

The Big Gray Book: The Next Step with UL TRIX

Order Number: AA-PBKNA-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual describes features of the UL TRIX operating system and its related tools for users
with some ULTRIX experience.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1990
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IJllmaama
CDA
DDIF
DDIS
DEC
DECnet
DECstation

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

UL TRIX Worksystem Software
VAX
VAXstation
VMS
VMS/ULTRIX Connection
VT
XUI

MS-DOS is a registered trademark of Microsoft Corporation.

Nutshell Handbook is a trademark of O'Reilly and Associates, Inc.

UNIX is a registered trademark of AT&T in the USA and other countries.

Contents

About This Manual

Welcome

Audience

xi

xi

Organization xi

Related Documents ... xi

Conventions xii

1 The Next Step

1.1

1.2

The Toolbox Philosophy

What's In This Book?

1.2.1
1.2.2
1.2.3

Part I - Text Manipulation
Part II - Communication with Other Users
Part III - Other Commands and the Shell

1-1

1-2

1-2
1-2
1-2

Part I: Text Manipulation

2 Regular Expressions

2.1 What Is a Regular Expression? ... 2-1

2.2 The Rules for Regular Expressions ... 2-2

2.2.1 Matching Any Single Character ... 2-3
2.2.2 Matching Metacharacters As Ordinary Characters 2-4
2.2.3 Matching Any Number of Occurrences of a Character 2-4
2.2.4 Matching Only Selected Characters .. 2-5
2.2.5 Using the Circumflex in Regular Expressions 2-6

2.2.5.1 Matching the Beginning of a Line ... 2-6
2.2.5.2 Excluding a Match on Certain Characters 2-6

2.2.6 Matching the End of a Line ... 2-6
2.2.7 Matching Exact Numbers of Occurrences of Characters 2-7

2.2.7.1 Matching an Expression That Appears One or More Times 2-7

2.2.7.2 Matching an Expression That Appears Once or Not At All 2-7

2.3 Making a Compound Regular Expression Simple

2.4 Building Complex Regular Expressions

2-8

2-8

2-9 2.5 Separating Regular Expressions

3 Line-Oriented Editors

3.1

3.2

3.3

3.4

Types of Line Editors .. .

The ed Editor .. .

3.2.1 Starting the ed Editor .. .
3.2.2 Moving Around the Buffer

3-1

3-2

3-3
3-3

3.2.2.1 Moving in the Buffer Using Line Numbers 3-4
3.2.2.2 Moving in the Buffer Using Relative Addresses 3-4
3.2.2.3 Moving in the Buffer Using Regular Expressions 3-5

3.2.3 Adding and Deleting Text ... 3-5

3.2.3.1 Adding Text ... 3-6
3.2.3.2 Deleting Text .. 3-6

3.2.4 Changing Text ... 3-6

3.2.4.1 Changing Text by Substitution .. 3-7
3.2.4.2 Changing Text by Replacing and Joining Lines 3-8
3.2.4.3 Correcting Editing Errors ... 3-8

3.2.5 Combining Commands and Addresses .. 3-8

3.2.5.1 Using Commands with Single Addresses 3-9
3.2.5.2 Using Commands with Two Addresses 3-9

3.2.6 Marking Lines in the Buffer .. 3-10
3.2.7 Juggling Blocks of Text .. 3-10
3.2.8 Making Global Changes Interactively... 3-11
3.2.9 Error Messages and Help .. 3-12
3.2.10 Matching Multiple Occurrences of a String 3-12
3.2.11 Executing Shell Commands from Within ed 3-13
3.2.12 Managing the File and Quitting ed 3-13

3.2.12.1
3.2.12.2
3.2.12.3
3.2.12.4
3.2.12.5

Saving the Buffer
Rereading the File .. .
Including Other Files .. .
Renaming the Buffer
Leaving the ed Editor .. .

3.2.13 Recovering from a Crash

The ex Editor .. .

The sed Stream Editor

3-14
3-14
3-14
3-14
3-14

3-15

3-15

3-15

;vContents

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

Using sed with a Script
Using sed for Quick Edits .. .
Command Syntax and Addressing
Compound Commands .. .
Additional sed Features

3.4.5.1
3.4.5.2
3.4.5.3
3.4.5.4

U sing the Print Command
Joining Lines
Substituting Characters
Holding and Getting Text .. .

3-16
3-17
3-17
3-18
3-19

3-19
3-19
3-20
3-20

4 Pattern-Matching Utilities

4.1 The grep Family of Utilities .. 4-1

4.1.1 Modifying the Behavior of the grep Utilities 4-3

4.2 The awk Utility and Programming Language ... 4-4

4.2.1 What Can awk Do? .. 4-5
4.2.2 Printing with awk .. 4-6
4.2.3 Using Pattern Recognition in awk .. 4-6
4.2.4 Programming awk .. 4-7

5 The tbl Table Creation Utility

5.1 Why Use tbl? ... 5-1

5.2 Creating Tables .. 5-3

5.2.1 Setting Off the Table Information .. 5-3
5.2.2 Defining the Table Format .. 5-3

5.2.2.1 Specifying tbl Options ... 5-4
5.2.2.2 Specifying the Table Columns .. 5-4

5.2.3 Entering the Table Information .. 5-5

5.3 Advanced Techniques 5-6

5.3.1 Combining Effects ... 5-6
5.3.2 Creating Multipage Tables .. 5-7
5.3.3 Creating Boxed Text Blocks .. 5-8
5.3.4 Adding the Final Touch .. 5-8

5.3.4.1 Using Blank Columns .. 5-8
5.3.4.2 Specifying Column Widths ... 5-8
5.3.4.3 Handling Vertical Spacing PIoblems 5-10

5.4 Example tbl Code ... 5-10

Contents v

Part II: Communication with Other Users

6 Mail

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Where Is My Mail?

Using the Mail System

Commands for the Mail Program

Escape Commands for Mail Messages

Customizing the mail Program

Getting Notification of Mail at Login Time .. .

Sending Mail to Files .. .

Sending Mail Across Networks

6.8.1 UUCP Addressing .. .
6.8.2 Internet Addressing

The MH Message-Handling System

7 Interactive Communication

7.1

7.2

7.3

The write Command

The talk Command

The mesg Command .. .

Part III: Other Commands and the Shell

8 Calculators

8.1 The bc Calculator

8.1.1 Starting and Stopping bc .. .
8.1.2 Using bc .. .

8.1.3

8.1.2.1
8.1.2.2
8.1.2.3
8.1.2.4

Handling Noninteger Numbers
Creating and Using Registers
U sing Other Radices
Creating and Using Functions

Programming bc

8.1.3.1
8.1.3.2
8.1.3.3

Control Structures .. .
C Language Constructs
Arrays .. .

6-1

6-1

6-2

6-5

6-6

6-10

6-10

6-10

6-11
6-11

6-12

7-1

7-2

7-3

8-1

8-2
8-3

8-3
8-4
8-4
8-5

8-6

8-7
8-8
8-8

8.2 The dc Calculator ... 8-9

vi Contents

8.2.1 Starting and Stopping de ... 8-10
8.2.2 Using dc ... 8-10

8.2.2.1 Using dc Commands .. 8-11
8.2.2.2 Handling Noninteger Numbers .. 8-12
8.2.2.3 Entering Commands and Operands .. 8-13
8.2.2.4 Using Other Radices .. 8-13

8.2.3 Programming dc 8-13

9 C Shell Scripts

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

Creating and Using Shell Scripts

Using Comments in Shell Scripts

Specifying Use of the C Shell

Creating and Using Shell Variables•...

9.4.1 Setting String Variables
9.4.2 Setting and Manipulating Numeric Variables
9.4.3 Setting Binary Variables .. .
9.4.4 Removing Variables .. .

Using Shell Variables .. .

9.5.1 Using Multiword Variables .. .
9.5.2 Testing Variables .. .
9.5.3 Using Command-Line Variables
9.5.4 Using Special Variables

9.5.4.1 Reading User Input
9.5.4.2 Using a Script's Process ID
9.5.4.3 Reading Command Result Status

Substituting Command Output .. .

Running Other Scripts

Making Decisions

9.8.1 Testing Expressions

9-1

9-2

9-2

9-3

9-3
9-4
9-4
9-4

9-5

9-5
9-5
9-6
9-7

9-7
9-7
9-7

9-7

9-8

9-9

9-9

9.8.1.1 Testing Expressions Against Primitives 9-9
9.8.1.2 Testing Expressions Against Other Expressions 9-10
9.8.1.3 Combining Expressions .. 9-11

9.8.2 Using Control Structures with Expression Tests 9-11

9.8.2.1
9.8.2.2
9.8.2.3
9.8.2.4

The if Statement
The while Statement
The foreach Statement .. .
The switch Statement .. .

9-11
9-12
9-13
9-13

9.9 Handling Errors 9-14

Contents vii

9.10 An Example C Shell Script .. 9-15

A Examples of Using UL TRIX Tools

A.1 Using sed and grep to Create nroff Macros ... A-I

A.2 U sing the bc Calculator .. A-4

B Tips and Tricks

B.1

B.2

B.3

Tricks with Files

B.1.1
B.1.2
B.1.3
B.I.4

Addressing Files Whose Names Begin with a Minus Sign
Addressing Files with Odd Characters in Their Names
Renaming a Series of Files Automatically
Finding a File Somewhere in your Directories

Including Your Working Directory's Name in Your Prompt

Redirecting Standard Error and Standard Output Separately

Examples

3-1: Sample sed Script

B-1

B-1
B-1
B-2
B-3

B-3

B-4

3-21

5-1: Table with Multiline Entries ... 5-2

5-2: Code for a Simple Table .. 5-3

5-3: Boxed Tables .. 5-4

5-4: Compound Table ... 5-6

5-5: Code for the Compound Table .. 5-7

5-6: Code for Multipage Headings in a Table 5-7

5-7: Table with a Text Diversion 5-9

5-8: Code for the Table with a Text Diversion 5-9

5-9: Improved Spacing in allbox Table ... 5-10

5-10: Code for the Table Shown in Example 5-1 .. 5-10

9-1: Sample C Shell Script 9-16

Figures

1-1: Using a Pipeline to Couple Several Utilities .. 1-1

3-1: The Relationship of ed, ex, and vi ... 3-2

viii Contents

Tables

2-1: Rules for Regular Expressions ... 2-2

4-1: Versions of the grep Utility .. 4-2

4-2: Options for the grep Utilities ... 4-3

6-1: Command-Line Options for the mail Program ... 6-2

6-2: Commands for the mail Program ... 6-2

6-3: Escape Commands in mail 6-5

6-4: Variables for Customizing the mail Program ... 6-7

6-5: Commands for the MH Message-Handling System .. 6-13

8-1: Solving a Problem Using Algebraic Notation .. 8-1

8-2: C Language Constructs in bc .. 8-8

8-3: Solving a Problem Using Reverse Polish Notation ... 8-9

8-4: dc Commands ... 8-11

Contents ix

About This Manual

Welcome
The Big Gray Book: The Next Step with ULTRIX is an intennediate manual on
working with the UL TRIX operating system and its related tools. Like The Little
Gray Book: An ULTRIX Primer, it is based on the theory that you will do most of
your work with only a small part of the computer's capabilities. This book goes
beyond the Primer, introducing you to more advanced tools that will help you to
make more and better use of the computer.

Audience
This book is a guide for intennediate users that also serves as a reference for users
who have gained more experience. It assumes that you have read the Primer or that
you are otherwise familiar with the material presented in the Primer.

Organization
This book is divided into three parts, and has two appendixes:

Part I - Text Manipulation
Discusses commands and utilities useful for manipulating text files and
the material in them, including editors and searching tools.

Part II - Communication with Other Users
Discusses commands and utilities that provide ways to communicate
with other users, including mail and interactive communication.

Part III - Other Commands and the Shell
Describes assorted useful commands and the C shell itself, with
emphasis on creating your own commands in the fonn of shell scripts.

Appendix A Contains examples illustrating use of some of the tools and utilities
described in the book.

Appendix B Describes solutions for difficulties commonly encountered with using
the ULTRIX system.

Related Documents
The Little Gray Book: An ULTRIX Primer introduces the ULTRIX operating system
and some of the tools and utilities discussed here, and is a handy reference as you
read this book.

The Guide to the nawk Utility is a thorough tutorial description of an enhanced
version of the a w k utility discussed in Chapter 4.

The ULTRIX Reference Pages provide details of the commands and utilities
described in this book.

The ULTRIX operating system Supplementary Documents, Volume I: General User
contain exhaustive descriptions of some of the utilities discussed in this book.

Learning the vi Editor, one of the Nutshell Handbooks available from O'Reilly and
Associates, Inc., describes the vi editor in detail.

Conventions
The following typeface conventions are used in this manual:

vizier>

user input

The default user prompt is your system name followed by a right
angle bracket. The system name viz i e r is used in this manual.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in interactive examples to indicate system
output and also in code examples and other screen displays.
(Example text enclosed in a box indicates text matching a regular
expression.) In text, this typeface is used to indicate the exact
name of a command, option, partition, pathname, directory, or
file.

UPPERCASE
lowercase

filename

macro

IRETURNI

ICTRUxl

xii About This Manual

The ULTRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

In examples, syntax descriptions, and function definitions, italics
are used to indicate variable values; and in text, to give references
to other documents.

In text, bold type is used to introduce new terms.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

This symbol is used in examples to indicate that you must press
the named key on the keyboard.

This symbol is used in examples to indicate that you must hold
down the CTRL key while pressing the key x that follows the
slash. When you use this key combination, the system sometimes
echoes the resulting character, using a circumflex (A) to represent
the CTRL key (for example, AC for CTRL/C). Sometimes the
sequence is not echoed.

The Next Step 1

The The Big Gray Book: The Next Step with ULTRIX is an intermediate guide to
commands, tools, and utilities that are part of the ULTRIX operating system. While
not a step-by-step tutorial, this book builds on the skills introduced by The Little
Gray Book: An ULTRIX Primer. Instead of trying to present a comprehensive and
unnecessarily complex view of the entire ULTRIX system, the Primer showed you
only a few tools and commands that you need for much of the ordinary work you do.
This book continues in this vein, introducing you to a relatively small number of
additional tools and commands. The topics are those that you are likely to use often
in your work.

1.1 The Toolbox Philosophy
One of the most powerful features of the ULTRIX system is the way its various tools
work together. Instead of providing a single massive utility that does everything but
might not be able to do all its tasks in the most efficient way, the ULTRIX system's
"toolbox" philosophy offers many smaller utilities that you can use as you need
them. This design allows you to bring only the processing power you need to bear
on the task you're performing. For example, if you want to format a document that
contains tables, you can use the tbl preprocessor, described in Chapter 5, and then
the nroff text formatter. If you have a document without tables, there is no need to
use the special table-formatting capabilities of tbl; instead, you use only nroff.
Selecting only the tools you need saves time, because the system can perform your
job faster. It also allows others to work faster, because there are more system
resources available for them to use.

Coupling tools with pipelines saves time by allowing the system to overlap the tasks
it is performing. As soon as the first tool in a pipeline begins producing output, the
next tool can begin working on that output without having to wait for the first tool to
finish. As soon as the second tool produces some output, the third tool can begin,
and so on. Figure 1-1 illustrates the process.

Figure 1-1: Using a Pipeline to Couple Several Utilities

awk I

tbl

\ (ou~ut) \

I I

\ (output) \
nrott I

This book describes many different tools. By learning about several tools that do
similar things, you can decide more easily which of them is best suited to the task at
hand.

1.2 What's In This Book?
This book's three parts cover commands and utilities for which you will find frequent
use in your day-to-day work. Each part deals with several tools that work together or
perform similar tasks related to a particular general subject.

1.2.1 Part 1- Text Manipulation

The chapters of Part I describe tools for text location, filtering, editing, and
organization.

One feature that makes the ULTRIX operating system effective is its ability to find
the information you want. There are tools that search for information and, having
found it, process it into a different form. For example, you can use the 9 rep utility
(Chapter 4) to scan a price list of office supplies, creating an order for the supplies
you're out of; the sed stream editor (Chapter 3) to perform automatic text editing;
and the awk utility (Chapter 4) to tabulate the order and calculate its total cost.
These are all things you can do manually, but it is often easier to let the computer do
the work for you while you do something else that the computer cannot do.

A key part of using ULTRIX tools effectively is knowing how to use regular
expressions (called "regular" because their formation follows a specific set of rules).
The concept of regular expressions is similar to that of the asterisk (*) and question
mark (?) wildcards you use to name files in shell commands, but regular expressions
are used to locate information within files instead of finding the files themselves.
Chapter 2 describes regular expressions in detail.

1.2.2 Part II - Communication with Other Users

Part II provides a thorough description of the mail utility and an introduction to
another mail-handling system called MH. With a little exploration, you should
emerge from Chapter 6 as an expert in the use of mail.

Part II also describes several commands that are useful for interactive
communication. With these utilities, you can send quick messages or have a two­
way conversation in real time.

1.2.3 Part 111- Other Commands and the Shell

Part III extends the Primer's description of the C shell, providing an introduction to
creating your own commands by writing shell scripts. Suppose you have a
complicated procedure that you have to do once every three months. This job
requires you to copy several files, edit some of them, format the results, and finally
print the formatted files. You could keep a notebook to remind yourself how to
handle this job. Or you could take the time to write a shell script, a program for the
shell, so that your job would work automatically. Writing a script has another
advantage: When you move on to your next job, the script you leave behind will
make your old job easier for the new person.

Also in Part III are descriptions of generally useful commands such as interactive and
programmable calculators.

1-2 The Next Step

Part I: Text Manipulation

Regular Expressions 2

This chapter describes regular expressions and how to use them. This discussion is
basic to using many of the utilities described in later chapters. In this chapter you
will meet regular expressions in the context of the grep utility, which was
introduced in The Little Gray Book: An ULTRIX Primer.

2.1 What Is a Regular Expression?
In the Primer, you learned how to use the grep command to search for strings in a
file. You can also search for strings in the standard input stream; for example, you
can use the following piped commands to see if a user named dan i e 1 s is logged in.

vizier> who I grep daniels
daniels tta1 Jul 31 1989

This ability to search for an exact string is useful but limited. For example, it
doesn't let you search a file for two or more different strings at the same time. But if
you use regular expressIons, you can search for strings containing common elements,
such as "board" and "beard", quickly and easily.

In algebraic equations, you can use a letter, such as x or y, t2. represent any number.
When you use a letter like this in an expression such as 3+..J x , the expression takes
on different values depending on the value of x. Another kind of expression,
although not a mathematical one, is a wildcard. (In the Primer, you learned how to
use wildcards to represent any characters in a file name.) Regular expressions (REs)
are an extension of this ability to represent more than one character. They are to
strings of characters what mathematical expressions are to numbers.

Regular expressions are called "regular" because they confonn to a set of rules. The
first two rules are as follows:

• Any ordinary character is a simple RE that represents, or matches, itself.

• When you concatenate simple REs, the result is a compound RE that matches
the concatenation of the strings matched by each of its components.

The first rule says that any ordinary character is an RE that matches itself; for
example, a represents a and nothing else. That might seem obvious, but this concept
is important to understanding more complex REs.

The meaning of the second rule might not be immediately clear. As an example of
this rule, the following grep command finds file names in Ibin that contain the
letters "iz". (In this chapter's examples, we'll put boxes around the text that
matches the RE being used.)

vizier> ls /bin I grep iz
p~eslIZle
slizle

Specifying iz as the RE for grep to match finds all strings that match first the "i"
and then, immediately after it, the "z". The second rule means that any string of
characters, like iz, is really a series of simple REs put together to make a compound
RE. A simple RE is one that matches a single entity (usually one character) in the
text being processed. A compound RE is one that matches a series of entities. (By
framing a compound RE as described in Section 2.3, you can make it behave like a
simple RE.)

The examples shown so far probably don't look very useful because they merely
illustrate searching for the exact string you want. The next rule of REs opens up all
sorts of new possibilities:

• A period (.) matches any character.

Suppose you are preparing an order for office supplies and need to find the stock
numbers for blue pushpins and red felt-tip pens. By using a period as part of your
RE, you can search your group's list of supplies for "pin" and "pen" at the same
time this way:

vizier> grep ~ ~bjornson/supplies
02141 Felt ,black 8/box
02142 Felt n, blue 8/box
02143 Felt n, red 8/box
02144 Felt n, green 8/box

Three-hole paper 6unlch 09667 Unit
13785 pusg' red 150/box
13786 Pus in, yellow 150/box
13787 Pus in, green 150/box
13788 Pus in, blue 150/box
31591 Paint, ja white Bottle
31592 Paint, j , red Bottle
31593 Paint, j , green Bottle
31594 Paint, j yellow Bottle
31595 Paint, j , purple Bottle
31596 Paint, j , blue Bottle
31597 Paint, j , black Bottle
31598 Paint, j orange Bottle

The period matches both the "i" in "pin" and the "e" in "pen". But because the
period matches any character, this RE also matches some things you weren't looking
for, such as the japan paints. There are other REs that let you avoid undesired
matches.

Now we begin to see the power of REs.

2.2 The Rules for Regular ExpreSSions
Ordinary characters and metacharacters together make up the set of simple REs.
Table 2-1 describes the rules for creating REs.

Table 2-1: Rules for Regular Expressions

Expression

0-9, A-Z, a-z,
most punctuation

2-2 Regular Expressions

Name

Ordinary character

Period (dot)

Rule

Matches itself.

Matches any single character.

Table 2-1: (continued)

Expression Name Rule

\char Backslash Matches the character following the backslash
regardless of whether that character is an RE
metacharacter or not.

* Asterisk Matches any number of occurrences of the
preceding RE, including none.

[chars] Brackets Matches anyone of the characters within the
brackets. Ranges of characters can be
abbreviated; for example, [0 - 9 a - z] matches
any digit or any lowercase letter.

Circumflex Matches the beginning of a line when at the
beginning of an RE. When used as the first
character inside brackets, excludes the bracketed
characters from being matched. Otherwise, has
no special properties.

$ Dollar sign Matches the end of a line when at the end of an
RE. Otherwise, has no special properties.

+ Plus signt Matches one or more occurrences of the
preceding simple RE. (Not available to all
utilities.)

? Question markt Matches zero or one occurrence of the preceding
simple RE. (Not available to all utilities.)

exprexpr . .. Concatenation Forms a compound RE that matches any string
that matches the first simple RE, then the
second, and so on.

(expr) Parenthesest Encloses, or frames, an RE, allowing
metacharacters that act on the preceding RE to
treat the entire framed RE as a simple RE. (Not
available to all utilities.)

Vertical bar t Separates multiple REs. (Not available to all
utilities.)

You can combine any or all of these kinds of REs to do the job you need to do.
Items that are not marked with a dagger (t) in this table are available to all the
utilities that use REs, such as ed, vi and ex, sed, and grep. The dagger indicates
features that are available only to specific utilities such as awk and egrep. The
following sections discuss using the general REs in Table 2-1 in more detail. Later
chapters describe the ways the various utilities use REs; the items marked with a
dagger are discussed where appropriate.

2.2.1 Matching Any Single Character

In Section 2.1 we showed you how to use a period to match a single character. This
way of using the period is exactly the same as using a question mark in file names;
you can concatenate more than one period to represent an exact number of characters.

Regular Expressions 2-3

For example, suppose you are writing a report and need to search a list of tum-of­
the-century Japanese warships! for all ships whose displacement was between 10,000
and 19,999 tons:

vizier> grep 1. , ... warshi s
Yashima 1896 2 18 kt 4x12in, 10x6in, 16x12-pdrs
Fuji 1896 12 18 kt 4x12in, 10x6in, 16x12-pdrs
Shikishima 1898 18 kt 4x12in, 14x6in, 20x12-pdrs
Asahi 1899 18 kt 4x12in, 14x6in, 20x12-pdrs
Mikasa 1900 18 kt 4x12in, 14x6in, 20x12-pdrs
Hatsuse 1899 18 kt 4x12in, 14x6in, 20x12-pdrs

As shown by this example, you do not have to put the periods together; you can
place them wherever you need, and you can use as many as you need.

2.2.2 Matching Metacharacters As Ordinary Characters

A backslash (\) makes the character following it lose its special RE properties, if it
had any, so that you can search for actual occurrences of characters such as the
period. For example, suppose you are looking for cross-references in a series of
recipes2:

vizier> grep 'No\.' egg-with-liver
half a pint of Madiera sauce (~ 103); and let cook for five
minutes; make an omelet of twelve eggs, as for ~ 46, and

Note that we have used apostrophes (single quotation marks) to enclose the RE in
this example. Some of the metacharacters used in REs are also shell metacharacters;
for example, the backslash is also used by the shell to disable a following character's
special properties. To prevent the shell from attempting to interpret metacharacters in
an RE, enclose the entire RE in apostrophes.

You can also make the shell pass metacharacters by preceding each one with a
backslash; for example:

vizier> grep No\\. egg-with-liver
half a pint of Madiera sauce (~103); and let cook for five
minutes; make an omelet of twelve eggs, as for ~ 46, and

In this example, the first backs lash forces the shell to pass the second backslash to
grep. It is usually less confusing to use apostrophes, especially when the
metacharacter you want to pass is a backs lash, as shown here. Remember that the
apostrophes are not part of the RE syntax; they're just used to make the shell ignore
metacharacters in an RE.

2.2.3 Matching Any Number of Occurrences of a Character

In file names, an asterisk (*) stands for any string of characters, even a null one. As
part of a compound RE, it's a little different. It stands for any number of occurrences
of the preceding RE, even none. Suppose you are preparing a new American edition
of The Coming Race, by Edward Bulwer-Lytton. The original edition used British
spellin~s of words like "colour," and your task is to find and change all these
usages. If you have completed part of the job and want to find where you left off,
you could check all the book chapter files with this command:

1 From Universal Cyclopedia and Atlas, Volume to. D. Appleton and Company, 1903.

2 From 100 Ways of Cooking Eggs, by Filippini. Charles L. Webster & Company, New York, 1892.

3 From The Coming Race, first edition, published anonymously. Francis B. Felt & Co., New York, 1871.

2-4 Regular Expressions

vizier> grep 'colou*r' tcr.ch*
tcr.ch3:have seen above the earth; the ~ of it not green,
tcr.ch5:of gold in the ~s, like pictures by Louis Cranach.
tcr.ch5:rich in bolouJing, showing a perfect knowledge of
tcr.ch5:intermediate valleys of mystic many-bolourbd herbage,

This command shows that you left off partway through chapter 5. Using an RE with
an asterisk after the "u" causes grep to find every instance of either "color" or
"colour". This command would also have found any mistakes like "colouur"
because the asterisk matches any number of occurrences of the individual RE before
it. (Note that this example also uses an asterisk as a file name wildcard.)

When an asterisk follows a period, the combination indicates a match on any
sequence of characters, even none. The period matches any character and the asterisk
says to match any number of them. Suppose you need to scan a list of your
computer's users to find a person named John Smith. There are several John Smiths.
If the list were organized properly, you could search for "Smith, John" - but
someone has made the list with first names first. You could use this command to
find all the John Smiths:

Smith' /usr/users/names
Office 237 Ext 1234
Office 118 Ext 2835
Office 533 Ext 7614
Office 101 Ext 7814
Office 976 Ext 5476

In this example, any sequence of "Johnanything Smith" is matched, including
"Johnnothing Smith". For John Smith Smith, the first occurrence of "Smith" is
enough to trigger the match.

2.2.4 Matching Only Selected Characters

A period represents any character in an RE. But sometimes you don't want to search
for every possible combination that your RE will match. Placing the desired match
characters inside brackets ([]) allows you to restrict the match to only those
characters you really care about. Each set of bracketed characters is a single­
character RE that matches anyone of the bracketed characters. Suppose you want to
search a story file for the words "bare" and "byre". The following example does
what you need:

vizier> grep 'b[ay]re' story
The 6~r!1 studied his ~ head for a few moments and
the r with the cattle."

In this example, the bracketed expression matches the "a" in "bare" on one line and
the "y" in "byre" on another. All other possible characters between "b" and "re"
are ignored, so the RE doesn't match words like "arboreal".

Sometimes you need to match a string regardless of the case (upper or lower) of
some of the letters in it. You can do this by using a bracketed RE consisting of just
the upper- and lowercase versions of the character you want. For example:

vizier> grep , [Kk]ing' bible-report
books chronicle the history of the Jews under their ~s.
language found only in the ~ James Version. Such usage is

Regular Expressions 2-5

By using a series of bracketed pairs you can create an entire compound RE that is
case insensitive:

vizier> grep '[Gg] [Ii] [Nn] , miscellaneous-file
BE~ING EMBROIDERY TECHNIQUE
birth of Vi~a Dare in Roanoke.
Janice's Super blDber Snaps

2.2.5 Using the Circumflex in Regular Expressions
The circumflex (A) has two functions in REs:

• Matching the beginning of a line

• Excluding a match on certain characters

2.2.5.1 Matching the Beginning of a Line - Sometimes you want to match an expression
only at the beginning of the line. For example, suppose you want to find "Roberts,
Kenneth" in a list of authors. You could look for "Kenneth" but that would also
find "Galbraith, John Kenneth". You could look for "Roberts" but that would also
find' 'Rinehart, Mary Roberts". By using a circumflex at the beginning of an RE,
you can force a match on "Roberts" only if it occurs at the beginning of a line:

vizier> grep 'ARoberts' authors-list
tRobertsl, Kenneth American historical fiction

Note that if the circumflex is not the first character of the RE, it is not a special
character. In this case, it matches itself just as any ordinary character does.

2.2.5.2 Excluding a Match on Certain Characters - As described in Section 2.2.4,
placing a series of characters in brackets forms a single-character RE that matches
anyone of the bracketed characters. If you use a circumflex as the first character
inside the brackets, however, the RE you construct will match any character except
those in the brackets. The following example searches the list of supplies we used in
Section 2.1, but it excludes the letters "a" and "u" from its search so that you will
see only the things you want.

vizier>
02141
02142
02143
02144
13785 Pus
13786 Pus
13787 Pus
13788 Pus

Aau]n' -bjornson/supplies
, black 8/box

, green
red
yellow
green
blue

2.2.6 Matching the End of a Line

8/box
8/box
8/box
ISO/box
ISO/box
ISO/box
ISO/box

Although matching the end of a line is a less common task than matching the
beginning, it is still useful. (You use an end-of-line match most often when you are
editing a file, as described in Chapter 3.) Suppose you are writing a paper on poetry
and want to scan a file of limericks to find a line that rhymes with "sonnet." You
can use an RE that ends in a dollar sign ($) to force this kind of match:

vizier> grep 'onnet$' limericks
There was a Young Lady whose ~

2-6 Regular Expressions

This line is from a limerick by Edward Lear4".

Note that if the dollar sign is not the last character of the RE, it is not a special
character; in this case it matches itself just as any ordinary character does.

2.2.7 Matching Exact Numbers of Occurrences of Characters
We have shown how to match any number of occurrences of a character. Sometimes
you want to limit the number of occurrences; you can do this by using a plus sign
(+) or a question mark (?).

2.2.7.1 Matching an Expression That Appears One or More Times - The plus sign
matches one or more occurrences of the simple RE that it follows.

As indicated in Table 2-1, the plus sign is not valid for all the utilities that use REs.
The grep command does not use them, so you would have to use egrep, described
in Chapter 4, with this RE. For example:

vizier> egrep '[Ss] .1+' boxing-report
Even the great John L. ~ivan was not immune to flattery.
in the middle of a ~ tour of New England, Dempsey met

Here, the plus sign says that the "1" must occur one or more times. By using the
plus sign instead of an asterisk, we prevent a match on words like "SO".

2.2.7.2 Matching an Expression That Appears Once or Not At All - The question
mark matches exactly one occurrence or zero occurrences of the RE that it follows.

The question mark is also not available to the grep command; you must use egrep
to search for REs using the question mark. For example:

vizier> egrep , [Ss].l?' boxing-report

in the middle of a ~ tour of New England, Dempsey met
Hi~nkle was weakened so that when he stepped on the

The question mark says that the "1" must occur once or not at all. This requirement
means that the RE in this example m~tches not only three-character sequences like
"sol", but also any two-character sequence beginning with "S" or "s" unless it is
followed by "11". This exclusion is the reason this example does not match
"Sullivan" .

4 A Book of Nonsense, by Edward Lear, 1846. Reprinted in The Complete Nonsense of Edward Lear, edited by
Holbrook Jackson. Dover Publications, Inc., 1951.

There was a Young Lady whose bonnet
Came untied when the birds sate upon it;
But she said, 'I don't care! all the birds in the air
Are welcome to sit on my bonnet.'

Regular Expressions 2-1

2.3 Making a Compound Regular Expression Simple
As noted in Table 2-1, metacharacters that apply to the preceding RE, such as the
plus sign, apply only to the preceding simple RE, not to an entire compound RE. By
framing a compound RE, you can make it behave like a simple RE so that a
following metacharacter can act on it. You frame an RE by enclosing it in
parentheses.

For example, suppose you want to search your . rna i 1 r c file to recall the mail alias
you assigned to your group manager, whose login name is jane. But there is also a
user named janene on the system, and you've also assigned that user an alias. You
could search for the name jane, but that would list both aliases. To see only the
one alias, you could use a framed RE followed by a question mark. Framed REs are
not used by the grep command, so you would use the following egrep command:

vizier> egrep 'ja(ne)?' .mailrc
alias jane boss

The question mark in this example excludes two occurrences of the framed RE.

2.4 Building Complex Regular Expressions
Once you are familiar with all the REs and their rules, you can combine them in any
way you need to make a very specific compound RE. For example, you can search a
list of names for every occurrence of the names Jean, Joan, Jeanne, or Joanne. An
RE to find just these four strings while excluding everything else is easy to construct,
but it's not as obvious as it might seem. One user we know tried this RE:

J.*an*

This RE works, but it also finds many more strings:

vizier> grep 'J.*an*' /usr/users/names
n Blankenship Office 724 Ext 7633

Lee Chen Office 761 Ext 7523
Office 854 Ext 2996
Office 451 Ext 7612
Office 562 Ext 4345
Office 734 Ext 6781

n Office 423 Ext 6512
k Heisler Office 422 Ext 7611

Mary ~eson Office 414 Ext 8763
Desmond ~tte Office 292 Ext 2722

~ Leighton Office 612 Ext 2323
nn Sexton Office 993 Ext 1111
nn Stevens Office 438 Ext 6485
e Willis Office 765 Ext 1752
n Wilson Office 124 Ext 7826

Because it allows for any number of occurrences (including zero) of both the "n"
and the character following the "J", the RE in this example is not restrictive enough.

To construct the RE we want, let's look at the names Jean, Joan, Jeanne, and Joanne
piece by piece:

1. The RE starts with J.

2. Then, to find only e or 0, we use the bracketed characters [eo].

3. Next comes an.

2-8 Regular Expressions

4. Last, to match the optional ne at the end of the name, we create a framed, or
parenthesized, RE, (n e) .

5. To prevent more than one match on the (ne), we follow it with a question
mark, which matches only zero occurrences or one occurrence.

The final compound RE, then, is this:

J[eo]an(ne)?

This RE will not match any string except the four we are looking for.

As indicated in Table 2-1, parenthesized REs and the question mark are not valid for
all the utilities that use REs. The grep comm().nd does not use them, so you would
have to use egrep, described in Chapter 4, with this RE. For example:

vizier> egrep 'J[eo]an(ne)?' /usr/users/names

eDaViS Office 562 Ext 4345
Sexton Office 993 Ext 1111

nn Stevens Office 438 Ext 6485
n Wilson Office 124 Ext 7826

2.5 Separating Regular Expressions
It is often useful to be able to match two or more radically different REs in a single
operation. For example, suppose you are writing a treatise on light and color. You
want to rework all the places where color is mentioned, but you have used several
different words to refer to different aspects of it. You can find all the references with
REs separated by vertical bars (I). The vertical bar isn't used by g rep, so you
would have to use egrep, as in this example:

vizier> egrep 'colorlhuelshadeltint' light-report
discovered the relationship of huel to intensity by setting
successful ~ Phlt~d;IPh by using three separate films,
difference between sh and tint as applied to paints is

Although this example uses only simple strings for its REs, you can use both simple
and compound REs that are as complex as required to match the text you want to
find.

Regular Expressions 2-9

Line-Oriented Editors 3

This chapter describes three text editors that work differently from the screen-oriented
v i editor that was introduced in the Primer. These editors are called line-oriented
editors or line editors because they work on one line of text at a time. While v i can
do all of the things these editors do, it is often inefficient to use v i in the ways in
which line editors excel.

This book does not discuss the v i editor in detail; for more information on vi, refer
to the UL TRIX reference documentation or to a v i book such as Learning the vi
Editor, one of the Nutshell Handbooks available from O'Reilly and Associates, Inc.

The editors discussed in this chapter make use of regular expressions (REs) for
addressing and pattern matching. If you are not already familiar with REs, read
Chapter 2 before reading this chapter.

3.1 Types of Line Editors
Line editors can be divided into two types: interactive and noninteractive. You are
familiar with the wayan interactive editor works: You give the editor a command,
and the editor performs it and waits for the next command. A noninteractive, or
stream, editor does not accept commands from you; it does its job by reading a
program, or script, that you prepare before you invoke the editor.

Although you can use line editors for any editing task you can do with vi, they are
particularly useful for making quick edits such as fixing a typographical error (typo)
on line 327 of a file, or for making global changes such as correcting that same typo
everywhere it appears in a file. The ULTRIX stream editor, called sed, provides a
mechanism not only for quick fixes of this type but also for extended repetitive
editing tasks such as processing a series of mail messages to remove header
information and compile a single report file.

The ULTRIX operating system offers two interactive line editors and one stream
editor:

• ed and its restricted version red

The ed program is the standard interactive line editor. It allows you to make
any desired change in a file. You can enter your edits by selecting a specific
line or group of lines by number, or by searching for a pattern of text that
identifies the line or lines you want to alter.

The red editor is a restricted version of ed that allows you to edit only files
that are in your current working directory. You cannot execute shell commands
while using red.

• ex

The ex editor is a superset of ed; it is also the root of a family of editors that
includes vi. You can switch back and forth between ex and vi in a single
editing session.

• sed

The sed program is an optimized stream editor that performs commands
specified as option arguments on the command line or in a script that you
supply.

Figure 3-1 illustrates how ed, ex, and vi are related. The sed stream editor is
very much like ed.

Figure 3-1: The Relationship of ed, ex, and vi

The following sections describe the ed and ex editors and the sed stream editor.
The examples in this chapter illustrate editor features using excerpts from the
collection of poems known as Rubdiydt of Omar Khayydm 1.

3.2 The ed Editor
If you are familiar with vi, you will find a number of similarities between its colon­
introduced commands and the commands for ed. This similarity is is due to the fact
that vi is a member of the ex editor family, which is an extended version of ed.

Note that, as with vi, commands for ed are case sensitive. For example, the p
command does something different from the P command.

When you invoke the ed editor to work on a file, the editor creates a temporary copy
of the file, called a buffer. All editing is performed in the buffer; the real file is
altered only if you give an explicit write command. This design protects you in case
you make edits and then change your mind or in case of a system crash caused by,
for example, a power failure.

1 From Rubdiydt of Omar Khayydm, th.e Astronomer-Poet of Persia, rendered into English verse. Empire State
Book Company, New York, 1924.

3-2 Line-Oriented Editors

3.2.1 Starting the ed Editor
The first thing to know about using ed is that it does not normally give you an
obvious prompt. When you invoke ed, as in the following example, it displays the
number of characters in the file and then just sits there waiting for a command. For
example:

vizier> ed rubaiyat
1265
o
Note the position of the cursor, indicated here by a box (0). You can make ed give
you a more noticeable prompt by entering the p (Prompt) command:

:~
The P command also turns off the asterisk prompt if it has been turned on. A
command that turns a feature on and off alternately like this is called a toggle.

If you don't like the asterisk, you can invoke ed with the -p string option; this
option makes ed use string for its prompt. For example:

vizier> ed-p
1265
ed> 0

You must end each e d command by pressing the RETURN key. We will not show
the RETURN key in our examples unless we're indicating that you should enter a
blank line. We'll also omit the cursor box in the remaining examples.

To create a file from scratch using the ed editor, start the editor using the name of
your new file. The editor responds with a question mark and the file name, to say
that the file does not currently exist. For example:

vizier> ed samplel
?sample1

Enter an a command (discussed in Section 3.2.3.1) with no address and then enter
the text for the new file. The editor wants to append the text you enter after the
current location (the last line of the buffer), but since there is nothing in the file, your
new text becomes the entire contents of the file. Once you've created your file, you
can leave the editor as described in Section 3.2.12.5.

3.2.2 Moving Around the Buffer
The ed editor locates lines in the buffer by means of addresses. An address can be a
line number or a regular expression (RE). Line numbers can be relative or absolute.
In addition to all the forms of REs shown in Chapter 2, you can use a special form of
RE that includes two or more matches of the same identical string. You can also
mark lines with single-character identifiers and return to those lines later.

Line numbers are not very useful unless you have a listing of the file with numbers
printed on it. You can make such a listing by using the cat command's -n option:

vizier> cat -n rubaiyat
1 I
2
3 Wake! For the Sun, who scatter'd into flight
4 The Stars before him from the Field of Night,
5 Drives Night along with them from Heav'n, and strikes

Line-Oriented Editors 3-3

6 The Sultan's Turret with a Shaft of Light.

43 VII
44
45 Come, fill the Cup, and in the fire of Spring
46 Your Winter-garment of Repentance fling;
47 The Bird of Time has but a little way
48 To flutter -- and the Bird is on the Wing.

To make a printed copy of the listing, you can pipe the cat command's output to the
1 pr command.

3.2.2.1 Moving in the Buffer Using Line Numbers - The editor starts out at the last line
of the buffer. To display this line, enter the p (print) command:

p
To flutter -- and the Bird is on the Wing.

To select a different line, enter its number:

31
Iram indeed is gone with all his Rose,

When you move to a line, ed displays the line for you without requiring a p
command. The editor interprets a plain line number as if it included the p command.

The period (.) command displays the current line. Using this command is one way
to see changes you have made after you make them. (Edited lines are not redisplayed
automatically.) You can also display the current line by entering the p command.

3.2.2.2 Moving in the Buffer Using Relative Addresses - Besides giving an absolute
address (line number) to select a line, you can also use a relative address. To select a
line relative to the current line, use a minus sign (-) or a plus sign (+) before the
number you enter:

+2
But still a Ruby kindles in the Vine,

-8
The thoughtful Soul to Solitude retires,

There are some ways to make moving short distances a little quicker. If you are
making many edits in a file by reading each line and then stepping to the next, you
can just press RETURN with no command. The editor understands this to mean the
same as a + 1 command. A command consisting of just a plus sign also means the
same as +1:

p
The thoughtful Soul to Solitude retires,
+

Where the White Hand of Moses on the Bough
IRETURNI
Puts out, and Jesus from the Ground suspires.
IRETURNI
(blank line)

3-4 Line-Oriented Editors

A command consisting of just a minus sign means the same as a -1 command:

Puts out, and Jesus from the Ground suspires.

The editor also understands the dollar sign to mean the last line of the file:

$
To flutter -- and the Bird is on the Wing.

3.2.2.3 Moving in the Buffer Using Regular Expressions - Using line numbers is an
effective way to move through a file unless your editing removes or adds lines in the
file. If that happens, all the line numbers after the added or deleted material are
changed. In many cases, you can get around this problem by planning all the
changes you intend to make and then working through the buffer backward.

But going through the buffer backward doesn't always work; for instance, you might
be moving chunks of text around. There is a second way to find the line you want:
by using a regular expression. Suppose you want to find the first line in the file that
contains the letters "ou". You can do that by specifying an RE. To indicate to ed
that you're entering an RE, type a slash as the first character. In examples using
REs, we will indicate the matching text by enclosing it in a box. For example:

lou
Met~ht a Voice within the Tavern cried,

As with vi, the slash causes a forward search. Entering a slash alone repeats the
search to find the next occurrence of the same RE:

I
Why nods the drowsy Worshipper Eilside?"
I
The Tavern sh@ted -- "Open then the Door!

If you enter a search command for which there are no more matches after your
current location in the buffer, ed goes to the end of the buffer and then continues its
search from the beginning.

You can search backward by using a question mark instead of a slash at the
beginning of your RE. This feature provides an easy way to back up to the last edit
you made if it was on an earlier line.

3.2.3 Adding and Deleting Text
With a line editor, you can't add or delete text in the middle of a line. You can only
work in terms of complete lines. The ed editor has three commands for adding and
deleting information:

Command

a

i

d

Addresses

0, 1

0, 1

0,1,2

Description

Appends text after the specified line.

Inserts text before the specified line.

Deletes lines of text.

Line-Oriented Editors 3-5

Throughout this chapter, commands are listed in tables with the number of addresses
they can accept. See Section 3.2.5 for a discussion of using addresses with
commands.

3.2.3.1 Adding Text - Suppose you want to add another stanza after the last line of the file.
You can do this by moving to the line and then entering the a (append) command.
To end your addition, enter a line containing only a period:

$
To flutter -- and the Bird is on the Wing.

Each Morn a thousand Roses brings, you say;
Yes, but where leaves the Rose of Yesterday?
And this first
Summer month that brings the Rose
Shall take Jamshyd and Kaikobad away.

When you finish adding text, the editor leaves you positioned on the last line you
added.

This example has an intentional error; the sixth and seventh lines of the new text
should be a single line. You can correct this error with the j (join) command,
described in Section 3.2.4.2. This example is also wrong because it is out of order;
stanza VIII should go here instead of stanza IX. Section 3.2.7 shows how to correct
this error by moving blocks of text.

You can append text after any line in the file. You can also insert text before any
line in the file by using the i (insert) command. This command works exactly like
the a command except that it inserts the new text before the current line instead of
after it.

3.2.3.2 Deleting Text - To delete lines, position the editor on the first line you want to
delete and enter the d command once for each line to remove.

3.2.4 Changing Text
Although you can't add or delete text within a line, the ed editor has commands for
changing text in ways other than adding or deleting lines:

Command Addresses Description

s 0,1,2 Substitutes the second argument for the first.

c 0,1,2 Changes the addressed lines by deleting them and
replacing with new text. "

j 0,1,2 Joins lines together, making them one line.

u ° Undoes the previous edit.

3-6 Line-Oriented Editors

3.2.4.1 Changing Text by Substitution - To substitute one string for another, use the s
(substitute) command. This command requires two arguments, one to tell it what is
to be changed and one to describe how the change is to be made. You use slashes to
set off the arguments. Suppose you want to correct a typo on line 17 of the file:

17
And, as the Cock crow, those who before
s/crow/crew/

This command finds the first occurrence of the characters "crow" on the line (the
first argument) and substitutes "crew" for them (the second argument). Note that
the changed line is not displayed automatically. You can make ed display the
changed line by adding a p command to the end of the s command's arguments:

s/crow/crew/p
And, as the Cock crew, those who before

Using the s command allows you to simulate adding or deleting text within a line.
To add a word, for example, you can substitute for the last few characters of the
word before your new text, using those same characters and your new word as the
second argument. For example, the line changed in the previous example is missing
a word. The following command corrects this error:

s/who/who stood/p
And, as the Cock crew, those who stood before

The s command allows you to use a null first argument. When you use a null first
argument, ed uses the last expression it searched for. For example, line 39 of the file
looks like this:

High-piping Pehlevi, with "Wine, Wine, Wine!

The first two instances of "Wine" should be followed by exclamation points instead
of commas. The following example corrects these errors:

tWine,
High-piping Pehlevi, with "~ Wine, Wine!
s//Wine!/p
High-piping Pehlevi, with "Wine! Wine, Wine!
s//Wine!/p
High-piping Pehlevi, with "Wine! Wine! Wine!

In this example, the s command is entered twice. Normally, the ed editor changes
only the first occurrence of the first argument that it finds on the line. You can make
the same series of changes more efficiently by using the g (global) option for the s
command. Using the g option makes ed apply the specified change everywhere on
the line. The following example makes the same change as the previous example:

tWine,
High-piping Pehlevi, with "~Wine, Wine!
s//Wine!/qp
High-piping Pehlevi, with "Wine! Wine! Wine!

Note that you can combine the g and p options to make ed redisplay the line after
making your change.

In the preceding examples, we have entered a null RE (two slashes with nothing
between them) for the first argument to all but the first command. When you enter a
null RE in this way, ed reuses the last RE it searched for. In these examples, the
first command searches for Wine, - using a null RE in sebsequent commands
causes ed to search for the same string again.

Line-Oriented Editors 3-7

You can often simplify text substitution by using an ampersand (&) in the second
argument to represent the text that was matched by the first argument, as in the
following example:

/Sev
And Jamshyd's ~-ring;d Cup where no one knows;
s//&'/p
And Jamshyd's Sev'n-ring'd Cup where no one knows;

The ampersand in the second argument of the s command duplicates the string
matched by the first argument. In this case, the first argument is null, so the match is
on the string "Sev" that was matched by the command that found the line. The final
result of the substitution is to add an apostrophe after this string.

When you use the ampersand as in this example, it makes no difference whether the
first argument was an explicit string or an RE that might have matched more than
one string. The ampersand represents the actual text that was matched, not the
expression that matched it.

When you are addressing lines to be edited, you can use either line numbers or
regular expressions as the addresses. You can also use an RE as the first argument
for an s command. Because the second argument for an s command is the exact text
you want to use, metacharacters have no special meanings in the second argument;
you do not need to precede them with backslashes. If you want to include a
backslash in the second argument, however, you must precede it with another
backslash.

3.2.4.2 Changing Text by Replacing and Joining Lines - You can alter an entire line
by using the c (change) command. This command deletes the line you specify and
then replaces it with everything you type until you end with a line containing only a
period. This action is the same as a d command followed by an i command.

You can join two lines together with the j command. For example, the sixth and
seventh lines we added to illustrate the a command in Section 3.2.3.1 should actually
be a single line. To join the two lines, enter the j command:

/And this
lAnd thisl first

Summer month that brings the Rose
jp

And this firstSummer month that brings the Rose
s/tS/t SIp

And this first Summer month that brings the Rose

As with the s command, you can include a p command to make ed display the
joined lines. The result of joining the lines isn't exactly what we want, so we use an
s command to add the missing space.

3.2.4.3 Correcting Editing Errors - If you make a mistake in your editing, you can use
the u (undo) command to reverse the last change you made.

3.2.5 Combining Commands and Addresses
Locating a line and then operating on it, as we've shown you in the preceding
sections, is rather cumbersome. This technique also limits you to working with one
line at a time. You can work more efficiently by using ed's ability to couple
addresses with most of its commands.

3-8 Line-Oriented Editors

3.2.5.1 Using Commands with Single Addresses - To enter an address and a
command at the same time, type the address before the command. Suppose you want
to add another stanza at the end of the file:

Whether at Naishapur or Babylon,
Whether the Cup with sweet or bitter run,
The Wine of Life keeps oozing drop by drop,
The Leaves of Life keep falling one by one.

(Note that this stanza is out of sequence; we added stanza IX in Section 3.2.3.1.)

You can use both line numbers and regular expressions as addresses when you enter
commands in this way. Knowing that the last line of the file before the previous
example is line 57 and that it contains the words "Shall take", you could also have
used either of the following append commands:

57a

or

IShall take/a

Note that you must use a second slash to separate the RE from the command. If you
want to make a change earlier in the file than the current location, you can use two
question marks to set off the address RE.

Be careful when using REs as addresses. If you specify an RE whose matching text
occurs more than once in the file, you could make your alteration in a location far
removed from where you intended.

You can use addresses with many commands. For example, you could correct
"revising" to be "reviving" (on line 24 of the file) with this command:

Irevising/sllreviving/p
Now the New Year reviving old Desires,

3.2.5.2 Using Commands with Two Addresses - There are times when you want to
work with more than one line at a time. The editor accepts two addresses for many
commands. When you enter two addresses, they indicate a group of lines starting at
the first address and ending at the second. You separate addresses with a comma.
For example, the following command displays the first five lines of the file. The n
command, shown in this example, lists lines together with their line numbers.

1,5n
1 I
2
3 Wake! For the Sun, who scatter'd into flight
4 The Stars before him from the Field of Night,
5 Drives Night along with them from Heav'n, and strikes

Addressing multiple lines gives you the ability to make changes throughout part or
all of a file with a single command. Suppose you want to change the file so that it is
suitable for formatting with nroff. To do this, you need to insert a . sp command
wherever there is a blank line. You can do this job as follows:

1,s/A/.sp/

Line-Oriented Editors 3-9

In this example, the s command, with an address range from the first line to the end
of the buffer, uses an RE to find all the blank lines (lines with nothing between the
beginning, indicated by the circumflex, and the end, indicated by the dollar sign) and
change them to the . s p command.

Almost all of ed's commands work with two addresses in this way. It is largely this
ability to make global changes rapidly that makes line editors better than vi for
some tasks. (Y ou can use v i to make global changes, but when you do so you are
actually using the ex editor's line-oriented commands.)

3.2.6 Marking Lines in the Buffer

It is often convenient to mark lines in the buffer so that you can return to them later.
The k command marks lines by assigning identifiers consisting of a single lowercase
letter that you supply as an argument after the k command. Suppose you want to
mark line 10 before doing something else:

lOkx

The preceding example marks line 10 with the identifier x. Now you go off and
make a change elsewhere in the file. Afterward you can return to line 10 without
having to remember its number. To return to a marked line, you enter an apostrophe
followed by the identifier you gave to the line, as shown in the following example.
(This example adds another stanza at the end of the file and then uses the previously
set marker x to return to line 10.)

Well, let it take them. What have we to do
With Kaikobad the Great, or Kaikhosru?
Let Zal and Rustum bluster as they will,
Or Hatin call to Supper -- heed you not.

'x
Before the phantom of False morning died,

You can mark up to 26 lines in this way. All marks are lost when you leave the ed
program.

3.2.7 Juggling Blocks of Text

In addition to changing bits or lines of text here and there in the file, you can use the
following ed commands to pick up a block of text from one location and place it in
another:

Command

m

t

3-10 Line-Oriented Editors

Addresses

0,1,2

0,1,2

Description

Moves the specified block of text to a different location.

Makes a copy ("takes a picture") of the specified text
after the target line, leaving the original text untouched.

In the preceding examples, we added several stanzas to the file. We added stanza IX
before stanza VIII. To put these stanzas in the correct order, you can use the m
command. The m command moves the lines specified by one or two addresses
preceding the command, placing them after the line specified by the argument
following the command. Stanza VIII currently consists of lines 57 to 63; stanza IX
begins at line 50. The following command moves stanza VIII to its proper place:

57, 63m49

Note that we use line 49 as the target instead of 50. Remember that the moved text
is placed after the target, not before it. Line 49, the end of stanza VII, is the line
after which stanza VIII is to be placed.

You can often simplify moving text by using REs or marked line identifiers as the
addresses and argument for the m command. Suppose that you have marked line 49
using the k command and that are you are currently positioned on line 63. The
following command would make the same change as the preceding example:

/VIII/, .m' x

In this example the RE VI I I finds the line that begins the selected block. The
period specifies that the current line is the end of the block. The' x identifies line
49.

The t command works the same as the m command except that it duplicates the
indicated text block at the target location instead of actually moving it.

3.2.8 Making Global Changes Interactively
Sometimes you want to make the same change in many places throughout the file.
U sing an s command with an address range from line 1 to the end of the file is the
logical way to perform this task, but there are times when you don't want to change
every occurrence of the string you are looking for. You can execute such global
changes selectively by using the G command. This command accepts zero, one, or
two addresses and a single optional RE argument. Without the RE, the command
works on all the lines in the range you specify; if you include the RE, the command
works only on lines that match the RE.

For each valid line, the G command displays the line and then accepts a single
interactive command from you. After performing this interactive command, ed
moves to the next valid line specified by the G command. In the following example,
we want to change a period after "them" into an exclamation point somewhere in the
file. We could use an RE to find the line, but we've chosen to illustrate the G
command here:

1,$G/them/
Drives Night along with ~ from Heav'n, and strikes

!RETURN!
Well, let it take~. What have we to do
s/\./!/p
Well: let it take them! What have we to do
!RET~RNI
With Kaikobad the Great, or Kaikhosru?

For the first occurrence of "them" in the file we enter a null command (a blank line)
because that is not the line we want to change. The null command makes ed move
ahead to the next occurrence. For the second occurrence, we enter a command to
make the desired change. (Because the period is an RE metacharacter, we must use a
backslash before the period we want to change.) The next null command we enter

Line-Oriented Editors 3-11

displays the line containing "Kaikobad the Great". Because it does not contain the
string we were searching for, this line indicates that the G command's function is
complete.

3.2.9 Error Messages and Help

The e d editor provides two commands to help you figure out what has happened
when something goes wrong:

Command

h

H

Description

Displays an error message explaining the last? response.

Toggles the display of error messages.

If you give the ed editor an invalid command, the editor responds by displaying a
question mark (?). This terse response is in keeping with the UNIX philosophy of
being concise. You can ask ed what it is complaining about by entering the h (help)
command. For example:

70s/Hatin/Hatim/p
?
h
line out of range

In this example ed is saying you have specified a line that does not exist. (The s
command specifies line 70, but there are only 69 lines in the file.) You can make ed
always respond with an error message instead of just a question mark by entering the
H command. Entering the same command again toggles ed's error display mode,
returning to the mode of displaying question marks.

3.2.10 Matching Multiple Occurrences of a String
It is sometimes useful to specify an address that includes matches on more than one
occurrence of a given string. For example, there are many lines in the file that
contain "The" or "the" more than once. But there is only one line that contains
"The" and two other occurrences of "he". You could search for this line by
specifying an RE as in the following example:

/The.*he.*he
tr:M Tavern shouted -- "Open t~ tM Door!

In this instance this RE is the simplest approach, but we want to illustrate a powerful
extension that makes use of framed REs.

The ed editor accepts REs that are enclosed, or framed, by parentheses, in the
following form:

\(expr\)

The backslashes tell e d to interpret the parentheses as metacharacters framing an RE
instead of as literal characters. This RE matches exactly the same things as the same
RE without the enclosing parentheses, but by framing it in this way you set it off so
that ed can refer to it later in a more complex RE. You can frame (and refer to)
more than one RE in the same compound RE. To refer to a framed RE later in a
compound RE, you use a backs lash followed by a number n that represents the nth

3-12 Line-Oriented Editors

framed RE in the expression. For example, the following RE matches the same line
matched by the previous example:

/T\(he\) .*\1.*\1
~ Tavern shouted -- "Open t~ tM Door!

The parentheses frame the string "he". A period followed by an asterisk matches
any string. The backslash and number 1 refer to the first framed string in the RE; in
this example, there is only one. The period, asterisk, backslash, and number 1 are
repeated, and the complete RE matches only a line that contains "The" and two
other occurrences of "he".

This feature is limited in that you cannot use bracketed characters to restrict what
your framed RE matches.

3.2.11 Executing Shell Commands from Within ed
You can execute a shell command by preceding it with an exclamation point:

!ls rub*
rubaiyat
!

rubaiyat.bak

This example lists all the files in your working directory whose names begin with
"rub". The editor displays an exclamation point to indicate that the shell command
has finished and that you are now back in the editor.

You can include a percent sign (%) in shell commands that you issue from within
ed. The percent sign is replaced with the current buffer name:

!ls -1 %
ls -1 rubaiyat
-rw-r--r-- 1 hale 1265 Aug 11 14:30 rubaiyat

3.2.12 Managing the File and QUitting ed
The following commands let you keep track of your file and leave ed:

Command Addresses

w [file 0,1,2

e [file °
E [file °
r [file 0,1

f name °
q °
Q °

Description

Writes all or part of the buffer. If file is specified, ed
writes to a file of that name.

Discards the current state of the buffer and reads the file
again as it was before the editing session began. If file is
specified, ed reads that file instead.

Like e, except that ed does not warn you of impending
loss of the current buffer.

Reads a file into the buffer.

Changes the name of the current buffer to name.

Ends your editing session. If the buffer is unwritten, ed
warns you.

Like q, but ed does not warn you if the buffer is
unwritten.

Line-Oriented Editors 3-13

3.2.12.1 Saving the Buffer - When you are r~ady to end your editing session, you must
save your file before leaving ed, or all your changes will be lost. You save the file
with a w (write) command:

w
1810

When you enter a w command, ed replaces the original contents of your file with the
contents of the buffer and tells you how many characters are in the file. (This
process is called writing the buffer.) You can create another copy of the file under a
different name by using the w command with a file name:

w rubaiyat-save
1810

If you specify an address range, the w command writes only the specified part of the
buffer. This feature is useful for creating files to be included later into other files you
edit. For example, the following command writes only the first two stanzas of the
poem to a file called s amp 1 e 1 :

1,13w samplel
374

3.2.12.2 Rereading the File - If you have been making changes in the buffer and then
decide that you want to throw them away, you can clear the buffer and read the file
again with an e command. When you give the e command, ed warns you that it
expects you to save the old buffer first. Repeating the command tells ed that you
really intend to destroy what you have and start fresh. You can also use the E
command; this command is like e except that the editor proceeds without warning
you.

You can also use the e and E commands to read in a different file for editing by
specifying the name of the file you want to edit. For example:

E rubaiyat-save
1810

3.2.12.3 Including Other Files - You can include other files as part of the one you are
editing by using an r (read) command and specifying the file name.

3.2.12.4 Renaming the Buffer - You can change the name of the buffer you are editing
with the f command (file name):

f new-rubaiyat
new-rubaiyat

3.2.12.5 Leaving the ed Editor - When you have finished your editing session, you leave
ed by entering a q command. If you have not yet written your buffer, ed warns you
that the contents are about to be lost. If you repeat the command, ed discards the
buffer and exits. You can make ed exit without warning you by using the Q

command instead of q.

3-14 Line-Oriented Editors

3.2.13 Recovering from a Crash

The buffer file is located in the / tmp directory and named e nnnnn, where nnnnn
was the process ID number of the editing process; for example:

/tmp/e05044

When a crash occurs, you can recover the last state of your buffer by locating the
buffer file with an 1 s -1 / tmp command and then renaming it with an mv
command before you resume editing. You should use 1 s with the -1 option to
make sure you recover your own buffer and not someone else's.

3.3 The ex Editor
The ex editor is a more sophisticated version of ed; it includes all of ed's functions
and provides more. Its most important facility is that you can use e x commands
while you are in vi and you can switch back and forth between ex and vi in a
single editing session.

The introduction to vi given in the Primer describes how to use commands that
begin with a colon. These are all ex commands; the colon is used in vi because,
unlike ed, the ex editor always displays a colon as a command prompt.

To switch to ex from vi, enter the Q command (not: Q). To return to vi, enter the
visual command.

The ex editor accepts all ed commands. Most of them can also be entered as a
command word instead of a single letter, for example, undo instead of u or wri te
instead of w. This might seem contrary to the UNIX philosophy of being concise,
but many people are more comfortable thinking in whole words.

The e x editor supports options that affect how editing is done. Options are entered
as editor commands. For example, the autoindent option sets ex to prepare
indented program code. When you enter a command that adds text (append,
insert, and so on), ex looks at the line after which the added text is to be placed
and calculates the amount of white space at the beginning of the line. That amount
of space is inserted at the beginning of each new line; that is, the edit creates a virtual
left margin, simulating a tab stop. If you add more white space to indent nested code
further, the virtual margin shifts accordingly. You can back up through the
indentation as code nesting levels decrease.

The ex editor allows you to create an initialization file that will execute commands
and set editing options each time the editor is started. You can use one or more
personalized initialization files to tailor the editor for different editing tasks; the
environments created in this way prevail whether you are working in ex or in vi.
To use an initialization file, create the file in your home directory and give it the
name. exrc. The ex editor will automatically read the initialization file and
perform the commands it contains before beginning to edit the file you want to work
on. The vi editor uses the same initialization file.

For a thorough discussion of ex features, refer to the ULTRIX Supplementary
Documents, Volume 1: General User.

3.4 The sed Stream Editor
The sed stream editor's command syntax is almost identical to that of the ed
interactive editor. The sed editor reads commands from a program, or script, that

Line-Oriented Editors 3-15

you prepare before invoking the editor. It compiles the commands to make sure they
are all valid and to arrange them in the most efficient fashion, and then it executes
them. For quick edits, the editor also accepts a sequence of commands supplied as
arguments to a command-line option. You can combine command-line editor
commands with a script.

The line or group of lines specified by any editing command is called the command's
pattern space. The pattern space is equivalent to the line or lines selected by the
addresses you use with ed commands. The editor proceeds through the file line by
line, applying to each line all the commands whose pattern spaces include that line.
The output of each command is passed to the next, so that edits are cumulative. This
line-by-line editing procedure is why sed is called a stream editor. It also explains
one of the major limitations of sed: you cannot use relative addresses in sed
commands. Only absolute line numbers or regular expressions (REs) are permitted.
When you specify a pattern space by using REs, every line or series of lines
matching the REs will be processed by the command. For example, the following
command finds and deletes every line containing the string "Kaikobad":

/Kaikobad/d

3.4.1 Using sed with a Script
You create a sed script using the cat command or any editor you choose. The
script consists of a series of editor commands. For example, the following script
makes some changes to the rubaiyat file that we used in the section describing the
ed editor:

s/"$/.sp/
li\
\ .RP\
\.TL\
The Rubaiyat of Omar Khayyam\
\
\.nf\
\.na

If this script file is named sedscr, you would process the rubaiyat file by
entering a command like this one:

vizier> sed -f sedscr rubaiyat I more

The - f option tells sed that you are using a script file. The option requires the
script file's name as an argument.

This script substitutes . s p commands for all the blank lines in the file, to ensure that
the stanzas will be separated in the formatted output. Then it inserts a . RP macro
call, a . TL macro call, the text for the. TL macro, and. nf and. na commands to
tell nroff not to perform line filling or justification on the poem.

Because sed works with lines in a stream, it also expects text that you give it for a
(append), c (change), and i (insert) commands to be a single line. If you want to
enter more than one line of text for these commands, each line you enter except the
last must end with a backslash; this technique' 'hides" the new-line characters from
sed. This sample script uses backslashes in this way to insert several lines at the
beginning of the file. Note that the i command itself is also terminated with a
backs lash. The last line to be inserted does not end with a backslash; the lack of a
backslash there indicates the end of the new text.

3-16 Line-Oriented Editors

Note that unlike ed or ex, the sed editor writes its output to the standard output,
leaving the original file unaltered. You could use a script similar to this to process
your story for formatting so that you would not have to maintain the title and other
front matter in the file; you would redirect the output to a second file name instead of
viewing it with the more command. Using a sed script like this would be a handy
way of avoiding the need to maintain nroff title information and formatting
commands in your file.

3.4.2 Using sed for Quick Edits

You can also use sed for quick editing without a script. If you invoke sed with the
-e option, the argument following the -e is a sed command. For example:

vizier> sed -e 'S/A$/.Sp/' rubaiyat > rubaiyat.sp

This example changes blank lines to . s p commands throughout the file, the same as
if we had included the command in a script. Note that the command is enclosed by
apostrophes (,). The apostrophes keep the shell from interpreting metacharacters in
the command before passing the command to sed.

You can pass several commands to sed in this way by using a series of -e options:

vizier> sed -e 'S/A$/.Sp/' -e '$r more-stanzas' rubaiyat

You can also pass several commands to sed in the same - e argument by separating
them with semicolons:

vizier> sed -e 's/A$/.sp/;$r more-stanzas' rubaiyat

You can include both the -e option and the -f option for the same sed command.
This ability lets you create a standard script to use in conjunction with additional
edits that you specify at the time you run the command.

3.4.3 Command Syntax and Addressing
The command syntax for sed is almost identical to that for the ed interactive editor.
Many commands can have zero, one, or two addresses and zero, one, or two
arguments. Some commands do not accept addresses or arguments.

For commands that accept addresses, a single address specifies a one-line pattern
space. Every line in the file that matches the pattern will be processed. Two
addresses specify a pattern space that includes the first addressed line, the second
addressed line, and all the lines between them. Edits are applied to the first group of
lines that match the addresses, and then sed searches for a new group of lines on
which to work. This process is repeated through the entire file. Supplying no
addresses for a command that accepts addresses means that the command is applied
to the entire file. The first line of the short sample script we showed to edit the
rubaiyat file is a substitute command with no addresses; this command changes
each blank line that is found anywhere in the file.

You can specify that a given command is to be performed on every line that does not
match the addressed pattern space by placing an exclamation point between the
address and the command. For example:

/Kaikobad/!s/rose/Rose/g

This command changes "rose" to "Rose" wherever it occurs unless it is on a line
that also contains "Kaikobad".

Line-Oriented Editors 3-17

3.4.4 Compound Commands

There is one exception to the addressing rules described in Section 3.4.3: the use of
compound commands. This exception provides a very powerful way to control the
scope of editing. It is often useful to apply a series of commands to the same pattern
space. You cannot always do this by specifying the same addresses for each
command in the series, because one command in the series might delete or alter part
of the pattern space so subsequent commands couldn't find a proper match. For
example, suppose you made several mistakes in entering this stanza into the
rubaiyat file:

XI

With me along the strip of Herbage strewn
That just divides the dessert from the sowm,

Where name of Slave and sutlan is forgot
And Peas to Mahmud on his golden Throne?

Obviously, you could make the explicit changes one at a time, but let us generalize a
little for purposes of illustration. You might try editing the stanza with the following
sed script:

/strewn/,/Throne/s/strewn/strown/
/strewn/,/Throne/s/dessert/desert/
/strewn/,/Throne/s/sowm/sown/
/strewn/,/Throne/s/sutlan/Sultan/
/strewn/,/Throne/s/Peas/Peace/

The first command changes the word "strewn" that you are using for the starting
address of the pattern space. The remaining commands will work incorrectly because
they cannot find their address. They might simply be unable to make the specified
changes, but the failure could be catastrophic: if there is a match on "strewn"
anywhere else in the file, some or all of your changes could be made in locations far
removed from where you intended.

You can avoid this problem by creating a compound command. A compound
command begins with an address or pair of addresses followed by a left brace ({).
On subsequent lines are the commands to be performed. You end the compound
command with a right brace (}) on a line by itself. The following example shows a
compound command that will perform the edits attempted by the incorrect example
above:

/strewn/,/Throne/{
s/strewn/strown/
s/dessert/desert/
s/sowm/sown/
s/sutlan/Sultan/
s/Peas/Peace/

This example works because the addresses specify an area in which to operate; all the
commands that follow are applied to the entire area. The second editing command is
not looking for an address match, so it does not matter that the beginning address has
been altered by the previous command.

Note that the editing commands in this example are indented from the margin. You
don't have to indent, but indenting helps you to keep track of what a script is doing,
especially if you nest compound commands inside each other. For example, the
following script does the same things as the preceding example, but for illustration it
uses nested commands to make two changes on the line containing "dessert":

/strewn/,/Throne/{

3-18 Line-Oriented Editors

s/strewn/strown/
/dessert/{

s//desert/
s/sowm/sown/

}

s/sutlan/Sultan/
s/Peas/Peace/

As with simple commands, you can make a compound command edit everything that
does not match its address by including an exclamation point before the opening
brace. When you apply this technique to a command that is within a compound
command, the edits are applied only to the parts of the compound command's
address space that do not match the address space of the nested command. Lines
outside the compound command's address space are not affected. For example:

2, 6 {
3,4!s/stringl/string2/

}

This example changes all occurrences of stringl on lines 2, 5, and 6 of a file.
Lines 3 and 4 are excluded by the exclamation point; line 1 and everything after line
6 are excluded by the compound command's address range.

3.4.5 Additional sed Features
Because you cannot interact with sed as it edits your file, you cannot always do the
things you want to do using only the commands that sed has in common with ed.
For this reason, sed has several additional features that allow you to do some very
powerful editing. The following sections describe these features.

3.4.5.1 Using the Print Command - The sed editor's p command does not display the
specified pattern space on your terminal; instead, it writes the pattern space to the
destination. You can use this feature to produce more than one copy of a pattern
space in the output file. You can also use it to produce an output file containing only
the lines you specify by invoking sed with its -n option. This option inhibits
normal output; only pattern spaces explicitly written with the p command are sent to
the output file. In the following example, the output is not redirected, so it comes to
your screen:

vizier> sed -n 's/Kaikobad/Marvin/p' rubaiyat
Shall take Jamshyd and Marvin away.
With Marvin the Great, or Kaikhosru?

3.4.5.2 Joining Lines - You cannot use the ed editor's j command to join lines in sed.
Instead, the sed editor has the N command, which joins the next line to the current
one. When this command is executed, it joins the two lines with an embedded new­
line character between them. (The ed editor does not embed anything between the
joined lines.) You can operate on this new-line character by using the special
character \n. For example, to join lines 2 and 3 of a file and then remove the new­
line character, you would use these commands:

2{
N
s/\n//

Line-Oriented Editors 3-19

3.4.5.3 Substituting Characters - The sed editor's y command perfonns one-for-one
character substitutions. The command requires two arguments, which must be strings
of exactly the same length. For each occurrence of any character in the first
argument, the y command substitutes the corresponding character from the second
argument. The command perfonns its change on every matching character in the
pattern space; you do not have to specify the g option as you would with the s
command. For example, the following command changes lowercase letters into
uppercase letters:

y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

Using a command like this example provides a rapid way to convert an entire file
from mixed case or lowercase into all uppercase letters for use, perhaps, as a
telephone listing. For an example of this command's use in a practical sed script,
see Example 3-1.

3.4.5.4 Holding and Getting Text - The sed editor does not support the ed editor's m
and t commands. To move text from one place to another or for other operations
that require temporary storage of a block of text, sed has the following commands:

Command Addresses

H 0,1,2

h 0,1,2

G 0,1,2

g 0,1,2

Description

Stores the contents of the pattern space in the hold
buffer.

Appends the contents of the pattern space to the existing
contents of the hold buffer.

Replaces the contents of the pattern space with the
contents of the hold buffer.

Appends the contents of the hold buffer after the end of
the pattern space. Further edits in a compound command
are applied to the appended text as well as the previous
pattern-space contents.

These commands are very useful for handling text moves. You can also use them to
perfonn some fairly exotic manipulations. For example, the tool that fonnatted and
typeset this book uses a sed script to perfonn diagnostic checks on the book files.
The script uses REs as addresses to locate special fonnatting commands. When a
command is found, the script saves a copy of the pattern space in a temporary storage
area (the hold buffer). It then tests the command for correct syntax by looking
within the pattern space for further matches. If the required infonnation is not found,
the script uses an i command to insert an error message. Then it gets the saved
command back from the hold buffer and writes the pattern space using a p command.
The final output consists of error messages followed by the lines that caused them.
For example:

Jul 28 14:58 1990 *** Diagnostic Report *** Page 1

*** File: sample.profile ***

*** File: sample.chl ***

ERROR: Unterminated tag argument(s)
32 . \" <include> (example-file

3-20 Line-Oriented Editors

*** File: sample.ch2 ***

*** File: sample.ch3 ***

This usage of sed takes advantage of the sed editor's -n option, described in
Section 3.4.5.1. Example 3-1 shows several excerpts from this diagnostic script.

Example 3-1: Sample sed Script

/\.\\"[~ABI]*<[A-Za-Z].*>/{ ill
h 2
y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/ ~
/<abstract>/!{

\

/<include>/!{ ~
/<style>/! {
/<title~! {

i\ ~

ERROR: Unrecognized tag
g; p; d l6]

}

/> (/ {
/)[ITABI]*$/!{ IZ]

i\
\
ERROR: Unterminated tag argument(s)

gi Pi d

This script illustrates several pattern matching and text manipulation techniques you
can use:

ill This code locates special formatting commands in the file being processed.
These commands, called tags, consist of a word delimited by angle brackets,
such as <abstract>. Tags are case insensitive, so the RE is designed to
look for any letter, upper- or lowercase, followed by zero or more other
characters between the angle brackets.

[2J This line saves the tag in the hold buffer. When tag syntax is being checked by
later commands, the pattern space might be altered; this h command allows the
editor to recover the exact text of an erring tag for display.

[3] To simplify processing the tags, this line converts the entire line to lowercase.
This way, it is not necessary to use a series of bracketed REs for each character
of a tag when comparing against the known tags.

~ This code matches each lowercased tag against the list of known tags. If the
tag is not an <abstract> tag, it is compared to the <style> tag, and so on.
lf no match is found, the the tag is one that the processing tool does not
recognize.

I5J Having found an unrecognized tag, the script inserts an error message.

l6] The saved text is recovered from the hold buffer and printed along with the
inserted error message. Then the pattern space is deleted to prevent further
checks from being made on it.

Line-Oriented Editors 3-21

IZI Errors like the following example are common:

. \" <tag-name> (argument}

The brace is not a proper tenninator. This part of the sed script looks for tags
with arguments to ensure that there is a closing parenthesis for each such tag.

See Section A.1 for an example that uses the sed stream editor to extract
information from a mail message.

3-22 Line-Oriented Editors

Pattern-Matching Utilities 4

The utilities discussed in this chapter make use of regular expressions (REs). If you
are not already familiar with REs, read Chapter 2 before reading this chapter.

The discussion of awk in this chapter is intended only as an introduction to its
capabilities; for a thorough tutorial description of an enhanced version of awk called
nawk, see the Guide to the nawk Utility.

In examples, we will enclose the information for which we are searching in
apostrophes to prevent the shell from interpreting any metacharacters within the
information. Another name for the information being searched for is pattern; in the
grep family, the pattern is an RE, while in awk REs form only a subset of the
patterns that can be used. In this chapter's examples, text that matches a search
pattern is enclosed in boxes.

4.1 The grep Family of Utilities
The name grep stands for "global regular expression printer." You have been
introduced to grep in the Primer and again in Chapter 2 of this book, where it was
used to demonstrate the use of regular expressions.

The simplest use of grep is to search a file for a specific string:

vizier> grep 'pea' shop
10 oz 2 .69 frozen ~s

There are three versions of the grep command. Although they appear to work very
much alike, each version has special features that make it better for certain uses.
Table 4-1 describes the different versions of grep. One difference between the
grep versions is in their use of program space. Program space is the amount of

memory used by a program; the more program space a given program uses, the less
there is available for other users' programs.

Table 4-1: Versions of the grep Utility

grep Version

grep

egrep

fgrep

Description

Patterns can contain a limited set of regular expressions. (See the list
immediately following this table.) The grep command uses a compact
searching method that is fast and requires a minimum of program space.

"Extended grep" patterns make use of all the regular expressions.
The egrep command uses a more complicated searching method that
can sometimes require exponential data space. (Searching for twice the
number of patterns can require four times the space in memory.)

"Fixed grep" patterns are fixed strings (explicit character sequences
instead of REs). "Rubaiyat" is a fixed string; "Ru.*at" is an RE. The
fgrep command is extremely fast and compact.

The set of REs supported by grep is limited so that grep can work more efficiently
for most uses. The additional power of egrep supports the full range of REs,
including the following features that are not supported by grep:

• You can use a plus sign (+) after an RE, including an RE that is part of a
larger compound RE, to require a match on one or more occurrences of the RE.

• You can use a question mark (?) after an RE, including an RE that is part of a
larger compound RE, to require a match on exactly zero occurrences or one
occurrence of the RE.

• You can separate REs with vertical bars (I) to make egrep search for more
than one pattern at a time. For example:

vizier> egrep
10 oz 2 .69 frozen as

'u[ai] I [pr]ea' ~hO

1/2 gal 2
24 oz 2
4 oz 1
16 oz 1
lb 1

1.89 ice cr
.79 f~ cocktail?
.89 Fr~ Twirls

2.59 Tasty S~res
1.89 rye ~

• You can frame an RE in parentheses.

The fgrep command does not allow REs, but it does allow you to specify more
than one string. You surround the strings with apostrophes (single quotation marks)
and separate them with a backs lash followed immediately by pressing the RETURN
key, as in this example:

vizier> fgrep
ice' shop
Size Qty
10 oz 2
1/2 gal 2

4-2 Pattern-Matching Utilities

'pea\

P~
.69

1. 89

Item
frozen ~s
~ cream

4.1.1 Modifying the Behavior of the grep Utilities

By default, the grep commands find each line that matches your pattern or patterns,
printing the line on the standard output. Table 4-2 describes command-line options
that allow you to specify other results from your searches.

Table 4-2: Options for the grep Utilities

Option

-b

-c

- e expression

-f file

-i

-1

-n

-8

-v

-w expression

-x

grep Versions

All

All
All

egrep, fgrep

grep, fgrep

All

All
All

All

grep

fgrep

Description

Precedes each output line with its disk block
number. This option is of use primarily to
programmers who are trying to identify specific
blocks on a disk by searching for the infonnation
contained in them.

Counts matching lines and prints only the count.

Uses expression as the pattern. Useful if expression
begins with a minus sign (-).

Searches for a list of patterns taken from file.

Perfonns a case-insensitive search.

Lists only the names of files containing matching
lines. Each file name is listed only once, even if the
file contains multiple matches.

Precedes each matching line with its line number.

Perfonns its search in "silent" mode, printing
nothing except error messages.

Prints only lines that do not match the specified
expressions.

Matches only if expression is found as a separate
word in the text.

Prints only lines matched in their entirety.

Some of these options need more explanation.

The -f option for egrep and fgrep allows you to specify the name of a file
containing the patterns instead of including them on the command line. This option
is useful when you have much information to search for or when you search for the
same information repeatedly.

Each pattern to be matched must be entered on a separate line of the pattern file; for
example, the sample eg rep command shown near the end of Section 4.1 could also
have been executed this way:

1. Create a file containing the patterns to be matched:

vizier> cat > grepfile
u [ail

~
lQIB.bLQJ

2. Execute the egrep command, specifying the pattern file with the -f option:

vizier> egrep -f grepfile shop

Pattern-Matching Utilities 4-3

The -i option makes grep or fgrep ignore the difference between uppercase
letters and lowercase letters. For example:

vizier> fgrep -i 'fruit'~:;O~
24 oz 2 .79 r i cocktail?
4 oz 1 .89 i Twirls

With grep, you can also match either uppercase or lowercase letters by creating
bracketed REs that contain the appropriate pairs, such as [F f]. Each technique is
useful under different circumstances; using the - i option makes all matches case
insensitive, whereas using bracketed REs treats only the specific characters you
bracket.

The -8 option makes grep print nothing to the standard output. Instead, grep sets
status information so that a subsequent command can determine whether the search
was successful. (See Sections 9.5.4.3 and 9.9 for discussion of the status information
and how to use it.) This option makes the grep commands especially useful in shell
scripts because it allows a script to test whether a file contains desired information
without actually displaying the information.

The -w option for grep constrains the search so that the expression being matched
must be found as a separate word in the file. For the purposes of this match, the term
"word" means that the matching text must be both preceded and followed by
nonalphanumeric characters. Nonalphanumeric characters are white-space characters
(tabs or spaces) and punctuation, except that the underscore character (_) is treated
as if it were a letter. For example:

vizier> grep -w 'ice' sh~
1/2 gal 2 1.89 ~ cream

This example finds the line containing "ice cream" but not the line containing
"rice".

4.2 The awk Utility and Programming Language
The first thing many new users ask about awk is, "What does that name stand for?"
The name awk is an abbreviation of the last names of Alfred Aho, Peter Weinberger,
and Brian Kernighan, the engineers who created the a w k utility.

This section provides only a brief introduction to the power of awk. The nawk
utility is an enhanced version of awk; refer to the Guide to the nawk Utility for a
thorough tutorial on all the utility'S features.

The awk utility combines pattern matching with the ability to process the matched
information. The processing ability of awk is actually a complete programming
language in its own right.

An a w k statement has the following form:

pattern { action }

If the action is missing, every line that matches the pattern is printed. Using awk
this way is like using one of the grep commands except that awk can use much
more sophisticated patterns. If the pattern is missing, the action is performed for
every line in the file. If both the pattern and the action are missing, the entire file is
printed; the result is the same as if you had used the cat command.

4-4 Pattern-Matching Utilities

4.2.1 What Can awk Do?

To get a quick idea of what awk can do, look at this example, which adds up the cost
of all the items in the shopping list file shop:

vizier> awk '-FITASI' '{s += ($3 * $2)} END {print "Total",s}' shop
Total 33.31

What happened in this example? The awk utility has actually performed three
distinct operations:

1. The a w k command read the file, interpreting each line, or record, as a series of
columns, or fields, separated by field separators. By default, fields are separated
by any amount of white space (spaces or tab characters). Each field is identified
by a dollar sign ($) followed by the field's number. Field $1 is the first
column, $ 2 is the second, and so on.

Because there are spaces within the columns of the shopping list file, this
example uses awk's -F option to specify that only tabs are to be used as field
separators. The - F option and the tab character are enclosed in apostrophes to
prevent the shell from interpreting the tab as ordinary white space.

2. Because this example specifies no pattern, awk operated on every record in the
file, performing the following action:

{s += ($ 3 * $ 4) }

This action adds up the contents of each record's third field (price) multiplied
by the record's second field (quantity).

3. When awk reached the end of the file, it performed the action following the
END keyword, printing the string "Total" followed by the result of the
addition.

From this example, you can see that a w k performs actions that process the input
information. It also recognizes patterns; for example, if there were items in the
shopping list with prices that you aren't sure of, a w k could print a list of just those
items. We've marked fruit cocktail with a question mark; the following command
prints just the items that are marked this way:

vizier> awk '-FITABI' '$4 - /\1/' shop
240z 2 .79 fruit cocktail?

The pattern enclosed in the second set of apostrophes examines field $ 4. The tilde
('") tells a w k to see if the field contains text matching the RE enclosed in the
slashes, in this case a question mark. (The question mark is preceded with a
backslash to prevent a w k from treating it as a meta character .) If there is a match,
awk prints the line. You could accomplish this same task more easily with a grep
command.

The strength of awk is its ability to combine pattern recognition with action. For
example, you could create an awk program that would total the prices you are unsure
of while totaling all the other prices separately to produce an output like this:

Items with uncertain prices:
fruit cocktail ?

Total of uncertain prices
Total known prices
Estimated total cost =

1. 58
31.73
33.31

Pattern-Matching Utilities 4-5

We'll show you the program that created this output in Section 4.2.4.

4.2.2 Printing with awk
As shown in the example in Section 4.2.1, awk uses the print command to print
things. You can print all of a record by using the print statement with no
arguments. Using a print command like this is the same as including no action in
your awk statement. For example:

vizier> awk '{print}' shop

This command prints all of the shopping list file.

To print only selected fields, you specify the fields you want to print. You can also
mix text in the output as shown by the following example, which prints a list of just
the items and the quantity to buy:

vizier> awk '-FIIAa)' '{print "Buy", $2, "of", $4}' shop
Buy 2 of frozen peas
Buy 1 of frozen broccoli

Buy 1 of burger buns
Buy 2 of hamburger

Note that the fields and text are separated by spaces. There is a predefined variable
in awk called OFS that contains the value of the output field separator. The default
value of OF S is a single space, but you can change OF S to specify a different output
field separator, such as a tab character, to provide for uniform alignment of columnar
output. For example:

vizier> awk '-FITAID' '{OFS = "1IAID"i print $2, $4}' shop
2 frozen peas
1 frozen broccoli

1 burger buns
2 hamburger

Another useful value for the output field separator is the at sign (@); this character is
commonly used for separating columns in source files for the tbl table-formatting
processor discussed in Chapter 5.

4.2.3 Using Pattern Recognition in awk
The awk utility's pattern-matching ability supports the full range of regular
expressions listed in Table 2-1. You must always enclose the pattern being matched
in slashes; if your pattern includes a slash or a metacharacter that you want
interpreted literally, precede that character with a backslash. For example:

/[Cc]olou?r\?/

This pattern matches "Color", "Colour", "color", or "colour" when the matching
word is followed by a question mark. (The question mark after the "u" is treated
not as an ordinary character but as an RE metacharacter calling for zero occurrences
or one occurrence of the preceding character.)

4-6 Pattern-Matching Utilities

The awk utility converts freely between numbers and strings as it sees the need. You
can use this feature to match on mathematical expressions. To search the shopping
list for all items whose quantities are greater than I, use this command:

vizier> awk '-F~' '$2 > 1 {print $2, $4}' shop
2 frozen peas
3 apples
2 fruit cocktail ?
2 ice cream
3 milk
2 hamburger

You can test expressions using the following set of comparison operators:

Equals
! = Not equal
< Less than
> Greater than
<= Less than or equal to

Contains RE
, ""' Does not contain RE

You can combine tests for more than one expression in a single pattern by using
parentheses and the following logical operators:

II Or
&& And

For example, the following pattern matches shopping-list items whose quantities are
less than 3 and whose prices are greater than $1.00, or that are marked with a
question mark:

($2 < 3) && ($3 > 1) II ($4 - /\?/)

4.2.4 Programming awk

An awk statement consists of a pattern and an action. All of the actions we have
shown to this point are variations on printing. But you can create very complex
actions by using the programming features of awk.

An action can be a single statement or a sequence of statements. You separate
statements on a line with semicolons. Among the programming features of awk is
the ability to use flow-control structures (if-else, while, and for) to create
powerful programs. These structures are implemented for awk exactly the same as
they are for the be calculator, described in Chapter 8.

As patterns and actions become more complex it is often easier to create a file
containing the patterns and actions you want a w k to work with; this file is called an
awk program. The following example shows the program that created the neatly
separated totals of uncertain and known prices shown in Section 4.2.1:

BEGIN {FS = "ITAru" [j]
print "Items with uncertain prices:"}
{st += ($3 * $2)} ~
{if ($4 - /?/) { [3]

sq += ($3 * $2)
print $4}

else

Pattern-Matching Utilities 4-7

s r += ($ 3 * $ 2) }
END {print r51
printf "Total of uncertain prices
printf "Total known prices =
printf "Estimated total cost =

%5.2f\n", sq I6l
%5.2f\n", sr
%5.2f\n", st}

The statements in this program perform the following functions:

111 Actions preceded by the BEGIN keyword are performed before awk processes
the file. In this case, a line is printed to identify the lines following it as items
whose prices are uncertain. The F S variable specifies the input field separator
in the same way as the OF S variable specifies the output field separator.
Setting F S has the same effect as using the - F command option.

121 This line adds prices to produce the total cost for the entire list. The variable
s t holds the total.

I3J The if statement and the lines that follow it select items whose prices are
indicated as questionable, accumulating the total cost for just those items. The
variable s q holds this total. Any matching items are printed. Note that the
lines controlled by the if statement are enclosed in braces to form a single
action.

~ The e 1 s e statement and the line following it accumulate the cost for all the
items not marked as questionable. This total is stored in the variable sr.

I5J The END keyword identifies actions to be taken after the file processing is
complete. In this case, the program prints a blank line and then formats and
prints the three cost totals with identifying text.

[§] The printf command uses the first argument, in quotation marks, as a format
string. Percent signs (%) introduce formatting controls for variables following
the format string, and the remaining text inside the format string is printed as-is.
This example formats the accumulated costs so that they will print in a neat
five-character column with two digits after the decimal point.

You use the - f option for a w k to tell the command to use your program. For
example, if this program is called add-prices, you would use this command:

vizier> awk -f add-prices shop
Items with uncertain prices:
fruit cocktail ?

Total of uncertain prices
Total known prices
Estimated total cost =

1. 58
31.73
33.31

Note that this example does not need the -F option because the add-prices
program already specifies that the input field separator (F S) is to be a tab character.

4-8 Pattern-Matching Utilities

The tbl Table Creation Utility 5

Tables are an effective way to present certain kinds of information in documents.
This chapter discusses how to use the tbl preprocessor to create tables for
documents that will be formatted by the nroff text formatter. You can use this tool
to create simple tables that look like lists, as well as complex formal tables.

The commands and functions for tbl that are described here also work with special
typesetting text formatters; this book was typeset with one such formatter, part of
Digital's optional ULTRIX Documentation Tools product.

This chapter assumes that you are familiar with the nroff formatter. If you are not,
you should read the chapter in the Primer that discusses nroff.

5.1 Why Use tbl?
A table is a collection of information presented as a multicolumn list. Usually, but
not always, the first column contains a list of items that are described or explained by
other columns in the table. The following table is used for the examples in Chapter 4
of this book.

10 oz 2 .69 frozen peas
10 oz 1 .89 frozen broccoli
doz 1 2.25 fresh corn
lb 1 .45 rice
lb 3 1. 89 apples
24 oz 2 .79 fruit cocktail ?
1/2 gal 2 1. 89 ice cream
gal 3 2.39 milk
4 oz 1 .89 Fruit Twirls
16 oz 1 2.59 Tasty Squares
lb 1 1. 89 rye bread
12 ct 1 1.19 burger buns
lb 2 1. 79 hamburger

This table was created without the tbl preprocessor. It is just a collection of text
lines. For quick notes that you scratch out for yourself, this method is adequate. But
as tables become more complex or as you create documents that you will change
many times, it is easier to use tbl, which automatically takes care of establishing
the proper columns, drawing lines or boxes, and allocating the proper space. If your
table contains descriptions that extend over several lines in one column as shown in
Example 5-1, using tbl saves a great deal of time. (The code that produced
Example 5-1 is shown at the end of this chapter as Example 5-10.) With the
exception of the shopping list shown at the beginning of this chapter and Chapter 4,
all the tables in this book, even the simple lists of mathematical and relational
operators in several chapters, were created with the tbl preprocessor.

Example 5-1: Table with Multiline Entries

Feature Problem in Manual Formatting

Simplicity User must keep track of
column alignment to make.at­
tractive display.

Long blocks User must align each line
of text within its column, then go

on to the next column.

Underlining Each underlined section must
be coded manually.

Benefit with tbl Formatting

Columns are aligned by the
formatter.

Formatter automatically
calculates how much fits on
a line and breaks text
blocks for you.

Formatter can underline
selected columns automati­
cally.

We have used the word "preprocessor" several times in this discussion. What is a
preprocessor, and what's it good for? Part of the UNIX philosophy is the idea of
using several simple tools, each designed to be very good at its job, instead of one
massive tool that can do everything but perhaps not very well. The nroff text
formatter is an example of this philosophy. It is good at formatting text, but it does
not know how to format tables. You could give it all the commands to make it
format a table, but they are very complex and confusing.

A preprocessor is a program that interprets information destined for another
processor. It provides an intermediate step of processing in order to simplify the job
you must do. The tbl preprocessor is another example of the UNIX philosophy of
one-job tools. It knows how to create formatting commands to make nroff produce
a table by translating a special set of table-formatting commands that you put in your
file.

To format a document containing tables, you process your file with the tb 1
preprocessor and pipe the output to nroff. For entries that are more than one line
long, the nroff output has the first column's text followed by the second column's
text, and so on, as in the following illustration from the file that created Example 5-1:

Simplicity
A[7

A [7 A [7 A [7

User must keep track of
column alignment to make at­
tractive display.

Columns are aligned by the
formatter.

The odd-looking strings (A [7) tell a printer how far to back up after printing the
first column to print the next column. But because most line printers cannot move
their paper backward, there is another tool, the col postprocessor, that reformats
nroff output by storing the first column's information until it has gathered the rest
of what should be printed on the same line. Once col knows what each complete
line should look like, then it outputs the line. The following example shows how
you would process a file with tables and print the result on the default printer:

vizier> tbl file I nroff I col I lpr

5-2 The tbl Table Creation Utility

5.2 Creating Tables
Creating a table involves three steps:

• Setting off the table infonnation

• Defining the table format

• Entering the table infonnation

Example 5-2 shows the code for a simple table; the following sections describe the
steps in creating a table.

Example 5-2: Code for a Simple Table

.TS
center,tab(@)i
1 1 1 r.
Item@Size@Qty@Price
frozen peas@10 oz@2@.69
frozen broccoli@10 oz@1@.89
fresh corn@doz@1@2.25
.TE

This example produces the following result:

Item
frozen peas
frozen broccoli
fresh corn

Size
10 oz
10 oz
doz

5.2.1 Setting Off the Table Information

Qty Price
2 .69
1 .89
1 2.25

You set off your table information by enclosing it between . T S (table start) and . TE
(table end) commands. These are commands that nroff does not recognize. The
tbl preprocessor looks for them, and it formats only the material between matched
sets of . TS and. TE commands. Also, as nroff is formatting the file, the InS

macro package invokes some special macros that allow you to do things beyond the
nonnal functions, such as these:

• Create a table header so that if your table spans more than one page the header
will appear on each page.

• Create boxed sections of text, like this:

IThis text is in a box. You can enclose as much text as you
Iwant in this way.

5.2.2 Defining the Table Format
Defining the table fonnat consists of two different tasks, specifying tbl options and
specifying the columns of the table.

The tbl Table Creation Utility 5-3

5.2.2.1 Specifying tbl Options - The first thing in a table is a line containing a comma­
separated list of tb 1 options and terminated with a semicolon. For example:

center,tab(@);

The first option in this example says to center the table between the margins. You
can also specify expand, which makes the table span the entire length of a line. If
you don't specify any placement, your table will be placed flush with the left margin.

The second option, tab (@) , defines the character that you will use to separate the
information for one column from that for the next. This character is referred to as the
"tab character," but if you use a real tab character your files can be a little confusing
to work with, especially if there are places where a given column is blank, because
tabs are invisible on the terminal display. You can specify whatever character you
like; many UL TRIX users use the at sign (@) because it is used for little else in most
documents.

By using other options, you can specify that your table is to be boxed. Example 5-3
shows two versions of the same small table; the first was created with the box option
and the second with a11box, which boxes each object in the table separately.

Example 5-3: Boxed Tables

Item Size Qty Pricel
frozen peas 10 oz 2 .691
frozen broccoli 10 oz 1 .891
fresh corn doz 1 2.251

Item Size Qtyl Pricel
frozen peas 10 ozl 2 1 .691

1 1 1
frozen broccoli 1 10 ozl 1 1 .891
fresh corn 1 doz 1 1 1 2.251

1 1 1 1

(These tables are oddly boxed because nroff's idea of vertical spacing is not
entirely consistent. We'll show you how to deal with this inconsistency in Section
5.3.4.3.) The first of these tables was produced with the following options:

center,box,tab(@);

The second table was produced with these options:

center,allbox,tab(@) ;

If you specify neither box nor a11box, your table will be printed with no boxing at
all, as in Example 5-2.

5.2.2.2 Specifying the Table Columns - After the tb1 options, you specify the number
and alignment of the table's columns, or fields. Each field can be specified as 1, C, r,
or n, for left, center, right, or numerical alignment. The tables in Example 5-3 are
both specified with four fields, and the right field is right-aligned. There is one line
of specification for each of these tables:

1 1 1 r.

Each specification line controls one line of the table. But if there are more lines in
the table than there are specifications, the last specification controls all the way to the

5-4 The tbl Table Creation Utility

end of the table. The last specification line is terminated with a period to tell tbl
that the actual table information begins on the next input line.

You can create other attractive effects with special characters that tbl understands.
(See Examples 5-4 and 5-5 for an illustration of these effects and how to achieve
them.)

• Column separation

You can specify that columns are to be separated by a vertical bar (I) by
including a bar between the field descriptions in your specification lines. For
example:

1 I 1 I l.

This line produces a three-column table with bars between the columns.

• Spanned headings

You can specify that a heading is to span multiple columns by using the letter s
in your specification lines for fields into which the header can span. For
example:

c s s

You can use this example to produce a three-column table with a single
centered heading that spans all three columns.

5.2.3 Entering the Table Information
Once you have specified the table's format, you enter the information. Each line of
the table is represented by one line in your source file. You separate the fields with
the tab character you selected in the table specification. For example, the table lines
in Examples 5-2 and 5-3 were created this way:

Item@Size@Qty@Price
frozen peas@lO oz@2@.69
fro~en broccoli@lO oz@1@.89
fresh corn@doz@1@2.25

You can create additional effects with special characters that t b 1 understands. (See
Examples 5-4 and 5-5 for an illustration of these effects and how to achieve them.)

• Table-width rules

If you include a line containing nothing but an underscore, tb 1 will create a
horizontal rule all the way across your table. The rules in Example 5-1 were
created in this way. For example:

Column-l Header@Column-2 Header

Column-l entry@Column-2 entry

• Column-width rules

If you create a table entry that has an underscore all by itself in a particular
field, tbl will produce a rule just the width of that field. For example:

Column-l entry@_@Column-3 entry

As shown by the table in Example 5-1, you can include more text than will fit on a
single table line by using a text diversion. Text diversions are blocks of text that

The tbl Table Creation Utility 5-5

tbl stores as it reads them, holding the stored text until the end of the block is
found. Then, tbl knows how much text must be output, and it calculates the proper
arrangement before outputting the text.

You create a text diversion by placing the letter T and a left brace (T {) at the end of
the line before the desired text, and the letter T and a right brace (T}) at the
beginning of the line following the text. The table in Example 5-1 was created with
text diversions; the following example shows a portion of that table's source file.

Simplicity@T{
User must keep track of column alignment to make
attractive display.
T}@T{
Columns are aligned by the formatter.
T}

In this example, the material for the middle column is enclosed in one text diversion
and the last column's material is in another diversion. The tbl preprocessor reads
and saves each diversion until it knows how to format the entire table entry; then it
outputs each diversion's text.

5.3 Advanced Techniques
This section explores some of the things you can do to make your tables more useful.

5.3.1 Combining Effects

You can combine the techniques and effects shown earlier to produce quite
sophisticated tables like the compound table in Example 5-4. The code for this table
is given in Example 5-5.

Example 5-4: Compound Table

Three-Column Table

Column 1 1 Column 21 Column 3
1 1

Two-column Area

Column 1 1 Column 2
1

Unboxed Area

Small box

5-6 The tbl Table Creation Utility

Example 5-5: Code for the Compound Table

.TS
box,tab(@);
c s s
1 I 1 I 1
1 I 1 I 1
c s s
1 I 1 s
1 I 1 s
c s s
1 1 s .
. sp
Three-Column Table
.sp

.sp
Column l@Column 2@Column 3

-@-@-
.sp
Two-column Area
.sp

.sp
Column l@Column 2

-@-
.sp
Unboxed Area
.sp
@

.sp
@Small box
.TE

The actual combination of commands and characters you must use to create the effect
you desire is not always obvious; you might need to format the table and then adjust
its control information to achieve the final appearance you want.

5.3.2 Creating Multipage Tables
If your table is longer than a single page, or if it happens to fall across a page break
in the document, you can improve its appearance by specifying that a complete
header is to be printed at the top of each new page. You do this by using a special
form of the. TS macro together with the. TH macro.

To start the header for a mUltipage table, add the letter H as an argument to the . T S
macro. The H tells nroff to begin assembling text in a temporary buffer. To end
the header, use the. TH macro. Example 5-6 shows the code for a table heading
using these macros.

Example 5-6: Code for Multipage Headings in a Table

.TS H
tab (@) ;
1 1.

Column-l Heading@Column-2 Heading

.TH
First column-l entry@First column-2 entry
Second column-l entry@Second column-2 entry

The tbl Table Creation Utility 5-7

Example 5·6: (continued)
Third column-l entry@Third column-2 entry

When you use this multipage capability, you must format your document using the
ms macros. For example:

vizier> tbl file I nroff -rns I col I Ipr

5.3.3 Creating Boxed Text Blocks
When you format a document with the ms macros, you can take advantage of tbl 's
text-formatting features to create boxed text that is not part of a table. The sample
boxed text segment in Section 5.2.1 was created in this way. To box text, precede
the desired information with the. Bl macro and follow it with the. B2 macro. For
example:

.Bl
This text is in a box. You can enclose as much text
as you want in this way .
. B2

This example produces the following result:

IThis text is in a box. You can enclose as much text as you
Iwant in this way.

5.3.4 Adding the Final Touch
Sometimes the spacing of your table is not as attractive as you would like. Vertical
problems can happen in any table; horizontal problems occur most often in tables
containing text diversions. You can alter the spacing by using blank columns, by
specifying field widths, or by using. sp commands.

5.3.4.1 Using Blank Columns - You can insert blank columns to serve as placeholders.
The table in Example 5-1 has blank columns two characters wide inserted between its
three visible columns in order to provide space between the text blocks in adjacent
columns. Without these blank columns, the table entries would have been squeezed
together until the words of adjacent columns ran together.

5.3.4.2 Specifying Column Widths - When you use text diversions, often they are not
placed in columns that produce attractive or easily readable output. Column width
can also be unsatisfactory under other circumstances.

When your columns don't work out properly to produce an attractive table, you can
alter the width of any field or fields in the table. You do this by using the w modifier
for your field headings. Suppose you have a table that you have specified using the
expand option. If there are text diversions, your table might come out looking like
Example 5-7.

5-8 The tbl Table Creation Utility

Example 5-7: Table with a Text Diversion

Column 1

Entry 1

Column 2

This is text
describing Entry 1.
It is long enough
that it requires a
text diversion.

Example 5-8 shows the code that produced Example 5-7.

Example 5-8: Code for the Table with a Text Diver$ion

.TS
expand,tab(@);
1 1.

.sp
Column l@Column 2
.sp

.sp
Entry l@T{
This is text describing Entry 1. It is long enough that it
requires a text diversion.
T}

.TE

To change the width of the second column, modify the field specification line like
this:

1 lw(50).

The w modifier requires a width value that is enclosed by parentheses. This example
specifies 50 characters. The result of this change is as follows:

Column 1 Column 2

Entry 1 This is text describing Entry 1. It is long
enough that it requires a text diversion.

This second table is far more attracive and readable than the first. You might notice
that the text-diversion table shown here is justified so that its text aligns with the
right margin, whereas Example 5-1 is not justified in this way. This difference
results from the use of the. ad command for nroff. You can use. ad and other
nroff commands to affect the appearance of your tables; see the ULTRIX
Supplementary Documents, Volume 1: General User for a complete discussion of
both tbl and nroff.

The tbl Table Creation Utility 5-9

5.3.4.3 Handling Vertical Spacing Problems - The odd vertical spacing that nroff
creates in some tables is due to the fact that nroff works in terms of 1/24o-inch units
of vertical spacing; the location of a printed line does not always translate to an
integral number of units from the top of the page, and nroff sometimes rounds off
to the same line instead of the next one. You can insert. sp commands or table
lines with blank entries in your input file to cause more attractive spacing. Example
5-9 illustrates how the appearance of the allbox table in Example 5-3 can be
improved by the addition of the two . s p commands shown in bold type.

Example 5-9: Improved Spacing in allbox Table

.TS
center,allbox,tab(@);
1 1 1 r.
Item@Size@Qty@Price
.sp
frozen peas@10 oz@2@.69
frozen broccoli@10 oz@1@.89
.sp
fresh corn@doz@1@2.25
.TE

Item

frozen peas

frozen broccoli 1
1

fresh corn 1

1

5.4 Example tbl Code

Size 1 Qtyl Pricel
1 1 1

10 ozl 2 1 .691
1 1 1

10 ozl 1 1 .891
1 1 1

doz 1 1 1 2.251
1 1 1

The code that produced Example 5-1 is shown here as Example 5-10.

Example 5-10: Code for the Table Shown in Example 5-1

.11 72

.ad 1

.TS
expand,tab(@);
11111.

.sp
Feature@ @Problem in Manual Formatting@ @Benefit with tbl Formatting
.sp

.sp
Simplicity@ @T{
User must keep track of column alignment to make attractive display.
T}@ @T{
Columns are aligned by the formatter.
T}
.sp
T{
Long blocks of text
T}@ @T{
User must align each line within its column, then go on to the next

5-10 The tbl Table Creation Utility

Example 5-10: (continued)
column.
T}@ @T{
Formatter automatically calculates how much fits on a line and breaks
text blocks for you.
T}
.sp
Underlining@ @T{
Each underlined section must be coded manually.
T}@ @T{
Formatter can underline selected columns automatically.
T}

.TE

The .11 command in this example tells nroff to use a line length of 72 characters;
the. ad command says to justify to the left margin only.

The tbl Table Creation Utility 5-11

Part II: Communication with Other Users

Mail 6

This chapter discusses advanced features of UL TRIX mail. If you are not familiar
with the rna i 1 program, you should read the Primer chapters on mail and on
customizing your environment.

There are several mail-handling systems available on the UL TRIX system in addition
to mail. This chapter gives a brief discussion of one of these systems, called MH.

For examples in this chapter, we will use the login name hale to indicate the user.

6.1 Where Is My Mail?
Your mail is kept in any of several places. New and unread mail, or mail that you
have explicitly kept there, is in your system mailbox. On most systems, your system
mailbox is a file in the /usr / spool/mail directory, but this may not always be
true.

Unless you have deleted it or saved it elsewhere, mail that you have read is in your
mbox file, located in your home directory. If you are using folders, then mail that
you have read and saved is in the folders you have specified. You can also specify
an explicit file for saving mail, so you could have many scattered files containing
mail messages.

6.2 Using the Mail System
You start the mail program with the mail command. If you just want to send a
message, you enter the name or alias to which you want to send a message as an
argument to the command. For example:

vizier> mail evelyn

Depending on the mail system options in force, you might be prompted for the
various parts of your message. You can change these options to suit yourself; see
Section 6.5.

If you want to read mail, you enter the rna i 1 command with no argument. If there is
no mail for you, the system tells you so. The Primer explained how to read mail in
your mbox file or in folders.

The mail command has several command-line options that let you alter its behavior.
Table 6-1 lists the most useful command-line options. For a complete list, see the
rna i 1 (1) reference page.

Table 6-1: Command-Line Options for the mail Program

Option

-f [folder]

-i

-n

-s "subject"

Description

Reads mbox or the folder you specify.

Ignores CTRL/C interrupts, echoing them as at signs (@).

Inhibits reading /usr / lib/Mail. re, a systemwide file that specifies
mail options. See Section 6.4.

Specifies the subject text on the mail command line. Enclose the entire
subject in quotation marks. For example:

vizier> mail -s "Meeting tomorrow" evelyn

6.3 Commands for the Mail Program

6-2 Mail

The mail program has a large set of commands. You are already familiar with most
of the commands for sending, reading, deleting, and saving mail. The additional
commands provide facilities for manipulating your mail environment. Table 6-2
describes most of the rna i 1 commands. The rna i 1 (1) reference page lists some
other commands that are useful only under special circumstances.

Table 6-2: Commands for the mail Program

Command

!command

- [n]

alias
alias alias
alias alias name ...
g

ehdir path
ehpath

Description

Executes the shell command you enter.

Selects and displays the previous message or the nth previous
message. For example, - 4 backs up four messages.

With no arguments, lists the current aliases. With one
argument, displays only that alias. With two or more
arguments, creates an alias with the first argument as its
name and all subsequent arguments as the members of the
alias. For example:

& alias
eddie haskell@beaver
eve evelyn
group daniels johnson janacek pinkham
service operators@muezzin
& alias eve
eve evelyn
& alias manager daniels
& alias manager
manager daniels

The g command is an alternate for alias with no
arguments.

Changes your current directory to the pathname specified, as
if you had executed the e d shell command except that the
directory you specify with ehdir prevails only while you
are in the mail environment.

Table 6-2: (continued)

Command Description

copy [message ...] file
co [message ...] file

delete [message ...]
d [message ...]

dp
dt

exit
ex
x

file [file]
fi [file]
f older [file]
fo [file]

folders

from [login]
f [login]

headers [n]
h [n]

help

hold [message ...]
ho [message ...]
preserve [message ...]
pre [message ...]

ignore [field ...]

mail user ...
m user ...

rnbox [message ...]

Copies the current message or the specified messages into a
file. If file exists, the messages are appended. This
command works like save except that it does not mark
copied messages for deletion when you quit from mai 1.

Deletes the current message or the specified messages. You
can use the undelete command to recover messages you
have accidentally deleted.

Deletes the current message and prints the next active
message.

Exits mail without updating your system mailbox.

Selects a mail file or folder. If you do not specify a file, this
command prints your current path and file name and the
number of messages in your current file. If you specify a file
or folder, this command displays any changes you have made
to your current file and switches to the specified file for
reading.

Lists the names of the folders in your folder directory.

Prints the active message header. If you specify a login
name, this command prints all the active messages from the
specified name.

Lists active message headers, using the value of the screen
variable as the number of headers to display. See Table 6-4
for a description of the screen variable. If you have more
than one screenful of messages, you can move forward or
backward one screenful with the z command. If you specify
a message number, the headers command displays the
screenful that includes the specified message.

Displays help information.

Holds, or preserves, the current message or the specified
specified messages in your system mailbox instead of moving
them to your mbox file.

Sets mail to display messages without the specified fields of
the header when you use the print or type command. For
example:

ignore Status Received Message-id

Note that this command is different from the ignore
variable described in Table 6-4. If you enter the ignore
command with no arguments, it displays the current list of
ignored fields.

Sends a message.

Marks the current message or the specified messages to be
moved to your rnbox file. This is helpful if you have set the
hold variable in your. mailrc file.

Mail 6-3

6-4 Mail

Table 6-2: (continued)

Command Description

next Displays the next message.
n
+
IRETURNI

Print [message]
P [message]
Type [message]
T [message]

print [message]
p [message]
type [message]
t [message]

quit
q

Reply
R

reply
r
respond

save [message ...] file
s [message ...] file

set [variable]
s e [variable]

shell
sh

source file
so file

top [message ...]
to [message ...]

undelete message ...
u message ...

unset

visual

Displays the current message or the specified message,
including any header fields specified by the ignore
command.

Displays the current message or the specified message
without any header fields specified by the ignore
command.

Leaves the mail program and updates your system mailbox.
If you do not have the hold variable set, all messages that
you have not deleted, saved, or preserved are moved to your
mbox file. If you do have hold set, all these messages will
be left in your system mailbox and marked as having been
read.

Replies to a message. If the original message was addressed
to a group of people, replies sent with the Reply command
are sent only to the originator of the message.

Replies to a message. If the original message was addressed
to a group of people, replies sent with the reply and
respond commands are sent to everyone who received the
original message.

Saves the current message or the specified messages in the
file. Note that the messages are added to the specified file so
that you will not delete the contents of the file.

If entered with no variables, the set command displays all
the options you have set. If you specify a variable, the
option will be set. (Table 6-4 lists the available variables.)

Invokes the shell interactively.

Reads mail commands from a file (usually. mailrc).

Displays the first five lines in the current message or each of
the specified messages.

Undeletes the specified messages.

Unsets (turns oft) options. For example, if your. mailrc
file includes a set hold command, you can use the unset
command to disable the hold variable for the current mail
session.

Invokes the editor specified by the VISUAL mail variable to
edit the current message.

Table 6-2: (continued)

Command Description

write [message ...] file
w [message ...] file

Saves the current message or the specified messages in the
named file. This is similiar to the save command, except
that wr i te saves only the body of each message; the
headers are deleted.

z[+]
z-

Moves forward or backward one screenful of messages. You
can specify the number of messages in a screenful with the
screen variable. (See Table 6-4.) To move forward one
screenful, enter z or z+; to move backward, enter z-.

6.4 Escape Commands for Mail Messages
There is a special set of commands, called escape commands or escapes, that
perform functions while you are in the process of writing a message.

You use an escape by entering it as the first thing on a line, with a tilde ('") as the
very first character. The tilde is called an escape character because it signals mail
that an escape command follows. If you want to type a real tilde as the very first
character on a line in your message, you must type two tildes.

Table 6-3 describes the escape commands.

Table 6-3: Escape Commands in mail

Command

- !command

- : command

-c name ...

-d

-e

-f [message ...]

-h

Description

Executes the shell command you enter.

Prints a brief summary of escape commands.

Executes the specified mail command. This is useful for performing
housekeeping tasks such as redisplaying a message. For example, entering
-: 10 selects and displays message number 10 just as if you had entered
its number at the & mail prompt.

Adds the specified names to the Cc: list.

Includes the file named dead. letter, in your home directory, into the
message.

Invokes the editor specified by the ED I TOR mail variable to edit the
message.

Reads the current message or the specified messages into your message.

Edits the message header fields. This command displays the fields one at
a time so you can alter them by adding text to the end, by using the
DELETE key, or by using CTRL/U to erase the entire field and then
retyping it. Use this command with caution.

-m [message ...] Includes the current message or the specified messages, shifted one tab
stop to the right. This is useful to set off messages your are forwarding as
part of your new message.

Mail 6-5

Table 6·3: (continued)

Command Description

-p Displays the message you are composing on your terminal. This is useful
to see that the message looks the way you want it to and that it includes
the right subject heading and lists of recipients.

-q Aborts the current message as if you had pressed two CTRL/C interrupts.

- r file Includes the named file in your message.

- s subject Makes subject be the new subject heading, replacing the previous heading.

-t name... Adds the names to the To: list of your message.

-v Invokes the editor specified by the VI SUAL mail variable to edit the
message.

-w file Writes the message to the named file.

- I command Pipes the message through the named command. This is useful to make
global changes in the message; for example, if you are including a
message in your new message you can use the sed editor to prefix each
line with an angle bracket and a space by using the following command:

-Ised 'siAl> I'

You can then add your own text; the result will look like this:

> This is the text of the message
> you have included.
>
This is the text you add yourself.

6.5 Customizing the mail Program

fH) Mail

The mail program provides options that allow you to customize the way it responds
to you. For example, by using the shell command biff, you can have the system
notify you immediately when new mail arrives or wait until the next time you receive
a shell prompt. Entering b iff y enables asynchronous notification, and entering
b iff n disables it. Entering b iff with no arguments reports the current setting.
For example:

vizier> biff
is n
vizier> biff y

Most of the things you can do to customize your interaction with the rna i 1 program
are controlled by mail variables, or options, that you set in your. mailre file.
There is another options file for the mail program.called/usr/lib/Mail.re.
Your system administrator decides what options to set in Ma i 1 . r e so that those
options will be set for all users. You can override the settings in Mail. re by
placing counteracting commands in your own. mailre file. A typical Mail. re
file looks like this:

set append dot save ask askcc save SHELL=/bin/csh \
EDITOR=/usr/ucb/ex metoo hold

(The backslash at the end of this example's first line "hides" the new-line character
at the end of the line, so that rna i 1 will read the second line as if it were a
continuation of the first.)

To override a variable that is set by Mail. rc, include an unset variable
command in your. mailrc file. For example:

unset dot

Some of the mail variables, such as dot, are binary variables; they are either set or
unset. Others are either string or numeric variables; they have values associated with
them. For example, crt is a numeric variable that tells rna i 1 how many lines of a
message to display before pausing with the --More-- prompt, and folder is a
string variable that tells mai 1 what mail folder you are reading.

Other commands that can be useful in your . rna i 1 r c file are ali a s commands to
specify frequently used names, and the ignore command to specify header fields
that you don't want to see.

The following is a typical. mailrc file:

set ask
set hold
set crt 20
set askcc
set save
set SHELL=/bin/csh
set EDITOR=/usr/ucb/vi
set metoo
alias group daniels johnson janacek pinkham
alias eve evelyn
ignore Status Received Message-id

You can also respecify any of mail's options interactively when you are using the
mail program. Settings you make in this way prevail only until you leave mail
with an exi t or qui t command. To make your changes permanent, include your
desired settings in your. mailrc file. Table 6-4 describes the mail options.

Table 6-4: Variables for Customizing the mail Program

Variable Type

append Binary

ask Binary

askcc Binary

autoprint Binary

Description

Saves messages in your mbox file in the order of arrival;
the earliest message is the first message in the file.
When this variable is unset, messages are saved in
reverse order; the first message in the file is the most
recent. Themail program runs faster if append is set.

Prompts you for a subject line when you send a message.
Enter a blank line to send a message with no subject.

Prompts you for carbon-copy recipients for each message
you send.

Automatically displays the next message when you
delete the current message. When autopr int is unset,
rna i 1 does not display the next message when you
delete a message. In either case, the next message
becomes your new current message.

Mail 6-7

6-8 Mail

Table 6-4: (continued)

Variable Type Description

crt Numeric For use with a video display (CRT) terminal. Reads
your mail one screenful at a time using the more
program. The value tells rna i 1 how many lines to
display each time. For example:

debug

dot

EDITOR

Binary

Binary

String

escape String

folder String

hold Binary

ignore Binary

ignoreeof Binary

keep Binary

keeps ave Binary

set crt 20

Displays debugging information.

Interprets a period on a line by itself to be the end of a
message. Do not unset dot and also set ignoreeof.

Specifies the pathname for the text editor to be used
when you use the edit command or the -e escape. For
example:

set EDITOR=/usr/ucb/ex

If your terminal is a CRT terminal, you can specify a
screen editor for this variable. See the VI SUAL variable
later in this table.

Allows you to specify the escape character (the character
that starts an escape command when you are in the
middle of writing a message). The default is the tilde
(-). You must specify a single character.

Specifies the directory for storing mail folders. A name
beginning with a slash, such as /usr /users /hale, is
a absolute pathname. A name without an initial slash is
a pathname relative to your home directory. For
example, the command set folder=folder
indicates the directory /usr/users/hale/folder.

Prevents messages from being moved to your mbox file
after you read them. Messages you have read are held in
your system mailbox.

Ignores CTRL/C interrupts, echoing them as at signs
(@). Note that this variable is different from the
ignore command described in Table 6-2.

Ignores CTRLID as the end of an outgoing message. Do
not set ignoreeof and also unset dot.

Allows mail to truncate your system mailbox instead of
deleting it when it is empty. This is useful if you have
set special permissions on your system mailbox for
security reasons. If keep is unset, your system mailbox
is deleted when it becomes empty; the next time it is
created, you must reestablish your desired permissions.

Prevents deletion of saved messages when you quit mail.
Normally, the mail program marks messages when you
save them in other files or folders, and then deletes them
from your system mailbox when you leave mail.
Setting keepsave makes mail leave these messages in
your system mailbox.

Table 6-4: (continued)

Variable

metoo

msgprompt

noheader

nosave

quiet

record

SHELL

screen

sendmail

toplines

verbose

VISUAL

Type

Binary

Binary

Binary

Binary

Binary

String

String

Numeric

String

Description

Includes you in the list of recipients when you send mail
to an alias of which you are a member. If metoo is
unset, you will not receive copies of messages sent to
aliases of which you are a member.

Prompts you for the text of an outgoing message and
indicates how to end the message.

Inhibits display of the header and version identification
when you invoke mail.

Prevents mail from saving aborted messages as
dead. let ter in your home directory.

Supresses printing the version when first invoked and the
message number when you use the type command.

Specifies the name of a file into which mail will save
copies of all outgoing messages.

Specifies the pathname of the shell to use when you use
the! command and the "'! escape.

Specifies the number of messages to be displayed in one
screenful when you enter the headers command.

Specifies the pathname of the program to use to send
your mail messages. If this variable is not specified,
rna i 1 uses the default delivery system. See your system
administrator for infonnation about alternate delivery
systems.

Numeric Specifies the number of lines the top command prints.
The default is 5.

Binary Invokes mail in verbose mode; mail then announces
expansion of aliases as messages are sent. For example:

& set verbose
& mail eve
Subject: Meeting this afternoon
Enter message. Use <ctrl>D to terminate the letter.
Just a reminder, we're meeting at 2.
ICTAUol

String

Cc:
/usr/users/evelyn/.forward: line 0: evelyn ...
forwarding to evelyn@vizier
evelyn ... Connecting to .local ...
evelyn ... Sent

Specifies the pathname for the screen editor that will be
used when you use the visual command or the "'v
escape. For example:

set VISUAL=/usr/ucb/vi

If your only tenninal is a CRT, you can specify a screen
editor for the EDITOR variable, too; then either edit
("'e) or visual ("'v) will invoke the same editor.

Mail 6-9

6.6 Getting Notification of Mail at Login Time
On rnost systems, when you log in you are notified if you have mail. The system
does not check to see whether the mail is new since the last time you logged in; but
if there is anything in your system mailbox the system displays this message:

You have mail.

If you are using the C shell, you must tell the shell the location of your system
mailbox to receive this notification. Usually your system administrator will have
included a line like this in your. cshrc or . login file:

set mail=/usr/spool/mail/hale

If you are not being notified that you have mail, check these two files to see if the
line is there. If it isn't, you can add it, substituting your own login name for hale.
If you are being notified but don't want to be, you can find this line and delete it.

6.7 Sending Mail to Files
You are not limited to sending mail to other people. You can also send mail directly
to a file. Sending mail directly to a file is one way to send yourself carbon copies as
if you had the record variable set, except that you can direct the message to any
file you like. If you send mail to a name that has a slash (/) embedded in it or to a
name that begins with a plus sign (+), the mail program understands this to be a file
name. To send mail to a file in your current directory, precede the file name with a
period and a slash (. /). For example, the following command sends mail to the file
notes in your current directory as well as to another user:

vizier> mail ./notes daniels

If you send mail to a new file, the file is created. If you send mail to a file that exists
already, the message is appended to the existing file. If you send mail to a file
beginning with a plus sign (+), the mail system assumes that the file is a folder.

You can also include file names in an alias. For example, the following command
creates an alias for pro ject-team:

alias project-team john evelyn /usr/users/project-team/mail

An alias like this saves the members of the project team from having to save mail
sent to the team; they will know that it is available for review in the project­
team/mail file, and they can read that file with this command:

vizier> mail -f /usr/users/project-team/mail

6.8 Sending Mail Across Networks

6-10 Mail

In the Primer, you were introduced to the concept of sending mail across a network
so that you can send messages to people working on other systems. Sending mail
across a network is like sending mail to other users on your own system except that
the addressing is different. There are two commonly used network addressing
schemes; when you send mail across a network, you must use the right one:

• UUCP addressing

• Internet addressing

6.8.1 UUCP Addressing
The term UUCP stands for UNIX-to-UNIX Copy Program. The UUCP protocol has
existed almost since the first UNIX systems were built. It allows UL TRIX systems
to communicate with other UNIX systems over ordinary telephone lines. A UUCP
address consists of the system name, an exclamation point, and the user's login
name, like this:

aladdin! joan

This is the address for a user named joan, who works on a system called aladdin.

Because UUCP communication uses ordinary telephone lines, UUCP systems must
know the telephone numbers of the systems they want to communicate with. It is not
reasonable to keep a list of perhaps 30,000 other computers' phone numbers (most of
which might be called once or twice a year), so the UUCP protocol allows systems to
share the information. To send a message to a system whose number it does not
know, your system can send it to a system that does know the destination system's
number. For example, suppose you want to sent a message to a user named arnold
on a system called minaret. Your system, vizier, does not know minaret's
phone number but it does know the number of aladdin, and aladdin knows the
number for minaret. You can send mail to aladdin, asking that your mail be
sent onward to minaret, by including aladdin in the address like this:

& m aladdin!minaret!arnold

You can include as many systems in the path as you need to get your message where
it must go. This addressing scheme is called explicit routing because you must
explicitly specify each system along the entire route your message will travel.

6.8.2 Internet Addressing
Internet addressing uses implicit routing. The Internet addressing scheme divides all
the possible addresses into domains, each consisting of one or more networks.
Internet systems know how to contact domains other than the one they reside in.
This routing information includes the paths to use in contacting other domains'
systems directly; there is no need to specify each system in the route by name.
Internet addressing places the user's login name first, followed by an at sign (@) and
then the system name and domain information. An Internet address might look like
this:

arnold@kaaba.BLIVIT.COM

The parts of this address, called fields, are as follows:

Field

arnold

kaaba

BLIVIT

COM

Description

This is the user's login name.

This is arnold's system name. It is separated from the user's name
by an at sign (@).

This is the domain of which kaaba is a part.

This is the type of domain that BLIVIT is. There are commercial
domains (COM), educational domains (EDU), military domains
(MIL), and others.

Note that the parts of the domain information are separated by periods.

Mail 6-11

Some domains contain subnetworks that are "hidden" behind particular machines in
the domain's network. You can send mail to hidden systems, provided you know
their addresses, by including the hidden system's name in the address with a percent
sign (%), like this:

& m arnold%aladdin@kaaba.BLIVIT.COM

6.9 The MH Message-Handling System

6-12 Mail

Having learned almost all there is to know about the mail program, you might come
to the conclusion that you would like to try a different system for handling your mail.
One such system is MH. Instead of being a single program that executes all the
functions to handle mail, the MH system is a series of small programs. You use MH
by entering the command you want to execute while you are at the shell prompt.

The MH system is optional; it may not be installed on your system. To find if MH is
available, look for the lusr Inew Imh directory. To use MH, you must add that
directory to your path by editing the set path line in your. cshrc or .login
file. Then you must tell the shell about the change in your path; you can do this by
logging out and logging back in, or by entering the following command:

vizier> source .login

If your path is set in . cshrc, use that name instead of .login in this command.
See Section 9.7 for a description of the source command.

Remember as you read this discussion that each of the MH commands is a separate
system command and has its own reference page. To remind you, we will introduce
the command names using the reference page naming convention of
cornrnand(number).

The MH system uses folders, as does mail, but the folders are organized a little
differently. New and unread mail is kept in a folder called + inbox, into which you
move the mail that arrives in your system mailbox by using the inc(1mh) command.
You must enter the inc command every time you want to include new mail; this
provides a handy way of combining the MH system with mail because you can use
mail to weed out messages quickly before including your system mailbox into your
+ i nbox folder.

You select a folder with the folder(lmh) command; this command also shows you
what folder is currently selected if you enter it without a folder name. Folder names
are the same as in rna i 1; each begins with a plus sign (+). If you enter the option
-all, the folder command displays a list of your folders and the number of
messages in each. (You can also use the folders command to list your folders.)
The scan(lmh) command lists the messages in your current folder.

You use the show(1mh), prev(1mh), and next(1mh) commands to read the
current, previous, and next messages in your current folder. If you enter a message
number with the show command, that message becomes your current message. For
example:

vizier> show 7
Message 7:
From evelyn Man Jul 23 10:02:10 1990
Date: Man, 23 Jul 90 10:01:25 edt
To: hale
Subject: Cafeteria hours
Cc:
Status: R

I'm sorry you didn't ask that sooner. The cafeteria
closes its breakfast service at 10. Lunch starts
at 11:30.

vizier>

The rmm(lmh) command removes messages from your current folder. If you use the
rmm command with no argument, it deletes the current message. If you specify one
or more message numbers, the messages you specify are removed. For example:

vizier> r.mm 2 5 7

Table 6-5 lists most of the MH commands. For a full listing, see the mh(lmh)
reference page, and see the individual commands' reference pages for complete
information.

Table 6-5: Commands for the MH Message-Handling System

Command

ali

anna

burst

comp

dist

folder

folders

forw

inc

mark

mhl

mhmail

msgchk

next

Description

Searches the specified alias files and displays the addresses corresponding
to the specified aliases.

Annotates messages to keep track of distribution, forwarding, and replies
for your messages.

Extracts the original messages from a forwarded message, discards the
forwarding header, and places the burst messages at the end of the current
folder.

Creates a new mail message, providing a template for you to fill in and
invoking an editor to finish the message.

Redistributes the current message to addresses that are not on its original
distribution list.

Selects a folder or displays the contents of your current folder.

Lists all your folders and the number of messages each one contains.

Forwards messages to recipients who were not the original addressees.
The message is encapsulated (included with a "Forwarded message"
notice) and a header is added.

Incorporates mail from you rsystem mailbox into your +inbox folder.

Assigns a name to a sequence of messages in your current folder. You can
then use pick(1mh) to select messages marked in this way.

Lists formatted MH messages. You can use this command as a
replacement for more(1) to display messages.

Sends mail to the specified users. If you do not specify any users,
mhmail works like the inc command.

Checks your system mailbox and any other files that can receive new mail
for you, looking for new messages. If any new messages are found,
msgcheck reports like this:

vizier> msgchk
You have new mail waiting, last read on date

Displays the next message in the current folder or in the specified folder.

Mail 6-13

6-14 Mail

Table 6-5: (continued)

Command Description

packf Compresses a folder into a single file. (Each message is normaly stored as
a separate file.) Do not confuse packf(lmh) with the pack(1)
command.

pick Selects messages based on content, sequence name, or other criteria.

prev Displays the previous message in the current folder.

prompter Invokes a simple editor designed for composing messages. The
prompter command is invoked by comp, dist, forw, and repl; you
do not need to call prompter directly.

rcvstore Incorporates a message from the standard input directly into a folder.

refile Moves messages from the current folder to one or more other folders.

repl Replies to either the current message or the message you specify.

rmf Removes all of the messages in a folder and then removes the folder itself.

rmm Removes messages from a folder. The message files are not actually
destroyed; instead, rmm renames them by inserting a number sign (#) as
the first character of the file names. On most systems, files whose names
begin with a number sign are deleted once a day by an automatic process.
Until they are actually deleted, you can recover removed messages by
using the mv command to rename the files.

scan Displays a list of the messages in a folder.

send Sends a message that you have created using comp(lmh),
prompter(1mh), or another editor.

show Displays the contents of a message.

sortm Sorts messages in a folder into chronological order according to the
Date: field of the message header.

whatnow Prompts you for what to do with a message you have just composed. You
can reexamine an original message to which you are replying, resume
editing the new message, or do other tasks associated with sending the
message.

whom Expands the header of a message into a set of addresses and optionally
checks to see that the message can be delivered to those addresses.

You can tailor the features of MH by creating a . mh y r 0 f i 1 e file in your top-level
directory. The MH reference pages describe the features that you can modify.

Interactive Communication 7

There are occasions when you must communicate directly with another user.
Sometimes, however, you might be in different buildings, or one of you might be
logged in using a modem connected to the only available telephone. In situations
like these, you cannot simply get up and go to that person's office or use the
telephone. This chapter discusses two utilities that provide the ability to
communicate immediately, and it also describes how to "take your phone off the
hook" so that these two utilities cannot reach you.

7.1 The write Command
Often, you can convey a message to another user by sending a mail message. But
mail can take a long time to arrive at its destination, depending on how often both
your system and the destination system check their mail queues. If you need instant
communication, you can use the write command. To use the write command,
you enter the command and the login name of the person you want to send a message
to. Then you write your message, finishing with a CTRL/D. For example:

vizier> write danie~s
The copier service person is in my office *now* and
needs rou to exp~ain what the prob~em is.
ICTRUP.

The system sends an announcement line and rings the bell on the recipient's terminal
when you enter the w r i t e command. Each line of the me sage is sent as soon as
you press RETURN at the end of the line. This example appears on on daniels'
screen this way:

Message from vizier!hale on tty27 at 15:42 ...
The copier service person is in my office *now* and
needs you to explain what the problem is.
EOF

You might recognize the address from which the message comes as being a UUCP
address. Despite this addressing, the write command lets you communicate only
with users on your own system.

You can use the wri te command to hold a two-way conversation by waiting until
the end of the conversation to press CTRL/D. But because communication using
write is line-by-line half-duplex (one-way) communication, it is best to establish a
protocol with users to whom you send write messages often. One good protocol is
to wait after you send your first message until your recipient writes back, and to use
some signal such as a pair of slashes to signal that you are waiting for a reply. When
you eventually press CTRL/D, the "EOF" that appears on the other person's screen
signals that you have ended your part of the conversation 1.

1 Another common protocol uses "0" to signal "Over" and "00" to signal "Over and out" This protocol is
often used for radio conversations in war movies and police dramas, but it's actually pretty silly. "Over" means
"It's your turn now," and "Out" means "Goodbye," so when you say, "Over and out," you're really saying, "You
can talk now, but I just hung up."

For example:

vizier> write daniels
The copier service person is in my office *now* and
needs you to explain what the problem is.
II
Message from vizier!daniels on tty18 at 15:43
Okay, I'll come immediately. What office are
you in?
II
I'm in office L23, on the third floor.
IClAUpl
vizier>
On my way.
EOF

Note that the system gave you a new shell prompt as soon as you entered CTRL/D,
without waiting for daniels to send the last message. If you didn't expect an
immediate reply, you could go on and do something else while you were waiting for
daniels to respond.

7.2 The talk Command
The wr i t e command works for two-way communication, but it is inefficient at best,
and its limitation to communicating only with users on your own system can be a
real headache. Its major advantage is that it is not limited to video display tenninals
that use a television-like screen; it also works with teletypewriters and other tenninals
that print their messages on paper instead of displaying them on a screen. The talk
command, on the other hand, is a serious two-way communication program that
works only with video display terminals. (Many users refer to these terminals as
CRT terminals; CRT is an acronym for cathode-ray tube.) The talk command is
designed to work somewhat like a telephone.

You start the talk command the same way you start write; to talk to daniels,
you enter this command:

vizier> talk daniels

The program divides your screen in half, assigning you to the top half and the person
you address to the bottom half. A message appears at the top of the screen:

[No connection yet]

When the connection is established, this message is replaced by a different message:

[Waiting for your party to respond]

When this message appears on your screen, the tal k program rings the bell on the
other person's terminal and displays a message announcing that you are calling and
explaining how to answer:

Message from Talk_Daemon@vizier at 16:18 ...
talk: connection requested by hale@vizier
talk: respond with: talk hale@vizier

If the person at the other end is slow to answer, the system will ring again:

[Ringing your party again]

When the person at the other end responds, the system tells you that your connection
has been established. You can then converse as long as you want. If you fill up your

7-2 Interactive Communication

half of the screen, tal k goes back to the top of that half and overwrites lines you
sent earlier. To end the conversation, press CTRL/C. The system will tell you that
the conversation has finished:

[Connection closing. Exiting]

You can see from this example that you respond to a tal k call exactly as if you had
originated the call yourself; the system figures out who called whom and takes the
appropriate action.

You might recognize the address displayed in the announcement on daniels'
screen in the last example as an Internet address (hale@vizier). In this way,
talk is different from write; besides providing full-duplex (two-way)
communication, talk also allows you to converse with users on other systems. To
use talk to communicate with a user named arnold on a system named
muezzin, enter the talk command this way:

vizier> talk arnold@muezzin

You can also use UUCP addressing to converse with users on other systems. For
example, if muez zin is also on a UUCP network, you could start a talk session
this way:

vizier> talk muezzin!arnold

7.3 The mesg Command
When you are at home, you sometimes want to take your phone off the hook so
nobody can call you. On the ULTRIX system, you can figuratively' 'take your
phone off the hook" by using the mesg command. If you enter mesg n, the system
will not allow talk or wri te messages to arrive at your terminal. To enable these
messages again, enter me s g y. If you forget the current me s g state of your
terminal, you can enter mesg with no arguments; the system will respond with either
is y or is n. The default state is to allow messages.

Interactive Communication 7-3

Part III: Other Commands and the Shell

Calculators 8

This chapter describes two calculator utilities, be and de. Both utilities work much
like a desk calculator. The be calculator, as well as being an interactive calculator,
is also a compiler and programming language that allows you to write sophisticated
calculating applications without having to use complex programming languages.

8.1 The bc Calculator
Most ordinary hand-held calculators use some variation of a system called algebraic
notation. You enter problems in much the same way you would write an algebraic
equation. For example, to find the sum of 3 and 4, you would think of the problem
this way:

3+ 4=?

To solve this problem, you would press the 3 key, then the plus key (+), then the 4
key, and finally the equals key (=). Algebraic calculators provide parentheses for
solving more complex problems such as this one:

(2 + 3) x (4 + 5) = ?

Table 8-1 shows the steps for one solution of this problem.

Table 8-1: Solving a Problem Using Algebraic Notation

Key Description of Operation

Start the first sum, using parentheses to make sure the multiplication
doesn't happen at the wrong time.

Enter the first operand for the first sum.

Enter the addition operator for the sum. The calculator stores this
operator until later.

Enter the second operand.

Close the first set of parentheses. The calculator recalls the addition
operator and performs the addition, returning a sum of 5.

Enter the multiplication operator. The calculator stores both the first
sum and this operator until later.

Start the second sum.

Enter the first operand for the second sum.

Enter the addition operator for the sum. The calculator stores this
operator until later.

Enter the second operand.

Table 8-1: (continued)

Key Description of Operation

rn Close the second set of parentheses. The calculator recalls the
addition operator and performs the addition, returning 9.

~ Calculate the final result. The calculator recalls the first sum and the
multiplication operator it stored earlier and performs the multiplication
to give you the final answer, 45.

You could also add the first sum, store the result in a memory, add the second sum,
and then multiply by the recalled first sum. With be, you can use either of these
methods just as you would with a hand-held calculator.

There are problems in which algebraic notation is ambiguous and can be
misinterpreted. For example:

2+3x4+5=?

This problem looks like the example used in Table 8-1, but it's actually an entirely
different problem because algebraic hierarchy gives precedence to multiplication over
addition. The correct way to interpret this problem is this:

2 + (3 x 4) + 5 = 19

But unless you use parentheses, some algebraic calculators might actually interpret
the problem this way:

((2 + 3) x 4) + 5 = 25

Unlike most commercial hand-held calculators, be is a true algebraic calculator. It
handles problems correctly according to the rules of algebraic hierarchy. In an
expression not delimited by parentheses, exponentiation is done first; then
multiplication, division, and remaindering; and finally addition and subtraction.
Portions of an expression that are enclosed in parentheses are evaluated before being
used to evaluate the portions outside the parentheses.

The be calculator works with numbers of arbitrary precision; this means that you can
use decimal points, with as many digits as needed after the point.

8.1.1 Starting and Stopping be
To start the be calculator, enter the be command at the shell prompt. For example:

vizier> be o
Note that be does not give you any visible prompt. In this example, the box
represents the position of the cursor as be waits for you to enter commands.

To stop be, enter the quit command. The be utility will return you to the shell
prompt. For example:

vizier> be
quit
vizier>

8-2 Calculators

8.1.2 Using be
To use be as an interactive calculator, you must enter your entire problem on a
single line. To work the problem that illustrates algebraic ambiguity in Section 8.1,
start be and type in the problem just as you see it. The problem is this:

Enter the problem this way:

2+3 * 4+51 RETURN 1
19

2+3x4+5::::?

The asterisk (*) is the be calculator's times (x) key, and pressing RETURN is the
equivalent of pressing the equal key (=) on a hand-held calculator. The be
calculator uses proper algebraic hierarchy to return the correct answer.

The calculator uses six standard mathematical operators:

Operator

+

*

/

%

Description

Addition

Subtraction - also used to indicate a negative
number

Multiplication

Division

Remaindering - integers only (a %b returns the
remainder of dividing a by b)

Exponentiation

Examples

3+5::::8
6245+713=6958

7-2::::5
42*-14=-588

4*18=72
72*393::::28296
27/9::::3
355/113::::3.14159 ...

13%3=1
8%3=2

3"3=27
6"6=46656

8.1.2.1 Handling Noninteger Numbers - When performing calculations, be truncates the
result toward zero, maintaining the number of digits to the right of the decimal point
(fractional digits) that appear in the operand having the greatest number of fractional
digits. For example, multiplying 1.2345 by 3.67 returns a result of 4.5306 instead of
the complete result, 4.530615. Four fractional digits are returned because 1.2345
contains four.

This method of truncation can produce some startlingly incorrect answers; for
example, when you divide 1 by 3, the result is normally 0 instead of 0.333

The be calculator allows you to control how many decimal places it will maintain by
using a predefined variable (register) named scale. You can specify how many
fractional digits be will maintain in its calculations by assigning a value to the
scale register. For example, the following command changes the number of
decimal digits maintained to eight:

scale=8

The scale value you set remains in effect until you change it:

scale=8
1.9375/1.3124

Calculators 8-3

1.47619047
1/3
.33333333
scale=5
1.9375/1.3126
1.47619

8.1.2.2 Creating and Using Registers - You can assign values to temporary storage
locations (called registers) in be; this feature allows you to save intermediate results
and recall them for later calculations. You use a single lowercase letter to name a
register. For example, the following command assigns the value of 337 to register r
and then asks be to display the contents of the register:

r=337
r
337

Note that when you assign a value to a register in this way, be does not display any
result. You can ask be to display the register, as in this example, or you can make
be display the result of the assignment by enclosing the entire statement in
parentheses; then be evaluates it as a complete value and prints it. For example:

(r=337)
337

You can perform a complete calculation and assign the result to a register. The
following example calculates an approximate value of 1t (pi) and stores the result in
register p for use in calculating the volume of a 24-inch sphere on the next line.
(The formula for a sphere's volume is 4/31tr3). This example assumes that seale is
set to 8.

p=355/113
4/3*p*12 3
7238.23005312

(This example's result is very close to the correct value of 7238.22947387 The
easily-remembered fraction 355/113 is a much more accurate approximation for 1t than
3.14 or 22/7.)

Because the calculator saves only the number of fractional digits you specify with the
scale command, intermediate results can be truncated, causing you to get different
results by working a problem in a different order. For example, working the volume
example straight through instead of using a stored value for 1t gives the following
answer:

4/3*355/113*12 3
7238.23007040

When you are working complex problems, you should always specify a scale that is
several digits greater than the precision you need for your final result.

8.1.2.3 Using Other Radices - The be calculator provides the facility for operating in
number radices other than base 10. You specify the input and output radices by
assigning values to the ibase and abase registers as you would to any other
register. The ibase register affects the radix of numbers you enter, and abase
affects the results displayed. The following example converts octal numbers (base 8)
first to decimal and then, after abase is changed, to hexadecimal (base 16):

ibase=8
52746

8-4 Calculators

21990
77125
32341
obase=16
52746
802A
77125
BB01

You can use unusual radices such as 100,000 to perform tasks like grouping digits in
sets of five. For example:

obase=100000
123456789012345

12345 67890 12345

Output of large numbers in radices other than lOis slow; nondecimal conversion of a
lOa-digit number can take several seconds on some systems.

8.1.2.4 Creating and Using Functions - If you have formulas that you use often, such as
the one we've shown for calculating the volume of a sphere, you can create a
command file, or program, for be that will automatically initialize those formulas so
you can use them when you start the calculator. Formulas initialized in this way are
called functions. A function can do anything that be can do. You create a function
with the define command. The following example creates a function to calculate
the volume of a sphere:

vizier> cat > vol-sphere
define v (x) { [j]
auto z 12l
z=4/3*355/113*xA 3 ~
return (z) [g]
~ [5J

The lines in this example demonstrate all the parts of creating a function:

[j] The define command starts the function definition. The name of the function
is v. Function names must consist of a single lowercase letter. The x in
parentheses names the variable parameter that will be input to the function. In
this example, x is the radius of the sphere. There can be as many parameters as
you need; separate them with commas. The left brace starts the function's
actual definition.

[2J The auto command defines the name of an "automatic" variable that will be
used inside the function. It is initialized to zero when the function is called and
is thrown away when the function has finished. You can define as many
automatic variables as you need, but you must do so using only one aut a
command. The aut a command must be the first line in the function definition.
Automatic variable names can be the same as register names outside the
function.

~ This line calculates the desired value and assigns it to the variable z.

[g] This line tells the function to return the calculated variable to you when you call
the function.

[5J The right brace ends the function definition.

After you have created one or more functions, you can gather them into one file.
When you start be, include this file's name as an argument on your command line.

Calculators 8-5

The be calculator will start, read your function-definition file, and then wait for input
from you. For example:

vizier> be vol-sphere
seale=8
v(12)
7238.23005312

The be calculator has a built-in square root function consisting of the word sqrt
followed by the value whose square root you want, like this:

sqrt (64)
8

In addition to the built-in sqrt function and any functions you create, there is a
library that includes the following functions:

Function

Sine

Cosine

Arctangent

Name

s (x)

c(x)

a(x)

Function

Natural logarithm (base e)

Exponential (ex)

Bessel function of integer order

Name

1 (x)

e (x)

j (n, x)

To use this library, start be with the -1 command option. You can use this library
together with your own function definitions; be sure all your functions are named
differently from the functions in the library.

8.1.3 Programming be

This section discusses the advanced features of be that allow you to write
sophisticated programs for it. These features are not limited to use in programs; you
can also use them interactively. If you are familiar with the C programming
language, you will find few surprises in programming be. This discussion of be
programming does not describe all of be's features; for a cOInplete explanation, refer
to the ULTRIX Supplementary Documents, Volume I: [Jeneral User.

Having read the description of functions in the preceding section, you already know
the basics of programming be. The more advanced be features allow you to write
more complex and powerful functions. The complete syntax of a function call is as
follows:

function-name ([expression [, expression ...]])

(The spaces in this syntax diagram are for clarity only; do not include them when
defining functions.) An expression can be an explicit value or a variable.

Any function that is defined with no parameters always returns a zero result, but it
can produce other indirect results by operating on variables (registers) that are not
declared as automatIc inside the function. This ability allows you to calculate several
things in a single function. For example, you could calculate both the surface area
and the volume of a sphere, storing the results into registers a and v, which you
create outside the function.

Statements in a function definition can be separated by semicolons or placed on
separate lines. To make your function definition more easily maintainable, you can
include comments. Begin a comment with a slash and an asterisk (/ *) and end it
with an asterisk and a slash (* /). This convention is the same as the style for
including comments in C language programs.

8-6 Calculators

The following sections describe the basic programming constructs of be.

8.1.3.1 Control Structures - The be calculator provides three control structures for
conditional execution. Each of these structures allows you to execute one or more
statements based on satisfaction of the condition being tested.

You test a condition by expressing it as a relationship between two values. A
relational operator compares the value to the left of the operator against the value to
its right. These are the standard relational operators:

Equal
< Less than
> Greater than
< = Less than or equal
>= Greater than or equal

For example, (x>=y) is true if x is greater than or equal to y. You can use
complete expressions as values for testing. For example:

(x==y+32)

In this example, the expression y+ 32 is evaluated before being tested to see if it is
equal to x. When you are making tests, do not confuse the relational operator == with
the mathematical operator =, which works but doesn't do what you expect.

Each of the three control structures tests the relationship the same way, but the
actions that result are different:

• if (relation) statement
if (relation) {statements}

The if command causes execution of statement or statements if the specified
relationship between val pes is true. For example:

This statement checks whether register x is greater than the cube of register r.
If it is, then r is cubed.

• while (relation) statement
while (relation) {statements}

The statement or statements are executed repeatedly as long as the relationship
is true. Somewhere in the body of the code being executed there must be a
statement that alters one or both of the tested values, or this construct will loop
forever. The relationship is tested before each pass through the loop. For
example:

This statement checks whether register x is greater than the cube of register r.
If it is, then r is cubed. The rela~ionship is tested again and r is cubed
repeatedly until the cubed value equals or exceeds the value of x .

• for (expression]; relation; expression2) statement
for (expression]; relation; expression2) { statements}

The for command executes expression] once to initialize conditions. Then
relation is tested; if it is true, statement or statements are executed. Then
expression2 is executed and the relationship tested agg.in. If it is still true,
statement or statements are executed again. Then expression2 is executed, and

Calculators 8-7

so on. This loop is repeated until the relationship is no longer true. This
construct is usually used for controlled iteration, as in this example:

for (r=lir<=5ir=r+l) r A 3
1
8
27
64
125

This example displays the cubes of the integers from 1 to 5.

8.1.3.2 C Language Constructs - The constructs shown in Table 8-2 work in bc exactly
as they do in C.

Table 8-2: C Language Constructs in bc

Construct Result Construct Result

x=y=z x= (y=z) X =1\ Y X = xl\y

x =+ Y x = x+y x++ (x=x+I)-1

x =- y x = x-y x-- (x=x-I)+I

x =* y x = x*y ++x x = x+1

x =/ y x = x/y --x x = x-I

x =% y x = x%y

Note that in some of these constructs spaces are meaningful; for example, x=-y sets
the value of x to be x-y, whereas x= -y sets the value to be -yo

You can use these constructs to simplify expressions; for example, the following for
statements are equivalent:

for (r=1;r<=5;r=r+1) rl\3
for (r=lir<=5;++r) r A 3

8.1.3.3 Arrays - For complex calculations involving many values, you can create an array
to hold the values. Using arrays allows you to manipulate any or all of the values by
using a control construct at a later point in your program. Array names are lowercase
letters like regular registers, except that they also have subscripts. A subscript is an
expression in brackets that identifies the specific element. The first element in an
array is named array-name [1] . The second is array-name [2] , and so on. The
following example creates a five-element array called c, loads its elements with the
cubes of the integers 1-5, and then displays the results:

for (r=1;r<=5;r++) e[r]=r A 3
for (r=lir<=5ir++) err]
1
8
27
64
125

8-8 Calculators

8.2 The dc Calculator
The dc calculator is an interactive utility. It perfonns operations step by step as you
input infonnation to it. The way you enter numbers and commands to dc, called
reverse Polish notation (RPN), is different from the algebraic notation most ordinary
calculators use. There are calculators that use RPN; if you are familiar with them,
you might not need to read the following discussion.

RPN is a modified form of the notation invented by the Polish mathematician Jan
Lukasiewicz. An RPN calculator works with just one or two operands at a time.
Operands are stored on a push-down stack until needed; this means that they are
recalled (popped) in the reverse of the order in which they were stored (pushed).

Consider the following problem:

(2 + 3) x (4 + 5) = ?

Table 8-3 shows the steps you would follow to solve this problem using an RPN
calculator. The third column of the table illustrates the contents of the stack as each
operation is performed.

Table 8-3: Solving a Problem Using Reverse Polish Notation

Key Description of Operation Stack Contents

[2J Key in the first operand for the first sum. Top: 2.0000

I Enterl Push this operand down in the stack to make Top: 2.0000
room for the next one. 2nd: 2.0000

~ Key in the second operand. This operand Top: 3.0000
goes on top of the first one. 2nd: 2.0000

[±J Perform the addition. The sum goes back on Top: 5.0000
the stack, with nothing under it.

~ Key in the first operand for the second sum. Top: 4.0000
This operand goes on top of the first sum, 2nd: 5.0000
which is automatically pushed down to make
room for it.

I Enterl Push this operand down in the stack. Top: 4.0000
2nd: 4.0000
3rd: 5.0000

[5] Key in the second operand. This operand Top: 5.0000
goes on top of the previous operand, which is 2nd: 4.0000
in turn on top of the first sum. 3rd: 5.0000

[±J Perform the addition. The sum is on the Top: 9.0000
stack, above the first sum. 2nd: 5.0000

~ Perform the multiplication. This gives the Top: 45.0000
final result.

Each time you press an operator key, the calculator pops the top two values from the
stack and operates on them, placing the result back on the top of the stack.

Because RPN requires fewer keystrokes than algebraic notation, it is often more
efficient. The two algebraic methods we described in Section 8.1 (using parentheses

Calculators 8-9

or using memory) both take 12 keystrokes. Solving the same problem on a hand­
held RPN calculator takes only nine keystrokes. Because the be calculator uses true
algebraic hierarchy, there are some problems for which be needs fewer keystrokes
than de, but usually the RPN calculator is more efficient.

RPN has another advantage over algebraic notation. As described in Section 8.1,
algebraic notation can produce different results depending on whether you use
parentheses. The be calculator avoids most problems of this kind by using strict
algebraic hierarchy, but with de's RPN no such ambiguity exists. The calculation
order you want is observed automatically because the calculator doesn't store pending
operations until a convenient time to perform them.

Once you get used to it, you might also find RPN to be more intuitive than algebraic
notation; generally, RPN lets you enter your calculation from left to right and from
top to bottom without having to spend a lot of time decomposing the problem before
you start.

Like be, the de calculator works with numbers of arbitrary precision; you can use
decimal points, with as many digits as needed after the point. There is also no limit
to the depth of the stack; you can enter a dozen, or two dozen, values and then apply
all the operators you need. It is usually more efficient, however, to remember that de
works only at the top of the stack; entering your calculations in the general way
shown in Table 8-3 is the most efficient way of working.

8.2.1 Starting and Stopping de
To start the de calculator, enter the be command at the shell prompt. For example:

vizier> de

Like be, de does not give you any visible prompt.

To stop de, enter the q command.

8.2.2 Using de
Using de is much like using an RPN calculator as described in the introduction to
Section 8.2. Because you're really dealing with a program that reads your input line
by line, you have to end each command line by pressing RETURN. And because
this calculator doesn't have a display that it can update constantly, you have to tell it
to print results that you want to see (with a p command). To solve the problem we
show in Table 8-3, you would give the following de commands:

2
3
+
4
5
+
*
P
45

With all the RETURNs, this seems rather inefficient, especially since we commented
earlier on the increased efficiency of RPN over algebraic notation. There is a better
way. You can use the RETURN key as if it were the calculator's ENTER key,
pressing it only to separate two operands as you place them in the stack. This
technique allows you to key in more than one item on a line. When you're entering
two operands in a row, you have to end the first one with a RETURN to tell de

8-10 Calculators

which digits belong to which operand. Otherwise, since operators separate operands,
you can enter as many items on a line as you like. You could solve our example in
this way:

2
3+4
S+*p
45

If you compare this example to Table 8-3, you will find that they both require exactly
the same number of keystrokes except for the p command that tells de to print the
result.

The following sections describe how to use the de calculator's features.

8.2.2.1 Using de Commands - The de calculator has many capabilities beyond the
simple arithmetic operators; it supports memory storage, stacked storage, command
file execution, and more. Table 8-4 lists all the commands that de accepts.

Table 8-4: de Commands

Key

number

+ - * / % 1\

e

d

f

i

k

lx

Lx

°

p

q

Description of Operation

A number is an unbroken string of digits, with or without a
decimal point. To indicate a negative number, precede the
number with an underscore (_).

The top two values in the stack are added (+), subtracted (-),
multiplied (*), divided (/), remaindered (%), or exponentiated
(1\). The values are popped from the stack and replaced by the
result. See Section 8.2.2.2 for a description of how numbers with
decimal points are handled.

The entire stack is popped and becomes empty.

The top value on the stack is duplicated.

All values in the stack and in registers are printed.

The top value on the stack is popped and used as the number
radix for further input. If you use I instead of i, the value is
used but not popped.

The top value is popped from the stack and used as the number of
decimal places that are maintained during multiplication, division,
and exponentiation. If you use K instead of k, the value is used
but not popped.

The value in register x is placed onto the stack. The contents of
the register are not altered.

The top value on a storage stack named x is popped and placed
onto the stack. See the s x command.

The top value on the stack is popped and used as the number
radix for further output. If you use 0 instead of 0, the value is
used but not popped.

The top value on the stack is printed.

The program stops and returns you to the shell.

Calculators 8-11

Table 8-4: (continued)

Key Description of Operation

sx The top value in the stack is popped and stored in a register
named x. You can use any character except DELETE for x,
including a space or a RETURN, so you can have as many as 127
registers.

Sx The top value in the stack is popped and placed on top of a
storage stack named x. See the L x command.

[string] The bracketed string is placed on the stack as a string instead of
as a number. See the x command.

v The top value on the stack is replaced by its square root.

x The top value on the stack is popped and executed as a series of
de commands. This value is assumed to be a string.

z The number of elements in the stack is placed on top of the stack.

<x >x =x The top two values in the stack are compared in this order:

top value relational-operator second value

?

If the values satisfy the test, register x is executed. To negate the
tested relationship, precede the operator with an exclamation point
(!); thus, ! >x tests to see that the top value in the stack is not
greater than the second value in the stack.

A line of input is taken from the input source and executed.

The remainder of the line is passed to the shell for execution as a
shell command line.

8.2.2.2 Handling Noninteger Numbers - When performing calculations, de truncates the
result toward zero, maintaining the number of digits to the right of the decimal point
(fractional digit) that appear in the operand having the greatest number of fractional
digits. For example, multiplying 1.2345 by 3.67 returns a result of 4.5306 (instead of
the complete result, 4.530615).

This method of truncation can produce some startlingly incorrect answers; for
example, when you divide 1 by 3, the result is normally 0 instead of 0.333

You can control how noninteger results are handled by using the k command to tell
de how many digits you want maintained (the scale). For example, you can specify
that eight fractional digits are to be maintained by entering a k command as shown in
this example:

8k

After you have entered a k command, dividing 1 by 3 returns a more sensible
answer:

1
3/p
.33333333

The scale you specify with the k command remains in effect until you change it with
another k command.

8-12 Calculators

8.2.2.3 Entering Commands and Operands - The de calculator treats commands the
same as a hand-held calculator treats its function keys; there is no special syntax for
de commands. For example, to set a scale of 8, clear the stack, and then calculate
the volume of a 24-inch sphere, you would enter the following key sequence:

Skc4
3/355
113/*12
3"*p
7238.23005312

When de uses two values from its stack for a command, the stack's top value is
always applied to the next-to-top value. This means that to divide 4 by 3, as in the
preceding example, you enter the 4 first, then the 3. The slash following the 3
performs the division. The only time this order could be confusing is in
exponentiation, where the first value entered (next to top) is raised to the power of
the second value (top of stack). The previous example illustrates the correct order for
exponentiation operands; the 12 is entered first and then raised to the power of 3.

8.2.2.4 Using Other Radices - The de calculator provides the facility for operating in any
number radix (base) from 2 to 16. For example, if you are a programmer, you might
have frequent need to work in octal (base 8) or hexadecimal (base 16) notation.

You can change the input and output radices independently; the following example
shows how you can enter octal numbers and receive hexadecimal results. The i and
I commands change the input radix, that is, the radix for your entries. The 0 and 0
commands change the output radix, that is, the radix for display:

16oSi177p
7F

Note that if you change both the input and output radices as in this example, you
must enter the change to the output radix first.

For any radix greater than 10, de uses the uppercase letters A-F to represent the
decimal values 10-15.

8.2.3 Programming de
Stacks, strings, comparison commands, and other features are included in de to allow
you to write programs for the calculator; they are not generally useful when you are
using the calculator interactively. Because the technique for programming de is at
an intimately detailed level, we recommend that you write programs using be. In
fact, be uses de for its calculations. Each line of a be problem or program is
translated from the form in which you enter it into a problem for de. Then the de
calculator is used to make the actual computation.

Calculators 8-13

C Shell Scripts 9

This chapter describes how to write C shell scripts. Scripts can save time and effort
by pulling together the functions of many commands into one command that is
tailored to do exactly what you need to do. This entire book was formatted and
typeset for printing by a shell script.

The discussion in this chapter assumes that you are a moderately experienced'shell
user. If you are not familiar with the basics of communicating with the shell, you
should read the chapter on the C shell in The Little Gray Book: An ULTRIX Primer.

Most of the material presented here is also useful when you are using the shell
interactively, and many of the techniques described here are equally adaptable to
other shells.

9.1 Creating and Using Shell Scripts
Scripts are programs for the shell. But instead of being written in a complicated
programming language, a script is simply a file that contains a series of the same
commands you would type on your keyboard. The shell reads a script file, interprets
each command just as if it had come from the keyboard, and executes the command.
The concept of creating shell scripts to simplify tasks you do repetitively was
introduced in the Primer with the following script, called swap:

mv $1 swap.tmp
mv $2 $1
mv swap.tmp $2

This swap script interchanges two files, naming each with the other's former name.
To create this script, follow these steps:

1. Create a file called swap in your bin directory:

vizier> cat > ~/bin/swap
mv $1 swap.tmp
mv $2 $1
mv swar' tmp $2
ICTRUD_

2. Use the chmod command to make the file executable:

vizier> chmod u+x ~/bin/swap

3. Check your .login file to make sure your bin directory is included in your
path; if it's not there, add it. Then log out and log back in to make the change
take effect. (Another way to make changes like this take effect is discussed in
Section 9.7.)

Once you have created the swap script, you use it as you would use any other
command:

vizier> swap fUel fUe2

In essence, you have created a new ULTRIX command for your own use.

Many standard ULTRIX commands are shell scripts. Because a script is interpreted
by the shell each time it is used, scripts run more slowly than programs written in a
language such as C. Often the time difference is little enough that it is not important;
the ease of creating and maintaining scripts outweighs the loss of speed.

The scripts for many tasks can be as short and straightforward as the swap script.
For tasks that involve making decisions, the shell provides control structures that test
conditions or relationships in order to decide whether to perform further commands.
There are also structures that allow a script to perform actions repetitively. For larger
tasks, scripts can become quite complex; the script that formatted this book is
designed to be generic so that it can be used by many writers, and it is more than
1000 lines long.

The following sections describe how to write C shell scripts that make effective use
of the shell's features.

9.2 Using Comments in Shell Scripts
It is a good idea to include comments in your shell scripts. Comments help you
remember what the script does and how to use it. They can also make it easier for
someone else to modify a script. The shell interprets a number sign (#), also called
an octothorpe, as a comment introducer. Anything that follows this character on the
same line is a comment. For example:

This is a comment.

cp filel file2 # This is also a comment.

The shell ignores the first two lines of this example. It executes the cp command on
the third line and then ignores everything after the command. Note that you cannot
use the number sign this way interactively; the shell does not interpret it as a
comment introducer when you type it at the shell prompt.

The number sign has another use in C shell scripts; see Section 9.3 for more
information.

9.3 Specifying Use of the C Shell
Because the ULTRIX system has several different shells, the first thing you must
know about writing C shell scripts is how to specify that they are for the C shell.
You can do this by including a number sign as the first character in your script file.
But because it is also the character that introduces shell comments, the number sign
can cause confusion when used in this way. One solution is to place the number sign
alone on the first line of the file, as in the swap script shown in Section 9.1.

A better solution takes advantage of an ULTRIX object called a magic number. The
magic number of a file tells the system what kind of file it is. Every executable file
has its magic number in the first two bytes of the file. The combination of a number
sign and an exclamation point (# !) is a magic number that tells the system to
execute the rest of the line as if it were a normal shell command. You can use a
magic number in your script as in the following example:

9-2 C Shell Scripts

#! /bin/csh

This is a script that will execute under the C shell
as a result of magic number interpretation.

Every time you enter a shell command, the UL TRIX system starts a new shell for
that command to run in. Because the shells themselves are ordinary binaries, they
can be executed just as any other command; you can type c s h at the shell prompt
and start a new shell. When the script in this example is run, its magic number tells
the shell to execute the command named /bin/ csh; this command is the C shell,
so a new C shell is started for the script.

9.4 Creating and Using Shell Variables
Shell variables are names that the shell uses to keep track of the objects it is
manipulating. There are three types of shell variables:

• String variables

String variables are character strings that the shell uses for a variety of
purposes. For example, the prompt variable contains the text string that the
shell uses to prompt you for commands.

• Numeric variables

Numeric variables are used by the shell in the same ways you use numbers.
They can identify things, or they can be used to count things.

• Binary variables

Binary variables act like switches; they can be set (on) or unset (off). The
noclobber variable, for example, prevents the shell from redirecting output
onto a file that already exists.

Some shell variables are built into the shell or created by your .login and. cshrc
files. Binary variables, such as noclobber, are built into the shell. Users do not
normally create new binary variables, but you can set or unset these variables (turn
them on or off) as needed. You can also manipulate other built-in variables such as
path. For a discussion of all the shell's built-in variables and what they do, see the
csh(l) reference page. Your script can create other variables as it needs them. You
can use any names you like, except for those already given to built-in variables.

9.4.1 Setting String Variables
To create a string variable or change the value of an existing one, you use the set
command, like this:

set myvar=Testing

This command creates a variable named myvar and assigns the string value
"Testing" to it. If the string you are assigning contains spaces, you must surround it
with quotation marks, like this:

set myvar="Testing one two three"

C Shell Scripts 9-3

The shell treats a variable created in this way as a single "word" even though to you
it consists of four words. You can create a variable that the shell will see as having
multiple words by enclosing your value in parentheses:

set myvar=(Testing one two three)

Section 9.5.1 explains how to use multi word variables.

9.4.2 Setting and Manipulating Numeric Variables

To create a numeric variable, you set it as if it were a string variable:

set lines=8

Once you have created a numeric variable, you can manipulate it by using the shell's
@ command. Although the variable was originally created as a string, the shell
converts between numbers and strings as needed. Numeric variables must be
integers, and any non-integer results are truncated to return integers. Note that the
shell observes proper algebraic hierarchy, performing multiplication and division
before addition and subtraction. You can use parentheses to alter the sequence of
operations. For example:

set lines=8
@ lines = ($lines + 2) I 3
set lines=8
@ lines = $lines + 2 I 3

In the first @ command, the addition is performed first because it is within
parentheses. Then the division is performed, giving a result of 31/3. The shell
truncates this result to the integer value of 3. The second @ command performs the
division first, making the result equal to 82/3. The shell then truncates this value to 8.

As shown in this example, you must separate the elements of your expression with
spaces. A list of available mathematical operators is shown in Section 8.1.2.

9.4.3 Setting Binary Variables
To set a binary variable, you use a set command with the variable's name and no
argument, as in this example:

set noclobber

As with string and numeric variables, setting a binary variable actually creates the
variable; before you set it, the variable does not exist.

9.4.4 Removing Variables

To remove a variable, use the unset command:

unset myvar
unset lines
unset noclobber

After you enter one of these commands, the variable named by the command will no
longer exist. (When the shell tests a binary variable such as noclobber, it is
actually just testing to see if that variable exists.)

If you refer to a variable that you have unset, the shell returns this error:

variable-name: Undefined variable.

9-4 C Shell Scripts

9.5 Using Shell Variables
Once you have created a variable, you can use it in other commands by referring to
its name. When you refer to a variable, you must precede the name with a dollar
sign ($) to indicate that you are referring to a variable instead of a file, a command,
or an ordinary text string. For example:

set myvar="Testing one two three"
set lines=8
echo $myvar
echo $lines

The first echo command returns Testing one two three, and the second returns the
string 8; in this example, these values are displayed on the standard output. You can
redirect output just as when using the shell interactively. If you try to refer to a
binary variable in this way, the shell returns nothing.

9.5.1 Using Multiword Variables
Section 9.4.1 shows how to set multiword string variables. You can use a multiword
variable either as a single entity or as multiple words, and you can modify individual
words. To address a single word, you use the variable's name followed by the
numeric position of the word in brackets. For example:

set myvar=(Testing one two three)
echo $myvar[2]

The shell returns the value of the second word, one. This ability to address individual
words of a variable is very useful when dealing with command-line variables, as
explained in Section 9.5.3.

If you modify a word of a multi word variable, that word becomes part of the
complete variable. For example:

set myvar=(Testing one two three)
set myvar[2]=ONE
echo $myvar

The shell returns Testing ONE two three. You can specify a range of words in a
multiword variable by using a construct like this:

echo $myvar[2-3]

The shell returns one two. You can also use a variable as the bracketed index as in
the following example:

set myvar=(Testing one two three)
set index=2
echo $myvar[$index]
@ index = $index + 1
echo $myvar[$index]

The first echo command returns one, and the second returns two.

9.5.2 Testing Variables
You can find out if a variable exists by using the notation $? name; this construct
returns the string 1 if a variable called name exists, and 0 if not. You can also find
out the number of words in a variable with $ # name. For example:

set myvar=(Testing one two three)
set othervar="The quick brown fox"

C Shell Scripts 9-5

echo $?myvar
echo $?thirdvar
echo $#othervar
echo $#myvar

Returns 1 to indicate that myvar exists.
Returns 0 because thirdvar does not exist.
Returns 1 because othervar contains one word.
Returns 4 because myvar contains four words.

The last echo command returns 4 because myvar is a multiword variable created
with parentheses. If myvar had been created with quotation marks, the shell would
consider it, like myvar, as containing only one word.

Some scripts can use variables having only true/false values; this is an application for
binary variables. You can create binary variables and later use the $? name fonn to
test them. For example:

echo $?binaryvar
set binaryvar
echo $?binaryvar
unset binaryvar
echo $?binaryvar

Returns 0 because binaryvar does not exist yet.
Setting binaryvar creates the variable.
Returns 1 because binaryvar now exists.
Unsetting binaryvar removes the variable.
Returns 0 because binaryvar no longer exists.

Section 9.8.1.1 shows how to test binary variables in a script.

9.5.3 Using Command-Line Variables

When you enter a command interactively, the shell creates a variable called argv.
This variable is a multiword variable that contains the entire command line except
the command name itself. For example:

vizier> swap sample! sample2

When you enter this command, the argv variable receives the string value
"samplel sample2". You can refer to individual words of argv as $argv [1] ,
$ a rgv [2] , and so on. You can also use $1, $ 2, and so on as shorthand names.
Although the command name is not included in argv, it is assigned to the variable
named $ 0 so that you can use it if you need it. The s w a p script demonstrates how
to use these command-line variables. When you enter the swap command, the shell
substitutes the values of its command-line variables for the variable names. If you
entered the swap command with sample1 and sample2 as arguments, what
would actually happen is this:

mv samplel swap.tmp
mv sample2 samplel
mv swap.tmp sample2

Although you should seldom find the need, you can modify argv before its
individual components are used in the same way that you can modify any other shell
variable. For example, suppose you have a script that expects a comma-separated list
such as joe, marge, bev, bi 11 for its first argument. Because typing a space
after a comma is a common habit, you might inadvertently enter your command this
way:

vizier> writemail joe, marge, bev, bill

If you did this, the infonnation would be broken into four words ($1 , $ 2, $ 3, and
$4) instead of being assigned to only one ($1). By passing argv through the sed
stream editor before using the individual words, you can restore the desired oneness
to the list of names:

set argv='echo $argv I sed 'sl, *1,/g"

This line substitutes a single comma for each occurrence of a comma followed by
any number of spaces. Any later use of individual numbered arguments will address

9-6 C Shell Scripts

the arguments as you intended. (The use of grave accents in this example is
explained in Section 9.6.)

You can use $ * as a shorthand notation for $argv, and you can use ranges of words
as with any multiword variable. For example:

echo $argv[1-3]

9.5.4 Using Special Variables
There are some special variables built into the shell to allow you greater freedom and
power in creating scripts. This section describes these variables.

9.5.4.1 Reading User Input - There is a special variable name, $<, that is replaced by the
next line of input read from the standard input (not the script). This form allows you
to create interactive scripts:

echo -n "Enter yes or no: "
set yn=($<)

This example prompts the user for an entry and then returns the response in the
variable yn. (The -n option for the echo command causes the echoed text to be
displayed without moving the cursor to the next line.)

9.5.4.2 Using a Script's Process 10 - The name $ $ returns the process identification
number (process ID) of the current shell. Because a process ID is unique, you can
use this variable to create unique temporary file names. For example:

set tempfi1e=cmd_$$.tmp

If this command is used by a process whose process ID is 21873, teropfi1e will
receive the value crod _ 21873 . trope

9.5.4.3 Reading Command Result Status - The shell provides a built-in variable that
you can test, called status. This variable contains the result of the preceding
command. If the command succeeded, $ s tat us is zero; if the command failed,
$status is nonzero. Depending on the command, nonzero results can reflect
different kinds of errors that the command encountered. The status variable is
treated as a numeric variable.

9.6 Substituting Command Output
You can use the output of a command as an argument for another command. This is
not the same as piping, which uses one command's output as input to the next.
Suppose you want to know the size of the nroff binary. To find this information
interactively, you could use the which and ls commands:

vizier> which nroff
/usr/bin/nroff
vizier> 1s -1 /usr/bin/nroff
-rwxr-xr-x 1 root 58368 Mar 8 1989 /usr/bin/nroff

You cannot use two separate commands in this way in a script because there is no
way to feed the which command's output to the ls command. However, there is a
way to perform this task, either interactively or in a script, by using grave accents
(') to include the which command into the ls command:

1s -1 'which nroff'

C Shell Scripts 9-7

The command enclosed by the grave accents is executed, and its output is substituted
for the accents and their contents. In this example, which returns the location of the
n r 0 f f binary; this information is then used by 1 s to return the directory
information.

This substitution technique is useful if you want your script to display messages that
look like standard system messages, as in this example:

vizier> hits -s
usage: hits [-f index-file] { -m file... I [-s [n]] string }

You can display this kind of message with a simple echo command:

echo "script-name: error text"

This technique works, but it is not generic. For example, a script name like
weekly-report-generator doesn't look much like a typical ULTRIX
command name. When you give this script to your system administrator to be
installed publicly, it might be named wkrepg instead. Any error messages you have
included that display the longer name can look out of place. You can use command
substitution to make a script find out what its own name is with the basename
command:

set myname='basename $0'

The variable $ 0 contains the full path of the command. The basename command
strips away everything except the base name of the script file. You can use the result
as the command's name in messages, like this:

set myname='basename $0'

echo "$myname: error text"

If the weekly report generator script displays an error message, that message might
look like this:

wkrepg: can't find last week's report

9.7 Running Other Scripts
Just as you can execute system commands, you can also run other scripts from within
your script. Often you will not even know that you are doing this, because scripts
that are run this way behave the same as binary programs.

To run another script you can simply use its name, but when you do this a new shell
is created to run that script. This means that variables set by the subsidiary script are
not set in the calling script's environment. If the subsidiary script changes to a new
working directory, for example, the calling script will still be in the original working
directory when the subsidiary script finishes. (The name of the current working
directory is a C shell variable called cwd.) Sometimes this is what you want to do,
but sometimes you want the second script to affect the script that called it.

You can run a subsidiary script and have it behave just as if it were part of the main
script by using the source command. For example, the script that formatted this
book begins with a command like this:

source $bkl/set_defaults

9-8 C Shell Scripts

The set _de fa u 1 t s script executed by this command specifies what text
processing tools and parameters will be used by the fonnatting script. Because it
uses this second script, the complex main script can be installed on different systems
without having to be modified; the simple subsidiary script tailors the environment to
use the tools provided on each individual system. The bkl variable is the name of
the directory where the main script and its set_defaults subsidiary script are
stored. The main scrIpt finds what this directory is by using the dirname command
as in this example:

set bkl='dirname $0'

The dirname command does the opposite of what basename does, returning the
directory name instead of the command's name.

You can use the source command to activate changes you make in your .login
file. For example:

vizier> cat » .login
set ignoreeof
ICTBUJ
vizier> source .login

9.8 Making Decisions
The C shell provides control structures that allow your scripts to make decisions and
act accordingly. Decisions result from testing expressions. An expression is a string
or a number. Shell variables are the most common type of expression; file names are
another type. The shell can evaluate single expressions, or it can compare two
expressions with each other. You create a test by enclosing the expression or
expressions to be tested in parentheses. (The parentheses are required.)

9.8.1 Testing Expressions
The following sections describe how to fonn expressions. Once you know how to
fonn expressions, you can use them in control structures to make decisions.

9.8.1.1 Testing Expressions Against Primitives - The shell can evaluate a single
expression by testing it against one of a predefined set of conditions called
primitives. The following example checks to see whether a file called myfile
exists:

(-e myfile)

If myfile exists, the result of this test is true. The complete list of primitive tests
is:

- d The file is a directory.
-e The file exists.
- f The file is a plain file, not a directory.
- 0 You own the file.
- r The file has read pennission.
-w The file has write pennission.
- x The file has execute pennission.
- z The file has a size of zero.

C Shell Scripts 9-9

You can test for the existence of a variable without using a primitive. For example,
suppose you have a script that uses a binary variable called bvar. You can test
bvar this way:

($?bvar)

This test returns a true result if bvar is set (that is, if it exists).

9.8.1.2 Testing Expressions Against Other Expressions - The shell compares
expressions using a set of relational operators, most of which are also used in the C
programming language. The following example tests to see if the shell variable
f n arne is the same as the string ".cshrc":

($fname == ".cshrc")

If the expressions match, the result of the test is true. You can test an expression
against a fixed string or number, or you can test one expression against another as in
the following example:

($file1 == $file2)

The following list shows the relational operators you can use:

Equal to
! = Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Matches an expression containing filename-expansion characters
I '" Does not match an expression containing filename-expansion characters

The magnitude comparisons work only with numbers; you cannot test whether "a" is
greater than "A". The following example tests whether the variable xx is greater
than 9:

($xx > 9)

The filename-expansion operators are particularly useful because they allow you to
use a limited subset of variable expressions in the expression you are testing against.
You can use asterisks (*), question marks (?), and expressions in brackets ([])
or braces ({ }). For example, you can test a variable against a wildcard expression
as follows:

($fname =~ book.*)

This test returns a true result if fnarne matches any string beginning with the
characters "book." Note that this expression is not a standard RE; the period is not
a meta character, and it is included in this test. The following example uses filename
expansion to test for a match only on six possible strings from book. 1 to book. 6:

($fname =~ book. [1-6])

While the filename-expansion operators don't give you the full power of REs, they
do allow a great deal of freedom. See the c s h(1) reference page for a discussion of
filename expansion.

9-10 C Shell Scripts

9.8.1.3 Combining Expressions - Occasionally you need to make two or more tests to
determine a single course of action. You can perform this task by using logical
operators to combine tests. The two logical operators available are these:

&& and
I I or

The following example uses the "and" operator to combine two tests into a single
test:

(($filel != "") && ($file2 != ""))

This test returns a true result only if both of the variables are not null. Note that both
tests are nested within an enclosing set of parentheses. The shell statement can test
only a single expression at a time; nesting in this way makes the shell evaluate each
of the inside tests first and then evaluate the combination.

You can use the "or" operator in the same kind of structure to test whether one of
the arguments is null:

(($file1 == "") II ($file2 == ""))

This test returns a true result if either variable is null.

9.8.2 USing Control Structures with Expression Tests

Control structures use the results of a test to determine what happens next in a script.
By using the shell's control structures you can perform the following actions:

• Choose between two or more courses of action, including (if desired) doing
nothing

• Execute a series of commands repeatedly using the same or different parameters
each time

The following sections describe the shell's control structures and how to use them.

9.8.2.1 The if Statement - The simplest option available for changing the flow of a script
is the if statement. You can use the if statement to execute a single command
based on the results of a test. The following example tests for the existence of a file
called myfile; if the file is present, the script copies it to a second file as a backup.

if (-e myfile) cp myfile myfile.backup

The if statement can be extended to perform more than one command based on the
tested condition. By adding the keyword then to the if line, you can specify a
series of commands to be executed if the test is true. You end this series of
commands with the endif statement. For example, you can maintain and edit files
with a short script like this:

if (-e $1) then
cp $1 $1. bak
vi $1
nroff -ms $1 I lpr

endif

This example expects a command-line argument to specify the file you want to work
with. If the file exists, the script saves a copy for backup, invokes the vi editor to
modify the file, and then processes the changed file through nroff and lpr to print
the results of your changes. Note that the lines within the if-then-endif

C Shell Scripts 9-11

structure are indented. You don't have to indent like this, but indenting helps you to
keep track of control structures, especially if you nest one within another.

You can use the else keyword to make your script take alternative action if a test
fails. For example, the following script is the same as the one before except that it
displays an error message if the desired file does not exist:

if (-e $1) then
cp $1 $l.bak
vi $1
nroff -ms $1 I lpr

else
echo "File $1 not found"

endif

If you fail to specify an argument for this script on the command line, the shell will
abort with an error. If this script happened to be part of a much longer script, then
this error could be catastrophic; you can protect against it by checking to ensure that
there is an argument:

if ($1 == "") then
echo -n "Enter file name: "
set argv=($<)

endif
if (-e $1) then

cp $1 $l.bak
vi $1
nroff -ms $1 I lpr

else
echo "File $1 not found"

endif

If this example finds that the first command-line argument is null, as it would be if
the filename argument were missing, the script prompts for a file name.

9.8.2.2 The while Statement - The last example in Section 9.8.2.1 shows one way to
protect from accidental misuse of a script; it asks for a file name if one isn't entered.
But if you made a second mistake and pressed RETURN in answer to the
Enter file name: prompt, the script would abort the same as if it had never
asked for a file name. The shell's while statement provides a convenient way to
execute commands repeatedly as long as a given condition is true; in this case, the
condition can be the nonexistence of that all-important file name. You end the list of
commands to be controlled by the while statement with an end statement. The
following example shows how the while statement can be used to make this script
foolproof:

while ($1 == '''')
echo -n "Enter file name: "
set argv=($<)

end
if (-e $1) then

cp $1 $l.bak
vi $1
nroff -ms $1 I lpr

else
echo "File $1 not found"

endif

When you run this script, the while statement tests for the argument. If there isn't
one, the script prompts for it, and if you enter just a RETURN the script will prompt
again. Only when you have entered a non-null response will the while statement's
test fail, allowing the script to continue. A structure like this that allows you to

9-12 C Shell Scripts

execute the same commands repeatedly is called a loop; in this example, it is a
while loop.

9.8.2.3 The foreach Statement - You can design a script that will perform a series of
actions repeatedly using a list of items, such as file names. The foreach and end
statements create a loop that will execute a fixed number of times, one for each item
in the list. The following example copies each named file for backup:

foreach fname (book-chapterl book-chapter2 book-chapter3)
cp $fname $fname.bak

end

The foreach statement creates a variable to control its loop; in this example, the
loop variable is named fname. The list of file names to be used is in the
parentheses. The first file name is assigned to fname and the script copies that file,
creating book-chapterl. bake Then the second file name is assigned, and the
process is repeated until the list of names is exhausted.

You can use filename expansion in the list for a foreach statement; for example,
book-chapter* produces a list of all the matching files. You can also use
variables in the list; for example, the following commands could be used in a script
that would make backup copies of files you name as command arguments:

foreach i ($argv)
cp $i $i.bak

end

9.8.2.4 The switch Statement - One way to take several different courses of action based
on the value of an expression is to use a series of if statements, as in this example:

if ($x "one") perform choice 1
if ($x "t wo") perform choice 2
if ($x "three") perform choice 3
if ($x "four") perform choice 4

This design works, but it is inefficient because each of the if statements must be
executed to evaluate the expression repeatedly until a match is found. Each of the
if statements after the matching one also will be executed. If a given choice
involves several commands, then that choice must be implemented with an if­
then -endi f structure. This design also fails to provide for an action to be taken if
none of the tests is satisfied.

The last of the shell's control structures, the s wit ch statement, simplifies this sort
of task. This statement allows you to test an expression against several different
expressions and take a different set of actions for each possibility. It also provides
for a default course of action. The preceding example can be implemented with the
following switch structure:

switch ($x)
case "one":

perform choice 1
breaksw

case "two":
perform choice 2
breaksw

case "three":
perform choice 3
breaksw

case "four":
perform choice 4

[j]

C Shell Scripts 9-13

breaksw
default: ~

perform default action
endsw 151

Note the following items in this example:

II] The switch statement evaluates the expression $x.

121 This case statement looks for a match on the string "one". If $x matches
this string, then the first choice of action is performed. This action can be as
complex as required, involving many commands including other control
structures.

I3J The breaksw statement signifies the completion of the actions taken for this
choice. It tells the script to ignore everything from this point until the endsw
statement. If you omit the breaksw statement, the script will fall through and
execute the statements controlled by the next case (or defaul t) statement.
You can take advantage of this "omission" feature as in the following
example:

case "backup"
cp myfile myfile.bak

case "edit"
vi myfile
breaksw

endsw

If the tested expression matches "backup", the script copies the file for backup.
It then ignores the case "edit" statement and continues by invoking vi. If
the expression matches "edit", vi is invoked but no backup is done.

~ The default statement specifies the action to be taken if none of the cases is
matched. This part is optional. You need it only if you want your script to
take default action.

~ The endsw statement ends the switch structure.

9.9 Handling Errors
The exit command provides a way for a script to stop after executing only part of
its commands, without having to go all the way to the end. This ability is useful for
making a script stop gracefully when it detects errors either in the user's use of the
script or in executing commands. This is not the same as detecting shell errors such
as a missing argument for a cp command. Shell errors can make your script do
bizarre things; depending on what the error is, you might get an error message, or the
script might simply be aborted with no clue as to where in the script the error
occurred.

By including commands to check for missing or invalid arguments, you can prevent
shell errors so that your scripts will exit gracefully instead of crashing or doing the
wrong thing. You can use the exi t command as in this example:

cp $1 $2 >& Idev/null
if ($status != 0) then

echo "Error during copy operation"
exit

endif

To avoid bothering the user with a system error message that might occur on the cp
command, this example redirects error output to an imaginary file that serves as a

9-14 C Shell Scripts

"bit bucket." (Anything written to /dev/null simply disappears.) The example
checks the result of the cp command by examining $ s tat us; if the command fails,
the script displays an error message and exits.

If no argument is supplied to the exi t command, the script's final status is the
status of the last non-exit command that was executed. Since the exi t command in
this example is preceded by an echo command, which will never fail, this script
would always return success status upon exiting. But if an argument is supplied, as
shown in the following example, the value of that argument is returned as final
status.

cp $1 $2 >& /dev/null
if ($status != 0) then

echo "Error during copy operation"
exit 1

endif

The exit command in this example returns nonzero status when the cp command
fails. You can examine that final status by looking at the status variable after the
script finishes. Also, when you run a script in the background, the shell reports its
final status. For example:

vizier> copyscr ruba~yat rubaiyat.bak &

[1] Done copyscr rubaiyat rubaiyat.bak

If the copy operation fails, the job will return the following error status:

[1] Exit 1 copyscr rubaiyat rubaiyat.bak

In this case, the error status isn't particularly useful because the script will also have
reported its own error. But using exit arguments has a second benefit in scripts:
Setting s tat u s allows your scripts to be called by other scripts; your scripts will
work just as if they were standard commands, returning error status that a calling
script can act on.

9.10 An Example C Shell Script
The shell script shown here as Example 9-1 employs most of the shell programming
techniques discussed in this chapter. Use it as an example of ways to combine
functions in a script.

Writers using operating systems other than UL TRIX often use text formatting
systems whose input files are not compatible with UL TRIX formatting tools. If this
manual had been written using one of these systems, the input file for the section you
are reading might look like this:

<HEAD1> (An Example C Shell Script\script_example_section)

<p>
The shell script shown here as Example 9-1
employs most of the shell programming techniques discussed
in this chapter. Use it as an example of ways to combine
functions in a script.

<p>
Writers using operating systems other than <REFERENCE> (u3)
often use text formatting systems whose input files are not
compatible with <REFERENCE> (u3) formatting tools. If this

C Shell Scripts 9-15

manual had been written using one of these systems, the input
file for the section you are reading might look like this:

The script shown in Example 9-1, called docIDs, converts this system's files into
files that ULTRIX tools can process. The conversion is accomplished by means of
the sed stream editor with a set of editor scripts that recognize formatting constructs
and translate them into equivalent formatter commands and macros for an enhanced
IDS macro package. The dOCIDS script uses a series of sed scripts because of
limitations inherent to the sed editor. The result of translating the example text into
IDS form would look like this:

.NH 2
An Example C Shell Script
.LP
The shell script shown here as Example 9-1
employs most of the shell programming techniques discussed
in this chapter. Use it as an example of ways to combine
functions in a script .
. LP
Writers using operating systems other than <REFERENCE>(u3)
often use text formatting systems whose input files are not
compatible with <REFERENCE>(u3) formatting tools. If this
manual had been written using one of these systems, the input
file for the section you are reading might look like this:

Note that not all the foreign constructs are translated; some of them have no direct
equivalents in ULTRIX tools, and they are left for the user to handle manually.
Example 9-1 shows the shell script that performs the translation.

Example 9-1: Sample C Shell Script

#! /bin/csh

[]

9-16 C Shell Scripts

This script drives the conversion of an XYZ formatter
source file into *roff -ms source format using
sed (1) .

Related files:

doc-ms-global?
doc-ms-last
doc-ms-<document_type>?

Init variables.

set loc='dirname $0'
set cmd='basename $0'

main processing
final pass, cleanup
(opt. for document-type)

set stamp="$$'date +'%H%M%S' '" ~
set just="l"
set document_type=""
set errors="no"
set use_err="usage: $cmd [-options] infile [outfile]"

Parse switches, if any.

foreach i ($argv)

Example 9-1: (continued)

if ("$i" =- -[A-Za-z]) then
switch ($i)

case "-j":
shift
set just="$l"
switch ($1)

case "1":
case "r":
case "b":

shift
breaksw

default:
echo "$use_err"
exit 1 IZJ
breaksw

endsw
breaksw
case "-d":
shift
set document_type="$l"
switch ($1)

case "article":
set just="b"
shift
breaksw

case "software":
shift
breaksw

case "special":
shift
breaksw

default:
echo "$cmd: unsupported document-type"
exit 1
breaksw

endsw
breaksw

case "-e":
set errors="y"
shift
breakSw

case "-v":
set verbose
shift
breaksw

default:
echo "$use_err"
exit 1
breaksw

endsw
endif

end

Done handling switches - what's left must be the file name.

if ("$1" == "") then
echo "$use_err"
exit 1

endif
if (! -e $1) then

echo "$cmd: no input file"
exit 1

endif

C Shell Scripts 9-17

Example 9-1: (continued)

Now create the justification control file and do the
processing.

echo" .ds ZJ $just" > $cmd. j I9J
echo ".ad n" » $cmd.j
echo ".ad " » $cmd.j
cat $cmd.j $1 > $l.tmp
rm $cmd.j

Do the optional document-type processing if called for.

if ("$document_type" != '"') then [Q]
foreach sedfile ($loc/doc-ms-$document_type?)

sed -f $sedfile $l.tmp > $stamp.tmp
mv $stamp.tmp $l.tmp

end
endif

Now do the main processing.

foreach sedfile ($loc/doc-ms-global?)
sed -f $sedfile $l.tmp > $stamp.tmp
mv $stamp.tmp $l.tmp

end
if ($2 != "") then

sed -f $loc/doc-ms-last $l.tmp > $2
if ("$errors" == "y") then

echo "$cmd: Unprocessed tags" > $2.err
echo »$2.err
echo" Input file: $1"» $2. err
echo" Output file: $2"» $2.err
echo" Processed on: 'date'" » $2.err
echo »$2.err
echo "Line

"----
Tag or tags" » $2.err
-----------" » $2.err echo

grep
endif

-n "<.*>" $2 I sed 's/:/: /' » $2.err

else
sed -f $loc/doc-ms-last $l.tmp

endif

Processing complete. Remove intermediate file.

rm $l.tmp ~
exit a

End of script.

Note the following points in this script:

ill This line specifies that the docms script is a C shell script.

121 These lines determine the location and actual name of the script file. The sed
editor script files used by docms are all stored in the same directory. This
design makes docms usable by any user on the system no matter what the
user's current working directory is.

I3J This line creates a timestamp to use in generating unique temporary file names
by combining the time of day with the user's process ID. This timestamp
makes sure that even if two users are running docms simultaneously in the
same directory their temporary files will not conflict.

9-18 C Shell Scripts

~ This section of code parses the command options by working through the argv
variable one word at a time.

~ This if statement uses filename expansion to check that the word being
processed is a letter preceded by a minus sign (-). Any other string is an
argument to one of the options (such as the document-type name that follows
the - d option), a file name, or a mistake. Only words that satisfy the if test
are processed further.

!§] The shift statement moves all the words of argv one place to the left: $2
is moved to $1, $ 3 is moved to $ 2, and so on. The current $ 1 is lost. This
technique is used in docms so that when an option requiring an argument is
found, the argument will always appear in a known position, as $1. If the
words of argv were not shifted in this way, the script would have to keep
track of the number of each word it processes. Then, if a given word is an
option that requires an argument, the script would have to calculate the number
of the next word in order to use that next word. The shift statement is also
used at the end of the switch structure to move the words along each time a
word is processed, again so that the script will not have to perform the numeric
calculation to keep track of the words.

IZI This exit statement ends the script on detecting an error by the user. Similar
exi t commands are used for all the possible user errors. Nonzero status is
returned in each case. Note that the cmd variable supplies the script's actual
name in the error messages.

[8] This code makes sure the user specified an input file that actually exists.

191 This section of code creates the beginning of a temporary file. Several nroff
commands are inserted to support the - j option. This option allows the user to
specify whether the output file should be justified to the right, left, or both
margins when formatted. (The. ds ZJ $ just command creates a string
variable for nroff to use, and the. ad commands disable justification and
then reenable it in the way specified by the user.)

Note that the option processing done in the foreach loop automatically sets
for justification to both margins if the article document type is specified.
You can use this kind of design to do many of the low-level tasks associated
with running your script.

[Q] These two foreach loops do the actual translation of the file. If no special
document type was specified, then the first loop is not executed. Note that each
pass through one of these foreach loops processes the file through sed and
then renames the temporary output using the name of the temporary input. This
design allows any number of sed scripts to be used in each loop; the
article document-type, for example, could be processed with a single
document-type-specific sed script while the special document-type might
take three scripts. The person who maintains the do cms tool can create new
document-type-specific processing without worrying about the consequences of
having different numbers of scripts.

[1] This section of code handles the -e option. If the user has specified both the
-e option and an output file name, then docms runs grep on the final output
file to produce a listing of the foreign formatting commands that do cms might
not have processed properly.

[2J This line removes the last temporary file that was created during the process.
Scripts that create and use temporary files should always remove those files
upon completion so that the user's directory will not be cluttered with useless
files.

C Shell Scripts 9-19

When the do ems script is used, it might produce the results shown in the following
example:

vizier> docms -e samplel.inp samplel.nro
docms: errors detected - see sample.nro.err
vizier> cat samplel.nro.err
docms: Unprocessed tags

Input file: samplel.inp
Output file: samplel.nro
Processed on: Wed Jul 25 14:40:00 EDT 1990

Line Tag or tags

13: Writers using operating systems other than <REFERENCE> (u3)
15: compatible with <REFERENCE>(u3) formatting tools. If this

9-20 C Shell Scripts

Examples of Using UL TRIX Tools A

The best way to gain facility with UL TRIX tools is to spend time working with
them. This appendix shows examples of how the tools described in this manual and
The Little Gray Book: An ULTRIX Primer can be used effectively. These examples
are from real applications.

A.1 Using sed and grep to Create nroff Macros
This section describes how you can use the sed stream editor, the sort command,
and the grep pattern-matching utility to extract information from a mail message
and reconstruct it into a series of nro f f text formatting macros. This example was
provided by a small amateur chorus.

When the chorus is preparing a concert program, the personnel manager sends a mail
message listing the participants to the program designer. This message is not suitable
for formatting; it looks like this:

From howard@djinn Mon Dec 10 10:40:56 1990
Received: by vizier.chorus.org (5.57/dv.5.yp)

id AA26651; Mon, 10 Dec 90 10:42:36 EDT
Date: Mon, 10 Dec 90 10:42:36 -0500
Message-Id: <9012111542.AA14867@vizier>
From: howard@djinn (Sandy Howard, Personnel Manager)
To: holland@vizier
Subject: List of concert participants
Status: R

Performers in holiday concert

ogier@kublai
delores@minaret
strangways@kaaba

scott@minaret
peters@kaaba

bill@kublai
french@minaret

John Ogier -- conductor
Delores Wilson -- accompanying
Wendy Strangways -- accompanying

Evelyn Scott -- soprano
Kate Peters -- soprano

Bill Hodges -- bass
Marvin French -- bass

The mail message contains all the required information, but there is also much
extraneous information, and what is needed is not in the correct order.

The program designer uses this information to create a formatted list of singers for
the back page of the program. The list is formatted by a special set of n r 0 f f
macros called the rou sic macro package, designed for the chorus by the
administrator of their system. The formatted list of personnel is shown at the end of
this section. To create this list of performers from the mail message, the personnel
manager uses the following shell script:

#! /bin/csh
sed -f crew.sed crewmail > forces.tmp OJ
grep -v 'AM' forces.tmp I sort +0 -1 +2 I \ ~
sed 's/A1/.SS/iS/A2/.Sa/;s/A3/.St/;s/A4/.Sb/' > forces ~
grep 'AM' forces.tmp I sort +0 -1 +3 I \ ~
sed 's/M[S6]/.MG/i/C~nduct/r extra-management' » forces
rm -f forces.tmp ~

The callouts in this example indicate the following features:

OJ This sed command edits a file called crewmail to create a temporary file
called forces. tmp. The editing is done by the following sed script, called
crew. sed:

1, /A$/d I§]
/@/!d
S/A.*~] [ITAru]*// [Z]
/--[TAB * [Cc]onduct/{ [8]

s/ [T B] *--. * /" /
s/A/MS Conductor /

}

/--[~]*[Aa]ccomp/{
s/[!ll&I]*--.*/"/
s/A/M6 Accompaniment /

}
/--[~]*[Ss]oprano/{

s/[!ll&I]*--.*//
s/A/A1 /

This sed script makes the following changes:

I§] This command deletes the mail header by deleting everything from line 1
to the first blank line. The next command deletes all lines that do not
contain an at sign (@), leaving just a list of the concert participants' mail
addresses, their names, and the parts they have in the concert.

[Z] This line deletes the mail addresses by substituting a null string (no
characters) for everything from the beginning of the line through any
amount of white space after a number sign, leaving just the people's
names and the parts they have in the concert. For example, the following
line is from the mail message:

ogier@kublai # John Ogier -- conductor

It is changed into this:

John Ogier -- conductor

l8J This compound command finds any line containing "-- conduct" or "--
Conduct", deleting everything after the person's name and inserting a

dummy character sequence (M5) and the word "Conductor". (The
dummy sequence will be used for sorting the file, and it will later be
replaced by a . MG macro call. The line illustrated in the previous step
now looks like this:

M5 Conductor John Ogier

The remaining sections perform similar conversions for accompanists and
singers, creating lines starting with M6, AI, A2, and so on, for
accompanists, sopranos, altos, tenors, and basses. These dummy

A-2 Examples of Using UL TRIX Tools

sequences will later be replaced by . MG, . Ss, . Sa, . St, and. Sb macro
calls.

121 This grep command finds the sopranos, altos, tenors, and basses; its -v option
says to avoid all the lines starting with M. The remaining lines are piped to a
sort command that sorts them first in order of the dummy sequences inserted
by the earlier sed command and then in order by people's last names. The
result is a file sorted by sections (sopranos first, then altos, and so on), and
alphabetically within sections. (The backslash at the end of the line "hides"
the new-line character from the shell, causing the shell to read the next line as a
continuation of this one.)

Ial The sorted output from the previous line is piped into another sed command
that substitutes the correct macro names for the dummy strings, writing its
output to a file named forces.

~ This grep command is like the first except that it passes only the lines
beginning with M. Its output is also sorted and piped to a sed command. In
addition to replacing the dummy strings, this sed command reads in a separate
file after the "Conductor" . MG macro call. This additional file includes the
names of administrative people. The output is concatenated onto the end of the
forces file.

15] This rm command removes the temporary file, leaving forces as the final file.

The final for c e s file looks like this:

.Ss Carolyn Greenfield

.Ss Sandy Howard

.Sb Bert Holland

.Sb Dan Pinkwater

.MG Conductor John Ogier

.MG "Administration and Music" Ruth Nelson

.MG "Administration and Membership" Sandy Howard

.MG Recording Dan Pinkwater

.MG Program Bert Holland

.MG "Arrangements and composition" Marvin French

.MG Accompaniment Wendy Strangways

.MG Accompaniment Delores Wilson

This file is one of several that go together to make up a complete formatted program.
These various files are included in the proper places in a master document file with
the nroff formatter's. so command; for example:

.so forces

The program is formatted using the following pipeline:

vizier> nroff -rns -music program I col > program.nro

The nroff command calls for both the ms and the music macro packages so that
macros from both can be used.

The col command aligns columnar information; this function is needed because all
the. Sa macros (alto singers) are listed after the. Ss macros (sopranos). The first
instance of the . S a macro backs up on the page so that the altos will be listed beside
the sopranos instead of below them. The. St and. Sb macros work similarly. The
final result looks like the following:

Examples of Using UL TRIX Tools A-3

The Madrigal Singers

Sopranos
Carolyn Greenfield
Sandy Howard
Diana Layton
Ruth Nelson
Kate Peters
Evelyn Scott

Tenors
Tracy Gervaise
Jim Slattery
Mike Weldon

Conductor:
Administration and Music:
Administration and Membership:
Recording:
Program:
Arrangements and composition:
Accompaniment:

Altos
Debbie Boland
Lisa Foster
Ginny Hovey
Kathy Kitchen
Alice Logan
Joanna Myron
Wendy Strangways

Basses
Patrick Barry
Ron Evans
Marvin French
Bill Hodges
Bert Holland
Dan Pinkwater

John Ogier
Ruth Nelson
Sandy Howard
Dan Pinkwater
Bert Holland
Marvin French
Wendy Strangways
Delores Wilson

A.2 Using the bc Calculator
This section shows how you can take advantage of the be calculator's
programmability to solve a repetitive problem quickly. The value of 1t (pi) can be
approximated by several different methods; among the simplest is the following
infinite series, described in 1674 by Gottfried Wilhelm Leibniz:

1£.=l-l+l-l+l
4 1 3 579

The series produces the following curve:

4

3

2

O+-+---+---+---+---+---r---r---~--~~~~~~--~--~--~---+--~
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Last Calculated Term in Series

Because this asymptotic series converges very slowly on the value of 1t (requiring
several million terms to achieve merely lO-digit accuracy), it is of no practical use.
For recreational purposes, how~ver, you can calculate it using the be calculator with
the following function definition, where x is the value of the largest term to be used:

A-4 Examples of Using UL TRIX Tools

define p(x) {
auto W,Y,z
w = 1
for (y=l; y<=x; y=y+2) {

z = z+w*l/y
w = -w

return (z*4)

After creating this be function as a file called pi-series, you can issue the
following commands to produce the values used for the graph shown earlier in this
section:

vizier> be pi-series
scale=30
for (x=l; x<=33; x=x+2) (p(x»
4.000000000000000000000000000000
2.666666666666666666666666666668
3.466666666666666666666666666668
2.895238095238095238095238095240
3.339682539682539682539682539684
2.976046176046176046176046176048
3.283738483738483738483738483740
3.017071817071817071817071817076
3.252365934718875895346483581780
3.041839618929402211135957265992
3.232315809405592687326433456468
3.058402765927331817761216065164
3.218402765927331817761216065164
3.070254617779183669613067917016
3.208185652261942290302723089428
3.079153394197426161270465024912
3.200365515409547373391677146124
quit
vizier>

Examples of Using UL TRIX Tools A-5

Tips and Tricks B

This appendix describes solutions for some of the more commonly encountered
problems or difficulties in using the UL TRIX system:

• Handling files with problem names

• U sing loops to rename files

• Creating a prompt with your working directory's name in it

• Redirecting standard output and standard error separately

Many of the techniques described here can be adapted and expanded to make other
tasks easier. Some of these techniques make use of special shell syntax; for
explanations of shell constructs you don't understand, see the csh(1) reference page.

B.1 Tricks with Files
This section describes several things you can do to manage your files more easily:

• Removing or renaming files whose names begin with a minus sign

• Removing or renaming files with odd characters in their names

• Renaming a series of files automatically

• Finding a file somewhere in your directories

B.1.1 Addressing Files Whose Names Begin with a Minus Sign

Many commands, such as rm and mv, cannot address a file whose name begins with
a minus sign because the minus sign causes the command to try to interpret the name
as an option instead of as an argument. The easiest solution to this problem is to
supply a more complete pathname for the file; if it is your current directory, you can
use . I-file as the name. For example:

vizier> rm .I-samplel

This way to prevent interpretation of the minus sign works with most commands.

B.1.2 Addressing Files wi~h Odd Characters in Their Names
It is possible to create a file whose name contains unusual characters that you cannot
see or, in some cases, characters that you cannot even type. For example, a control
character (CTRLjx) in a file name is normally represented by a question mark (?) in
directory listings displayed on a terminal. In listings sent to other destinations,
including commands in a pipeline, these characters are invisible unless you specify
the Is command's -q option. For example:

vizier> ls sample*
sample?l samplel

vizier> 18 samp1e* I more
samplel
samplel
vizier> ls -q samp1e* I more
sample?l
samplel

In the first and third commands, the question mark in the first file's name represents a
CTRL/A.

The usual solution to the problem of addressing files with names like this is to
specify the filename argument as an expression unique to the file you want. For
example:

vizier> rm -i samp1e*1

(U sing the - i option causes rrn to ask you for permission before removing each file.)
But this does not always work; in the example shown here, this pattern matches both
files, and the rrn command will display both names identically.

There are advanced techniques for addressing this problem, but the simplest way is
this:

1. Create a temporary directory using the rnkdir command.

2. Move all the files from the directory containing the offending file into the
temporary directory except the offending file or files. You can use individual
file names or wildcards as needed, so long as you don't use a wildcard that will
include the offending file or files.

3. Rename or remove the offending file or files, as follows:

a. If there is only one offending file, remove or rename it by using a
wildcard:

vizier> mv * newname
vizier> rm *

b. If there are multiple offending files, or if you can't move all the non­
problem files to a different directory, use this command sequence instead:

vizier> set count=l
vizier> foreach i (*)
? mv $i tempfi1e_$count
? @ count = $count + 1
? end

This sequence renames each file using a unique temporary name that
contains only normal characters, such as ternpfile_l, ternpfile_2,
and so on. You can now examine each file, removing or renaming it as
desired.

4. Move the other files back from the temporary directory and remove the empty
temporary directory.

8.1.3 Renaming a Series of Files Automatically
Depending on the kind of renaming you want to do, there are several techniques for
renaming multiple files with one command (actually a loop):

• Renaming *. x to *. Y

To change one file suffix to another, you can use the following loop:

8-2 Tips and Tricks

vizier> foreach i (*.x)
? mv $i $i:r.y
? end

This technique also works if you want to remove the suffix. The : r modifier
strips everything after the first period in the filename, returning the directory
path and base name of the file. This modifier is similar to the basename
command (described in Section 9.6), but the modifier works only on variables;
you cannot use it to modify a file name you have entered explicitly.

There are several other modifiers available to perfonn other manipulations of
file names. See the c s h(1) reference page for more infonnation.

• Changing part of the name; for example, renaming f ileA. * to be f i 1 eB . *
To change part of a name, you can use command substitution with a pipeline
that includes the sed stream editor. For example:

vizier> foreach i (fileA.*)
? mv $i 'echo $i I sed 's/fileA/fileB/"
? end

You can use other variations of this basic looping technique to create virtually any
combination of renaming that you need.

8.1.4 Finding a File Somewhere in your Directories

Sometimes you might have a file somewhere in your directory tree but not remember
where it is. You can change from one directory to the next, issuing an 1 s command
in each one until you find the file, but there is an easier way: Change to your home
directory and use the 1 s command's - R option. This option causes 1 s to list the
contents of your working directory and all subdirectories of your working directory.
If you are in your home directory, the command lists the contents of all your
directories.

This technique can only be used to give complete directory listings, however; you
cannot include the name of the file you're looking for in the 1 s command. For
example, you cannot do this:

vizier> Is -R report.txt

To find a file using its name, you can use the find command, as in this example:

vizier> find. -name 'report.txt' -print

The first argument for the fin d command is the name of the directory where the
search is to start; the command searches that directory and all the subdirectories
beneath it. In this example, the period means your working directory. (To find a file
anywhere in your entire directory tree, use a tilde ('") instead of the period.) The
-name option says to look for file names, and' report. txt' is the expression to
be matched. The -print option is an action that says to print the names of all files
matching the expression. The find command is very powerful; for more
infonnation about it, see the find(1) reference page.

B.2 Including Your Working Directory~s Name in Your Prompt
You can make the shell include the pathname of your working directory in your
prompt by inserting the two following commands in your .login file:

alias cd 'chdir \!* && set prompt="$cwd> '"
cd .

Tips and Tricks B-3

You must include the commands in the order shown here, or your prompt will not be
right until the first time you enter a cd command. To trim the directory name so that
only the actual directory name appears instead of the full path, use the following
commands instead:

alias cd 'chdir \!* && set prompt="$cwd:t> ",
cd .

This example makes use of another of the modifiers mentioned in Section B.l.3.

B.3 Redirecting Standard Error and Standard Output Separately
Normally, standard error and standard output are assigned to the terminal. When you
redirect standard output with a right angle bracket (>), standard error remains
directed to the terminal. Occasionally, you might want to redirect standard error as
well. For example, you might use a script for which you want to retain a log file
containing any error messages.

You redirect standard error by using an angle bracket and an ampersand together as
in this example:

vizier> ls sample2.* >& ls.log
vizier> more ls.log
No match.

However, when you use this symbol, standard error is redirected to the same file as
standard output. Often this result isn't what you want; for example, if you are
formatting a file with nroff, standard error messages will appear in the formatted
file.

You can redirect standard error separately from standard output by enclosing part of
your command in parentheses. For example:

vizier> (nroff -ms samplel > samplel.nro) >& samplel.log

Enclosing a command in parentheses causes the shell to start a subshell to run the
command. The redirection outside the parentheses redirects both standard output and
standard error from the subshell, but because standard output is already redirected
inside the subshell, only standard error messages appear in the error log file.

8-4 Tips and Tricks

Special Characters
, (apostrophe)

See apostrophe

I (slash)

See slash

! (exclamation point)

See exclamation point

(number sign)

See number sign

$ (dollar sign)

See dollar sign

$$ variable, 9-7

$< variable, 9-7

$status variable, 9-7

% (percent sign)

See percent sign

& (ampersand)

See ampersand

() (parentheses)

See parentheses

* (asterisk)

See asterisk

+ (plus sign)

See plus sign

: (colon)

See colon

; (semicolon)

See semicolon

? (question mark)

See question mark

@ (at sign)

See at sign

@ shell command, 9-4

[] (brackets)

See brackets

, (grave accent, back accent)

See grave accent

- (minus sign)

See minus sign

. (period)

See period

\ (backslash)

See backslash

It. (circumflex)

See circumflex

{ } (braces)

See braces

I (vertical bar)

See vertical bar

... (tilde)

See tilde

A

aborting a mail message, 6-5t

adding text, 3-6

commands for, list of, 3-5t

ending addition, 3-6

limitations of, 3-6

simulating where not possible, 3-7

address

Index

disadvantages of using line number as, 3-5

limitations of in sed editor, 3-16

number of, with editor commands, 3-6

searching backward for, 3-5

searching forward for, 3-5

shortcuts for, 3-4

using in the ed editor, 3-3

address (cont.)

using line number as, 3-4, 3-16

using line numbers as, 3-3

using minus sign as, 3-4

using period as, 3-4

using plus sign as, 3-4

using regular expression as, 3-5, 3-16

using regular expressions as, 3-3

using relative addresses, 3-3, 3-4

using with a command, 3-8 to 3-10

algebraic notation, 8-1, 8-lt, 8-2

hierarchy, 8-2

problems of ambiguity in, 8-2

eliminated by RPN, 8-10

strict hierarchy used by the shell, 9-4

ali command in MH, 6-13t

alias

including yourself in messages sent to, 6-7t

listing and specifying in mail, 6-2t, 6-10

listing in MH, 6-13t

alias command

in mail, 6-2t

ampersand

using in ed editor, 3-8

and operator

See logical operator

anno command in MH, 6-13t

apostrophe

addressing marked lines with, 3-10, 3-11 e

preventing meta character interpretation with, 2-4,

3-17

protecting white space from shell handling with,

4-5

append variable in mail, 6-7t

argv variable

definition of, 9-6

modifying before use, 9-6, 9-6e

shifting with the shift command, 9-19

using in a script, 9-13e, 9-16e

arrays in bc calculator, 8-8

ask variable in mail, 6-7t

askcc variable in mail, 6-7t

asterisk

in regular expressions, 2-4

Index-2

asterisk (cont.)

in shell, 9-7, 9-10

at sign

as field separator, 4-6, 5-4

CTRL/C echoed as in mail, 6-2t, 6-7t

as field separator

in Internet addresses, 6-11 t

for mathematical manipulation in the shell, 9-4

as field delimiter in Internet addresses, 6-11

auto command in bc calculator functions, 8-5

automatic variables in bc calculator functions, 8-5

autoprint variable in mail, 6-7t

awk utility

B

actions in, 4-4, 4-7

BEGIN keyword, 4-7e, 4-8, 4-1

description of, 4-4 to 4-8

END keyword, 4-5, 4-8, 4-8e

field separator

defined,4-5

specifying, 4-5, 4-6, 4-7e, 4-8

formatting numbers in, 4-8, 4-8e

information processing in, 4-4, 4-5e

matching on numerical expressions, 4-7

name of, explained, 4-4

pattern matching in, 4-4

printing information in, 4-6

printing selected fields in, 4-6e

processing after the end of the file, 4-5, 4-8, 4-8e

processing before the beginning of the file, 4-7e,

4-8

programming, 4-7

regular expressions used by, 4-5e

statement, form of, 4-4

testing conditions in, 4-7

backslash

identifying framed REs with, 3-12

in regular expressions, 2-4

in sed editor, 3-16

preventing meta character interpretation with, 2-4

base, numerical, 8-4, 8-11 t, 8-13

using unusual, for special purposes in bc calculator,

8-5

basename command, 9-8e

bc calculator

See also calculators

auto command in functions for, 8-5

control structures in, 8-7

creating and using command files in, 8-5

creating and using functions in, 8-5, 8-5e, A-4e

define command in functions for, 8-5

the for command, 8-7, A-4e, A-5e

functions

list of, 8-6t

names for, 8-5

syntax description for, 8-6

with no parameters, return zero result, 8-6

the if command, 8-7

including comments in functions, 8-6

library of functions for, 8-6

using, 8-6

parameters for functions in, 8-5

programming, A-4e

similar to C language, 8-6

relational operators, list of, 8-7

return command in functions for, 8-5

simplifying expressions in, 8-8

testing conditions in, 8-7

using semicolons in, 8-6

the while command, 8-7

BEGIN keyword in awk utility, 4-7e, 4-8

binary variables in the shell, 9-3

blank columns in tables, 5-8

block number, disk, 4-3t

braces

creating compound commands with, 3-18

in shell, 9-10

brackets

in regular expressions, 2-5

in shell, 9-10

breaksw keyword

in the shell, 9-14

buffer

considered as endless loop by ed editor, 3-5

in ed editor, 3-2

location of, 3-15

moving in, in ed editor, 3-3 to 3-5

buffer (cont.)

recovering, 3-15

burst command in MH, 6-13t

c
C language

constructs used in bc calculator, 8-8

relational operators used in the C shell, 9-10

similar to bc calculator programming language, 8-6

using constructs in bc calculator, 8-8

C shell

See shell

writing scripts for, 9-1 to 9-20

calculators, 8-1, 8-1 to 8-13

displaying registers in, 8-4

displaying results in, 8-10

entering commands for, 8-13

entering problems for, 8-3, 8-10

noninteger numbers in, 8-3, 8-12

precision of numbers in, 8-2, 8-10

programming, 8-6, 8-13

registers in, 8-4, 8-11t

scale of numbers in, 8-3, 8-12

specifying radix in, 8-4, 8-11 t, 8-13

temporary storage in, 8-4, 8-11 t

truncation of results by, 8-3, 8-12

using arrays in, 8-8

carbon copies in mail, 6-5t

case keyword

in the shell, 9-14

case-insensitive searching, 4-3t, 4-4, 4-4e

in grep and fgrep, with -i option, 4-4e

cat command

displaying line numbers with, 3-3

Cc: list in mail, adding names to, 6-5t

center keyword in tbl, 5-4

changing text, 3-6, 3-7, 3-8

commands for, list of, 3-6t

globally, 3-7

multiple times on a line, 3-7

using an ampersand, 3-8

character SUbstitution in sed editor, 3-20, 3-21e

Index-3

chdir command in mail, 6--2t

circumflex

excluding a match with, 2-6

matching the beginning of a line with, 2-6

col postprocessor

column alignment of nroff output with, A-3e, 5-2

colon

as escape command in mail, 6--5t

to initiate mail command while sending a message,

6--5t

columns in tables

See field

combining command options, 3-7

combining tests in awk utility, 4-7

command

using addresses with, 3-8 to 3-10

command files

in be calculator, 8-5

in sed editor, 3-16, A-2e

command line variables in shell scripts, 9-6

command name

available to shell scripts, 9-6

extracting base name part of in the shell, 9-8e

extracting directory path part of in the shell, 9-ge

command option

combining, 3-7

comments

in bc calculator functions, 8-6

in shell scripts, 9-2, 9-2e

communication

with other systems, 7-3

with other users, 1-2, 7-1 to 7-3

comp command in MH, 6--13t

compound commands in sed editor, 3-18 to 3-19

control structures

in awk utility, 4-7, 4-7e

in bc calculator, 8-7

the for command, A-4e, A-5e

in the shell, 9-11 to 9-14

the breaksw keyword, 9-14

the case keyword, 9-14

the default keyword, 9-14

the else keyword, 9-12

the end keyword, 9-12, 9-13

Index-4

control structures (cont.)

in the shell (cont.)

the endif statement, 9-11

the endsw keyword, 9-14

the foreach command, 9-13, 9-13e

the if command, 9-11, 9-11e, 9-17e, 9-18e

disadvantages of using, 9-13

purpose of, 9-11

the switch command

advantages of, over if command, 9-13,

9-13, 9-13e, 9-17e

test only one expression, 9-11

the then keyword, 9-11

the while command, 9-12, 9-12e

copy command in mail, 6-2t

coupling tools with pipelines, 1-1, 5-2

crash recovery in ed editor, 3-15

creating a new file with ed editor, 3-3

CRT screen

use by talk command, 7-2

crt variable in mail, 6-7t

.cshrc file

mail notification controlled by, 6-10

modifying to use MH system, 6-12

shell variables set by, 9-3

CTRL/C

See interrupts

current line

representing with a period, 3-4

o
dc calculator

See also calculators

commands, list of, 8-11 t

order of specifying input and output radices in,

8-13

separating operands, 8-10

testing conditions in, 8-11 t

using strings in, 8-11 t

using the RETURN key in, 8-10

dead. letter file

including in a mail message, 6--5t

preventing creation of, 6-7t

debug variable in mail, 6-7t

decomposing problems before calculation, 8-10

default keyword

in the shell, 9-14

define command in bc calculator, 8-5

delete command

in mail, 6-2t

deleting messages in mail, 6-2t

deleting text, 3-6

commands for, list of, 3-5t

in ed editor, 3-5

simulating where not possible, 3-7

digests

exploding into messages in MH, 6-13t

directory

changing in mail, 6-2t

dirname command, 9-ge

disk block number, 4-3t

displaying lines

in ed editor, 3-4

displaying nonmatching lines, 4-3t

displaying the mail message you are composing,

6-5t

dist command in MH, 6-13t

diversions, text, in tables, 5-5, 5-6e, 5-ge

dollar sign

as field identifier, 4-5

as variable identifier in the shell, 9-5

in regular expressions, 2-6

domains in Internet addressing, 6-11

dot variable in mail

See also ignoreeof variable in mail

See also period, ending mail messages with, 6-7t

caution about unsetting, 6-7t

dp command in mail, 6-2t

dt command in mail, 6-2t

duplicating text

in ed editor, 3-11

in sed editor, 3-20

E
ed line editor

adding and deleting text in, 3-5, 3-1

combining addresses with commands, 3-8

displaying lines in, 3-4

duplicating text, 3-11

joining lines in, 3-8

location in the file when started, 3-4

making changes interactively in, 3-11

marking lines in, 3-10

moving in the buffer, 3-3 to 3-5

P command, 3-3

P command, 3-4

-p option, 3-3

prompt in, 3-3

red as restricted version of, 3-1

specifying a prompt for, 3-3

toggling the prompt in, 3-3

using, 3-2 to 3-14

using addresses in, 3-3

editing a mail message header, 6-5t

editing a mail message while sending it, 6-5t

editor

line-oriented, 3-1

specifying for mail, 6-5t, 6-7t

EDITOR variable in mail

See also VISUAL variable in mail, 6-5t, 6-7t

efficiency of RPN, 8-9

egrep command

See also grep utility

egrep utility

See also grep utility

regular expression

full set of, 4-2t

USing a pattern file with, 4-3, 4-3e, 4-3t

else keyword in the shell, 9-12

enabling terminal messages, 7-3

end keyword

in the shell, 9-12, 9-13

END keyword in awk utility, 4-5, 4-8, 4-8e

endif statement in the shell, 9-11

endsw keyword

in the shell, 9-14

Index-5

error display in ed editor, 3-12

error messages in ed editor, 3-12

errors

catastrophic, forestalling in scripts, 9-12, 9-12e

reporting with exit status, 9-14

escape character

including in a mail message, 6-5

specifying in mail, 6-7t

tilde as in mail, 6-5

escape commands in mail, 6-5

getting a list of, 6-5t

ex line editor, 3-2

command names in, 3-15

description of, 3-15

differences from ed editor, 3-15

setting options for, 3-15

switching to and from vi while in, 3-15

using an initialization file with, 3-15

using commands for, 3-15

examples of tool usage, A-I to A-5

exclamation point

as escape command in mail, 6-5t

issuing shell commands with, 3-13, 6-2t

using to issue shell commands

mail,6-5t

using to exclude pattern space, 3-17, 3-19

as field delimiter in UUCP addresses, 6-11

excluding pattern space from editing, 3-17

exit command

arguments to, useful for generic scripts, 9-15,

9-14,9-15e,9-17e

exit command in mail, 6-2t

exiting gracefully from erring scripts, 9-14, 9-15,

9-15e,9-17e

expand keyword in tbl, 5--4

explicit routing on networks, 6-11

expressions

combining for testing, 9-11

definition of in the shell, 9-9

testing with primitives in the shell, 9-9

testing with relational operators in the shell, 9-10

Index-6

F

fgrep command

See also grep utility

fgrep utility

See also grep utility

case-insensitive searching with, 4-3t, 4--4, 4-4e

fixed strings used for searching by, 4-2t

-i option, 4-3t, 4--4

searching for multiple strings with, 4-2, 4-2e

strings used for searching by, 4-2t

using a pattern file with, 4-3, 4-3t

field

defined, 4-5

identifier, using dollar sign as, 4-5

in network addresses, 6-11

separator

defined, 4-5

defined for Internet addressing, 6-11

defined for UUCP addressing, 6-11

specifying, 4-5, 4-6

separator in tbl, 5-4

specification lines in tables, 5--4

specifying format for, 5--4

using dollar sign as field identifier, 4-5

width of, specifying in tables, 5-8, 5-ge

file

including, 3-14

listing names of when matches found, 4-3t

sending mail directly to, 6-10

mail, location of, 6-1

reading another, 3-14

rereading, 3-14

supplying patterns with, 4-3, 4-3e, 4-3t

temporary

unique names for, in shell scripts, 9-7

using to supply an awk program, 4-8e

file command in mail, 6-2t

file management in ed editor, 3-13

filename expansion

for testing expressions in the shell, 9-10, 9-10e

fixing mistakes in the ed editor, 3-8

folder command

in mail, 6-2t

folder command (cont.)

in MH, 6-13t

folders command

in mail, 6-2t

in MH, 6-13t

folders in mail, 6-1, 6-13t

listing in MH, 6-12, 6-13t

names of in MH system, 6-12

removing in MH, 6-13t

specifying, 6-2t, 6-7t

used by MH system, 6-12

for command

in bc calculator, 8-7, A-4e, A-5e

foreach command

in the shell, 9-13, 9-13e

format

field, specifying, 5-4

formatting of numbers

in awk utility, 4-8, 4-8e

formulas in bc calculator, 8-5

forw command in MH, 6-13t

framing regular expressions, 2-2, 2-8, 3-12,4-2

from command in mail, 6-2t

FS variable in awk, 4-7e, 4-8

full-duplex communication, 7-3

functions

G

in bc calculator, 8-5, 8-5e

list of, 8-6t

names must be single letter, 8-5

library of, for bc calculator, 8-6

using, 8-6

g command

in mail, 6-2t

getting held text in sed editor, 3-21e

commands for, list of, 3-2Ot

grave accent, substituting command output with in

the shell, 9-7, 9-8e, 9-16e

grep utility

case-insensitive searching with, 4-3t, 4-4, 4-4e

displaying count of matching lines with, 4-3t

displaying disk block numbers with, 4-3t

grep utility (cont.)

displaying line numbers with, 4-3t

displaying nonmatching lines, 4-3t, A-2e

-i option, 4-3t, 4-4

listing names of matching files, 4-3t

matching whole words, 4-4

matching whole words in, 4-3t

name of, explained, 4-1

normal behavior, 4-3

options for, 4-3

regular expression

subset of, 4-2, 4-2t

used for searching, 4-1

searching for strings with, 2-1, 4-1

searching in silent mode, 4-3t, 4-4

useful in shell scripts, 4-4

specifying expressions beginning with minus sign,

4-3t

using, 4-1 to 4-4

versions of, listed and explained, 4-1

H

half-duplex communication, 7-1

header and version display in mail, 6-7t

headers command in mail, 6-2t

help command in mail, 6-2t

help in ed editor, 3-12

hexadecimal number, 8-4, 8-13

hidden systems

in Internet domains, 6-12

hiding the new-line character, 3-16

hold command in mail

See also hold variable in mail, 6-2t

hold variable in mail

See also hold command in mail, 6-2t, 6-7t

effect on the quit command, 6-2t

holding text in sed editor, 3-21e

commands for, list of, 3-2Ot

Index-7

ibase register in bc calculator, 8-4

if command

in the shell, 9-11, 9-11 e, 9-17 e, 9-18e

disadvantages of using, 9-13

ignore command in mail, 6-2t

effect on the print and type commands, 6-2t

overriding, 6-2t

ignore variable in mail, 6-7t

ignoreeof variable in mail

See also dot variable in mail, 6-7t

caution about setting, 6-7t

implicit routing on networks, 6-11

+inbox folder in MH system, 6-12

inc command in MH, 6-12, 6-13t

including a file, 3-14

including a file into a mail message being sent, 6-5t

including mail in MH, 6-12, 6-13t

including messages into a mail message being sent,

6-5t

incorrect answers in calculator utilities, 8-3, 8-4,

8-12

information

processing

after end of file, 4-5, 4-8, 4-8e

before beginning of file, 4-7e, 4-8, 1-2

searching for, 1-2

information processing, 4-4, 4-5e

inhibiting normal output in sed editor, 3-19, 3-21e

inhibiting terminal messages, 7-3

inserting text, 3-6

integer, 8-3, 8-12

intermediate results in be calculator, 8-4

Internet addressing

advantages of, 6-11

in talk: command, 7-3

used by mail, 6--11

interrupts

ignoring in mail, 6-2t, 6-7t

intersystem communication, 7-3

invoking the shell from within mail, 6-2t

Index-8

J

joining lines

fixing undesired results of, 3-8, 3-19

in sed editor, 3-19

joining lines of text, 3-8, 3-8e

K

keep variable in mail, 6-7t

keepsave variable in mail, 6-7t

L

-I option

in bc calculator, 8-6

Leibniz, Gottfried Wilhelm, A-4

library functions in bc calculator, 8-6

line count, matching, 4-3t

line editor

See also ed line editor, ex line editor, sed line

editor

case sensitivity in, 3-2

ed,3-1

editing backwards, 3-5

ex, 3-2

reasons for using, 3-1

red as restricted version of ed, 3-1

sed,3-2

types of, 3-1

line number

disadvantages of using as address, 3-5

displaying with cat command, 3-3

displaying with grep utilities, 4-3t

using as address, 3-3, 3-4

logical operator

in awk utility, 4-7

list of, 4-7

in the shell, 9-11 e

list of, 9-11

.login file

mail notification controlled by, 6-10

modifying to use MH system, 6-12

shell variables set by, 9-3

loop, definition of, 9-13

M
magic number

specifying use of the C shell in scripts with, 9-2,

9-3e

mail

aborting a message, 6-5t

adding names to the Cc: list, 6-5t

adding names to the To: list, 6-5t

alias expansion, announcement of, 6-7t

aliases, listing and specifying, 6-2t, 6-10

aliases, listing in MH, 6-13t

annotating messages in MH, 6-13t

changing directories in, 6-2t

checking for messages in MH, 6-13t

command options for, 6-1

commands, list of, 6-2t

composing messages in MH, 6-13t

compressing messages into a file in MH, 6-13t

copying messages in, 6-2t

debugging feature, 6-7t

deleting messages in, 6-2t

deleting messages in MH, 6-13t

disadvantages of, 7-1

displaying messages in, 6-2t

displaying messages in, combined with deletion,

6-7t

displaying messages in MH, 6-13t

displaying what options are set in, 6-2t

displaying the beginning of selected messages, 6-2t

displaying the message you are composing, 6-5t

displaying the next message in, 6-2t

distributing messages in MH, 6-13t

editing a message while sending it, 6-5t

editing the current received message in, 6-2t

editing the message header, 6-5t

editors in, 6-5t, 6-7t

escape character specification in, 6-7t

escape commands, getting a summary of, 6-5t

escape commands, list of, 6-5t

executing commands while sending a message,

6-5t

mail (cont.)

executing mail command files from within, 6-2t

exploding digests in MH, 6-13t

filing messages in MH, 6-13t

folders, 6-1, 6-7t

fonnatted listings of messages in MH, 6-13t

forwarding messages in MH, 6-13t

handling with the MH message handling system,

6-12

getting help in, 6-2t

holding messages in system mailbox, 6-2t, 6-7t

ignoring CTRL/C interrupts, 6-2t, 6-7t

ignoring /usr/lib/Mail.rc, 6-2t

including a file into a message being sent, 6-5t

including messages in MH

asynchronously, 6-13t, 6-12, 6-13t

including messages into a message being sent, 6-5t

including the dead.letter file in a mesasge, 6-5t

including yourself as a recipient, 6-7t

inhibiting CTRLID from ending a message, 6-7t

inhibiting display of headers and version, 6-7t

inhibiting display of selected header fields, 6-2t

inhibiting display of version number in, 6-7t

invoking in verbose mode, 6-7t

invoking the shell from within, 6-2t

keeping your system mailbox in existence when

empty,6-7t

leaving with the exit command, 6-2t

leaving with the quit command, 6-2t

listing folders in, 6-2t

listing folders in MH, 6-12, 6-13t

listing message headers, 6-2t

listing messages from a particular user, 6-2t

listing messages in MH, 6-13t

location of files, 6-1

marking messages in MH, 6-13t

moving forward or backward in the file, 6-2t

moving messages to the mbox folder in, 6-2t

notification of, at login time, 6-10

overriding /usr/lib/Mail.rc with commands in

.mailrc, 6-6

personalizing, 6-6

piping a message through a command, 6-5t

preventing deletion of saved messages, 6-7t

Index-9

mail (cont.)

preventing saving of aborted messages in, 6-7t

prompting for a subject line in, 6-7t

prompting for Cc: recipients in, 6-7t

prompting for message text in, 6-7t

reading messages in, 6-1

reading messages in MH, 6-13t

recovering deleted messages in, 6-2t

removing folders in MH, 6-13t

removing messages in MH, 6-13t

replying to a single user, with the Reply command,

6-2t

replying to an entire list of recipients, with the

reply command, 6-2t

replying to messages in MH, 6-13t

reporting recipients of messages in MH, 6-13t

saving messages

in files, without headers, 6-2t, 6-5t

in folders or files, 6-2t

saving outgoing messages automatically in, 6-7t

selecting a file or folder in, 6-2t

selecting a message with a minus sign, 6-2t

selecting messages by content in MH, 6-13t

sending, 6-1

sending directly to files, 6-10

sending messages in, 6-2t

sending messages in MH, 6-13t

with a prompting front end, 6-13t

sending to network addresses, 6-10

setting or listing a folder in MH, 6-13t

setting variables in, 6-2t

sorting messages in MH, 6-13t

specifying a file or folder, 6-2t, 6-7t

specifying a period to end a message, 6-7t

specifying a shell to be used by the ! command,

6-7t

specifying a subject, 6-2t

specifying a subject with the -s escape, 6-5t

specifying an editor, 6-7t

specifying an escape character, 6-7t

specifying options in .mailrc file, 6-6

specifying options interactively, 6-7

Specifying the length of your terminal screen in,

6-7t

Index-10

mail (cont.)

specifying the number of lines displayed by the top

command, 6-7t

specifying the order of message storage, 6-7t

the mail facility, 6-1 to 6-12

the MH System, 6-12 to 6-14

unsetting options in, 6-2t, 6-7

verbose mode, description of, 6-7t

mail command within mail, 6-2t

.mailrc file for setting mail options, 6-6

.mailrc file, 6-7e

making interactive changes in ed editor, 3-11

managing the file in ed editor, 3-13

mark command in MH, 6-13t

marking lines in ed editor, 3-10

matching whole words in grep utilities, 4-3t, 4-4

mathematical manipulation of variables in the

shell, 9-4

mathematical operator

in bc calculator, list of, 8-3t

in dc calculator, list of, 8-11 t

mbox command in mail, 6-2t

mbox file

avoiding saving of messages in, 6-2t, 6-1, 6-7t

updating by the quit command, 6-2t

mesg command, 7-3

message

annotating in MH, 6-13t

checking for in MH, 6-13t

composing in MH, 6-13t

compressing into files in MH, 6-13t

deleting in MH, 6-13t

displaying a list of in MH, 6-12

displaying in MH, 6-13t

distributing in MH, 6-13t

exploding digests into in MH, 6-13t

filing in MH, 6-13t

formatted listings of in MH, 6-13t

forwarding in MH, 6-13t

including in MH

asynchronously, 6-13t, 6-12, 6-13t

listing in MH, 6-13t

marking in MH, 6-13t

reading in MH, 6-13t

message (cont.)

removing in MH; 6-13, 6-13t

replying to in MH, 6-13t

reporting recipients of in MH, 6-13t

selecting by content in MH, 6-13t

sending in MH, 6-13t

with a prompting front end, 6-13t

sorting in MH, 6-13t

message header in mail, editing, 6-5t

messages

enabling, 7-3

error, displaying in shell scripts, 9-8

inhibiting, 7-3

metacharacter, 3-8

preventing interpretation of, 2-4, 4-6

metoo variable in mail, 6-7t

MH message handling system

annotating messages in, 6-13t, 6-12 to 6-14

checking for messages in, 6-13t

combinating use of with standard mail program,

6-12

commands used at the shell prompt, 6-12

composing messages in, 6-13t

compressing messages into a file in, 6-13t

deleting messages in, 6-13t

distributing messages in, 6-13t

exploding digests in, 6-13t

filirig messages in, 6-13t

finding if installed on your system, 6-12

forwarding messages in, 6-13t

including messages in

asynchronously, 6-13t, 6-13t

listing aliases in, 6-13t

listing folders in, 6-13t

listing messages in, 6-13t

formatted, 6-13t

marking messages in, 6-13t

modifying your path to use, 6-12

reading messages in, 6-12, 6-13t

reference pages for, 6-12

removing folders in, 6-13t

removing messages in, 6-13, 6-13t

replying to messages in, 6-13t

reporting recipients of messages in, 6-13t

MH message handling system (cont.)

selecting a folder in, 6-12

selecting; ,messages by content in, 6-13t

sending messages in, 6-13t

with a prompting front end, 6-13t

set of small programs, 6-12

setting or listing a folder in, 6-13t

sorting messages in, 6-13t

tailoring features of, 6-14

uses folders, 6-12

.mh_profile file for MH sytem features, 6-14

mhl command in MH, 6-13t

mhmail command in MH, 6-13t

minus sign

selecting a message with in mail, 6-2t

specifying expressions beginning with, 4-3t

using as address, 3-4

more command, used by mail, 6-7t

moving in the buffer in ed editor, 3-3 to 3-5

moving mail messages to the mbox folder, 6-2t

moving text

in ed editor, 3-11

in sed editor, 3-20

ms macro package

recognizes table macros, 5-3

msgcheck command in MH, 6-13t

msgprompt variable in mail, 6-7t

multiline entries in tables, 5-2e, 5-5, 5-6e, 5-ge

inultipage tables, 5-7

multiple commands for sed editor, 3-17, A-2e

multiple copies of pattern space, writing, 3-19

multiple matches in ed editor, 3-12

multiword variables in the shell, 9-5

N

nawk utility, 4-4

networks

addressing syntax for users on, 6-10

sending mail to addresses on, 6-10

subnets hidden behind certain machines, 6-12

new file, creating with ed editor, 3-3

new-line character

hiding in sed editor, 3-16

Index-11

new-line character (cont.)

special symbol for, 3-19

next command in mail, 6-2t

next command in MH, 6-13t

noheader variable in mail, 6-7t

noninteger numbers, 8-3, 8-12

nosave variable in mail, 6-7t

null argument

searching with, 3-7

number

conversion between string and, 4-7

by the shell, 9-4

defined, 8-11

shell variables must be integers, 9-4

number sign

as comment introducer in shell scripts, 9-2

testing number of words in a variable with in the

shell,9-5

to specify use of the C shell in scripts, 9-2

numeric variables in the shell, 9-3, 9-4

numerical expressions, matching on, 4-7

o
obase register in bc calculator, 8-4

octal number, 8-4, 8-13

OFS variable in awk, 4-6

one-way communication

with write command, 7-1

operator

mathematical

in bc calculator, list of, 8-3t

in dc calculator, list of, 8-1lt

relational

in awk utility, list of, 4-7

in the shell, 9-10

list of, 9-10

options, mail

See also variables, mail

overriding, 6-2t

overriding options set by .mailrc, 6-2t

overriding options set by /usr/libIMail.rc, 6-6

specifying in .mailrc file, 6-6

specifying interactively, 6-7

Index-12

options for ex and vi editors, 3-15

or operator

See logical operator

output field separator

See field, separator

overriding options set by .mailrc file, 6-2t

overriding options set by lusr/liblMail.rc file, 6-6

p

packf command in MH, 6-13t

parameters in bc functions, 8-5

parentheses

combining expression tests with, 4-7

in regular expressions, 2-8

to avoid ambiguity in algebraic notation, 8-2

using to create mutiword variables in the shell, 9-6

using to display register contents in bc calculator,

8-4

path, modifying to use MH system, 6-12

pathname, for mail folder directory, 6-7t

pattern

infonnation searched for, another name for, 4-1

pattern file, 4-3, 4-3e, 4-3t

pattern matching, 4-1, 4--4, 4-6

in grep utilities, 4-1

on numerical expressions, 4-7

pattern space

defined, 3-16

excluding edits to in sed editor, 3-17

in sed editor, 3-17

writing mUltiple copies of, 3-19

percent sign

in Internet addressing, 6-12

inserting current file name with, 3-13

period

represents your current directory, 6-10

ending mail messages with, 6-7t

ending text addition with, 3-6, 3-8

in regular expressions, 2-2, 2-3

in tbl, 5-5

represents current line, 3-4

pi, calculating the value of, A-4e

pick command in MH, 6-13t

pipelines, 1-1, A-3e, 5-2

plus sign

identifies a mail recipient as being a file, 6-10

in regular expressions, 2-7, 4-2

using as next command in mail, 6-2t

using as address, 3-4

postprocessor

example of using, 5-2

precision

of numbers in calculators, 8-2, 8-10

preprocessor

definition of, 5-2

preserve command in mail, 6-2t

prev command in MH, 6-13t

primitives

for testing conditions, 9-9, 9-ge, 9-17e

list of, 9-9

print command

in mail, 6-2t

Print command in mail, how different from print

command,6-2t

printing information in awk utility, 4-6

printing selected fields in awk utility, 4-6e

problem solving with calculators, 8-1

process ID, using in shell scripts, 9-7

program space

definition of, 4-1

exponential, required by egrep, 4-2t

programs for awk utility, 4-7

prompt

in calculator utilities, 8-2, 8-10

toggling in the ed editor, 3-3

prompter command in MH, 6-13t

prompting for user input in shell scripts, 9-7

protocol, for conversations with write command,

7-1

Q

question mark

as escape command in mail, 6-5t

in regular expressions, 2-7, 4-2

in shell, 9-10

question mark (cont.)

separating addresses from commands with, 3-9

testing existence of a variable with in the shell, 9-5

using as search delimiter, 3-5

quiet variable in mail, 6-7t

quit command

in mail, 6-2t

quitting the ed editor, 3-13, 3-14

R
radix, 8-13

in calculators, 8-4, 8-11 t

order of specifying input and output, in dc

calculator, 8-13

using unusual, for special purposes in bc calculator,

8-5

rcvstore command in MH, 6-13t

RE
See regular expression

reading a file, 3-14

reading a file into a mail message being sent, 6-5t

reading messages in MH, 6-12

reading messages into a mail message being sent,

6-5t

recipients list in mail, 6-5t

record

defined,4-5

record file in mail, 6-7t

record variable in mail

See also mail, sending directly to files, 6-7t, 6-10

recovering from a crash in ed editor, 3-15

red line editor, 3-1

refile command in MH, 6-13t

registers

in bc calculator

displaying contents of, 8-4

registers in calculators, 8-4, 8-11 t

regular expression

backslash in, 2-4, 1-2, 2-1 to 2-9, 4-1, 4-5e

bracketed,2-5

limitations of in ed editor, 3-13

case sensitivity in, 2-5

compound, 2-1, 2-2, 2-8

Index-13

regular expression (cont.)

concatenating, 2-1, 2-8

definitition of, 2-1

difference between compound and simple, 2-8

enclosing with slashes, 4-6

excluding matches in, 2-6

forcing multiple matches on, 3-3

framing, 2-8, 3-12,4-2

making compound work as simple, 2-8

matching any character with, 2-2, 2-3

matching any number of characters with, 2-4

matching exact numbers of occurrences, 2-7

matching metacharacters with, 2-4

matching selected characters with, 2-5

matching the beginning of a line, 2-6

matching the end of a line, 2-6

one-character, 2-1

parenthesized,2-8

preventing meta character interpretation in, 2-4

rules for forming, 2-1, 2-2t

searching for, 2-2

separating, 2-9, 4-2

simple, 2-1

special extension of in ed editor, 3-12

subset of, for different utilities, 4-2t

subset of, simulated by filename expansion, 9-10

subsets of, for different utilities, 2-3

using as address, 3-3, 3-5, 3-16

caution when, 3-9, 3-18

using different REs together, 2-9

using vertical bar in, 2-9,4-2

relational operator

in awk utility

list of, 4-7

in bc calculator, list of, 8-7

in the shell, 9-10

list of, 9-10

relative address

illegal in sed editor, 3-16

using in line editors, 3-4

removing shell variables, 9-4

renaming the buffer, 3-14

replacing lines of text, 3-8

Index-14

reply command in mail, 6-2t

Reply command in mail

how different from reply command, 6-2t

reply command in MH, 6-13t

rereading the file, 3-14

respond command in mail, 6-2t

return command in bc calculator functions, 8-5

RETURN key in dc calculator, 8-10

reverse Polish notation

See also RPN

explanation of, 8-9

rmf command in MH, 6-13t

rmm command in MH, 6-13t

RPN

efficiency advantages of, 8-9, 8-10

explanation of, 8-9

intuitive problem solving tool, 8-10

solving a problem with, 8-9t

rules

s

in tables

horizontal, column-width, 5-5

horizontal, table-width, 5-5, 5-6e

vertical, 5-5, 5-6e

save command in mail, 6-2t

saving a mail message while editing it, 6-5t

saving the file, 3-14

under a different name, 3-14

scale of numbers, 8-3, 8-12

scale register in bc calculator, 8-3

scan command in MH, 6-13t

screen variable in mail

used by headers command, 6-2t, 6-7t

used by the z command, 6-2t

script

behavior like that of ordinary binaries, in shell, 9-8

how executed by the shell, 9-1

new shell created to run, 9-8

running other, in your shell scripts, 9-8

running other in your script's shell, 9-8

shell

comments in, for documentation, 9-2

script (cont.)

shell (cont.)

creating variables in, 9-3

defined, 9-1

execute pennission needed to run, 9-1

running, 9-2

specifying use of the C shell in, 9-2

source command in, to run subsidiary scripts, 9-8

scripts

in awk utility, 4-7

in sed editor, 3-16, A-2e

shell

grep useful in silent mode for, 4--4

shell, reasons for writing, 1-2

searching

by repeating the last search, 3-5

case-insensitive, 4-3t, 4--4

in line editors, 3-5

sed line editor, 3-2

character substitution command, 3-20

command syntax, 3-15, 3-17

compound commands in, 3-18 to 3-19

duplicating text, 3-20

-e option, 3-17

-f option, 3-16

getting held text, 3-20

holding text, 3-20

joining lines in, 3-19

making quick edits with, 3-16, 3-17, 9-6e

-n option, 3-19, 3-21e

passing multiple commands to, 3-17

passing multiple commands to on a line, A-2e

pattern space, definition of, 3-16

pattern space in, 3-17

programming, 3-15

substituting characters in, 3-20

using, 3-15 to 3-22

using editing scripts, 3-15, 3-16, A-2e

writing multiple copies of the pattern space in,

3-19

writing scripts for, 3-16, A-2e

semicolon

in tbl, 5--4

separate statements in be calculator with, 8-6

semicolon (cont.)

separating commands with, 3-17

to separate commands in sed editor, A-2e

send command in MH, 6-13t

sendmail variable in mail, 6-7t

set command

in mail, 6-2t

shell

See also SHELL variable in mail

argv variable, 9-6, 9-13e, 9-16e

shifting with the shift command, 9-19

command name available to scripts, 9-6

issuing commands to, from within mail, 6-5t

comments in scripts for, 9-2

control structures, 9-11 to 9-14

the breaksw keyword, 9-14

the case keyword, 9-14

the default keyword, 9-14

the else keyword, 9-12

the end keyword, 9-12, 9-13

the endif statement, 9-11

the endksw keyword, 9-14

the endsw keyword, 9-14

the foreach command, 9-13, 9-13e

the if command, 9-11, 9-11e, 9-17e, 9-18e

disadvantages of using, 9-13

tests only one expression, 9-11

the switch command

advantages of, over if command, 9-13,

9-13,9-13e,9-17e

the then keyword, 9-11

the while command, 9-12, 9-12e

dollar sign as variable identifier in, 9-5

executable as an ordinary binary, 9-3

exit command

arguments useful for generic scripts, 9-15,

9-14, 9-15e, 9-17e

how scripts are executed, 9-1

invoking from within mail, 6-2t

issuing commands to, 3-13, 6-2t

new, created to run another script, 9-8

new instance started for every command, 9-3

numeric variables in, 9-3, 9-4

programming features useful interactively, 9-1

Index-15

shell (cont.)

programming techniques applicable to other shells,

9-1

reading user input in scripts, 9-7

removing variables, 9-4

running other scripts, in your scripts, 9-8

running other scripts in your script's shell, 9-8

script, defined, 9-1

using the source command, 6-12e

special variables in, 9-7

specifying for use by the ! command in mail, 6-7t

specifying use of the C shell in scripts, 9-2

substituting command output, 9-7, 9-8e, 9-16e

testing existence of a variable in, 9-5

testing number of words in a variable in, 9-5

tests only one expression, 9-11

the shift command, 9-17 e

using command-line variables in scripts for, 9-6

using parentheses to create mutiword variables, 9-6

variables, creating in scripts, 9-3

variables, types of, 9-3

shell command in mail, 6-2t

SHELL variable in mail, 6-7t

shift command, 9-17e, 9-19

show command in MH, 6-13t

silent-mode searching, 4-3t, 4--4

useful in shell scripts, 4--4

simulating text addition or deletion, 3-7

slash

enclosing REs with, 4-6

identifies a mail recipient as being a file, 6-10

separating addresses from commands with, 3-9

using as search delimiter, 3-5

using as substitution delimiter, 3-7

sort utility

sorting on multiple keys with, A-2e

sortm command in MH, 6-13t

source command

in mail, 6-2t

to invoke shell options for MH, 6-12e

to run shell scripts in your script's shell, 9-8

spaces

in bc calculator statements, 8-8

Index-16

spacing

horizontal, in tables, 5-4, 5-8

vertical, in tables

improved, 5-10e

problems with, in nroff, 5-4, 5-10

sprintf command in awk, 4-8e

sqrt function in bc calculator, 8-6

square roots, 8-6, 8-11 t

stack, push-down, 8-9, 8-13

depth of, 8-10

standard input, reading from, in shell scripts, 9-7,

9-7e

standard output, written to by sed editor, 3-17

status

final, reported when a background job finishes,

9-15

from previous command, in shell scripts, 9-7,

9-14e, 9-15, 9-15e

generated by grep utilities, 4--4

stream editor

explained, 3-16

string

conversion between number and, 4-7

by the shell, 9-4

in dc calculator, 8-11 t

searching for, 4-2

subject in mail

prompting for, 6-7t

specifying, 6-2t

specifying with the -s escape, 6-5t

subsidiary scripts, reasons for using, 9-9

substituting characters in sed editor, 3-20, 3-21e

substituting command output in the shell, 9-7,

9-8e,9-16e

switch command

in the shell

advantages of, over if command, 9-13, 9-13,

9-13e,9-17e

system mailbox

keeping in existence when empty, 6-7t

location of, 6-1, 6-10

T

T{ I T} construct for table text diversions, 5-6,

5-6e,5-ge

table

centering between margins, 5-4

creating, steps in, 5-3

defining format for, 5-3

definition of, 5-1

enclosing in box or boxes, 5-4, 5-4e

expanding to fill entire text area, 5-4

header for, multipage, 5-7, 5-7e

multiline entries in, 5-2e, 5-5, 5-6e, 5-ge

rules in, 5-5, 5-6e

setting off information for, 5-3

spanned column headings in, 5-5

using blank columns in, 5-8

table columns

See field

talk command

addressing syntax for, 7-3, 7-2

use of CRT screen by, 7-2

tbl preprocessor, 5-1 to 5-11

boxing tables with, 5-4, 5-4e

creating horizontal rules in tables with, 5-5, 5-6e

creating vertical rules in tables with, 5-5, 5-6e

defining table format in, 5-4

ending format specification with a period, 5-5

field format specification in, 5-4

formatting options for, 5-4

headings that span columns, 5-5

multiline entries in, 5-5, 5-6e, 5-ge

reasons for using, 5-1

specifying field widths in, 5-8, 5-ge

temporary file, 3-2

temporary storage in calculators, 8-4, 8-11 t

testing conditions

in awk utility, 4-7

in bc calculator, 8-7

using expressions for, 8-7

in dc calculator, 8-1lt

in the shell, 9-9

with primitives, 9-9

with relational operators, 9-10

text diversions in tables, 5-5, 5-6e, 5-ge

then keyword in the shell, 9-11

tilde as escape character in mail, 6-5, 6-7t

timesaving with pipelines, 1-1

To: list in mail, adding names to, 6-5t

toggle, 3-3

toggling the prompt in the ed editor, 3-3

tool usage, examples of, A-I to A-5

toolbox, I-I, 5-2

tools

coupling with pipelines, I-I, 5-2

using together, I-I, 5-2

top comamnd in mail

See also toplines variable in mail

top command in mail, 6-2t

toplines variable in mail, 6-7t

truncation

of non-integer results by the shell, 9-4

truncation of results by calculator utilities, 8-4

truncation of values, 8-3, 8-12

two-way communication

with talk command, 7-3

with write command, 7-1

type command in mail, 6-2t

Type command in mail, how different from type

command, 6-2t

u
undelete command in mail, 6-2t

underscore, 4-4

creating norizontal rules in tables with, 5-5, 5-6e

undo command, 3-8

unset command

in mail, 6-2t, 6-7

lusr/lib/Mail.rc

description of, 6-2t, 6-6

ignoring, 6-2t

overriding with commands in .mailrc, 6-6

UUCP addressing

in talk command, 7-3

limitations of, 6-11

used by mail, 6-11

used by write command, 7-1

Index-17

v
variable

argv in the shell, 9-6, 9-13e, 9-16e

shifting with the shift command, 9-19

argv in the shell, modifying before use, 9-6, 9-6e

automatic, in bc calculator functions, 8-5

built-in, in the shell, 9-3

created by foreach command, 9-13

creating, in shell scripts, 9-3

from the command line, using, in shell scripts, 9-6

identifier, using dollar sign as in the shell, 9-5

in awk utility, 4-5

multiword, creating in the shell, 9-6

multi word in the shell, 9-5

names for in the shell, 9-3

numeric, status treated as, 9-7

numeric in the shell, 9-3,9-4

removing in the shell, 9-4

shell, definition of, 9-3

shell, types of, 9-3

special, in shell scripts, 9-7, 9-15

testing for existence of in the shell, 9-5

testing number of words in the shell, 9-5

variables, mail

See also options, mail

types of, 6-7

verbose variable in mail, 6-7t

vertical bar

as escape command in mail, 6-5t

in regular expressions, 2-9, 4-2

piping a mail message through a command with,

6-5t

separating columns with, in tables, 5-6e

separating fields with, in tables, 5-5

vi editor

colon commands in, 3-2

setting options for, 3-15

switching to and from ex while in, 3-15

using an initialization file with, 3-15

using ex commands in, 3-15

visual command in mail, 6-2t

VISUAL variable in mail

See also EDITOR variable in mail, 6-5t, 6-7t

Index-18

VISUAL variable in mail (cont.)

used by the visual command, 6-2t

w
whatnow command in MH, 6-13t

which command, 9-8e

while command

in bc calculator, 8-7

in the shell, 9-12, 9-12e

white space

defined,4-4,4-5

protecting from shell handling, 4-5

whom command in MH, 6-13t

wildcard, 1-2, 2-1

word

defined, 4-4

matching whole, 4-3t, 4-4

write command, 7-1

in mail, 6-2t

limitations of, 7-1

uses UUCP addressing, 7-1

writing the file, 3-14

under a different name, 3-14

x
x command

in mail, 6-2t

z
z command in mail, 6-2t

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGIT AL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
The Big Gray Book: The Next Step with UL TRIX

AA-PBKNA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Namerritle

Company

______________________ Dept.

Date _____ _

Mailing Address _____________________________ _

____________ Email ____________ Phone

- - - - - -. Do Not Tear - Fold Here and Tape

IJllmaamDTM -----------------------------Irl-Ill----------:~::::A~~----
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11

-------. Do Not Tear - Fold Here

Cut
Along
Dotted
Line

Reader's Comments ULTRIX
The Big Gray Book: The Next Step with UL TRIX

AA-PBKNA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of!

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name!fitle _________________________ Dept.

Company
____________________________________ Drue __________ _

Mailing Address _______________________________ _

_________________ Email ____________ Phone

- - - - - _. Do Not Tear - Fold Here and Tape

IlimlamDiM -----------------------------rrl-rll----------::~:~~~----
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111111 dh nllill h III hlhlllhlllllllih 1IIIIh II

- - - - - - - . Do Not Tear - Fold Here . --

Cut
Along
Dotted
Line

