
ULTRIX

Guide to VAX C for ULTRIX

Order Number: AA-ME83B-TE

Guide to VAX C for ULTRIX TM

Order Number: AA-ME83B-TE

June 1990

This document describes VAX C constructs in context with both the history of the C pro­
gramming language and that of the ULTRIX environment on VAX processors. It contains
information on VAX C program development in the ULTRIX environment on VAX processors,
the VAX C programming language, and cross-system portability concerns.

Revision/Update Information: This manual supersedes the Guide to VAX C for ULTRIX,
(Order No. AA-KK18A-TE).

Operating System and Version: ULTRIX Version 4.0 or higher

digital equipment corporation
maynard, massachusetts

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

© June 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1
DEC
DEC/CMS
DEC/MMS
DECnet
DECmate
DECsystem-1 O
DECSYSTEM-20
DEC US
DECwriter
DIBOL

Edu System
IAS
MASS BUS
PDP
PDT
P/OS
Professional
Q-bus
Rainbow
RSTS
RSX

RT
ULTRIX
UNIBUS
VAX
VAXcluster
VMS
VT
Work Processor

ZK4585

Contents

Preface . xiii

Porting C Programs

Chapter 1 Program Portability Considerations

1.1 Differences Between pee and VAX C/ULTRIX
1.1.1 Behavioral Differences .

1.1.1.1 Compiler Phases .
1. 1. 1.2 Preprocessor Behavioral Differences
1.1.1.3 Optimization Capabilities
1. 1.1.4 Object File Formats .
1.1.1.5 Listing Output .
1.1.1.6 Default Options
1 .1.1. 7 Unavailable Options .. · .
1 .1.1.8 Unique Options .
1 .1.1.9 Compatibility with lint .
1 .1 .1.1 O Compiler Error Messages .

1.1 .2 Language Differences .
1 .1.2.1 Function Prototypes .
1.1.2.2 Generic Pointers .
1 .1.2.3 The #pragma Preprocessor Directive
1.1.2.4 Hexadecimal Characters in Escape Sequences
1.1.2.5 Vacuous Tag Declarations
1.1.2.6 Additonal Predefined Macros
1. 1.2. 7 Storage-Class Specifiers .
1 .1.2.8 Storage Class Modifiers .
1 .1.2.9 The Variant Structure and Union Declarations
1.1.2.1 O The _align Modifier .
1.1.2.11 The & Operator in Function Calls
1 .1.2.12 Multicharacter Constants .
1 .1.2.13 The main_program Option .
1 .1.2.14 Specifying Dollar Signs ($) in Identifiers
1.1.2.15 Order of Evaluation for Subexpressions
1.1.2.16 Initializing of External Objects .
1.1.2.17 Compiler-Generated Global Symbols
1.1.2.18 The· asm Pseudo Function Call
1.1.2.19 Variable Initialization
1.1.2.20 Functions Which Return a Structure Value
1.1.2.21 Casts as lvalues

1.2 Differences Between VAX CNMS and VAX C/ULTRIX
1.2.1 Language Differences .

1.2.1.1 COD/Plus
1.2.1.2 The #include Preprocessor Directive

1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-6
1-7
1-7
1-7
1-7
1-8
1-8
1-8
1-8
1-8
1-8
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-9
1-9

1-10

1-10
1-10
1-10
1-10

iii

1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8

Include Files
Tool Support .. .
Error Message Formats .
Structure Alignment Differences .
Behavior Differences .
Variable Names
The #module Preprocessor Directive .

Developing VAX C Programs on ULTRIX

Chapter 2 Developing VAX C Programs for ULTRIX

2.1 UL TRIX Commands for Program Development

2.2 Creating a VAX C Program

2.3 Compiling and linking a VAX C Program
2.3.1 Functions of the Compiler
2.3.2 Functions of the Linker .
2.3.3 The vcc Command

2.3.3.1 Usage Considerations .
2.3.3.2 Specifying Input Files .
2.3.3.3 Specifying Output Files .
2.3.3.4 Options to the vcc Command
2.3.3.5 Specifying Vendor-Specific Options ~

2.4 Compiler and linker Diagnostic Messages .
2.4.1 Compiler Diagnostic Messages and Error Conditions
2.4.2 Linker Diagnostic Messages and Error Conditions

2.5 Compiler listings .
2.5.1 Source Code Section .
2.5.2 Machine Code Section
2.5.3 Storage Map Section .

2.6 The lk linker Image Map
2.6.1 Object Module Synopsis .
2.6.2 Program Section Synopsis .
2.6.3 Symbol Cross-Reference .
2.6.4 Symbol Value Listing .
2.6.5 Image Synopsis
2.6.6 Link Run Statistics Synopsis

Chapter 3 The dbx Debugger

3.1 Invoking the dbx Debugger

3.2 dbx Conventions
3.2.1 dbx Initialization Files .
3.2.2 Command Line Retention .
3.2.3 Expressions in dbx Commands .

3.3 Debugging Optimized Programs

iv

1-11
1-11
1-11
1-11
1-11
1-12
1-12

2-1

2-3

2-3
2-4
2-4
2-4
2-5
2-6
2-7
2-7
2-9

2-17
2-17
2-18

2-18
2-19
2-19
2-20

2-23
2-24
2-25
2-26
2-28
2-29
2-30

3-2

3-3
3-3
3-3
3-3

3-4

3.4 dbx Commands .. .
3.4.1 Source-Level Debugging Commands .
3.4.2 Machine-Level D~bugging Commands ..

3.5 Sample Debugging Session

VAX C Programming Concepts

Chapter 4 Program Structure

4.1 C Programming Language Background

4.2 The VAX C Programming Language

4.3 Writing Your First Program

4.4 Producing Input/Output .

4.5 Controlling Program Flow .
4.5.1 The if Statement .
4.5.2 The switch Statement .
4.5.3 Loops

4.6 Values, Addresses, and Pointers

4.7 Aggregates .
4.7.1 Arrays and Character Strings
4.7.2 Structures and Unions

4.8 Function Definitions .
4.8.1 The main Function and Function Identifiers
4.8.2 Parameter List Declarations .
4.8.3 Function Return Data Types .
4.8.4 Variable-Length Parameter Lists

4.9 Function Declarations .

4.10 Function Prototypes .

4.11 Using Parameters and Arguments
4.11.1 Function and Array Identifiers as Argu~ents
4.11.2 Passing Arguments to the main Function

4.12 Identifiers

4.13 Keywords

4.14 Blocks

4.15 Comments .. .

4.16 Source Code Checking Functionality .

3--5
3-7

3-13

3-15

4-1

4-2

4-2

4-4

4-6
4-7
4-8
4-9

4-12

4-14
4-14
4-15

4-18
4-20
4-20
4-21
4-22

4-23

4-24

4-26
4-27
4-28

4-29

4-29

4-31

4-32

4-32

v

Chapter 5

5.1

5.2

5.3

5.4

5.5

Chapter 6

6.1

6.2

6.3

6.4

6.5

6.6

vi

Statements

Control Flow Statements .
5.1.1 The null Statement
5.1 .2 The goto Statement .
5.1 .3 The label Statement .

Expressions and Blocks as Statements
5.2.1 The expression Statement .
5.2.2 The compound Statement .

Conditional Statements
5.3. 1 The if Statement .
5.3.2 The switch Statement

Looping Statements
5.4.1 The for Statement .
5.4.2 The while Statement .
5.4.3 The do Statement .

Interrupting Statements .
5.5.1 The break Statement
5.5.2 The continue Statement
5.5.3 The return Statement .

Expressions and Operators

The lvalues and rvalues .

Primary Expressions and Operators .
6.2. 1 Parenthetical Expressions .
6.2.2 Function Calls .
6.2.3 Array References ([])
6.2.4 Structure and Union References

Overview of the VAX C Operators

Unary Expressions and Operators .
6.4.1 Negating Arithmetic and Logical Expressions
6.4.2 Incrementing and Decrementing Variables
6.4.3 Computing Addresses and Dereferencing Pointers
6.4.4 Calculating a One's Complement
6.4.5 Forcing Conversions to a Specific Type Using the Cast Operator
6.4.6 Calculating Sizes of Variables and Data Types (sizeof)

Binary Expressions and Operators .
6.5.1 Additive Operators
6.5.2 Multiplication Operators
6.5.3 Equality Operators .
6.5.4 Relational Operators
6.5.5 Bitwise Operators .
6.5.6 Logical Operators .
6.5. 7 Shift Operators .

The Conditional Expression and Operator .

5-1
5-1
5-2
5-2

5-2
5-2
5-2

5-3
5-3
5-4

5-6
5-6
5-7
5-7

5-8
5-8
5-8
5-9

6-1

6-2
6-2
6-2
6-3
6-4

6-4

6-7
6-7
6-7
6-8
6-9
6-9

6-10

6-10
6-10
6-11
6-11
6-11
6-12
6-13
6-13

6-13

6.7

6.8

6.9

Chapter 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

Assignment Expressions and Operators

The Comma Expression and Operator

Data-Type Conversions
6.9.1 Converting Operands
6.9.2 Converting Function Arguments

Data Types and Declarations

Constants .. .

Variables
7.2.1 Data-Type Keywords
7.2.2 Format of a Variable Declaration

Integers (int, long, short, char, and unsigned) .
7.3.1 Integer Constants
7.3.2 Character Constants
7.3.3 Escape Sequences

Floating-Point Numbers (float and double)

Floating-Point Constants .

Pointers (*) .
7.6.1 void Pointers

Enumerated Types .. .

Arrays ([]) . · · · · · · · · · · · · · · · · · · ·

Initializing Arrays .

Character-String Variables (char* and char [])

Character-String Constants .

Structures and Unions (struct and union)
7.12.1 Declaring a Structure or Union
7.12.2 Referencing Members of Structures or Unions
7.12.3 Initializing Structures
7.12.4 Variant Structures and Unions
7.12.5 Bit Fields

The void Keyword .. .

The typedef Keyword .. .

Interpreting Declarations . ; .

6-14

6-15

6-15
6-16
6-17

7-1

7-1
7-2
7-2

7-3
7-4
7-5
7-5

7-6

7-7

7-8
7-9

7-9

7-11

7-13

7-14

7-14

7-15
7-16
7-17
7-18
7-20
7-22

7-22

7-23

7-23

vii

Chapter 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chapter 9

9.1

9.2

9.3

9.4

9.5

viii

Storage Classes and Allocation

Scope
8.1.1 The Compilation and Linking Process .
8.1.2 Position of the Declaration .
8.1.3 Lexical Scope and Link-Time Scope .
8.1.4 Program Example .

Storage Allocation .

Internal Storage Class .
8.3.1 The auto Specifier .
8.3.2 The register Specifier .

The Static Storage Class .

The External Storage Class .

The Global Storage Class
8.6.1 The globaldef and globalref Specifiers .
8.6.2 Comparing the Global and the External Storage Classes
8.6.3 The globalvalue Specifier .
8.6.4 Global Enumerated Types .

Data-type modifiers .
8.7.1 The const Modifier
8.7.2 The volatile Modifier

Storage-Class Modifiers .
8.8.1 The noshare Modifier .
8.8.2 The readonly Modifier ..
8.8.3 The _align Modifier

Preprocessor Directives

Macro Definitions (#define and #undet)
9.1.1 Constant Identifiers .
9.1.2 Macro Parameters .
9.1.3 Listing Substituted Lines
9.1.4 Canceling Definitions (#undef) .

Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif, and #endif)
9.2.1 The defined Operator .

File Inclusion (#include)
9.3.1 Inclusion Using Angle Brackets (<>)
9.3.2 Inclusion Using Quotation Marks (" ")
9.3.3 Macro Substitution in #include Directives

Specifying Line Numbers (#line and #) .

Implementation-Specific Preprocessor Directive (#pragma)
9.5.1 #pragma [no]builtins Directive
9.5.2 #pragma [no]inline Directive

9.5.2.1 Restrictions on lnline Expansion
9.5.3 #pragma [no]member_alignment Directive

8-1
8-2
8-2
8-3
8-4

8-7

8-7
8-8
8-9

8-9

8-10

8-11
8-11
8-13
8-14
8-15

8-16
8-16
8-17

8-17
8-18
8-18
8-18

9-1
9-3
9-3
9-5
9-5

9-5
9-7

9-7
9-7
9-8
9-8

9-8

9-9
9-9
9-9

9-10
9-11

9.5..4 #pragma [no]standard Directive 9-11

Chapter 1 O Predefined Macros and Built-In Functions

10.1 Predefined Macros . 10-1
10.1.1 System-Identification Macros . 10-1
10.1.2 CC$gfloat (G_Floating Identification Macro) 10-2
10.1.3 The __ DATE __ Macro . 10-2
10.1.4 The __ FILE __ Macro . 10-2
10.1.5 The __ LINE __ Macro . 10-3
10.1.6 The __ TIME __ Macro . 10-3

10.2 Built-In Functions . 10-3
10.2.1 Add Aligned Word Interlocked LADAWI) . 1 Q-4
10.2.2 Branch on Bit Clear-Clear Interlocked LBBCCI) 1 Q-4
10.2.3 Branch on Bit Set-Set Interlocked LBBSSI) 1 Q-4
10.2.4 Find First Clear Bit LFFC) . 10-5
10.2.5 Find First Set Bit LFFS) . 10-5
10.2.6 Halt LHALT) . 10-6
10.2.7 Insert Entry into Queue at Head Interlocked UNSQHI) 10-6
10.2.8 Insert Entry into Queue at Tail Interlocked UNSQTI) 10-6
10.2.9 Insert Entry in Queue UNSQUE) . 10-7
10.2.1 O Load Process Context LLDPCTX) . 10-7
10.2.11 Locate Character LLOCC) . 10-7
10.2.12 Move from Processor Register LMFPR) . 10-S
10.2.13 Move Character 3 Operand LMOVC3) . 10-8
10.2.14 Move Character 5 Operand LMOVC5) . 10-9
10.2.15 Move from Processor Status Longword LMOVPSL) 10-1 O
10.2.16 Move to Processor Register LMTPR) . 10-10
10.2.17 Probe Read Accessibility LPROBER) . 10-10
10.2.18 Probe Write Accessibility LPROBEW). 10-11
10.2.19 Read General-Purpose Register LREAD_GPR) 10-11
10.2.20 Remove Entry from Queue at Head Interlocked LREMQHI) 10-11
10.2.21 Remove Entry from Queue at Tail Interlocked LREMQTI). 10-12
10.2.22 Remove Entry from Queue LREMQUE) . 10-12
10.2.23 Scan Characters LSCANC). 10-13
10.2.24 Simple Read LSIMPLE_READ) . 10-13
10.2.25 Simple Write LSIMPLE_WRITE) . 10-14
10.2.26 Skip Character LSKPC) . 10-14
10.2.27 Span Characters LSPANC) . 10-15
10.2.28 Save Process Context LSVPCTX) . 10-15
10.2.29 Write General-Purpose Register LWRITE_GPR). 10-15

Appendix A The lk Linker

A.1 The lk Command Line

A.2 Linker Processing .
A.2.1 Program Section Attributes .
A.2.2 Virtual Memory Allocation by the Linker .
A.2.3 Specij Processing for Modules Produced by the Id Linker

A-1

A-3
A-4
A-5
A-6

ix

Appendix B Diagnostic Messages

8.1 Diagnostic Messages from the vcc Command

8.2 Diagnostic Messages from the VAX C Compiler

B.3 Diagnostic Messages from the lk Linker

Appendix C Transporting VAX C Programs Between VMS and ULTRIX Systems

C.1 Transporting VAX C Programs and Other ASCII Files
C.1.1 Using DECnet-ULTRIX to Copy ASCII Programs
C.1.2 Using DECnet-VAX to Copy ASCII Programs
C.1.3 DEC/Shell on a VMS System - The tar Utility

C.2 Compiling and Linking Considerations .
C.2.1 Input and Output Files
C.2.2 Search Paths Used by the vcc Command .
C.2.3 Psect Differences
C.2.4 Image Size Differences

C.3 Transferring Data Files Between VMS and ULTRIX Systems

Appendix D Language Summary

D.1

D.2

D.3

0.4

0.5

D.6

0.7

Index

Examples
2-1

2-2

2-3

2-4

2-5

2-6
2-7

2-8

x

The vcc Command ·

Data-Type Keywords

Precedence of Operators .

Statements .

Conversion Rules

VAX C Escape Sequences

Preprocessor Directives .

Sample Listing of Source Code .

Sample Listing of Machine Code .

Sample Storage Map Section .

Object Module Synopsis .

Program Section Synopsis

Symbol Cross Reference .

Symbol Value Listing .

Image Synopsis

B-1

B-2

8-33

C-1
C-1
C-2
C-2

C-3
C-3
C-4
C-4
C-4

C-5

D-1

D-2

D-4

D-4

D-4

D-5

D-5

2-19
2-20

2-21

2-24

2-25
2-27

2-28

2-29

2-9 Link Run Statistics Synopsis . 2-30

3-1 Sample VAX C Program . 3-15

3-2 Sample Debugging Session . 3-16

4-1 Simple Addition in VAX C . 4-3

4-2 Output of Information . 4-5
4-3 Output Using the Newline Character . 4-6

4-4 Conditional Execution Using the if Statement . 4-7

4-5 Conditional Execution Using the switch Statement . 4-8

4-6 Looping Using the do Statement . 4-9

4-7 Looping Using the for Statement . 4-11

4-8 Character String Constants and Arrays . 4-15

4-9 Single Storage Allocation of Unions . 4-16

4-10 Structures. 4-17

4-11 Case Conversion Program . 4-18

4-12 Declaring Functions . 4-23

4-13 Declaring Functions Passed as Arguments . 4-27

4-14 Echo Program Using Command-Line Arguments . 4-29

4-15 Scope of Variable Declarations in Nested Blocks . 4-32

5-1 Using the switch Statement to Count Blanks, Tabs, and Newlines 5-5
7-1 The Rules for Initializing Structures . 7-19

8-1 Scope and Externally Defined Variables . 8-5

8-2 Reinitializing auto Variables · . 8-8

8-3 Using Global Variables . 8-12

8-4 Using the globalvalue Specifier. 8-14

9-1 Nested Substitution Directives . 9-2

Figures

2-1 Commands for VAX C Program Development . 2-2

4-1 rvalues, lvalues, and Assigning Pointers . 4-13

4-2 The Indirection Operator in Assignments . 4-14

6-1 Boolean Algebra and the Bitwise Operators . 6-12

Tables

2-1 Options Supported by the vcc Command . 2-8

2-2 Arguments to the -V Option of the vcc Command. 2-10

3-1 dbx Operators . 3-4

3-2 dbx Command Summary . 3-5

4-1 VAX C Keywords . 4-30

6-1 VAX C Operators 6-5

6-2 Precedence of VAX C Operators . 6-6

7-1 VAX C Data-Type Keywords . 7-2

7-2 The Size and Range of VAX C Integers. 7-3

7-3 VAX C Escape Sequences . 7-6

7-4 The Size and Range of C Floating-Point Numbers. 7-6

7-5 Legal C Declarations , 7-25

7-6 Illegal Declarations . 7-26

8-1 VAX C Storage Classes and Storage-Class Specifiers . 8-3

xi

xii

8-2
8-3
A-1

B-1

Scope and the Storage-Class Specifiers .
Location, Lifetime, and the Storage-Class Keywords

Command Options Supported by the lk Linker .

Linker Diagnostic Messages .

8-4
8-7
A-2

B-33

Preface

This guide provides reference information for using VAX C on ULTRIX ™ sys­
tems. It also contains information on how to develop and debug VAX C programs
on the ULTRIX operating system running on VAX hardware. VAX C is not
intended for use on RISC hardware.

Intended Audience

This guide is intended for experienced and novice programmers who need refer­
ence information on VAX C for ULTRIX systems.

Document Structure

This guide has ten chapters and four appendixes as follows:

Chapter 1 describes portability considerations for migrating C source programs
between different compilers and the VMS and ULTRIX operating systems.

Chapter 2 explains how to create and compile and link VAX C programs. It also
describes the forms of compiler output that you can select.

Chapter 3 discusses the debugging facilities provided by the dbx debugger and
how to use the dbx commands.

Chapter 4 explains the structure of VAX C programs, including an introduction
to the language, methods of controlling program flow, and the fundamental
structures such as function definitions, keywords, blocks, and comments.

Chapter 5 describes the VAX C statements that provide flow control, conditional
executions, looping, and interruption.

Chapter 6 discusses the expressions and operators available in VAX C, including
unary, binary, conditional, comma, and assignment. Chapter 6 also explains the
rules for data-type conversions.

Chapter 7 explains the data types and declarations that VAX C supports.

Chapter 8 describes the storage classes and allocation.

Chapter 9 explains the purposes and appropriate uses of the various VAX C
preprocessor directives.

Chapter 10 explains the purposes and appropriate uses of the various VAX C
predefined macros and builtin functions.

TM ULTRIX is a trademark of Digital Equipment Corporation.

xiii

Appendix A describes how to use the lk linker as a separate tool for linking,
instead of using the vcc command, which both compiles and links programs.

Appendix B lists all the diagnostic messages produced by the vcc command
program and the VAX C compiler.

Appendix C describes the mechanisms available to assist in transporting C
programs between the VMS and ULTRIX operating systems.

Appendix D provides a summary of the vcc command and the language elements
ofVAXC.

Associated Documents

You may find the following documents useful when programming in VAX C.
The last two documents are included if you want to transport VAX C programs
between the ULTRIX and VMS operating systems.

• The C Programming Language1 - Provides a more intensive tutorial than
that found in the beginning of Chapter 4 of this guide.

VAX C contains additional features and enhancements to the C language as it
is defined in The C Programming Language. Therefore, use this guide as the
reference for a full description of VAX C.

• ULTRIX Documentation Set - Provides information about the ULTRIX
operating system and its utilities.

• Guide to VAX C - Provides tutorial information that describes using VAX C
on the VMS operating system.

• VMS Master Index - Provides information on the VAX machine architecture
in the VMS operating system environment. (This index identifies manuals
that cover individual topics about using the VMS operating system.)

Conventions

Convention

% cprog I RETURN I

Meaning

The symbol I RETURN I represents a single stroke of
the RETURN key on a terminal.

The symbol I CTRUX I, where letter X represents
a terminal control character, is generated by
holding down the CTRL key while pressing the
key of the specified terminal character.

In interactive examples, the user's response to
a prompt is printed in red; system prompts are
printed in black.

1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood Cliffs, New Jersey: Prentice
Hall, 1988).

xiv

Convention

float x;

x = 5;

option, ...

[output-source, . · ..]

sc-specifier ::=
auto
static
[extern]
register

[a I b]

auto storage class
fprintf function

Meaning

A vertical ellipsis indicates that not all of the text
of a program or program output is shown. Only
relevant material is shown in the example.

A horizontal ellipsis indicates that additional
parameters, options, or values can be entered. A
comma that precedes the ellipsis indicates that
successive items must be separated by commas.

Square brackets, in function synopses and a few
other contexts, indicate that a syntactic element
is optional. Square brackets are not optional,
however, when used to delimit the dimensions of
a multidimensional array in VAX C source code.

In syntax definitions, items appearing separate
lines are mutually exclusive alternatives.

Braces surrounding two or more items separated
by a vertical bar (I) indicate a choice; you must
choose one of the two syntactic elements.

A delta symbol is used in some contexts to indi­
cate a single ASCII space character.

Boldface type identifies language keywords and
the names of independently compiled external
functions.

xv

Chapter 1

Program Portability Considerations

This chapter describes the portability issues you must consider when migrating
existing C source language programs to run on the VAX C compiler for ULTRIX
systems (VAX C/ULTRIX). You may not need to migrate C programs. If this is
not a concern to you, go to Chapter 2. Read this chapter for information about
writing VAX C/ULTRIX programs for improved portability that might be useful in
the future.

You will need this chapter if you fall into one of the following two groups:

• You are a user with source programs written for the portable c compiler (pee)
for ULTRIX

• You are a user with source programs written for the VAX C compiler for VMS
(VAX CNMS) Version 3.0 or higher

The first group of users is interested in the differences between the two compilers.
The second group of users must learn about the changes imposed by both the
compiler differences and the operating system differences. (The compiler
differences are relatively minor.)

This chapter also discusses whether the source program, once modified to compile
with VAX C on an ULTRIX system, can be recompiled and executed with its
original compiler and operating system, if necessary.

This chapter does not describe how to migrate programs. Appendix C describes
the most efficient methods for transporting the programs.

NOTE

To distinguish when VAX C is running on the ULTRIX or the
VMS operating system in this chapter, the following convention is
adopted: the operating system name is appended after VAX C, as in
VAX C/ULTRIX. The remainder of this manual omits the /ULTRIX
designation, (unless it is needed for clarification) since the product
being described is VAX Con the ULTRIX system.

This chapter presents the information based on the needs of the two specific
groups of users. Refer to the sections corresponding to your portability
requirements and study the descriptions that follow.

Program Portability Considerations 1-1

1.1 Differences Between pee and VAX C/ULTRIX

VAX C is a C compiler available on VAX ULTRIX as vcc. pee is the default C
compiler on VAX ULTRIX. If you are an ULTRIX user and want to compile and
link your existing pee source programs with the VAX C/ULTRIX compiler, note
that there are certain behavioral and linguistic differences between these two C
compilers. By reading this section, you can decide if it will be easy or difficult to
take the source program, once it is modified for VAX C/ULTRIX, and recompile it
successfully on pee.

1.1.1 Behavioral Differences

This section describes the following behavioral differences between the pee and
VAX C compilers:

• Number of passes and methods to perform preprocessing

• Preprocessor behavioral differences

• Optimization capabilities

• Object file formats

• Listing output

• Default options

• Unavailable options

• Unique options

• Compatibility with the lint utility

• Compiler error messages

One area of difference that does not exist concerns the use of system libraries.
VAX C/ULTRIX supports all native ULTRIX system libraries, as does the portable
C compiler (pee). Thus, if you are migrating C programs from pee to VAX C
/ULTRIX, you do not need to change your system library calls.

1.1.1.1 Compiler Phases

The pee compiler is both a multipass and a multiphase compiler. For example,
the first phase of pee invokes the C preprocessor (cpp) to output a temporary file
that is used for compiling during the second phase. The VAX C/ULTRIX compiler,
does not perform preprocessing in a separate phase. Instead, VAX C/ULTRIX is
a single-phase compiler that integrates its preprocessing functions with its other
functions in one pass. (This technique speeds up the compiler by eliminating the
separate startup time for reloading a new image.)

As a single-phase, single-pass compiler, VAX C/ULTRIX does not produce as­
sembly code as output, either by default or on request. This approach further
increases the overall compilation speed. However, since pee produces assembly
code output in response to the -S option of the cc command, you may be used to
generating assembly language code for subsequent editing. You cannot continue
this practice when using the VAX C/ULTRIX compiler.

When you specify the -E option on the vcc command line, VAX C/ULTRIX prepro­
cesses the file and produces source output. There is not a separate preprocessor;
this capability is built into the VAX C/ULTRIX compiler. The cpp preprocessor is
no longer invoked when the -E option is specified.

1-2 Program Portability Considerations

The -Em option invokes the cpp preprocessor, so that output is identical to that
generated by the first phase of the pee compiler. The -Em option generates
information for the make utility.

Since VAX. C is a one-pass compiler, it does not support forward references in
either declarations or code. In pee, an extern declaration of an object can be
a forward reference to a later-declared static object. However, in VAX. C, these
attempts generate the warning message that there is a duplicate declaration.
VAX. C then takes steps to ensure that the two objects are distinct.

1.1.1.2 Preprocessor Behavioral Differences

Since VAX. C/ULTRIX and pee use different code for preprocessing, there are a
few anomalies in behavior that may occur under certain conditions.

If the substitution text for a macro identifier also contains the naine of that
identifier, the VAX. C/ULTRIX preprocessor recursively expands the identifier
and enters an infinite loop. However, pcc's preprocessor does not do this. If a
source program compiled with pee causes the compiler to enter an infinite loop
when migrated to VAX. C/ULTRIX, examine the source code for this loop-inducing
condition.

1.1.1.3 Optimization Capabilities

The VAX. C/ULTRIX compiler employs certain global and many local (also known
as peephole) optimizations to generate highly optimized code. As an example of a
local optimization, the VAX. C/ULTRIX compiler searches for certain combinations
of multiple instructions that it can replace with single instructions. As an exam­
ple of a global optimization, the VAX. C/ULTRIX compiler searches for common
subexpressions that can be consolidated.

These optimizations occur by default. However, when a VAX. C/ULTRIX user
compiles a program for debugging with the -g option to the vcc command,
optimization is automatically disabled. Optimization can also be disabled by
using-V nooptimize. (See Chapter 2.)

1.1.1.4 Object File Formats

In V4.0 of VAX. C/ULTRIX, the vcc compiler now generates BSD .o format for its
object files. This means that the ld linker can now be used to link object files
generated by vcc. Consequently, files can be linked much faster, and standard
ULTRIX utilities can now process VAX. C/ULTRIX files.

The ld linker is the default linker for VAX. C/ULTRIX Version 4.0 files, but ld will
not link files produced by a version of vcc prior to Version 4.0, or files with a .obj
extension.

The previous object file format can still be generated when you use the-Vlk_
object option on the vcc command. This specification causes the vcc shell to
pass files to the lk linker instead of the default ld linker.

Both the -V lk_object and the -V nolk_object produce object files with .o
extensions. Even though though both object file formats have the same extension,
the ld linker will not link files produced with the -V lk_object option.

Program Portability Considerations 1-3

1.1.1.5 Listing Output

The VAX C/ULTRIX compiler can produce a listing that displays the source
code, the symbol table, the machine code and cross-reference information, if you
specifically request it through the -v option of the vcc command. (By default, no
listing is output.) However, pee cannot produce a similar listing, either by default
or on request.

1.1.1.6 Default Options

There is only one difference in the options that are set by default for the pee and
the VAX C/ULTRIX compilers. With pee, optimization is off by default; with VAX
C/ULTRIX, optimization is on by default.

1.1.1.7 Unavailable Options

VAX C/ULTRIX does not support the following command-line options that are
available with pee:

Option

-go

-R
-S

1.1.1.8 Unique Options

Meaning

Generates symbol table information for sdb (obsolete).

Makes initialized variables shared and read only (done in assembler).

Generates an assembly language file that can be compiled with the assem­
bler.

VAX C/ULTRIX offers some unique options at the command-line level. Among
these are the aforementioned -V standard=portable option for reviewing
portability and the -v"filename" option for generating listings.

When you invoke the VAX C/ULTRIX compiler, the option -V standard=portable
is off by default so portability warnings are not automatically generated.
However, you can request portability warnings by enabling this option. With
pee, the only way to obtain portability warnings is to invoke the lint utility.

In addition, pee accepts input from standard input, which vcc does not. For more
information about these options, see Chapter 2.

1.1.1.9 Compatibility with lint

If you use pee and are used to using lint to check source programs, you may find
that lint reports problems in VAX C source programs that are not real problems
when the programs are compiled with VAX C/ULTRIX. For example, lint reports
the use of the VAX C language extensions (which are explained in Sections 1.1.2.7
through 1.1.2.13) as problems.

As it compiles, VAX C/ULTRIX performs many of the same checks that lint
provides, if you specify -V standard=portable on the vcc command line. Thus,
VAX C/ULTRIX users may prefer not to use lint and to depend on the other
methods for checking source programs that are provided by VAX C/ULTRIX. See
Chapter 4 for more information about the alternatives to lint for VAX C/ULTRIX
users.

1-4 Program Portability Considerations

1.1.1.1 O Compiler Error Messages

The format of the error messages generated by VAX C/ULTRIX and pee is very
similar, but the contents are quite different. See the appropriate compiler docu­
mentation for assistance with the meanings of messages.

1.1.2 Language Differences

The language differences that exist between VAX C/ULTRIX and pee have the
following distinct origins which provide a convenient method of classification:

• VAX C includes some features from the draft proposed ANSI standard

• VAX C includes some of its own language extensions

• The compiler designers made different choices for certain similar capabilities
or chose not to implement other features

The first two categories of differences show VAX C/ULTRIX to be a superset
of the C language as implemented for pee. The last category highlights a few
incompatibilities. This section reviews all the differences in their related groups,
since the implications for portability are consistent among the groups.

The primary language differences between pee and VAX C/ULTRIX stem from the
inclusion in VAX C of some additional features that are currently defined in the
draft of a proposed ANSI standard for the C language. However, since this is a
draft of a proposed standard and is subject to change, Digital reserves the right
to change the VAX C language accordingly.

The items in the following list result from the VAX C/ULTRIX incorporation of
the proposed ANSI standard features. Sections 1.1.2.1 through 1.1.2.6 describe
them in more detail.

• Function prototypes

• Generic void pointers

• The #pragma preprocessor directive

• Hexadecimal characters in escape sequences

• Vacuous tag declarations

• Additional predefined macros

• The const and volatile modifiers

The following list summarizes the additional language differences due to the
VAX C language extensions. Sections 1.1.2. 7 through 1.1.2.13 describe the VAX C
language extension differences in more detail.

• The globaldef, globalref, and globalvalue storage class specifiers

• The noshare and readonly storage class modifiers

• The variant_struct and variant_union data types

• The _align modifier

• The ability to address a constant in a function call

• Multicharacter constants

• The main_program option

Program Portability Considerations 1-5

There appear to be several differences presented in the two previous lists, but
if you want to migrate a program from pee to VAX C/ULTRIX you should not
encounter difficulty, since these differences represent additional VAX C/ULTRIX
capabilities. In fact, you may want to take advantage of these differences by
recoding segments of existing pee source programs for recompilation on VAX
C/ULTRIX. These differences only represent restrictions to those contemplating
running a VAX C/ULTRIX or VAX CNMS source program on pee. In that case,
carefully rework the source code to remove all use of the features, or the program
will fail to compile.

There are a few additional language-related differences that derive neither
from VAX C extensions nor the proposed ANSI standard features, but require
discussion. This category of differences (described in more detail starting with
Section 1.1.2.14), presents the most serious difficulty for porting programs
between pee and VAX C/ULTRIX. These differences include the following:

• Specification of dollar signs ($) in identifiers

• Order of evaluation of subexpressions

• Initialization of external objects

• Compiler-generated global symbols

• The asm pseudo function call

• Variable initialization

• Functions which return a structure value

• Casts as !values

In spite of the incompatibility that these differences represent, they are very spe­
cific and so narrow in scope that you should rarely encounter them. Nevertheless,
if a program incorporates one or more of these features, it may or may not suc­
cessfully compile on both compilers or it may produce different results when
run. Study these differences and then check your C programs for all possible
instances, making necessary modifications before trying any program migration.

1.1.2.1 Function Prototypes

VAX C/ULTRIX permits function prototypes as described in Chapter 4, while pee
does not. Therefore, you should not specify function prototypes in your source
code if you desire portability between the pee and VAX C/ULTRIX compilers.

Function prototypes offer many important advantages. With function prototypes,
the compiler can verify between definition and invocation whether the types of
argument are assignment-compatible or whether different numbers of arguments
exist. In this way, you can designate consistent typing of arguments. Some of the
semantic checking that the VAX C compiler provides with function prototypes has
traditionally been done on ULTRIX systems with the lint utility.

In the presence of a prototype, VAX C/ULTRIX may generate a different argument
block based on the argument types specified in the prototype. The compiler can
also provide optimizations based on the types of arguments in the argument
block. VAX C/ULTRIX always promotes characters and short integers to integers.
Since the type float passes a single-precision, floating-point argument and not a
double-precision, floating-point argument, you must remember that on ULTRIX
all math functions expect double-precision arguments to be passed.

1-6 Program Portability Considerations

Certain include files on VMS systems define functions using function prototypes.
Their ULTRIX counterparts do not. Porting a C program from a VMS to an
ULTRIX system, which depends on the type conversion implied by a function
prototype on a VMS system may produce unexpected results on an ULTRIX
system.

1.1.2.2 Generic Pointers

VAX C/ULTRIX permits the use of a generic pointer. The generic pointer is
designated by void *, as defined· in the draft proposed ANSI standard. For
example, the following statement shows how you might use the generic pointer in
a function prototype:

int memcpy (void *destination, void *source, int length);

In this case, the function memcpy is an object-copying function that takes three
arguments. The first argument specifies the location that will receive the data,
the second argument specifies the location of the data to be copied, and the
third argument provides the number of bytes to be copied. The· data types of the
source and destination are not important to the operation of this function, but the
VAX C compiler expects the types to be specified, and checks for compliance. To
circumvent the compiler's typing requirements, the void * generic pointer is used
in place of a data type specification for the first two arguments. It specifies that
its associated argument is a pointer to data whose type can be arbitrary. Thus,
arbitrary data types are successfully copied with this function.

See Chapter 7 for more information about the generic pointer.

This limitation presents no problems in migrating source programs from pee to
VAX C, but is identified here so you remain aware that using generic pointers in
VAX C source programs prohibits their compilation by pee.

1.1.2.3 The #pragma Preprocessor Directive

Another C language feature unique to VAX C/ULTRIX is the #pragma prepro­
cessor directive. This directive allows VAX C/ULTRIX users to selectively enable
or disable various default compiler behaviors. Source programs that include the
#pragma directive do not successfully compile with pee. See Chapter 9 for more
information on #pragma.

1.1.2.4 Hexadecimal Characters in Escape Sequences

VAX C/ULTRIX allows the specification of hexadecimal characters in escape
sequences; pee does not. For more information, see Chapter 7.

1.1.2.5 Vacuous Tag Declarations

VAX C/ULTRIX allows the use of vacuous tag declarations that eliminate ambi­
guity in forward references to structure and union tags. For more information
about vacuous tag declarations, see Chapter 7. Vacuous tag declarations are not
permitted by pee.

Program Portability Considerations 1-7

1.1.2.6 Additonal Predefined Macros

VAX C/ULTRIX allows the following macros, which are not recognized by pee:

• __ DATE __

• __ TIME __

See Chapter 9 for more information about these predefined macros.

1.1.2. 7 Storage-Class Specifiers

The globaldef, globalref, and globalvalue storage class specifiers are VAX
C language extensions that are not available with pee. See Chapter 8 for more
information about storage class specifiers.

1.1.2.8 Storage Class Modifiers

The noshare and readonly storage class modifiers are VAX C language exten­
sions that are not supported by pee. See Chapter 8 for more information about
storage-class modifiers. The noshare storage-class specifier is included in VAX
C/ULTRIX only for reasons of compatibility with VAX CNMS; it has no meaning
in the ULTRIX implementation of VAX C.

1.1.2.9 The Variant Structure and Union Declarations

The variant_struct and variant_union declarations are VAX C language
extensions that are not supported by pee. See Chapter 7 for more information
about these declarations.

1.1.2.10 The _align Modifier

The _align modifier, which allows you to align objects of any of the VAX C data
types on a specified storage boundary, is a VAX C language extension that is not
supported by pee. See Chapter 8 for more information about this modifier.

1.1.2.11 The & Operator in Function Calls

Using the & operator with a constant in the argument list of a function call is
allowed by VAX C, but is not supported by pee.

1.1.2.12 Multicharacter Constants

Multicharacter constants are not allowed by pee, but up to four characters can be
specified in a character constant for VAX C/ULTRIX.

1.1.2.13 The main_program Option

The main_program option defines the main entry point in a program the same
way that using the name main does. The main_program option provides a way to
give the main function a different name. This feature is not supported by pee.

See Chapter 4 for more information about the main_program option.

1-8 Program Portability Considerations

1.1.2.14 Specifying Dollar Signs { $) in Identifiers

Use of the dollar sign character ($) in identifiers is accepted by VAX C/ULTRIX.
This is permitted by pee, though the dollar sign character cannot be the first
character of a macro name.

1.1.2.15 Order of Evaluation for Subexpressions

The C language does not define a precise order of evaluation for subexpressions
found in either argument lists or general expressions. Thus, the pee and VAX
C compilers have each adopted different orders of evaluation. Subexpressions
containing side-effect operators (such as ++ and - -) may produce different
results with each compiler.

1.1.2.16 Initializing of External Objects

VAX C/ULTRIX will not allow initialization of the declaration of an external
object if the declaration contains the extern keyword. With pee, this notation is
allowed.

1.1.2.17 Compiler-Generated Global Symbols

The following global symbols are implemented for pee, but are not implemented
with VAX C/ULTRIX:

• edata

• end

• etext

1.1.2.18 The asm Pseudo Function Call

The asm pseudo function call is allowed by pee, but is not supported by VAX
C/ULTRIX. VAX C/ULTRIX provides capabilities similar to asm through built-in
functions; these provide access to directly access some VAX instructions from C
code. Unlike asm, instead of these functions providing a string which contains
an assembler instruction as the parameter, C variables and expressions are the
parameters. For more information on these functions, see Chapter 10.

1.1.2.19 Variable Initialization

The following statement is a legal method of initializing the integer foo with pee:

int foo 123;

This format is not accepted by VAX C/ULTRIX. The following example shows how
the VAX C/ULTRIX implementation requires an equal sign (=) to perform the
initialization:

int foo = 123;

1.1.2.20 Functions Which Return a Structure Value

VAX C/ULTRIX and pee use different calling conventions to call a function that
returns a structure. If you call a function that returns a structure from vcc and
that function was compiled with pee, the call will return unpredictable results.
If you call a function that returns a structure from pee and that function was
compiled with vcc, a segmentation fault occurs.

Program Portability Considerations 1-9

1.1.2.21 Casts as lvalues

VAX C/ULTRIX allows casts to be used as lvalues, while the pee compiler does
not. The following statement is acceptable to vcc, but not pee:

(* new_ptr_type) p = &q

1.2 Differences Between VAX C/VMS and VAX C/ULTRIX

If you want to compile and link your existing VAX C source programs with
the VAX C/ULTRIX compiler, you must consider the minor behavioral and
linguistic differences between the two VAX C compilers. You must learn how to
compile, link, and run your source programs on ULTRIX. See Chapter 2 for more
information on compiling and linking on ULTRIX.

The major differences discussed in this section can be categorized as follows:

• Language differences

• Include files

• Tool support

• Error message formats

• Structure alignment differences

• Behavioral differences

• Variable names

• The #module preprocessor directive

1.2.1 Language Differences

The VAX C/ULTRIX language is a major subset of the VAX CNMS language, so
there are only a few constructs that are not allowed in VAX C/ULTRIX programs.

1.2.1.1 COD/Plus

If you want to migrate a VAX C program from VMS to ULTRIX, make sure that
there are no references to the CDD/Plus data dictionary, which does not exist on
ULTRIX systems. Search for all instances where #dictionary is specified and
remove these references to CDD/Plus.

1.2.1.2 The #include Preprocessor Directive

Additional attention is required wherever the VAX CNMS source program speci­
fies the following preprocessor directive:

#include identifier

The specified identifier is subject to successful macro expansion. While VAX C
NMS allows all of the following possible resulting expansions, VAX C/ULTRIX
permits only the specification of file paths in angle brackets (<>) or quotation
marks ("):

• #include <file-spec>

• #include 11 file-spec 11

1-10 Program Portability Considerations

• #include module-name

See Chapter 9 for more information regarding the #include preprocessor direc­
tive.

1.2.2 Include Files

VAX C/ULTRIX uses the include files provided on ULTRIX systems for pee.
There are differences between the include files on VMS and ULTRIX systems.
Therefore, you should closely examine any include files on the system you are
using. One significant difference is the _tolower and _toupper macros. On
ULTRIX systems, the definitions add a constant value to their argument (the
argument should be tested first with the islower and isupper macros before
being passed to _tolower and _toupper). Also, the ULTRIX _tolower and
_toupper macros can safely take arguments with side effects such as i++.

On VMS systems, the _toupper and _tolower macros test to make sure that the
argument is in the appropriate range of letters before adding the constant value.
The VMS versions of _tolower and _toupper cannot take arguments with side
effects. The ULTRIX versions can.

1.2.3 Tool Support

The ULTRIX system does not provide interface support to two VMS software
tools: Source Code Analyzer (SCA) and Language Sensitive Editor (LSE).
Consequently, the compiler options -V diagnostics and-V analyze_data are
not supported.

1.2.4 Error Message Formats

The format of the error messages differs between VMS and ULTRIX systems,
but the compiler error message content is the same. Appendix B defines the VAX
C/ULTRIX error messages.

1.2.5 Structure Alignment Differences

VAX CNMS does not provide padding of structures and alignment of structure
members by default; VAX C/ULTRIX does.

You can use the #pragm.a [no]member_alignment preprocessor directive in
your programs to enable or disable the padding of structures and alignment of
members at will. See Chapter 9 for more information about this directive.

1.2.6 Behavior Differences

Virtual address 0 is not a valid address on VMS systems. On ULTRIX systems,
virtual address 0 is not guaranteed to contain any object. Therefore, a program
that dereferences the null pointer (that is, a program that references virtual
address 0) causes an access violation error on VMS systems but executes with
undefined behavior on ULTRIX systems.

Program Portability Considerations 1-11

1.2. 7 Variable Names

In VAX CNMS, the maximum length of external variable names is 31. In VAX
C/ULTRIX, the maximum length of external variable names is 255.

1.2.8 The #module Preprocessor Directive

The #module preprocessor directive is not implemented in VAX C/ULTRIX.

1-12 Program Portability Considerations

Chapter 2

Developing VAX C Programs for ULTRIX

This chapter describes how to develop VAX C source programs and how to use the
vcc command to compile and link your source programs into object modules and
executable images. The following topics are discussed:

• The ULTRIX commands used to create, compile, and link a VAX C program

• The syntax of the vi editor command

• The functions of the compiler and linker

• The syntax of the vcc command and its options

• Compiler diagnostic messages and error conditions

• Compiler output listing format

2.1 ULTRIX Commands for Program Development

This section briefly describes the ULTRIX commands you use to create, compile,
link, and run a VAX C program. Figure 2-1 shows these commands. For a more
detailed description of each command, see the following sections.

Developing VAX C Programs for ULTRIX 2-1

Figure 2-1: Commands for VAX C Program Development

first_prg.lis

Interactive
Input

% vi first_prg.c

% vcc -v first_prg.lis first_prg.c

compile

first_prg.o

link

%a. out

2-2 Developing VAX C Programs for ULTRIX

Key

+ input or output file

II optional input or output file

Use the vi editor to create
a disk file containing VAX C
source statements.

Use the vcc command to
invoke the VAX C compiler
and the linker. The VAX C
compiler creates an object
file, and optionally a listing.
The linker creates an executable
module using the default name
a.out.

Execute the program by
entering the name of the
executable module.

ZK-5853-GE

The following example shows each of the commands from Figure 2-1 executed in
sequence:

% vi first prg. c
% vcc -v first_prg.lis first_prg.c
% a .out

To create a VAX C source program you must invoke a text editor. In the previous
example, the vi editor was used to create a program entitled first_prg.c. The c file
extension is generally used with C source programs.

After you create a VAX C source program using the vi editor, you can use the vcc
command to generate an executable module. In most instances, both the VAX C
compiler and the linker are invoked and controlled by the vcc command. The
vcc command invokes the compiler, and if the compilation completes without
fatal errors and you have not elected to bypass linking, it then invokes the linker.
The object files created by the compiler and any linker options and object files
specified on the vcc command line are passed to the linker.

The vcc command creates an optional listing file when you include the -v file­
name option or -Vlist=file.lis option on the command line. Section 2.3.3 describes
the vcc command and its options (including those linker options commonly
specified on the vcc command).

The executable module, generated by the linker, has the default file name a.out.
To execute this program, enter the name of the executable module at the ULTRIX
prompt(%).

2.2 Creating a VAX C Program

The vi editor is a screen-oriented display editor that allows you to edit one
window of text at a time. A window is a block of text about the size of your
terminal screen. When you invoke the vi editor, it copies the file and stores it in
an editing buffer. It then displays a window of text from the editing buffer on
your screen. Use vi commands to alter the text in the editing buffer. When you
finish changing the text, you end the editing session and the vi editor writes the
editing buffer to a file.

To invoke the vi editor with the vi command, use the following syntax:

vi filename

For example, the following command edits, or creates, a file called myprogram.c:

% vi myprogram. c

After your file is open, you can use the vi commands to enter and edit text.

2.3 Compiling and Linking a VAX C Program

You can use the vcc command to compile and link your VAX C programs. This
section discusses the vcc command and its options along with the functions
performed by the VAX C compiler and the linker.

Developing VAX C Programs for ULTRIX 2-3

2.3.1 Functions of the Compiler

The primary functions of the VAX C compiler are as follows:

• Verify the correctness of C source statements and to issue informational,
warning, and error messages

• Generate machine language instructions from the source statements of the C
program

• Group these instructions into an object module that can be processed by the
linker

The object file created by the compiler provides the linker with the following
information:

• A list of all function, external, and global names declared in the program unit.
The linker uses this information when it binds two or more program units
together and must resolve references to the same names within the program
units.

• A symbol table (if requested with the -V debug option or -g option on the
vcc command line as described in Section 2.3.3.4). A symbol table lists the
names of all external variables within a module, with definitions of their
locations. The table is used in program debugging.

Section 2.3.2 describes the linker.

2.3.2 Functions of the Linker

Use the linker to allocate virtual memory within the executable image, to
resolve symbolic references among modules being linked, to assign values to
relocatable global symbols, and to perform relocation. The linker's end product
is an executable image that you can run on a VAX machine under the ULTRIX
system environment.

Normally, you access the linker automatically when you enter the vcc command
(unless you specify the -V noobject option or the -c option on the command
line).

VAX C/ULTRIX has the capability to use two linkers: the Id linker and the lk
linker. The Id linker is the default linker; the lk linker will only be invoked if
-V lkobject is specified. See the ULTRIX Reference Pages, Section 1 for more
information on the Id linker. See Appendix A for more information on the lk
linker.

2.3.3 The vcc Command

The vcc command program is your interface to the VAX C compiler. It accepts
a list of file names and option switches and causes one or more processors
(preprocessor, compiler, assembler, or linker) to process the files.

The vcc command has the following form:

vcc [-options [args]] ... filename[.type] [... filename[.type]] [-options [args]]

2-4 Developing VAX C Programs for ULTRIX

-options [args]
Indicates either special actions to be performed by the compiler or linker, or
special properties of the input/output (110) files. See Section 2.3.3.4 for details
about command-line options.

filename[. type]
Specifies the source files containing the program units to be compiled. If type is
omitted or is not one of the following types, the file is assumed to be an object file
and is passed directly to the linker. The following types have special meaning to
the vee command and are handled as follows:

.c or .h Identifies files passed to the C compiler

.s Identifies files passed to the ULTRIX assembler

.o or .a Identifies files passed to the link.er

You can specify more than one source file. If you specify more than one file, each
compiles separately and the resulting object files are linked together to form one
executable image.

2.3.3.1 Usage Considerations

In many instances it is enough to specify the name of the VAX C source file
on the vee command line without specifying any of the command line options.
The VAX C compiler processes the file and passes the resultant object file to the
linker along with the appropriate run-time libraries. The linker then produces an
executable image with the default file name a.out.

You can select from a variety of processing options and specify files other than
VAX C source files. The combination of the processing options and the type of
each file determines how the vee command handles the processing. If the options
that you specify do not negate a certain level of processing, the vee command
examines the type of each file and passes the file to one or more of the following
processors: the VAX C compiler, the ULTRIX assembler, or the linker.

You can compile a file for a specific system-SYSTEM_FIVE, BSD, or POSIX-by
appending the -Y option to the vee command or by setting the PROG_ENV en­
vironment variable. The -Y option defaults to SYSTEM_FIVE; the environment
variable defaults to BSD. A -Y option specification overrides an environment
variable specification. If neither -Y nor PROG_ENV is specified, the default is
SYSTEM_FIVE. See Table 2-1 for more information on the -Y option. See the
ULTRIX Reference Pages, Section 3 for more information on the PROG_ENV
environment variable.

If -YSYSTEM_FIVE is specified, the -DSYSTEM_FIVE parameter is added to
the vaxc command and the -YSYSTEM_FIVE parameter is added to the linker
call. In addition, the linker parameters -le, -leg, or -le_p are preceded by -le V,
-leVg, or -leV_p and the linker parameters -Im, -lmg, or -Imp are changed
to -lmV, -lmVg, or -lmV_p. Similarily, if-YPOSIX is specified, the -DPOSIX
parameter is added to the vaxc command, the -YPOSIZ parameter is added
to the linker call, and the linker parameters -le, -leg, or -le_p are preceded
by -leP, -lePg, or -leP _p. Other parameters remain unchanged. If -YBSD is
specified, the parameter -YBSD is added to the linker call.

Developing VAX C Programs for ULTRIX 2-5

You can also link routines written and compiled in other languages with VAX C
source code. For example, suppose that you have a utility routine written in VAX
FORTRAN that you want to call from a VAX C program. The VAX C program
is contained in a file named myprog.c. The VAX FORTRAN routine is named
utilityx and is contained in a file named utilityx.f. You write a JBL program
defining a jacket for calling utilityx, and name it uxjacket.jbl. If you want to
link the object files of both the FORTRAN routine and the JBL program to the C
program, you can enter the following vcc command:

% vcc --V lkobject myprog.c utilityx.o uxjacket.o

This command processes the files as follows:

• Compiles myprog.c with the VAX C compiler

• Uses the lk linker to link the three routines together into the executable
program using the default file name a.out

You can specify standard input as well. VAX C accepts input from standard input
with the following syntax, which runs the compile directly:

% /usr/lib/vaxc sys%input

The output file is named sys$input.o.

If you want to insert compiled programs into a library instead of linking them
directly into an executable program, use the -c option on the vcc command.
See Section 2.3.3.4 for more information.

For example, to compile three C source files, a.c, b.c, and c.c, into .o files for
insertion into a library, enter the following command:

% vcc -c a.c b.c c.c

This command compiles the programs and generates the output files a.o, b.o, and
c.o.

The following diagram shows how the vcc command program processes the
various types of files (unless a specified command line option negates some part
of the processing):

x.s -> [as] -> x.o -> [linker] -> a.out

x.c, x.h -> [vcc -c] -> x.o -> [linker]-> a.out

x.o, x.a -> [linker]-> a.out

Files types that are not recognized are treated as object files and passed to the
linker. If you specify more than one file type on the command line, the vcc
command processes each file according to its type.

If the linker produces an a.out file, the vcc command program deletes the object
files that it created. Object files specified on the vcc command line with the -o
option are retained.

2.3.3.2 Specifying Input Files

Include the full input file specification on the vcc command line. If the files are
not in your current working directory, you must specify their directory locations.

If you specify multiple files, you must separate the file specifications by spaces.
Commas and other special characters are not interpreted as file separators; they
are interpreted as part of the file name.

2-6 Developing VAX C Programs for ULTRIX

2.3.3.3 Specifying Output Files

The output produced by the compiler includes the following file types:

• An object file when the -c option is specified on the command line

• An executable file unless the -c option is specified on the command line

• A listing file when the -v filename option or the -V list=filename option is
specified on the command line

You can control the production of these files by specifying the appropriate options
on the vcc command line. If the files are successfully linked, the vcc command
program deletes the .o files created by the compiler.

NOTE

Section 2.3.3.4 describes the command line options in detail.

For VAX C files, the compiler generates an object file (.o file type) by default.

During the early stages of program development, you may find it helpful to use
the -c option to suppress the production of executable modules until your source
program compiles without errors. If you do not specify the -c option, the compiler
generates executable modules as follows:

• If you specify one source file, one object file is generated and is passed to the
linker.

• If you specify multiple source files, separated by spaces, each source file is
compiled separately and an object file is generated for each source file. The
linker is then invoked to link all files into a single executable file.

To produce an executable file with an explicit file specification, you must use the
-o option (see Section 2.3.3.4). Otherwise, the object file has the name a.out.

The following examples show two vcc commands. Each command is followed by a
description of the output files that it produces.

% vcc -V list=aaa.lis aaa.c bbb.c ccc.c

The VAX C source files (aaa.c, bbb.c, and ccc.c) are compiled as separate files.
The object files are then passed to the linker, producing the executable file a.out
and the listing file aaa.lis. The -V option specifies the listing file name on the
command line.

% vcc -c circle.c

The VAX C source file circle.c is compiled, producing an object file named circle.o.
The object file is not passed to the linker because the -c option is specified.

2.3.3.4 Options to the vcc Command

The vcc command options influence how the compiler processes a file. In many
cases, the simplest form of the vcc command is sufficient. The options are
necessary only when special processing is required.

NOTE

If you include the -g option on the vcc command line to prepare a file
for use with the dbx debugger, optimization is turned off. Optimizations
performed by the compiler can cause unexpected behavior when you
are using the dbx symbolic debugger.

Developing VAX C Programs for ULTRIX 2-7

Table 2-1 summarizes the vcc command options.

Table 2-1: Options Supported by the vcc Command

Option Description

-B string Finds a substitute compiler,a preprocessor, an assembler, or a linker
in the files named by string. If string is empty, use a standard backup
version.

-b
-c

-D name=def

-E

-Em

-f

-g
-Idir

-K

-lx

-Md

-Mg

-0

-0

Does not pass the library file -le to the linker.

Generates an object file with a .o file extension. The linked, executable
module is not generated.

Assigns the specified value (def> to name. The preprocessor interprets
this option. If a definition value is not specified, the name is set equal
to 1.

Runs only the vcc preprocessor and sends the result to standard
output. The code is preprocessed and all preprocessor directives, such
as include file statements, are resolved. The compiler and the linker
are not invoked.

Runs the cpp preprocessor and produces the makefile dependencies.
The file is preprocessed; it is not compiled or linked.

Enables single-precision, floating-point arithmetic. Double-precision,
floating point arithmetic is the default selection. Procedure arguments
are still promoted to double-precision, floating point format.

Generates additional symbol table information for the dbx debugger.

Specifies the name of the directory containing the relevant include
files. A search for included files whose names do not include a directory
specification occurs in the directory of the file, the directory named by
the -I option, and finally in the directories contained in a standard list.

Generates a full MAP table. This is a linker option. It may be specified
on the vcc command line or the linker command line.

Specifies a library to include in the link process. The variable xis an
abbreviation for the library and path name /lib/libx.a in which x is a
string. If the library is not found, the linker searches for /usr/local/lib
/libx.a. A library search starts when the library name is encountered.
As a result, the placement of the -1 within the vcc or linker command
line is significant.

Specifies the floating-point type as D_FLOAT double-precision,
floating-point format. This is the default selection. In addition, the
linker receives the -le flag.

Specifies the floating-point type as G_FLOAT double-precision,
floating-point format. In addition, the linker receives the -leg flag.
If you want to use the math library, with code generated with the
-Mg option, you must link in the G_FLOAT version of the library by
specifying -lmg on the linker or vcc command line.

Accepts the specified name as the final output file name. This is a
linker option. It may be specified on the vcc command line or the
linker command line.

Invokes the object code improver. The default selection is to perform
object code optimization. See Section 2.3.3.5 for information on how to
turn off optimization.

(continued on next page)

2-8 Developing VAX C Programs for ULTRIX

Table 2-1 (Cont.): Options Supported by the vcc Command

Option

-p,-pg

-t [Opal]

-Uname

-v filename. Us

-Voption

-w

-Y[param]

Description

Prepares object files for profiling. The -pg option also invokes a run­
time recording mechanism that produces a gmon.out file. This file
contains more extensive statistics.

Finds only the designated compiler, preprocessor, assembler, or linker
in the files whose names are constructed by a-B option. In the absence
of a -B option, these are found in the standard places.

Makes the specified variable undefined within the program. This
option is interpreted by the preprocessor.

Produces the listing file, complete with a cross-reference table and
machine code listing.

Compiles the source code using vendor-specific options. Section 2.3.3.5
lists these options.

Suppresses compiler warning messages. Error messages are displayed,
but warning messages are not.

Compiles a file for one of the following systems: SYSTEM_FIVE, BSD,
or POSIX. If a parameter other than SYSTEM_FIVE, BSD, or POSIX
is specified, a warning is printed and the -Y option is ignored. If no
parameter is specified, -Y defaults to -YSYSTEM_FIVE. If multiple
-Y options are specified, only the last option takes effect, and no
warning message is generated. Section 2.3.3.1 describes how these
parameters can be set with the PROG_ENV variable and describes
linkage considerations.

2.3.3.5 Specifying Vendor-Specific Options

You can use the -V option on the vcc command line to specify a vendor-specific
option. This option accepts DCL-type VAX. C compilation control qualifiers as
arguments. (DCL, the Digital Command Language, is offered by Digital on the
VMS operating system.)

The syntax for the -V option is as follows:

-V args

The args are either a quoted string of arguments separated by spaces or a series
of arguments separated by commas (with no spaces). The arguments are not case
sensitive, and you can abbreviate and specify them in any order. You can use the
qualifier names and abbreviations from a DCL CC command line as -V option
arguments. However, do not use slashes (/) because they conflict with ULTRIX
file names.

For example, you can enter the following DCL CC command line in the VMS
environment:

CC /CROSS_REFERENCE/SHOW=INCLUDE/MACHINE_CODE/LIST FOO.C

The following two command lines are the VAX C equivalents to the preceding
command line within the ULTRIX operating system environment:

% vcc -v foo .1 -v show=include foo. c
% vcc -V Cross_reference,show=include,list=foo.lis foo.c

The command name, file names, and option switches remain case sensitive.

Developing VAX C Programs for ULTRIX 2-9

Table 2-2:

Argument

Table 2-2 lists the DCL type options that you can use as arguments to the vcc
command's -V option. These option arguments are described in detail in the list
following the table.

Arguments to the -V Option of the vcc Command

Argument Values Negative Form Default

cross_reference nocross_reference nocross_reference

debug= [no]traceback no debug nosymbols

[no]symbols

all traceback

none

define definition-list nodefine nodefine

g_:float nog_:float nog_:ftoat

list[=file-spec] file-spec no list nolist

lkobject none nolkobject nolkobject

machine_code= interspersed nomachine_code nomachine_code

object[=file-spec] file-spec noobject object

optimize=

show=

standard=

unde:fine

warnings=

[no]inline nooptim.ize optimize

[no]intermediate noshow noshow

[no]brief

[no]expansion

[no]include

[no]symbols

source

terminal

portable nostandard nostandard

undefine-list noundefine noundefine

no warnings warnings

noinformationals

[no]cross_reference
The cross_reference argument to the -V option specifies that the storage map
section of the listing file includes information about the use of symbolic names.
The cross-reference contains the numbers of the lines in which the symbols are
defined and referenced.

The option argument has the following form:

-V [no]cross_reference

The cross_reference argument is ignored if you do not generate a listing file,
and you do not specify-V show=symbols.

The default is nocross_reference.

See Section 2.5.3 for a description of the listing format that is generated when
you specify the cross_reference argument.

[no]debug
The debug argument to the -V option causes the compiler to provide information
for use by the dbx symbolic debugger.

2-10 Developing VAX C Programs for ULTRIX

The option arguments have the following form:

-V debug=all
-V "debug={[no]symbols,[no]traceback)"
-V debug=none
-V nodebug

all
Directs the compiler to provide both local symbol definitions and an address
correlation table.

symbols
Directs the compiler to provide the debugger with local symbol definitions for
user-defined variables, arrays (including dimension information), structures,
and labels of executable statements.

traceback
Directs the compiler to provide an address correlation table so that the
debugger can translate virtual addresses into source program routine names
and compiler-generated line numbers.

none
Directs the compiler to provide no debugging information.

If you do not specify the debug argument with the -V option on the vcc com­
mand line, the default is debug=traceback. Note that debug is the equivalent
of debug=all, and nodebug is the equivalent of debug=none.

See Chapter 3 and the Guide to Languages and Programming for more informa­
tion on debugging and traceback.

[no]define
The define argument to the -V option allows you to equate an identifier with a
token string or a macro from the command line. Command line definitions over­
ride any internal definition statement. Similarly, undefine revokes a previous
definition.

NOTE

If the define and undefine options are both present on the command
line, the define statement is resolved first.

The option argument has the following form:

-V define=(identifier[=definition][, ...])

identifier
Specifies the identifier to be defined.

definition
Specifies the value to be associated with the identifier.

The define and undefine options are functionally equivalent to the #define and
#undef preprocessor directives. The simplest form of the define option equates
an identifier with the default value, which is 1. For example:

-V def ine=true

This command option is equivalent to the following source code statement:

#define true 1

Developing VAX C Programs for ULTRIX 2-11

You must enclose macro definitions in quotation marks ("). For example:

-V define="funct(a)=a+sin(a)"

This command option is equivalent to the following source code statement:

#define funct(a) a+sin(a)

If you use quotation marks within your definition, a space or a single equal sign
is interpreted as a delimiter. Consider the following example:

-V define="new val=51"

This command option is equivalent to the following source code statement:

#define new val 51

However, the following command line and source code definitions are equivalent:

-V define="new val =51"
#define new_val =51

If you do not use quotation marks within your definition, an equal sign is the only
recognized delimiter. A space indicates the end of the definition. Consider the
following example:

-V define=(testl=4,"funct(x)=(a+b)/x")

This command option is equivalent to the following source code statements:

#define testl 4
#define funct(x) (a+b)/x

In the following command line, the definition is not accepted due to the improper
use of spaces. In such an instance, an erroneous attempt is made to interpret the
information as a file specification instead of part of the definition. This occurs
because the space in the statement ends the definition portion of the command
line.

define= new val=lO

As the previous examples show, if you use quotation marks, the compiler inter­
prets either the first space or the first equal sign as a delimiter character. If you
do not use quotation marks, the compiler treats the first equal sign as a delimiter.
In both instances, any additional equal signs are considered to be part of the
value. Thus, special care is required when specifying an equal sign in a value.
The following examples show three possible ways to specify an equal sign so that
it is treated as part of the value rather than as a delimiter:

-v define=(equ==)
-v define=("equa =")
-V define=("equal==")

In the first definition, which does not use quotation marks, the first equal sign
is a delimiter and the second one is part of the defined value. In the second
definition, the space is the delimiter, so the single equal sign is accepted as part
of the value. The third example is similar to the first, except that it shows the
use of the double equal sign within quotation marks.

[no]g_float
The g_float argument to the -V option controls how the compiler implements
objects of type double.

The option argument has the following form:

-V [no]g_float

2-12 Developing VAX C Programs for ULTRIX

The default, nog_ftoat, causes the compiler to implement double-precision quan­
tities using the VAX D_floating-point data type. Specifying g_ftoat causes the
compiler to implement double-precision values using the VAX G_floating-point
data type.

If your program requires the G_floating-point type form of double-precision data
for its correct operation (that is, it uses a range larger than 1038), specify the
g_ftoat option. See Chapter 7 for more information about using double in VAX
c.
Routines that pass and receive double-precision quantities should use the same
data type as the routines that they pass data to or receive data from. For exam­
ple, do not pass D_floating point data to a program that uses the G_floating point
data type.

CAUTION

VAX ULTRIX systems support both D_floating and G_floating im­
plementations of type double. On different systems, however, the
performance of a program can vary widely depending on whether your
program is compiled with G_floating or D_floating. The difference
exists when a particular system supports one floating-point type in
hardware and the other in software. If you want to optimize perfor­
mance, and if range and accuracy constraints do not dictate one of the
two options, you must ensure that the most efficient option is in effect
during the compilation.

See Chapter 7 for more information on floating-point data types.

[no]list
The list argument to the -V option specifies that a source listing file is to be
produced.

The option argument has the following form:

-V list[=file-spec]

You can include a file specification for the listing file. If you do not, the listing
file name defaults to the name of the first source file that you specify on your vcc
command line. This file has the default file extension .lis. The listing file is not
automatically printed. You must use the lpr command to obtain a line printer
copy of the listing file.

Section 2.5.1 discusses the format of a source code listing.

[no]lkobject
The lkobject argument to the -V specifies that VMS object code format, rather
than the default BSD object code format, should be generated for object files.
VMS object files should be passed to the lk linker, rather than the default ld
linker.

The option argument has the following form:

-V [no]lkobject

The vcc shell, by default, generates BSD .o format for its object files and passes
these objects to the ld linker to be linked. If files with a .obj extension appear on
the command line, or if-V lkobject argument is specified, the files are passed to
the lk linker instead.

Developing VAX C Programs for ULTRIX 2-13

Object files produced by both -V lkobject and -V nolkobject have the .o file
extension. However, the Id linker will not link files produced with -V lkobject
or produced by versions of vcc prior to Version 4.0. The linker returns an error
message stating that the symbol ILLEGAL_LD_OBJECT, USE_LK is undefined.

The default is nolkobject.

[no]machine_code
The machine_code argument to the -V option specifies that the listing file
includes a symbolic representation of the object code generated by the compiler.
Generated code is represented in a form similar to an assembly listing.

NOTE

Do not try to assemble and run the object code in the listing file. The
code shown in the listing file is similar to VAX MACRO source code;
however, the listing file contains constructs not supported by the VAX
ULTRIX assembler and is not intended to be used for this purpose.

The option argument has the following form:

-V [no]machine_code[=interspersed]

If interspersed is specified, the listing will consist of lines of source code followed
by the corresponding lines of machine code.

If you do not generate a listing file, this option is ignored. The default is noma­
chine_code.

Section 2.5.2 describes the format of a machine code listing.

[no]object
The object argument to the -V option specifies the name of the object file.

The option argument has the following form:

-V noobject
-V object=file-spec

The default is object, which generates an object file for linking. If you omit the
file specification, the object file defaults to the name of the first source file with a
.o file extension.

You can use the negative form (noobject) to suppress object code generation.
This allows you to test for compilation errors in the source program.

[no]optimize[=[no]inline]
The optimize argument to the -V option specifies that the compiler is to produce
optimized code. This optimization takes place within the compiler, not as a
separate program. VAX C does not use the object code improver.

The option argument has the following form:

-V [no]optimize

When you specify-V optimize=inline, the compiler performs function inline
expansion optimization.

The default is optimize. If you include the -g or -V debug option on your vcc
command line, optimization is not performed. If you want to debug an optimized
program, you must request optimizations with the -0 or -V optimize options to
the vcc command line.

2-14 Developing VAX C Programs for ULTRIX

[no]show
The show argument to the -V option controls whether or not listing options are
selected.

The option argument has the following form:

-V show
-V noshow
-V show=all
-V show=[no]brief
-V show=[no]expansion
-V show=[no]include
-V show=[no]intermediate
-V show=none
-V show=[no]source
-V show=[no]symbols
-V show=[no]terminal

Use the list option with the show option to select or cancel any of the options in
the previous list. For example, the following command line creates a listing file
with the file name mylist.lis. This file includes a listing of the files referenced by
the #include directive.

%vcc programname.c -V list=mylist.lis,show=include

all
Specifies that all information is to be included in the listing file.

[no]brief
Generates a listing similar to the one created with the symbols option.
The only difference between the two is that the brief option eliminates any
symbols that are not identified in the program, or that do not belong to any
union or structure referenced by the program.

The default is nobrief.

[no]expansion
Includes the final macro expansions in the listing. When you use this option,
the number of substitutions performed on the line is printed next to each line.

The default is noexpansion.

[no]include
Includes the modules referenced by the #include directives in the listing.

The default is noinclude.

[no]intermediate
Includes all intermediate and all final macro expansions in the listing.

The default is nointermediate.

none
Generates an empty listing file consisting of header information.

[no]source
Includes source statements in the program listing.

The default is source.

[no]statistics
Includes compiler performance statistics in the listing.

Developing VAX C Programs for ULTRIX 2-15

The default is nostatistics.

[no]symbols
Includes the symbol table in the program listing. The symbol table includes
a list of all functions, the size and attributes of each variable, and a program
section summary and function definition map.

The default is nosym.bol.

[no]terminal
Displays compiler messages on the terminal.

The default is terminal.

Specifying the show argument without any parameters is equal to specifying
show=all; specifying the noshow argument is equal to specifying show=none.

standard
standard=noportable
The standard argument to the -V option specifies that the compiler is to gen­
erate informational diagnostics about VAX C language extensions and C code
constructs that represent a relaxation of standard C conventions and rules.

The option argument has the following form:

-V standard
-V standard=portable
-V standard=noportable

You can specify the standard option with or without the variable portable; the
results are the same. The standard option causes the compiler to generate
warning messages when it encounters coding practices that are contrary to
standard C. This increases portability between VAX C and other implementations
of the C language. (This qualifier will not provide warnings about ANSI C
features not supported by pee.)

The default is standard=noportable.

If you specify the nowarnings argument to the -V option, the standard argu­
ment is ignored.

[no]undefine
The undefine argument to the -V option allows you to revoke a previous defini­
tion. If the define and undefine options are both present on the command line,
the define statement is resolved first.

The option argument has the following form:

-V define=identifier[,identifier ... }

identifier
Specifies the identifier chosen to have its definition revoked. You can specify
a list of identifiers separated by commas.

The define and undefine options are functionally equivalent to the #define and
#undef preprocessor directives. The define option is described earlier in this
section.

[no]warnings
The warnings argument to the -V option causes the compiler to generate infor­
mational (I) and warning (W) diagnostic messages in response to informational
and warning-level errors.

2-16 Developing VAX C Programs for ULTRIX

The option argument has the following form:

-V warnings
-V warnings=noinformational
-V warnings=nowarnings
-V nowarnings

warnings
The compiler generates informational and warning diagnostic messages.
An informational message indicates that a correct C statement may have
unexpected results or may contain nonstandard syntax or source forms.
A warning message indicates that the compiler detected acceptable, but
nonstandard, syntax or performed some corrective action; in either case,
unexpected results may occur. To suppress I and W diagnostic messages,
specify the negative form of this argument (nowarnings).

The default is warnings.

warnings:noinformational
The compiler suppresses informational messages. Warning messages are still
displayed. The default prints these messages.

warnings:nowarnings
The compiler suppresses all warning messages. Informational messages are
still displayed. The default prints these warnings.

nowarnings
The compiler suppresses all messages except for the informational message
SUMMARY. The default prints all messages.

Appendix B discusses compiler diagnostic messages.

2.4 Compiler and Linker Diagnostic Messages

Both the compiler and the linker issue error messages that help you to isolate the
cause of an error condition. The following sections discuss these messages and
error conditions.

2.4.1 Compiler Diagnostic Messages and Error Conditions

One of the functions of the C compiler is to identify syntax errors and violations
of language rules in the source program. If the compiler locates any errors, it
writes messages to the stderr output file and to any listing file. If you enter the
vcc command interactively, the messages are displayed on your terminal.
A message from the compiler has the following format:

''filename." line nnn: %severity-mnemonic, msg

The VAX C compiler replaces the severity code that precedes the message text
with one of the following characters:

F Signifies a fatal condition message

I Signifies an informational message

W Signifies a warning message

E Signifies an error message

Developing VAX C Programs tor ULTRIX 2-17

S Signifies a success message

Diagnostic messages usually provide enough information for you to determine the
cause of an error and correct it.

Each compilation with messages terminates with a summary indicating the
number of error, warning, and informational messages generated by the compiler.
The summary has the following form:

"filename" line nnn: completed with n error(s), n warning(s), and n informational messages.

If the compiler creates a listing file, it also writes the messages to the listing file.
Messages typically follow the statement causing the error.

Appendix B contains additional information about diagnostic messages, including
descriptions of the individual messages.

2.4.2 Linker Diagnostic Messages and Error Conditions

If the linker detects any errors while linking object modules, it displays messages
about their cause and severity. If any errors or fatal conditions occur (severities
E or F), the linker does not produce an image file.

Linker messages are descriptive, and you do not normally need additional
information to determine the specific error. Some of the more common errors that
occur during linking are as follows:

• An object module has compilation errors. This error occurs when you attempt
to link a module that had warnings or errors during compilation. Although
you can usually link compiled modules for which the compiler generated
messages, verify that the modules will produce the output that you expect.

• The modules that are being linked define more than one transfer address.
The linker generates a warning if more than one main program has been
defined. The image file created by the linker in this case can be run; the
entry point to which control is transferred is the first one that the linker
found.

• A reference to a symbol name remains unresolved. This error occurs when
you omit required module or library names from the lk or Id command and
the linker cannot locate the definition for a specified global symbol reference.

If an error occurs when you link modules, you can often correct it by reentering
the command string and specifying the correct routines or libraries.

2.5 Compiler Listings

An output listing produced by the VAX C compiler consists of the following
sections:

• A source code section

• A machine code section (optional)

• A storage map section (cross-reference, optional)

Sections 2.5.1 through 2.5.3 describe the compiler listing sections in detail.

2-18 Developing VAX C Programs for ULTRIX

2.5.1 Source Code Section

The source code section of a compiler output listing displays the source program
as it appears in the input file, with the addition of sequential line numbers
generated by the compiler. Example 2-1 shows a sample of a source code section
from a compiler output listing.

Example 2-1: Sample Listing of Source Code

.MAIN
Vl.0

1
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

1
1
1
1
1
1
2
2
2
2
1

Command Line

#include "stdio.h"
#define STARTNUM 1
#define ENDNUM 200

main
{

()

int Count;
long Square;

printf ("Table of squares \n\n");

for (Count = STARTNUM; Count <= ENDNUM Count++) {
Square = (long)Count * (long)Count;

printf ("Number: %d Square: %ld\n", Count, Square);
}

/usr/lib/vaxc test.c -V list=test.lis

Compiler-generated line numbers appear in the left margin.

Compile-time and run-time error messages that contain line numbers refer to
these compiler-generated line numbers. (See Appendix B for a summary of error
messages.)

2.5.2 Machine Code Section

The machine code section of a compiler output listing provides a symbolic
representation of the compiler-generated object code. The representation of the
generated code and data is similar to that of an assembly listing. As an option,
you can choose to intersperse the machine code with the source code for easier
reading.

NOTE

The machine code is represented in VAX MACRO source code. This
code is only for your reference so do not assemble and run it.

Developing VAX C Programs for ULTRIX 2-19

The machine code section is optional. To receive a listing file with a machine code
section, you can choose one of the following three options:

-v fi/e./is programname
-V list=fi/e./is,machine_code programname
-V list=fi/e./is,machine_code=interspersed

Example 2-2 shows a sample of a machine code section from a compiler output
listing.

Example 2-2: Sample Listing of Machine Code

0000 main:
0040 0000 .entry main, "m<r6>

SE 04 C2 0002 sub12 #4, Sp
S6 00000000 EF 9E ooos movab $CHAR_STRING CONSTANTS,r6 -

66 DF oooc pushal (r6)
00000000* EF 01 FB OOOE calls U,printf

SC 01 DO OOlS movl #1,ap
0018 sym.1:

S2 SC SC cs 0018 mull3 ap,ap,r2
S2 DD OOlC pushl r2

14 A6 DF 0020 pushal 20 (r6)
00000000* EF 03 FB 0023 calls #3,printf

E6 SC OOOOOOC8 8F F3 002A aobleq #200,ap,sym.1
so 01 DO 0032 movl #1, rO

04 003S ret
04 0036 ret

The machine code follows the source code listing unless machine_code=interspersed
is specified. The object module location of each statement and the machine code
instructions are listed. The assembly language code, generated by each line of
source text, is shown next to the corresponding machine code instruction.

The following summary outlines the conventions used to represent code and data
in machine code listings:

• The VAX MACRO mnemonics represent the generated code.

• RO through Rll represent the VAX general-purpose registers (0 through 11).
Register 12 is an argument pointer that is represented by AP. Register 13
serves as the frame pointer, represented by the mnemonic FP. Register 14
is the stack pointer, represented by SP. Register 15 is the program counter,
represented by PC.

• The compiler may generate labels for its own use.

• Signed integer values represent numeric constants.

• The function name plus the hexadecimal offset within that function represent
the addresses. Changes from one function to another are indicated by .entry
lines.

2.5.3 Storage Map Section

The storage map section of the compiler output listing is printed after each
program unit, or function. It summarizes information in the following categories:

• External Declarations Section. The storage map lists all the names declared
or defined outside of any function.

2-20 Developing VAX C Programs for ULTRIX

• Functions. The storage map lists all the functions in the source program.
Along with each name, the following information is listed:

The identifier of the name

The line on which the name is declared

The size of the identifier

The storage class of the name

The data type of the name

• Function Definition Map. This portion of the storage map lists each function
defined in the program and the line number that the function is defined on.

A heading for an information category appears on the listing only when entries
are generated for that category.

Cross-reference information is optional. To obtain it, enter the vcc command with
one of the following options:

-v filename.tis programname
-V list,cross_reference programname

When you request cross-referencing, the compiler lists the line number where
each name is referenced.

Example 2-3 shows a sample storage map section with cross-reference
information.

Example 2-3: Sample Storage Map Section

.MAIN.
Vl.0

External Declarations

Identifier Name Line

13-APR-1988 10:35:55 VAX C Vl.0-001 Page 3
test.c (1)

+-------------+
I Storage Map I
+-------------+

Size Class Type and References

(continued on next page)

Developing VAX C Programs for ULTRIX 2-21

Example 2-3 (Cont.): Sample Storage Map Section

ctermid

cuserid

f reo

ft ell

gets

main

po pen

rewind

setbuf

setbuf fer

setlinebuf

sprintf

temam

tmpnam

iob

iobuf

cnt

_ptr

_base

MAIN.
Vl.0

Identifier Name

99

99

96

97

99

117

96

98

98

98

98

102

100

100

67 60 bytes

60 20 bytes

61 1 longword

62 1 longword

63 1 longword

13-APR-1988 10:35:55

Line Size

2-22 Developing VAX C Programs for ULTRIX

Extern Function returning
pointer to char

- No references
Extern Function returning

pointer to char
- No references

Extern Function returning
pointer to struct _iobuf

- No references
Extern Function returning

long int
- No references

Extern Function returning
pointer to char

- No references
Extern def. Function returning

long int
- No references

Extern Function returning
pointer to struct _iobuf

- No references
Extern Void function

- No references
Extern Void function

- No references
Extern Void function

- No references
Extern Void function

Extern

Extern

Extern

Extern

VAX C

Class

- No references
Function returning
pointer to char

- No references
Function returning
pointer to char

- No references
Function returning
pointer to char

- No references
Array [3] of struct

iobuf
- No references

Structure tag
- Referenced at line 96

Member (offset= 0),
long int

- No references
Member (offset= 4 bytes),
pointer to char

- No references
Member (offset= 8 bytes),
pointer to char

Vl.0-001 Page 4
test.c (1)

Type and References

(continued on next page)

Example 2-3 (Cont.): Sample Storage Map Section

buf siz 64 1 longword

_flag 65 1 word

file 66 1 byte

Function "main" defined at line 117

Identifier Name Line

Count 119

printf 122

Square 120

Function Definition Map

Line Name

117 main
Command Line

Size

1 longword

1 longword

Class

Register

Extern

Not Allee.

Member (offset= 12 bytes),
long int

- No references
Member (offset= 16 bytes),
short int

- No references
Member (offset= 18 bytes),
char

- No references

Type and References

Long int
- Referenced at
lines 124 (3),
125(2), and 127

Function returning
long int

- Referenced at
lines 122 and 127

Long int
- Referenced at
lines 125 and 127

/usr/lib/vaxc -v test.l -V "cross show=symbol machine" test.c

2.6 The lk Linker Image Map

The ld linker cannot generate an image map listing, but the lk linker can. An lk
Linker Image Map consists of the following parts:

• An object module synopsis

• A program section synopsis

• A symbol cross-reference

• A symbol value listing

• An image synopsis

• A link-run statistics synopsis

An image map is generated when you specify the -K and-V lkobject options on
the vcc command line or the -K option on the lk command line.

Developing VAX C Programs for ULTRIX 2-23

2.6.1 Object Module Synopsis

The Object Module Synopsis shows which object modules (files or library ele­
ments) were linked into the program image. Example 2-4 is a sample Object
Module Synopsis from the lk Linker Image Map.

Example 2-4: Object Module Synopsis

0
a.out

8 • Module Name

crtO
.MAIN.
printf
doprnt
flsbuf
data
f close
close
getstdiobuf
f stat
isatty
gtty
exit
exit -

cerror
$$COMSY,S

13-APR-1988 13:37 VAX ULTRIX Linker V2.0

+------------------------+
! Object Module Synopsis !
+------------------------+

• • • 0
Ident Bytes File Creation Date

124 /lib/crtO.o 24-0CT-1986

Vl.0 157 test.obj 25-NOV-1986
80 /lib/libc. a 24-0CT-1986

2192 I lib/ libc. a 24-0CT-1986
296 /lib/libc. a 24-0CT-1986
216 I lib/ libc. a 24-0CT-1986
260 /lib/libc.a 24-0CT-1986

16 /lib/libc. a 24-0CT-1986
132 /lib/libc.a 24-0CT-1986

16 /lib/libc. a 24-0CT-1986
32 /lib/libc. a 24-0CT-1986
24 /lib/libc .a 24-0CT-1986
20 I lib I libc . a 24-0CT-1986

4 /lib/libc. a 24-0CT-1986
12 /lib/libc.a 24-0CT-1986

8 I lib/ libc. a 24-0CT-1986

Key to Example 2-4:

0 File name of the program image.

8 Date and time that the lk linker was run.

8 Version number of the lk linker.

8 Name of the object modules.

0 Module ID, if one is specified.

8 Size of the module, in bytes (decimal).

8 File the module was read from.

8 Date the file was created.

16:47
10:51
10:51
10:51
10:51
10:51
10:51
10:51
10:51
10:51
10:51
10:51
10:51
10:51
10:51
10:51

Page 1

Creator

Unknown ULTRIX Compiler
VAX C
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
Unknown ULTRIX Compiler
VAX ULTRIX Linker

0 Language processor that created the file, or "unknown ULTRIX compiler" if
not known.

2-24 Developing VAX C Programs for ULTRIX

2.6.2 Program Section Synopsis

The Program Section Synopsis shows the layout of program sections (psects)
and the modules that contributed to them in virtual memory. Example 2-5 is a
sample Program Section Synopsis from the lk Linker Image Map.

Example 2-5: Program Section Synopsis

a.out 13-APR-1988 13:37 VAX ULTRIX Linker V2.0 Page 2

+--------------------------+
! Program Section Synopsis !
+--------------------------+

• 8 • • • • • Psect Name Module Name Base End Length Align Attribute
---------- ----------- ------ ----------
ULT$TEXT 00000000 OOOOOF13 OOOOOF14 3860.) LONG 2 PIC,USR,CON

crtO 00000000 0000004B 0000004C 76.) LONG 2
printf 0000004C 00000073 00000028 40.) LONG 2
doprnt 00000074 00000903 00000890 2192.) LONG 2
f lsbuf 00000904 00000A03 00000100 256.) LONG 2
data 00000A04 00000A77 00000074 116.) LONG 2
f close 00000A78 OOOOOB53 OOOOOODC 220.) LONG 2
close OOOOOB54 OOOOOB63 00000010 16.) LONG 2
getstdiobuf 00000B64 OOOOOBBB 00000058 88.) LONG 2
fstat OOOOOBBC OOOOOBCB 00000010 16.) LONG 2
isatty OOOOOBCC OOOOOBEB 00000020 32.) LONG 2
gtty OOOOOBEC OOOOOC03 00000018 24.) LONG 2
ioctl OOOOOC04 OOOOOC13 00000010 16.) LONG 2
malloc OOOOOC14 OOOOOE4B 00000238 568.) LONG 2
bcopy OOOOOE4C OOOOOEAF 00000064 100.) LONG 2
sbrk OOOOOEBO OOOOOEDF 00000030 48.) LONG 2
write OOOOOEEO OOOOOEEF 00000010 16.) LONG 2
exit OOOOOEFO OOOOOF03 00000014 20.) LONG 2
exit OOOOOF04 OOOOOF07 00000004 4.) LONG 2 -

cerror OOOOOF08 OOOOOF13 oooooooc 12.) LONG 2

$CODE$ OOOOOF14 OOOOOF4A 00000037 55.) LONG 2 PIC,USR,CON,REL
.MAIN. OOOOOF14 OOOOOF4A 00000037 55.) LONG 2

$CHAR_STRING_CONSTANTS 00001000 0000102C 0000002D 45.) LONG 2 PIC,USR,CON,REL
.MAIN. 00001000 0000102C 0000002D 45.) LONG 2

$DATA 00001030 00001030 00000000 0.) LONG 2 PIC,USR,CON,REL
.MAIN. 00001030 00001030 00000000 0.) LONG 2

ULT$DATA 00001030 0000119B 0000016C 364.) LONG 2 PIC,USR,CON,REL
crtO 00001030 0000105F 00000030 48.) LONG 2
printf 00001060 00001087 00000028 40.) LONG 2
f lsbuf 00001088 OOOOlOAF 00000028 40.) LONG 2
data OOOOlOBO 00001113 00000064 100.) LONG 2
f close 00001114 0000113B 00000028 40.) LONG 2
getstdiobuf 0000113C 00001167 0000002C 44.) LONG 2
malloc 00001168 00001193 0000002C 44.) LONG 2
sbrk 00001194 0000119B 00000008 8.) LONG 2

iob 000010B4 OOOOlOEC 00000039 57.) LONG 2 PIC,USR,CON,REL -
.MAIN. 000010B4 OOOOlOEC 00000039 57.) LONG 2

ULT$COMM 0000119C 00001213 00000078 120.) LONG 2 PIC,USR,CON,REL
malloc 0000119C 0000120B 00000070 112.) LONG 2
$$COMSYMS 0000120C 00001213 00000008 8.) LONG 2

Developing VAX C Programs for ULTRIX 2-25

Key to Example 2-5:

0 Name of the program section.

8 Names of the modules contributing to the program section.

0 Starting virtual address (in hexadecimal) of the psect or module.

8 Ending virtual address (in hexadecimal) of the psect or module.

@) Length of the psect or module, given in both hexadecimal and decimal.

8 Alignment specified for the psect. The numeric value is an integer from 0 to
9 that specifies the alignment as a power of two, as shown in the following
table:

Value Alignment

0 1 (BYTE)

1 2 (WORD)

2 4 (LONGWORD)

3 8 (QUADWORD)

4 24

9 29 (512 bytes)

Alignment on 512-byte boundaries, which is a half page for ULTRIX systems,
is the maximum for a psect.

8 Program section attributes (see Appendix A for more information).

2.6.3 Symbol Cross-Reference

The Symbol Cross-Reference lists symbolic names alphabetically, giving the
value of the symbol, the module that defines it, and the modules that refer to it.
Example 2-6 is a sample Symbol-Cross Reference table from the lk Linker Image
Map.

2-26 Developing VAX C Programs for ULTRIX

Example 2-6: Symbol Cross Reference

a.out 31-JAN-1987 13:37 VAX ULTRIX Linker V2.0 Page 3

+------------------------+
! Symbol Cross-Reference !
+------------------------+

• • • • Symbol Value Defined By Referenced By ...
------ ---------- -----------------

_cleanup OOOOOA68-R data exit
_doprnt 00000174-R doprnt printf

exit OOOOOF04-R exit exit -
flsbuf 00000904-R flsbuf doprnt - f walk OOOOOA04-R data

=getstdiobuf OOOOOB64-R getstdiobuf f lsbuf

- iob 000010B4-R data f lsbuf printf
iobend 0000120C-R $$COMSYMS data -
iobstart OOOOlOFO-R data

_bcopy OOOOOE4C-R bcopy malloc
close OOOOOSBC-R close f close -
edata 0000119C <Linker>

end 00001214 <Linker> -
environ 00001034-R crtO
errno 00001210-R $$COMSYMS cerror
etxt OOOOOF4B <Linker>
exit OOOOOEFO-R exit crtO
f close OOOOOAEC-R f close data -
f flush 00000A78-R f close -
free OOOOOD04-R malloc f close -
f stat 00000BC4-R fstat getstdiobuf

_gtty OOOOOBEC-R gtty isatty
ioctl OOOOOCOC-R ioctl gtty

=)satty OOOOOBCC-R isatty f lsbuf
main OOOOOF14-R .MAIN. crtO
malloc 00000Cl4-R malloc getstdiobuf
moncontrol 00000044-R crtO

=:printf 0000004C-R printf .MAIN.
realloc OOOOOD38-R malloc -
realloc srchlen 0000116C-R malloc
sbrk
write

cerror

curbrk
mcount
minbrk
start

OOOOOEBO-R sbrk malloc f lsbuf
OOOOOEE8-R write f close close
OOOOOF08-R cerror exit sbrk -
00001198-R sbrk
00001038-R crtO
00001194-R sbrk
00000000-R crtO

Key to Example 2-6:

8 Symbol name.

8 Symbol value, in hexadecimal. See the listing of symbol values for the
meaning of the letters suffixed to the values.

0 Module that defined the symbols. Symbols defined internally by the lk linker
display the value <Linker>.

8 Modules that refer to the symbol (if any).

Developing VAX C Programs for ULTRIX 2-27

2.6.4 Symbol Value Listing

The Symbol Value Listing lists the values of the symbols and the symbolic names
that have that value. Example 2-7 is a sample Symbol Value Listing from the lk
Linker Image Map.

Example 2-7: Symbol Value Listing

a.out

0
Value

0000004C
00000174
00000904
00000A68
OOOOOAEC
OOOOOB64
OOOOOBC4
OOOOOBCC
OOOOOBEC
ooooococ
OOOOOC14
OOOOOD04
OOOOOE4C
OOOOOEBO
OOOOOEE8
OOOOOEFO
OOOOOF04
OOOOOF08
OOOOOF14
000010B4
0000120C
00001210
00001214

13-APR-1988 13:37 VAX ULTRIX Linker V2.0

•

+------------------+
! Symbols By Value !
+------------------+

• Symbols ...

R-_printf
R-_doprnt
R- flsbuf
R-_cleanup
R- close
R-_gestdiobuf
R- f stat
R-_isatty
R-_gtty
R- ioctl
R- malloc
R- free
R-_bcopy
R- sbrk
R- write
R--exit
R- exit
R- cerror
R- main
R- iob
R- iob end
R- errno

end

Key for special characters above:
+------------------+
! * - Undefined
! R - Relocatable !
! WK - Weak
+------------------+

Key to Example 2-7:

0 Hexadecimal value.

8 Symbols that have the hexadecimal value.

8 Description of the special characters is as follows:

* Undefined. (The symbol was not defined anywhere in the link.)

2-28 Developing VAX C Programs for ULTRIX

Page 4

R Relocatable. The definition of the symbol was calculated as an offset from a
program section, and thus could change depending on the base virtual address
that the lk linker assigns to that psect. If no R appears, the value of the symbol
is independent of psect address assignment.

WK Weak. If the lk linker encounters a reference to a symbol that is not defined
anywhere, it normally reports this as an error. However, if the symbolic reference
is a weak reference, the linker assigns the symbol a value of 0 and does not report
an error. If, however, the linker reports any unresolved strong references, it also
reports all unresolved weak references.

A weak definition is not included in the _SYMTAB directory of a run-time library.
When the linker is searching a library to resolve references (strong or weak),
it will not select a module for inclusion on the basis of a weak definition of a
symbol. However, if the linker has selected that module for inclusion on the basis
of a strong reference to another symbol, it will resolve all references to weak
definitions that may be present in that module.

2.6.5 Image Synopsis

The Image Synopsis is a summary of the entire link. Example 2-8 is a sample
Image Synopsis from the lk Linker Image Map.

Example 2-8: Image Synopsis

a.out 13-APR-1988 13:37 VAX ULTRIX Linker V2.0 Page

+----------------+
! Image Synopsis !
+----------------+

Virtual memory allocated:

Text section virtual address limits:

Data section virtual address limits:

BSS section virtual address limits:

Number of files:
Number of modules:
Number of program sections:
Number of global symbols:
Number of cross references:
User transfer address:
Image type:

Key to Example 2-8:

• 00000000 00001213 00001214
(4628. bytes, 5. pages)

8 00000000 OOOOOFFF 00001000
(4096. bytes, 4. pages)

6) 00001000 000013FF 00000400
(1024. bytes, 1. page)

e 00001400 00001400 00000000
(0. bytes, 0. pages)

5.
21.

8.
54.
65.

8 OOOOOF14
Demand-loadable (ZMAGIC)

8 Total virtual memory allocated to the program.

8 Limits of the program text (executable) section.

6) Limits of the initialized data section.

9 Limits of the uninitialized data (BSS) section.

NOTE

5

For items 1 through 4, the low and high virtual address of the
section and its length is shown in hexadecimal, decimal, and pages.

Developing VAX C Programs for ULTRIX 2-29

8 Address, in hexadecimal, to which control is transferred when the program is
run.

2.6.6 Link Run Statistics Synopsis

The Link Run Statistics Synopsis contains statistics and performance indicators
for the linker run. Example 2-9 is a sample Link Run Statistic Synopsis from the
lk Linker Image Map.

Example 2-9: Link Run Statistics Synopsis

+---------------------+
! Link Run Statistics !
+---------------------+

Performance Indicators Page Faults CPU Time

Command processing:
Pass 1:
Allocation/Relocation:
Pass 2:
Map data after object module synopsis:

15
31

3
10

4
63

00:00:00.11
00:00:01.13
00:00:00.10
00:00:00.52
00:00:00.51
00:00:02.37 Total run values:

Elapsed Time

00:00:00.15
00:00:01.51
00:00:00.20
00:00:00.91
00:00:00.83
00:00:03.60

Using a working set limited to 2097151 pages and 235 pages of data storage
(including image)

Total number object records read (both passes) : 243
of which 108 were in libraries and 1 were DEBUG data records containing
77 bytes

Number of modules extracted to resolve undefined symbols: 18

0 lk /lib/crtO.o test.obj -K /usr/lib/fortrtl.a -le

Key to Example 2-9:

0 The command line used to invoke the lk linker.

2-30 Developing VAX C Programs for ULTRIX

Chapter 3

The dbx Debugger

The dbx debugger is a source-level, symbolic debugger. As a source-level
debugger, it allows you to control the execution of individual source lines in a
program and to set stops, or breakpoints, at specific source lines. As a symbolic
debugger, it also allows you to refer to program locations by their symbolic names.

The dbx debugger supports multiple programming languages, and can evaluate
and display values from different languages. In addition, it provides symbol
lookup according to the scoping rules of a specific language.

The dbx debugger operates on an executing program and controls the execution
according to your specifications. It allows you to follow the execution of your
program interactively and enables you to examine or alter the state of your
program at any point. It also allows you to access your source file for display and
editing purposes.

Before program execution starts, dbx allows you to enter debugger commands
(such as setting a breakpoint in your program). You can then enter the debugger's
run command, which creates a user process and starts program execution. Your
program executes until a breakpoint or an exception condition occurs, at which
point dbx again gains control and prompts for input. (dbx runs interactively
as a separate process; that is, it is not associated with the user process for the
executing program.)

NOTE

You should compile VAX C programs that require debugging without
source code optimizations. The VAX C compiler code optimizations will
have an unpredictable effect on the debugging environment. When
you use the -g option on the vcc command line optimization is not
performed.

Sections in this chapter address the following topics:

• The dbx command line used to invoke the dbx debugger

• The conventions observed by dbx

• The effect of compiler optimizations on the dbx debugger

• The commands available within the dbx debugger

• An example of a debugging session

The dbx Debugger 3-1

3.1 Invoking the dbx Debugger

The command line that invokes the dbx debugger has the following form:

dbx [-c file] [-i] [-I dirj [-k] [-r] [objfi/e] [coredump]

-c file
Executes the dbx commands in the file before reading from standard input.

-i
Forces dbx to act as if the standard input device is a terminal.

-1 dir
Adds dir to the list of directories that are searched when looking for a source file.
Normally, dbx looks for source files in the current directory and in the· directory
where the file that is being debugged is located. You can set the directory search
path with the use command. (Section 3.4 contains more information on the use
command.)

-k
Maps memory addresses. This facility is useful when you are debugging functions
within the kernel.

-r
Executes objfile immediately. If it terminates successfully, dbx exits. Otherwise,
the reason for termination is reported and dbx does not exit. When the -r option
is specified and the standard input device is not a terminal, dbx reads from
/dev/tty.

If the -r option is not specified, dbx issues a prompt and waits for a command.

objfile
Specifies an executable file produced by the vcc command. If you do not specify
an output file name on the vcc command line, the file is given the name a.out by
default.

You must specify the -g option on the vcc command line to produce the symbol
information needed by dbx in objfile. The file contains a symbol table that
includes the name of all source files translated during the compilation process.
You can access these source files while you are using the debugger.

cored ump
If the file core exists in the directory, or you specify a coredump file, you can use
dbx to examine the state of the program at the time a fault occurs.

NOTE

Functions compiled without the -g option are stepped over by dbx,
unless you explicitly set a breakpoint in the function. However, even
if you set a breakpoint, you will not be able to fully analyze what is
happening in the function because information about the symbols in
program components compiled without the -g option-except for global
symbols-is not available to dbx.

3-2 The dbx Debugger

3.2 dbx Conventions

Understanding the conventions discussed in the following sections will assist you
when using the dbx debugger.

3.2.1 dbx Initialization Files

You can build an initialization file containing dbx commands that you want to
have in effect when you begin debugging sessions. When you enter the dbx
command, the debugger first searches the current directory for an initialization
file. If it fails to find one in the current directory, it searches your home directory.
When the debugger finds an initialization file, it executes the dbx commands
contained in the file.

In searching for the initialization file, the debugger bases its search on the
combination of init and up to the first eight characters of the debugger's name.
The debugger normally looks for .dbxinit. If you rename the debugger, it searches
for an initialization file consisting of the first eight characters of the new name
with the init suffix. If, for example, you rename dbx as ABCDEFGHI, the
debugger searches for an initialization file called .ABCDEFGHinit.

3.2.2 Command Line Retention

Each time you enter a dbx command, dbx saves that command line until you
enter another command. If you want to repeat the execution of the previous dbx
command line, press the RETURN key.

This feature is useful for repeating a debugging operation (for example, stepping
through a program, one instruction at a time, using a next or step command).
You can also use command-line retention to examine consecutive memory
locations. The current memory pointer is not automatically updated. The
following command sequence allows you to step through memory. This example
uses the machine-level debugging commands described in Section 3.4.2.

(dbx) OxlOO/i
dbx display
(dbx) ./i
dbx display
(dbx) I RETURN I
dbx display
(dbx) I RETURN I

<== updates current location pointer

3.2.3 Expressions in dbx Commands

You can enter numeric expressions during your dbx debugging sessions.
Expressions in dbx commands follow the syntax of the C language. Table 3-1
lists the dbx operators.

The dbx Debugger 3-3

Table 3-1: dbx Operators

dbx
Operator Operation

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

-- Equal to

!= Not equal to

+ Addition

Subtraction

* Multiplication

I Division

As in C, you must place array subscripts within square brackets ([]). Consider
the following example:

(dbx) assign arrayl[l]=l

3.3 Debugging Optimized Programs

The VAX C compiler performs code optimizations by default. Unlike many other
optimizing compilers, VAX C does not require additional compile time when
optimizing. For many applications, compile and link time is increased when
optimization is not used because of the resulting increase in the size of the object
program.

Use the vcc command line option -V nooptimize if you plan to debug VAX
C programs with the dbx debugger because code optimizations may affect the
debugging environment. To encourage the use of this option, the -g vcc command
line option turns optimization off.

Debugging optimized code is recommended only under special circumstances. For
example, if a problem disappears when optimization is not selected you must try
to debug optimized code.

One aid to debugging optimized code is the -V machine_code=interspersed
option. This option allows you to generate a listing file that shows the compiled
code produced for each source line in your program. By referring to a listing of
the generated code, you can see exactly how the compiler optimizations affected
your code. This helps you to determine the debugging commands needed to
isolate the problem.

Another aid is a set of messages that dbx issues when you try to perform a dbx
operation on a language construct that has been optimized. In these instances,
one of the following optimizations has occurred:

• Optimized variables. If the VAX C compiler determines that a memory
location for a variable is not needed for the correct operation of a program,
the compiler informs dbx that the variable exists but that no memory is
allocated to it. In this case, dbx prints the following message:

symbolic information not available for variable variable

3-4 The dbx Debugger

When you receive such a message, you must either find another way to obtain
the information you need (perhaps by examining the machine code listing),
or you must recompile without specifying the -V optimize option on the vcc
command line.

• Optimized lines. If the VAX C compiler determines that an entire statement
is not needed for correct operation of the program, that statement is not
represented in the object code. As a result, dbx cannot use such statements to
set stops (breakpoints) or tracepoints. If you try to set a stop on an optimized
line, dbx prints the following message:

no executable code at line line-number

If you encounter this situation, you can usually set the stop or trace on an
adjacent line that has not been optimized.

You will also receive the preceding message if you try to set a stop at either
a line that contains only data declarations or at a comment line. This occurs
whether or not optimization is in effect.

3.4 dbx Commands

Table 3-2 provides a summary of dbx commands. The commands fall into the
following functional categories:

• General-purpose commands

• Execution and tracing commands

• Scope and variable handling commands

• Source-file access commands

• Machine-level debugging commands

Sections 3.4.1 and 3.4.2 describe these commands in greater detail.

Table 3-2: dbx Command Summary

Command
Category

General-Purpose
Commands

Execution and
Tracing
Commands

Command Description

alias

help

quit

sh

unalias

call

catch

Establishes an alias for an established dbx command
name or lists current aliases.

Displays a summary of dbx commands.

Terminates dbx processing.

Passes a command line to the default shell for execution.

Removes the alias associated with a name.

Executes the specified function.

Traps a specified signal condition in the debugger. (In
this case, your program will not receive the signal unless
you enter a cont command.)

(continued on next page)

The dbx Debugger 3-5

Table 3-2 (Cont.): dbx Command Summary

Command
Category

Scope and
Variable
Handling
Commands

3-6 The dbx Debugger

Command Description

cont

delete

ignore

next

rerun

return

run

source

status

step

stop

trace

assign

down

dump

func

print

set

unset

up

whatis

where

whereis

which

Continues execution from the point of suspension.
(The cont command is also used to continue signal
processing.)

Removes specified traces and stops.

Stops trapping a specified signal condition. (In this case,
the debugger will automatically pass the signal to your
program.)

Executes the current source statement-executing any
called subprograms-and stops at the next source line.

Reruns a program using the arguments specified on a
previous run command.

Stops dbx processing at the next executable instruction
following a return from the current subprogram or from
a specified subprogram.

Begins execution of a program.

Executes dbx commands contained in a given file.

Displays the traces and stops that are in effect.

Executes one source line-stopping at the first line of a
called subprogram.

Suspends execution when a line is reached, when a
function is called, or when a condition is met.

Traces execution of a line, traces calls to a function, or
traces changes to a variable. Also, displays the results of
specified expressions when a given line is reached.

Assigns the value of an expression to a variable.

Changes the current scope to a lower stack count level.

Displays the names and values of all active variables.

Displays or changes the current scope.

Displays the value of an expression.

Assigns values to debugger variables.

Deletes the debugger variable associated with the name.

Changes the current scope to a higher stack count level.

Displays the declaration of a name.

Displays the currently active functions.

Displays the full qualification of all occurrences of a
symbol.

Displays, in the current scope, the full qualification of a
symbol.

(continued on next page)

Table 3-2 (Cont.): dbx Command Summary

Command
Category

Source-File
Access
Commands

Machine-Level
Debugging
Commands

Command Description

edit Begins an editing session on a specified file using the
default editor {vi).

file Displays or changes the current source file.

list Displays a range of source lines or a specified function.

use Establishes a directory search path.

I Searches forward or backward in the current source file
? for the specified pattern.

address

nexti

stepi

stopi

tracei

Displays the contents of memory locations at the speci­
fied address (or within the specified address range).

Executes the current machine instruction and stops at
the next machine instruction.

Executes the current machine instruction, and stops at
the first machine instruction of a called function.

Suspends execution when an address is reached, a
condition is met, or a function is called.

Traces execution of an address.

3.4.1 Source-Level Debugging Commands

This section provides expanded descriptions of the dbx commands. Section 3.4.2
describes the machine-level commands.

alias newcommandname oldcommandname alias commandname
alias commandname "string"
alias commandname(parameter) "string"
alias
Responds to newcommandname as though it were oldcommandname. You can use
either name to enter the command.

If you enter the alias command with a name, a string, and an optional parameter,
alias executes the string each time you enter the name. For example, to define
an alias called b that sets a stop at a particular line, issue the following dbx
command:

dbx alias b(x) "stop at x"

When you enter the command b(12), dbx stops execution at line 12.

If you enter only one command name, dbx displays the aliases for that name.

If you enter the alias command with no arguments, dbx displays all the aliases
that you have established.

assign variable = expression
Assigns the value of the expression to the variable. The value and the variable
must be of the same data type.

You cannot assign values to registers.

The dbx Debugger 3-7

call function(parameters)
Executes the named function. The dbx debugger passes all parameters by
reference; that is, it passes the address of the parameter arguments.

catch number
catch name
Traps the signal, specified by its name or number, in dbx rather than passing
it to the executing program. The catch command remains in effect until it is
terminated by the ignore command.

This command is useful when you are debugging programs that handle signals,
such as interrupts. (See the Guide to Languages and Programming for more
information about signals and signal handling.) By default, dbx traps all signals
except SIGCONT, SIGCHILD, SIGALRM, and SIGKILL. The dbx debugger does
not keep track of a signal number after it traps it. If dbx traps a signal and you
want to pass it to a signal handler routine, you must enter a cont command
specifying the appropriate signal name or number. (This section describes the
cont and ignore commands.)

cont [number]
cont [name]
Continues execution from the point at which the process stopped. Execution
cannot be continued if the process has :finished (that is, it has called the standard
exit procedure) or if it has not started executing. dbx does not allow the process
to exit so you cannot examine the program state after execution is completed.

The number is an integer (1 through 32) that represents a signal. When you spec­
ify the number or name of a signal, you instruct the program that receives that
signal to continue processing as if the signal was received. (See the description
of the catch command that appears in this section.) For example, the following
command specifies that a program that receives signal 4 is to continue and that
control is to be passed to the appropriate signal handler:

(dbx) cont 4

delete commandnumber, ... , commandnumber
delete*
Removes the traces or stops corresponding to the given command numbers. (The
numbers associated with traces and stops are displayed by the status command.)

The delete * command removes all existing breakpoints and tracepoints.

down [count]
Moves the current scope, which is used for resolving names, down the stack by
the number of levels specified in count. The default count i~ 1. See the up and
func commands for more information.

dump[> filename]
Displays the names and values of all active variables in the specified procedure
or the current procedure. If you use a period (.) in place of the function name, all
active variables are dumped. Active variables are variables in common blocks or
in functions that are active. See the print command for a list of the supported
data types.

edit [filename]
edit functionname
Invokes the default editor (vi) and accesses the file filename or, if none is
specified, the current source file. If you specify a function name, the editor
accesses the file containing the specified function.

3-8 The dbx Debugger

file [filename]
Changes the current source file to filename. If you omit the filename, dbx displays
the name of the current source file.

func [function]
Changes the current function. If you omit the function, dbx displays the name
of the current function. Changing the current function implicitly changes the
current source file to the one that contains the function; it also changes the
current scope used for name resolution.

The func command is similar to the up and down commands. The major
difference is that up and down change scope based on stack frame counts and
func changes scope based on the function name that you specify. You can use
func to change the scope (the current function) to an inactive function (that
is, a function not on the stack). However, the up and down functions are only
effective with active functions.

help
Displays a summary of dbx commands.

ignore number
ignore name
Stops trapping the signal, specified by its name or number and passes it directly
to the user command program ignore. The ignore command disables the catch
command. (A description of the catch command appears in this section.)

The ignore command is useful when you are debugging programs that handle
signals, such as interrupts. By default, dbx traps all signals except SIGCONT,
SIGCHILD, SIGALRM, and SIGKILL. The dbx debugger does not keep track
of a signal number after it traps it. If dbx traps a signal and you want to pass
it to a signal handler routine, you must issue a cont command specifying the
appropriate signal number. (A description of the cont command appears earlier
in this section.)

You can disable trapping for a particular signal using the ignore command, as
follows:

(dbx) ignore 4

Signal number 4 (SIGILL) applies to interrupts caused by illegal instructions. If
an illegal instruction occurs after you issue the preceding ignore command, dbx
ignores the signal and gives the program a chance to handle the signal. (See the
Guide to Languages and Programming for additional information about signals
and signal handling.)

list [linenumber[,linenumber]]
list function
Lists the lines in the current source file from the first line number specified to
the second line number specified, inclusive. If you omit line numbers the next ten
lines are displayed. If you specify the name of a subprogram, ten lines (five above
and five below the first statement in the subprogram) are displayed.

The second form of the list command, list function, has the same effect as the
file command; that is, it changes the current source file.

next
Executes up to the next source line. The next command is different from the
step command. If the current line contains a call to a function and you enter the
next command, execution continues until the next source line; that is, execution
does not stop within the called function. In contrast, if you enter the step
command execution stops at the first line of the called function.

The dbx Debugger 3-9

print expression[,expression ...]
Displays the values of the specified expressions. Array expressions are always
subscripted by brackets ([]). You can reference variables that have the same
identifier as one within the current scope, as functionname. variable. You can use
the backslash operator (\) in the construct expression\ typename to display the
results of an expression in the format of a given type.

The print and dump commands display variables with the following data types:

Data Type

int
long
long int

unsigned
unsigned int

short
short int

unsigned short

char
unsigned char

:float

double

quit

Size

32 bits

32 bits

16 bits

16 bits

8 bits

32 bits

64 bits

Terminates the debugging session.

rerun [args][< filename] [> filename]
Starts executing the program specified with :filename by passing args as
command-line arguments. If, for example, argc and argv are arguments ex­
pected by a C program, you can include them on the rerun command line. Use
left and right angle brackets (<>) to redirect input or output in the usual manner.

If you specify arguments on the rerun command, dbx appends them to the
original argument list specified by the run command. If you omit arguments
from the rerun command, dbx passes the previous argument list to the program.
Otherwise, the rerun command is identical to the run command.

If the object file associated with :filename has been written since the last time the
symbolic information was read in, dbx reads in the new information.

return [function]
Continues until a return to function is executed, or until the current subroutine
or function returns if function is omitted.

3-10 The dbx Debugger

run [args] [<filename][> filename]
Starts executing the program specified with filename by passing args as command
line arguments. If, for example, argc and argv are arguments expected by a C
program, you can include them on the run command line. Use left and right
angle brackets (<>) to redirect input or output in the usual manner.

If you specify arguments on the rerun command, they are appended to the
original argument list specified by the run command. If you omit arguments
from the rerun command, the previous argument list is passed to the program.
Otherwise, the rerun command is identical to the run command.

If the object file associated with filename has been written since the last time the
symbolic information was read in, dbx reads in the new information.

set variable = expression
Assigns values to debugger variables. The names of these variables cannot
conflict with variable names in the program being debugged. The following
variables have a special meaning within dbx:

$frame You can set this variable to an address. The dbx debugger
uses the stack frame pointed to by the address to perform
stack traces and access local variables.

$hexchars
$hexints
$hexoffsets
$hexstrings

$listwindow

$mapaddrs

$unsafecall
$unsafeassign

sh commandline

When one of the variables is set, dbx prints out the hexadec­
imal value for characters, integers, offsets, or strings.

You can set this variable to a numeric value that will be
used by the list command. The value specifies the number
of lines to list around a function, or the number of lines
to display when the list command is entered without a
parameter. If you use the set command to set this variable
without specifying a numeric value, dbx uses the default
value of 10.

When you set this variable, dbx starts mapping addresses
and continues to map addresses until you revoke the vari­
able setting.

When you set these variables, strict type checking is omitted
within specific situations. The $unsafecall variable omits
strict type checking during subroutine and function calls.
The $unsafeassign variable omits strict type checking for
the two sides of an assignment statement.

Passes the command line to the shell for execution. The mechanism used to
return to dbx varies according to the shell being used. For example, for the
Bourne shell, you issue CTRL/D. Your shell is determined when you log in.

source filename
Executes the dbx commands contained in the specified file.

status [> filename]
Displays the currently active trace and stop commands. You can ignore any
gaps in the sequence of numbers shown by the status command; the gaps occur
because dbx uses some of the numbers internally.

step
Executes up to the next line. The step command is different from the next
command. The step command proceeds to the next line you can execute. As a
result, if the current line contains a function call, execution stops on the first line

The dbx Debugger 3-11

of the called function. However, with the next command, execution continues
until the next source line so it does not stop within the called function.

stop if condition
stop at sourcelinenumbetf.if condition]
stop in function [if condition]
stop variable [if condition]
Stops execution when one of the following conditions apply: the given condition is
true, the given line is reached, the given subroutine or function is called, or the
given variable is modified. The description of the trace command describes how
to specify stop command arguments.

trace[in function][if condition]
trace sourcelinenumber [if condition]
trace function[in function][if condition]
trace expression at sourcelinenumber [if condition]
trace variable [in function] [if condition]
Displays tracing information when the program executes. A number is associated
with each trace command. You must reference this number when using the
delete command to turn off tracing.

If you specify the in clause with a function, tracing is in effect only within the
given subroutine or function.

The variable condition is a Boolean expression that is evaluated prior to display­
ing the tracing information. If the result is false, the information is not displayed.
Section 3.2.3 describes the operators used in conditional expressions.

The first argument-sourcelinenumber, function, expression, or variable­
specifies what is to be traced as follows:

• If the argument is a source line number, the line is displayed immediately
prior to execution. To specify source line numbers in a file other than the
current file, precede the line numbers with the name of the file in quotes
followed by a colon (:). For example, "xyz.c":l 7 specifies line number 17 in
the file xyz.c.

• If the argument is a subroutine or function name, information is displayed
every time the subroutine or function is called, telling what function called it,
from what source line it was called, and what parameters were passed to it.
In addition, a message noting the return is displayed and, if it is a function
return, the value being returned is also displayed.

• If the argument is an expression with an at clause, the value of the expres­
sion is displayed each time the identified source line is reached.

• If the argument is a variable, the name and value of the variable is displayed
if there is any change to the value or the name of the variable. The previous
value of the variable, prior to the change, is also displayed. Execution is
much slower using this form of tracing.

• If the argument is omitted, all source lines are displayed before they are
executed. Execution is much slower during this form of tracing.

unalias name
Removes the alias associated with name.

unset name
Deletes the debugger variable associated with the name.

3-12 The dbx Debugger

up [count]
Moves the current scope, which is used for resolving names, up the stack by
the number of levels specified in count. The default value of count is 1. See the
down and func commands.

use directory-list
Sets the list of directories to be searched when looking for source files. You can
also do this by using the -I option on your dbx command line.

whatis name
Displays the declaration of the given name. You can qualify the name using the
function names described under the print command in this section.

where
Displays a list of the active functions.

whereis symbol
Displays the full qualification of the specified symbol for each occurrence of the
symbol in all functions in the program. The order in which the symbols are
displayed is not meaningful.

which symbol
Displays the full qualification of the given symbol within the currently active
function in the stack.

I expression/
Searches forward in the current source file for the specified expression.

? expression?
Searches backward in the current source file for the specified expression.

3.4.2 Machine-Level Debugging Commands

Machine-level commands allow you to examine instructions that result from the
expansion of a VAX C statement.

This section provides expanded descriptions of machine-level commands in
alphabetical order.

address, address I [mode]
[address] I [count] [mode]
symbol I count [mode]
Displays the contents of memory, starting at the first address and continuing up
to the second address or until count items are displayed (the default count is 1).
The address is a memory location expressed as a hexadecimal, decimal, or octal
number. Note that registers 0-15 are denoted by $rn (n is the number of the
register) or, for registers 12 through 15, by $ap, $fp, $sp, or $pc, respectively.

Symbolic addresses are specified by preceding the name with an ampersand(&).
Addresses can be expressions made up of other addresses and the plus (+), minus
(-), and indirection (unary*) operators.

A symbolic name (symbol) that has been assigned the value of a memory location
can also be specified, with enclosing parentheses, to achieve the same effect as
address. For example, if the pc contains the address OxlOO, then the following
two commands would both print 10 instructions starting at Oxl 00:

(dbx) Oxl00/10 i
(dbx) ($pc) /10 i

The dbx Debugger 3-13

If you replace the address with a period (.), the address following the one most
recently displayed is used. The mode option specifies how memory is to be
displayed; if mode is omitted, the previous mode specified is used. You must
include the slash (I) even if you do not specify count or mode. The default mode
is X. The following modes are supported:

i Displays the machine instruction

d Displays a short word (16 bits) in decimal

D Displays a long word (32 bits) in decimal

o Displays a short word in octal

0 Displays a long word in octal

x Displays a short word in hexadecimal

X Displays a long word in hexadecimal

b Displays a byte in octal

c Displays a byte as a character

s Displays a string of characters terminated by a null byte

f Displays a single-precision real number, float

g Displays a double-precision real number, double

nexti
Executes up to the next machine instruction. The nexti command is different
from the stepi command. The stepi command proceeds to the next instruction.
As a result, if the current instruction contains a function call, execution stops
on the first instruction of the called function. In contrast, if you enter the nexti
command, execution does not stop within the called function.

stepi
Executes up to the next machine instruction. The stepi command is different
from the nexti command. The stepi command proceeds to the next instruction
you can execute. As a result, if the current machine instruction contains a
function call, execution stops on the first instruction of the called function. In
contrast, if you enter the nexti command, execution does not stop within the
called function.

stopi at address
stopi if condition
stopi at address if condition
Stops execution when one of the following conditions apply: the given condition is
true, the given address is reached, the given subroutine or function is called, or
the given variable is modified at an address. See the stop command description
for information on how to specify stopi command arguments.

tracei [address] [if condition]
tracei [variable] [at address] [if condition]
Turns on tracing using a machine instruction address. If you enter the tracei
command without arguments, the execution of the entire program is traced.

The variable condition is a Boolean expression that is evaluated prior to dis­
playing the tracing information. If the expression is false, the information is not
displayed. Section 3.2.3 describes the operators used in conditional expressions.

3-14 The dbx Debugger

3.5 Sample Debugging Session

This section contains a sample debugging session for a VAX C program.
Example 3-1 contains a listing file for a program that requires debugging.
The program was compiled and linked without diagnostic messages. The error
occurs in the program's calculations, not in its syntax.

The program was designed to generate a table of squares for all values between
1 and 10. However, each value is added to itself rather than multiplied by itself.
This is an obvious error. For illustrative purposes, this section deals with the
problem as if it were not obvious.

NOTE

This section does not address machine-level debugging techniques.

Example 3-1: Sample VAX C Program

.MAIN
Vl. 0

1
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

1
1
1
1
1
1
2
2
2
2
1

#include "stdio.h"
#define STARTNUM 1
#define ENDNUM 10

main ()
{

int Count;
long Square;

printf ("Table of squares \n\n");

for (Count= STARTNUM; Count<= ENDNUM; Count++){
Square = (long)Count + (long) Count;

printf ("Number: %d Square: %ld\n", Count, Square);
}

When you debug a program, you are trying to find out what is happening at
key points in your program. To do this, you must be able to stop execution a.nd
examine program locations. The point at which you stop execution is called a
breakpoint. Breakpoints are set with the stop command.

Use the print or dump commands to examine the contents of a location. After
encountering a breakpoint, use the cont, next, step, run or rerun commands to
resume program execution.

Example 3-2 shows a dialog for a terminal debugging session. Red print in the
example indicates your input. The numbers are keyed to notes that explain the
procedure.

The dbx Debugger 3-15

Example 3-2: Sample Debugging Session

%0 vcc -g square. c
%8 dbx a.out
dbx version 2.0 of 10/24/86 5:11.
type 'help' for help.
reading symbolic information ...
(using memory image in core]
{dbx)@) func main
{dbx)8 list
8 {
9
10
11
12
13
14
15
16

int
long

Count;
Square;

printf {"Table of squares \n\n");

for {Count
Square

STARTNUM; Count <= ENDNUM
{long)Count + {long)Count;

Count++) {

17 printf {"Number: %d Square: %ld\n", Count, Square);
{dbx)@t stop at 17
(1) stop at "square.c":17
{dbx)(i) run
fj Table of squares
8 (1) stopped in main at line 17 in file "square.c"

17 printf {"Number: %d Square: %ld\n", Count, Square);
{dbx)Ci) print SQUARE
"SQUARE" is not defined
(dbx)f!> print Square
2
{dbx)print Count
1
{dbx)cont
Number: 1 Square: 2
(1) stopped in main at line 17 in file "square.c"

17 printf {"Number: %d Square: %ld\n", Count, Square);

{dbx)print Square
4
{dbx)print Count
2
{dbx)cont
Number: 2 Square: 4
(1) stopped in main at line 17 in file "square.c"

17 printf {"Number: %d Square: %ld\n", Count, Square);
{dbx)print Square
6
{dbx)print Count
3
{dbx)4D delete *
{dbx)8 cont

3-16 The dbx Debugger

(continued on next page)

Example 3-2 (Cont.): Sample Debugging Session

Number: 3 Square: 6
Number: 4 Square: 8
Number: 5 Square: 10
Number: 6 Square: 12
Number: 7 Square: 14
Number: 8 Square: 16
Number: 9 Square: 18
Number: 10 Square: 20
execution completed
(dbx)8 quit
%

Key to Example 3-2:

0 Create an executable module with the default name a.out. This command line
uses the vcc command program to invoke the VAX C compiler and the linker.
The -g option generates the necessary dbx information.

ft Invoke the dbx debugger, specifying the name of the executable module.

8 Establish main as the current function.

8 Display the function main on your terminal screen.

8 Insert a breakpoint at line 1 7. Critical information is available at this point
in the program.

8 Initiate program execution.

0 The program generates this message during execution.

0 Execution halts when it reaches the breakpoint at line 17.

CD An attempt is made to display the value of the variable SQUARE. This
variable does not exist. The variable Square does exist.

CO Display the contents of the variable Square.

• Remove all breakpoints after isolating the cause of the error.

8 Continue program execution until processing is completed.

8 Exit from the dbx debugger.

The dbx Debugger 3-17

Chapter 4

Program Structure

This chapter introduces the basic features of C to the programmer experienced in
other languages. The text provides detailed examples and short tutorials, as well
as numerous pointers to other chapters in this manual.

A VAX C program is a group of user-defined functions that cannot be nested
(you cannot define functions within other function definitions). This chapter also
describes VAX C function definitions, function declarations, and the following
components of C program structure:

• Function definitions

• Function declarations

• Function prototypes

• Function parameters and arguments

• Program identifiers

• Blocks

• Comments

• VAX C language keywords

• Functionality similar to that provided by lint

4.1 C Programming Language Background

The C language is a general-purpose programming language that is manageable
due its small size, flexible due to its ample supply of operators, and powerful in
its utilization of modern control fl.ow and data structures. The C language was
originally designed and implemented on a UNIX® system using the PDP-11. The
designers of the language describe C as follows:

"The [C] language ... is not tied to any one operating system or machine; and
although it has been called a 'system programming language' because it is useful
for writing operating systems, it has been used equally well to write major
numerical, text-processing, and database programs."1

Like assembly language, C was not designed to meet the needs of any particular
application. C manipulates and stores data by considering the similarities found
in modern machine architecture. However, C is not as complex as assembly
language and is not machine dependent. A program is considered portable if

® UNIX is a registered trademark of American Telephone & Telegraph Company.
1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood Cliffs, New Jersey: Prentice

Hall, 1988), p. 1.

Program Structure 4-1

you can compile and run its source program using several different compilers on
several different machines. C is a language that yields highly portable programs.

There is no ANSI or other industry-wide standard for the C programming
language, but there is a consistency of functionality between implementations.
This consistency is necessary for C to be portable across systems, which is one of
the most desirable features of the language. Not only must C source programs be
portable, but the language features themselves must produce the same effects on
all systems when you compile and run programs.

C was developed in a UNIX system environment, and was used to rewrite most
of that operating system, so many standard methods of operation in C are related
to UNIX. For instance, UNIX systems access files by a numeric file descriptor,
so C implementations should provide functions to access files by file descriptor.
In a UNIX system environment, you can expect a concise command structure,
an ability to redirect output from one program or command to the input of
another program or command, an ability to create asynchronous and synchronous
subprocesses, and an ability to manipulate the operating system features without
many restrictions and system safeguards.

Some standard C constructs include preprocessor directives and macros. In a
UNIX system environment, a preprocessor completes the tasks designated in the
preprocessor directives located in the source code before the compiler takes any
action.

4.2 The VAX C Programming Language

The VAX C programming language incorporates the features that are fundamen­
tal to the C language and that exist in most C compilers, based on the language
design of Brian W. Kernighan and Dennis M. Ritchie. However, this version of
VAX C for ULTRIX also incorporates some C language extensions based on the
current draft of extensions proposed by the ANSI committee that is reviewing the
C language. The added extensions are those most likely to be adopted. Digital
does reserve the right to change the VAX C language, particularly these exten­
sions, if the ANSI committee does not adopt the proposed extensions. Finally,
VAX C also includes unique features that work directly and efficiently with the
VMS operating system environment.

If you decide to retain both portability and utilize the ULTRIX environment,
you can use special constructs of VAX C and options of the vcc command (such
as the VAX C preprocessor predefined symbols and the command line option -V
standard=portable. These constructs allow you to execute some segments of
code only when running on ULTRIX systems, and to execute other segments
of code when running on systems other than ULTRIX systems. See Chapter 9
for more information about the preprocessor directives. See Chapter 2 for
information about the vcc command line.

4.3 Writing Your First Program

Writing your first program in an unfamiliar language can be frustrating,
particularly if the program is complex and you introduce numerous errors. Start
with simple programs. Computers are efficient at processing numbers, so the
first program presented here adds two numbers and stores the total in a variable.
Example 4-1 shows how to code such a program in the VAX C language.

4-2 Program Structure

Example 4-1: Simple Addition in VAX C

tt/* This program adds two numbers and places the sum in *
* the variable total. */

&main() I* The function name "main" */

• •
{ /* Begins function body */

int total; I* Variable of type "int" */
/* Blank lines are allowed *I

total = 2 + 2; /* Answer placed in "total" */
/* Ends the function body */

Key to Example 4-1:

8 The text between the character sequences (/*) and (*I) provide comments.
You cannot place comments within comments (that is, they cannot be nested),
but you can place comments anywhere that white space can appear. White
space is an area within the source code where blank spaces or blank lines
may separate code. In the following chapters, allowable white space is defined
for VAX. C constructs.

8 VAX. C programs are comprised of user-defined external functions that cannot
be nested. Here, a function named main is defined. In VAX. C, execution of
a program begins at either a function named main or at a function using the
main_program option; if a user-specified main function does not exist, the first
function in the program stream at the time external references are resolved
is the default main function. The main_program option is VAX. C specific
and is not portable. For more information about the syntax and using the
main_program option, see Section 4.8.1.

VAX. C functions have methods of exchanging information using parameters
and arguments. In the function definition of main, there are no parameters,
as designated by the empty parentheses. In Example 4-1, the function main
cannot receive information by means of parameters.

To specify parameters in a function definition, list the parameter identifiers
within the parentheses and separate them with a comma (,). You must
declare the parameters before the beginning of the body of the function. If
you call a function from within function main (you normally would not call
the main function from another part of your program), the function name
is followed by a list of arguments delimited by parentheses and separated
by commas. The number of arguments must correspond with the number of
parameters in.the function declaration. In Example 4-1, there are no function
calls.

The function performs its task as determined by the statements found in the
body, and may or may not return a value to the calling expression. The body
of the function main is delimited by braces ({ }). They are like the DO-END
of PI.JI or the BEGIN-END of Pascal. Usually, the body contains one or
more return statements. A return statement specifies what, if anything, is
returned to the expression that called the function. Depending upon the setup
of the function, you can omit the return statement, and its return value will
remain undefined. If a function does not return a value, you can declare the
function to be of data type void. For more information about functions, see
Section 4.10.

Program Structure 4-3

6) The variable total is declared and defined within the function main. You
must declare all variables before referencing them within the program. These
declarations end with a semicolon (;). If you declare a variable, you specify
its data type. Data types specify the amount of storage required and how to
interpret the stored object. For example, variable total is of the data type
int (integer), the object of which requires 32 bits (4 bytes or 1 longword) of
memory. VAX C interprets variables of type int as integers having a positive
or negative sign, or having the value of 0.

When you define a variable, you specify its storage class, which affects its
location, lifetime, and scope. Variables of type int declared within a function
have a default storage class of auto (automatic). Variables of this storage
class receive storage space when the function is activated and storage is freed
when control of the calling function resumes. Not all storage classes are
implemented by default. You can specify all VAX C storage classes and may
place the reserved word describing the storage class either before or after the
reserved word that describes the data type in the variable declaration.

Data types and storage classes are very important when determining the
scope of a variable. For more information about data types, see Chapter 7.
For more information about storage classes, see Chapter 8.

The reserved words used to identify data types (such as int and double),
storage classes (such as auto and globalvalue), statements (such as if and
goto), and operators (such as sizeof) are called keywords. Keywords are
predefined identifiers that cannot be redeclared. You cannot use these words
to identify variables and functions in your programs. Keywords must be
expressed in lowercase letters. Section 4.13 lists the VAX C keywords.

VAX. C is a case-sensitive language. You can declare variables, such as total,
in any mixture of upper- or lowercase letters. If you reference the variable
total in your program, the reference also must be lowercase. For example, if
you try to reference the variable Total, an error occurs; the compiler does not
recognize the variable name due to the initial capital letter.

8 The sum of 2 + 2 is stored in the variable total. This is done using a valid
VAX. C statement. You can use any valid expression as a statement by ending
it with a semicolon (;). The identifier total is a declared variable. The equal
sign (=) and the plus sign (+) are valid VAX C operators. The numbers being
added are valid constants. For more information about the various VAX C
statements, see Chapter 5. For more information about the VAX C operators,
see Chapter 6.

4.4 Producing Input/Output

The C language includes no facilities to administer input and output (I/0).
However, all implementations must have methods that allow programs and users
to communicate. The lack of communication in Example 4-1 is inconvenient;
there is no way to know if the program assigns the correct value of 4 to the
variable total. You can use an ULTRIX System Library function to output the
value of the variable total to the terminal. For more information about the
ULTRIX System Library functions, see the ULTRIX Documentation Set.

Before you can execute any of the example programs in this manual, you must
define, in the correct order, the libraries that the linker must search to resolve
references to library functions. For example, to compile and link a source
program that employs functions from the math library, you must link against
the ULTRIX System Library by specifying /lib/libm with the vcc command line

4-4 Program Structure

•

option -Im. For information about linking, see Chapter 2 and the ULTRIX
Documentation Set.

VAX C macro references within program source code look just like function
references. However, the compiler replaces macro references with VAX C source
code at an early stage in the execution process. The compiler locates VAX C
macro source code in the .h definition files provided with ULTRIX systems. For
example, you can display the standard I/O function, stdio.h, at your terminal with
the following command:

% cat /usr/include/stdio.hlRETURNI

If this command causes an error, see your system manager. It is a good idea
to type or print all the .h files to see the macros and definitions provided with
ULTRIX systems.

For more information about macros, see Chapter 9.

Example 4-2 shows that by using the ULTRIX printf function, a VAX C program
can print a message to the terminal.

Example 4-2: Output of Information

I* This program adds two numbers, assigns the value 4 to *
* variable total, and then prints the answer on the *

* terminal screen. */

#include <stdio.h>

main()
{

int total;
total = 2 + 2;

/* Print intro string */
printf("Here is the answer: ");
printf("%-d.", total); /*Print the answer *I

Key to Example 4-2:

8 The printf function writes to the standard output device (the terminal
screen). The first call to the function printf passes a string as the argument.
The second call to printf passes a string with special formatting characters
and a variable as arguments. Within the formatting string, the percent sign
(%) is replaced by the value of total, the minus sign (-) left-justifies the
output, and the letter d forces the value of the argument to be expressed as a
decimal number. The period (.) prints immediately after the value of total.

The output from Example 4-2 is as follows:

Here is the answer: 4.

If you want to print the value of total on a separate line, add the newline charac­
ter (\ n) to the string. Example 4-3 shows how to output on two lines.

Program Structure 4-5

Example 4-3: Output Using the Newline Character

/* This program adds two numbers, stores the sum in the *
* variable total, and then prints the answer on two *
* separate lines on the terminal screen. */

#include <stdio.h>

main()
{

int total;
total = 2 + 2;

/* Print intro string */
printf("Here is the answer ... \n");

/* Print the answer */
printf("%-d.", total);

The output from Example 4-3 is as follows:

Here is the answer ...
4.

After writing a program that produces output, it is necessary to compile, link,
and execute the program using the vcc command to see the results. Compiling a
program translates the source code to object code. Linking a program organizes
storage and resolves external references (for example, references to VAX C
functions). Running a program executes the image.

In the ULTRIX environment, a file is distinguished by a file name and by a
file extension. Choose a file name that is easy to identify. The file extension
should reflect the functionality of the file. For example, the file extension .c is the
required source file extension for the VAX C compiler.

After you create and appropriately name your program, invoke the VAX C com­
piler to compile and link it, then execute the result, as follows:

% vcc -o addition addition.cl£!.§.IQ@
% addition I RETURN I
Here is the answer ...
4.
$

You may have to define more libraries to the linker to use C functions in your
program. For more information about creating source code and the compilation
process, see Chapter 2.

4.5 Controlling Program Flow

There will be occasions when you must execute one or more VAX C statements
given a certain condition. There will be other occasions when you must execute
one or more VAX C statements repeatedly, within the body of a loop, until you
meet a certain condition. There are several statements in VAX C that accomplish
these tasks. These statements are the if statement, the switch statement, the
do statement, the while statement, and the for statement. For information
about statements that loop until meeting a condition, see Chapter 5.

4-6 Program Structure

4.5.1 The if Statement

0

You can use the if statement to force the program to execute one or more VAX
C statements when a specified condition exists. Example 4-4 shows a program
using the if statement.

Example 4-4: Conditional Execution Using the if Statement

/*
*
*
*

This program asks the user to guess a letter. The *
program tells whether the answer is correct or *
incorrect. The program is hard coded to accept 'a' or *
'A' as the correct letter. */

#include <stdio.h>

main()
{

char ch; /* Declare a character */
/* Ask the user to guess */

printf("Guess which letter I'm thinking of!\n");

ch= getchar(); I* Get the character *I

/* Correct = "a" or "A" */
if (ch == 'a' I I ch == 'A')

/* If correct guess */
printf("You're right!");

else /* If incorrect guess */
{

printf ("You're wrong.\n");
printf("You'll have to try again!");

Key to Example 4-4:

8 The standard I/O getchar function retrieves a character from the standard
input device (the terminal); the program pauses, waiting for the user to type
a character and to press the RETURN key. The getchar function retrieves
one character and ignores any others that are typed.

8 If the letter that the user types is either a or A, a message stating that
the choice is correct prints. If any other letter is typed, a message stating
that the choice is incorrect prints. The equality operator (==) compares
the variable ch with the constants 'a' and' A 1

• The logical OR operator
(I I) presents the condition to test. If there is more than one statement
to be executed conditionally, you must enclose the statements within braces
({ }). A statement or statements enclosed within braces is called a block or
a compound statement. The concept of blocks is important to determine the
scope of variables. See Section 4.14 for more information about blocks.

Sample output from Example 4-4 is as follows:

% exarnple4 I RETURN I
Guess which letter I'm thinking of!
Bl RETURN I
You're wrong.
You'll have to try again!

Program Structure 4-7

4.5.2 The switch Statement

The if statement is not the only method of specifying statements to be executed
given a certain condition. A switch statement can perform the same task as the
if statement in Example 4-4, but it is particularly useful when many conditions
must be tested. Example 4-5 shows a program using the switch statement.

Example 4-5: Conditional Execution Using the switch Statement

I*
*
*

This program plays the same guessing game as the
previous example except that it uses a switch
statement.

*
*
*I

8 #include <ctype .h>

#include <stdio.h>

main()

/* Include proper module */

{

char ch;

printf("Guess what letter I'm thinking of!\n");
ch = get char () ;
if (isupper(ch)); /*If ch is uppercase */
ch= tolower(ch);
switch(ch)

/* Convert "ch": lowercase */
/* Examine "ch" */
/* Body of switch statement */ {

case 'a' :
printf("You're right!");
return;

default /* Any other answer
printf("You're wrong.\n");
printf("You'll have to try again!");

*/

Key to Example 4-5:

0 When using the macro _tolower, you must include the definition module
ctype.h in the compilation process. The module ctype.h is located in the
ULTRIX System Library and defines macros and constructs used for character
processing and classification.

In VAX C, the preprocessor directives are processed by an early phase of
the compiler, not by a separate program as the name preprocessor implies.
Directives, unlike other VAX C lines of source code, begin with a pound sign
(#). Do not end preprocessor directives with a semicolon (;). The pound sign
must appear in column 1, the leftmost margin of your source file.

The module ctype.h is not the only module that contains macros and defi­
nitions used by the functions. There are several ways to include definitions
in the program stream. For more information about the VAX C definition
modules, see Chapter 9 and the ULTRIX Documentation Set.

4-8 Program Structure

8 The compiler replaces the references to the isupper and _tolower macros
with lines of C source code. When the program is run, the value of the vari­
able ch is translated to lowercase but only if it was originally an uppercase
letter. To see the macro definitions of isupper and _tolower, print the file
/usr/include/ctype.h from the system library.

Output from Example 4-5 is as follows:

% examples (RETURN I
Guess which letter I'm thinking of!
Al RETURN I
You're right!

The switch statement executes one or more of a series of cases based on the
value of the expression in parentheses. If the value of variable ch is a, then
the statements following the label case ' a' are executed. In Example 4-5, the
_tolower macro in the if statement translates any uppercase answers to lower­
case letters, so there is no need to test for the uppercase letter A in the switch
statement. When a case label matches the value of expression ch, the statements
following all of the remaining case labels are executed until the compiler encoun­
ters a break statement (which terminates the immediately enclosing statement),
a return statement (which terminates the enclosing function), or the bottom of
the switch statement. The statements following the default label are executed if
the value of the expression does not match any of the other case labels. For more
information about the switch statement, see Chapter 5.

4.5.3 Loops

In the previous examples, the user can only guess once during the execution
of the program. To guess another letter, it is necessary to execute the program
again. If you want to execute a segment of code repeatedly until a condition is
met, you can use a loop. Some loops execute a block of statements, known as the
loop body, a specified number of times. Some loops test for a condition first and
then execute the body of the loop if the condition is true. Some loops execute the
loop body and then test for a condition, which guarantees at least one execution
of the body. In VAX C, this last loop is called the do statement. Example 4-6
shows that you can use the do statement to alter the letter-guessing program.

Example 4-6: Looping Using the do Statement

/*
*
*
*

This program plays the same guessing game as the
other examples except that the user must guess until
the answer is correct. This is accomplished using a
do statement.

#include <stdio.h>

#include <ctype.h>

main()
{

char ch;

printf("Guess what letter I'm thinking of!\n");
printf("Keep guessing till you get it!\n");

*
*
*
*/

(continued on next page)

program Structure 4-9

8

Example 4-6 (Cont.): Looping Using the do Statement

do

ch = getchar ();
if (isupper(ch));
ch= tolower(ch);
switch (ch)

{

case 'a' :

/*Do the following ...
/* Beginning of loop body

*/
*I

printf("You're right!");
return;

case '\n':
break;

default

/* Ignore RETURN (newline) ch */

printf("You're wrong.\n");
printf("You'll have to try again!\n");

I* End of switch statement */
/* End of do loop body */
/* Condition to be tested */

8 while (ch ! = ' a') ;

Key to Example 4-6:

8 The case label tests to see if the value of the character is a newline character
(\ n). The newline character is entered when you press the RETURN key. If
it is the newline character, the character is ignored and a new character is
taken from the terminal.

8 In the while expression at the end of the do statement, the not-equal-to
operator (!=) presents the condition to be tested. The while expression
translates as follows: "while the variable ch is not equal to ' a' . "

Output from Example 4-6 is as follows:

% example6IRETURNI
Guess which letter I'm thinking of!
Keep guessing till you get it!
BI RETURN I
You're wrong.
You'll have to try again!
Al RETURN I
You're right!

The for statement allows you to specify the number of times to execute the loop
body. In the previous examples, it can be used to limit the number of guesses
that the user may attempt. You can use other looping techniques to limit the
number of guesses, but you must be responsible for incrementing a counter (the
for statement increments automatically). Example 4-7 shows the use of the for
statement.

4-10 Program Structure

•

Example 4-7: Looping Using the for Statement

I*
*
*
*

This program plays the same guessing game as the *
previous examples except that the user is limited to *
three guesses. This is accomplished using a for *
statement. */

#include <stdio.h>

#include <ctype.h>

main()
{

char ch;
int i; /* A counter for loop

printf("Guess what letter I'm thinking of!\n");
printf("You have three guesses. Make them count!\n");

*/

/* Do the following 3 times */
for (i = l; i <= 3; i++

{

ch= getchar();
if (isupper(ch));
ch= tolower(ch);
switch (ch)

{

case 'a' :

/* Beginning of loop body

printf("You're right!");
return;

case '\n':
--i;
break;

default
printf("You're wrong.\n");
if (i != 3)

*/

printf("You'll have to try again!\n");
/* End of switch statement */

/* End of for loop body */
printf("Sorry, you ran out of guesses!");

Key to Example 4-7:

8 The for statement controls how many times the body of the loop is executed.
The first expression inside the parentheses following the keyword for ini­
tializes the loop counter i to value 1. The second expression establishes an
upper bound; the value of variable i cannot exceed 3. The third expression
establishes the increment or decrement value of the variable that will be ex­
ecuted after every execution of the loop body. The double plus signs (++) are
the increment operator; they increase the value of a variable by the integer
1. The loop body is executed, each time the value of variable i increases by 1,
until the value of i is greater than 3.

8 The double minus signs (- -) are the decrement operator. The decrement
operator is used in this example to subtract one from the value of variable i
so that newline characters are not counted as a guess.

Sample output from Example 4-7 is as follows:

% example 7 I RETURN I
Guess which letter I'm thinking of!
You have three guesses. Make them count!
BI RETURN I
You're wrong.
You'll have to try again!

Program Structure 4-11

CI RETURN!

You're wrong.
You'll have to try again!
UI RETURN I
You're wrong.
Sorry, you ran out of guesses!

4.6 Values, Addresses, and Pointers

In VAX C, every variable has two types of values: a memory location and a stored
object. In VAX C, an lvalue is the variable's address in memory, and an rvalue is
the stored object. Consider the following assignment statement:

put_it_here = take_this_object;

This assignment statement is not very different from statements in other
programming languages, but consider the differences between locations in
memory and objects stored in memory. This assignment takes take_this_object's
rvalue and places it in memory at put_it_here's lvalue.

Consider the following VAX C assignment statement:

int x = 2, y;

/* put_it_here

y

take_this_object; */

x;

The two distinct variables have different memory locations (lvalues), but, after
the assignment statement, they contain objects of the equivalent value 2.

A variable's rvalue can be many things, such as integers, real numbers, character
strings, or data structures. One type of rvalue that it can be is the address of
another variable. In other words, a variable's rvalue can be another variable's
lvalue. In this case, one variable points to another variable.

A declaration of a variable whose rvalue is a pointer to another variable is as
follows:

int *pointr;

The indirection operator (*) specifies that the variable is a pointer, which in this
example points to an object of data type int. Pointers are declared as pointing to
an object of a particular data type.

You can assign the address of a variable to the pointer as follows:

static int *pointr;
static int x = 10, y = O;

pointr = &x;

/* Declarations

/* Assignment

*/

*/

The rvalue of the variable pointr is the lvalue of variable x. In other example
assignment statements, the rvalue of the variable on the right side of the equal
sign (=) was taken. In this example, the ampersand (&), which is the address of
the operator, translates as follows: take the lvalue of this variable instead of its
rvalue.

The static keyword specifies the static storage class. See Chapter 8 for
information about static and other storage-class specifiers and modifiers.

4-12 Program Structure

Figure 4-1 shows the difference between rvalues and lvalues.

Figure 4-1: rvalues, lvalues, and Assigning Pointers

!values
(addresses)

rvalues
(objects)

• • •
1400 ------n

L_J
141F ---

• • •

•
14F2 ------[]

• • •

Variable
Identifiers

x

pointr

y

ZK-3019-GE

The value of the variable pointr contains the address of variable x. Remember
that the location of variables in memory and the order in which the compiler
processes them is unpredictable and left to the discretion of the compiler.

After you assign an address to the pointer, you will want to use it. For example,
if you want to assign x's rvalue to a variable y, use the pointer in a VAX C
statement as follows:

y = *pointr;

The asterisk (*) is the VAX C indirection operator; the value of the variable
being pointed to by pointr is assigned to y. The indirection operator translates
as follows: the rvalue of this variable points to some other variable, so go to that
location and access the stored object. Figure 4-2 shows the status of the variables
after you execute the last code example.

Program Structure 4-13

Figure 4-2: The Indirection Operator in Assignments

!values rvalues Variable
(addresses) (objects) Identifiers

• • •
1400 ------[]

10 x

• • •
141F ------G pointr

1400

•
• •

14F2 ------[]
y

•
• •

ZK-3020-GE

For more information about pointers, see Chapter 7.

4.7 Aggregates

The variables used in the previous examples were either pointers or single objects
that could be manipulated, in their entirety, in an arithmetic expression. These
types of variables are called scalar variables. The VAX C data structures (arrays,
structures, and unions) are called aggregates. Aggregates are comprised of
segments called members. Members are sections of the structure that you can
declare to be either a scalar or aggregate data type.

4.7.1 Arrays and Character Strings

An array is a data structure whose members are of the same type. Members of
arrays can be any of the scalar or aggregate data types.

VAX C represents character strings internally as arrays of type char. A character
string may be declared and initialized as a character-string variable using the
indirection operator (*), as an array of a specified number of members, or as an
array of an unspecified number of members as follows:

4-14 Program Structure

char *str =
char string[6]
char strng [] =

"Hello";
"Hello";
"Hello";

In VAX C, all character strings end with the NUL character (\ 0). In the
previous example, the NUL character is appended to the string Hello to make
the string six characters long. When assigning strings to character-stnng and
array variables within the program, you must use the C string-handling functions
strncpy or strcpy. The following example illstrates the use of character strings
and arrays.

Example 4-8: Character String Constants and Arrays

I*
*
*

This program plays the same guessing games as the
previous examples except that it uses character
string constants and arrays.

#include <stdio.h>

main{)
{

char ch;

char *greeting
char *messagel
char *message2
char *message3
char correct[2];
correct[O] = 'a';
correct[l] = 'A';

/* Declare a character
/* Initialize messages

"Guess which letter I'm thinking of!";
"You're right!";
"You're wrong.";
"You'll have to try again!";

printf{"%s\n", greeting);
ch= getchar{);

/* Store correct letters

/* %s = char string

if {ch== correct[O] I I ch
printf{"%s", messagel);

else

correct[l])

{

printf{"%s\n", message2);
printf{"%s", message3);

Output from Example 4-8 is as follows:

% example8 I RETURN I
Guess which letter I'm thinking of!
BI RETURN I
You're wrong.
You'll have to try again!

For more information about arrays and character strings, see Chapter 7.

4.7.2 Structures and Unions

*
*
*/

*/
*/

*/

*/

Structures and unions are aggregates whose members can be of different types.
Structures and unions are declared using the struct and union keywords, an
optional tag name, and a list of member declarations delimited by braces ({ }).
A member of a structure or a union is a declared segment of the data structure.
The syntax for declaring a member is the same as for declaring any variable. The
structure or union tag is a name that you can use to declare structure or union
variables of the same type elsewhere in the program. Members of structures and
unions may be referenced as follows:

Program Structure 4-15

main()
{

struct optional_tag
{

char letter_l;
char letter_2;
int number;

/* Tag

characters = {'a', 'b', 59}; /* Variable

characters.letter_l = characters.letter_2;

optional_tag */

characters */

You may reference members by using the structure or union variable name
followed by a period (.) or followed by the member name. As in Example 4-8,
structures are initialized using a variable name and an assignment operator
(=) immediately following the declaration of the members. The values of the
members are delimited by braces ({ }) and separated by commas (,). The address
of the first member of a structure begins, in memory, at the base of the data
structure, which is referred to as offset 0.

Unions are declared in the same way as structures, but all members in a union
begin at offset 0. Unlike structures, unions cannot be initialized. The size of
the union in memory is as large as its largest member. When the single storage
space allocated to the union contains a smaller member, the extra space between
the end of the smaller member and the end of the allocated memory remains
unaltered. Example 4-9 shows the nature of unions.

Example 4-9: Single Storage Allocation of Unions

/* This example shows the storage maintenance of
* unions with different size members.

#include <stdio.h>

main()
{

union /* Declare the union

*
*/

*I

char lastname[8];
char firstinit;
overlap;

I* Array for a last name */
/* Char. for first initial */

/* Copy and print members */
strcpy(overlap.lastname, "Jackson");

printf("%s\n", overlap.lastname);
overlap.firstinit = 'M';
printf("%c\n", overlap.firstinit);
printf("%s\n", overlap.lastname);

The output from Example 4-9 is as follows:

% example9 I RETURN I
Jackson
M
Mackson

The strcpy function copies the second string into the array variable. When as­
signing values to smaller union members, the compiler does not fill the remaining
space in the union with NUL characters (\ 0); that is, whatever was in memory
at the time remains. For more information about structures and unions, see
Chapter 7.

4-16 Program Structure

0

Example 4-10 shows a structure definition and its usage.

Example 4-10: Structures

/*
*

This program plays the same guessing game as the
previous examples except that it uses a structure.

*
*/

#include <stdio.h>

main()
{

char ch;
char *greetingl = "Guess
char *greeting2 = "You've
char *rnessagel "You're
char *message2 "You're
char *message3 "You'll
char *rnessage4 "Sorry,
int i;

struct storage
{

char small a;
char capita(::, a;
char newline ch; -
int num_guesses;

} ;

which letter
3 guesses.

I'm thinking of!";
Make them count!";

right!";
wrong. "i
have to try again!";
you ran out of guesses!";

/* Store information */
/* Structure tag = storage */

/*
I*
/*
/*

/*
*

One correct letter
Another correct letter
newline character
Number of guesses

Declare "letter"
using tag "storage"

*I
*/
*/
*I

*
*/

8 struct storage letter= {'a', 'A', '\n'};

letter.num guesses = 3;
printf("%s\n", greetingl);
printf("%s\n", greeting2);

for (i = 1; i <= letter.num_guesses; i++)
{

ch = getchar ();
if (ch== letter.small_a I I ch

{
letter.capital_a)

printf("%s", messagel);
return;

else
if (ch == letter.newline_ch)

--i;
else

{

printf("%s\n", message2);
if (i != 3)

printf("%s\n", message3);

/* End of for loop body */
printf("%s", message4);

Key to Example 4-10:

0 The structure declaration with the tag storage has four members. The first
three members are of type char. The last member is of type int.

8 The struct variable letter is declared using the tag storage. At the same time,
individual members of the structure are initialized. The equal sign initializes
the members of the structure variable with constants. The constants are

Program Structure 4-17

separated by a comma and are delimited by braces. The number of initial­
izing constants cannot exceed the number of members. However, as in this
example, you may omit constants; the compiler pads the uninitialized mem­
ber (in the example, member num_guesses) with zeros. However, you cannot
initialize a member in the middle of any aggregate without initializing the
previous members.

Output from Example 4-10 is as follows:

% examplelO lRETURNI

Guess which letter I'm thinking of!
You've 3 guesses. Make them count!
BI RETURN I
You're wrong.
You'll have to try again!
c I RETURN I
You're wrong.
You'll have to try again!
u I RETURN I
You're wrong.
Sorry, you ran out of guesses!

See Chapter 2 and Chapter 3 for information about developing programs on
ULTRIX systems.

4.8 Function Definitions

You must declare or define functions that you want to call or use in a VAX C
program. You may or may not need to declare user-defined functions before you
call them. This depends on what type of value the function returns, and the
position of the function definition within the program. This section explains
the rules for defining functions, but you may want to read the discussion of
declarations and definitions in Chapter 7 before proceeding.

In a function definition, you specify the VAX C statements that execute whenever
you call the function. You also specify the parameters (if any) of the function.
The parameters of a function provide a means to pass data to the function. See
Section 4.11 for a detailed discussion of parameters and arguments.

Example 4-11 shows an example of two function definitions.

Example 4-11 : Case Conversion Program

/*

*
*
*

This program converts its input to lowercase. The
first function passes control to the second function
to convert a letter. Comments are located to the
right of the code.

#include <stdio.h>
main()

/* To use I/O definitions .{
FILE *infile, *outfile;
int i, c, c_out;

I* Declare files

inf ile
/* Open "infile" for input

fopen("ex113.in", "r");

*
*
*
*/

*/

*/

*/

/* Open "outfile" for output */
out file = fopen ("exl13. out", "w");

(continued on next page)

4-18 Program Structure

Example 4-11 (Cont.): Case Conversion Program

/*

*
*

/*While not end of file ... */
/* Get a char from the file */

while ((c = getc(infile)) != EOF)
{

c out= lower(c); /*Send char to "lower" */
/* Output the char to file */

putc(c_out, outfile);

return; /* Optional return statement */

Beginning of the next function definition:
*
*
*/

/* Function and parameter *
* name *I

8 lower (c up)
8 int c_u~; /* Declare parameter type *I

{ /* Beginning function body */
/* If capital, convert */

if (c_up >='A' && c_up <= 'Z')
return c_up - 'A' + 'a';

else /* Else, return as is */
return c_up;

Key to Example 4-11:

I* End of function body */
I* End function definition */

0 Program execution begins with function main. The left brace ({) signifies the
beginning of the function body; the right brace (}) signifies the end of the
body. The function body is any set of valid VAX C statements or declarations.
The body usually includes one or more return statements, as shown here.
A return statement specifies an expression whose value is returned to the
calling function. If you omit the expression, the returned value is undefined
in the calling function. If you omit the return statement, the function
terminates when the right brace is encountered and its return value is
undefined. See Chapter 5 for more information about the return statement.

8 The lower identifier begins a new function definition; lower has the single
parameter c_up. Function main has no parameters, but the parentheses must
be present.

8 The next statement, int c_up, declares the parameter's data type, in this case,
int (integer). The declaration is omitted if the function has no parameters;
furthermore, declarations here in the program should specify only the names
of parameters, not the names of other variables used in the function body.
See Chapter 7 for more information about data types.

For more information about the VAX C operators used in Example 4-11, see
Chapter 6.

Program Structure 4-19

4.8.1 The main Function and Function Identifiers

The execution of a program begins at the function whose identifier is main, or, if
there is no function with this identifier, at the first function seen by the linker.
In Example 4-11, the main function physically precedes the lower function, but
the two function definitions can appear in reverse order. The word main is not a
language keyword, so you may use it for other purposes in the program.

Function names have compile-time scope rules that are slightly different from
those that apply to other identifiers. Any valid function identifier followed by a
left parenthesis is declared implicitly as the name of a function whose storage
class is external and whose return value is of the data type int. For more
information about scope and storage classes, see Chapter 8.

Between the definition of a function's identifier and the declaration of its parame­
ters, you can write the following option:

main_program

The main_program option identifies the function as the main function in the
program. It is not a keyword, and it can be expressed in either upper- or
lowercase. Use the main_program option if the program does not contain function
main, and if you do not want the program's execution to begin at the first function
linked. For example, the following definition establishes function lower as the
main function; execution begins there, regardless of the order in which the
function is linked:

char lower(c_up)
MAIN PROGRAM
int c_up;
{

NOTE

The main_program option is VAX C specific and is not portable.

4.8.2 Parameter List Declarations

Example 4-11 shows only one of two possible methods of listing function parame­
ters, as follows:

lower(c_up
int c_up;
{

To make your code concise, you may want to list the data types of the function
parameters within the parameter list. If you use this method, your function defi­
nition also serves as a function prototype. See Section 4.10 for more information
about the effect of function prototypes.

The second way to declare parameter data types is as follows:

4-20 Program Structure

lower(int c_up)
{

For instance, if you need to declare parameters of different data types, your
function definition may appear as follows:

function_name(int lower, int upper, int temp, char x, floaty)
{

If you are using the function prototype format in a function definition, you must
supply both an identifier and a data type specification for each parameter. If you
do not, the action generates an error message.

In a function definition, you have the following two options when specifying an
empty parameter list:

• You can specify empty parentheses.

• You can use the void keyword to specify an empty parameter list.

An example using the void keyword is as follows:

char function_name(void)
{ return ' a' ; }

4.8.3 Function Return Data Types

By default, all VAX C functions return objects of data type int. In Example 4-11,
function lower returns an integer to the main function using the return state­
ment.

If you define a function that returns anything other than an integer, you need to
specify the function return data type in the function definitions and declarations.
The following example shows the definition of a function returning a character:

char letter(int paraml, char param2, int *param3
{

return param2;

If a function does not return a value, or if you do not call the function within an
expression that requires a value, you can define the function to return a value
of type void. Using the void keyword generates an error under the following
conditions:

• If the function returns a value.

• If you call the void function in an expression that requires a return value.

• If you use the void keyword with the cast operator for anything other than a
function.

Program Structure 4-21

The following example shows the use of the void keyword to specify a function
without a return value and to specify a null parameter list:

void message(void)
{

printf("Stop making sense!");
return;

4.8.4 Variable-Length Parameter Lists

If you decide to define a function with a variable-length parameter list, you can
use ellipses (. . .) to designate the variable-length portion of the parameter list,
as follows:

function_name(int lower, int upper, int temp, char x, floaty, ...)
{

Within the function body, use the varargs functions and macros to access the
argument list passed to the function. The varargs functions and macros provide a
portable means of accessing variable-length argument lists. For more information
about variable-length argument lists, see the description of the standard include
file varargs.h in the ULTRIX Documentation Set.

When using ellipses for variable-length argument lists, you must have at least
one argument preceding the ellipses. The following definition is allowed:

function_name(double lower, ...)
{

The following definition is not allowed:

function~name(...)
{

If you are not using function prototypes, you can use the varargs header and
declaration within the parameter list and before the function body, instead of
using the ellipsis notation. The following example shows such a construct:

function_name(va_alist
va dcl
{

NOTE

If you use function prototypes, use ellipses (. . .) within parameter
lists so that the compiler does not compare varargs declarations (va_
alist and va_dcl) with prototype data declarations. See Section 4.10 for
more information about function prototypes.

4-22 Program Structure

4.9 Function Declarations

As in Example 4-11, you can call a function without declaring it, if the function's
return value is an integer. If the return value is anything else, you may have to
declare the function. Example 4-12 shows a case where you need to declare a
function.

Example 4-12: Declaring Functions

#include <stdio.h>

main()

\ 8 { char lower(); /* The function declaration */

while ((c getc(infile)) != EOF)
{

/* The function call */
c_out = lower(c);
putc(c_out, outfile);

char lower(c up)
int c_up; -

/* The function definition */

{

Key to Example 4-12:

8 Since the location of the function definition is located after the main function
in the source code, and since the lower has a return type of char, you have
to declare the function before calling it.

If the function definition of lower is located before the main function in the
source code, despite lower's return data type, you do not need to declare the
lower before you call the function.

In a function declaration, you can use the void keyword to specify an empty
argument list, as follows:

main()
{

char function_name(void);

char function_name(void)
{ }

If the function's return data type is void, you must use the keyword in the
declaration, as follows:

Program Structure 4-23

main()
{

void function_name(void);

void function_name(void)
{ }

If you specify argument data types or void in a function declaration, as shown
in the following example, VAX C treats the function declaration as a function
prototype for the scope of the declaration:

main()
{

char function_name(int x, chary);

Since the declaration is within the scope of function main, VAX C uses the
function declaration as a function prototype only within function main. See
Section 4.10 for more information about function prototypes.

4.1 O Function Prototypes

A function prototype is a function declaration that specifies the data types of
its arguments in the identifier list. VAX C uses the prototype to ensure that
all function definitions, declarations, and calls within the scope of the prototype
contain the correct number of arguments or parameters, and that each argument
or parameter is of the correct data type.

Function prototypes provide compile-time argument checking similar to that
found in the lint utility. See Section 4.16 for more information.

When using function prototypes; you can first define the follov.71.ng fanction:

char function_name(int lower, int *upper, char (*func) (), double y)
{ }

You can also define the function as follows:

char function_name(lower, upper, func, y)
int lower;
int *upper;
char (*func) ();
double y;
{ }

This function's identifier list includes an integer, a pointer to an integer, a pointer
to a function returning a character, and a double floating point value. The type
specifications are identical to the ones used in a parameter list located before the
function body. For more information about interpreting complex declarations, see
Chapter 7.

In each compilation unit in your program, you should determine where to place
the corresponding function prototype. The position of the prototype determines
the prototype's scope; the scope of the function prototype is the same as the scope
of any function declaration. VAX C checks all function definitions, declarations,
and calls from the position of the prototype to the end of its scope. If you misplace
the prototype so that a function definition, declaration, or call occurs outside the
scope of the prototype, the results are undefined.

~24 Program Structure

Corresponding function prototype declarations are identical to the header of a
function definition that specifies data types in the identifier list. Since prototypes
are actually function declarations, end the prototype code with a semicolon (;).
The following example shows a prototype that corresponds with either of the
previous function definitions:

char function_name(int lower, int *upper, char (*func) (), double y);

When declaring function prototypes, you do not need to use the same parameter
identifiers as in the function definition. If you choose, you do not need to specify
any identifiers in the prototype declaration. The scope of the identifiers within
function prototypes exists only within the identifier list; you are free to use those
identifiers outside of the prototype.

For example, you can use any of the following prototype declarations for the
function definition presented:

char function_name(int lower, int *upper, char (*func) (), double y);
char function name(int a, int *b, char (*c) (), doubled);
char function=name(int, int*, char (*) (), double);

You can specify variable-length argument lists in function prototypes by using
ellipses. You must have at least one argument in the list preceding ellipses. The
following example shows the specification of a variable-length argument list:

char function_name(int lower, ...);

You cannot omit data type specifications in a function prototype, nor can you have
a variable-length argument list that is not preceded by at least one argument.
The following prototypes are not allowed and their use generates appropriate
error messages:

char function_name(lower, *upper, char (*func) (), floaty);
char function_name(, , char (*func) (), floaty);
char function_name(...);

Using the function prototype ensures that all corresponding function definitions,
declarations, and calls within the scope of the prototype conform to the number
and type of parameters specified in the prototype. A function prototype is
considered in scope only if a function prototype declaration is specified within a
block enclosing the function call or at the outermost level of the source file. If a
prototype is in scope, the automatic widening of float arguments to double is not
performed. However, the automatic widening of char and short int arguments to
int is performed. If the number of arguments in a function definition, declaration,
or call does not match the prototype, the statement generates the appropriate
message.

If the data type of an argument in a function call does not match the prototype,
VAX C tries to perform conversions. If the mismatched argument is assignment
compatible with the prototype parameter, VAX C converts the argument to the
data type specified in the prototype, according to the parameter and argument
conversion rules (see Section 4.11).

If the mismatched argument is not assignment compatible with the prototype
parameter, the action generates the appropriate error message and the results
are undefined.

The syntax of the function prototype is designed so that you can extract the first
line of each of your function definitions, add a semicolon (;) to the end of each
line, place the prototypes in a .h definitions file, and include that file at the top
of each compilation unit in your program. In this way, you declare the function
prototypes to be external, so that the scope of the prototype extends throughout
the entire compilation unit. You place the include preprocessor directives at the
top of any applicable compilation units.

Program Structure 4-25

See Chapter 9 for more information about preprocessor directives. See Chapter 8
for more information about compilation units and scope.

4.11 Using Parameters and Arguments

VAX C functions can exchange information by using parameters and arguments.
(In this guide, the term parameter means the variable within parentheses named
in a function definition; the term argument means an expression that is part of
a function call.) In Example 4-11, function lower has the single parameter c_up.
When this function is called from the main function, argument c is evaluated and
passed to function lower.

The following rules apply to the parameters and arguments of VAX C functions:

• The number of arguments in a function call must be the same as the number
of parameters in the function definition. This number may be zero.

• In VAX C, the maximum number of arguments (and corresponding parame­
ters) is 253 for a single function. The maximum length of an argument list is
255 longwords.

• Arguments are separated by commas. However, the comma is not an operator
in this context, and the compiler may evaluate the arguments in any order.
Do not expect function calls or other complicated expressions in the argument
list to be evaluated in any particular order.

• In VAX C, all arguments are passed by value; that is, when a function is
called, the parameter receives a copy of the argument's value, not its address.
The rule applies to all scalar variables, structures, and unions passed as
arguments. A function cannot modify the values of its arguments. However,
since arguments can be addresses or pointers, a function can use addresses to
modify the values of variables defined in the calling function.

• The types of evaluated arguments must match the types of their correspond­
ing parameters. When a function is called, unless a function prototype is in
scope, VAX C does not compare the types of the arguments with those of the
corresponding parameters so it does not generally convert the arguments to
the types of the parameters. Instead, all of the expressions in the argument
list are converted according to the following conventions:

Any arguments of type float are converted to double.

Any arguments of types char or short are converted to int.

Any arguments of types unsigned char or unsigned short are
converted to unsigned int.

Any function name appearing as an argument is converted to the address
of the named function. The corresponding parameter must be declared as
a pointer to a function, which evaluates to a value of the same data type
as the function.

Any array name appearing as an argument is converted to the address
of the first element of the array. The corresponding parameter can be
declared either as an array of the given type or as a pointer to the given
type. Since character-string constants are declared implicitly as arrays
of characters, this rule also applies to the use of string constants as
arguments.

No other conversions are performed on arguments. If you know that a
particular argument must be converted to match the type of the corresponding

4-26 Program Structure

parameter, use the cast operator. For more information about the cast
operator, see Chapter 6.

• If you declare variables in the parameter declaration section that do not exist
in the parameter list, these variables are treated as if they are declared in
the function body. However, this is not good programming practice and, if
used, your programs may not be portable.

• If you do not declare parameters, they are implicitly declared to be of
data-type int.

4.11.1 Function and Array Identifiers as Arguments

You can use a function identifier without parentheses and arguments. In this
case, the function identifier evaluates to the address of the function. This method
of referencing is useful when passing a function identifier in an argument list.
You can pass the address of one function to another as one of the arguments.

If you want to pass the address of a function in an argument list, the function
must either be declared or defined, even if the return value of the function is an
integer. Example 4-13 shows when you must declare user-defined functions and
how to pass functions as arguments.

Example 4-13: Declaring Functions Passed as Arguments

/* Defined before it is *

* used */
8xo return 25; }

main()

@ { int y (); /* Function declaration *I

funct (x, y) ; /* Passed as addresses */

y() { return 30; /* Function definition */

funct(fl, f2) /* Function definition *I
/* Declare arguments as *

* pointers to functions *
* returning an integer */

8int (*fl) ()I (*f2) ();
{

(*fl)(); /* A call to a function */

Key to Example 4-13:

8 You can pass function x in an argument list since its definition is located
before the main function.

Program Structure 4-27

ft You must declare function y before you pass the function in an argument list
since its function definition is located after the main function.

8 When you pass functions as arguments, do not include the parentheses.

8 When declaring the function identifiers as parameters, declare the function
as the result of the indirection operator (*) applied to the address of the
function. For more information about parentheses in expressions and the
indirection operator, see Chapter 6.

VAX C treats array parameters in the same way. If you pass an array identifier
in an argument list, VAX C translates the identifier as a pointer to the data
type of the array elements. To access the first element of the array, you need
to dereference the pointer. For more information about pointers, addresses, and
dereferencing, see Chapter 7.

4.11.2 Passing Arguments to the main Function

The main function in a VAX C program can accept arguments from the command
line from which it was invoked. The syntax for a main function is as follows:

int main(argc, argv, envp)
int argc; ·
char *argv[],*envp[];

In this syntax, parameter argc is the count of arguments present in the command
line that invoked the program, and parameter argv is a character-string array
of the arguments. Parameter envp is the environment array. It contains process
information, such as the user name and controlling terminal. It has no bearing
on passing command-line arguments. Its primary use in VAX C programs is
during exec and getenv function calls.

In the main function definition, the parameters are optional. However, you can
access only the parameters that you define. You can define function main in any
of the following ways:

main(j

main(argc)
main(argc, argv)
main(argc, argv, envp)

Example 4-14 shows a program called echo.c, which displays the command-line
arguments that were used to invoke it.

4-28 Program Structure

Example 4-14: Echo Program Using Command-Line Arguments

I* This program echoes the command-line arguments.

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];
{

int i;

*/

/* argv[O] is program name */
printf("program: %s\n",argv[0]);

for (i = l; i < argc; i++)
printf("argument %d: %s\n", i, argv[i]);

You can compile and link Example 4-14 using the following command:

% vcc -o ECHO echo. c I RETURN I

Sample output from Example 4-14 is as follows:

% ECHO
program:
argument
argument
argument

4.12 ldentif iers

Long "Day's" "Journey
/usr/oneill/plays/ECHO
1: Long
2: Day's
3: Journey into Night

into Night"~

Identifiers can consist of letters, digits, dollar signs ($), and the underscore
character (_). Do not create identifiers with a length of more than 255 characters.
If you do, the compiler truncates the name and generates a warning message.

The first character must not be a digit, and to avoid conflict with names used
by VAX. C, should not be an underscore character. VAX. C uses a preceding
underscore to identify most implementation-specific macros and keywords, and
uses two preceding underscores to identify implementation-specific constants.

Upper- and lowercase letters specify different variable identifiers; that is, the
compiler interprets abc and ABC as different variable names.

Use the following conventions if practical:

• Avoid using underscores as the first character of your identifiers.

• Type identifiers in uppercase if they are constants that are given values by
the #define directive.

• Type all other identifiers and keywords in lowercase.

4.13 Keywords

Keywords are predefined identifiers. They cannot be redeclared. They identify
data types, storage classes, and certain statements in VAX. C. Many conventional
words in VAX. C programs are not keywords and can be redeclared. The notable
examples are the names of functions, including main and the functions found in
system libraries.

Keywords must be expressed in lowercase letters.

Program Structure 4-29

Table 4-1 lists the VAX C keywords.

Table 4-1: VAX C Keywords

Keyword

Type Specifiers

int

long

unsigned

short

char

float

double

struct

union

typedef

en um

void

variant_struct1

variant_union1

Storage-Class Specifiers

auto

static

register

extern

globaldef1

globalref1

globalvalue1

readonly1

noshare1

_alignl

Type Modifiers

const

volatile

Statements

goto

return

continue

Meaning

Integer (on a VAX, 32 bits)

32-bit integer

Unsigned integer

16-bit integer

8-bit integer

Single-precision, floating-point number

Double-precision, floating-point number

Structure (aggregate of other types)

Union (aggregate of other types)

Tagged set of type specifiers

Enumerated scaler type

Function return type

Variant structure

Variant union

Allocated at every block activation

Allocated at compile time

Allocated at every block activation

Allocated by an external data definition (at compile time)

Definition of a global variable

Reference to a global variable

Definition or declaration of a global value

Allocated in read-only program section

Assigned NSHR program section attribute

Aligned on a specified boundary

Object cannot be modified

Object cannot be assigned to a register

Transfers control unconditionally

Terminates a function and optionally returns a value to the
caller

Causes next iteration of the containing loop

1 VAX C specific and nonportable.

(continued on next page)

4-30 Program Structure

Table 4-1 (Cont.): VAX C Keywords

Keyword

Statements

break

if

else

for

do

while

switch

case

default

Operator

sizeof

Meaning

Terminates its corresponding switch or loop

Executes the following statement conditionally

Provides an alternative for the if statement

Iterates the next statement (zero or more times) under
control of three expressions

Iterates the next statement (one or more times) until a given
condition is false

Iterates the next statement (zero or more times) while a
given expression is true

Executes one or more of the specified cases (multi way branch)

Begins one case for switch

Provides the default case for switch

Computes the size of an operand in bytes

The following identifiers are not true keywords, but the VAX C compiler defines
substitutions so do not redefine them:

vax
vaxc
vaxllc
unix
ultrix
bsd4 2
CC$gf loat

VAX
VAXC
VAXllC

See Chapter 9 for more information about these identifiers.

4.14 Blocks

A block is a compound statement surrounded by braces ({ }). You can use a block
wherever the grammar of VAX C requires a single statement. The common cases
are the bodies of functions and if, for, do, switch, and while statements. This
definition of a block may conflict with its definition in other languages. In VAX C,
the terms block and compound statement are identical.

A block may also contain declarations. If it does, any declarations of auto, regis­
ter, or static variables declare names that are local to the block. Example 4-15
presents nested blocks and the differences in the scope of declared variables.

Program Structure 4-31

Example 4-15: Scope of Variable Declarations in Nested Blocks

I*
*
*

This program shows how variables with the same
identifier can be of different data types if they
are located in different blocks.

main()

0 { int i;
i 1;

if (i == 1)
{

float i;

i = 3e10;

Key to Example 4-15:

/* Outer block of "main"

/* An inner block

*
*
*I

*/

*/

0 In all blocks of the program, except the block in the if statement, variable i is
an integer. The default storage class for this variable is auto.

8 Within the block in the if statement, variable i is a single-precision fl.oating­
point value. Since it is also of the storage class auto, a new floating-point
version of variable i is allocated each time the inner block is activated.

If initialization is specified for any auto or register variables in a block, it is
performed each time control reaches the block normally; that is, such initializa­
tions are not performed if a goto statement transfers control into the middle of
the block or if the block is the body of a switch statement. For more information
about data types, see Chapter 7. For more information about scope and storage
classes, see Chapter 8.

4.15 Comments

Comments, delimited by the character pairs(/*) and(*/), can be placed anywhere
that white space can appear. The text of a comment can contain any characters
except the close-comment delimiter (*I). You cannot nest comments.

4.16 Source Code Checking Functionality

The lint utility provides a way to check source code for improper definitions and
declarations, for parameter and argument mismatching, and for inefficient coding
practices. VAX C provides the following features that, when combined, offer much
of the functionality found in the lint utility at compile time:

4-32 Program Structure

Feature

-V standard=portable

Function Prototypes

Description

When you use the vcc command to compile your
source code, add this option to the command. The
compiler flags constructs that may not be supported by
other implementations of the C language.

The use of function prototypes allows VAX C to check
the number and the data types of all arguments
passed to functions. See Section 4.10 for complete
information.

Program Structure 4-33

Chapter 5

Statements

This chapter describes the statements in the VAX C programming language.
Statements are executed in the sequence in which they appear in a program,
except as indicated. The VAX C statements are grouped as follows:

• Control flow statements

• Expressions and blocks as statements

• Conditional statements

• Looping statements

• Interrupting statements

5.1 Control Flow Statements

You can use some VAX C statements either to maintain or modify the control of
the program. The following sections describe the control flow statements.

5.1.1 The null Statement

Use null statements to provide null operations in situations where the grammar
of the language requires a statement, but the program requires no work to be
done.

The syntax of the null statement is as follows:

You may need to use the null statement with the if, while, do, and for state­
ments in cases where the grammar requires a statement body but the program
requires no functional operation. The most common use of this statement is in
loop operations, where all the loop activity is performed by the test portion of the
loop. For example, the following statement finds the first element of an array
known to have a value of 0:

for(i=O; array[i] != O; i++)

See Section 5.2 and 5.4 for more information about the statements mentioned
here.

Statements 5-1

5.1.2 The goto Statement

The goto statement transfers control unconditionally to a labeled statement,
where the label identifier must be located in the scope of the function containing
the goto statement.

The syntax of the goto statement is as follows:

goto identifier;

Take care when branching into a block or function body using the goto statement.
The compiler allocates storage for automatic variables declared within a block
when the block is activated. When a goto statement branches into a block,
automatic variables declared in the block may not exist in storage. Attempts
to access such variables may cause a run-time error. See Chapter 8 for more
information about automatic variables.

5.1.3 The label Statement

Labels are identifiers used to flag a location in a program, and to be the target of
a goto statement.

The syntax of a label is as follows:

identifier:

Any statement can be preceded by a label. The scope of a label is the current
function body. Since the label name is independent of the scope rules applied to
variables, there can be variables with the same name as the label in the function
containing the label. Labels are used only as the targets of goto statements.

5.2 Expressions and Blocks as Statements

The statements in the following sections are expressions or groups of statements
that you can. use when the gTammar calls for a singie statement.

5.2.1 The expression Statement

You can use any valid expression as a statement by terminating it with a
semicolon (;). The following example shows an expression used as a statement:

i++;

This statement increments the value of the variable i. Note that i++ is a valid
VAX C expression that can appear in more complex VAX C statements. See
Chapter 6 for more information about the valid VAX C expressions.

5.2.2 The compound Statement

5-2 Statements

A compound statement in VAX C is often called a block (the compound statement
following the parameter declarations in a function definition is called the function
body). It allows more than one statement to appear where a single statement is
required by the language. The following example shows a block:

int x = 5;

z = l;
if (y < x)

funct(y, z);
else

funct (x, z) ;

The block contains optional declarations followed by a list of statements, all
enclosed in braces. If you include declarations, the variables they declare are
local to the block, and, for the rest of the block, they supersede any previous
declaration of variables of the same name. Inside blocks, you can initialize
variables whose declarations include the auto, register, static, or globaldef
storage class specifiers.

A block is entered normally when control flows into it, or when a goto statement
transfers control to a label on the block itself. The compiler-generated code
allocates storage for the auto or register variables each time the block is entered
normally; the storage allocations do not occur if a goto statement refers to a
label inside the block or if the block is the body of a switch statement. For more
information about storage classes, see Chapter 8.

All function definitions are compound statements.

5.3 Conditional Statements

The statements in the following sections execute only if a tested condition is true.

5.3.1 The if Statement

An if statement executes a statement depending on the evaluation of an expres­
sion, and may or may not be written with an else clause. The syntax of the if
statement is as follows:

if (expression)
statement

else
statement

An example of the if statement is as follows:

if (i < 1)
funct(i);

else
{

i = x++;
funct(i);

If the evaluated expression within parentheses is true (in the example, if variable
i is less than 1), then the statement following the evaluated expression executes;
the statement following the else keyword does not execute. If the evaluated
expression is false, then the statement following the else keyword executes.

All logical operators define a true result to be nonzero. Therefore, the expression
in any conditional statement may be a logical expression with predictable results
(true or false; nonzero or zero).

When if statements are nested within else clauses, each else clause matches the
most recent if statement that does not have an else clause.

Statements 5-3

5.3.2 The switch Statement

5-4 Statements

The switch statement executes one or more of a series of cases, based on the
value of the expression.

The syntax of the switch statement is as follows:

switch (expression)
statement

The result of the evaluating expression must be of data type int. (For more
information about the data types, refer to Chapter 7.) The statement is typically
a compound statement, where one or more case labels prefix statements that
execute if the expression matches the case. The syntax for a case label and
expression is as follows:

case constant-expression :
statement[,statement, ...]

The constant-expression must be of type int. No two case labels can specify the
same value. The value of a constant-expression can be any integral value.

At most one statement in the compound statement can have the following label:

default:

The case and default labels can occur in any order. When the switch statement
is executed, the following sequence takes place (note that each case flows into the
next unless explicit action is taken, such as a break statement):

1. The switch expression is evaluated and compared with the constant expres­
sions in the case labels.

2. If the expression matches a case label, the statement or list of statements
following that label is executed. If the list of statements ends with the break
statement, the break terminates the switch statement; otherwise, the next
case that is encountered is executed. (See Example 5-1.) You can terminate
the switch statement by a return or goto statement; if the switch is
inside a loop, you can terminate it ·with a continue statement. For more
information about interrupting statements, see Section 5.5.

3. If the expression's value does not match any case label but there is a default
case, the default case is executed. It need not be the last case listed. If a
break statement does not end the default case and it is not the last case,
the next case encountered is executed.

4. If the expression's value does not match any case label and there is no
default, the body of the switch statement is not executed.

In general, you must use the break statement to ensure that a switch statement
executes as expected. Example 5-1 uses the switch statement to count blanks,
tabs, and newlines entered from the terminal.

0 •

Example 5-1 : Using the switch Statement to Count Blanks, Tabs:i and
Newlines

/* This program counts blanks, tabs, and newlines in text *
* entered from the keyboard. */

#include <stdio.h>
main()
{

int number_tabs = 0, number_lines
int ch;
while ((ch= getchar()) != EOF)

switch (ch)
{

case , \t, : ++number _tabs;
break;

case I \n' : ++number lines; -
break;

0, number blanks

case , , ++number _blanks;
break;

printf("Blanks\tTabs\tNewlines\n");
printf ("%6d\t%6d\t%6d\n", number_blanks,

number_tabs,number_lines);

Key to Example 5-1:

0 A series of case labels is used to increment the counters.

O;

8 The break statement causes control to go back to the while loop every time
a counter increments. The program automatically passes control to the while
loop if none of the counters is incremented.

Example 5-1 responds to the following input:

% example I RETURN I
Every good boy.lRETURNl
The quick brown fox.IRETURNl
Line with 2 ~~abs. I RETURN I
"D

The output is as follows:

Blanks
7

Tabs Newlines
2 3

If you omit the break statements, the output is as follows:

Blanks
12

Tabs Newlines
2 5

Without the break statements, each case drops through to the next case. The
number shown for tabs happens to be right, because the tabs case is first in the
switch statement and is executed only if the variable ch = = '\ t'. Notice that
the number shown for newlines is the correct number plus the number of tabs,
and the number shown for blanks is the total of all three cases.

If variable declarations appear in the compound statement within a switch
statement, any initializations of the auto or register variables are ineffective.
However, if variables are initialized within the statements following a case label,
the initialization is effective. Consider the following example:

Statements 5-5

switch (ch)
{

int x = 1;
printf("%d", x);
case 'a' :

/* Improper initialization */

int x = 5; /* Proper initialization */
printf("%d", x);
break; }

case 'b' :

In the previous example, if the variable ch equals a, then the program prints
the value 5. If the variable equals any other letter, the program prints nothing
because the initialization outside of the case label is not executed.

5.4 Looping Statements

The statements in the following sections execute repeatedly (loop), until an
expression evaluates to false. Some loops execute a block of statements, known
as the loop body, a specified number of times. In VAX C, this loop is the for
statement. Some loops evaluate an expression and then execute the body of the
loop. In VAX C, this loop is the while statement. Some loops execute the loop
body and then evaluate the expression, which guarantees at least one execution
of the body. In VAX C, this loop is the do statement.

5.4.1 The for Statement

5-6 Statements

The for statement evaluates three expressions and executes a statement (the
loop body) until the second expression evaluates to false. The for statement is
particularly useful for executing a loop body a specified number of times.

The syntax for the for statement is· as follows:

for (expression-1 ; expression-2 ; expression-3)
statement;

The for statement executes the loop body zero or more times. It uses three
control expressions, as shown. The semicolons (;)separate the expressions. Note
that a semicolon does not follow the last expression. A for statement performs
the following evaluations:

• Expression-I is evaluated once before the first iteration of the loop. It usually
specifies the initial values for variables.

• Expression-2 is a relational or logical expression that determines whether or
not to terminate the loop. Expression-2 is evaluated before each iteration. If
the expression evaluates to false, execution of the for loop body terminates.
If the expression evaluates to true, the body of the loop is executed.

• Expression-3 is evaluated after each iteration. It usually specifies increments
for the variables initialized by expression-I.

• Iterations of the for statement continue until expression-2 produces a false
(0) value, or until some statement such as break or goto interrupts.

The for statement is identical to the following syntax:

expression-1 ;
while (expression-2)

{
statement
expression-3;

The VAX C compiler optimizes certain for statements for simple loops. Consider
the following example:

for(i=O; i<lS; i++)
printf ("%d\n", i);

When the incrementation is as simple as in the previous example, the com­
piler generates less macro code so efficiency increases. When possible, use for
statements instead of while statements when the increment is small.

You can omit any of the three expressions in a loop. If you omit expression-2,
the test condition is true; that is, the while in the expansion becomes while(x),
where x is not equal to 0. If you omit either expression-1 or expression-3 from the
for statement, that expression is effectively dropped from the expansion.

The following syntax shows an infinite loop:

for (;;) statement

Terminate infinite loops with a break, return, or goto statement.

5.4.2 The while Statement

The while statement evaluates an expression and executes a statement (the loop
body) zero or more times, until the expression evaluates to false.

The syntax of a while statement is as follows:

while (expression)
statement

An example of the while loop is as follows:

while (x < 10)
{

array[x] x;
x++;

The previous example tests the value of the variable x. If variable x is less
than 10, it assigns x to the xth element of the array and then increments the
variable x. If the expression in parentheses evaluates to false, the loop body
never executes.

5.4.3 The do Statement

The do statement executes a statement (the loop body) one or more times, until
the expression in the while clause evaluates to false.

The syntax for the do statement is as follows:

do
statement

while (expression) ;

Statements 5-7

The statement is executed at least once, and the expression is evaluated after
each subsequent execution of the loop body. If the expression is true, the
statement is executed again.

5.5 Interrupting Statements

You can use the statements in the following sections to interrupt the execution
of another statement. These statements are primarily used to interrupt switch
statements and loops.

5.5.1 The break Statement

The break statement terminates the immediately enclosing while, do, for, or
switch statement. Control passes to the statement following the loop body.

The syntax for the break statement is as follows:

break;

5.5.2 The continue Statement

The continue statement passes control to the end of the immediately enclosing
while, do, or for statement.

The syntax for the continue statement is as follows:

continue;

Review the following syntax summary to see the effects of the continue state­
ment on the looping statements:

goto label;

The continue statement is identical to the goto label statement for each of the
looping statements in the follo\ving syntax examples:

while (
{

do for (..
{

goto label; goto label; goto label;

label: label: label:

5-8 Statements

while (.

In the preceding syntax examples, a continue statement passes control to
label. The continue statement is intended only for loops, not for switch
statements. A continue inside a switch statement that is inside a loop causes
continued execution of the enclosing loop after exiting from the body of the
switch statement.

5.5.3 The return Statement

The return statement causes a return from a function, with or without a return
value.

The syntax of the return statement is as follows:

return [expression];

The compiler evaluates the expression (if you specify one) and returns the value
to the calling function. If necessary, the compiler converts the value to the
declared type of the calling function's return value. If there is no specified return
value, the value is undefined.

You can declare a function without a return value to be of type void. For more
information about the void data type and function return values, see Chapter 4.

Statements 5-9

Chapter 6

Expressions and Operators

An expression is any series of symbols that VAX C uses to produce a value.
The simplest expressions are constants and variable names, which contain no
operators and yield a value directly. Other expressions combine operators and
subexpressions to produce values.

In some instances, the compiler makes conversions so that the data types of the
operands are compatible. This chapter refers to these rules as the arithmetic
conversion rules. See Section 6.9.1 for more information about these rules.

This chapter discusses the following topics:

• The lvalues and rvalues

• Primary expressions and operators

• An overview of the VAX C operators

• Unary expressions and operators

• Binary expressions and operators

• The conditional expression and operator

• Assignment expressions and operators

• The comma expression and operator

• Data-type conversions

6.1 The lvalues and rvalues

A variable identifier is one of the primary VAX C expressions. (See Section 6.2
for more information about primary expressions.) This type of expression yields
a single value, the contents of the variable. However, when using the variable
identifier with other operators, the expression evaluates to the variable's location
in memory. The address of the variable is the variable's lvalue. The object stored
at that address is the variable's rvalue. For example, VAX C uses both the lvalue
and the rvalue of variables in the evaluation of an expression as follows:

x = y;

The contents of variable y are taken and assigned to variable x. The expression
on the right side evaluates to the variable's rvalue while the expression on the
left side evaluates to the variable's lvalue when performing an assignment.

The following syntax defines the VAX C expressions that either have or produce
lvalues:

lvalue ::=
identifier

Expressions and Operators 6-1

primary [expression]
lvalue . identifier
primary -> identifier
* expression
(!value)

These expressions represent the following identifiers and references:

• Identifiers of scalar variables, structures, and unions

• References to scalar array elements

• References to structure and union members, except for references to fields
that are not !values

• References to pointers (also called dereferenced pointers; that is, an asterisk
(*) followed by an address-valued expression)

• Any of the previous expressions enclosed in parentheses

All lvalue expressions represent a single location in a computer's memory. For a
graphic explanation of !values and rvalues, see Chapter 4.

6.2 Primary Expressions and Operators

Simple expressions are called primary expressions, which denote values. Primary
expressions include previously declared identifiers, constants (including strings),
array references, function calls, and structure or union references. The syntax
descriptions of the primary expressions are as follows:

primary::=
identifier
constant
string
(expression)
primary (expression-list)
primary [expression]
ivaiue . identifier
primary -> identifier

The simplest identifiers are variable names, and string or arithmetic constants.
Other forms are expressions (delimited by parentheses), function calls, array
references, !values and rvalues, and structure and union references.

6.2.1 Parenthetical Expressions

An expression within parentheses has the same type and value as the same
expression without parentheses. As in declarations, you can delimit any expres­
sion using parentheses to change the grouping, or associative precedence, of the
operators in a larger expression.

6.2.2 Function Calls

A function call is a primary expression followed by parentheses. The parentheses
can contain a list of arguments (separated by commas) or it can be empty. An
undeclared function is assumed to be a function returning int. If you declare an
identifier as a function returning int, but use the identifier in a context other
than a function call, it converts to the address of a function returning.

6-2 Expressions and Operators

Consider the following declaration:

double atof();

The previous example declares a function returning double. You can then use
the identifier atof in a function call, as in the following example:

result= atof(c);

You can also use the atof identifier in other contexts without the parentheses, as
follows:

dispatch(atof);

The atof identifier converts to the address of that function, and the address is
passed to the function dispatch.

Functions can also be called using a pointer to a function. Consider the following
pointer declaration and assignment:

double (*pfd) ();

pfd = atof;

To call the function, you can specify the following form:

result = (*pfd) (c);

VAX C also accepts a pointer to a function, as shown in the following form:

result= pfd (c);

While the first call to the function is valid, the second call to the function is
simpler and requires fewer keystrokes.

6.2.3 Array References { [])

Use bracket operators ([]) to see elements of arrays. In an array defined as
having three dimensions, you refer to a specific element within the array, as in
the following example:

int sample_array[lO] [5] [2);
int i = 10;
sample_array[9] [4] [1] = i;

I* Array declaration */

/* Assign value to element */

This example assigns a value of 10 to element sample_array[9][4][1].

In addition, if an array reference is not fully qualified, it refers to the address of
the first element in the dimension that is not specified. Consider the following
statement:

sample_array[9) [4] = 10;

This statement assigns a value of 10 to the element sample_array[9][4][0].

Consider the following statement:

sample_array = 10;

The statement assigns a value of 10 to the element sample_array[O][O][O]. A
reference to an array name with no bracket operator is often used to pass the
array's address to a function, as in the following case:

funct(array);

Expressions and Operators 6-3

You can also use bracket operators to perform general address arithmetic, using
the following form:

addr[intexp]

In the previous example, addr is the address of some previously declared object
(pointer-valued) and the variable intexp is an integer-valued expression. The
result of the expression is scaled, or multiplied, by the size, in bytes, of the
addressed object. If intexp is a positive integer, the result is the address of a
subsequent object of this size. If intexp is 0, the result is the address of the
same object. If intexp is negative, the result is the address of a previous object.
The expressions *(addr + intexp) and addr[intexp] are equivalent because both
expressions reference the same memory location.

6.2.4 Structure and Union References

You can reference a member of a structure or union with either the period (.) or
the right arrow (->) operator.

A primary expression followed by a period and an identifier refers to a member
of a structure or union, and is itself a primary expression. The first expression
must be an lvalue naming a structure or union. The identifier must name a
member of that structure or union. The result is a reference (if the member is a
scalar) to the named member of the structure or union. The name of the desired
member must be preceded by a period-separated list of the names of all higher
level members. For more information about structures and unions, see Chapter 7.

The form for a pointer to a structure and union uses the right-arrow operator
(->), which is specified with a hyphen (-) and a greater-than symbol (>). A
primary expression followed by a right arrow and an identifier refers to a member
of a structure or union. The first expression must be a pointer to a structure or
a union. The identifier following the right-arrow operator must name a declared
member of that structure or union. The result is a reference to the named
member.

The primary expression in bboth cases can be either a pointer or an integer. If
it is a pointer, VAX C assumes that it points to a structure where the name on
the right is a member. If it is an integer, VAX C assumes that it is the absolute
address of the appropriate structure in machine storage units. If you specify
something other than a pointer to a structure or union, VAX C signals the
QUALNOTSTRUCT informational message. If you point to a different strucfa.,:,-~
or union type, VAX C signals the NONSEQUITUR informational message.

6.3 Overview of the VAX C Operators

You can use the simpler variable identifiers and constants in conjunction with
VAX C operators to create more complex expressions. Table 6-1 lists the VAX C
operators.

6-4 Expressions and Operators

Table 6-1: VAX C Operators

Operator

- [unary]
*[unary]
& [unary]

++[prefix]
++ [postfix]
- - [prefix]
- - [postfix]
sizeof

(type-name)

+
- [binary]
*[binary]
I
%

>>
<<

<
>
<=
>=

!=

& [binary]
I

"
&&
I I

?:

=
+=
-=
*=
I=
%=
>>=
<<=
&=
I=
"=

Example

-a
*a
&a
-a
++a
a++
- -a
a- -
sizeofttl)
sizeof e
(tl)e

a+b
a-b
a*b
alb
a%b

a>> b
a <<b

a<b
a>b
a <=b
a>=b
a==b
a !=b

a&b
alb
a" b

a&&b
a I I b
!a

a? el : e2

a=b
a+=h
a-= b
a*= b
a/= b
a%=b
a>>=b
a <<=b
a&=b
a I =b
a"= b
el,e2

Result

Negative of a
Reference to object at address a
Address of a
One's complement of a
a after increment
a before increment
a after decrement
a before decrement
Size, in bytes, of type tl
Size, in bytes, of expression e
Expression e, converted to type t1

a plus b
a minus b
a times b
a divided by b
remainder of alb (a modulo b)

a, right-shifted b bits
a, left-shifted b bits

1 if a < b; 0 otherwise
1 if a > b; 0 otherwise
1 if a <= b; 0 otherwise
1 if a >= b; 0 otherwise
1 if a equal to b; 0 otherwise
1 if a not equal to b; 0 otherwise

Bitwise AND of a and b
Bitwise OR of a and b
Bitwise XOR (exclusive OR) of a and b

Logical AND of a and b (yields 0 or 1)
Logical OR of a and b (yields 0 or 1)
Logical NOT of a (yields 0 or 1)

Expression el if a is nonzero,
Expression e2 if a is zero

a (with b assigned to a)
a plus b (assigned to a)
a minus b (assigned to a)
a times b (assigned to a)
a divided by b (assigned to a)
Remainder of alb (assigned to a)
a, right-shifted b bits (assigned to a)
a, left-shifted b bits (assigned to a)
a AND b (assigned to a)
a OR b (assigned to a)
a XOR b (assigned to a)
e2 (el evaluated first)

The operators fall into the following categories:

• Unary operators, which take a single operand

• Binary operators, which take two operands and perform a variety of
arithmetic and logical operations

• The conditional operator (a ternary operator), which takes three operands and
evaluates either the second or third expression, depending on the evaluation
of the first expression

Expressions and Operators 6-5

• Assignment operators, which assign a value to a variable, optionally
performing an additional operation before the assignment takes place

• The comma operator, which guarantees left-to-right evaluation of comma­
separated expressions

• Primary operators, which usually modify or qualify identifiers (see Section 6.2
for more information)

Table 6--2 presents the precedence by which the compiler evaluates operations.
Operators with the highest precedence appear at the top of the table; operators
with the lowest precedence appear at the bottom. Operators of equal precedence
appear in the same row.

Table 6-2: Precedence of VAX C Operators

Category Operator

Primary () [] ->
Unary ++ (type)

* & sizeof

Binary (multiplication) * I %
Binary (addition) +

Binary (shift) << >>
Binary (relational) < <= > >=
Binary (equality) -- !=
binary (bitand) &
Binary (bitxor) /\

Binary (bi tor) I
Binary (AND) &&
Binary (OR) I I
Conditional ?:

.A_ssigriment = += *=
I= %= >>= <<= &=
"= I=

Comma

Consider the following expression:

A*B+C

Associativity

Left to right

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Left to right

The identifiers A and Bare multiplied first because the multiplication operator
(*) is of higher precedence than the addition operator (+). The associative rule
applies to each row of operators. The following expression evaluates as A divided
by B with the result then divided by C, because the division operator evaluates
from left to right:

A/B/C

6-6 Expressions and Operators

6.4 Unary Expressions and Operators

You form unary expressions by combining a unary operator with a single operand.
All unary operators are of equal precedence and group from right to left. They
perform the following operations:

• Negate a variable arithmetically (-) or logically (!)

• Increment (++) and decrement (- -) variables

• Find addresses (&) and dereference pointers (*)
• Calculate a one's complement (-)

• Force the conversion of data from one type to another (the cast operator)

• Calculate the sizes of specific variables or types (sizeof)

6.4.1 Negating Arithmetic and Logical Expressions

Consider the syntax of the following expression:

- expression

This defines the arithmetic negative of expression. The compiler performs the
arithmetic conversions. The negative of an unsigned quantity is computed by
subtracting its value from 232. There is no unary plus operator in VAX C.

The result of the following expression is the logical (Boolean) negative of the
expression:

expression

If the result of the expression is 0, the negated result is 1. If the result of the
expression is not 0, the negated result is 0. The type of the result is int. The
expression can be a pointer (or other address-valued expression) or an expression
of any arithmetic type.

6.4.2 Incrementing and Decrementing Variables

The object that the lvalue refers to in the following expression is incremented
before its value is used:

++lvalue

After evaluating this expression, the result is the incremented rvalue, not the
corresponding lvalue. For this reason, expressions that use the increment and
decrement operators in this manner cannot appear by themselves on the left side
of an assignment expression that needs an lvalue.

The object to which the lvalue refers in the following expression increments after
its value is used:

lvalue++

The expression evaluates to the value of the object before the increment, not the
incremented variable's lvalue.

If the operand is a pointer, the address is incremented by the length of the
addressed object, not by the integer value 1.

Expressions and Operators 6-7

The objects of the following lvalues point to other variables:

--lvalue
lvalue--

These pointers decrement not by the integer value 1, but by the length of the
addressed object. The data type of the variable determines the amount of the
increment or decrement. If declared as a pointer, the variable increments or
decrements by the length determined by the addressed object's data type. For
example, incrementing a pointer to int increments the value of the pointer by 4.
If declared as an integer, the variable increments or decrements by the value 1.

When using the increment and decrement operators, do not depend upon the
order of evaluation of expressions. Consider the following ambiguous expression:

k = x[j] + j++;

Is the value of variable j in x[j] evaluated before or after the increment occurs?
Do not make assumptions about which expressions the compiler evaluates first.
To avoid ambiguity, increment the variable in a separate statement.

6.4.3 Computing Addresses and Dereferencing Pointers

Consider the following syntax:

& variable

The expression results in the !value (address) of variable. You may not apply the
ampersand operator (&) to register variables or to bit fields in structures or
unions.

NOTE

In VAX C, the compiler changes any register variable to which the
ampersand operator applies to auto. The compiler issues no warning
message unless you use -V standard=portable; if you do, the compiler
issues an appropriate message.

In the special context of argument lists, you may apply the ampersand operator
to constants. This use of the ampersand operator passes constants to user-defined
functions that expect arguments to be passed by reference. This use is not
recommended for other applications. It is VAX C-specific and not portable.

Since function identifiers and unqualified array identifiers are lvalues, you cannot
apply the ampersand operator to these identifiers. If you apply the ampersand
operator to function identifiers or to unqualified array identifiers, VAX C considers
this a redundant use of the ampersand operator and generates the appropriate
error message when the -V"STANDARD=NOPORTABLE" option is used.

When an expression evaluates to an address, as in the following example, the
address is used to indirectly access the object that the address refers to:

* pointer

An expression using the indirection operator (*) evaluates to the object pointed
to by a pointer or by an address-valued expression.

6-8 Expressions and Operators

6.4.4 Calculating a One's Complement

Consider the following syntax:

..., expression

The result is the one's complement of the evaluated expression; it converts each
1-bit into a 0-bit and each 0-bit into a 1-bit. The expression must be integral (an
integer or character). The compiler performs necessary arithmetic conversions.

6.4.5 Forcing Conversions to a Specific Type Using the Cast Operator

The cast operator forces the conversion of an operand to a specified scalar data
type. The operator consists of a data-type name, in parentheses, which precedes
the operand expression, as follows:

(type-name) expression

The resulting value of the expression converts to the named data type, just as
if the expression were assigned to a variable of that type. If the operand is a
variable, its value converts to the named type. The variable's contents do not
change. The type name has the following syntax:

type-name ::=
type-specifier abstract-declarator

In simple cases, type-specifier is the keyword for a data type, such as char or
double. The identifier type-specifier may also be a structure, union specifier, an
enum specifier, or a typedef tag.

An abstract-declarator in a parameter declaration is a declaration without an
identifier or data-type keyword as follows:

abstract-declarator ::=
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression]

Consider the following form of the abstract-declarator:

abstract-declarator()

To avoid confusion with the previous form, the abstract-declarator may not be
empty in the following form:

(abstract-declarator)

Abstract declarators can include the brackets and parentheses that indicate
arrays and function calls. However, cast operations cannot force the conversion
of any expression to an array, function, structure, or union. The brackets and
parentheses are used in such operations as the following, which casts identifier
Pl to pointer to array of int:

(int (*)[])Pl

This kind of cast operation does not change the contents of Pl; it only causes
the compiler to treat the value of Pl as a pointer to such an array. For example,
casting pointers in this manner can change the scaling that occurs when you add
an integer to a pointer.

Expressions and Operators 6-9

6.4.6 Calculating Sizes of Variables and Data Types (sizeof)

Consider the following syntax:

sizeof expression
sizeof (type-name)

The result is the size, in bytes, of the operand. In the first case, the result of
sizeof is the size determined by the declarations of the objects in the expression.
In the second case, the result is the size, in bytes, of an object of the named
type. The syntax of type-name is the same as that for the cast operator. See
Section 6.4.5 for more information about the cast operator.

6.5 Binary Expressions and Operators

The binary operators are categorized as follows:

• Additive operators: addition (+) and subtraction (-)

•
•
•

•
•
•

Multiplication operators: multiplication (*), mod (%), and division (/)

Equality operators: equality (+ =) and inequality (!=)

Relational operators: less than (<), less than or equal to (<=), greater than
(>), and greater than or equal to (>=)

Bitwise operators: AND (&), OR (I), and XOR (")

Logical operators: AND (&&) and OR (I I)

Shift operators: left shift (<<) and right shift (>>)

The following sections describe these binary expressions and operators.

6.5.1 Additive Operators

The additive operators (+) and (-) perform addition and subtraction. Their
operands are converted, if necessary, following the arithmetic conversion rules.
For more information, see Section 6.9.1.

You can increment an array pointer by adding an integral variable to the address
of an array element. The compiler calculates the size of one array element,
multiplies that by the integer to obtain the offset value, and then adds the offset
value to the address of the designated element. For example:

int arr[lO];
int *p = arr;
p = p + 1; /* Increments by 4 */

You may subtract a value of any integral type from a pointer or address; in that
case, the same conversions apply as for addition.

When you add or subtract two enum constants or variables, the type of the result
is int.

If you subtract two addresses of objects of the same type, the result is an int
representing the number of objects separating the addressed objects. The result
of this conversion is unpredictable unless the two objects are in the same array.

6-10 Expressions and Operators

6.5.2 Multiplication Operators

The multiplication operators (*), (I), and (%) perform arithmetic conversions, if
necessary. The binary operator (*) performs multiplication. The binary operator
(I) performs division. When integers are divided, truncation is toward 0.

The binary mod operator (%) divides the first operand by the second and yields
the remainder. Both operands must be integral. The sign of the result is the
same as the sign of the quotient. If variable b is not 0, then the following is
always true:

(a/b)*b + a%b =a

6.5.3 Equality Operators

The equality operators equal-to (==)and not-equal-to (!=)perform the neces­
sary arithmetic conversions on their two operands. These operators produce a
result of type int. Consider the following example:

a<b == c<d

The result is the value 1, if both relational expressions have the same truth
value, and 0 if they do not.

Two pointers or addresses are equal if they identify the same storage location.
You can compare a pointer or address with an integer, but the result is not
portable unless the integer is 0. A null pointer is considered equal to 0.

Although different symbols are used for assignment and equality, (=) and (==),
respectively, VAX Callows either operator in some contexts, so you must be
careful not to confuse them. Consider the following example:

if (x=l) statement-1;
else statement-2;

In the previous example, statement-1 always executes, since the result of
assignment x=l delimited by parentheses is equivalent to the value of x, which is
equal to 1 or true.

6.5.4 Relational Operators

The relational operators compare two operands and produce a result of type int.
The result is the value 0 if the relation is false, and 1 if it is true. The operators
are less-than (<), greater-than (>), less-than or equal-to (<=), and greater-than
or equal-to (>=). The compiler performs necessary arithmetic conversions.

If you compare two pointers or addresses, the result depends on the relative
locations of the two addressed objects. Pointers to objects at lower addresses
are less than pointers to objects at higher addresses. If two addresses indicate
elements in the same array, the address of an element with a lower subscript is
less than the address of an element with a higher subscript.

The relational operators group from left to right. However, note that the following
statement compares the variable c with 0 or 1 (the possible results of a<b); it does
not mean "ifb is between a and c ... ":

if (a<b<c) ...

In order to check that b is between a and c, you should use the following code:

if (a<b && <c) ...

Expressions and Operators 6-11

6.5.5 Bitwise Operators

You may only use bitwise operators with integral operands, with variables of
types char and int (all sizes). The compiler performs the necessary arithmetic
conversions. The result of the expression is the bitwise AND (&), OR (I), or
EXCLUSIVE OR, which is represented by XOR ("), of the two operands. The
compiler always evaluates all operands. Figure 6-1 shows the effects of Boolean
algebra when using the bitwise operators.

Figure 6-1: Boolean Algebra and the Bitwise Operators

Boolean Algebra

AND(&) OR (I) EXCLUSIVE-OR (")
1 0 1 0 1 0

1~ 0 0 0 1~ 0 1 0 1 flli1 0 1 0

OPERATOR BITWISE OPERATION DECIMAL VALUE

AND(&) 0 1 1 1 95

1 0 0 0 0 97

0 0 0 0 0 65

OR (I) 0 95

0 0 0 0 97

127

X-OR (A) 1 0 1 1 95

0 0 0 0 97

0 1 0 62

ZK-3071-GE

In Boolean algebra, VAX C compares values bit by bit. If you use the bitwise
AND, and you compare a bit value 1 and a bit value 0, the result is 0. When you
use the bitwise AND, both compared bits must be 1, as shown in Figure 6-1, for
the result to be 1. When you use the bitwise OR, either bit value can be 1 for the
result to be 1. When you use the bitwise EXCLUSIVE OR, either value, but not
both, can be 1 for the result to be 1. Figure 6-1 shows the use of all three bitwise
operators on two common values.

6-12 Expressions and Operators

6.5.6 Logical Operators

The logical operators are AND (&&) and OR (I I). These operators guarantee
left-to-right evaluation. The result of the expression (of type int) is either 0
(false) or 1 (true). If the compiler can determine the result by examining only
the left operand, it does not evaluate the right operand. Consider the following
expression:

El && E2

The result is 1 if both its operands are nonzero, or 0 if one operand is 0. If
expression El is 0, E2 is not evaluated. Similarly, in the following expression, the
result is 1 if either operand is nonzero, and 0 otherwise:

El 11 E2

If expression El is nonzero, E2 is not evaluated.

The operands of logical operators need not have the same type, but each must
be one of the fundamental types or must be a pointer or other address-valued
expression.

6.5. 7 Shift Operators

The shift operators (<<)and(>>) take two operands, which must be integral.
The compiler performs the necessary arithmetic conversions on both operands.
The right operand is then converted to int, and the type of the result is the type
of the left operand. Consider the following example:

El << E2

The result is the value of expression El shifted to the left by E2 bits. The
compiler clears vacated bits.

The result of the following expression is the value of expression El shifted to the
right by E2 bits:

El >> E2

The compiler clears vacated bits if El is unsigned; otherwise, bits are filled with
a copy of El's sign bit.

The result of the shift operation is undefined if the right operand (E2 in the
previous example) is negative or is greater than 32.

6.6 The Conditional Expression and Operator

The conditional operator (?:) takes three operands. It tests the result of the first
operand and then evaluates one of the other two operands based on the result of
the first. Consider the following example:

El ? E2 E3

If expression El is nonzero (true), then E2 is evaluated. If El is 0 (false), E3 is
evaluated. Conditional expressions group from right to left. The compiler makes
conversions in the following order:

• If possible, the arithmetic conversions are performed on expressions E2 and
E3, so that they will result in the same type.

• Otherwise, if expressions E2 and E3 are address expressions indicating
objects of the same type, the result has that type.

Expressions and Operators 6-13

• Otherwise, either one of the E2 and E3 operands must be an address
expression, and the other, the constant 0. The result has the type of the
addressed object.

6.7 Assignment Expressions and Operators

An assignment is an expression as well as an operation. The result of an
assignment expression is the value of the target variable after the assignment.
You can use assignments as subexpressions in larger expressions.

The set of assignment operators consists of the equal sign (=) alone and in
combination with binary operators. An assignment expression has two operands
(an lvalue and an expression separated by one of these operators). The following
two assignment expressions are identical:

El += E2;

El = El + E2;

The expression El is evaluated once and must result in an lvalue. The type of
the assignment expression is the type of El, and the result is the value of El
after the operation is finished. You must delimit some expressions in parentheses
if the expressions possibly contain other operators of a lower precedence. For
example, the following expressions produce identical results:

a *= b + 1;

a= a* (b + 1);

However, the following example produces different results:

a = (a * b) + 1;

In the following simple assignment expression, the value of expression E2
replaces the previous object of El:

El = E2

In the following example, the expression adds 100 to the contents of a_nun1ber[l]:

a_number[l] += 100;

The result of the expression is the result of the addition, which has the same type
as a_number[l].

If both assignment operands are arithmetic, the right operand is converted to the
type of the left operand before the assignment. (See Section 6.9.1.)

You can use the assignment operator (=) to assign values to structure and
union members. You can assign one structure value to another if you define the
structures to be the same size. With all other assignment operators, all right
operands and all left operands must be either pointers or evaluate to arithmetic
values. If the operator is (-=) or (+=), the left operand can be a pointer, and the
right operand (which must be integral) is converted in the same manner as the
right operand in the binary plus (+) and minus (-) operations.

You can assign an address to an integer, an integer to a pointer, and the address
of an object of one type to a pointer of another type. These assignments are
simple copy operations, with no conversions. This usage can cause addressing
exceptions when you use the resulting pointers. However, if the constant
0 is assigned to a pointer, the result is a null pointer. The null pointer is
distinguishable (by the equality operators) from a pointer that points to any
object.

6-14 Expressions and Operators

For the sake of compatibility with other C implementations, VAX C allows certain
exceptions to the spellings of the compound assignment operators shown in
Table 6-2. The exceptions are as follows:

• If you write the operators in the order shown in Table 6-2, you can separate
the two characters with blank spaces. The following two examples produce
the same results:

El += E2;

El + = E2;

• You can also write the operators with the characters in reverse order, as in
the following example:

El =+ E2;

The second form generates an informational message for the following reasons:

• The syntax allowed by VAX C is more restrictive in this case. Specifically,
the characters(*,-, and&) must be immediately adjacent to the equal sign
(=) character because they also appear in unary operators. This placement
avoids ambiguities in cases such as the following, which multiplies the result
of expression El by the value of p:

El =*p;

• Even with usage that follows the guidelines, you can introduce ambiguities,
as in the following example:

El =/*part of a comment ...

6.8 The Comma Expression and Operator

If you separate two expressions with the comma operator, they evaluate from
left to right, and the compiler discards the result of the left expression. If you
separate many expressions with commas, the compiler discards all but the
result of the rightmost expression. The following example assigns the value 1 to
variable R and the value 2 to variable T:

R = T = 1, T += 2, T -= l;

The type and value of the result of a comma expression are the type and value of
the right operand. The operator evaluates from left to right.

You must delimit comma expressions with parentheses if they appear where
commas have some other meaning, as in argument and initializing lists. Consider
the following example:

f (a, (t=3,t+2), c)

The function f is called with the arguments a, 5, and c. In addition, variable t is
assigned the value 3.

6.9 Data-Type Conversions

VAX C performs data-type conversions in the following situations:

• When two or more operands of different types appear in an expression
(including an assignment)

• When arguments other than long integers, addresses, or double-precision,
floating-point numbers are passed to a function

Expressions and Operators 6-15

• When arguments that do not conform exactly to the parameters declared in a
function prototype are passed to a function

• When the data type of an operand is deliberately converted by the cast
operator (See Section 6.4.5 for more information on the cast operator)

6.9.1 Converting Operands

The following rules (referred to as the arithmetic conversion rules) govern the
conversion of operands in arithmetic expressions. Although they do not specify
explicit conversions at the machine-language level, the rules govern in the
following order:

• Any operands of type char or short (signed or unsigned) convert to their
32-bit equivalents (int or unsigned int), and any of type float convert to
double.

• If either operand is double, the other converts to double, and that is the
type of the result, unless you specify the -f option with the vcc command.

• If either operand is unsigned, the other converts to unsigned, and that is
the type of the result.

• Otherwise, both operands must be int, and that is the type of the result.

The arithmetic conversions are performed on all arithmetic operands. Some
operators, such as the shift operators(>> and<<) require integers as operands. If
one operand is of type float or double, you cannot meet this requirement.

In previous versions of VAX C under the VMS operating system, floating-point
arithmetic was carried out in double precision. Since the proposed ANSI C
standard no longer requires this conversion, VAX C performs arithmetic in single
precision if you specify the -f option with the vcc command. Whenever an
operand of type float appears in an expression and -f is specified, it is treated as
a single-precision object - unless the expression also involves an object of type
double, in which case the usual arithmetic conversion applies.

When you convert an operand of type double to float, (for example, by an
assignment) the compiler rounds the operand before truncating it to float.

The compiler may convert a float or double value operand to an integer by
assignment to an integral variable. In VAX C, the truncation of the float or
double value is always toward 0.

Conversions also take place between the various kinds of integers. In VAX C,
variables of type char are bytes treated as signed integers. When a longer
integer is converted to a shorter integer or to char, it is truncated on the left;
excess bits are discarded. Consider the following example:

int i;
char c;

i = OxFFFFFF41;
c = i;

The result is to assign hex 41 ('A 1
) to variable c. The compiler converts shorter

signed integers to longer ones by sign extension.

When the compiler combines an unsigned integer and a signed integer, the signed
integer converts to unsigned and the result is unsigned. All conversions from
signed to unsigned perform an intermediate conversion to int. For example,
the compiler converts a char or short operand to an unsigned version by first
converting it to a signed int and then by truncating it to form the unsigned

6-16 Expressions and Operators

version. All conversions from unsigned to signed (such as by the cast operator)
involve an intermediate conversion to unsigned int.

You can also add integers to pointers, in which case the integer is scaled (multi­
plied) by a factor that depends on the type of the object that the pointer points to.
See Section 6.5.1 for more information about scaling pointers.

6.9.2 Converting Function Arguments

The data types of function arguments are assumed to match the types of the
formal parameters unless a function prototype declaration is present. In the
presence of a function prototype, all arguments in the function invocation are
compared for assignment compatibility to all parameters declared in the function
prototype declaration. If the type of the argument does not match the type of
the parameter but is assignment compatible, VAX C converts the argument to
the type of the parameter. (See Section 6.9.1.) If an argument in the function
invocation is not assignment compatible to a parameter declared in the function
prototype declaration, VAX C generates an error message.

If there is no function prototype for the function, all arguments of type float
convert to double, all variables of type char and short convert to int, all
variables of type unsigned char and unsigned short convert to unsigned
int, and an array or function name converts to the address of the named array
or function. The compiler performs no other conversions automatically, and any
mismatches after these conversions are programming errors.

Use the cast operator to pass arguments to parameters of different types. See
Section 6.4.5 for more information on the cast operator. For more information
about manipulating argument lists, see Chapter 4.

Expressions and Operators 6-17

Chapter 7

Data Types and Declarations

The values of both constants and variables have data types. Data types specify
the amount of storage required and how to interpret the data object in that
storage space. This chapter discusses the following topics in respect to to data
types:

• Constants

• Variables

• Integers

• Floating-point values

• Pointers

• Enumerated types

• Arrays

• Characters

• Structures and unions

• The void keyword

• The typedef keyword

• Interpreting variable declarations

7 .1 Constants

You can represent data in VAX C using constants. A constant is a primary
expression with a defined value that does not change. You may represent a
constant in a literal form, which contains the explicit numbers, letters, and
operators that comprise the constant. You may define a symbol to represent
the constant value. (For more information about symbolic representation of
constants, see Chapter 9.) Constants, like all data in VAX C, have data types.
The data type determines the amount of storage needed and determines how to
interpret the stored object or constant value. The compiler determines the data
type of constants by the way their values are represented in the source code.

7 .2 Variables

You can also represent data in VAX C using variables, whose values can change
throughout the execution of the program. You must declare all variables used in
a program. When you declare a variable, you specify the data type of the stored
object. In VAX C, an object is a value requiring storage.

Data Types and Declarations 7-1

Declarations determine the size of a storage allocation; definitions initiate
the allocation of storage. You can declare and define variables. Most variable
declarations are also definitions because storage is allocated at that point in the
program. To declare a variable, specify the data type. To define a variable, assign
the variable the proper storage class and place the variable declaration within
the program structure. Also, if you can initialize a variable in the declaration,
the variable is defined. For more information about variable definitions, scope,
and storage allocation, see Chapter 8.

There are two kinds of variables: scalar and aggregate variables. Scalar
variables have objects that you can manipulate arithmetically in their entirety.
These objects are single characters, individual numbers, and pointers. Aggregate
variables are data structures (arrays, structures, and unions) that are comprised
of distinct elements (members) that you can declare to be either a scalar or
aggregate data type.

7.2.1 Data-Type Keywords

To declare or define variables, you need to know the VAX C keywords associ­
ated with each data type. Table 7-1 lists the VAX C data-type keywords by
classification.

Table 7-1: VAX C Data-Type Keywords

Scalar Keywords

int

long

unsigned

short

char

float

double

num

Aggregate
Keywords

struct

union

variant_struct

variant_ union

Other Type Keywords

void

In the following sections, the keywords and operators used to declare variables of
given data types are listed in the section header for easy reference.

VAX C also supports the const and volatile type modifiers. For more information
about these type modifiers, see Chapter 8.

7 .2.2 Format of a Variable Declaration

A variable declaration can be composed of the following items:

• Data-type specifiers such as a data type or data-type modifier keyword, one
structure, union, or enum tag, and if necessary, a typedef name.

Any of these give the data type of the declared object.

• An optional storage-class keyword.

7-2 Data Types and Declarations

A storage-class keyword affects the scope of a variable and determines how
it is stored. If you omit the storage-class keyword, there is a default storage
class that depends on the physical location of the declaration in the program.
The positions of the storage-class keywords and the data-type keywords are
interchangeable.

• Declarators, which list the identifiers of the declared objects and may contain
operators that declare a pointer, function, or an array of objects of the
declared type.

• Initializers for each declared object or aggregate element giving the initial
value of a scalar variable or the initial values of structure members or array
elements.

An initializer consists of an equal sign (=) followed by a single expression or
a comma-list of one or more expressions in braces.

Consider the following example:

int var_number = 10;

The declaration both declares and defines the integer variable, var_number,
which has an initial value of 10. The int keyword specifies the amount of storage
needed on a VAX system for an integer. The identifier var_number follows. The
equality operator (=) initializes the variable with the literal constant 1 O; for
the initialization to take place, storage is allocated and the variable is defined.
Declarations must end in a semicolon (;).

The variable dedaration in the previous example was not difficult to interpret,
but even experienced VAX C programmers have difficulty interpreting complex
variable declarations. See Section 7.15 for more information about interpreting
the VAX C variable declarations.

7.3 Integers (int, long, short, char, and unsigned)

You can declare integer variables with the int, long, short, char, and unsigned
keywords. The following is an example of an integer declaration:

int x;

Character variables are declared with the char keyword. An example of a
character declaration with the initialization of a character variable is as follows:

char ch= 'a';

Table 7-2 specifies the sizes and ranges of integers.

Table 7-2: The Size and Range of VAX C Integers

Keyword Size Range

int, 32 bits -2,147,483,648 to
long, and 2,147,483,647
long int

unsigned and 32 bits 0 to 4,294,967 ,295
unsigned int

(continued on next page)

Data Types and Declarations 7-3

Table 7-2 (Cont.): The Size and Range of VAX C Integers

Keyword Size Range

short and 16 bits -32,768 to 32,767
short int

unsigned short 16 bits 0 to 65,535

char 8 bits -128to127

unsigned char 8 bits 0 to 255

The following sections describe the constants that you can assign to the integer
variables.

7.3.1 Integer Constants

There are three types of integer constants; decimal, hexadecimal, and octal.
Integer constants can consist of the characters 0 to 9, a to f (for hexadecimal
integers), and A to F (also for hexadecimal integers).

Integer constants can also include an optional suffix consisting of the characters
x, X, l, L, u, or U. Characters x and X specify hexadecimal integers. Characters
1 and L specify long integers (of 4 bytes or 1 longword). Characters u and U
specify unsigned integers. Characters 1 or L and u or U can be combined to
specify an unsigned long integer.

On some other implementations of the C language, values of the int data type
require 16 bits of storage. On VAX architecture, values of the int data type
require 32 bits of storage, the same amount of storage as values of the long data
type. VAX C supports the L suffix only for the sake of program portability.

You can specify integer constants in decimal, octal, and hexadecimal radixes.
An integer constant is assumed to be decimal unless it begins with 0 or Ox; if it
begins with 0, it is assumed to be octal; if it begins with Ox, it is assumed to be
hexadecimal.

In octal constants, the digits 8 and 9 have the octal values 010 and 011, respec­
tively. For instance, the octal number 039 is equal to 3 * 8 + 9, or decimal value
33; the octal number 080 is equal to 8 * 8 + 0, or, decimal value 64.

Even though VAX C supports the digits 8 and 9 in octal constants, avoid using
these octal constants to be compatible with other implementations of the C
language.

Integer constants must not include a decimal point; constants with a decimal
point are of type double. Integer constants that exceed a longword are treated
as programming errors.

Character constants such as ' a' and ' $' are also valid integer constants. Their
integer values in VAX Care the values of the corresponding ASCII codes.

Some examples of valid integer constants are as follows:

133L I* Long decimal integer *I
Ox17A /* Hexadecimal integer */
056 /* Octal integer */
'a' /* Decimal 97 *I
'$' /* Decimal 36 */

7-4 Data Types and Declarations

The following examples show invalid integer constants:

143. I* Includes a decimal point */
3333333333 /* Out of range for int *I
+33333 I* '+' is an invalid character *I
77af /* Hexadecimal constants must be *

* prefixed with "Ox" *I

7 .3.2 Character Constants

A character constant is a value, requiring at least 8 bits (1 byte) or at most 32
bits (1 longword) of memory, that is enclosed in apostrophes. Character constants
can be a single ASCII character, as in the following example:

char ch= 'a'; /* Lowercase letter 'a' is a constant
* assigned to ch.

*
*/

The character constant ' a' has the ASCII value 97. If the value of a character
constant is not large enough to fill 32 bits of memory, the compiler stores the
character or characters in the low-order byte(s) and pads the remaining bytes
with NUL characters (' \ 0').

Character constants do not have to be single characters, as shown in the following
example (please note that this is VAX C specific, and not portable):

int l_word = 'a:cd' /* This constant contains 4 characters */

printf("%c\n", 1 word);
printf("%.4s", &l_word); /* String with maximum 4 characters */

Sample output from the previous example is as follows:

% example~
a
a:cd
%

If you print variable l_ word as a character, the printf function prints only the
character located in the low-order byte of the integer allocation. To print all of
the characters in the longword allocated to the variable, you have to print the
variable as a string and pass the address of the integer variable as an argument.
If you print the integer variable as a string, be sure to specify a precision of at
most 4, since you can never be sure if the next byte in the string is a terminating
NUL character.

The apostrophe (') and quotation mark (")are significantly different punctu­
ation marks in VAX C, indicating a character constant and a string constant,
respectively. One context in which the difference is important is in an argument
list. If you specify a function argument as a string, and want to pass a character
constant, you must enclose the character in quotation marks, not apostrophes,
even if the string is only one to four characters in length. See Section 7.11 for
more information about character-string constants.

7.3.3 Escape Sequences

In VAX C, escape sequences are character strings that represent a single printing
or nonprinting character. The term escape sequence does not designate a
string beginning with the ASCII character ESC, as in VTl 00 escape sequences.
Table 7-3 presents the escape sequences that specify the nonprinting characters,
the apostrophe, and the backslash (\).

Data Types and Declarations 7-5

Table 7-3: VAX C Escape Sequences

Character Mnemonic Escape Sequence

newline NL \n

horizontal tab HT \t

vertical tab VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

backslash \ \\

apostrophe \'

quotes " \"
bit pattern ddd \ ddd or \ xddd

An escape sequence, such as \n, denotes a single character.

The form \ddd specifies any byte value (usually an ASCII code), where the digits
ddd are one to three octal digits. The octal digits are limited to 0 through 7. A
common use is to specify the ASCII NUL character, as follows:

'\0'

Similarly, the form \xddd specifies any byte value (usually an ASCII code), where
the digits ddd specify one to three hexadecimal digits.

The following are examples of valid escape sequences of the form \ ddd and
\ xddd. Both of these escape sequences are used to specify an a-umlaut (a) in
octal and hexadecimal digits, respectively.

'\344'
'\xe4'

If the character following the backslash in an escape sequence is illegal, the
backslash is ignored; that is, the character constant's value is the same as if the
backslash were not present.

7.4 Floating-Point Numbers {float and double)

When declaring floating-point variables, you determine the amount of precision
needed for the stored object. In VAX C, you can have either single-precision or
double-precision variables. If you choose single precision, you use the F-fioating
format. If you choose double precision, you have the choice of using either the
D _fioating or G_fioating formats.

Table 7-4 specifies the sizes and ranges of real numbers.

Table 7-4: The Size and Range of C Floating-Point Numbers

Keyword Size

float 32 bits

7-6 Data Types and Declarations

Range

0.29 * 10 - 38

to
1.7*10 38

Precision

7 decimal digits

(continued on next page)

Table 7-4 (Cont.): The Size and Range of C Floating-Point Numbers

Keyword Size

double 64 bits
D_Floating

double 64 bits
G_Floating

Range

0.29 * 10 - 33

to
1.7 * 10 38

0.56 * 10 - 303

to
0.899 * 10 308

Precision

16 decimal digits

15 decimal digits

Use the float keyword to declare a single-precision, floating-point variable,
represented internally in the VAX F _floating point binary format.

The double keyword declares a double-precision, floating-point variable. You
can use the double and long float keywords interchangeably. However, do not
use long float to avoid conflict with other implementations of the C language.
There are two representations of the VAX C data type double: D_floating and
G_floating.

The G_floating precision, approximately 15 digits, is less than that of variables
represented in D_floating format. The fractional portion of the variable may
contain one more digit, but the integral portion of the variable must contain one
less digit.

The default representation of the data type double is D _floating. The G_floating
representation is chosen by compiling the program with the -Mg option on the
compile command. (For more information about the compilation command line,
see Chapter 2.) Do not link modules compiled with the D_floating representation
with modules compiled with the G_floating representation.

7.5 Floating-Point Constants

A floating-point constant has an integral part (a decimal point), a fractional part
(the letter e or E), and an optionally signed integer exponent. The integral and
fractional parts consist of decimal digits; you may omit either the integral or
fractional part. You may omit either the decimal point with the following digits
or the E<exponent>, but not both.

Floating-point constants can also include an optional suffix consisting of the
characters 1, L, f, or F. Constants without suffixes, or with the 1 or L suffix, are of
type double. Constants with the for F suffix are of type float.

The following examples are floating-point constants:

3.0elO
3.0E-10
3.0e+lO
3El0
3.0
.120e2
.120

Data Types and Declarations 7-7

7.6 Pointers (*)

Pointers in VAX C are variables that contain the 32-bit addresses of other objects.
They are declared with the asterisk operator and the data type of the object that
it points to, as in the following example:

int *px;

Identifier px is declared as a pointer to a variable of type int; the construct *px
is treated as a variable of type int. An expression such as *px yields the integer
that px points to.

Unless an [extern] or static pointer variable is initialized, it is a null pointer. A
null pointer is a pointer variable that has been assigned the integer constant 0.
The contents of an uninitialized auto pointer are undefined.

In certain arithmetic expressions, the compiler uses the size of the object of the
pointer. For example, if px is a pointer to an integer, px + 1 evaluates to the next
integer address, 4 bytes after px. If px is a pointer to char, px + 1 yields the next
char address, 1 byte after px. The compiler uses the type of the pointed object to
scale the arithmetic.

A different result occurs with an expression such as the following example:

*px + 1

This expression evaluates to the value of the object that px points to plus one.

Some contexts may require a pointer of a particular type. This is necessary, for
example, when a function requires that an argument be passed by reference.

The unary asterisk (*)is also the indirection operator in VAX C. The unary
asterisk operates as follows:

x = *px;

This statement assigns the value of the object pointed to by px to variable x.
Since you can use the asterisk in any sort of declarator, you can have pointers to
scalars, to functions, to other pointers, to structures; and so forth.

Use the ampersand (&) operator to take the address of an object. Consider the
following example:

px = &x;

This statement assigns the address of variable x to pointer px. After an
assignment such as this, a reference to *px yields the value of x.

Do not apply the ampersand operator to constants, to register variables, to
function identifiers, or to array identifiers. Though the compiler will allow it, it is
not portable.

The compiler stores constant values in a read-only program section (psect), so
that attempts to change the value by applying the ampersand operator will result
in an error. VAX C allows the application of the ampersand operator to constants
so that you can pass constants, as arguments, to routines. For more information
about psects, see Chapter 8.

If you do apply the ampersand to register variables, the optimizing section of the
compiler prevents any promotion to registers.

If you apply the ampersand to function or array identifiers, VAX C issues a
message, since asking for the address of an expression returning an address is
redundant.

7-8 Data Types and Declarations

7.6.1 void Pointers

The void pointer is a pointer that does not have a specified data type to describe
the object to which it points. In effect, this is a generic pointer. (In the past, VAX
C programmers have used char* to define generic pointers; this practice is now
discouraged for portability reasons.)

You can assign a pointer of any type to a void pointer without a cast (see
Section 6.4.5 for more information on the cast operation). For example, you can
use this type of pointer in function calls, in function arguments, or in function
prototypes when the parameter or return value is a pointer of an unkown type.
Consider the following example:

main()
{

void *generic_pointer;

/* If the return value can be a pointer to many types . . . *I
generic_pointer = func~returning_pointer(argl, arg2, arg3) ;

The following statements are also valid:

main()
{
float *float_pointer;
void *void_pointer;

float_pointer = void pointer;
/* Or . • . */ -
void_pointer = float_pointer;

See Section 4.8.2 for information about using void in function definitions.

7.7 Enumerated Types

An enumerated type is a user-defined data type that is not derived from the
fundamental types. Each listed enumerator is associated with an incremented
integer constant starting with 0. The following example shows the declaration of
a variable and an enumeration type, or tag:

enum shades

out, verydim, dim, prettybright, bright
light;

This declaration defines the variable light to be of an enumerated type shades.
The variable can assume any of the enumerated values.

The tag shades becomes the enumeration tag of the new type; out, verydim ...
bright are the enumerators with values 0 through 4. These enumerators are the
constant values of the type shades and can be used wherever constants are valid.

Data Types and Declarations 7-9

If you have declared the tag, use the tag as a reference to that enumerated type,
as in the following declaration:

enum shades lightl;

The variable lightl is an object of the enumerated data type shades.

An enum tag can have the same spelling as other identifiers in the same
program, including variable identifiers and member names in structures and
unions, because the meanings are distinguished by context. However, enum
constant names must have unique spellings. VAX Callows forward references to
enum tags that have not been declared yet in the source code, but are declared
further in the program.

Internally, each enumerator is associated with an integer constant; the compiler
gives the first enumerator the value 0 by default, and the remaining enumerators
are incremented by the value 1, as they are read from left to right. Any
enumerator can be set to a specific integer constant value. The enumerators
to the right of such a construct (unless they are also set to specific values)
then receive values that are one greater than the previous value. Consider the
following example:

enum spectrum

red, yellow = 4, green, blue, indigo, violet
color2;

This declaration gives red, yellow, green, blue, ... , the values 0, 4, 5, 6, ...

Examining the value of a variable like color2 displays an integer, not a string
such as red or yellow. They are stored internally as integers, but you should
regard enumerated data types as being distinct from the fundamental types.

Type mismatches between the enumerated and fundamental types, or between
different enumerated types, are errors. The following example is not valid:

en um

red, orange, yellow, green, blue, indigo, violet
colorl;

enum illum

out, verydim, dim, prettybright, bright
light;

light = red;

The enumerators red and light have different enumerated types.

The following example is also invalid:

enum illum

out, verydim, dim, prettybright, bright
light;

light = l;

Value 1 is not an enumerated value for variable light.

To perform valid mixed-type operations, use the cast operator. Consider the
following example:

/* Both evaluate to verydim (1) */

light (enum illum) (out+ (enum illum) red);
light = (enum illum) l;

7-10 Data Types and Declarations

The cast operation (enum illum) causes the compiler to treat enum constant red
and integer constant 1 as values of enumerated type illum.

Variables and enumerators of enumerated types take on various storage
classifications when used with the globaldef and globalref storage-class
keywords. For more information about using these storage-class keywords with
enumerated types, see Chapter 8.

7 .8 Arrays ([])

You declare arrays with the square bracket operators ([]), as in the following
declaration of a 10-element array of integers called table_one:

int table_one[lO];

The int type specifier gives the data type of the elements. The elements of
an array can be of any scalar or aggregate data type. The identifier table_one
specifies the name of the array. The constant expression gives the number of
elements in a single dimension. Array subscripts in VAX C begin with the integer
0 (not 1); they must be integral. In the previous example, the first element is
table_one[O] and the last element is table_one[9]. Unpredictable results can occur
if you specify a subscript larger than or equal to the declared dimension bound;
you would then be accessing objects outside of the memory allocated to the array.
It is not recommended that you use array subscripts as shown in the following
example:

int table_one[lO];

table_one[lO] = 69;
table_one[5] = table_one[ll];

VAX C supports multidimensional arrays, which are arrays declared as an array
of arrays. Consider the following example:

int table_one[lO] [2];

Variable table_one is a 2-dimensional array containing 20 integers. You can use
C operators to form expressions with specific elements of an array, as follows:

++table_one[O] [0]; /* Increment first element */

In VAX C, arrays are stored in row-major order. The element table_one[O][O]
immediately precedes table_one[O][l], which in turn immediately precedes table_
one[0][2].

When you declare an array, either single- or multidimensional, the integer
constant is optional in the first pair of brackets. Omitting the constant expression
is useful in the following cases:

• If the array is external, its storage is allocated by a remote definition.
Therefore, you can omit the .constant expression for convenience when the
array name is declared, as in the following example:

extern int arrayl[];
first_function (}
{

Data Types and Declarations 7-11

In a separate compilation:

int arrayl[lO];
second_function()
{

For more information about external data declarations, see Chapter 8.

• If the declaration of the array includes initializers, you can omit the size of
the array, as in the following example:

char array_one[J = "Shemps"
char array_two[J = { 'S', 'h', 'e', 'm', 'p', 's', '\0' };

The two definitions initialize variables with identical elements. These arrays
have seven elements: six characters and the null character (\ 0), which
terminates all character strings. VAX C determines the size of the array
from the number of characters in the initializing character-string constant or
initialization list.

• If you use the array as a function parameter, it must be defined in the calling
function. However, the declaration of the parameter in the called function
can omit the constant expression within the brackets. The address of the
beginning of the array is passed and subscripted references in the called
function can modify elements of the array.

The following example shows how to use an array in this manner:

main()
{

/* Initialize array */
static char arg str[J = "Thomas";
int sum; -
sum= adder(arg_str); /*Pass address of array */

/* Function adds ASCII values of letters in array */

adder(param_string)
char param_string[];
{

int i, sum = 0; /* Incrementer and sum */
/* Loop until NUL char */

for (i = O; param_string[i] != '\0'; i++)
sum+= param_string[i];

return sum;

After the function adder is called, parameter param_string receives the
address of the first character of argument arg_str, which can then be
manipulated in adder. The declaration of param_string serves only to give
the type of the parameter, not to reserve storage for it.

7-12 Data Types and Declarations

7 .9 Initializing Arrays

When initializing array elements, separate the values with a comma and delimit
the comma list with braces ({}). The rules for specifying a comma-list are as
follows:

• If the initializer for an array begins with a left brace ({), then the following
comma-list provides initial values for the array elements. The list of
initializers can end with a comma, which is ignored. The number of
initializers cannot be greater than the number of elements.

• If the initializer does not begin with a left brace, then only enough elements
are taken from the initializer list to supply values to the array's elements.
In this case, there can be more initializers than there are elements, and any
remaining values in the list are left to initialize the next aggregate.

Initialize a single-dimension array as follows:

static int ex_array[5] = { 1, 22, 333, 4444, 55555 };

Initialize a multidimensional array as follows:

static int ex_array[2] [5]
{

} ;

1, 22, 333, 4444, 55555 } '
5, 4, 3, 2, 1 }

The element ex_array[O][O] has a value ofl, ex_array[O][l] has a value of 22, ... ,
ex_array[l][O] has a value of 5, ex_array[l][l] has a value of 4, ... , and so forth.

Another way to initialize the same array is as follows:

int ex_array[2] [5] = { 1, 22, 333, 4444, 55555, 5, 4, 3, 2, 1 };

VAX C initializes the elements in row-major order. The leftmost brace determines
the row number of a multidimensional array. Elements in row 0 are initialized
before elements in row 1.

You can omit elements in an initialization as follows:

static int ex_array[2] [5] =
{

{ 1, 22, 333, 4444 }
} ;

The element ex_array[O][O] has the value 1, ex_array[O][l] has the value 22,
ex_array[0][2] has the value 333, and ex_array[0][3] has the value 4444. The last
element in row 0, since ex_array was declared to have a storage class of static, is
initialized with 0. All of the elements in the second row, which are not specified
in the initialization, are initialized with 0. For more information about the static
storage class, see Chapter 8.

NOTE

You cannot initialize array elements without initializing all preceding
elements. The following initialization is not valid:

example[3] = { 1 , , 3 };

You must initialize the first and second elements before initializing the
third.

Data Types and Declarations 7-13

7.10 Character-String Variables {char* and char [])

VAX C treats character strings as arrays; they are treated as the address in
memory of the first character in the string. There are several ways to declare
character-string variables. You can declare a character string by designating a
pointer to the first character of that string, as in the following example:

char *ex_string = "thomasina";

This expression copies an address, not a string, to variable ex_string. The
object to which ex_string points, a character-string constant, ends with the NUL
character (\ 0).

You can declare character-string variables as you would declare an array. For
example:

char string one[] = "thomasina";
char string~) [10] = "thomasina";

See Section 7 .9 for more information about declaring and initializing character­
string variables.

To copy one string to another, you must use the strcpy or the strncpy functions,
as follows:

main()
{

#include <stdio.h>
char ex_string[26];

/* Copy string into array */
strcpy(ex string, "Character-string constant");
printf ("%s\n", ex_ string);

7.11 Character-String Constants

A character-string constant is a series of characters enclosed in quotation marks
(" "). Consider the following example:

"This is a string constant *** "

It has the data type of an array of char. The string is initialized with the given
characters. The compiler terminates the string with a NUL character (\ 0).
There is no formal limit to the length of a string constant. The actual limit to a
string constant's length in VAX C is 65,535 characters. All strings, even when
written identically, are distinct objects.

The apostrophe (')and quotation mark (")are significantly different punctua­
tion marks in VAX C. See Section 7 .3.2 for more information.

The following rules apply to the characters used in character-string constants:

• You can use all characters, including the escape sequences, in strings.

• You must precede a quotation mark within a string with a backslash (\).

• A backslash followed immediately by a newline is ignored, allowing long
strings to be continued in the first column of the next line.

7-14 Data Types and Declarations

• You can use character strings to initialize variables of storage class auto as
well as variables of other storage classes.

7.12 Structures and Unions {struct and union)

Structures and unions share the following characteristics:

• Their members can be variables of any type, including other structures and
unions or arrays. A member can also consist of a specified number of bits,
called a field.

• The only valid operators with structures and unions are the simple assign­
ment (=) and sizeof operators. In particular, structures and unions may not
appear as operands of the equality (==), inequality (!=), or cast operator.

• They can be assigned to other structures and unions with the assignment
operator (=). The two structures or unions in the assignment must have the
same length.

• They can be passed to and returned by functions. The argument must have
the same length as the function parameter. A structure or union is passed
by value, just like a scalar variable; that is, the entire structure or union is
copied into the corresponding parameter.

NOTE

When you pass structures as arguments, they may or may not
terminate on a longword boundary. If they do not, VAX C aligns
the following argument on the next longword boundary.

The difference between structures and unions lies in the way their members are
stored and initialized as follows:

• The members of a structure all begin at different offsets from the base of
the structure. The offset of a particular member corresponds to the order
of its declaration; the first member is at offset 0. Each successive nonfield
member of a structure begins at the next byte boundary that matches the
alignment appropriate to its type. For example, a short integer is aligned on
a 2-byte boundary and a long integer is aligned on a 4-byte boundary. Gaps
can appear in a structure as the compiler tries to achieve this alignment.

Structures also observe the following restriction: the length of a structure
must be a multiple of the greatest alignment requirement of any of its
members. Thus, a structure that contains characters, short integers, and
longwords will be a multiple of four in length to match the multiple of four
bytes for the longword.

• In a union, every member begins at offset 0 from the address of the union.
The size of the union in memory is the size of its largest member. When
the single storage space allocated to the union contains a smaller member,
the extra space between the end of the smaller member and the end of
the allocated memory remains unaltered. The rules for alignment of union
members is the same as for structure members.

• Structures can be initialized; unions cannot.

The VAX C compiler aligns structure members on natural type boundaries by
default. You can turn off member alignment with the #pragma nomember_
alignment directive.

Data Types and Declarations 7-15

7.12.1 Declaring a Structure or Union

To declare structures and unions, use the struct or union keywords. You can
follow the struct or llDion keywords with a tag, which gives a name to the
structure or union type in much the same way that an enum tag gives a name
to the enumerated type. You can then use the tag with the struct or union
keywords to declare variables of that type without specifying individual member
declarations again.

Two structures (or two unions) cannot have the same tag, but the tags can be
the same as the identifiers used for variables and function names. Tags can also
have the same spellings as member names. The compiler distinguishes them by
context. The scope of a tag is the same as the scope of the declaration in which it
appears.

The tag is followed by braces (f }) that enclose a list of member declarations.
Each declaration in the list gives the data type and name of one or more mem­
bers. The names of structure or union members can be the same as other
variables, function names, or members in other structures or unions. The com­
piler distinguishes them by context. In addition, the scope of the member name
is the same as the scope of the declaration in which it appears.

You can place declarations after the list of member declarations, which name and
reserve storage for structure or union objects.

Structure or union declarations can take one of five forms, as follows:

• If a declaration includes only a tag and a list of member declarations, then
the list of member declarations defines the tag to be a data type by which
other objects can be declared. For example:

struct person
{

} ;

char first[20];
char middle[3];
char last[30];

• When a declaration includes a tag, a list of member declarations, and a list of
identifiers, the identifiers become objects of the structure type and the tag is
considered to be a shorthand notation, or mnemonic, for the structure type.
Consider the following example:

struct person
{

char first[20];
char middle[3];
char last[30];
george, mary ;

• If the tag is omitted, the structure or union definition applies only to the
variable identifiers that follow in the declaration. Consider the following
example:

struct
{

char first[20];
char middle[3);
char last[30];
george, mary;

7-16 Data Types and Declarations

• The fourth form uses the tag to see a structure or union defined in another
declaration. The definition is then applied to the variable identifiers that
follow the tag name in the declaration. Consider the following example:

struct person george,mary;

• The fifth form uses only the struct or union keyword and the tag to override
other identical tags in scope, and to reserve the tag for a later definition
within a new scope. A definition within a new scope overrides any previous
tag definition appearing in an outer scope. This use of declaring tags is
called vacuous structure tag declaration. The declaration does not require
the size of the structure as determined by the structure member list. Using
such declarations, you can eliminate ambiguity when forward referencing tag
identifiers. The following example shows such a case:

struct ambiguous{ ... };

struct ambiguous; /* Vacuous structure tag declaration. */
/* Ignore previous tag currently in scope. */

struct inner
{

struct ambiguous *pointer; /* Declare a structure pointer by */

} ;

struct ambiguous
{ ••• } i

/* forward referencing. */

/* Vacuous declaration refers to this */
/* structure, not to the first one declared. */

In the example, the pointer to the structure defined using the tag ambiguous
points to the second declaration of ambiguous, not to the first.

Structures and unions can contain other structures and unions. For example:

struct person
{

char first[20];
char middle[3];
char last[30];
struct
{

int day;
int month;
int year;

birth_date;
george, mary;

7 .12.2 Referencing Members of Structures or Unions

A reference to a member of a structure must be a fully qualified or a pointer­
qualified reference. For example, the fully qualified references to the members
last and year from the example in the previous section, are as follows:

strcpy(george.last, "Harrison");
george.birth_date.year = 1944;

A member name denotes the member's data type and its offset from the base
of the structure. There are no restrictions on the reuse (as a member name) or
redeclaration of a particular name except that the same name cannot be used for
more than one member in the same structure.

Data Types and Declarations 7-17

In VAX C, and other recent compilers, a structure or union reference must be
completely qualified; that is, you must prefix a member name in a reference either
with a pointer qualifier (pointer-name ->) or with the name of the structure
or union and the names of all intervening members. Consider the following
structure declaration:

main()
{

struct
{

struct { int al,a2,a3;
struct { int al,a2,a3;
*pointer, structure;

pointer = &structure;

structure.mema.al = 1;
pointer->memb.al = 2;

structure.al = 3;
pointer->al = 4;

mema;
memb;

/* Unambiguous

/* Ambiguous: which "al"?

*/

*/

Member al must be uniquely qualified as being a member of structure mema or
structure memb. In fact, structure members that are themselves structures must
be given variable identifiers (mema and memb) to make it possible to construct
fully qualified references.

A member name is unique if it conforms to either of the following requirements:

• It is used only once.

• If it is used more than once (in different structures), every use denotes a
member of the same data type and at the same offset from the base of its
structure.

If you use member names that refer to different structures than those in which
they were declared, a programming practice that is not recommended, the
compiler assumes that the program has an error and issues diagnostic messages.
The following checks apply to using member names for reference to structures
and unions in which they are not declared:

• If a member name is unique, you can use it in a reference to a structure that
it is not a member of, since the address and size of the referenced data can
be determined without ambiguity. However, the compiler issues a nonfatal
warning message. This usage is maintained for compatibility with other C
implementations.

• If a member name is not unique (ambiguous), its use in such a reference
causes a fatal error message.

7.12.3 Initializing Structures

In structure declarations, initializers follow the structure variables, not the
members. Separate initializing values with commas; delimit them with braces
({}). See Section 7.9 for more information about comma lists.

An example that initializes two structure variables is as follows:

struct
{

int i;
float c;
a= { 1, 3.0elO }, b

7-18 Data Types and Declarations

{ 2, 1.5e5 };

• • •

The compiler assigns structure initializers in increasing member order. If
there are fewer initializers than members for a static, external, or globaldef
structure, the structure is padded with zeros. For an auto structure, the contents
of the uninitialized members are undefined. For more information about storage
classes, see Chapter 8.

NOTE

There is no way to specify iterations of an initializer or to initialize
a member in the middle of a structure without also initializing the
previous members.

Example 7-1 shows these initialization rules applied to an array of structures.

Example 7-1: The Rules for Initializing Structures

main()
{

int 1, m;
static struct

{

char ch;
int i;
float c;
ar[2] [3]
{

} ;

'a', 1, 3e10 } ,
'b', 2, 4e10 },
'c', 3, SelO },

printf("row/col\t ch\t i\t c\n");
printf("-------------------------------------\n");
for (1 = O; 1 < 2; l++)

for (m = 0; m < 3; m++)
{

printf("[%d][%d]:", 1, m);
printf("\t %c \t %d \t %e \n",

ar [l] [m]. ch, ar [l] [m]. i, ar (l] (m] . c);

Key to Example 7-1:

8 You must delimit the initialization of each array row with braces.

8 You must delimit a structure initialization with braces.

8 You must delimit an array initialization with braces.

Example 7-1 writes the following output to stdout:

row/col ch

(0] (0]: a
[0] [1]: b
[0] [2]: c
(1] [0]:
[1] (1]:
(1] [2]:

i

1
2
3
0
0
0

c

3.000000e+lO
4.000000e+lO
5.000000e+lO
O.OOOOOOe+OO
O.OOOOOOe+OO
O.OOOOOOe+OO

Data Types and Declarations 7-19

7.12.4 Variant Structures and Unions

Variant structure and union declarations allow you to reference members of
nested aggregates without having to reference intermediate structure or union
identifiers. When you nest a variant structure or union declaration within
another structure or union declaration, the enclosed variant aggregate ceases to
exist as a separate aggregate, and VAX C reproduces its members to the enclosing
aggregate.

You declare variant structures and unions using the variant_struct and vari­
ant_union keywords. The format of these declarations is the same as regular
structures or unions with the following exceptions:

• You must nest variant aggregates within other valid structure or union
declarations.

• You cannot use a tag in a variant aggregate declaration.

• You must provide a variable identifier in the variant aggregate declaration.

Consider the following code example, which does not use variant aggregates:

/* The numbers to the right of the code represent the byte offset */
/* from the enclosing structure or union declaration. */
struct TAG 1
{

int a; I* 0-byte enclosing struct off set *I
char *b; /* 4-byte enclosing-struct offset */
union TAG 2 I* 8-byte enclosing=struct off set *I

int c; I* 0-byte nested union off set */
struct TAG 3 I* 0-byte nested union off set */
{

int d; I* 0-byte nested struct off set */
int e; /* 4-byte nested struct off set *I
nested struct;

nested union;
enclosing=struct;

If you want to access nested member d, you need to specify all of the intermediate
aggregate identifiers, as follows:

enclosing_struct.nested_union.nested_struct.d

If you try to access member d without specifying the intermediate identifiers,
you are accessing the incorrect offset from the incorrect structure. Consider the
following example:

enclosing_struct.d

If you specify this notation, VAX C uses the address of the original structure
(enclosing_struct), and adds to it the assigned offset value for member d (0 bytes),
even though VAX C calculated the offset value ford according to the nested
structure (nested_struct). Consequently, VAX C accesses member a (0 byte offset
from enclosing_struct) instead of member d.

The following example shows the same code using variant aggregates:

7-20 Data Types and Declarations

I* The numbers to the right of the code present the byte off set *
* from enclosing_struct. */

struct TAG 1
{

int a;
char *b;
variant union

int c;
variant struct
{

/* 0-byte
/* 4-byte

/* 8-byte

int d; /* 8-byte
int e; /* 12-byte
nested_struct;

nested_union;
} enclosing_struct;

enclosing struct offset */
enclosing=struct offset */

enclosing_struct offset */

enclosing struct offset */
enclosing=struct offset */

The members of variant aggregates nested_union and nested_struct are prop­
agated to the immediately enclosing aggregate (enclosing_struct). The variant
aggregates cease to exist as individual aggregates.

Since variant aggregates nested_union and nested_struct do not exist as individ­
ual aggregates, you cannot use tags in their declarations nor can you use their
identifiers (nested_union and nested_struct) in any reference to their members.
However, you can reuse the identifier names in other declarations and definitions
within your program.

If you need to access member d, use the following notation:

enclosing_struct.d

If you use the following notation, unpredictable results occur:

enclosing_struct.nested_union.nested_struct.d

If you use regular structure or union declarations within a variant aggregate
declaration, VAX C reproduces the structure or union to the enclosing aggregate,
but the members remain a part of the nested aggregate. For instance, if the
nested structure in the last exam pie is of type struct, the following offsets will be
in effect:

struct TAG 1
{

int a; I* 0-byte
char *b; /* 4-byte
variant union
{

int c; /* 8-byte
struct TAG 2 /* 8-byte
{

int d; /* 0-byte
int e; /* 4-byte
nested_struct;

nested_union;
enclosing_struct;

enclosing struct off set
enclosing=struct off set

enclosing struct off set
enclosing~struct off set

nested_struct offset */
nested struct offset */

NOTE

*/
*/

*/
*/

Variant structures and unions are VAX C extensions so they are not
portable.

Data Types and Declarations 7-21

7 .12.5 Bit Fields

A structure member can consist of a specified number of bits, called a field, which
can be named or unnamed. Use a colon (:) to separate the member's declarator
(if any) from a constant expression that gives the field width in bits. No field can
be longer than 32 bits (1 longword) in VAX C.

If no field name precedes the field-width expression, it indicates an unnamed
field of the specified width. Since nonfield structure members are aligned on byte
boundaries, this form can create unnamed gaps in the structure's storage. As
a special case, an unnamed field of width 0 causes the next member (generally
another field) to be aligned on a byte boundary.

Bit fields must be unsigned or int data types. The use of other data types is
an error. Signed bit fields of the type int are recognized by VAX C. There are no
restrictions on the use of fields except as follows:

• You cannot declare arrays of fields.

• The ampersand operator (&) cannot be applied to fields, so there cannot be
pointers to fields.

Sequences of bit fields are packed as tightly as possible. In VAX C, fields are
assigned from right to left.

For example, consider the alignments resulting from the following code:

static struct
{

char c;
short int i;
unsigned fldl 3;
unsigned fld2 4;
unsigned O;
unsigned fld3 4;
a= { 'A', 1024, 06, 012, 014 } ;

Member a.i. is aligned on the third byte (at bit 16), because structure elements of
the short data type are aligned on \Vord boundaries by default. (The preprocessor
directive #pragma member_alignment can alter this default behavior.) Fields
a.:fidl and a.:fid2 are packed as tightly as possible in the second longword. The
unnamed, 0-length field preceding member a.:fid3 causes that field to be aligned
on the next byte boundary (bit 40, in the second longword).

7 .13 The void Keyword

The void keyword is a special data-type specifier that you use in function
definitions and declarations for the following purposes:

• To specify a function that does not return a value

• To specify a function prototype with no arguments

• To specify a generic pointer

The following example shows how to use void to specify a function that does not
return a value:

7-22 Data Types and Declarations

void message()
{

printf("Stop making sense!");
return;

The following example shows how to use void to specify a function prototype
definition that takes no arguments:

char function_name(void)
{ return 'a' ; }

The following example shows a function prototype of a function that accepts the
address of a pointer to any object as its first and second arguments:

void memcopy (void *dest, void *source, int length);

For more information about the void data type and function prototypes, refer to
Chapter 4.

7.14 The typedef Keyword

Use the typedef keyword to define an abbreviated name, or synonym, for a
lengthy type definition. In such a declaration, the identifiers name types instead
of variables. For example: ·

typedef char CH, *CP, STRING[lO], CF();

In the scope of this declaration, CH is a synonym for character, CP is a pointer
to a character, STRING is a 10-element array of characters, and CF is a function
returning a character. You can use each of the type definitions in that scope to
declare variables, as follows:

CF c;
STRING s;

I* "c": Function returning a character */
/* "s": 10-character string */

7 .15 Interpreting Declarations

The VAX C programming language syntax for declaring objects is unlike the
declaration syntax of other languages. Since the exact meaning of a complicated
VAX C declaration is not always apparent, even to an experienced C programmer,
this section gives guidelines for interpreting and constructing VAX C declarations.

VAX C uses the same set of operators and symbols for declarators as for
identifiers in an expression. The following example declares integer x and pointer
px:

int x;
int *px;

Declarator *px has the same form as that used to yield an integer in an
expression. Consider the following example:

x = *px;

In the case of simple declarators, this symmetry makes it easy to determine the
type of an expression or the meaning of a declarator. Expression *px results in
the integer object that px points to.

Data Types and Declarations 7-23

Complicated declarators can be difficult to interpret without some additional
guidelines. The important one to remember is that the symbols used in declara­
tors are C operators, subject to the usual rules of precedence and grouping
(associative nature). In order of precedence, the operators used in declarators are
as follows:

• The primary-expression operators (()) for "function returning . . . " and
([])for "array of ... ", where the ellipsis indicates the type specified in the
declaration.

These operators group from left to right.

• The unary asterisk (*),for indirection or "pointer to ... ",which groups from
right to left.

Consider the following example:

int *x [];

Even this brief declaration may be confusing. Does it declare an array of pointers
to integers, or a pointer to an array of integers? Since the brackets are of higher
precedence, it follows that:

• *x[] is an integer

• x[] is a pointer to an integer

• x is an array of pointers to integers

You can interpret most complicated declarators and expressions quickly by using
such a sequential breakdown. Note that the asterisk was removed before the
brackets because it is of lower precedence.

Also note that this interpretation process enumerates all the possible usage
constructs involving a declarator and giving the semantic interpretation.

When constructing or interpreting declarations or expressions, use the following
scheme1 for translating the meanings of the operators:

• "*" == "pointer to"

• "()"=="function returning"

• "[]" == "array of'

Consider the following example:

char *x () [J ;

The breakdown is as follows:

• *x()[] is of type char

• x()[] is (pointer to) char

• x() is (array of) (pointer to) char

• xis (function returning) (array of) (pointer to) char

In the third step, the bracket operator is removed first because primary­
expression operators are of equal precedence and group from left to right.
That is, "()[]" means "function returning array of', not "array of function
returning ... ".

1 Bruce Anderson, "Type Syntax in the Language C: An Object Lesson in Syntactic Innovation," SIGPLAN Notices 15,
No. 2 (March 1980).

7-24 Data Types and Declarations

As a general rule, when breaking down a declaration in this manner, remove the
operators with the lowest precedence first. Then, if the operators are of equal
precedence and group from left to right, remove the rightmost operator first; if
they group from right to left, remove the leftmost operator first.

The declaration shown is semantically invalid; VAX Callows functions returning
addresses of arrays, but not functions returning arrays. Perhaps the programmer
intended to specify a function returning the address of an array of pointers to
characters. To make the declaration valid, start at the bottom of a breakdown
and work back to a valid declaration as follows:

• xis (function returning) (pointer to) (array of) (pointer to) char

• x() is (pointer to) (array of) (pointer to) char

• *x() is (array of) (pointer to) char

• (*x())[] is (pointer to) char

• *(*x())[] is char

• char *(*x())[];

In the final declaration, the first asterisk (since it groups right to left) applies to
char.

Use parentheses in declarations along with the function parameter-list operator
(()) to change the binding of operators. For example, the outer parentheses
introduced in the fourth step of the previous example prevent the brackets from
binding to the inner set of parentheses.

Consider the following example:

char (* (*x()) []) ();

The breakdown is as follows:

• (* (*x()) []) () is char

• * (*x()) [] is (function returning) char

• (*x()) [] is (pointer to) (function returning) char

• *x() is (array of) (pointer to) (function returning) char

• x() is (pointer to) (array of) (pointer to) (function returning) char

• The identifier x is a function returning a pointer to an array of pointers to
functions returning characters

Spaces are used in this example to separate the declarator into its component
parts. Since spaces, tabs, and newlines are ignored by the parser, use them in
declarations for clarity.

Tables 7-5 and 7-6 provide examples oflegal and illegal VAX C declarations.

Table 7-5: Legal C Declarations

Declaration

inti;

int *p;

Meaning

Anint

Pointer to int

(continued on next page)

Data Types and Declarations 7-25

Table 7-5 (Cont.): Legal C Declarations

Declaration

int a[];

int f();

int **pp;

int (*pa)[];

int (*pf)();

int *ap[];

int aa[][];

int *fp();

int ***ppp;

int (**ppa)[];

int (**ppf)();

int *(*pap)[];

int (*paa)[][];

int *(*pfp)();

int **app[];

int (*apa[])[];

int (*apf[])();

*aap[][];

int aaa[][][];

int ***fpp();

int (*fpa())[];

int (*fpf())();

Tabie 7-6: iiiegal Declarations

Declaration

int afI]();

int *fa()[];

int ff()();

int (*pat)[]();

int (*pfa)()[J;
int (*pfl)()();

int aafI][]();

int *afp[]();

int afa[]()[];

int am]()();

int *fap()[];

int faa()[][];

7-26 Data Types and Declarations

Meaning

Array of int

Function returning int

Pointer to pointer to int

Pointer to an array of int

Pointer to a function returning int

Array of pointer to int

Array of an array of int

Function returning pointer to int

Pointer to a pointer to a pointer to int

Pointer to a pointer to an array of int

Pointer to a pointer to a function returning int

Pointer to an array of pointer to int

Pointer to an array of an array of int

Pointer to a function returning pointer to int

Array of pointer to P.ointer to int

Array of pointer to an array of int

Array of pointer to a function returning int

Array of an array of pointer to int

Array of an array of an array of int

Function returning a pointer to pointer to int

Function returning a pointer to an array of int

Function returning a pointer to a function returning
int

Meaning

Array of function returning int

Function returning an array of int

Function returning a function returning int

Pointer to an array of a function returning int

Pointer to a function returning an array of int

Pointer to a function returning a function returning
int

Array of an array of a function returning int

Array of a function returning a pointer to int

Array of a function returning an array of int

Array of a function returning a function returning int

Function returning an array of pointer to int

Function returning an array of an array of int

(continued on next page)

Table 7-6 (Cont.): Illegal Declarations

Declaration

int faft)[]();

int *ffp()();

int *ffa()()[];

int fffi)()();

Meaning

Function returning an array of a function returning
int

Function returning a function returning pointer to int

Function returning a function returning pointer to an
array of int

Function returning a function returning a function
returning int

Data Types and Declarations 7-27

Chapter 8

Storage Classes and Allocation

The VAX C language defines a number of storage-class keywords that specify
the scope of an identifier, the location of storage, and the lifetime of the storage
allocation. Storage-class modifiers are keywords that you can use with the
storage-class and data-type keywords that restrict access to variables. The order
of the storage-class keyword, the storage-class modifier, the data-type modifier,
and the data-type keyword within the variable declaration does not matter. Each
declaration, by virtue of its position in the program source code, has a default
storage class, but you may override the default by specifying a storage-class
specifier or a storage-class modifier.

This chapter describes the following material:

• The scope of an identifier

• The location of storage

• The lifetime of storage allocation

• The internal storage class

• The static storage class

• The external storage class

• The global storage class

• The data-type modifiers

• The storage-class modifiers

8.1 Scope

The scope of an identifier is that portion of the program in which the identifier
has meaning. An identifier.has meaning if it is recognized by the compiler, or by
the linker. The following sections explain the rules to follow so that your program
identifiers will have meaning, to both the compiler and the linker, in all desired
portions of your program.

All tags are subject to the same scope rules as other identifiers. A member of a
structure or union may have the same name as a member of another structure
or union; the scope of the member names can exist concurrently. However, when
referencing one of the members in a section of the program where the scopes of
both members are concurrent, specify to which structure or union the member
belongs. For more information, see Chapter 7.

Storage Classes and Allocation 8-1

8.1.1 The Compilation and Linking Process

To understand scope, you must know the VAX C/ULTRIX definitions of function,
compilation unit, object file, object module, and program.

When you write VAX C source programs, you can use several methods to compile
a program. You can compile a single source file, or a group of source files, into
a single object file. The group of source file(s) compiled to create a single object
file is called the compilation unit. When documentation to other implementations
refers to the source file, the VAX C/ULTRIX equivalent is the compilation unit,
not necessarily a single source file. The single, resultant object file has a file
extension of .o by default.

The linker accepts the object file as input and clears up all external references,
such as references to independently compiled external functions. Internally,
segments of object code, such as the object file, are known to the linker as object
modules. The object module has the same name (without an extension) as the
object file by default.

The second way to compile programs is to compile several compilation units into
separate object files. The linker can take more than one object file as input; then,
the linker resolves references between these individual modules as well as to
external references. For more information about compiling and linking, refer to
Chapter 2.

8.1.2 Position of the Declaration

In determining the scope of a function or variable identifier, you must consider
the position of a declaration within the program. A declaration often determines
the size of a storage allocation, but a definition initiates the allocation of storage.
Since declarations are often definitions, this section refers to both definitions and
declarations as declarations. You may want to review Chapter 7 before reading
the rest of this section.

The location of a declaration establishes the scope of an identifier. If a declaration
is located inside a block, which is a segment of code delimited by braces ({ }),
the compiler recognizes the identifier from the point of the declaration to the
end of the block. If a declaration is located outside of all functions, the compiler
recognizes the identifier from the point of the declaration to the end of the
compilation unit.

You can specify a storage class specifier or modifier within an identifier's declara­
tion. A storage class specifier indicates a storage class, and a modifier modifies
access to that storage. The order of the storage-class specifier, storage-class modi­
fier, and the data-type keyword within the declaration does not matter. Consider
the following example:

auto int x;
int auto x;

/* And, equivalently ... *I

You can declare internal storage-class identifiers; the compiler recognizes these
identifiers from the point of the declaration to the end of the enclosing block or
function body. You can declare identifiers that are static. If the static declaration
is outside all function bodies, the compiler recognizes these identifiers from the
point of the declaration to the end of the compilation unit.

8-2 Storage Classes and Allocation

You can also declare external storage-class or global storage-class identifiers.
If the declaration is outside all function bodies, the compiler recognizes these
identifiers from the point of the declaration to the end of the compilation unit.
The external and global storage classes differ from the static storage class in
that the linker can recognize a global or external variable from the point of the
declaration to the end of the program; the external and global storage classes
establish a scope that can span object modules.

Table 8-1 lists the storage classes followed by the storage-class specifiers that you
use to establish scope.

Table 8-1 : VAX C Storage Classes and Storage-Class Specifiers

Storage
Class

Internal

Static

External

Global

Specifiers

auto, register,
absence of a specifier inside a block or function1

static

extern,
absence of a specifier outside of all functions

globaldef, globalref, globalvalue

1 Functions declared without a storage-class specifier are from the external storage class by default.

see the following sections for more information on storage classes:

• Section 8.3 discusses the internal storage class

• Section 8.4 discusses the static storage class

• Section 8.5 discusses the external storage class

• Section 8.6 discusses the global storage class

You can use the data-type modifiers (const and volatile) or the VAX C specific
storage-class modifiers (readonly and noshare) to restrict access to data or to
specify storage requirements. See Section 8. 7 for more information about the
data-type modifiers. See Section 8.8 for more information about the storage-class
modifiers.

8.1.3 Lexical Scope and Link-Time Scope

When you use the storage-class specifiers and modifiers, be careful when position­
ing the definitions and declarations of your identifiers and keep the following two
goals in mind to avoid error messages:

• Compile the program so that the compiler recognizes all identifiers in the
compilation unit.

• Link the program so that the linker resolves all references to external data
definitions.

You must make a distinction between the following types of scope:

Lexical scope The region of a compilation unit within which an identifier is
known to the compiler. In this guide, the term scope implies
lexical scope.

Storage Classes and Allocation 8-3

Link-time scope The regions of an entire program within which an external or
global identifier is known to the linker. Only the identifiers
in the external and global storage classes have a significant
link-time scope.

Table 8-2 lists the VAX C storage-class specifiers and shows both the link-time
scope and the lexical scope implied by each specifier when used inside and outside
of functions.

Table 8-2: Scope and the Storage-Class Specifiers

Inside a Function Outside a Function
Storage Lexical Link-Time Lexical Link-Time
Class Scope Scope Scope Scope

[auto] function NIA illegal illegal

register function NIA illegal illegal

static function function cu1 module

[extern] function program cu1 program

globaldef function program cu1 program

globalref function program cu1 program

global value function program cu1 program

(null) function NIA cu1 program

1 Compilation Unit

The null identifier signifies the absence of a storage-class specifier from the
declaration. The compiler treats a (null) inside a function or block as an identifier
declared with the [auto] keyword; the compiler treats a (null) outside all
functions as an external definition, because the identifier is from the external
storage class.

In Table 8-2, the [auto] notation specifies identifiers of the automatic storage
class. If you do not include a storage=class specifier on a definition inside of a
function definition, the object is auto by default. This notation is used throughout
this manual to represent the automatic storage class, regardless of the presence of
the [auto] specifier in the definition. In Table 8-2, the [extern] notation signifies
identifiers of the external storage class. A single definition exists without using
a storage-class specifier; other declarations, which use the extern specifier,
may exist which reference that definition. This notation is used throughout this
chapter. See Section 8.5 for more information about the external storage class.

8.1.4 Program Example

Determining the scope of static, external, and global symbols can be very
difficult. In Example 8-1, consider the scope of the identifiers.

The following list specifies the variable identifiers in Example 8-1, and in which
functions they can be accessed without compile-time errors:

8-4 Storage Classes and Allocation

Example 8-1 : Scope and Externally Defined Variables

Compilation Unit 1

globaldef int GLOBAL_l;

static

fl()
{

int EXT_2;
int STAT;

globaldef int GLOBAL_2;

extern int EXT_l;

f2 ()
{

Compilation Unit 2

int EXT_l;

f3 ()
{

extern int EXT_2;

globalref int GLOBAL_2;

f4 ()
{

globalref int GLOBAL_l;

f5 ()
{

static int STAT;

Storage Classes and Allocation 8-5

Identifier

GLOBAL_!

GLOBAL_2

EXT_l

EXT_2

STAT

Scope

This variable is defined outside all the functions in Compilation Unit 1,
so you can access GLOBAL_! in the functions fl and f2 (from the point
of the declaration to the end of the compilation unit).

In Compilation Unit 2, the declaration of this variable is located inside
function f 4; the scope of the variable, in this compilation unit, only
extends from the declaration of GL9BAL_l to the end of function f4.

This variable is defined inside function fl. In Compilation Unit 1, the
scope of GLOBAL_2 only extends from the declaration of GLOBAL_2 to
the end of function fl.

In Compilation Unit 2, the declaration of this variable is outside all
functions but is located after function f3. You can access the variable in
functions f4 and f5 (from the point of the declaration to the end of the
compilation unit).

This variable is declared outside all the functions. This declaration is a
reference to the definition of the same variable in the other compilation
unit. In Compilation Unit 1, you can access EXT_l in function f2 (from
the point of the declaration to the end of the compilation unit).

In Compilation Unit 2, the definition of this variable is outside all the
functions; you can access EXT_l in the functions f3, f4, and f5 (from the
point of the declaration to the end of the compilation unit).

This variable is defined outside all the functions. In Compilation Unit 1,
you can access EXT_2 in the functions fl and f2 (from the point of the
declaration to the end of the compilation unit).

In Compilation Unit 2, the declaration of this variable is located in­
side the function f3. You can access EXT_2 from the location of this
declaration to the end of function f3.

There are two variables with the same name but with different perma­
nent storage locations. In essence, these are two different variables.

In Compilation Unit 1, the variable is defined outside all the functions.
You can access STAT, in Compilation Unit 1, in the functions fl and f2
(from the point of the declaration to the end of the compilation unit).

In Compilation Unit 2, the separate variable is defined inside function
ffi; you can access STAT from this declaration to the end of function f5.

Another way to view the determination of scope is to consider the placement of
the declaration as a matter of privacy. In Compilation Unit 2 in the previous ex­
ample, identifier EXT_2 is made private to function f3 by placing the declaration
inside the function body. If you want to keep a variable private to Compilation
Unit 1, you can use a declaration using the static storage-class specifier. There is
no way to access a variable declared with static in another compilation unit.

Using the auto and register internal storage-class specifiers or positioning a
declarative with no storage class specifier inside a function declaration, assures
privacy to the function. Internal storage is deallocated after execution of the
function body. There is no way to access a variable declared with internal storage
class in another function or compilation unit.

8-6 Storage Classes and Allocation

8.2 Storage Allocation

When you define a variable, the storage class determines not only its scope but
also its location and lifetime. The lifetime of a variable is the length of time for
which storage is allocated. Storage for a variable can be allocated in the following
locations:

• On the run-time stack

• In a machine register

• In a program section (psect)

Variables that are placed on the stack or in a register are temporary. For
example, variables of the [auto] and register storage class are temporary. Their
lifetimes are limited to the execution of a single block or function. All declarations
of the internal storage class are also definitions; the compiler generates code to
establish storage at this point in the program.

Use program sections (psects), for permanent variables; the identifier's lifetimes
extend through the course of the entire program. A psect represents an area of
virtual memory that has a name, a size, and a series of attributes that describe
the intended or permitted usage of that portion of memory. For example, the
compiler places variables of the static, external, and global storage classes in
psects. You have some control in determining the psects that contain identifiers.
All declarations of the static storage class are also definitions; the compiler
creates the psect at that point in the program. In VAX C, the first declaration of
the external storage class is also a definition; the linker initializes the psect at
that point in the program.

Table 8-3 shows the location and lifetime of a variable when you use each of the
storage-class keywords:

Table 8-3: Location, Lifetime, and the Storage-Class Keywords

Storage Class Location Lifetime

[auto] Stack or register Temporary

register Stack or register Temporary

static Psect Permanent

[extern] Psect Permanent

globaldef Psect Permanent

globalref Psect Permanent

global value No storage allocated Permanent

When working with some of the storage-class keywords, you need to know about
the psects that are created by your data declarations and VAX C.

8.3 Internal Storage Class

You can assign the internal storage class to identifiers using the auto and
register storage-class specifiers or by placing a declaration that contains no
storage-class specifiers inside a function body. The following sections describe
these specifiers.

Storage Classes and Allocation 8-7

8.3.1 The auto Specifier

Use the auto storage-class specifier to define a variable whose storage is allocated
automatically upon entry into a function or block, and is automatically deallo­
cated upon exit from a function or block. Within a function, auto is the default
storage class; it is not necessary to explicitly specify it. That is, any variable
(other than a function name) declared within a function without a storage-class
specifier is given the auto storage class. Functions are of the external storage
class by default. The code generated by the compiler contains instructions to
allocate and deallocate auto storage by using machine registers and the run-time
stack. Since new storage allocation occurs when you enter a block or function,
you can have more than one auto variable with the same name as long as you
declare them in separate blocks or functions. You cannot use auto outside of a
function.

If you explicitly initialize an auto variable, the program code initializes the
variable to that value each time the declaring block or function is activated. This
initialization cannot occur if control passes into a block by some other means,
such as a goto statement or if the block is the body of a switch statement. For
more information about the switch and goto statements, refer to Chapter 5.

NOTE

The compiler can assign auto variables to machine registers, if
possible. Otherwise, they are placed on the run-time stack.

Example 8-2 shows the reinitialization of two auto variables with the same
name:

Example 8-2: Reinitializing auto Variables

/* This example prints the values of two distinct auto *
* variables that have the same identifier. */

main()

0 int i, x = 2;
printf ("main: %d\n", x) ;

for (i = 0; i < 1; i++)
{

int x = 3;
printf("for loop: %d\n",x);

printf ("main: %d\n", x);

Key to Example 8-2:

0 This definition of variable x extends through the entire function.

8 This definition of variable x is limited to the for statement and supersedes
the value of variable x in the surrounding function.

8-8 Storage Classes and Allocation

Output from Example 8-2 is as follows:

% example I RETURN I
main: 2
for loop: 3
main: 2

In Example 8-2, the variable x is defined twice within the main function, but
the two variables do not conflict. While the for loop is executing, the variable x
declared inside the block supersedes the variable x declared outside the block.

8.3.2 The register Specifier

Variables declared with the register storage class are similar to auto variables.
You can only use the register internal storage class inside functions and blocks.

NOTE

The register storage-class specifier is the only specifier that you can
use in a parameter declaration.

A register variable differs from a variable of storage class auto in the way that
compiler-generated program code allocates storage. The register storage-class
keyword suggests that the compiler flag the variable for placement in a machine
register. This does not guarantee that the program code will place the variable in
a register. The compiler checks the following conditions to determine whether or
not a variable is flagged to be placed in a register:

• If the variable is not used, the optimizer may remove it entirely.

• If the program is compiled with the -V nooptimization option, no variables
are assigned to registers. The optimization phase of the compiler determines
whether a variable is a valid candidate for a register. (Optimization is
enabled by default.)

• If the program contains too many register candidates, not all of them are
assigned to registers.

• If the compiler detects any use of the variable that may make it inappropriate
for assignment to a register, the variable is not flagged. For example, if the
compiler detects the application of the address-of operator (&) to a variable
that is declared with the register specifier, the variable is not placed in a
register.

8.4 The Static Storage Class

The static storage class allows you to create permanent storage for a variable
using the static storage-class specifier in the variable declaration. If declared
inside a function, its scope begins at the declaration and spans the body of the
function. If declared outside of functions, its scope is limited to the compilation
unit; you cannot access a variable of the static storage class from another
compilation unit.

If no initialization is present in the declaration of a variable of the static storage
class, the linker initializes the variable to 0. However, unlike auto variables,
the compiler-generated program code does not reallocate storage for a static
variable every time control reenters a function containing the definition of a
static variable. That is, if when exiting a function a static integer variable has
the value of 4, the variable retains that value even if control reenters the defining
function. If a static identifier with the same name is declared in another module,

Storage Classes and Allocation 8-9

the linker knows nothing of the other variable; the other variable has a separate
psect allocation.

You can also define a function with the static storage class. A static function
is not known to the linker and can be referenced only from within its defining
module.

8.5 The External Storage Class

You can declare identifiers of the external storage class in the following manner:

• A definition not using another storage-class keyword, located outside all
function bodies, establishes an external variable whose scope extends from
the point of the definition to the end of the compilation unit.

• A declaration using the extern specifier, usually located in another compila­
tion unit, is a reference to the original definition. This declaration extends
the link-time scope of the variable into the second object module. If this
declaration is inside a function, it extends the link-time scope from the point
of the declaration to the end of the function. If this declaration is outside of
a function, it extends the link-time scope from the point of the declaration to
the end of the object module.

• You need not use external variable declarations (with the extern specifier) to
see the definition of an external variable. Also, when necessary, you can use
more than one extern declaration to reference the external definition.

Use the following rules to decide whether or not to use the extern specifier:

• If the variable is defined before it is referenced and the definition is in the
same compilation unit, you do not need to declare the variable with the
extern specifier.

• If the variable is defined after it is referenced, you need to first declare it with
the extern specifier.

• If the variable is defined in a separate compilation unit; you must declare it
with the extern specifier.

Consider the following example:

double D = 2.37;

main()
{

extern int A;

printf("a:\t%d\n", A);
printf("d:\t%g\n", D);

int A = 5;

The main function in this program references two external variables, A and D.
Since the variable D is defined before it is referenced, you do not need to declare
it in the main function. Since the variable A is referenced before it is defined, it
must be declared with the extern storage-class specifier.

In many implementations of the C language, you cannot use the extern specifier
in a declaration that does not see an external definition elsewhere in the program.
External variables occupy storage in psects of the same name as the variable
identifier.

8-10 Storage Classes and Allocation

Whenever the compiler encounters the first declaration of an identifier of the
external storage class in a VAX. C program, it creates and initializes the psect.
In VAX. C, you can use the extern specifier in a declaration that does not see
an external definition elsewhere in the program. However, this is not good
programming practice, and if used, your programs might not be portable to other
systems.

NOTE

In VAX C, you cannot initialize an identifier declared with the extern
specifier.

You can specify the noshare modifier with external variables to create a
psect with the NOSHR attribute. Similarly, you can specify the readonly or
const modifier to create a psect with the NOWRT attribute. The noshare and
readonly attributes are VAX. C specific and are not portable.

8.6 The Global Storage Class

You can assign the global storage class to identifiers using the globaldef,
globalref, or globalvalue storage-class specifiers. The following sections
describe these specifiers.

8.6.1 The globaldef and globalref Specifiers

Use the globaldef specifier to define a global variable; use the globalref
specifier to refer to a global variable defined elsewhere in the program. The
specifiers globaldef and globalref are used in much the same way as with
external storage class. Use globalref to see storage allocated elsewhere by a
globaldef declaration.

When defining a global symbol using the globaldef specifier, you can place the
symbol in one of three program sections: the $DATA psect (globaldef alone),
the $CODE psect (globaldef with readonly or const), or a user-named psect.
You can create a user-named psect by specifying its name as a string constant in
braces immediately following the globaldef keyword, as shown in the following
definition:

globaldef{"psect_name"} int x = 2;

This definition creates a program section called psect_name and allocates the
variable x in that psect. You can add any number of global variables to this psect
by specifying the same psect name in other globaldef declarations. You can
also specify the noshare modifier to create the psect with the NOSHR attribute.
Similarly, you can specify the readonly or const modifier to create the psect
with the NOWRT attribute.

You may initialize variables declared with globaldef. Variables declared with
globalref may not, since these declarations see variables defined, and possibly
initialized, elsewhere in the program. Initialization is possible only when storage
is allocated for an object. This distinction is especially important when using the
readonly or const modifier; unless the global variable is initialized when the
variable is defined, its permanent value is 0.

Storage Classes and Allocation 8-11

Example 8-3 shows the use of global variables.

Example 8-3: Using Global Variables

/* This example shows how global variables are used *
* in VAX C programs. */

8 int ex counter = O;
• globaldef double velocity = 3. OelO;
I) globaldef {"distance"} long miles = 100;

main()
{

printf(" ***FIRST COMP UNIT ***\n");
printf("counter:\t%d\n", ex counter);
printf("velocity:\t%g\n", velocity);
printf("miles:\t\t%d\n\n", miles);
fn ();
printf(" ***FIRST COMP UNIT ***\n");
printf("counter:\t%d\n", ex_counter);

8 printf ("velocity:\t%g\n", velocity);
printf("miles:\t\t%d\n\n", miles);

/*

*
*
*

The following code is contained in a separate
compilation unit.

static ex counter;
8 globalref-double velocity;

globalref long miles;

fn ()
{

++ex counter;
printf(" ***SECOND COMP UNIT ***\n");
if (miles > 50)

velocity =miles * 3.1 I 200 ;
printf("counter:\t%d\n", ex counter);
printf ("velocity:\ t%g\n" i velocity);
printf("miles:\t\t%d\n", miles);

Key to Example 8-3:

*
*
*
*/

8 The integer variable ex_counter is a variable of storage class extern in the
first compilation unit. In the second compilation unit, a variable ex_counter
is of storage class static. Even though they have the same identifier, the
two ex_counter variables are different variables represented by two separate
memory locations. The link-time scope of the second ex_counter is the module
created from the second compilation unit. When control returns to the main
function, the external variable ex_counter retains its original value.

• The variable velocity is a variable of storage class globaldef and is stored in
the psect $DATA.

8 The variable miles is also a variable of storage class globaldef, but it is
stored in the user-specified psect distance.

8 When the variable velocity prints after the function fn executes, the value will
change. Global variables have only one storage location.

8-12 Storage Classes and Allocation

0 When you reference global variables in another module, you must declare
those variables in that module. In the second module, the global variables are
declared with the globalref keyword.

Sample output from Example 8-3 is as follows:

% example I RETURN I
*** FIRST COMP UNIT ***

counter: 0
velocity: 3.000000e+lO
miles: 100

*** SECOND COMP UNIT ***
counter: 1
velocity: 1.55
miles: 100

*** FIRST COMP UNIT ***
counter: 0
velocity: 1.55
miles: 100

8.6.2 Comparing the Global and the External Storage Classes

The global storage-class specifiers define and declare objects that differ from
external variables both in their storage allocation and in their correspondence to
elements of other languages. Global variables provide a convenient and efficient
way for a VAX C function to communicate with assembly-language programs, and
with other high-level languages that support global symbol definition.

VAX C imposes no limit on the number of external variables in a single program.

NOTE

The global storage classes are VAX C specific and are not portable.

There are other differences between the external and global variables. For
example:

• Global variables correspond to global symbols declared in assembly-language
programs but external variables correspond to FORTRAN common blocks.

• If you have a limited amount of storage available, you may psee use the
globalvalue specifier (see Section 8.6.3) since it does not occupy storage in
your program if you can express it in 32 or fewer bits; the external variables
create program sections.

• You can declare a global variable, using globaldef, inside a function or
block and, by using a globalref specifier, access the identifier from another
compilation unit. With external variables, you must define the variable
outside all functions and blocks, and then access that variable in other
compilation units by using extern declarations.

• A globalref declaration causes the linker to load the module containing the
corresponding globaldef into the image; an extern declaration does not
cause the linker to do so.

One similarity between the external and global storage classes is that you can
place the external variables (by default) and the global variables (optionally) in
psects with a user-defined name, and to some degree, user-defined attributes.
The compiler places external variables in psects of the same name as the variable
identifier. The compiler places globaldef{"name"} variables in psects with names

Storage Classes and Allocation 8-13

specified in quotation marks, delimited by braces, and located directly after the
globaldef specifier in a declaration.

The compiler places a variable declared using only the globaldef specifier and a
data-type keyword into the $DATA psect.

8.6.3 The globalvalue Specifier

A global value is an integral value whose identifier is a global symbol. Global val­
ues are useful because they allow many programmers in the same environment
to see values by identifier, without regard to the actual value associated with the
identifier. The actual values can change, as dictated by general system require­
ments, without requiring changes in all the programs that see them. If you make
changes to the global value, you only have to recompile the defining compilation
unit (unless it is defined in an object library), not all of the compilation units in
the program that see those definitions.

NOTE

You can use the globalvalue specifier only with variables of type
enum., int, or with pointer variables.

A variable declared with globalvalue does not require storage. Instead, the
linker resolves all references to the value. If an initializer appears with glob­
alvalue, the name defines a global symbol for the given initial value. If no
initializer appears, the globalvalue construct is considered a reference to some
previously defined global value.

Example 8-4 shows the use of the globalvalue storage-class specifier.

Example 8-4: Using the globalvalue Specifier

/*

*
This program shows references to previously defined
globalvalue symbols.

globalvalue FAILURE = 0, EOF -1;

main()
{

char c;

*
*I

/* Get a char from stdin */

I*
*
*
*

while ((c = getchar()) != EOF)
test(c);

The following code is contained in a separate compilation
unit.

#include <ctype.h>
globalvalue FAILURE, EOF;

/* Include proper module
/* Declare global symbols

*
*
*
*/

*/
*I

(continued on next page)

8-14 Storage Classes and Allocation

Example 8-4 (Cont.): Using the globalvalue Specifier

test(param_c)
char param_c; /* Declare parameter */
{

/* Test to see if number */
if ((isalnum(param c)) != FAILURE)

printf("%c\n", param_c);
return;

In Example 8-4, FAILURE and EOF are defined in the first module: the values
are placed in the program stream. In the second module, FAILURE and EOF are
declared so that their values can be accessed.

8.6.4 Global Enumerated Types

When you use the globaldef storage-class keyword with an enum definition,
the enumerated constants in the definition are of the globalvalue storage class,
and initialized as required by the program to form a properly ordered list of the
values. Enumerated type variables are of the globaldef storage class.

When you use globalref with the enum keyword, all enumerated variables are
of the storage class globalref, and the enumerated constants see global values of
the same names as shown in the following example.

The first compilation unit includes the following sequence:

globaldef enum light { dim, medium = 3, bright } light_val;

main()

light_ val dim;
fnlv ();

The second compilation unit includes the following sequence:

globalref enum light { dim, medium, bright } light_val;

fnlv ()
{

if (light_val < bright) printf ("TOO DIM\n");

In the first compilation unit, the enum definition establishes light_ val as a
globaldef of the enumerated type light. It also establishes the ordered list of
enumerated global values dim, medium, and bright.

The globalref declaration in the second compilation unit allows the enumerated
constants to be used as global values. That is, the constants can be referenced,
but they cannot be initialized.

For more information about the enumerated type, see Chapter 7.

Storage Classes and Allocation 8-15

8. 7 Data-type modifiers

Data-type modifiers affect the allocation or access of data storage. The data-type
modifiers are as follows:

• const

• volatile

The following sections describe these data-type modifiers in detail.

8. 7 .1 The const Modifier

The const data-type modifier restricts access to stored data. If you declare an
object to be of type const, you cannot modify that object.

The following rules apply to the use of the const data-type modifier:

• You can specify const with any of the other data-type keywords in a
declaration.

• If you specify const when declaring an aggregate, all the aggregate members
are treated as objects of type const.

• You can specify const with volatile, or any of the storage-class specifiers or
modifiers.

• If you try to access a const object using a pointer to an object not declared as
const, the result is undefined.

• The address of a non-const object can be assigned to a pointer to a const
object, but you cannot use that pointer to alter the value of the object. The
result is undefined.

The following example declares the variable x to be a constant integer.

int cohst x;

When declaring pointers, depending upon the placement of the const modifier
in the declaration, VAX C will either interpret the pointer or the object to which
it points as the constant variable. For example, the following section of code
declares the variable y to be a constant pointer to an integer because the const
modifier appears after the asterisk:

int * const y;

In the next example, the variable z is declared as a pointer to a constant integer
because the asterisk appears after the const modifier:

int const * z;

When you specify the const modifier in association with a globaldef specifier
that identifies a psect, be aware that all variables declared have their storage
allocated in the psect and that an inconsistent use of the const modifier can
alter the psect attribute and lead to diagnostic messages. Examples 1 and 2 show
invalid uses of the const modifiers. Specifically, in Example 1 the variable x
becomes a nonconstant pointer to a constant integer and therefore assigns the
WRT attribute to the psect. In Example 2, the variable y becomes a constant
pointer to an integer and assigns the NOWRT attribute to the psect. In Example
3, the variable z becomes a constant variable contained in the psect and assigns
it the NOWRT attribute.

8-16 Storage Classes and Allocation

Example 1

globaldef {"psect"} const int * x; /* invalid example */

Example 2

globaldef {"psect"} int * const y; /* invalid example */

Example 3

globaldef {"psect"} const int z;

VAX C generates a warning message when there is an inconsistent usage of the
const modifier, as shown in the following example:

globaldef {"psect"} const int test, * bar;

In this example, the variable test is declared as a constant variable that becomes
allocated in the psect and assigns it the NOWRT attribute. The variable bar is a
pointer that is not itself constant, but that points to a constant integer. In this
case, VAX C automatically causes the pointer to become constant. Therefore,
Digital recommends that you do not mix constant and nonconstant variables
in a globaldef declaration that names a psect, or your program may generate
unpredictable results.

8. 7 .2 The volatile Modifier

The volatile data-type modifier prevents an object from being stored in a
machine register, forcing it to be allocated in memory. This data-type modifier is
useful for declaring data that is to be accessed asynchronously. A device driver
application often uses volatile data storage.

The following rules apply to the use of the volatile modifier:

• You can specify volatile with any of the other data-type keywords in a
declaration.

• If you specify volatile when declaring an aggregate, all of the aggregate
members are treated as objects of type volatile.

• You can specify volatile with const, or any of the storage-class specifiers or
modifiers except the storage class register.

• The address of an object of some other type can be assigned to a volatile
pointer, but the rules of the volatile data-type modifier must be followed if
you see the object using that pointer.

8.8 Storage-Class Modifiers

The VAX C compiler can accept a storage-class specifier and a storage-class
modifier in any order; usually, the modifier is placed after the specifier in the
source code. For example:

extern noshare int x;

/* Or, equivalently ... */

int noshare extern x;

The following sections describe each of the VAX C specific storage class modifiers
in detail.

Storage Classes and Allocation 8-17

8.8.1 The noshare Modifier

The noshare storage-class modifier assigns the attribute NOSHR to the program
section of the variable. This storage-class modifier is relevant only when used
with VMS shared images. It is retained in VAX C/ULTRIX for reasons of
compatibility with VAX CNMS and has no meaning in VAX C/ULTRIX.

The noshare modifier can be used with the storage-class specifiers static,
[extern], globaldef, and globaldef{"name"}.

You can use noshare alone; when you do this, an external definition of storage
class [extern] is implied. Also, when declaring variables using the [extern] and
globaldef{"name"} storage-class specifiers, you can use noshare, const, and
readonly, together, in the declaration. If you declare variables using the static
or the globaldef specifiers, and you use both of the modifiers in the declaration,
the compiler ignores noshare and accepts const or readonly.

8.8.2 The readonly Modifier

The readonly storage-class modifier, like the const data-type modifier, assigns
the NOWRT attribute to the variable's program section; if used with the static
or globaldef specifier, the variable is stored in the psect $CODE, which has the
NOWRT attribute by default.

Both the readonly and const modifiers can be used with the storage-class
specifiers static, [extern], globaldef, and globaldef {"psect"}.

In addition, both the readonly modifier and the const modifier can be used
alone. When you specify these modifiers alone, an external definition of storage
class [extern] is implied.

The readonly modifier restricts access to data in the same manner as the const
modifier. However, in the declaration of a pointer, the readonly modifier cannot
appear between the asterisk and the pointer variable to which it applies.

The following example shows the similarity between the const and readon!y
modifiers. In both instances, the variable point represents a constant pointer to a
nonconstant integer.

readonly int * point;

int * const point;

NOTE

For new program development, Digital recommends that you use the
const modifier.

8.8.3 The _align Modifier

The _align modifier allows you to align objects of any of the VAX C data types on
a specified storage boundary. You use the _align modifier in a data declaration or
definition.

For example, if you want to align an integer on the next quadword boundary, you
can use any of the following declarations:

int _align(QUADWORD) data;
int _align(quadword) data;
int _align(3) data;

8-18 Storage Classes and Allocation

When specifying the boundary of the data alignment, you can either use a
predefined constant or you can specify an integer value that is a power of two.
The power of two tells VAX C the number of bytes to pad in order to align the
data. So, in the previous example, integer 3 specifies an alignment of 23 bytes,
which is 8 bytes-a quadword of memory.

The following list presents all of the predefined alignment constants, their
equivalent power of two, and their equivalent number of bytes.

Power
of Number of

Constant Two Bytes

BYTE or 0 0
byte

WORD or 1 2
word

LONGWORD or 2 4
longword

QUADWORD or 3 8
quadword

OCTAWORDor 4 16
octaword

PAGE or 9 512
page

Storage Classes and Allocation 8-19

Chapter 9

Preprocessor Directives

Preprocessor directives are lines in the source file that direct the compiler to
alter its normal processing of VAX C source code. Preprocessor directives are
not defined formally by the C language, so their implementation may vary from
one compiler to another. For example, in most implementations of C running on
UNIX systems, the preprocessor is a separate program that operates before the
compiler, just as the name preprocessor implies. In VAX C, these directives are
executed in an early phase of the compiler.

If you plan to port programs to and from other C implementations, take care
in choosing which preprocessor directives to use within your programs. See
Section 9.2 for more information about conditional compilation.

The preprocessor directives are introduced by number signs (#) that must
appear in column 1 of the source listing. This chapter discusses the following
preprocessor directives:

• #define and #undef-Define macro substitutions and replacements

• #if, #ifdef, #ifndef, #else, #elif, #endif, and the defined operator-Controls
under which conditions segments of code are to be compiled or not

• #include-Includes source text from an external file

• #line and #-Specifies a new line number and file name at the terminal, not
in the listing file

• #pragma-Performs an implementation-specific task

Preprocessor directives are independent of the usual scope rules; they remain
in effect from their occurrence until the end of the compilation unit. For more
information about the compilation unit, seeChapter 2.

9.1 Macro Definitions (#define and #undef)

The #define directive specifies a macro identifier and a token string. The token
string is substituted for every subsequent occurrence of that identifier in the
program text, unless it occurs inside a char constant, a comment, or a quoted
string. You use the #undef directive to cancel a definition for a macro.

NOTE

Previous versions of this guide refer to these macros as tokens.

The syntax of the #define directive is as follows:

#define identifier token-string
#define identifier(identifier, ...) token-string

Preprocessor Directives 9-1

If you omit the token string, the identifier is deleted from the text to be processed
by the compiler.

After a token string is substituted in the source file, the compiler rescans the
source line from the beginning of the substituted text to determine whether the
previously inserted text contains identifiers defined by other #define directives.
If so, the identifiers are replaced by their currently specified token strings.
Example 9-1 shows nested #define directives.

Example 9-1 : Nested Substitution Directives

I* Show multiple substitutions and listing format

#define AUTHOR james + LAST

main()
{

int writer,james,michener,joyce;

#define LAST michener
writer = AUTHOR;

#define LAST joyce
writer = AUTHOR;

Compile Example 9-1 with the following command:

% vcc -v example.lis -V "show= intermediate" example.clRETURNI

The following listing results:

1 I* Show multiple substitutions and
listing format *I

2
3 #define AUTHOR james + LAST
4
5 main()
6 {

7 1 int writer,james,michener,joyce;
8 1
9 1 #define LAST michener

10 1 writer AUTHOR;
1 writer james + LAST;
2 writer james + michener;

11 1
12 1 #define LAST joyce
13 1 writer AUTHOR;

1 writer james + LAST;
2 writer james + joyce;

14 1 }

*/

On the first pass, the compiler replaces the identifier AUTHOR with the token
string james + LAST. On the second pass, the compiler replaces the identifier
LAST with its currently defined token string value. At line 9, the token string
value for LAST is the identifier michener, so michener is substituted at line 10.
At line 12, the token string value for LAST is redefined to be the identifier joyce,
so joyce is substituted at line 13. The following line is the final text that the
compiler processes:

9-2 Preprocessor Directives

writer = james + joyce;

You may continue the #define directive onto subsequent lines if necessary.
You must end each line to be continued with a backslash (\). The backslash
and newline do not become part of the definition. The first character in the
next line is logically adjacent to the character that immediately precedes the
backslash. The backslash/newline as a continuation sequence is valid anywhere
after the identifier being defined, or anywhere after the left parenthesis in a
macro definition.

You can continue comments within the definition line without the backslash
/newline. In the following example, all text must appear on the same line unless
comments appear in the white-space:

#<white-space>define<white-space>identifier[(]

The optional left parenthesis begins a macro parameter list (see Section 9.1.2),
and cannot be separated from the identifier.

9.1.1 Constant ldentif iers

The first form of the #define directive defines a simple substitution, usually a
constant for a frequently used identifier. A common use of the directive is to
define the end-of-file (EOF) indicator as follows:

#define EOF (-1)

The substitution text for this example is delimited with parentheses to avoid
lexical ambiguities when text is substituted in the program. For example:

i = EOF;

If you substitute the token string -1 for the identifier EOF, then the contiguous
characters (=-) may be mistaken for an operator.

9.1.2 Macro Parameters

Some macros include a list of parameters. These macro substitutions look
like function calls. If you call a function, control passes from the program to
the function object code at run time; if you reference a macro, source code is
inserted into the program at compile time. The parameters are replaced by the
corresponding arguments and the text is inserted into the program stream. The
syntax of a macro definition is as follows:

#define name([parm1 [,parm2, ...]]) [token-string]

The name, parml, parm2, and so forth are identifiers, and token-string is
arbitrary text.

After the macro definition, all macro references in the source code with the
following form are replaced by the token string from the directive, and any formal
parameters that appear in the token string are replaced by the corresponding
arguments from the reference. For example, argument argl replaces parameter
parml, and so forth, as follows:

name([arg1 [,arg2, ...]])

As shown in the syntax of the macro definition, the token string is optional. If
you omit the token string from the macro definition, the entire macro reference
disappears from the source text.

Preprocessor Directives 9-3

The token string in the macro definition, as well as actual arguments in a
macro reference, may contain other macro references. Substitution occurs, but
these nested references are limited to a depth of 64. The maximum number of
parameters or arguments is also 64.

The lowertoupper macro is a good example of macro substitution. For example:

#define lowertoupper(c) ((c) - 'a' +'A')

When you reference the lowertoupper macro, the compiler replaces the macro
keyword and its parameter with the token string from the directive.

Preprocessor directives and the macro references have syntax that is independent
of the VAX C language. The following list gives the rules for the specification of
macro definitions:

• The macro name and the formal parameters are identifiers that are specified
according to the rules for identifiers in the VAX C language.

• You can use spaces, tabs, and comments freely within a #define directive. In
particular, they can appear anywhere that the delta symbol (L'.1) appears in
the following example:

#L'.1 defineL'.1 name (L'.1 parmlL'.1 , L1 parm2L1) L1 \
L1 token-stringL'.1

• White space cannot appear between the name and the left parenthesis that
introduces the parameter list. White space can appear inside the token string.
Also, at least one space, tab, or comment must separate name from define.
Comments can appear within the token string, but they do not become part of
the macro definition.

The following list gives the rules for the specification of macro references:

• Comments and white space characters (spaces, horizontal and vertical tabs,
carriage returns, newlines, and form feeds) can be used freely within a macro
reference. In particular, they can appear anywhere that the delta symbol
appears in the following example:

L1 name.L'.1 (Ll arglLl , Ll arg2Ll)

• Arguments consist of arbitrary text. Syntactically, they are not restricted
to VAX C expressions. They can contain embedded comments and white
space. Comments are ignored, but the white space is preserved during the
substitution.

• The number of arguments in the reference must match the number of
parameters in the macro definition, although individual arguments may be
null.

• Commas separate arguments except where they occur inside string or char­
acter constants, comments, or parentheses. You must balance parentheses
within arguments.

Take care when specifying the token string. Since the token string consists of
arbitrary text, replacing parameters with arguments occurs even if a parameter
appears inside a character or string constant within the token string. To be
recognized, a parameter should be delimited from the surrounding text by white
space or punctuation characters, such as parentheses.

You must be careful when specifying macro arguments that use the increment
(++), decrement (- -), and assignment (such as +=) operators or other arguments
that can cause side effects. Function calls are another source of possible side
effects. Suppose the lowertoupper macro is defined as follows:

9-4 Preprocessor Directives

#define lowertoupper(c) ((c) >='a' && (c) <= 'z' ? (c) & OX5F (c))

Suppose the lowertoupper macro is invoked as follows:

lowertoupper(p++)

When the argument p++ is substituted in the macro definition, the effect within
the program stream is as follows:

((p++) >= 'a' && (p++) <= 'z' ? (p++) & OX5F : (p++))

The result of this expression may not be what was intended-that is, it may
not be the uppercase letter corresponding to the value p++. For this reason,
specifying macro arguments that may cause side effects is not good programming
practice. Even if you are aware of possible side effects, the token strings within
macro definitions are easily changed, which changes the side effects without
warning.

9.1.3 Listing Substituted Lines

You can specify optional values in the vcc command line to force the listing of
all lines that have been modified by macro substitutions. The optional values
are expansion and intermediate. If your vcc command line includes -V
show=expansion (as in the following example), the listing produced by the
compiler shows both the original line and the final form of the substituted line.
Substituted lines are flagged in the margin with numbers designating the nesting
level of substitution.

% vcc -v example.lis -V "SHOW=EXPANSION" filepath.c™

When you specify the option intermediate, the compiler lists all intermediate
substitutions with one substitution per line, as in the following command
example:

% vcc -v example.lis -V"SHOW=INTERMEDIATE" filepath.clRETURNI

Without one of these two listing options, the compiler only lists the original form
of a line.

Example 9-1 shows the effect of the -V show=intermediate option. For more
information about the format of VAX C compiler listings, seeChapter 2.

9.1.4 Canceling Definitions (#undef)

The following directive cancels a previous definition of the identifier by #define:

#undef identifier

If no previous definition exists, a warning message is generated if you specify -V
standard=portable.

9.2 Conditional Compilation (#if, #if def, #ifndef, #else, #elif, and
#end if)

Six directives are available to control conditional compilation. They delimit blocks
of statements that are compiled if a certain condition is true. You can nest these
directives. The beginning of the block of statements is marked by one of three
directives: #if, #ifdef, or #ifndef. Optionally, an alternative block of statements
can be set aside with the #else or the #elif directives. The end of the block is
marked by an #endif directive.

Preprocessor Directives 9-5

If the condition checked by #if, #ifdef, or #ifndef is true, VAX C ignores all lines
between an #else (or #elif) and an #endif directive.

If the condition is false, the lines between the #if, #ifdef, or #ifndef and an
#else, (or #elif) or #endif directive are ignored. The compiler flags ignored lines
with the letter X in the compiler listing margin.

The #if directive has the following form:

#if constant-expression

This directive checks whether the constant expression is nonzero (true). The
operands must be constants. The increment (++), decrement (- -), sizeof,
pointer (*), address (&), and cast operators are not allowed in the constant
expression.

The constant expression in an #if directive is subject to text replacement and
can contain references to identifiers defined in previous #define directives. The
replacement occurs before the expression is evaluated.

If an identifier used in the expression is not currently defined, the compiler treats
the identifier as though it were the constant 0. A warning message is generated
if-V standard=portable is specified.

The #ifdef directive has the following form:

#ifdef identifier

This directive checks whether the identifier was previously defined by a #define
directive.

The #ifndef directive has the following form:

#ifndef identifier

This directive checks to see if the identifier is not defined or if it has been
undefined by the #undef directive.

The #else directive has the following form:

#else

This directive delimits alternative source lines to be compiled if the condition
tested for in the corresponding #if, #ifdef, or #ifndef directive is false. An #else
directive is optional.

The #elif directive has the following form:

#elif constant-expression

The #elif line performs a task similar to the combined use of the else if
statements in VAX C. This directive delimits alternative source lines to be
compiled if the constant expression in the corresponding #if, #ifdef, or #ifndef
directive is false and if the additional constant expression presented in the #elif
line is true. An #elif directive is optional.

The #endif directive has the following form:

#end if

This directive ends the scope of the corresponding #if, #ifdef, or #ifndef
directives.

9-6 Preprocessor Directives

9.2.1 The defined Operator

If you need to check to see if many macros are defined, you may want to use the
special defined operator in a single use of the #if line. In this way, you can check
for macro definitions in one concise line without having to use many #ifdef or
#ifndef directives.

For example, you might want to check the following macros:

#ifdef tokenl
printf ("Oh, Mary!\n"
#endif

#if ndef token2
printf ("Oh, Mary!\n"
#endif

#ifdef token3
printf ("Oh, Mary! \n"
#endif

You can use the defined operator in a single use of the #if preprocessor directive,
as follows:

#if defined (tokenl) I I !defined (token2) I I defined (token3)
printf ("Oh, Mary! \n")
#endif

You can use defined as you would any other operator. However, you can only use
defined in the evaluated expression of an #if or #elif preprocessor directive.

9.3 File Inclusion (#include)

The #include directive inserts external text into the macro stream delivered to
the compiler. Often, global definitions for use with the system library interfaces
are included in the program stream with the #include directive. The #include
directives may be nested to a depth determined by the limit of the number of
concurrent open files for the process. The VAX C compiler imposes no inherent
limitation on the nesting level of inclusion.

The following sections describe the forms of the #include directive.

9.3.1 Inclusion Using Angle Brackets { <>)

The first form of the directive is as follows:

#include <file-path>

The identifier file-path must be a valid file path name. The compiler first
searches for the file relative to any directories specified with the -I option on
the vcc command line. The compiler searches the directories in the order that
they are specified on the command line. If the file is not found in any of these
directories, the compiler looks for the file in the directory /usr/include. If the
file is found, it is included in the compilation. If it is not found, the compiler
generates an error.

Preprocessor Directives 9-7

9.3.2 Inclusion Using Quotation Marks (11 11
)

The second form of the #include preprocessor directive is as follows:

#include "file-path"

The identifier file-path must be a valid file path name. The compiler first
searches for the file relative to the directory in which the including source file
was found. If it is not found there, the compiler next searches for the file relative
to any directories specified with the -I option on the vcc command. The compiler
searches the directories in the order that they are specified on the command line.
If the file is not found in any of these directories, the compiler looks for the file in
the directory /usr/include. If the file is found, it is included in the compilation. If
it is not found, the compiler generates an error.

9.3.3 Macro Substitution in #include Directives

VAX C allows macro substitution within the #include preprocessor directive.

For instance, if you want to include a file name, you can combine the #define and
#include directives, as shown by the following example:

#define tokenl "file.ext"

#include tokenl

If you use defined macros in #include directives, the macros must evaluate
to one of the two following acceptable #include file specifications or the use
generates an error message:

<file-spec>
"file-spec"

9.4 Specifying Line Numbers (#line and #)

The VAX C complier keeps track of information about relative line numbers
in each file involved in the compilation and uses the number when it delivers
diagnostic messages to the terminal. The compiler increments the subsequent
lines from the line number specified by the #line directive. The directive can also
specify a new file specification for the program source file. The #line directive
does not change the line numbers in your compilation listing, only the line
numbers given in messages (for example, error messages) sent to the terminal
screen. This directive is useful for locating errors in text that is included using
the #include preprocessor directive.

The formats of the #line directive are as follows:

#line constant identifier
#line constant string
constant identifier
constant string

The compiler gives the line following a #line directive the number specified by
the parameter constant. You can specify the second parameter as either a VAX
C identifier or a character-string constant. It supplies the valid file names. The
character string must not exceed 255 characters.

9-8 Preprocessor Directives

9.5 Implementation-Specific Preprocessor Directive (#pragma)

This section describes the implementation-specific preprocessor directives, or
pragmas, that are available in the VAX C compiler. The #pragma directive is a
standard method for implementing features that vary from one compiler to the
next.

Note that #pragma directives are subject to macro expansion. A macro
reference can occur anywhere after the keyword pragma. The following example
demonstrates this feature using the #pragma inline directive:

#define opt inline
#define f func
#pragma opt(f)

The #pragma directive becomes #pragma inline (func) after both macros are
expanded.

The following sections describe the #pragma directives.

9.5.1 #pragma [no]builtins Directive

The #pragma [no]builtins directive disables or provides access to the VAX C
predefined functions. These functions do not result in a reference to a function
in the run-time library or in your program. Instead, the compiler generates the
machine instructions necessary to carry out the function directly at the call site.
(For information on available built-in functions, see Chapter 10.)

The #pragma [no]builtins directive has the following format:

#pragma builtins
#pragma nobuiltins

9.5.2 #pragma [no]inline Directive

The preprocessor directive #pragma inline suggests to the compiler that it
provide inline expansion of the specified functions. Inline expansion of functions
reduces execution time by replacing the function call with code that performs the
actions of the original function code.

By default, VAX C attempts to provide inline expansion for all functions. The
compiler also uses the following function characteristics to determine if it can
provide inline expansion:

• Size

• Number of times the function is called

• Absence of the restrictions described in Section 9.5.2.1

The #pragma inline directive requests that the compiler attempt to provide
inline code regardless of the size or number of times the specified functions are
called. Functions that contain one of the restrictions described in Section 9.5.2.1
are never expanded inline, regardless of the use of the #pragma inline.

The #pragma inline directive has the following format:

#pragma inline (id, ...)

Preprocessor Directives 9-9

id
Is a C function identifier.

For instance, the following example specifies that the functions push and pop be
expanded inline throughout the module in which the #pragm.a inline appears:

void push(int);
int pop (void) ;

#pragma inline(push, pop)

int stack[lOO];
int *stackp = &stack;

void push(int x)
{

if (stackp == &stack)
*stackp = x;

else
*stackp++ = x;

int pop()
{

return *stackp--;

main()
{

push(l);
printf("The top of stack is now %d \n",pop());

}

The -V"OPTIMIZE=NOINLINE" and the -V'NOOPTIMIZE" options disable all
#pragm.a inline directives that appear in your source code.

The #pragma noline can be used selectively to identify functions that are not to
be expanded inline, even when the -V"OPTIMIZE=INLINE" option is used on the
vcc command line. The #pragm.a noinline directive has the following format:

#pragma noinline (id, ...)

id
Is a C function identifier.

9.5.2.1 Restrictions on lnline Expansion

If a function is to be expanded inline, you must place the function definition in
the same module as the function call. The definition can appear either before or
after the function call.

Functions cannot be expanded inline if they perform the following tasks:

• Take the address of an argument.

• Use an index expression that is not a compile-time constant in an array that
is a field of a struct argument. An argument that is a pointer to a struct is
not restricted.

• Use the varargs package to access the function's arguments because they
require arguments to be in adjacent memory locations, and inline expansion
may violate that requirement.

When automatic inline expansion is not possible, no error or warning message is
produced. When you explicitly request inline expansion by using the #pragma
inline directive, a warning message is produced if inline expansion cannot be
done.

9-10 Preprocessor Directives

9.5.3 #pragma [no]member_alignment Directive

By default, VAX C/ULTRIX aligns structure members on their natural bound­
aries. However, you can use #pragma nomember_alignment to explicitly
specify member alignment on byte boundaries.

The #pragma member_alignment directive has the following format:

#pragma [no]member_alignment

When #pragma member_alignment is used (or defaulted), the compiler aligns
structure members on the next boundary appropriate to the type of the member,
rather than on the next byte. For instance, a long variable is aligned on the next
longword boundary; a short variable is aligned on the next word boundary.

Consider the following example:

#pragma nomember_alignment

struct x {
char c;
int b;
} ;

#pragma member_alignment

struct y
char c;
int b;

/*3 bytes of filler follow c */

main ()

} ;

printf("The sizeof y is: %d\n", sizeof (struct y));
printf("The sizeof xis: %d\n", sizeof (struct x));

When this example is executed, it shows the difference between #pragma
member_alignment and the directive #pragma nomember_alignment.
The difference can also be seen by compiling -V x.lis -V show=symbols and
comparing the listed information for the two structures.

Once used, the nomember_alignment pragma remains in effect until the
member_alignment pragma is encountered.

9.5.4 #pragma [no]standard Directive

Use #pragma nostandard to tell VAX C to ignore the current setting of the -V
standard=portable option until further notice. It has no effect if the qualifier is
not specified.

The #pragma nostandard directive has the following format:

#pragma nostandard

Use #pragma standard to tell VAX C to reinstate the setting of the
-V standard=portable option. This pragma does not turn on portability
checking if the -V standard=portable option is not specified on the vcc
command line.

The #pragma standard directive has the following format:

#pragma standard

Preprocessor Directives 9-11

The nostandard and standard pragmas are together to define regions of source
code where portability diagnostics are never to be issued. The following example
demonstrates the use of these pragmas:

#pragma nostandard
extern noshare FILE *stdin, *stdout, *stderr;
#pragma standard

In this example, nostandard prevents the NONPORTCLASS diagnostic from
being issued against the noshare storage-class modifier, which is VAX C specific.

9-12 Preprocessor Directives

Chapter 10

Predefined Macros and Built-In Functions

This chapter describes the following topics:

• Predefined macros

• Built-in functions

VAX C predefines these macros and functions for your programming convenience.
The macros assist in transporting code and performing simple tasks that are
common to many programs. The built-in functions access VAX instructions very
efficiently.

10.1 Predefined Macros

The following sections describe the VAX C predefined macros for use in
your programs.

10.1.1 System-Identification Macros

VAX C automatically defines macros that can be used to identify the system on
which the program is running. These macros can assist in writing code that
executes conditionally, depending on whether the program is running on a Digital
system or some other system. These symbols are defined as if the following text
fragment were included by the compiler before every compilation source group:

:fl:def ine bsd4 2
:fl:def ine ultrix
:fl:def ine unix
:fl:def ine vax
:fl:def ine VAX
:fl:def ine vaxc
#define VAXC
:fl:def ine vaxllc
:fl:def ine VAXllC

1
1
1
1
1
1
1
1
1

You can use these definitions to separate portable and nonportable code in any of
your VAX C programs.

You can use these symbols to conditionally compile VAX C programs used on
more than one operating system to take advantage of system-specific features.
See Section 9.2 for more information about using the preprocessor conditional
compilation directives.

Consider the following example:

#if VAXC
#include <descript.h>
:fl:endif

/* Include descriptor definitions */

Predefined Macros and Built-In Functions 10-1

10.1.2 CC$gfloat (G_Floating Identification Macro)

VAX C automatically defines a macro that can be used to identify whether you
are compiling your program using the G_floating option. This macro can assist
in writing code that executes conditionally, depending on whether the program is
running using D _:fioating or G_:fioating precision.

If you compile your program using the -Mg option, this symbol is defined as if
the following were included before every compilation source group:

#define CC$gf loat 1

If you did not compile your program using the -Mg option, this symbol is defined
as if the following were included before every compilation source group:

#define CC$gf loat 0

You can conditionally assign values to variables of type double without causing
an error and without being certain of how much storage was allocated for the
variable. For example, external variables may be assigned values as follows:

#if CC$gfloat
double x = 0.12e308; I* Range to 10 to the 308th power *I
#else
double x = 0.12e38; I* Range to 10 to the 38th power */
#endif

The VAX C compiler determines whether or not to substitute the value 1 for
every occurrence of the predefined identifiers in a program; these identifiers are
reserved by Digital. The effect of these definitions may be removed by explicitly
undefining the conflicting name. See Section 9.1.4 for more information about
undefining. For more information about the G_:fioating representation of the
double data type, see Chapter 7.

10.1.3 The __ DATE __ Macro

The __ DATE __ macro evaluates to a string specifying the date on which the
compilation started. The string presents the date in the following format:

Mmm-dd-yyyy

The first d is a space if dd is less than 10.

The following is an example of the __ DATE __ macro:

printf ("%s", __ DATE __);

10.1.4 The __ FILE __ Macro

The __ FILE __ macro evaluates to a string specifying the file specification of the
current source file. The following is an example of the __ FILE __ macro:

printf("file %s" __ FILE __);

10-2 Predefined Macros and Built-In Functions

10.1.5 The __ LINE __ Macro

The __ LINE __ macro evaluates to an integer specifying the number of the line in
the source file containing the macro reference. The following is an example of the
__ LINE __ macro:

printf ("At line %din file %s", LINE - - - - FILE __);

10.1.6 The __ TIME __ Macro

The __ TIME __ macro evaluates to a string specifying when the compilation
started. The string presents the time in the following format:

hh:mm:ss

The following is an example of the __ TIME __ macro:

printf ("%s", __ TIME __);

10.2 Built-In Functions

The following sections describe the built-in functions that allow you to directly
access the VAX hardware and machine instructions to perform operations that
are cumbersome, slow, or impossible in pure C.

These functions are very efficient because they are built into the VAX C compiler.
This means that a call to one of these functions does not result in a reference
to a function in the run-time library or to a function in your program. Instead,
the compiler generates the machine instructions necessary to carry out the
function directly at the call site. Because most of these built-in functions closely
correspond to single VAX machine instructions, the result is small, fast code.

Some of these built-in functions (such as those that operate on strings or bits) are
of general interest. Others (such as the functions dealing with process context)
are of interest if you are writing device drivers or other privileged software. Some
of the functions discussed in the following sections are privileged and unavailable
to user mode programs.

You must place the following pragma in your source file before using one or more
built-in functions:

#pragma builtins

Some of the built-in functions have optional arguments or allow a particular
argument to have one of many different types. To describe the different legal
combinations of arguments, the description of each built-in function may list
several different prototypes for the function. As long as a call to a built-in
function matches one of the prototypes listed, the call is legal. Furthermore,
any legal call to a built-in function acts as if the corresponding prototype were
in scope. Thus, the compiler performs the argument checking and argument
conversions specified by that prototype.

The majority of the built-in functions are named after the VAX instruction that
they generate. The built-in functions provide direct and unencumbered access
to those VAX instructions. Any inherent limitations to those instructions are
limitations to the built-in functions as well. For instance, the MOVC3 instruction
and the _MOVC3 built-in function can move at most 65,535 characters.

Predefined Macros and Built-In Functions 10-3

10.2.1 Add Aligned Word Interlocked LADAWI)

The _ADAWI function adds its source operand to the destination. This function
is interlocked against similar operations by other processors or devices in the
system.

The _ADAWI function has the following formats:

int _ADAWl(short src, short *dest);
int _ADAWl(short src, unsigned short *dest);

src
Is the value to be added to the destination.

dest
Is a pointer to the destination. The destination must be aligned on a word
boundary. (One way to achieve alignment is to use _align.)

There are three possible return values, as follows:

• -1, if the sum when considered to be a signed number is negative

• 0, if the sum is zero

• 1, if the sum is positive

10.2.2 Branch on Bit Clear-Clear Interlocked LBBCCI)

The _BBCCI function performs the following functions in interlocked fashion:

• Returns the complement of the bit specified by the two arguments

• Clears the bit specified by the two arguments

The _BBCCI function has the following format:

int _BBCCl(int position, void *address);

position
Is the position of the bit within the field.

address
Is the base address of the field.

The return value is 0 or 1, which is the complement of the value of the specified
bit before being cleared.

10.2.3 Branch on Bit Set-Set Interlocked LBBSSI)

The _BBSSI function performs the following functions in interlocked fashion:

• Returns the status of the bit specified by the two arguments

• Sets the bit specified by the two arguments

The _BBSSI function has the following format:

int _BBSSl(int position, void *address);

10-4 Predefined Macros and Built-In Functions

position
Is the position of the bit within the field.

address
Is the base address of the field.

The return value is 0 or 1, which is the value of the specified bit before
being set.

10.2.4 Find First Clear Bit LFFC)

The _FFC function finds the position of the first clear bit in a field. The bits are
tested for clear status starting at bit 0 and extending to the highest bit in the
field.

The _FFC function has the following format:

int _FFC(int start, char size, canst void *base, int *position);

start
Is the start position of the field.

size
Is the size of the field, in bits. The size must be a value from 0 to 32 bits.

base
Is the address of the field.

position
Is the address of an integer to receive the position of the clear bit. If no bit is
clear, the integer is set to the position of the first bit to the left of the last
bit tested.

There are two possible return values, as follows:

• 0, if all bits in the field are set

• 1, if a bit with value 0 is found

10.2.5 Find First Set Bit LFFS)

The _FFS function finds the position of the first set bit in a field. The bits are
tested for set status starting at bit 0 and extending to the highest bit in the field.

The _FFS function has the following format:

int _FFS(int start, char size, canst void *base, int *position);

start
Is the start position of the field.

size
Is the size of the field, in bits. The size must be a value from 0 to 32 bits.

base
Is the address of the field.

Predefined Macros and Built-In Functions 1~5

position
Is the address of an int to receive the position of the set bit. If no bit is set, the
integer is set to the position of the first bit to the left of the last bit tested.

There are two possible return values, as follows:

• 0, if all bits in the field are clear

• 1, if a bit with value 1 is found

10.2.6 Halt LHALT)

The _HALT function halts the processor when executed by a process running in
kernel mode. This is a privileged function.

The _HALT function has the following format:

void _HALT(void);

10.2. 7 Insert Entry into Queue at Head Interlocked LINSQHI)

The _INSQHI function inserts an entry into the front of a queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system.

The _INSQHI function has the following format:

int _INSQHl(void *new_entry, void *head);

new_entry
Is a pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary. (One way to achieve alignment is to use _align.)

head
Is a pointer to the queue header. The header must be aligned on a quadword
boundary. (One way to achieve alignment is to use _align.)

There are three possible return values, as follows:

• 0, if the entry was inserted, but it was not the only entry in the list

• 1, if the entry was not inserted because the secondary interlock failed

• 2, if the entry was inserted and it was the only entry in the list

10.2.8 Insert Entry into Queue at Tail Interlocked LINSQTI)

The _INSQTI function inserts an entry at the end of a queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system.

The _INSQTI function has the following format:

int _INSQTl(void *new_entry, void *head);

10-6 Predefined Macros and Built-In Functions

new_entry
Is a pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary. (One way to achieve alignment is to use _align.)

head
Is a pointer to the queue header. The header must be aligned on a quadword
boundary. (One way to achieve alignment is to use _align.)

There are three possible return values, as follows:

• 0, if the entry was inserted, but it was not the only entry in the list

• 1, if the entry was not inserted because the secondary interlock failed

• 2, if the entry was inserted and it was the only entry in the list

10.2.9 Insert Entry in Queue LINSQUE)

The _INSQUE function inserts a new entry into a queue following an existing
entry.

The _INSQUE function has the following format:

int _INSQUE(void *new_entry, void *predecessor};

new_entry
Is a pointer to the new entry to be inserted.

predecessor
Is a pointer to an existing entry in the queue.

There are two possible return values, as follows:

• 0, if the entry was the only entry in the queue

• 1, if the entry was not the only entry in the queue

10.2.10 Load Process Context LLDPCTX)

The _LDPCTX function restores the register and memory-management context.
This is a privileged function.

The _LDPCTX function has the following format:

void _LDPCTX(void};

10.2.11 Locate Character LLOCC)

The _LOCC function locates the first character in a string matching the target
character.

The _LOCC function has the following formats:

int _LOCC(char target, unsigned short length,
canst char *string};

int _LOCC(char target, unsigned short length,
canst char *string, char **position};

Predefined Macros and Built-In Functions 10-7

target
Is the character being searched.

length
Is the length of the searched string. The length must be a value from 0 to 65,535.

string
Is a pointer to the searched string.

position
Is a pointer to a pointer to a character. If the searched character is found, the
pointer pointed to by position is updated to point to the character found. If the
character is not found, the pointer pointed to by position is set to the address one
byte beyond the string. This is an optional argument.

If the target character is found, the return value is the number of bytes remaining
in the string; otherwise, the return value is 0.

10.2.12 Move from Processor Register LMFPR)

The _MFPR function returns the contents of a processor register. This is a
privileged function.

The _MFPR function has the following formats:

void _MFPR(int register_num, int *destination);
void _MFPR(int register_num, unsigned int *destination);

register_num
Is the number of the privileged register to be read.

destination
Is a pointer to the location receiving the value from the register. This location
may be a signed or unsigned int.

10.2.13 Move Character 3 Operand LMOVC3)

The _MOVC3 function copies a block of memory. It is the preferred way to copy a
block of memory to a new location.

The _MOVC3 function has the following formats:

void _MOVC3(unsigned short length, const char *src, char *dest);

void _MOVC3(unsigned short length, const char *src, char *dest,
char **endsrc);

void _MOVC3(unsigned short length, canst char *src, char *dest,
char **endsrc, char **enddest);

length
Is the length of the source string, in bytes. The length must be a value from 0 to
65,535.

src
Is a pointer to the source string.

dest
Is a pointer to the destination memory.

10-8 Predefined Macros and Built-In Functions

endsrc
ls a pointer to a pointer. The _MOVC3 function sets the pointer that is pointed
to by endsrc pointing to the address of the byte beyond the source string. It is
optional if the enddest argument is not given.

enddest
ls a pointer to a pointer. The _MOVC3 function sets the pointer pointed to
by endsrc to the address of the byte beyond the destination string. This is an
optional argument.

10.2.14 Move Character 5 Operand LMOVC5)

The _MOVC5 function allows the source string specified by the pointer and
length pair to be moved to the destination string specified by the other pointer
and length pair. If the source string is smaller than the destination string, the
destination string is padded with the specified character.

The _MOVC5 function has the following formats:

void _MOVC5(unsigned short srclen, const char *src, char fill,
unsigned short destlen, char *dest);

void _MOVC5(unsigned short srclen, canst char *src, char fill,
unsigned short destlen, char *dest,

unsigned short *unmoved_src);

void _MOVC5(unsigned short srclen, canst char *src, char fill,
unsigned short destlen, char *dest,

unsigned short *unmoved_src, char **endsrc);

void _MOVC5(unsigned short srclen, canst char *src, char fill,
unsigned short destlen, char *dest,

unsigned short *unmoved_src, char **endsrc,
char ** enddest);

srclen
Is the length of the source string, in bytes. The length must be a value from 0 to
65,535.

src
Is a pointer to the source string.

till
ls the fill character to be used if the source string is smaller than the destination
string.

destlen
ls the length of the destination string, in bytes. The length must be a value from
0 to 65,535.

dest
Is a pointer to the destination string.

unmoved_src
ls a pointer to a short integer that the _MOVC5 function sets to the number of
unmoved bytes remaining in the source string.

Predefined Macros and Built-In Functions 10-9

endsrc
Is a pointer to a pointer. The _MOVC5 function sets the pointer pointed to by
endsrc pointing to the address of the byte beyond the source string. It is optional
if the enddest argument is not given.

enddest
Is a pointer to a pointer. The _MOVC5 function sets the pointer pointed to
by endsrc to the address of the byte beyond the destination string. This is an
optional argument.

10.2.15 Move from Processor Status Longword LMOVPSL)

The _MOVPSL function stores the value of the Processor Status
Longword (PSL).

The _MOVPSL function has the following formats:

void _MOVPSL(int *psi);
void _MOVPSL(unsigned int *psi);

psi
Is the address of the location for storing the value of the Processor Status
Longword.

10.2.16 Move to Processor Register LMTPR)

The _MTPR function loads a value into one of the special processor registers. It
is a privileged function.

The _MTPR function has the following format:

int _MTPR(int src, int register_num);

src
Is the value to store into the processor register.

register_num
Is the number of a privileged register to be updated.

The return value is the V condition flag from the Processor Status
Longword (PSL).

10.2.17 Probe Read Accessibility LPROBER)

The _PROBER function checks to see if you can read the first and last byte of the
given address and length pair.

The _PROBER function has the following format:

int _PROBER(char mode, unsigned short length, const void *address);

mode
Is the processor mode used for checking the access.

length
Is the length of the memory segment, in bytes. The length must be a value from
0 to 65,535.

10-10 Predefined Macros and Built-In Functions

address
Is the pointer to the memory segment to be tested for read access.

There are two possible return values, as follows:

• 0, if both bytes are not accessible

• 1, if both bytes are accessible

10.2.18 Probe Write Accessibility LPROBEW)

The _PRO BEW function checks the write accessibility of the first and last byte of
the given address and length pair.

The _PROBEW function has the following format:

int _PROBEW(char mode, unsigned short length, const void *address);

mode
Is the processor mode used for checking the access.

length
Is the length of the memory segment, in bytes. The length must be a value from
0 to 65,535.

address
Is the pointer to the memory segment to be tested for write access.

There are two possible return values, as follows:

• 0, if both bytes are not accessible

• 1, if both bytes are accessible

10.2.19 Read General-Purpose Register LREAD _ GPR)

The _READ_GPR function returns the value of a general-purpose register.

The _READ_GPR function has the following format:

int _READ_GPR(int register_num);

register_num
Is an integer constant expression giving the number of the general-purpose
register to be read.

The return value is the value of the general-purpose register.

10.2.20 Remove Entry from Queue at Head Interlocked LREMQHI)

The _REMQHI function removes the first entry from the queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system.

The _REMQHI function has the following format:

int _REMQHl(void *head, void **removed_entry);

Predefined Macros and Built-In Functions 10-11

head
Is a pointer to the queue header. The header must be aligned on a quadword
boundary. (One way to achieve alignment is to use _align.)

removed_entry
Is a pointer to a pointer that _REMQHI sets to point to the removed entry.

There are four possible return values, as follows:

• 0, if the entry was removed and the queue has remaining entries

• 1, if the entry could not be removed because the secondary interlock failed

• 2, ifthe entry was removed and the queue is now empty

• 3, ifthe queue was empty

10.2.21 Remove Entry from Queue at Tail Interlocked LREMQTI)

The _REMQTI function removes the last entry from the queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system.

The _REMQTI function has the following format:

int _REMQTl(void *head, void **removed_entry);

head
Is a pointer to the queue header. The header must be aligned on a quadword
boundary. (One way to achieve alignment is to use _align.)

removed_entry
Is a pointer to a pointer that _REMQTI sets to point to the removed entry.

There are four possible return values, as follows:

• 0, if the entry was removed and the queue has remaining entries

• 1, if the entry could not be removed because the secondary interlock failed

• 2, if the entry was removed and the queue is now empty

• 3, ifthe queue was empty

10.2.22 Remove Entry from Queue LREMQUE)

The _REMQUE function removes an entry from a queue.

The _REMQUE function has the following format:

int _REMQUE(void *entry, void **removed_entry);

entry
Is a pointer to the queue entry to be removed.

removed_entry
Is a pointer to a pointer that _REMQUE sets to the address of the entry removed
from the queue.

There are three possible return values, as follows:

• 0, if the entry was removed and the queue has remaining entries

10-12 Predefined Macros and Built-In Functions

• 1, ifthe entry was removed and the queue is now empty

• 2, ifthe queue was empty

10.2.23 Scan Characters LSCANC)

The _SCANC function locates the first character in a string with the desired
attributes. The attributes are specified through a table and a mask.

The _SCANC function has the following formats:

int _SCANC(unsigned short length, canst char *string,
con st char *table, char mask);

int _SCANC(unsigned short length, canst char *string,
canst char *table, char mask, char **match);

length
Is the length of the string to scan, in bytes. The length must be a value from 0 to
65,535.

string
Is a pointer to the string to scan.

table
Is a pointer to the table.

mask
Is the mask.

match
Is a pointer to a pointer that the _SCANC function sets to the address. of the byte
that matched. (If no match occurs, it is set to the address of the byte following
the string.) This is an optional argument.

The return value is the number of bytes remaining in the string if a match was
found; otherwise, the return value is 0.

10.2.24 Simple Read LSIMPLE_READ)

The _SIMPLE_READ function reads 1/0 registers or shared memory. It causes
a MOVB, MOVW, or MOVL instruction to be generated that cannot be moved or
modified during optimization.

The _SIMPLE_READ function has the following formats:

char _SIMPLE_READ(const char *source);
short _SIMPLE_READ(const short *source);
int _SIMPLE_READ(const int *source);
long _SIMPLE_READ(const long *source);

source
Is a pointer to the source to be read. The object being pointed to must be a signed
integer. The type of the object pointed to determines the type of the function
result.

The return value is the value of the specified source.

Predefined Macros and Built-In Functions 10-13

10.2.25 Simple Write LSIMPLE_ WRITE)

The _SIMPLE_ WRITE function writes to I/O registers or shared memory. It
causes a MOVB, MOVW, or MOVL instruction to be generated that cannot be
moved or modified during optimization.

The _SIMPLE_ WRITE function has the following formats:

void _SIMPLE_WRITE(char value, char *dest);
void _SIMPLE_WRITE(short value, short *dest);
void _SIMPLE_WRITE(int value, int *dest);
void _SIMPLE_WRITE(long value, long *dest);

value
Is the value to be stored. The type of the destination argument determines the
type of this argument.

dest
Is a pointer to the destination. The type of the object pointed to by dest must
be a signed integer type. The type of this object determines the type of the first
argument to this function.

10.2.26 Skip Character LSKPC)

The _SKPC function locates the first character in a string that does not match
the target character.

The _SKPC function has the following formats:

int _SKPC(char target, unsigned short length, canst char *string);

int _SKPC(char target, unsigned short length, const char *string,
char **position);

target
Is the target character.

length
Is the length of the string, in bytes. The length must be a value from
0 to 65,535.

string
Is a pointer to the string to scan.

position
Is a pointer to a pointer. The _SK.PC function sets the pointer pointed to by
position to the address of the nonmatching character. (If all the characters
match, it is set to the address of the first byte beyond the string.) This is an
optional argument.

The return value is the number of bytes remaining in the string if an unequal
byte was located; otherwise, the return value is 0.

10-14 Predefined Macros and Built-In Functions

10.2.27 Span Characters LSPANC)

The _SPANC function locates the first character in a string without certain
attributes. The attributes are specified through a table and a mask.

The _SPANC function has the following formats:

int _SPANC(unsigned short length, const char *string,
con st char *table, char mask);

int _SPANC(unsigned short length, const char *string,
const char *table, char mask, char **position);

length
ls the length of the string, in bytes. The length must be a value from 0 to 65,535.

string
Is a pointer. It points to the string to be scanned.

table
Is a pointer to the table.

mask
Is the mask.

position
Is a pointer to a pointer. The _SPANC function sets the pointer pointed to by
position to the address of the byte that does not match the attributes. (If all the
characters in the string match, this pointer is set to the address of the first byte
beyond the string.) This is an optional argument.

The return value is the number of bytes remaining in the string if a match was
found; otherwise, the return value is 0.

10.2.28 Save Process Context LSVPCTX)

The _SVPCTX function saves the context of a process. The general-purpose
registers are saved in the process control block, which is later used to resume a
process. This function is privileged.

The _SVPCTX function has the following format:

void _SVPCTX(void);

10.2.29 Write General-Purpose Register LWRITE_GPR)

The _ WRITE_GPR function loads a value into a specified general-purpose register.

The _ WRITE_GPR function has the following format:

void _WRITE_GPR(int value, int register_num);

value
Is the value to load into the register.

register_num
Is an integer constant expression giving the number of the general-purpose
register to be loaded. The register number must be a value from 0 to 15.

Predefined Macros and Built-In Functions 10-15

Appendix A

The lk Linker

This appendix describes the command-line interface to the lk linker. The lk
linker is invoked when you specify the -V lk_object option on the vcc command
line.

You must invoke the lk linker to link files produced by a version of vcc prior to
Version 4.0 or files with a .obj extension. The default Id linker cannot link these
files.

The lk linker, like the Id linker, is a linkage editor utility. It takes object modules
as input and builds an executable image as output. The main purpose of both
linkers is to resolve external references between modules in the program.

The output from the lk linker is a standard ULTRIX a.out object module.

A.1 The lk Command Line

The lk command line has the following format:

lk [-option [option-args]] ... file ...

-option [option-args]
The lk command options are almost identical to the options accepted by the Id
command, and both linkers process the options in the same fashion (that is, the
individual options have the same effects). The only differences are that the Id
command options -A, -d, and -r are not supported by the lk command, and the
lk command option -K is not supported by the Id command.

NOTE

All lk command options can be specified with the vcc command.

Table A-1 describes the options for the lk command.

file
Files specified on the lk command line may be object files or library files. If a
file is an object file (identified by the OMAGIC, NMAGIC, or ZMAGIC number
at the appropriate place in the file), the linker processes the file's contents and
concatenates the output to the program that it is building. Thus, the order in
which object files are presented to the linker determines the order in which
routines appear in the resulting program.

If the file is an archive library (identified by the presence of ARMAGIC at
the appropriate place in the file), the linker searches the files in the library
sequentially once for unresolved external symbols. If a resolution is found,
that file is incorporated in the program being built and the search continues
(possibly with new external symbols from the newly loaded file). If the library

The lk Linker A-1

contains a ranlib-built dictionary file (_SYMDEF), the linker searches the
dictionary iteratively to satisfy as many external references as possible instead of
sequentially searching the archive.

Table A-1: Command Options Supported by the lk Linker

Command
Option

-A pathname

-D number

-e symbol

-H number

-Ix

-K

-M

-N

-n

-o file

-S

-s

A-2 The lk Linker

Description

Puts incremental loading in effect. Linking is to be done so that the
resulting object can be read into a program that is executing. The
argument is the name of a file whose symbol table will be used to
define additional symbols. Only newly linked material is entered into
the text and data portions of a.out, but the new symbol table reflects
every symbol defined before and after the incremental load. This
argument must appear before any other object file in the argument
list. You can use the -T option as well, which means that the newly
linked segment will begin at the corresponding address (which must be
a multiple of 1024). The default value is the old value of _end.

Sets the data segment length. Number is a number specifying the
desired length of the data segment. The link.er pads the data segment
with 0 bytes to this length.

Sets the entry point. Symbol is the name of the entry point for the
program. The default is location 0.

Sets the start of the data section. The link.er adds the specified number
to the end of the text address and causes the data section to start at
that address.

Specifies a search library. The linker searches library /lib/libx.a
(where xis the string specified as an argument to the -I option) for
unresolved symbols. If this library does not exist, the linker searches
/usr/lib/libx.a. If unresolved symbols remain, the linker tries /usr/local
/lib/libx.a. The positioning of the -I option on the command line is
significant: library searching occurs at the point in the link where the
option occurs.

Produces a full load map. The load map lists the files and modules
included in the program, the aliocation of psects to memory, and a
cross-reference of all symbols (by name and by value). The map file is
name.map, where name is the file name of the output file (as specified
by the -o option). See Chapter 2 for a sample listing of a map file.

Produces a short load map. -M is the same as -K, except that the sym­
bolic cross-reference includes only those symbols that were referenced.

The link.er produces a file in OMAGIC format. The text portion of the
file will be read/write and not shared.

The link.er produces a file in NMAGIC format. The text portion of
the file will be read-only and shared among all users executing the
file. The data segment starts at the first possible 1024-byte boundary
following the end of the text segment.

Sets the output file name. The link.er uses file as the name for the
output file. The default is a.out.

Removes some symbols. The linker does not include any symbols in the
a.out file except for locals and globals.

Removes all symbols and relocation information. The linker does not
include any symbols or relocation information in the a.out file.

(continued on next page)

Table A-1 {Cont.): Command Options Supported by the lk Linker

Command
Option

-T number

-t

-u symbol

-X

-x

-Y [option]

-y symbol

-z

Description

Sets the text segment origin. The linker offsets the beginning of the
text segment at the address given by the hexadecimal number specified
as number. The default is 0.

Traces. The linker writes the name of each file to standard output as it
is processed.

Sets an undefined symbol. The linker adds the symbol name specified
by symbol as an undefined symbol in the symbol table. This option
is useful when loading entirely from libraries, since the symbol table
is empty initially and an unresolved reference is needed to force the
loading of the first routine.

Removes symbols starting with L. The linker does not include symbols
starting with L in the symbol table of the a.out file. Some compilers
use such names for internally generated labels. The -X option provides
a way to eliminate just these names.

Removes local symbols. The linker includes only global symbols in the
symbol table of the a.out file.

Compile file for one of the following options: SYSTEM_FIVE, BSD, or
PO SIX.

Traces a symbol. The linker indicates each file that the specified
symbol appears in and whether the file defines or references it. The -y
option may occur many times to trace several symbols.

The linker generates a.out in ZMAGIC format. The program is loaded
on demand instead of being preloaded. This is the default format.
The a.out header is 1024 bytes long. The text and data segments are
padded with 0 bytes to the next higher 1024-byte boundary.

A.2 Linker Processing

The lk linker processes two different kinds of entities when building the
executable program image: modules and program sections (psects).

A module is a unit of program compilation. There is usually one module per object
file or library element. Some language translators, such as the as assembler, do
not generate explicit modules. The linker assumes these translators to have one
module consisting of the entire object file or library element.

A program section is a unit of virtual memory allocation. A program section
specifies the attributes of the virtual memory to be allocated (for example,
executable as opposed to data, read-only as opposed to read/write, absolute as
opposed to relocatable, initialized as opposed to uninitialized). The linker uses
the attributes of a program section to assign virtual memory addresses to the
module contributions and to the symbols defined in the modules.

The psect also indicates the boundary alignment required for the segment of
virtual memory. The data in an object module specifies, either explicitly or
implicitly, the program section where the executable code and data in the module
are to be allocated.

The lk Linker A-3

A.2.1 Program Section Attributes

This section describes each program section attribute and its effect on image
processing by the lk linker. The attributes are grouped into mutually exclusive
pairs as follows:

• Relocatable (REL) and Absolute (ABS)

A relocatable program section is one that the linker can position in virtual
memory according to the memory allocation strategy for the type of image
being produced.

The linker does not allocate virtual memory for an absolute program section.
An absolute program section has no data or code, and appears as if it were
based at virtual address 0. Absolute program sections are used primarily to
define global symbols.

• Concatenated (CON) and Overlaid (OVR)

These attributes govern how the linker allocates virtual memory to program
section contributions from more than one module.

If the program section has the concatenated attribute, the linker places each
module's contribution in contiguous memory addresses. For example, if both
modulea and moduleb contribute to program section psectl, and psectl has
the concatenated attribute, the linker allocates virtual memory for modulea's
contribution and then allocates additional space for moduleb's contribution.
Thus, the total size of a program section defined with the concatenated
attribute is the sum of each module's contribution plus any padding allowed
for individual alignments.

If the program section has the overlaid attribute, the linker assigns each
module's contribution the same base address, so that the contributions
overlay each other. The total size of an overlaid program section is the size
of the largest contribution. Any contribution to an overlaid program section
can initialize the contents of the section. However, the final contents are
determined by the last contributing module. Thus, the order in which you
specify input modules is important.

VAX FORTRAN common blocks and C external variables are implemented
with overlaid program sections.

• Writeability (WRT and NOWRT)

The writeability attribute determines whether the contents of the program
section are protected against modification when you execute the program.
Program sections with the nonwriteable attribute are allocated in the text
section of the image. Program sections with the writeable attribute are
allocated in the data or BSS sections, based on the modified attribute.

• Modified (MOD) and Unmodified (NOMOD)

The modified attribute tells the linker whether any modules initialize the
contents of the program section. Writeable, unmodified program sections are
the only ones that the linker places in the BSS section of the image.

• Alignment

The program section alignment attribute specifies the power-of-two boundary
on which the linker is to align the program section code or data. The linker
can align on any power of two in the range 0 (byte alignment) to 9 (512-byte
boundary alignment).

• Local (LCL) and Global (GBL) Scope

A-4 The lk Linker

If the global and overlaid attributes occur together, the program section
is subject to special treatment from the linker for resolving references to
.COMM symbols and to symbols with the same name as the program section.
See Section A.2.3 for a description of how this is handled.

The following attributes are reserved for possible future implementation:

• Executability (EXE and NOEXE)

• Readability (RD and NORD)

• Position Independence (PIC and NOPIC)

• Shareability (SHR and NOSHR)

• User (USR) and Library (LIB)

• Protection (VEC and NOVEC)

A.2.2 Virtual Memory Allocation by the Linker

An ULTRIX executable program image file contains three virtual memory
sections: a program text (executable code) section, an initialized data section,
and a BSS (uninitialized data) section. The linker allocates virtual memory to
the sections in that order: text, initialized data, BSS. The linker orders program
sections in each image virtual memory section according to the program section
attributes, as follows:

Image Section Program Section Attributes

text NOWRT EXE NOVEC
NOWRT EXE VEC
NOWRT NO EXE NOVEC
NOWRT NO EXE VEC

data WRT EXE NOVEC MOD
WRT EXE VEC MOD
WRT NO EXE NOVEC MOD
WRT NO EXE VEC MOD

BSS WRT NOMOD

Within an attribute group, the linker allocates program sections in alphabetical
program section name order, with one exception: program section ULT$TEXT
always occurs first in the text section.

Program sections with the global and overlaid attributes are handled in a special
way. The linker constructs a new name by converting the program section
name to lowercase and prefixing an underscore to it. If this name matches a
symbol defined in a program section with different attributes (that is, other than
GBL,OVR), the linker bases the global, overlaid program section at the virtual
address given by the value of the symbol that was matched. This processing
allows global, overlaid program sections to be initialized from a.out-format
modules created by the as assembler, VAX. C compiler, portable C compiler,
portable Pascal compiler, and fl7 compiler.

The lk Linker A-5

The virtual memory base address for the program image sections themselves
depends on the type of image being generated as follows:

• Read/Write Text (OMAGIC format)

The data section immediately follows the end of the text section, plus any
padding specified by the -H command option. The BSS section immediately
follows the end of the data section, plus any padding specified by the -D
command option.

• Read-Only Text (NMAGIC format)

The data section starts on the next page (1024-byte) boundary following the
end of the text section, plus any padding from the -H command option. The
BSS section immediately follows the end of the data section, plus any padding
specified by the -D command option.

• Demand Loadable (ZMAGIC format)

The data section starts on the next page (1024-byte) boundary following
the end of the text section, plus any padding from the -H command option.
The data segment, plus any padding specified by the -D command option,
is padded to the next highest page boundary. Thus, the BSS section starts
on the next page boundary following the end of the data section plus any
padding specified by the -D command option. However, the linker will
allocate program sections with the modified attribute starting at the end of
the data section (plus -D value) to avoid wasting the space resulting from
data segment roundup.

A.2.3 Special Processing for Modules Produced by the Id Linker

Modules in a.out(5) format, the format generated by the as assembler and
processed by the Id linker, receive some special processing from the lk linker.
These modules do not have any explicit module or program section declarations,
and some symbols require special handling. The special rules for files and library
elements with a.out(5) format are as follows:

• The linker considers the file or library element to be a single module with the
same name as the file or library element.

• The module declares and makes contributions to three program sections.

A-6 The lk Linker

All program sections and contributions have alignment value 2 (longword
alignment).

1. The following program section receives the contents of the text section of
the module:

ULT$TEXT (PIC, USR, CON, REL, GBL, EXE, RD, NOWRT, NOVEC, MOD)

2. The following program section receives the contents of the data section of
the module:

ULT$DATA (PIC, USR, CON, REL, GBL, NOEXE, RD, WRT, NOVEC, MOD)

3. The following program section receives the contents of the BSS sec­
tion of the module, and the symbols from the linker-generated module
$$COMSYMS:

ULT$COMM (PIC, USR, CON, REL, GBL, NOEXE, RD, WRT, NOVEC, NOMOD)

• The linker processes .COMM symbols from modules with a.out(5) format
in a special way. These symbols represent C external variables, COMMON
areas from the f77 compiler, and other such entities that the linker normally
processes as program sections with the overlaid attribute.

If the name of a .COMM symbol matches a symbol that is defined
elsewhere and is not a .COMM symbol, the .COMM symbol is treated as a
reference to that symbol.

If the name of a .COMM symbol matches the name of a program section
with the global and overlaid attributes (after the program section name is
converted to lowercase and prefixed with an underscore), the linker treats
the . COMM symbol as a reference to offset 0 in that program section.

If neither of the previous two conditions apply, the linker increases
the size of program section $$COMSYMS. The size of the increase is
the largest length attribute encountered for that .COMM symbol. The
.COMM symbol is considered a definition of that name and its value is the
offset of the contribution from the start of program section $$COMSYMS.

The lk Linker A-7

Appendix B

Diagnostic Messages

B.1 Diagnostic Messages from the vcc Command

This section lists the diagnostic messages that can be generated by the vcc
command program. For each message, the description gives the message text, an
explanation of the message, and suggested actions to correct the error.

error: no optimization allowed with debug

Warning: You invoked the vcc command with both the -0 option and
the -g option. VAX C provides debugging, but not optimization and
debugging at the same time.

User Action: In the future, invoke the debugger without the -0 option
to avoid this error.

error: unable to execute the assembler

Fatal: Either the as assembler is not available on the system or there is
a protection violation that prevents its use.

User Action: Check that the as assembler is available and that its
protection is set to r-x.

error: unable to execute the compiler

Fatal: Either the VAX C compiler is not available on the system or
there is a protection violation that prevents its use.

User Action: Check that the VAX C compiler is available and that its
protection is set to r-x.

error: unable to execute the linker

Fatal: Either the linker is not available on the system or there is a
protection violation that prevents its use.

User Action: Check that the linker is available and that its protection
is set to r-x.

error: unable to execute the om

Fatal: Either the om utility is not available on the system or there is a
protection violation that prevents its use.

User Action: Check that the om utility is available and that its
protection is set to r-x.

Diagnostic Messages 8-1

error: unable to execute the preprocessor

Fatal: Either the c preprocessor (cpp) is not available on the system or
there is a protection violation that prevents its use.

User Action: Check that cpp is available and that its protection is set
to r-x.

error: will overwrite ****

Fatal: The listing file must not have a .c extension. Execution is halted
so that the specified file is not overwritten.

User Action: Change the listing file name so that the extension is not
.c.

B.2 Diagnostic Messages from the VAX C Compiler

This section lists the VAX C compiler diagnostic messages. The format of the
error messages is as follows:

"file-name", line nnn: %severity-mnemonic, msg

The file-name is replaced by the name of the source file that generated the
message, and nnn is replaced by the line number that identifies the location in
the source file where the error was detected. The error severity code is followed
by a hyphen that is followed by a brief mnemonic message abbreviation that
provides a key to the alphabetized list that appears later in this section. The last
part of the message, msg, is replaced by the message text that is associated with
the mnemonic.

The severity can be one of the following single-letter codes representing the
meanings shown:

F Fatal
E Error
W Warning
I Informational
S Success

For each message, the descriptions that follow give the mnemonic, the message
text, an explanation of the message, and suggested actions to correct the error.

Some messages substitute information from the program in the message text. In
this appendix, the portion of the text to be substituted is shown as 11 **** 11 or

****. If quotes appear around the asterisks, quotes appear in the substituted
message.

You can suppress the warning and informational messages with the
[no]warnings option on the vcc command line. You may want to do this so
that the compiler broadcasts only the most severe messages to the terminal. For
more information about the [NOJWARNINGS option, see Chapter 2.

ANACHRONISM, The 11 **** 11 operator is an obsolete form, and may not be
portable.

B-2 Diagnostic Messages

Informational: You used an old-style assignment operator such as=+
or=*.

User Action: For the program to be portable, reverse the order of the
operator parts. For example, change=+ to+= and change=* to*=. VAX
C still supports the old-style operators, but they may not be supported

by other C compilers, and they are not guaranteed to be supported in
future releases of VAX C.

ARGINVSTRPTR, The*** argument of 11 *** 11 built-in function is not a pointer
to structure or union with size: 1, 2, or 4 bytes.

Error: A built-in function that takes a struct argument was not passed
a struct of the appropriate size.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments.

ARGLISTOOLONG, Function reference specifies an argument list whose length
exceeds the VAX architecture limit.

Error: The size of your argument list in the function call exceeded 255
longwords.

User Action: Rewrite the function definition and function call with a
list whose member(s) take less space; for example, by passing floating­
point and structure arguments by reference rather than by value. Recall
that floating-point arguments occupy two longwords, and that structures
passed by value occupy as many longwords as are necessary to contain
the whole structure.

ARGNOFLOAT, The *** argument of 11 *** 11 builtin function may not be floating
point. The argument has been converted to an integer.

Warning: An argument to a built-in function has a floating-point type
when it should have an integer type.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments. If you wish to pass a float argument,
use an explicit cast.

ARGNOTINTPTR, The*** argument of 11 *** 11 builtin function is not a pointer
to integer.

Error: An argument to a built-in function does not have the required
type of pointer to some type of integer.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments. Check the arguments for missing
address-of operators(&).

ARGNOTLVALUE, The *** argument of 11 *** 11 builtin function is not an lvalue.

Error: An argument that is required to be an lvalue is a non-lvalue
expression.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments. Make sure the appropriate arguments
are !values.

ARGNOTPTRVAL, The*** argument of 11 *** 11 builtin function is not a pointer.

Error: An argument that is required to be some type of pointer does not
have a pointer type.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments. Check the arguments for missing
"address of' operators(&).

Diagnostic Messages B-3

ARGOVERFLOW, Length of the argument list for macro"****" exceeds buffer
capacity; overflowing argument(s) considered to be null.

Warning: The total length of the arguments in a macro reference
exceeded the compiler's capacity to store the arguments prior to substi­
tution.

User Action: Shorten or eliminate one or more arguments.

ARGREADONLY, The*** argument of"*** builtin function is read-only.

Error: An argument that is used by the function to modify memory is a
pointer to const or read-only memory.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments. Make sure that arguments that the
function uses to change memory point to writeable memory.

ARGSTOOFEW, Argument list for builtin function"***" contains too few
arguments; the builtin function is being ignored.

Error: Not all of the required arguments were specified.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments.

ARGSTOOMANY, Argument list for builtin function 11 ***" contains too many
arguments; excess arguments ignored.

Warning: A function was called with extra arguments.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments.

BADCODE, Invalid code generation sequence.

Fatal: An internal compiler error occurred.

User Action: Gather as much information as you can about the condi­
tions in effect when the error occurred, and submit an SPR.

BADPSECT, The program section (psect) specified by this statement has con­
flicting ' nowrite' attributes with another definition of the same
program section.

Warning: You specified two or more references to the same program
section, and the attributes of the references do not correspond.

For example, this message appears when two globaldef definitions exist
for the same name, but only one specifies the readonly storage class.

User Action: Make all references to a program section consistent.

BUGCHECK, Compiler bug check during ****. Submit an SPR with a problem

B-4 Diagnostic Messages

description.

Fatal: An internal error occurred during the specified phase of compila­
tion.

User Action: Gather as much information as possible about the condi­
tions under which the error occurred, including the phase of compilation,
and submit an SPR (see the Basic Installation Guide).

BUILTARGCONY, The*** argument of 11 *** 11 builtin function has been con-
verted from pointer to arithmetic type.

Warning: An argument that should have an integer or floating-point
type had a pointer type.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments. If you want to pass a pointer argument
to an arithmetic argument, use an explicit cast.

CANTINLINECALL, Can't inline this call to 11 **** 11 as requested because not
enough actual parameters are supplied in the call.

Informational: The number of parameters supplied in a call to the
function is fewer than the number of formal parameters declared
and used in the function. Function calls that do not supply enough
parameters will not be expanded inline.

User Action: Change the call so that all necessary parameters are
supplied, or eliminate unneeded formal parameters from the function.

CANTINLINECALL, Can't inline this call to 11 **** 11 as requested because an
offset into a by value parameter exceeds size of actual.

Informational: The actual value of a parameter provided in a call was
smaller in size than the corresponding formal parameter of the function.
Use of the formal parameter requires the full amount of storage. This
indicates that the type of the formal parameter does not match the type
of the actual value provided in the call.

User Action: Change either the formal parameter or the actual value
provided in the call so that the type of the formal parameter matches
the type of the actual value.

CANTINLINEPROC, Can't inline 11 **** 11 as requested because a variable offset
into a by value parameter is used.

Informational: A formal parameter is referenced with a run-time
variable subscript. This is usually a parameter of type struct containing
a field that is an array. Functions that use formal parameters in this
way will not be expanded inline.

User Action: Pass a pointer to the struct instead of the struct itself,
or remove the pragma that requests that the function be expanded
inline.

CANTINLINEPROC, Can't inline 11 **** 11 as requested because it declares an
exception handler.

Informational: It was requested that a function be expanded inline.
However, that function declares an exception handler. Since the function
would not have a call frame, it cannot have an exception handler if it is
to be expanded inline.

User Action: Eliminate the exception handler, or remove the pragma
that requests that the function be expanded inline.

Diagnostic Messages B-5

CANTINLINEPROC, Can't inline 11 **** 11 as requested because it takes the
address of a passed by value parameter.

Informational: The function uses operators such as & to take the
address of a formal parameter, or uses the varargs package. These
practices prevent inline expansion of the function because it may store
parameters in registers (which have no address) after inline expansion,
and because you may have been relying upon the parameters being
adjacent to each other in memory, which will not be true after inline
expansion.

User Action: If possible, code the function without using the address
of the parameter, or if an address is needed, then change the formal
parameter to be a pointer to the value. If the varargs package is used,
then remove the pragma requesting that the function be expanded
inline.

CASECONSTANT, Case label value is not a constant expression.

Error: You specified a value in a case label that was not a constant.

User Action: Replace the case value with a valid constant expression.

CMPLXINIT, 11**** 11 is too complex to initialize.

Warning: The depth of the indicated aggregate variable exceeded the
limit of 32 levels.

User Action: Simplify or correct the initializer list or declaration, or
initialize the variable within an assignment statement.

COMPILERR, Previous errors prevent continued compilation. Please correct
reported errors and recompile.

Fatal: The compiler detected too many errors to continue.

User Action: Correct the errors reported in the previous compiler
messages.

CONBUILTARG, Constant expression required for 11**** 11 argument of 11 **** 11

builtin function.

Error: Some built-in functions require that certain arguments be
constants or expressions that the compiler can evaluate at compile time
to produce a constant. If a nonconstant expression is used for any such
argument, this error message is issued.

User Action: Replace the offending argument expression with a con­
stant. If the structure of the program requires that the built-in function
be called with different values that can only be calculated at run time,
consider using a switch statement to call the built-in function with
different (constant) arguments on the basis of the run-time expression.

CONFLICTDECL, This declaration of 11 **** 11 conflicts with a previous declara-

B-6 Diagnostic Messages

tion of the same name.

Warning: The compiler determined that both declarations see the same
object, yet the two declarations conflict in data-type or storage-class
organization.

In addition, for external variables and global symbols, the compiler may
detect conflicting storage-class specifiers. If the compiler issues an error
message for this reason, the program may be correct; issuing a message
in this instance is a warning against possible programming errors.

User Action: If the declarations see the same object, make sure that
they specify the same types and organizations. Otherwise, either rename
one of the identifiers or separate the scopes of the declarations.

DEFTOOLONG, Text in #define preprocessor directive is too long; directive
ignored.

Warning: The length of the token string in the #define directive
exceeded the implementation's limit.

User Action: Simplify the directive.

DIVIDEZERO, Constant expression includes divide by zero; the result has been
replaced with 0.

Warning: A division by 0 was encountered in a constant expression.
The expression was replaced by 0.

User Action: Make sure that no divisors in the expression can evaluate
to 0.

DUPCASE, Duplicate case label value "****".

Error: You specified more than one case for the indicated value in a
switch statement. (The cases must be unique.)

User Action: Change the case labels and combine the cases, or both,
as appropriate.

DUPDEFAULT, Duplicate default label.

Error: You specified more than one default case in the same switch
statement.

User Action: Combine the cases or make other changes necessary to
eliminate the duplicate(s).

DUPDEFINITION, Duplicate definition of"****".

Warning: The named definition appeared more than once in the pro­
gram.

The two definitions are essentially the same. Both definitions specify
the same data types and organizations, but there may be differences
in the values, initializers, or array bounds. If the name is a function,
there may be a difference in the number or types of parameters, or in
the contents of the function body.

User Action: The purpose of this message is to call a possible program­
ming error to your attention.

DUPINLINEFUNC, Duplicate [no]inline function "****".

Warning: You duplicated a function name in one or more pragma
declarations.

User Action: Change the name of the function declaration.

Diagnostic Messages B-7

DUPLABEL, Duplicate label 11 **** 11
•

Error: You specified duplicates of the indicated label in the same
function. (Label identifiers must be unique within a function definition.)

User Action: Rewrite the labels (and the goto statements that see
them) to eliminate the duplicates.

DUPLISTITEM, Duplicate list item "****" ignored.

Warning: You specified the same name more than once in a list of
arguments to a #pragma directive. For example, in the following
#pragma, the second appearance of variable a is redundant and is
ignored:

#pragma noinline (a, b, a)

Similarly, the second occurrence of variable y in the following exam­
ple is redundant, as argument lists for some #pragma directives are
concatenated:

#pragma noinline (x, y)

#pragma noinline (y, z)

User Action: Remove the duplicate argument ifit is redundant; other­
wise, check for misspellings.

DUPMAINFUNC, Duplicate main function.

Warning: You defined two or more main functions in a single compila­
tion unit.

A main function is either a function with the name main or a function
with the main_program option. If the compilation unit contains more
than one main function, the compiler recognizes only the first as the
main function.

User Action: Make sure that there is only one main function defined in
the compilation unit.

DUPMEMBER, Duplicate declaration of member 11 **** 11
•

Warning: You declared two members with the same name in the same
structure.

User Action: Rename one of the members or remove one of the member
declarations.

DUPPARAMETER, Duplicate parameter 11 **** 11 ignored.

B-8 Diagnostic Messages

Warning: The stated function parameter occurred more than once in
the function's formal parameter list. For example:

funct(a,b,c,a) { }

All occurrences of the parameter after the first are ignored.

User Action: Remove or change the duplicate parameter identifier.

ENUMCLASH, Mismatched enum type in 11 ****" operation.

Warning: The indicated operation combined an enum variable or value
with a value that has a nonmatching type. The compiler issues this
message if you specify the -V standard=portable option on the vcc
command line.

User Action: Use a cast operation to cast either the enum value or the
other value to a matching type.

ENUMOP, 11 **** 11 is an undefined operation for enum values; enum operand(s)
converted to int.

Warning: You used an enum variable or constant with an arithmetic
or bitwise operator. These operators are undefined for use with enum
types. The operation is performed; however, the compiler treats the
enum object as an integer.

User Action: Cast the en um object to int.

EXTRACOMMA, Extraneous comma in macro parameter list ignored.

Warning: The #define macro definition on this line had extra commas
that were ignored.

User Action: Make sure that you do not omit parameters in the macro
definition.

EXTRAFORMALS, Extraneous formal parameter(s) ignored in declaration of
"****"

Warning: You included a function's formal parameters in a function
declaration or definition.

For example, the following function declaration is not allowed because it
names the function's parameters:

int funct(a,b,c);

The parameters a, b, and c are ignored.

Similarly, the following example defines a function returning a pointer
to a function returning an integer. The names· of the parameters of the
function returning an integer are not allowed.

(*f (pl,p2)) (ql,q2)
int pl, p2;
{ . . . }

The compiler ignores the parameters ql and q2.

User Action: Check the syntax of the function declaration and, if
appropriate, remove the extraneous identifier(s).

EXTRATEXT, Extraneous text in preprocessor directive ignored.

Informational: Extraneous text appeared in the directive. For exam­
ple:

#endif ABC

The compiler issues this message if you specify the -V stan­
dard=portable option on the vcc command line.

User Action: Either remove the extraneous text or enclose it in a
comment.

Diagnostic Messages B-9

FATALSYNTAX, Fatal syntax error.

Fatal: The compiler could not continue due to syntax errors.

User Action: Correct the error in the indicated line and any errors
reported in previous compiler messages.

FILENOTFOUND, Include file could not be opened.

Fatal: The compiler could not find the include file in any of the valid
text libraries or directories.

User Action: Check to see if the file exists. See if the include method
you used for this file will search for the file in the place you expect.

FLOATOVERFLOW, Overflow during evaluation of floating-point constant
expression.

Error: Overflow occurred during the evaluation ofa constant expression
containing floating-point operands.

User Action: Make sure that the expression value is in the range
0.29 x 10-ss to 1.7 x l03s.

FUNCNOTDEF, Static function 11 ****" is not defined in this compilation;
assumed to be external.

Warning: The indicated static function declaration did not see an
existing definition. The compiler treated the function as external.

User Action: Remove the storage-class specifier static in the function
declaration or use the specifier in the appropriate function definition.

GLOBALENUM, Enumerators may not be initialized when declared with
"globalref".

Warning: You tried to specify the values of enumeration constants in
a declaration of an enum variable with the globalref storage-class
specifier.

You must define these values elsewhere, in a globaldef declaration, and
you must not initialize them in the globalref declaration.

User Action: Remove all initializing values from the globalref declara­
tion.

IFEVALERROR, ****while evaluating #if or #elif expression; "true" expression
assumed.

Warning: The substitute text is Stack overflow or Divide by 0.

User Action: For stack overflow, reduce the complexity of the expres­
sion. Make sure that no divisors are 0.

IFSYNTAX, Syntax error in #if or #elif expression; true expression assumed.

Warning: The #if or #elif expression on the indicated line cannot be
evaluated because of syntax errors; it was assumed to be true.

User Action: Correct the line.

8-10 Diagnostic Messages

IGNORED, Unexpected **** ignored.

Warning: The compiler encountered an unexpected token in the source
program, and has ignored it. (This may be a syntax error.)

User Action: Make sure that the token and surrounding text is syntac­
tically correct.

INCBUILTARG, Incorrect type for*** argument of 11 *** 11 builtin function.

Error: An argument to a built-in function has the wrong type.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments.

INLINCONF, Previous inline or noinline pragma for 11 **** 11 conflicts with this
pragma.

Warning: You used both an inline pragma and a noinline pragma
specifying conflicting inline specifications for one particular
function.

User Action: Determine whether you want the function to be expanded
inline, and remove the conflicting pragma.

INSBEFORE, Inserted **** before ****.

Warning: The compiler tried to recover from a syntax error by inserting
a token into the source.

User Action: Correct the syntax.

INSMATCH, Inserted **** to match **** on line ****.

INSMATCH, Inserted **** to match **** inserted earlier.

Warning: The compiler tried to recover from a syntax error by inserting
a macro to match a previous macro in the source code. The previous
macro may or may not have been inserted by the compiler.

User Action: Make sure that you match all parentheses, brackets, and
braces.

INTVALERROR, Integer value not used where required.

Error: You used a noninteger value as an initializer for an enum
constant, or to specify the size of a bit field.

User Action: You must specify an integer constant.

INTVALREQ, Noninteger value used incorrectly in a****; converted to integer.

Warning: You used a noninteger value in a switch statement or a case
label. The value has been converted to integer.

User Action: Specify switch expressions and case label values as
integer values, or use a cast operator to make the conversion explicit.

INVAGGASSIGN, Invalid aggregate assignment.

Error: You tried to assign an array to another array or to assign
structures or unions of different sizes.

User Action: Correct the assignment.

Diagnostic Messages B-11

INVALIDIF, 11 ****" is not a valid constant or operator in a #if or #elif expres-
sion; 11 true" expression assumed.

Warning: You used an invalid construction in an #if or #elif expression,
which is assumed to be true.

User Action: Correct the expression.

INVALIGNSPEC, Invalid alignment specification ignored.

Warning: You specified an alignment option that was not in the range
allowed. The compiler ignored the specified option.

User Action: Correct the alignment specification.

INVALINIT, The initialization of"****" is not valid.

Warning: The indicated object cannot be initialized as specified. Some
objects may not be initialized at all, such as functions, unions, and
extern or globalref objects. In other cases, the initializer may not be
appropriate; for example, a static pointer cannot be initialized with the
address of an automatic variable. This and any subsequent initializers
for the same object have been ignored.

User Action: Eliminate or correct the initializer, or correct the type or
storage class of the target object, or initialize the object with an explicit
assignment.

INVARRAYBOUND, The declaration of 11 ****" specifies a missing or invalid
array bound.

Error: In a declaration of an array, you omitted a required dimension
bound value or specified an invalid value for a bound.

For multidimensional arrays, you must specify bounds for dimensions
other than the first. You also must specify a bound for the first (or only)
dimension if this declaration is a definition. Valid bound values are
integer constant expressions greater than 0.

User Action: Iviake sure that all required bounds are present and valid.

INVARRAYDECL, 11 ****" is an improperly declared array.

Error: You improperly declared an array, such as an array of functions.

User Action: Make sure that the syntax of the declarator correctly
describes the object. (The declared object may not be what you want.)
You may find the output from the -V"SHOW=SYMBOLS" option on the
vcc command line helpful to diagnose this error.

INVASSIGNTARG, Invalid target for assignment.

Error: You specified, as the left operand of an assignment operator, an
expression that was not valid for assignment. For example, you may
have tried to assign something to an array, to a function, to a constant,
or to a variable declared with the readonly storage-class modifier.

User Action: Make sure that the target is appropriate for assignments.

B-12 Diagnostic Messages

INVBREAK, Invalid use of the "break" statement.

Error: You used break outside the body of a for, a while, a do, or a
switch statement.

User Action: Remove the break statement, or check that any braces in
recent loops or switch statements are properly balanced.

INVBUILTIN, The "***" builtin function call is being ignored; it has invalid
argument(s).

Error: A call to a built-in function contains errors. This message
usually follows other error messages describing errors in the argument
expressions.

User Action: Correct any errors listed before this one. Make sure that
the function is called with the correct number and types of arguments.

INSMATCH, Inserted **** to match **** on lihe ****.

INSMATCH, Inserted**** to match**** inserted earlier.

Warning: The compiler tried to recover from a syntax error by inserting
a macro to match a previous macro in the source code. The previous
macro may or may not have been inserted by the compiler.

User Action: Make sure that you match all parentheses, brackets, and
braces.

INVCMDVAL, "****"is an invalid command qualifier value.

Fatal: The indicated CC command option value was acceptable to the
command language interpreter, but it is meaningless to VAX C; for
example, LIST_OPTS is an invalid value for /SHOW, but it is accepted
by the vcc command.

User Action: Correct the qualifier value.

INVCONDEXPR, The second and third operands of a conditional expression
cannot be converted to a common type.

Error: You specified an invalid combination of operands in a conditional
expression.

This can occur if the operands are pointers to objects of a different size
or type, or if the operands are different structures.

User Action: Make sure that both operands are of compatible sizes and
data types.

INVCONST, "****"is an invalid numeric constant.

Warning: The indicated constant contained illegal characters or was
otherwise invalid.

User Action: Correct the constant.

INVCONTINUE, Invalid use of the "continue" statement.

Error: You used the continue statement outside the body of a for, a
while, or a do statement.

User Action: Remove the continue statement, or check that any
braces in recent loops are properly balanced.

Diagnostic Messages B-13

INVCONVERT, The source or target of a conversion is noncomputational.

Error: One of the operands in an expression could not be converted as
specified. For example, you tried to cast some object to a structure.

User Action: Correct the expression or cast.

INVDEFNAME, Missing or invalid name in **** preprocessor directive;
directive ignored.

Warning: The indicated directive was missing a required name, as in:

#define

The entire directive was ignored.

User Action: Correct or remove the directive.

INVDICTPATH, Missing or invalid path name in #dictionary preprocessor
directive; directive ignored.

Warning: The indicated directive was missing a required name. For
example:

#dictionary

The compiler ignores the entire directive.

User Action: Correct or remove the directive.

INVFIELDSIZE, The declaration of 11 ****" specifies an invalid field size; size of
32 bits assumed.

Warning: The indicated field declaration was invalid because it specified
too large a size.

User Action: Correct the declaration to specify either a single, smaller
field or several contiguous fields.

INVFIELDTYPE, The declaration of 11 **** 11 specifies an invalid data type; type
"unsigned 11 assumed.

Warning: You declared a field with an invalid data type. Fields must be
declared (and manipulated) as integers or enumerated types.

User Action: Correct the declaration to specify a valid data type.

INVFILESPEC, Missing or invalid file specification in #include preprocessor
directive; directive ignored.

Warning: The #include directive either was missing a file or specified
one that was syntactically invalid. The directive was ignored.

User Action: Correct the directive.

INVFUNCDECL, 11 **** 11 is an improperly declared function.

Error: You improperly declared a function. For example, you may have
omitted the parameter list or a semicolon between the function and a
previous declaration.

User Action: Correct the syntax of the declaration.

B-14 Diagnostic Messages

INVFUNCOPTION, Invalid function definition option "****" ignored.

Warning: The indicated function definition option was not supported.
(The only valid option is the main_program option.)

User Action: Check the spelling of the option or the syntax of the
function definition.

INVHEXCHAR, Invalid hexadecimal character value; high-order bits truncated.

Warning: An escape character specified in hexadecimal exceeded the
limit of a 1-byte character.

User Action: Correct the hexadecimal constant to represent a valid
escape character.

INVHEXCON, Hexadecimal constant contains an invalid character.

Error: You specified an invalid hexadecimal constant, such as OxG.

User Action: Correct the constant.

INVIFNAME, Missing or invalid name in #ifdef or #ifndef preprocessor direc­
tive; "true" assumed.

Warning: You specified no name or a syntactically invalid one in the
directive; the result of the test is assumed to be true.

User Action: Correct the directive.

INVINAGGASN, Invalid"***" built-in function call; structure or union argu-
ments are not of same size.

Error: A built-in function that requires two or more arguments be of
the same size was called with arguments of different sizes.

User Action: Correct the call to the built-in function to pass the correct
number and type of arguments.

INVLINEFILE, Invalid file specification in #line preprocessor directive; directive
ignored.

Warning: The file specification was syntactically invalid, and the
directive was ignored.

User Action: Correct the directive.

INVMAINRETVAL, Return value of main function is not an integer type.

Warning: You· declared a main function with a return value that was
not an integer type.

User Action: Check for an omitted semicolon at the end of any decla­
ration immediately preceding the declaration of the main function, or
change the return value specification to one of the integer types.

INVLINELINE, Missing or invalid line number in #line preprocessor directive;
directive ignored.

Warning: The line number was missing or was syntactically invalid,
and the directive was ignored.

User Action: Correct the directive.

Diagnostic Messages B-15

INVMODIFIER, "****"is an invalid data type modifier in this declaration.

Warning: You specified a data-type modifier other than const or
volatile as in the following example:

char * int ptr;

The int data-type modifier is ignored.

User Action: Remove or change the data-type modifier.

INVOCTALCHAR, Invalid octal character value; high-order bits truncated.

Warning: The octal value in an escape sequence was too large, as in
' \ 4 77' . Its high-order bits were truncated.

User Action: Correct the value.

INVOPERAND, Invalid**** operand of a 11 ****" operator.

Error: You specified an invalid operand for the indicated operator.

This message is issued for arithmetic and bitwise operators if the
operand is noncomputational (such as a structure). For other operators
(such as the increment operator), the compiler issues the message if
the operand is not an lvalue. For binary operators, the substituted text
indicates which operand, left or right, is invalid.

User Action: Make sure that the operand is the proper type for the
operator, and that it is an lvalue.

INVPPKEYWORD, Missing or invalid keyword in preprocessor directive; direc­
tive ignored.

Warning: You wrote a directive with no keyword. For example:

ABC

The directive is ignored.

User Action: Correct or remove the directive.

INVPROTODEF, The parameter list for a function prototype definition must
associate an identifier with each type.

Error: The function definition uses the prototype format but does not
contain an identifier for each type in the parameter list.

User Action: Place an identifier name in the appropriate type declara­
tion.

INVPTRMATH, Invalid pointer arithmetic.

Error: You tried to perform an invalid arithmetic operation on a pointer
or pointers. The only valid arithmetic operations allowed with pointers
are addition and subtraction.

For addition, the only forms allowed are as follows:

pointer + integer
pointer += integer

For subtraction, the only forms allowed are as follows:

B-16 Diagnostic Messages

pointer - integer
pointer integer
pointer - pointer

In the last form, both pointers must point to objects of the same size.

User Action: Make sure that the expression conforms to one of the
permitted forms previously listed. If necessary, cast one or both operands
to a compatible type.

INVSUBUSE, Invalid use of subscripting.

Error: You specified a subscript in reference to a bit field.

User Action: Correct the syntax. If the structure containing the bit
field is an array, you must specify the subscript(s) with the qualifier
instead of the member name.

INVSUBVALUE, Invalid subscript valne.

Error: You specified a subscript value that is not of an integer type.

User Action: Change or cast the value to an integer type.

INVTAGUSE, Invalid use of tag"****".

Error: You used a previously defined tag name in a declaration of a
different type. For example:

enum color {red, green, blue};
struct color *cp;

You may only use a given tag with one of the enum, struct, or union
types. Any identifiers declared with the mismatched type will be unde­
fined.

User Action: Either make sure that each use of the tag name specifies
the same type or use different tag names with each type.

INVVARIANT, Invalid declaration of variant aggregate 11 **** 11
•

Error: You tried an invalid variant structure or union declaration such
as an array of variants, a pointer to a variant, or a list of variant names.

User Action: Either remove the variant keywords from the declaration
or make sure that the keywords are used in a valid structure or union
declaration.

INVVOIDUSE, 11void 11 is only valid in a parameter list when it appears alone.
Its use is ignored.

Warning: You used the void keyword in a function prototype parameter
list where it is not the only item in the list.

User Action: Either eliminate the use of void or eliminate the extra
parameter types in the parameter list.

LISTTOOLONG, List in #pragma preprocessor directive is too long; directive
ignored.

Warning: You have specified more than 128 items in the list. The entire
directive was ignored by the compiler.

User Action: Split the list into separate directives.

Diagnostic Messages B-17

MACDEFINREF, A macro cannot be **** during the scan of a reference to the
macro; directive ignored.

Warning: You tried to redefine or undefine a macro within a reference
to it. The compiler ignores the preprocessor directive.

User Action: Move the directive to a position outside of the macro
reference.

MACNONTERMCHAR, Nonterminated character constant in macro argument;
apostrophe added at end of line.

Warning: You omitted the closing apostrophe in a character constant
appearing in an argument in a macro reference.

User Action: Correct the constant.

MACREQARGS, Macro reference requires an argument list; 11 **** 11 not
substituted.

Error: You wrote a macro reference without an argument list. The
reference was deleted from the source file.

User Action: Correct the reference, specifying the same number of
arguments as in the definition of the macro.

MACSYNTAX, Syntax error in macro definition; directive ignored.

Warning: The syntax of the parameter list in a macro definition was
invalid. (You must enclose the parameter list in parentheses and delimit
individual parameters with commas.)

User Action: Correct the syntax.

MACUNEXPEOF, Unexpected end-of-file encountered in a macro reference;
"****" not substituted.

Error: The end-of-file was encountered during a macro reference; the
reference was deleted.

User Action: See if you misplaced the closing parenthesis in the macro
argument list.

MAXMACNEST, Maximum text replacement nesting level exceeded; 11 ****" not
substituted.

Error: You specified a macro reference that is recursive or otherwise
causes repeated substitutions to a depth greater than the implementa­
tion maximum of 64.

User Action: Correct the recursion or simplify the definitions.

MERGED, Merged **** and **** to form ****.
Warning: The compiler merged two separate source tokens into a single
token.

For example, two plus signs separated by a space may be merged to form
the increment operator (++).

User Action: If the compiler's action is correct, remove the space
between the tokens. Otherwise, check for a missing token between the
merged tokens.

B-18 Diagnostic Messages

MISARGNUMBER, The number of arguments passed to the function does
not match the number declared in a previous function
prototype.

Warning: The function call contains too.few or extra arguments.

User Action: Correct the number of arguments passed to the function.
Otherwise, if the prototype is incorrect, correct the prototype.

MISPARAMNUMBER, The number of parameters declared does not match the
number declared in a previous function prototype.

Warning: A function prototype for this function that appeared earlier
in the source file contains a different number of parameters than this
declaration.

User Action: Determine which of the declarators is correct and modify
the other declarator to match it.

MISPARAMTYPE, The type of parameter 11 **** 11 does not match the type
declared in a previous function prototype.

Warning: The type of a parameter in a function definition does not
match the type specified for that parameter in the previous prototype.

User Action: Determine which type is correct for that parameter and
correct either the function definition or the prototype.

MISPARENS, Mismatched parentheses in #if or #elif expression; "true" expres-
sion assumed.

Warning: The expression in a #if or #elif preprocessor directive con­
tained unbalanced parentheses.

User Action: Make sure that you balance the parentheses in the
expression.

MISPRAGMASTAND, Mismatched #pragma standard preprocessor
directive(s)

Informational: The compiler detected more occurrences of the nostan­
dard pragma than it did the standard pragma.

User Action: Check that each nostandard pragma has a matching
standard pragma, both in the main source file and in any included files.

MISSENDIF, Missing #endif preprocessor directive(s).

Error: The compiler did not encounter an #endif line for the most
recent #if, #ifdef, or #ifndef preprocessor directive.

User Action: Make sure that all the directives are properly structured,
and, if appropriate, add the missing #endif preprocessor directive(s).

MISSEXP, Missing or invalid exponent in fl.oat constant; zero exponent (' eO')
assumed.

Warning: You wrote a floating-point constant with the letter e or E but
with no exponent or an invalid exponent. The exponent was assumed to
be 0.

User Action: Correct the constant.

Diagnostic Messages B-19

MISSPELLED, Replaced **** with ****.

Warning: You misspelled a reserved word.

User Action: Correct the spelling.

MISWIDETYPE, The prototype for this function does not specify the default
widened type for the parameter.

Error: A prototype was declared with a parameter having a type that
is, by default, widened with old-style function definitions. For example,
a float is, by default, sized to a double for old-style function definitions.
If a prototype is in scope with a size of float, then the argument will not
have the size that the function expects.

User Action: Correct the declaration in the prototype to specify the
larger, widened type. If the type is a float, then specify double.

MODZERO, Constant expression includes mod O; the result has been replaced
with 0.

Warning: The constant expression had an invalid mod expression, such
as 5 % 0. The result was 0.

User Action: Correct the expression (but note that its operands must
not be floating-point operands).

NAMETOOLONG, Identifier name exceeds 255 characters; truncated to "****".

Warning: VAX C identifiers are limited to a length of 255 recognized
characters.

User Action: Shorten the indicated identifier.

NESTEDCOMMENT, Nested comment encountered.

Informational: The compiler detected an opening comment delimiter
(/*)within another comment. (VAX C does not support the nesting of
comments; the first ending comment delimiter (*/) encountered ends the
comment.)

User Action: Check that you have not misplaced a comment delimiter
and accidently turned necessary code into comments.

NOBJECT, No object file produced.

Informational: The compiler did not produce an object file due to
conditions reported in previous messages.

User Action: Make the corrections suggested by the other message(s).

NOFLOATOP, The **** operand of a "****" operator has been converted from
floating-point to integer.

Warning: The compiler converted the operand to an integer.

The left or right operand of the indicated binary operator, or the operand
of the indicated unary operator, cannot be of a float or double type.

User Action: Change or cast the operand to an integral type.

NOLISTING, No listing file produced.

Informational.: The compiler did not create a listing file (usually due
to previously reported errors).

User Action: None.

B-20 Diagnostic Messages

NOMIXNMATCH, The parameter list of a function can either contain all identi-
fiers or all types, but not both.

Error: The parameter list of a function contains some type specifiers
and some identifiers that do not have type specifiers.

User Action: To create a valid function prototype, either eliminate the
type specifiers or add type specifiers to the identifiers that are missing
them.

NONOCTALDIGIT, Octal escape sequence in a character or string constant
terminated by a nonoctal digit.

Warning: There was an 8 or 9 in the second or third position of an octal
escape sequence. In this case, the digits preceding the nonoctal digit
were evaluated, and the 8 or 9 was considered a separate character.
The compiler issues this message if you use the -V standard=portable
option on the vcc command line.

User Action: Make sure that the escape sequence contains only octal
digits. If the 8 or 9 is separate from the escape sequence, but must
immediately follow it, then pad the escape sequence to three digits using
leading zeros.

NONOCTALESC, Escape sequence in a character or string constant starts with
a nonoctal digit.

Warning: The first of three digits of an escape sequence was an 8 or
9. In this case, the backslash is ignored, and the 8 or 9 was treated
as a character. The compiler issues this message if you use the -V
standard=portable option on the vcc command line.

User Action: Make sure that the compiler resolves the ambiguity
correctly.

NONPORTADDR, Taking the address of a constant may not be portable.

Informational: You used an ampersand operator with a constant in the
argument list of a function call. (VAX C permits this special case, but
other compilers may not.)

User Action: If you do not require portability, no action is necessary.
Otherwise, correct the line.

NONPORTARG, Passing a structure by value may not be portable.

Informational: You passed a structure by value in a function call or
declared a function parameter as a structure. The compiler issues this
message if you specify the -V standard=portable option on the vcc
command line.

User Action: If the program must be portable, pass the structure by
reference.

NONPORTCLASS, Storage class 11 **** 11 is not portable.

Informational: This message was issued against the use of the glob­
alref, globaldef, globalvalue, readonly, or noshare storage-class
specifiers. The compiler issues this message if you specify the -V stan­
dard=portable option on the vcc command line.

User Action: No action is necessary if you do not require compatibility
with other C compilers. Otherwise, correct the line.

Diagnostic Messages B-21

NONPORTCOMP, Comparison of a pointer with a nonzero integer constant or
an integer expression may not be portable.

Informational: You compared a pointer to something besides another
pointer or the constant 0. This message is issued if you specified
-V standard=portable option on the vcc command line.

User Action: Change the operands or cast them to the same type.

This usage is not portable and is not recommended. The only portable
comparison is a comparison between a pointer variable and 0.

NONPORTCONST, Character constant **** may not be portable.

Warning: VAX C allows up to four characters to be specified in a
character constant, but other compilers may not. The compiler issues
this message if you specify the -V standard=portable option on the
vcc command line.

User Action: If you do not require portability, no action is necessary.

NONPORTCVT, Conversions between pointers and integers may not be
portable.

NONPORTCVT, Conversions between pointers to different types may not be
portable.

Informational: You converted a pointer or an address expression to
an integer type or to a different pointer type, or an integer expression
or a nonzero integer constant to a pointer type. Such usage may not
be portable and is not recommended. The only portable assignments
are between pointers to objects of the same type or conversion of the
integer constant 0 to any pointer type. This message is issued only if
you specified -V standard=portable on the vcc command line.

User Action: Use an explicit cast to perform the conversion.

NONPORTINIT, Automatic initialization for 11**** 11 may not be portable.

Informational: You initialized an array or structure of the auto
storage class. The compiler issues this message if you use the -V
standard=portable option on the vcc command line.

User Action: If you require portability, use separate assignment state­
ment(s) to set the initial value(s).

NONPORTOPTION, The 11**** 11 function definition option is not portable.

Informational: The VAX C function definition options are VAX C
specific and are not portable. The compiler issues this message if you
use the -V standard=portable option on the vcc command line.

User Action: No action is necessary if you do not require compatibility
with other C compilers.

NONPORTPTR, The use of an integer value as a pointer qualifier for 11 **** 11

may not be portable.

Informational: In a reference to a structure or union member accessed
by the right arrow (->) operator, the qualifying expression to the left
of the right arrow should have a pointer value. VAX C allows the use
of integer values as well, but such usage is not portable. This message

B-22 Diagnostic Messages

is issued if you specify the -V standard=portable option on the vcc
command line.

User Action: Either use a true pointer expression as the qualifier or
cast the integer expression as an appropriate structure or union pointer.

NONPORTTYPE, Data type"****" is not portable.

Informational: You used one of the VAX. C specific data types
variant_struct or variant_union. The compiler issues this message if
you specify the -V standard=portable option on the vcc command line.

User Action: No action is necessary if you do not require program
portability.

NONSEQUITUR, "****"is not a member of the specified structure or union.

Informational: In a reference to the indicated member name, you
specified a qualifier that does not represent the structure or union that
the member belo11gs to.

The reference is valid, because the member name is unique and the
offset can be clearly resolved. This use of member names is maintained
only for compatibility with older programs.

User Action: If the qualifier is a pointer, cast it as a pointer to the
appropriate structure or union.

NONTERMCHAR, Nonterminated character constant;**** assumed.

Warning: The compiler encountered the end of the source line before
the end of a character constant. The compiler assumed the indicated
value.

User Action: Correct the constant.

NONTERMNULCHAR, Nonterminated character constant contains no charac-
ters; ' \ 0' assumed.

Warning: The compiler detected a single apostrophe (')at the end of
the source line.

User Action: Check to see if the apostrophe is extraneous; otherwise,
correct the constant.

NONTERMSTRING, Nonterminated string constant; quotes added at end of
line.

Warning: The compiler encountered the end of the source line before
the end of a character string. The compiler inserted a quotation mark
(") at the end of the line.

User' Action: Check to see if the string should be continued on the
following line; if so, insert a backslash (\) at the end of the line.
Otherwise, check for the missing quotation mark.

NOOPTIMIZATION, Complex control fl.ow caused optimization to be suppressed
for procedure or function "****".

Informational: Optimization was not performed for the indicated
function.

User Action: To take advantage of optimization, simplify the control
fl.ow within the indicated function.

Diagnostic Messages B-23

NOSUBSTITUTION, Macro substitution cannot be performed during the scan
of a macro reference; "****" not substituted; directive
ignored.

NOSUBSTITUTION, Macro substitution cannot be performed during the scan
of a macro reference; "****" not substituted; "true"
expression assumed.

Warning: You wrote a complex macro reference that contained a prepro­
cessor directive, which in turn contained another macro reference. For
example:

macrefl (argl,
#include MACREF2

, argn)

The substitution of MACREF2 is not performed and the directive con­
taining it is ignored. If the directive is #if or #elif, the expression is
assumed to be true.

User Action: Restructure your code so that the directive is not con­
tained within the macro reference.

NOTFUNCTION, Function-valued expression not found.

Error: You used an expression in the context of a function call, but the
expression does not evaluate to a function.

User Action: Make sure that the expression properly evaluates to a
function; also make sure that you properly dereference any pointer to a
function.

NOTPARAMETER, "****" is not listed in the function's formal parameter list;
treated as if declared internally.

Wa...""Iling: You declared the specified identifier as a function parameter,
but the identifier does not appear in the parameter list. For example:

f(a) int a,b; { ...

The identifier b does not appear in function f's formal parameter list. Its
declaration is not portable, and is probably a coding error. The compiler
treats b as if it were declared inside the function definition; in this case,
b becomes an automatic variable.

User Action: Correct the declaration or the parameter list.

NOTPOINTER, Address-valued expression not found.

Error: You used an expression in a context requiring a pointer value,
but the expression did not evaluate to an address.

User Action: Make sure that the expression evaluates to a pointer
value.

8-24 Diagnostic Messages

NOTSWITCH, Default labels and case labels are valid only in 11 switch11

statements.

Error: You used case or default as a label outside the body of a switch
statement.

User Action: Check for unmatched braces that may have prematurely
terminated the most recent switch statement.

NOTUNIQUE, 11 **** 11 is not a unique member name in this context.

Error: You used the same member name in more than one structure
or union definition, and then used that member name as an offset
from some other structure or union. Since the compiler has no way to
determine which member definition to use as an offset, a message is
generated.

User Action: To avoid ambiguities, try to make all member names
unique.

NULCHARCON, Character constant contains no characters; ' \ 0' assumed.

Warning: You used ' ' for an ASCII NUL character instead of '\ 0 1
•

User Action: Use' \0 1
•

NULHEXCON, Hexadecimal constant contains no digits; OXO assumed.

Warning: You specified a constant such as OX or Ox.

User Action: Be sure that 0 is a valid value in this context; if so,
change the constant to OxO.

PARAMNOTUSED, Macro parameter 11 **** 11 is not referenced in the definition.

Warning: A macro definition had more parameters than appeared in its
substitution. For example:

#define m(a,b,c) a*b

User Action: Specify the extra parameter in the substitution or, if it is
extra, delete it from the parameter list. (This is a possible programming
error.)

PARAMREDECL, This declaration of 11 **** 11 overrides a formal parameter.

Warning: Your source program contained a redeclaration of one of the
function's formal parameters. For example:

f (a) { int a; }

You cannot reference the parameter from within the function.

User Action: If the declaration is misplaced, move it to a position
between the function header and the left brace at the beginning of the
function body. Otherwise, rename one of the identifiers.

PARSTKOVRFLW, Parse stack overflow.

Fatal: The source code in your program was too complex, containing
statements nested too deeply.

User Action: Simplify the program.

Diagnostic Messages B-25

PPUNEXPEOF, Unexpected end-of-file encountered in preprocessor directive;
directive ignored.

Warning: The compiler detected the end of the source file while trying
to read a continuation of a preprocessor directive.

User Action: Check for non terminated comments, character strings,
and other constructs that can span several lines of code.

PRAGMASYNTAX, Syntax error in #pragma preprocessor directive; directive
ignored.

Warning: You have incorrectly coded the directive.

User Action: Correct the error. Check for misspellings or punctuation
errors.

PTRFLOATCVT, Operand of pointer addition or subtraction converted from
floating-point to integer.

Warning: You combined a pointer operand with a floating-point value.
For example:

int i,*ip;

i ip + 2.;

User Action: Make sure that pointers are used only with other pointers
or with integers; in the previous example and similar situations, remove
the decimal point from the literal constant.

QUALNOTLVALUE, The qualifier for 11 **** 11 is not a valid lvalue.

Error: In a reference to a structure or union member accessed by the
period operator (.), the qualifying expression to the left of the period
must be an lvalue.

User Action: Correct the qualifying expression.

QUALNOTSTRUCT, The qualifier for 11 **** 11 is not a structure or union.

Informational: In a reference to a structure or union member, the
qualifying expression to the left of the period operator (.) or right-arrow
operator (->) did not represent a structure or union.

User Action: Check for spelling errors.

REDEFPROTO, This prototype conflicts with either the function definition or
with a function prototype that appears earlier in the file.

Warning: The prototype conflicts with a previous declaration of this
function in number or type of arguments or in the return type of the
function.

User Action: Determine what attribute does not match and what the
correct attribute should be. Correct the invalid definition.

B-26 Diagnostic Messages

REDUNDANT, The operand of the " & " operator is already an address. The " & 11

is ignored.

Informational: You specified & in front of an array or function
name. The compiler issues this message if you specify the -V stan­
dard=portable option on the vcc command line.

User Action: Make sure that you intend to pass the address of the
array or function. If you require portability, remove the redundant &
operator.

REGADDR, Taking the address of register variable 11 **** 11 is not portable and
causes its storage class to be changed to auto.

Informational: You used the unary ampersand operator (&) to take
the address of a register variable. VAX C changes the storage class
of the variable from register to auto. This allows the address of
the variable to be taken. The message is used if you specified the -V
standard=portable option on the vcc command line.

REPABBREV, Replaced abbreviation **** with ****.
Warning: You abbreviated a reserved word.

User Action: Complete the spelling of all reserved words.

REPLACED, Replaced **** with ****.
Warning: The compiler replaced an invalid token with a different token.
(Programs that contain syntax errors usually generate this message.)

User Action: Check for incorrect syntax.

REPOVERFLOW, Length of replacement text exceeds maximum buffer capacity;
11 **** 11 not substituted.

Error: The length of the replacement text for a macro reference or the
length of the text plus the rest of the line exceeded the implementation's
limit.

User Action: Shorten the replacement text or use multiple substitu­
tions to achieve the desired result.

RESERVED, 11 **** 11 is a reserved identifier; directive ignored.

Warning: You have specified a reserved identifier name in a #define
or #undef preprocessor directive. Such reserved names may not be
redefined or undefined. They are as follows:

• defined

• __ DATE --
• __ FILE --
• LINE -- --
• __ TIME --

User Action: Choose a different spelling for the identifier.

Diagnostic Messages 8-27

SEMICOLONADDED, Semicolon added at the end of the previous source line.

Warning: A missing semicolon was added to the line before the line
numbered in this message.

User Action: Check the previous line carefully and add the semicolon
in the appropriate place.

SUMMARY, Completed with **** errors, **** suppressed warning(s), and ****
informational messages.

Informational: This message indicates the number of compiler mes­
sages (errors, warnings, and informationals) issued during the compila­
tion process. You can suppress informational and warning messages by
using the -V'WARNINGS=NOWARNINGS" option to the vcc command.
(see Chapter 2.)

User Action: Consider the individual messages and recompile if neces­
sary.

SYMTABOVFL, The total number of symbol table pages exceeds the implemen-
tation's limit.

Fatal: The program was too complex.

User Action: Simplify the program by reducing the number and size of
variables and other names, constants, and so forth.

SYNTAXERROR, **** Found **** when expecting ****.

Error: The syntax error shown prevented the generation of an object
file.

User Action: Correct the errors shown.

TBLOVRFLW, Internal table overflow, too many procedures, external symbols
(psects), or the program is too complex.

Fatal: Either the source file contains too many functions or expressions,
or the compiler has overflowed its virtuai address space.

User Action: Reduce the size of the source file by dividing it into
smaller, separate files, or change the logic of the program to reduce the
number of complicated expressions.

TOOFEWMACARGS, Argument list for macro 11****" contains too few argu-
ments; missing arguments assumed to be null.

Warning: You wrote a reference to the indicated macro with fewer
arguments than were specified in its definition.

User Action: Make sure that the number of arguments in the macro
reference is the same as the number of parameters in the definition.

TOOMANYCHAR, Character constant contains too many characters; truncated
to****.

Warning: The length of a character constant exceeded the implementa­
tion limit (four characters). The constant was truncated to the indicated
value.

User Action: Reduce the length of the indicated character constant to
four or fewer characters.

B-28 Diagnostic Messages

TOOMANYERR, The total number of errors exceeds the limit of 100.

Fatal: The compiler reported more than 100 error messages in this
compilation. The compilation ended at this point.

User Action: Correct the errors reported in previous compiler messages
and recompile.

TOOMANYFUNARGS, Function reference specifies too many arguments; excess
arguments ignored.

Warning: You called a function with more than 253 arguments. The
compiler passed only the first 253 arguments; the compiler ignored the
remainder.

User Action: Shorten the argument list.

TOOMANYINITS, The initializer list for "****" specifies too many initializers;
excess initializers ignored.

Warning: You specified too many initializers for the indicated variable.
(If the indicated item is an array or structure, it may be only partially
initialized.)

User Action: Make sure that all braces near the initializer sublists are
balanced; if the item being initialized is or contains an array, make sure
that you account for all dimensions.

TOOMANYMACARGS, Argument list for macro"****" contains too many
arguments; excess arguments ignored.

Warning: You wrote a reference to the indicated macro with more
arguments than were specified in its definition.

User Action: Make sure that the number of arguments in the macro
reference is the same as the number of parameters in the definition.

TOOMANYMACPARM, Parameter list for macro"****" contains too many
parameters; excess parameters ignored.

Warning: The number of macro parameters in a #define preprocessor
directive exceeded the implementation limit of 64.

User Action: Rewrite the macro definition so that it uses 64 or fewer
parameters.

TOOMANYSTR, String constant contains too many characters; truncated.

Warning: You wrote a character-string constant whose length exceeded
the implementation's limit of 65,535 characters.

User Action: Shorten the string.

TRUNCFLOAT, Double-precision floating-point constant cannot be converted to
single precision; 0. 0 assumed.

Warning: You specified a double-precision constant in an expression
involving a conversion to single precision, but the constant's value was
too small to be represented in single precision.

User Action: Ensure that 0 is a valid value in this context; if necessary,
redeclare the conversion target as double.

Diagnostic. Messages B-29

TRUNCSTRINIT, String initializer for 11 **** 11 contains too many characters to
fit; truncated.

Warning: If the variable was a simple one-dimensional array, the
initializer was truncated (so that the length of the initializer was array-
1) and the null byte was added to the end of the array. If the array is
a multidimensional array or an array within a structure, the initializer
was truncated to the length of the array and a null byte was not added.

User Action: Treat arrays of characters as strings allowing for the null
byte at the end of the array. Consider the special case of multidimen­
sional arrays and arrays within structures, especially when you do not
want the null byte to be truncated.

TYPECONFLICT, 11 **** 11 conflicts with a previous data type in this declaration;
previous data type ignored. ·

Warning: You specified more than one data-type specifier in this decla­
ration, and the indicated specifier conflicted with a previous one.

User Action: Check for a missing semicolon in the previous declaration;
otherwise, make sure that all specifiers are compatible.

TYPEINLIST, The type of 11 **** 11 was specified in the parameter list. This
declaration is ignored.

Warning: The function definition uses the prototype format but still
contains a declaration of this parameter in the parameter declaration
section.

User Action: Eliminate the redundant declaration.

UABORT, Compilation terminated by user.

Fatal: The compilation was terminated by a CTRUC or kill command.

User Action: None.

UNDECLARED, 11 **** 11 is not declared within the scope of this usage,

Error: You referred to an undeclared variable. (You must declare
variables before you use them.)

User Action: Check the spelling of the identifier, or add a declaration
for it, if appropriate.

UNDECLARED, 11 **** 11 is not declared prior to this #pragma preprocessor
directive; directive ignored.

Warning: This directive lists an identifier that has not yet been de­
clared. The entire directive has been ignored by the compiler.

User Action: Check the spelling of the identifier or add a declaration
for it, if appropriate.

UNDEFIFMAC, 11 **** 11 is not a currently defined macro; constant zero assumed.

Informational: The identifier of a constant expression in an #if or
#elif preprocessor directive was not currently defined as a macro. The
expression was evaluated as if the identifier were a constant 0. This
message is only generated if -V standard=portable is specified on the
vcc command line.

User Action: Define the identifier as a macro or remove the reference
to it.

8-30 Diagnostic Messages

UNDEFLABEL, Label 11 **** 11 is undefined in this function.

Error: You wrote goto label-name for an undefined label. The scope of
a label name is restricted to the function in which it is used as a label;
goto statements cannot branch to labels inside other functions.

User Action: Check the spelling of the label name or make other
corrections as appropriate.

UNDEFMACRO, 11 **** 11 is already undefined; directive ignored.

Warning: The specified identifier (in an #undef directive) was either
never defined or occurred in a previous #undef. This message is only
generated if-V standard=portable is specified on the vcc command
line.

User Action: Remove the #undef, or, if applicable, appropriately add
the correct definition of the identifier.

UNDEFSTRUCT, 11 **** 11 is a structure or union type that is not fully defined at
this point in the compilation.

Error: You used a name in the context of a structure or union tag, but
the name is either undefined or is not yet fully defined as a tag.

User Action: Check the spelling of the name, and make sure that it is
fully defined as a tag before using it.

UNEXPEND, Unexpected end-of-**** encountered in #define preprocessor
directive; directive ignored.

Warning: The end of the #define directive or the end of the source file
was encountered before the definition was complete.

User Action: Check for an incomplete comment within the definition,
or check for a missing continuation of the directive.

UNEXPEOF, Unexpected end-of-file encountered in a****.

Error: The compiler encountered the end of the source file while scan­
ning for the end of a string constant or a comment.

User Action: Make sure that string constants and comments are
properly terminated.

UNEXPPDIRX, Unexpected **** preprocessor directive encountered; directive
ignored.

Warning: The specified directive occurred out of place and was ignored.

User Action: Check the logic of all directives in the program to be sure
that it is valid.

UNKSIZEOF, Operand of sizeof has an unknown size; 0 assumed.

Warning: The operand of a sizeof operator was an array whose size
was unknown at compile time. A size of 0 was assumed.

User Action: Change the declaration of the array to specify the appro­
priate dimension bound.

Diagnostic Messages B-31

UNRECCHAR, Unrecognized character ignored.

Warning: The line contained either a meaningless character or one that
appears out of its proper context, such as a pound sign(#) that was not
the first character on a line.

User Action: Move or remove the character.

UNRECPRAGMA, Unrecognized pragma; directive ignored.

Informational: You have specified a #pragma preprocessor directive
that is not recognized by VAX C.

User Action: Correct the syntactic or semantic error that rendered the
directive unrecognizable. Common errors include misspelled parameters
and ambiguous abbreviations.

VARNOTMEMBER, A variant aggregate must be a member of a struct or union.

Error: You tried to specify a variant_struct or a variant_union
outside an aggregate declaration.

User Action: If you intend to use the structure or union as declared,
and if the structure or union is the outermost aggregate in a group of
nested aggregates, replace the variant keywords with struct or union.
If you intend to use the structure or union as a variant aggregate,
and if the structure or union is otherwise properly declared, nest the
declaration within a valid structure or union declaration. If you used the
variant_struct or variant_union keywords in declarations other than
structure or union declarations, remove the variant keywords~

VOIDCALL, A "void" function cannot be invoked in a context where a value is
expected.

Error: You coded a call to a function declared as void, but the call
appeared in a context where a return value was expected.

User Action: Move the function call to a different context, or if the
function does return a value, declare it to be void.

VOIDEXPR, A 11 void11 expression cannot be used in a context where a value is
expected.

Error: You cast an expression to be void, but the expression was used
in a context where its value was required.

User Action: Remove the cast, or move the expression to a context that
requires no return value.

VOIDNOTFUNC, 11 **** 11 is not declared to be a function; only functions may be
declared "void".

Error: You declared an object other than a function to be void.

User Action: Check the syntax of the declarator. You may find the out­
put produced by the -V'SHOW=SYMBOLS" option on the vcc command
line to be helpful in diagnosing this problem.

B-32 Diagnostic Messages

VOIDRETURN, A "return" statement in a "void" function may not specify a
value; expression ignored.

Warning: You specified a value in a return statement within a function
declared as void.

User Action: Either remove the return value or redefine the function
as returning the appropriate data type.

B.3 Diagnostic Messages from the lk Linker

Errors that occur during the linking of your program are reported by the linker.
These messages may result from errors in the user program, (such as references
to undefined symbols), from missing pieces needed by the linker to build the
executable image, or from errors in the compiler or in the linker itself. The linker
also sends informational messages in certain situations.

This section describes the messages generated by the lk linker. For information
on ld linker messages, see the ULTRIX Documentation Set.

In order of greatest to least severity, the four classes of linker diagnostic messages
are as follows:

Code Description

F Fatal; the linker cannot continue, so it terminates processing immediately.

E Error; the linker cannot produce an executable image as output. However, the
linker does continue processing input.

W Warning; the cause of the error should be investigated and, if possible, corrected.
The linker continues to process input and will produce an output file.

I Informational; this message only contains information; no user action is neces­
sary.

The following example shows how linker messages are displayed by stderr:

%LK-F-CONFQUAL, You have specified options on the lk command line that
are mutually exclusive.

Table B-1 is an alphabetical list of linker diagnostic messages. For each message,
the table gives a mnemonic, the class of the message, the message text, and an
explanation of the message.

Table B-1: Linker Diagnostic Messages

Mnemonic Error

ARZEROSYMS w

BAD CCC F

Message Text and Meaning

an object library 'pathname' member 'name' with an
empty symbol table

The named member of the indicated object library has a
0-length symbol table.

bad compilation completion code ('n') in module 'module­
name' file 'pathname'

The compilation completion code in the indicated mod­
ule is invalid. Recompile the module and relink the
program.

(continued on next page)

Diagnostic Messages B-33

Table B-1 {Cont.): Linker Diagnostic Messages

Mnemonic Error

BADPSC F

COMMDEF I

CONFQUAL F

CRFERR w

DSTINTERR w

EMPTYFILE w

EOMFTL F

EOMSTK

ERRORISUE E

ERRORS E

EXCPSC F

B-34 Diagnostic Messages

Message Text and Meaning

transfer address in unknown psect ('n') in module
'module-name' file 'pathname'

The module specified a nonexistent psect for the transfer
address. Correct the source code, recompile the module,
and relink the program.

'pathname': Definition of common 'name' size 'n'

The link.er encountered a definition of the named com­
mon block in the named file. This message occurs if you
specify the -y option for that symbol on the lk command
line.

conflicting qualifiers

You have specified options on the lk command line that
are mutually exclusive.

error encountered in Cross Reference

The linker encountered an error while cross-referencing
a symbol name. Another message will explain exactly
what error was encountered.

internal coding error "routine_name", symbol 'name'

The linker encountered a problem while processing
the indicated debugger symbol. Submit an SPR on the
linker.

no modules found in file 'pathname'

The named file contains no object code.

link abort specified in module 'module-name' file 'path­
name'

The end-of-module record in the indicated module
specifies ending the link. Correct the errors in the
module and relink the program.

'n' UL items left on Linker internai stack in module
'module-name' file 'file-spec'

This message indicates an internal error either in the
compiler or in the linker. Submit an SPR either on the
compiler that generated the module or on the linker.

completed with errors

The link completed, but errors were detected. Correct
the errors and relink the program.

compilation errors in module 'module-name' file 'path­
name'

The indicated module generated errors during compila­
tion. The linker will continue, but it is unlikely that the
resulting program will run correctly. Correct the source
code errors, recompile, and relink the program.

more than 65535 psects defined in module 'module-name'
file 'pathname'

The indicated module defines too many psects. Correct
the problem and relink the program.

(continued on next page)

Table B-1 (Cont.): Linker Diagnostic Messages

Mnemonic Error

EXTDEF I

EXTREF I

FAOFAIL w

FATALERROR F

FILETRACE I

FORMAT F

GSDTYP w

ILLARFOR F

ILLDEFOFF F

ILLFMLCNT w

Message Text and Meaning

'pathname': Definition of external 'entity' 'entity-name'

The linker encountered a definition of the named entity
in the named file. This message occurs if you specify the
-y option for that entity on the lk command line.

'pathname': Reference to external undefined 'name'

The linker has just encountered a reference to the
indicated name in the named file. This message occurs
if you specify the -y option for that name on the lk
command line.

FAO system service failure

The linker encountered an error while calling the
Formatted ASCII Output (FAO) system service. Further
messages will tell exactly what error was encountered.

fatal error message issued

The link completed but a fatal error message was issued.

now processing file: 'pathname'

The linker is now processing the indicated file. This
message occurs if you specify the t option on the lk
command line.

file has illegal format

One of the files on the command line is neither an object
module nor an object library. Correct the file references
and reissue the fort command.

illegal GSD record type 'type' in module 'module-name'
file 'pathname'

'l'he indicated module in the indicated file is corrupt;
it contains an illegal Global Symbol Dictionary (GSD)
record. Correct the problem and relink the program.

object library 'pathname' has illegal format

The linker detected a format error in the indicated object
·library. Rebuild the library file.

has a symbol definition offset greater than corresponding
segment size

The file or member defines a symbol whose offset is
outside the program segment in which the symbol is
defined. Submit an SPR on the compiler that generated
the file or member.

minimum argument count 'n' exceeds maximum ('n')
in formal specification of symbol 'name' in module
'module-name' file 'pathname'

The object records that describe the indicated sym-
bol specify inconsistent values for the minimum and
maximum permissible argument counts for calling the
routine. Submit an SPR on the compiler that generated
the module.

(continued on next page)

Diagnostic Messages B-35

Table B-1 (Cont.): Linker Diagnostic Messages

Mnemonic Error

ILLMEMMAG F

ILLNAMELEN F

ILLOBJFOR F

ILLOBJMAG F

ILLODDSEG F

ILLRANTOC F

ILLRECLEN w

ILLRECTYP w

8-36 Diagnostic Messages

Message Text and Meaning

object library 'pathname' has a member with an illegal
ar_hdr magic number

A member in the indicated object library has a bad magic
number field. Rebuild the library file.

'entity' 'name' name length ('n') is illegal-not 1 to 'n' in
module 'module-name' file 'pathname'

The length of a psect, module, or symbol name is not in
the specified range. Correct the length and relink the
program.

has illegal format

The indicated object file or member is not formatted
properly. Rebuild the object file and relink the program.

has an illegal magic number

The indicated object file or member has a magic num­
ber field that contains a value other than OMAGIC,
NMAGIC, or ZMAGIC. Rebuild the object file and relink
the program.

has an odd length text or data segment

The text and data segments of an object file or member
must have even lengths. Either the file or member is
corrupt or there is a bug in the compiler that generated
the file or member. First, correct the file or member
and rebuild the program. If the error continues to occur,
submit an SPR on the compiler that generated the file or
member.

ranlib file 'pathname' has an illegal table of contents

The indicated library's table of contents is corrupt. Run
ranlib on the library and relink the program.

illegal record length ('n') in module 'module-name' file
'pathname'

The indicated module contains a record that is too long
or that is inconsistent with the record type. This can
be caused by a corrupt file or by a compiler bug. First,
correct the file and rebuild the program. If the error
continues to occur, submit an SPR on the compiler that
generated the file.

illegal record type ('n') in module 'module-name' record
'n' file 'pathname'

The indicated object record contains a bad type field.
This can be caused by a corrupt file or by a compiler bug.
First, correct the file and rebuild the program. If the
error continues to occur, submit an SPR on the compiler
that generated the file.

(continued on next page)

Table B-1 (Cont.): Linker Diagnostic Messages

Mnemonic Error

ILLRELOFF F

ILLRELSYM F

ILLSTATEVAL F

ILLSTRIDX F

ILLSYMNAM F

ILLTIR w

ILLVPS w

ILLZMAGSEG F

Message Text and Meaning

has a relocated field outside the corresponding segment

The relocated value for a field places it outside the
segment in which it is defined (for example, a text
segment symbol whose relocated value places it in the
data segment). Correct the source code and relink the
program.

has a relocation field that points to an illegal symbol

A relocation field in the file or member points to a
symbol that is not a data definition symbol. Submit an
SPR on the compiler that generated the file or member.

current state out of range in lnk.$nxtultrec

The link.er encountered an internal error. Submit an
SPR on the link.er.

has an illegal string index in a stab entry

The link.er encountered a symbol table entry with
an illegal string table index. Submit an SPR on the
compiler that generated the file or member.

file 'pathname' contains a symbol that exceeds the
maximum size

The indicated file contains a symbol name longer than
255 characters. Reduce the size of the symbol and then
recompile and relink the program.

illegal relocation command ('n') in module 'module-name'
record 'n' file 'pathname'

The indicated object record contains a bad relocation
command. This can be caused by a corrupt file or by
a compiler bug. First, correct the file and rebuild the
program. If the error continues to occur, submit an SPR
on the compiler that generated the file.

illegal position ('n') or size ('n') in STO_ VPS command in
module 'module-name' file 'pathname'

The indicated object record contains a bad STO _ VPS
command. This can be caused by a corrupt file or by
a compiler bug. First, correct the file and rebuild the
program. If the error continues to occur, submit an SPR
on the compiler that generated the file.

has an illegal zmagic text or data segment size (not
multiple of 1024)

The object file or member has a header specifying
ZMAGIC format, but the text or data segment size is not
a multiple of the page size (1024 bytes). Either the file
or member is corrupt or there is a bug in the compiler
that generated the file or member. First, correct the
file or member and rebuild the program. If the error
continues to occur, submit an SPR on the compiler that
generated the file or member.

(continued on next page)

Diagnostic Messages B-37

Table B-1 (Cont.): Linker Diagnostic Messages

Mnemonic Error

INSVIRMEM E

INTERNERROR F

INTSTKOV w

INTSTKUN w

INVDSTREC w

LIBNAMLNG w

LIBNOTFND F

LOCDEF I

LOCREF I

8-38 Diagnostic Messages

Message Text and Meaning

insufficient virtual memory for 'n' pages for cluster
'name'

The linker was unable to allocate enough virtual memory
in the resulting program to contain the entire program.
Consult the link map (obtained by entering the lk -
M command) to determine why the linker ran out of
virtual memory. Then, correct the problem and relink
the program.

internal linker error 'n', please submit spr

The linker encountered an internal error. Submit an
SPR on the linker, indicating the error number reported
in this message.

linker internal stack of 'n' overflowed in module 'module­
name' file 'pathname'

The linker overflowed its internal stack while processing
the indicated module. Submit an SPR on the linker.

linker internal stack of 'n' underflowed in module
'module-name' file 'pathname'

The linker underflowed its internal stack while pro­
cessing the indicated module. Submit an SPR on the
linker.

invalid VAX DEBUG Symbol Table record, type 'n'
subtype 'n'

The linker encountered the indicated invalid debugger
record. Either the object file is corrupt or there is a
bug in the compiler that generated the object file. First,
correct the file and rebuild the program. If the error
continues to occur, submit an SPR on the compiler that
generated the file.

library module name 'name' has illegal length ('n')

The indicated module name is too long. Shorten the
name and then recompile and relink the program.

'pathname' not found in /lib, /usr/lib, or /usr/local/lib

The indicated library, specified using the fort -I com­
mand, was not found in any of the expected directories.
Either move the file or specify a pathname in the fort -I
command.

'pathname': definition of 'entity' 'entity-name'

The linker encountered a local definition of the named
entity in the named file. This message occurs if you
specify the -y option for that entity on the lk command
line.

'pathname': Reference to undefined 'name'

The linker· has just encountered a local reference to an
undefined symbol in the named file. This message occurs
if you specify the -y option for that symbol on the lk
command line.

(continued on next page)

Table B-1 (Cont.): Linker Diagnostic Messages

Mnemonic Error

MEMBUG F

MEMFUL E

MOD NAM F

MULDEF w

MULDEFPSC w

MULPSC w

MULTFR w

NOEOM w

NOEPM w

Message Text and Meaning

memory (de)allocation bug 'n', %X'n', 'n'

The linker encountered an internal error allocating or
deallocating dynamic memory. Submit an SPR on the
linker.

insufficient virtual address space to complete this link

There was insufficient process virtual address space or
swap file space to complete the link. Either increase
your virtual address space or swap file space, or decrease
the size of the program you are trying to link.

module 'name' name length is illegal-not 1 to 'n'

The length of a module name is not in the specified
range. Correct the name length and relink the program.

symbol 'name' multiply defined in module 'module-name'
file 'pathname'

The linker encountered a definition for the named
symbol in the indicated module, but the symbol is
defined. Correct the source code, so the symbol is defined
only once, then relink the program.

psect 'name' multiply defined in module 'module-name'
file 'pathname'

The indicated module defines the named program section
more than once. Submit an SPR on the compiler that
generated the module.

conflicting attributes for psect 'name' in module 'module­
name' file 'pathname'

The named program section is defined with different
attributes in different modules of your program. Correct
the source code so that all instances of the same psect
have the same attributes, then relink the program.

multiply defined transfer address in module 'module­
name' file 'pathname'

More than one object module specifies a transfer address
for the program. Delete all but one transfer address and
relink the program.

no end of module record found in module 'module-name'
file 'pathname'

The indicated module does not contain an end-of-module
record. This is due to a corrupt file or a bug in the
compiler that generated the file. First, correct the file
and rebuild the program. If the error continues to occur,
submit an SPR on the compiler that generated the file.

undefined entry mask of symbol 'name' referenced in
module 'module-name' file 'pathname'

A .MASK directive in a VAX MACRO object module
referenced an undefined symbol. Either define the
symbol or delete the reference to it.

(continued on next page)

Diagnostic Messages B-39

Table B-1 (Cont.): Linker Diagnostic Messages

Mnemonic EITor

NOIMGFIL E

NOMODS F

NOPSCTS F

NOTOBJLIB F

NOTpsect w

NOTXTENT I

NUDFENVS w

NUDFLSYMS w

NUDFSYMS w

OLDTOC w

OVRALI w

8-40 Diagnostic Messages

Message Text and Meaning

image file not created
The linker did not create an output program file. Other
error messages explain why it did not create· the file.

no input modules specified (or found)

The linker did not encounter any object modules in any
of the files specified on the command line. Correct the
command line and reenter the command.

no psects defined in module 'module-name' file 'path­
name'

The indicated module does not contain any program
sections.

file 'pathname' is not an object library

The indicated file is not an object library, but the linker
expected it to be one.

relocation base set to other than psect base in module
'module-name' file 'pathname'
A "set relocation base" command in the indicated module
specified a relocation base other than the base of the
psect. Submit an SPR on the compiler that produced the
module.

Entry specified is not defined in text.

The entry point name specified in the fort --e command
is not in the program text section of your program.
Instead, it is in the data or uninitialized data section.
The program entry point must be in the program text
section. Correct the source code and relink the program.

'n' undefined environment(s):

This message reports the undefined environments
encountered during the lip le.

'n' undefined module-local symbol(s):

This message reports the undefined module-local symbols
encountered during the link.

'n' undefined symbol(s):

This message reports the undefined global symbols
encountered during the link.

ranlib library file 'pathname' table of contents not
updated since last modification, re-run ranlib on it
The timestamp on the library's table of contents is older
than the modification date of the library itself. Run
ranlib on the file to update the table of contents.

conflicting alignment on overlayed psect 'name' in
module 'module-name' file 'pathname'
The named psect was defined in multiple modules with
different alignments. Correct the psect declarations so
that they all specify the same alignment, then relink the
program.

(continued on next page)

Table 8-1 (Cont.): Linker Diagnostic Messages

Mnemonic Error

PS CALI w

PSCNXR w

REC LNG w

RECTYP w

RLZEROTOC w

SEQNCE w

STALITUDF w

STRLVL F

Message Text and Meaning

psect 'name' alignment ('n') illegal in module 'module­
name' file 'pathname'

The module specified an illegal psect alignment. Submit
an SPR on the compiler that produced the module.

transfer address is not in executable, relocatable psect in
module 'module-name' file 'pathname'

The transfer address for a module must be in an exe­
cutable, relocatable psect. Move the transfer address
and relink the program.

file 'pathname' has a record of illegal length ('n')

The file contains a record of either length 0 or longer
than 2048 bytes. Either the file is corrupt or there is a
bug in the compiler that generated the file. First, correct
the file and rebuild the program. If the error continues
to occur, submit an SPR on the compiler that generated
the file.

file 'pathname' record 'n' is illegal ('n')

The file has a record with an illegal type field. Either
the file is corrupt or there is a bug in the compiler that
generated the file. First, correct the file and rebuild the
program. If the error continues to occur, submit an SPR
on the compiler that generated the file.

ranlib object library 'pathname' has an empty table of
contents

There are no entries in the object library's table of
contents. If there are object files in the library, run
ranlib to build the table of contents, then relink the
program.

illegal record sequence in module 'module-name' file
'pathname'

The indicated module contains an illegal sequence of
object records. Submit an SPR on the compiler that
generated the file.

Stack of undefined literal 'n' in record 'n' in module
'module-name' file 'file-name'

The indicated module contains an object command to
push a literal value onto the linker's internal stack,
but that literal is not defined. Submit an SPR on the
compiler that generated the file.

illegal object language structure level ('n') should be 'n'
in module 'module-name' file 'pathname'

A module header record in the indicated module specifies
an invalid object language format. Either the object file
is corrupt or there is a bug in the compiler that created
the module. First, correct the module and rebuild the
program. If the error continues to occur, submit an SPR
on the compiler that generated the module.

(continued on next page)

Diagnostic Messages B-41

Table B-1 (Cont.): Linker Diagnostic Messages

Mnemonic Error

TIRLNG w

TIRNYI w

TRUNC w

TRUNCDAT w

UDEFPSC w

ULTOBJFIL F

ULTOBJMEM F

B-42 Diagnostic Messages

Message Text and Meaning

object command data overflows record by 'n' bytes in
module 'module-name' record 'n' file 'pathname'

There is a bad length field in a Text Information/
Relocation record in the indicated module. Either the
object file is corrupt or there is a bug in the compiler
that generated the file. First, correct the file and rebuild
the program. If the error continues to occur, submit an
SPR on the compiler that generated the file.

unimplemented TIR command ('n') encountered in
module 'module-name' record 'n' file 'pathname'

The indicated module contains a Text Information/
Relocation record that is not yet implemented by the
linker. Submit an SPR on the compiler that generated
the file.

truncation error in psect 'name' offset %X'n' in module
'module-name' file 'pathname'

The indicated relocatable reference specified a 1-byte or
1-word relative addressing mode, but the defined address
of the symbol is longer than 1 byte or 1 word. Correct
the reference by using longword relative addressing.

computed value is %X'valuel' value written is %X'value2'
at location %X'addr'

This message accompanies the TRUNC message to
give more detailed information about the truncation
error. 'value!' is the value that the linker tried to store.
'value2' is the truncated version that the linker was able
to store. 'addr' is the virtual address in the executable
program where the value is stored.

attempt to reference undefined psect number 'n' in
module 'module-name' file 'pathname'

The indicated module references a psect index that it
did not define. Submit an SPR on the compiler that
generated the object file.

object file 'pathname'

There is a problem in the object file named by "path­
name." Another message describing the problem will
follow.

object library file 'pathname' member 'name'

There is a problem in a member of an object library.
Another message describing the problem will follow.

(continued on next page)

Table B-1 (Cont.): Linker Diagnostic Messages

Mnemonic Error

USEUDFENV w

USEUDFLSY w

USEUNDEF w

WARNISUE w

WRNERS w

Message Text and Meaning

undefined environment 'name' referenced

OR
undefined environment number 'n' referenced in psect
'name' offset %X'n' in module 'module-name' file 'path­
name'

The linker encountered a reference to an environment
that was not defined in any of the object modules. Either
define the environment in one of the object modules or
remove the reference.

undefined module-local symbol 'name' referenced in
psect 'name' offset %X'n' in module 'module-name' file
'pathname'

The indicated location references a module-local symbol
that was not defined. Correct the source code so that
either the symbol is defined or the reference is removed.

undefined symbol 'name' referenced in psect 'name' offset
%X'n' in module 'module-name' file 'pathname'

The indicated location references an external symbol
that was not defined. Correct the source code so that
either the symbol is defined or the reference is removed.

completed with warnings

The linker finished processing the program, but warning
messages were issued.

compilation warnings in module 'module-name' file
'pathname'

The compilation that produced the indicated module
generated warning messages. Depending on the nature
of the warnings, you may have to correct the errors that
caused the warnings and recompile the module.

Diagnostic Messages B-43

Appendix C

Transporting VAX C Programs Between VMS and
ULTRIX Systems

This appendix describes how to transfer VAX C programs and data between
VMS and ULTRIX systems. It also describes many of the differences and
incompatibilities that you may need to resolve before a :file-developed on one
type of system (ULTRIX or VMS) and transported to a different type of system
(ULTRIX or VMS)-can be used on the receiving system.

This appendix addresses the following topics:

• Section C.l describes several methods that you can use to transport VAX C
program files between VMS and ULTRIX systems.

• Section C.2 describes differences that result from the compiling and li~ing
process on the two types of systems.

C.1 Transporting VAX C Programs and Other ASCII Files

The following sections describe several mechanisms that you can use to transfer
program files between VMS and ULTRIX systems.

C.1.1 Using DECnet-ULTRIX to Copy ASCII Programs

To copy files from a VMS system to an ULTRIX system, you can use the DECnet­
ULTRIX1 copy command, dcp, to pull the files over the network. To do this, enter
a dcp command with the following form:

% dcp vms_node/accountlpassword::'dev:[dir]in_file' ouLfile

The definitions of the variables (in italics) in the preceding command line are as
follows:

vms_node

account

password

dev:[dir]

in_:file

out_file

VMS node name

VMS account that you will log in to

Password of the specified VMS account

Device (dev) and directory (dir) where the file resides

Input file name

Output file name

1 DECnet-ULTRIX is a layered product available under a separate license for ULTRIX systems.

Transporting VAX C Programs Between VMS and ULTRIX Systems C-1

To copy files from an ULTRIX node to a VMS node, use the dcp command to push
the files over the network. To do this, enter a dcp command with the following
form:

% dcp in_fi/e vms_nodelaccountlpassword::'dev.[di~out_file'

The variables in this command line are the same as those in the previous
command line.

C.1.2 Using DECnet-VAX to Copy ASCII Programs

You can use the DECnet-VAX2 COPY command to copy ASCII files between a
VMS node and an ULTRIX node. To pull a VAX C source file from an ULTRIX
node to a VMS node, enter the COPY command with the following form:

$ COPY ult_node"account password'::"/dev/dir/in_file" out_fil e

The definitions of the variables (in italics) in the preceding command line are as
follows:

ult_node

account

password

/dev/dir/

in_ file

out_file

ULTRIX node name

ULTRIX account that you will log in to

Password of the specified ULTRIX account

Device (dev) and directory (dir) where the file resides

Input file name

Output file name

The resulting VMS file is not created with record format VARIABLE. This causes
the VMS editor (EDT) to issue the following message:

Input file does not have standard text file format

Otherwise, the file can be used as an ASCII file.

C.1.3 DEC/Shell on a VMS System - The tar Utility

You can use the DEC/Shell3 tar utility to move ASCII files from a VMS system
to an ULTRIX system, or to restore ASCII files written by tar on an ULTRIX
system. When restoring files from an ULTRIX system to a VMS system, you must
physically mount the tape on the tape drive from which you want to perform the
restore procedure. You do not need to enter the MOUNT command because the
tar utility does this automatically.

NOTE

The tar utility cannot be used alone to transfer binary data files
between a VMS system and an ULTRIX system. The data formats on
the two systems are incompatible and require additional processing
beyond that provided by tar.

In the following example, the function letter c directs the tar utility to create a
new tape. Writing starts at the beginning of the tape instead of after the last file.
The tar utility writes the named file(s) to the tape.

% tar -c foo.c

2 DECnet-VAX is a layered product available under a separate license for VMS and Micro VMS systems.
3 DEC/Shell is a layered product available for VMS and Micro VMS systems under a separate license.

C-2 Transporting VAX C Programs Between VMS and ULTRIX Systems

The following command extracts all the files in the ./cprogs directory. By default,
the device mtaO: is used.

% tar -x ./cprogs

The function letter x directs tar to extract files from tape. Because a directory
name is given as a parameter, tar recursively extracts files from the directory. If
you do not specify a parameter, tar extracts the entire contents of the tape.

C.2 Compiling and Linking Considerations

The following sections describe the I/O files associated with the vcc (on ULTRIX
systems) and CC (on VMS systems) compilation commands, the search paths
associated with the vcc command, and the differences in psect usage and image
sizes on the two types of systems.

C.2.1 Input and Output Files

On a VMS system, the process of compiling and linking a VAX. C program
generally requires two steps. For example, if you have a VAX. C source program
named FOO.C, the following sequence of commands results in an executable
image, FOO.EXE:

$ CC FOO
$ LINK FOO

The first command invokes the VAX. C compiler, which compiles the input file
FOO.C, and produces the output file FOO.OBJ. The second command invokes
the linker, which links the input file FOO. OBJ (along with appropriate support
routines), and produces the output file FOO.EXE.

On an ULTRIX system, you can accomplish the same process by using a single
vcc command line. The vcc command causes the VAX. C compiler and the linker
to execute with the appropriate arguments, based on its interpretation of its own
arguments. Other processors (such as the ULTRIX assembler and the ULTRIX
C preprocessor, cpp) can also be invoked by the vcc command, depending on the
arguments supplied on the vcccommand line.

The following vcc command is similar to the VMS command sequence previously
described:

% vcc -o foo foo.c

In this example, the presence of foo.c causes the vcc command to invoke the VAX.
C compiler with the file foo.c as an input file; the compiler produces the file foo.o
as output. The .c must be supplied explicitly. The vcc command then invokes
the linker with -o foo and foo.o (and appropriate libraries) as arguments, and
the linker produces the executable image foo. The vcc command program then
deletes the intermediate file foo.o.

The vcc command assumes the existence of intermediate files not specified by
the command line, which are created by one processor and passed to another (for
example, foo.o, created by the VAX. C compiler and linked by the linker). The vcc
command derives the names of these intermediate files from its arguments. For
example, the vcc command assumes that any file whose name ends in .c or .h
is a VAX C source file that should be compiled by the VAX C compiler. The vcc
command further assumes that the VAX. C compiler will create a file of the same
name (minus the .c or .h), with the file extension .o. For example, compiling foo.c
produces foo.o.

Transporting VAX C Programs Between VMS and ULTRIX Systems C-3

C.2.2 Search Paths Used by the vcc Command

The vcc command looks for the processor it expects to execute, as well as support
routine libraries and objects, in a sequence of directories in the ULTRIX file
system. This sequence, or search path, is as follows:

• The vcc command looks for the VAX C compiler by trying to execute in
order:

1. The directory specified in the -B option, if -tO is specified.

2. /usr/lib/vcc

3. /lib/vcc

• The vcc command looks for the linker in the following places:

1. The directory specified in the -B option, if -ti is specified.

2. /usr/bin

3. /bin

• If the -Em option is specified, the vcc command looks for the ULTRIX C
preprocessor cpp in the following directories:

1. The directory specified in the -B option, if -tp is specified.

2. /usr/lib

3. /lib

• The vcc command assumes that the C libraries are in the /usr/lib directory.

If you need to print a diagnostic message while executing either the VAX C
compiler, the linker, or a user program, the message routines look for the
following messages in the file:

• $fortmsg:file - if the environment variable fortmsg:file is defined

• /usr/lib/fortmsgfile - otherwise

C.2.3 Psect Differences

There are numerous differences between the way that psects are set up by VAX
C on a VMS system and the way that they are set up by VAX C on an ULTRIX
system.

C.2.4 Image Size Differences

The size of the executable VAX C programs is much larger on ULTRIX systems
than with either VAX C programs on VMS systems or pee programs on ULTRIX
systems. There are several reasons for this as follows:

• The VMS operating system supports shareable images, in which libraries
of subroutines can be shared by more than one program. This effectively
reduces the size of a program's executable image for those programs that use
routines contained within the shared libraries. For VAX C programs, these
shareable libraries include the math library routines, Record Management
Services (RMS) routines (on VMS systems), and system service routines.

C-4 Transporting VAX C Programs Between VMS and ULTRIX Systems

Unlike the VMS operating system, the ULTRIX operating system has no
comparable facility for sharing common routines; each program that uses
shared libraries or system service routines must have the routines physically
present as part of the program's executable image. As a result, these images
are much larger on an ULTRIX system than their counterparts would be on a
VMS system.

• The ULTRIX system performs demand zero compression only on the bss
section of a program. (The bss section appears at the end of a program image
file.) When image activation occurs on an ULTRIX system, this section is
allocated zero initialized memory.

Demand-zero compression is the extraction of contiguous, uninitialized,
writeable pages from an image section and the placing of these pages into a
newly created demand-zero image section.

A demand-zero image section contains uninitialized, writeable pages that do
not occupy space in the image file on disk, but which, when accessed during
program execution, are allocated memory and initialized with binary zeros by
the operating system.

In pee, the compiler does the work of separating initialized data from
uninitialized data. However, many of the VAX C optimizations depend on a
storage layout that prevents such separation. For this reason, no local storage
for variables or arrays is allocated to bss.

C.3 Transferring Data Files Between VMS and ULTRIX Systems

You can make data file transfers between VMS and ULTRIX systems by using the
DECnet dcp utility described in Section C.1.1 or magnetic tape, using the tape
archive utility, tar, which is described in Section C.1.3.

Transporting VAX C Programs Between VMS and ULTRIX Systems C-5

Appendix D

Language Summary

This appendix describes the vcc command and the VAX C/ULTRIX language
features.

D.1 The vcc Command

The vcc command is an ULTRIX command that compiles one or more VAX C
source files into one or more object files. The source file or files compiled into an
object module is called the compilation unit.

The vcc command has the following form:

vcc [-options [args)] ... filename[.type] [... filename[.type]] [-options [args]]

vcc Command Options:

Option

-B string

-b
-c

-D name=def

-E

-Em

-f

-g
-Idir

-K

Description

Finds a substitute compiler, preprocessor, an assembler, and a linker
in the files named by string. If string is empty, use a standard backup
version.

Does not pass the library file -le to the linker. This is a linker option.

Generates an object file with a .o file extension. The linked, executable
module is not generated.

Assigns the specified value (de/) to name. The preprocessor interprets
this option. If a definition value is not specified, the name is set equal
to 1.

Runs the vcc preprocessor. The code is preprocessed, and all preproces­
sor directives, such as include file statements, are resolved.

Runs the cpp preprocessor and produces the makefile dependencies.

Enables single-precision, floating-point arithmetic. Double-precision,
floating point is the default selection. Procedure arguments are still
promoted to double-precision, floating-point format.

Generates additional symbol table information for the dbx debugger.

Specifies the name of the directory containing the relevant include
files. A search for included files whose names do not include a directory
specification, occurs in: the directory of the file, the directory named by
the -I option, and finally in directories contained in a standard list.

Generates a full MAP table. This is a linker option. It may be specified
on the vcc command line or the linker command line.

Language Summary D-1

Option

-Ix

-Md

-Mg

-0

-0

-p,-pg

-t [Opal]

-Uname

-v filename. Us

-Voption

-w

-Y [option]

Description

Specifies a library to include in the link process. The variable x is an
abbreviation for the library and path name /lib/libx.a in which x is a
string. If the library is not found, the linker searches for /usr/local/lib
/libx.a. A library search starts when the library name is encountered.
As a result, the placement of the -I within the vcc or linker command
line is significant.

Specifies the double-precision, floating-point type as D_floating. This is
the default selection. The linker also receives the -le flag.

Specifies the double-precision, floating-point type as G_floating. The
linker also receives the -leg flag. If you want to use the math library,
with code generated with the -Mg option, you must link in the G_
FLOAT version of the library by specifying -Img on the linker or vcc
command line.

Accepts the specified name as the final output file name. This is a
linker option. It may be specified on the vcc or linker command line.

Invokes the object code improver. The default selection is to perform
object code optimization.

Prepares object files for profiling. The -pg option also invokes a run­
time recording mechanism that produces a gmon.out file. This file
contains more extensive statistics.

Finds only the designated compiler, preprocessor, assembler, and linker
in the files whose names are constructed by a -B option. In the absence
of a -B option, these are found in the standard places.

Makes the specified variable undefined within the program. This option
is interpreted by the preprocessor.

Produces the listing file, complete with a cross-reference table and
machine code listing.

Compiles the source code using vendor-specific options.

Suppresses compiler warning messages. Error messages are displayed,
but warning messages are not.

Compiles a file for one of the following options: SYSTEM_FIVE, BSD,
or POSIX. If a parameter other than SYSTEM_FIVE, BSD, or POSIX
is specified, a warning is printed and the -Y option is ignored. If no
parameter is specified, -Y defaults to -YSYSTEM_FIVE. If multiple
-Y options are specified, only the last option takes effect, and no
warning message is generated.

D.2 Data-Type Keywords

Type Specifiers:

32-bit signed or unsigned:

int
long
long int
unsigned int
unsigned long
unsigned long int

D-2 Language Summary

16-bit signed or unsigned:

short
short int
unsigned short
unsigned short int

8-bit signed or unsigned:

char
unsigned char

F _floating format:

float

D_floating or G_floating format:

double
long float

Aggregate types:

struct
union
variant_ struct
variant_ union

Enumerated type:

en um

Type of function return value:

void

Type declaration:

typedef

Storage-class specifiers:

auto
register
static
extern
globaldef
globalref
globalvalue

Data-type modifiers:

const
volatile

Storage-class modifiers:

read only
nos hare
_align

Language Summary D-3

D.3 Precedence of Operators

In the following table, the operators are listed from highest precedence to lowest.
In the binary operator category, operators appearing on higher lines within the
category have a higher precedence than the other binary operators.

Category Association Operator

Primary Left to right () [] ->
Unary Right to left ++ -

sizeof

Binary

Conditional

Assignment

Comma

D.4 Statements

Syntax:

[expression] ;
identifier : statement

Left to right

Right to left

Right to left

Left to right

{ [dec/aration-lis~ [statement-lis~ }

* I
+
<< >>
< <=
-- !=
&
A
I
&&
I I

?:

= +=
< <=

case [constant-expression I default] : statement-list
if (expression) statement [else statemen~
while (expression) statement
do statement while (expression)
for ([expression] ; [expression] ; [expression])
statement
switch (expression) statement
break;
continue;
return [expression] ;
goto identifier ;

D.5 Conversion Rules

Arithmetic Conversion

%

>

-=
&=

Any operand of type: Is converted to:

D-4 Language Summary

(type)

>=

*= I= %=
A= I=

* &

> >=

char
short
unsigned char
unsigned short
float

int
int
unsigned int
unsigned int
double

If operand type is:

double
unsigned

The result and the other operands are:

double

Otherwise, both operands are:

int

unsigned

And the result is:

int

Function Argument Conversion without Prototypes

Any argument of type:

float
char
short
unsigned char
unsigned short

array

function

D.6 VAX C Escape Sequences

Is converted to type:

double
int
int
unsigned int
unsigned int

pointer to array

pointer to function

The following table lists the VAX C escape sequences:

Character

newline

horizontal tab

vertical tab

backspace

carriage return

form feed

backslash

apostrophe

quotes

bit pattern

Mnemonic

NL

HT

VT

BS
CR

FF
\

ddd

Escape Sequence

\n

\t

\v

\b

\r

\f

\\

\'

\"

\ ddd or \ xddd

Use the form "\ddd" to specify any byte value (usually an ASCII code), where the
digits ddd are one to three octal digits. The octal digits are limited to 0 to 7.

D.7 Preprocessor Directives

Syntax:

#define identifietf.([param1, ... param2J)] token-string
#undef identifier
#elif constant-expression
#include <file-path>

Language Summary D-5

#include "file-path"
#if constant-expression
#ifdef identifier
#ifndef identifier
#else
#end if
#[line] constant string
#[line] constant identifier
#pragma [no]builtins
#pragma [no]inline
#pragma [no]member_alignment
#pragma [no]standard

D-6 Language Summary

A
a.out file (dbx), 3-2
_ADAWI built-in function, 1 Q-4

Additive operators, 6-1 o
Address correlation table

effect of debug argument (-V option), 2-11
Address-of operator, 6-8, 7-8
Aggregates, 7-11 to 7-22

arrays, 7-11
See also Bracket operators ([])

defined, 7-2, 7-11
introduction to, 4-14
structures, 7-11, 7-15
unions, 7-11,7-15
variant, 7-20

alias command (dbx), 3-7
_align modifier, 8-18
Allocation

modifiers, 8-16
AND bitwise operator, 6-12
argc

main function argument, 4-28
Arguments, 4-26 to 4-27

array identifiers used as, 4-27
command-line, 4-28
conversion of, 4-26
function prototypes, 1-6, 4-24
functions used as, 4-27
in #define preprocessor macros 9-3
introduction to, 4-3 '
rules governing, 4-26
to a function

conversion of, 4-26, 6-2, 6-17
argv

main function argument, 4-28
Arithmetic conversion rules, 6-16
Arithmetic operators

negation, 6-7
Array expressions

syntax for dbx, 3-4
Arrays, 7-11

as expressions, 6-3
declaration of, 7-11
initialization of, 7-13
introduction to, 4-14
references to, 6-3

asm pseudo function call, 1-9
assign command (dbx), 3-7
Assignment

operators, 6-14
precedence of, 6-6, 6-14

Asterisk operator (*), 7-8
[auto] specifier, 8-4, 8-8 to 8-9

B
\ b (backspace), 7-5
_BBCCI built-in function, 1 Q-4

_BBSSI built-in function, 1 o-4
Binary operators

additive, 6-1 O
bitwise, 6-12
equality, 6-11
logical, 6-13
multiplication, 6-11
precedence of, 6-6
relational, 6-11
shift, 6-13

Bit fields, 7-22
Bitwise operators, 6-12
Blocks, 4-31 to 4-32, 5-2 to 5-3
Boolean algebra, 6-12

See also Bitwise operators
-b option

vcc command option, 2-8
-B option

vcc command option, 2-8
Braces ({})

in compound statements, 4-31
in initializer lists, 7-13

Bracket operators ([]) , 6-3
break statement, 5-8

use with switch statement, 5-4
bss program section, C-5
Built-In functions, 1Q-3 to 10-15

_ADAWI, 1 o-4
_BBCCI, 1 o-4
_BBSSI, 1 o-4
_FFC, 10-5
_FFS, 10-5
_HALT, 10-6
_INSQHI, 10-6
_INSQTI, 10-6
_INSQUE, 10-7
_LDPCTX, 10-7
_LOCC, 10-7
_MFPR, 10-8
_MOVC3, 10-8
_MOVC5, 10-9
_MOVPSL, 10-1 O
_MTPR, 10-10
_PROBER, 10-10

Index

lndex-1

Built-In functions (Cont.)
_PROBEW, 10-11
_READ_GPR, 10-11
_REMQHI, 10-11
_REMQTI, 10-12
_REMQUE, 10-12
_SCANC, 10-13
_SIMPLE_READ, 10-13
_SIMPLE_WRITE, 10-14
_SKPC, 10-14
_SPANG, 10-15
_SVPCTX, 10-15
_WRITE_GPR, 10-15

builtins pragma, 9-9

c
call command (dbx), 3-8
case label, 5-4
Case sensitivity, 4-29
Cast operator, 6-9
catch command (dbx}, 3-8, 3-9
C compiler

See Compiler
Character

constants, 7-5
data type

variable, 7-3
strings, 7-11, 7-14

See also Arrays
introduction to, 4-14

Character-string constants, 7-14
See also Arrays
limit of length, 7-14

Clanguage
See also VAX C language
introduction to, 4-1 to 4-2

Command-line arguments, 4-28
conversion of, 4-29

Command-line retention (dbx), 3-3
Comma operator, 6-15

precedence of, 6-6
Comments, 4-32
Compilation options

options affecting debugging, 3-2
options affecting output

contents of source listing file (show), 2-15
debugging information (debug and optimize),

2-7,2-14
messages (standard and warnings}, 2-16 to

2-17
object code listing (machine_code), 2-14
object files (lkobject and object}, 2-13, 2-14
source listing (list), 2-13

options affecting processing
G_float versus D_float, 2-12
optimization (optimize}, 2-14

Compilation unit
in determining scope, 8-2

Compiler
diagnostic messages issued by

general description, 2-17
functions, 2-4
input to linker, 2-4
phases, 1-2

Compiler differences

lndex-2

Compiler differences (Cont.)
pee and VAX C, 1-2 to 1-1 O
VAX CNMS and VAX C/ULTRIX, 1-10 to 1-12

Compound statements, 4-31, 5-2
$$COMSYMS, A-7
Conditional compilation, 9-5 to 9-6
Conditional operator, 6-13

precedence of, 6-6
Conditional operators (C)

use in debugging, 3-3
Conditional statements, 5-3 to 5-6
const modifier, 8-16
Constants, 7-1

character, 7-5
escape sequence, 7-5
hexadecimal escape sequence, 7-6

character strings, 7-14
floating-point, 7-7
identifier, 9-3
integer, 7-4
values of, 7-1

cont command (dbx), 3-8
Continuation

strings, 7-14
continue statement, 5-8
Control flow statements, 5-1 to 5-2
Conversion rules, D-4
Conversions, 6-15 to 6-17

arithmetic, 6-15, 6-16
of data types, 6-15
of function arguments, 6-2, 6-17
with cast operator, 6-9

-c option
vcc command option, 2-8

Copy commands
DECnet-ULTRIX dcp command, C-1
DECnet-VAX COPY command, c--2

Cross-reference information
compiling

cross_reference argument, 2-10
in output listing

storage map section, 2-21
cross_reference argument

vcc command (-V option), 2-10
cross_reference option

effect on output listing, 2-21

D
Data definitions

external, 8-13
scope of external, 8-13

Data files
See Files

Data structures, 7-11
See also Aggregates

Data-type keywords, D-2
Data-type modifiers, 8-16, D-3
Data types, 7-1 to 7-23

conversion of, 6-15
function prototypes, 1-6, 4-24
introduction to, 4-3
modifiers, 8-16
supported by dbx debugger, 3-1 O

__ DATE __ predefined macro, 10-2
dbx command, 3-2
dbx commands

dbx commands (Cont.)
data types displayed by, 3-10
summary, 3-5 to 3-7

dbx conventions
array expression syntax, 3-4
initialization files, 3-3
use of conditional operators, 3-3

dcp command (DECnet-ULTRIX}, C-1
debug argument

vcc command (-V option), 2-10 to 2-11
Debugger

example sessions, 3-15 to 3-17
Debugging operations

assign values (assign), 3-7
assign value to debugger variable (set}, 3-11
change command names (alias), 3-7
change function level (up), 3-13
change functions (func), 3-9
change search directories (use), 3-13
change source files (file), 3-9
delete debugger variable (unset), 3-12
display declarations (whatis), 3-13
display help information (help), 3-9
display memory locations

by means of addresses, 3-13
display names and values (dump), 3-8
display source lines (list), 3-9
display symbol qualifications (whereis), 3-13
display symbol qualifications (which), 3-13
display traces and stops (status}, 3-11
display values of expressions (print), 3-1 O
edit a source file (edit), 3-8
enable tracing operations

machine instruction level (tracei), 3-14
source line level (trace}, 3-12

enter shell commands (sh), 3-11
execute a program (run/rerun), 3-10, 3-11
execute dbx commands

in specified files (source), 3-11
execute to next line (next), 3-9
execute to next line (step), 3-11
execute to next machine instruction (nexti), 3-14
execute to next machine instruction (stepi), 3-14
exit the debugger (quit), 3-1 O
handle interrupt signals (catch and ignore), 3-8,

3-9
invoke other functions (call}, 3-8
invoking dbx, 3-2
list active functions (where), 3-13
remove alias (unalias), 3-12
remove traces and stops (delete), 3-8
restart execution (cont), 3-8
search backward(?), 3-13
search forward (/}, 3-13
stop execution

machine instruction debugging (stopi), 3-14
source line debugging (stop), 3-12

stop execution at return (return), 3-10
trace execution (trace), 3-12
with optimized programs, 3-4

Declarations, 7-1 to 7-3
aggregate

arrays, 7-11
structures, 7-15
unions, 7-15

format of, 7-2
function

Declarations
function (Cont.)

void, 7-22
function prototypes, 1-6, 4-24
inside of blocks, 5-3
interpreting, 7-23 to 7-27
overlapping scope of, 4-31
parameters, 4-27
position of

determining scope, 8-2 to 8-3
scalar

character constant, 7-5
character variable, 7-3
enumerated, 7-9
integer, 7-3
pointer, 7-8

vacuous tag declarations, 7-17
DECnet-ULTRIX dcp command, C-1
DECnet-VAX COPY command, C-2
Decrement operator, 6-7

side effects within macros, 9-4
default label, 5-4
Default options, 1-4
#define directive, 2-11, 9-1, 9-5
defined operator, 9-7
define argument

vcc command (-V option), 2-11 to 2-12
Definitions, 7-1

function
void, 7-22

functions, 4-18
delete command (dbx), 3-8
Dereferencing, 6-8

See also Pointers
Diagnostic messages

from the linker, B-33 to B-43
general description, 2-18

from the VAX C compiler, B-2 to 8-33
general description, 2-17

from the vcc command, B-1 to B-2
Differences

compiler
pee and VAX C, 1-2 to 1-10
VAX CNMS and VAX C/ULTRIX, 1-10 to

1-12
Directives

#define, 9-1
#elif, 9-5
#else, 9-5
#endif, 9-5
#if, 9-5
#ifdef, 9-5
#ifndef, 9-5
#include, 9-7
#line, 9-8
#pragma, 9-9 to 9-12
#undef, 9-5

Division operator, 6-11
do statement, 5-7
-D option

vcc command option, 2-8
double keyword, 7-7
down command (dbx), 3-8
dump command (dbx}, 3-8
D _float data implementation

effect of g_float argument
vcc command (-V option), 2-12

lndex-3

D_floating representation, 7-7

E
edit command (dbx), 3-8
Editor

See Text editor
#elif directive, 9-5
#else directive, 9-5
-Em option, 1-3

vcc command option, 2-8
#endif directive, 9-5
Entry point

main, 2-18
enum keyword, 7-9 to 7-11
Enumerated data type, 7-9 to 7-11

declaration of, 7-9
envp

main function argument, 4-28
-E option, 1-2

vcc command option, 2-8
Equality operators, 6-11
Error (severity)

meaning to linker, 2-18
Error messages

from the linker, 8-33 to B-43
general description, 2-18

from the VAX C compiler, 8-2 to B-33
general description, 2-17

from the vcc command, B-1 to B-2
Escape sequences, 7-5, D-5

hexadecimal values, 7-6
Evaluating expressions

See Expressions
EXCLUSIVE OR bitwise operator, 6-12
Executable image sizes

VAX C on ULTRIX, C-4
Expressions, 5-2 to 5-3, 6-1 to 6-17

assignment, 6-14
as statements, 5-2
binary

additive, 6-1 O
bitwise, 6-12
equality, 6-11
logical, 6-13
multiplication, 6-11
relational, 6-11
shift, 6-13

comma, 6-15
conditional, 6-13
evaluation order

ambiguity of, 6-8
primary, 6-2 to 6-4

array reference, 6-3
formal syntax of, 6-2
function call, 6-2
lvalues, 6-1
parentheses, 6-2
rvalues, 6-1
structure reference, 6-4
union reference, 6-4

unary
addressed, 6-8
cast, 6-9
increment and decrement, 6-7
negation, 6-7

lndex-4

Expressions
unary (Cont.)

one's complement, 6-9
sizeof, 6-1 O

[extern] specifier, 8-4, 8-10, 8-11
External storage class, 8-1 O to 8-11

compared to global, 8-13 to 8-14
data definitions, 8-13

F
\ f (form feed), 7-5
Fatal (severity)

meaning to linker, 2-18
_FFC built-in function, 10-5
_FFS built-in function, 10-5
File

creating source files, 2-3
editing files, 2-3

__ FILE _ _predefined macro, 10-2
file command (dbx), 3-9
Files

data files
copying between VMS and ULTRIX, C-5

magnetic tape files
handling with DEC/Shell tar utility, C-2

program files

float

copying between VMS and ULTRIX, C-1 to
C-3

in prototype declarations, 4-25
float keyword, 7-6
Floating-point

constants, 7-7
data type

declaration of, 7-6
double, 7-7
D_floating, 7-7
float, 7-7
F _floating, 7-7
G_floating, 7-7
long, 7-7
long float, 7-7
precision of, 7-6

sizes of, 7-6
-f option

vcc command option, 2-8
for statement, 5-6, 5-7

introduction to, 4-10
$fortmsgfile, C-4
Forward referencing

structures, 7-17
func command (dbx), 3-9
Function

built-in, 10-3 to 10-15
Function definition

arguments
conversion of, 6-17

Functions
address of, 4-27, 6-3
as arguments, 4-27
calls to, 6-2

within macros, 9-4
definitions of, 4-18 to 4-27

argument conversion, 6-2
arguments, 4-19, 4-26
body, 4-19

Functions

G

definitions of (Cont.)
main function, 4-20
main_program option, 4-20
names of, 4-20
parameters, 4-19, 4-26

introduction to, 4-3
prototypes, 1-6, 4-24
return values of, 4-23
scope of, 4-20
undeclared, 6-2
void keyword, 7-22

Generic pointers, 7-22
globaldef specifier, 8-11, 8-13
globaldef data type

with enumerated values, 8-15
globalref specifier, 8-11, 8-13
globalref data type

See also Storage classes
with enumerated values, 8-15

Global storage class, 8-11 to 8-15
compared to external, 8-13 to 8-14
variable initialization, 8-11

globalvalue specifier, 8-14
-g option

vcc command option, 2-8
-g option (vcc command)

effect on debugging, 3-2
goto statement, 5-2
g_float argument

vcc command (-V option), 2-12
G_float data implementation

g_float argument (-V option), 2-12
G_floating representation, 7-7

H
_HALT built-in function, 10-6
help command (dbx), 3-9

Identifiers, 4-29
if statement, 5-3

introduction to, 4-7
#if directive, 9-5
#If defined operator, 9-7
#ifdef directive, 9-5
#ifndef directive, 9-5
ignore command (dbx), 3-8, 3-9
Image sizes

VAX Con ULTRIX, C-4
#Include directive, 9-7
Increment operator, 6-7

side effects within macros, 9-4
Indirection operator, 7-8
Initialization

arrays, 7-11
characters, 7-3
character-string variables, 7-14
integers, 7-3
of global variables, 8-11
structures, 7-18

Initialization files (dbx), 3-3

lnllne pragma, 9-9
Input and output (1/0)

introduction to, 4-4
_INSQHI built-in function, 10-6
_INSQTI built-in function, 10-6
_INSQUE built-in function, 10-7
Integer constants, 7-4

invalid, 7-5
Integer data types

declaration of, 7-3
sizes of, 7-3

Internal storage class, 8-7 to 8-9
Interrupting statements, 5-8 to 5-9
Interrupt signals

handling in dbx
catch and ignore, 3-8, 3-9

-I option
vcc command option, 2-8

K
Keywords

_align, 8-18
auto, 8-4, 8-8
break, 5-8
case, 5-4
const, 8-16
continue, 5-8
default, 5-4
do, 5-7
else, 5-3
enum, 7-9 to 7-11
extern, 8-4, 8-10, 8-11
for, 5-6
globaldef, 8-11
globalref, 8-11
globalvalue, 8-14
goto, 5-2
if, 5-3
introduction to, 4-4
list of, 4-29 to 4-31
noshare, 8-18
readonly, 8-18
register, 8-9
return, 5-9
sizeof, 6-1 O
static, 8-9
struct, 7-15
switch, 5-4
union, 7-15
void, 7-9
volatile, 8-17
while, 5-7

-K option
vcc command option, 2-8

L
Labeled statements, 5-2
_LDPCTX built-in function, 10-7
Lexical scope, 8-3 to 8-4
Lifetime

of stored objects, 8-7
#line directives, 9-8
__ LINE __ predefined macro, 10-3
Linker

command options, A-2 to A-3

lndex-5

Linker (Cont.)
diagnostic messages issued by

general description, 2-18
effect on files, A-1
lk command, A-1
vcc command options, A-1

Link-time scope, 8-3 to 8-4
lint utility, 1-4, 4-32

function prototypes, 1-6, 4-24
list command (dbx), 3-9
Listing output, 1-4
list option

vcc command (-V option), 2-13
lk command

See Linker, A-1
lk Linker Image Map, 2-23 to 2-30
_LOCC built-in function, 10-7
Logical

negation operator, 6-7
operators, 6-13

long keyword, 7-3, 7-7
Looping statements, 5-6 to 5-8

See also Statements
introduction to, 4-9

-I option
vcc command option, 2-8

!values, 6-1
introduction to, 4-12

M
Machine code output listing

general description, 2-19 to 2-20
machine_code argument

vcc command (-V option), 2-14
Macro

substitution
in #include directives, 9-8

Macro definitions, 9-3 to 9-5
canceling, 9-5
listing substituted lines, 9-5
naming parameters in, 9-4
on command line, 2-11
possible side effects, 9-4

Macros
predefined

__ DATE __ , 10-2
__ FILE __ , 10-2
__ LINE __ , 10-3
__ TIME __ , 10-3

system-identification, 10-1
Macro substitutions, 4-5, 9-3 to 9-5
Magnetic tape files

See Files
Main function, 4-20

syntax of, 4-28
with main_program option, 4-20

-Md option
vcc command option, 2-8

Members
defined, 7-2
variant aggregates, 7-20

member_alignment pragma, 9-11
Messages

from the linker, B-33 to B-43
from the VAX C compiler, B-2 to 8-33

lndex-6

Messages (Cont.)
from the vcc command, 8-1 to 8-2
issued by compiler

general description, 2-17
issued by linker

general description, 2-18
Message severity

E (error)
meaning to compiler, B-33

F (fatal}
meaning to compiler, B-33

I (informational)
meaning to compiler, 8-33

W (warning)
meaning to compiler, B-33

_MFPR built-in function, 10-8
-Mg option

vcc command option, 2-8
Migrating source programs

See Portability concerns
Modifiers

storage class, 8-17
Modulo operator, 6-11
_MOVC3 built-in function, 10-8
_MOVC5 built-in function, 10-9
_MOVPSL built-in function, 10-10
_MTPR built-in function, 10-1 O
Multiplication operators, 6-11

N
\n (newline), 7-5
Negation

arithmetic and logical, 6-7
unsigned, 6-7

next command (dbx), 3-9
nexti command (dbx), 3-14
noinline pragma, 9-9
nomember_alignment pragma, 9-11
noshare modifier, 8-18
nostandard pragma, 9-11
NUL character, 4-15
Null

pointer, 7-8
Null statement, 5-1

0
object argument

vcc command (-V option), 2-14
Object file formats, 1-3
Object module

in determining scope, 8-2
Objects

of variables, 7-1
Octal constants, 7-4
.o file type, 2-7
om utility, 8-1
One's complement operator, 6-9
-o option

vcc command option, 2-8
-0 option

vcc command option, 2-8
Operand conversion, 6-16
Operators, 6-4 to 6-15

assignment, 6-14 to 6-15
ambiguity of, 6-15

Operators (Cont.)
binary, 6-10 to 6-13

additive, 6-10
bitwise, 6-12
equality, 6-11
logical, 6-13
multiplication, 6-11
relational, 6-11
shift, 6-13

bracket ([]) , 6-3
categories of, 6-5
comma, 6-15
conditional, 6-13
defined, 9-7
list of, 6-4
precedence of, 6-6, D-4
unary, 6-7 to 6-10

address of, 6-8
cast, 6-9
increment and decrement, 6-7
indirection, 6-8
negation, 6-7
one's complement, 6-9

Optimization capabilities, 1-3
OR bitwise operator, 6-12
Output listing, 2-18 to 2-23

p

machine code section, 2-19 to 2-20
options affecting output

See Compilation options
storage map section, 2-20 to 2-23

Parameters, 4-26 to 4-27
declaration of, 4-19, 4-27
function prototypes, 1-6, 4-24
in #define preprocessor macros, 9-3
introduction to, 4-3
main function, 4-28
rules governing, 4-26

pee source programs
portability concerns, 1-1

Period operator, 6-4
-pg option

vcc command option, 2-8
Pointers

declaration of, 7-8
generic, 1-7, 7-22
introduction to, 4-12
null, 7-8
unary operator, 6-8
void, 7-9

-p option
vcc command option, 2-8

Portability concerns, 1-1 to 1-12, 4-1 to 4-2

See also C language
char* generic-pointer notation, 7-9
character-string constants, 7-5
character string length, 7-14
comparing pointers and integers, 6-11
deviations assignment operators, 6-15
direction of bit field packing, 7-22
global storage classes, 8-13
global system status values, 8-14
int values on a VAX system, 7-4
length of argument list, 4-26

Portability concerns (Cont.)
length of bit fields, 7-22
length of identifiers, 4-29
lexical scope and compilation units, 8-2
long float keyword, 7-7
main_program option, 4-20
octal constants, 7-4
parameter declarations, 4-27
predefined symbols, 4-31
predefined system-definition macros, 10-1
preprocessor implementations, 9-1
preprocessor substitutions, 10-1, 10-3
referencing aggregate members, 7-18
structure alignment, 7-15

#pragma preprocessor directive, 1-7
#pragma directive, 9-9 to 9-12
Pragmas

builtins, 9-9, 10-3
inline, 9-9
member_alignment, 7-15, 9-11
standard, 9-11

Precedence of operators, 6-6
in interpreting declarations, 7-24

Predefined macros, 10-1 to 10-3
Predefined symbols, 4-31, 10-3
Preprocessor (cpp), 1-2
Preprocessor directives, 9-1 to 9-12, D-5

#define, 9-1
#elif, 9-5
#else, 9-5
#endif, 9-5
#if, 9-5
#ifdef, 9-5
#ifndef, 9-5
#include, 9-7

macro substitution, 9-8
#line, 9-8
#pragma, 9-9 to 9-12
#undef, 9-5

Preprocessor substitutions, 10-1, 10-3
Primary expressions, 6-2 to 6-4

See also Expressions
array reference, 6-3
function call, 6-2
lvalues, 6-1
parentheses, 6-2
rvalues, 6-1
structure reference, 6-4
union reference, 6-4

Primary operators
precedence of, 6-6

print command (dbx), 3-10
Privacy, 8-6

See also Scope
_PROBER built-in function, 10-10
_PROBEW built-in function, 10-11
Program files

See Files
Programs

compiling, 2-1
Program section (psect)

attributes, A-4
defined, 8-7
for global symbols, 8-11
in linker map, 2-25

Program structure, 4-18 to 4-33

lndex-7

Prototypes, 1-6
function, 4-24

PSL, 10-10

Q
quit command (dbx), 3-10

R
\r (carriage return), 7-5
_READ_GPR built-in function, 10-11
readonly modifier, 8-18
References

forward, 1-3
unresolved, 2-18

register specifier, 6-8, 7-8, 8-9
Relational operators, 6-11
_REMOHI built-in function, 10-11
_REMQTI built-in function, 10-12
_REMQUE built-in function, 10-12
rerun command (dbx), 3-10, 3-11
Reserved words, 4-29 to 4-31
return statement, 4-19, 5-9
return command (dbx), 3-1 O
Right-arrow operator, 6-4
run command (dbx), 3-11
rvalues, 6-1

introduction to, 4-12

s
Scalar data types, 7-3 to 7-11

declarations, 7-3
character, 7-3
enumerated, 7-9
floating-point, 7-6
integer, 7-3
pointers, 7-8

defined, 7-2
introduction to, 4-14

_SCANC built-in function, 10-13
Scope, 8-1 to 8-6

auto variables, 4-31
in a compilation unit, 8-2
in an object module, 8-2
in a program, 8-2
lexical scope, 8-3
link-time scope, 8-3
of external data, 8-13
of functions, 4-20
position of declarations, 8-2 to 8-3

set command (dbx), 3-11
sh command (dbx), 3-11
Shell commands

issuing in debugger (sh), 3-11
Shift operators, 6-13
show argument

vcc command (-V option), 2-15
Signals

handling in dbx
catch and ignore, 3-8, 3-9

_SIMPLE_READ built-in function, 10-13
_SIMPLE_WRITE built-in function, 10-14
sizeof keyword, 6-1 O
_SKPC built-in function, 10-14
Source code

lndex-8

Source code (Cont.)
output listing section, 2-19

Source code listing
general description, 2-19

source command (dbx), 3-11
Source files

creating (vi), 2-3
editing (vi), 2-3

Source programs
migrating

See Portability concerns
_SPANG built-in function, 10-15
Standard argument

vcc command (-V option), 2-16
standard pragma, 9-11
Statements, 5-1 to 5-9, D-4

break, 5-8
case, 5-4
compound, 5-2
conditional, 5-3 to 5-6
continue, 5-8
control flow, 5-1 to 5-2
default, 5-4
do, 5-7
expressions as, 5-2
for, 5-6
goto, 5-2
if, 5-3
interrupting, 5-8 to 5-9
labels, 5-2
looping, 5-6 to 5-8
null, 5-1
return, 5-9
switch, 5-4
while, 5-7

static specifier, 8-9
Static storage class, 8-9
status command (dbx), 3-11
step command (dbx), 3-11

multiple steps
command-line retention, 3-3

stepi command (dbx), 3-14
stop command (dbx), 3-12
stopi command (dbx), 3-14
Storage

modifiers, 8-16
Storage allocation, 8-7

for program sections, 8-7
lifetime of variables, 8-7
location of, 8-7
registers, 8-7
run-time stack, 8-7

Storage classes
defined, 8-1
external, 8-1 O to 8-11

definitions and declarations, 8-1 O
global, 8-11
in determining scope, 8-1
internal, 8-7

auto specifier, 8-8
register specifier, 8-9

introduction to, 4-3
list of, 8-3
modifiers, 8-17 to 8-19

_align, 8-18
const, 8-16
introduced, 8-3

Storage classes
modifiers (Cont.)

noshare, 8-18
readonly, 8-18
volatile, 8-17

order of keywords in declarations, 8-2
specifiers

auto, 8-4, 8-8
extern, 8-4, 8-10, 8-11
globaldef, 8-11
globalref, 8-11
globalvalue, 8-14
list of, 8-4
register, 8-9
static, 8-9

Storage-class modifiers, D-3
Storage-class specifiers, D-3
Storage map

output listing section, 2-20 to 2-23
String data type

See also Arrays
declaration of, 7-14

Strings
assignment, 4-15, 4-16
concatenation of, 7-14
continuation, 7-14

Structures, 7-15
alignment, 9-11
bit fields, 7-22
declaration of, 7-15, 7-16 to 7-17
forward referencing, 7-17
initialization of, 7-18
introduction to, 4-15
members of

references to, 6-4, 7-17 to 7-18
padding, 1-11
variant aggregates, 7-20

Substitution
macro, 9-3 to 9-5

in #include directives, 9-8
Subtraction operator, 6-1 O
_SVPCTX built-in function, 10-15
switch statement, 5-4, 5-6

declarations inside of, 5-5
introduction to, 4-8

Symbolic constants, 7-1
Symbol table

created by compiler, 2-4
Syntax

main function, 4-28

T
\t (horizontal tab), 7-5
Tags

vacuous declarations, 7-17
Tape files

See Files
tar utility (DEC/Shell)

using to handle magnetic tape, C-2
Text editor (vi), 2-3

See also Editor
environment, 2-3

__ TIME __ predefined macro, 10-3
-t option

vcc command option, 2-8

Traceback mechanism
effect of debug argument (-V option), 2-11

trace command (dbx), 3-12
tracei command (dbx), 3-14
typedef keyword, 7-23
Type specifiers, D-2

u
ULT$COMM, A-6
ULT$DATA, A-6
ULT$TEXT, A-6
ULTRIX vcc command, 0-1
unalias command (dbx), 3-12
Unary expressions

address of, 6-8
cast, 6-9
increment and decrement, 6-7
indirection, 6-8
negation, 6-7
one's complement, 6-9
sizeof, 6-1 O

Unary operators, 7-8
precedence of, 6-6

#undef directive, 2-16, 9-5
Unions, 7-15

declaration of, 7-15, 7-16
introduction to, 4-15
members of

references to, 6-4
variant aggregates, 7-20

Unresolved references, 2-18
unset command (dbx), 3-12
Unsigned conversion, 6-16
-U option

vcc command option, 2-8
up command (dbx), 3-13
use command (dbx), 3-13
User-defined functions

See Functions
/usr/lib/fortmsgfile, C-4
Utilities

lint, 4-32

v
\ v (vertical tab), 7-5
Vacuous tag declarations, 1-7, 7-17
Values

defined, 7-1
of constants, 7-1
of variables, 7-1

Variables
aggregate, 7-2
character, 7-3
declarations

format of, 7-2
introduction to, 4-3

declared in overlapping blocks, 4-31
identifiers, 4-29
objects of, 7-1
scalar, 7-2
values of, 7-1

variant_struct, 7-20
variant_union, 7-20
VAX C language

lndex-9

VAX C language (Cont.)
See also Portability concerns
introduction to, 4-2
keywords, 4-29

introduction to, 4-4
list of operators, 6-4
program structure, 4-18

introduction to, 4-2
VAX C tutorial, 4-2 to 4-18

See also Statements
addresses, 4-12
aggregates, 4-14 to 4-18
arguments, 4-3
arrays, 4-14
blocks, 4-7
break statement, 4-9
case sensitivity, 4-4
character strings, 4-14
comments, 4-3
compiling and linking, 4-6
compound statement, 4-7
conditional execution, 4-7, 4-8, 4-9, 4-1 O
data types, 4-3
definition files, 4-5
do statement, 4-9
equality operator, 4-7
for statement, 4-1 O
function body, 4-3
functions, 4-3
if statement, 4-7
input/output, 4-4
isupper macro, 4-8
keywords, 4-4
language keywords, 4-4
linking against libraries, 4-4
loop incrementing, 4-11
loops, 4-9
macros, 4-8
newline character, 4-5
OR operator, 4-7
parameters, 4-3
pointers, 4-12
preprocessor directives, 4-8
program flow, 4-6
return statement, 4-3
scalars, 4-14 to 4-18
storage classes, 4-3
structures and unions, 4-15 to 4-18
switch statement, 4-8, 4-9
_tolower macro, 4-8
ULTRIX, 4-6
ULTRIX file extensions, 4-6
ULTRIX file names, 4-6
values, 4-12
variable declarations, 4-3
void function, 4-3
while expression, 4-10
white space, 4-3

VAX CNMS source programs
portability concerns, 1-1

vcc command, D-1
differences from CC command, C-3 to C-5
input and output files, C-3
search paths used in, C-4

vcc command (Shell), 2-4 to 2-17
cross_reference argument (-V option), 2-1 O
debug argument (-V option), 2-10 to 2-11

lndex-10

vcc command (Shell) (Cont.)
define argument (-V option}, 2-11 to 2-12
format, 2-4
g_float argument (-V option), 2-12
list argument (-V option), 2-13
machine_code argument (-V option), 2-14
object argument (-V option), 2-14
optimize argument (-V option), 2-14
show argument (-V option), 2-15
specifying files in, 2-5, 2-6, 2-7
standard argument (-V option), 2-16
undefine argument (-V option), 2-16
-V option summary, 2-10
warnings argument (-V option), 2-16

vcc command line
options affecting debugging, 3-2

vcc command options
options affecting debugging, 3-2

vi editor
See Text editor

void, 4-23 to 4-24
void keyword, 7-22
void keyword

pointers, 7-9
void pointers, 7-9
volatile modifier, 8-17
-v option

vcc command option, 2-8
-V option

vcc command option, 2-8
-V option (vcc command)

summary, 2-10

w
warnings argument

vcc command (-V option), 2-16
whatis command (dbx), 3-13
where command (dbx), 3-13
whereis command (dbx}, 3-13
which command (dbx), 3-13
while statement, 5-7
White space, 4-32
-w option

vcc command option, 2-8
_WRITE_GPR built-in function, 10-15

x
XOR bitwise operator, 6-12

y
-Y option

vcc command option, 2-8

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGIT AL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal *

Call

800-DIGIT AL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/El5
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

*For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Guide to VAX C for UL TRIX

AA-ME83B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 D D D
Completeness (enough information) D D D D
Clarity (easy to understand) D D D D
Organization (structure of subject matter) D D D D
Figures (useful) D D D D
Examples (useful) D D D D
Index (ability to find topic) D D D D
Page layout (easy to find information) D D D D

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual? ---------------------

Please list errors you have. found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ------

Name(fitle --------------------- Dept. -------

Company -------------------------- Date-----

Mailing Address -----------------------------

------------ Email ----------- Phone -------

- - · Do Not Tear - Fold Here and Tape

111maama™
-----------------------------rrrrn----------: =A~E ____ :

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

Ill 11111lhlh111ll1111l1ll1l11hl11 h1l1l111l1lh1I

- - - · Do Not Tear - Fold Here · -

Cut
Along
Dotted
Line

