c, the entire line will be deleted and input mode entered.
Delete the current character through the end of line and enter
input mode. Equivalent to c$.
Equivalent to cc.
Delete the current character through the end of line.
Equivalent to d$.

[count]dmotion
d[count]motion

i
I

Delete current character through the character that motion
would move to. If motion is d , the entire line will be deleted.
Enter input mode and insert text before the current character.
Insert text before the beginning of the line. Equivalent to Oi.

[count]P Place the previous text modification before the cursor.
[count]p Place the previous text modification after the cursor.
R Enter input mode and replace characters on the screen with

characters you type overlay fashion.
[count]rc Replace the count character(s) starting at the current cursor

[count]x
[count]X
[count].
[count]~

position with c, and advance the cursor.
Delete current character.
Delete preceding character.
Repeat the previous text modification command.
Invert the case of the count character(s) starting at the current
cursor position and advance the cursor.

[count]_ Causes the count word of the previous command to be
appended and input mode entered. The last word is used if
count is omitted.

*

\

Causes an * to be appended to the current word and file name
generation attempted. If no match is found, it rings the bell.
Otherwise, the word is replaced by the matching pattern and
input mode is entered.
Filename completion. Replaces the current word with the
longest common prefix of all filenames matching the current
word with an asterisk appended. If the match is unique, a / is
appended if the file is a directory and a space is appended if
the file is not a directory.

Commands 1-325

ksh(1)

Other Edit Commands
Miscellaneous commands.
[count]ymotion
y[count]motion

Yank current character through character that motion would
move the cursor to and puts them into the delete buffer. The
text and cursor are unchanged.

Y Yanks from current position to end of line. Equivalent to y$.
u Undo the last text modifying command.
U Undo all the text modifying commands performed on the line.
[count]v Returns the command fc -e ${VISUAL:-${EDITOR:-vi}}

count in the input buffer. If count is omitted, then the current
line is used.

"L Line feed and print current line. Has effect only in control
mode.

"J (New line) Execute the current line, regardless of mode.
"M (Return) Execute the current line, regardless of mode.
Sends the line after inserting a # in front of the line. Useful

for causing the current line to be inserted in the history
without being executed.

= List the file names that match the current word if an asterisk
were appended it.

@letter Your alias list is searched for an alias by the name _letter and
if an alias of this name is defined, its value will be inserted on
the input queue for processing.

Special Commands.
The following simple-commands are executed in the shell process. Input/Output
redirection is permitted. Unless otherwise indicated, the output is written on file
descriptor 1 and the exit status, when there is no syntax error, is zero. Commands
that are preceded by one or two t are treated specially in the following ways:
1. Parameter assignment lists preceding the command remain in effect when

the command completes.
2. I/O redirections are processed after parameter assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by tt that are in the format of a

parameter assignment, are expanded with the same rules as a parameter
assignment. This means that tilde substitution is performed after the =
sign and word splitting and file name generation are not performed.

t : [arg ...]
The command only expands parameters.

t . file [arg •••]
Read the complete file then execute the commands. The commands are
executed in the current Shell environment. The search path specified by
PATH is used to find the directory containing file. If any arguments arg
are given, they become the positional parameters. Otherwise the positional
parameters are unchanged. The exit status is the exit status of the last
command executed.

tt alias [-tx] [name[=value]] ...
Alias with no arguments prints the list of aliases in the form name=value

1-326 Commands

ksh(1)

on standard output. An alias is defined for each name whose value is
given. A trailing space in value causes the next word to be checked for
alias substitution. The -t flag is used to set and list tracked aliases. The
value of a tracked alias is the full pathname corresponding to the given
name. The value becomes undefined when the value of PATH is reset but
the aliases remained tracked. Without the -t flag, for each name in the
argument list for which no value is given, the name and value of the alias
is printed. The -x flag is used to set or print exported aliases. An
exported alias is defined for scripts invoked by name. The exit status is
non-zero if a name is given, but no value, for which no alias has been
defined.

bg [job ...]
This command is only on systems that support job control. Puts each
specified job into the background. The current job is put in the
background if job is not specified. See Jobs for a description of the format
ofjob.

t break [n]
Exit from the enclosing for while until or select loop, if any. If n is
specified then break n levels.

t continue [n]
Resume the next iteration of the enclosing for while until or select loop.
If n is specified then resume at the n-th enclosing loop.

cd [arg]
cd old new

This command can be in either of two forms. In the first form it changes
the current directory to arg. If arg is - the directory is changed to the
previous directory. The shell parameter HOME is the default arg. The
parameter PWD is set to the current directory. The shell parameter CDPATH
defines the search path for the directory containing arg. Alternative
directory names are separated by a colon (:). The default path is <null>
(specifying the current directory). Note that the current directory is
specified by a null path name, which can appear immediately after the
equal sign or between the colon delimiters anywhere else in the path list.
If arg begins with a / then the search path is not used. Otherwise, each
directory in the path is searched for arg.

The second form of cd substitutes the string new for the string old in the current
directory name, PWD and tries to change to this new directory.

The cd command may not be executed by rksh.

echo [arg ...]
See echo(1) for usage and description.

t eval [arg ...]
The arguments are read as input to the shell and the resulting command(s)
executed.

t exec [arg ...]
If arg is given, the command specified by the arguments is executed in
place of this shell without creating a new process. Input/output arguments
may appear and affect the current process. If no arguments are given the
effect of this command is to modify file descriptors as prescribed by the

Commands 1-327

ksh(1)

input/output redirection list. In this case, any file descriptor numbers
greater than 2 that are opened with this mechanism are closed when
invoking another program.

t exit [n]
Causes the shell to exit with the exit status specified by n. If n is omitted
then the exit status is that of the last command executed. An end-of-file
will also cause the shell to exit except for a shell which has the ignoreeof
option (See set below) turned on.

tt export [name[=value]] ...
The given names are marked for automatic export to the environment of
subsequently-executed commands.

fc [-e ename] [-olr] [first [last]]
fc -e - [old=new] [command]

In the first form, a range of commands from first to last is selected from
the last HISTSIZE commands that were typed at the terminal. The
arguments first and last may be specified as a number or as a string. A
string is used to locate the most recent command starting with the given
string. A negative number is used as an offset to the current command
number. If the flag -I, is selected, the commands are listed on standard
output. Otherwise, the editor program ename is invoked on a file
containing these keyboard commands. If ename is not supplied, then the
value of the parameter FCEDIT (default /bin/ed) is used as the editor.
When editing is complete, the edited command(s) is executed. If last is
not specified then it will be set to first. If first is not specified the default
is the previous command for editing and -16 for listing. The flag -r
reverses the order of the commands and the flag -0 suppresses command
numbers when listing. In the second form the command is re-executed
after the substitution old =new is performed.

fg [job ...]
This command is only on systems that support job control. Each job
specified is brought to the foreground. Otherwise, the current job is
brought into the foreground. See Jobs for a description of the format of
job.

getopts optstring name [arg ...]
Checks arg for legal options. If arg is omitted, the positional parameters
are used. An option argument begins with a + or a -. An option not
beginning with + or - or the argument -- ends the options. optstring
contains the letters that getopts recognizes. If a letter is followed by a :,
that option is expected to have an argument. The options can be separated
from the argument by blanks.

getopts places the next option letter it finds inside variable name each time it is
invoked with a + prepended when arg begins with a +. The index of the next arg is
stored in OPTIND. The option argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an invalid option in
OPTARG, and to set name to ? for an unknown option and to : when a required
option is missing. Otherwise, getopts prints an error message. The exit status is
non-zero when there are no more options.

jobs [-lop] [job ...]

1-328 Commands

ksh(1)

Lists information about each given job; or all active jobs if job is omitted.
The -I flag lists process ids in addition to the normal information. The-o
flag only displays jobs that have stopped or exited since last notified. The
-p flag causes only the process group to be listed. See Jobs for a
description of the format of job.

kill [-sig] job ...
kill -I Sends either the TERM (terminate) signal or the specified signal to the

specified jobs or processes. Signals are either given by number or by
names (as given in /usr/include/sigoal.h, stripped of the prefix "SIG").
If the signal being sent is TERM (terminate) or HUP (hangup), then the
job or process will be sent a CONT (continue) signal if it is stopped. The
argument job can the process id of a process that is not a member of one
of the active jobs. See Jobs for a description of the format of job. In the
second form, kill -I, the signal numbers and names are listed.

let arg ...
Each arg is a separate arithmetic expression to be evaluated. See
Arithmetic Evaluation above, for a description of arithmetic expression
evaluation.

The exit status is 0 if the value of the last expression is non-zero, and 1 otherwise.

t oewgrp [arg ...]
Equivalent to exec /bin/newgrp arg

print [-Rnprsu [n]] [arg ...]
The shell output mechanism. With no flags or with flag - or - - the
arguments are printed on standard output as described by echo(1). In raw
mode, -R or -r, the escape conventions of echo are ignored. The-R
option will print all subsequent arguments and options other than -no The
-p option causes the arguments to be written onto the pipe of the process
spawned with I & instead of standard output. The -s option causes the
arguments to be written onto the history file instead of standard output.
The -u flag can be used to specify a one digit file descriptor unit number
n on which the output will be placed. The default is 1. If the flag -n is
used, no new-line is added to the output.

pwd Equivalent to print -r - $PWD

read [-prsu [n]] [name?prompt] [name ...]
The shell input mechanism. One line is read and is broken up into fields
using the characters in IPS as separators. In raw mode, -r, a \ at the end of
a line does not signify line continuation. The first field is assigned to the
first name, the second field to the second name, etc., with leftover fields
assigned to the last name. The -p option causes the input line to be taken
from the input pipe of a process spawned by the shell using I &. If the -s
flag is present, the input will be saved as a command in the history file.
The flag -u can be used to specify a one digit file descriptor unit to read
from. The file descriptor can be opened with the exec special command.
The default value of n is O. If name is omitted then REPLY is used as the
default name. The exit status is 0 unless an end-of-file is encountered. An
end-of-file with the -p option causes cleanup for this process so that
another can be spawned. If the first argument contains a ?, the remainder
of this word is used as a prompt on standard error when the shell is
interactive. The exit status is 0 unless an end-of-file is encountered.

Commands 1-329

ksh(1)

tt readonly [name[=value]] ...
The given names are marked readonly and these names cannot be changed
by subsequent assignment.

t return [n]
Causes a shell function to return to the invoking script with the return
status specified by n. If n is omitted then the return status is that of the
last command executed. If return is invoked while not in a function or a
• script, then it is the same as an exit.

set [±aefltkmnopstuvx] [±o option] ... [±A name] [arg ...]
The flags for this command have meaning as follows:
-A Arrayassignment. Unset the variable name and assign values

sequentially from the list arg. If +A is used, the variable name
is not unset first.

-a All subsequent parameters that are defined are automatically
exported.

-e If a command has a non-zero exit status, execute the ERR trap, if
set, and exit. This mode is disabled while reading profiles.

-f Disables file name generation.
-h Each command becomes a tracked alias when first encountered.
-k All parameter assignment arguments are placed in the

environment for a command, not just those that precede the
command name.

-m Background jobs will run in a separate process group and a line
will print upon completion. The exit status of background jobs
is reported in a completion message. On systems with job
control, this flag is turned on automatically for interactive shells.

-n Read commands and check them for syntax errors, but do not
execute them. Ignored for interactive shells.

-0 The following argument can be one of the following option
names:
allexport

Same as -a.
errexit Same as -e.
bgnice All background jobs are run at a lower priority. This

is the default mode.
emacs Puts you in an emacs style in-line editor for command

entry.
gmacs Puts you in a gmacs style in-line editor for command

entry.
ignoreeof

The shell will not exit on end-of-file. The command
exit must be used.

keyword Same as -k.
markdirs

All directory names resulting from file name
generation have a trailing / appended.

monitor Same as -me
noclobber

Prevents redirection> from truncating existing files;
Require > I to truncate a file when turned on.

noexec Same as -no

1-330 Commands

ksh(1)

noglob Same as -f.
nolog Do not save function definitions in history file.
nouoset Same as -u.
privileged

Same as -po
verbose Same as -v.
trackall Same as -h.
vi Puts you in insert mode of a vi style in-line editor until

you hit escape character 033. This puts you in move
mode. A return sends the line.

viraw Each character is processed as it is typed in vi mode.
xtrace Same as -x.
If no option name is supplied then the current option settings are printed.

-p Disables processing of the $HOME/.profile file and uses the file
/etc/suid-profile instead of the ENV file. This mode is on
whenever the effective uid (gid) is not equal to the real uid (gid).
Turning this off causes the effective uid and gid to be set to the
real uid and gid.

-s Sort the positional parameters lexicographically.
-t Exit after reading and executing one command.
-u Treat unset parameters as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Turns off -x and -v flags and stops examining arguments for
flags.
Do not change any of the flags; useful in setting $1 to a value
beginning with -. If no arguments follow this flag then the
positional parameters are unset.

Using + rather than - causes these flags to be turned off. These flags can
also be used upon invocation of the shell. The current set of flags may be
found in $-. Unless -A is specified, the remaining arguments are
positional parameters and are assigned, in order, to $1 $2 If no
arguments are given then the names and values of all named parameters
are printed on the standard output. If the only argument is +, the names of
all named parameters are printed.

t shift [n]

t times

The positional parameters from $n+ 1 . .. are renamed $1 . .. , default n is
1. The parameter n can be any arithmetic expression that evaluates to a
non-negative number less than or equal to $#.

Print the accumulated user and system times for the shell and for processes
run from the shell.

t trap [arg] [sig] ...
arg is a command to be read and executed when the shell receives
signal(s) sig. (Note that arg is scanned once when the trap is set and once
when the trap is taken.) Each sig can be given as a number or as the name
of the signal. Trap commands are executed in order of signal number.
Any attempt to set a trap on a signal that was ignored on entry to the
current shell is ineffective. If arg is omitted or is -, then all trap(s) sig are
reset to their original values. If arg is the null string then this signal is

Commands 1-331

ksh(1)

ignored by the shell and by the commands it invokes. If sig is ERR then
arg will be executed whenever a command has a non-zero exit status. sig
is DEBUG then arg will be executed after each command. If sig is 0 or
EXIT and the trap statement is executed inside the body of a function,
then the command arg is executed after the function completes. If sig is 0
or EXIT for a trap set outside any function then the command arg is
executed on exit from the shell. The trap command with no arguments
prints a list of commands associated with each signal number.

tt typeset [±HLRZfilrtux [n]] [name[=value]] ...

1-332 Commands

Sets attributes and values for shell parameters. When invoked inside a
function, a new instance of the parameter name is created. The parameter
value and type are restored when the function completes. The following
list of attributes may be specified:
-H This flag provides UNIX system to host-name file mapping on non­

UNIX system machines.
-L Left justify and remove leading blanks from value. If n is non-zero

it defines the width of the field, otherwise it is determined by the
width of the value of first assignment. When the parameter is
assigned to, it is filled on the right with blanks or truncated, if
necessary, to fit into the field. Leading zeros are removed if the -Z
flag is also set. The -R flag is turned off.

-R Right justify and fill with leading blanks. If n is non-zero it defines
the width of the field, otherwise it is determined by the width of the
value of first assignment. The field is left filled with blanks or
truncated from the end if the parameter is reassigned. The L flag is
turned off.

-Z Right justify and fill with leading zeros if the first non-blank
character is a digit and the -L flag has not been set. If n is non-zero
it defines the width of the field, otherwise it is determined by the
width of the value of first assignment.

-f The names refer to function names rather than parameter names. No
assignments can be made and the only other valid flags are -t, -u
and -x. The flag -t turns on execution tracing for this function. The
flag -u causes this function to be marked undefined. The FP ATH
variable will be searched to find the function definition when the
function is referenced. The flag -x allows the function definition to
remain in effect across shell procedures invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is non­
zero it defines the output arithmetic base, otherwise the first
assignment determines the output base.

-I All upper-case characters converted to lower-case. The upper-case
flag, -u is turned off.

-r The given names are marked readonly and these names cannot be
changed by subsequent assignment.

-t Tags the named parameters. Tags are user definable and have no
special meaning to the shell.

-u All lower-case characters are converted to upper-case characters. The
lower-case flag, -I is turned off.

-x The given names are marked for automatic export to the environment
of subsequently-executed commands.

ksh(1)

Using + rather than - causes these flags to be turned off. If no name
arguments are given but flags are specified, a list of names (and optionally
the values) of the parameters which have these flags set is printed. (Using
+ rather than - keeps the values from being printed.) If no name sand
flags are given, the names and attributes of all parameters are printed.

ulimit [-HSacdfmnpstvw] [limit]
Set or display a resource limit. The available resources limits listed
below. Many systems to not contain one or more of these limits. The
limit for a specified resource is set when limit is specified. The value of
limit can be a number in the unit specified below with each resource, or
the value unlimited. The Hand S flags specify whether the hard limit or
the soft limit for the given resource is set. A hard limit cannot be
increased once it is set. A soft limit can be increased up to the value of
the hard limit. If neither the H or S options is specified, the limit applies
to both. The current resource limit is printed when limit is omitted. In
this case the soft limit is printed unless H is specified. When more that
one resource is specified, then the limit name and unit is printed before the
value.
-a Lists all of the current resource limits.
-c The number of 512-byte blocks on the size of core dumps.
-d The number of K-bytes on the size of the data area.
-f The number of 512-byte blocks on files written by child processes

(files of any size may be read).
-m The number of K -bytes on the size of physical memory.
-n The number of file descriptors.
-p The number of 512-byte blocks for pipe buffering.
--s The number of K-bytes on the size of the stack area.
-t The number of seconds to be used by each process.
-v The number of K -bytes for virtual memory.
-w The number of K-bytes for the swap area.

If no option is given, -f is assumed.

umask [mask]
The user file-creation mask is set to mask (see umask(2)). mask can either
be an octal number or a symbolic value as described in chmod(l). If a
symbolic value is given, the new umask value is the complement of the
result of applying mask to the complement of the previous umask value.
If mask is omitted, the current value of the mask is printed.

unalias name ...
The parameters given by the list of names are removed from the alias list.

unset [-f] name ...
The parameters given by the list of names are unassigned, i. e., their
values and attributes are erased. Readonly variables cannot be unset. If
the flag, -f, is set, then the names refer to function names. Unsetting
ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS,
TMOUT, and _ causes removes their special meaning even if they are
subsequently assigned to. '

t wait [job]
Wait for the specified job and report its tennination status. If job is not
given then all currently active child processes are waited for. The exit

Commands 1-333

ksh(1)

status from this command is that of the process waited for. See Jobs for a
description of the format of job.

whence [-pv] name ...
For each name, indicate how it would be interpreted if used as a command
name.

The flag, -v, produces a more verbose report.

The flag, -p, does a path search for name even if name is an alias, a function, or a
reserved word.

Invocation.

If the shell is invoked by exec(2), and the first character of argument zero ($0) is -,
then the shell is assumed to be a login shell and commands are read from lete/profile
and then from either .profile in the current directory or $HOME/.profile, if either file
exists. Next, commands are read from the file named by performing parameter
substitution on the value of the environment parameter ENV if the file exists. If the
-s flag is not present and arg is, then a path search is performed on the first arg to
determine the name of the script to execute. The script arg must have read
permission and any setuid and getgid settings will be ignored. Commands are then
read as described below; the following flags are interpreted by the shell when it is
invoked:

-c string
-s

-i

-r

If the -c flag is present then commands are read from string.
If the -s flag is present or if no arguments remain then commands are
read from the standdrd input. Shell output, except for the output of the
Special commands listed above, is written to file descriptor 2.
If the -i flag is present or if the shell input and output are attached to a
terminal (as told by ioctl(2)) then this shell is interactive. In this case
TERM is ignored (so that kill 0 does not kill an interactive shell) and
INTR is caught and ignored (so that wait is interruptible). In all cases,
QUIT is ignored by the shell.
If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above. The
r k s h command is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The actions of
rksh are identical to those of sh, except that the following are disallowed:

changing directory (see cd(l)),
setting the value of SHELL, ENV, or PATH,
specifying path or command names containing /,
redirecting output (>, >1 , <> , and »).

The restrictions above are enforced after .profile and the ENV files are interpreted.

When a command tobe executed is found to be a shell procedure, rksh invokes
ksh to execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell, while imposing a limited
menu of commands; this scheme assumes that the end-user does not have write and
execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control
over user actions, by performing guaranteed setup actions and leaving the user in an
appropriate directory (probably not the login directory).

1-334 Commands

ksh(1)

The system administrator often sets up a directory of commands (that is, lusr/rhin)
that can be safely invoked by r k s h. Some systems also provide a restricted editor
red.

Exit Status

Files

Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero
exit status. Otherwise, the shell returns the exit status of the last command executed
(see also the exit command above). If the shell is being used non-interactively then
execution of the shell file is abandoned. Run time errors detected by the shell are
reported by printing the command or function name and the error condition. If the
line number that the error occurred on is greater than one, then the line number is
also printed in square brackets ([D after the command or function name.

/etc/passwd
/etc/profile
/etc/suid_profile
$HOME/.profile
/tmp/sh*
/dev/null

See Also
cat(l), cd(l), chmod(1), cut(1), echo(l), emacs(l), env(l), gmacs(1), newgrp(l),
stty(1), test(l), umask(1), vi(1), dup(2), exec(2), fork(2), ioct1(2), Iseek(2), paste(l),
pipe(2), signal(2), umask(2), ulimit(2), wait(2), rand(3), a.out(5), profile(5),
environ(7).

Morris I. Bolsky and David G. Korn, The KornShell Command and Programming
Language, Prentice Hall, 1989.

Caveats

If a command which is a tracked alias is executed, and then a command with the
same name is installed in a directory in the search path before the directory where the
original command was found, the shell will continue to exec the original command.
Use the -t option of the alias command to correct this situation.

Some very old shell scripts contain a 1\ as a synonym for the pipe character. I.
Using the fc built-in command within a compound command will cause the whole
command to disappear from the history file.

The built-in command • file reads the whole file before any commands are executed.
Therefore, alias and unalias commands in the file will not apply to any functions
defined in the file.

Traps are not processed while a job is waiting for a foreground process. Thus, a trap
on CHLD won't be executed until the foreground job terminates.

Commands 1-335

last (1)

Name
last - indicate last logins of users and teletypes

Syntax
last [-N] [name ...] [tty ...]

Description
The 1 a s t command looks back in the wtmp file, which records alllogins and
logouts, for information about a user, a teletype or any group of users and teletypes.
Arguments specify names of users or teletypes of interest. Names of teletypes can be
given fully or abbreviated. For example 'last 0' is the same as 'last ttyO'.

If multiple arguments are given, the information that applies to any of the arguments
is printed. For example, 'last root console' lists all of "root's" sessions as well as all
sessions on the console terminal.

The last command prints the sessions of the specified users and teletypes, most
recent first, indicating the times at which the session began, the duration of the
session, and the teletype on which the session took place. If the session is ongoing
or was cut short by a reboot, 1 a s t indicates that this is so.

The pseudo-user reboot logs in at reboots of the system. Therefore, the following
example gives an indication of mean time between reboot:

last reboot

The 1 a s t command with no arguments prints a record of all logins and logouts, in
reverse order.

If last is interrupted, it indicates how far the search has progressed in wtmp. If
interrupted with a quit signal (generated by a <CTRLIE» 1 a s t indicates how far
the search has progressed so far, and the search continues.

Options

-N Limits the number of output lines to the specified number.

Files

/usr/adm/wtmp
login data base

/usr/adm/shutdownlog
records that shutdowns occurred and why

See Also
wtmp(5), ac(8), lastcomm(1)

1-336 Commands

lastcomm (1)

Name
lastcomm - show last commands executed in reverse order

Syntax
lastcomm [command name ...] [user name ...] [terminal name ...]

Description
The lastcomm command gives information on previously executed commands.
With no arguments, lastcomm prints information about all the commands recorded
during the current accounting file's lifetime. If called with arguments, only
accounting entries with a matching command name, user name, or terminal name are
printed. The following example produces a listing of all the executions of commands
named a. out by user root on the terminal ttydO:

lastcomm a.out root ttydO

For each process entry, the following are printed:

The name of the user who ran the process.

Flags, as accumulated by the accounting facilities in the system.

The command name under which the process was called.

The amount of cpu time used by the process (in seconds).

The time the process exited.

The flags are encoded as follows:

See Also

"S" indicates the command was executed by the super-user

"F" indicates the command ran after a fork, but without a following
exec

"C" indicates the command was run in PDP-1I compatibility mode
(VAX only)

"0" indicates the command terminated with the generation of a core file

"X" indicates the command was terminated with the signal SIGTERM

last(1), sigvec(2), acct(5), core(5)

Commands 1-337

Ib_admin (1 ncs)

Name
lb_admin - Location Broker Administrative Tool

Syntax
letc/ncs/Jh_admin [-version] [-nq]

Description
The lb admin tool monitors and administers the registrations of DECrpc-based
servers In Global Local Broker (GLB) or Local Location Broker (LLB) databases. A
server registers Universal Unique Identifiers (UUIDs) specifying an object, a type,
and an interface, along with a socket address specifying its location. A client can
locate servers by issuing lookup requests to GLBs and LLBs.

In accepting input or displaying output, lb _ admin uses either character strings or
descriptive textual names to identify objects, types, and interfaces. A character string
directly represents the data in a UUID in the following format:

nnnnnnnnnnnn.nn.nn.nn.nn.nn.nn.nn.nn

where each n is a hexadecimal digit.

With lb_admin, you examine or modify only one database at a time, referred to as
the current database. The use broker command selects the type of Location
Broker database, GLB or LLB.-The set_broker command selects the host whose
LLB database is to be accessed.

Information about individual command interfaces is available through the help
command.

Options

-nq

-version

Commands

Do not query for verification of wildcard expansions in
unregister operations.

Display the version of the Network Computing Kernel
(NCK) that this lb admin belongs to, but do not start the
tool. (NCK is part of the Network Computing System
(NCS) on which DECrpc is based.)

In the descriptions of lookup, register, and unregister, the object, type,
and interface arguments can be either character strings representing UUIDs or textual
names corresponding to UUIDs, as described earlier.

In the descriptions of register and unregister, the location argument is a
string in the formatfamily:host{portJ, where family is an address family, host is a
host name, and port is a port number. The only value for family is ip. You can use
a leading number sign (#) to indicate that a host name is in the standard numeric
form. For example, ip:vienna[1756], and ip:#192.5.5.5[1791] are both acceptable
location specifiers.

a [dd] Synonym for register.

c [lean] Find and delete obsolete entries in the current database.

1-338 Commands

Ib_admin (1 ncs)

When you issue the clean command, lb_adrnin attempts to
contact each server registered in the database. If the server does not
respond, lb_adrnin tries to look up its registration in the LLB
database at the host where the server is located, tells you the result of
this lookup, and asks whether you want to delete the entry. If a
server responds, but its UUIDs do not match the entry in the
database, lb _ adrnin tells you this result and asks whether you want
to delete the entry, even if you used the -oq option to lb _ adrnin .

There are two situations in which it is likely that a database entry
should be deleted:

• The server does not respond, lb adrnin succeeds in contacting
the LLB at the host where the server is located, and the server
is not registered with that LLB. The server is probably no
longer running.

• A server responds, but its UUIDs do not match the entry in the
database. The server that responded is not the one that
registered the entry.

Entries that meet either of these conditions are probably safe to delete
and are considered eligible for automatic deletion (described in the
next paragraph). In other situations, it is best not to delete the entry
unless you can verify directly that the server is not running (for
example, by listing the processes running on its host).

When the c 1 e an command asks whether you want to delete an
entry, choose one of the following responses:

y[es] Delete the entry.

o[0] Leave the entry intact in the current database.

g[o] Invoke automatic deletion, in which all eligible entries (see
the previous paragraph) are deleted and all ineligible entries
are left intact, without your being queried, until all entries
have been checked.

q[uit] Terminate the clean operation.

d[elete] Synonymfurunregister.

h [e 1 p] [command] or ? [command]

Display a description of the specified command or, if none is
specified, list all of the lb_adrnin commands.

1 [ookup] object type interface

Look up and display all entries with matching object, type, and
interface fields in the current database. Use the letter I to list all of
the entries in the database. You can use asterisks as wildcards for
any of the arguments. If all the arguments are wildcards, or if no
arguments are given, lookup displays the entire database.

q [ui t] Exit the lb adrnin session.

r [egister] object type interface location annotation [flag]

Add the specified entry to the current database. You can use an

Commands 1-339

Ib_admin (1 ncs)

set broker

asterisk to represent the nil UUID in the object, type, and interface
fields.

The annotation is a string of up to 64 characters annotating the entry.
Use double quotation marks (" ") to delimit a string that contains a
space or contains no characters. To embed a double quotation mark
in the string, precede it with a backslash (\).

The flag is either local (the default) or global, indicating whether the
entry should be marked for local registration only or for registration
in both the LLB and the GLB databases. The flag is a field that is
stored with the entry; it does not affect where the entry is registered.
The set broker and use broker commands select the
particular-LLB or GLB database for registration.

[broker switch] location
Set the host for the current LLB or GLB. If you specify global as
the broker switch, set broker sets the current GLB; otherwise, it
sets the current LLB. The host is a location specifier as described
earlier, but the [port] portion is ignored and can be omitted.

Issue the use broker command, not the set broker command,
to determine whether subsequent operations wilfaccess the LLB or
the GLB.

set_t [imeout] [short / long]
Set the timeout period used by Ib_admin for all of its operations.
With an argument of short or long, set_timeout sets the timeout
accordingly. With no argument, it displays the current timeout value.

u [nregister] object type interface location

Delete the specified entry from the current database.

You can use an asterisk as a wildcard in the object, type, and
interface fields to match any value for the field. Unless you suppress
queries by specifying the -nq option of Ib_admin, unregister
asks you whether to delete each matching entry. Choose one of the
following responses:

y[es] Delete the entry.

n[0] Lea ve the entry in the database.

g[0] Delete all remaining database entries that match, without
your being queried.

q[uit] Terminate the unregister operation, without deleting any
more entries.

us [e_broker] [broker_switch]

1-340 Commands

Select the type of database that subsequent operations will access,
GLB or LLB. The broker _switch is either global or local. If you do
not supply a broker switch, use broker tells whether the current
database is global or local. -

Use set broker to select the host whose GLB or LLB is to be
accessed.

See Also
llbd(8ncs), nrglbd(8ncs)
Guide to the Location Broker

Ib_admin (1 ncs)

Commands 1-341

Rise Id (1)

Name
ld, uld - RIse link editor and ucode link editor

Syntax
Id [options] [file file file .. .
uld options] [file file file .. .

Description
The Id command is the RISe link editor. It links RISe extended coff object files.
The archive format understood by Id is the one created by the archiver ar(l).

The 1 d command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object files are given. The 1 d
command combines them, producing an object module that can be executed or used
as input for a subsequent 1 d run. (In the latter case, the -r option must be given to
preserve the relocation entries.) The output of Id is left in a.out. By default, this
file is executable if no errors occurred during the load.

The argument object files are concatenated in the order specified. The entry point of
the output is the beginning of the text segment (unless the -e option is specified).

The u 1 d command combines several ucode object files and libraries into one ucode
object file. It hides external symbols for better optimizations by subsequent compiler
passes. The symbol tables of coff object files loaded with ucode object files are used
to determine what external symbols not to hide along with files specified by the user
that contain lists of symbol names.

If any argument is a library, it is searched exactly once at the point it is encountered
in the argument list. Only those routines defining an unresolved external reference
are loaded. The library (archive) symbol table (see ar(l» is a hash table and is
searched to resolved external references that can be satisfied by library members.
The ordering of library members is unimportant.

When searching for libraries the default directories to search in are /lib/, /usr/lib/ and
/usr/local/lib/. If the target byte ordering of the object files being loaded is of the
opposite byte ordering of the machine the link editor is running on then the default
search directories for libraries are changed. The change is to replace the last name of
the directories from "lib/,' to "libeb/" or "libeV" to match the target byte ordering
of the objects being loaded.

The following symbols are reserved and should not be defined: etext, edata, end,
_ftext, _fdata, _fbss, _gp, _procedure_table, _procedure_table_size, and
_procedure_string_table. These loader defined symbols, if referred to, are set their
values as described in end(3).

Options
The following options are recognized by both Id and uld. Those options used by
one and not the other are ignored. Any option can be preceded by a 'k' (for example
-ko outfile) and except for -kIx have the same meaning with or without the
preceding 'k'. This is done so that these options can be passed to both link editors
through compiler drivers.

1-342 Commands

-ooutfile

-Ix

-klx

-Ldir

-L

-Kdir

-Bstring

-p file

-s

-x

-r

-d

-u symname

-F or-z

-n

Id (1)

Produce an output object file by the name outfile. The name of the
default object file is a.out.

Search a library Iibx.a, where x is a string. A library is searched
when its name is encountered, so the placement of a -I is
significant.

Search a library Iibx.b, where x is a string. These libraries are
intended to be ucode object libraries. In all other ways, this option
is like the -Ix option.

Change the algorithm of searching for Iibx.a or Iibx.b to look in
dir before looking in the default directories. This option is
effective only if it precedes the -I options on the command line.

Change the algorithm of searching for Iibx.a or Iibx.b to never
look in the default directories. This is useful when the default
directories for libraries should not be searched and only the
directories specified by -Ldir are to be searched.

Change the default directories to the single directory dir. This
option is only intended to be used by the compiler driver. Users
should use the -L and -Ldir options to get the effect they desire.

Append string to the library names created for the -Ix and -klx
when searching for library names. For each directory to be
searched the name is first created with the string and if it is not
found it is created without the string.

Preserve (do not hide) the symbol names listed in file when
loading ucode object files. The symbol names in the file are
separated by blanks, tabs, or newlines.

Strip the symbolic information from the output object file.

Do not preserve local (non-.globl) symbols in the output symbol
table; enter external and static symbols only. This option saves
some space in the output file.

Retain relocation entries in the output file. Relocation entries must
be saved if the output file is to become an input file in a
subsequent 1 d run. This option also prevents final definitions
from being given to common symbols, and suppresses the
undefined symbol diagnostics.

Force definition of common storage and define loader defined
symbols even if -r is present.

Enter symname as an undefined in the symbol table. This is useful
for loading entirely from a library, since initially the symbol table
is empty and an unresolved reference is needed to force the loading
of the first routine.

Arrange for the process to be loaded on demand from the reSUlting
executable file (413 format) rather than preloaded, a ZMAGIC file.
This is the default.

Arrange (by giving the output file a 0410 "magic number") that
when the output file is executed, the text portion is read-only and

Commands 1-343

Rise

Rise Id (1)

-N

-T num

-Dnum

-B num

-e epsym

-m

-M

-s
-v
-ysym

-v

-VS num

-f fill

-Gnum

shared among all users executing the file,an NMAGIC file. This
involves moving the data areas up to the first possible pagesize
byte boundary following the end of the text.

Place the data section immediately after the text and do not make
the text portion read only or sharable, an OMAGIC file. (Use
"magic number" 0407.)

Set the text segment origin. The argument num is a hexadecimal
number. See the notes section for restrictions.

Set the data segment origin. The argument num is a hexadecimal
number. See the notes section for restrictions.

Set the bss segment origin. The argument num is a hexadecimal
number. This option can be used only if the final object is an
OMAGIC file.

Set the default entry point address for the output file to be that of
the symbol epsym.

Produce a map or listing of the input/output sections on the
standard output (UNIX system V -like map).

Produce a primitive load map, listing the names of the files that are
loaded (UNIX 4.3bsd-like map).

Set silent mode and suppress non-fatal errors.

Set verbose mode. Print the name of each file as it is processed.

Indicate each file in which sym appears, sym's type and whether
the file defines or references sym. Many such options may be
given to trace many symbols.

Print a message giving information about the version of 1 d being
used.

Use num as the decimal version stamp to identify the a.out file
that is produced. The version stamp is stored in the optional and
symbolic headers.

Set the fill pattern for "holes" within an output section. The
argument fill is a four-byte hexadecimal constant.

The argument num is taken to be a decimal number that is the
largest size in bytes of a .comm item or literal that is to be
allocated in the small bss section for reference off the global
pointer. The default is 8 bytes.

-bestGnum Calculate the best -G num to use when compiling and linking the
files which produced the objects being linked. Using too large a
number with the -G num option may cause the gp (global-pointer)
data area to overflow; using too small a number may reduce your
program's execution speed.

-count, -nocount, -countall
These options control which objects are counted as recompilable
for the best -G num calculation. By default, the -bestGnum
option assumes you can recompile everything with a different -G

1-344 Commands

-b

Id (1)

num option. If you cannot recompile certain object files or libraries
(because, for example, you have no sources for them), use these
options to tell the link editor to take this into account in
calculating the best -G num value. -nocount says that object files
appearing after it on the command line cannot be recompiled;
-count says that object files appearing after it on the command
line can be recompiled; you can alternate the use of -nocount and
-count. -countall overrides any -nocount options appearing after
it on the command line.

Do not merge the symbolic information entries for the same file
into one entry for that file. This is only needed when the symbolic
information from the same file appears differently in any of the
objects to be linked. This can occur when object files are
compiled, by means of conditional compilation, with an apparently
different version of an include file.

-jmpopt and -nojmpopt
Fill or do not fill the delay slots of jump instructions with the
target of the jump and adjust the jump offset to jump past that
instruction. This always is disabled for debugging (when the -gl,
-g2 or -g flag is present). When this option is enabled it requires
that all of the loaded program's text be in memory and could cause
the loader to run out of memory. The default is -nojrnpopt.

-g or -g[0123] These options are accepted and except for -gl, -g2 or -g disabling
the -jrnpopt have no other effect.

-A file Specifies incremental loading. For example, linking is to be done
in a manner so that the resulting object may be read into an
already executing program. The next argument, file, is the name of
a file whose symbol table is taken as a basis on which to define
additional symbols. Only newly linked material is entered into the
text and data portions of a.out, but the new symbol table reflects
every symbol defined before and after the incremental load. This
argument must appear before any other object file in the argument
list. The - T option may be used as well, and is taken to mean that
the newly linked segment commences at the corresponding address
(which must be a correct multiple for the resulting object type).
The default reSUlting object type is an OMAGIC file and the
default starting address of the text is the old value of end rounded
to SCNROUND as defined in the include file <scnhdr.h>. Using
the defaults, when this file is read into an already executing
program the intial value of the break must also be rounded. All
other objects except the argument to the -A option must be
compiled -G 0 and this sets -G 0 for linking.

The following option is not intended for general use.

-i file The .text section of file is moved into the .init section of the
resulting object file.

The link editors Id and uld accept object files targeted for either byte ordering with
their headers and symbolic tables in any byte ordering; however 1 d and u 1 d are
faster if the headers and symbolic tables have the byte ordering of the machine that
they are running on. The default byte ordering of the headers and symbolic tables is

Commands 1-345

Rise

Rise Id (1)

the target byte ordering of the output object file. For non-relocatable object files the
default byte ordering of the headers and symbolic tables cannot be changed.

-ED Produce the output object file with big-endian byte ordered headers
and symbolic information tables.

-EL Produce the output object file with little-endian byte ordered
headers and symbolic information tables.

Restrictions

Files

The segments must not overlap and all addresses must be less than Ox80000000. The
stack starts below Ox80000000 and grows through lower addresses so space should
be left for it. For ZMAGIC and NMAGIC files the default text segment address is
Ox00400000 and the default data segment address is OxlOOOOOOO. For OMAGIC
files the default text segment address is Ox 1 0000000 with the data segment following
the text segment. The default for all types of files is that the bss segment follows the
data segment.

For OMAGIC files to be run under the operating system the -B flag should not be
used because the bss segment must follow the data segment which is the default.

The segments must be on 4 megabyte boundaries. Objects linked at addresses other
than the default will not run.

/lib/lib* .a
/usr/lib/lib* .a
/usr/local/lib/lib*.a libraries
a.out output file

See Also
cc(1), pc(1), f77(1), as(l), ar(l), end(3)

1-346 Commands

Id (1)

Name
ld -link editor

Syntax
Id [option ...] file ...

Description
The Id command combines several object programs into one, resolves external
references, and searches libraries. In the simplest case, several object files are given,
and Id combines them, producing an object module which can either be executed or
can become the input for a further 1 d run. (In the latter case, the -r option must be
given to preserve the relocation bits.) The output of Id is left on a.out. This file is
only made executable if no errors occurred during the load.

The argument routines are linked together in the order specified. The entry point of
the output is the beginning of the first routine, unless the -e option is specified.

If the argument is a library, it is searched only once at the point it is encountered in
the argument list. Only those routines defining an unresolved external reference are
loaded. If a routine from a library references another routine in the library, and the
library has not been processed by ranlib(l), the referenced routine must appear
after the referencing routine in the library. Thus, the order of programs within
libraries is important. The first member of a library should be a file named
_.SYMDEF, which is a dictionary for the library that is produced by ranlib(I).
The dictionary is searched repeatedly to satisfy as many references as possible.

The symbols _etext, _edata and _end (etext, edata and end in C) are reserved and, if
referred to, are set to the first location above the program, the first location above
initialized data, and the first location above all data, in that order. It is an error to
define these symbols.

Options
The Id command has several options. Except for the -I option, they should appear
before the file names.

-A Specifies incremental loading. Linking is done so that the resulting object
may be read into an already executing program. The next argument is
the name of a file whose symbol table is used to define additional
symbols. Only newly linked material is entered into the text and data
portions of a.out, but the new symbol table reflects every symbol defined
before and after the incremental load. This argument must appear before
any other object file in the argument list.

The - T option may be used as well, and is taken to mean that the newly
linked segment commences at the corresponding address (which must be
a multiple of 1024). The default value is the old value of _end.

-D Takes the next argument as a hexadecimal number and pads the data
segment with zero bytes to the indicated length.

-d Forces definition of common storage even if the -r flag is present.

-e Takes the next argument as the name of the entry point of the loaded

Commands 1-347

VAX

VAX Id (1)

program; location 0 is the default.

-Ldir Adds dir to the list of directories that are searched for libraries.
Directories specified with -L are searched before the standard directories.

-Ix Abbreviates the library name libx .a, where x is a string. The 1 d
command searches for libraries first in any directories specified with -L
options, then in the standard directories /lib, /usr/lib, and /usr/local/lib.
A library is searched when its name is encountered, so the placement of
a -I is significant.

-H Takes the next argument as a decimal integer, adds it to the end of text,
and causes the data section to start at a higher address.

-M Produces a primitive load map, listing the names of the files that are
loaded.

-N Indicates a portion of text to not make read-only or sharable. (Use magic
number 0407.)

-D Arranges (by giving the output file a 0410 magic number) that the text
portion is read-only and shared among all users executing the file when
the output file is executed. This involves moving the data areas up to the
first possible 1024 byte boundary following the end of the text.

-0 Takes the name argument after -0 as the name of the 1 d output file,
instead of a.out.

-r Generates relocation bits in the output file so that it can be the subject of
another 1 d run. This flag also prevents final definitions from being
given to common symbols and suppresses the undefined symbol
diagnostics.

-S Strips the output by removing all symbols except locals and globals.

-s Removes the symbol table and relocation bits to save space (this impairs
the usefulness of the debuggers). This information can also be removed
by strip(1).

- T Takes the next argument as a hexadecimal number which sets the text
segment origin. The default origin is O.

-t(trace) Prints the name of each file as it is processed.

-u Takes the next argument as a symbol and enters it as undefined in the
symbol table. This is useful for loading from a library, since initially the
symbol table is empty and an unresolved reference is needed to force the
loading of the first routine.

-X Saves local symbols except for those whose names begin with a capital
L. This option is used by cc(l) to discard internally-generated labels
while retaining symbols local to routines.

-x Discards local (non-global) symbols in the output symbol table; only
enters external symbols. This option saves some space in the output file.

- Yenvironment
Adjusts the magic number in the output file so that the program runs in
the specified environment. The parameter can be POSIX,
SYSTEM_FIVE, or BSD • The parameter sets the program's execution

1-348 Commands

-ysym

-z

Id (1)

environment to confonn with one of the three standards. If it is present,
this parameter overrides the PROG_ENV environment variable. If no
environment is given, SYSTEM_FIVE is assumed. If neither this
parameter nor the PROG_ENV variable is present, -YBSD is assumed.

Indicates each file in which sym appears, its type, and whether the file
defines or references it. Many such options may be given to trace many
symbols. It is usually necessary to begin sym with an underscore (_),
because external C, FORTRAN and Pascal variables begin with
underscores.

Arranges for the process to be loaded on demand from the resulting
executable file (413 fonnat) rather than preloaded. This is the default. It
results in a 1024 byte header on the output file followed by a text and
data segment whose size is a multiple of 1024 bytes (being padded out
with nulls in the file if necessary). With this fonnat the first few BSS
segment symbols may, from the output of size(1), appear to reside in
the data segment. This avoids wasting the space which results from the
roundup of the data segment size.

Restrictions

Files

There is no way to force data to be page aligned. The ld command pads the images
which are to be demand loaded from the file system to the next page boundary.

When linking code contains GFLOA T instructions, the GFLOAT versions of libe
and/or the math library must be used rather than the nonnal DFLOAT versions. Link
to these by using -leg and/or -lmg.

The compiler and the linker 1 d(1) cannot detect the use of mixed double floating
point types, and your program may produce erroneous results.

/lib/lib*.a

/usr/lib/lib* .a

lusr/local/lib/lib* .a

a.out

libraries.

libraries

libraries

output file

See Also
ar(l), as(l), cc(l), ranlib(l)

Commands 1-349

VAX

leave (1)

Name
leave - remind you when you have to leave

Syntax
leave [hhmm]

Description
The leave command waits until the specified time, then reminds you that you have
to leave. You are reminded 5 minutes and 1 minute before the actual time, at the
time, and every minute thereafter. When you log off, leave exits just before it
would have printed the next message.

The time of day is in the form hhmm where hh is a time in hours (on a 12 or 24 hour
clock). All times are converted to a 12 hour clock, and assumed to be in the next 12
hours.

If no argument is given, leave prompts with "When do you have to leave?". A
reply of newline causes 1 eave to exit, otherwise the reply is assumed to be a time.
This form is suitable for inclusion in a .login or .profile.

Leave ignores interrupts, quits, and terminates. To get rid of it you should either log
off or use "kill-9" giving its process ID.

See Also
calendar(1)

1-350 Commands

lex (1)

Name
lex - generate lexical analyzer

Syntax
lex [-tvfn] [file ...]

Description
The lex command generates programs to be used in simple lexical analysis of text.
The input files (standard input default) contain regular expressions to be searched for,
and actions written in C to be executed when expressions are found.

A C source program, 'lex.yy.c', is generated. It is compiled using the following
command line:

cc lex.yy.c -11

This program copies unrecognized portions of the input to the output, and executes
the associated C action for each regular expression that is recognized.

Options

-f Runs a faster compilation (does not pack resulting tables). This is limited to
small programs.

-n Prints no summary information (default option).

-t Writes to standard output instead of to file lex. yy. c.

-v Prints one-line summary of generated statistics.

Examples
In the following example, the command

lex lexcommands

draws lex instructions from the file lexcommands, and places the output in lex.yy.c.
The command

%%
[A-Z] putchar(yytext[O]+'a'-'A');
[]+$
[] + putchar (' ');

is an example of a lex program that would be put into a lex command file. This
program converts upper case to lower, removes blanks at the end of lines, and
replaces multiple blanks by single blanks.

See Also
sed(l), yacc(l)
"LEX - Lexical Analyzer Generator," ULTRIX Supplementary Documents, Vol.
II: Programmer

Commands 1-351

line(1)

Name
line - read one line

Syntax
line

Description
The line command copies one line (up to a new-line) from the standard input and
writes it on the standard output. It returns an exit code of 1 on EOF (end-of-file) and
always prints at least a new-line. It is often used within shell files to read from the
user's terminal.

See Also
sh(1), read(2)

1-352 Commands

Iint(1)

Name
lint - a C program checker

Syntax
lint [option] ... file ...

Description
The lint command attempts to detect features of the C program files that are likely
to be errors, nonportable, or wasteful. It also checks type usage more strictly than
the compilers. Among the things that are currently detected are unreachable
statements, loops not entered at the top, automatic variables declared and not used,
and logical expressions whose value is constant. Moreover, the usage of functions is
checked to locate functions that return values in some places, but not in others,
functions called with varying numbers or types of arguments, and functions whose
values are not used or whose values are used but none returned.

Arguments whose names end with . c are interpreted as C source files. Arguments
whose names end with .In interpreted as the result of an earlier invocation of lint
with either the -c or the -0 option used. The .In files are analogous to .0 (object)
files that are produced by the cc command when given a . c file as input. Files with
other suffixes are warned about and ignored.

The lint command takes all the. c, .In, and llib-Ix .In (specified by -Ix)
files and processes them in their command line order. By default, the lint
command appends the standard C lint library (llib-Ic .In) to the end of the
list of files. However, if the -p option is used, the portable C lint library
(llib-port .In) is appended instead~ When the -c option is not used, the

second pass of lint checks this list of files for mutual compatibility. When the -c
option is used, the .In and the llib-Ix .In files are ignored.

Options
Any number of lint options may be used, in any order, intermixed with filename
arguments. The following options are used to suppress certain kinds of warning:

-a Suppress warnings about assignments of long values to variables that are not
long.

-b Suppress warnings about break statements that cannot be reached. (Programs
produced by lex or yacc often result in such warnings).

-h Do not apply heuristic tests that attempt to intuit bugs, improve style, and
reduce waste.

-u Suppress warnings about functions and external variables used and not defined,
or defined and not used. (This option is suitable when running linton a
subset of files of a larger program).

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never used.

The following arguments alter the behavior of lint.

-Ix Include additional lint library llib-Ix .In. For example, you can

Commands 1-353

Rise

Rise lint (1)

include a lint version of the Math Library llib-lm.ln by inserting -1m
on the command line. This argument does not suppress the default use of
llib-Ic .In. These lint libraries must be in the assumed directory. This
option can be used to reference local lint libraries and is useful in the
development of multi-file projects.

-0 Do not check compatibility against either the standard or the portable 1 in t
library.

-p Attempt to check portability to other dialects (IBM and GeOS) of C. Along
with stricter checking, this option causes all non-external names to be truncated
to eight characters and all external names to be truncated to six characters and
one case.

-c Cause lint to produce a .In file for every. c file on the command line. The
.In files are the product of the lint command's first pass only, and are not
checked for inter-function compatibility.

-0 lib
Cause lint to create a lint library with the name llib-llib .In. The-c
option nullifies any use of the -0 option. The lint library produced is the
input that is given to the second pass lint. The -0 option simply causes this
file to be saved in the named lint library. To produce a llib-llib .In
without extraneous messages, use of the -x option is suggested. The -v option
is useful if the source files for the lint library are just external interfaces (for
example, the way the file 11 ib-l c is written). These option settings are also
available through the use of lint comments which are described later.

The -D, -U, and -I options of cpp and the -g and -0 options of c c are also
recognized as separate arguments. The -g and -0 options are ignored, but, by
recognizing these options, the behavior of lint is closer to that of the cc
command's second pass. Other options are warned about and ignored. The pre­
processor symbol lint is defined to allow certain questionable code to be altered or
removed for lint. Therefore, the symbol lint should be thought of as a reserved
word for all code that is planned to be checked by 1 in t .

The lint command produces its first output on a per-source-file basis. Warnings
regarding included files are collected and printed after all source files have been
processed. Finally, if the -c option is not used, information gathered from all input
files is collected and checked for consistency.' At this point, if it is not clear whether
a warning stems from a given source file or from one of its included files, the source
file name is printed followed by a question mark.

The behavior of the -c and the -0 options allows for incremental use of lint on a
set of C source files. Generally, one invokes lint once for each source file with the
-c option. Each of these invocations produces a .In file which corresponds to the
. c file, and prints all messages that are about just that source file. After all the
source files have been separately run through lint, it is invoked once more
(without the -c option), listing all the .In files with the needed -Ix options. This
prints all the inter-file inconsistencies. This scheme works well with make; it
allows make to be used to lint only the source files that have been modified since
the last time the set of source files were checked by lint.

1-354 Commands

Iint{1)

Restrictions

Files

The system call exit, the function longjmp, and other functions that do not
return a value are not interpreted correctly by the lint command.

Certain conventional comments in the C source change the behavior of lint:

/*NOTREACHED*/ at appropriate points stops comments about unreachable code.
(This comment is typically placed just after calls to functions
like exit) .

/*V ARARGSn */ suppresses the usual checking for variable numbers of
arguments in the following function declaration. The data
types of the first n arguments are checked; a missing n is taken
to be O.

/*ARGSUSED*/ turns on the -v option for the next function.

/*LINTLIBRARY*/ at the beginning of a file shuts off complaints about unused
functions and function arguments in this file. This is
equivalent to using the -v and -x options.

/usr/lib/cmplrs/cc/lint the directory where the lint libraries specified by the -Ix
option must exist

/usr/lib/cmplrs/cc/lint[12]
first and second passes

/usr/lib/cmplrs/cc/lint/llib-lc.ln
declarations for C Library functions (binary format; source is
in /usr /lib/ emplrs/ ee/ lint/ llib-le)

/usr/lib/cmplrs/cc/lint/llib-lcV.ln
System V declarations for standard functions

/usr/lib/cmplrs/cc/lint/llib-lcP.ln
POSIX declarations for standard functions

/usr/lib/cmplrs/cc/lint/llib-port.ln
declarations for portable functions (binary format; source is
in/usr/lib/emplrs/ee/lint/llib-port)

/usr/lib/cmplrs/cc/lint/llib-Im.ln

/usr/tmp/* lint *

declarations for Math Library functions (binary format;
source is in /usr/lib/emplrs/ee/lint/llib-lm)

temporaries

See Also
cc(1), cpp(1), make(1).

Commands 1-355

Rise

VAX lint (1)

Name
lint - check C code

Syntax
lint [Options] file ...

Description
The lint command detects features of the C programfiles which are likely to be
bugs, non-portable, or wasteful. It also checks the type usage of the program more
strictly than the compilers. Among the things which are currently found are
unreachable statements, loops not entered at the top, automatic variables declared and
not used, and logical expressions whose value is constant. Moreover, the usage of
functions is checked to find functions which return values in some places and not in
others, functions called with varying numbers of arguments, and functions whose
values are not used.

By default, it is assumed that all the files are to be loaded together; they are checked
for mutual compatibility. Function definitions for certain libraries are available to
lint. These libraries are referred to by a conventional name, such as '-1m', in the
style of ld(1). Arguments ending in .In are also treated as library files.

To create lint libraries, use the -C option as follows:

lint -Cdlib files . . .

The C sources of library dUb. are files. The result is a file llib-ldlib .In in the correct
library format suitable for linting programs using dlib. Note that if you have set the
System V environment variable the System V lint library is used. For further
information, see intro(2).

Options
Any number of the options in the following list may be used. The -D, -U, and -I
options of cc(l) are also recognized as separate arguments.

-a Report assignments of long values to int variables.

-b Report break statements that cannot be reached. (This is not the default
because most lex and many yacc outputs produce dozens of such
comments.)

-c Complain about casts that have questionable portability.

-h Apply a number of heuristic tests to attempt to find bugs, improve style, and
reduce waste.

-n Do not check compatibility against the standard library.

-p Attempt to check portability to the IBM and GCOS dialects of C.

-u Do not complain about functions and variables used and not defined, or defined
and not used. (This is suitable for running 1 in t on a subset of files out of a
larger program.)

-v Suppress complaints about unused arguments in functions.

1-356 Commands

Iint(1)

-x Report variables referred to be extern declarations, but never used.

- Y environment
Compiles C programs for environment. If environment is SYSTEM_FIVE or
omitted, defines SYSTEM_FIVE for the preprocessor, cpp, and if the loader is
invoked, specifies that the System V version of the C runtime library is used.
Also, if the math library is specified with the -1m option, the System V version
is used. If environment is POSIX, defines POSIX for the preprocessor. If the
environment variable PROG_ENV has the value SYSTEM_FIVE or POSIX,
the effect is the same as specifying the corresponding - Y environment option to
cc. The·Y option overrides the PROG_ENV variable; ·YBSD can be used to
override all special actions.

-z Do not complain about structures that are never defined (for example, using a
structure pointer without knowing its contents.)

Restrictions

Files

The exi t(2) system calls and other functions that do not return are not understood;
this causes various anomalies in lint output.

Certain conventional comments in the C source change the behavior of lint:

/* NOTREACHED */ At appropriate points stops comments about unreachable
code.

/*VARARGSn*/

/* NOSTRICT*/

/* ARGSUSED*/

/*LINTLIBRARY*/

/usr/lib/lintl

/usr/lib/lint2

/usr/lib/lint/llib-lc.ln

Suppresses the usual checking for variable numbers of
arguments in the following function declaration. The data
types of the first n arguments are checked; a missing n is
taken to be O.

Shuts off strict type checking in the next expression.

Turns on the -v option for the next function.

At the beginning of a file shuts off complaints about unused
functions in this file.

Program

Program

Declarations for standard functions

/usr/lib/lint/llib-lc Human readable version of above

/usr/lib/lint/llib-lcV.ln System V declarations for standard functions

/usr/lib/lint/llib-lcP.ln POSIX declarations for standard functions

/usr/lib/lint/llib-port.ln Declarations for portable functions

/usr/lib/lint/llib-port

llib-l*.ln

Human readable ...

Library created with-C

Commands 1-357

VAX

VAX Iint(1)

See Also
cc(l)

"Lint, a C Program Checker", ULTRIX Supplementary Documents, Vol.
II: Programmer

1-358 Commands

Ik{1)

Name
lk - link editor

Syntax
Ik [option ...] file ...

Description
The lk command combines several object programs into one, resolves external
references, and searches libraries. In the simplest case, several object files are given,
and 1 k combines them, producing an object module which can be executed. The
output of lk is always a standard ULTRIX a. out object module. This file is made
executable only if no errors occurred during the load.

The argument routines are linked together in the order specified. The entry point of
the output is the beginning of the first routine, unless the -e option is specified.

If the argument is a library, it is searched only once at the point it is encountered in
the argument list. Only those routines defining an unresolved external reference are
loaded. If a routine from a library references another routine in the library and the
library has not been processed by ranlib(l), the referenced routine must appear
after the referencing routine in the library. Thus the order of programs within
libraries may be important. The first member of a library should be a file named
' __ .SYMDEF', which is a dictionary for the library as produced by ranlib(1). The
dictionary is searched repeatedly to satisfy as many references as possible.

The symbols '_etext', '_edata' and '_end' ('etext', 'edata' and 'end' in C) are
reserved, and if referred to, are set to the first location above the program, the first
location above initialized data, and the first location above all data in that order. It is
an error to define these symbols.

Like the Id linker, the lk linker can process ULTRIX object modules, a. out files,
archived libraries (.a files), and ranlib-generated indexed libraries. Unlike the Id
linker, however, the lk linker can also process object modules generated by the
VAX FORTRAN compiler. All lk command options can also be specified on the
fort command.

Options
The lk command has several options. Except for -I, they should appear before the
file names.

-D number

-e symbol

-H number

-K

-Ldir

Sets data segment length. The 'number' is a number
specifying the desired length of the data segment. The linker
pads the data segment to this length with zero bytes.

Take the argument as the name of the entry point of the
loaded program. Location 0 is the default.

Takes number argument as a decimal integer, adds it to end
of text, and starts data section at a higher address.

Produces full load map, cross-referencing all defined
symbols.

Add dir to the list of directories in which libraries are

Commands 1-359

VAX

VAX Ik(1)

-Ix

-M

-N

-0

-0 name

-s

-s

-T number

-t

-u symbol

-x

-x

- Yenvironment

1-360 Commands

searched for. Directories specified with -L are searched
before the standard directories.

Abbreviation for the library name '/lib/libx.a', where x is a
string. If that does not exist, 1 k tries '/usr/lib/libx.a' A
library is searched when its name is encountered, so the
placement of a -I is significant.

Produces full load map, consisting of a module and program
section synopsis and symbol cross-reference. Only symbols
that are referenced appear in the cross-reference. Use -K to
cross-reference all symbols.

Do not make text portion read only or sharable. (Use magic
number 0407.)

Arranges (by giving the output file a 0410 "magic number")
that when the output file is executed, the text portion is
read-only and shared among all users executing the file.
This involves moving the data areas up to the first possible
1024 byte boundary following the end of the text.

Takes the name argument after -0 as the name of the 1 k
output file, instead of a. out.

Strips the output by removing all symbols except locals and
globals.

Removes the symbol table and relocation bits to save space.
This impairs the usefulness of the debuggers. This
information can also be removed by stripe!).

Takes the argument as a hexadecimal number which sets the
text segment origin. The default origin is O.

Displays the name of each file as it is processed.

Enters argument as undefined symbol in symbol table. This
is useful for loading from a library, since initially the symbol
table is empty and an unresolved reference is needed to force
the loading of the first routine.

Saves local symbols except for those whose names begin
with 'L'. This option is used by cc(1) to discard
internally-generated labels while retaining symbols local to
routines.

Suppresses saving nonglobal symbols in output symbol
table; enters only external symbols. This option saves some
space in the output file.

Adjust the magic number in the output file so that the
program runs in the specified environment. The parameter
can be POSIX, SYSTEM_FIVE, or BSD. The parameter
sets the program's execution environment to conform with
one of the three standards. This parameter overrides the
PROG_ENV environment variable, if it is present. If neither
this parameter nor the PROG_ENV variable is present,
- YBSD is assumed.

-ysym

-z

Ik(1) VAX

Indicates each file in which sym appears, its type and
whether the file defines or references it. Many such options
may be given to trace many symbols. (It is usually
necessary to begin sym with an '_', as external C and
PASCAL variables begin with underscores.)

Loads process on demand from the resulting executable file
(413 format) rather than preloaded. This is the default. It
results in a 1024 byte header on the output file followed by a
text and data segment, whose size is a multiple of 1024
bytes (being padded out with nulls in the file if necessary).
With this format the first few BSS segment symbols may
actually appear, from the output of s i z e(1), to live in the
data segment. This avoids wasting the space which results
from the data segment size roundup.

The lk linker does not support the following ld options: -A, -d, or -r.

Restrictions

Files

The 1 k command pads the images which are to be demand loaded from the file
system to the next page boundary.

When linking code containing GFLOAT instructions, the GFLOAT versions of libe
and/or the math library must be used rather than the normal DFLOAT versions. Link
to these by using -leg and/or -lmg.

Tpe compiler and the linker lk(l) cannot detect the use of mixed double floating
point types, and your program may produce erroneous results.

/lib/lib* .a
/usr/lib/lib* .a
/usr/local/lib/lib* .a
a.out
a.map

libraries
libraries
libraries
output file
map file

See Also
ar(1), as(1), cc(l), ld(l), ranlib(l)

Commands 1-361

In (1)

Name

Syntax

In -link to a file

In [-f] [-i] [-s] name} [name2]
In [-f] [-i] [-s] name ... directory

Description
A link is a directory entry referring to a file. A file, together with its size and all its
protection information may have several links to it. There are two kinds of links:
hard links and symbolic links.

By default I n makes hard links. A hard link to a file is indistinguishable from the
original directory entry. Any changes to a file are effective independent of the name
used to reference the file. Hard links may not span file systems and may not refer to
directories.

Given one or two arguments, In creates a link to an existing file name}. If name2 is
given, the link has that name. The name2 may also be a directory in which to place
the link. Otherwise it is placed in the current directory. If only the directory is
specified, the link is made to the last component of name} .

Given more than two arguments, In makes links to all the named files in the named
directory. The links made have the same name as the files being linked to.

Options

-f Forces existing destination pathnames to be removed before linking without
prompting for confirmation.

-i Write a prompt to standard output requesting information for each link that
would overwrite an existing file. If the response from standard input is
affirmative, and if permissions allow, the link is done. The -i option has this
effect even if the standard input is not a terminal.

-s Creates a symbolic link.

See Also

A symbolic link contains the name of the file to which it is linked. The
referenced file is used when an open(2) operation is performed on the link. A
stat(2) on a symbolic link returns the linked-to file. An Istat(2) must be
done to obtain information about the link. The readIink(2) call may be
used to read the contents of a symbolic link. Symbolic links may span file
systems and may refer to directories.

cp(1), mV(l), rm(l), link(2), readlink(2), stat(2), symlink(2)

1-362 Commands

lock(1)

Name
lock - reserve a terminal

Syntax
lock

Description
The lock command requests a password from the user, then asks you to confirm the
password by typing it in again. The terminal refuses to relinquish the terminal until
the password is repeated. If you forget the password, you must log in elsewhere and
kill the lock process.

Restrictions
Should time out after 15 minutes.

Commands 1-363

login (1)

Name
login - log in to a system

Syntax
login [username]

Description
The login command is used when a user initially signs on, or it may be used at any
time to change from one user to another. The latter case is the one summarized
above and described here. To sign on initially, see the Guide to System Environment
Setup.

If login is invoked without an argument, it asks for a user name, and, if
appropriate, a password. Echoing is turned off (if possible) during the typing of the
password, so it does not appear on the written record of the session.

After a successful login accounting files are updated, the user is infonned of the
existence of mail, the message of the day is printed, and the time of last successful
login is displayed. The display of all this infonnation can be prevented by creating
the file .hushlogin in the accounts login directory. This is useful for accounts such as
uucp.

If ULTRIX security features are enabled additional things may happen. These
include the display of the number of failed login attempts since the last successful
login and forcing the setting of a new password. See the ULTRIX Security Guide for
Users and Programmers for more infonnation.

The login command initializes the user and group IDs, the working directory, and
the users audit infonnation, then executes a command interpreter, usually sh(l),
according to specifications found in a password file. Argument 0 of the command
interpreter is "-sh", or more generally the name of the command interpreter with a
leading dash ("-") prepended.

The login command also initializes the environment environ(7) with infonnation
specifying home directory, command interpreter, tenninal type (if available) and user
name.

When login is used in conjunction with getty(8) it is the responsibility of the
getty program to initialize the tenninal attributes. Specifically if a tenninal is setup
to use 8-bit characters the getty program should use a gettytab(5) entry which
specifies 8-bit characters. If a tenninal is setup in 8-bit mode but fails to specify an
8-bit gettytab entry, then characters output by both login and getty may appear
as multinational characters.

If the file / etc/nologin exists, login prints its contents on the user's tenninal
and exits. This is used by shutdown(8) to stop users logging in when the system is
about to go down.

The login command is recognized by sh(l) and csh(l) and executed directly
(without forking).

If a root login is attempted and an invalid command interpreter is specified, the s h
interpreter is used.

1-364 Commands

Options

-r

login (1)

Used by the remote login server, rlogind(8c), to force
login to enter into an initial connection protocol.

-p <programname> Causes login to set it's standard input and output to be
connected to the prompting program <programname>.

-c string Allows the system to specify a command to be run using the
user's shell. This option causes a user shell -c string to be
exec'ed.

-e

Restrictions

Forces login to use an extended protocol when
communicating with a prompter program (see -P).

To provide flow control, CTRL/S and CTRL/Q are ignored and are therefore invalid
characters in a login name.

Diagnostics

Login incorrect
If the usemame and password are not a valid combination.

Too many users logged on already. Try again later.
The system has the maximum licensed number of users logged on already.

Requires secure terminal
An attempt was made to login as UID 0 on a line that is not marked as secure
in / etc/ttys.

No shell
The login shell specified for the account cannot be executed. Consult the
system administrator.

No directory! Logging in with home=/
The HOME directory for the account is inaccessible. This can happen if the
directory resides on an NFS file system served by a host that is not currently
available.

You have too many processes running
Completion of login would exceed the maximum number of running processes
allowed for the user.

You have mail
You have a non-empty mail spool file.

If UL TRIX security features are enabled the following messages are also possible
from login:

Your password has expired
The password for your account has not been changed recently enough. Consult
your system administrator.

Your password has expired, please change it
Your password has expired recently. You will be forced to change it before you
can proceed any further.

Commands 1-365

login (1)

Files

Your password will expire very soon
Your pas word will expire in less than 24 hours.

Your password will expire in %d days
The "%d" will be replaced with the number of days until your password
expires. You should consider changing your password now.

This account is disabled
Consult your system administrator.

Kerberos initialization failure
Consult your system administrator.

/etc/utmp
/usr/adm/wtmp
/usr/spooVmail/*
/etc/motd
/etc/auth. [pag,dir]
/etc/passwd
/etc/nologin
/etc/svc.conf
.hushlogin
/etc/securetty

accounting
accounting
mail
message-of-the-da y
authorization data base
password file
stops logins
sets I&A security level
makes login quieter
lists ttys that root may log in on

See Also
mail(1), passwd(1), yppasswd(lyp), passwd(5yp), environ(7), getty(8), init(8),
rlogind(8c), shutdown(8)
Guide to System Environment Setup
ULTRIX Security Guide for Users and Programmers
Security Guide for Administrators

1-366 Commands

logname(1)

Name
logname - get login name

Syntax
logname

Description
The logname command returns the a user's login name on the system.

Files
fete/profile

See Also
10gin(1), environ(5)

Commands 1-367

look(1)

Name
look - find lines in sorted data

Syntax
look [-df] string [file]

Description
The look command consults a sortedfile and prints all lines that begin with string.
It uses binary search. B

Options

Files

The options d and f affect comparisons as in sort(l). If no file is specified,
/usr / diet /words is assumed with collating sequence -df.

-d Uses dictionary order: only letters, digits, tabs and blanks can be compared.

-f Folds uppercase to lowercase (compares equally).

lusr/dict/words

See Also
grep(l), sort(l)

1-368 Commands

Name

Syntax

lookbib{1)

indxbib, lookbib - build inverted index for a bibliography, lookup bibliographic
references

indxbib database ...
look bib database

Description

Files

The indxbib makes an inverted index to the named databases (or files) for use by
lookbib(1) and refer(1). These files contain bibliographic references (or other
kinds of information) separated by blank lines.

A bibliographic reference is a set of lines, constituting fields of bibliographic
information. Each field starts on a line beginning with a "%", followed by a key­
letter, then a blank, and finally the contents of the field, which may continue until the
next line starting with "%".

The indxbib command is a shell script that calls /usr/lib/refer/mkey and
/usr / lib/ refer / inv. The first program, mkey, truncates words to 6
characters, and maps upper case to lower case. It also discards words shorter than 3
characters, words among the 100 most common English words, and numbers (dates)
< 1900 or> 2000. These parameters can be changed. The second program, inv,
creates an entry file (.ia), a posting file (.ib), and a tag file (.ic), all in the working
directory.

The lookbib command uses an inverted index made by indxbib to find sets of
bibliographic references. It reads keywords typed after the ">" prompt on the
terminal, and retrieves records containing all these keywords. If nothing matches,
nothing is returned except another ">" prompt.

It is possible to search multiple databases, as long as they have a common index
made by indxbib. In that case, only the first argument given to indxbib is
specified to lookbib.

If lookbib does not find the index files (the .i[abc] files), it looks for a reference
file with the same name as the argument, without the suffixes. It creates a file with a
'.ig' suffix, suitable for use with fgrep. It then uses this fgrep file to find
references. This method is simpler to use, but the .ig file is slower to use than the
.i[abc] files, and does not allow the use of multiple reference files.

x .ia, x .ib, x .ic, where x is the first argument, or if these are not present, then x .ig, x

See Also
addbib(1), lookbib(1), refer(1), roflbib(1), sortbib(1),

Commands 1-369

lorder(1)

Name
lorder - determine relation for an object library

Syntax
lorder file ...

Description
the input is one or more object or library archive files. For further information, see
ar(l). The standard output is a list of pairs of object file names, meaning that the
first file of the pair refers to external identifiers defined in the second. The output
may be processed by tsort(1) to find an ordering of a library suitable for one-pass
access by 1 d(1).

This one-liner intends to build a new library from existing '.0' files.

ar cr library' lorder *.0 I tsort'

The use of lorder(l) is unnecessary when you use ranlib(l), which converts an
ordered archive into a randomly accessed library.

Restrictions

Files

The names of object files, in and out of libraries, must end with' .0'; nonsense results
otherwise.

*symret *symdef

See Also
ar(l), join(l), ld(l), nm(1), ranlib(l), sed(l), sort(l), tsort(1)

1-370 Commands

Ip(1 }

Name
lp - send requests to an LP line printer

Syntax
Jp [-<:] [-d dest] [-0 number] [-] [files]

Description
The 1 p command arranges for the named files and associated information
(collectively called a request) to be printed by a line printer. If no file names are
mentioned, the standard input is assumed. When a file name is designated by a
minus sign (-) it stands for the standard input and may be supplied on the command
line in conjunction with named files. The order in whichfiles appear is the same
order in which they are printed.

This command exists for X/OPEN compatibility.

Options

Files

The following options to lp may appear in any order and may be intermixed with
file names:

-<: Makes copies of the files to be printed immediately when lp is
invoked. Normally, files are not copied, but are linked whenever
possible. If the -<: option is not given, then the user should be careful
not to remove any of the files before the request has been printed in its
entirety. It should also be noted that without the -<: option, any
changes made to the named files after the request is made but before it
is printed are reflected in the printed output.

-d dest Chooses dest as the printer that is to do the printing. If dest is a
printer, then the request is printed on that specific printer. By default,
dest is taken from the environment variable PRINTER if it is set.
Otherwise, a default destination, lp, is used.

-0 number Prints number copies (default of 1) of the output.

/etc/passwd
/etc/printcap
/usr/lib/lpd *
/usr/spool/*
/usr/spool/*/cf*
/usr/spool/*/df*
/usr/spool/*/tf*

personal identification
printer capabilities data base
line printer daemons
directories used for spooling
daemon control files
data files specified in cf files
temporary copies of cf files

See Also
lpq(l), lpr(l), lprm(l), pr(l), symlink(2), printcap(2), Ipc(8), Ipd(8)

Commands 1-371

Ipq (1)

Name
lpq - spool queue examination program

Syntax
Ipq [options] [job # ...] [user ...]

Description
The Ipq command examines the spooling area used by Ipd for printing files on the
printer, and reports the status of jobs. The Ipq command invoked without any
arguments reports on any jobs currently in the default queue.

When jobs are being printed, Ipq reports the queue as being "active". For each job
submitted, Ipq reports the user's name, current rank in the queue, the names of files
comprising the job, the job identifier and the total size in bytes. The job identifier is
a number which may be supplied to Iprrn to remove a specific job.

Job ordering is determined by the FIFO (First In, First Out) algorithm used to scan
the spooling directory. When the queue is empty, Ipq reports that there are' 'no
entries" .

File names may be unavailable for some jobs, for example, if the Ipr command is
used without specifying a file name, or if Ipr is used in a pipe line. If file names
are unavailable, the file name reported by Ipq is "standard input".

Arguments

job # ... Causes Ipq to report on only the job number(s) specified.

Causes Ipq to report on only the jobs for the specified user(s). user ...

Options

+n Scan and display the spool queue until the queue is empty. The queue is
scanned every n seconds, if no argument is specified the queue is scanned
every 30 seconds.

-I Display the status of each job on more than one line if necessary. If this
option is not used, the status of each job is displayed on one line.

-Pprinter

Restrictions

Report the status of the spool queue for the printer specified. If this option is
not used, the spool queue displayed is the one defined by the PRINTER
environment variable. If a queue is not defined by the PRINTER environment
variable, the spool queue displayed is for the printer named "lp" in the
printcap file.

The displayed status of the spool queue may not always be the current status. This is
because jobs may be completed after the queue has been examined, but before the
status has been displayed.

1-372 Commands

Ipq (1)

Error Messages

Files

Two of the most common error messages from Ipq are:

Warning: no daemon present
A daemon is not available for the specified printer. Refer to the Ipc (8) command
to find out how to restart the printer daemon.

unknown printer
The printer specified as an argument to the -P option, doesn't have an entry in the
/ etc/printcap file.

/etc/termcap

/etc/printcap

/usr/spool/*

/usr/spool/*/cf*

/usr/spool/*/lock

For manipulating the screen for repeated display

To determine printer characteristics

The spooling directory, as determined from printcap

Control files specifying jobs

The lock file to obtain the currently active job

See Also
lpr(l), lprm(l), Ipc(8), Ipd(8)

Commands 1-373

Ipr (1)

Name
I pr - off line print

Syntax
Jpr [options] [file ...]

Description
The Ipr command puts files in the spooling area used by Ipd. The files are printed
by Ipd when the printer is available. If no file names are specified, the standard
input is used.

If options are specified which would cause a conflicting action, the last option
specified is the one used. For example, in the command

lpr -h -Jjob

the -J option overrides the -h option.

Options

-Cclass
Print the argument class, as the job classification on the banner page. If this
option is not used, the name of the node from where the 1 p r command was
issued is printed.

-h Do not print the banner page.

-in Indent the printed output by n spaces. An argument must be supplied with this
option. You should note that this is not compatible to previous versions of 1 p r.

-Jjob
Print the argument job, as the job name on the banner page. If this option is not
used, the job name is the name of the first file specified in the Ipr command.
If no file name is specified, the job name "stdin" is used.

-m Send a mail note to you when the job has been completed.

-p Format the files using the p r command.

-Pprinter
Send the output to the spool queue for the printer specified. If this option is not
used, the output is sent to the spool queue defined by the PRINTER
environment variable. If a queue is not defined by the PRINTER environment
variable, the output is sent to the default printer.

-s Use the symlink system call to link data files, rather than trying to copy them.
This can be used if the file size exceeds the spool directory limit. Refer to the
mx capability in printcap (5). Note that the files should not be modified or
removed until they have been printed.

-Ttitle

-wn

Print the argument title at the head of each page. If a title is not specified, the
name of the file is used. If no file name is specified, then the title part of the
header is left blank. The - T option is only meaningful with the -p option.

1-374 Commands

Ipr (1)

Print the job using a page width of n characters. If this option is not used, the
page width is taken from the printcap file. If there is no entry in the
printcap file, the page width used is 132 characters.

-zn Print the job using a page length of n lines. If this option is not used, the page
length is taken from the printcap file. If there is no entry in the printcap
file, the page length used is 66 lines.

-lfont

-2font

-3font

-4font
Use the font file specified by font in font position 1, 2, 3 or 4. These options
can only be used with troff, ditroff and TeX files (the -0, -t, and -d options
respectively).

-#n Print n copies of the specified file(s).

The following options are for use with PostScript (TM) printers with specialized
support, refer to Ipd (8). Each option requires one argument. The arguments can
be abbreviated as long as the abbreviations are unique for each option.

-Ddatatype
Define the data type to the print daemon, Ipd. If the -D option is not used, the
data type is taken from the printcap file. If no entry for the data type is
found in the printcap file, the print job is sent to the printer without
translation. The following are valid arguments for the -D option.

ansi ANSI data
ascii ASCII data
postscript PostScript (TM) data
regis REGIS data
tek4014 Tektronix 4014
xyz You can specify other data types, but you must write an

appropriate translator, refer to x 1 at 0 r _ c a 11 (8) .

-Fpagesize
Select the size of the pages to be printed. The page size is the text intended to
be printed on a separate sheet. If the -F option is not used the page size used is
the same as the sheet size, refer to option -So If the sheet size is not specified,
the value is taken from the printcap file. If there is no entry in the
printcap file, the page size is LETTER (8.5 x 11 inches). The -F option is
ignored if the data type is PostScript (TM). The following are valid arguments
for the -F option.

letter or a
ledger or b
legal
executive
a5
a4
a3
b5
b4

8.5 x 11 inches, 216 x 279 mm
11 x 17 inches, 279 x 432 mm
8.5 x 14 inches, 216 x 356 mm
7.5 x 10.5 inches, 191 x 254 mm
5.8 x 8.3 inches, 148 x 210 mm
8.3 x 11.7 inches, 210 x 297 mm
11.7 x 16.5 inches, 297 x 420 mm
7.2 x 10.1 inches, 176 x 250 mm
10.1 x .14.3 inches, 250 x 353 mm

Commands 1-375

Ipr (1)

-Itray
Select the input paper tray that will supply paper for the print job. The tray
name is given by the argument as follows:

top The upper 250-sheet input tray.
middle The middle 250-sheet input tray.
bottom or leit The large capacity input tray.

If the -I option is not used, the -S option to selects the input tray. If the -I
option and the -S option are both specified, the input tray must contain the
required paper size. If the -I option is not specified, the value for the output
paper tray is taken from the printcap file. If no entry is present there, the
default paper tray for the printer is used.

-Ksides
Print the pages of the job on sheets in the way specified by sides. The valid
arguments are:

1 or one sided simplex
2 or two =sided= duplex

tumble or two sided tumble - -

one sided tumble - -

-Lfilename

Print on one side of the sheet only.
Print on both sides of the sheet, the
second side is reached by flipping the
sheet about its left edge, as in the
binding of a book.
Print on both sides of the sheet, but
print the opposite way up on each
side, so the second side can be read
by flipping the sheet along its top
axis.
Print on one side of the paper only,
but retain the page layout intended for
two sided duplex printing. The layout
refers to such things as where the
margins are, and where the page
numbers are.
Print on one side of the paper only,
but retain the page layout intended for
tumble printing.
Print on two sides of the paper of the
paper, but retain the page layout
intended for one sided simplex.

Use the commands in the layup definition file, specified by filename, to alter the
appearance of the printed output. If filename does not begin with /, the current
directory is searched, followed by /usr / lib/ lpdfil ters. Refer to the
documentation for your printer for the commands available.

-Mmessage
Use the messages generated by the print job in the way specified by message. If
the -M option is not used, messages are not recorded, unless indicated by an
entry in the printcap file.

keep

ignore

Record the messages in the message file and
mail the file to you.
Do not record messages.

1-376 Commands

-Nn

Ipr(1)

Print n pages on a single sheet. The number must be in the range 0 to 100. If
you specify 1 p r -NO the / et c / p r i n tea p entry is overridden and the
default layup file is not used. If you specify Ipr -Nl the pages are printed
"I-up" but with a border. If the -N option is not used, one page is printed on
one sheet.

-otray
Select the output tray where the printed job will be deposited. The tray name is
given by the argument as follows:

top Top tray, with face-down stacking.
side Side tray, with face-down stacking.
face-up Side tray; with face-up stacking.
upper Upper tray if there are two trays on top of the printer. If there

are not two trays, the top tray is used.
lower Lower tray if there are two trays on top of the printer. If there

are not two trays, the top tray is used.
lcos Large capacity output stacker

If the -0 option is not specified, the value for the input paper tray is taken from
the printcap file, and if no entry is present there, from the printer.

-Oorientation
Print the page in the way specified by orientation. The orientation is given by
the argument as follows:

portrait The printed output is parallel to the short side of the page.
landscape The printed output is parallel to the long side of the page.

If the -0 option is not specified, the value orientation is taken from the
p r i n tea p file, and if no entry is present there, from the printer.

-Spagesize

-Xn

Select the physical size of the sheets to be printed. If the -S option is not used
the sheet size used is the same as the page size, refer to option -F. If the page
size is not specified, the value is taken from the printcap file. If there is no
entry in the printcap file the sheet size is LEITER (8.5 x 11 inches). The
valid arguments for the -S option are the same as for the -F option.

Print each page n times. The number must be in the range 1 to 100. The output
is uncollated, for a collated output use the -# option. If the -X option is not
used, each page is printed once.

-Zlowlim,uplim
Print the pages of the job between lowlim and uplim. If lowlim is not specified,
the first page printed is the first page of the job. If uplim is not specified, the
last page printed is the last page of the job. The maximum value which can be
specified for uplim is 10000. Banner pages are not included in the count. Note
that these limits apply to the entire print job, not to individual files within a
multi-file job.

The following options are used to notify the spooling daemon for the printer that the
files are not standard text files. Any of these options will override the -D option
regardless of the order in which they appear. The Ipd print daemon uses the
appropriate filters to ensure the files are printed correctly.

Commands 1-377

Ipr (1)

-g Assume the files contain standard plot data produced by the plot routines.

-I Print the files using a filter which prints the control characters and suppresses the
page breaks.

-t Assume the files contain data produced by troff.

-x Assume the files do not require filtering before printing.

The following options also notify the spooling daemon for the printer that the files
are not standard text files. The lpd filters for the following options are not supplied
as part of the standard ULTRIX operating system.

-c Assume the files contain data produced by cifplot.

-d Assume the files contain data produced by TeX (DVI output from Stanford).

-f Interpret the first character of each line as a standard FORTRAN carriage control
character.

-0 Assume the files contain data produced by device independent troff (ditroft).

-v Assume the files contain a raster image for devices like Versatec.

Restrictions
Fonts for troff and TeX reside on the host with the printer. It is not possible to use
local font libraries.

Diagnostics

Files

Files with more than x bytes are truncated to x bytes. The default value for x is
1025024 bytes, but this can be changed by using the mx capability in the
/etc/printcap file. The lpr command will not print files which appear to be in
a . out or ar format. If a user other than root prints a file and spooling is disabled,
lpr will print a disabled message and will not put jobs in the queue. If a connection
to lpd on the local machine cannot be made, lpr will print that the daemon cannot
be started.

/etc/passwd

/etc/printcap

/usr/lib/lpd

/usr/spool/*

/usr/spool/*/cf*

/usr/spool/*/df*

/usr/spool/*/tf*

Personal identification

Printer capabilities data base

Line printer daemon

Directories used for spooling

Daemon control files

Data files specified in "cf' files

Temporary copies of "cf' files

See Also
Ipq(1), Iprm(1), pr(l), symlink(2), priIltcap(5), Ipc(8), Ipd(8)

1-378 Commands

Iprm (1)

Name
lprm - remove jobs from line printer queue

Syntax
Iprm [-Pprinter] [-] Uob # ...] [user ...]

Description
The lprrn command removes a job, or jobs, from a printer's spool queue. Since the
spooling directory is protected from users, using lprrn is normally the only method
by which a user may remove a job.

The lprrn command without any arguments deletes the currently active job if it is
owned by the user who invoked 1 p rrn .

If the - flag is specified, lprrn removes all jobs which a user owns. If the super-user
employs this flag, the spool queue is emptied entirely. The owner is determined by
the user's login name and host name on the machine where the lpr command was
invoked.

Specifying a user's name, or list of user names, causes lprrn to attempt to remove
any jobs queued belonging to that user (or users). This form of invoking lprrn is
useful only to the super-user.

A user may dequeue an individual job by specifying its job number. This number
may be obtained from the lpq(l) program. For example,

% 1pq -1

1st: ken [job #013ucbarpa]
(standard input) 100 bytes

% 1prm 13

The 1 p rrn command announces the names of any files it removes and is silent if
there are no jobs in the queue which match the request list.

The lprrn command kills off an active daemon, if necessary, before removing any
spooling files. If a daemon is killed, a new one is automatically restarted upon
completion of file removals.

Options

-p printer

Restrictions

Removes all jobs owned by you only.

Removes jobs from specified printer. It may be used to
specify the queue associated with a specific printer
(otherwise the default printer, or the value of the PRINTER
variable in the environment is used).

Since there are race conditions possible in the update of the lock file, the currently
active job may be incorrectly identified.

Commands 1-379

Iprm (1)

Diagnostics
, 'Permission denied" if the user tries to remove files other than his own.

Files
/etc/printcap printer characteristics file
/usr/spool/* spooling directories
/usr/spool/*/lock lock file used to obtain the pid of the current

daemon and the job number of the currently active job

See Also
lpq(l), Ipr(1), Ipd(8)

1-380 Commands

Ipstat(1)

Name
lpstat - printer status information

Syntax
Ipstat [options]

Description
The Ipstat utility prints the status of the system printers.

Without any options, Ipstat prints the status of print requests made to the default
printer.

This command exists for X/OPEN compatibility.

Options
Some of the options can be followed by a list of arguments. The arguments must be
specified as follows:

lpstat -uuserl,user2,user3

List items can be separated by spaces, but the list must be enclosed in quotes. If you
do not include any arguments, all the information relevant to the option is printed.

The valid options for Ipstat are:

-a [printer 1, printer2,...]

Print whether or not printers are accepting print requests.

-d Print the name of the default system printer.

-0 [printer 1, printer2, '00]

Print the status of print requests.

-p [printer 1, printer2, ...]

Print the status of printers.

-r Print the status of the line printer daemon, Ipd.

-s Print a status summary, including the status of the line printer daemon Ipd,
and the default system printer.

-t Print all status information.

-u [user 1, user2,...]

Print the status of users' print requests.

See Also
Ip(1), lpq(l), lpr(l), Ipc(8)

Commands 1-381

Is(1)

Name
Is - list and generate statistics for files

Syntax
Is [options] name ...

Description
For each directory argument, 1 s lists the contents of the directory. For each file
argument, 1 s repeats the file name and gives any other information you request with
the options available. By default, the list is sorted alphabetically. When no
argument is given, the current directory is listed. When several arguments are given,
files are listed first, followed by directories and the files within each directory.
Options are listed below.

Options

-1 Displays one entry per line. This is the default when output is not to a
terminal.

-a Displays all entries including those beginning with a period (.).

-C Forces multicolumn output for pipe or filter. This is the default when the
output is to a terminal.

-c Uses time of last modification of file status information (file creation, mode,
etc) for sorting (with the -t option) or printing (with the -I option) rather than
the time of file modification or access. See also the -t and -u options.

-d Displays names of directories only, not contents. Use this option with -I to get
the status of a directory.

-F Marks directories with trailing slash (/), sockets with a trailing equal sign (=),
symbolic links with a trailing at sign (@), and executable files with a trailing
asterisk (*).

-f Displays names in the order they exist in directory. For further information, see
dir(5). Entries beginning with a period (.) are also listed. This option
overrides the -I, -t, -s, and -r options.

-g Displays assigned group ID (used with ·1 only). Default is assigned owner ID.

-i Displays the i-number for each file in the first column of the report.

-L Lists the information, if the file is a symbolic link, for the file or directory the
link references rather than that for the link itself.

-I Lists the mode, number of links, owner, size in bytes, and time of last
modification for each file. If the file is a special file, the size field contains the
major and minor device numbers instead of the size. If the file is a symbolic
link, the pathname of the linked -to file is printed, preceded by "->".

1-382 Commands

The mode field consists of 11 characters. The first character indicates the type
of entry:

d if the entry is a directory
b if the entry is a block-type special file

c if the entry is a character-type special file
I if the entry is a symbolic link
s if the entry is a socket
- if the entry is a plain file

Is (1)

The next 9 characters are interpreted as three sets of three characters each. The
first set of three characters refers to file-access permissions for the user; the
next set, for the user-group; and the last set, for all others. The permissions are
indicated as follows:

r if the file is readable
w if the file is writable
x if the file is executable
- if the indicated permission is not granted.

The group-execute permission character is given as s if the file has the set­
group-id bit set; likewise, the user-execute permission character is given as s if
the file has the set-user-id bit set.

The last character of the mode (normally 'x' or '-') is t if the 1000 bit of the
mode is on. See chrnod(2) for the meaning of this mode.

-q Forces the printing of nongraphic characters in file names as the question mark
character (?). This is the default when output is to a terminal.

-R Recursively lists all subdirectories.

-r Sorts entries in reverse alphabetic or time order.

-s Displays the size in kilobytes of each file. This is the first item listed in each
entry.

-t Sorts by time modified (most recently modified first) instead of by name. See
also the -c and -u options.

-u Uses the time of last access instead of last modification for sorting (with the-t
option) or printing (with the -I option).

Restrictions

Files

The output device is assumed to be 80 columns wide.

New line and tab are considered printing characters in file names.

The option setting based on whether the output is a teletype is undesirable as "Is -s"
is much different than "Is -s IIpr". On the other hand, not doing this setting would
make old shell scripts which used Is almost certain to fail.

/etc/passwd Used to obtain user id's for Is-I

/ etc/ group Used to obtain group id's for Is -g

Commands 1-383

Itf (1)

Name
ltf - labeled tape facility

Syntax
Itf option [keys] file ...

Description
The 1 tf command reads and writes single-volume Versions 3 and 4 ANSI­
compatible tape volumes. For a description of the label conventions, see It f(5).
The file argument specifies each file or directory name that is to be processed. If a
directory name is specified, the complete directory tree is processed.

Options

Keys

The actions of 1 t f are controlled by one of the following option characters that must
appear as the first command-line argument: -c, -H, -t, and -x.

-c Creates a new volume assigning an interchange file name to the files on the
volume. That is, 1 t f initializes the volume and writes each named file onto the
output file. Then 1 t f assigns an "interchange" file name to the files being
created on the volume. This "interchange" file name is a name that can be
recognized by a non-ULTRIX system. (Permissible ULTRIX file names are not
allowed in all forms of ANSI volumes). This file name is 17 characters in
length and includes only capital letters and the "a" characters, see It f(5). It is
formed by converting all lower case letters to upper case, converting non-"a"
characters to upper case Z, and truncating the resultant string to 17 characters. If
ANSI Version 4 volumes are being used, the original ULTRIX file name is
preserved in HDR3 through HDR9 and EOF3 through EOF9. For further
information, see It f(5).

-H Displays help messages for all options and keys.

-t Lists each named file on the specified volume. If no file argument is given,
information about all files on the volume is provided. If -t is used without v or
V (verbose keys), the interchange file names are also included in the list.

-x Extracts each named file from the volume to the user's current directory. If no
file argument is given, the entire content of the volume is extracted. If the p key
is not specified when extracting files from a volume written by an ULTRIX
system, the files are restored to the current user and group IDs and to the mode
set by the umask(2) system call.

The following optional keys can be specified to enable or disable 1 t f actions as
specified:

a Outputs an ANSI-compatible Version 3 format volume. This key can be used
with the -c option only. The default version is 4. For further information, see
1 tf(5).

h Write to a tape volume the file that a symbolic link points to instead of creating
the symbolic link on a volume. The file written to the tape now has the same
name as the symbolic link. This key can be used with the -c option only.

1-384 Commands

Itf (1)

When extracting, if a symbolic link exists in the current directory that has the
same name as a file on the tape volume, the link is followed and the file that the
symbolic link currently points to is overwritten with the extracted file. To avoid
overwriting files, use the w key.

o Omits directory blocks from the output volume. When creating a volume, the
directory files are omitted, and when listing or extracting, the V key is disabled.

o Omits usage of optional headers HDR3 through HDR9 and EOF3 through
EOF9. For further information, see 1 tf(5). If a file is created on an ULTRIX
system without the use of the 0 key, these file headers contain the complete
ULTRIX disk file name. Some non-ULTRIX systems are not able to process
volumes containing these header labels. Thus, it is helpful to use this qualifier
to avoid unnecessary error messages when planning to use non-ULTRIX
systems.

p Restores files to original mode, user ID and group ID that is written on the tape
volume. This key can be used with the -x option on UL TRIX files and by the
superuser only.

v Displays long form information about volume and files. Normally, ltf
operates with little terminal output.

When used in conjunction with the -t option, v gives more information about
the volume entries than when used in conjunction with the -c and -x options.
The following line is typical output from -tv functions.

ltf: Volume IO is: ULTRIX Volume is: ANSI Version #4
ltf: Owner IO is: OwnerIO
ltf: Implementation IO is: SystemIO
ltf: Volume created on: System

t(1,1) rw-r--r-- 103/3 owner Feb 2 12:34 2530 bytes <cc >D file!
t(2,1) rw-r--r-- 103/3 owner Jun 29 09:34 999 bytes <com>O file2
t(3,1) rwxrwxrwx 293/10 name Jan 24 10:20 1234 bytes <bin>F name
t(4,1) --xrwx--- 199/04 theowner Jan 24 10:21 12345 bytes <asc>D

long file name

The first field contains the file sequence number and the file section number of
the file. If an UL TRIX system created the labeled· volume, the second and third
fields contain the mode, and owner/group ID of the file. Otherwise, these two
fields are filled with dashes. The fourth field contains the file owner name. The
fifth field contains latest modification time. The year is included if the
modification time is older than Jan 1 of the current year. The sixth field
contains the number of bytes used on the volume for the file. If the volume is
non-ULTRIX, this field contains the number of blocks with the block size in
parenthesis. The seventh field contains the ANSI file type (angle brackets) and
the file record format (one character suffix). The file record formats are: F (fixed
length), D (variable length), or S (spanned/segmented records). The eighth (last)
field contains the name of the file. If the file name does not fit within the 12
spaces left in the line, the name appears on the next line preceded by a carriage
return. A long file name will be continued over one or more lines thus it is
recommended to keep auto wrap on in the terminal setup. Also if a file on a
volume is either a symbolic or hard link, information about the linked file is
displayed on the next line, preceded by a carriage return.

V Displays verbose information about directories.

Commands 1-385 .

Itt (1)

w Warns the user if file name is in danger of being truncated when using -c or if it
could be overwritten using -x. Normally, 1 tf operates silently and does not let
the user know what is happening. When -cw is specified, 1 t f displays two
warning messages if the interchange name and the UL TRIX file name are not
the same. When -xw is specified, 1 t f displays a warning message if a file is
about to be overwritten. Another message is displayed asking for approval to
overwrite the file. If the user types no or presses return, then the option exists to
type in a new file name or press return to quit. If a new file name is typed, this
name is also checked. Thus, 1 t f does not continue until a unique file name is
typed. When -x is specified, It f does not warn the user if a directory name
already exists.

0 •. 31
Selects a unit number for a named tape device. These unit numbers can be
entered when using the default tape name, /dev /rmtOh.

The following optional keys require an additional argument to be specified on the
command line. If two or more of these keys are used, their respective arguments are
to appear in the exact order that the keys are specified.

B size
Set the blocking factor to size. This specifies the maximum number of bytes that
can be written in a block on a volume. If no value is specified, size defaults to
2048 bytes. The maximum size is 20480 bytes and the minimum size is 18
bytes. The B key need only be specified with -Co

The size may be specified as n bytes, (where n is assumed to be decimal) or as
nb, (a multiple of 512 bytes using n followed by 'b', where 'b' signifies the
multiple of 512) or as nk, (a multiple of 1024 bytes using n followed by 'k',
where 'k' signifies the multiple of 1024).

f device

I file

Sets the device file name to device. The default is /dev/rmtOh. The use of the f
key overrides the 0 •• 31 keys.

Allows file name to be supplied either interactively or from a specified file.
Normally, It f expects the argument file names to be part of the command line.
The I key allows the user to enter argument file names either interactively or
from a specified file. If file is a dash (-), 1 t f reads standard input and prompts
for all required information. All of the file names are requested first, followed
by a single return before the arguments are processed. If file is a valid file name,
file is opened and read to obtain argument file names.

L label
Specifies a six-character volume identifier label. The default label for ULTRIX
systems is 'ULTRIX'.

P position
Specifies file sequence and section number at which volume will be positioned,
using #,#. The first #, represents the file sequence number, while second #, the
file section number. The file sequence number begins at 1 and is incremented
for each file in the current file set. Since this implementation of 1 t f only
produces one file set, the file sequence number for volumes written with this
implementation is the number of the file as it is written on the volume. The file
section number begins at 1 and is incremented for each file section on anyone

1-386 Commands

Itf (1)

volume. This number is necessary when files are written in multi-volume
format where the need may exist to split a file across volumes; however since
this implementation of 1 t f writes only single volumes, the file section number
is always 1 for volumes written with this implementation. If no file arguments
are specified, all files from the position number to the end of the tape are listed
or extracted. Otherwise, particular files that exist between the position number
and the end of the tape can be listed or extracted. A warning message appears if
a file is requested that exists before the position number specified. The P key
cannot be used with the -c option.

Examples

ltf -cfB /dev/rmtOh 100 filel file2 file3

This example creates a new volume for file 1 , file2, and file3 using device /dev/rmtOh
(f key) and a blocking factor of 100 (B key).

Restrictions
The 1 t f command does not support floppy diskettes or multi-volume tapes.

Diagnostics
Diagnostics are written to the standard error file. They come in four forms: fatal
errors, warnings, information, and prompts. The 1 t f command terminates when it
detects that a fatal error has occurred.

The diagnostics are intended to be self-explanatory. Their general format is:

ltf: FATAL> a fatal error message
ltf: Warning> a warning or advisory message
ltf: Info> an information message
ltf: a prompt asking for input

See Also
ltf(5)

Commands 1-387

Special Characters

? command (TELNET), 1-690

? command (tftp), 1-698

Numbers

2780e emulator spooler, 1-2

See also 3780e emulator spooler

3780e emulator spooler, 1-3

See also 2780e emulator spooler

A

A C program checker

lint(1), 1-353

account command (ftp), 1-251

adb debugger, 1-5, 1-11

See also gcore command

addresses, 1-10

command list, 1-7, 1-10

core file, 1-5

diagnostics, 1-11

dyadic operators, 1-6

expressions, 1-5

monadic operators, 1-6

od command, 1-5

options, 1-5

restricted, 1-11

variables, 1-10

addbib program, 1-12

keyletters, 1-12

options, 1-12

admin command (sccs), 1-14 to 1-18, 1-599

See also delta command (sccs)

See also val command (sccs)

admin command (sccs) (cont.)

See also vc command (sees)

options, 1-14

ali command, 1-19

alias command (csh), 1-128

alias command (mail), 1-396

See also unalias command (mail)

alias command (pdx), 1-507

aliases file

rebuilding, 1-463

alloe command (csh), 1-128

alternates command (mail), 1-396

anno command, 1-21

annotating messages, 1-21

append command (ftp), 1-251

apply program, 1-22

restricted, 1-22

apropos command, 1-23

ar program, 1-27

See also run command

See also ranlib command

options, 1-27

restricted, 1-28

archive file

copying, 1-105, 1-107

maintaining, 1-27

ordering, 1-370

printing object files, 1-475

reconstructing, 1-557, 1-558

arithmetic language

See bc language

arithmetic package

See dc program

Index

as assembler, 1-33

as command (RISe), 1-29

ascii command (ftp), 1-251

ascii command (tftp), 1-698

assign command (pdx), 1-506

at command, 1-34

restricted, 1-35

auth database

examination, 1-628

shexp command, 1-628

awk programming language, 1-36, 1-38

See also nawk utility

B

See also sed stream editor

built-in functions, 1-37

restricted, 1-38

statement list, 1-36

basename command, 1-39

bc language, 1-40 to 1-42

See also dc program

dc program and, 1-41

restricted, 1-42

bdift' command, 1-43

See also diff command

bell command (ftp), 1-251

bg command (csh), 1-128

bibliography

creating, 1-12

editing, 1-12

finding references, 1-369

formatting, 1-586

indexing, 1-369

searching, 1-567

sorting, 1-646

bitf command, 1-44

binary command (ftp), 1-251

binary command (tftp), 1-698

binary file

finding printable strings, 1-656

installing, 1-292

sending in mail, 1-729

Index-2

binmail program, 1-45

See also mail program

command reference list, 1-45

options, 1-46

restricted, 1-46

blank

defined, 1-617

Bourne shell

sh command interpreter, 1-713

break command (csh), 1-128

break command (sh), 1-614

break command (System V), 1-623

breaksw command (csh), 1-128

broadcast message

sending, 1-759

bsf command (mt), 1-444

bsr command (mt), 1-444

burst command, 1-47

bye command (ftp), 1-251

c
C compiler

See cc compiler

e flow graph

See cflow command

e program

building cross-reference table, 1-157

creating error message file, 1-434

displaying call graph profile data and, 1-271

displaying on standard output, 1-56

formatting, 1-289 to 1-291

implementing shared constant strings, 1-777

verifying, 1-356

e shell

See csh command interpreter, 1-118

cache command (mt), 1-444

cal command, 1-49

restricted, 1-49

calendar

printing, 1-49

calendar command, 1-50

See also leave command

restricted, 1-50

call command (dbx), 1-173

call command (pdx), 1-506

capsar utility, 1-51

case command (csh), 1-129

case command (ftp), 1-251

case command (sh), 1-610

case command (System V), 1-618

cat command, 1-54

See also more command

catch command (dbx), 1-172

catpw command

reference page, 1-55

cb program, 1-56

cc compiler, 1-64 to 1-67

See also ctags command

See also ctrace debugger

See also cxref command

See also gprof command

See also Id command

See also lk command

See also mkstr command

See also prof command

See also xstr command

diagnostics, 1-153

options, 1-64 to 1-66, 1-745

restricted, 1-66

ccat command, 1-94

cd command (csh), 1-68, 1-129

cd command (ftp), 1-251

cd command (sh), 1-68, 1-614

cd command (System V), 1-68, 1-623

cdc command (sccs), 1-69, 1-70

restricted, 1-70

cdoc command, 1-71

cdup command (ftp), 1-251

cflow command, 1-73

options, 1-74

restricted, 1-74

changequote macro, 1-390

character

translating, 1-708

chdir command (csh), 1-129

chdir command (mail), 1-396

check command (sccs), 1-599

checknr command, 1-75

options, 1-75

chfn command, 1-77

See also finger command

restricted, 1-77

chgrp command, 1-78

See also install command

chmod command, 1-79, 1-81e

See also install command

restricted, 1-80

chsh program, 1-82

clean command (sccs), 1-599

clear command, 1-83

c1hrdsf command (mt), 1-444

close command (ftp), 1-252

close command (TELNET), 1-689

c1serex command (mt), 1-444

c1sub command (mt), 1-444

cmp command, 1-84

col command, 1-85

restricted, 1-85

colcrt command, 1-86

See also ul command

colrm command, 1-87

column

filtering multiple, 1-85

removing from file, 1-87

comb command (sccs), 1-88

options, 1-88

restricted, 1-88

comm command, 1-90

command

applying to arguments, 1-22

executing later, 1-34

getting online information, 1-762

locating online information, 1-409, 1-765

showing executed, 1-337

timing, 1-701

comp command, 1-91

compact command, 1-94

comparing files with cmp, 1-84

comparing files with comm, 1-90

Index-3

compiler

creating, 1-779

compress command, 1-96,1-98

compressing sparse data files, 1-596

connect command (tftp), 1-698

cont command (dbx), 1-172

cont command (pdx), 1-506

continue command (csh), 1-129

continue command (sh), 1-614

continue command (System V), 1-623

copy command (mail), 1-396

See also save command (mail)

copying sparse data files, 1-596

cord command, 1-100

cp command, 1-104

See also dd command

See also mv command

cpio command, 1-105, 1-106, 1-107

ar command, 1-105

function keys, 1-106

options, 1-105

restricted, 1-107

cpp command, 1-108, 1-111

cpustat command (SMP), 1-114

cr command (ftp), 1-252

crash dump

anyalyzing, 1-544

create command (sccs), 1-599

creating messages, 1-91

crypt command

encryption, 1-116

csh command interpreter, 1-118

See also echo command

argument list processing, 1-138

built-in commands, 1-128

command definition, 1-119

command input/output, 1-126

command substitution, 1-125

expressions, 1-127

file name substitution, 1-125

flow of control, 1-128

lexical structure, 1-118

non-built-in commands, 1-138

quoted strings and, 1-122

Index-4

csh command interpreter (cont.)

repeating commands, 1-120

reporting job status, 1-120

restricted, 1-143

running jobs, 1-119

signal handling, 1-139

substituting an alias, 1-122

variable substitution, 1-123, 1-125

variables, 1-135

csplit command, 1-144

ctags command, 1-146

options, 1-146

restricted, 1-147

ctc command, 1-149

ctcr command, 1-149

ctod command, 1-148

ctrace command, 1-150e

ctrace debugger, 1-149 to 1-154

diagnostics, 1-152

options, 1-149

restricted, 1-152

statement-by-statement control, 1-151

cu command, 1-702

cut command, 1-155

See also paste command

options, 1-155

cxref command, 1-157

D
date

printing, 1-158

setting, 1-158

showing, 1-756, 1-768

date command, 1-158, 1-15ge

diagnostics, 1-160c

field descriptors, 1-158

multiuser mode and, 1-160c

dbx command (RISe only), 1-161

dbx debugger, 1-170

See also gcore command

accessing source files, 1-174

adb debugger, 1-170

arguments, 1-170

dbx debugger (cont.)

command aliases, 1-174

executing commands, 1-171

machine-level commands, 1-176

miscellaneous commands, 1-176

options, 1-170

printing variables, 1-173

restricted, 1-177

de program, 1-178

See also be language

diagnostics, 1-180

dd command, 1-181 to 1-183

diagnostics, 1-183

example, 1-182

options, 1-181 to 1-182

restricted, 1-183

debug command (ftp), 1-252

debugger

dbx command, 1-161

source-level, 1-161

decompressing sparse data files, 1-596

define macro, 1-390

deledit command (sees), 1-600

delete command (dbx), 1-172

delete command (ftp), 1-252

delete command (mail), 1-396

See also undelete command (mail)

delete command (pdx), 1-506

delget command (sees), 1-600

delta

defined, 1-598

delta command (sees), 1-184 to 1-186, 1-599

See also rmdel command (sees)

cdc command (sees), 1-69

keyletters, 1-184 to 1-185

restricted, 1-185

deroff interpreter, 1-187

restricted, 1-187

dfcommand

See also dumpfs command

dgate command, 1-190

dgated daemon, 1-190

diagnostics

explained, 1-1

diagnostics (cont.)

handling, 1-758

diction program, 1-191

restricted, 1-191

diff command, 1-192

diagnostics, 1-194

restricted, 1-193

diff3 command, 1-195

restricted, 1-196

diffmk command, 1-197

restricted, 1-197

diffs command (sees), 1-600

dir command (csh), 1-129

dir command (ftp), 1-252

dircmp command, 1-198

directory

comparing, 1-192

creating, 1-432

listing, 1-382

removing, 1-580

dirname command, 1-199

disconnect command (ftp), 1-252

disk

displaying free space, 1-188

displaying usage, 1-556

displaying used space, 1-188

reporting I/O statistics, 1-295

reporting statistics, 1-755

summarizing usage, 1-207

disk quota

displaying, 1-556

display command (TELNET), 1-690

display folders

pathnatne, 1-430

displaying folders, 1-243

dist command, 1-201

divert macro, 1-390

divnum macro, 1-391

dnl macro, 1-391

domain

defined, 1-204

getting name, 1-204

setting name, 1-204

Index-5

domainname command, 1-204

dp command (maiI), 1-396

dtoc command, 1-205

du command, 1-207

restricted, 1-207

dump command (pdx), 1-507

dumpdef macro, 1-392

E

echo arguments, 1-209

echo command (csh), 1-129

echo command (general), 1-208

echo command (System V), 1-623

ed line editor, 1-210

command list, 1-213

constructing addresses, 1-212

constructing regular expressions, 1-210

diagnostics, 1-218

interrupt signal, 1-218

restricted, 1-218

edit command (mail), 1-396

edit command (pdx), 1-507

edit command (sees), 1-599

editors

ed, 1-210

edit, 1-223

ex, 1-223

red,I-21O

sed,I-604

vi (screen), 1-749

egrep command, 1-276

else command (csh), 1-130

encryption

crypt command, 1-116

ex editor, 1-223

secret mail, 1-776

vi screen editor, 1-749

view command, 1-752

end command (csh), 1-130, 1-135

endif command (csh), 1-131

endnote

formatting, 1-567

Index-6

environment

printing variable values, 1-530

eof command (mt), 1-444

eotdis command (mt), 1-444

eoten command (mt), 1-444

error command, 1-220 to 1-222

options, 1-221

restricted, 1-222

error message

producing, 1-208

viewing in source code, 1-220 to 1-222

errprint macro, 1-392

eval command (csh), 1-129

eval command (sh), 1-614

eval command (System V), 1-623

eva I macro, 1-391

ex editor, 1-223

exec command (csh), 1-129

exec command (sh), 1-614

exec command (System V), 1-623

exit code

exit status, 1-1

exit command (csh), 1-129

exit command (mail), 1-396

exit command (sh), 1-614

exit command (System V), 1-624

exit status

defined, 1-1

expand command, 1-225

See also fold command

Expanding packed messages, 1-47

explain program, 1-191

export command (sh), 1-614

export command (System V), 1-624

expr command, 1-226

examples, 1-226

expression

taking arguments as, 1-226

extract utility, 1-228

eyacc compiler, 1-232

F

false command, 1-713

fg command (csh), 1-129

fgrep command, 1-276

file

See also specific files

appending, 1-688

backing up, 1-680 to 1-683

backing up multiple, 1-418

breaking into pieces, 1-652

changing tabs to blanks in, 1-225

combining, 1-300

comparing, 1-43, 1-84, 1-90, 1-192, 1-195,

1-197, 1-300, 1-641, 1-724

compressing, 1-94

converting, 1-181

converting to sccs format, 1-598e

copying, 1-104

copying portions, 1-677

copying remote, 1-559

cutting fields from, 1-155

determining extension, 1-233

displaying, 1-54, 1-94

displaying first lines, 1-279

dumping in various format, 1-490

finding, 1-234

finding executable, 1-767

finding pattern, 1-276, 1-368

getting block count, 1-673

getting character count, 1-760

getting line count, 1-760

getting word count, 1-760

listing information, 1-382

merging, 1-641

merging horizontally, 1-501

moving, 1-446

overwriting, 1-688

printing, 1-374

printing at line printer, 1-529

processing matching text, 1-36

removing, 1-580

renaming, 1-446

reversing lines, 1-577

file (cont.)

sending to remote host, 1-732

sorting, 1-641

specifying line width, 1-239

transferring, 1-251

transferring remote, 1-698

updating, 1-402

updating date, 1-707

xcpp file, 1-157

file command (general), 1-233

file command (mail), 1-396

See also folder command (mail)

file command (pdx), 1-507

file name

stripping affixes, 1-39

file transfer program

ftp program, 1-251

find command, 1-234

See also test command

finger command, 1-236

and the who command, 1-236

options, 1-236

restricted, 1-236

fix command (sees), 1-600

fmt text formatter, 1-238

See also pr command

fold command, 1-239

See also expand command

folder command, 1-240

folder command (mail), 1-397

folders

removing, 1-584

folders command, 1-243

folders command (mail), 1-397

footnote

formatting, 1-567

for command (sh), 1-610

for command (System V), 1-617

foreach command (csh), 1-130

fork

reporting, 1-755

form command (ftp), 1-252

Fortran program

breaking into separate files, 1-250

Index-7

forw command, 1-245

Forwarding messages, 1-245

from command (mail), 1-249, 1-397

fsf command (mt), 1-445

fsplit program, 1-250

fsr command (mt), 1-445

ftp program, 1-251

See also rcp command

command list, 1-251

file-naming conventions, 1-257

options, 1-258

parameters supported, 1-257

restricted, 1-258

177 compiler

See also ctags command

See also gprof command

See also prof command

177 program

displaying call graph profile data and, 1-271

G

gcore command, 1-260

gencat utility, 1-261

get command (ftp), 1-252

get command (sees), 1-263 to 1-268, 1-599

See also delta command (sccs)

See also rmdel command (sccs)

See also unget command (sees)

See also what command (sces)

auxiliary file list, 1-267

identification keywords, 1-266

options, 1-263

restricted, 1-267

get command (tftp), 1-698

getopt command, 1-269

glob command (csh), 1-130

glob command (ftp), 1-252

goto command (csh), 1-130

gprof command, 1-271

options, 1-271

restricted, 1-272

graph

drawing, 1-274

Index-8

graph command, 1-274

See also plot command

See also spline command

options, 1-274

restricted, 1-275

graphics filter, 1-523

grep command, 1-276

See also cut command

See also look command

See also sed stream editor

diagnostics, 1-277

options, 1-277

restricted, 1-277

gripe command (pdx), 1-507

group

displaying memberships, 1-278

groupID

changing, 1-78

groups command, 1-278

H
hard link

defined, 1-362

hash command (ftp), 1-252

hash command (System V), 1-624

hashstat command (csh), 1-130

head command

See also tail command, 1-279

headers command (mail), 1-397

help command (mail), 1-397

help command (pdx), 1-507

history command (csh), 1-130

hold command (mail), 1-397

host

printing, 1-281

host ID

See also host name

printing in hexadecimal, 1-280

setting in hexadecimal, 1-280

host name

See also host ID

setting, 1-281

hostid command, 1-280

hostname command, 1-281

ic utility, 1-282

id command, 1-286

if command (csh), 1-130

if command (sh), 1--610

if command (System V), 1--618

ifdef macro, 1-390

ifelse macro, 1-391

ignore command (dbx), 1-172

ignore command (mail), 1-397

inc command, 1-287

include macro, 1-391

Incorporating mail, 1-287

incr macro, 1-391

indent command

comments recognized, 1-290

diagnostics, 1-291

multiline expressions and, 1-290

options, 1-289, 1-289 to 1-291

restricted, 1-291

setting default formatting, 1-290

index command, 1-549

index macro, 1-391

indxbib command, 1-369

info command (sccs), 1-599

install command, 1-292

Internet File Transfer Protocol interface

ftp program, 1-251

interprocess communication package

reporting status, 1-297

intro(l) keyword, 1-1

invcutter command, 1-293

I/O statistics

See also disk

See also terminal

reporting, 1-295

iostat command

See also netstat command

See also vmstat command, 1-295

ipcrm command, 1-296

ipcs command

J

column beadings listed, 1-297

options, 1-297, 1-297

jobs command (csh), 1-131

join command

K

comm command, 1-300, 1-300

restricted, 1-301

sort command, 1-300

kill command (csh), 1-131

kill command (general), 1-303

restricted, 1-303

kits

L

setld format distribution kits, 1-304

updating master inventory, 1-464

last command

See also lastcomm command, 1-336

lastcomm command, 1-337

See also last command

led command (ftp), 1-252

ld command, 1-347

See also lk command

See also ranlib command

See also strip command

options, 1-347

restricted, 1-349

leave command, 1-350

len macro, 1-391

lex program generator, 1-351

options, 1-351

lexical analysis program

example, 1-351

generating, 1-351

library file

archive file, 1-27

Index-9

limit command (csh), 1-131

line command, 1-352

line feed

reversing, 1-85

link

creating, 1-362

defined, 1-362

link editor (general)

See ld command

link editor (VAX FORTRAN)

See lk command

lint command, 1-356

exit system call and, 1-357

options, 1-356

list command (pdx), 1-507

Listing formatted messages, 1-425

Ik command, 1-359

See also ranlib command

See also strip command

options, 1-359

restricted, 1-361

In command, 1-362

options, 1-362

Location Broker

lb_admin, 1-338

lock

command,I-363

logging in

See also password, 1-364

to remote system, 1-578, 1-702

login

printing last, 1-336

login command (csh), 1-132

login command (general)

dgate command, 1-190

diagnostics, 1-365, 1-364

login command (sh), 1-614

login shell field

changing, 1-82

login time

showing, 1-768

logname command, 1-367

logout command (csh), 1-132

Index-10

look command, 1-368

lookbib command, 1-369

lorder command, 1-370

See also ranlib command

See also tsort command

Ip command, 1-371

Ipq command, 1-372

Ipr command, 1-374

See also Ipq command

See also Iprm command

See also print command (general)

Iprm command, 1-379

diagnostics, 1-380

restricted, 1-379

Ipstat command, 1-381

Is command (ftp), 1-252

Is command (general), 1-382

options, 1-382

restricted, 1-383

Itf command, 1-384

diagnostics, 1-387

keys, 1-384

options, 1-384, 1-387

M

m4 macro processor

macro list, 1-390, 1-389

macdef command (ftp), 1-253

machine command, 1-393

magnetic tape

labeling, 1-384

manipulating, 1-444

mail

creating a distribution list, 1-395

deleting, 1-394

ending a session, 1-395

formatting, 1-238

listing header lines in mailbox file, 1-249

printing, 1-394, 1-531

processing for sendmail daemon, 1-582

reading, 1-394

replying to, 1-395

reporting incoming, 1-44

mail (cont.)

sending, 1-45, 1-394, 1-401

sending binary file, 1-729

specifying messages, 1-394

undeleting, 1-394

mail aliases

listing, 1-19

mail command (mail), 1-397

mail program, 1-401

See also biff command

See also fmt text fonnatter

See also from command (mail)

See also pnnail command

See also talk program

See also uuencode command

See also write command

command list, 1-396

flags, 1-395, 1-394

tilde escapes, 1-399

make command, 1-402

make command (System V)

options, 1-402

make keyword, 1-402

maketemp macro, 1-391

man command, 1-409

See also apropos command

See also man macro package

See also ul command

See also whatis command (general)

options, 1-410

mark command, 1-415

mdelete command (ftp), 1-253

mdir command (ftp), 1-253

mdtar command

See also tar command

diagnostics, 1-420

function modifiers, 1-418

key list, 1-418, 1-418

restricted, 1-420

memory

reporting statistics, 1-754

mesg command, 1-421

See also talk program

message

copying to another user, 1-772

interactive, 1-678

prohibiting, 1-421

replying to, 1-572

show next message, 1-466

show previous message, 1-528

message queue

removing, 1-296

reporting status, 1-297

Message sequences, 1-415

messages

check for, 1-441

filing in other folders, 1-570

select by content, 1-515

mget command (ftp), 1-253

MH overview, 1-422

mh summary, 1-422

mbl command, 1-425

mhmail command, 1-429

mhpath command, 1-430

mkdir command, 1-432

See also nndir command

mkdir command (ftp), 1-253

mkstr command, 1-434

See also xstr command

mls command (rtp), 1-253

mode

changing, 1-79

mode command (ftp), 1-253

mode command (TELNET), 1-689

mode command (tftp), 1-698

more command, 1-438 to 1-440

options, 1-438

moving sparse data files, 1-596

mput command (ftp), 1-253

msgchk command, 1-441

msh command, 1-442

mt program, 1-444, 1-445e

command list, 1-444

mv command, 1-446

Index-11

N

name

defined, 1-617

nawk utility

arrays, 1-448

built-in functions, 1-452, 1-453

described, 1-447

restrictions, 1-457

statement list, 1-455

user-defined functions, 1-455

netstat command, 1-461

See also iostat command

See also vmstat command

options, 1-462

network

displaying status, 1-461

interface display, 1-461

routing table display, 1-461

Network Interface Definition Language Compiler

nidi, 1-468

newaliases command, 1-463

newinv command, 1-464

next command, 1-466

next command (dbx), 1-173

next command (mail), 1-397

next command (pdx), 1-506

nice command (csh), 1-132

nice command (sh), 1-467

nl command, 1-471

nm command

diagnostics, 1-475

options, 1-475, 1-475

nmap command (ftp), 1-253

nocache command (mt), 1-445

nohup command (csh), 1-132

nohup command (sh), 1-467

notify command (csh), 1-132

nroft' text processor

See also checknr command

See also colcrt command

See also roffbib text processor

See also soelim command

See also tbl preprocessor

Index-12

nroft' text processor (cont.)

options, 1-477

previewing output, 1-86

refer preprocessor, 1-567, 1-477

nslookup command, 1-479

nsquery command, 1-485

ntp command, 1-487

sample output, 1-488

ntrans command (ftp), 1-254

o
object file

combining, 1-347, 1-359

finding printable strings, 1-656

ordering, 1-370, 1-718

printing size, 1-634

od command

See also strings command

options, 1-490, 1-490

offline command (mt), 1-445

onintr command (csh), 1-132

online information

accessing, 1-23

open command (ftp), 1-254

open command (TELNET), 1-689

otalk program, 1-678

p

pack command, 1-494

packf command, 1-496

page

reporting statistics, 1-755

page command, 1-438

page size

printing, 1-497

pagesize command, 1-497

parameter

defined, 1-611, 1-617

Pascal compiler

error recovery, 1-232, 1-503

Pascal execution profiler

See pxp command

Pascal interpreter

See px command

Pascal interpreter and executer

See pix command

Pascal interpreter code translator

See pi code translator

See pix command

Pascal program

creating line-numbered listing, 1-555

debugging, 1-505

displaying call graph profile data and, 1-271

interpreting, 1-513, 1-519, 1-552

listing cross-references, 1-555

merging compiled modules, 1-525

profiling, 1-553

passive verb

finding, 1-670

passwd command, 1-498

See also yppasswd command, 1-498

passwd file (general)

user name and, 1-77

password

changing, 1-498

changing in yellow pages, 1-783

creating, 1-498

printing with catpw, 1-55

paste command

diagnostics, 1-502

examples, 1-501

options list, 1-501, 1-501

pattern

matching, 1-612, 1-620

pc compiler

See also ctags command

See also gprof command

See also Id command

See also make command (general)

See also pdx debugger

See also pi code translator

See also pix command

See also pmerge command

See also prof command

See also px command

See also pxp command

pc compiler (cont.)

See also pxref program

options, 1-503, 1-503

restricted, 1-504

pdx debugger, 1-505

See also pi code translator

instructor-level commands, 1-507

option, 1-508

restricted, 1-508

pg command, 1-509

pi code translator, 1-513

See also pix command

See also pmerge command

See also px command

diagnostics, 1-514

flags, 1-513

restricted, 1-513

pi command (pdx), 1-507

pick comrqand, 1-515

pipeline

defined, 1-610, 1-617

lists, 1-610

pipelines

lists, 1-617

pix command, 1-519

See also px command

plot command, 1-523

See also prof command

See also spline command

See also term command

pmerge command, 1-525

popd command (csh), 1-132

pr command

See also print command (general)

preserve command (mail), 1-397

See also 1101d command (mail)

prev command, 1-528

print command, 1-526

print command (general), 1-529

print comm~nd (mail), 1-394, 1-397

See also ignore command (mail)

See also print command (mail)

print command (pdx), 1-506

Index-13

print queue

removing jobs, 1-379

printenv command, 1-530

printer

See also printer queue

changing tabs to blanks for, 1-225

folding text lines for, 1-239

status information, 1-381

printer queue

displaying, 1-372

priority

setting low, 1-467

prmail command, 1-531

process

getting core image, 1-260

printing status, 1-544, 1-756, 1-768

reporting statistics, 1-754

suspending, 1-635

terminating, 1-303

process ID

getting, 1-544

prof command, 1-532, 1-536

See also gprof command

options, 1-536

restricted, 1-536

profile data

analyzing, 1-532

profile file

displaying data, 1-536

program

executing later, 1-34

locating binary, 1-765

locating manual, 1-765

locating source, 1-765

updating, 1-402

prompt command (ftp), 1-254

prompter editor front-end, 1-538

proxy command (ftp), 1-254

prs command, 1-543e

prs command (sees), 1-541

options, 1-541

ps command

See also w command

field list, 1-545

Index-14

ps command (cont.)

options, 1-544, 1-544

restricted, 1-545

ptx command

options, 1-549, 1-549

restricted, 1-550

pushd command (csh), 1-132

put command (ftp), 1-255

put command (tftp), 1-699

pwd command (general)

See also dirs command (csh), 1-551

pwd command (nfs), 1-255

pwd command (System V), 1-624

px command, 1-552

See also pi code translator

See also pix command

pxp command, 1-553

options, 1-553

restricted, 1-554

pxref program, 1-555

Q

quit command (mail), 1-397

quit command (nfs), 1-255

quit command (pdx), 1-507

quit command (TELNET), 1-689

quit command (tftp), 1-699

quota command, 1-556

quote command (ftp), 1-255

R
ranlib command, 1-557, 1-558

See also lorder command

rcp command, 1-559

rcvstore command, 1-561

read command (sh), 1-614

read command (System V), 1-624

readability

analyzing, 1-670

readonly command (sh), 1-614

readonly command (System V), 1-624

recv command (ftp), 1-255

red line editor, 1-210

redistributing messages, 1-201

refer preprocessor, 1-567

See also indxbib command

See also lookbib command

addbib program, 1-567

lookbib command, 1-567

options, 1-567

restricted, 1-568

rofibib text processor, 1-567

sortbib command, 1-567

Reference Pages Manual

accessing on line, 1-409

printing, 1-409

refile command, 1-570

rehash command (csh), 1-133

relational data base operator, 1-300

relocation bits

removing, 1-658

reminder service

creating a calendar, 1-50

reminding you to leave, 1-350

remote system

logging in, 1-190

remotehelp command (ftp), 1-255

rename command (ftp), 1-255

repeat command (csh), 1-133

repl command, 1-572

reply command (mail), 1-398

rerun command (dbx), 1-171

reset command, 1-576

See also tset command

reset command (ftp), 1-255

respond command (mail), 1-398

See also reply command (mail)

return code

exit status, 1-1

return command (dbx), 1-173

return command (System V), 1-624

rev command, 1-577

rewind command (mt), 1-445

rewolftl command (mt), 1-445

rexmt command (tftp), 1-699

rlogin command, 1-578

See also dgate command

See also rcp command

See also tip command

rlogin command (general)

See also rlogin command

rm command, 1-580

confirming file removal, 1-58Oe

examining files, 1-581e

options, 1-580

removing file, 1-580e

rmail command, 1-582

rmdel command (sees), 1-583

rmdir command (ftp), 1-255

rmdir command (general), 1-580

rmf command, 1-584

rmm command, 1-585

roftbib text processor, 1-586

rsh program, 1-588

See also rcp command

See also rlogin command

options, 1-588

restricted, 1-588

rsh5 program, 1-617

restricted, 1-626

run command (dbx), 1-171

run command (pdx), 1-505

run queue

showing average, 1-768

runique command (ftp), 1-255

ruptime command

description, 1-590

options, 1-590

restrictions, 1-590

s
sact command (sees), 1-593

save command (mail), 1-398

scan command, 1-594

scat command, 1-596

sees file

changing delta· commentary, 1-69

Index-15

sees file (cont.)

changing parameters, 1-14 to 1-18

comp~g, 1-601

creating, 1-14 to 1-18

data keywords, 1-541

getting, 1-263 to 1-268

identifying, 1-761

printing, 1-541, 1-593

reconstructing, 1-88

recording changes, 1-597

removing delta, 1-583

ungetting, 1-723

validating, 1-737

version control, 1-739

sees identification string

See SIn

sccs preprocessor, 1-597

See also get command (sees)

See also sees file

See also sccshelp command

changing file, 1-184 to 1-186

command list, 1-599

keywords, 1-600

sccsdiff command, 1-601

sccsdiff command (sccs), 1-600

sccshelp command, 1-600, 1-602

script command, 1-603

sed command, 1-604

semaphore set

removing, 1-296

reponing status, 1-297

send commancl, 1-607

send command (ftp), 1-255

send command (TELNET), 1-690

sendport cpmmand (ftp), 1-256

set command (csh), 1-133

set command (mail), 1-398

See also unset command (mail)

options, 1-400

set comman~ (sh), 1-614

set command (System V), 1-624

set command (TELNET), 1-691

setenv command (csh), 1-133

Index-16

setld

format distribution kits, 1-304

newinv command, 1-464

Setting current folder, 1-240

sh command (pdx), 1-507

sh command interpreter, 1-610, 1-616

See also echo command

See also false command

See also wait command (general)

command substitution, 1-611

directing input, 1-612

directing output, 1-612

environment, 1-613

executing commands, 1-614

parameter substitution, 1-611

prompts, 1-612

quoting characters, 1-612

signals, 1-614

special commands, 1-614

shared memory

reporting status, 1-297

shared memory ID

removing, 1-296

shell command (mail), 1-398

shell command interpreter

diagnostics, 1-616

restricted, 1-616

shexp command, 1-628

shift command (csh), 1-133

s~ift command (sh), 1-615

shift command (System V), 1-625

shift macro, 1-391

show command, 1-630

shS command interpreter, 1-617 to 1-627

command substitution, 1-618

comments, 1-618

directing input, 1-621

directing output, 1-621

environment, 1-622

executing commands, 1-622

exit status, 1-626

invoking, 1-625

parameter substitution, 1-618

prompts, 1-621

shS command interpreter (cont.)

restricted, 1-626

signals, 1-622

special characters and, 1-621

SID

defined, 1-598

simple command

defined, 1-610, 1-617

sinclude macro, 1-391

size command (general), 1-634

size command (mail), 1-398

sleep command, 1-635

slocal command, 1-636

SMP

reporting CPU statistics, 1-114

soelim command, 1-640

Software kits

producing, 1-684

producing inventory records for, 1-293

sort command, 1-641, 1-642e

See also look command

See also uniq command

diagnostics, 1-642

options, 1-641

restricted, 1-642

sortbib command, 1-646

sortm command, 1-647

sortS command, 1-643

source code control system preprocessor

See sccs preprocessor

source command (csh), 1-133

source command (mail), 1-398

source command (pdx), 1-507

sparse data files, 1-596

spell command, 1-649

options, 1-649

restricted, 1-650

spellin command, 1-649

spellout command, 1-649

spline command, 1-651

split command, 1-652

status command (dbx), 1-172

status command (ftp), 1-256

status command (mt), 1-445

status command (pdx), 1-506

status command (TELNET), 1-689

status command (tftp), 1-699

step command (dbx), 1-172

step command (pdx), 1-506

stop command (csh), 1-134

stop command (dbx), 1-172

stop command (pdx), 1-506

stopi command (pdx), 1-507

stream text editor, 1-604

strextract utility, 1-654

string

defined, 1-656

strings command, 1-656

strip command, 1-658

strmerge utility, 1-659

struct command (ftp), 1-256

stty command, 1-662

See also tset command

See also tty command

style program, 1-670

See also diction program

su command, 1-671

substr macro, 1-391

sum command, 1-673

See also wc command

sunique command (ftp), 1-256

superblock

updating, 1-675

suspend command (csh), 1-134

switch command (csh), 1-134

symbol table

printing, 1-475

removing, 1-658

updating, 1-674

symbol type

reference list, 1-475

symbolic.link, 1-362

symorder command, 1-674

sync command, 1-675

syscmd macro, 1-391

system

See also host ID

Index-17

system (cont.)

See also host name

changing user information, 1-77

listing user information, 1-236

reporting statistics, 1-754

showing login time, 1-756

showing run queue average, 1-725, 1-756

showing uptime, 1-725, 1-756, 1-768

showing user activity, 1-756, 1-768

showing users, 1-726, 1-756, 1-768

system call tracer, 1-709

T
tab character

changing to spaces, 1-225

table

formatting, 1-686

tabs command

See also term command, 1-676

tags file

See ctags command

tail command, 1-677

talk program, 1-678

See also mesg command

See also write command

tar command

See also ar program

See also mdtar command

diagnostics, 1-683

keys, 1-680

options, 1-680 to 1-682, 1-680 to 1-683, 1-682e

restricted, 1-683

tarsets command, 1-684

tbl preprocessor

eqn and, 1-687, 1-686

tee command, 1-688

tell command (sees), 1-599

TELNET protocol

See telnet user interface

telnet user interface, 1-689

command list, 1-689

terminal

capturing session in a file, 1-603

Index-18

terminal (cont.)

clearing screen, 1-83

getting pathname, 1-719

locking, 1-363

reporting I/O statistics, 1-295

resetting, 1-576

setting, 1-714 to 1-717

setting tabs, 1-676

showing name, 1-756, 1-768

underlining and, 1-721

viewing one screenful at a time, 1-438 to 1-440

Terminals

setting input/output characteristics, 1-662

terminfo compiler

tic, 1-700

test command, 1-694

See also find command

command programming language, 1-696

test command (System V), 1-625

text processor

for monospace output, 1-477

tftp program, 1-698

authentication and, 1-699

tic

terminfo compiler, 1-700

time

setting, 1-158

showing, 1-756, 1-768

time command, 1-701

printing, 1-158

time command (csh), 1-134

timeout command (tftp), 1-699

times command (sh), 1-615

times command (System V), 1-625

tip command, 1-702

See also rlogin command

tilde escapes, 1-702

variables, 1-704, 1-706

toggle command (TELNET), 1-691

top command (mail), 1-398

touch command, 1-707

tr command, 1-708

trace command (dbx), 1-171

trace command (ftp), 1-256

trace command (general), 1-709

trace command (pdx), 1-505

trace command (tftp), 1-699

tracei command (pdx), 1-507

trans utility, 1-711

translit macro, 1-391

trap command (sh), 1-615

trap command (System V), 1-625

Trivial File Transfer Protocol

tftp program, 1-698

user interface, 1-698

true command, 1-713

tset command, 1-714 to 1-717, 1-716

See also term command

options, 1-715

restricted, 1-717

tsort command, 1-718

tty command, 1-719

type command (ftp), 1-256

type command (mail), 1-398

See also print command (mail)

type command (System V), 1-625

typescript file

creating, 1-603

u
uac command, 1-720

ul command, 1-721

uUmit command (System V), 1-625

umask command (csh), 1-134

umask command (sh), 1-615

umask command (System V), 1-625

unalias command (csh), 1-134

unalias command (mail), 1-398

uncompact command, 1-94

undefine macro, 1-390

undelete command (mail), 1-398

undivert macro, 1-390

unedit command (sccs), 1-599

unexpand command, 1-225

unget command (sces), 1-723

unhash command (csh), 1-134

uniq command, 1-724

See also cmp command

See also comm command

See also diff command

See also difI3 command

See also difImk command

See also join command

See also sccsdiff command

Universal Unique Identifiers

uuid~en, 1-730

unlimit command (csh), 1-134

unset command (csh), 1-135

unset command (mail), 1-398

unset command (System V), 1-625

unsetenv command (csh), 1-135

uptime command, 1-725

See also w command

user command (ftp), 1-256

user ID

changing temporarily, 1-671

showing, 1-768

showing effective, 1-769

users command, 1-726

See also finger command

See also who command

uucp utility, 1-727

See also rmail command

See also uusend command

See also uustat program

displaying command status, 1-733

displaying connection status, 1-733

options, 1-727

remote system pathnames and, 1-728w

restricted, 1-728

uudecode command, 1-729

uuencode command, 1-729

uusend command, 1-732

uustat program

options, 1-733

uux command, 1-735

Index-19

v
val command (sees), 1-737

interpreting 8-bit exit code, 1-737

keyletters, 1-737

processing mUltiple files, 1-738

restricted, 1-738

VAXC

vcc compiler, 1-742

V AX-ll assembler

See as assembler

vc command (sees), 1-739

exit codes, 1-741

options, 1-739

vee compiler, 1-742

default macros, 1-745

default symbols, 1-745

files, 1-746

options, 1-742

restricted, 1-746

vdoc command, 1-747

verbose command (ftp), 1-256

verbose command (tftp), 1-699

version control statement, 1-739
vfork

reporting, 1-755

vi (screen) editor, 1-749

vi screen editor

See also fmt text formatter

view command, 1-752

encryption, 1-752

virtual memory

reporting statistics, 1-754

visual command (mail), 1-398

vmstat command, 1-754

w

See also iostat command

See also netstat command

format fields, 1-754

w command, 1-756

options, 1-756

output fields, 1-756

Index-20

w command (cont.)

restricted, 1-756

wait command (csh), 1-135

wait command (general), 1-758

wait command (sh), 1-615

wait command (System V), 1-625

wall command, 1-759

See also mesg command

See also write command (general)

we command, 1-760

See also sum command

weof command (mt), 1-444

what command (sees), 1-599, 1-761

whatis command (general), 1-762

whatis command (pdx), 1-506

whatnow command, 1-763

where command (pdx), 1-507

whereis command, 1-765

example, 1-765

which command (csh), 1-767

which command (pdx), 1-506

while command (csh), 1-135

while command (sh), 1-611

while command (SystemV), 1-618

who command, 1-768

See also finger command

See also users command

See also whoami command

whoami command, 1-769

working directory

changing, 1-68

printing pathname, 1-551

write command

See also mesg command

write command (general), 1-772

See also talk program

See also wall command

write command (mail), 1-398

See also save command (mail)

x
xargs command, 1-773

xd command (pdx), 1-508

xi command (pdx), 1-508

xit command (mail), 1-399

See also exit command (mail)

xsend command

secret mail, 1-776

xstr command, 1-777

y

See also mkstr command

restricted, 1-778

yacc compiler, 1-779

See also eyacc compiler

See also lex program generator

yellow pages service

changing password in, 1-783

yes command, 1-780

YPmap

printing key values, 1-782

printing values, 1-781

yP server

determining, 1-785

ypcat command, 1-781

ypmatch command, 1-782

yppasswd command, 1-783

ypwhich command, 1-785

z
z command (mail), 1-399

z command (TELNET), 1-689

Index-21

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

8oo-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Reference Pages Section 1: Commands A - L

AA-PCOWA-TE

Please use this postage-paid fonn to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Perfonnance Report (SPR) service, submit your
comments on an SPR fonn.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough infonnation) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find infonnation) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? _____________________ _

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _____ _

Namerritle _______________________ _ Dept. ________ _
Company ___________________________ __ Date _____ _

Mailing Address
_______________ Email Phone

· --- -- Do Not Tear - Fold Here and Tape

IlmlDIITM -----------------------------111-1-~----------;;~;;;~~---.

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11111111111 III 11111111 II II II 111111111111111111 111111

-----. Do Not Tear - Fold Here

IF MAILED IN THE
UNITED STATES

Cut
Along
Dotted
Line

