dlilgliltlall

ULTRIX

The Big Gray Book: The Next Step with ULTRIX

Order Number: AA-PBKNA-TE
June 1990

Product Version: ULTRIX Version 4.0 or higher

This manual describes features of the ULTRIX operating system and its related tools for users
with some ULTRIX experience.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1990
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document,

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

ﬂnﬁnan DECUS ULTRIX Worksystem Software
DECwindows VAX

CDA DTIF VAXstation

DDIF MASSBUS VMS

DDIS MicroVAX VMS/ULTRIX Connection

DEC Q-bus VT

DECnet ULTRIX XUI

DECstation ULTRIX Mail Connection

MS-DOS is a registered trademark of Microsoft Corporation.
Nutshell Handbook is a trademark of O’Reilly and Associates, Inc.
UNIX is a registered trademark of AT&T in the USA and other countries.

Contents

About This Manual

WWEICOMIE iiiniiiiiineiiieie it eee et et te ettt et e treate st etaeaueastneannsanssnsessasetsnssnnsstsnnnnen Xi
AUIEIICE oiuiiiitiiiie it e et et e e et e e et e e st e s eabne s et aesarernaeerareaannsaatansrannns xi
Organization oooveiiiiiiiiiiiii e e xi
Related DOCUIMENES ...ivuiiiiiiiiiiiieiiiee it ete et et ett e et ea e saeesiesaneesasennestnannans Xi
00061753 114 o) o -SSRt xii

1 The Next Step

1.1 The Toolbox PhiloSOPHY .ciiceuieiiiiiiiiiriier e st eanaas 1-1
1.2 What’s In ThiS BOOK? wieniiriiiiiiii ittt ettt e eeseneeneaneenernernennerneanens 1-2
1.2.1 Part I - Text Manipulationcccceviiiiiiiiiiiimiiiiniiiiiii i 1-2
1.2.2 Part II — Communication with Other USEIScovvevviniinieniiiiiniiiiriienennes 12
1.2.3 Part III — Other Commands and the Shell oeiveiniiiiiiiiiiiicnenes 12

Part I: Text Manipulation

2 Regular Expressions

2.1 What Is a Regular EXpression?cccccoveevviimiiiririeiicimiiieneeeiinienneeneeenniiisienens 2-1
2.2 The Rules for Regular EXpressions —........ccccccevviiiiiiiiimiiiniiiiiinniiinen 2-2
2.2.1 Matching Any Single Charactercccoceveriiiiririiirireeiiiiiiienieriiinnanenn, 2-3

2.2.2 Matching Metacharacters As Ordinary Charactersc...cooeeviiiuniennnes 2-4

2.2.3 Matching Any Number of Occurrences of a Charactercccceuuue. 2-4
2.2.4 Matching Only Selected Charactersccovevevieiniiiiriniiininenniininnnne.. 2-5

2.2.5 Using the Circumflex in Regular EXpressionsccccevvivererereennnnnen. 2-6
2.2.5.1 Matching the Beginning of a Line ccciiveiiiiieiciniicennnnnnn. 2-6

2252 Excluding a Match on Certain Charactersccccovieiiinnennnnn. 2-6

2.2.6 Matching the End of a Linecocoiviiiiiiiiiiiiiiiimiiiiiiiininne, 2-6

2.2.7 Matching Exact Numbers of Occurrences of Charactersccccc.eue.. 2-7

2.2.7.1 Matching an Expression That Appears One or More Times 2-7

2.2.7.2 Matching an Expression That Appears Once or Not At All 2-7

2.3 Making a Compound Regular Expression Simple cccooviiiiiiiiiiiiiiiiiiininnnnnn. 2-8
2.4 Building Complex Regular EXpressionsccocceceeveveiicnnireereneininenreeecnnnnnnne 2-8
2.5 Separating Regular EXPressionsc.coooveiiiiiiiiiiiiiiiiiiiniiiiiin s 2-9

3 Line-Oriented Editors

3.1 Types of Line EditOrs ..cccvvveuiiiiiiiiiiiimiiiiniiiiiiicnccriiiinn e e 3-1
32 The ed BEditOr ...ccccvviiiiiiiiiimniiiiniiiiiiiiiiccirri e e e 3-2
3.2.1 Starting the d EditOr ..cccuciiiiiiiiiiiiiiiiiin ittt eeea e 3-3

3.2.2 Moving Around the Buffercccciiiiiiiiiiiiiiii 3-3
3.2.2.1 Moving in the Buffer Using Line Numbersccc..oveeveunrernnnen. 3-4

3.2.2.2 Moving in the Buffer Using Relative Addressescccc...ceuue. 34

3.2.2.3 Moving in the Buffer Using Regular Expressions 3-5

3.2.3 Adding and Deleting TeXtcceevuniereenieriiiiieereiiieereenie s eeeeneeeennerenees 3-5
3231 AddIng TEXE coveeeriiiiiiiiiiiiiiiiii e eeereee e 3-6

3232 Deleting TeXt .ocevevvuureiererreniinieeeeruniiiiieeereetiiriieseeseeememmoneeneens 3-6

3.2.4 Changing TEXE ..coevverereiminieiereeriiiiieeeeiiiiieeeeeetiiiriieeseesersanisesesessaens 3-6
3.2.4.1 Changing Text by Substitutionccccorvimimiiiiinivirmiininiiinennn 3-7

3.24.2 Changing Text by Replacing and Joining Linesc.....cc.... 3-8

3.2.43 Correcting Editing EITors ccovvviiiniiiiiimiiiiiiniiiciniini e, 3-8

3.2.5 Combining Commands and Addressesc.ccceeeviveemmeniiiiriinieineneeenn. 3-8
3.2.5.1 Using Commands with Single Addressescccoverrrevruereennen. 3-9

3.2.5.2 Using Commands with Two Addressesc..coceeevverereenierienne. 3-9

3.2.6 Marking Lines in the Buffercccooeovviiiimiiiiiiiiiiiiiiininccriicnercennes 3-10
3.2.7 Juggling Blocks Of TEXtcooovvieiiiiiiiimiiiiiii e 3-10
3.2.8 Making Global Changes Interactivelycceevvvererrerciienniniiereennnnnes 3-11
3.2.9 Error Messages and Help ...oooevvviiiiiiiiiiiiiiiiiiiicci i, 3-12
3.2.10 Matching Multiple Occurrences of @ Stringcceeevveeeriennnieererernnnnnn. 3-12
3.2.11 Executing Shell Commands from Withinedoooviiiiiiniiiiinn, 3-13
3.2.12 Managing the File and Quitting ed ccoooeviiiiiiiiniiiiniiiiiieenan, 3-13
3.2.12.1 Saving the Bufferccccoovviiiiiiiiiiiniiiiii 3-14

3.2.12.2 Rereading the File ooceiiieiiiciiiiniiiiiiiciiicceen e 3-14

3.2.12.3 Including Other FIIeS ociiiiiiiiriiiiiieiiereriiieneeereeerrieseennenns 3-14

3.2.12.4 Renaming the Buffercccocoriviiiriiiiiiiiiiin, 3-14

3.2.12.5 Leaving the ed Editorc.covvvvmimiiiiiiiiiiiiiiiiiinienneeeee 3-14

3.2.13 Recovering from a Crash ccouvveiiiiiiiiminiiiiiiiiine, 3-15

3.3 The eX EdItOr ceoeiiiieiiiiiiiiiiiiciii it et 3-15
3.4 The sed Stream Editor cccoovviiiiiiiniinniiiiiiiiinnn et e e et rar e e eetaaa s aees 3-15

iv Contents

3.4.1 Using sed with @ SCTIPE ..ovvvniiiiiiiiiiiiiiiiiiiii et craans 3-16
3.42 Using sed for Quick Edits ...c..ecoiiiiiiimmiiiiiiiiiiiniiiiiinencece e, 3-17
343 Command Syntax and Addressingcccoeeveiiiriimmmniiiiiiiniinnneiniinne. 3-17
344 Compound Commandscc.eceeueeieerureerrenniieereemerrrsmieresmeessmensesessness 3-18
3.4.5 Additional sed Featuresccceeviiiiiiiiiiiiiiiiiiinnnicren . 3-19
3.4.5.1 Using the Print Commandccccccveviiiiiriiiiimiiiininruninieennnnn. 3-19
3.4.52 Joining LiNES ...coviiiiiiiiiiniiiiie et 3-19
3.4.5.3 Substituting Characterscceeeeerererenneeenerenoeereeremneeiencecnneens 3-20
3.4.5.4 Holding and Getting TeXtcccovumriiireemimiiiiiinireniereceeeennnnen 3-20
4 Pattern-Matching Utilities
4.1 The grep Family of UtIlities cocuviiiiiiiimiiiniiiiiiiiiiiiiicccciiin i 4-1
4.1.1 Modifying the Behavior of the grep Utilitiescoeveerimineriiiiiininiinnnens 4-3
4.2 The awk Utility and Programming Languagecccooiiiiiiiiiiiiiinniiinniiininn 44
42,1 What Can awk D0? ..oeiireiiiiiiii et 4-5
422 Printing with aWK oooiiiiiiiii 4-6
4.2.3 Using Pattern Recognition in aWk ccovieviririiiirerniinniiererreeneerne 4-6
4.2.4 Programming awWkc.oiiciiiiiiiiiii 4-7
5 The tbl Table Creation Utility
5.1 WhY USE thl? ieiviiiiiiiiiiiiiiiiiiiiiiiieceetieneniteteriererei s rener e seesseeeessenanes 5-1
5.2 Creating TableScccoiiiiiuiiiiiiiiiiiiiiiiiiii e 5-3
5.2.1 Setting Off the Table Information ccceevvurmminiiiiiiiinniciiiniiiini, 5-3
52.2 Defining the Table Formatccccoiiiiiimiiiiiiiiiinii e, 5-3
5.2.2.1 Specifying tbl Optionscecrvirmmiiiiiniirieiiiinieriei e, 5-4
5.2.2.2 Specifying the Table Columnsccocccevririruiiniiirieninninirninnnnns. 5-4
5.2.3 Entering the Table Informationcocoevriiiiiiiiiiiiiiiiiiiiiiiiiiiiien 5-5
5.3 Advanced TeChNIQUES ceeeuueirririiminiireiiiiiiiiiieieeerieeiiiiie s ereneise e s eevainiiseeees 5-6
5.3.1 Combining Effects ...couuvviiiriiiiiiiiriiiiiie et 5-6
5.3.2 Creating Multipage Tablesc.ccoorviimiiiiieriiiiiiiiiiiiecri e, 5-7
5.3.3 Creating Boxed Text BIOCKS ...oieiiiiiiiiineiciicriiiinie e 5-8
5.3.4 Adding the Final Touchccccoiiiiiiiiiiiiiiiiiiiiiiiiirinercii e 5-8
5.3.4.1 Using Blank Columnsccoeivmummiiiinniiiiiiniiniininnen, 5-8
5.3.4.2 Specifying Column Widthscccccoviririiiiiiiiiniiiiinini 5-8
5.3.4.3 Handling Vertical Spacing Problemsccccccoiiiiiiiiiniieniininne 5-10
5.4 Example thl Codeccccoiiiimiiiriiiiiiiiiiiiiiiiiiiiiieiii et ssren st ee e reans 5-10

Contents v

Part Il: Communication with Other Users

6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

7

7.1
72
7.3

Mail

Where Is My Mail? ...ooiiiiriiiiiiciiiie,
Using the Mail System ccovevvivneieennnens.
Commands for the Mail Program
Escape Commands for Mail Messages
Customizing the mail Program
Getting Notification of Mail at Login Time

Sending Mail to Filesccccooiiiniiiiiiinn.
Sending Mail Across Networks
6.8.1 UUCP Addressingcccccoevvvurrennnnn.
6.8.2 Internet Addressingcccoeeeennnn..

The MH Message-Handling System

Interactive Communication

The write Command coovvvvvivevinvinennnnen.
The talk Command cooveniniiiiiiiiniineninnen.

The mesg Commandc..ooeeriiiiniiiiinnnnn,

Part Ill: Other Commands and the Shell

8

8.1

8.2

Calculators

The be Calculator ..ovevveiininieeeiiieiiiennnns

8.1.1 Starting and Stopping bc ceeel
8.12 Usingbc .oivirviiiiiiiiiiiiinicirii,

8.1.2.1 Handling Noninteger Numbers
8.1.2.2 Creating and Using Registers
8.1.2.3 Using Other Radices
8.1.2.4 Creating and Using Functions

8.1.3 Programming bccccoooiiiiiiiiinneins

8.1.3.1 Control Structures
8.1.3.2 C Language Constructs
8.1.3.3 AITAYS .irvvreeiiiiireeeiiineeeis

The dc Calculatorooveveinininiiiiniiiniiinenns

vi Contents

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

..

..

...

...

...

...

...

...

...

6-1
6-1
62
6-5

6-10
6-10
6-10
6-11
6-11

6-12

8-1

8-2
8-3

8-3
84
84
8-5

8-6

8-7
8-8
8-8

9.1
9.2
9.3
9.4

9.5

9.6
9.7
9.8

9.9

8.2.1 Starting and Stopping dC ...ccivvviiiiiiiiiiiniiiererieee et s serr e 8-10

822 USING AC .iiivniiiruiierenennsitnienererenessrnnneesnsnssssssneesnnsssssstssnsannsssssssasanes 8-10
8.2.2.1 Using dc Commandsccceeeeerereeeioieieranienrnensioenenreesesssesnnnnns 8-11
8.2.2.2 Handling Noninteger Numbersccccocoeveriiireiiieiinncienncinenes 8-12
8.2.2.3 Entering Commands and Operandscccccvvvvvrvenvernnnnnnnennen. 8-13
8.2.2.4 Using Other RadiCescccovvreieiiiiiiiimiiieinnereneniieineenienniennenns 8-13

8.2.3 Programming dC ..c.cuivviiiiiiiiiniiiiiriin et erenab e e 8-13

C Shell Scripts

Creating and Using Shell SCTIPES coveevereiiiiniimmieniiiiiuicrsirecseensensseseeeneennenes 9-1

Using Comments in Shell SCHPLS ...cooveeveiiiiiirieiiieiereeeiecee e e seceenineeeraenes 9-2

Specifying Use of the C Shell iiiiiiiiiiiiiiiiic e, 9-2

Creating and Using Shell Variablescccoovvviveiiiiiiiinninriniiniiinnceiiieneneene 9-3

9.4.1 Setting String Variablesccceiiiiiceriiiiiiiiiiiii e 9-3

9.4.2 Setting and Manipulating Numeric Variablesc.ccccceevvvvirecereennnnnn. 94

9.4.3 Setting Binary Variablescccccciriiiiriiiiiiiiiiiiniinceeee e 94

944 Removing Variablescccceiiiiiiiiiiiiiiiiiiieieeeeiricee e eeeetae s e aeaae 94

Using Shell Variablesccccccviiiiieriniiiiiiiiniirieieiinininneieeesesreemiessesescnnanieenne 9-5

9,5.1 Using Multiword Variablesccoocciiiiiiimiiiininiiiniiiiiicininiieeene. 9-5

0.5.2 Testing VariableSccocevivruiierreeiireuereeetiieerereereerienesrrnsneesessesensnns 9-5

9.5.3 Using Command-Line Variablesc.cceeevvrveerrivriniiniiienniiencinsinnnens 9-6

9.5.4 Using Special Variablesccccceoveiiiiiiiiiiiiiiiiiiiimiimiiieneens 9-7
9.5.4.1 Reading User Inputccceevviirmimmmmmnninniiiiiiiiiiiniieninenieiens 9-7
9.5.4.2 Using a Script’s Process ID oiiiiiiiiiiiiiiiiniiininiiniinninne, 9-7
9.5.4.3 Reading Command Result Statusccceeiriiiiiiiiiiiiiiinininiun. 9-7

Substituting Command OULPUL ceeemmuiiiiiiiiiiiiiiiiiiiciiiei e 9-7

Running Other SCTIPLS ..ccoeeiviiiiiiiiiiiiiiiiiiiic et s 9-8

Making DECISIONS ..eeuviuiiiiiiiiiiiiiiiiieiciititiiiercccs e 9-9

9.8.1 Testing EXPressionsccccviiiiviieiiiiimmmiiiinniieniieseseenennns 9-9
9.8.1.1 Testing Expressions Against Primitivesc.cccevvvveienieiininnnne. 9-9
9.8.1.2 Testing Expressions Against Other Expressionscccceeeeenenn. 9-10
9.8.1.3 Combining EXpressionsccccevvvvummerminrireineneiiinninnninnnnenn 9-11

9.8.2 Using Control Structures with Expression Testscccceeeeriieiivennnnn. 9-11
90.8.2.1 The if Statementccceeueiririnirrineniieimioeeeenereireneeessssssereniesnes 9-11
9.8.2.2 The while Statementccoeeviireemmiiiiiiiiniiiinniirnei i 9-12
9.8.2.3 The foreach Statement ccccevemiiiiiriemniiininiienimceniennne. 9-13
9.8.2.4 The switch Statementcccceieiiiiiiiiiiiiiiiiiniinin, 9-13

Handling BITOTS couieiriiiiiieiiirieiiinniinieiciniieiiiesttiniesesuisererssesessssseranesesnness 9-14

Contents vii

9.10 An Example C Shell SCTipt coovvvimiiminiiiiiiiiiii i 9-15

A Examples of Using ULTRIX Tools

A.1 Using sed and grep to Create nroff Macros c.ceeveeremienvrniineeiienieneenniseee A-1
A2 Using the bc CalCulatorccvveeiiriiiiiiiiiiiiiiiiiiirciiiire e vreneaaens A4

B Tips and Tricks

B.1 Tricks With FIles ...coiiiiiiiiiiiiiiiiiie ettt ee et e e een e B-1
B.1.1 Addressing Files Whose Names Begin with a Minus Sign B-1
B.1.2 Addressing Files with Odd Characters in Their Namesc..ccccvueneeee B-1
B.1.3 Renaming a Series of Files Automaticallyccccoieeierreeiiieniiennenenns B-2
B.1.4 Finding a File Somewhere in your Directoriesc.cccoeevevccivenennenennn. B-3

B.2 Including Your Working Directory’s Name in Your Promptcccovvvernnnn.. B-3

B.3 Redirecting Standard Error and Standard Output Separatelyccccoevrevennnnn B4

Examples

3-1: Sample $ed SCIIPE .eooviiiriiiniiiniiiiieit e 3-21

5-1: Table with Multiline Entries ccoceeiuiiiiniiiiiiiiiene et e eenie s e reneeaeeseenns 5-2

5-2: Code for a Simple Table cccovieemiiiiieiiiiiiiiie e et ceeeeeee e e e earesanens 5-3

5-3: BOXed TaAbIES tiiiiiriniriiiiiiiieriiiiiiiieee ettt e e ee it e e eenere s eeetet e eeneeaaaaas 54

5-4: Compound Tableccciveiiiiiriiiiiiiiiiieieereiiiiee et e eenire e eeeeearsieesaeeesaanes 5-6

5-5: Code for the Compound Tablec.ceuiiiriiiiiiiiiieieriecirrerii e reese e 5-7

5-6: Code for Multipage Headings in @ Table c.ccoiiviiiiiinieiiiieiiiiiiererre e eceeneees 5-7

5-7: Table with a TeXt DIVEISION ...cccueuveeeiiiiiiiineereiriiiiieeereriieererneeeeanaseenreenensnnns 5-9

5-8: Code for the Table with @ TeXt DIVEISION ..vovvverrveereeeieeiieressesereesesseseeenesnens 5-9

5-9: Improved Spacing in allbox Tableccooevviniiiiinnns e et 5-10

5-10: Code for the Table Shown in Example 5-1 ccovviiiiiiiiiiiiniiiieeenrineeeeneneaens 5-10

9-1: Sample C Shell SCHPL covvvuiiiiieiieriieeritriireeernieeeeneeeanieerebaeenrnsssrsteereseseusiseene 9-16

Figures

1-1: Using a Pipeline to Couple Several Utilities ccoovvrrimriiiiiiiiiiiiiiiiiinii, 1-1

3-1: The Relationship of ed, ex, and Vi ...ccooveiiiiiiiiiiiiiiiii e 3-2

viii Contents

Tables

2-1: Rules for Regular EXPIessionsc.ccccvviiiiiuiniiiiinniiiminiiiieiinrieeiine 2-2
4-1: Versions of the grep ULIlIity ..ooiviiviiiiiiiiiiiiiiiiii i 4-2
4-2: Options for the grep ULILILIES ccvvvviiiiiiimmmmiiiiiiiiiiiiincne . 4-3
6-1: Command-Line Options for the mail Programccccccvviiniiiiiinniciiiinnnnnns 6-2
6-2: Commands for the mail Programccccceoviiiiiiiiiiiineiiiiice e eceereens 62
6-3: Escape Commands in mailc.coooiiiiiiiiiimmiii e 6-5
6-4: Variables for Customizing the mail Programc.coeeevviiiiiiiiiiiiinnriiiineenninnes 6-7
6-5: Commands for the MH Message-Handling System ccccovevveeverueeiesenineans 6-13
8-1: Solving a Problem Using Algebraic Notation ceeceivviiiiinniiiiiiiininnnninnnn. 8-1
8-2: C Language Constructs in BC uiiiiiiiiiiiimiiiiiii it 8-8
8-3: Solving a Problem Using Reverse Polish Notationcccvvvvvviiiieeiciiniinn, 89
8-4: dc CommMANAS ...cevvvuieeriiiirieneriiriiiriier e eenrre e e ttara s e e et b e e e teearee s aaanes 8-11

Contents ix

About This Manual

Welcome

The Big Gray Book: The Next Step with ULTRIX is an intermediate manual on
working with the ULTRIX operating system and its related tools. Like The Little
Gray Book: An ULTRIX Primer, it is based on the theory that you will do most of
your work with only a small part of the computer’s capabilities. This book goes
beyond the Primer, introducing you to more advanced tools that will help you to
make more and better use of the computer.

Audience

This book is a guide for intermediate users that also serves as a reference for users
who have gained more experience. It assumes that you have read the Primer or that
you are otherwise familiar with the material presented in the Primer.

Organization
This book is divided into three parts, and has two appendixes:

Part I — Text Manipulation
Discusses commands and utilities useful for manipulating text files and
the material in them, including editors and searching tools.

Part II — Communication with Other Users
Discusses commands and utilities that provide ways to communicate
with other users, including mail and interactive communication.

Part III — Other Commands and the Shell
Describes assorted useful commands and the C shell itself, with
emphasis on creating your own commands in the form of shell scripts.

Appendix A Contains examples illustrating use of some of the tools and utilities
described in the book.

Appendix B Describes solutions for difficulties commonly encountered with using
the ULTRIX system.

Related Documents

The Little Gray Book: An ULTRIX Primer introduces the ULTRIX operating system
and some of the tools and utilities discussed here, and is a handy reference as you
read this book.

The Guide to the nawk Utility is a thorough tutorial description of an enhanced
version of the awk utility discussed in Chapter 4.

The ULTRIX Reference Pages provide details of the commands and utilities
described in this book.

The ULTRIX operating system Supplementary Documents, Volume 1: General User
contain exhaustive descriptions of some of the utilities discussed in this book.

Learning the vi Editor, one of the Nutshell Handbooks available from O’Reilly and
Associates, Inc., describes the vi editor in detail.

Conventions

The following typeface conventions are used in this manual:

vizier>

user input

The default user prompt is your system name followed by a right
angle bracket. The system name vizier is used in this manual.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in interactive examples to indicate system

UPPERCASE
lowercase

filename

macro

RETURN

CTRL/x

xii About This Manual

output and also in code examples and other screen displays.
(Example text enclosed in a box indicates text matching a regular
expression.) In text, this typeface is used to indicate the exact

name of a command, option, partition, pathname, directory, or
file.

The ULTRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

In examples, syntax descriptions, and function definitions, italics
are used to indicate variable values; and in text, to give references
to other documents.

In text, bold type is used to introduce new terms.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

This symbol is used in examples to indicate that you must press
the named key on the keyboard.

This symbol is used in examples to indicate that you must hold
down the CTRL key while pressing the key x that follows the
slash. When you use this key combination, the system sometimes
echoes the resulting character, using a circumflex (#) to represent
the CTRL key (for example, AC for CTRL/C). Sometimes the
sequence is not echoed.

The Next Step 1

The The Big Gray Book: The Next Step with ULTRIX is an intermediate guide to
commands, tools, and utilities that are part of the ULTRIX operating system. While
not a step-by-step tutorial, this book builds on the skills introduced by The Little
Gray Book: An ULTRIX Primer. Instead of trying to present a comprehensive and
unnecessarily complex view of the entire ULTRIX system, the Primer showed you
only a few tools and commands that you need for much of the ordinary work you do.
This book continues in this vein, introducing you to a relatively small number of
additional tools and commands. The topics are those that you are likely to use often
in your work.

1.1 The Toolbox Philosophy

One of the most powerful features of the ULTRIX system is the way its various tools
work together. Instead of providing a single massive utility that does everything but
might not be able to do all its tasks in the most efficient way, the ULTRIX system’s
“‘toolbox’’ philosophy offers many smaller utilities that you can use as you need
them. This design allows you to bring only the processing power you need to bear
on the task you’re performing. For example, if you want to format a document that
contains tables, you can use the tbl preprocessor, described in Chapter 5, and then
the nrof £ text formatter. If you have a document without tables, there is no need to
use the special table-formatting capabilities of tb1l; instead, you use only nroff.
Selecting only the tools you need saves time, because the system can perform your
job faster. It also allows others to work faster, because there are more system
resources available for them to use.

Coupling tools with pipelines saves time by allowing the system to overlap the tasks
it is performing. As soon as the first tool in a pipeline begins producing output, the
next tool can begin working on that output without having to wait for the first tool to
finish. As soon as the second tool produces some output, the third tool can begin,
and so on. Figure 1-1 illustrates the process.

Figure 1-1: Using a Pipeline to Couple Several Utilities

awk
\ (output) \
thl
\ (output) \
nroff

This book describes many different tools. By learning about several tools that do
similar things, you can decide more easily which of them is best suited to the task at
hand.

1.2 What’s In This Book?

This book’s three parts cover commands and utilities for which you will find frequent
use in your day-to-day work. Each part deals with several tools that work together or
perform similar tasks related to a particular general subject.

1.2.1 Part | — Text Manipulation

The chapters of Part I describe tools for text location, filtering, editing, and
organization.

One feature that makes the ULTRIX operating system effective is its ability to find
the information you want. There are tools that search for information and, having
found it, process it into a different form. For example, you can use the grep utility
(Chapter 4) to scan a price list of office supplies, creating an order for the supplies
you’re out of; the sed stream editor (Chapter 3) to perform automatic text editing;
and the awk utility (Chapter 4) to tabulate the order and calculate its total cost.
These are all things you can do manually, but it is often easier to let the computer do
the work for you while you do something else that the computer cannot do.

A key part of using ULTRIX tools effectively is knowing how to use regular
expressions (called ‘‘regular’’ because their formation follows a specific set of rules).
The concept of regular expressions is similar to that of the asterisk (*) and question
mark (?) wildcards you use to name files in shell commands, but regular expressions
are used to locate information within files instead of finding the files themselves.
Chapter 2 describes regular expressions in detail.

1.2.2 Part Il - Communication with Other Users

Part II provides a thorough description of the mail utility and an introduction to
another mail-handling system called MH. With a little exploration, you should
emerge from Chapter 6 as an expert in the use of mail.

Part IT also describes several commands that are useful for interactive
communication. With these utilities, you can send quick messages or have a two-
way conversation in real time.

1.2.3 Part lll - Other Commands and the Shell

Part III extends the Primer’s description of the C shell, providing an introduction to
creating your own commands by writing shell scripts. Suppose you have a
complicated procedure that you have to do once every three months. This job
requires you to copy several files, edit some of them, format the results, and finally
print the formatted files. You could keep a notebook to remind yourself how to
handle this job. Or you could take the time to write a shell script, a program for the
shell, so that your job would work automatically. Writing a script has another
advantage: When you move on to your next job, the script you leave behind will
make your old job easier for the new person.

Also in Part III are descriptions of generally useful commands such as interactive and
programmable calculators.

1-2 The Next Step

Part I: Text Manipulation

Regular Expressions 2

This chapter describes regular expressions and how to use them. This discussion is
basic to using many of the utilities described in later chapters. In this chapter you
will meet regular expressions in the context of the grep utility, which was
introduced in The Little Gray Book: An ULTRIX Primer.

2.1 What Is a Regular Expression?

In the Primer, you learned how to use the grep command to search for strings in a
file. You can also search for strings in the standard input stream; for example, you
can use the following piped commands to see if a user named daniels is logged in.

vizier> who | grep daniels
daniels ttal Jul 31 1989

This ability to search for an exact string is useful but limited. For example, it
doesn’t let you search a file for two or more different strings at the same time. But if
you use regular expressions, you can search for strings containing common elements,
such as ‘‘board’’ and ‘‘beard’’, quickly and easily.

In algebraic equations, you can use a letter, such as x or y, to represent any number.
When you use a letter like this in an expression such as 3+Vx , the expression takes
on different values depending on the value of x. Another kind of expression,
although not a mathematical one, is a wildcard. (In the Primer, you learned how to
use wildcards to represent any characters in a file name.) Regular expressions (REs)
are an extension of this ability to represent more than one character. They are to
strings of characters what mathematical expressions are to numbers.

Regular expressions are called ‘‘regular’’ because they conform to a set of rules. The
first two rules are as follows:

* Any ordinary character is a simple RE that represents, or matches, itself.

¢ When you concatenate simple REs, the result is a compound RE that matches
the concatenation of the strings matched by each of its components.

The first rule says that any ordinary character is an RE that matches itself; for
example, a represents a and nothing else. That might seem obvious, but this concept
is important to understanding more complex REs.

The meaning of the second rule might not be immediately clear. As an example of
this rule, the following grep command finds file names in /bin that contain the
letters “‘iz”’. (In this chapter’s examples, we’ll put boxes around the text that
matches the RE being used.)

vizier> 1s /bin | grep iz

pagesiize

SiLze

Specifying iz as the RE for grep to match finds all strings that match first the *‘i”’
and then, immediately after it, the ‘‘z’’. The second rule means that any string of
characters, like iz, is really a series of simple REs put together to make a compound
RE. A simple RE is one that matches a single entity (usually one character) in the
text being processed. A compound RE is one that matches a series of entities. (By
framing a compound RE as described in Section 2.3, you can make it behave like a
simple RE.)

The examples shown so far probably don’t look very useful because they merely
illustrate searching for the exact string you want. The next rule of REs opens up all
sorts of new possibilities:

e A period (.) matches any character.

Suppose you are preparing an order for office supplies and need to find the stock
numbers for blue pushpins and red felt-tip pens. By using a period as part of your
RE, you can search your group’s list of supplies for ‘‘pin’’ and ‘‘pen’’ at the same
time this way:

vizier> grep p.n ~bjornson/supplies

02141 Felt , black 8/box
02142 Felt pen, blue 8/box
02143 Felt penj, red 8/box
02144 Felt pen, green 8/box
09667 Three-hole paper ch Unit
13785 ©Pushpjp, red 150/box
13786 Pushpin, yellow 150/box
13787 Pushpin, green 150/box
13788 Pushpin, blue 150/box
31591 Paint, japan, white Bottle
31592 Paint, japan, red Bottle
31593 Paint, jalpan, green Bottle
31594 Paint, japan, yellow Bottle
31595 Paint, Jjapap, purple Bottle
31596 Paint, Jjapap, blue Bottle
31597 Paint, japan, black Bottle
31598 Paint, Jjapan, orange Bottle

The period matches both the ‘‘i’’ in ‘‘pin’’ and the ‘‘¢’’ in ‘‘pen’’. But because the
period matches any character, this RE also matches some things you weren’t looking
for, such as the japan paints. There are other REs that let you avoid undesired
matches.

Now we begin to see the power of REs.

2.2 The Rules for Regular Expressions

Ordinary characters and metacharacters together make up the set of simple REs.
Table 2-1 describes the rules for creating REs.

Table 2-1: Rules for Regular Expressions

Expression Name Rule

0-9, A-7, a-z, Ordinary character Matches itself.
most punctuation

Period (dot) Matches any single character.

2-2 Regular Expressions

Table 2-1: (continued)

Expression Name

Rule

\char Backslash

* Asterisk

[chars] Brackets

~ Circumflex

$ Dollar sign

+ Plus signt

? Question markt

exprexpr . .. Concatenation

(expr) Parenthesest

Vertical bar

Matches the character following the backslash
regardless of whether that character is an RE
metacharacter or not.

Matches any number of occurrences of the
preceding RE, including none.

Matches any one of the characters within the
brackets. Ranges of characters can be
abbreviated; for example, [0-9a-z] matches
any digit or any lowercase letter.

Matches the beginning of a line when at the
beginning of an RE. When used as the first
character inside brackets, excludes the bracketed
characters from being matched. Otherwise, has
no special properties.

Matches the end of a line when at the end of an
RE. Otherwise, has no special properties.

Matches one or more occurrences of the
preceding simple RE. (Not available to all
utilities.)

Matches zero or one occurrence of the preceding
simple RE. (Not available to all utilities.)

Forms a compound RE that matches any string
that matches the first simple RE, then the
second, and so on.

Encloses, or frames, an RE, allowing
metacharacters that act on the preceding RE to
treat the entire framed RE as a simple RE. (Not
available to all utilities.)

Separates multiple REs. (Not available to all
utilities.)

You can combine any or all of these kinds of REs to do the job you need to do.
Items that are not marked with a dagger (1) in this table are available to all the
utilities that use REs, such as ed, vi and ex, sed, and grep. The dagger indicates
features that are available only to specific utilities such as awk and egrep. The
following sections discuss using the general REs in Table 2-1 in more detail. Later
chapters describe the ways the various utilities use REs; the items marked with a

dagger are discussed where appropriate.

2.2.1 Matching Any Single Character

In Section 2.1 we showed you how to use a period to match a single character. This
way of using the period is exactly the same as using a question mark in file names;
you can concatenate more than one period to represent an exact number of characters.

Regular Expressions 2-3

For example, suppose you are writing a report and need to search a list of turn-of-
the-century Japanese warships! for all ships whose displacement was between 10,000
and 19,999 tons:

vizier> grep 1.,... warships

Yashima 1896 12,517 18 kt 4x12in, 10x6in, 16x12-pdrs
Fuji 1896 2,517 18 kt 4x12in, 10x6in, 16x12-pdrs
Shikishima 1898 15,088/ 18 kt 4x12in, 14x6in, 20x12-pdrs
Asahi 1899 15,443 18 kt 4x12in, 14x6in, 20x12-pdrs
Mikasa 1900 15,362] 18 kt 4x12in, 14x6in, 20x12-pdrs
Hatsuse 1899 15,240 18 kt 4x12in, 14x6in, 20x12-pdrs

As shown by this example, you do not have to put the periods together; you can
place them wherever you need, and you can use as many as you need.

2.2.2 Matching Metacharacters As Ordinary Characters

A backslash (\) makes the character following it lose its special RE properties, if it
had any, so that you can search for actual occurrences of characters such as the
period. For example, suppose you are looking for cross-references in a series of
recipes?:

vizier> grep ‘No\.’ egg-with-liver

half a pint of Madiera sauce (No 103); and let cook for five

minutes; make an omelet of twelve eggs, as for @ 46, and

Note that we have used apostrophes (single quotation marks) to enclose the RE in
this example. Some of the metacharacters used in REs are also shell metacharacters;
for example, the backslash is also used by the shell to disable a following character’s
special properties. To prevent the shell from attempting to interpret metacharacters in
an RE, enclose the entire RE in apostrophes.

You can also make the shell pass metacharacters by preceding each one with a
backslash; for example:

vizier> grep No\\. egg-with-liver

half a pint of Madiera sauce (@ 103); and let cook for five
minutes; make an omelet of twelve eggs, as for @ 46, and

In this example, the first backslash forces the shell to pass the second backslash to
grep. Itis usually less confusing to use apostrophes, especially when the
metacharacter you want to pass is a backslash, as shown here. Remember that the
apostrophes are not part of the RE syntax; they’re just used to make the shell ignore
metacharacters in an RE.

2.2.3 Matching Any Number of Occurrences of a Character

In file names, an asterisk (*) stands for any string of characters, even a null one. As
part of a compound RE, it’s a little different. It stands for any number of occurrences
of the preceding RE, even none. Suppose you are preparing a new American edition
of The Coming Race, by Edward Bulwer-Lytton. The original edition used British
spellin§s of words like ‘‘colour,’’ and your task is to find and change all these
usages”. If you have completed part of the job and want to find where you left off,
you could check all the book chapter files with this command:

1 From Universal Cyclopedia and Atlas, Volume 10. D. Appleton and Company, 1903.
2 From 100 Ways of Cooking Eggs, by Filippini. Charles L. Webster & Company, New York, 1892.
3 From The Coming Race, first edition, published anonymously. Francis B. Felt & Co., New York, 1871.

2-4 Regular Expressions

vizier> grep ’‘colou*r’ tcr.ch¥*

tcr.ch3:have seen above the earth; the EEEEE of it not green,
tcr.ch5:0f gold in the EEiEEs, like pictures by Louis Cranach.
tecr.chb5:rich in ing, showing a perfect knowledge of
tcr.chb:intermediate valleys of mystic many- d herbage,

This command shows that you left off partway through chapter 5. Using an RE with
an asterisk after the ‘‘u’’ causes grep to find every instance of either ‘‘color’’ or
“‘colour’’. This command would also have found any mistakes like ‘‘colouur’’
because the asterisk matches any number of occurrences of the individual RE before
it. (Note that this example also uses an asterisk as a file name wildcard.)

When an asterisk follows a period, the combination indicates a match on any
sequence of characters, even none. The period matches any character and the asterisk
says to match any number of them. Suppose you need to scan a list of your
computer’s users to find a person named John Smith. There are several John Smiths.
If the list were organized properly, you could search for ‘‘Smith, John’’ — but
someone has made the list with first names first. You could use this command to
find all the John Smiths:

vizier> qrep ‘John.* Smith’ /usr/users/names

gggg_éggggy_gmé;ﬂﬂ Office 237 Ext 1234
John Charles Smit Office 118 Ext 2835

tJohn Smit Office 533 Ext 7614
John Smithl Smith Office 101 Ext 7814
hn Wellin n Smi Office 976 Ext 5476

In this example, any sequence of ‘‘Johnanything Smith’’ is matched, including
‘‘Johnnothing Smith’’. For John Smith Smith, the first occurrence of ‘‘Smith’’ is
enough to trigger the match.

2.2.4 Matching Only Selected Characters

A period represents any character in an RE. But sometimes you don’t want to search
for every possible combination that your RE will match. Placing the desired match
characters inside brackets ([1) allows you to restrict the match to only those
characters you really care about. Each set of bracketed characters is a single-
character RE that matches any one of the bracketed characters. Suppose you want to
search a story file for the words ‘‘bare’’ and ‘‘byre’’. The following example does
what you need:

vizier> grep 'blaylre’ story

The girl studied his @d head for a few moments and

the @ with the cattle."

In this example, the bracketed expression matches the ‘‘a’’ in ‘‘bare’’ on one line and
the ‘‘y’’ in ‘‘byre’’ on another. All other possible characters between ‘‘b’’ and ‘‘re’’
are ignored, so the RE doesn’t match words like ‘‘arboreal’’.

Sometimes you need to match a string regardless of the case (upper or lower) of
some of the letters in it. You can do this by using a bracketed RE consisting of just
the upper- and lowercase versions of the character you want. For example:

vizier> grep ‘' [Kk]ling’ bible-report

books chronicle the history of the Jews under their kingds.

language found only in the King James Version. Such usage is

Regular Expressions 2-5

By using a series of bracketed pairs you can create an entire compound RE that is
case insensitive:

vizier> grep ‘' [Gg] [Ii] [Nn]’ miscellaneous-file
BEGINNING EMBROIDERY TECHNIQUE

birth of Virginlia Dare in Roanoke.
Janice’s Super Ginger Snaps

2.2.,5 Using the Circumflex in Regular Expressions

2.2.5.1

2252

The circumflex () has two functions in REs:
¢ Matching the beginning of a line

¢ Excluding a match on certain characters

Matching the Beginning of a Line — Sometimes you want to match an expression
only at the beginning of the line. For example, suppose you want to find ‘‘Roberts,
Kenneth’’ in a list of authors. You could look for ‘‘Kenneth’’ but that would also
find ‘‘Galbraith, John Kenneth’’. You could look for ‘‘Roberts’’ but that would also
find ‘‘Rinehart, Mary Roberts’’. By using a circumflex at the beginning of an RE,
you can force a match on ‘‘Roberts’’ only if it occurs at the beginning of a line:

vizier> grep ’“Roberts’ authors-list
, Kenneth American historical fiction

Note that if the circumflex is not the first character of the RE, it is not a special
character. In this case, it matches itself just as any ordinary character does.

Excluding a Match on Certain Characters — As described in Section 2.2.4,
placing a series of characters in brackets forms a single-character RE that matches
any one of the bracketed characters. If you use a circumflex as the first character
inside the brackets, however, the RE you construct will match any character except
those in the brackets. The following example searches the list of supplies we used in
Section 2.1, but it excludes the letters ‘‘a’’ and ‘‘u’’ from its search so that you will
see only the things you want.

vizier> grep ’'p[*au]ln’ ~bjornson/supplies

02141 Felt ppepn, black 8/box
02142 Felt [pen, blue 8/box
02143 Felt pen, red 8/box
02144 Felt |pen, green 8/box
13785 Pushipinl, red 150/box
13786 Pushpinl, yellow 150/box
13787 Pushpinl, green 150/box
13788 Pushpinl, blue 150/box

2.2.6 Matching the End of a Line

Although matching the end of a line is a less common task than matching the
beginning, it is still useful. (You use an end-of-line match most often when you are
editing a file, as described in Chapter 3.) Suppose you are writing a paper on poetry
and want to scan a file of limericks to find a line that thymes with ‘‘sonnet.”” You
can use an RE that ends in a dollar sign ($) to force this kind of match:

vizier> grep ’'onnet$’ limericks
There was a Young Lady whose

2-6 Regular Expressions

This line is from a limerick by Edward Lear?.

Note that if the dollar sign is not the last character of the RE, it is not a special
character; in this case it matches itself just as any ordinary character does.

2.2.7 Matching Exact Numbers of Occurrences of Characters

2271

2.2.7.2

We have shown how to match any number of occurrences of a character. Sometimes
you want to limit the number of occurrences; you can do this by using a plus sign
(+) or a question mark (?).

Matching an Expression That Appears One or More Times — The plus sign
matches one or more occurrences of the simple RE that it follows.

As indicated in Table 2-1, the plus sign is not valid for all the utilities that use REs.
The grep command does not use them, so you would have to use egrep, described
in Chapter 4, with this RE. For example:

vizier> egrep ’ {Ss].l+’ boxing-report

Even the great John L. ivan was not immune to flattery.

in the middle of a EEO tour of New England, Dempsey met

Here, the plus sign says that the ‘‘I’” must occur one or more times. By using the
plus sign instead of an asterisk, we prevent a match on words like ‘‘so’’.

Matching an Expression That Appears Once or Not At All — The question
mark matches exactly one occurrence or zero occurrences of the RE that it follows.

The question mark is also not available to the grep command; you must use egrep
to search for REs using the question mark. For example:

vizier> egrep ’[Ss].l?’ boxing-report

in the middle of a @o tour of New England, Dempsey met
HiEjankle was weakened so that when he stepped on the

The question mark says that the ‘‘1I’> must occur once or not at all. This requirement
means that the RE in this example matches not only three-character sequences like
‘‘sol’’, but also any two-character sequence beginning with ‘‘S’’ or ‘’s’” unless it is
followed by ‘‘1I’’. This exclusion is the reason this example does not match

*‘Sullivan”.

4 A Book of Nonsense, by Edward Lear, 1846. Reprinted in The Complete Nonsense of Edward Lear, edited by
Holbrook Jackson. Dover Publications, Inc., 1951.

There was a Young Lady whose bonnet

Came untied when the birds sate upon it;

But she said, ‘I don’t care! all the birds in the air
Are welcome to sit on my bonnet.’

Regular Expressions 2-7

2.3 Making a Compound Regular Expression Simple

As noted in Table 2-1, metacharacters that apply to the preceding RE, such as the
plus sign, apply only to the preceding simple RE, not to an entire compound RE. By
framing a compound RE, you can make it behave like a simple RE so that a
following metacharacter can act on it. You frame an RE by enclosing it in
parentheses.

For example, suppose you want to search your .mailrc file to recall the mail alias
you assigned to your group manager, whose login name is jane. But there is also a
user named janene on the system, and you’ve also assigned that user an alias. You
could search for the name jane, but that would list both aliases. To see only the
one alias, you could use a framed RE followed by a question mark. Framed REs are
not used by the grep command, so you would use the following egrep command:
vizier> egrep ’'ja(ne)?’ .mailrc

alias jane boss

The question mark in this example excludes two occurrences of the framed RE.

2.4 Building Complex Regular Expressions

Once you are familiar with all the REs and their rules, you can combine them in any
way you need to make a very specific compound RE. For example, you can search a
list of names for every occurrence of the names Jean, Joan, Jeanne, or Joanne. An
RE to find just these four strings while excluding everything else is easy to construct,
but it’s not as obvious as it might seem. One user we know tried this RE:

J.*an*

This RE works, but it also finds many more strings:

vizier> grep ’'J.*an*’ /usr/users/names

Blankenship Cffice 724 Ext 7633

Lee Chen Office 761 Ext 7523
Crawford Office 854 Ext 2996

nn| Daugherty Office 451 Ext 7612

n| Davis Office 562 Ext 4345
ueline Deschamps Office 734 Ext 6781
Exeter Office 423 Ext 6512

k Heisler Office 422 Ext 7611
Mary Eéheson Office 414 Ext 8763
Desmond [eannotte Office 292 Ext 2722
ne Leighton Office 612 Ext 2323
Jeanne Sexton Office 993 Ext 1111
Joanne Stevens Office 438 Ext 6485
e Willis Office 765 Ext 1752

nj Wilson Office 124 Ext 7826

Because it allows for any number of occurrences (including zero) of both the ‘‘n”’
and the character following the ‘‘J*’, the RE in this example is not restrictive enough.

To construct the RE we want, let’s look at the names Jean, Joan, Jeanne, and Joanne
piece by piece:

1. The RE starts with J.
2. Then, to find only e or o, we use the bracketed characters [eo].

3. Next comes an.

2-8 Regular Expressions

4. Last, to match the optional ne at the end of the name, we create a framed, or
parenthesized, RE, (ne).

5. To prevent more than one match on the (ne), we follow it with a question
mark, which matches only zero occurrences or one occurrence.

The final compound RE, then, is this:

J{eo]lan(ne)?

This RE will not match any string except the four we are looking for.

As indicated in Table 2-1, parenthesized REs and the question mark are not valid for
all the utilities that use REs. The grep command does not use them, so you would
have to use egrep, described in Chapter 4, with this RE. For example:

vizier> egrep ’'J[eolan(ne)?’ /usr/users/names

Joa;I Davis Office 562 Ext 4345
Jeanpel Sexton Office 993 Ext 1111
Joanne| Stevens Office 438 Ext 6485
Jean| Wilson Office 124 Ext 7826

2.5 Separating Regular Expressions

It is often useful to be able to match two or more radically different REs in a single
operation. For example, suppose you are writing a treatise on light and color. You
want to rework all the places where color is mentioned, but you have used several
different words to refer to different aspects of it. You can find all the references with
REs separated by vertical bars (|). The vertical bar isn’t used by grep, so you
would have to use egrep, as in this example:

vizier> egrep ’‘color|hue|shade|tint’ light-report

discovered the relationship of @ to intensity by setting

successful photograph by using three separate films,
difference between @i} and tint as applied to paints is

Although this example uses only simple strings for its REs, you can use both simple

and compound REs that are as complex as required to match the text you want to
find.

Regular Expressions 2-9

Line-Oriented Editors 3

This chapter describes three text editors that work differently from the screen-oriented
vi editor that was introduced in the Primer. These editors are called line-oriented
editors or line editors because they work on one line of text at a time. While vi can
do all of the things these editors do, it is often inefficient to use vi in the ways in
which line editors excel.

This book does not discuss the vi editor in detail; for more information on vi, refer
to the ULTRIX reference documentation or to a vi book such as Learning the vi
Editor, one of the Nutshell Handbooks available from O’Reilly and Associates, Inc.

The editors discussed in this chapter make use of regular expressions (REs) for
addressing and pattern matching. If you are not already familiar with REs, read
Chapter 2 before reading this chapter.

3.1 Types of Line Editors

Line editors can be divided into two types: interactive and noninteractive. You are
familiar with the way an interactive editor works: You give the editor a command,
and the editor performs it and waits for the next command. A noninteractive, or
stream, editor does not accept commands from you; it does its job by reading a
program, or script, that you prepare before you invoke the editor.

Although you can use line editors for any editing task you can do with vi, they are
particularly useful for making quick edits such as fixing a typographical error (typo)
on line 327 of a file, or for making global changes such as correcting that same typo
everywhere it appears in a file. The ULTRIX stream editor, called sed, provides a
mechanism not only for quick fixes of this type but also for extended repetitive
editing tasks such as processing a series of mail messages to remove header
information and compile a single report file.

The ULTRIX operating system offers two interactive line editors and one stream
editor:

[ed and its restricted version red

The ed program is the standard interactive line editor. It allows you to make
any desired change in a file. You can enter your edits by selecting a specific
line or group of lines by number, or by searching for a pattern of text that
identifies the line or lines you want to alter.

The red editor is a restricted version of ed that allows you to edit only files
that are in your current working directory. You cannot execute shell commands
while using red.

L4 ex

The ex editor is a superset of ed; it is also the root of a family of editors that
includes vi. You can switch back and forth between ex and vi in a single
editing session.

L sed

The sed program is an optimized stream editor that performs commands
specified as option arguments on the command line or in a script that you

supply.

Figure 3-1 illustrates how ed, ex, and vi are related. The sed stream editor is
very much like ed.

Figure 3-1: The Relationship of ed, ex, and vi

7N\

The following sections describe the ed and ex editors and the sed stream editor.
The examples in this chapter illustrate editor features using excerpts from the
collection of poems known as Rubdiyat of Omar Khayydm!.

3.2 The ed Editor

If you are familiar with vi, you will find a number of similarities between its colon-
introduced commands and the commands for ed. This similarity is is due to the fact
that vi is a member of the ex editor family, which is an extended version of ed.

Note that, as with vi, commands for ed are case sensitive. For example, the p
command does something different from the P command.

When you invoke the ed editor to work on a file, the editor creates a temporary copy
of the file, called a buffer. All editing is performed in the buffer; the real file is
altered only if you give an explicit write command. This design protects you in case
you make edits and then change your mind or in case of a system crash caused by,
for example, a power failure.

! From Rubdiydt of Omar Khayydm, the Astronomer-Poet of Persia, rendered into English verse. Empire State
Book Company, New York, 1924.

3-2 Line-Oriented Editors

3.2.1 Starting the ed Editor

The first thing to know about using ed is that it does not normally give you an
obvious prompt. When you invoke ed, as in the following example, it displays the
number of characters in the file and then just sits there waiting for a command. For
example:

vizier> ed rubaiyat
1265

Note the position of the cursor, indicated here by a box ([). You can make ed give
you a more noticeable prompt by entering the P (Prompt) command:

1:

The P command also turns off the asterisk prompt if it has been turned on. A
command that turns a feature on and off alternately like this is called a toggle.

If you don’t like the asterisk, you can invoke ed with the —p string option; this
option makes ed use string for its prompt. For example:
vizier> ed-p

1265
ed> D

You must end each ed command by pressing the RETURN key. We will not show
the RETURN key in our examples unless we’re indicating that you should enter a
blank line. We’ll also omit the cursor box in the remaining examples.

To create a file from scratch using the ed editor, start the editor using the name of
your new file. The editor responds with a question mark and the file name, to say
that the file does not currently exist. For example:

vizier> ed samplel
?samplel

Enter an a command (discussed in Section 3.2.3.1) with no address and then enter
the text for the new file. The editor wants to append the text you enter after the
current location (the last line of the buffer), but since there is nothing in the file, your
new text becomes the entire contents of the file. Once you’ve created your file, you
can leave the editor as described in Section 3.2.12.5.

3.2.2 Moving Around the Buffer

The ed editor locates lines in the buffer by means of addresses. An address can be a
line number or a regular expression (RE). Line numbers can be relative or absolute.
In addition to all the forms of REs shown in Chapter 2, you can use a special form of
RE that includes two or more matches of the same identical string. You can also
mark lines with single-character identifiers and return to those lines later.

Line numbers are not very useful unless you have a listing of the file with numbers
printed on it. You can make such a listing by using the cat command’s —n option:

vizier> cat =-n rubaiyat
I

Wake! For the Sun, who scatter’d into flight
The Stars before him from the Field of Night,
Drives Night along with them from Heav’n, and strikes

[0~ VS I WO]

Line-Oriented Editors 3—3

3.2.2.1

3.2.2.2

6 The Sultan’s Turret with a Shaft of Light.

43 VII

44

45 Come, fill the Cup, and in the fire of Spring
46 Your Winter-garment of Repentance fling;

47 The Bird of Time has but a little way

48 To flutter -- and the Bird is on the Wing.

To make a printed copy of the listing, you can pipe the cat command’s output to the
1lpr command.

Moving in the Buffer Using Line Numbers — The editor starts out at the last line
of the buffer. To display this line, enter the p (print) command:

p
To flutter =-- and the Bird is on the Wing.

To select a different line, enter its number:

31
Iram indeed is gone with all his Rose,

When you move to a line, ed displays the line for you without requiring a p
command. The editor interprets a plain line number as if it included the p command.

The period (.) command displays the current line. Using this command is one way
to see changes you have made after you make them. (Edited lines are not redisplayed
automatically.) You can also display the current line by entering the p command.

Moving in the Buffer Using Relative Addresses — Besides giving an absolute
address (line number) to select a line, you can also use a relative address. To select a
line relative to the current line, use a minus sign (-) or a plus sign (+) before the
number you enter:

+2

But still a Ruby kindles in the Vine,
-8
The thoughtful Soul to Solitude retires,

There are some ways to make moving short distances a little quicker. If you are
making many edits in a file by reading each line and then stepping to the next, you
can just press RETURN with no command. The editor understands this to mean the
same as a +1 command. A command consisting of just a plus sign also means the
same as +1:

P
The thoughtful Soul to Solitude retires,
+

Where the White Hand of Moses on the Bough

Puts out, and Jesus from the Ground suspires.

(blank line)

3-4 Line-Oriented Editors

3.2.2.3

A command consisting of just a minus sign means the same as a -1 command:

Puts out, and Jesus from the Ground suspires.

The editor also understands the dollar sign to mean the last line of the file:

$
To flutter -- and the Bird is on the Wing.

Moving in the Buffer Using Regular Expressions — Using line numbers is an
effective way to move through a file unless your editing removes or adds lines in the
file. If that happens, all the line numbers after the added or deleted material are
changed. In many cases, you can get around this problem by planning all the
changes you intend to make and then working through the buffer backward.

But going through the buffer backward doesn’t always work; for instance, you might
be moving chunks of text around. There is a second way to find the line you want:
by using a regular expression. Suppose you want to find the first line in the file that
contains the letters ‘‘ou’’. You can do that by specifying an RE. To indicate to ed
that you’re entering an RE, type a slash as the first character. In examples using
REs, we will indicate the matching text by enclosing it in a box. For example:

/ou
MethEibht a Voice within the Tavern cried,

As with vi, the slash causes a forward search. Entering a slash alone repeats the
search to find the next occurrence of the same RE:

/

Why nods the drowsy Worshipper E:kside?“
/
The Tavern sh@iked -- "Open then the Door!

If you enter a search command for which there are no more matches after your
current location in the buffer, ed goes to the end of the buffer and then continues its
search from the beginning.

You can search backward by using a question mark instead of a slash at the
beginning of your RE. This feature provides an easy way to back up to the last edit
you made if it was on an earlier line.

3.2.3 Adding and Deleting Text

With a line editor, you can’t add or delete text in the middle of a line. You can only
work in terms of complete lines. The ed editor has three commands for adding and
deleting information:

Command Addresses Description
a 0,1 Appends text after the specified line.
i 0,1 Inserts text before the specified line.
0,1,2 Deletes lines of text.

Line-Oriented Editors 3-5

3.2.3.1

3.23.2

Throughout this chapter, commands are listed in tables with the number of addresses
they can accept. See Section 3.2.5 for a discussion of using addresses with
commands.

Adding Text — Suppose you want to add another stanza after the last line of the file.
You can do this by moving to the line and then entering the a (append) command.
To end your addition, enter a line containing only a period:

$

To flutter -- and the Bird is on the Wing.
a

RETURN

TAB|(TAB] [TAB]1X

RETURN

Each Morn a thousand Roses brings, you say;
Yes, but where leaves the Rose of Yesterday?
And this first

Summer month that brings the Rose

Shall take Jamshyd and Kaikobad away.

When you finish adding text, the editor leaves you positioned on the last line you
added.

This example has an intentional error; the sixth and seventh lines of the new text
should be a single line. You can correct this error with the j (join) command,
described in Section 3.2.4.2. This example is also wrong because it is out of order;
stanza VIII should go here instead of stanza IX. Section 3.2.7 shows how to correct
this error by moving blocks of text.

You can append text after any line in the file. You can also insert text before any
line in the file by using the i (insert) command. This command works exactly like
the a command except that it inserts the new text before the current line instead of
after it.

Deleting Text — To delete lines, position the editor on the first line you want to
delete and enter the d command once for each line to remove.

3.2.4 Changing Text

Although you can’t add or delete text within a line, the ed editor has commands for
changing text in ways other than adding or deleting lines:

Command Addresses Description
s 0,12 Substitutes the second argument for the first.
c 0,1,2 Changes the addressed lines by deleting them and
replacing with new text. '
3 0,1,2 Joins lines together, making them one line.
u 0 Undoes the previous edit.

3-6 Line-Oriented Editors

3.2.4.1

Changing Text by Substitution — To substitute one string for another, use the s
(substitute) command. This command requires two arguments, one to tell it what is
to be changed and one to describe how the change is to be made. You use slashes to
set off the arguments. Suppose you want to correct a typo on line 17 of the file:

17

And, as the Cock crow, those who before
s/crow/crew/

This command finds the first occurrence of the characters ‘‘crow’’ on the line (the
first argument) and substitutes ‘‘crew’’ for them (the second argument). Note that
the changed line is not displayed automatically. You can make ed display the
changed line by adding a p command to the end of the s command’s arguments:

s/crow/crew/p
And, as the Cock crew, those who before

Using the s command allows you to simulate adding or deleting text within a line.
To add a word, for example, you can substitute for the last few characters of the
word before your new text, using those same characters and your new word as the
second argument. For example, the line changed in the previous example is missing
a word. The following command corrects this error:

s/who/who stood/p
And, as the Cock crew, those who stood before

The s command allows you to use a null first argument. When you use a null first
argument, ed uses the last expression it searched for. For example, line 39 of the file
looks like this:

High-piping Pehlevi, with "Wine, Wine, Wine!

The first two instances of ‘“Wine’’ should be followed by exclamation points instead
of commas. The following example corrects these errors:

/Wine,

High-piping Pehlevi, with " Wine, Wine!
s//Wine!/p

High-piping Pehlevi, with "Wine! Wine, Wine!
s//Wine!/p

High-piping Pehlevi, with "Wine! Wine! Wine!

In this example, the s command is entered twice. Normally, the ed editor changes
only the first occurrence of the first argument that it finds on the line. You can make
the same series of changes more efficiently by using the g (global) option for the s
command. Using the g option makes ed apply the specified change everywhere on
the line. The following example makes the same change as the previous example:
/Wine,

High-piping Pehlevi, with "Wine,] Wine, Wine!

s//Wine!/gp

High-piping Pehlevi, with "Wine! Wine! Wine!

Note that you can combine the g and p options to make ed redisplay the line after
making your change.

In the preceding examples, we have entered a null RE (two slashes with nothing
between them) for the first argument to all but the first command. When you enter a
null RE in this way, ed reuses the last RE it searched for. In these examples, the
first command searches for Wine, — using a null RE in sebsequent commands
causes ed to search for the same string again.

Line-Oriented Editors 3—-7

3.24.2

3.2.4.3

You can often simplify text substitution by using an ampersand (&) in the second
argument to represent the text that was matched by the first argument, as in the
following example:

/Sev

And Jamshyd’s @n—ring’ d Cup where no one knows;

s//&'/p

And Jamshyd’s Sev’n-ring’d Cup where no one knows;

The ampersand in the second argument of the s command duplicates the string
matched by the first argument. In this case, the first argument is null, so the match is
on the string ‘‘Sev’’ that was matched by the command that found the line. The final
result of the substitution is to add an apostrophe after this string.

When you use the ampersand as in this example, it makes no difference whether the
first argument was an explicit string or an RE that might have matched more than
one string. The ampersand represents the actual text that was matched, not the
expression that matched it.

When you are addressing lines to be edited, you can use either line numbers or
regular expressions as the addresses. You can also use an RE as the first argument
for an s command. Because the second argument for an s command is the exact text
you want to use, metacharacters have no special meanings in the second argument;
you do not need to precede them with backslashes. If you want to include a
backslash in the second argument, however, you must precede it with another
backslash.

Changing Text by Replacing and Joining Lines — You can alter an entire line
by using the ¢ (change) command. This command deletes the line you specify and
then replaces it with everything you type until you end with a line containing only a
period. This action is the same as a d command followed by an i command.

You can join two lines together with the j command. For example, the sixth and
seventh lines we added to illustrate the a command in Section 3.2.3.1 should actually
be a single line. To join the two lines, enter the J command:

/And this
first
Summer month that brings the Rose
Jp
And this firstSummer month that brings the Rose
s/ts/t s/p
And this first Summer month that brings the Rose

As with the s command, you can include a p command to make ed display the
joined lines. The result of joining the lines isn’t exactly what we want, so we use an
s command to add the missing space.

Correcting Editing Errors — If you make a mistake in your editing, you can use
the u (undo) command to reverse the last change you made.

3.2.5 Combining Commands and Addresses

Locating a line and then operating on it, as we’ve shown you in the preceding
sections, is rather cumbersome. This technique also limits you to working with one
line at a time. You can work more efficiently by using ed’s ability to couple
addresses with most of its commands.

3-8 Line-Oriented Editors

3.2.5.1

3.2.5.2

Using Commands with Single Addresses — To enter an address and a
command at the same time, type the address before the command. Suppose you want
to add another stanza at the end of the file:

$a

RETURN
TAB||TABI[TABlVIII

Whether at Naishapur or Babylon,

Whether the Cup with sweet or bitter run,
The Wine of Life keeps oozing drop by drop,
The Leaves of Life keep falling one by one.

(Note that this stanza is out of sequence; we added stanza IX in Section 3.2.3.1.)

You can use both line numbers and regular expressions as addresses when you enter
commands in this way. Knowing that the last line of the file before the previous
example is line 57 and that it contains the words ‘‘Shall take’’, you could also have
used either of the following append commands:

57a

or
/Shall take/a

Note that you must use a second slash to separate the RE from the command. If you
want to make a change earlier in the file than the current location, you can use two
question marks to set off the address RE.

Be careful when using REs as addresses. If you specify an RE whose matching text
occurs more than once in the file, you could make your alteration in a location far
removed from where you intended.

You can use addresses with many commands. For example, you could correct
‘“‘revising’’ to be ‘‘reviving’’ (on line 24 of the file) with this command:

/revising/s//reviving/p
Now the New Year reviving old Desires,

Using Commands with Two Addresses — There are times when you want to
work with more than one line at a time. The editor accepts two addresses for many
commands. When you enter two addresses, they indicate a group of lines starting at
the first address and ending at the second. You separate addresses with a comma.
For example, the following command displays the first five lines of the file. The n
command, shown in this example, lists lines together with their line numbers.

,5n
I

Wake! For the Sun, who scatter’d into flight
The Stars before him from the Field of Night,
Drives Night along with them from Heav’n, and strikes

O W NP

Addressing multiple lines gives you the ability to make changes throughout part or
all of a file with a single command. Suppose you want to change the file so that it is
suitable for formatting with nroff. To do this, you need to insert a . sp command
wherever there is a blank line. You can do this job as follows:

1,$s/*$/.sp/

Line-Oriented Editors 3-9

In this example, the s command, with an address range from the first line to the end
of the buffer, uses an RE to find all the blank lines (lines with nothing between the
beginning, indicated by the circumflex, and the end, indicated by the dollar sign) and
change them to the . sp command.

Almost all of ed’s commands work with two addresses in this way. It is largely this
ability to make global changes rapidly that makes line editors better than vi for
some tasks. (You can use vi to make global changes, but when you do so you are
actually using the ex editor’s line-oriented commands.)

3.2.6 Marking Lines in the Buffer

It is often convenient to mark lines in the buffer so that you can return to them later.
The k command marks lines by assigning identifiers consisting of a single lowercase
letter that you supply as an argument after the k command. Suppose you want to
mark line 10 before doing something else:

10kx

The preceding example marks line 10 with the identifier x. Now you go off and
make a change elsewhere in the file. Afterward you can return to line 10 without
having to remember its number. To return to a marked line, you enter an apostrophe
followed by the identifier you gave to the line, as shown in the following example.
(This example adds another stanza at the end of the file and then uses the previously
set marker x to return to line 10.)

$a

RETURN]

TAB|[TAB][TAB]x

RETURN]

Well, let it take them. What have we to do
With Kaikobad the Great, or Kaikhosru?

Let Zal and Rustum bluster as they will,

Or Hatin call to Supper -- heed you not.

14
x
Before the phantom of False morning died,

You can mark up to 26 lines in this way. All marks are lost when you leave the ed
program.

3.2.7 Juggling Blocks of Text

In addition to changing bits or lines of text here and there in the file, you can use the
following ed commands to pick up a block of text from one location and place it in

another:

Command Addresses Description
m 0,1,2 Moves the specified block of text to a different location.
t 0,1,2 Makes a copy (‘‘takes a picture’”) of the specified text

after the target line, leaving the original text untouched.

3-10 Line-Oriented Editors

In the preceding examples, we added several stanzas to the file. We added stanza IX
before stanza VIII. To put these stanzas in the correct order, you can use the m
command. The m command moves the lines specified by one or two addresses
preceding the command, placing them after the line specified by the argument
following the command. Stanza VIII currently consists of lines 57 to 63; stanza IX
begins at line 50. The following command moves stanza VIII to its proper place:

57,63m49

Note that we use line 49 as the target instead of 50. Remember that the moved text
is placed after the target, not before it. Line 49, the end of stanza VII, is the line
after which stanza VIII is to be placed.

You can often simplify moving text by using REs or marked line identifiers as the
addresses and argument for the m command. Suppose that you have marked line 49
using the k command and that are you are currently positioned on line 63. The
following command would make the same change as the preceding example:

/VIII/, .m'x

In this example the RE VIITI finds the line that begins the selected block. The
period specifies that the current line is the end of the block. The ’ x identifies line
49.

The t command works the same as the m command except that it duplicates the
indicated text block at the target location instead of actually moving it.

3.2.8 Making Global Changes Interactively

Sometimes you want to make the same change in many places throughout the file.
Using an s command with an address range from line 1 to the end of the file is the
logical way to perform this task, but there are times when you don’t want to change
every occurrence of the string you are looking for. You can execute such global
changes selectively by using the G command. This command accepts zero, one, or
two addresses and a single optional RE argument. Without the RE, the command
works on all the lines in the range you specify; if you include the RE, the command
works only on lines that match the RE.

For each valid line, the G command displays the line and then accepts a single
interactive command from you. After performing this interactive command, ed
moves to the next valid line specified by the G command. In the following example,
we want to change a period after ‘‘them’’ into an exclamation point somewhere in the
file. We could use an RE to find the line, but we’ve chosen to illustrate the G
command here:

1,$G/them/
Drives Night along with from Heav’n, and strikes

Well, let it take them. What have we to do
s/\./'/p
Well, let it take them! What have we to do

With Kaikobad the Great, or Kaikhosru?

For the first occurrence of ‘‘them’’ in the file we enter a null command (a blank line)
because that is not the line we want to change. The null command makes ed move
ahead to the next occurrence. For the second occurrence, we enter a command to
make the desired change. (Because the period is an RE metacharacter, we must use a
backslash before the period we want to change.) The next null command we enter

Line-Oriented Editors 311

displays the line containing ‘‘Kaikobad the Great’’. Because it does not contain the
string we were searching for, this line indicates that the G command’s function is
complete.

3.2.9 Error Messages and Help

3.2.10

The ed editor provides two commands to help you figure out what has happened
when something goes wrong:

Command Description

h Displays an error message explaining the last ? response.

Toggles the display of error messages.

If you give the ed editor an invalid command, the editor responds by displaying a
question mark (?). This terse response is in keeping with the UNIX philosophy of
being concise. You can ask ed what it is complaining about by entering the h (help)
command. For example:

70s/Hatin/Hatim/p

?

h

line out of range

In this example ed is saying you have specified a line that does not exist. (The s
command specifies line 70, but there are only 69 lines in the file.) You can make ed
always respond with an error message instead of just a question mark by entering the
H command. Entering the same command again toggles ed’s error display mode,
returning to the mode of displaying question marks.

Matching Multiple Occurrences of a String

It is sometimes useful to specify an address that includes matches on more than one
occurrence of a given string. For example, there are many lines in the file that
contain ‘‘The’’ or ‘‘the’’ more than once. But there is only one line that contains
*“The’’ and two other occurrences of ‘‘he’’. You could search for this line by
specifying an RE as in the following example:

/The.*he.*he
Tavern shouted -- "Open tE:h tﬁg Door!

In this instance this RE is the simplest approach, but we want to illustrate a powerful
extension that makes use of framed REs.

The ed editor accepts REs that are enclosed, or framed, by parentheses, in the
following form:

\(expr\)

The backslashes tell ed to interpret the parentheses as metacharacters framing an RE
instead of as literal characters. This RE matches exactly the same things as the same
RE without the enclosing parentheses, but by framing it in this way you set it off so
that ed can refer to it later in a more complex RE. You can frame (and refer to)
more than one RE in the same compound RE. To refer to a framed RE later in a
compound RE, you use a backslash followed by a number #» that represents the nth

3-12 Line-Oriented Editors

3.2.11

3.2.12

framed RE in the expression. For example, the following RE matches the same line
matched by the previous example:

/T\ (he\) .*\1.*\1
Tavern shouted =-- "Open t@l t@ Door!

The parentheses frame the string ‘‘he’’. A period followed by an asterisk matches
any string. The backslash and number 1 refer to the first framed string in the RE; in
this example, there is only one. The period, asterisk, backslash, and number 1 are
repeated, and the complete RE matches only a line that contains ‘“The’’ and two
other occurrences of ‘‘he’’.

This feature is limited in that you cannot use bracketed characters to restrict what
your framed RE matches.

Executing Shell Commands from Within ed

You can execute a shell command by preceding it with an exclamation point:

'ls rub*

rubaiyat rubaiyat .bak
1

This example lists all the files in your working directory whose names begin with
“rub”’. The editor displays an exclamation point to indicate that the shell command
has finished and that you are now back in the editor.

You can include a percent sign (%) in shell commands that you issue from within
ed. The percent sign is replaced with the current buffer name:

ls -1 %
ls -1 rubaiyat
-rw-r--r-- 1 hale 1265 Aug 11 14:30 rubaiyat

!

Managing the File and Quitting ed

The following commands let you keep track of your file and leave ed:

Command Addresses Description

w [file] 0,1,2 Writes all or part of the buffer. If file is specified, ed
writes to a file of that name.

e [file] 0 Discards the current state of the buffer and reads the file

again as it was before the editing session began. If file is
specified, ed reads that file instead.

E [file] 0 Like e, except that ed does not warn you of impending
loss of the current buffer.

r [file] 0,1 Reads a file into the buffer.

£ name 0 Changes the name of the current buffer to name.

q 0 Ends your editing session. If the buffer is unwritten, ed
warns you.

0 0 Like g, but ed does not warn you if the buffer is
unwritten.

Line-Oriented Editors 3—-13

3.2.12.1

3.2,12.2

3.2123

3.2.12.4

3.2.12.5

Saving the Buffer — When you are ready to end your editing session, you must
save your file before leaving ed, or all your changes will be lost. You save the file
with a w (write) command:

w
1810

When you enter a w command, ed replaces the original contents of your file with the
contents of the buffer and tells you how many characters are in the file. (This
process is called writing the buffer.) You can create another copy of the file under a
different name by using the w command with a file name:

w rubaiyat-save
1810

If you specify an address range, the w command writes only the specified part of the
buffer. This feature is useful for creating files to be included later into other files you
edit. For example, the following command writes only the first two stanzas of the
poem to a file called samplel:

1,13w samplel
374

Rereading the File — If you have been making changes in the buffer and then
decide that you want to throw them away, you can clear the buffer and read the file
again with an e command. When you give the e command, ed warns you that it
expects you to save the old buffer first. Repeating the command tells ed that you
really intend to destroy what you have and start fresh. You can also use the E
command; this command is like e except that the editor proceeds without warning
you.

You can also use the e and E commands to read in a different file for editing by
specifying the name of the file you want to edit. For example:

E rubaiyat-save
1810

Including Other Files — You can include other files as part of the one you are
editing by using an r (read) command and specifying the file name.

Renaming the Buffer — You can change the name of the buffer you are editing
with the £ command (file name):

f new-rubaiyat
new-rubaiyat

Leaving the ed Editor — When you have finished your editing session, you leave
ed by entering a g command. If you have not yet written your buffer, ed warns you
that the contents are about to be lost. If you repeat the command, ed discards the
buffer and exits. You can make ed exit without warning you by using the Q
command instead of q.

3-14 Line-Oriented Editors

3.2.13 Recovering from a Crash

The buffer file is located in the /tmp directory and named e nnnnn, where nnnnn
was the process ID number of the editing process; for example:

/tmp/e05044

When a crash occurs, you can recover the last state of your buffer by locating the
buffer file with an 1s -1 /tmp command and then renaming it with an mv
command before you resume editing. You should use 1s with the —1 option to
make sure you recover your own buffer and not someone else’s.

3.3 The ex Editor

The ex editor is a more sophisticated version of ed; it includes all of ed’s functions
and provides more. Its most important facility is that you can use ex commands
while you are in vi and you can switch back and forth between ex and vi in a
single editing session.

The introduction to vi given in the Primer describes how to use commands that
begin with a colon. These are all ex commands; the colon is used in vi because,
unlike ed, the ex editor always displays a colon as a command prompt.

To switch to ex from vi, enter the Q command (not : Q). To return to vi, enter the
visual command.

The ex editor accepts all ed commands. Most of them can also be entered as a
command word instead of a single letter, for example, undo instead of u or write
instead of w. This might seem contrary to the UNIX philosophy of being concise,
but many people are more comfortable thinking in whole words.

The ex editor supports options that affect how editing is done. Options are entered
as editor commands. For example, the autoindent option sets ex to prepare
indented program code. When you enter a command that adds text (append,
insert, and so on), ex looks at the line after which the added text is to be placed
and calculates the amount of white space at the beginning of the line. That amount
of space is inserted at the beginning of each new line; that is, the edit creates a virtual
left margin, simulating a tab stop. If you add more white space to indent nested code
further, the virtual margin shifts accordingly. You can back up through the
indentation as code nesting levels decrease.

The ex editor allows you to create an initialization file that will execute commands
and set editing options each time the editor is started. You can use one or more
personalized initialization files to tailor the editor for different editing tasks; the
environments created in this way prevail whether you are working in ex or in vi.
To use an initialization file, create the file in your home directory and give it the
name .exrc. The ex editor will automatically read the initialization file and
perform the commands it contains before beginning to edit the file you want to work
on. The vi editor uses the same initialization file.

For a thorough discussion of ex features, refer to the ULTRIX Supplementary
Documents, Volume 1: General User.

3.4 The sed Stream Editor

The sed stream editor’s command syntax is almost identical to that of the ed
interactive editor. The sed editor reads commands from a program, or script, that

Line-Oriented Editors 3—15

you prepare before invoking the editor. It compiles the commands to make sure they
are all valid and to arrange them in the most efficient fashion, and then it executes
them. For quick edits, the editor also accepts a sequence of commands supplied as
arguments to a command-line option. You can combine command-line editor
commands with a script.

The line or group of lines specified by any editing command is called the command’s
pattern space. The pattern space is equivalent to the line or lines selected by the
addresses you use with ed commands. The editor proceeds through the file line by
line, applying to each line all the commands whose pattern spaces include that line.
The output of each command is passed to the next, so that edits are cumulative. This
line-by-line editing procedure is why sed is called a stream editor. It also explains
one of the major limitations of sed: you cannot use relative addresses in sed
commands. Only absolute line numbers or regular expressions (REs) are permitted.
When you specify a pattern space by using REs, every line or series of lines
matching the REs will be processed by the command. For example, the following
command finds and deletes every line containing the string ‘‘Kaikobad’’:

/Kaikobad/d

3.4.1 Using sed with a Script

You create a sed script using the cat command or any editor you choose. The
script consists of a series of editor commands. For example, the following script
makes some changes to the rubaiyat file that we used in the section describing the
ed editor:

s/*$/.sp/

1i\

\.RP\

\.TL\

The Rubaiyat of Omar Khayyam\

\

\.nf\

\.na

If this script file is named sedscr, you would process the rubaiyat file by
entering a command like this one:

vizier> sed ~f sedscr rubaiyat | more

The -£ option tells sed that you are using a script file. The option requires the
script file’s name as an argument.

This script substitutes . sp commands for all the blank lines in the file, to ensure that
the stanzas will be separated in the formatted output. Then it inserts a . RP macro
call, a . TL macro call, the text for the . TL macro, and .nf and .na commands to
tell nrof £ not to perform line filling or justification on the poem.

Because sed works with lines in a stream, it also expects text that you give it for a
(append), c (change), and i (insert) commands to be a single line. If you want to
enter more than one line of text for these commands, each line you enter except the
last must end with a backslash; this technique ‘‘hides’’ the new-line characters from
sed. This sample script uses backslashes in this way to insert several lines at the
beginning of the file. Note that the 1 command itself is also terminated with a
backslash. The last line to be inserted does not end with a backslash; the lack of a
backslash there indicates the end of the new text.

3-16 Line-Oriented Editors

Note that unlike ed or ex, the sed editor writes its output to the standard output,
leaving the original file unaltered. You could use a script similar to this to process
your story for formatting so that you would not have to maintain the title and other
front matter in the file; you would redirect the output to a second file name instead of
viewing it with the more command. Using a sed script like this would be a handy
way of avoiding the need to maintain nroff title information and formatting
commands in your file.

3.4.2 Using sed for Quick Edits

You can also use sed for quick editing without a script. If you invoke sed with the
-e option, the argument following the -e is a sed command. For example:

vizier> sed -e 's/*$/.sp/’ rubaiyat > rubaiyat.sp

This example changes blank lines to . sp commands throughout the file, the same as
if we had included the command in a script. Note that the command is enclosed by
apostrophes (/). The apostrophes keep the shell from interpreting metacharacters in
the command before passing the command to sed.

You can pass several commands to sed in this way by using a series of —e options:
vizier> sed -e 's/*$/.sp/’ -e '$r more-stanzas’ rubaiyat

You can also pass several commands to sed in the same —e argument by separating
them with semicolons:

vizier> sed -e 's/~$/.sp/;$r more-stanzas’ rubaiyat

You can include both the —e option and the - £ option for the same sed command.
This ability lets you create a standard script to use in conjunction with additional
edits that you specify at the time you run the command.

3.4.3 Command Syntax and Addressing

The command syntax for sed is almost identical to that for the ed interactive editor.
Many commands can have zero, one, or two addresses and zero, one, or two
arguments. Some commands do not accept addresses or arguments.

For commands that accept addresses, a single address specifies a one-line pattern
space. Every line in the file that matches the pattern will be processed. Two
addresses specify a pattern space that includes the first addressed line, the second
addressed line, and all the lines between them. Edits are applied to the first group of
lines that match the addresses, and then sed searches for a new group of lines on
which to work. This process is repeated through the entire file. Supplying no
addresses for a command that accepts addresses means that the command is applied
to the entire file. The first line of the short sample script we showed to edit the
rubaiyat file is a substitute command with no addresses; this command changes
each blank line that is found anywhere in the file.

You can specify that a given command is to be performed on every line that does not
match the addressed pattern space by placing an exclamation point between the
address and the command. For example:

/Kaikobad/!s/rose/Rose/g

This command changes ‘‘rose’’ to ‘‘Rose’’ wherever it occurs unless it is on a line
that also contains ‘‘Kaikobad’’.

Line-Oriented Editors 3—-17

3.44 Compound Commands

There is one exception to the addressing rules described in Section 3.4.3: the use of
compound commands. This exception provides a very powerful way to control the
scope of editing. It is often useful to apply a series of commands to the same pattern
space. You cannot always do this by specifying the same addresses for each
command in the series, because one command in the series might delete or alter part
of the pattern space so subsequent commands couldn’t find a proper match. For
example, suppose you made several mistakes in entering this stanza into the
rubaiyat file:

XI

With me along the strip of Herbage strewn
That just divides the dessert from the sowm,

Where name of Slave and sutlan is forgot --
And Peas to Mahmud on his golden Throne?

Obviously, you could make the explicit changes one at a time, but let us generalize a
little for purposes of illustration. You might try editing the stanza with the following
sed script:

/strewn/,/Throne/s/strewn/strown/
/strewn/,/Throne/s/dessert/desert/
/strewn/, /Throne/s/sown/sown/
/strewn/, /Throne/s/sutlan/Sultan/
/strewn/,/Throne/s/Peas/Peace/

The first command changes the word ‘‘strewn’’ that you are using for the starting
address of the pattern space. The remaining commands will work incorrectly because
they cannot find their address. They might simply be unable to make the specified
changes, but the failure could be catastrophic: if there is a match on ‘‘strewn’’
anywhere else in the file, some or all of your changes could be made in locations far
removed from where you intended.

You can avoid this problem by creating a compound command. A compound
command begins with an address or pair of addresses followed by a left brace ({).
On subsequent lines are the commands to be performed. You end the compound
command with a right brace (}) on a line by itself. The following example shows a
compound command that will perform the edits attempted by the incorrect example
above:

/strewn/, /Throne/{
s/strewn/strown/
s/dessert/desert/
s/sowm/sown/
s/sutlan/Sultan/
s/Peas/Peace/

}

This example works because the addresses specify an area in which to operate; all the
commands that follow are applied to the entire area. The second editing command is
not looking for an address match, so it does not matter that the beginning address has
been altered by the previous command.

Note that the editing commands in this example are indented from the margin. You
don’t have to indent, but indenting helps you to keep track of what a script is doing,
especially if you nest compound commands inside each other. For example, the
following script does the same things as the preceding example, but for illustration it
uses nested commands to make two changes on the line containing *‘dessert’’:

/strewn/, /Throne/ {

3-~18 Line-Oriented Editors

s/strewn/strown/

/dessert/{
s//desert/
s/sowm/sown/

}

s/sutlan/Sultan/

s/Peas/Peace/

}

As with simple commands, you can make a compound command edit everything that
does not match its address by including an exclamation point before the opening
brace. When you apply this technique to a command that is within a compound
command, the edits are applied only to the parts of the compound command’s
address space that do not match the address space of the nested command. Lines
outside the compound command’s address space are not affected. For example:

2,6

3,4!s/stringl/string2/
}

This example changes all occurrences of stringl on lines 2, 5, and 6 of a file.
Lines 3 and 4 are excluded by the exclamation point; line 1 and everything after line
6 are excluded by the compound command’s address range.

3.4.5 Additional sed Features

3.45.1

3.4.5.2

Because you cannot interact with sed as it edits your file, you cannot always do the
things you want to do using only the commands that sed has in common with ed.
For this reason, sed has several additional features that allow you to do some very
powerful editing. The following sections describe these features.

Using the Print Command — The sed editor’s p command does not display the
specified pattern space on your terminal; instead, it writes the pattern space to the
destination. You can use this feature to produce more than one copy of a pattern
space in the output file. You can also use it to produce an output file containing only
the lines you specify by invoking sed with its —n option. This option inhibits
normal output; only pattern spaces explicitly written with the p command are sent to
the output file. In the following example, the output is not redirected, so it comes to
your screen:

vizier> sed -n ’s/Kaikobad/Marvin/p’ rubaiyat

Shall take Jamshyd and Marvin away.
With Marvin the Great, or Kaikhosru?

Joining Lines — You cannot use the ed editor’s 5 command to join lines in sed.
Instead, the sed editor has the N command, which joins the next line to the current
one. When this command is executed, it joins the two lines with an embedded new-
line character between them. (The ed editor does not embed anything between the
joined lines.) You can operate on this new-line character by using the special
character \n. For example, to join lines 2 and 3 of a file and then remove the new-
line character, you would use these commands:
2{

N

s/\n//
}

Line-Oriented Editors 3—19

3.4.5.3

3.45.4

Substituting Characters — The sed editor’s y command performs one-for-one
character substitutions. The command requires two arguments, which must be strings
of exactly the same length. For each occurrence of any character in the first
argument, the y command substitutes the corresponding character from the second
argument. The command performs its change on every matching character in the
pattern space; you do not have to specify the g option as you would with the s
command. For example, the following command changes lowercase letters into
uppercase letters:

y/abcdefghijklmnopqgrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

Using a command like this example provides a rapid way to convert an entire file
from mixed case or lowercase into all uppercase letters for use, perhaps, as a
telephone listing. For an example of this command’s use in a practical sed script,
see Example 3-1.

Holding and Getting Text — The sed editor does not support the ed editor’s m
and t commands. To move text from one place to another or for other operations
that require temporary storage of a block of text, sed has the following commands:

Command Addresses Description

H 0,1,2 Stores the contents of the pattern space in the hold
buffer.

h 0,1,2 Appends the contents of the pattern space to the existing
contents of the hold buffer.

G 0,1,2 Replaces the contents of the pattern space with the
contents of the hold buffer.

g 0,1,2 Appends the contents of the hold buffer after the end of

the pattern space. Further edits in a compound command
are applied to the appended text as well as the previous
pattern-space contents,

These commands are very useful for handling text moves. You can also use them to
perform some fairly exotic manipulations. For example, the tool that formatted and
typeset this book uses a sed script to perform diagnostic checks on the book files.
The script uses REs as addresses to locate special formatting commands. When a
command is found, the script saves a copy of the pattern space in a temporary storage
area (the hold buffer). It then tests the command for correct syntax by looking
within the pattern space for further matches. If the required information is not found,
the script uses an i command to insert an error message. Then it gets the saved
command back from the hold buffer and writes the pattern space using a p command.
The final output consists of error messages followed by the lines that caused them.
For example:

Jul 28 14:58 1990 : ***% Diagnostic Report *** Page 1

*** File: sample.profile ***
*** File: sample.chl ***

ERROR: Unterminated tag argument (s)
32 .\" <include> (example-file

3-20 Line-Oriented Editors

*** File: sample.ch2 ***

**%x File: sample.ch3 *x*x

This usage of sed takes advantage of the sed editor’s —n option, described in
Section 3.4.5.1. Example 3-1 shows several excerpts from this diagnostic script.

Example 3-1: Sample sed Script

h

AN }*<[A-—Za—z].*>/{ il

y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopgrstuvwryz/ Eﬂ
/<abstract>/!{
/<include>/!{ 4

\

/<style>/!{
/<titleEf!{
i\

ERROR: Unrecognized tag

}
}

g; p; d @
}
}

/> (/4
/)1 [TABl*s/1¢
i\

\

ERROR: Unterminated tag argument (s)

}
}
}

g; p; d

This script illustrates several pattern matching and text manipulation techniques you
can use:

il

This code locates special formatting commands in the file being processed.
These commands, called tags, consist of a word delimited by angle brackets,
such as <abstract>. Tags are case insensitive, so the RE is designed to
look for any letter, upper- or lowercase, followed by zero or more other
characters between the angle brackets.

This line saves the tag in the hold buffer. When tag syntax is being checked by
later commands, the pattern space might be altered; this h command allows the
editor to recover the exact text of an erring tag for display.

To simplify processing the tags, this line converts the entire line to lowercase.
This way, it is not necessary to use a series of bracketed REs for each character
of a tag when comparing against the known tags.

This code matches each lowercased tag against the list of known tags. If the
tag is not an <abstract> tag, it is compared to the <style> tag, and so on.
If no match is found, the the tag is one that the processing tool does not
recognize.

Having found an unrecognized tag, the script inserts an error message.

The saved text is recovered from the hold buffer and printed along with the
inserted error message. Then the pattern space is deleted to prevent further
checks from being made on it.

Line-Oriented Editors 3—-21

Errors like the following example are common:

\" <tag-name> (argument}

The brace is not a proper terminator. This part of the sed script looks for tags
with arguments to ensure that there is a closing parenthesis for each such tag.

See Section A.1 for an example that uses the sed stream editor to extract
information from a mail message.

3-22 Line-Oriented Editors

Pattern-Matching Utilities 4

This chapter describes grep and its related utilities, and the awk utility. These
utilities provide powerful ways of searching for and reorganizing information.

The examples in this chapter use a file containing the following shopping list, called
shop, for their input. Columns in the table are separated by tab characters.

10 oz 2 .69 frozen peas

10 oz 1 .89 frozen broccolil
doz 1 2.25 fresh corn

1b 1 .45 rice

1b 3 1.89 apples

24 oz 2 .79 fruit cocktail ?
1/2 gal 2 1.89 ice cream

gal 3 2.39 milk

4 oz 1 .89 Fruit Twirls

16 oz 1 2.59 Tasty Squares
1b 1 1.89 rye bread

12 ct 1 1.19 burger buns

1b 2 1.79 hamburger

The utilities discussed in this chapter make use of regular expressions (REs). If you
are not already familiar with REs, read Chapter 2 before reading this chapter.

The discussion of awk in this chapter is intended only as an introduction to its
capabilities; for a thorough tutorial description of an enhanced version of awk called
nawk, see the Guide to the nawk Utility.

In examples, we will enclose the information for which we are searching in
apostrophes to prevent the shell from interpreting any metacharacters within the
information. Another name for the information being searched for is pattern; in the
grep family, the pattern is an RE, while in awk REs form only a subset of the
patterns that can be used. In this chapter’s examples, text that matches a search
pattern is enclosed in boxes.

4.1 The grep Family of Utilities

The name grep stands for ‘‘global regular expression printer.”” You have been
introduced to grep in the Primer and again in Chapter 2 of this book, where it was
used to demonstrate the use of regular expressions.

The simplest use of grep is to search a file for a specific string:

vizier> grep ’'pea’ shop
10 oz 2 .69 frozen lpeds

There are three versions of the grep command. Although they appear to work very
much alike, each version has special features that make it better for certain uses.
Table 4-1 describes the different versions of grep. One difference between the
grep versions is in their use of program space. Program space is the amount of

memory used by a program; the more program space a given program uses, the less
there is available for other users’ programs.

Table 4-1: Versions of the grep Utility

grep Version

Description

grep

egrep

fgrep

Patterns can contain a limited set of regular expressions. (See the list
immediately following this table.) The grep command uses a compact
searching method that is fast and requires a minimum of program space.

‘‘Extended grep’’ patterns make use of all the regular expressions.
The egrep command uses a more complicated searching method that
can sometimes require exponential data space. (Searching for twice the
number of patterns can require four times the space in memory.)

‘‘Fixed grep’’ patterns are fixed strings (explicit character sequences
instead of REs). ‘‘Rubaiyat’’ is a fixed string; ‘‘Ru.*at’’ is an RE. The
fgrep command is extremely fast and compact.

The set of REs supported by grep is limited so that grep can work more efficiently
for most uses. The additional power of egrep supports the full range of REs,
including the following features that are not supported by grep:

®* You can use a plus sign (+) after an RE, including an RE that is part of a
larger compound RE, to require a match on one or more occurrences of the RE.

®* You can use a question mark (?) after an RE, including an RE that is part of a
larger compound RE, to require a match on exactly zero occurrences or one
occurrence of the RE.

* You can separate REs with vertical bars (|) to make egrep search for more
than one pattern at a time. For example:

vizier> egrep ‘ulai]|[prlea’

10 oz 2
1/2 gal 2
24 oz 2
4 oz 1
16 oz 1
1b 1

shop
.69 froze
1.89 ice clredl
.79 frgt cocktail ?
.89 Fr Twirls
2.59 Tasty S es
1.89 rye

® You can frame an RE in parentheses.

The fgrep command does not allow REs, but it does allow you to specify more
than one string. You surround the strings with apostrophes (single quotation marks)
and separate them with a backslash followed immediately by pressing the RETURN
key, as in this example:

vizier> fgrep ’'peal\

ice’ shop

Size Qty
10 oz 2
1/2 gal 2

4-2 Pattern-Matching Utilities

Pﬂ[ag Ttem
.69 frozen s
1.89 cream

4.1.1 Modifying the Behavior of the grep Utilities

By default, the grep commands find each line that matches your pattern or patterns,
printing the line on the standard output. Table 4-2 describes command-line options
that allow you to specify other results from your searches.

Table 4-2: Options for the grep Utilities

Option grep Versions Description

-b All Precedes each output line with its disk block
number. This option is of use primarily to
programmers who are trying to identify specific
blocks on a disk by searching for the information
contained in them,

-c All Counts matching lines and prints only the count.

-e expression All Uses expression as the pattern. Useful if expression

-f file

-V

£

expression

egrep, fgrep
grep, fgrep
All

All
All
All
grep

fgrep

begins with a minus sign ().
Searches for a list of patterns taken from file.
Performs a case-insensitive search.

Lists only the names of files containing matching
lines. Each file name is listed only once, even if the
file contains multiple matches.

Precedes each matching line with its line number.

Performs its search in ‘‘silent’’ mode, printing
nothing except error messages.

Prints only lines that do not match the specified
expressions.

Matches only if expression is found as a separate
word in the text.

Prints only lines matched in their entirety.

Some of these options need more explanation.

The - £ option for egrep and fgrep allows you to specify the name of a file

containing the patterns instead of including them on the command line. This option
is useful when you have much information to search for or when you search for the
same information repeatedly.

Each pattern to be matched must be entered on a separate line of the pattern file; for
example, the sample egrep command shown near the end of Section 4.1 could also
have been executed this way:

1. Create a file containing the patterns to be matched:

vizier> cat > grepfile

ulai]

!gr!ea

2. Execute the egrep command, specifying the pattern file with the - £ option:

vizier> egrep -f grepfile shop

Pattern-Matching Utilities 4-3

The -1 option makes grep or £grep ignore the difference between uppercase
letters and lowercase letters. For example:

vizier> fgrep -i ’fruit’ shop

24 oz 2 .79 fruit] cocktail ?

4 oz 1 .89 ruitl Twirls

With grep, you can also match either uppercase or lowercase letters by creating
bracketed REs that contain the appropriate pairs, such as [F£]. Each technique is
useful under different circumstances; using the —i option makes all matches case
insensitive, whereas using bracketed REs treats only the specific characters you
bracket.

The -s option makes grep print nothing to the standard output. Instead, grep sets
status information so that a subsequent command can determine whether the search
was successful. (See Sections 9.5.4.3 and 9.9 for discussion of the status information
and how to use it.) This option makes the grep commands especially useful in shell
scripts because it allows a script to test whether a file contains desired information
without actually displaying the information.

The -w option for grep constrains the search so that the expression being matched
must be found as a separate word in the file. For the purposes of this match, the term
“‘word’’ means that the matching text must be both preceded and followed by
nonalphanumeric characters. Nonalphanumeric characters are white-space characters
(tabs or spaces) and punctuation, except that the underscore character (_) is treated
as if it were a letter. For example:

vizier> grep -w ’‘ice’ sho
1/2 gal 2 1.89 E_%é cream

This example finds the line containing ‘‘ice cream’’ but not the line containing

[P 2

rice .

4.2 The awk Utility and Programming Language

The first thing many new users ask about awk is, ‘“What does that name stand for?”’
The name awk is an abbreviation of the last names of Alfred Aho, Peter Weinberger,
and Brian Kernighan, the engineers who created the awk utility.

This section provides only a brief introduction to the power of awk. The nawk
utility is an enhanced version of awk; refer to the Guide to the nawk Utility for a
thorough tutorial on all the utility’s features.

The awk utility combines pattern matching with the ability to process the matched
information. The processing ability of awk is actually a complete programming
language in its own right.

An awk statement has the following form:

pattern { action }

If the action is missing, every line that matches the pattern is printed. Using awk
this way is like using one of the grep commands except that awk can use much
more sophisticated patterns. If the pattern is missing, the action is performed for

every line in the file. If both the pattern and the action are missing, the entire file is
printed; the result is the same as if you had used the cat command.

4-4 Pattern-Matching Utilities

4.2.1 What Can awk Do?

To get a quick idea of what awk can do, look at this example, which adds up the cost
of all the items in the shopping list file shop:

vizier> awk ’-F’ "{s += ($3 * $2)} END {print "Total",s}’ shop
Total 33.31

What happened in this example? The awk utility has actually performed three
distinct operations:

1. The awk command read the file, interpreting each line, or record, as a series of
columns, or fields, separated by field separators. By default, fields are separated
by any amount of white space (spaces or tab characters). Each field is identified
by a dollar sign ($) followed by the field’s number. Field $1 is the first
column, $2 is the second, and so on.

Because there are spaces within the columns of the shopping list file, this
example uses awk’s ~=F option to specify that only tabs are to be used as field
separators. The ~F option and the tab character are enclosed in apostrophes to
prevent the shell from interpreting the tab as ordinary white space.

2. Because this example specifies no pattern, awk operated on every record in the
file, performing the following action:

{s += (83 * $4)}

This action adds up the contents of each record’s third field (price) multiplied
by the record’s second field (quantity).

3. When awk reached the end of the file, it performed the action following the
END keyword, printing the string ‘‘Total’’ followed by the result of the
addition.

From this example, you can see that awk performs actions that process the input
information. It also recognizes patterns; for example, if there were items in the
shopping list with prices that you aren’t sure of, awk could print a list of just those
items. We’ve marked fruit cocktail with a question mark; the following command
prints just the items that are marked this way:

vizier> awk ’-F[TAB]’ 7$4 ~ /\?/’ shop
24 oz 2 .79 fruit cocktail ?

The pattern enclosed in the second set of apostrophes examines field $4. The tilde
(~) tells awk to see if the field contains text matching the RE enclosed in the
slashes, in this case a question mark. (The question mark is preceded with a
backslash to prevent awk from treating it as a metacharacter.) If there is a match,
awk prints the line. You could accomplish this same task more easily with a grep
command.

The strength of awk is its ability to combine pattern recognition with action. For
example, you could create an awk program that would total the prices you are unsure
of while totaling all the other prices separately to produce an output like this:

Items with uncertain prices:
fruit cocktail ?

Total of uncertain prices = 1.58
Total known prices = 31.73
Estimated total cost = 33.31

Pattern-Matching Utilities 4-5

We’ll show you the program that created this output in Section 4.2.4.

4.2.2 Printing with awk

As shown in the example in Section 4.2.1, awk uses the print command to print
things. You can print all of a record by using the print statement with no
arguments. Using a print command like this is the same as including no action in
your awk statement. For example:

vizier> awk ‘{print}’ shop
This command prints all of the shopping list file.

To print only selected fields, you specify the fields you want to print. You can also
mix text in the output as shown by the following example, which prints a list of just
the items and the quantity to buy:

vizier> awk ’-F[TAB]’ "{print "Buy", $2, "of", $4}’' shop

Buy 2 of frozen peas
Buy 1 of frozen broccoli

Buy 1 of burger buns
Buy 2 of hamburger

Note that the fields and text are separated by spaces. There is a predefined variable
in awk called OF S that contains the value of the output field separator. The default
value of OF'S is a single space, but you can change OFS to specify a different output
field separator, such as a tab character, to provide for uniform alignment of columnar
output. For example:

vizier> awk ’—Fﬁiﬁﬂ’ " {OFS = "Eﬂﬁﬂ"; print $2, $4}’ shop

2 frozen peas

1 frozen broccoli
1 burger buns

2 hamburger

Another useful value for the output field separator is the at sign (@); this character is
commonly used for separating columns in source files for the tbl table-formatting
processor discussed in Chapter 5.

4.2.3 Using Pattern Recognition in awk

The awk utility’s pattern-matching ability supports the full range of regular
expressions listed in Table 2-1. You must always enclose the pattern being matched
in slashes; if your pattern includes a slash or a metacharacter that you want
interpreted literally, precede that character with a backslash. For example:

/[Cclolou?r\?/

This pattern matches ‘‘Color’’, ‘*Colour’’, ‘‘color’’, or ‘‘colour’’ when the matching
word is followed by a question mark. (The question mark after the ‘‘u’’ is treated
not as an ordinary character but as an RE metacharacter calling for zero occurrences
or one occurrence of the preceding character.)

4-6 Pattern-Matching Utilities

The awk utility converts freely between numbers and strings as it sees the need. You
can use this feature to match on mathematical expressions. To search the shopping
list for all items whose quantities are greater than 1, use this command:

vizier> awk ’-Ffﬂﬁﬂ' '$2 > 1 {print $2, $4}’ shop
frozen peas

apples

fruit cocktail ?

ice cream

milk

hamburger

NwWNDNWN

You can test expressions using the following set of comparison operators:

== Equals

!'= Not equal

< Less than

> Greater than

<= Less than or equal to

~ Contains RE
!~ Does not contain RE

You can combine tests for more than one expression in a single pattern by using
parentheses and the following logical operators:

i1 Or
&& And

For example, the following pattern matches shopping-list items whose quantities are
less than 3 and whose prices are greater than $1.00, or that are marked with a
question mark:

(82 < 3) && ($3 > 1) I} (%4 ~ /\2/)

4.2.4 Programming awk

An awk statement consists of a pattern and an action. All of the actions we have
shown to this point are variations on printing. But you can create very complex
actions by using the programming features of awk.

An action can be a single statement or a sequence of statements. You separate
statements on a line with semicolons. Among the programming features of awk is
the ability to use flow-control structures (if-else, while, and for) to create
powerful programs. These structures are implemented for awk exactly the same as
they are for the bc calculator, described in Chapter 8.

As patterns and actions become more complex it is often easier to create a file
containing the patterns and actions you want awk to work with; this file is called an
awk program. The following example shows the program that created the neatly
separated totals of uncertain and known prices shown in Section 4.2.1:

BEGIN {FS = "[TAB]"

print "Items with uncertain prices:"}
{st += (83 * $2)}
(if (34 ~ /2/) { @Bl

sq += ($3 * $2)

print $4}

else @

Pattern-Matching Utilities 47

sr += ($3 * $2)}

END {print B

printf "Total of uncertain prices = %5.2f\n", sg Eﬂ
printf "Total known prices = $5.2f\n", sr
printf "Estimated total cost = %5.2f\n", st}

The statements in this program perform the following functions:

] Actions preceded by the BEGIN keyword are performed before awk processes
the file. In this case, a line is printed to identify the lines following it as items
whose prices are uncertain. The FS variable specifies the input field separator
in the same way as the OF S variable specifies the output field separator.
Setting F'S has the same effect as using the —-F command option.

2 This line adds prices to produce the total cost for the entire list. The variable
st holds the total.

B The if statement and the lines that follow it select items whose prices are
indicated as questionable, accumulating the total cost for just those items. The
variable sq holds this total. Any matching items are printed. Note that the
lines controlled by the if statement are enclosed in braces to form a single
action.

[4] The else statement and the line following it accumulate the cost for all the
items not marked as questionable. This total is stored in the variable sr.

Bl The END keyword identifies actions to be taken after the file processing is
complete. In this case, the program prints a blank line and then formats and
prints the three cost totals with identifying text.

The printf command uses the first argument, in quotation marks, as a format
string. Percent signs (%) introduce formatting controls for variables following
the format string, and the remaining text inside the format string is printed as-is.
This example formats the accumulated costs so that they will print in a neat
five-character column with two digits after the decimal point.

You use the - £ option for awk to tell the command to use your program. For
example, if this program is called add-prices, you would use this command:
vizier> awk -f add-prices shop

Items with uncertain prices:
fruit cocktail ?

Total of uncertain prices = 1.58
Total known prices = 31.73
Estimated total cost = 33.31

Note that this example does not need the —F option because the add-prices
program already specifies that the input field separator (FS) is to be a tab character.

4-8 Pattern-Matching Utilities

The tbl Table Creation Utility 5

Tables are an effective way to present certain kinds of information in documents.
This chapter discusses how to use the tbl preprocessor to create tables for
documents that will be formatted by the nrof £ text formatter. You can use this tool
to create simple tables that look like lists, as well as complex formal tables.

The commands and functions for tb1 that are described here also work with special
typesetting text formatters; this book was typeset with one such formatter, part of
Digital’s optional ULTRIX Documentation Tools product.

This chapter assumes that you are familiar with the nroff formatter. If you are not,
you should read the chapter in the Primer that discusses nroff,

5.1 Why Use tbi?

A table is a collection of information presented as a multicolumn list. Usually, but
not always, the first column contains a list of items that are described or explained by
other columns in the table. The following table is used for the examples in Chapter 4
of this book.

10 oz 2 .69 frozen peas

10 oz 1 .89 frozen broccoli
doz 1 2.25 fresh corn

1b 1 .45 rice

1b 3 1.89 apples

24 oz 2 .79 fruit cocktail ?
1/2 gal 2 1.89 ice cream

gal 3 2.39 milk

4 oz 1 .89 Fruit Twirls

16 oz 1 2.59 Tasty Squares
1b 1 1.89 rye bread

12 ct 1 1.19 burger buns

1b 2 1.79 hamburger

This table was created without the tbl preprocessor. It is just a collection of text
lines. For quick notes that you scratch out for yourself, this method is adequate. But
as tables become more complex or as you create documents that you will change
many times, it is easier to use tb1l, which automatically takes care of establishing
the proper columns, drawing lines or boxes, and allocating the proper space. If your
table contains descriptions that extend over several lines in one column as shown in
Example 5-1, using tbl saves a great deal of time. (The code that produced
Example 5-1 is shown at the end of this chapter as Example 5-10.) With the
exception of the shopping list shown at the beginning of this chapter and Chapter 4,
all the tables in this book, even the simple lists of mathematical and relational
operators in several chapters, were created with the tb1 preprocessor.

Example 5-1: Table with Multiline Entries

Feature Problem in Manual Formatting Benefit with tbl Formatting
Simplicity User must keep track of Columns are aligned by the
column alignment to make.at- formatter.

tractive display.

Long blocks User must align each line Formatter automatically
of text within its column, then go calculates how much fits on
on to the next column. a line and breaks text

blocks for you.

Underlining Each underlined section must Formatter can underline
be coded manually. selected columns automati-
cally.

We have used the word ‘preprocessor’’ several times in this discussion. What is a
preprocessor, and what’s it good for? Part of the UNIX philosophy is the idea of
using several simple tools, each designed to be very good at its job, instead of one
massive tool that can do everything but perhaps not very well. The nroff text
formatter is an example of this philosophy. It is good at formatting text, but it does
not know how to format tables. You could give it all the commands to make it
format a table, but they are very complex and confusing.

A preprocessor is a program that interprets information destined for another
processor. It provides an intermediate step of processing in order to simplify the job
you must do. The tbl preprocessor is another example of the UNIX philosophy of
one-job tools. It knows how to create formatting commands to make nroff produce

a table by translating a special set of table-formatting commands that you put in your
file.

To format a document containing tables, you process your file with the tbl
preprocessor and pipe the output to nroff. For entries that are more than one line
long, the nroff output has the first column’s text followed by the second column’s
text, and so on, as in the following illustration from the file that created Example 5-1:

Simplicity
User must keep track of
column alignment to make at-
tractive display.

ALTALTINT

Columns are aligned by the
formatter.

The odd-looking strings (~ [7) tell a printer how far to back up after printing the
first column to print the next column. But because most line printers cannot move
their paper backward, there is another tool, the col postprocessor, that reformats
nroff output by storing the first column’s information until it has gathered the rest
of what should be printed on the same line. Once col knows what each complete
line should look like, then it outputs the line. The following example shows how
you would process a file with tables and print the result on the default printer:

vizier> tbl file | nroff | col | lpr

5-2 The tbl Table Creation Utility

5.2 Creating Tables

Creating a table involves three steps:

5.2.1

e Setting off the table information

® Defining the table format

e Entering the table information

Example 5-2 shows the code for a simple table; the following sections describe the
steps in creating a table.

Example 5-2: Code for a Simple Table

.TS

center,tab (@) ;

111r.

Item@Size@Qty@Price

frozen peas@l0 o0zR2Q.69
frozen broccoli@l0 o0z@1@.89
fresh corn@doz@1@2.25

.TE

This example produces the following result:

Item

frozen peas
frozen broccoli
fresh corn

Size oty Price
10 oz 2 .69
10 oz 1 .89
doz 1 2.25

Setting Off the Table Information

You set off your table information by enclosing it between . TS (table start) and . TE
(table end) commands. These are commands that nroff does not recognize. The
tbl preprocessor looks for them, and it formats only the material between matched
sets of . TS and . TE commands. Also, as nrof £ is formatting the file, the ms
macro package invokes some special macros that allow you to do things beyond the
normal functions, such as these:

e (Create a table header so that if your table spans more than one page the header
will appear on each page.

. Create boxed sections of text, like this:

|This text is in a box.
|lwant in this way.

you |
|

You can enclose as much text as

5.2.2 Defining the Table Format

Defining the table format consists of two different tasks, specifying tbl options and
specifying the columns of the table.

The tbl Table Creation Utility 5-3

5.2.2.1

5.2.2.2

Specifying tbl Options — The first thing in a table is a line containing a comma-
separated list of tb1l options and terminated with a semicolon. For example:

center,tab (@) ;

The first option in this example says to center the table between the margins. You
can also specify expand, which makes the table span the entire length of a line. If
you don’t specify any placement, your table will be placed flush with the left margin.

The second option, tab (@), defines the character that you will use to separate the
information for one column from that for the next. This character is referred to as the
“‘tab character,”’ but if you use a real tab character your files can be a little confusing
to work with, especially if there are places where a given column is blank, because
tabs are invisible on the terminal display. You can specify whatever character you
like; many ULTRIX users use the at sign (@) because it is used for little else in most
documents.

By using other options, you can specify that your table is to be boxed. Example 5-3
shows two versions of the same small table; the first was created with the box option
and the second with allbox, which boxes each object in the table separately.

Example 5-3: Boxed Tables

| Item Size Qty Price|
| frozen peas 10 oz 2 .69]
| frozen broccoli 10 oz 1 .89
| fresh corn doz 1 2.25]
| Item | Size | Oty| Price]|
| frozen peas | 10 oz| 2 | .69]
J | | | |
| frozen broccoli] 10 oz| 1 | .89
| fresh corn | doz | 1 | 2.25]
| | |

(These tables are oddly boxed because nroff’s idea of vertical spacing is not
entirely consistent. We’ll show you how to deal with this inconsistency in Section
5.3.4.3.) The first of these tables was produced with the following options:

center,box,tab(Q) ;

The second table was produced with these options:
center,allbox,tab (@) ;

If you specify neither box nor allbox, your table will be printed with no boxing at
all, as in Example 5-2.

Specifying the Table Columns — After the tb1l options, you specify the number
and alignment of the table’s columns, or fields. Each field can be specified as 1, c, r,
or n, for left, center, right, or numerical alignment. The tables in Example 5-3 are
both specified with four fields, and the right field is right-aligned. There is one line
of specification for each of these tables:

111r.

Each specification line controls one line of the table. But if there are more lines in
the table than there are specifications, the last specification controls all the way to the

5-—4 The thl Table Creation Utility

end of the table. The last specification line is terminated with a period to tell tbl
that the actual table information begins on the next input line.

You can create other attractive effects with special characters that tb1 understands.
(See Examples 5-4 and 5-5 for an illustration of these effects and how to achieve
them.)

¢ Column separation

You can specify that columns are to be separated by a vertical bar (|) by
including a bar between the field descriptions in your specification lines. For
example:

1117 1.
This line produces a three-column table with bars between the columns.
e Spanned headings

You can specify that a heading is to span multiple columns by using the letter s
in your specification lines for fields into which the header can span. For
example:

Cc s s

You can use this example to produce a three-column table with a single
centered heading that spans all three columns.

5.2.3 Entering the Table Information

Once you have specified the table’s format, you enter the information. Each line of
the table is represented by one line in your s